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Preface 

There is only one limit to fundamental research – the sky.  

 

This book introduces the novel concept of a fuzzy network. In particular, it de-

scribes further developments of some results from its predecessor book on Com-

plexity Management in Fuzzy Systems, published in 2007 in the Springer Series in 

Studies in Fuzziness and Soft Computing. 

The book contents build on a number of special presentations made by the au-

thor at international scientific events in the recent years. These presentations in-

clude an invited lecture at the EPSRC International Summer School in Complexity 

Science in 2007, tutorials at the IEEE International Conferences on Fuzzy Systems 

in 2007 and 2010, tutorials at the IEEE International Conferences on Intelligent 

Systems in 2008 and 2010, a tutorial at the IFSA World Congress in 2009 as well 

as plenary lectures at the WSEAS International Conferences on Fuzzy Systems in 

2008 and Artificial Intelligence in 2009.  

The notion of complexity has recently become a serious challenge to scientific re-

search in a multi-disciplinary context. For example, it is quite common to find com-

plex systems in biology, cosmology, engineering, computing, finance and other ar-

eas. However, the understanding of complex systems is often a difficult task. 

There are two main aspects of complexity – quantitative and qualitative. The 

quantitative aspect is usually associated with a large scale of an entity or a large 

number of elements within this entity. The qualitative aspect is often characterised 

by uncertainty about data, information or knowledge that relates to an entity.  

A natural way of coping with quantitative complexity is to use the concept of a 

general network. The latter consists of nodes and connections whereby the nodes 

represent the elements of an entity and the connections reflect the interactions 

among these elements. In this case, the scale of the entity is reflected by the overall 

size of the network whereas the number of elements is given by the number of 

nodes.  

An obvious way of dealing with qualitative complexity is to use the concept of 

a fuzzy network. The latter consists of nodes and connections whereby the nodes 

are fuzzy systems and the connections reflect the interactions among these fuzzy 

systems. In this case, the uncertainty about data, information or knowledge related 

to an entity are reflected by the rule bases of the corresponding fuzzy systems and 

the underlying fuzzy logic. 

In the context of the considerations made above, a fuzzy network represents a 

natural counterpart of a neural network. Both neural networks and fuzzy networks 

are computational intelligence based networks with nodes and connections.  



VIII Preface

 

 

However, the nodes in a neural network are represented by neurons whereas the 

nodes in a fuzzy network are represented by rule bases. 

The author would like to thank Mathworks for including this book in their 

Book Programme and for providing a free individual licence of Matlab and the 
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The author is very indebted to the Springer Editorial Assistant Heather King for 
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start of the writing process until the final submission is gratefully acknowledged. 

The author is very thankful to Annette Wilson, Head of School of Computing at 

the University of Portsmouth, for her managerial support with regard to the book. 

Her cooperation in keeping the teaching and administration duties of the author 

within reasonable bounds has helped for the timely publication of the book. 

The author is also very thankful to the PhD students Nedyalko Petrov and Emil 

Gegov from the University of Portsmouth and the University of Brunel for validat-

ing some of the theoretical results from this book in the Matlab software environ-

ment. Without their help the book would have only a theoretical focus. 
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erlands have laid down the early foundations for some of the ideas presented in the 

book. 

The author would like to thank his wife, parents and sister for their spiritual 

support during his work on this book. Without their support the writing process  
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Chapter 1 

Introduction 

1.1   Attributes of Systemic Complexity 

Processes that are the subject of studies by humans are often referred to as  

systems. In this context, the term system has a fairly general meaning that can be 

associated either with a process operating on its own or under some human inter-

vention. In this book, a system is associated with a process operating on its own.  

Processes are usually studied by humans for the purpose of modelling, simula-

tion and control which are aimed at managing these processes for the benefit of 

humans. In this book, modelling, simulation and control of processes is referred to 

as system management. In a more general context, system management may also 

include other activities such as diagnosis, classification and recognition. 

Complexity is quite a versatile feature of existing systems in that it can not be 

described by a single definition. However, complexity is usually associated with a 

number of attributes such as nonlinearity, uncertainty, dimensionality and struc-

ture which make the management of systems with these attributes more difficult. 

Therefore, the complexity of a given system can be accounted for by listing the 

complexity related attributes that are to be found in this system. In a more general 

setting, other complexity related attributes may also be considered, as for example, 

multiple levels of abstraction or multiple modes of operation. 

1.2   Complexity Management by Fuzzy Logic 

The effectiveness of system management depends on the way in which the  out-

puts in a system are influenced by its inputs. These influences may be described 

by nonlinear functional mappings that are usually referred to as nonlinearity. The 

latter represents a serious challenge to system management due to the difficulties 

in handling nonlinear mappings for modelling, simulation and control. 

The effectiveness of system management also depends on the way in which the 

relevant data, information and knowledge are handled. The latter may be  

characterised by imprecision, incompleteness, vagueness or ambiguity. These 

characteristics are often referred to collectively as uncertainty and they may lead 

to potential problems in safety-critical situations. The causes for uncertainty can 

be imprecise measurement devices, faulty sensors, noisy communication channels, 

subjective expert knowledge and others. As a whole, uncertainty in data,  
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information and knowledge represents another serious challenge to system  

management as it may not be possible to obtain a solution within acceptable safety 

bounds. 

Another factor that influences the effectiveness of system management is the 

way in which dimensionality is accounted for. The larger the number of inputs in a 

system, the more difficult it is to deal with it due to potential problems in time-

critical situations. Such problems may compromise the reliability of the system as 

it may not be possible to obtain a solution within reasonable time scales. 

A factor that also influences the effectiveness of system management is the way 

in which structure is reflected. In this context, many systems consist of subsystems 

that interact with each other. The ability to reflect this structure explicitly is a key 

to understanding how a system operates and a prerequisite for improving its  

functionality.  

In general, fuzzy logic has proved itself as a powerful tool for dealing with 

nonlinearity and uncertainty. In this context, the concept of fuzziness is very suit-

able for approximating strong nonlinearity in terms of non-linearisable and non-

analytical functional mappings between system inputs and outputs [22, 29, 38, 42, 

71, 96, 126, 141, 144, 145, 146, 152, 153, 174]. Fuzziness is also quite suitable for 

reflecting non-probabilistic uncertainty such as imprecision, incompleteness, 

vagueness and ambiguity [27, 44, 49, 54, 58, 86, 101, 118, 154, 164, 167]. 

However, fuzzy logic has not been very effective in dealing with dimensional-

ity and structure. In this respect, dimensionality is usually associated with the 

number of fuzzy rules which is an exponential function of the number of system 

inputs and the number of linguistic terms per input [18, 19, 20, 26, 28, 134, 156, 

157]. As far as structure is concerned, it is often used to describe interacting mod-

ules which can not be taken into account explicitly due to the black box nature of 

the fuzzy rules [87, 163, 172, 175]. 

1.3   Description of Book Chapters 

This book consists of ten chapters. The current chapter discusses complexity as a 

systemic feature and the ability of fuzzy systems to handle different attributes of 

complexity. Chapter 2 reviews several types of fuzzy systems in the context of 

systemic complexity, including systems with single, multiple and networked rule 

bases. Chapter 3 introduces the novel concept of fuzzy networks by means of for-

mal models such as if-then rules and integer tables, Boolean matrices and binary 

relations, grid and interconnections structures, incidence and adjacency matrices 

as well as block schemes and topological expressions. Chapter 4 presents basic 

operations on nodes in fuzzy networks, including merging and splitting in horizon-

tal, vertical and output context. Chapter 5 describes some structural properties of 

node operations in fuzzy networks such as associativity of merging and variability 

of splitting in horizontal, vertical and output context. Chapter 6 illustrates some 

advanced operations on nodes in fuzzy networks, including node transformation in 

the context of input augmentation, output permutation and feedback equivalence 
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as well as node identification in the context of horizontal merging, vertical  

merging and output merging. Chapters 7-8 show the application of the theoretical 

results from Chapters 4-6 in feedforward fuzzy networks with single or multiple 

levels or layers and in feedback fuzzy networks with single or multiple local or  

global feedback. Chapter 9 gives an overall evaluation of fuzzy networks by 

means of assessment of structural complexity, composition of hierarchical fuzzy 

systems, decomposition of standard fuzzy systems, indicators of model perform-

ance and applications for case studies. The last chapter highlights the theoretical 

significance, the application areas and the methodological impact of fuzzy  

networks as well as the philosophical aspects of the book contents. 
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Chapter 2 

Types of Fuzzy Systems 

2.1   Introduction to Fuzzy Systems 

A fuzzy system is described by input-output if-then rules in the form of a rule 

base. The inputs and the outputs take values which are linguistic terms such  

as ‘small’, ‘big’, ‘low’ and ‘high’. In this context, the inputs and their linguistic 

terms in the ‘if’ part of the rule base are called ‘antecedents’ whereas the  

outputs and their linguistic terms in the ‘then’ part of the rule base are called  

‘consequents’.   

A fuzzy system with two inputs x1, x2 taking linguistic terms from the set 

{small, big} and two outputs y1, y2 taking linguistic terms from the set            

{low, high} can be described in a detailed rule base form by Eqs.(2.1)-(2.4). 

If x1 is small and/or x2 is small, then y1 is high and y2 is high                            (2.1) 

If x1 is small and/or x2 is big, then y1 is high and y2 is low                               (2.2) 

If x1 is big and/or x2 is small, then y1 is low and y2 is high                                (2.3) 

If x1 is big and/or x2 is big, then y1 is low and y2 is low                                     (2.4) 

Depending on the type of the logical connections ‘and/or’ among antecedents, the 

latter can be conjunctive or disjunctive. However, consequents are always con-

junctive as any multiple-output fuzzy system can be represented equivalently as a 

conjunctive set of single-output fuzzy systems. As far as the fuzzy rules are con-

cerned, they are usually disjunctive as it is unreasonable to assume that all rules in 

a fuzzy system can be applied simultaneously. 

A fuzzy system with conjunctive antecedents that has two inputs x1, x2 and two 

outputs y1, y2 taking linguistic terms from any admissible sets, can be described in 

a compact rule base form by Eq.(2.5). 

If x1 and x2, then y1 and y2                                                                                  (2.5) 

A fuzzy system with disjunctive antecedents that has two inputs x1, x2 and two 

outputs y1, y2 taking linguistic terms from any admissible sets, can be described in 

a compact rule base form by Eq.(2.6). 

If x1 or x2, then y1 and y2                                                                                     (2.6) 
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A multiple-output fuzzy system with two inputs x1, x2 and two outputs y1, y2  

taking linguistic terms from any admissible sets can be described in a compact 

rule base form by Eq.(2.7). 

If x1 and/or x2, then y1 and y2                                                                              (2.7) 

The multiple-output fuzzy system above can be represented equivalently as a  

conjunctive set of two single-output fuzzy systems which are described in a  

compact rule base form by Eqs.(2.8)-(2.9). 

If x1 and/or x2, then y1                                                                                         (2.8) 

If x1 and/or x2, then y2                                                                                         (2.9) 

The operation of a fuzzy system is characterised by a Fuzzification-Inference-

Defuzzification (FID) sequence which is applied for each output. During this  

sequence, the crisp values of inputs are first fuzzified into fuzzy values in terms of 

fuzzy membership degrees, then these fuzzy membership degrees are mapped to 

fuzzy values of the output in terms of a fuzzy membership function, and finally, 

this fuzzy membership function is defuzzified into a single crisp value for the out-

put. In the case of multiple outputs, the fuzzification and the initial part of the in-

ference may be applied only once whereas the other parts of the inference and the 

defuzzification must be applied separately for each output. 

The fuzzification stage in a FID sequence is based on the fuzzy membership 

functions of the inputs. Each of these functions represents a mathematical descrip-

tion of a linguistic term for an input. Depending on the shape of the input fuzzy 

membership functions, different fuzzification formulas are applied. 

For the fuzzy system described by Eqs.(2.1)-(2.4), the fuzzification stage can be 

described by a function that maps the crisp values x1C, x2C of the inputs  x1, x2 to 

their fuzzy membership degrees x1F
i
, x2F

i
, i=1,4 in each rule. This function is  

denoted as FUZ and is given for the two inputs by Eqs.(2.10)-(2.11). 

FUZ1 (x1C) = (x1F
1
, x1F

2
, x1F

3
, x1F

4
)                                                                    (2.10) 

FUZ2 (x2C) = (x2F
1
, x2F

2
, x2F

3
, x2F

4
)                                                                    (2.11) 

The inference stage in a FID sequence consists of three substages - application, 

implication and aggregation. The application substage maps the fuzzy membership 

degrees of the inputs in each rule to a single membership degree that represents 

the firing strength for this rule. The latter is mapped by the implication substage to 

a fuzzy membership function for the output in this rule that represents an amended 

image of the original membership function. The aggregation substage maps the 

amended fuzzy membership functions for all rules to a single fuzzy membership 

function for the output that represents the whole rule base.  
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For the fuzzy system described by Eqs.(2.1)-(2.4), the application substage of 

the inference stage can be described by a function that maps the input fuzzy mem-

bership degrees x1F
i
, x2F

i
, i=1,4 in each rule to the firing strength xF

i
, i=1,4 for this 

rule. This function is denoted as APP and is given for the four rules by            

Eqs.(2.12)-(2.15). 

APP1 (x1F
1
, x2F

1
) = xF

1
                                                                                       (2.12) 

APP2 (x1F
2
, x2F

2
) = xF

2
                                                                                       (2.13) 

APP3 (x1F
3
, x2F

3
) = xF

3
                                                                                       (2.14) 

APP4 (x1F
4
, x2F

4
) = xF

4
                                                                                       (2.15)  

For the fuzzy system described by Eqs.(2.1)-(2.4), the implication substage of the 

inference stage can be described by a function that maps the firing strength  xF
i
, 

i=1,4 for each rule to fuzzy membership functions y1F
i
, y2F

i
, i=1,4 in each rule for 

the outputs y1, y2. This function is denoted as IMP and is given for the two outputs 

by Eqs.(2.16)-(2.17). 

IMP1 (xF
1
, xF

2
, xF

3
, xF

4
) = (y1F

1
, y1F

2
, y1F

3
, y1F

4
)                                                (2.16) 

IMP2 (xF
1
, xF

2
, xF

3
, xF

4
) = (y2F

1
, y2F

2
, y2F

3
, y2F

4
)                                                (2.17)  

For the fuzzy system described by Eqs.(2.1)-(2.4), the aggregation substage of the 

inference stage can be described by a function that maps the output fuzzy mem-

bership functions y1F
i
, y2F

i
, i=1,4 in each rule to a single fuzzy membership  

function yjF, j=1,2 for each output. This function is denoted as AGG and is given 

for the two outputs by Eqs.(2.18)-(2.19). 

AGG1 (y1F
1
, y1F

2
, y1F

3
, y1F

4
) = y1F                                                                      (2.18) 

AGG2 (y2F
1
, y2F

2
, y2F

3
, y2F

4
) = y2F                                                                      (2.19)  

The defuzzification stage in a FID sequence is based on the fuzzy membership 

functions of the outputs. Each of these functions represents a mathematical de-

scription of a linguistic term for an output. Depending on the shape of the output 

fuzzy membership functions, different defuzzification formulas are applied. 

For the fuzzy system described by Eqs.(2.1)-(2.4), the defuzzification stage can 

be described by a function that maps the single fuzzy membership function        

yjF, j=1,2 for each output to crisp value yjC, j=1,2 of this output. This function is 

denoted as DEF and is given for the two outputs by Eqs.(2.20)-(2.21). 

DEF1 (y1F) = y1C                                                                                                (2.20) 

DEF2 (y2F) = y2C                                                                                                (2.21)  
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The FID sequence described by Eqs.(2.10)-(2.21) is used for a Mamdani fuzzy 

system where both the inputs and the outputs are presented by linguistic terms. A 

variation of this FID sequence is used for a Sugeno fuzzy system where the inputs 

are also presented by linguistic terms but the crisp values of the outputs are  

presented as linear functions of the crisp values of the inputs.  

2.2   Systems with Single Rule Base 

The most common type of fuzzy system has a single rule base [5, 11, 53, 123, 127, 

137]. This type of system is usually referred to as Standard Fuzzy System (SFS). 

The latter is characterised by a black-box nature whereby the inputs are mapped 

directly to the outputs without the consideration of any intermediate variables. The 

operation of a SFS is based on a single FID sequence. 

A Mamdani SFS with ‘r’ rules, ‘m’ inputs x1…xm taking linguistic terms from 

the input sets {A11,…,A1r},…,{Am1,…,Amr} and ‘n’ outputs y1…yn taking linguis-

tic terms from the output sets {B11,…,B1r},…,{Bn1,…,Bnr} can be described in a 

generic rule base form by Eq.(2.22). 

If x1 is A11 and/or … and xm is Am1, then y1 is B11 and … and yn is Bn1           (2.22) 

…………………………………………………………………………           

If x1 is A1r and/or … and/or xm is Amr, then y1 is B1r and … and yn is Bnr                              

A SFS is usually quite accurate for output modelling as it reflects the simultaneous 

influence of all inputs on the output. However, this accuracy depends on the feasi-

bility of the model which may be compromised due to the difficulties in reflecting 

the simultaneous influence of a large number of inputs. Also, the efficiency and 

transparency of a SFS deteriorate with the increase of the number of inputs and the 

number of linguistic terms per input. The main cause for this deterioration is the 

number of fuzzy rules which is an exponential function of the number of inputs 

and their linguistic terms. Therefore, as the number of rules increases, it not only 

takes longer to simulate the output but it is also more difficult to understand how 

the output is affected by the inputs. 

2.3   Systems with Multiple Rule Bases 

Another type of fuzzy system has multiple rule bases [15, 76, 81, 95, 105, 129, 

136, 140, 155, 162, 166, 173, 177]. This type of system is often described by  

cascaded rule bases and its most common forms are referred to as Chained Fuzzy 

System (CFS) or Hierarchical Fuzzy System (HFS). The latter are characterised by 

a white-box nature whereby the inputs are mapped to the outputs by means of 

some intermediate variables. The operation of a CFS/HFS is based on multiple 

FID sequences whereby each intermediate variable links the FID sequences for 

two adjacent rule bases. 
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A CFS may have an arbitrary structure in terms of subsystems and the  

connections among them [12, 66, 74]. In this case, each subsystem represents an 

individual rule base as the one described by Eq.(2.22) whereas each interaction is 

represented by an intermediate variable linking a pair of adjacent rule bases. This 

intermediate variable is identical with an output from the first rule base and an in-

put to the second rule base in the pair. The presentation of connections among 

multiple rule bases is discussed in Sect.2.4 in the context of networked rule bases 

which are a special type of multiple rule bases. 

A CFS is usually used as a detailed presentation of a SFS for the purpose of 

improving transparency by explicitly taking into account all subsystems and the 

interactions among them. Also, some efficiency is gained because of the smaller 

number of inputs to the individual rule bases. The same positive effect is observed 

for feasibility which is enhanced by the ability to reflect better the simultaneous 

influence of the reduced number of inputs to the individual rule bases. However, 

some accuracy is lost due to the accumulation of errors as a result of the repetitive 

application of fuzzification, inference and defuzzification within the multiple FID 

sequences.  

A HFS is a special type of a CFS that has a specific structure [2, 4, 13, 24, 25, 

30, 36, 39, 64, 70, 75, 79, 90, 94, 139, 143, 151, 169]. Each subsystem in a HFS 

has two inputs and one output. Some intermediate variables represent identical 

mappings which may propagate across parts of the system.  

A HFS is usually used as a simplified presentation of a SFS for the purpose of 

improving efficiency and transparency. Efficiency is improved by the reduction of 

the overall number of rules which is a linear function of the number of inputs to 

the subsystems and the number of linguistic terms per input. Transparency is also 

improved by explicitly taking into all subsystems and the interactions among 

them. The same applies to feasibility which is facilitated by the small number of 

inputs to the individual rule bases. However, these improvements are at the  

expense of losing accuracy for the same reason as in the case of a CFS. 

2.4   Systems with Networked Rule Bases 

A third type of fuzzy system has networked rule bases. This is a novel type of  

system that has been introduced recently in [50]. This system is referred to as Net-

worked Fuzzy System (NFS) and it is characterised by a white-box nature 

whereby the inputs are mapped to the outputs by means of some intermediate 

variables. Each subsystem in a NFS is represented by a node whereas the  

interactions among subsystems are the connections among these nodes.   

A Mamdani NFS with ‘p×q’ nodes {N11…Np1},…,{N1q…Npq}, ‘p×q’ node in-

puts {x11…xp1},…,{x1q…xpq} taking linguistic terms from any admissible input 

sets, ‘p×q’ node outputs {y11…yp1},…,{y1q…ypq} taking linguistic terms from any 

admissible output sets, ‘p’  horizontal levels and ‘q’ vertical layers in the  

underlying grid structure for this NFS can be described by Eq.(2.23). 
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            Layer 1.……………Layer q                                                            (2.23)                   

Level 1     N11(x11, y11).……….N1q(x1q, y1q) 

…………………………………………….                                                      

Level p     Np1(xp1, yp1).……….Npq(xpq, ypq)                    

The grid structure in Eq.(2.23) specifies the location of nodes as well as their  

inputs and outputs. In this case, each input and output can be either a scalar or a 

vector. The levels in this grid structure represent a spatial hierarchy of the nodes in 

terms of subordination in space whereas the layers represent a temporal hierarchy 

in terms of consecutiveness in time. 

However, Eq.(2.23) does not give any information about the connections 

among the nodes in the grid structure. Such information is contained in the inter-

connection structure in Eq.(2.24) whereby the ‘p×(q-1)’ node connections 

{z11,12…zp1,p2},…,{z1q-1,1q…zpq-1,pq} take linguistic terms from the admissible sets 

for the associated node outputs and inputs. 

            Layer 1.……………...Layer q-1                                                      (2.24) 

Level 1     z11,12=y11=x12.………..z1q-1,1q=y1q-1= x1q      

……………………………………………………                                                                           

Level p     zp1,p2=yp1=xp2.………..zpq-1,pq= ypq-1= xpq                        

For consistency, the NFS system described by Eqs.(2.23)-(2.24) assumes the  

existence of a node in each location of the underlying grid structure. However, not 

all locations in a NFS have to be populated by nodes. For simplicity, all connec-

tions in the NFS system above are among nodes in the same level and consecutive 

layers. However, some connections in a NFS may be among nodes in different 

levels or non-consecutive layers. 

A NFS is a hybrid between a SFS and a CFS/HFS. On one hand, the structure of 

a NFS is similar to the structure of a CFS/HFS due to the explicit presentation of 

subsystems and the interactions among them. On the other hand, the operation of a 

NFS resembles the operation of a SFS due to the possibility of simplifying the origi-

nal multiple rule bases to a linguistically equivalent single rule base. This simplifica-

tion is based on a linguistic composition approach that is central to a NFS and is in-

troduced in more detail further in this book. 

Being a hybrid concept, a NFS potentially has some of the advantages and the 

disadvantages of a SFS and a CFS/HFS. In this respect, on the positive side, a NFS 

could be as feasible and transparent as a CFS/HFS due to the original multiple rule 

base presentation. However, on the negative side, a NFS could also be as efficient 

as a SFS due to the equivalent single rule base presentation. As far as accuracy is 

concerned, a NFS could have either advantages or disadvantages in relation to a 

SFS or a CFS/HFS. For example, a NFS could be more accurate than a CFS/HFS 

due to the single application of a FID sequence but less accurate than a SFS due to 

the approximation effect of the linguistic composition approach.   
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2.5   Comparison of Fuzzy Systems 

The attributes of systemic complexity discussed in this chapter can be handled 

with a different level of success by the fuzzy systems introduced earlier in the 

chapter. For example, a SFS is usually suitable for representing nonlinearity and 

uncertainty but may have problems with dimensionality and structure. A CFS/HFS 

is often suitable for representing nonlinearity, dimensionality and structure but 

may experience problems with uncertainty. A NFS should be suitable for nonlin-

earity, uncertainty and structure but may exhibit problems with dimensionality.  

Properties of fuzzy systems such as feasibility, accuracy, efficiency and  

transparency are directly related to attributes of systemic complexity such as 

nonlinearity, uncertainty, dimensionality and structure. In this respect, nonlinearity 

represents a challenge for feasibility because it is more difficult to reflect simulta-

neous nonlinear influence of the inputs on the output [21, 45, 59, 82, 102, 124, 

135, 138]. Also, uncertainty is a challenge for accuracy as it is harder to build an 

accurate model under uncertainty [69, 78, 93, 97, 100, 108, 148, 160 170, 171]. 

Furthermore, dimensionality represents an obstacle to efficiency as it is more dif-

ficult to reduce the amount of computations in a FID sequence for a large number 

of rules [1, 32, 51, 56, 57, 65, 68, 73, 80, 109, 117, 128, 142, 161]. And finally, 

structure is an obstacle to transparency as it is harder to understand the behaviour 

of a black-box model with no interactions among subsystems [16, 35, 43, 46, 62, 

63, 67, 83, 91, 107, 116, 149, 178]. 

The relationships between the different attributes of systemic complexity and 

the associated properties of fuzzy systems are summarised in Table 2.1.  

Table 2.1 Systemic complexity attributes and fuzzy system properties 

Systemic complexity attribute Fuzzy system property 

Nonlinearity Feasibility 

Uncertainty Accuracy 

Dimensionality Efficiency 

Structure Transparency 

This book has three main objectives. The first objective is to introduce a de-

tailed theoretical framework for NFSs. The second objective is to demonstrate this 

framework as a modelling methodology for different types of NFSs. The third ob-

jective is to compare NFSs with SFSs and CFSs/HFSs in a number of application 

case studies.  

For clarity and simplicity, a NFS is referred to as a Fuzzy Network (FN) further 

in this book. As a concept, a FN is different from a Fuzzy Neural Network (FNN). 

Although there may be some similarities between a FN and a FNN, the nodes in 

the latter can be fuzzy logical neurons but not fuzzy rule bases [9, 23, 34, 48, 60, 

72, 85, 92, 98, 106, 115, 119, 176]. 
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The book focuses on Mamdani fuzzy systems, described by conjunctive  

antecedents, disjunctive rules, multiple outputs and any type of FID sequences in 

terms of the fuzzification, inference and defuzzification stages. As far as the  

application, implication and aggregation substages of the inference stage are con-

cerned, they can be also of any type. These choices are based on the fact that 

Mamdani fuzzy systems are not only widely used and but are also well suited to 

the linguistic composition approach used in the book. 

The next chapter introduces some basic concepts from the theoretical  

framework for FNs. In particular, it discusses several types of formal models for 

FNs. 
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Chapter 3 

Formal Models for Fuzzy Networks 

3.1   Introduction to Formal Models 

A formal model is usually characterised by mathematical formalisms. Their  

purpose is to avoid ambiguities that may be found in an informal model. For ex-

ample, formal models in software engineering are used for specifying uniquely re-

quirements to software products. Such models often make use of different areas of 

mathematics that has proved itself as a valuable tool for formal modelling. 

This chapter introduces several types of formal models for FNs. Some of these 

models have been around for sometime and are therefore well known to the fuzzy 

community [6, 7, 33, 37, 41, 52, 61, 77, 88, 111, 112, 113, 121, 130]. However, 

other models are quite novel in terms of their application for fuzzy systems and 

FNs.  These novel models have been used in some areas of mathematics, comput-

ing and engineering but they have been introduced only recently as formal models 

of networked rule bases in FNs.  

As FNs represent an extension of fuzzy systems, some of the formal models for 

FNs are fairly basic and similar to the formal models for fuzzy systems. However, 

other formal models are more advanced and different from the formal models for 

fuzzy systems in that they can reflect connections among nodes in networked rule 

bases and facilitate the simplification of such rule bases to a linguistically equiva-

lent single rule base. Apart from that, the more advanced formal models for FNs  

usually represent compressed images of these networks in terms of nodes  

and connections whereby only the most essential information is preserved and  

all unnecessary details are removed. 

3.2   If-then Rules and Integer Tables 

If-then rules and integer tables are known formal models for fuzzy systems. These 

models can represent nodes in a FN without the connections and are used here as a 

bridge between fuzzy systems and FNs.  

A FN is considered which has four nodes N11, N12, N21, N22 located within two 

levels and two layers. Initially, the nodes are assumed to be isolated and they can 

be described by the if-then rules given in Eqs.(3.1)-(3.12). 
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Rule 1 for N11 : If x11 is small, then y11 is low                                                    (3.1) 

Rule 2 for N11 : If x11 is medium, then y11 is high                                               (3.2) 

Rule 3 for N11 : If x11 is big, then y11 is average                                                 (3.3) 

Rule 1 for N12 : If x12 is low, then y12 is moderate                                              (3.4) 

Rule 2 for N12 :If x12 is average, then y12 is heavy                                              (3.5) 

Rule 3 for N12 : If x12 is high, then y12 is light                                                    (3.6) 

Rule 1 for N21 : If x21 is small, then y21 is average                                              (3.7) 

Rule 2 for N21 : If x21 is medium, then y21 is low                                                (3.8)  

Rule 3 for N21 : If x21 is big, then y21 is high                                                       (3.9) 

Rule 1 for N22 : If x22 is low, then y22 is heavy                                                 (3.10) 

Rule 2 for N22 : If x22 is average, then y22 is light                                             (3.11)  

Rule 3 for N22 : If x22 is high, then y22 is moderate                                           (3.12) 

The four nodes above can also be described by integer tables whereby each row in 

the table represents a rule. In this case, the linguistic terms ‘small’, ‘low’ and 

‘light’ are represented by ‘1’, the linguistic terms ‘medium’, ‘average’ and ‘mod-

erate’ are represented by ‘2’ whereas the linguistic terms ‘big’, ‘high’ and ‘heavy’ 

are represented by ‘3’. These integer tables are given in Tables 3.1-3.4. 

Table 3.1 Integer table for node N11 

Linguistic terms for input x11 Linguistic terms for output y11 

1 1 

2 3 

3 2 

Table 3.2 Integer table for node N12 

Linguistic terms for input x12 Linguistic terms for output y12 

1 2 

2 3 

3 1 
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Table 3.3 Integer table for node N21 

Linguistic terms for input x21 Linguistic terms for output y21 

1 2 

2 1 

3 3 

Table 3.4 Integer table for node N22 

Linguistic terms for input x22 Linguistic terms for output y22 

1 3 

2 1 

3 2 

If-then rules and integer tables as the ones presented above are very suitable for 

formal modelling of fuzzy systems with a single rule base such as SFSs. However, 

they are not quite suitable for formal modelling of fuzzy systems with multiple or 

networked rule bases. This is due to the fact that if-then rules and integer tables 

can not take into account any connections among nodes in networked rule bases. 

Also, if-then rules and integer tables do not lend themselves easily to manipulation 

for the purpose of simplifying networked rule bases to a linguistically equivalent 

single rule base using the linguistic composition approach.  

3.3   Boolean Matrices and Binary Relations 

Boolean matrices and binary relations are novel formal models for fuzzy systems 

that can represent nodes in a FN. Similarly to if-then rules and integer tables, these 

models can represent nodes without the connections. 

A Boolean matrix compresses the information from a rule base that is  

represented by a node. In this case, the row and column labels of the Boolean  

matrix are all possible permutations of the positive integers representing the lin-

guistic terms of the inputs and the outputs from the integer table for this rule base. 

The elements of the Boolean matrix are either ‘0’s or ‘1’s whereby each ‘1’  

reflects a rule from the rule base.  

The rule bases represented by the isolated nodes N11, N12, N21, N22 from 

Eqs.(3.1)-(3.12) can be described by the Boolean matrices in Eqs.(3.13)-(3.16). 

N11 :         y11   1     2     3                                                                                   (3.13) 

          x11 

          1            1     0     0  

          2            0     0     1 

          3            0     1     0 
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N12 :         y12   1     2     3                                                                                   (3.14) 

          x12 

          1            0     1     0  

          2            0     0     1 

          3            1     0     0 

N21 :         y21   1     2     3                                                                                   (3.15) 

          x21 

          1            0     1     0  

          2            1     0     0 

          3            0     0     1 

N22 :         y22   1     2     3                                                                                   (3.16) 

          x22 

          1            0     0     1  

          2            1     0     0 

          3            0     1     0 

A binary relation compresses further the information from the Boolean matrix of a 

rule base that is represented by a node. In this case, the pairs in the relation are the 

permutations of positive integers representing the linguistic terms of the inputs 

and the outputs from the row and column labels of the Boolean matrix which cor-

respond to a rule. Therefore, each pair in the binary relation reflects a rule from 

the rule base.  

The rule bases represented by the isolated nodes N11, N12, N21, N22 from 

Eqs.(3.1)-(3.12) can be described by the binary relations in Eqs.(3.17)-(3.20). 

N11 :   {(1, 1), (2, 3) (3, 2)}                                                                               (3.17) 

N12 :   {(1, 2), (2, 3) (3, 1)}                                                                               (3.18) 

N21 :   {(1, 2), (2, 1) (3, 3)}                                                                               (3.19) 

N22 :   {(1, 3), (2, 1) (3, 2)}                                                                               (3.20) 

Boolean matrices and binary relations as the ones presented above are very suit-

able for formal modelling of fuzzy systems with multiple or networked rule bases. 

In particular, they are well suited for formal modelling of FNs at a lower level of 

abstraction whereby detailed input-output mappings are specified for isolated in-

dividual nodes. Besides this, Boolean matrices and binary relations work well with 

other formal models which can take into account connections among nodes in 

FNs. A more detailed treatment of this matter is presented further in the book. 
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3.4   Grid and Interconnection Structures 

Grid and interconnection structures are novel formal models that represent  

compressed images of the overall structure of a FN. These models describe the lo-

cation of nodes and the connections among them. The models are introduced 

briefly in Chapter 2 and are discussed in more detail here.  

The rule bases represented by the isolated nodes N11, N12, N21, N22 from 

Eqs.(3.1)-(3.12) can be described by the grid structure in Eq.(3.21).  

            Layer 1            Layer 2                                                                     (3.21) 

Level 1     N11(x11, y11)     N12(x12, y12) 

Level 2     N21(x21, y21)     N22(x22, y22)                    

The grid structure above with two levels and two layers is a formal model for a FN 

with a node set {N11, N12, N11, N22}, an input set {x11, x12, x21, x22} and an output 

set {y11, y12, y21, y22}. This grid structure specifies the location of nodes as well as 

their inputs and outputs but it can not take into account any connections among 

nodes.  

Therefore, it is assumed that the nodes N11, N12, N21, N22 from Eqs.(3.1)-(3.12) 

are not isolated anymore and their connections are described by the connection set 

is{z11,12, z21,22}. In this case, the first connection is assumed to be identical with 

the output from N11 and the input to N12 whereas the second connection is as-

sumed to be identical with the output from N21 and the input to N22. These connec-

tions can be taken into account by the interconnection structure with two levels 

and one layer in Eq.(3.22). 

            Layer 1                                                                                             (3.22) 

Level 1     z11,12=y11=x12 

Level 2     z21,22=y21=x22                  

Grid and interconnection structures as the ones presented above are quite suitable 

for formal modelling of fuzzy systems with multiple or networked rule bases. In 

particular, these structures are well suited for formal modelling of FNs at a higher 

level of abstraction whereby only locations, inputs, outputs and connections for 

individual nodes are specified.  

Grid and interconnection structures describe FNs at overall network level. They 

work quite well with Boolean matrices and binary relations which describe FNs at 

individual node level. However, grid and interconnection structures do not lend 

themselves easily to manipulation for the purpose of simplifying networked rule 

bases to a linguistically equivalent single rule base using the linguistic composi-

tion approach. For this reason, these structures are not considered further in this 

book. 
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3.5   Incidence and Adjacency Matrices 

Incidence and adjacency matrices are other novel formal models that represent 

compressed images of the overall structure of a FN. Similarly to grid and  

interconnection structures, these models describe the location of nodes and the 

connections among them. In this case, it is necessary to introduce a start node S 

for virtual generation of inputs and an end node E for virtual receipt of outputs. 

These two additional nodes make possible the transformation of a FN into an 

equivalent graph which can then be analytically described by an incidence matrix 

and an adjacency matrix. 

An incidence matrix describes the interactions among individual rule bases 

whereby the row labels designate the rule bases and the column labels designate 

the associated interactions. Each existing connection between an ordered pair of 

nodes is represented by a (1,-1) pair of elements in the incidence matrix whereas 

missing connections are represented by zeros. For each connection, the ‘1’  

element in the associated pair specifies the outgoing node and the ‘-1’ element 

specifies the incoming node.  

The FN from Eqs.(3.21)-(3.22) can be described by the incidence matrix in 

Eq.(3.23). 

             Connection      x11      z11,12    y12      x21      z21,22    y22                                (3.23)                       

Node  

S                                   1        0        0        1        0        0 

N11                               -1       1         0        0        0        0 

N12                                                 0      -1         1        0        0        0 

N21                                0        0        0       -1        1        0 

N22                                0        0        0        0       -1        1  

E                                   0        0       -1        0        0       -1 

An adjacency matrix presents the information from an incidence matrix in a 

slightly different way. In this case, both the row and column labels in the adja-

cency matrix designate the rule bases. Each existing connection between an or-

dered pair of nodes is represented by a ‘1’ whereas missing connections are repre-

sented by a ‘0’. As opposed to an incidence matrix which specifies explicitly each 

connection and the associated pair of nodes, the adjacency matrix specifies only 

which pairs of nodes are linked by a connection.    

The FN from Eqs.(3.21)-(3.22) can be described by the adjacency matrix in 

Eq.(3.24). 
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             Node      S    N11    N12    N21    N22    E                                                (3.24)               

Node  

S                         0       1       0       1       0       0 

N11                      0       0       1       0       0       0 

N12                                  0       0       0       0       0       1 

N21                      0       0       0       0       1       0 

N22                      0       0       0       0       0       1 

E                         0       0       0       0       0       0 

Incidence and adjacency matrices as the ones presented above are quite suitable 

for formal modelling of fuzzy systems with multiple or networked rule bases. In 

particular, they are well suited for formal modelling of FNs at a higher level of ab-

straction whereby only inputs, outputs and connections for individual nodes are 

specified.  

Like grid and interconnection structures, incidence and adjacency matrices  

describe FNs at overall network level. They work quite well with Boolean matri-

ces and binary relations which describe FNs at individual node level. However, 

incidence and adjacency matrices do not lend themselves easily to manipulation 

for the purpose of simplifying networked rule bases to a linguistically equivalent 

single rule base using the linguistic composition approach. For this reason, these 

matrices are not considered further in this book. 

3.6   Block Schemes and Topological Expressions 

Block schemes and topological expressions are advanced novel formal models that 

represent compressed images of the overall structure of a FN. Similarly to grid and 

interconnection structures, these models describe the location of nodes and the 

connections among them. In this case, the subscripts of each node specify its loca-

tion in the network whereby the first subscript gives the level number and the sec-

ond subscript gives the layer number. Besides this, block scheme and topological 

expressions specify all inputs, outputs and connections with respect to the nodes. 

The four-node FN from Eqs.(3.21)-(3.22) can be described by the block scheme 

in Fig.3.1. 

  x11                     z11,12                                      y12  

                 N11                        N12         

 

  x21                     z21,22                                      y22 

                 N21                        N22     

Fig. 3.1 Block scheme for a four-node FN 

The arrows in the block scheme above designate the input set {x11, x21} for  

the nodes in the first layer and the output set {y12, y22} for the nodes in the second 
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layer. Also, the arrows designate the connection set {z11,12, z21,22} for connected 

pairs of nodes whereby for each pair of nodes the first node is in the first layer  

and the second node is in the second layer.  

The FN from Eqs.(3.21)-(3.22) can be described by the topological expression 

in Eq.(3.25). 

{[N11](x11 | z11,12) H [N12](z11,12 | y12)}V{[N21](x21 | z21,22) H [N22](z21,22 | y22)}(3.25) 

Each node in the topological expression above is placed within a pair of square 

brackets ‘[ ]’. The inputs and the outputs for each node are placed within a pair of 

simple brackets ‘( )’ right after the node. In this case, the inputs are separated from 

the outputs by a vertical slash ‘|’. Nodes in sequence are designated by the symbol 

‘H’ for horizontal relative location whereas nodes in parallel are designated by the 

symbol ‘V’ for vertical relative location. The higher priority of horizontal relative 

location with respect to vertical relative location in Eq.(3.25) is specified by pairs 

of curly brackets ‘{ }’. 

Block schemes and topological expressions as the ones presented above are 

very suitable for formal modelling of fuzzy systems with multiple or networked 

rule bases. In particular, they are well suited for formal modelling of FNs at a 

higher level of abstraction whereby only inputs, outputs and connections for  

individual nodes are specified.  

Like grid and interconnection structures, block schemes and topological  

expressions describe FNs at overall network level. They work very well with Boo-

lean matrices and binary relations which describe FNs at individual node level. 

Besides this, block schemes and topological expressions lend themselves easily to 

manipulation for the purpose of simplifying networked rule bases to a linguisti-

cally equivalent single rule base using the linguistic composition approach. A 

more detailed treatment of this matter is presented further in the book. 

3.7   Comparison of Formal Models 

The formal models introduced in this chapter can be used with a different level of 

success for different types of FNs. For example, if-then rules and integer tables are 

mainly suitable for formal modelling of nodes in fairly simple and disconnected 

FNs. However, Boolean matrices and binary relations are suitable for formal mod-

elling of nodes in more complex and connected FNs. Grid and interconnection 

structures are suitable for formal modelling of whole FNs, but mainly in a static 

context and alongside Boolean matrices or binary relations. The same characteris-

tics can be attributed to incidence and adjacency matrices under the assumption 

that the associated FNs do not change their structure. However, when networked 

rule bases are simplified to a linguistically equivalent single rule base, the associ-

ated FNs change their structure during this process and the most suitable formal 

models for this purpose are block schemes and topological expressions. The latter 
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are suitable for formal modelling of whole FNs in a dynamic context and along-

side Boolean matrices or binary relations. 

The characteristics of different types of formal models in terms of their ability 

to handle nodes, connections and dynamics in FNs are summarised in Table 3.5.  

Table 3.5 Characteristics of formal models in relation to FNs 

Formal model  Nodes Connections Dynamics 

If-then rules Yes No No 

Integer tables Yes No No 

Boolean matrices Yes No Yes 

Binary relations Yes No Yes 

Grid structures No Yes No 

Interconnection structures No Yes No 

Incidence matrices No Yes No 

Adjacency matrices No Yes No 

Block schemes No Yes Yes 

Topological expressions No Yes Yes 

This book focuses on Boolean matrices and binary relations for formal model-

ling of nodes. As far as formal modelling of connections is concerned, the focus is 

on block schemes and topological expressions. The choice of these formal models 

is justified by their ability to handle dynamics in FNs and thereby to facilitate the 

intended use of the linguistic composition approach in the book. 

The next chapter introduces more basic concepts from the theoretical frame-

work for FNs. In particular, it discusses several types of basic operations in FNs.   
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Chapter 4 

Basic Operations in Fuzzy Networks 

4.1   Introduction to Basic Operations 

The process of simplifying networked rule bases to a linguistically equivalent  

single rule base is central to the linguistic composition approach used in this book. 

This approach is based on several basic operations on nodes which can be either 

binary or unary in that they can be applied to a pair of nodes or a single node. In 

this respect, each binary operation has a unary counterpart that is an inverse opera-

tion with respect to the binary operation. For simplicity, all operations are illus-

trated with examples of nodes with scalar inputs, outputs and intermediate  

variables but their extension to the vector case is straightforward.  

Some of the basic operations are to be found in mathematics and are therefore 

well known whereas others are quite novel in terms of the underlying theory and 

have been introduced only recently. The operations make use of Boolean matrices 

or binary relations as formal models for FNs at node level. These formal models 

lend themselves easily to manipulation in the context of the linguistic composition 

approach. Therefore, the basic operations can be viewed as elementary building 

blocks for the simplification of an arbitrarily complex FN to a fuzzy system.  

4.2   Horizontal Merging of Nodes 

Horizontal merging is a binary operation that can be applied to a pair of sequential 

nodes, i.e. nodes located in the same level of a FN. This operation merges the op-

erand nodes from the pair into a single product node. The operation can be applied 

when the output from the first node is fed forward as an input to the second node 

in the form of an intermediate variable. In this case, the product node has the same 

input as the input to the first operand node and the same output as the output from 

the second operand node whereas the intermediate variable does not appear in the 

product node. 

When Boolean matrices are used as formal models for the operand nodes, the 

horizontal merging operation is identical with Boolean matrix multiplication. The 

latter is similar to conventional matrix multiplication whereby each arithmetic 

multiplication is replaced by a ‘minimum’ operation and each arithmetic addition 

is replaced by a ‘maximum’ operation. In this case, the row labels of the product 

matrix are the same as the row labels of the first operand matrix whereas the  
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column labels of the product matrix are the same as the column labels of the  

second operand matrix. 

The horizontal merging operation can also be applied in the context of binary 

relations when such relations are used as formal models for the operand nodes. In 

this case, the horizontal merging operation is identical with standard relational 

composition. 

Example 4.1 

This example considers the sequential operand nodes N11 and N12 located in the 

first level of the four-node FN from Fig.3.1. These nodes are described there by 

the Boolean matrices in Eqs.(3.13)-(3.14) and the binary relations in Eqs.(3.17)-

(3.18). The connections among these nodes are given by the interconnection  

structure in Eq.(3.22). In this context, nodes N11 and N12 represent a two-node FN 

that is a subnetwork of the four-node FN. This two-node FN can be described by 

the block-scheme in Fig.4.1 and the topological expression in Eq.(4.1).  

  x11                      z11,12                                z11,12                                  y12 

                 N11                                      *                         N12 

Fig. 4.1 Two-node FN with operand nodes N11 and N12 

[N11] (x11
 
| z11,12) * [N12] (z11,12

 
|
 
y12)                                                                    (4.1) 

The use of the symbol ‘*’ in Fig.4.1 and Equation (4.1) implies that the horizontal 

merging operation can be applied to the operand nodes N11 and N12. In this  

context, the use of the symbol ‘*’ makes valid the precondition for horizontal 

merging of nodes N11 and N12. 

The horizontal merging of the operand nodes N11 and N12 results into a single 

product node N11*12 which represents a simplified image of the two-node FN in the 

form of a one-node FN. The latter can be described by the block scheme in Fig.4.2 

and the topological expression in Eq.(4.2).  

  x11                            y12                                 

                 N11*12                                                             

Fig. 4.2 One-node FN with product node N11*12 

[N11*12] (x11
 
| y12)                                                                                                 (4.2) 

The use of the symbol ‘*’ in Fig.4.2 and Eq.(4.2) implies that the application of 

the horizontal merging operation has resulted in the product node N11*12. This is 

justifiable due to the disappearance of the intermediate variable z11,12 as well as to 

the fact that the input x11 to the product node is the same the input to the first oper-
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and node and the output y12 from the product node is the same as the output from 

the second operand node. In this context, the use of the symbol ‘*’ makes valid the 

postcondition for the formation of node N11*12 as a result of horizontal merging. 

Finally, the product node N11*12 can be described by the Boolean matrix in 

Eq.(4.3) and the binary relation in Eq.(4.4).  

N11*12 :         y12    1     2     3                                                                                (4.3) 

              x11 

              1            0     1     0  

              2            1     0     0 

              3            0     0     1 

N11*12 : {(1, 2), (2, 1) (3, 3)}                                                                                (4.4) 

Example 4.2 

This example considers the sequential operand nodes N21 and N22 located in the 

second level of the four-node FN from Fig.3.1. These nodes are described there by 

the Boolean matrices in Eqs.(3.15)-(3.16) and the binary relations in Eqs.(3.19)-

(3.20). The connections among these nodes are given by the interconnection  

structure in Eq.(3.22). In this context, nodes N21 and N22 represent a two-node 

subnetwork of the four-node FN. The latter can be described by the block-scheme 

in Fig.4.3 and the topological expression in Eq.(4.5).  

  x21                      z21,22                                z21,22                                  y22 

                 N21                                     *                          N22 

Fig. 4.3 Two-node FN with operand nodes N21 and N22 

[N21] (x21
 
| z21,22) * [N22] (z21,12

 
|
 
y22)                                                                   (4.5) 

The use of the symbol ‘*’ in Fig.4.3 and Eq.(4.5) implies that the horizontal  

merging operation can be applied to the operand nodes N21 and N22. In this con-

text, the use of the symbol ‘*’ makes valid the precondition for horizontal merging 

of nodes N21 and N22. 

The horizontal merging of the operand nodes N21 and N22 results into a single 

product node N21*22 which represents a simplified image of the two-node FN in the 

form of a one-node FN. This one-node FN can be described by the block-scheme 

in Fig.4.4 and the topological expression in Eq.(4.6).  

  x21                            y22                                 

                 N21*22                                                             

Fig. 4.4 One-node FN with product node N21*22 
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[N21*22] (x21
 
| y22)                                                                                               (4.6) 

The use of the symbol ‘*’ in Fig.4.4 and Eq.(4.6) implies that the application of 

the horizontal merging operation has resulted in the product node N21*22. This is 

justifiable due to the disappearance of the intermediate variable z21,22 as well as to 

the fact that the input x21 to the product node is the same the input to the first oper-

and node and the output y22 from the product node is the same as the output from 

the second operand node. In this context, the use of the symbol ‘*’ makes valid the 

postcondition for the formation of node N21*22 as a result of horizontal merging. 

Finally, the product node N21*22 can be described by the Boolean matrix in 

Eq.(4.7) and the binary relation in Eq.(4.8).  

N21*22 :         y22    1     2     3                                                                                (4.7) 

              x21 

              1            1     0     0  

              2            0     0     1 

              3            0     1     0 

N21*22 : {(1, 1), (2, 3) (3, 2)}                                                                                (4.8) 

4.3   Horizontal Splitting of Nodes 

Horizontal splitting is a unary operation that can be applied to a single node in a 

FN. The operation splits an operand node into a pair of sequential product nodes 

whereby the input to the first product node is the same as the input to the operand 

node and the output from the second product node is the same as the output from 

the operand node. In this case, an intermediate variable appears between the prod-

uct nodes in the form of an output from the first product node that is fed forwarded 

as an input to the second product node. 

When a Boolean matrix is used as a formal model for the operand node, the 

horizontal splitting operation is identical with Boolean matrix factorisation. The 

latter is similar to conventional matrix factorisation whereby the multiplication of 

the two factors gives the matrix that has been factorised. In this case, the row  

labels of the first product matrix are the same as the row labels of the operand ma-

trix whereas the column labels of the second product matrix are the same as the 

column labels of the operand matrix. As any Boolean matrix can be factorised into 

the same matrix and an identity matrix of appropriate dimension, the horizontal 

splitting operation can always be applied at least in this trivial context. 

The horizontal splitting operation can also be applied in the context of binary 

relations when such a relation is used as a formal model for the operand node. In 

this case, the horizontal splitting operation is identical with standard relational de-

composition. As any binary relation can be decomposed into the same relation and 

an identity relation of appropriate cardinality, the horizontal splitting operation 

can always be applied at least in this trivial context. 
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Example 4.3 

This example considers an operand node N11/12 that is the same as the product 

node N11*12 from Example 4.1. This node is described there by the Boolean matrix 

in Eq.(4.3) and the binary relation in Eq.(4.4). In this context, the node N11*12 

represents a simplified image of a two-node FN in the form of a one-node FN. The 

latter can be described by the block-scheme in Fig.4.5 and the topological  

expression in Eq.(4.9).  

  x11                               y12 

                 N11/12                                                               

Fig. 4.5 One-node FN with operand node N11/12 

[N11/12] (x11
 
| y12)                                                                                                  (4.9)                       

The use of the symbol ‘/’ in Fig.4.5 and Equation (4.1) implies that the horizontal 

splitting operation can be applied to the operand node N11/12. In this context, the 

use of the symbol ‘/’ makes valid the precondition for horizontal splitting of node 

N11/12. 

The horizontal splitting of the operand node N11/12  results into a pair of sequen-

tial product nodes N11 and N12 which represent a complexified image of the  

one-node FN in the form of a two-node FN. The latter can be described by the 

block-scheme in Fig.4.6 and the topological expression in Eq.(4.10).  

  x11                      z11,12                                z11,12                                  y12 

                 N11                                      /                          N12 

Fig. 4.6 Two-node FN with product nodes N11 and N12 

[N11] (x11
 
| z11,12) / [N12] (z11,12

 
|
 
y12)                                                                  (4.10) 

The use of the symbol ‘/’ in Fig.4.6 and Eq.(4.10) implies that the application of 

the horizontal splitting operation has resulted in the product nodes N11 and N12. 

This is justifiable due to the appearance of the intermediate variable z11,12 as well 

as to the fact that the input x11 to the first product node is the same as the input to 

the operand node and the output y12 from the second product node is the same as 

the output from the operand node. In this context, the use of the symbol ‘/’ makes 

valid the postcondition for the formation of nodes N11 and N12 as a result of  

horizontal splitting. 

Finally, the product nodes N11 and N12 can be described by the Boolean  

matrices in Eqs.(3.13)-(3.14) and the binary relations in Eqs.(3.17)-(3.18). How-

ever, this solution is not unique due to the existence of a trivial solution with an 

identity node as one of the two product nodes. For example, the trivial solution  
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with an identity node NI3 of dimension 3×3 as a first product node can be  

described by the block-scheme in Fig.4.7, the topological expression in Eq.(4.11), 

the Boolean matrices in Eqs.(4.12)-(4.13) and the binary relations in Eqs. 

(4.14)-(4.15). 

  x11                               zI3,11/12                            zI3,11/12                                       y12 

                 NI3                                       /                                        N11/12 

Fig. 4.7 Two-node FN with product nodes NI3 and N11/12 

[NI3] (x11
 
| z11/12,I3) / [N11/12] (z11/12,I3 |

 
y12)                                                          (4.11)                      

NI3 :          zI3,11/12    1     2     3                                                                            (4.12) 

          x11     

          1                   1     0     0  

          2                   0     1     0 

          3                   0     0     1 

N11/12 :                y12    1     2     3                                                                        (4.13)                       

              zI3,11/12     

              1                   0     1     0  

              2                   1     0     0 

              3                   0     0     1 

NI3 : {(1, 1), (2, 2) (3, 3)}                                                                                  (4.14) 

N11/12 : {(1, 2), (2, 1) (3, 3)}                                                                              (4.15) 

Example 4.4 

This example considers an operand node N21/22 that is the same as the product 

node N21*22 from Example 4.2. This node is described there by the Boolean matrix 

in Eq.(4.7) and the binary relation in Eq.(4.8). In this context, the node N21*22 

represents a simplified image of a two-node FN in the form of a one-node FN. The 

latter can be described by the block-scheme in Fig.4.8 and the topological  

expression in Eq.(4.16).  

  x21                               y22 

                 N21/22                                                               

Fig. 4.8 One-node FN with operand node N21/22 

[N21/22] (x21
 
| y22)                                                                                                (4.16)                       
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The use of the symbol ‘/’ in Fig.4.8 and Equation (4.16) implies that the horizontal 

splitting operation can be applied to the operand node N21/22. In this context, the 

use of the symbol ‘/’ makes valid the precondition for horizontal splitting of node 

N21/22. 

The horizontal splitting of the operand node N21/22  results into a pair of sequen-

tial product nodes N21 and N22 which represent a complexified image of the  

one-node FN in the form of a two-node FN. The latter can be described by the 

block-scheme in Fig.4.9 and the topological expression in Eq.(4.17).  

  x21                      z21,22                                z21,22                                  y22 

                 N21                                      /                          N22 

Fig. 4.9 Two-node FN with product nodes N21 and N22 

[N21] (x21
 
| z21,22) / [N22] (z21,22

 
|
 
y22)                                                                   (4.17) 

The use of the symbol ‘/’ in Fig.4.9 and Eq.(4.17) implies that the application of 

the horizontal splitting operation has resulted in the product nodes N21 and N22. 

This is justifiable due to the appearance of the intermediate variable z21,22 as well 

as to the fact that the input x21 to the first product node is the same the input to the 

operand node and the output y22 from the second product node is the same as the 

output from the operand node. In this context, the use of the symbol ‘/’ makes 

valid the postcondition for the formation of nodes N21 and N22 as a result of  

horizontal splitting. 

Finally, the product nodes N21 and N22 can be described by the Boolean matri-

ces in Eqs.(3.15)-(3.16) and the binary relations in Eqs.(3.19)-(3.20). However, 

this solution is not unique due to the existence of a trivial solution with an identity 

node as one of the two product nodes. For example, the trivial solution with an 

identity node NI3 of dimension 3×3 as a second product node can be described by 

the block-scheme in Fig.4.10, the topological expression in Eq.(4.18), the Boolean 

matrices in Eqs.(4.19)-(4.20) and the binary relations in Eqs.(4.21)-(4.22). 

  x21                                      z21/22,I3                        z21/22,I3                                 y22 

                 N21/22                                      /                         NI3 

Fig. 4.10 Two-node FN with product nodes N21/22 and NI3 

[N21/22] (x21
 
| z21/22,I3) / [NI3] (z21/22,I3 |

 
y22)                                                          (4.18)                       
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N21/22 :         z21/22,I3    1     2     3                                                                         (4.19)   

              x21 

              1                  1     0     0  

              2                  0     0     1 

              3                  0     1     0 

NI3 :                y22    1     2     3                                                                           (4.20) 

          z21/22,I3  

          1                   1     0     0  

          2                   0     1     0 

          3                   0     0     1 

N11/12 : {(1, 1), (2, 3) (3, 2)}                                                                              (4.21) 

NI3 : {(1, 1), (2, 2) (3, 3)}                                                                                  (4.22) 

4.4   Vertical Merging of Nodes 

Vertical merging is a binary operation that can be applied to a pair of parallel 

nodes, i.e. nodes located in the same layer of a FN. This operation merges the op-

erand nodes from the pair into a single product node. In this case, the inputs to the 

product node represent the union of the inputs to the operand nodes whereas  the 

outputs from the product node represent the union of the outputs from the operand 

nodes. The operation of vertical merging can always be applied due to the ability 

to concatenate the inputs and the outputs of any two parallel nodes. 

When Boolean matrices are used as formal models for the operand nodes, the 

vertical merging operation is like an expansion of the first operand matrix along 

its rows and columns. In particular, the product matrix is obtained by expanding 

each non-zero element from the first operand matrix to a block that is the same as 

the second operand matrix and by expanding each zero element from the first op-

erand matrix to a zero block of the same dimension as the second operand matrix. 

In this case, the row labels of the product matrix are all possible permutations of 

row labels of the operand matrices whereas the column labels of the product ma-

trix are all permutations of column labels of the operand matrices. 

The vertical merging operation can also be applied in the context of binary  

relations when such relations are used as formal models for the operand nodes. In 

this case, the vertical merging operation represents a special type of relational 

composition in the form of a modified Cartesian product that is applied independ-

ently to the first and the second elements from the pairs of the operand relations. 

Example 4.5 

This example considers the parallel operand nodes N11 and N21 located in the first 

layer of the four-node FN from Fig.3.1. These nodes are described there by the  
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Boolean matrices and the binary relations in Eq.(3.13), Eq.(3.15), Eq.(3.17) and 

Eq.(3.19). The connections of these nodes with the nodes in the second layer of 

this FN are given by the interconnection structure in Eq.(3.22). In this context, 

nodes N11 and N21 represent a two-node subnetwork of this FN. This two-node FN 

can be described by the block-scheme in Fig.4.11 and the topological expression 

in Eq.(4.23).  

  x11                        y11                                

                 N11                                                                

                  

                  + 

  x21                        y21                                 

                 N21                                                                

Fig. 4.11 Two-node FN with operand nodes N11 and N21 

[N11] (x11
 
| y11) + [N21] (x21

 
|
 
y21)                                                                        (4.23)    

The use of the symbol ‘+’ in Fig.4.11 and Equation (4.23) implies that the vertical 

merging operation can be applied to the operand nodes N11 and N21. In this con-

text, the use of the symbol ‘+’ confirms the validity of the precondition for vertical 

merging of nodes N11 and N21. 

The vertical merging of the operand nodes N11 and N21 results into a single 

product node N11+21 which represents a simplified image of the two-node FN in 

the form of a one-node FN. The latter can be described by the block scheme in 

Fig.4.12 and the topological expression in Eq.(4.24).  

  x11                            y11                           

                  
  x21          N11+21           y21 

                                                                              

Fig. 4.12 One-node FN with product node N11+21 

[N11+12] (x11, x21
 
| y11, y21)                                                                                  (4.24)              

The use of the symbol ‘+’ in Fig.4.12 and Eq.(4.24) implies that the application of 

the vertical merging operation has resulted in the product node N11+12. This is jus-

tifiable due to the concatenation of the inputs to the operand nodes as inputs x11, 

x21 to the product node and the concatenation of the outputs from the operand 

nodes as outputs y11, y21 from the product node. In this context, the use of the sym-

bol ‘+’ makes valid the postcondition for the formation of node N11+21 as a result 

of vertical merging. 
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Finally, the product node N11+21 can be described by the Boolean matrix in 

Eq.(4.25) and the binary relation in Eq.(4.26).  

N11+12 :                y11, y21    11   12   13   21   22   23   31   32   33                    (4.25)                       

              x11, x21 

              11                          0     1     0     0     0     0     0     0     0 

              12                          1     0     0     0     0     0     0     0     0 

              13                          0     0     1     0     0     0     0     0     0 

              21                          0     0     0     0     0     0     0     1     0 

              22                          0     0     0     0     0     0     1     0     0 

              23                          0     0     0     0     0     0     0     0     1 

              31                          0     0     0     0     1     0     0     0     0 

              32                          0     0     0     1     0     0     0     0     0 

              33                          0     0     0     0     0     1     0     0     0 

N11+12 : {(11, 12), (12, 11), (13, 13),                                                                 (4.26) 

              (21, 32), (22, 31), (23, 33),  

              (31, 22), (32, 21), (33, 23)}                                                                                 

Example 4.6 

This example considers the parallel operand nodes N12 and N22 located in the  

second layer of the four-node FN from Fig.3.1. These nodes are described there by 

the Boolean matrices and the binary relations in Eq.(3.14), Eq.(3.16), Eq.(3.18) 

and Eq.(3.20). The connections of these nodes with the nodes in the first layer of 

this FN are given by the interconnection structure in Eq.(3.22). In this context, 

nodes N12 and N22 represent a two-node subnetwork of this FN. This two-node FN 

can be described by the block-scheme in Fig.4.13 and the topological expression 

in Eq.(4.27).  

  x12                       y12                                 

                 N12                                                                

                  

                  + 

  x22                       y22                                 

                 N22                                                                

Fig. 4.13 Two-node FN with operand nodes N12 and N22 

[N12] (x12
 
| y12) + [N22] (x22

 
|
 
y22)                                                                        (4.27)                       

The use of the symbol ‘+’ in Fig.4.13 and Equation (4.27) implies that the vertical 

merging operation can be applied to the operand nodes N12 and N22. In this con-

text, the use of the symbol ‘+’ confirms the validity of the precondition for vertical 

merging of nodes N12 and N22. 
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The vertical merging of the operand nodes N12 and N22 results into a single 

product node N12+22 which represents a simplified image of the two-node FN in 

the form of a one-node FN. The latter can be described by the block scheme in 

Fig.4.14 and the topological expression in Eq.(4.28).  

  x12                            y12                            

                  
  x22          N12+22           y22 

                                                                              

Fig. 4.14 One-node FN with product node N12+22 

[N12+22] (x12, x22
 
| y12, y22)                                                                                  (4.28)     

The use of the symbol ‘+’ in Fig.4.18 and Eq.(4.28) implies that the application of 

the vertical merging operation has resulted in the product node N12+22. This is jus-

tifiable due to the concatenation of the inputs to the operand nodes as inputs x12, 

x22 to the product node and the concatenation of the outputs from the operand 

nodes as outputs y12, y22 from the product node. In this context, the use of the sym-

bol ‘+’ makes valid the postcondition for the formation of node N12+22 as a result 

of vertical merging. 

Finally, the product node N12+22 can be described by the Boolean matrix in 

Eq.(4.29) and the binary relation in Eq.(4.30).  

N12+22 :                  y12, y22    11   12   13   21   22   23   31   32   33                  (4.29)                       

              x12, x22 

              11                            0     0     0     0     0     1     0     0     0 

              12                            0     0     0     1     0     0     0     0     0 

              13                            0     0     0     0     1     0     0     0     0 

              21                            0     0     0     0     0     0     0     0     1 

              22                            0     0     0     0     0     0     1     0     0 

              23                            0     0     0     0     0     0     0     1     0 

              31                            0     0     1     0     0     0     0     0     0 

              32                            1     0     0     0     0     0     0     0     0 

              33                            0     1     0     0     0     0     0     0     0 

N12+22 : {(11, 23), (12, 21), (13, 22),                                                                 (4.30) 

              (21, 33), (22, 31), (23, 32),  

         (31, 13), (32, 11), (33, 12)}   

4.5   Vertical Splitting of Nodes 

Vertical splitting is a unary operation that can be applied to a single node in a FN. 

This operation splits an operand node into a pair of parallel product nodes 
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whereby the union of the inputs to the product nodes represents the inputs to the 

operand node and the union of the outputs from the product nodes represents  

the outputs from the operand node.  

When a Boolean matrix is used as a formal model for the operand node, the 

vertical splitting operation is like a contraction of this matrix with respect to its 

rows and columns. This contraction can be applied if the operand matrix contains 

some identical non-zero matrix blocks, i.e. two-dimensional blocks with the same 

elements such that not all of these elements are ‘0’s. Also, the operand matrix 

must contain some identical zero matrix blocks of the same dimension as the non-

zero matrix blocks. It is obvious from these considerations that the vertical split-

ting operation can not always be applied because not any Boolean matrix repre-

senting a multiple-input-multiple-output node contains only identical non-zero 

matrix blocks and zero blocks of the same dimension. 

The product matrices are obtained by contracting each non-zero block from the 

operand matrix to a ‘1’ in the first product matrix and each zero block from the 

operand matrix to a ‘0’ in the first product matrix whereas the second product  

matrix is the same as the non-zero block from the operand matrix. In this case, the 

row labels of the first product matrix are the terms in the permutations represent-

ing the row labels of the operand matrix whereas the column labels of the second 

product matrix are the terms in the permutations representing the column labels of 

the operand matrix. 

The vertical splitting operation can also be applied in the context of binary  

relations when such a relation is used as a formal model for the operand node. In 

this case, the vertical splitting operation represents a special type of relational de-

composition in the form of an inverse modified Cartesian product that is applied 

independently to the first and the second elements from the pairs of the operand 

relation. It is obvious again from these considerations that the vertical splitting op-

eration can not always be applied because not any binary relation representing a 

multiple-input-multiple-output node can be decomposed by means of an inverse 

modified Cartesian product. 

Example 4.7 

This example considers an operand node N11-21 that is the same as the product 

node N11+21 from Example 4.5. This node is described there by the Boolean matrix 

in Eq.(4.25) and the binary relation in Eq.(4.26). In this context, the node N11-21 

represents a simplified image of a two-node FN in the form of a one-node FN. The 

latter can be described by the block-scheme in Fig.4.15 and the topological  

expression in Eq.(4.31).  
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  x11                            y11                           

                  
  x21          N11-21            y21 

                                                                              

Fig. 4.15 One-node FN with operand node N11-21 

[N11-21] (x11, x21
 
| y11, y21)                                                                                  (4.31)              

The use of the symbol ‘-’ in Fig.4.15 and Equation (4.31) implies that the vertical 

splitting operation can be applied to the operand node N11-12. In this context, the use 

of the symbol ‘-’ makes valid the precondition for vertical splitting of  node N11-21. 

The vertical splitting of the operand node N11-12  results into a pair of parallel 

product nodes N11 and N21 which represent a complexified image of the one-node 

FN in the form of a two-node FN. The latter can be described by the block-scheme 

in Fig.4.16 and the topological expression in Eq.(4.32).  

  x11                        y11                                

                 N11                                                                

                  

                  - 

  x21                        y21                                 

                 N21                                                                

Fig. 4.16 Two-node FN with product nodes N11 and N21 

[N11] (x11
 
| y11) - [N21] (x21

 
|
 
y21)                                                                         (4.32)    

The use of the symbol ‘-’ in Fig.4.16 and Eq.(4.32) implies that the application of 

the vertical splitting operation has resulted in the product nodes N11 and N21. This 

is justifiable due to the deconcatenation of the inputs to the operand node as inputs 

x11, x21 to the product nodes and the deconcatenation of the outputs from the oper-

and node as outputs y11, y21 from the product nodes. In this context, the use of the 

symbol ‘-’ makes valid the postcondition for the formation of nodes N11 and N21 as 

a result of vertical splitting. 

Finally, the product nodes N11 and N21 can be described by the Boolean  

matrices and the binary relations in Eq.(3.13), Eq.(3.15), Eq.(3.17) and Eq.(3.19). 

Example 4.8 

This example considers an operand node N12-22 that is the same as the product 

node N12+22 from Example 4.6. This node is described there by the Boolean matrix 

in Eq.(4.29) and the binary relation in Eq.(4.30). In this context, the node N12-22 

represents a simplified image of a two-node FN in the form of a one-node FN. The 
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latter can be described by the block-scheme in Fig.4.17 and the topological  

expression in Eq.(4.31).  

  x12                            y12                            

                  
  x22          N12-22            y22 

                                                                              

Fig. 4.17 One-node FN with operand node N12-22 

[N12-22] (x12, x22
 
| y12, y22)                                                                                  (4.33)              

The use of the symbol ‘-’ in Fig.4.17 and Equation (4.33) implies that the vertical 

splitting operation can be applied to the operand node N12-22. In this context, the use 

of the symbol ‘-’ makes valid the precondition for vertical splitting of  node N12-22. 

The vertical splitting of the operand node N12-22 results into a pair of parallel 

product nodes N12 and N22 which represent a complexified image of the one-node 

FN in the form of a two-node FN. The latter can be described by the block-scheme 

in Fig.4.18 and the topological expression in Eq.(4.34).  

  x12                       y12                                 

                 N12                                                                

                  

                  - 

  x22                       y22                                 

                 N22                                                                

Fig. 4.18 Two-node FN with product nodes N12 and N22 

[N12] (x12
 
| y12) - [N22] (x22

 
|
 
y22)                                                                         (4.34)      

The use of the symbol ‘-’ in Fig.4.18 and Eq.(4.32) implies that the application of 

the vertical splitting operation has resulted in the product nodes N12 and N22. This 

is justifiable due to the deconcatenation of the inputs to the operand node as inputs 

x12, x22 to the product nodes and the deconcatenation of the outputs  from the op-

erand node as outputs y12, y22 from the product nodes. In this context, the use of 

the symbol ‘-’ makes valid the postcondition for the formation of nodes N12 and 

N22 as a result of vertical splitting. 

Finally, the product nodes N12 and N22 can be described by the Boolean matri-

ces and the binary relations in Eq.(3.14), Eq.(3.16), Eq.(3.18) and Eq.(3.20). 
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4.6   Output Merging of Nodes 

Output merging is a binary operation that can be applied to a pair of parallel nodes 

with common inputs. This operation merges the operand nodes from the pair into a 

single product node. In this case, the inputs to the product node are the same as the 

common inputs to the operand nodes whereas the outputs from the product node 

represent the union of the outputs from the operand nodes. The operation of output 

merging can always be applied due to the ability to concatenate the outputs of any 

two parallel nodes with common inputs. 

When Boolean matrices are used as formal models for the operand nodes, the 

output merging operation is like an expansion of the first operand matrix along its 

columns. In particular, the product matrix is obtained by expanding each non-zero 

element from the first operand matrix to a row-block that is the same as the  

corresponding row of the second operand matrix and by expanding each zero  

element from the first operand matrix to a zero row-block of the same dimension 

as the rows of the second product matrix. In this case, the row labels of the prod-

uct matrix are the same as the identical row labels of the operand matrices whereas 

the column labels of the product matrix are all possible permutations of column 

labels of the operand matrices. 

The output merging operation can also be applied in the context of binary rela-

tions when such relations are used as formal models for the operand nodes. In this 

case, the output merging operation represents a special type of relational composi-

tion in the form of a partially modified Cartesian product that is applied only to 

the second elements from the pairs of the operand relations whereas the first  

elements remain unchanged. 

Example 4.9 

This example considers the parallel operand nodes N11 and N21 located in the first 

layer of the four-node FN from Fig.3.1 in a modified context. In particular, the 

two independent inputs x11 and x21 to these nodes are replaced by a common input 

x11,21. The nodes are described by the Boolean matrices and the binary relations in 

Eq.(3.13), Eq.(3.15), Eq.(3.17) and Eq.(3.19). The connections of these nodes with 

the nodes in the second layer of this FN are given by the interconnection structure 

in Eq.(3.22). In this context, the nodes N11 and N21 represent a modified two-node 

subnetwork of this FN. This two-node FN can be described by the block-scheme 

in Fig.4.19 and the topological expression in Eq.(4.35).  

                                       y11                                 

                          N11                                                                

   x11,21                  

                           ; 

                                       y21                                 

                          N21                                                                

Fig. 4.19 Two-node FN with operand nodes N11, N21 and common input  
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[N11] (x11,21
 
| y11) ; [N21] (x11,21

 
|
 
y21)                                                                  (4.35)                      

The use of the symbol ‘;’ in Fig.4.19 and Equation (4.35) implies that the output 

merging operation can be applied to the operand nodes N11 and N21. In this con-

text, the use of the symbol ‘;’ confirms the validity of the precondition for output 

merging of nodes N11 and N21. 

The output merging of the operand nodes N11 and N21 results into a single prod-

uct node N11;21 which represents a simplified image of the two-node FN in the 

form of a one-node FN. The latter can be described by the block scheme in 

Fig.4.20 and the topological expression in Eq.(4.36).  

                                   y11                            

x11,21                 
                 N11;21              y21 

                                                                              

Fig. 4.20 One-node FN with product node N11;21 

[N11;12] (x11,21
 
| y11, y21)                                                                                      (4.36)              

The use of the symbol ‘;’ in Fig.4.20 and Eq.(4.36) implies that the application of 

the output merging operation has resulted in the product node N11;12. This is justi-

fiable due to the concatenation of the outputs from the operand nodes as outputs 

y11, y21 from the product node while preserving the common input to the operand 

nodes as an input x11,21
 
to the product node. In this context, the use of the symbol 

‘;’ makes valid the postcondition for the formation of node N11;21 as a result of 

output merging. 

Finally, the product node N11;21 can be described by the Boolean matrix in 

Eq.(4.37) and the binary relation in Eq.(4.38).  

N11;21 :              y11, y21    11   12   13   21   22   23   31   32   33                       (4.37)                       

              x11,21 

              1                         0     1     0     0     0     0     0     0     0 

              2                         0     0     0     0     0     0     1     0     0 

              3                         0     0     0     0     0     1     0     0     0 

N11;21 : {(1, 12), (2, 31), (3, 23)}                                                                       (4.38) 

Example 4.10 

This example considers the parallel operand nodes N12 and N22 located in the sec-

ond layer of the four-node FN from Fig.3.1 in a modified context. In particular, 

the two independent inputs x12 and x22 to these nodes are replaced by a common 

input x12,22. The nodes are described by the Boolean matrices and the binary rela-

tions in Eq.(3.14), Eq.(3.16), Eq.(3.18) and Eq.(3.20). In this context, nodes N12 
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and N22 represent a modified two-node subnetwork of this FN. This two-node FN 

can be described by the block-scheme in Fig.4.21 and the topological expression 

in Eq.(4.39).  

                                       y12                                

                          N12                                                                

   x12,22                  

                           ; 

                                       y22                                 

                          N22                                                                

Fig. 4.21 Two-node FN with operand nodes N12, N22 and common input 

[N12] (x12,22
 
| y12) ; [N21] (x12,22

 
|
 
y22)                                                                  (4.39)                      

The use of the symbol ‘;’ in Fig.4.21 and Equation (4.39) implies that the output 

merging operation can be applied to the operand nodes N12 and N22. In this con-

text, the use of the symbol ‘;’ confirms the validity of the precondition for output 

merging of nodes N12 and N22. 

The output merging of the operand nodes N12 and N22 results into a single prod-

uct node N12;22 which represents a simplified image of the two-node FN in the 

form of a one-node FN. The latter can be described by the block scheme in 

Fig.4.22 and the topological expression in Eq.(4.40).  

                                  y12                            

x12,22                 
                 N12;22           y22 

                                                                              

Fig. 4.22 One-node FN with product node N12;22 

[N12;22] (x12,22
 
| y12, y22)                                                                                      (4.40)              

The use of the symbol ‘;’ in Fig.4.22 and Eq.(4.40) implies that the application of 

the output merging operation has resulted in the product node N12;22. This is justi-

fiable due to the concatenation of the outputs from the operand nodes as outputs 

y12, y22 to the product node while preserving the common input to the operand 

nodes as input x12,22
 
to the product node. In this context, the use of the symbol ‘;’ 

makes valid the postcondition for the formation of node N12;22 as a result of output 

merging. 

Finally, the product node N12;22 can be described by the Boolean matrix in 

Eq.(4.41) and the binary relation in Eq.(4.42).  
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N12;22 :              y12, y22    11   12   13   21   22   23   31   32   33                       (4.41)                       

              x12,22 

              1                         0     0     0     0     0     1     0     0     0 

              2                         0     0     0     0     0     0     1     0     0 

              3                         0     1     0     0     0     0     0     0     0 

N12;22 : {(1, 23), (2, 31), (3, 12)}                                                                       (4.42) 

4.7   Output Splitting of Nodes 

Output splitting is a unary operation that can be applied to a single node in a FN. 

This operation splits an operand node into a pair of parallel product nodes 

whereby the inputs to the product nodes are the same as the inputs to the operand 

node and the union of the outputs from the product nodes represents the outputs 

from the operand node.  

When a Boolean matrix is used as a formal model for the operand node, the 

output splitting operation is like a contraction of this matrix along its columns. 

This operation can be applied if the operand matrix contains some not necessarily 

identical non-zero row blocks of the same dimension, i.e. one-dimensional blocks 

with the same number of elements such that not all of these elements are ‘0’s. 

Also, the operand matrix must contain some identical zero row blocks of the same 

dimension as the non-zero row blocks. It is obvious from these considerations that 

the output splitting operation can always be applied because any Boolean matrix 

representing a multiple-output node contains some not necessarily identical non-

zero row blocks of the same dimension and some identical zero blocks with the 

same dimension as the non-zero blocks. 

The product matrices are obtained by contracting each non-zero block from the 

operand matrix to a ‘1’ in the first product matrix and each zero block from the 

operand matrix to a ‘0’ in the first product matrix whereas the rows of the second 

product matrix are the same as the corresponding non-zero blocks from the oper-

and matrix. In this case, the row labels of both product matrices are the same as 

the row labels of the operand matrix whereas the column labels of the product  

matrices are the terms in the permutations representing the column labels of the 

operand matrix. 

The output splitting operation can also be applied in the context of binary  

relations when such a relation is used as a formal model for the operand node. In 

this case, the output splitting operation represents a special type of relational de-

composition in the form of an inverse partially modified Cartesian product that is 

applied to the second elements from the pairs of the operand relation whereas the 

first elements remain unchanged. It is obvious again from these considerations that 

the output splitting operation can always be applied because any binary relation 

representing a multiple-output node can be decomposed by means of an inverse 

partially modified Cartesian product. 
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Example 4.11 

This example considers an operand node N11:21 that is assumed to be the same as 

the product node N11;21 from Example 4.9. This node is described there by the 

Boolean matrix in Eq.(4.37) and the binary relation in Eq.(4.38). In this context, 

the node N11:21 represents a simplified image of a two-node FN in the form of a 

one-node FN. The latter can be described by the block-scheme in Fig.4.23 and the 

topological expression in Eq.(4.43).  

                                   y11                           

x11,21                 
                 N11:21              y21 

                                                                              

Fig. 4.23 One-node FN with operand node N11:21 

[N11:21] (x11,21
 
| y11, y21)                                                                                      (4.43)              

The use of the symbol ‘:’ in Fig.4.23 and Equation (4.43) implies that the output 

splitting operation can be applied to the operand node N11:21. In this context, the 

use of the symbol ‘:’ makes valid the precondition for output splitting of node 

N11:21. 

The output splitting of the operand node N11:21  results into a pair of parallel 

product nodes N11 and N21 which represent a complexified image of the one-node 

FN in the form of a two-node FN. The latter can be described by the block-scheme 

in Fig.4.24 and the topological expression in Eq.(4.44).  

                                       y11                                 

                          N11                                                                

   x11,21                  

                           : 

                                       y21                                 

                          N21                                                                

Fig. 4.24 Two-node FN with product nodes N11, N21 and common input 

[N11] (x11,21
 
| y11) : [N21] (x11,21

 
|
 
y21)                                                                  (4.44)                      

The use of the symbol ‘:’ in Fig.4.24 and Eq.(4.44) implies that the application of 

the output splitting operation has resulted in the product nodes N11 and N21. This is 

justifiable due the deconcatenation of the outputs from the operand node as out-

puts y11, y21 from the product nodes while preserving the input to the operand node 

as a common input x11,21 to the product nodes. 

Finally, the product nodes N11 and N21 can be described by the Boolean  

matrices and the binary relations in Eq.(3.13), Eq.(3.15), Eq.(3.17) and Eq.(3.19). 
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Example 4.12 

This example considers an operand node N12:22 that is assumed to be the same as 

the product node N12;22 from Example 4.10. This node is described there by the 

Boolean matrix in Eq.(4.41) and the binary relation in Eq.(4.42). In this context, 

the node N12:22 represents a simplified image of a two-node FN in the form of a 

one-node FN. The latter can be described by the block-scheme in Fig.4.25 and the 

topological expression in Eq.(4.45).  

                                  y12                            

x12,22                
                 N12:22            y22 

                                                                              

Fig. 4.25 One-node FN with operand node N12:22 

[N12:22] (x11,21
 
| y12, y22)                                                                                      (4.45)              

The use of the symbol ‘:’ in Fig.4.25 and Equation (4.45) implies that the output 

splitting operation can be applied to the operand node N12:22. In this context, the 

use of the symbol ‘:’ makes valid the precondition for output splitting of node 

N12:22. 

The output splitting of the operand node N12:22  results into a pair of parallel 

product nodes N12 and N22 which represent a complexified image of the one-node 

FN in the form of a two-node FN. The latter can be described by the block-scheme 

in Fig.4.26 and the topological expression in Eq.(4.46).  

                                      y12                                 

                          N12                                                                

   x12,22                  

                           : 

                                      y22                                 

                          N22                                                                

Fig. 4.26 Two-node FN with product nodes N12, N22 and common input 

[N12] (x12,22
 
| y12) : [N22] (x12,22

 
|
 
y22)                                                                  (4.46)                      

The use of the symbol ‘:’ in Fig.4.26 and Eq.(4.46) implies that the application of 

the output splitting operation has resulted in the product nodes N12 and N22. This is 

justifiable due the deconcatenation of the outputs from the operand node as out-

puts y12, y22 from the product nodes while preserving the input to the operand node 

as a common input x12,22 to the product nodes. 
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Finally, the product nodes N12 and N22 can be described by the Boolean matri-

ces and the binary relations in Eq.(3.14), Eq.(3.16), Eq.(3.18) and Eq.(3.20). 

4.8   Combined Operations on Nodes 

The basic operations on nodes introduced in the preceding sections of this chapter 

are all atomic, i.e. the operations are applied on their own. However, each of these 

operations can also be applied in a combined context with other operations. Unless 

there are brackets specifying the order of the atomic operations, these operations 

are applied from left to right for merging and from right to left for splitting. 

This section introduces some combined operations. For simplicity, these opera-

tions are assumed to include only one permutation of any two atomic operations of 

the same type, e.g. merging or splitting of nodes. However, the extension of these 

operations to more complex combined operations including other permutations of 

any two atomic operations or more than two atomic operations of any type is 

straightforward.  

Similarly to atomic operations, combined operations can be described by block 

schemes and topological expressions at network level as well as by Boolean ma-

trices and binary relations at node level. For simplicity, each combined operation 

is described here only by block schemes and topological expressions whereby the 

associated Boolean matrices and binary relations are assumed to be embedded  

implicitly in the description.  

Also, block schemes and topological expressions are used for combined opera-

tions in a modified context in this section. In this respect, nodes may occupy more 

than one location in a particular level and have no subscripts indicating their loca-

tion in the grid structure. These modifications are aimed at facilitating the under-

standing of the fairly complex nature of combined operations. 

For consistency, all combined operations are presented by three stages. The first 

stage describes the initial state of the combined operation with the operand nodes be-

fore the application of any atomic operations. The second stage describes an interme-

diate state of the operation with some temporary nodes after the application of some 

atomic operations. The third stage describes the final state of the combined operation 

with the product nodes after the application of all atomic operations. 

Example 4.13 

This example considers a combined operation of horizontal-vertical merging that 

is applied to three operand nodes A, B and C. First, node A is horizontally merged 

with node B into a temporary node A*B. Then, node A*B is vertically merged 

with node C into a product node A*B+C. The three states of this combined opera-

tion are described by the block schemes and the topological expressions in 

Figs.4.27-4.29 and Eqs.(4.47)-(4.49). 
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  xA                       zA,B                                   zA,B                                     yB                                                                             

                  A                          *                           B 

                                               

                                              + 

                  xC                                                      yC 

                                              C 

Fig. 4.27 Initial state for horizontal-vertical merging of nodes A, B and C 

[A] (xA
 
| zA,B) * [B] (zA,B

 
|
 
yB) + [C] (xC

 
|
 
yC)                                                     (4.47) 

   xA                          yB                                 

                 A*B                                                                

                  

                   + 

   xC                          yC                                

                   C                                                                

Fig. 4.28 Intermediate state for horizontal-vertical merging of nodes A, B and C 

[A*B] (xA
 
|
 
yB) + [C] (xC

 
|
 
yC)                                                                            (4.48) 

  xA                               yB                           

                  
  xC           A*B+C          yC 

                                                                              

Fig. 4.29 Final state for horizontal-vertical merging of nodes A, B and C 

[A*B+C] (xA, xC
 
|
 
yB, yC )                                                                                  (4.49) 

Example 4.14 

This example considers a combined operation of vertical-horizontal splitting that 

is applied to an operand node A/B-C. First, this node is vertically split into a tem-

porary node A/B and a product node C. Then, node A/B is horizontally split into 

product nodes A and B. The three states of this combined operation are described 

by the block schemes and the topological expressions in Figs.4.30-4.32 and 

Eqs.(4.50)-(4.52). 

  xA                               yB                           

                  
  xC           A/B-C            yC 

                                                                              

Fig. 4.30 Initial state for vertical-horizontal splitting of node A/B-C 
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[A/B-C] (xA, xC
 
|
 
yB, yC )                                                                                   (4.50) 

   xA                          yB                                 

                 A/B                                                                

                  

                    - 

   xC                          yC                                

                   C                                                                

Fig. 4.31 Intermediate state for vertical-horizontal splitting of node A/B-C 

[A/B] (xA
 
|
 
yB) - [C] (xC

 
|
 
yC)                                                                              (4.51) 

  xA                       zA,B                                   zA,B                                     yB                                                                             

                  A                          /                           B 

                                               

                                               - 

                  xC                                                     yC 

                                              C 

Fig. 4.32 Final state for vertical-horizontal splitting of node A/B-C 

[A] (xA
 
| zA,B) / [B] (zA,B

 
|
 
yB) - [C] (xC

 
|
 
yC)                                                       (4.52) 

Example 4.15 

This example considers a combined operation of horizontal-output merging that is 

applied to three operand nodes A, B and C. First, node A is horizontally merged 

with node B into a temporary node A*B. Then, node A*B is output merged with 

node C into a product node A*B;C. The three states of this combined operation 

are described by the block schemes and the topological expressions in  

Figs.4.33-4.35 and Eqs.(4.53)-(4.55). 

                                           zA,B                      zA,B                                yB 

                          A                           *                          B  

     xA,C                                                                                               

                                                                     ;                

                                   xC                                             yC 

                                                            C     

Fig. 4.33 Initial state for horizontal-output merging of nodes A, B and C 

[A] (xA,C
 
| zA,B) * [B] (zA,B

 
|
 
yB) ; [C] (xC

 
|
 
yC)                                                    (4.53) 
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                                       yB                                

                        A*B                                                                

     xA,C                  

                           ; 

                                       yC                                

                          C                                                                

Fig. 4.34 Intermediate state for horizontal-output merging of nodes A, B and C 

[A*B] (xA,C
 
| yB) ; [C] (xA,C

 
|
 
yC)                                                                        (4.54) 

                                   yB                            

 xA,C                
                A*B;C           yC 

                                                                              

Fig. 4.35 Final state for horizontal-output merging of nodes A, B and C 

[A*B;C] (xA,C
 
| yB, yC)                                                                                       (4.55) 

Example 4.16 

This example considers a combined operation of output-horizontal splitting that is 

applied to an operand node A/B:C. First, this node is output split into a temporary 

node A/B and a product node C. Then, node A/B is horizontally split into product 

nodes A and B. The three states of this combined operation are described by  

the block schemes and the topological expressions in Figs.4.36-4.38 and 

Eqs.(4.56)-(4.58). 

                                   yB                            

 xA,C                
                A/B:C             yC 

                                                                              

Fig. 4.36 Initial state for output-horizontal splitting of node A/B:C 

[A/B:C] (xA,C
 
| yB, yC)                                                                                        (4.56) 

                                       yB                                

                        A/B                                                                

     xA,C                  

                           : 

                                       yC                                

                          C                                                                

Fig. 4.37 Intermediate state for output-horizontal splitting of node A/B:C 
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[A/B] (xA,C
 
| yB) : [C] (xA,C

 
|
 
yC)                                                                         (4.57) 

                                           zA,B                      zA,B                                yB 

                          A                           /                           B  

    xA,C                                                                                               

                                                                     :                

                                   xC                                             yC 

                                                            C     

Fig. 4.38 Final state for output-horizontal splitting of node A/B:C 

[A] (xA,C
 
| zA,B) / [B] (zA,B

 
|
 
yB) : [C] (xC

 
|
 
yC)                                                     (4.58) 

Example 4.17 

This example considers a combined operation of vertical-output merging that is 

applied to three operand nodes A, B and C. First, node A is vertically merged with 

node B into a temporary node A+B. Then, node A+B is output merged with node 

C into a product node A+B;C. The three states of this combined operation are  

described by the block schemes and the topological expressions in Figs.4.39-4.41 

and Eqs.(4.59)-(4.61). 

                                                  yA 

                          A                                                                

                     

     xA,C                    + 

                                       yB                                  

                          B                               

                                  

 xB,C                                     ; 

                                         yC                             

                          C                                                                

                                                                                           

Fig. 4.39 Initial state for vertical-output merging of nodes A, B and C 

[A] (xA,C
 
| yA) + [B] (xB,C

 
|
 
yB) ; [C] (xA,C, xB,C

 
|
 
yC)                                           (4.59)        

 

 

 



48 4   Basic Operations in Fuzzy Networks

 

                                              yA                                            

     xA,C                     

                        A+B       yB                                  

                                                         

                                  

 xB,C                                     ; 

                                        yC                             

                          C                                                                

                                                                                           

Fig. 4.40 Intermediate state for vertical-output merging of nodes A, B and C 

[A+B] (xA,C, xB,C
 
| yA, yB) ; [C] (xA,C, xB,C

 
|
 
yC)                                                  (4.60)           

                                          yA 

 xA,C                                                          

                                     yB 

 xB,C         A+B;C             

                                                yC                          

 

Fig. 4.41 Final state for vertical-output merging of nodes A, B and C 

[A+B;C] (xA,C, xB,C
 
| yA, yB, yC)                                                                        (4.61) 

Example 4.18 

This example considers a combined operation of output-vertical splitting that is 

applied to an operand node A-B:C. First, this node is output split into a temporary 

node A-B and a product node C. Then, node A-B is vertically split into product 

nodes A and B. The three states of this combined operation are described by the 

block schemes and the topological expressions in Figs.4.42-4.44 and Eqs. 

(4.62)-(4.64). 

                                          yA 

 xA,C                                                          

                                     yB 

 xB,C         A-B:C             

                                                yC                          

 

Fig. 4.42 Initial state for output-vertical splitting of node A-B:C 

[A-B:C] (xA,C, xB,C
 
| yA, yB, yC)                                                                         (4.62) 
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                                              yA                                            

     xA,C                     

                        A-B        yB                                  

                                                         

                                  

 xB,C                                     : 

                                        yC                             

                          C                                                                

                                                                                           

Fig. 4.43 Intermediate state for output-vertical splitting of node A-B:C 

[A-B] (xA,C, xB,C
 
| yA, yB) : [C] (xA,C, xB,C

 
|
 
yC)                                                   (4.63)           

                                              yA 

                          A                                                                

                     

     xA,C                    - 

                                       yB                                  

                          B                               

                                  

 xB,C                                     : 

                                         yC                             

                          C                                                                

                                                                                           

Fig. 4.44 Final state for output-vertical splitting of node A-B:C 

[A] (xA,C
 
| yA) - [B] (xB,C

 
|
 
yB) : [C] (xA,C, xB,C

 
|
 
yC)                                            (4.64)        

4.9   Comparison of Basic Operations 

The basic operations introduced in this chapter are central to the linguistic  

composition approach used in the book. This applies particularly to merging opera-

tions which are aimed at composing the networked rule bases within a FN into a lin-

guistically equivalent single rule base for a fuzzy system. On the contrary, splitting 

operations are aimed at decomposing a single rule base for a fuzzy system into lin-

guistically equivalent networked rule bases within a FN. However, in some cases 

splitting operations may facilitate merging operations in the context of the linguistic 

composition approach and this is shown by some examples further in this book. 

The solution to most types of basic operations always exists. The only exception in 

this respect is the operation of vertical splitting that may not have a solution. How-

ever, only merging operations have a unique solution whereas splitting operations 

usually have multiple solutions.  
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The characteristics of solutions to different types of basic operations in FNs  are 

summarised in Table 4.1.  

Table 4.1 Solution characteristics for basic operations in FNs  

Basic operation  Composition Existence Uniqueness 

Horizontal merging Yes Yes Yes 

Horizontal splitting No Yes No 

Vertical merging Yes Yes Yes 

Vertical splitting No No No 

Output merging Yes Yes Yes 

Output splitting No Yes No 

The next chapter introduces some advanced concepts from the theoretical 

framework for FNs. In particular, it discusses several structural properties of basic 

operations in FNs.   
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Chapter 5 

Structural Properties of Basic Operations  

5.1   Introduction to Structural Properties 

The basic operations introduced in Chapter 4 can be applied to fairly simple FNs 

with only a pair of nodes or a single node. However, an arbitrarily complex FN 

may have a large number of nodes whereby all of them have to be manipulated for 

the purpose of using the linguistic composition approach. Therefore, it is impor-

tant to know how the basic operations can be applied in this more realistic and 

complex context.  

A key to the solution of the above problem are some structural properties of  

basic operations. These properties make the manipulation of nodes within the 

structure of an arbitrarily complex FN very flexible. In this respect, each property 

related to a merging operation has a counterpart related to the corresponding split-

ting operation for this merging operation. In this case, the property related to the 

splitting operation has an inverse effect with respect to its counterpart related to 

the merging operation. The structural properties are similar to some properties of 

mathematical operations. However, these properties are novel in that they are all 

related to operations within a FN which is a novel concept.  

All structural properties are proved and illustrated with examples of nodes with 

scalar inputs, outputs and intermediate variables but the extension of these proofs 

and examples to the vector case is straightforward. The proofs and the examples 

are based on the use of Boolean matrices or binary relations as formal models for 

FNs at node level as these formal models lend themselves easily to manipulation 

in the context of the linguistic composition approach. Therefore, the structural 

properties can be viewed as the glue that makes the elementary building blocks for 

the simplification of an arbitrarily complex FN to a fuzzy system, i.e. the basic 

operations on nodes, stick together.  

5.2   Associativity of Horizontal Merging  

Associativity is a property related to the operation of horizontal merging when the 

latter is applied to three sequential nodes for the purpose of merging them into a 

single node. In particular, this property allows the merging of three operand nodes 

A, B and C into a product node A*B*C to take place as a sequence of two binary 

merging operations that can be applied either from left to right or from right to 

left. The property can be applied when the output from the first node A is fed  
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forward as an input to the second node B in the form of an intermediate variable 

and the output from the second node B is fed forward as an input to the third node 

C as another intermediate variable. In this case, the product node A*B*C has the 

same input as the input to the first operand node A and the same output as the out-

put from the third operand node C whereas the two intermediate variables do not 

appear in the product node. 

Proof 5.1 

It has to be proved here that the operation of horizontal merging is associative in 

accordance with Eq.(5.1). In this case, the horizontal merging of any three operand 

nodes A, B and C from left to right should be equivalent to their horizontal  

merging from right to left. 

(A*B)*C = A*(B*C) = A*B*C                                                                          (5.1) 

The proof is based on the use of binary relations as formal models for the operand 

nodes A, B and C, as shown in Eqs. (5.2)-(5.4). In this case, the elements of the re-

lational pairs are denoted by the letter a in A, the letters a and c in B, and the letter 

c in C. For simplicity, all pairs in the middle relation B are assumed to be compos-

able with pairs from the left relation A and the right relation C. For this reason, the 

first and the second element of each pair in B are denoted by a and c, respectively, 

and not by b.  

A = {(a1
1
, a2

1
),…,(a1

p
, a2

p
)}                                                                                 (5.2) 

B = {(a2
1
, c1

1
),…,(a2

1
, c1

q
),…,(a2

p
, c1

1
),…,(a2

p
, c1

q
)}                                          (5.3) 

C = {(c1
1
, c2

1
),…,(c1

q
, c2

q
)}                                                                                 (5.4) 

The first and the second element of any relational pair in A and C are denoted  

by the subscripts ‘1’ and ‘2’, respectively. However, the superscripts for the first 

and the second element of any relational pair in A and C are identical as they indi-

cate the corresponding number for each pair. In particular, the relation A has ‘p’ 

pairs and the relation C has ‘q’ pairs. The subscripts for the first and the second 

element of any relational pair in B are ‘2’ and ‘1’, respectively. This is due to the 

requirement for left and right composability of B, i.e. the first element of each pair 

in B must be identical with a second element of a pair in A whereas the second 

element of each pair in B must be identical with a first element of a pair in C. In 

this case, the superscripts for the elements of the relational pairs in B don’t have to 

be identical and the relation B has ‘p.q’ pairs. 

The horizontal composition of the operand relations A and B gives the  

temporary relation A*B, as shown in Eq.(5.5). 

A*B = {(a1
1
, c1

1
),…,(a1

1
, c1

q
),…,(a1

p
, c1

1
),…,(a1

p
, c1

q
)}                                     (5.5)              
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Further on, the horizontal composition of the temporary relation A*B and the  

operand relation C gives the product relation (A*B)*C, as shown in Eq.(5.6). 

(A*B)*C = {(a1
1
, c2

1
),…,(a1

1
, c2

q
),…,(a1

p
, c2

1
),…,(a1

p
, c2

q
)}                             (5.6)                    

On the other hand, the horizontal composition of the operand relations B and C 

gives the temporary relation B*C, as shown in Eq.(5.7). 

B*C = {(a2
1
, c2

1
),…,(a2

1
, c2

q
),…,(a2

p
, c2

1
),…,(a2

p
, c2

q
)}                                     (5.7)                     

In this case, the horizontal composition of the operand relation A and the  

temporary relation B*C gives the product relation A*(B*C). As the latter is iden-

tical with the product relation (A*B)*C from Eq.(5.6), this implies the validity of 

Eq.(5.1) and concludes the proof. 

Example 5.1 

This example considers a FN with three sequential operand nodes. The first and 

the second node N11 and N12 are taken from the four-node FN in Fig.3.1. These 

two nodes are described there by the Boolean matrices in Eqs.(3.13)-(3.14) and 

the binary relations in Eqs.(3.17)-(3.18) whereas the third node N13 is described by 

the Boolean matrix in Eq.(5.8) and the binary relation in Eq.(5.9). The connections 

among the three nodes are given by Eqs.(5.10)-(5.11). 

N13 :          y13   1     2     3                                                                           (5.8)           

          x13 

          1             0     0     1  

          2             0     1     0 

          3             1     0     0                                                                               

N13 :   {(1, 3), (2, 2) (3, 1)}                                                                                 (5.9) 

z11,12 = y11 = x12                                                                                                                                                       (5.10)         

z12,13 = y12 = x13                                                                                                                                                       (5.11) 

The nodes N11, N12 and N13 represent a three-node FN that is an extended  

sub-network of the four-node FN from Fig.3.1. This three-node FN can be de-

scribed by the block-scheme in Fig.5.1 and the topological expression in 

Eq.(5.12).  

   x11                            z11,12                      z11,12                         z12,13                      z12,13                            y13 

           N11                             *                    N12                   *                   N13 

Fig. 5.1 FN with operand nodes N11, N12 and N13 



54 5   Structural Properties of Basic Operations

 

[N11] (x11
 
| z11,12) * [N12] (z11,12

 
| z12,13) * [N13] (z12,13

 
|
 
y13)                               (5.12)                      

The horizontal merging of the first operand node N11 and the second operand node 

N12 from Fig.5.1 results into a temporary node N11*12 that is connected to the right 

with the third operand node N13 in the form of a two-node FN. The latter can be 

described by the block scheme in Fig.5.2 and the topological expression in 

Eq.(5.13).  

  x11                        z11*12,13                       z11*12,13                                    y13 

                 N11*12                                    *                         N13 

Fig. 5.2 FN with temporary node N11*12 and operand node N13 

[N11*12] (x11
 
| z11*12,13) * [N13] (z11*12,13

 
|
 
y13)                                                     (5.13)                      

Further on, the horizontal merging of the temporary node N11*12 and the operand 

node N13 from Fig.5.2 results into a product node N(11*12)*13 in the form of a  

one-node FN. The latter can be described by the block scheme in Fig.5.3 and the 

topological expression in Eq.(5.14).  

   x11                                  y13                             

                 N(11*12)*13                                                              

Fig. 5.3 FN with product node N(11*12)*13  

[N(11*12)*13] (x11
 
| y13)                                                                                         (5.14)                       

As a result, the product node N(11*12)*13 is described by the Boolean matrix in 

Eq.(5.15) and the binary relation in Eq.(5.16).  

N(11*12)*13 :          y13    1     2     3                                                                       (5.15)               

                   x11 

                   1              0     1     0  

                   2              0     0     1 

                   3              1     0     0 

N(11*12)*13 : {(1, 2), (2, 3) (3, 1)}                                                                        (5.16)          

On the other hand, the horizontal merging of the second operand node N12 and the 

third operand node N13 from Fig.5.1 results into a temporary node N12*13 that is 

connected to the left with the first operand node N11 in the form of a two-node FN. 

The latter can be described by the block scheme in Fig.5.4 and the topological  

expression in Eq.(5.17).  
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  x11                    z11,12*13                          z11,12*13                                      y13 

                 N11                                    *                          N12*13 

Fig. 5.4 FN with operand node N11 and temporary node N12*13 

[N11] (x11
 
| z11,12*13) * [N12*13] (z11,12*13

 
|
 
y13)                                                     (5.17)                      

Further on, the horizontal merging of the operand node N11 and the temporary 

node N12*13 from Fig.5.4 results into a product node N11*(12*13) in the form of a 

one-node FN. The latter can be described by the block scheme in Fig.5.5 and the 

topological expression in Eq.(5.18).  

   x11                                  y13                             

                 N11*(12*13)                                                              

Fig. 5.5 FN with product node N11*(12*13) 

[N11*(12*13)] (x11
 
| y13)                                                                                        (5.18)                       

In this case, the product node N11*(12*13) is also described by the Boolean matrix in 

Eq.(5.15) and the binary relation in Eq.(5.16). Therefore, N11*(12*13) is identical 

with N(11*12)*13 and this identity is defined by Eq.(5.19) in accordance with 

Eq.(5.1) from Proof 5.1. 

N(11*12)*13 = N11*(12*13) = N11*12*13                                                                                                              (5.19) 

Example 5.2 

This example considers a FN with three sequential operand nodes. The first and 

the second node N21 and N22 are taken from the four-node FN in Fig.3.1. These 

two nodes are described there by the Boolean matrices in Eqs.(3.15)-(3.16) and 

the binary relations in Eqs.(3.19)-(3.20) whereas the third node N23 is described by 

the Boolean matrix in Eq.(5.20) and the binary relation in Eq.(5.21). The  

connections among the three nodes are given by Eqs.(5.22)-(5.23). 

N23 :          y23   1     2     3                                                                                  (5.20)           

          x23 

          1             0     0     1  

          2             0     1     0 

          3             1     0     0                                                                               

N23 :   {(1, 3), (2, 2) (3, 1)}                                                                               (5.21) 

z21,22 = y21 = x22                                                                                                                                                       (5.22)         

z22,23 = y22 = x23                                                                                                                                                       (5.23) 
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The nodes N21, N22 and N23 represent a three-node FN that is an extended  

sub-network of the four-node FN from Fig.3.1. This three-node FN can be de-

scribed by the block-scheme in Fig.5.6 and the topological expression in 

Eq.(5.24).  

    x21                            z21,22                      z21,22                         z22,23                      z22,23                           y23 

             N21                             *                    N22                   *                   N23 

Fig. 5.6 FN with operand nodes N21, N22 and N23 

[N21] (x21
 
| z21,22) * [N22] (z21,22

 
| z22,23) * [N23] (z22,23

 
|
 
y23)                                (5.24)                      

The horizontal merging of the first operand node N21 and the second operand node 

N22 from Fig.5.1 results into a temporary node N21*22 that is connected to the right 

with the third operand node N23 in the form of a two-node FN. The latter can be 

described by the block scheme in Fig.5.7 and the topological expression in 

Eq.(5.25).  

  x21                        z21*22,23                       z21*22,23                                    y23 

                 N21*22                                    *                         N23 

Fig. 5.7 FN with temporary node N21*22 and operand node N23 

[N21*22] (x21
 
| z21*22,23) * [N23] (z21*22,23

 
|
 
y23)                                                      (5.25)                       

Further on, the horizontal merging of the temporary node N21*22 and the operand 

node N23 from Fig.5.7 results into a product node N(21*22)*23 in the form of a one-

node FN. The latter can be described by the block scheme in Fig.5.8 and the  

topological expression in Eq.(5.26).  

   x21                                  y23                             

                 N(21*22)*23                                                              

Fig. 5.8 FN with product node N(21*22)*23  

[N(21*22)*23] (x21
 
| y23)                                                                                         (5.26)                       

As a result, the product node N(21*22)*23 is described by the Boolean matrix in 

Eq.(5.27) and the binary relation in Eq.(5.28).  

N(21*22)*23 :          y23    1     2     3                                                                       (5.27)               

                   x21 

                   1              0     0     1  

                   2              1     0     0 

                   3              0     1     0 
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N(21*22)*23 : {(1, 3), (2, 1) (3, 2)}                                                                        (5.28)          

On the other hand, the horizontal merging of the second operand node N22 and the 

third operand node N23 from Fig.5.6 results into a temporary node N22*23 that is 

connected to the left with the first operand node N21 in the form of a two-node FN. 

The latter can be described by the block scheme in Fig.5.9 and the topological  

expression in Eq.(5.29).  

  x21                    z21,22*23                          z21,22*23                                      y23 

                 N21                                    *                          N22*23 

Fig. 5.9 FN with operand node N21 and temporary node N22*23  

[N21] (x21
 
| z21,22*23) * [N22*23] (z21,22*23

 
|
 
y23)                                                      (5.29)                       

Further on, the horizontal merging of the operand node N21 and the temporary 

node N22*23 from Fig.5.9 results into a product node N21*(22*23) in the form of a 

one-node FN. The latter can be described by the block scheme in Fig.5.10 and the 

topological expression in Eq.(5.30).  

   x21                                  y23                             

                 N21*(22*23)                                                              
 

Fig. 5.10 FN with product node N21*(22*23) 

[N21*(22*23)] (x21
 
| y23)                                                                                         (5.30)                        

In this case, the product node N21*(22*23) is also described by the Boolean matrix in 

Eq.(5.27) and the binary relation in Eq.(5.28). Therefore, N21*(22*23) is identical 

with N(21*22)*23 and this identity is defined by Eq.(5.31) in accordance with 

Eq.(5.1) from Proof 5.1. 

N(21*22)*23 = N21*(22*23) = N21*22*23                                                                                                              (5.31) 

5.3   Variability of Horizontal Splitting  

Variability is a property related to the operation of horizontal splitting when the 

latter is applied to a single node with the purpose of splitting it into three sequen-

tial nodes. In particular, this property allows the splitting of an operand node 

A/B/C into three product nodes A, B and C to take place as a sequence of two 

unary splitting operations that can be applied either from left to right or from right 

to left. The property always holds as any node can be split at least trivially into it-

self and two identical identity nodes. This trivial case follows from an extension of 

the horizontal splitting operation whereby an identity product node can be further 
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split into two nodes that are both identical with this node.  In either the trivial or 

the general case, the input to the first product node A is the same as the input to 

the operand node A/B/C and the output from the third product node C is the same 

as the output from the operand node. Also, two intermediate variables appear be-

tween the product nodes whereby one of them is between A and B and the other 

one is between B and C. 

Proof 5.2 

It has to be proved here that the operation of horizontal splitting is variable in  

accordance with Eq.(5.32). In this case, the horizontal splitting of any single oper-

and node A/B/C from left to right should be equivalent to its horizontal splitting 

from right to left. 

A, (B/C) = (A/B), C = A, B, C                                                                          (5.32) 

The proof is based on the use of a binary relation as a formal model for the  

operand node A/B/C, as shown in Eq.(5.33). In this case, the first and the second 

element of each pair in A/B/C are denoted by a and c, respectively. 

A/B/C = {(a1
1
, c2

1
),…,(a1

1
, c2

q
),…,(a1

p
, c2

1
),…,(a1

p
, c2

q
)}                                (5.33)                    

The first and the second element of any relational pair in A/B/C are denoted by the 

subscripts ‘1’ and ‘2’, respectively. In this case, the superscripts for the elements 

of the relational pairs in A/B/C don’t have to be identical and the relation A/B/C 

has ‘p.q’ pairs. 

The horizontal decomposition of the operand relation A/B/C from left to right 

gives the product relation A in Eq.(5.34) and the temporary relation B/C in 

Eq.(5.35). 

A = {(a1
1
, a2

1
),…,(a1

p
, a2

p
)}                                                                               (5.34) 

B/C = {(a2
1
, c2

1
),…,(a2

1
, c2

q
),…,(a2

p
, c2

1
),…,(a2

p
, c2

q
)}                                    (5.35)                    

Further on, the horizontal decomposition of the temporary relation B/C gives the 

product relations B and C, as shown in Eqs.(5.36)-(5.37). 

B = {(a2
1
, c1

1
),…,(a2

1
, c1

q
),…,(a2

p
, c1

1
),…,(a2

p
, c1

q
)}                                        (5.36) 

C = {(c1
1
, c2

1
),…,(c1

q
, c2

q
)}                                                                               (5.37) 

On the other hand, the horizontal decomposition of the operand relation A/B/C 

from right to left gives the temporary relation A/B in Eq.(5.38) and the product  

relation C which is identical with the product relation from Eq.(5.37). 

A/B = {(a1
1
, c1

1
),…,(a1

1
, c1

q
),…,(a1

p
, c1

1
),…,(a1

p
, c1

q
)}                               (5.38)              
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In this case, the horizontal decomposition of the temporary relation A/B gives the 

product relations A and B. As the latter are also identical with the product rela-

tions from Eq.(5.34) and Eq.(5.36), this implies the validity of Eq.(5.32) and  

concludes the proof. 

Example 5.3 

This example considers a one-node FN located in the first level of a larger FN. 

This one-node FN has a single operand node N11/12/13 that is described by the  

Boolean matrix in Eq.(5.15) and the binary relation in Eq.(5.16). The one-node FN 

can be described by the block-scheme in Fig.5.11 and the topological expression 

in Eq.(5.39). 

   x11                                y13                             

                  N11/12/13                                                              

Fig. 5.11 FN with operand node N11/12/13 

[N11/12/13] (x11
 
| y13)                                                                                            (5.39)                       

The horizontal splitting of the operand node N11/12/13 from left to right results into 

a product node N11 that is connected to the right with a temporary node N12/13 by 

means of an intermediate variable z11,12/13. In this case, the node N11 can be de-

scribed by the Boolean matrix in Eq.(3.13) and the binary relation Eq.(3.17) 

whereas the node N12/13 can be described  by the Boolean matrix in Eq.(3.15) and 

the binary relation in Eq.(3.19).  

The overall result of the above operation is a two-node FN that can be  

described by the block scheme in Fig.5.12 and the topological expression in 

Eq.(5.40).  

  x11                    z11,12/13                          z11,12/13                                      y13 

                 N11                                     /                           N12/13 

Fig. 5.12 FN with product node N11 and temporary node N12/13 

[N11] (x11
 
| z11,12/13) / [N12/13] (z11,12/13

 
|
 
y13)                                                         (5.40)                      

Further on, the horizontal splitting of the temporary node N12/13 results into two 

product nodes N12 and N13 that are connected with each other by an intermediate 

variable z12,13 whereby the other intermediate variable z11,12/13 is renamed as z11,12 

for consistency. In this case, the node N12 can be described by the Boolean matrix 

in Eq.(3.14) and the binary relation Eq.(3.18) whereas the node N13 can be  

described  by the Boolean matrix in Eq.(5.8) and the binary relation in Eq.(5.9).  
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The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.13 and the topological expression in 

Eq.(5.41).  

   x11                            z11,12                      z11,12                         z12,13                      z12,13                            y13 

           N11                             /                     N12                    /                   N13 

Fig. 5.13 FN with product nodes N11, N12 and N13 

[N11] (x11
 
| z11,12) / [N12] (z11,12

 
| z12,13) / [N13] (z12,13

 
|
 
y13)                                (5.41)                        

On the other hand, the horizontal splitting of the operand node N11/12/13 from right 

to left results into a product node N13 that is connected to the left with a temporary 

node N11/12 by means of an intermediate variable z11/12,13. In this case, the node N13 

can be described by the Boolean matrix in Eq.(5.8) and the binary relation 

Eq.(5.9) whereas the node N11/12 can be described  by the Boolean matrix in 

Eq.(4.3) and the binary relation in Eq.(4.4).  

The overall result of the above operation is a two-node FN that can be de-

scribed by the block scheme in Fig.5.14 and the topological expression in 

Eq.(5.42).  

  x11                        z11/12,13                        z11/12,13                                    y13 

                 N11/12                                    /                           N13 

Fig. 5.14 FN with temporary node N11*12 and operand node N13 

[N11/12] (x11
 
| z12/13,13) / [N13] (z12/13,13

 
|
 
y13)                                                        (5.42)                      

Further on, the horizontal splitting of the temporary node N11/12 results into two 

product nodes N11 and N12 that are connected with each other by an intermediate 

variable z11,12 whereby the other intermediate variable z11,12/13 is renamed as z12/13 

for consistency. In this case, the node N11 can be described by the Boolean matrix 

in Eq.(3.13) and the binary relation in Eq.(3.17) whereas the node N12 can be  

described  by the Boolean matrix in Eq.(3.14) and the binary relation in Eq.(3.18).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.13 and the topological expression in 

Eq.(5.41).  

Therefore, the horizontal splitting of the operand node N11/12/13 results into an 

identical set of product nodes {N11, N12, N13} for both cases of left-to-right and 

right-to-left splitting. This identity is defined by Eq.(5.43) in accordance with 

Eq.(5.32) from Proof 5.2. 

N11, N12/13 = N11/12, N13 = N11, N12, N13                                                                                               (5.43)          
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Example 5.4 

This example considers a one-node FN located in the second level of a larger FN. 

This one-node FN has a single operand node N21/22/23 that is described by the  

Boolean matrix in Eq.(5.27) and the binary relation in Eq.(5.28). The one-node FN 

can be describe``d by the block-scheme in Fig.5.15 and the topological expression 

in Eq.(5.44). 

   x21                                 y23                             

                  N21/22/23                                                              

Fig. 5.15 FN with operand node N21/22/23 

[N21/22/23] (x21
 
| y23)                                                                                          (5.44)                        

The horizontal splitting of the operand node N21/22/23 from left to right results into 

a product node N21 that is connected to the right with a temporary node N22/23 by 

means of an intermediate variable z21,22/23. In this case, the node N21 can be  

described by the Boolean matrix in Eq.(3.15) and the binary relation Eq.(3.19) 

whereas the node N22/23 can be described  by the Boolean matrix in Eq.(3.13) and 

the binary relation in Eq.(3.17).  

The overall result of the above operation is a two-node FN that can be  

described by the block scheme in Fig.5.16 and the topological expression in 

Eq.(5.45).  

  x21                    z21,22/23                           z21,22/23                                        y23 

                 N21                                     /                           N22/23 

Fig. 5.16 FN with product node N21 and temporary node N22/23 

[N21] (x21
 
| z21,22/23) / [N22/23] (z21,22/23

 
|
 
y23)                                                         (5.45)                      

Further on, the horizontal splitting of the temporary node N22/23 results into two 

product nodes N22 and N23 that are connected with each other by an intermediate 

variable z22,23 whereby the other intermediate variable z21,22/23 is renamed as z21,22 

for consistency. In this case, the node N22 can be described by the Boolean matrix 

in Eq.(3.16) and the binary relation Eq.(3.20) whereas the node N13 can be de-

scribed  by the Boolean matrix in Eq.(5.20) and the binary relation in Eq.(5.21).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.17 and the topological expression in 

Eq.(5.46).  
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    x21                            z21,22                      z21,22                         z22,23                      z22,23                           y23 

            N21                             /                     N22                    /                   N23 

Fig. 5.17 FN with product nodes N21, N22 and N23 

[N21] (x21
 
| z21,22) / [N22] (z21,22

 
| z22,23) / [N23] (z22,23

 
|
 
y23)                                  (5.46)    

On the other hand, the horizontal splitting of the operand node N21/22/23 from right 

to left results into a product node N23 that is connected to the left with a temporary 

node N21/22 by means of an intermediate variable z21/22,23. In this case, the node N23 

can be described by the Boolean matrix in Eq.(5.20) and the binary relation 

Eq.(5.21) whereas the node N21/22 can be described  by the Boolean matrix in 

Eq.(4.7) and the binary relation in Eq.(4.8).  

The overall result of the above operation is a two-node FN that can be de-

scribed by the block scheme in Fig.5.18 and the topological expression in 

Eq.(5.47).  

  x21                        z21/22,23                        z21,22/23                                    y23 

                 N21/22                                    /                           N23 

Fig. 5.18 FN with temporary node N21/22 and operand node N23 

[N21/22] (x21
 
| z21/22,23) / [N23] (z21,22/23

 
|
 
y23)                                                       (5.47)                       

Further on, the horizontal splitting of the temporary node N21/22 results into two 

product nodes N21 and N22 that are connected with each other by an intermediate 

variable z21,22 whereby the other intermediate variable z21,22/23 is renamed as z22,23 

for consistency. In this case, the node N21 can be described by the Boolean matrix 

in Eq.(3.15) and the binary relation in Eq.(3.19) whereas the node N22 can be de-

scribed  by the Boolean matrix in Eq.(3.16) and the binary relation in Eq.(3.20).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.17 and the topological expression in 

Eq.(5.46).  

Therefore, the horizontal splitting of the operand node N21/22/23 results into an 

identical set of product nodes {N21, N22, N23} for both cases of left-to-right and 

right-to-left splitting. This identity is defined by Eq.(5.48) in accordance with 

Eq.(5.32) from Proof 5.2. 

N21, N22/23 = N21/22, N23 = N21, N22, N23                                                                                               (5.48)          

5.4   Associativity of Vertical Merging  

Associativity is a property related to the operation of vertical merging when the 

latter is applied to three parallel nodes for the purpose of merging them into a 
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single node. In particular, this property allows the merging of three operand nodes 

A, B and C into a product node A+B+C to take place as a sequence of two binary 

merging operations that can be applied either from top to bottom or from bottom 

to top. The property can be applied when the inputs to and the outputs from each 

of the three nodes A, B and C are self-standing. In this case, the input set to the 

product node A+B+C is the union of the inputs to the operand nodes A, B and C 

whereas the output set from the product node is the union of the outputs from the 

operand nodes.  

Proof 5.3 

It has to be proved here that the operation of vertical merging is associative in  

accordance with Eq.(5.49). In this case, the horizontal merging of any three  

operand nodes A, B and C from top to bottom should be equivalent to their  

vertical merging from bottom to top. 

(A+B)+C = A+(B+C) = A+B+C                                                                      (5.49) 

The proof is based on the use of binary relations as formal models for the operand 

nodes A, B and C, as shown in Eqs. (5.50)-(5.52). In this case, the elements of the 

relational pairs are denoted by the letter a in A, the letter b in B and the letter c in 

C.  

A = {(a1
1
, a2

1
),…,(a1

p
, a2

p
)}                                                                               (5.50) 

B = {(b1
1
, b2

1
),…,(b1

q
, b2

q
)}                                                                              (5.51) 

C = {(c1
1
, c2

1
),…,(c1

r
, c2

r
)}                                                                                (5.52) 

The first and the second element of any relational pair in A, B and C are denoted 

by the subscripts ‘1’ and ‘2’, respectively. However, the superscripts for the first 

and the second element of any relational pair in A, B and C are identical as they 

indicate the corresponding number for each pair. In particular, the relation A has 

‘p’ pairs, the relation B has 'q' pairs and the relation C has 'r’ pairs.  

The vertical composition of the operand relations A and B gives the temporary 

relation A+B, as shown in Eq.(5.53). 

A+B = {(a1
1 
b1

1
, a2

1 
b2

1
),…,(a1

1 
b1

q
, a2

1 
b2

q
),…,                                                 (5.53) 

              (a1
p 
b1

1
, a2

p 
b2

1
),…,(a1

p 
b1

q
, a2

p 
b2

q
 )}                                               

Further on, the vertical composition of the temporary relation A+B and the  

operand relation C gives the product relation (A+B)+C, as shown in Eq.(5.54). 

(A+B)+C = {(a1
1 
b1

1 
c1

1
, a2

1 
b2

1 
c2

1
),…,(a1

1 
b1

1 
c1

r
, a2

1 
b2

1 
c2

r
),…,                      (5.54) 

                      (a1
1 
b1

q 
c1

1
, a2

1 
b2

q 
c2

1
),…,(a1

1 
b1

q 
c1

r
, a2

1 
b2

q 
c2

r
),…,   
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                      (a1
p 
b1

1 
c1

1
, a2

p 
b2

1 
c2

1
),…,(a1

p 
b1

1 
c1

r
, a2

p 
b2

1 
c2

r
),…, 

                      (a1
p 
b1

q 
c1

1
, a2

p 
b2

q 
c2

1
),…,(a1

p 
b1

q 
c1

r
, a2

p 
b2

q 
c2

r
)}                                             

On the other hand, the vertical composition of the operand relations B and C gives 

the temporary relation B+C, as shown in Eq.(5.55). 

B+C =  {(b1
1 
c1

1
, b2

1 
c2

1
),…,(b1

1 
c1

r
, b2

1 
c2

r
),…,                                                 (5.55) 

               (b1
q 
c1

1
, b2

q 
c2

1
),…,(b1

q 
c1

r
, b2

q 
c2

r
)}                                               

In this case, the vertical composition of the operand relation A and the temporary 

relation B+C gives the product relation A+(B+C). As the latter is identical with 

the product relation (A+B)+C from Eq.(5.54), this implies the validity of 

Eq.(5.49) and concludes the proof. 

Example 5.5 

This example considers a FN with three parallel operand nodes. The first and the 

second node N11 and N21 are taken from the four-node FN in Fig.3.1. These two 

nodes are described there by the Boolean matrices and the binary relations in 

Eqs.(3.13), (3.15), (3.17) and (3.19) whereas the third node N31 is described by the 

Boolean matrix in Eq.(5.56) and the binary relation in Eq.(5.57).  

N31 :          y31   1     2     3                                                                                  (5.56)           

          x31 

          1             0     0     1  

          2             0     1     0 

          3             1     0     0                                                                               

N31 :   {(1, 3), (2, 2) (3, 1)}                                                                               (5.57) 

The nodes N11, N21 and N31 represent a three-node FN that is an extended  

sub-network of the four-node FN from Fig.3.1. This three-node FN can be de-

scribed by the block-scheme in Fig.5.19 and the topological expression in 

Eq.(5.58).  

  x11                        y11                               

                 N11                                                                

                  

                  + 

  x21                        y21                                 

                 N21                                                                

                  + 

  x31                        y31                                 

                 N31                                                                

Fig. 5.19 FN with operand nodes N11, N21 and N31 
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[N11] (x11
 
| y11) + [N21] (x21

 
| y21) + [N31] (x31

 
|
 
y31)                                            (5.58)                       

The vertical merging of the first operand node N11 and the second operand node 

N21 from Fig.5.19 results into a temporary node N11+21 that can be described by the 

Boolean matrix in Eq.(4.25) and the binary relation in Eq.(4.26). This temporary 

node is connected at the bottom with the third operand node N31 in the form of a 

two-node FN. The latter can be described by the block scheme in Fig.5.20 and the 

topological expression in Eq.(5.59).  

  x11                            y11                            

                  
  x21          N11+21           y21 

                                                                              

                   + 

  x31                            y31                                 

                   N31                                                                

Fig. 5.20 FN with temporary node N11+21 and operand node N31 

[N11+21] (x11, x21
 
| y11, y21) + [N31] (x31

 
|
 
y31)                                                      (5.59)                    

Further on, the vertical merging of the temporary node N11+21 and the operand 

node N31 from Fig.5.20 results into a product node N(11+21)+31 in the form of a one-

node FN. The latter can be described by the block scheme in Fig.5.21 and the 

topological expression in Eq.(5.60). 

  x11                                  y11                            

                  
  x21                                    y21 

                 N(11+21)+31                                                              

  x31                                  y31                            

                  
 

Fig. 5.21 FN with product node N(11+21)+31  

[N(11+21)+31] (x11, x21, x31
 
| y11, y21, y31)                                                               (5.60)                     

As a result, the product node N(11+21)+31 is described by the Boolean matrix in 

Eq.(5.61) and the binary relation in Eq.(5.62). In this case, the labels and the ele-

ments of the Boolean matrix are represented by a compact notation. In particular, 

each of the capital letters A, B, C, D, E, F, G, H, I stands for three sequential rows 

and columns as indicated in brackets, 13 denotes the square Boolean matrix from 

Eq.(5.56) and 03 denotes a zero Boolean matrix of dimension 3×3.  
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N(11+21)+31 :                     y11, y21, y31    A    B    C    D    E    F    G    H    I        (5.61)                      

                  x11, x21, x31 

                  A (111-113)                      03   13    03   03    03   03   03    03   03 

                  B (121-123)                      13   03    03   03    03   03   03    03   03 

                  C (131-133)                      03   03    13   03    03   03   03    03   03 

                  D (211-213)                      03   03    03   03    03   03   03    13   03 

                  E (221-223)                      03   03    03   03    03   03   13    03   03 

                  F (231-133)                      03   03    03   03    03   03   03    03   13 

                  G (311-313)                     03   03    03   03    13   03   03    03   03 

                  H (321-323)                     03   03    03   13    03   03   03    03   03 

                   I (331-333)                      03   03    03   03    03   13   03    03   03 

N(11+21)+31 : {(111, 123), (112, 122), (113, 121),                                               (5.62) 

                    (121, 113), (122, 112), (123, 111), 

                    (131, 133), (132, 132), (133, 131), 

                    (211, 323), (212, 322), (213, 321),                                                

                    (221, 313), (222, 312), (223, 311), 

                    (231, 333), (232, 332), (233, 331), 

                    (311, 223), (312, 222), (313, 221),                                                

                    (321, 213), (322, 212), (323, 211), 

                    (331, 233), (332, 232), (333, 231)} 

On the other hand, the vertical merging of the second operand node N21 and the 

third operand node N31 from Fig.5.19 results into a temporary node N21+31 that can 

be described by the Boolean matrix in Eq.(5.63) and the binary relation in 

Eq.(5.64).  This temporary node is connected at the top with the first operand node 

N11 in the form of a two-node FN. The latter can be described by the block scheme 

in Fig.5.22 and the topological expression in Eq.(5.65).  

N21+31 :                y21, y31    11   12   13   21   22   23   31   32   33                   (5.63)                       

              x21, x31 

              11                          0     0     0     0     0     1     0     0     0 

              12                          0     0     0     0     1     0     0     0     0 

              13                          0     0     0     1     0     0     0     0     0 

              21                          0     0     1     0     0     0     0     0     0 

              22                          0     1     0     0     0     0     0     0     0 

              23                          1     0     0     0     0     0     0     0     0 

              31                          0     0     0     0     0     0     0     0     1 

              32                          0     0     0     0     0     0     0     1     0 

              33                          0     0     0     0     0     0     1     0     0 

N21+31 : {(11, 23), (12, 22), (13, 21),                                                                 (5.64) 

              (21, 13), (22, 12), (23, 11),  

              (31, 33), (32, 32), (33, 31)}                                                                                 
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  x11                            y11                                 

                   N11                                                                

 

                   + 

  x21                            y21                            

                  
  x31          N21+31           y31 

                                                                              

Fig. 5.22 FN with operand node N11 and temporary node N21+31 

[N11] (x11
 
|
 
y11)  + [N21+31] (x21, x31

 
| y21, y31)                                                    (5.65) 

Further on, the vertical merging of the operand node N11 and the temporary node 

N21+31 from Fig.5.22 results into a product node N11+(21+31) in the form of a one-

node FN. The latter can be described by the block scheme in Fig.5.23 and the 

topological expression in Eq.(5.66).  

  x11                                  y11                            

                  
  x21                                    y21 

                 N11+(21+31)                                                              

  x31                                  y31                            

                  

Fig. 5.23 FN with product node N11+(21+31) 

[N11+(21+31)] (x11, x21, x31
 
| y11, y21, y31)                                                               (5.66) 

In this case, the product node N11+(21+31) is also described by the Boolean matrix in 

Eq.(5.61) and the binary relation in Eq.(5.62). Therefore, N11+(21+31) is identical 

with N(11+21)+31 and this identity is defined by Eq.(5.67) in accordance with 

Eq.(5.49) from Proof 5.3. 

N(11+21)+31 = N11+(21+31) = N11+21+31                                                                                             (5.67)                                

Example 5.6 

This example considers a FN with three parallel operand nodes. The first and the 

second node N12 and N22 are taken from the four-node FN in Fig.3.1. These two 

nodes are described there by the Boolean matrices and the binary relations in 

Eqs.(3.14), (3.16), (3.18) and (3.20) whereas the third node N32 is described by the 

Boolean matrix in Eq.(5.68) and the binary relation in Eq.(5.69).  

 



68 5   Structural Properties of Basic Operations

 

N32 :          y32   1     2     3                                                                                  (5.68)           

          x32 

          1             0     0     1  

          2             0     1     0 

          3             1     0     0                                                                               

N32 :   {(1, 3), (2, 2) (3, 1)}                                                                               (5.69) 

The nodes N12, N22 and N32 represent a three-node FN that is an extended  

sub-network of the four-node FN from Fig.3.1. This three-node FN can be de-

scribed by the block-scheme in Fig.5.24 and the topological expression in 

Eq.(5.70).  

  x12                        y12                              

                 N12                                                                

                  

                  + 

  x22                        y22                                 

                 N22                                                                

 

                  + 

  x32                        y32                                 

                 N32                                                                
 

Fig. 5.24 FN with operand nodes N12, N22 and N32 

[N12] (x12
 
| y12) + [N22] (x22

 
| y22) + [N32] (x32

 
|
 
y32)                                            (5.70)                       

The vertical merging of the first operand node N12 and the second operand node 

N22 from Fig.5.24 results into a temporary node N12+22 that can be described by the 

Boolean matrix in Eq.(4.29) and the binary relation in Eq.(4.30). This temporary 

node is connected at the bottom with the third operand node N32 in the form of a 

two-node FN. The latter can be described by the block scheme in Fig.5.25 and the 

topological expression in Eq.(5.71).  

  x12                            y12                            

                  
  x22          N12+22           y22 

                                                                              

 

                   + 

  x32                            y32                                 

                   N32                                                                

Fig. 5.25 FN with temporary node N12+22 and operand node N32 
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[N12+22] (x12, x22
 
| y12, y22) + [N32] (x32

 
|
 
y32)                                                     (5.71)                     

Further on, the vertical merging of the temporary node N12+22 and the operand node 

N32 from Fig.5.25 results into a product node N(12+22)+32 in the form of a one-node 

FN. The latter can be described by the block scheme in Fig.5.26 and the topological 

expression in Eq.(5.72). 

  x12                                  y12                            

                  
  x22                                     y22 

                 N(12+22)+32                                                              

  x32                                  y32                            

                  

Fig. 5.26 FN with product node N(12+22)+32  

[N(12+22)+32] (x12, x22, x32
 
| y12, y22, y32)                                                              (5.72)                     

As a result, the product node N(12+22)+32 is described by the Boolean matrix in 

Eq.(5.73) and the binary relation in Eq.(5.74). In this case, the labels and the elements 

of the Boolean matrix are represented by a compact notation. In particular, each of 

the capital letters A, B, C, D, E, F, G, H, I stands for three sequential rows and col-

umns as indicated in brackets, 13 denotes the square Boolean matrix from Eq.(5.68) 

and 03 denotes a zero Boolean matrix of dimension 3×3.  

N(12+22)+32 :                     y12, y22, y32    A    B    C    D    E    F    G    H    I        (5.73)                      

                  x12, x22, x32 

                  A (111-113)                      03   03    03   03    03   13   03    03   03 

                  B (121-123)                      03   03    03   13    03   03   03    03   03 

                  C (131-133)                      03   03    03   03    13   03   03    03   03 

                  D (211-213)                      03   03    03   03    03   03   03    03   13 

                  E (221-223)                      03   03    03   03    03   03   13    03   03 

                  F (231-133)                      03   03    03   03    03   03   03    13   03 

                  G (311-313)                     03   03    13   03    03   03   03    03   03 

                  H (321-323)                     13   03    03   03    03   03   03    03   03 

                   I (331-333)                      03   13    03   03    03   03   03    03   03 

N(12+22)+32 : {(111, 233), (112, 232), (113, 231),                                               (5.74) 

                    (121, 213), (122, 212), (123, 211), 

                    (131, 223), (132, 222), (133, 221), 

                    (211, 333), (212, 332), (213, 331),                                                

                    (221, 313), (222, 312), (223, 311), 

                    (231, 323), (232, 322), (233, 321), 

                    (311, 133), (312, 132), (313, 131),                                                

                    (321, 113), (322, 112), (323, 111), 

                    (331, 123), (332, 122), (333, 121)} 
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On the other hand, the vertical merging of the second operand node N22 and the third 

operand node N32 from Fig.5.24 results into a temporary node N22+32 that can be de-

scribed by the Boolean matrix in Eq.(5.75) and the binary relation in Eq.(5.76). This 

temporary node is connected at the top with the first operand node N12 in the form of 

a two-node FN. The latter can be described by the block scheme in Fig.5.27 and the 

topological expression in Eq.(5.77).  

N22+32 :                y22, y32    11   12   13   21   22   23   31   32   33                    (5.75)                       

              x22, x32 

              11                          0     0     0     0     0     0     0     0     1 

              12                          0     0     0     0     0     0     0     1     0 

              13                          0     0     0     0     0     0     1     0     0 

              21                          0     0     1     0     0     0     0     0     0 

              22                          0     1     0     0     0     0     0     0     0 

              23                          1     0     0     0     0     0     0     0     0 

              31                          0     0     0     0     0     1     0     0     0 

              32                          0     0     0     0     1     0     0     0     0 

              33                          0     0     0     1     0     0     0     0     0 

N22+32 : {(11, 33), (12, 32), (13, 31),                                                                 (5.76) 

              (21, 13), (22, 12), (23, 11),  

              (31, 23), (32, 22), (33, 21)}                                                                                 

  x12                            y12                                 

                   N12                                                                

 

                   + 

  x22                            y22                            

                  
  x32          N22+32           y32 

                                                                              

Fig. 5.27 FN with operand node N12 and temporary node N22+32 

[N12] (x12
 
|
 
y12)  + [N22+32] (x22, x32

 
| y22, y32)                                                     (5.77) 

Further on, the vertical merging of the operand node N12 and the temporary node 

N22+32 from Fig.5.27 results into a product node N12+(22+32) in the form of a one-

node FN. The latter can be described by the block scheme in Fig.5.28 and the 

topological expression in Eq.(5.78).  
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  x12                                  y12                            

                  
  x22                                    y22 

                 N12+(22+32)                                                              

  x32                                  y32                            

                  

Fig. 5.28 FN with product node N12+(22+32) 

[N12+(22+32)] (x12, x22, x32
 
| y12, y22, y32)                                                              (5.78) 

In this case, the product node N12+(22+32) is also described by the Boolean matrix in 

Eq.(5.73) and the binary relation in Eq.(5.74). Therefore, N12+(22+32) is identical 

with N(12+22)+32 and this identity is defined by Eq.(5.79) in accordance with 

Eq.(5.49) from Proof 5.3. 

N(12+22)+32 = N12+(22+32) = N12+22+32                                                                                             (5.79) 

5.5   Variability of Vertical Splitting  

Variability is a property related to the operation of vertical splitting when the latter 

is applied to a single node with the purpose of splitting it into three nodes. In par-

ticular, this property allows the splitting of an operand node A-B-C into three 

product nodes A, B and C to take place as a sequence of two unary splitting opera-

tions that can be applied either from top to bottom or from bottom to top. The 

property always holds when the underlying operation of vertical splitting can be 

applied in the manner specified above. In this case, the union of the inputs to the 

three product nodes A, B and C is the same as the input set to the operand node  

A-B-C whereas the union of the outputs from the three product nodes is the same 

as the output set from the operand node. 

Proof 5.4 

It has to be proved here that the operation of vertical splitting is variable in  

accordance with Eq.(5.80). In this case, the vertical splitting of any single operand 

node A-B-C from top to bottom should be equivalent to its vertical splitting from  

bottom to top. 

A, (B-C) = (A-B), C = A, B, C                                                                         (5.80) 

The proof is based on the use of a binary relation as a formal model for the  

operand node A-B-C, as shown in Eq.(5.81). In this case, the first and the second 

element of each pair in A-B-C are denoted by the triplet 'abc'. 
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A-B-C = {(a1
1 
b1

1 
c1

1
, a2

1 
b2

1 
c2

1
),…,(a1

1 
b1

1 
c1

r
, a2

1 
b2

1 
c2

r
),…,                          (5.81) 

                 (a1
1 
b1

q 
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1
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q 
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q 
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r
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q 
c2

r
),…,   

                 (a1
p 
b1

1 
c1

1
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p 
b2

1 
c2

1
),…,(a1

p 
b1

1 
c1

r
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p 
b2

q 
c2

r
),…, 

            (a1
p 
b1

q 
c1

1
, a2

p 
b2

q 
c2

1
),…,(a1

p 
b1

q 
c1

r
, a2

p 
b2

1 
c2

r
) 

The three individual elements in the first and the second triplet of any relational 

pair in A-B-C are denoted by the subscripts ‘1’ and ‘2’, respectively. In this case, 

the superscripts for these individual elements denote their target pairs in the  

product relations A, B and C whereby the operand relation A-B-C has ‘p.q.r’ 

pairs. 

The vertical decomposition of the operand relation A-B-C from top to bottom 

gives the product relation A in Eq.(5.82) and the temporary relation B-C in            

Eq.(5.83). 

A = {(a1
1
, a2

1
),…,(a1

p
, a2

p
)}                                                                               (5.82) 

B-C =  {(b1
1 
c1

1
, b2

1 
c2

1
),…,(b1

1 
c1

r
, b2

1 
c2

r
),…,                                                  (5.83) 

              (b1
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c1
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c2
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q 
c2

r
)}                                               

Further on, the vertical decomposition of the temporary relation B-C gives the 

product relations B and C, as shown in Eqs.(5.84)-(5.85). 

B = {(b1
1
, b2

1
),…,(b1

q
, b2

q
)}                                                                              (5.84) 

C = {(c1
1
, c2

1
),…,(c1

r
, c2

r
)}                                                                                (5.85) 

On the other hand, the vertical decomposition of the operand relation A-B-C from 

bottom to top gives the temporary relation A-B in Eq.(5.86) and the product  

relation C which is identical with the product relation from Eq.(5.85). 

A-B = {(a1
1 
b1

1
, a2

1 
b2

1
),…,(a1

1 
b1

q
, a2

1 
b2

q
),…,                                                 (5.86) 

             (a1
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1
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1
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q
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p 
b2

q
 )}                                               

In this case, the vertical decomposition of the temporary relation A-B gives the 

product relations A and B. As the latter are also identical with the product rela-

tions from Eq.(5.82) and Eq.(5.84), this implies the validity of Eq.(5.80) and  

concludes the proof. 

Example 5.7 

This example considers a one-node FN located in the first layer of a larger FN. 

This one-node FN has a single operand node N11-21-31 that is described by the  

Boolean matrix in Eq.(5.61) and the binary relation in Eq.(5.62). The one-node FN 
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can be described by the block-scheme in Fig.5.29 and the topological expression 

in Eq.(5.87). 

  x11                                  y11                            

                  
  x21                                    y21 

                   N11-21-31                                                              

  x31                                  y31                            

                  

Fig. 5.29 FN with operand node N11-21-31 

[N11-21-31] (x11, x21, x31
 
| y11, y21, y31)                                                                 (5.87) 

The vertical splitting of the operand node N11-21-31 from top to bottom results into a 

product node N11 that is connected at the bottom with a temporary node  N21-31. In 

this case, the node N11 can be described by the Boolean matrix in Eq.(3.13) and 

the binary relation Eq.(3.17) whereas the node N21-31 can be described  by the  

Boolean matrix in Eq.(5.63) and the binary relation in Eq.(5.64).  

The overall result of the above operation is a two-node FN that can be de-

scribed by the block scheme in Fig.5.30 and the topological expression in 

Eq.(5.88).  

  x11                            y11                                 

                   N11                                                                

 

                    - 

  x21                            y21                            

                  
  x31          N21-31           y31 

                                                                              

Fig. 5.30 FN with product node N11 and temporary node N21-31  

[N11] (x11
 
|
 
y11) - [N21-31] (x21, x31

 
| y21, y31)                                                       (5.88) 

Further on, the vertical splitting of the temporary node N21-31 results into two 

product nodes N21 and N31. In this case, the node N21 can be described by the  

Boolean matrix in Eq.(3.15) and the binary relation Eq.(3.19) whereas the node 

N31 can be described  by the Boolean matrix in Eq.(5.56) and the binary relation in 

Eq.(5.57).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.31 and the topological expression in 

Eq.(5.89).  
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  x11                        y11                               

                 N11                                                                

                  

                  - 

  x21                        y21                                 

                 N21                                                                

 

                  - 

  x31                        y31                                 

                 N31                                                                

Fig. 5.31 FN with product nodes N11, N21 and N31 

[N11] (x11
 
| y11) - [N21] (x21

 
| y21) - [N31] (x31

 
|
 
y31)                                              (5.89)                       

On the other hand, the vertical splitting of the operand node N11-21-31 from bottom 

to top results into a product node N31 that is connected at the top with a temporary 

node N11-21. In this case, the node N31 can be described by the Boolean matrix in 

Eq.(5.56) and the binary relation in Eq.(5.57) whereas the node N11-21 can be de-

scribed  by the Boolean matrix in Eq.(4.25) and the binary relation in Eq.(4.26).  

The overall result of the above operation is a two-node FN that can be de-

scribed by the block scheme in Fig.5.32 and the topological expression in 

Eq.(5.90).  

  x11                            y11                            

                  
  x21          N11-21           y21 

                                                                              

 

                    - 

  x31                            y31                                 

                   N31                                                                

Fig. 5.32 FN with temporary node N11-21 and product node N31 

[N11-21] (x11, x21
 
| y11, y21) - [N31] (x31

 
|
 
y31)                                                       (5.90)                        

Further on, the verical splitting of the temporary node N11-21 results into two prod-

uct nodes N11 and N21. In this case, the node N11 can be described by the Boolean 

matrix in Eq.(3.13) and the binary relation in Eq.(3.17) whereas the node N21 can 

be described  by the Boolean matrix in Eq.(3.15) and the binary relation in 

Eq.(3.19).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.31 and the topological expression in 

Eq.(5.89).  
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Therefore, the vertical splitting of the operand node N11-21-31 results into an 

identical set of product nodes {N11, N21, N31} for both cases of top-to-bottom and 

bottom-to-top splitting. This identity is defined by Eq.(5.91) in accordance with 

Eq.(5.80) from Proof 5.4. 

N11, N21-31 = N11-21, N31 = N11, N21, N31                                                                                      (5.91) 

Example 5.8 

This example considers a one-node FN located in the second layer of a larger FN. 

This one-node FN has a single operand node N12-22-32 that is described by the  

Boolean matrix in Eq.(5.73) and the binary relation in Eq.(5.74). The one-node FN 

can be described by the block-scheme in Fig.5.33 and the topological expression 

in Eq.(5.92). 

  x12                                  y12                            

                  
  x22                                    y22 

                   N12-22-32                                                              

  x32                                  y32                           

                  

Fig. 5.33 FN with operand node N12-22-32 

[N12-22-32] (x12, x22, x32
 
| y12, y22, y32)                                                                  (5.92) 

The vertical splitting of the operand node N12-22-32 from top to bottom results into a 

product node N12 that is connected at the bottom with a temporary node  N22-32. In 

this case, the node N12 can be described by the Boolean matrix in Eq.(3.14) and 

the binary relation Eq.(3.18) whereas the node N22-32 can be described  by the  

Boolean matrix in Eq.(5.75) and the binary relation in Eq.(5.76).  

The overall result of the above operation is a two-node FN that can be de-

scribed by the block scheme in Fig.5.34 and the topological expression in 

Eq.(5.93).  

  x12                            y12                                 

                   N12                                                                

 

                    - 

  x22                            y22                            

                  
  x32          N22-32           y32 

                                                                              

Fig. 5.34 Two-node FN with product node N11 and temporary node N21-31 
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[N12] (x12
 
|
 
y12) - [N22-32] (x22, x32

 
| y22, y32)                                                       (5.93) 

Further on, the vertical splitting of the temporary node N22-32 results into two 

product nodes N22 and N32. In this case, the node N22 can be described by the  

Boolean matrix in Eq.(3.16) and the binary relation Eq.(3.20) whereas the node 

N32 can be described by the Boolean matrix in Eq.(5.68) and the binary relation in 

Eq.(5.69).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.35 and the topological expression in 

Eq.(5.94).  

  x12                        y12                               

                 N12                                                                

                  

                  - 

  x22                        y22                                 

                 N22                                                                

 

                  - 

  x32                        y32                                 

                 N32                                                                

Fig. 5.35 FN with product nodes N12, N22 and N32 

[N12] (x12
 
| y12) - [N22] (x22

 
| y22) - [N32] (x32

 
|
 
y32)                                             (5.94)                        

On the other hand, the vertical splitting of the operand node N12-22-32 from bottom 

to top results into a product node N32 that is connected at the top with a temporary 

node N12-22. In this case, the node N32 can be described by the Boolean matrix in 

Eq.(5.68) and the binary relation Eq.(5.69) whereas the node N12-22 can be  

described  by the Boolean matrix in Eq.(4.29) and the binary relation in Eq.(4.30).  

The overall result of the above operation is a two-node FN that can be de-

scribed by the block scheme in Fig.5.36 and the topological expression in 

Eq.(5.95).  

  x12                            y12                            

                  
  x22          N12-22           y22 

                                                                              

 

                    - 

  x32                            y32                                 

                   N32                                                               

Fig. 5.36 FN with temporary node N12-22 and product node N32 
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[N12-22] (x12, x22
 
| y12, y22) - [N32] (x32

 
|
 
y32)                                                        (5.95)                       

Further on, the vertical splitting of the temporary node N12-22 results into two 

product nodes N12 and N22. In this case, the node N12 can be described by the  

Boolean matrix in Eq.(3.14) and the binary relation in Eq.(3.18) whereas the node 

N22 can be described  by the Boolean matrix in Eq.(3.16) and the binary relation in 

Eq.(3.20).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.35 and the topological expression in 

Eq.(5.94).  

Therefore, the vertical splitting of the operand node N12-22-32 results into an 

identical set of product nodes {N12, N22, N32} for both cases of top-to-bottom and 

bottom-to-top splitting. This identity is defined by Eq.(5.96) in accordance with 

Eq.(5.80) from Proof 5.4. 

N12, N22-32 = N12-22, N32 = N12, N22, N32                                                                                      (5.96) 

5.6   Associativity of Output Merging  

Associativity is a property related to the operation of output merging when the lat-

ter is applied to three parallel nodes with common inputs for the purpose ofmerg-

ing them into a single node. In particular, this property allows the merging of three 

operand nodes A, B and C into a product node A;B;C to take place as a sequence 

of two binary merging operations that can be applied either from top to bottom or 

from bottom to top. The property can be applied when the outputs from the nodes 

A, B and C are self-standing. In this case, the input to the product node A;B;C is 

the same as the input to each of the operand nodes A, B and C whereas the output 

set from the product node is the union of the outputs from the operand nodes.  

Proof 5.5 

It has to be proved here that the operation of output merging is associative in  

accordance with Eq.(5.97). In this case, the output merging of any three operand 

nodes A, B and C from top to bottom should be equivalent to their vertical  

merging from bottom to top. 

(A;B);C = A;(B;C) = A;B;C                                                                             (5.97) 

The proof is based on the use of binary relations as formal models for the operand 

nodes A, B and C, as shown in Eqs. (5.98)-(5.100). In this case, the first elements 

of the relational pairs in A, B and C are denoted by the letter d whereas the second 

elements are denoted by the letters a, b and c, respectively.  

A = {(d1
1
, a2

1
),…,(d1

1
, a2

p1
),…,(d1

s
, a2

1
),…,(d1

s
, a2

ps
)}                                     (5.98) 
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B = {(d1
1
, b2

1
),…,(d1

1
, b2

q1
),…,(d1

s
, b2

1
),…,(d1

s
, b2

qs
)}                                    (5.99) 

C = {(d1
1
, c2

1
),…,(d1

1
, c2

r1
),…,(d1

s
, c2

1
),…,(d1

s
, c2

rs
)}                                    (5.100)                      

The first and the second element of any relational pair in A, B and C are  

denoted by the subscripts ‘1’ and ‘2’, respectively. However, the superscripts for 

the first elements of the relational pairs in A, B and C vary from 1 to s whereby s 

is the number of identical first elements in these pairs that represents the number 

of linguistic terms for the common input to A, B and C. As far as the superscripts 

for the second elements of the relational pairs in A, B and C are concerned, they 

vary from 1 to ps, 1 to qs and 1 to rs, respectively. In this case, the relation A has 

‘p1+...+ps’ pairs, the relation B has 'q1+...+qs' pairs and the relation C has 

'r1+...+rs’ pairs whereby p, q and r are the number of the linguistic terms for the 

outputs from A, B and C, respectively.   

The output composition of the operand relations A and B gives the temporary 

relation A;B, as shown in Eq.(5.101). 

A;B = {(d1
1
, a2

1 
b2

1
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1
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b2
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, a2

p1 
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p1 
b2
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),…,  (5.101)                      
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qs
)}                               

Further on, the output composition of the temporary relation A;B and the operand 

relation C gives the product relation (A;B);C, as shown in Eq.(5.102). 

(A;B);C = {(d1
1
, a2

1 
b2

1 
c2

1
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1
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b2

1 
c2
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),…,                                       (5.102) 
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On the other hand, the output composition of the operand relations B and C gives 

the temporary relation B;C, as shown in Eq.(5.103). 

B;C = {(d1
1
, b2

1 
c2

1
),…,( d1

1
, b2

1 
c2

r1
),…,(d1

1
, b2
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1
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),…,   (5.103)                      
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In this case, the output composition of the operand relation A and the temporary 

relation B;C gives the product relation A;(B;C). As the latter is identical with the 

product relation (A;B);C from Eq.(5.102), this implies the validity of Eq.(5.97) 

and concludes the proof. 

Example 5.9 

This example considers a FN with three parallel operand nodes with a common 

input x11,21,31. The first and the second node N11 and N21 are taken from the four-

node FN in Fig.3.1. These two nodes are described there by the Boolean matrices 

and the binary relations in Eqs.(3.13), (3.15), (3.17) and (3.19) whereas the third 

node N31 is described by the Boolean matrix in Eq.(5.104) and the binary relation 

in Eq.(5.105).  

N31 :          y31   1     2     3                                                                                (5.104)           

          x31 

          1             0     0     1  

          2             0     1     0 

          3             1     0     0                                                                               

N31 :   {(1, 3), (2, 2) (3, 1)}                                                                             (5.105) 

The nodes N11, N21 and N31 represent a three-node FN that is an extended  

sub-network of the four-node FN from Fig.3.1. This three-node FN can be de-

scribed by the block-scheme in Fig.5.37 and the topological expression in 

Eq.(5.106).  

                                       y11                               

                          N11                                                                

                    

                           ; 

  x11,21,31                               y21                                 

                          N21                                                                

                    

                           ; 

                                       y31                                 

                          N31                                                                

Fig. 5.37 FN with operand nodes N11, N21, N31 and common input 

[N11] (x11,21,31
 
| y11) ; [N21] (x11,21,31

 
| y21) ; [N31] (x11,21,31

 
|
 
y31)                        (5.106)                       

The output merging of the first operand node N11 and the second operand node N21 

from Fig.5.37 results into a temporary node N11;21 that can be described by the 

Boolean matrix in Eq.(4.37) and the binary relation in Eq.(4.38). This temporary 

node is connected at the bottom with the third operand node N31 in the form of a 
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two-node FN. The latter can be described by the block scheme in Fig.5.38 and the 

topological expression in Eq.(5.107).  

                                                y11                               

                                                                                          

                                 N11;21           y21                                 

                                                                                          

  x11,21,31                       

                              ; 

                                                y31                                 

                             N31                                                                

Fig. 5.38 FN with temporary node N11;21 and operand node N31 

[N11;21] (x11,21,31| y11, y21) ; [N31] (x11,21,31|
 
y31)                                                 (5.107)                     

Further on, the output merging of the temporary node N11;21 and the operand node 

N31 from Fig.5.38 results into a product node N(11;21);31 in the form of a one-node 

FN. The latter can be described by the block scheme in Fig.5.39 and the  

topological expression in Eq.(5.108). 

                                                y11                               

                                                                                          

  x11,21,31                                        y21                                 

                          N(11;21);31                                                                 

                                                y31                                        

                                                                                         

Fig. 5.39 FN with product node N(11;21);31  

[N(11;21);31] (x11,21,31
 
| y11, y21, y31)                                                                    (5.108)                       

As a result, the product node N(11;21);31 is described by the Boolean matrix in 

Eq.(5.109) and the binary relation in Eq.(5.110). In this case, the labels and the 

elements of the Boolean matrix are represented by a compact notation. In particu-

lar, each of the capital letters A, B, C, D, E, F, G, H, I stands for three sequential 

columns in accordance with Eq.(5.61), 1j , j=1,3 denotes the j-th Boolean row in 

the square Boolean matrix from Eq.(5.104) and 03 denotes a zero Boolean row of 

dimension 3.  

N(11;21);31 :                  y11, y21, y31     A    B    C    D    E    F    G    H    I         (5.109)                     

                  x11,21,31 

                       1                               03   11    03   03    03   03   03    03   03 

                       2                               03   03    03   03    03   03   12    03   03 

                       3                               03   03    03   03    03   13   03    03   03 
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N(11;21);31 : {(1, 123), (2, 312) (3, 231)}                                                           (5.110)         

On the other hand, the output merging of the second operand node N21 and the 

third operand node N31 from Fig.5.37 results into a temporary node N21;31 that can 

be described by the Boolean matrix in Eq.(5.111) and the binary relation in 

Eq.(5.112).  This temporary node is connected at the top with the first operand 

node N11 in the form of a two-node FN. The latter can be described by the block 

scheme in Fig.5.40 and the topological expression in Eq.(5.113).  

N21;31 :                  y21, y31    11   12   13   21   22   23   31   32   33                 (5.111)                       

              x11,21,31 

              1                             0     0     0     0     0     1     0     0     0 

              2                             0     1     0     0     0     0     0     0     0 

              3                             0     0     0     0     0     0     1     0     0 

N21;31 : {(1, 23), (1, 12), (1, 31)                                                                       (5.112) 

                                                                     

                                                     y11                                 

                               N11                                                            

  x11,21,31                

                              ; 

                                                y21                                 

                                                                                             

                            N21;31                 y31 

 

Fig. 5.40 FN with operand node N11 and temporary node N21;31 

 

[N11] (x11,21,31
 
|
 
y11)  ; [N21;31] (x11,21,31

 
| y21, y31)                                              (5.113)      

Further on, the output merging of the operand node N11 and the temporary node 

N21;31 from Fig.5.40 results into a product node N11;(21;31) in the form of a one-node 

FN. The latter can be described by the block scheme in Fig.5.41 and the  

topological expression in Eq.(5.114).  

                                                y11                               

                                                                                          

  x11,21,31                                        y21                                 

                          N11;(21;31)                                                                 

                                                y31                                        

                                                                                         

Fig. 5.41 FN with product node N11;(21;31)  
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[N11;(21;31)] (x11,21,31
 
| y11, y21, y31)                                                                     (5.114)                       

In this case, the product node N11;(21;31) is also described by the Boolean matrix in 

Eq.(5.109) and the binary relation in Eq.(5.110). Therefore, N11;(21;31) is identical 

with N(11;21);31 and this identity is defined by Eq.(5.115) in accordance with 

Eq.(5.97) from Proof 5.5. 

N(11;21);31 = N11;(21;31) = N11;21;31                                                                                                (5.115)                                 

Example 5.10 

This example considers a FN with three parallel operand nodes with a common 

input x12,22,32. The first and the second node N12 and N22 are taken from the  

four-node FN in Fig.3.1. These two nodes are described there by the Boolean  

matrices and the binary relations in Eqs.(3.14), (3.16), (3.18) and (3.20) whereas 

the third node N32 is described by the Boolean matrix in Eq.(5.116) and the binary 

relation in Eq.(5.117).  

N32 :          y32   1     2     3                                                                                (5.116)           

          x32 

          1             0     0     1  

          2             0     1     0 

          3             1     0     0                                                                               

N32 :   {(1, 3), (2, 2) (3, 1)}                                                                             (5.117) 

The nodes N12, N22 and N32 represent a three-node FN that is an extended  

sub-network of the four-node FN from Fig.3.1. This three-node FN can be de-

scribed by the block-scheme in Fig.5.42 and the topological expression in 

Eq.(5.118).  

                                       y12                               

                          N12                                                                

                    

                           ; 

  x12,22,32                               y22                                 

                          N22                                                                

                    

                           ; 

                                       y32                                 

                          N32                                                                

Fig. 5.42 FN with operand nodes N12, N22, N32 and common input 

[N12] (x12,22,32
 
| y12) ; [N22] (x12,22,32

 
| y22) ; [N32] (x12,22,32

 
|
 
y32)                        (5.118)                       
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The output merging of the first operand node N12 and the second operand node N22 

from Fig.5.42 results into a temporary node N12;22 that can be described by the 

Boolean matrix in Eq.(4.41) and the binary relation in Eq.(4.42). This temporary 

node is connected at the bottom with the third operand node N32 in the form of a 

two-node FN. The latter can be described by the block scheme in Fig.5.43 and the 

topological expression in Eq.(5.119).  

                                                y12                               

                                                                                          

                                 N12;22           y22                                 

                                                                                          

  x12,22,32                       

                              ; 

                                                y32                                 

                             N32                                                                

Fig. 5.43 FN with temporary node N12;22 and operand node N32 

[N12;22] (x12,22,32
 
| y12, y22) ; [N32] (x12,22,32

 
|
 
y32)                                              (5.119)                       

Further on, the output merging of the temporary node N12;22 and the operand node 

N32 from Fig.5.43 results into a product node N(12;22);32 in the form of a one-node 

FN. The latter can be described by the block scheme in Fig.5.44 and the  

topological expression in Eq.(5.120). 

                                                y12                               

                                                                                          

  x12,22,32                                        y22                                 

                          N(12;22);32                                                                 

                                                y32                                        

                                                                                         
 

Fig. 5.44 FN with product node N(12;22);32  

[N(12;22);32] (x12,22,32
 
| y12, y22, y32)                                                                     (5.120)                       

As a result, the product node N(12;22);32 is described by the Boolean matrix in 

Eq.(5.121) and the binary relation in Eq.(5.122). In this case, the labels and the 

elements of the Boolean matrix are represented by a compact notation. In particu-

lar, each of the capital letters A, B, C, D, E, F, G, H, I stands for three sequential 

columns in accordance with Eq.(5.61), 1j , j=1,3 denotes the j-th Boolean row in 

the square Boolean matrix from Eq.(5.116) and 03 denotes a zero Boolean row of 

dimension 3. 
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N(12;22);32 :                  y12, y22, y32     A    B    C    D    E    F    G    H    I        (5.121)                     

                  x12,22,32 

                       1                               03   03    03   03    03   11   03    03   03 

                       2                               03   03    03   03    03   03   12    03   03 

                       3                               03   13    03   03    03   03   03    03   03 

N(12;22);32 : {(1, 233), (2, 312) (3, 121)}                                                           (5.122) 

On the other hand, the output merging of the second operand node N22 and the 

third operand node N32 from Fig.5.42 results into a temporary node N22;32 that can 

be described by the Boolean matrix in Eq.(5.123) and the binary relation in 

Eq.(5.124).  This temporary node is connected at the top with the first operand 

node N12 in the form of a two-node FN. The latter can be described by the block 

scheme in Fig.5.45 and the topological expression in Eq.(5.125).  

N22;32 :                  y22, y32    11   12   13   21   22   23   31   32   33                 (5.123)                       

              x12,22,32 

              1                             0     0     0     0     0     0     0     0     1 

              2                             0     1     0     0     0     0     0     0     0 

              3                             0     0     0     1     0     0     0     0     0 

N22;32 : {(1, 33), (2, 12), (3, 21)                                                                       (5.124) 

                                                                     

                                                     y12                                 

                               N12                                                            

  x12,22,32                

                              ; 

                                                y22                                 

                                                                                             

                            N22;32                 y32 
 

Fig. 5.45 FN with operand node N12 and temporary node N22;32 

[N12] (x12,22,32
 
|
 
y12)  ; [N22;32] (x12,22,32

 
| y22, y32)                                              (5.125)      

Further on, the output merging of the operand node N12 and the temporary node 

N22;32 from Fig.5.45 results into a product node N12;(22;32) in the form of a one-node 

FN. The latter can be described by the block scheme in Fig.5.46 and the  

topological expression in Eq.(5.126).  
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                                                y12                               

                                                                                          

  x12,22,32                                        y22                                 

                          N12;(22;32)                                                                 

                                                y32                                        

                                                                                         

Fig. 5.46 FN with product node N12;(22;32)  

[N12;(22;32)] (x12,22,32
 
| y12, y22, y32)                                                                    (5.126)                       

In this case, the product node N12;(22;32) is also described by the Boolean matrix in 

Eq.(5.121) and the binary relation in Eq.(5.122). Therefore, N12;(22;32) is identical 

with N(12;22);32 and this identity is defined by Eq.(5.127) in accordance with 

Eq.(5.97) from Proof 5.5. 

N(12;22);32 = N12;(22;32) = N12;22;32                                                                                                (5.127)                  

5.7   Variability of Output Splitting  

Variability is a property related to the operation of output splitting when the latter is 

applied to a single node with the purpose of splitting it into three nodes with com-

mon inputs. In particular, this property allows the splitting of an operand node 

A:B:C into three product nodes A, B and C to take place as a sequence of two 

unary splitting operations that can be applied either from top to bottom or from bot-

tom to top. The property always holds when the underlying operation of output 

splitting can be applied in the manner specified above. In this case, the common  

inputs to the three product nodes A, B and C are the same as the inputs to the  

operand node  A:B:C whereas the union of the outputs from the three product 

nodes is the same as the output set from the operand node. 

Proof 5.6 

It has to be proved here that the operation of output splitting is variable in accor-

dance with Eq.(5.128). In this case, the output splitting of any single operand node 

A:B:C from top to bottom should be equivalent to its vertical splitting from  

bottom to top. 

A, (B:C) = (A:B), C = A, B, C                                                                        (5.128)   

The proof is based on the use of a binary relation as a formal model for the oper-

and node A:B:C, as shown in Eq.(5.129). In this case, the first element of each 

pair in A:B:C is denoted by the letter d whereas the second element of each pair is 

denoted by the triplet 'abc'. 
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A:B:C = {(d1
1
, a2

1 
b2

1 
c2

1
),…,( d1

1
, a2

1 
b2

1 
c2

r1
),…,                                          (5.129) 

                 (d1
1
, a2

1 
b2

q1 
c2

1
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q1 
c2

r1
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                 (d1
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b2

1 
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p1 
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1 
c2

r1
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                 (d1
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p1 
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q1 
c2
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p1 
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q1 
c2

r1
),…, 

                 (d1
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1 
c2

1
),…,( d1
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1 
b2

1 
c2
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),…, 

                 (d1
s
, a2

1 
b2

qs 
c2

1
),…,( d1

s
, a2

1 
b2

qs 
c2

rs
),…, 

                 (d1
s
, a2

ps 
b2

1 
c2

1
),…,( d1

s
, a2

ps 
b2

1 
c2

rs
),…, 

                 (d1
s
, a2

ps 
b2

qs 
c2

1
),…,( d1

s
, a2

ps 
b2

qs 
c2

rs
)} 

The first element and the three individual elements in the triplet of any relational 

pair in A:B:C are denoted by the subscripts ‘1’ and ‘2’, respectively. In this case, 

the superscripts for all these elements denote their target pairs in the product rela-

tions A, B and C whereby the operand relation A:B:C has ‘p1.q1.r1+...+ps.qs.rs’ 

pairs. 

The output decomposition of the operand relation A:B:C from top to bottom 

gives the product relation A in Eq.(5.130) and the temporary relation B:C in            

Eq.(5.131). 

A = {(d1
1
, a2

1
),…,(d1

1
, a2

p1
),…,(d1

s
, a2

1
),…,(d1

s
, a2

ps
)}                                 (5.130) 

B:C = {(d1
1
, b2

1 
c2

1
),…,( d1

1
, b2

1 
c2

r1
),…,(d1

1
, b2

q1 
c2

1
),…,(d1

1
, b2

q1 
c2

r1
),…,   (5.131)                      

             (d1
s
, b2

1 
c2

1
),…,( d1

s
, b2

1 
c2
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),…,(d1

s
, b2

qs 
c2

1
),…,(d1

s
, b2

qs 
c2

rs
)} 

Further on, the output decomposition of the temporary relation B:C gives the 

product relations B and C, as shown in Eqs.(5.132)-(5.133). 

B = {(d1
1
, b2

1
),…,(d1

1
, b2

q1
),…,(d1

s
, b2

1
),…,(d1

s
, b2

qs
)}                                  (5.132) 

C = {(d1
1
, c2

1
),…,(d1

1
, c2

r1
),…,(d1

s
, c2

1
),…,(d1

s
, c2

rs
)}                                    (5.133)                      

On the other hand, the output decomposition of the operand relation A:B:C from 

bottom to top gives the temporary relation A:B in Eq.(5.134) and the product  

relation C which is identical with the product relation from Eq.(5.133). 

A:B = {(d1
1
, a2

1 
b2

1
),…,( d1

1
, a2

1 
b2

q1
),…,(d1

1
, a2

p1 
b2

1
),…,(d1

1
, a2

p1 
b2

q1
),…,  (5.134)                      

             (d1
s
, a2
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b2

1
),…,( d1

s
, a2

1 
b2

qs
),…,(d1

s
, a2

ps 
b2

1
),…,(d1

s
, a2

ps 
b2

qs
)}                               

In this case, the output decomposition of the temporary relation A:B gives the 

product relations A and B. As the latter are also identical with the product 
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relations from Eq.(5.130) and Eq.(5.132), this implies the validity of Eq.(5.128) 

and concludes the proof. 

Example 5.11 

This example considers a one-node FN located in the first layer of a larger FN. 

This one-node FN has a single operand node N11:21:31 that is described by the  

Boolean matrix in Eq.(5.109) and the binary relation in Eq.(5.110). The one-node 

FN can be described by the block-scheme in Fig.5.47 and the topological  

expression in Eq.(5.135). 

                                                y11                               

                                                                                          

  x11,21,31                                        y21                                 

                           N11:21:31                                                                 

                                                y31                                        

                                                                                         

Fig. 5.47 FN with product node N11:21:31  

[N11:21:31] (x11,21,31
 
| y11, y21, y31)                                                                     (5.135)                      

The output splitting of the operand node N11:21:31 from top to bottom results into a 

product node N11 that is connected at the bottom with a temporary node  N21:31. In 

this case, the node N11 can be described by the Boolean matrix in Eq.(3.13) and 

the binary relation Eq.(3.17) whereas the node N21:31 can be described by the  

Boolean matrix in Eq.(5.111) and the binary relation in Eq.(5.112).  

The overall result of the above operation is a two-node FN that can be  

described by the block scheme in Fig.5.48 and the topological expression in 

Eq.(5.136).  

                                                    y11                                 

                               N11                                                            

  x11,21,31                

                              : 

                                                y21                                 

                                                                                             

                            N21:31                 y31 

 

Fig. 5.48 FN with operand node N11 and temporary node N21:31 

[N11] (x11,21,31
 
|
 
y11) : [N21:31] (x11,21,31

 
| y21, y31)                                                (5.136)      
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Further on, the output splitting of the temporary node N21:31 results into two  

product nodes N21 and N31. In this case, the node N21 can be described by the  

Boolean matrix in Eq.(3.15) and the binary relation Eq.(3.19) whereas the node 

N31 can be described  by the Boolean matrix in Eq.(5.104) and the binary relation 

in Eq.(5.105).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.49 and the topological expression in 

Eq.(5.137).  

                                       y11                               

                          N11                                                                

                    

                           : 

  x11,21,31                               y21                                 

                          N21                                                                

                     

                           : 

                                       y31                                 

                          N31                                                                

Fig. 5.49 FN with operand nodes N11, N21, N31 and common input 

[N11] (x11,21,31
 
| y11) : [N21] (x11,21,31

 
| y21) : [N31] (x11,21,31

 
|
 
y31)                         (5.137) 

On the other hand, the output splitting of the operand node N11:21:31 from bottom to 

top results into a product node N31 that is connected at the top with a temporary 

node N11:21. In this case, the node N31 can be described by the Boolean matrix in 

Eq.(5.104) and the binary relation Eq.(5.105) whereas the node N11:21 can be  

described  by the Boolean matrix in Eq.(4.37) and the binary relation in Eq.(4.38).  

The overall result of the above operation is a two-node FN that can be  

described by the block scheme in Fig.5.50 and the topological expression in 

Eq.(5.138).  

                                                y11                               

                                                                                          

                                 N11:21           y21                                 

                                                                                          

  x11,21,31                       

                              : 

                                                y31                                 

                             N31                                                                

Fig. 5.50 FN with temporary node N11:21 and operand node N31 



5.7   Variability of Output Splitting 89

 

[N11:21] (x11,21,31| y11, y21) : [N31] (x11,21,31|
 
y31)                                                (5.138)                     

Further on, the output splitting of the temporary node N11:21 results into two  

product nodes N11 and N21. In this case, the node N11 can be described by the  

Boolean matrix in Eq.(3.13) and the binary relation in Eq.(3.17) whereas the node 

N21 can be described  by the Boolean matrix in Eq.(3.15) and the binary relation in 

Eq.(3.19).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.49 and the topological expression in 

Eq.(5.137).  

Therefore, the output splitting of the operand node N11:21:31 results into an iden-

tical set of product nodes {N11, N21, N31} for both cases of top-to-bottom and  

bottom-to-top splitting. This identity is defined by Eq.(5.139) in accordance with 

Eq.(5.128) from Proof 5.6. 

N11, N21:31 = N11:21, N31 = N11, N21, N31                                                                                    (5.139) 

Example 5.12 

This example considers a one-node FN located in the second layer of a larger FN. 

This one-node FN has a single operand node N12:22:32 that is described by the Boo-

lean matrix in Eq.(5.121) and the binary relation in Eq.(5.122). The one-node FN 

can be described by the block-scheme in Fig.5.51 and the topological expression 

in Eq.(5.140). 

                                                y12                               

                                                                                          

  x12,22,32                                        y22                                 

                           N12:22:32                                                                 

                                                y32                                       

                                                                                         
 

Fig. 5.51 FN with product node N12:22:32  

[N12:22:32] (x12,22,32
 
| y12, y22, y32)                                                                       (5.140)                      

The output splitting of the operand node N12:22:32 from top to bottom results into a 

product node N12 that is connected at the bottom with a temporary node  N22:32. In 

this case, the node N12 can be described by the Boolean matrix in Eq.(3.14) and 

the binary relation Eq.(3.18) whereas the node N22:32 can be described  by the  

Boolean matrix in Eq.(5.123) and the binary relation in Eq.(5.124).  

The overall result of the above operation is a two-node FN that can be  

described by the block scheme in Fig.5.52 and the topological expression in 

Eq.(5.141).  
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                                                    y12                                 

                               N12                                                            

  x12,22,32                

                              : 

                                                y22                                 

                                                                                             

                            N22:32                 y32 
 

Fig. 5.52 FN with operand node N12 and temporary node N22:32 

[N12] (x12,22,32
 
|
 
y12) : [N22:32] (x12,22,32

 
| y22, y32)                                                (5.141)      

Further on, the output splitting of the temporary node N22:32 results into two  

product nodes N22 and N32. In this case, the node N22 can be described by the Boo-

lean matrix in Eq.(3.16) and the binary relation Eq.(3.20) whereas the node N32 

can be described by the Boolean matrix in Eq.(5.116) and the binary relation in 

Eq.(5.117).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.53 and the topological expression in 

Eq.(5.142).  

                                       y12                               

                          N12                                                                

                    

                           : 

  x12,22,32                               y22                                 

                          N22                                                                

                    

                           : 

                                       y32                                 

                          N32                                                                

Fig. 5.53 FN with operand nodes N12, N22, N32 and common input 

[N12] (x12,22,32
 
| y12) : [N22] (x12,22,32

 
| y22) : [N32] (x12,22,32

 
|
 
y32)                         (5.142) 

On the other hand, the output splitting of the operand node N12:22:32 from bottom to 

top results into a product node N32 that is connected at the top with a temporary 

node N12:22. In this case, the node N32 can be described by the Boolean matrix in 

Eq.(5.116) and the binary relation Eq.(5.117) whereas the node N12:22 can be de-

scribed  by the Boolean matrix in Eq.(4.41) and the binary relation in Eq.(4.42).  

The overall result of the above operation is a two-node FN that can be de-

scribed by the block scheme in Fig.5.54 and the topological expression in 

Eq.(5.143).  
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                                                y12                              

                                                                                          

                                 N12:22           y22                                 

                                                                                          

  x12,22,32                       

                              : 

                                                y32                                 

                             N32                                                                

Fig. 5.54 FN with temporary node N12:22 and operand node N32 

[N12:22] (x12,22,32| y12, y22) : [N32] (x12,22,32|
 
y32)                                                (5.143)                     

Further on, the output splitting of the temporary node N12:22 results into two  

product nodes N12 and N22. In this case, the node N12 can be described by the  

Boolean matrix in Eq.(3.14) and the binary relation in Eq.(3.18) whereas the node 

N22  can be described  by the Boolean matrix in Eq.(3.16) and the binary relation in 

Eq.(3.20).  

The overall result of the above two operations is a three-node FN that can be 

described by the block scheme in Fig.5.53 and the topological expression in 

Eq.(5.142).  

Therefore, the output splitting of the operand node N12:22:32 results into an  

identical set of product nodes {N12, N22, N32} for both cases of top-to-bottom and  

bottom-to-top splitting. This identity is defined by Eq.(5.144) in accordance with 

Eq.(5.128) from Proof 5.6. 

N12, N22:32 = N12:22, N32 = N12, N22, N32                                                                                    (5.144) 

5.8   Mixed Properties of Operations  

The structural properties of basic operations introduced in the preceding sections 

of this chapter are all homogenous, i.e. the properties are defined in the context of 

one type of operation. However, there are other properties that can be defined in a 

mixed context of more than one type of operation. For this purpose, there are  

usually brackets specifying the order of the operations involved. 

This section introduces two groups of mixed properties. Each of these groups 

contains two properties - one in a merging and one in a splitting context. Each 

property is first proved and then illustrated by an example.  

The first group shows the equivalence of two combinations of horizontal and 

vertical operations for a FN with at least two levels and two layers. The second 

group shows the equivalence of two combinations of horizontal, vertical and out-

put operations for a FN with at least two levels and two layers whereby the nodes 

in the first layer are with common inputs. 
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The mixed properties are assumed to include only three operations. However, 

the extension of these properties to more complex mixed properties including 

more than three operations for a FN with more than two levels or two layers is 

straightforward.  

Similarly to homogenous properties, mixed properties can be described by 

block schemes and topological expressions at network level as well as by Boolean 

matrices and binary relations at node level. For simplicity, each mixed property is 

described here mainly by block schemes and topological expressions whereby the 

associated Boolean matrices and binary relations are assumed to be embedded  

implicitly in the description.  

For consistency, all mixed properties are presented by three stages. The first 

stage describes the initial state of the mixed property with the operand nodes  

before the application of any operations. The second stage describes an intermedi-

ate state of the property with some temporary nodes after the application of some 

operations. The third stage describes the final state of the property with the  

product nodes after the application of all operations. 

Proof 5.7 

It has to be proved here that the horizontal-horizontal-vertical merging of any four 

operand nodes A, B, C and D in a two-level-two-layer FN as the one in Fig.3.1 is 

equivalent to their vertical-vertical-horizontal merging in accordance with  

Eq.(5.145). In this case, the four nodes are assumed to be listed alphabetically 

from left to right and from top to bottom within the interconnection structure of 

this FN. 

(A*B)+(C*D) = (A+C)*(B+D)                                                                       (5.145) 

The proof is based on the use of binary relations as formal models for the operand 

nodes A, B, C and D, as shown in Eqs. (5.146)-(5.149). In this case, both  

elements of the relational pairs in A and C are denoted by the letters a and c,  

respectively. Also, the second elements of the relational pairs in B and D are de-

noted by the letters b and d whereas the first elements of the relational pairs in B 

and D are denoted by the letters a and c, respectively.  

A = {(a1
1
, a2

1
),…,(a1

p
, a2

p
)}                                                                             (5.146) 

B = {(a2
1
, b2

1
),…,(a2

1
, b2

q1
),…,(a2

p
, b2

1
),…,(a2

p
, b2

qp
)}                                   (5.147)      

C = {(c1
1
, c2

1
),…,(c1

r
, c2

r
)}                                                                              (5.148) 

D = {(c2
1
, d2

1
),…,(c2

1
, d2

s1
),…,(c2

r
, d2

1
),…,(c2

r
, d2

sr
)}                                    (5.149)   

The first and the second element of any relational pair in A and C are denoted by 

the subscripts ‘1’ and ‘2’, respectively. However, both elements of any relational 

pair in B and D are denoted by the subscript ‘2’. This is due to the requirement for 
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left composability of B and D, i.e. the first element of each pair in B must be iden-

tical with a second element of a pair in A whereas the first element of each pair in 

D must be identical with a second element of a pair in C.  

The superscripts for both elements of any relational pair in A and C are identi-

cal as they indicate the corresponding number for each pair. In this case, the rela-

tion A has ‘p’ pairs and the relation C has ‘r’ pairs. The superscripts for the first 

elements of the relational pairs in B and D vary from 1 to p and 1 to r, respec-

tively. As far as the superscripts for the second elements of the relational pairs in 

B and D are concerned, they vary from q1 to qp and s1 to sr, respectively. In this 

case, the relation B has ‘q1+...+qp’ pairs and the relation D has 's1+...+sr' pairs. 

The horizontal composition of the operand relations A and B gives the  

temporary relation A*B, as shown in Eq.(5.150). 

A*B = {(a1
1
, b2

1
),…,( a1

1
, b2

q1
),…,(a1

p
, b2

1
),…,(a1

p
, b2

qp
)}                             (5.150)                     

Also, the horizontal composition of the operand relations C and D gives the  

temporary relation C*D, as shown in Eq.(5.151). 

C*D = {(c1
1
, d2

1
),…,( c1

1
, d2

s1
),…,(c1

r
, d2

1
),…,(c1

r
, d2

sr
)}                               (5.151)                      

Further on, the vertical composition of the temporary relation A*B and C*D gives 

the product relation (A*B)+(C*D), as shown in Eq.(5.152). 

(A*B)+(C*D) =                                                                                               (5.152) 

{(a1
1 
c1

1
, b2

1 
d2

1
),…,(a1

1 
c1

1
, b2

1 
d2

s1
),…,(a1

1 
c1

r
, b2

1 
d2

1
),…,(a1

1 
c1

r
, b2

1 
d2

sr
),…, 

  (a1
1 
c1

1
, b2

q1 
d2

1
),…,(a1

1 
c1

1
, b2

q1 
d2

s1
),…,(a1

1 
c1

r
, b2

q1 
d2

1
),…,(a1

1 
c1

r
, b2

q1 
d2

sr
),…, 

  (a1
p 
c1

1
, b2

1 
d2

1
),…,(a1

p 
c1

1
, b2

1 
d2

s1
),…,(a1

p 
c1

r
, b2

1 
d2

1
),…,(a1

p 
c1

r
, b2

1 
d2

sr
),…, 

  (a1
p 
c1

1
, b2

qp 
d2

1
),…,(a1

p 
c1

1
, b2

qp 
d2

s1
),…,(a1

p 
c1

r
, b2

qp 
d2

1
),…,(a1

p 
c1

r
, b2

qp 
d2

sr
)} 

On the other hand, the vertical composition of the operand relations A and C gives 

the temporary relation A+C, as shown in Eq.(5.153). 

A+C =  {(a1
1 
c1

1
, 2

1 
c2

1
),…,(a1

1 
c1

r
, 2

1 
c2

r
),…,                                               (5.153) 

               (a1
p 
c1

1
, 2

p 
c2

1
),…,(a1

p 
c1

r
, 2

p 
c2

r
)}                                           

Also, the vertical composition of the operand relations B and D gives the  

temporary relation B+D, as shown in Eq.(5.154). 
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B+D =                                                                                                             (5.154) 

{(a2
1 
c2

1
, b2

1 
d2

1
),…,(a2

1 
c2

1
, b2

1 
d2

s1
),…,(a2

1 
c2

r
, b2

1 
d2

1
),…,(a2

1 
c2

r
, b2

1 
d2

sr
),…, 

  (a2
1 
c2

1
, b2

q1 
d2

1
),…,(a2

1 
c2

1
, b2

q1 
d2

s1
),…,(a2

1 
c2

r
, b2

q1 
d2

1
),…,(a2

1 
c2

r
, b2

q1 
d2

sr
),…, 

  (a2
p 
c2

1
, b2

1 
d2

1
),…,( a2

p 
c2

1
, b2

1 
d2

s1
),…,(a2

p 
c2

r
, b2

1 
d2

1
),…,(a2

p 
c2

r
, b2

1 
d2

sr
),…, 

  (a2
p 
c2

1
, b2

qp 
d2

1
),…,( a2

p 
c2

1
, b2

qp 
d2

s1
),…,(a2

p 
c2

r
, b2

qp 
d2

1
),…,(a2

p 
c2

r
, b2

qp 
d2

sr
)} 

In this case, the horizontal composition of the temporary relations A+C and B+D 

gives the product relation (A+C)*(B+D). As the latter is identical with the product 

relation (A*B)+(C*D) from Eq.(5.152), this shows the validity of Eq.(5.145) and 

concludes the proof. 

Example 5.13  

This example illustrates the equivalence of horizontal-horizontal-vertical merging 

and vertical-vertical-horizontal merging for four operand nodes A, B, C and D in 

the context of Proof 5.7.  First, node A is horizontally merged with node B into a 

temporary node A*B and node C is horizontally merged with node D into a tem-

porary node C*D. Then, node A*B is vertically merged with node C*D into a 

product node (A*B)+(C*D). Alternatively, node A is vertically merged with node 

C into a temporary node A+C and node B is vertically merged with node D into a 

temporary node B+D. Then, node A+C is horizontally merged with node B+D 

into a product node (A+C)*(B+D).  All relevant states of this mixed property are  

described by the block schemes and the topological expressions in Figs.5.55-5.60 

and Eqs.(5.155)-(5.160). 

  xA                        zA,B                                   zA,B                                    yB                                                                             

                  A                          *                          B 

                                               

                                               + 

  xC                        zC,D                                   zC,D                                    yD                                                                             

                  C                          *                          D 

Fig. 5.55 Initial state for horizontal-horizontal-vertical merging  

{[A] (xA
 
| zA,B) * [B] (zA,B

 
|
 
yB)} + {[C] (xC

 
|
 
zC,D) * [D] (zC,D

 
|
 
yD)}                (5.155) 
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   xA                          yB                                 

                 A*B                                                                

                  

                   + 

   xC                          yD                                

                 C*D                                                                

Fig. 5.56 Intermediate state for horizontal-horizontal-vertical merging  

[A*B] (xA
 
|
 
yB) + [C*D] (xC

 
|
 
yD)                                                                     (5.156) 

  xA                                          yB                           

                  
  xC           (A*B)+(C*D)           yD 

                                                                              

Fig. 5.57 Final state for horizontal-horizontal-vertical merging 

[(A*B)+(C*D)] (xA, xC
 
|
 
yB, yD )                                                                     (5.157)         

  xA                        zA,B                                   zA,B                                    yB                                                                             

                  A                                                      B 

                                               

                  +                          *                           + 

  xC                        zC,D                                   zC,D                                    yD                                                                             

                  C                                                      D 

Fig. 5.58 Initial state for vertical-vertical-horizontal merging  

{[A] (xA
 
| zA,B) + [C] (xC

 
|
 
zC,D)} * {[B] (zA,B

 
|
 
yB) * [D] (zC,D

 
|
 
yD)}                (5.158) 

  xA                          zA,B                                   zA,B                                       yB                                                                         

                                                                          

  xC           A+C       zC,D                 *               zC,D               B+D            yD                                                                         

                                                                           

Fig. 5.59 Intermediate state for vertical-vertical-horizontal merging  

[A+C] (xA, xC |
 
zA,B, zC,D) * [B+D] (zA,B, zC,D | yB, yD)                                    (5.159)                      

 

 

 

 



96 5   Structural Properties of Basic Operations

 

  xA                                          yB                           

                  
  xC           (A+C)*(B+D)           yD 

                                                                              

Fig. 5.60 Final state for vertical-vertical-horizontal merging 

[(A*B)+(C*D)] (xA, xC
 
|
 
yB, yD )                                                                   (5.160)         

Proof 5.8 

It has to be proved here that the vertical-horizontal-horizontal splitting of any sin-

gle operand  node (A/B)-(C/D) is equivalent the horizontal-vertical-vertical split-

ting of the same node (A-C)/(B-D) in accordance with Eq.(5.161). In this case, the 

four product nodes A, B, C and D are assumed to be listed alphabetically from left 

to right and from top to bottom within the interconnection structure of a two-level-

two-layer FN as the one in Fig.3.1. 

(A/B)-(C/D) = (A-C)/(B-D)                                                                            (5.161) 

The proof is based on the use of a binary relation as a formal model for the two 

versions of the operand node (A/B)-(C/D) and (A-C)/(B-D), as shown in            

Eq. (5.162). In this case, the first elements of the relational pairs in (A/B)-(C/D) 

and (A-C)/(B-D) are duplets of type 'ac' whereas the second elements of these  

relational pairs are duplets of type 'bd'. 

(A/B)-(C/D) = (A-C)/(B-D) =                                                                        (5.162) 

{(a1
1 
c1

1
, b2

1 
d2

1
),…,(a1

1 
c1

1
, b2

1 
d2

s1
),…,(a1

1 
c1

r
, b2

1 
d2

1
),…,(a1

1 
c1

r
, b2

1 
d2

sr
),…, 

  (a1
1 
c1

1
, b2

q1 
d2

1
),…,(a1

1 
c1

1
, b2

q1 
d2

s1
),…,(a1

1 
c1

r
, b2

q1 
d2

1
),…,(a1

1 
c1

r
, b2

q1 
d2

sr
),…, 

  (a1
p 
c1

1
, b2

1 
d2

1
),…,(a1

p 
c1

1
, b2

1 
d2

s1
),…,(a1

p 
c1

r
, b2

1 
d2

1
),…,(a1

p 
c1

r
, b2

1 
d2

sr
),…, 

  (a1
p 
c1

1
, b2

qp 
d2

1
),…,(a1

p 
c1

1
, b2

qp 
d2

s1
),…,(a1

p 
c1

r
, b2

qp 
d2

1
),…,(a1

p 
c1

r
, b2

qp 
d2

sr
)} 

The first and the second duplets of any relational pair in (A/B)-(C/D) and  

(A-C)/(B-D)  are denoted by the subscripts ‘1’ and ‘2’, respectively. As far as the 

associated superscripts are concerned, they denote the target pairs in the product 

relations A, B, C and D. 

The vertical decomposition of the operand relation (A/B)-(C/D) gives the  

temporary relations A/B and C/D, as shown in Eqs.(5.163)-(5.164). 

A/B = {(a1
1
, b2

1
),…,( a1

1
, b2

q1
),…,(a1

p
, b2

1
),…,(a1

p
, b2

qp
)}                              (5.163)                     

C/D = {(c1
1
, d2

1
),…,( c1

1
, d2

s1
),…,(c1

r
, d2

1
),…,(c1

r
, d2

sr
)}                               (5.164)                      
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Further on, the horizontal decomposition of the temporary relations A/B and C/D 

gives the product relations A, B and C, D, respectively, as shown in Eqs. 

(5.165)-(5.168). 

A = {(a1
1
, a2

1
),…,(a1

p
, a2

p
)}                                                                             (5.165) 

B = {(a2
1
, b2

1
),…,(a2

1
, b2

q1
),…,(a2

p
, b2

1
),…,(a2

p
, b2

qp
)}                                   (5.166)      

C = {(c1
1
, c2

1
),…,(c1

r
, c2

r
)}                                                                              (5.167) 

D = {(c2
1
, d2

1
),…,(c2

1
, d2

s1
),…,(c2

r
, d2

1
),…,(c2

r
, d2

sr
)}                                    (5.168)   

Alternatively, the horizontal decomposition of the operand relation                 

(A-C)/(B-D) gives the temporary relations A-C and B-D, as shown in  

Eqs.(5.169)-(5.170). 

A-C = {(a1
1 
c1

1
, 2

1 
c2

1
),…,(a1

1 
c1

r
, 2

1 
c2

r
),…,                                                 (5.169) 

             (a1
p 
c1

1
, 2

p 
c2

1
),…,(a1

p 
c1

r
, 2

p 
c2

r
)}                                           

B-D =                                                                                                              (5.170) 

{(a2
1 
c2

1
, b2

1 
d2

1
),…,(a2

1 
c2

1
, b2

1 
d2

s1
),…,(a2

1 
c2

r
, b2

1 
d2

1
),…,(a2

1 
c2

r
, b2

1 
d2

sr
),…, 

  (a2
1 
c2

1
, b2

q1 
d2

1
),…,(a2

1 
c2

1
, b2

q1 
d2

s1
),…,(a2

1 
c2

r
, b2

q1 
d2

1
),…,(a2

1 
c2

r
, b2

q1 
d2

sr
),…, 

  (a2
p 
c2

1
, b2

1 
d2

1
),…,(a2

p 
c2

1
, b2

1 
d2

s1
),…,(a2

p 
c2

r
, b2

1 
d2

1
),…,(a2

p 
c2

r
, b2

1 
d2

sr
),…, 

  (a2
p 
c2

1
, b2

qp 
d2

1
),…,(a2

p 
c2

1
, b2

qp 
d2

s1
),…,(a2

p 
c2

r
, b2

qp 
d2

1
),…,(a2

p 
c2

r
, b2

qp 
d2

sr
)} 

Further on, the vertical decomposition of the temporary relations A-B and C-D 

gives the product relations A, B and C, D, respectively. As the latter are identical 

with the product relations from Eqs.(5.165)-(5.168), this shows the validity of 

Eq.(5.161) and concludes the proof. 

Example 5.14  

This example illustrates the equivalence of vertical-horizontal-horizontal splitting 

and horizontal-vertical-vertical splitting for an operand node with the two versions 

(A/B)-(C/D) and (A-C)/(B-D) in the context of Proof 5.8.  First, node (A/B)-(C/D)  

is vertically split into temporary nodes A/B and C/D. Then, these two temporary 

nodes are horizontally split  into product nodes A, B and C, D, respectively. Alter-

natively, node (A-C)/(B-D) is horizontally split into temporary nodes A-C and    

B-D. Then, these two temporary nodes are vertically split into product nodes A,C 

and B, D, respectively. All relevant states of this mixed property are described by 

the block schemes and the topological expressions in Figs.5.61-5.66 and 

Eqs.(5.171)-(5.176). 
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  xA                                          yB                           

                  
  xC           (A/B)-(C/D)             yD 

                                                                              

Fig. 5.61 Initial state for vertical-horizontal-horizontal splitting 

[(A/B)-(C/D)] (xA, xC
 
|
 
yB, yD )                                                                        (5.171)         

   xA                          yB                                 

                 A/B                                                                

                  

                   - 

   xC                          yD                                

                 C/D                                                                

Fig. 5.62 Intermediate state for vertical-horizontal-horizontal splitting  

[A/B] (xA
 
|
 
yB) - [C/D] (xC

 
|
 
yD)                                                                       (5.172) 

  xA                        zA,B                                   zA,B                                    yB                                                                             

                  A                          /                           B 

                                               

                                               - 

  xC                        zC,D                                   zC,D                                    yD                                                                             

                  C                          /                           D 

Fig. 5.63 Final state for vertical-horizontal-horizontal splitting  

{[A] (xA
 
| zA,B) / [B] (zA,B

 
|
 
yB)} - {[C] (xC

 
|
 
zC,D) / [D] (zC,D

 
|
 
yD)}                   (5.173) 

  xA                                          yB                           

                  
  xC            (A-C)/(B-D)            yD 

                                                                              

Fig. 5.64 Initial state for horizontal-vertical-vertical splitting 

[(A-C)/(B-D)] (xA, xC
 
|
 
yB, yD )                                                                       (5.174) 
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  xA                          zA,B                                   zA,B                                       yB                                                                         

                                                                          

  xC            A-C       zC,D                  /                zC,D               B-D             yD                                                                        

                                                                           

Fig. 5.65 Intermediate state for horizontal-vertical-vertical splitting  

[A-C] (xA, xC |
 
zA,B, zC,D) / [B-D] (zA,B, zC,D | yB, yD)                                       (5.175)                     

  xA                        zA,B                                   zA,B                                    yB                                                                             

                  A                                                      B 

                                               

                   -                          /                            - 

  xC                        zC,D                                   zC,D                                    yD                                                                             

                  C                                                      D 

Fig. 5.66 Final state for horizontal-vertical-vertical splitting  

{[A] (xA
 
| zA,B) - [C] (xC

 
|
 
zC,D)} / {[B] (zA,B

 
|
 
yB) - [D] (zC,D

 
|
 
yD)}                  (5.176) 

Proof 5.9 

It has to be proved here that the horizontal-horizontal-output merging of any four 

operand nodes A, B, C and D in a two-level-two-layer FN as the one in Fig.3.1 is 

equivalent to their output-vertical-horizontal merging in accordance with 

Eq.(5.177). In this case, the four nodes are assumed to be listed alphabetically 

from left to right and from top to bottom within the interconnection structure of 

this FN whereby the nodes in the first layer A and C are with common inputs. 

(A*B);(C*D) = (A;C)*(B+D)                                                                         (5.177) 

The proof is based on the use of binary relations as formal models for the operand 

nodes A, B, C and D, as shown in Eqs. (5.178)-(5.181). In this case, the first  

elements of the relational pairs in A and C are denoted by the letter e whereas the 

second elements of these relational pairs are denoted by the letter a and c, respec-

tively. Also, the second elements of the relational pairs in B and D are denoted by 

the letters b and d whereas the first elements of these relational pairs are denoted 

by the letters a and c, respectively.  

A = {(e1
1
, a2

1
),…,(e1

1
, a2

p1
),…,(e1

r
, a2

1
),…,(e1

r
, a2

pr
)}                                     (5.178) 

B = {(a2
1
, b2

1
),…,(a2

1
, b2

s1
),…,(a2

p1
, b2

1
),…,                                                  (5.179) 

         (a2
p1

, b2
s,p1

),…,(a2
pr

, b2
1
),…,(a2

pr
, b2

s,pr
)}                                        

C = {(e1
1
, c2

1
),…,(e1

1
, c2

q1
),…,(e1

r
, c2

1
),…,(e1

r
, c2

qr
)}                                     (5.180) 
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D = {(c2
1
, d2

1
),…,(c2

1
, d2

t1
),…,(c2

q1
, d2

1
),…,                                                  (5.181) 

         (c2
q1

, d2
t,q1

),…,(c2
qr

, d2
1
),…,(c2

qr
, d2

t,qr
)}                                        

The first and the second element of any relational pair in A and C are denoted by 

the subscripts ‘1’ and ‘2’, respectively. However, both elements of any relational 

pair in B and D are denoted by the subscript ‘2’. This is due to the requirement for 

left composability of B and D, i.e. the first element of each pair in B must be  

identical with a second element of a pair in A whereas the first element of each 

pair in D must be identical with a second element of a pair in C.  

The superscripts for the first elements of any relational pair in A and C vary 

from 1 to r whereas the superscripts for the second elements of these pairs vary 

from 1 to pr and 1 to qr, respectively. In this case, the relation A has ‘p1+...+pr’ 

pairs and the relation C has ‘q1+...+qr’ pairs. The superscripts for the first  

elements of the relational pairs in B and D vary from 1 to pr via p1 and from 1 to 

qr via q1, respectively. As far as the superscripts for the second elements of the  

relational pairs in B and D are concerned, they vary from 1 to s1, 1 to p1, 1 to pr 

for B and from 1 to t1, 1 to q1, 1 to qr for D. In this case, the relation B has 

‘s1+...+p1+...+pr’ pairs and the relation D has 't1+...+q1+...+qr' pairs. 

The horizontal composition of the operand relations A and B gives the  

temporary relation A*B, as shown in Eq.(5.182). 

A*B = {(e1
1
, b2

1
),…,(e1

1
, b2

s1
),…,(e1

1
, b2

s,p1
),…,                                            (5.182) 

              (e1
r
, b2

1
),…,(e1

r
, b2

s1
),…,(e1

r
, b2

s,pr
)}                                        

Also, the horizontal composition of the operand relations C and D gives the  

temporary relation C*D, as shown in Eq.(5.183). 

C*D = {(e1
1
, d2

1
),…,(e1

1
, d2

t1
),…,(e1

1
, d2

t,q1
),…,                                            (5.183)   

              (e1
r
, d2

1
),…,(e1

r
, d2

t1
),…,(e1

r
, d2

t,qr
)}                                        

Further on, the output composition of the temporary relation A*B and C*D gives 

the product relation (A*B);(C*D), as shown in Eq.(5.184). 

(A*B);(C*D) = {(e1
1
, b2

1 
d2

1
),…,(e1

1
, b2

1 
d2

t1
),…,(e1

1
, b2

1 
d2

t,q1
),…,               (5.184)               

                            (e1
1
, b2

s1 
d2

1
),…,(e1

1
, b2

s1 
d2

t1
),…,(e1

1
, b2

s1 
d2

t,q1
),…, 

                            (e1
1
, b2

s,p1 
d2

1
),…,(e1

1
, b2

s,p1 
d2

t1
),…,(e1

1
, b2

s,p1 
d2

t,q1
),…, 

                            (e1
r
, b2

1 
d2

1
),…,(e1

r
, b2

1 
d2

t1
),…,(e1

r
, b2

1 
d2

t,qr
),…,                              

                            (e1
r
, b2

s1 
d2

1
),…,(e1

r
, b2

s1 
d2

t1
),…,(e1

r
, b2

s1 
d2

t,qr
),…, 

                            (e1
r
, b2

s,pr 
d2

1
),…,(e1

r
, b2

s,pr 
d2

t1
),…,(e1

r
, b2

s,pr 
d2

t,qr
)} 
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On the other hand, the output composition of the operand relations A and C gives 

the temporary relation A;C, as shown in Eq.(5.185). 

A;C = {(e1
1
, 2

1 
c2

1
),…,(e1

1
, 2

1 
c2

q1
),…,(e1

1
, 2

p1 
c2

1
),…,(e1

1
, 2

p1 
c2

q1
),…,     (5.185)                      
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r
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qr
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Also, the vertical composition of the operand relations B and D gives the  

temporary relation B+D, as shown in Eq.(5.186). 

B+D = {(a2
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1
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1
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),…,               (5.186)    
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In this case, the horizontal composition of the temporary relations A;C and B+D 

gives the product relation (A;C)*(B+D). As the latter is identical with the product 

relation (A*B);(C*D) from Eq.(5.184), this shows the validity of Eq.(5.177) and 

concludes the proof. 

Example 5.15  

This example illustrates the equivalence of horizontal-horizontal-output merging 

and output-vertical-horizontal merging for four operand nodes A, B, C and D with 

common inputs in the context of Proof 5.9.  First, node A is horizontally merged 

with node B into a temporary node A*B and node C is horizontally merged with 

node D into a temporary node C*D. Then, node A*B is output merged with node 

C*D into a product node (A*B);(C*D). Alternatively, node A is output merged 

with node C into a temporary node A;C and node B is vertically merged with node 
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D into a temporary node B+D. Then, node A;C is horizontally merged with node 

B+D into a product node (A;C)*(B+D).  All relevant states of this mixed property 

are described by the block schemes and the topological expressions in  

Figs.5.67-5.72 and Eqs.(5.187)-(5.192). 

                                             zA,B                                          zA,B                                    yB                                               
                                 A                             *                            B 

     xA,C                                               

                                                                 ;                               

                                             zC,D                                          zC,D                                    yD                                               
                                 C                             *                            D 

Fig. 5.67 Initial state for horizontal-horizontal-output merging  

{[A] (xA,C
 
| zA,B) * [B] (zA,B

 
|
 
yB)} ; {[C] (xA,C

 
|
 
zC,D) * [D] (zC,D

 
|
 
yD)}            (5.187) 

                                                  yB                                 

                                 A*B                                                                

     xA,C                                                        

                                    ; 

                                                  yD                                

                                 C*D                                                                

Fig. 5.68 Intermediate state for horizontal-horizontal-output merging  

[A*B] (xA,C
 
|
 
yB) ; [C*D] (xA,C

 
|
 
yD)                                                                 (5.188)           

                                                                 yB                

                                                                  
xA,C            

                                         (A*B);(C*D)             

                                                                yD 

 

Fig. 5.69 Final state for horizontal-horizontal-output merging 

[(A*B);(C*D)] (xA,C
 
|
 
yB, yD )                                                                          (5.189)         

                                             zA,B                                          zA,B                                    yB                                               
                                 A                                                           B 

     xA,C                                               

                                  ;                             *                             + 

                                             zC,D                                          zC,D                                    yD                                               
                                 C                                                           D 

Fig. 5.70 Initial state for output-vertical-horizontal merging  



5.8   Mixed Properties of Operations 103

 

{[A] (xA,C
 
| zA,B) ; [C] (xA,C

 
|
 
zC,D)} * {[B] (zA,B

 
|
 
yB) + [D] (zC,D

 
|
 
yD)}            (5.190) 

                                                zA,B                                  zA,B                                       yB                                                
                                                                                             

     xA,C                                               

                                A;C                         *                         B+D 

                                               zC,D                                    zC,D                                       yD                                               
                                                                                             

Fig. 5.71 Intermediate state for output-vertical-horizontal merging  

[A;C] (xA,C
 
|
 
zA,B, zC,D) * [B+D] (zA,B, zC,D

 
|
 
yB, yD)                                         (5.191)  

                                                                 yB                

                                                                  
xA,C            

                                         (A;C)*(B+D)             

                                                                yD 

 

Fig. 5.72 Final state for output-vertical-horizontal merging 

[(A;C)*(B+D)] (xA,C
 
|
 
yB, yD )                                                                         (5.192)         

Proof 5.10 

It has to be proved here that the output-horizontal-horizontal splitting of any single 

operand  node (A/B):(C/D) is equivalent the horizontal-output-vertical splitting of 

the same node (A:C)/(B-D) in accordance with Eq.(5.193). In this case, the four 

product nodes A, B, C and D are assumed to be listed alphabetically from left to 

right and from top to bottom within the interconnection structure of a two- 

level-two-layer FN as the one in Fig.3.1. 

(A/B):(C/D) = (A:C)/(B-D)                                                                            (5.193) 

The proof is based on the use of a binary relation as a formal model for the two 

versions of the operand node (A/B):(C/D) and (A:C)/(B-D), as shown in            

Eq. (5.194). In this case, the first element of the relational pairs in (A/B)-(C/D) 

and (A-C)/(B-D) is the letter e whereas the second elements of these relational 

pairs are duplets of type 'bd'. 
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(A/B):(C/D) = (A:C)/(B-D) =                                                                         (5.194) 

{(e1
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r
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r
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t,qr
),…,                              
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r
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s1 
d2

1
),…,(e1

r
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),…,(e1

r
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r
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1
),…,(e1

r
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s,pr 
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),…,(e1

r
, b2

s,pr 
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t,qr
)} 

The first and the second elements of any relational pair in (A/B):(C/D) and  

(A:C)/(B-D) are denoted by the subscripts ‘1’ and ‘2’, respectively. As far as the 

associated superscripts are concerned, they denote the target pairs in the product 

relations A, B, C and D. 

The output decomposition of the operand relation (A/B):(C/D) gives the  

temporary relations A/B and C/D, as shown in Eqs.(5.195)-(5.196). 

A/B = {(e1
1
, b2

1
),…,(e1

1
, b2

s1
),…,(e1

1
, b2

s,p1
),…,                                             (5.195) 

             (e1
r
, b2

1
),…,(e1

r
, b2

s1
),…,(e1

r
, b2

s,pr
)}                                        

 

C/D = {(e1
1
, d2

1
),…,(e1

1
, d2

t1
),…,(e1

1
, d2

t,q1
),…,                                             (5.196)   
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),…,(e1

r
, d2

t1
),…,(e1

r
, d2

t,qr
)}                                        

Further on, the horizontal decomposition of the temporary relations A/B and C/D 

gives the product relations A, B and C, D, respectively, as shown in Eqs. 

(5.197)-(5.200). 

A = {(e1
1
, a2

1
),…,(e1

1
, a2

p1
),…,(e1

r
, a2

1
),…,(e1

r
, a2

pr
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B = {(a2
1
, b2

1
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1
, b2
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1
),…,                                                  (5.198) 
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C = {(e1
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D = {(c2
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Alternatively, the horizontal decomposition of the operand relation                

(A:C)/(B-D) gives the temporary relations A:C and B-D, as shown in  

Eqs.(5.201)-(5.202). 
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Further on, the output decomposition of the temporary relation A:C and the  

vertical decomposition of the temporary relation B-D gives the product relations 

A, B and C, D, respectively. As the latter are identical with the product relations 

from Eqs.(5.197)-(5.200), this shows the validity of Eq.(5.193) and concludes the 

proof. 

Example 5.16  

This example illustrates the equivalence of output-horizontal-horizontal splitting 

and horizontal-output-vertical splitting for an operand node with the two versions 

(A/B):(C/D) and (A:C)/(B-D) in the context of Proof 5.10.  First, node          

(A/B):(C/D)  is output split into temporary nodes A/B and C/D. Then, these two 

temporary nodes are horizontally split into product nodes A, B and C, D, respec-

tively. Alternatively, node (A:C)/(B-D) is horizontally split into temporary nodes 

A:C and B-D. Then, these two temporary nodes  are output and vertically split into 

product nodes A,C and B, D, respectively. All relevant states of this mixed prop-

erty are described by the block schemes and the topological expressions in 

Figs.5.73-5.78 and Eqs.(5.203)-(5.208). 
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                                                                yB 

                                                                  
xA,C            

                                         (A/B):(C/D)             

                                                                yD 
 

Fig. 5.73 Initial state for output horizontal-horizontal splitting 

[(A/B):(C/D)] (xA,C
 
|
 
yB, yD )                                                                           (5.203)         

                                                  yB                                 

                                 A/B                                                                

     xA,C                                                        

                                    : 

                                                  yD                                

                                 C/D                                                                

Fig. 5.74 Intermediate state for output-horizontal-horizontal splitting  

[A/B] (xA,C
 
|
 
yB) : [C/D] (xA,C

 
|
 
yD)                                                                  (5.204)           

                                             zA,B                                          zA,B                                    yB                                               
                                 A                             /                            B 

     xA,C                                               

                                                                 :                               

                                             zC,D                                          zC,D                                    yD                                               
                                 C                             /                            D 

Fig. 5.75 Final state for output horizontal-horizontal splitting  

{[A] (xA,C
 
| zA,B) / [B] (zA,B

 
|
 
yB)} : {[C] (xA,C

 
|
 
zC,D) / [D] (zC,D

 
|
 
yD)}              (5.205) 

                                                                 yB                

                                                                  
xA,C            

                                         (A:C)/(B-D)             

                                                                yD 
 

Fig. 5.76 Initial state for horizontal-output-vertical spitting 

[(A:C)/(B-D)] (xA,C
 
|
 
yB, yD )                                                                          (5.206) 
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                                                zA,B                                  zA,B                                       yB                                                
                                                                                             

     xA,C                                               

                                A:C                         /                           B-D 

                                               zC,D                                    zC,D                                       yD                                               
                                                                                             

Fig. 5.77 Intermediate state for horizontal-output-vertical splitting  

[A:C] (xA,C
 
|
 
zA,B, zC,D) / [B-D] (zA,B, zC,D

 
|
 
yB, yD)                                           (5.207)                       

                                             zA,B                                          zA,B                                    yB                                               
                                 A                                                           B 

     xA,C                                               

                                  :                             /                              - 

                                             zC,D                                          zC,D                                    yD                                               
                                 C                                                           D 

Fig. 5.78 Final state for horizontal-output-vertical splitting  

{[A] (xA,C
 
| zA,B) : [C] (xA,C

 
|
 
zC,D)} / {[B] (xA,B

 
|
 
yB) - [D] (zC,D

 
|
 
yD)}              (5.208) 

5.9   Comparison of Structural Properties 

The structural properties of basic operations introduced in this chapter are central 

to the linguistic composition approach used in the book. This applies particularly 

to properties of merging operations which are used for composing the networked 

rule bases within a FN into a linguistically equivalent single rule base for a fuzzy 

system. On the contrary, properties of splitting operations are used for decompos-

ing a single rule base for a fuzzy system into linguistically equivalent networked 

rule bases within a FN. However, in some cases properties of splitting operations 

may complement properties of merging operations in the context of the linguistic 

composition approach and this is shown by some examples further in this book. 

The application of structural properties is governed by the location of brackets 

in the corresponding topological expressions. In particular, operations in brackets 

are carried out first in the case of associativity and last in the case of variability.  

The characteristics of different types of structural properties of basic operations 

are summarised in Table 5.1.  
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Table 5.1 Characteristics of structural properties of basic operations 

Structural properties Composition Brackets 

Associativity of horizontal merging Yes First 

Variability of horizontal splitting No Last 

Associativity of vertical merging Yes First 

Variability of vertical splitting No Last 

Associativity of output merging Yes First 

Variability of output splitting No Last 

The next chapter introduces more advanced concepts from the theoretical  

framework for FNs. In particular, it discusses several types of advanced operations 

in FNs. 
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Chapter 6 

Advanced Operations in Fuzzy Networks 

6.1   Introduction to Advanced Operations 

The structural properties of basic operations introduced in Chapter 5 can be applied to 

FNs with a large number of nodes. These nodes may be sequential, parallel or with 

common inputs. However, the structure of a FN may include more complex connec-

tions among the nodes which would require some preliminary manipulation before 

the properties of the basic operations can be applied. Therefore, it is necessary to  

define a number of additional advanced operations that can be used in this context.  

Advanced operations make possible the manipulation of nodes within a FN with 

an arbitrarily complex structure. In this respect, there are two types of advanced op-

erations in FNs – operations based on node transformation and operations based on 

node identification. Node transformation based operations are used for analysis 

whereby all nodes in a FN are known and the task is to find an equivalent fuzzy sys-

tem in accordance with the linguistic composition approach. As opposed to this, node 

identification based operations are used for design whereby some nodes in a FN are 

unknown and the task is to find these nodes in a way that would guarantee a pre-

specified performance of the equivalent fuzzy system. In either case, all connections 

among nodes are assumed to be known. 

Some of the advanced operations introduced further in this chapter are similar to 

operations used in applied mathematics and control theory. However, these advanced 

operations are also novel in that they are applied to a FN which is a novel concept.  

All advanced operations are illustrated with examples of nodes with a fairly small 

number of inputs, outputs and intermediate variables but the extension of these ex-

amples to cases of higher dimension is straightforward. Besides this, the advanced 

operations related to design are first formulated at a more abstract level as generic 

problems and their solutions are given in a general form. The problems and the ex-

amples are based on the use of Boolean matrices or binary relations as formal models 

for FNs at node level as these formal models lend themselves easily to advanced  

manipulation in the context of the linguistic composition approach. Therefore, the 

advanced operations can be viewed as sophisticated building blocks for the  

simplification of an arbitrarily complex FN to a fuzzy system.  
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6.2   Node Transformation for Input Augmentation 

Node transformation is usually applied for input augmentation when two or more 

nodes in a particular layer of a FN have some common inputs as well as inputs 

that are not common to all these nodes. In this case, it is necessary to augment the 

nodes with the missing common inputs such that all nodes have only common in-

puts. The purpose of this augmentation is to allow the output merging operation 

and its property of associativity to be applied to all nodes in the first layer of the 

FN. As a result, the nodes with the augmented inputs have to be transformed ap-

propriately to reflect the presence of these inputs. In this context, input augmenta-

tion can always be applied due to the possibility of extending the set of inputs to a 

node with an arbitrary number of additional inputs. 

When a Boolean matrix is used as a formal model for a node during input  

augmentation, the transformation of this node represents an expansion of the  

associated matrix along its rows. In particular, the product matrix is obtained by 

replicating each row from the operand matrix as many times as the number of 

permutations of linguistic terms for the augmented inputs minus one. The location 

of the replicated rows in the product matrix depends on the place of the augmented  

inputs in the extended set of inputs. 

Node transformation can also be applied for input augmentation in the context 

of binary relations when such a relation is used as a formal model for the operand 

node. In this case, the transformation of the operand node represents a special type 

of relational extension that is applied only to the first elements from the pairs of 

the operand relation whereas the second elements remain unchanged. In particular, 

the first elements in the pairs of the operand relation and the product relation rep-

resent all possible permutations of linguistic terms of inputs from the original and 

the extended set of inputs, respectively. During this process, the unchanged second 

elements in the pairs of the operand relation are replicated in the pairs of the prod-

uct relation as many times as the number of permutations of linguistic terms for 

the augmented inputs minus one. 

Example 6.1 

This example considers an operand node N with input x and output y whose input 

is augmented with an input x
AI

 to the top, i.e. x
AI

 is located before x in the ex-

tended set of inputs. This node can be described by the Boolean matrix in Eq.(6.1) 

and the binary relation in Eq.(6.2). In this context, node N represents a one-node 

FN that can be described by the block-scheme in Fig.6.1 and the topological  

expression in Eq.(6.3).    

N :           y      1     2     3                                                                                     (6.1) 

         x 

         1            0     1     0  

         2            0     0     1 

         3            1     0     0 
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N : {(1, 2), (2, 3), (3, 1)}                                                                                     (6.2) 

   x                          y                                                  

                  N                                                              

Fig. 6.1 One-node FN with one input before augmentation  

[N] (x
 
| y)                                                                                                             (6.3) 

As a result of this input augmentation, the operand node N is transformed into a 

product node N
AI

 with input set {x
AI

, x} and output y. This node can be described 

by the Boolean matrix in Eq.(6.4) and the binary relation in Eq.(6.5). In this con-

text, node N
AI

 represents a one-node FN that can be described by the  

block-scheme in Fig.6.2 and the topological expression in Eq.(6.6). 

N
AI

 :                 y      1     2     3                                                                            (6.4) 

           x
AI

, x  

           11                 0     1     0  

           12                 0     0     1 

           13                 1     0     0 

           21                 0     1     0  

           22                 0     0     1 

           23                 1     0     0 

           31                 0     1     0  

           32                 0     0     1 

           33                 1     0     0 

N
AI

 : {(11, 2), (12, 3) (13, 1),                                                                              (6.5)      

     (21, 2), (22, 3) (23, 1),   

     (31, 2), (32, 3) (33, 1)}   

  x
AI

                                                 

                                    y 

  x               N
AI

            

                                                                              

Fig. 6.2 One-node FN with one input after augmentation to the top 

[N
AI

] (x
AI

, x
 
| y)                                                                                                   (6.6) 

Example 6.2 

This example considers an operand node N with input x and output y whose input 

is augmented with an input x
AI

 to the bottom, i.e. x
AI

 is located after x in the  

extended set of inputs. This node can be described by the Boolean matrix in 
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Eq.(6.7) and the binary relation in Eq.(6.8). In this context, node N represents a 

one-node FN that can be described by the block-scheme in Fig.6.1 and the  

topological expression in Eq.(6.3).  

N :           y      1     2     3                                                                                     (6.7) 

         x 

         1            0     1     0  

         2            1     0     0 

         3            0     0     1 

N : {(1, 2), (2, 1), (3, 3)}                                                                                     (6.8) 

As a result of this input augmentation, the operand node N is transformed into a 

product node N
AI

 with input set {x, x
AI

} and output y. This node can be described 

by the Boolean matrix in Eq.(6.9) and the binary relation in Eq.(6.10). In this con-

text, node N
AI

 represents a one-node FN that can be described by the  

block-scheme in Fig.6.3 and the topological expression in Eq.(6.11). 
 

N
AI

 :                 y      1     2     3                                                                            (6.9) 

           x, x
AI

  

           11                 0     1     0  

           12                 0     1     0 

           13                 0     1     0 

           21                 1     0     0  

           22                 1     0     0 

           23                 1     0     0 

           31                 0     0     1  

           32                 0     0     1 

           33                 0     0     1 
 

N
AI

 : {(11, 2), (12, 2) (13, 2),                                                                            (6.10)      

     (21, 1), (22, 1) (23, 1),   

     (31, 3), (32, 3) (33, 3)}   
 

  x                                               

                                    y 

  x
AI

            N
AI

            

                                                                              

Fig. 6.3 One-node FN with one input after augmentation to the bottom 

[N
AI

] (x, x
AI

 | y)                                                                                                (6.11) 
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Example 6.3 

This example considers an operand node N with input set {x1, x2} and output y 

whose input set is augmented with an input x
AI

 to the top, i.e. x
AI

 is located before  

x1 and x2 in the extended set of inputs. This node can be described by the Boolean 

matrix in Eq.(6.12) and the binary relation in Eq.(6.13). In this context, node N 

represents a one-node FN that can be described by the block-scheme in Fig.6.4 

and the topological expression in Eq.(6.14).  

N :                 y      1     2     3                                                                             (6.12) 

         x1, x2 

         11                0     0     1  

         12                0     0     1 

         21                0     1     0 

         22                1     0     0   

N : {(11, 3), (12, 3), (21, 2), (22,1)}                                                                 (6.13) 

  x1                                                 

                                 y 

  x2              N            

                                                                              

Fig. 6.4 One-node FN with two inputs before augmentation  

 

[N] (x1, x2
 
| y)                                                                                                    (6.14) 

As a result of this input augmentation, the operand node N is transformed into a 

product node N
AI

 with an input set {x
AI

, x1, x2} and output y. This node can be de-

scribed by the Boolean matrix in Eq.(6.15) and the binary relation in Eq.(6.16). In 

this context, node N
AI

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.5 and the topological expression in Eq.(6.17). 

N
AI

 :                       y      1     2     3                                                                    (6.15)           

           x
AI

, x1, x2  

           111                     0     0     1  

           112                     0     0     1 

           121                     0     1     0 

           122                     1     0     0  

           211                     0     0     1 

           212                     0     0     1 

           221                     0     1     0  

           222                     1     0     0 

N
AI

 : {(111, 3), (112, 3), (121, 2), (122, 1),                                                       (6.16)                     

      (211, 3), (212, 3), (221, 2), (222, 1)} 
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  x
AI

                                                 

                                     
  x1                                 y 

                    N
AI

                                                         

  x2 
 

Fig. 6.5 One-node FN with two inputs after augmentation to the top 

[N
AI

] (x
AI

, x1, x2
 
| y)                                                                                           (6.17) 

Example 6.4 

This example considers an operand node N with input set {x1, x2} and output y 

whose input set is augmented with an input x
AI

 in the middle, i.e. x
AI

 is located be-

tween x1 and x2 in the extended set of inputs. This node can be described by the 

Boolean matrix in Eq.(6.18) and the binary relation in Eq.(6.19). In this context, 

node N represents a one-node FN that can be described by the block-scheme in 

Fig.6.4 and the topological expression in Eq.(6.14).    

N :                 y      1     2     3                                                                             (6.18) 

         x1, x2 

         11                0     0     1  

         12                0     1     0 

         21                0     1     0 

         22                1     0     0   

N : {(11, 3), (12, 2), (21, 2), (22,1)}                                                                 (6.19) 

As a result of this input augmentation, the operand node N is transformed into a 

product node N
AI

 with an input set {x1, x
AI

, x2} and output y. This node can be de-

scribed by the Boolean matrix in Eq.(6.20) and the binary relation in Eq.(6.21). In 

this context, node N
AI

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.6 and the topological expression in Eq.(6.22). 

N
AI

 :                       y      1     2     3                                                                    (6.20)           

           x1, x
AI

, x2  

           111                     0     0     1  

           112                     0     1     0 

           121                     0     0     1 

           122                     0     1     0  

           211                     0     1     0 

           212                     1     0     0 

           221                     0     1     0  

           222                     1     0     0 

 



6.2   Node Transformation for Input Augmentation 115

 

N
AI

 : {(111, 3), (112, 2), (121, 3), (122, 2),                                                       (6.21)                     

     (211, 2), (212, 1), (221, 2), (222, 1)} 

  x1                                                   

                                     
  x

AI
                               y 

                    N
AI

                                                         

  x2 
 
 

Fig. 6.6 One-node FN with two inputs after augmentation in the middle 

[N
AI

] (x1, x
AI

, x2
 
| y)                                                                                           (6.22) 

Example 6.5 

This example considers an operand node N with input set {x1, x2} and output y 

whose input set is augmented with an input x
AI

 to the bottom, i.e. x
AI

 is located af-

ter x1 and x2 in the extended set of inputs. This node can be described by the Boo-

lean matrix in Eq.(6.23) and the binary relation in Eq.(6.24). In this context, node 

N represents a one-node FN that can be described by the block-scheme in Fig.6.4 

and the topological expression in Eq.(6.14).    

N :                 y      1     2     3                                                                             (6.23) 

         x1, x2 

         11                0     0     1  

         12                0     1     0 

         21                1     0     0 

         22                1     0     0   

N : {(11, 3), (12, 2), (21, 1), (22,1)}                                                                 (6.24) 

As a result of this input augmentation, the operand node N is transformed into a 

product node N
AI

 with an input set {x1, x2, x
AI

} and output y. This node can be de-

scribed by the Boolean matrix in Eq.(6.25) and the binary relation in Eq.(6.26). In 

this context, node N
AI

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.7 and the topological expression in Eq.(6.27). 
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N
AI

 :                       y      1     2     3                                                                    (6.25)           

           x1, x2, x
AI

  

           111                     0     0     1  

           112                     0     0     1 

           121                     0     1     0 

           122                     0     1     0  

           211                     1     0     0 

           212                     1     0     0 

           221                     1     0     0  

           222                     1     0     0 

N
AI

 : {(111, 3), (112, 3), (121, 2), (122, 2),                                                       (6.26)                     

     (211, 1), (212, 1), (221, 1), (222, 1)} 

  x1                                                   

                                     
  x2                                 y 

                    N
AI

                                                         

  x
AI

   

 

Fig. 6.7 One-node FN with two inputs after augmentation to the bottom 

[N
AI

] (x1, x2, x
AI

 | y)                                                                                          (6.27) 

6.3   Node Transformation for Output Permutation  

Node transformation is usually applied for output permutation when two or more 

adjacent nodes in the same level of a FN have some connections with crossing 

paths. In this case, it is necessary to permute the output points of these connections 

such that the corresponding paths become parallel. The purpose of this permuta-

tion is to allow the horizontal merging operation and its property of associativity 

to be applied to all nodes in this level of the FN. As a result, the nodes with the 

permuted outputs have to be transformed appropriately to reflect the changed or-

dering of these outputs. In this context, output permutation can always be applied 

due to the possibility of rearranging the output set of a node for an arbitrary  

number of outputs. 

When a Boolean matrix is used as a formal model for a node during output 

permutation, the transformation of this node is based on relocation of the non-zero 

columns of the associated matrix. In particular, the product matrix is obtained by 

moving each non-zero column from the operand matrix under a column label with 

linguistic terms permuted in accordance with the associated permuted outputs. The 

space vacated by a relocated non-zero column in the product matrix is filled with a 
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zero column unless another non-zero column is moved there as part of the overall 

node transformation process.  

Node transformation can also be applied for output permutation in the context 

of binary relations when such a relation is used as a formal model for the operand 

node. In this case, the transformation of the operand node represents a special type 

of relational manipulation that is applied only to the second elements from the 

pairs of the operand relation whereas the first elements remain unchanged. In par-

ticular, the first elements in the pairs of the operand relation and the product  

relation represent all possible permutations of linguistic terms for the inputs,  

respectively. During this process, the second elements in the pairs of the operand 

relation are obtained by permuting the corresponding linguistic terms for the  

outputs in accordance with the output permutation. 

Example 6.6 

This example considers an operand node N with input x and output set {y1, y2} 

whose outputs are permuted, i.e. y2 comes first and y1 comes second in the rear-

ranged set of outputs. Before the permutation, this node can be described by the 

Boolean matrix in Eq.(6.28) and the binary relation in Eq.(6.29). In this context, 

node N represents a one-node FN that can be described by the block-scheme in 

Fig.6.8 and the topological expression in Eq.(6.30).    

N :           y1, y2      11    12    13    21    22    23    31    32    33                         (6.28)                     

         x 

         1                    0      0      0      0      0      1      0      0      0 

         2                    0      0      0      0      0      0      1      0      0    

         3                    0      1      0      0      0      0      0      0      0    

N : {(1, 23), (2, 31), (3, 12)}                                                                             (6.29) 

                                

                               y1 

   x                                                                                                                       

                  N          y2 

                            

Fig. 6.8 One-node FN with two outputs before permutation  

[N] (x
 
| y1, y2)                                                                                                    (6.30) 

As a result of this output permutation, the operand node N is transformed into a 

product node N
PO

 with input x and output set {y2, y1}. This node can be described 

by the Boolean matrix in Eq.(6.31) and the binary relation in Eq.(6.32). In this con-

text, node N
PO

 represents a one-node FN that can be described by the block-scheme 

in Fig.6.9 and the topological expression in Eq.(6.33). 
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N
PO

 :           y2, y1      11    12    13    21    22    23    31    32    33                     (6.31)                      

            x 

            1                    0      0      0      0      0      0      0      1      0 

            2                    0      0      1      0      0      0      0      0      0    

            3                    0      0      0      1      0      0      0      0      0    

N
PO

 : {(1, 32), (2, 13), (3, 21)}                                                                          (6.32) 

                                

                                 y2 

   x                                                                                                                       

                  N
PO

         y1 

                            

Fig. 6.9 One-node FN with two outputs after permutation 

[N
PO

] (x
 
| y2, y1)                                                                                                 (6.33) 

Example 6.7 

This example considers an operand node N with input x and output set {y1, y2, y3} 

whose outputs are permuted in a middle-top-bottom manner, i.e. y2 comes first, y1 

comes second and y3 stays third in the rearranged set of outputs. Before the permu-

tation, this node can be described by the Boolean matrix in Eq.(6.34) and the bi-

nary relation in Eq.(6.35). In this context, node N represents a one-node FN that 

can be described by the block-scheme in Fig.6.10 and the topological expression 

in Eq.(6.36).    

N :           y1, y2, y3     111    112    121    122    211    212    221    222            (6.34)                     

         x 

         1                         0        0        1        0        0        0        0        0       

         2                         0        0        0        0        1        0        0        0 

         3                         0        0        0        1        0        0        0        0 

N : {(1, 121), (2, 211), (3, 122)}                                                                       (6.35) 

                               y1 

                                                                                                                          

   x                          y2 

                 N          

                               y3 

                               

Fig. 6.10 One-node FN with three outputs before permutation  
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[N] (x
 
| y1, y2, y3)                                                                                               (6.36) 

As a result of this output permutation, the operand node N is transformed into a 

product node N
PO

 with input x and output set {y2, y1, y3}. This node can be de-

scribed by the Boolean matrix in Eq.(6.37) and the binary relation in Eq.(6.38). In  

this context, node N
PO

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.11 and the topological expression in Eq.(6.39). 

N
PO

 :           y2, y1, y3     111    112    121    122    211    212    221    222         (6.37)                      

            x 

            1                         0        0        0        0        1        0        0        0       

            2                         0        0        1        0        0        0        0        0 

            3                         0        0        0        0        0        1        0        0 

N
PO

 : {(1, 211), (2, 121), (3, 212)}                                                                    (6.38) 

                               y2 

                                                                                                                          

   x                          y1 

                 N          

                               y3 

                               

Fig. 6.11 One-node FN with three outputs after middle-top-bottom permutation  

[N] (x
 
| y2, y1, y3)                                                                                               (6.39) 

Example 6.8 

This example considers an operand node N with input x and output set {y1, y2, y3} 

whose outputs are permuted in a top-bottom-middle manner, i.e. y1 stays first, y3 

comes second and y2 comes third in the rearranged set of outputs. Before the per-

mutation, this node can be described by the Boolean matrix in Eq.(6.40) and the 

binary relation in Eq.(6.41). In this context, node N represents a one-node FN that 

can be described by the block-scheme in Fig.6.10 and the topological expression 

in Eq.(6.36).    

N :           y1, y2, y3     111    112    121    122    211    212    221    222            (6.40)                     

         x 

         1                         0        1        0        0        0        0        0        0       

         2                         0        0        1        0        0        0        0        0 

         3                         0        0        0        0        0        1        0        0 

N : {(1, 112), (2, 121), (3, 212)}                                                                       (6.41) 
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As a result of this output permutation, the operand node N is transformed into a 

product node N
PO

 with input x and output set {y1, y3, y2}. This node can be de-

scribed by the Boolean matrix in Eq.(6.42) and the binary relation in Eq.(6.43). In 

this context, node N
PO

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.12 and the topological expression in Eq.(6.44). 

N
PO

 :           y1, y3, y2     111    112    121    122    211    212    221    222         (6.42)                      

            x 

            1                         0        0        1        0        0        0        0        0       

            2                         0        1        0        0        0        0        0        0 

            3                         0        0        0        0        0        0        1        0 

N
PO

 : {(1, 121), (2, 112), (3, 221)}                                                                    (6.43) 

             

                               y1 

                                                                                                                          

   x                          y3 

                 N          

                               y2 

                               

Fig. 6.12 One-node FN with three outputs after top-bottom-middle permutation  

[N] (x
 
| y1, y3, y2)                                                                                               (6.44) 

Example 6.9 

This example considers an operand node N with input x and output set {y1, y2, y3} 

whose outputs are permuted in a bottom-middle-top manner, i.e. y3 comes first, y2 

stays second and y1 comes third in the rearranged set of outputs. Before the permu-

tation, this node can be described by the Boolean matrix in Eq.(6.45) and the  

binary relation in Eq.(6.46). In this context, node N represents a one-node FN that 

can be described by the block-scheme in Fig.6.10 and the topological expression 

in Eq.(6.36).    

N :           y1, y2, y3     111    112    121    122    211    212    221    222            (6.45)                     

         x 

         1                         0        1        0        0        0        0        0        0       

         2                         0        0        0        0        1        0        0        0 

         3                         0        0        0        1        0        0        0        0 

N : {(1, 112), (2, 211), (3, 122)}                                                                       (6.46) 
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As a result of this output permutation, the operand node N is transformed into a 

product node N
PO

 with input x and output set {y3, y2, y1}. This node can be de-

scribed by the Boolean matrix in Eq.(6.47) and the binary relation in Eq.(6.48). In 

this context, node N
PO

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.13 and the topological expression in Eq.(6.49). 

N
PO

 :           y3, y2, y1     111    112    121    122    211    212    221    222         (6.47)                      

            x 

            1                         0        0        0        0        1        0        0        0       

            2                         0        1        0        0        0        0        0        0 

            3                         0        0        0        0        0        0        1        0 

N
PO

 : {(1, 211), (2, 112), (3, 221)}                                                                    (6.48) 

                               y3 

                                                                                                                          

   x                          y2 

                 N          

                               y1 

                               

Fig. 6.13 One-node FN with three outputs after bottom-middle-top permutation  

[N] (x
 
| y3, y2, y1)                                                                                               (6.49) 

Example 6.10 

This example considers an operand node N with input x and output set {y1, y2, y3} 

whose outputs are permuted in a middle-bottom-top manner, i.e. y2 comes first, y3 

comes second and y1 comes third in the rearranged set of outputs. Before the per-

mutation, this node can be described by the Boolean matrix in Eq.(6.50) and the 

binary relation in Eq.(6.51). In this context, node N represents a one-node FN that 

can be described by the block-scheme in Fig.6.10 and the topological expression 

in Eq.(6.36).    

N :           y1, y2, y3     111    112    121    122    211    212    221    222            (6.50)                     

         x 

         1                         0        1        0        0        0        0        0        0       

         2                         0        0        0        1        0        0        0        0 

         3                         0        0        1        0        0        0        0        0 

N : {(1, 112), (2, 122), (3, 121)}                                                                       (6.51) 

As a result of this output permutation, the operand node N is transformed into a 

product node N
PO

 with input x and output set {y2, y3, y1}. This node can be de-

scribed by the Boolean matrix in Eq.(6.52) and the binary relation in Eq.(6.53). In 
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this context, node N
PO

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.14 and the topological expression in Eq.(6.54). 

N
PO

 :           y2, y3, y1     111    112    121    122    211    212    221    222         (6.52)                      

            x 

            1                         0        0        1        0        0        0        0        0       

            2                         0        0        0        0        0        0        1        0 

            3                         0        0        0        0        1        0        0        0 

N
PO

 : {(1, 121), (2, 221), (3, 211)}                                                                    (6.53) 

                               y2 

                                                                                                                          

   x                          y3 

                 N          

                               y1 

                               

Fig. 6.14 One-node FN with three outputs after middle-bottom-top permutation  

[N] (x
 
| y2, y3, y1)                                                                                               (6.54) 

Example 6.11 

This example considers an operand node N with input x and output set {y1, y2, y3} 

whose outputs are permuted in a bottom-top-middle manner, i.e. y3 comes first, y1 

comes second and y2 comes third in the rearranged set of outputs. Before the per-

mutation, this node can be described by the Boolean matrix in Eq.(6.55) and the 

binary relation in Eq.(6.56). In this context, node N represents a one-node FN that 

can be described by the block-scheme in Fig.6.10 and the topological expression 

in Eq.(6.36).    

N :           y1, y2, y3     111    112    121    122    211    212    221    222            (6.55)                     

         x 

         1                         0        0        0        0        1        0        0        0       

         2                         0        0        0        0        0        0        1        0 

         3                         0        0        0        0        0        1        0        0 

N : {(1, 211), (2, 221), (3, 212)}                                                                       (6.56) 

As a result of this output permutation, the operand node N is transformed into a 

product node N
PO

 with input x and output set {y3, y1, y2}. This node can be de-

scribed by the Boolean matrix in Eq.(6.57) and the binary relation in Eq.(6.58). In 

this context, node N
PO

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.15 and the topological expression in Eq.(6.59). 
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N
PO

 :           y3, y1, y2     111    112    121    122    211    212    221    222         (6.57)                      

            x 

            1                         0        0        1        0        0        0        0        0       

            2                         0        0        0        1        0        0        0        0 

            3                         0        0        0        0        0        0        1        0 

N
PO

 : {(1, 121), (2, 122), (3, 221)}                                                                    (6.58) 

                               y3 

                                                                                                                          

   x                          y1 

                 N          

                               y2 

                               

Fig. 6.15 One-node FN with three outputs after bottom-top-middle permutation  

[N] (x
 
| y3, y1, y2)                                                                                               (6.59) 

6.4   Node Transformation for Feedback Equivalence  

Node transformation is usually applied for feedback equivalence when some out-

puts from one or more nodes in a FN are fed back unchanged as inputs to the same 

or other nodes. In this case, it is necessary to reflect this identical feedback equiva-

lently in the formal models for these nodes. The purpose of this equivalence is to 

allow the nodes with feedback to become operands in any merging operations as 

nodes without feedback. As a result, the nodes with feedback equivalence have to 

be transformed appropriately to reflect the presence of identical feedback. In this 

context, feedback equivalence can always be applied due to the possibility of rep-

resenting the linguistic terms for any output from a node as the same linguistic 

terms for a corresponding input to this or other node. 

When a Boolean matrix is used as a formal model for a node during feedback 

equivalence, the transformation of this node represents a modification of the asso-

ciated operand matrix. In particular, the product matrix is obtained by making  

each element from the universal operand matrix that represents identical feedback 

equal to 1 and making all other elements equal to 0. The location of the non-zero 

elements depends on the ordering of the inputs and the outputs for the node as 

well as which outputs are fed back and as which inputs these outputs are fed back. 

Node transformation can also be applied for feedback equivalence in the con-

text of binary relations when such a relation is used as a formal model for the  

operand node. In this case, the transformation of the operand node represents a 

special type of relational modification whereby each pair of the universal operand 

relation that represents identical feedback is preserved and all other pairs are  

removed.  
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In the two paragraphs above, the operand matrix and the operand relation are 

referred to as ‘universal’ as they both may represent a universal type of node that 

must be changed to reflect an arbitrary type of identical feedback. Also, the as-

sumption that all elements of the operand matrix and all pairs of the operand  

relation that represent identical feedback are made equal to 1 and preserved, re-

spectively, refers to a node with a complete rule base, i.e. when all possible per-

mutations of linguistic terms for inputs are present. Otherwise, when the rule base 

is incomplete, the associated elements in the product matrix are made equal to 

zero and the associated pairs in the product relation are removed. 

Example 6.12 

This example considers an operand node N with input set {z, x} and output set   

{z, y} whereby one of its outputs is mapped to one of its inputs by identical feed-

back in a top-top manner, i.e. the first output z is fed back unchanged as a first  

input. This node can be described by the universal Boolean matrix in Eq.(6.60) 

and the universal binary relation in Eq.(6.61). In this context, node N represents  

a one-node FN that can be described by the block-scheme in Fig.6.16 and the 

topological expression in Eq.(6.62).    

N :                z, y     11     12     21     22                                                            (6.60)                       

          z, x                                

          11                  1       1       1       1 

          12                  1       1       1       1 

          21                  1       1       1       1          

          22                  1       1       1       1          

N : {(11, 11), (11, 12), (11, 21), (11, 22),                                                         (6.61) 

       (12, 11), (12, 12), (12, 21), (12, 22),          

       (21, 11), (21, 12), (21, 21), (21, 22), 

       (22, 11), (22, 12), (22, 21), (22, 22)}                                                  

                                                   

 

   z                           z                                                  

                                                                               

   x                   N                  y 

 

Fig. 6.16 One-node FN with single feedback before top-top equivalence  

[N] (z, x
 
| z, y)                                                                                                   (6.62)                    

As a result of this feedback equivalence, the operand node N is transformed into a 

product node N
EF

 with input set {x
EF

, x} and output set {y
EF

, y}. This node can be 
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described by the Boolean matrix in Eq.(6.63) and the binary relation in Eq.(6.64). 

In this context, node N
EF

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.17 and the topological expression in Eq.(6.65). 

N
EF

 :                  y
EF

, y     11     12     21     22                                                    (6.63)                       

            x
EF

, x                                

            11                        1       1       0       0 

            12                        1       1       0       0 

            21                        0       0       1       1          

            22                        0       0       1       1          

N
EF

 :  {(11, 11), (11, 12),                                                                                   (6.64) 

           (12, 11), (12, 12),           

           (21, 21), (21, 22), 

           (22, 21), (22, 22)}                                                  

   x
EF

                         y
EF

                                                  

                                                                               

   x                  N
EF

                y 

 

Fig. 6.17 One-node FN with single feedback after top-top equivalence  

[N
EF

] (x
EF

, x
 
| y

EF
, y)                                                                                          (6.65)  

Example 6.13 

This example considers an operand node N with input set {x, z} and output set   

{z, y} whereby one of its outputs is mapped to one of its inputs by identical feed-

back in a top-bottom manner, i.e. the first output z is fed back unchanged as a  

second input. This node can be described by the universal Boolean matrix in 

Eq.(6.60) and the universal binary relation in Eq.(6.61) which are based on the in-

put set and the output set for the node. In this context, node N represents a  

one-node FN that can be described by the block-scheme in Fig.6.18 and the  

topological expression in Eq.(6.66).    

 

   x                           z                                                  

                                                                               

   z                   N                  y 

 

 

 

Fig. 6.18 One-node FN with single feedback before top-bottom equivalence  
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[N] (x, z
 
| z, y)                                                                                                   (6.66)                    

As a result of this feedback equivalence, the operand node N is transformed into a 

product node N
EF

 with input set {x, x
EF

} and output set {y
EF

, y}. This node can be 

described by the Boolean matrix in Eq.(6.67) and the binary relation in Eq.(6.68). 

In this context, node N
EF

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.19 and the topological expression in Eq.(6.69). 

N
EF

 :                  y
EF

, y     11     12     21     22                                                    (6.67)                       

            x, x
EF

                                

            11                        1       1       0       0 

            12                        0       0       1       1 

            21                        1       1       0       0          

            22                        0       0       1       1          

N
EF

 :  {(11, 11), (11, 12),                                                                                   (6.68) 

           (12, 21), (12, 22),           

           (21, 11), (21, 12), 

           (22, 21), (22, 22)}                                                  

   x                            y
EF

                                                  

                                                                               

   x
EF

               N
EF

              y 

 

Fig. 6.19 One-node FN with single feedback after top-bottom equivalence  

[N
EF

] (x, x
EF 

| y
EF

, y)                                                                                          (6.69)    

Example 6.14 

This example considers an operand node N with input set {z, x} and output set   

{y, z} whereby one of its outputs is mapped to one of its inputs by identical feed-

back in a bottom-top manner, i.e. the second output z is fed back unchanged as a 

first input. This node can be described by the universal Boolean matrix in 

Eq.(6.60) and the universal binary relation in Eq.(6.61) which are based on the  

input set and the output set for the node. In this context, node N represents a  

one-node FN that can be described by the block-scheme in Fig.6.20 and the  

topological expression in Eq.(6.70).    
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   z                           y                                                  

                                                                               

   x                   N                  z 

 

 

 

Fig. 6.20 One-node FN with single feedback before bottom-top equivalence  

[N] (z, x
 
| y, z)                                                                                                   (6.70)                    

As a result of this feedback equivalence, the operand node N is transformed into a 

product node N
EF

 with input set {x
EF

, x} and output set {y, y
EF

}. This node can be 

described by the Boolean matrix in Eq.(6.71) and the binary relation in Eq.(6.72). 

In this context, node N
EF

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.19 and the topological expression in Eq.(6.73). 

N
EF

 :                  y, y
EF

     11     12     21     22                                                    (6.71)                       

            x
EF

, x                                

            11                        1       0       1       0 

            12                        1       0       1       0 

            21                        0       1       0       1          

            22                        0       1       0       1          

N
EF

 :  {(11, 11), (11, 21),                                                                                   (6.72) 

           (12, 11), (12, 21),           

           (21, 12), (21, 22), 

           (22, 12), (22, 22)}                                                  

   x
EF

                         y                                                  

                                                                               

   x                   N
EF

               y
EF

 

 

Fig. 6.21 One-node FN with single feedback after bottom-top equivalence  

[N
EF

] (x
EF

, x
 
| y, y

EF
)                                                                                          (6.73)    

Example 6.15 

This example considers an operand node N with input set {x, z} and output set   

{y, z} whereby one of its outputs is mapped to one of its inputs by identical feed-

back in a bottom-bottom manner, i.e. the second output z is fed back unchanged as 

a second input. This node can be described by the universal Boolean matrix in 

Eq.(6.60) and the universal binary relation in Eq.(6.61) which are based on the 
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input set and the output set for the node. In this context, node N represents a one-

node FN that can be described by the block-scheme in Fig.6.22 and the topologi-

cal expression in Eq.(6.74).    

   x                           y                                                  

                                                                               

   z                   N                  z 

 

 

 

Fig. 6.22 One-node FN with single feedback before bottom-bottom equivalence  

[N] (x, z
 
| y, z)                                                                                                   (6.74)                    

As a result of this feedback equivalence, the operand node N is transformed into a 

product node N
EF

 with input set {x, x
EF

} and output set {y, y
EF

}. This node can be 

described by the Boolean matrix in Eq.(6.75) and the binary relation in Eq.(6.76). 

In this context, node N
EF

 represents a one-node FN that can be described by the 

block-scheme in Fig.6.23 and the topological expression in Eq.(6.77). 

N
EF

 :                  y, y
EF

     11     12     21     22                                                    (6.75)                       

            x, x
EF

                                

            11                        1       0       1       0 

            12                        0       1       0       1 

            21                        1       0       1       0          

            22                        0       1       0       1          

N
EF

 :  {(11, 11), (11, 21),                                                                                   (6.76) 

           (12, 12), (12, 22),           

           (21, 11), (21, 21), 

           (22, 12), (22, 22)}                                                  

   x                            y                                                 

                                                                               

   x
EF

             N
EF

                y
EF

 

 

Fig. 6.23 One-node FN with single feedback after bottom-bottom equivalence  

[N
EF

] (x, x
EF 

| y, y
EF

)                                                                                          (6.77)  
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6.5   Node Identification in Horizontal Merging  

Node identification is usually applied in horizontal merging when one or more 

nodes in the same level of a FN are unknown but the node for the equivalent fuzzy 

system for this level is given. In this case, it is necessary to find the unknown 

nodes from the other nodes in this level and the node for the equivalent fuzzy sys-

tem. The purpose of this type of node identification is to ensure that once the un-

known nodes have been identified and horizontally merged with the known nodes, 

the resultant node is identical with the one given in advance. In this context, node 

identification in horizontal merging can not always be applied as there is no guar-

antee for a solution to exist in accordance with the above requirement. However, 

when a solution can be found it may not be unique and this allows the node identi-

fication process to be optimised with respect to the performance of the equivalent 

fuzzy system. 

When Boolean matrices are used as formal models during node identification in 

horizontal merging, this process is based on solving systems of Boolean equations. 

In this case, the known coefficients in these systems of equations are the elements 

of the Boolean matrices for the known individual nodes in the associated level of 

the FN and the elements of the Boolean matrix for the given node of the equiva-

lent fuzzy system whereas the unknown variables are the elements of the Boolean 

matrices for the unknown nodes. 

Node identification can also be applied in horizontal merging in the context of 

binary relations when such relations are used as formal models for the known, 

given and unknown nodes. In this case, the node identification process is based on 

solving systems of relational equations whereby one or more unknown relations 

have to be found from some known relations and a given relation that is a compo-

sition of the known and unknown relations. In particular, the known pairs in these 

systems of equations are the pairs of the binary relations for the known nodes in  

the associated level of the FN and the pairs of the binary relation for the given 

node of the equivalent fuzzy system whereas the unknown pairs are the pairs of 

the binary relations for the unknown nodes. 

Problem 6.1 

In this problem, node identification is considered in the context of horizontal 

merging of two nodes A and U into a node C whereby only A and C are given. 

Therefore, it is necessary to identify the unknown node U on the basis of the 

known nodes A and C. This problem can be described in a general form by the 

Boolean matrix equation in Eq.(6.78) where A, U and C represent the Boolean 

matrices for the above three nodes. The dimensions and the detailed descriptions 

of these Boolean matrices are given in Eqs.(6.79)-(6.81).    

A * U = C                                                                                                          (6.78) 
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               a11 …… a1q                                                                                                                                         (6.79) 

Ap × q  =  …………...                                                                                          

               ap1 …… apq 

               u11 …… u1r                                                                                                                                         (6.80) 

Uq× r  =  …………...                                                                                          

               uq1 …… uqr 

               c11 …… c1r                                                                                                                                         (6.81) 

Cp × r  =  …………...                                                                                          

               cp1 …… cpr 

The Boolean matrix equation in Eq.(6.78) can be represented as a set of ‘r’  

systems of Boolean equations whereby each system consists of ‘p’ equations and 

‘q’ unknowns. This set of systems of Boolean equations is given by Eq.(6.82).  

max  [min (a11, u11),…, min (a1q, uq1)] = c11                                                      (6.82)                      

…………………………………………… 

max  [min (ap1, u11),…, min (apq, uq1)] = cp1    

……………………………………………                                                       

max  [min (a11, u1r),…, min (a1q, uqr)] = c1r     

……………………………………………                                                                                       

max  [min (ap1, u1r),…, min (apq, uqr)] = cpr       

                                                                                                   

The solution for each system of Boolean equations in Eq.(6.82) represents a  

column in the unknown Boolean matrix U from the Boolean matrix equation in 

Eq.(6.78). The most trivial way of solving each system of Boolean equations is to 

generate all possible permutations of ‘0’s and ‘1’s for the unknowns. In this case, 

a multiple solution is very likely to exist, especially if some columns in the  

Boolean matrix A contain only zero elements. These zero elements will have an 

overriding effect on the elements in the corresponding rows of the Boolean matrix 

U, i.e. the latter can be taken as either ‘0’s or ‘1’s in the solution. In particular, the 

variation V in the number of solutions for the Boolean matrix equation in 

Eq.(6.78) is given by the general formula in Eq.(6.83)  where ‘r’ is the number of 

columns in U and ‘s’ is the number of zero columns in A. 

V =  r
s
 + 1                                                                                                          (6.83) 

Example 6.16 

This example considers a FN with two sequential nodes A and U whereby          

{xA1, xA2} is the input set for A, zA,U is the intermediate variable and {yU1, yU2} is 

the output set for U. These nodes are horizontally merged into node C that repre-

sents the equivalent fuzzy system for this FN, as shown by the block-scheme in        
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Figure 6.24 and the topological expression in Eq.(6.84). The known nodes A and 

C are described by the Boolean matrices and the binary relations in        

Eqs.(6.85)-(6.86) and Eqs.(6.87)-(6.88).  

    xA1                                                                                                 yU1                                xA1                          yU1 

                                     zA,U                          zA,U                                                                                      

    xA2        A                              *                     U      yU2          =         xA2        C      yU2 

 

Fig. 6.24 FN with nodes A and U horizontally merged into node C 

[A] (xA1, xA2
 
| zA,U) * [U] (zA,U

 
| yU1, yU2) = [C] (xA1, xA2

 
|
 
yU1, yU2)                  (6.84)                       

A :                   zA,U    1     2     3                                                                         (6.85)                      

        xA1, xA2 

        11                      1     0     0  

        12                      1     0     0 

        21                      0     0     1   

        22                      0     0     1                                                        

A :  {(11, 1), (12, 1), (21, 3), (22, 3)}                                                               (6.86) 

                   

C :                   yU1, yU2    11    12    21    22                                                       (6.87)                      

        xA1, xA2 

        11                             0      0      0      1 

        12                             0      0      0      1 

        21                             1      0      0      0 

        22                             1      0      0      0                                                 

C :  {(11, 22), (12, 22), (21, 11), (22, 11)}                                                        (6.88)                      

The columns of the Boolean matrix for the unknown node U can be found  

from Eq.(6.82) which is presented in a detailed form for this example by 

Eqs.(6.89)-(6.92). 

max  [min (1, u11), min (0, u21), min (0, u31)] = 0                                             (6.89) 

max  [min (1, u11), min (0, u21), min (0, u31)] = 0  

max  [min (0, u11), min (0, u21), min (1, u31)] = 1  

max  [min (0, u11), min (0, u21), min (1, u31)] = 1  

max  [min (1, u12), min (0, u22), min (0, u32)] = 0                                             (6.90) 

max  [min (1, u12), min (0, u22), min (0, u32)] = 0  

max  [min (0, u12), min (0, u22), min (1, u32)] = 0  

max  [min (0, u12), min (0, u22), min (1, u32)] = 0  
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max  [min (1, u13), min (0, u23), min (0, u33)] = 0                                             (6.91) 

max  [min (1, u13), min (0, u23), min (0, u33)] = 0  

max  [min (0, u13), min (0, u23), min (1, u33)] = 0  

max  [min (0, u13), min (0, u23), min (1, u33)] = 0  

max  [min (1, u14), min (0, u24), min (0, u34)] = 1                                             (6.92) 

max  [min (1, u14), min (0, u24), min (0, u34)] = 1  

max  [min (0, u14), min (0, u24), min (1, u34)] = 0  

max  [min (0, u14), min (0, u24), min (1, u34)] = 0  

The variation in the number of solutions for the set of 4 systems of Boolean equa-

tions in Eqs.(6.89)-(6.92) with 4 equations and 3 unknowns each can be found 

from Eq.(6.83) which is presented in a specific form for this example by 

Eq.(6.93).  

4
1
 + 1 = 5                                                                                                          (6.93) 

The solution for node U is given by the Boolean matrices and the binary  

relations in Eqs.(6.94)-(6.103). In this case, each subscript i=1,5 for U represents 

an individual solution from the solution set. Each individual solution represents a 

consistent rule base, i.e. a rule base whose Boolean matrix has not more than one 

non-zero element in each row. 

U1 :             yU1, yU2    11    12    21    22                                                           (6.94)                       

         zA,U     

         1                         0      0      0      1 

         2                         0      0      0      0 

         3                         1      0      0      0 

U1 :  {(1, 22), (3, 11)}                                                                                       (6.95) 

U2 :             yU1, yU2    11    12    21    22                                                           (6.96)                      

         zA,U     

         1                         0      0      0      1 

         2                         1      0      0      0 

         3                         1      0      0      0 

U2:  {(1, 22), (2, 11), (3, 11)}                                                                           (6.97)    

U3 :             yU1, yU2    11    12    21    22                                                           (6.98)                      

         zA,U     

         1                         0      0      0      1 

         2                         0      1      0      0 

         3                         1      0      0      0 

U3:  {(1, 22), (2, 12), (3, 11)}                                                                           (6.99)    
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U4 :             yU1, yU2    11    12    21    22                                                         (6.100)                       

         zA,U     

         1                         0      0      0      1 

         2                         0      0      1      0 

         3                         1      0      0      0 

U4:  {(1, 22), (2, 21), (3, 11)}                                                                         (6.101)    

U5 :             yU1, yU2    11    12    21    22                                                         (6.102)                      

         zA,U     

         1                         0      0      0      1 

         2                         0      0      0      1 

         3                         1      0      0      0 

U5:  {(1, 22), (2, 22), (3, 11)}                                                                         (6.103)    

Problem 6.2 

In this problem, node identification is considered in the context of horizontal 

merging of two nodes U and B into a node C whereby only B and C are given. 

Therefore, it is necessary to identify the unknown node U on the basis of the 

known nodes B and C. This problem can be described in a general form by the 

Boolean matrix equation in Eq.(6.104) where U, B and C represent the Boolean 

matrices for the above three nodes. The dimensions and the detailed descriptions 

of these Boolean matrices are given in Eqs.(6.105)-(6.107).    

U * B = C                                                                                                        (6.104) 

               u11 ……u1q                                                                                                                                      (6.105) 

Up× q  =  …………...                                                                                        

               up1 …… upq 

               b11  ……b1r                                                                                                                                      (6.106) 

Bq× r  =   …………..                                                                                       

               bq1 …… bqr 

               c11 …… c1r                                                                                                                                      (6.107) 

Cp × r  =   …………..                                                                                       

               cp1 …… cpr 

The Boolean matrix equation in Eq.(6.104) can be represented as a set of ‘p’  

systems of Boolean equations whereby each system consists of ‘r’ equations and 

‘q’ unknowns. This set of systems of Boolean equations is given by Eq.(6.108).  
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max  [min (u11, b11),…, min (u1q, bq1)] = c11                                                  (6.108)                       

…………………………………………… 

max  [min (u11, b1r),…, min (u1q, bqr)] = c1r    

……………………………………………                                                       

max  [min (up1, b11),…, min (upq, bq1)] = cp1                                                                                      

…………………………………………… 

max  [min (up1, b1r),…, min (upq, bqr)] = cpr    

The solution for each system of Boolean equations in Eq.(6.108) represents a row 

in the unknown Boolean matrix U from the Boolean matrix equation in 

Eq.(6.104). The most trivial way of solving each system of Boolean equations is to 

generate all possible permutations of ‘0’s and ‘1’s for the unknowns. In this case, 

a multiple solution is very likely to exist, especially if some rows in the Boolean 

matrix B contain only zero elements. These zero elements will have an overriding 

effect on the elements in the corresponding columns of the Boolean matrix U, i.e. 

the latter can be taken as either ‘0’s or ‘1’s in the solution. In particular, the poten-

tial variation V in the number of solutions for the Boolean matrix equation in 

Eq.(6.104) is given by the general formula in Eq.(6.109) where ‘p’ is the number 

of rows in U and ‘s’ is the number of zero rows in B. 

V = (2
p
)

s
                                                                                                          (6.109) 

Example 6.17 

This example considers a FN with two sequential nodes U and B whereby          

{xU1, xU2} is the input set for U, zU,B is the intermediate variable and {yB1, yB2} is 

the output set for B. These nodes are horizontally merged into node C that repre-

sents the equivalent fuzzy system for this FN, as shown by the block-scheme in        

Figure 6.25 and the topological expression in Eq.(6.110). The known nodes B and 

C are described by the Boolean matrices and the binary relations in      

Eqs.(6.111)-(6.112) and Eqs.(6.113)-(6.114).  

    xU1                                                                                                 yB1                                xU1                          yB1 

                                     zU,B                          zU,B                                                                                      

    xU2        U                              *                     B      yB2          =         xU2        C      yB2 

 
 

Fig. 6.25 FN with nodes U and B horizontally merged into node C 

[U] (xU1, xU2
 
| zU,B) * [B] (zU,B

 
| yB1, yB2) = [C] (xU1, xU2

 
|
 
yB1, yB2)                (6.110)                      
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B :              yB1, yB2    11    12    21    22                                                         (6.111)                       

        zU,B 

        1                          1      0      0      0 

        2                          0      0      0      0 

        3                          0      0      0      1 

B :  {(1, 11), (3, 22)}                                                                                       (6.112) 

C :                   yB1, yB2    11    12    21    22                                                     (6.113)                      

        xU1, xU2 

        11                             0      0      0      1 

        12                             0      0      0      1 

        21                             1      0      0      0 

        22                             1      0      0      0                                                 

C :  {(11, 22), (12, 22), (21, 11), (22, 11)}                                                      (6.114)                       

The rows of the Boolean matrix for the unknown node U can be found from 

Eq.(6.108) which is presented in a detailed form for this example by        

Eqs.(6.115)-(6.118). 

max  [min (u11, 1), min (u12, 0), min (u13, 0)] = 0                                           (6.115)     

max  [min (u11, 0), min (u12, 0), min (u13, 0)] = 0                                              

max  [min (u11, 0), min (u12, 0), min (u13, 0)] = 0                                              

max  [min (u11, 0), min (u12, 0), min (u13, 1)] = 1         

max  [min (u21, 1), min (u22, 0), min (u23, 0)] = 0                                           (6.116)     

max  [min (u21, 0), min (u22, 0), min (u23, 0)] = 0                                              

max  [min (u21, 0), min (u22, 0), min (u23, 0)] = 0                                              

max  [min (u21, 0), min (u22, 0), min (u23, 1)] = 1            

max  [min (u31, 1), min (u32, 0), min (u33, 0)] = 1                                           (6.117)     

max  [min (u31, 0), min (u32, 0), min (u33, 0)] = 0                                              

max  [min (u31, 0), min (u32, 0), min (u33, 0)] = 0                                              

max  [min (u31, 0), min (u32, 0), min (u33, 1)] = 0         

max  [min (u41, 1), min (u42, 0), min (u43, 0)] = 1                                           (6.118)     

max  [min (u41, 0), min (u42, 0), min (u43, 0)] = 0                                              

max  [min (u41, 0), min (u42, 0), min (u43, 0)] = 0                                              

max  [min (u41, 0), min (u42, 0), min (u43, 1)] = 0                                              

The potential variation in the number of solutions for the set of 4 systems of  

Boolean equations in Eqs.(6.115)-(6.118) with 4 equations and 3 unknowns each 

can be found from Eq.(6.109) which is presented in a specific form for this  

example by Eq.(6.119).  

(2
4
)

1
 = 16                                                                                                         (6.119) 
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The solution for node U is given by the Boolean matrices and the binary  

relations in Eqs.(6.120)-(6.151). In this case, each subscript i = 1,16 for U repre-

sents an individual solution from the solution set. If an individual solution  

represents a inconsistent rule base, i.e. a rule base whose Boolean matrix has more 

than one non-zero element in at least one row, then this solution is discarded.  

Therefore, the only admissible solution for node U is U1. 

U1 :                   zU,B    1     2     3                                                                      (6.120)                       

         xU1, xU2 

         11                      0     0     1  

         12                      0     0     1 

         21                      1     0     0   

         22                      1     0     0                                                        

U1 :  {(11, 3), (12, 3), (21, 1), (22, 1)}                                                            (6.121)                      

U2 :                   zU,B    1     2     3                                                                      (6.122)                       

         xU1, xU2 

         11                      0     1     1  

         12                      0     0     1 

         21                      1     0     0   

         22                      1     0     0                                                        

U2 :  {(11, 2), (11, 3), (12, 3), (21, 1), (22, 1)}                                               (6.123)                     

U3 :                   zU,B    1     2     3                                                                      (6.124)                       

         xU1, xU2 

         11                      0     0     1  

         12                      0     1     1 

         21                      1     0     0   

         22                      1     0     0                                                        

U3 :  {(11, 3), (12, 2), (12, 3), (21, 1), (22, 1)}                                               (6.125)                     

U4 :                   zU,B    1     2     3                                                                      (6.126)                       

         xU1, xU2 

         11                      0     0     1  

         12                      0     0     1 

         21                      1     1     0   

         22                      1     0     0                                                        

U4 :  {(11, 3), (12, 3), (21, 1), (21, 2), (22, 1)}                                               (6.127)                     
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U5 :                   zU,B    1     2     3                                                                      (6.128)                       

         xU1, xU2 

         11                      0     0     1  

         12                      0     0     1 

         21                      1     0     0   

         22                      1     1     0                                                        

U5 :  {(11, 3), (12, 3), (21, 1), (22, 1), (22, 2)}                                               (6.129)                     

U6 :                   zU,B    1     2     3                                                                      (6.130)                       

         xU1, xU2 

         11                      0     1     1  

         12                      0     1     1 

         21                      1     0     0   

         22                      1     0     0                                                        

U6 :  {(11, 2), (11, 3), (12, 2), (12, 3), (21, 1), (22, 1)}                                   (6.131)                      

U7 :                   zU,B    1     2     3                                                                      (6.132)                       

         xU1, xU2 

         11                      0     1     1  

         12                      0     0     1 

         21                      1     1     0   

         22                      1     0     0                                                        

U7 :  {(11, 2), (11, 3), (12, 3), (21, 1), (21, 2), (22, 1)}                                   (6.133)                      

U8 :                   zU,B    1     2     3                                                                      (6.134)                       

         xU1, xU2 

         11                      0     1     1  

         12                      0     0     1 

         21                      1     0     0   

         22                      1     1     0                                                        

U8 :  {(11, 2), (11, 3), (12, 3), (21, 1), (22, 1), (22, 2)}                                  (6.135)                      

U9 :                   zU,B    1     2     3                                                                      (6.136)                       

         xU1, xU2 

         11                      0     0     1  

         12                      0     1     1 

         21                      1     1     0   

         22                      1     0     0                                                        

U9 :  {(11, 3), (12, 2), (12, 3), (21, 1), (21, 2), (22, 1)}                                  (6.137)                      

 



138 6   Advanced Operations in Fuzzy Networks

 

U10 :                   zU,B    1     2     3                                                                    (6.138)                      

         xU1, xU2 

         11                       0     0     1  

         12                       0     1     1 

         21                       1     0     0   

         22                       1     1     0                                                        

U10 :  {(11, 3), (12, 2), (12, 3), (21, 1), (22, 1), (22, 2)}                                 (6.139)                      

U11 :                   zU,B    1     2     3                                                                    (6.140)                      

         xU1, xU2 

         11                       0     0     1  

         12                       0     0     1 

         21                       1     1     0   

         22                       1     1     0                                                        

U11 :  {(11, 3), (12, 3), (21, 1), (21, 2), (22, 1), (22, 2)}                                 (6.141)                      

U12 :                   zU,B    1     2     3                                                                    (6.142)                      

         xU1, xU2 

         11                       0     1     1  

         12                       0     1     1 

         21                       1     1     0   

         22                       1     0     0                                                        

U12 :  {(11, 2), (11, 3), (12, 2), (12, 3), (21, 1), (21, 2), (22, 1)}                     (6.143)  

U13 :                   zU,B    1     2     3                                                                    (6.144)                      

         xU1, xU2 

         11                       0     1     1  

         12                       0     1     1 

         21                       1     0     0   

         22                       1     1     0                                                        

U13 :  {(11, 2), (11, 3), (12, 2), (12, 3), (21, 1), (22, 1), (22, 2)}                     (6.145)                      

U14 :                   zU,B    1     2     3                                                                    (6.146)                       

         xU1, xU2 

         11                       0     1     1  

         12                       0     0     1 

         21                       1     1     0   

         22                       1     1     0                                                        

U14 :  {(11, 2), (11, 3), (12, 3), (21, 1), (21, 2), (22, 1), (22, 2)}                     (6.147)                      
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U15 :                   zU,B    1     2     3                                                                    (6.148)                       

         xU1, xU2 

         11                       0     0     1  

         12                       0     1     1 

         21                       1     1     0   

         22                       1     1     0                                                        

U15 :  {(11, 3), (12, 2), (12, 3), (21, 1), (21, 2), (22, 1), (22, 2)}                     (6.149)                      

U16 :                   zU,B    1     2     3                                                                    (6.150)                      

         xU1, xU2 

         11                       0     1     1  

         12                       0     1     1 

         21                       1     1     0   

         22                       1     1     0                                                        

U16 :  {(11,2 ), (11, 3), (12, 2), (12, 3), (21, 1), (21, 2), (22, 1), (22, 2)}        (6.151)    

Problem 6.3 

In this problem, node identification is considered in the context of horizontal 

merging of three nodes A, U and B into a node C whereby only A, B and C are 

given. Therefore, it is necessary to identify the unknown node U on the basis of 

the known nodes A, B and C. This problem can be described in a general form by 

the Boolean matrix equation in Eq.(6.152) where A, U, B and C represent the 

Boolean matrices for the above four nodes. The dimensions and the detailed  

descriptions of these Boolean matrices are given in Eqs.(6.153)-(6.156).    

A * U * B = C                                                                                                 (6.152)         

               a11 …… a1q                                                                                                                                      (6.153)         

Ap × q  =  …………...                                                                                          

               ap1 …… apq 

               u11 …… u1r                                                                                                                                      (6.154) 

Uq× r  =  …………...                                                                                          

               uq1 …… uqr 

               b11  ……b1s                                                                                                                                       (6.155) 

Br× s  =  …………...                                                                                        

               br1 …… brs 

               c11 …… c1s                                                                                                                                      (6.156) 

Cp × s  =  …………...                                                                                          

               cp1 …… cps 
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The Boolean matrix equation in Eq.(6.152) can be solved in two different ways. In 

either case, the solution can be found on the basis of the solutions for Problems 

6.1-6.2.  

In the first case, Eq.(6.152) is presented as a system of two Boolean matrix 

equations. This case is shown by Eqs.(6.157)-(6.158) whereby D is an additional 

unknown Boolean matrix given by Eq.(6.159). The solution for this system of  

Boolean matrix equations can be found by first solving Eq.(6.158) with respect to 

D and then solving Eq.(6.157) with respect to U.   

A * U = D                                                                                                        (6.157) 

D * B = C                                                                                                        (6.158) 

               d11 …… d1r                                                                                                                                      (6.159) 

Dp× r  =  …………...                                                                                        

               dp1 …… dpr 

In the second case, Eq.(6.152) is also presented as a system of two Boolean matrix 

equations. This case is shown by Eqs.(6.160)-(6.161) whereby E is an additional 

unknown Boolean matrix given by Eq.(6.162). The solution for this system of 

Boolean matrix equations can be found by first solving Eq.(6.161) with respect to 

E and then solving Eq.(6.160) with respect to U.   

U * B = E                                                                                                        (6.160) 

A * E = C                                                                                                        (6.161) 

               e11 …… e1s                                                                                                                                      (6.162) 

Eq× s  =  …………...                                                                                        

               eq1 …… eqs 

Example 6.18 

This example considers a FN with three sequential nodes A, U and B whereby          

{xA1, xA2} is the input set for A, zA,U and zU,B are the intermediate variables for U 

and {yB1, yB2} is the output set for B. These nodes are horizontally merged into 

node C that represents the equivalent fuzzy system for this FN, as shown by the         

block-scheme in Figure 6.26 and the topological expression in Eq.(6.163). The 

known nodes A, B and C are described by the Boolean matrices and the binary re-

lations in Eqs.(6.85)-(6.86) from Example 6.16, Eqs.(6.111)-(6.112) from          

Example 6.17 and Eqs.(6.164)-(6.165).  
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  xA1                                                                                                                       yB1                        xA1                   yB1 

                          zA,U               zA,U                 zU,B               zU,B                                                                       

  xA2      A                     *              U              *               B   yB2       =      xA2     C    yB2 

 
 

Fig. 6.26 FN with nodes A, U and B horizontally merged into node C 

[A](xA1,xA2
 
| zA,U)*[U](zA,U

 
| zU,B)*[B](zU,B

 
| yB1,yB2) = [C](xA1,xA2

 
|
 
yB1,yB2) (6.163)                     

C :                   yB1, yB2    11    12    21    22                                                     (6.164)                      

        xA1, xA2 

        11                             0      0      0      1 

        12                             0      0      0      1 

        21                             1      0      0      0 

        22                             1      0      0      0                                                 

C :  {(11, 22), (12, 22), (21, 11), (22, 11)}                                                      (6.165)     

In the first case, the only admissible solution for node D is D1, as shown by the 

Boolean matrix and the binary relation in Eqs.(6.166)-(6.167). The remaining 15 

potential solutions are discarded as none of them represents a consistent rule base. 

D1 :                   zU,B    1     2     3                                                                      (6.166)                       

         xA1, xA2 

         11                      0     0     1  

         12                      0     0     1 

         21                      1     0     0   

         22                      1     0     0                                                        

D1 :  {(11, 3), (12, 3), (21, 1), (22, 1)}                                                            (6.167)                      

The solution set for node U is  {U1, U2, U3, U4}, as shown by the Boolean matri-

ces and the binary relations in Eqs.(6.168)-(6.175). Each of these solutions  

represents a consistent rule base.  

U1 :              zU,B    1     2     3                                                                           (6.168)                       

         zA,U  

         1                   0     0     1  

         2                   0     0     0 

         3                   1     0     0   

U1 :  {(1, 3), (3, 1)}                                                                                        (6.169)                        
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U2 :              zU,B    1     2     3                                                                           (6.170)                       

         zA,U  

         1                   0     0     1  

         2                   1     0     0 

         3                   1     0     0   

U1 :  {(1, 3), (2, 1), (3, 1)}                                                                               (6.171)                       

U3 :              zU,B    1     2     3                                                                           (6.172)                       

         zA,U  

         1                   0     0     1  

         2                   0     1     0 

         3                   1     0     0   

U3 :  {(1, 3), (2, 2), (3, 1)}                                                                               (6.173)                       

U4 :              zU,B    1     2     3                                                                           (6.174)                       

         zA,U  

         1                   0     0     1  

         2                   0     0     1 

         3                   1     0     0   

U4 :  {(1, 3), (2, 3), (3, 1)}                                                                              (6.175)                       

In the second case, the solution set for node E is {E1, E2, E3, E4, E5}, as shown by 

the Boolean matrices and the binary relations in Eqs.(6.176)-(6.185). Each of 

these solutions represents a consistent rule base.  

E1 :             yB1, xB2    11    12    21    22                                                          (6.176)                       

         zA,U  

         1                         0      0      0      1  

         2                         0      0      0      0 

         3                         1      0      0      0 

E1 :  {(1, 22), (3, 11)}                                                                                    (6.177)                      

E2 :             yB1, xB2    11    12    21    22                                                          (6.178)                       

         zA,U  

         1                         0      0      0      1  

         2                         1      0      0      0 

         3                         1      0      0      0 

E2 :  {(1, 22), (2, 11), (3, 11)}                                                                         (6.179) 
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E3 :             yB1, xB2    11    12    21    22                                                          (6.180)                       

         zA,U  

         1                         0      0      0      1  

         2                         0      1      0      0 

         3                         1      0      0      0 

E3 :  {(1, 22), (2, 12), (3, 11)}                                                                         (6.181)                     

E4 :             yB1, xB2    11    12    21    22                                                          (6.182)                       

         zA,U  

         1                         0      0      0      1  

         2                         0      0      1      0 

         3                         1      0      0      0 

E4 :  {(1, 22), (2, 21), (3, 11)}                                                                         (6.183)                       

E5 :             yB1, xB2    11    12    21    22                                                          (6.184)                       

         zA,U  

         1                         0      0      0      1  

         2                         0      0      0      1 

         3                         1      0      0      0 

E5 :  {(1, 22), (2, 22), (3, 11)}                                                                         (6.185)                      

The solution set for node U is also {U1, U2, U3, U4}, as shown by the Boolean  

matrices and the binary relations in Eqs.(6.168)-(6.175). Each of these individual 

solutions for U follows from an individual solution for E and represents a consis-

tent rule base. In particular, the admissible solutions U1 and U3 follow from the ba-

sic solution E1 whereas the additional solutions U2 and U4 follow from the  

non-basic solutions E2 and E5, respectively. There are no solutions for U that fol-

low from the non-basic solutions E3 or E4. In this context, the term ‘basic solution’ 

refers to a Boolean matrix with at least one zero row whereas the term ‘non-basic 

solution’ refers to a Boolean matrix without any zero rows. 

6.6   Node Identification in Vertical Merging  

Node identification is usually applied in vertical merging when one or more nodes 

in the same layer of a FN are unknown but the node for the equivalent fuzzy sys-

tem for this layer is given. In this case, it is necessary to find the unknown nodes 

from the other nodes in this layer and the node for the equivalent fuzzy system. 

The purpose of this type of node identification is to ensure that once the unknown 

nodes have been identified and vertically merged with the known nodes, the resul-

tant node is identical with the one given in advance. In this context, node identifi-

cation in vertical merging can not always be applied as there is no guarantee for a 

solution to exist in accordance with the above requirement. However, when a  

solution can be found, it is usually unique. 
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When Boolean matrices are used as formal models during node identification in 

vertical merging, this process is based on examining the structure of the known 

matrices and the given matrix. In this case, a location based correspondence is  

sought between the non-zero elements of the known Boolean matrices and any 

identical non-zero blocks of the given Boolean matrix. If such a correspondence is 

to be found, then the unknown Boolean matrix is equal to these non-zero blocks or 

to a compressed image of the given Boolean matrix whereby all non-zero and zero 

blocks are represented by 1’s and 0’s, respectively. 

Node identification can also be applied in vertical merging in the context of  

binary relations when such relations are used as formal models for the known, 

given and unknown nodes. In this case, a location based correspondence is sought 

between the individual pairs of the known relations and any blocks of pairs with 

similar pattern from the given relation, such that the first and the second elements 

in the corresponding pairs in each block are identical. If such a correspondence is 

to be found, then the unknown binary relation can be derived from the similarity 

between the blocks of pairs in the given relation and the individual pairs in the 

known relation. 

Problem 6.4 

In this problem, node identification is considered in the context of vertical  

merging of two nodes A and U into a node C whereby only A and C are given. 

Therefore, it is necessary to identify the unknown node U on the basis of the 

known nodes A and C. This problem can be described in a general form by the 

Boolean matrix equation in Eq.(6.186) where A, U and C represent the Boolean 

matrices for the above three nodes. The dimensions and the detailed descriptions 

of these Boolean matrices are given in Eqs.(6.187)-(6.189).    

A + U = C                                                                                                        (6.186)       

               a11 …… a1q                                                                                                                                      (6.187) 

Ap × q  =  …………...                                                                                          

               ap1 …… apq 

               u11 …… u1s                                                                                                                                     (6.188) 

Ur× s  =  …………...                                                                                          

               ur1 …… urs 

                  c11 …….. c1,r.s                                                                                                                           (6.189) 

Cp.r× q.s  =  ………….…..                                                                                         

                  cp.r,1 ……cp.r,q.s 

If the Boolean matrix C in Eq.(6.189) contains only one set of not more than ‘p’ 

identical non-zero blocks C
k
, 1 ≤ k ≤ p whereby there is not more than one such  

block in any block row of this matrix, the elements with a location in A  

corresponding to the location of non-zero blocks C
k
 in C are all equal to ‘1’ and all 
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other elements with a location in A corresponding to the location of zero blocks C
0
 

in C are equal to ‘0’, then the Boolean matrix U is equal to C
k
. In this case, the lo-

cation of the elements of the non-zero identical blocks C
k
 in C can be described by 

Eq.(6.190) which also shows the admissible initial values for the subscripts i and j 

of the elements of C
k
. As far as the zero blocks C

0
 are concerned, they are with the 

same number of rows and columns as the non-zero blocks C
k
. 

          cij
k
 ……….ci,j+s-1

k
                                                                                                                               (6.190) 

C
k
  =  ………….………    , i=1,1+r,…,1+(p-1).r, j=1,1+s,…,1+(q-1).s                                          

          ci+r-1,j
k
 ……ci+r-1,j+s-1

k
 

Example 6.19 

This example considers a FN with two parallel nodes A and U whereby xA is the  

input to A, yA is the output from A, xU is the input to U and yU is the output from 

U. These nodes are vertically merged into node C that represents the equivalent 

fuzzy system for this FN, as shown by the block-scheme in Figure 6.27 and the 

topological expression in Eq.(6.191). The known nodes A and C are described by 

the Boolean matrices and the binary relations in Eqs.(6.192)-(6.193) and 

Eqs.(6.194)-(6.195).  

     xA                             yA                                    xA                           yA 

                         A                                                                                                   

     xU         +            yU            =         xU         C      yU 

                  U 

Fig. 6.27 FN with nodes A and U vertically merged into node C 

[A] (xA
 
| yA) + [U] (xU

 
| yU) = [C] (xA, xU

 
|
 
yA, yU)                                           (6.191)                      

A :            yA    1     2     3                                                                                (6.192)                      

        xA 

        1              0     1     0  

        2              1     0     0 

        3              0     0     1   

A :  {(1, 2), (2, 1), (3, 3)}                                                                                (6.193)                  
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C :                  yA, yU    11    12    13    21    22    23    31    32    33               (6.194)                      

        xA, xU 

        11                         0      0      0      1      0      0      0      0      0 

        12                         0      0      0      0      0      1      0      0      0 

        13                         0      0      0      0      1      0      0      0      0 

        21                         1      0      0      0      0      0      0      0      0 

        22                         0      0      1      0      0      0      0      0      0 

        23                         0      1      0      0      0      0      0      0      0 

        31                         0      0      0      0      0      0      1      0      0 

        32                         0      0      0      0      0      0      0      0      1 

        33                         0      0      0      0      0      0      0      1      0 

C :  {(11, 21), (12, 23), (13, 22),                                                                     (6.195)             

        (21, 11), (22, 13), (23, 12), 

        (31, 31), (32, 33), (33, 32)}                                                                                   

The Boolean matrix C in Eq.(6.194) contains only one set of 3 identical non-zero 

blocks C
k
 whereby there is not more than one such block in any block row of this 

matrix. Also, the elements with a location in A corresponding to the location of 

non-zero blocks C
k
 in C are all equal to ‘1’ and all other elements with a location 

in A corresponding to the location of zero blocks C
0
 in C are equal to ‘0’.  

Therefore, the Boolean matrix U is equal to C
k
, as shown by the Boolean  

matrix and the binary relation in Eqs.(6.196)-(6.197). In this case, the location of 

the elements of C
k
, k=1,2,3 in C is given by Eqs.(6.198)-(6.200).  

U :           yU    1     2     3                                                                                 (6.196)                      

        xU 

        1              1     0     0  

        2              0     0     1 

        3              0     1     0   

U :  {(1, 1), (2, 3), (3, 2)}                                                                                (6.197)  

          c14
1
    c15

1
    c16

1
                                                                                                                                   (6.198) 

C
1

  =  c24
1
    c25

1
    c26

1
                                                                                       

          c34
1
    c35

1
    c36

1
                                                                                                                                 

          c41
2
    c42

2
    c43

2
                                                                                                                                   (6.199) 

C
2

  =  c51
2
    c52

2
    c53

2
                                                                                       

          c61
2
    c62

2
    c63

2
                                                                                                                                 

          c77
3
    c78

3
    c79

3
                                                                                                                                   (6.200) 

C
3

  =  c87
3
    c88

3
    c89

3
                                                                                       

          c97
3
    c98

3
    c99

3
                    



6.6   Node Identification in Vertical Merging 147

 

Problem 6.5 

In this problem, node identification is considered in the context of vertical merg-

ing of two nodes U and B into a node C whereby only B and C are given. There-

fore, it is necessary to identify the unknown node U on the basis of the known 

nodes B and C. This problem can be described in a general form by the Boolean 

matrix equation in Eq.(6.201) where U, B and C represent the Boolean matrices 

for the above three nodes. The dimensions and the detailed descriptions of these 

Boolean matrices are given in Eqs.(6.202)-(6.203) and Eq.(6.189).    

U + B = C                                                                                                        (6.201)       

               u11 ……u1q                                                                                                                                       (6.202) 

Up× q  =  …………...                                                                                          

               up1 …… upq 

               b11 …… b1s                                                                                                                                     (6.203) 

Br× s  =   …………...                                                                                          

               br1 …… brs 

If the Boolean matrix C in Eq.(6.189) contains only one set of not more than ‘p’ 

identical non-zero blocks C
k
, 1 ≤ k ≤ p whereby there is not more than one such 

block in any block row of this matrix and the Boolean matrix B is equal to C
k
, 

then the elements with a location in U corresponding to the location of non-zero 

blocks C
k
 in C are all equal to ‘1’ and all other elements with a location in U cor-

responding to the location of zero blocks C
0
 in C are equal to ‘0’. In this case, a 

non-zero identical block C
k
 can be described by Eq.(6.190) which also shows the 

admissible initial values for the subscripts i and j of the elements of C
k
. As far as 

the zero blocks C
0
 are concerned, they are with the same number of rows and  

columns as the non-zero blocks C
k
.  

Example 6.20 

This example considers a FN with two parallel nodes U and B whereby xU is the 

input to U, yU is the output from U, xB is the input to B and yB is the output from 

B. These nodes are vertically merged into node C that represents the equivalent 

fuzzy system for this FN, as shown by the block-scheme in Figure 6.28 and the  

topological expression in Eq.(6.204). The known nodes B and C are described by 

the Boolean matrices and the binary relations in Eqs.(6.205)-(6.206) and 

Eqs.(6.207)-(6.208).  

     xU                              yU                                    xU                           yU 

                         U                                                                                                   

     xB         +             yB            =         xB         C      yB 

                  B 
 

Fig. 6.28 FN with nodes U and B vertically merged into node C 
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[U] (xU
 
| yU) + [B] (xB

 
| yB) = [C] (xU, xB

 
|
 
yU, yB)                                           (6.204)                      

B :            yB    1     2     3                                                                                (6.205)                      

        xB 

        1              0     1     0  

        2              0     0     1 

        3              1     0     0   

B :  {(1, 2), (2, 3), (3, 1)}                                                                                (6.206)                  

C :                  yU, yB    11    12    13    21    22    23    31    32    33                (6.207)                       

        xU, xB 

        11                         0      0      0      0      0      0      0      1      0 

        12                         0      0      0      0      0      0      0      0      1 

        13                         0      0      0      0      0      0      1      0      0 

        21                         0      1      0      0      0      0      0      0      0 

        22                         0      0      1      0      0      0      0      0      0 

        23                         1      0      0      0      0      0      0      0      0 

        31                         0      0      0      0      1      0      0      0      0 

        32                         0      0      0      0      0      1      0      0      0 

        33                         0      0      0      1      0      0      0      0      0 

C :  {(11, 32), (12, 33), (13, 31),                                                                     (6.208)             

        (21, 12), (22, 13), (23, 11), 

        (31, 22), (32, 23), (33, 21)}                                                                                   

The Boolean matrix C in Eq.(6.207) contains only one set of 3 identical non-zero 

blocks C
k
 whereby there is not more than one such block in any block row of this 

matrix. Also, the Boolean matrix B is equal to C
k
.  

Therefore, the elements with a location in U corresponding to the location of  

non-zero blocks C
k
 in C are all equal to ‘1’ and all other elements with a location 

in U corresponding to the location of zero blocks C
0
 in C are equal to ‘0’, as 

shown by the Boolean matrix and the binary relation in Eqs.(6.209)-(6.210). In 

this case, the location of the elements of C
k
, k=1,2,3 in C is given by Eq.(6.211), 

Eq.(6.199) and Eq.(2.212).  

U :           yU    1     2     3                                                                                 (6.209)                      

        xU 

        1              0     0     1  

        2              1     0     0 

        3              0     1     0   

U :  {(1, 3), (2, 1), (3, 2)}                                                                                (6.210)  

          c17
1
    c18

1
    c19

1
                                                                                                                                   (6.211) 

C
1

  =  c27
1
    c28

1
    c29

1
                                                                                       

          c37
1
    c38

1
    c39

1
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          c74
3
    c75

3
    c76

3
                                                                                                                                   (6.212) 

C
3

  =  c84
3
    c85

3
    c86

3
                                                                                       

          c94
3
    c95

3
    c96

3
                    

Problem 6.6 

In this problem, node identification is considered in the context of vertical  

merging of three nodes A, U and B into a node C whereby only A, B and C are 

given. Therefore, it is necessary to identify the unknown node U on the basis of 

the known nodes A, B and C. This problem can be described in a general form by 

the Boolean matrix equation in Eq.(6.213) where A, U, B and C represent the 

Boolean matrices for the above four nodes. The dimensions and the detailed de-

scriptions of these Boolean matrices are given in Eq.(6.187), Eq.(6.214), 

Eq.(6.203) and Eq.(6.215). 

A + U + B = C                                                                                                 (6.213)         

               u11 …… u1g                                                                                                                                     (6.214) 

Uf× g  =   …………...                                                                                          

               uf1 ……. ufg 

                      c11 ……... c1,q.g.s                                                                                                                (6.215) 

Cp.f.r× q.g.s  =   ………….…….                                                                                         

                      cp.f.r,1 …. cp.f.r,q,g,s 

The Boolean matrix equation in Eq.(6.213) can be solved in two different ways. In 

either case, the solution can be found on the basis of the solutions for Problems 

6.4-6.5.  

In the first case, Eq.(6.213) is presented as a system of two Boolean matrix 

equations. This case is shown by Eqs.(6.216)-(6.217) whereby D is an additional 

unknown Boolean matrix given by Eq.(6.218). The solution for this system of 

Boolean matrix equations can be found by first solving Eq.(6.217) with respect to 

D and then solving Eq.(6.216) with respect to U.   

A * U = D                                                                                                        (6.216) 

D * B = C                                                                                                        (6.217) 

               d11 …… d1g                                                                                                                                     (6.218) 

Dp× g  =  …………...                                                                                        

               dp1 …… dpg 

In the second case, Eq.(6.213) is also presented as a system of two Boolean  

matrix equations. This case is shown by Eqs.(6.219)-(6.220) whereby E is an addi-

tional unknown Boolean matrix given by Eq.(6.221). The solution for this system 

of Boolean matrix equations can be found by first solving Eq.(6.220) with respect 

to E and then solving Eq.(6.219) with respect to U.   
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U + B = E                                                                                                        (6.219) 

A + E = C                                                                                                        (6.220) 

              e11 …… e1s                                                                                                                                        (6.221) 

Ef× s  =  …………..                                                                                        

              ef1 ……. efs 

Example 6.21 

This example considers a FN with three parallel nodes A, U and B whereby xA is 

the input to A, yA is the output from A, xU is the input to U, yU is the output from 

U, xB is the input to B and yB is the output from B. These nodes are vertically 

merged into node C that represents the equivalent fuzzy system for this FN, as 

shown by the block-scheme in Figure 6.29 and the topological expression in 

Eq.(6.222). The known nodes A, B and C are described by the Boolean matrices 

and the binary relations in Eqs.(6.192)-(6.193), Eqs.(6.205)-(6.206) and 

Eqs.(6.223)-(6.224). In this case, the labels and the elements of the Boolean ma-

trix in Eq.(6.223) are represented by a compact notation. In particular, each of the 

capital letters A, B, C, D, E, F, G, H, I stands for three sequential rows and col-

umns as indicated in brackets, 13 denotes the Boolean matrix for node B from 

Eq.(6.205) and 03 denotes a zero Boolean matrix of dimension equal to that for 13. 

     xA                              yA                                   xA                            yA 

                         A                                                                                                   

     xU         +            yU                       xU                  yU 

                  U                       =                      C 

     xB         +             yB                       xB                  yB 

                  B 

Fig. 6.29 FN with nodes A, U and B vertically merged into node C 

[A] (xA
 
| yA) + [U] (xU

 
| yU) + [B] (xB

 
| yB) = [C] (xA, xU, xB

 
|
 
yA, yU, yB)        (6.222)                       

C :                       yA, yU, yB    A    B    C    D    E    F    G    H    I                   (6.223)                         

        xA, xU, xB 

       A (111-113)                    03   03    03   03    03   13   03    03   03 

       B (121-123)                    03   03    03   03    13   03   03    03   03 

       C (131-133)                    03   03    03   13    03   03   03    03   03 

       D (211-213)                    03   03    13   03    03   03   03    03   03 

       E (221-223)                     03   13    03   03    03   03   03    03   03 

       F (231-233)                     13   03    03   03    03   03   03    03   03 

       G (311-313)                    03   03    03   03    03   03   03    03   13 

       H (321-323)                    03   03    03   03    03   03   03    13   03 

        I (331-333)                     03   03    03   03    03   03   13    03   03 
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C :  {(111, 232), (112, 233), (113, 231),                                                         (6.224) 

        (121, 222), (122, 223), (123, 221),    

        (131, 212), (132, 213), (133, 211),   

        (211, 132), (212, 133), (213, 131),  

        (221, 122), (222, 123), (223, 121),    

        (231, 112), (232, 113), (233, 111),       

        (311, 332), (312, 333), (313, 331),  

        (321, 322), (322, 323), (323, 321),    

        (331, 312), (332, 313), (333, 311)}                                                                                           

In the first case, the solution for node D is given by the Boolean matrix and the  

binary relation in Eqs.(6.225)-(6.226) whereas the solution for node U is given by 

the Boolean matrix and the binary relation in Eqs.(6.227)-(6.228).  

D :                  yA, yU    11    12    13    21    22    23    31    32    33                (6.225)                      

        xA, xU 

        11                         0      0      0      0      0      1      0      0      0 

        12                         0      0      0      0      1      0      0      0      0 

        13                         0      0      0      1      0      0      0      0      0 

        21                         0      0      1      0      0      0      0      0      0 

        22                         0      1      0      0      0      0      0      0      0 

        23                         1      0      0      0      0      0      0      0      0 

        31                         0      0      0      0      0      0      0      0      1 

        32                         0      0      0      0      0      0      0      1      0 

        33                         0      0      0      0      0      0      1      0      0 

D :  {(11, 23), (12, 22), (13, 21),                                                                     (6.226)             

        (21, 13), (22, 12), (23, 11), 

        (31, 33), (32, 32), (33, 31)}                                                                                   

U :            yU    1     2     3                                                                                (6.227)                      

        xU 

        1              0     0     1  

        2              0     1     0 

        3              1     0     0   

U :  {(1, 3), (2, 2), (3, 1)}                                                                                (6.228)                  

In the second case, the solution for node E is given by the Boolean matrix and the 

binary relation in Eqs.(6.229)-(6.230) whereas the solution for node U is also 

given by the Boolean matrix and the binary relation in Eqs.(6.227)-(6.228).  
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E :                  yU, yB    11    12    13    21    22    23    31    32    33                 (6.229)                       

        xU, xB 

        11                         0      0      0      0      0      0      0      1      0 

        12                         0      0      0      0      0      0      0      0      1 

        13                         0      0      0      0      0      0      1      0      0 

        21                         0      0      0      0      1      0      0      0      0 

        22                         0      0      0      0      0      1      0      0      0 

        23                         0      0      0      1      0      0      0      0      0 

        31                         0      1      0      0      0      0      0      0      0 

        32                         0      0      1      0      0      0      0      0      0 

        33                         1      0      0      0      0      0      0      0      0 

E :  {(11, 32), (12, 33), (13, 31),                                                                     (6.230)             

        (21, 22), (22, 23), (23, 21), 

   (31, 12), (32, 13), (33, 11)}                                                                                   

6.7   Node Identification in Output Merging  

Node identification is usually applied in output merging when one or more nodes 

with common inputs in the same layer of a FN are unknown but the node for the 

equivalent fuzzy system for this layer is given. In this case, it is necessary to find 

the unknown nodes from the other nodes in this layer and the node for the equiva-

lent fuzzy system. The purpose of this type of node identification is to ensure that 

once the unknown nodes have been identified and output merged with the known 

nodes, the resultant node is identical with the one given in advance. In this con-

text, node identification in output merging can not always be applied as there is no 

guarantee for a solution to exist in accordance with the above requirement.  

However, when a solution can be found, it is usually unique. 

When Boolean matrices are used as formal models during node identification in 

output merging, this process is based on examining the structure of the known ma-

trices and the given matrix. In this case, a location based correspondence is sought 

between the non-zero elements of the known Boolean matrices and any non-zero 

row blocks of the given Boolean matrix. If such a correspondence is to be found, 

then the rows of the unknown Boolean matrix are equal to the non-zero row 

blocks or to a compressed image of the given Boolean matrix whereby all  

non-zero and zero row blocks are represented by 1’s and 0’s, respectively. 

Node identification can also be applied in output merging in the context of  

binary relations when such relations are used as formal models for the known, 

given and unknown nodes. In this case, a location based correspondence is sought 

between the pairs of the known relations and any pairs with similar pattern from 

the given relation. If such a correspondence is to be found, then the unknown bi-

nary relation can be derived from the similarity between the pairs in the given  

relation and the pairs in the known relations. 
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Problem 6.7 

In this problem, node identification is considered in the context of output merging 

of two nodes A and U with common inputs into a node C whereby only A and C 

are given. Therefore, it is necessary to identify the unknown node U on the basis 

of the known nodes A and C. This problem can be described in a general form by 

the Boolean matrix equation in Eq.(6.231) where A, U and C represent the  

Boolean matrices for the above three nodes. The dimensions and the detailed  

descriptions of these Boolean matrices are given in Eqs.(6.232)-(6.234).    

A ; U = C                                                                                                         (6.231)       

               a11 …… a1q                                                                                                                                      (6.232) 

Ap × q  =  …………...                                                                                          

               ap1 …… apq 

               u11 …… u1r                                                                                                                                      (6.233) 

Up× r  =  …………...                                                                                          

               up1 …… upr 

                c11 …….. c1,q.r                                                                                                                              (6.234) 

Cp × q.r  =  ………….…..                                                                                        

                cp,1 …….. cp,q.r 

If the Boolean matrix C in Eq.(6.234) contains only one set of not more than ‘p’ 

non-zero row blocks C
k
, 1 ≤ k ≤ p whereby there is not more than one such block 

in any row of this matrix, the elements with a location in A corresponding to the 

location of non-zero row blocks C
k
 in C are all equal to ‘1’ and all other elements 

with a location in A corresponding to the location of zero row blocks C
0
 in C are 

equal to ‘0’, then the rows of the Boolean matrix U are equal to C
k
. In this case, 

the location of the elements of the non-zero row blocks C
k
 in C can be described 

by Eq.(6.235) which also shows the admissible initial values for the subscripts i 

and j of the elements of C
k
. As far as the zero row blocks C

0
 are concerned, they 

are with the same number of elements as the non-zero row blocks C
k
. 

C
k
  =  cij

k
 …… ci+r-1,j

k
 , i=1,p, j=1,1+r,…,1+(q-1).r                                         (6.235) 

Example 6.22 

This example considers a FN with two nodes A and U with common input xA,U 

whereby yA is the output from A and yU is the output from U. These nodes are out-

put merged into node C that represents the equivalent fuzzy system for this FN, as 

shown by the block-scheme in Figure 6.30 and the topological expression in 

Eq.(6.236). The known nodes A and C are described by the Boolean matrices and 

the binary relations in Eqs.(6.237)-(6.238) and Eqs.(6.239)-(6.240).  
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                                                      yA                                                                    yA 

   xA,U                               A                                               xA,U                                                  

                               ;            yU           =                      C      yU 

                              U 

Fig. 6.30 FN with nodes A and U output merged into node C 

[A] (xA,U
 
| yA) ; [U] (xA,U

 
| yU) = [C] (xA,U

 
|
 
yA, yU)                                         (6.236)                      

A :              yA    1     2     3                                                                              (6.237)                      

        xA,U 

        1                0     1     0  

        2                1     0     0 

        3                0     0     1   

A :  {(1, 2), (2, 1), (3, 3)}                                                                                (6.238)                  

C :               yA, yU    11    12    13    21    22    23    31    32    33                   (6.239)                      

        xA,U 

        1                        0      0      0      1      0      0      0      0      0 

        2                        0      0      1      0      0      0      0      0      0 

        3                        0      0      0      0      0      0      0      1      0 

C :  {(1, 21), (2, 13), (3, 32),                                                                           (6.240)             

The Boolean matrix C in Eq.(6.239) contains only 3 non-zero row blocks C
k
 

whereby there is not more than one such block in any row of this matrix. Also, the 

elements with a location in A corresponding to the location of non-zero row 

blocks C
k
 in C are all equal to ‘1’ and all other elements with a location in A  

corresponding to the location of zero row blocks C
0
 in C are equal to ‘0’.  

Therefore, the rows of the Boolean matrix U are equal to C
k
, as shown by the 

Boolean matrix and the binary relation in Eqs.(6.241)-(6.242). In this case, the  

location of the elements of C
k
, k=1,2,3 in C is given by Eqs.(6.243)-(6.245).  

U :              yU    1     2     3                                                                              (6.241)                      

        xA,U 

        1                1     0     0  

        2                0     0     1 

        3                0     1     0   

U :  {(1, 1), (2, 3), (3, 2)}                                                                                (6.242)  

C
1

  =  c14
1
    c15

1
    c16

1
                                                                                      (6.243) 

C
2

  =  c21
2
    c22

2
    c23

2
                                                                                      (6.244)           

C
3

  =  c37
3
    c38

3
    c39

3
                                                                                      (6.245)    
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Problem 6.8 

In this problem, node identification is considered in the context of output merging 

of two nodes U and B with common inputs into a node C whereby only B and C 

are given. Therefore, it is necessary to identify the unknown node U on the basis 

of the known nodes B and C. This problem can be described in a general form by 

the Boolean matrix equation in Eq.(6.246) where U, B and C represent the  

Boolean matrices for the above three nodes. The dimensions and the detailed de-

scriptions of these Boolean matrices are given in Eqs.(6.247)-(6.248) and 

Eq.(6.234).    

U ; B = C                                                                                                         (6.246)       

               u11 …… u1q                                                                                                                                     (6.247) 

Up× q  =  …………...                                                                                          

               up1 …… upq 

               b11 …… b1r                                                                                                                                      (6.248) 

Bp× r  =   …………..                                                                                          

               bp1 …… bpr 

If the Boolean matrix C in Eq.(6.246) contains only one set of not more than ‘p’ 

non-zero row blocks C
k
, 1 ≤ k ≤ p whereby there is not more than one such block 

in any row of this matrix, and the rows of the Boolean matrix B are equal to C
k
, 

then the elements with a location in U corresponding to the location of non- zero 

row blocks C
k
 in C are all equal to ‘1’ and all other elements with a location in U 

corresponding to the location of zero row blocks C
0
 in C are equal to ‘0’. In this 

case, the location of the elements of a non-zero row block C
k
 can be described by 

Eq.(6.235) which also shows the admissible initial values for the subscripts i and j 

of the elements of C
k
. As far as the zero row blocks C

0
 are concerned, they are 

with the same number of elements as the non-zero row blocks C
k
.  

Example 6.23 

This example considers a FN with two nodes U and B with common input xU,B 

whereby yU is the output from U and yB is the output from B. These nodes are out-

put merged into node C that represents the equivalent fuzzy system for this FN, as 

shown by the block-scheme in Figure 6.31 and the topological expression in 

Eq.(6.249). The known nodes B and C are described by the Boolean matrices and 

the binary relations in Eqs.(6.250)-(6.251) and Eqs.(6.252)-(6.253).  

                                                      yU                                                                    yU 

   xU,B                               U                                                xU,B                                                  

                               ;            yB           =                      C       yB 

                              B 

Fig. 6.31 FN with nodes U and B output merged into node C 
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[U] (xU,B
 
| yU) ; [B] (xU,B

 
| yB) = [C] (xU,B

 
|
 
yU, yB)                                          (6.249)                     

B :              yB    1     2     3                                                                              (6.250)                      

        xU,B 

        1                0     1     0  

        2                0     0     1 

        3                1     0     0   

B :  {(1, 2), (2, 3), (3, 1)}                                                                                (6.251)                  

C :               yU, yB    11    12    13    21    22    23    31    32    33                   (6.252)                      

        xU,B 

        1                        0      0      0      0      0      0      0      1      0 

        2                        0      0      1      0      0      0      0      0      0 

        3                        0      0      0      1      0      0      0      0      0 

C :  {(1, 32), (2, 13), (3, 21),                                                                           (6.253)             

The Boolean matrix C in Eq.(6.252) contains only 3 non-zero blocks C
k
 whereby 

there is not more than one such block in any row of this matrix. Also, the rows of 

the Boolean matrix B are equal to C
k
.  

Therefore, the elements with a location in U corresponding to the location of 

non-zero row blocks C
k
 in C are all equal to ‘1’ and all other elements with a loca-

tion in U corresponding to the location of zero row blocks C
0
 in C are equal to ‘0’, 

as shown by the Boolean matrix and the binary relation in Eqs.(6.254)-(6.255). In 

this case, the location of the elements of C
k
, k=1,2,3 in C is given by Eq.(6.256), 

Eq.(6.244) and Eq.(2.257).  

U :              yU    1     2     3                                                                              (6.254)                      

        xU,B 

        1                0     0     1  

        2                1     0     0 

        3                0     1     0   

U :  {(1, 3), (2, 1), (3, 2)}                                                                                (6.255)  

C
1

  =  c17
1
    c18

1
    c19

1
                                                                                      (6.256) 

C
3

  =  c34
3
    c35

3
    c36

3
                                                                                      (6.257)    

Problem 6.9 

In this problem, node identification is considered in the context of output merging 

of three nodes A, U and B into a node C whereby only A, B and C are given. 

Therefore, it is necessary to identify the unknown node U on the basis of the 

known nodes A, B and C. This problem can be described in a general form by the 

Boolean matrix equation in Eq.(6.258) where A, U, B and C represent the Boolean 
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matrices for the above four nodes. The dimensions and the detailed descriptions of 

these Boolean matrices are given in Eqs.(6.232)-(6.233) and Eqs.(6.259)-(6.260). 

A ; U ; B = C                                                                                                   (6.258)         

               b11 …… b1s                                                                                                                                     (6.259) 

Bp× s  =   …………...                                                                                          

               bp1 …… bps 

                  c11 …….. c1,q.r.s                                                                                                                        (6.260) 

Cp × q.r.s  =  ………….……                                                                                        

                  cp,1 …….. cp,q.r.s 

The Boolean matrix equation in Eq.(6.258) can be solved in two different ways. In 

either case, the solution can be found on the basis of the solutions for Problems 

6.7-6.8.  

In the first case, Eq.(6.258) is presented as a system of two Boolean matrix 

equations. This case is shown by Eqs.(6.261)-(6.262) whereby D is an additional 

unknown Boolean matrix given by Eq.(6.263). The solution for this system of 

Boolean matrix equations can be found by first solving Eq.(6.262) with respect to 

D and then solving Eq.(6.261) with respect to U.   

A ; U = D                                                                                                        (6.261) 

D ; B = C                                                                                                         (6.262) 

                d11 …… d1,q.r                                                                                                                                (6.263) 

Dp× q.r  =  ………….…                                                                                        

                dp1 …… dp,q.r 

In the second case, Eq.(6.258) is also presented as a system of two Boolean matrix 

equations. This case is shown by Eqs.(6.264)-(6.265) whereby E is an additional 

unknown Boolean matrix given by Eq.(6.266). The solution for this system of 

Boolean matrix equations can be found by first solving Eq.(6.265) with respect to 

E and then solving Eq.(6.264) with respect to U.   

U ; B = E                                                                                                         (6.264) 

A ; E = C                                                                                                         (6.265) 

                e11 …… e1,r.s                                                                                                                                 (6.266) 

Ep× r.s  =  …………….                                                                                       

                ep1 ……. ep,r.s 
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Example 6.24 

This example considers a FN with three nodes A, U and B with common input 

xA,U,B whereby yA is the output from A, yU is the output from U and yB is the out-

put from B. These nodes are output merged into node C that represents the equiva-

lent fuzzy system for this FN, as shown by the block-scheme in Figure 6.32 and 

the topological expression in Eq.(6.267). The known nodes A, B and C are de-

scribed by the Boolean matrices and the binary relations in Eqs.(6.237)-(6.238), 

Eqs.(6.250)-(6.251) and Eqs.(6.268)-(6.269). In this case, the labels and the ele-

ments of the Boolean matrix in Eq.(6.268) are represented by a compact notation. 

In particular, each of the capital letters A, B, C, D, E, F, G, H, I stands for three 

sequential columns in accordance with Eq.(6.223), 1j , j=1,3 denotes the j-th  

Boolean row in the Boolean matrix for node B from Eq.(6.250) and 03 denotes a 

zero Boolean row of dimension equal to that for 1j. 

                                                      yA                                                                     yA 

                                            A                                                                                            

  xA,U,B                    ;            yU                    xA,U,B                yU 

                              U                      =                      C 

                               ;            yB                                             yB 

                              B 
 

Fig. 6.32 FN with nodes A, U and B output merged into node C 

[A] (xA,U,B
 
| yA) ; [U] (xA,U,B

 
| yU) ; [B] (xA,U,B

 
| yB) = [C] (xA,U,B

 
|
 
yA, yU, yB)  (6.267) 

C :                 yA, yU, yB    A    B    C    D    E    F    G    H    I                        (6.268)                      

        xA,U,B 

       1                                03   03    03   03    03   11   03    03   03 

       2                                03   12    03   03    03   03   03    03   03 

       3                                03   03    03   03    03   03   13    03   03 

C :  {(1, 232), (2, 123), (3, 311)}                                                                    (6.269) 

In the first case, the solution for node D is given by the Boolean matrix and the bi-

nary relation in Eqs.(6.270)-(6.271) whereas the solution for node U is given by 

the Boolean matrix and the binary relation in Eqs.(6.272)-(6.273).  

D :                yA, yU    11    12    13    21    22    23    31    32    33                  (6.270)                      

        xA,U,B 

        1                         0      0      0      0      0      1      0      0      0 

        2                         0      1      0      0      0      0      0      0      0 

        3                         0      0      0      0      0      0      1      0      0 

D :  {(1, 23), (2, 12), (3, 31)}                                                                          (6.271)             
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U :                yU     1     2     3                                                                           (6.272)                      

        xA,U,B 

        1                   0     0     1  

        2                   0     1     0 

        3                   1     0     0   

U :  {(1, 3), (2, 2), (3, 1)}                                                                                (6.273)                  

In the second case, the solution for node E is given by the Boolean matrix and the 

binary relation in Eqs.(6.274)-(6.275) whereas the solution for node U is also 

given by the Boolean matrix and the binary relation in Eqs.(6.272)-(6.273).  

E :                yU, yB    11    12    13    21    22    23    31    32    33                  (6.274)                       

        xA,U,B 

        1                         0      0      0      0      0      0      0      1      0 

        2                         0      0      0      0      0      1      0      0      0 

        3                         1      0      0      0      0      0      0      0      0 

E :  {(1, 32), (2, 23), (3, 11)}                                                                          (6.275)             

6.8   Comparison of Advanced Operations 

The advanced operations introduced in this chapter are central to the linguistic 

composition approach used in the book. This applies particularly to node trans-

formation for input augmentation, output permutation and feedback equivalence  

which complement the basic operations of horizontal, vertical and output merging 

for composing the networked rule bases within a FN into a linguistically equiva-

lent single rule base for a fuzzy system. The other advanced operations such as 

node identification in horizontal, vertical and output merging are aimed at decom-

posing a single rule base for a fuzzy system into linguistically equivalent net-

worked rule bases within a FN. However, in some cases advanced operations for 

decomposition may be used together with advanced operations for composition in 

the context of the linguistic composition approach and this is shown by some  

examples further in the book. 

The solution to some advanced operations always exists. The exceptions are 

node identification operations that may not have a solution. In this context, when a 

solution exists, node identification in horizontal merging is likely to have multiple 

solutions whereas node identification in vertical and output merging usually has a 

unique solution. Similar observations apply to node transformation for input aug-

mentation, output permutation and feedback equivalence which often has a unique 

solution. 

The characteristics of solutions for different types of advanced operations in 

FNs are summarised in Table 6.1.  
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Table 6.1 Solution characteristics for advanced operations in FNs  

Advanced operation  Composition Existence Uniqueness 

Node transformation for  

input augmentation 

Yes Yes Yes 

Node transformation for  

output permutation 

Yes Yes Yes 

Node transformation for  

feedback equivalence 

Yes Yes Yes 

Node identification in  

horizontal merging 

No No No 

Node identification in 

vertical merging 

No No Yes 

Node identification in 

output merging 

No No Yes 

The next chapter shows some applications of the theoretical results from  

Chapters 4-6 to FNs. In particular, several basic types of feedforward FNs are 

considered. 
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Chapter 7 

Feedforward Fuzzy Networks 

7.1   Preliminaries on Feedforward Fuzzy Networks 

The basic operations, their structural properties and the advanced operations  

introduced in Chapters 4-6 are illustrated there mainly on fairly simple FNs with 

interconnected nodes. Although these networks are assumed to be part of the 

structure of more complex FNs, the latter are taken into account only implicitly in 

the considerations so far. Therefore, it is necessary to show explicitly the applica-

tion of the above operations and their properties to the overall structure of fairly 

complex FNs. 

The current chapter describes the application of basic operations, their proper-

ties and advanced operations in feedforward FNs. The latter are FNs all of whose 

connections are only in a forward direction, i.e. from nodes residing in specific 

layers to nodes residing in subsequent layers. This feedforward characteristic is re-

flected by right-sided arrows in the corresponding block scheme for the FN under 

consideration. In this context, a right-sided arrow represents an output from a node 

that is fed forward as an input to another node. 

Four types of feedforward FNs are considered in the context of both analysis 

and design. The analysis part is presented first and is then followed by the design 

part. In the case of analysis, all network nodes are known and the aim is to derive 

a formula for the single node representing the linguistically equivalent fuzzy sys-

tem. In the case of design, each network node is unknown at a time with all other 

network nodes known and the aim is to derive an algorithm for the unknown node 

from the known network nodes and the single node representing the linguistically 

equivalent fuzzy system. The design task can be easily extended to cases with 

more than one unknown node. 

The four types of feedforward FNs represent different network topologies with 

respect to single or multiple levels and layers in the underlying grid structure for 

the FN under consideration. Each of these types is illustrated with several exam-

ples that are presented at a fairly high level of abstraction using mainly block 

schemes and topological expressions. These formal models for FNs are at network 

level and they both lend themselves easily to advanced manipulations in the con-

text of the linguistic composition approach. Boolean matrices are used as formal 

models only implicitly in block schemes and topological expressions as well as in 

design tasks. 
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All presented examples are for feedforward FNs with a fairly small number  

of nodes but the extension of these examples to networks with a larger number of 

nodes is straightforward. The only difference in this extension is the higher  

complexity of the formulas for the derivation of the single node representing the 

linguistically equivalent fuzzy system in the case of analysis and the algorithms 

for the derivation of the unknown node in the case of design.   

7.2   Networks with Single Level and Single Layer  

The simplest type of FN is the one with single level and single layer. This network 

has only one node residing in the single level and the single layer of the underly-

ing grid structure. Due to the absence of other nodes, there are not any feedfor-

ward connections from and to this node. Moreover, there are not any connections 

between the outputs from and the inputs to this node as such connections are only 

of feedback type and are therefore outside the scope of the current chapter.  

Therefore, a FN with single level and single layer is a single node network that 

is identical to a fuzzy system with single rule base. This implies that a fuzzy sys-

tem is a simple FN, i.e. a special case of a FN with single node. Similarly, a FN 

can be viewed as a complex fuzzy system, i.e. a general case of a fuzzy system 

with networked rule bases. 

As the focus of this book is on FNs, FNs with single level and single layer 

which are identical to fuzzy systems are considered in the current section very 

briefly only for completeness and consistency.  In this context, the other three 

types of feedforward FNs which are an extension of fuzzy systems are considered 

in much more detail in the following sections.  

7.3   Networks with Single Level and Multiple Layers  

A more complex type of FN is the one with single level and multiple layers. This 

network has at least two nodes residing in the single level and the multiple layers 

of the underlying grid structure, i.e. it is identical to a queue of fuzzy systems with 

single rule bases. Due to the presence of multiple nodes, there are feedforward 

connections from and to at least some of these nodes. However, there are not any 

connections between the outputs from and the inputs to the same or other nodes as 

such connections are of feedback type and outside the scope of the current chapter. 

Example 7.1 

This example considers a FN with nodes N11 and N12 where x11 is an input for N11, 
y12 is an output for N12, z11,12

1,2
 is the connection from the first output for N11 to the 

second input for N12 and z11,12
2,1

 is the connection from the second output for N11 

to the first input for N12. This initial FN can be described by the block-scheme in 

Fig.7.1 and the topological expression in Eq.(7.1) from where it can be seen that 

the connections have crossing paths.    
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                                z11,12
1,2

 

  x11                                                                                                             y12                                   

                 N11          z11,12
2,1

                          N12 

                            

Fig. 7.1 Initial FN for Example 7.1  

[N11] (x11
 
| z11,12

1,2
, z11,12

2,1
) * [N12] (z11,12

2,1
, z11,12

1,2 
| y12)                                   (7.1)                     

In order to merge horizontally the nodes N11 and N12 of the initial FN, it is  

necessary to remove the crossing of the connection paths. This can be done by 

permuting the connections z11,12
1,2

 and z11,12
2,1

 at their output points in node N11. 

This permutation operation transforms the initial FN into an interim FN with 

nodes N11
PO 

and N12 whereby the permutation of outputs is reflected by the re-

placement of N11 with N11
PO

. This interim FN can be described by the block-

scheme in Fig.7.2 and the topological expression in Eq.(7.2) from where it can be 

seen that the connections have parallel paths. 

                                          z11,12
2,1

 

  x11                                                                                                                    y12                                   

                 N11
PO

                z11,12
1,2

                     N12 

                            

Fig. 7.2 Interim FN for Example 7.1  

[N11
PO

] (x11
 
| z11,12

2,1
, z11,12

1,2
) * [N12] (z11,12

2,1
, z11,12

1,2 
| y12)                                (7.2)                       

The nodes N11
PO

 and N12 of the interim FN can be merged horizontally due to the 

parallel connection paths. This merging operation transforms the interim FN into a 

final FN with a single equivalent node whereby the merging of nodes N11
PO 

and 

N12 is reflected by their replacement with node N11
PO 

* N12. This final FN can be 

described by the block-scheme in Fig.7.3 and the topological expression in 

Eq.(7.3) from  where it can be seen that the two original nodes are implicit in the 

single equivalent node and the second node is unchanged in relation to the initial 

FN. 

  x11                                                    y12                                   

                  N11
PO

 * N12 

                            

Fig. 7.3 Final FN for Example 7.1  

[N11
PO 

* N12] (x11
 
| y12)                                                                                         (7.3)       
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The considerations in Example 7.1 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.1-7.2 describe the process of deriving an un-

known node in the initial FN from Fig.7.1 when the other node and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.4). 

NE = N11
PO 

* N12                                                                                                  (7.4)                       

Algorithm 7.1 

1. Define NE and N12.  

2. Derive N11
PO

 from Eq.(7.4), if possible.  

3. Find N11 by inverse output permutation of N11
PO

. 

Algorithm 7.2 

1. Define NE and N11. 

2. Find N11
PO

 by output permutation of N11. 

3. Derive N12 from Eq.(7.4), if possible. 

Example 7.2 

This example considers a FN with nodes N11, N12 and N13 where x11 is an input for 

N11, y13 is an output for N13, z11,12
1,2

 is the connection from the first output for N11 

to the second input for N12, z11,12
2,1

 is the connection from the second output for 

N11 to the first input for N12, z12,13
1,2

 is the connection from the first output for N12 

to the second input for N13 and z12,13
2,1

 is the connection from the second output for 

N12 to the first input for N13. This initial FN can be described by the block-scheme 

in Fig.7.4 and the topological expression in Eq.(7.5) from where it can be seen that 

the connections have crossing paths.    

                          z11,12
1,2                                            

z12,13
1,2

 

  x11                                                                                                                                                      y13                                   

                 N11   z11,12
2,1

                    N12      z12,13
2,1

                              N13 

                            

Fig. 7.4 Initial FN for Example 7.2  

[N11] (x11
 
| z11,12

1,2
, z11,12

2,1
) * [N12] (z11,12

2,1
, z11,12

1,2 
| z12,13

1,2
, z12,13

2,1
) *  

[N13] (z12,13
2,1

, z12,13
1,2 

| y13)                                                                                  (7.5)                        

In order to merge horizontally the nodes N11, N12 and N13 of the initial FN, it is 

necessary to remove the crossing of the connection paths. This can be done by  

first permuting the connections z11,12
1,2

, z11,12
2,1

 at their output points in node N11 
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and then permuting the connections z12,13
1,2

, z12,13
2,1

 at their output points in node 

N12.  This permutation operation transforms the initial FN into an interim FN with 

nodes N11
PO

,
 
N12

PO
 and N13 whereby the permutation of outputs is reflected by the 

replacement of N11 and N12 with N11
PO

 and N12
PO

, respectively. This interim FN 

can be described by the block-scheme in Fig.7.5 and the topological expression in 

Eq.(7.6) from where it can be seen that the connections have parallel paths. 

                               z11,12
2,1                                  

z12,13
2,1

 

  x11                                                                                                                                    y13                                   

                 N11
PO

     z11,12
1,2

         N12
PO

     z12,13
1,2

         N13 

                            

Fig. 7.5 Interim FN for Example 7.2  

[N11
PO

] (x11
 
| z11,12

2,1
, z11,12

1,2
) * [N12

PO
] (z11,12

2,1
, z11,12

1,2 
| z12,13

2,1
, z12,13

1,2
) *      (7.6) 

[N13] (z12,13
2,1

, z12,13
1,2 

| y13)                                                                                    

The nodes N11
PO

, N12
PO

 and N13 of the interim FN can be merged horizontally due 

to the parallel connection paths. This merging operation transforms the interim FN 

into a final FN with a single equivalent node whereby the merging of nodes N11
PO

, 

N12
PO 

and N13 is reflected by their replacement with node N11
PO 

* N12
PO 

*
 
N13. This 

final FN can be described by the block-scheme in Fig.7.6 and the topological ex-

pression in Eq.(7.7) from where it can be seen that the three original nodes are  

implicit in the single equivalent node and the third node is unchanged in relation 

to the initial FN. 

  x11                                                                        y13                                   

                  N11
PO

 * N12
PO 

* N13 

                            

Fig. 7.6 Final FN for Example 7.2 

[N11
PO 

* N12
PO 

* N13] (x11
 
| y13)                                                                            (7.7) 

The considerations in Example 7.2 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is  

unknown. In this context, Algorithms 7.3-7.5 describe the process of deriving an 

unknown node in the initial FN from Fig.7.4 when the other nodes and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.8). 

NE = N11
PO 

* N12
PO 

* N13                                                                                     (7.8)                      
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Algorithm 7.3 

1. Define NE, N12 and N13. 

2. Find N12
PO

 by output permutation of N12. 

3. Derive N11
PO

 from Eq.(7.8), if possible.  

4. Find N11 by inverse output permutation of N11
PO

. 

Algorithm 7.4 

1. Define NE, N11 and N13. 

2. Find N11
PO

 by output permutation of N11. 

3. Derive N12
PO

 from Eq.(7.8), if possible.  

4. Find N12 by inverse output permutation of N12
PO

. 

Algorithm 7.5 

1. Define NE, N11 and N12. 

2. Find N11
PO

 by output permutation of N11. 

3. Find N12
PO

 by output permutation of N12. 

4. Derive N13 from Eq.(7.4), if possible. 

Example 7.3 

This example considers a FN with nodes N11, N12 and N13 where x11 is an input for 

N11, y13 is an output for N13, z11,13
1,2

 is the connection from the first output for N11 

to the second input for N13, z11,12
2,1

 is the connection from the second output for 

N11 to the first and only input for N12 and z12,13
1,1

 is the connection from the first 

and only output for N12 to the first input for N13. This initial FN can be described 

by the block-scheme in Fig.7.7 and the topological expression in Eq.(7.9) from 

where it can be seen that there is a crossing connection path at the bottom  

propagating through the second layer of the FN within a virtual second level.    

                          z11,13
1,2                                                       

z12,13
1,1

 

  x11                                                                     N12                                                                        y13                                   

                 N11   z11,12
2,1

                                                                                 N13 

                            

Fig. 7.7 Initial FN for Example 7.3 

[N11] (x11
 
| z11,13

1,2
, z11,12

2,1
) * [N12] (z11,12

2,1 
| z12,13

1,1
) *                                       (7.9) 

[N13] (z12,13
1,1

, z11,13
1,2 

| y13)                                                                                                                 

In order to merge horizontally the nodes N11, N12 and N13 of the initial FN, it is 

necessary to remove the crossing of the connection path at the bottom. This can be 

done by permuting the connections z11,13
1,2

 and z11,12
2,1

 at their output points in 
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node N11.  This permutation operation transforms the initial FN into a first interim 

FN with nodes N11
PO

,
 
N12 and N13 whereby the permutation of outputs is reflected 

by the replacement of N11 with N11
PO

. This first interim FN can be described by the 

block-scheme in Fig.7.8 and the topological expression in Eq.(7.10) from where it 

can be seen that there is a parallel connection path at the bottom propagating 

through the second layer of the FN within a virtual second level. 

                               z11,12
2,1                                   

z12,13
1,1

 

  x11                                                             N12                                                               y13                                   

                 N11
PO

                       z11,13
1,2

                         N13 

                                                     

Fig. 7.8 First interim FN for Example 7.3  

[N11
PO

] (x11
 
| z11,12

2,1
, z11,13

1,2
) * [N12] (z11,12

2,1 
| z12,13

1,1
) *                                  (7.10) 

[N13] (z12,13
1,1

, z11,13
1,2 

| y13)                                                                                                                 

Further on, it is also necessary to represent the parallel connection path at the  

bottom by inserting an implicit identity node I22. This insertion transforms the first 

interim FN into a second interim FN with nodes N11
PO

,
 
N12, N13 and I22. This sec-

ond interim FN can be described by the block-scheme in Fig.7.9 and the topologi-

cal expression in Eq.(7.11) from where it can be seen that the parallel connection 

path at the bottom propagating through the second layer of the FN within a virtual  

second level is preserved. 

                               z11,12
2,1                                   

z12,13
1,1

 

  x11                                                             N12                                                               y13                                   

                 N11
PO

     z11,13
1,2

                       z11,13
1,2

         N13 

                                                    I22   

Fig. 7.9 Second interim FN for example 7.3  

[N11
PO

] (x11
 
| z11,12

2,1
, z11,13

1,2
) *                                                                          (7.11) 

{[N12] (z11,12
2,1 

| z12,13
1,1

) + [I22] (z11,13
1,2 

| z11,13
1,2

)} * [N13] (z12,13
1,1

, z11,13
1,2 

| y13)                              

Nodes N12 and I22 of the interim FN can be merged vertically into a temporary 

node N12
 
+ I22. This node can be further merged horizontally with node N11

PO
 on 

the left and node N13 on the right. These merging operations transform the interim 

FN into a final FN with a single equivalent node whereby the horizontal merging 

of nodes N11
PO

, N12
 
+ I22

 
and N13 is reflected by their replacement with node    

N11
PO 

* (N12
 
+ I22) *

  
N13. This final FN can be described by the block-scheme in 

Fig.7.10 and the topological expression in Eq.(7.12) from where it can be seen that 

the identity node from the parallel connection path at the bottom and the three 
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original nodes are implicit in the single equivalent node whereby the last two of 

these nodes are unchanged in relation to the initial FN. 

  x11                                                                                  y13                                   

                  N11
PO

 * (N12
 
+ I22) * N13 

                            

Fig. 7.10 Final FN for Example 7.3 

[N11
PO

 * (N12
 
+ I22) * N13] (x11

 
| y13)                                                                  (7.12) 

The considerations in Example 7.3 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is  

unknown. In this context, Algorithms 7.6-7.8 describe the process of deriving an 

unknown node in the initial FN from Fig.7.7 when the other nodes, the implicit 

identity node I22 and the single equivalent node NE are known. In this case, node 

NE is given by the Boolean matrix equation in Eq.(7.13). 

NE = N11
PO

 * (N12
 
+ I22) * N13                                                                           (7.13)                       

Algorithm 7.6 

1. Define NE, N12, N13 and I22. 

2. Find N12
 
+ I22 by vertical merging of N12

 
and I22.  

3. Derive N11
PO

 from Eq.(7.13), if possible.  

4. Find N11 by inverse output permutation of N11
PO

. 

Algorithm 7.7 

1. Define NE, N11, N13 and I22. 

2. Find N11
PO

 by output permutation of N11. 

3. Derive N12
 
+ I22 from Eq.(7.13), if possible. 

4. Derive N12 from N12
 
+ I22, if possible.  

Algorithm 7.8 

1. Define NE, N11, N12 and I22. 

2. Find N11
PO

 by output permutation of N11. 

3. Find N12
 
+ I22 by vertical merging of N12

 
and I22. 

4. Derive N13 from Eq.(7.13), if possible. 

Example 7.4 

This example considers a FN with nodes N11, N12 and N13 where x11 is an input for 

N11, y13 is an output for N13, z11,12
1,1

 is the connection from the first output for N11 

to the first and only input for N12, z11,13
2,1

 is the connection from the second output 
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for N11 to the first input for N13 and z12,13
1,2

 is the connection from the first and 

only output for N12 to the second input for N13. This initial FN can be described by  

the block-scheme in Fig.7.11 and the topological expression in Eq.(7.14) from 

where it can be seen that there is a crossing connection path at the top propagating 

through the second layer of the FN within a virtual zero level.    

                          z11,12
1,1                                                       

 

  x11                                                                                                                                                      y13                                   

                 N11   z11,13
2,1

                                            z12,13
1,2

                    N13 

                                                        N12 

Fig. 7.11 Initial FN for Example 7.4 

[N11] (x11
 
| z11,12

1,1
, z11,13

2,1
) * [N12] (z11,12

1,1 
| z12,13

1,2
) *                                     (7.14) 

[N13] (z11,13
2,1

, z12,13
1,2 

| y13)                                                                                                                 

In order to merge horizontally the nodes N11, N12 and N13 of the initial FN, it is 

necessary to remove the crossing of the connection path at the top. This can be 

done by permuting the connections z11,12
1,1

 and z11,13
2,1

 at their output points in 

node N11.  This permutation operation transforms the initial FN into a first interim 

FN with nodes N11
PO

,
 
N12 and N13 whereby the permutation of outputs is reflected 

by the replacement of N11 with N11
PO

. This first interim FN can be described by the 

block-scheme in Fig.7.12 and the topological expression in Eq.(7.15) from where 

it can be seen that there is a parallel connection path at the top propagating 

through the second layer of the FN within a virtual zero level. 

                                                  z11,13
2,1                                  

 

  x11                                                                                                                                     y13                                   

                 N11
PO

      z11,12
1,1

                      z12,13
1,2

        N13 

                                                    N12 

Fig. 7.12 First interim FN for Example 7.4 

[N11
PO

] (x11
 
| z11,13

2,1
, z11,12

1,1
) * [N12] (z11,12

1,1 
| z12,13

1,2
)} *                                (7.15) 

[N13] (z11,13
2,1

, z12,13
1,2 

| y13)                                                                                  

Further on, it is also necessary to represent the parallel connection path at the top 

by inserting an implicit identity node I02. This insertion transforms the first interim 

FN into a second interim FN with nodes N11
PO

,
 
N12, N13 and I02. This second in-

terim FN can be described by the block-scheme in Fig.7.13 and the topological 

expression in Eq.(7.16) from where it can be seen that the parallel connection path 
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at the top propagating through the second layer of the FN within a virtual zero 

level is preserved. 

                                z11,13
2,1

                     z11,13
2,1                                  

 

  x11                                                              I02                                                                y13                                   

                 N11
PO

      z11,12
1,1

                      z12,13
1,2

        N13 

                                                    N12 

Fig. 7.13 Second interim FN for Example 7.4 

[N11
PO

] (x11
 
| z11,13

2,1
, z11,12

1,1
) *                                                                          (7.16) 

{[I02] (z11,13
2,1 

| z11,13
2,1

) + [N12] (z11,12
1,1 

| z12,13
1,2

)} * [N13] (z11,13
2,1

, z12,13
1,2 

| y13)                              

Nodes I02 and N12 of the interim FN can be merged vertically into a temporary 

node I02 + N12. This node can be further merged horizontally with node N11
PO

 on 

the left and node N13 on the right. These merging operations transform the interim 

FN into a final FN with a single equivalent node whereby the horizontal merging 

of nodes N11
PO

, I02 + N12
 
and N13 is reflected by their replacement with node    

N11
PO 

* (I02 + N12) *
  
N13. This final FN can be described by the block-scheme in 

Fig.7.14 and the topological expression in Eq.(7.17). It can be seen from there that 

the identity node from the parallel connection path at the top and the three original 

nodes are implicit in the single equivalent node whereby the last two of these 

nodes are unchanged in relation to the initial FN. 

  x11                                                                                  y13                                   

                  N11
PO

 * (I02 + N12) * N13 

                            

Fig. 7.14 Final FN for Example 7.4 

[N11
PO

 * (I02 + N12) * N13] (x11
 
| y13)                                                                  (7.17) 

The considerations in Example 7.4 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.9-7.11 describe the process of deriving an 

unknown node in the initial FN from Fig.7.11 when the other nodes, the implicit 

identity node I02 and the single equivalent node NE are known. In this case, node 

NE is given by the Boolean matrix equation in Eq.(7.18). 

NE = N11
PO

 * (I02 + N12) * N13                                                                           (7.18)                       
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Algorithm 7.9 

1. Define NE, N12, N13 and I02. 

2. Find I02 + N12 by vertical merging of I02 and N12.  

3. Derive N11
PO

 from Eq.(7.18), if possible.  

4. Find N11 by inverse output permutation of N11
PO

. 

Algorithm 7.10 

1. Define NE, N11, N13 and I02. 

2. Find N11
PO

 by output permutation of N11. 

3. Derive I02 + N12
 
 from Eq.(7.18), if possible. 

4. Derive N12 from I02 + N12, if possible.  

Algorithm 7.11 

1. Define NE, N11, N12 and I02. 

2. Find N11
PO

 by output permutation of N11. 

3. Find I02 + N12 by vertical merging of I02 and N12. 

4. Derive N13 from Eq.(7.18), if possible. 

7.4   Networks with Multiple Levels and Single Layer  

Another more complex type of FN is the one with multiple levels and single layer. 

This network has at least two nodes residing in the multiple levels and the single 

layer of the underlying grid structure, i.e. it is identical to a stack of fuzzy systems 

with single rule bases. Due to the presence of multiple nodes, there may be com-

mon inputs to at least some of these nodes. However, there are not any connec-

tions between the outputs from any nodes and the inputs to the same or other 

nodes as such connections are of feedback type and outside the scope of the cur-

rent chapter. 

Example 7.5 

This example considers a FN with nodes N11 and N21 where x11,21
1,1

 is a common 

input that is the first input for N11 and the first and only input for N21, x11
2
  is the 

second input for N11,  y11 is an output for N11 and y21 is an output for N21. This ini-

tial FN can be described by the block-scheme in Fig.7.15 and the topological ex-

pression in Eq.(7.19). It can be seen from there that one of the inputs
 
for the top 

node is not an input for the bottom node.    
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                                            y11 

              x11
2
      N11                                      

  x11,21
1,1

                                                          

                                  

                                        y21                             

                          N21                                                                

                                                                                           

Fig. 7.15 Initial FN for Example 7.5 

[N11] (x11,21
1,1

,
 
x11

2 
| y11) ; [N21] (x11,21

1,1
| y21)                                                     (7.19)                      

In order to merge the outputs of the nodes N11 and N21 of the initial FN, it is  

necessary to make the uncommon input x11
2 

for the top node common. This can be 

done by augmenting the bottom node with the same input. This augmentation op-

eration transforms the initial FN into an interim FN with nodes N11
 
and N21

AI
 

whereby the augmentation of inputs is reflected by the replacement of N21 with 

N21
AI

. This interim FN can be described by the block-scheme in Fig.7.16 and the 

topological expression in Eq.(7.20). It can be seen from there that all the inputs
 
for 

the top node  are common as they are also inputs for the bottom node.    

  x11,21
1,1

                                 y11 

                           N11                                        

                                                         
  x11

2
                                      

                                            y21                             

                         N21
AI

                                                                

                                                                                           

Fig. 7.16 Interim FN for Example 7.5 

[N11] (x11,21
1,1

,
 
x11

2 
| y11) ; [N21

AI
] (x11,21

1,1
,
 
x11

2 
| y21)                                          (7.20)                     

The outputs of the nodes N11 and N21
AI

 of the interim FN can be merged due to the 

common inputs. This merging operation transforms the interim FN into a final FN 

with a single equivalent node whereby the merging of nodes N11
 
and N21

AI
 is re-

flected by their replacement with node N11
 
; N21

AI
. This final FN can be described 

by the block-scheme in Fig.7.17 and the topological expression in Eq.(7.21). It can 

be seen from there that the two original nodes are implicit in the single equivalent 

node and the top node is unchanged in relation to the initial FN. 
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   x11,21
1,1

                                  y11                            

                  
 x11

2
           N11 ; N21

AI
           y21 

                                                                              

Fig. 7.17 Final FN for Example 7.5 

[N11 ; N21
AI

] (x11,21
1,1

,
 
x11

2 
| y11, y21)                                                                    (7.21) 

The considerations in Example 7.5 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.12-7.13 describe the process of deriving an 

unknown node in the initial FN from Fig.7.15 when the other node and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.22). 

NE = N11 ; N21
AI

                                                                                                 (7.22)                       

Algorithm 7.12 

1. Define NE and N21. 

2. Find N21
AI

 by input augmentation of N21. 

3. Derive N11
 
from Eq.(7.22), if possible.  

Algorithm 7.13 

1. Define NE and N11. 

2. Derive N21
AI

 from Eq.(7.22), if possible. 

3. Find N21 by inverse input augmentation of N21
AI

. 

Example 7.6 

This example considers a FN with nodes N11 and N21 where x11,21
1,1

 is a common 

input that is the first and only input for N11 and the first input for N21, x21
2
  is the 

second input for N21,  y11 is an output for N11 and y21 is an output for N21. This  

initial FN can be described by the block-scheme in Fig.7.18 and the topological 

expression in Eq.(7.23). It can be seen from there that one of the inputs
 
for the  

bottom node  is uncommon as it is not an input for the top node.    
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                                       y11 

                              N11             

  x11,21
1,1

                                                          

                                                            
                                        y21                             

              x21
2
     N21                                                                

               

                                                                             

Fig. 7.18 Initial FN for Example 7.6 

[N11] (x11,21
1,1 

| y11) ; [N21] (x11,21
1,1

,
 
x21

2 
| y21)                                                    (7.23)                       

In order to merge the outputs of the nodes N11 and N21 of the initial FN, it is neces-

sary to make the uncommon input x21
2 

for the bottom node common. This can be 

done by augmenting the top node with the same input. This augmentation opera-

tion transforms the initial FN into an interim FN with nodes N11
AI 

and N21 

whereby the augmentation of inputs is reflected by the replacement of N11 with 

N11
AI

. This interim FN can be described by the block-scheme in Fig.7.19 and the 

topological expression in Eq.(7.24). It can be seen from there that all the inputs
 
for 

the bottom node are common as they are also inputs for the top node.    

  x11,21
1,1

                                 y11 

                         N11
AI

                                        

                                                         
  x21

2
                                      

                                            y21                             

                          N21                                                               

                                                                                           

Fig. 7.19 Interim FN for Example 7.6 

[N11
AI

] (x11,21
1,1

,
 
x21

2 
| y11) ; [N21] (x11,21

1,1
,
 
x21

2 
| y21)                                          (7.24)                       

The outputs of the nodes N11
AI

 and N21 of the interim FN can be merged due to the 

common inputs. This merging operation transforms the interim FN into a final FN 

with a single equivalent node whereby the merging of nodes N11
AI 

and N21 is re-

flected by their replacement with node N11
AI 

; N21. This final FN can be described 

by the block-scheme in Fig.7.20 and the topological expression in Eq.(7.25) from 

where it can be seen that the two original nodes are implicit in the single equiva-

lent node and the bottom node is unchanged in relation to the initial FN. 
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   x11,21
1,1

                                  y11                            

                  
 x21

2
           N11

AI
 ; N21          y21 

                                                                              

Fig. 7.20 Final FN for Example 7.6 

[N11
AI

 ; N21] (x11,21
1,1

,
 
x21

2 
| y11, y21)                                                                    (7.25) 

The considerations in Example 7.6 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is  

unknown. In this context, Algorithms 7.14-7.15 describe the process of deriving 

an unknown node in the initial FN from Fig.7.18 when the other node and the sin-

gle equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.26). 

NE = N11
AI

 ; N21                                                                                                 (7.26)                       

Algorithm 7.14 

1. Define NE and N21. 

2. Derive N11
AI

 from Eq.(7.26), if possible. 

3. Find N11 by inverse input augmentation of N11
AI

. 

Algorithm 7.15 

1. Define NE and N11. 

2. Find N11
AI

 by input augmentation of N11. 

3. Derive N21
 
from Eq.(7.26), if possible.  

Example 7.7 

This example considers a FN with nodes N11, N21 and N31 where x11,21,31
1,1,1

 is a 

common input that is the first input for N11 and the first and only input for both 

N21 and N31, x11
2
 is the second input for N11,  y11 is an output for N11, y21 is an out-

put for N21 and y31 is an output for N31. This initial FN can be described by the 

block-scheme in Fig.7.21 and the topological expression in Eq.(7.27). It can be 

seen from there that one of the inputs
 
for the top node is uncommon as it is not an 

input for the middle and the bottom node.    
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                                               y11 

                  x11
2
      N11                                      

                                                            
  x11,21,31

1,1,1
                              y21 

                              N21                                            

                                                                                         

                                           y31 

                              N31 

                                                               

Fig. 7.21 Initial FN for Example 7.7 

[N11] (x11,21,31
1,1,1

,
 
x11

2 
| y11) ; [N21] (x11,21,31

1,1,1
| y21) ; [N31] (x11,21,31

1,1,1
| y31)     (7.27)                     

In order to merge the outputs of the nodes N11, N21 and N31 of the initial FN, it is 

necessary to make the uncommon input x11
2 

for the top node common. This can be 

done by augmenting the middle and the bottom node with the same input. This 

augmentation operation transforms the initial FN into an interim FN with nodes 

N11, N21
AI 

and N31
AI

 whereby the augmentation of inputs is reflected by the  

replacement of N21 and N31 with N21
AI 

and N31
AI

, respectively. This interim FN can 

be described by the block-scheme in Fig.7.22 and the topological expression in 

Eq.(7.28). It can be seen from there that all the inputs
 
for the top node are common 

as they are also inputs for the middle and the bottom node.    

                                                     y11 

                                N11                                        

                                                         
  x11,21,31

1,1,1
                                   

                                                      y21                             

       x11
2
                       N21

AI
                                                                

                                                                                           

 

                                                     y31 

                                    N31
AI

 

 

Fig. 7.22 Interim FN for Example 7.7 

[N11] (x11,21,31
1,1,1

,
 
x11

2 
| y11) ; [N21

AI
] (x11,21,31

1,1,1
,
 
x11

2 
| y21) ;                             (7.28) 

[N31
AI

] (x11,21,31
1,1,1

,
 
x11

2 
| y31)                                                                              

The outputs of the nodes N11, N21
AI

 and N31
AI

 of the interim FN can be merged due 

to the common inputs. This merging operation transforms the interim FN into a fi-

nal FN with a single equivalent node whereby the merging of nodes N11, N21
AI 

and 
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N31
AI

 is reflected by their replacement with node N11
 
; N21

AI 
; N31

AI
. This final FN 

can be described by the block-scheme in Fig.7.23 and the topological expression 

in Eq.(7.29) from where it can be seen that the three original nodes are implicit in 

the single equivalent node and the top node is unchanged in relation to the initial 

FN. 

                                                                  y11 

   x11,21,31
1,1,1

                                                                            

                                                             y21 

    x11
2
             N11 ; N21

AI 
; N31

AI
                  

                                                                          y31    

                                                                                                         

Fig. 7.23 Final FN for Example 7.7 

[N11 ; N21
AI 

; N31
AI

] (x11,21,31
1,1,1

,
 
x11

2 
| y11, y21, y31)                                             (7.29) 

The considerations in Example 7.7 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.16-7.18 describe the process of deriving an 

unknown node in the initial FN from Fig.7.21 when the other nodes and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.30). 

NE = N11 ; N21
AI 

; N31
AI

                                                                                      (7.30)                       

Algorithm 7.16 

1. Define NE, N21 and N31. 

2. Find N21
AI

 by input augmentation of N21. 

3. Find N31
AI

 by input augmentation of N31. 

4. Derive N11
 
from Eq.(7.30), if possible.  

Algorithm 7.17 

1. Define NE, N11 and N31. 

2. Find N31
AI

 by input augmentation of N31. 

3. Derive N21
AI

 from Eq.(7.30), if possible. 

4. Find N21 by inverse input augmentation of N21
AI

. 

Algorithm 7.18 

1. Define NE, N11 and N21. 

2. Find N21
AI

 by input augmentation of N21. 

3. Derive N31
AI

 from Eq.(7.30), if possible. 

4. Find N31 by inverse input augmentation of N31
AI

. 



178 7   Feedforward Fuzzy Networks

 

Example 7.8 

This example considers a FN with nodes N11, N21 and N31 where x11,21,31
1,1,1

 is a 

common input that is the first input for N21 and the first and only input for both 

N11 and N31, x21
2
 is the second input for N21,  y11 is an output for N11, y21 is an out-

put for N21 and y31 is an output for N31. This initial FN can be described by the 

block-scheme in Fig.7.24 and the topological expression in Eq.(7.31). It can be 

seen from there that one of the inputs
 
for the middle node is uncommon as it is not 

an input for the top and the bottom node.    

                                               y11 

                              N11                                      

  x11,21,31
1,1,1

                               

                                           y21                            

                  x21
2
      N21                                                             

                                            

                                           y31 

                              N31 

Fig. 7.24 Initial FN for Example 7.8 

[N11] (x11,21,31
1,1,1 

| y11) ; [N21] (x11,21,31
1,1,1

,
 
x21

2 
| y21) ; [N31] (x11,21,31

1,1,1 
| y31)   (7.31)                      

In order to merge the outputs of the nodes N11, N21 and N31 of the initial FN, it is 

necessary to make the uncommon input x21
2 

for the middle node common. This 

can be done by augmenting the top and the bottom node with the same input. This 

augmentation operation transforms the initial FN into an interim FN with nodes 

N11
AI

, N21
 
and N31

AI
 whereby the augmentation of inputs is reflected by the re-

placement of N11 and N31 with N11
AI 

and N31
AI

, respectively. This interim FN can 

be described by the block-scheme in Fig.7.25 and the topological expression in 

Eq.(7.32). It can be seen from there that all the inputs
 
for the middle node are 

common as they are also inputs for the top and the bottom node.    

                                                     y11 

                               N11
AI

                                        

                                                         
  x11,21,31

1,1,1
                                   

                                                      y21                             

       x21
2
                        N21                                                               

                                                                                           

 

                                                     y31 

                                    N31
AI

 

 

Fig. 7.25 Interim FN for Example 7.8 
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[N11
AI

] (x11,21,31
1,1,1

,
 
x21

2 
| y11) ; [N21] (x11,21,31

1,1,1
,
 
x21

2 
| y21) ;                             (7.32) 

[N31
AI

] (x11,21,31
1,1,1

,
 
x21

2 
| y31)                                                                              

The outputs of the nodes N11
AI

, N21 and N31
AI

 of the interim FN can be merged due 

to the common inputs. This merging operation transforms the interim FN into a fi-

nal FN with a single equivalent node whereby the merging of nodes N11
AI

, N21
 
and 

N31
AI

 is reflected by their replacement with node N11
AI 

; N21
 
; N31

AI
. This final FN 

can be described by the block-scheme in Fig.7.26 and the topological expression 

in Eq.(7.33) from where it can be seen that the three original nodes are implicit in 

the single equivalent node and the middle node is unchanged in relation to the  

initial FN. 

                                                                  y11 

   x11,21,31
1,1,1

                                                                            

                                                             y21 

    x21
2
             N11

AI
 ; N21

 
; N31

AI
                  

                                                                          y31    

                                                                                                         

Fig. 7.26 Final FN for Example 7.8 

[N11
AI

 ; N21 ; N31
AI

] (x11,21,31
1,1,1

,
 
x21

2 
| y11, y21, y31)                                           (7.33) 

The considerations in Example 7.8 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.19-7.21 describe the process of deriving an 

unknown node in the initial FN from Fig.7.24 when the other nodes and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.34). 

NE = N11
AI

 ; N21
 
; N31

AI
                                                                                      (7.34)                       

Algorithm 7.19 

1. Define NE, N21 and N31. 

2. Find N31
AI

 by input augmentation of N31. 

3. Derive N11
AI

 from Eq.(7.34), if possible. 

4. Find N11 by inverse input augmentation of N11
AI

. 

Algorithm 7.20 

1. Define NE, N11 and N31. 

2. Find N11
AI

 by input augmentation of N11. 

3. Find N31
AI

 by input augmentation of N31. 

4. Derive N21
 
from Eq.(7.34), if possible.  
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Algorithm 7.21 

1. Define NE, N11 and N21. 

2. Find N11
AI

 by input augmentation of N11. 

3. Derive N31
AI

 from Eq.(7.34), if possible. 

4. Find N31 by inverse input augmentation of N31
AI

. 

Example 7.9 

This example considers a FN with nodes N11, N21 and N31 where x11,21,31
1,1,1

 is a 

common input that is the first input for N31 and the first and only input for both 

N11 and N21, x31
2
 is the second input for N31,  y11 is an output for N11, y21 is an out-

put for N21 and y31 is an output for N31. This initial FN can be described by the 

block-scheme in Fig.7.27 and the topological expression in Eq.(7.35). It can be 

seen from there that one of the inputs
 
for the bottom node is uncommon as it is  

not an input for the top and the middle node.    

                                               y11 

                              N11                                      

                                                            
  x11,21,31

1,1,1
                              y21 

                              N21                                            

                                                                                         

                                           y31 

                  x31
2
      N31 

                          

Fig. 7.27 Initial FN for Example 7.9 

[N11] (x11,21,31
1,1,1 

| y11) ; [N21] (x11,21,31
1,1,1

| y21) ; [N31] (x11,21,31
1,1,1

,
 
x31

2 
| y31)    (7.35)                       

In order to merge the outputs of the nodes N11, N21 and N31 of the initial FN, it is 

necessary to make the uncommon input x31
2 

for the bottom node common. This 

can be done by augmenting the top and the middle node with the same input. This 

augmentation operation transforms the initial FN into an interim FN with nodes 

N11
AI

, N21
AI 

and N31 whereby the augmentation of inputs is reflected by the re-

placement of N11 and N21 with N11
AI 

and N21
AI

, respectively This interim FN can be 

described by the block-scheme in Fig.7.28 and the topological expression in 

Eq.(7.36). It can be seen from there that all the inputs
 
for the bottom node are 

common as they are also inputs for the top and the middle node.    
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                                                     y11 
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AI

                                        

                                                         
  x11,21,31

1,1,1
                                   

                                                      y21                             

       x31
2
                       N21

AI
                                                                

                                                                                           

 

                                                     y31 

                                     N31 

 

Fig. 7.28 Interim FN for Example 7.9 

[N11
AI

] (x11,21,31
1,1,1

,
 
x31

2 
| y11) ; [N21

AI
] (x11,21,31

1,1,1
,
 
x31

2 
| y21) ;                          (7.36) 

[N31] (x11,21,31
1,1,1

,
 
x31

2 
| y31)                                                                                 

The outputs of the nodes N11
AI

, N21
AI

 and N31 of the interim FN can be merged due 

to the common inputs. This merging operation transforms the interim FN into a  

final FN with a single equivalent node whereby the merging of nodes N11
AI

, N21
AI  

and N31 is reflected by their replacement with node N11
AI 

; N21
AI 

; N31. This final 

FN can be described by the block-scheme in Fig.7.29 and the topological expres-

sion in Eq.(7.37) from where it can be seen that the three original nodes are im-

plicit in the single equivalent node and the bottom node is unchanged in relation to 

the initial FN. 

                                                                  y11 

   x11,21,31
1,1,1
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    x31
2
             N11

AI
 ; N21

AI 
; N31                  
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Fig. 7.29 Final FN for Example 7.9 

[N11
AI

 ; N21
AI 

; N31] (x11,21,31
1,1,1

,
 
x31

2 
| y11, y21, y31)                                             (7.37) 

The considerations in Example 7.9 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.22-7.24 describe the process of deriving an 

unknown node in the initial FN from Fig.7.27 when the other nodes and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.38). 



182 7   Feedforward Fuzzy Networks

 

NE = N11 ; N21
AI 

; N31
AI

                                                                                      (7.38)                       

Algorithm 7.22 

1. Define NE, N21 and N31. 

2. Find N21
AI

 by input augmentation of N21. 

3. Find N31
AI

 by input augmentation of N31. 

4. Derive N11 from Eq.(7.38), if possible. 

Algorithm 7.23 

1. Define NE, N11 and N31. 

2. Find N31
AI

 by input augmentation of N31. 

3. Derive N21
AI

 from Eq.(7.38), if possible. 

4. Find N21 by inverse input augmentation of N21
AI

. 

Algorithm 7.24 

1. Define NE, N11 and N21. 

2. Find N21
AI

 by input augmentation of N21. 

3. Derive N31
AI 

from Eq.(7.38), if possible.  

4. Find N31 by inverse input augmentation of N31
AI

. 

7.5   Networks with Multiple Levels and Multiple Layers  

The most complex type of FN is the one with multiple levels and multiple layers. 

This network has at least two nodes residing in the multiple levels and layers of 

the underlying grid structure, i.e. it is identical to a grid of fuzzy systems with sin-

gle rule bases. Due to the presence of multiple nodes in the layers, there are feed-

forward connections from and to at least some of these nodes. Also, due to the 

presence of multiple nodes in the levels, there may be common inputs to at  

least some of these nodes. However, there are not any connections between the 

outputs from and the inputs to the same or other nodes as such connections are of 

feedback type and outside the scope of the current chapter. 

Example 7.10 

This example considers a FN with nodes N11, N21, N12 and N22 where x11 is an  

input for N11, x21 is an input for N21, y12 is an output for N12, y22 is an output for 

N22, z11,12
1,1

 is the connection from the first output for N11 to the first input for N12, 

z11,22
2,1

 is the connection from the second output for N11 to the first and only  input 

for N22 and z21,12
1,2

 is the connection from the first and only output for N21 to the 

second input for N12. This initial FN can be described by the block-scheme in 

Fig.7.30 and the topological expression in Eq.(7.39) from where it can be seen that 

the connections in the middle and at the bottom have crossing paths.    
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                                       z11,12
1,1

 

  x11                                                                                                              y12 

                 N11         z11,22
2,1                                      

N12 

                                                                                                                                                  

  x21                         z21,12
1,2

                                        y22 

                 N21                                              N22 

Fig. 7.30 Initial FN for Example 7.10 

{[N11] (x11
 
| z11,12

1,1
, z11,22

2,1
) + [N21] (x21

 
| z21,12

1,2
)} *                                       (7.39) 

{[N12] (z11,12
1,1

, z21,12
1,2 

| y12) + [N22] (z11,22
2,1 

| y22)}                                                                           

The initial FN has four nodes which can be merged vertically in pairs, i.e. N11 with 

N21 and N12 with N22. This merging operation transforms the initial FN into a first 

interim FN with nodes N11
 
+ N21 and N12

 
+ N22 whereby the merging of nodes is re-

flected by the replacement of N11 and N21 with N11
 
+ N21 and the replacement of N12 

and N22 with N12
 
+ N22. This first interim FN can be described by the block-scheme 

in Fig.7.31 and the topological expression in Eq.(7.40) from where it can be seen 

that the connections in the middle and at the bottom still have crossing paths. 

                                             z11,12
1,1

 

  x11                                                                                                                            y12 

                                     z11,22
2,1                                      

 

  x21           N11
 
+ N21                                                 N12

 
+ N22            y22                                         

                                     z21,12
1,2

                                         

                                                                     

Fig. 7.31 First interim FN for Example 7.10 

[N11 + N21] (x11, x21
 
| z11,12

1,1
, z11,22

2,1
,
 
z21,12

1,2
) *                                                (7.40) 

[N12 + N22] (z11,12
1,1

, z21,12
1,2

,
 
z11,22

2,1 
| y12, y22)                                                    

In order to merge horizontally the nodes N11 + N21 and N12
 
+ N22 of the first in-

terim FN, it is necessary to remove the crossing of the connection paths. This can 

be done by permuting the connections z11,22
2,1

 and z11,12
2,1

 at their output points in 

node N11
 
+ N21. This permutation operation transforms the first interim FN into a 

second interim FN with nodes (N11
 
+ N21)

PO
 and  N12

 
+ N22 whereby the permuta-

tion of outputs is reflected by the replacement of N11
 
+ N21 with (N11

 
+ N21)

PO
. This 

second interim FN can be described by the block-scheme in Fig.7.32 and the topo-

logical expression in Eq.(7.41 from where it can be seen that all connections  

already have parallel paths. 
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                                               z11,12
1,1

 

  x11                                                                                                                            y12 

                                               z21,12
1,2                                      

 

  x21          (N11
 
+ N21)

PO
                                           N12

 
+ N22           y22                                         

                                               z11,22
2,1

                                         

                                                                      

Fig. 7.32 Second interim FN for Example 7.10 

[(N11
 
+ N21)

PO
] (x11, x21

 
| z11,12

1,1
,
 
z21,12

1,2
, z11,22

2,1
) *                                          (7.41) 

[N12 + N22] (z11,12
1,1

, z21,12
1,2

,
 
z11,22

2,1 
| y12, y22)                                                    

The nodes (N11
 
+ N21)

PO
 and N12 + N22 of the second interim FN can be merged 

horizontally due to the parallel connection paths. This merging operation trans-

forms the second interim FN into a final FN with a single equivalent node 

whereby the merging of nodes (N11
 
+ N21)

PO
 and N12 + N22 is reflected by their re-

placement with node (N11
 
+ N21)

PO
 * (N12 + N22). This final FN can be described 

by the block-scheme in Fig.7.33 and the topological expression in Eq.(7.42) from 

where it can be seen that the two composite nodes are implicit in the single 

equivalent node and the first composite node has permuted outputs. 

                                                

  x11                                                                                       y12 

                                               
                                     

 

  x21          (N11
 
+ N21)

PO
 * (N12 + N22)             y22                                         

                                                                                        

                                                                      

Fig. 7.33 Final FN for Example 7.10  

[(N11
 
+ N21)

PO
 * (N12 + N22)] (x11, x21

 
| y12, y22)                                                 (7.42) 

The considerations in Example 7.10 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.25-7.28 describe the process of deriving an 

unknown node in the initial FN from Fig.7.30 when the other nodes and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.43). 

NE = (N11
 
+ N21)

PO
 * (N12 + N22)                                                                        (7.43)                      



7.5   Networks with Multiple Levels and Multiple Layers 185

 

Algorithm 7.25 

1. Define NE, N21, N12 and N22. 

2. Find N12
 
+ N22 by vertical merging of N12

 
+ N22.  

3. Derive (N11
 
+ N21)

PO
 from Eq.(7.43), if possible.  

4. Find N11
 
+ N21 by inverse output permutation of (N11

 
+ N21)

PO
.  

5. Derive N11 from N11
 
+ N21, if possible. 

Algorithm 7.26 

1. Define NE, N11, N12 and N22. 

2. Find N12
 
+ N22 by vertical merging of N12

 
+ N22.  

3. Derive (N11
 
+ N21)

PO
 from Eq.(7.43), if possible.  

4. Find N11
 
+ N21 by inverse output permutation of (N11

 
+ N21)

PO
. 

5. Derive N21 from N11
 
+ N21, if possible. 

Algorithm 7.27 

1. Define NE, N11, N21 and N22. 

2. Find N11
 
+ N21 by vertical merging of N11

 
+ N21. 

3. Find (N11
 
+ N21)

PO
 by output permutation of N11

 
+ N21. 

4. Derive N12
 
+ N22 from Eq.(7.43), if possible.  

5. Derive N12 from N12
 
+ N22, if possible. 

Algorithm 7.28 

1. Define NE, N11, N21 and N12. 

2. Find N11
 
+ N21 by vertical merging of N11

 
+ N21. 

3. Find (N11
 
+ N21)

PO
 by output permutation of N11

 
+ N21. 

4. Derive N12
 
+ N22 from Eq.(7.43), if possible.  

5. Derive N22 from N12
 
+ N22, if possible. 

Example 7.11 

This example considers a FN with nodes N11, N21, N12 and N22 where x11 is an  

input for N11, x21 is an input for N21, y12 is an output for N12, y22 is an output for 

N22, z11,22
1,1

 is the connection from the first and only output for N11 to the first in-

put for N22, z21,12
1,1

 is the connection from the first output for N21 to the first and 

only input for N12 and z21,22
2,2

 is the connection from the second output for N21 to 

the second input for N22. This initial FN can be described by the block-scheme in 

Fig.7.34 and the topological expression in Eq.(7.44) from where it can be seen that 

the connections at the top and in the middle have crossing paths.    
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  x11                         z11,22
1,1                                                             

y12 

                 N11                                                                      N12                                                         

                                z21,12
1,1

                                         

  x21                                                                            y22 

                 N21                         z21,22
2,2                             

N22
                  

 

                  

Fig. 7.34 Initial FN for Example 7.11 

{[N11] (x11
 
| z11,22

1,1
) + [N21] (x21

 
| z21,12

1,1
, z21,22

2,2
)} *                                       (7.44) 

{[N12] (z21,12
1,1 

| y12) + [N22] (z11,22
1,1

, z21,22
2,2 

| y22)}                                                                          

The initial FN has four nodes which can be merged vertically in pairs, i.e. N11 with 

N21 and N12 with N22. This merging operation transforms the initial FN into a first 

interim FN with nodes N11
 
+ N21 and N12

 
+ N22 whereby the merging of nodes is 

reflected by the replacement of N11 and N21 with N11
 
+ N21 and the replacement of 

N12 and N22 with N12
 
+ N22. This first interim FN can be described by the block-

scheme in Fig.7.35 and the topological expression in Eq.(7.45) from where it can 

be seen that the connections at the top and in the middle still have crossing paths. 

                                     z11,22
1,1                                      

 

  x11                                                                                                                      y12                                         

                                     z21,12
1,1

                                         

  x21           N11
 
+ N21                                    N12

 
+ N22        y22  

                                            z21,22
2,2  

 

 

Fig. 7.35 First interim FN for Example 7.11 

[N11 + N21] (x11, x21
 
| z11,22

1,1
, z21,12

1,1
,
 
z21,22

2,2
) *                                                (7.45) 

[N12 + N22] (z21,12
1,1

, z11,22
1,1

,
 
z21,22

2,2 
| y12, y22)                                                    

In order to merge horizontally the nodes N11 + N21 and N12
 
+ N22 of the first in-

terim FN, it is necessary to remove the crossing of the connection paths. This can 

be done by permuting the connections z11,22
1,1

 and z21,12
1,1

 at their output points in 

node N11
 
+ N21. This permutation operation transforms the first interim FN into a 

second interim FN with nodes (N11
 
+ N21)

PO
 and  N12

 
+ N22 whereby the permuta-

tion of outputs is reflected by the replacement of N11
 
+ N21 with (N11

 
+ N21)

PO
. This 

second interim FN can be described by the block-scheme in Fig.7.36 and the topo-

logical expression in Eq.(7.46) from where it can be seen that all connections  

already have parallel paths. 
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                                               z21,12
1,1

 

  x11                                                                                                                            y12 

                                               z11,22
1,1                                      

 

  x21          (N11
 
+ N21)

PO
                                           N12

 
+ N22           y22                                         

                                               z21,22
2,2

                                         

                                                                      

Fig. 7.36 Second interim FN for Example 7.11 

[(N11
 
+ N21)

PO
] (x11, x21

 
| z21,12

1,1
,
 
z11,22

1,1
, z21,22

2,2
) *                                          (7.46) 

[N12 + N22] (z21,12
1,1

,
 
z11,22

1,1
, z21,22

2,2 
| y12, y22)                                                    

The nodes (N11
 
+ N21)

PO
 and N12 + N22 of the second interim FN can be merged 

horizontally due to the parallel connection paths. This merging operation trans-

forms the second interim FN into a final FN with a single equivalent node 

whereby the merging of nodes (N11
 
+ N21)

PO
 and N12 + N22 is reflected by their re-

placement with node (N11
 
+ N21)

PO
 * (N12 + N22). This final FN can be described 

by the block-scheme in Fig.7.33 and the topological expression in Eq.(7.42) from 

Example 7.10. 

The considerations in Example 7.11 are concerned with network analysis when 

all network nodes are known. In the case of network design, at least one node is 

unknown. In this context, Algorithms 7.25-7.28 from Example 7.10 describe the 

process of deriving an unknown node in the initial FN from Fig.7.34 when the 

other nodes and the single equivalent node NE are known. In this case, node NE is 

given by the Boolean matrix equation in Eq.(7.43) from Example 7.10. 

Example 7.12 

This example considers a FN with nodes N11, N21, N12 and N22 where x11 is an  

input for N11, x21 is an input for N21, y12 is an output for N12, y22 is an output for  

N22, z11,12
1,1

 is the connection from the first and only output for N11 to the first  

input for N12 and z21,12,22
1,2,1

 is the connection from the first and only output for N21 

to the second input for N12 and the second and only input for N22. This initial  

FN can be described by the block-scheme in Fig.7.37 and the topological expres-

sion in Eq.(7.47) from where it can be seen that the connection at the top is an  

uncommon input for the nodes in the second layer.    

  x11                               z11,12
1,1

 

                  N11                                                                                                   y12 

                                             
                                    

N12 

                                                                                                                                                  

  x21                       z21,12,22
1,2,1

                                     y22 

                 N21                                              N22 

Fig. 7.37 Initial FN for Example 7.12 
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{[N11] (x11
 
| z11,12

1,1
) + [N21] (x21

 
| z21,12,22

1,2,1
)} *                                               (7.47)  

{[N12] (z11,12
1,1

, z21,12,22
1,2,1 

| y12) + [N22] (z21,12,22
1,2,1 

| y22)}                                                                

In order to merge the outputs of the nodes N12 and N22 of the initial FN, it is neces-

sary to augment the top connection z11,12
1,1

, so that it becomes a common input for 

these two nodes. This augmentation operation transforms the initial FN into a first 

interim FN with nodes N11, N21, N12
 
and N22

AI
 whereby the augmentation of inputs 

is reflected by the replacement of N22 with N22
AI

. This first interim FN can be de-

scribed by the block-scheme in Fig.7.38 and the topological expression in 

Eq.(7.48) from where it can be seen that all inputs for the nodes in the second 

layer are already common. 

  x11                       z11,12
1,1

 

                  N11                                                                                                y12 

                                             
                                    

N12 

 

 

                                                                                                                        y22                             

  x21                     z21,12,22
1,2,1

                         N22
AI

               

                 N21                                               

Fig. 7.38 First interim FN for Example 7.12 

{[N11] (x11
 
| z11,12

1,1
) + [N21] (x21

 
| z21,12,22

1,2,1
)} *                                               (7.48) 

{[N12] (z11,12
1,1

, z21,12,22
1,2,1 

| y12) + [N22
AI

] (z11,12
1,1

, z21,12,22
1,2,1 

| y22)}                                                

The first interim FN has four nodes whereby N11 can be vertically merged with N21 

and N12 can be output merged with N22
AI

. These merging operations transform the 

first interim FN into a second interim FN with nodes N11
 
+ N21 and N12

 
; N22

AI
 

whereby the merging of nodes is reflected by the replacement of N11 and N21 with 

N11
 
+ N21 and the replacement of N12 and N22 with N12

 
; N22

AI
. This second interim 

FN can be described by the block-scheme in Fig.7.39 and the topological expres-

sion in Eq.(7.49) from where it can be seen that all connections already have  

parallel paths. 

  x11                                                 z11,12
1,1

                                                          y12 

                                               
                                      

 

  x21           N11
 
+ N21        z21,12,22

1,2,1 
            N12

 
; N22

AI
             y22                                         

                                                                                       

                                                                      

Fig. 7.39 Second interim FN for Example 7.12 
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[N11
 
+ N21] (x11, x21

 
| z11,12

1,1
, z21,12,22

1,2,1
) *                                                        (7.49) 

[N12 ; N22
AI

] (z11,12
1,1

, z21,12,22
1,2,1  

| y12, y22)                                                                  

The nodes N11
 
+ N21 and N12 ; N22

AI
 of the second interim FN can be merged  

horizontally due to the parallel connection paths. This merging operation trans-

forms the second interim FN into a final FN with a single equivalent node 

whereby the merging of nodes N11
 
+ N21 and N12 ; N22

AI
 is reflected by their re-

placement with node (N11
 
+ N21) * (N12 ; N22

AI
). This final FN can be described by 

the block-scheme in Fig.7.40 and the topological expression in Eq.(7.50) from 

where it can be seen that the two composite nodes are implicit in the single 

equivalent node and the tail of the second composite node has augmented inputs. 

  x11                                                                                       y12 

                                               
                                     

 

  x21           (N11
 
+ N21) * (N12 ; N22

AI
)              y22                                         

                                                                                        

                                                                      

Fig. 7.40 Final FN for Example 7.12 

[(N11
 
+ N21) * (N12 ; N22

AI
)] (x11, x21

 
| y12, y22)                                                   (7.50) 

The considerations in Example 7.12 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.29-7.32 describe the process of deriving an 

unknown node in the initial FN from Fig.7.37 when the other nodes and the single 

equivalent node NE are known. In this case, node NE is given by the Boolean  

matrix equation in Eq.(7.51). 

NE = (N11
 
+ N21) * (N12 ; N22

AI
)                                                                         (7.51)                       

Algorithm 7.29 

1. Define NE, N21, N12 and N22. 

2. Find N22
AI

 by input augmentation of N22. 

3. Find N12
 
; N22

AI
 by output merging of N12

 
and N22

AI
. 

4. Derive N11
 
+ N21 from Eq.(7.51), if possible.  

5. Derive N11 from N11
 
+ N21, if possible. 

Algorithm 7.30 

1. Define NE, N11, N12 and N22. 

2. Find N22
AI

 by input augmentation of N22. 

3. Find N12
 
; N22

AI
 by output merging of N12

 
and N22

AI
. 

4. Derive N11
 
+ N21 from Eq.(7.51), if possible.  

5. Derive N21 from N11
 
+ N21, if possible. 
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Algorithm 7.31 

1. Define NE, N11, N21 and N22. 

2. Find N11
 
+ N21 by vertical merging of N11

 
+ N21. 

3. Derive N12
 
; N22

AI
 from Eq.(7.51), if possible.  

4. Find N22
AI

 by input augmentation of N22. 

5. Derive N12 from N12
 
; N22

AI
, if possible. 

Algorithm 7.32 

1. Define NE, N11, N21 and N12. 

2. Find N11
 
+ N21 by vertical merging of N11

 
+ N21.  

3. Derive N12
 
; N22

AI
 from Eq.(7.51), if possible.  

4. Derive N22
AI

 from N12
 
; N22

AI
, if possible. 

5. Find N22 by inverse input augmentation of N22
AI

. 

Example 7.13 

This example considers a FN with nodes N11, N21, N12 and N22 where x11 is an  

input for N11, x21 is an input for N21, y12 is an output for N12, y22 is an output for 

N22, z11,12,22
1,1,1

 is the connection from the first and only output for N11 to the first 

and only input for N12 and the first input for N22 and z21,22
1,2

 is the connection from 

the first and only output for N21 to the second input for N22. This initial FN can be 

described by the block-scheme in Fig.7.41 and the topological expression in 

Eq.(7.52) from where it can be seen that the connection at the bottom is an  

uncommon input for the nodes in the second layer.    

  x11                      z11,12,22
1,1,1

                                      y12 

                  N11                                                                       N12                            

                                             
                                    

 

                                                                                                                      y22                        

  x21                               z21,22
1,2

                    N22           

                 N21                                               

Fig. 7.41 Initial FN for Example 7.13 

{[N11] (x11
 
| z11,12,22

1,1,1
) + [N21] (x21

 
| z21,22

1,2
)} *                                               (7.52) 

{[N12] (z11,12,22
1,1,1

 | y12) + [N22] (z11,12,22
1,1,1

, z21,22
1,2 

| y22)}                                                                

In order to merge the outputs of the nodes N12 and N22 of the initial FN, it is neces-

sary to augment the bottom connection z21,22
1,2

, so that it becomes a common input 

for these two nodes. This augmentation operation transforms the initial FN into a 

first interim FN with nodes N11, N21, N12
AI 

and N22 whereby the augmentation of 

inputs is reflected by the replacement of N12 with N12
AI

. This first interim FN can 

be described by the block-scheme in Fig.7.42 and the topological expression in 
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Eq.(7.53) from where it can be seen that all inputs for the nodes in the second 

layer are already common. 

  x11                    z11,12,22
1,1,1

 

                  N11                                                                                                y12 

                                             
                                    

N12
AI

 

 

 

                                                                                                                        y22                             

  x21                       z21,22
1,2

                             N22               

                 N21                                               

Fig. 7.42 First interim FN for Example 7.13 

{[N11] (x11
 
| z11,12,22

1,1,1
) + [N21] (x21

 
| z21,22

1,2
)} *                                               (7.53) 

{[N12
AI

] (z11,12,22
1,1,1

, z21,22
1,2

 | y12) + [N22] (z11,12,22
1,1,1

, z21,22
1,2 

| y22)}                                                 

The first interim FN has four nodes whereby N11 can be vertically merged with N21 

and N12
AI

 can be output merged with N22. These merging operations transform the 

first interim FN into a second interim FN with nodes N11
 
+ N21 and N12

AI 
; N22 

whereby the merging of nodes is reflected by the replacement of N11 and N21 with 

N11
 
+ N21 and the replacement of N12

AI
 and N22 with N12

AI 
; N22. This second in-

terim FN can be described by the block-scheme in Fig.7.43 and the topological 

expression in Eq.(7.54) from where it can be seen that all connections already 

have parallel paths. 

           

  x11                                            z11,12,22
1,1,1

                                                       y12 

                                               
                                      

 

  x21           N11
 
+ N21        

 
  z21,22

1,2
                 N12

AI 
; N22              y22                                         

                                                                                       

                                                                      

Fig. 7.43 Second interim FN for Example 7.13 

[N11
 
+ N21] (x11, x21

 
| z11,12,22

1,1,1
,
 
z21,22

1,2
) *                                                        (7.54) 

[N12
AI

 ; N22] (z11,12,22
1,1,1

, z21,22
1,2 

| y12, y22)                                                          

The nodes N11
 
+ N21 and N12

AI
 ; N22 of the second interim FN can be merged  

horizontally due to the parallel connection paths. This merging operation trans-

forms the second interim FN into a final FN with a single equivalent node 

whereby the merging of nodes N11
 
+ N21 and N12

AI
 ; N22 is reflected by their re-

placement with node (N11
 
+ N21) * (N12

AI
 ; N22). This final FN can be described by 
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the block-scheme in Fig.7.44 and the topological expression in Eq.(7.55) from 

where it can be seen that the two composite nodes are implicit in the single 

equivalent node and the head of the second composite node has augmented inputs. 

  x11                                                                                       y12 

                                               
                                     

 

  x21           (N11
 
+ N21) * (N12

AI
 ; N22)              y22                                         

                                                                                        

                                                                      

Fig. 7.44 Final FN for Example 7.13 

[(N11
 
+ N21) * (N12

AI
 ; N22)] (x11, x21

 
| y12, y22)                                                   (7.55) 

The considerations in Example 7.13 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is  

unknown. In this context, Algorithms 7.33-7.36 describe the process of deriving 

an unknown node in the initial FN from Fig.7.41 when the other nodes and the 

single equivalent node NE are known. In this case, node NE is given by the  

Boolean matrix equation in Eq.(7.56). 

NE = (N11
 
+ N21) * (N12

AI
 ; N22)                                                                         (7.56) 

Algorithm 7.33 

1. Define NE, N21, N12 and N22. 

2. Find N12
AI

 by input augmentation of N12. 

3. Find N12
AI 

; N22 by output merging of N12
AI 

and N22. 

4. Derive N11
 
+ N21 from Eq.(7.56), if possible.  

5. Derive N11 from N11
 
+ N21, if possible. 

Algorithm 7.34 

1. Define NE, N11, N12 and N22. 

2. Find N12
AI

 by input augmentation of N12. 

3. Find N12
AI 

; N22
AI

 by output merging of N12
AI 

and N22.  

4. Derive N11
 
+ N21 from Eq.(7.56), if possible.  

5. Derive N21 from N11
 
+ N21, if possible. 

Algorithm 7.35 

1. Define NE, N11, N21 and N22. 

2. Find N11
 
+ N21 by vertical merging of N11

 
+ N21.  

3. Derive N12
AI 

; N22 from Eq.(7.56), if possible.  

4. Derive N12
AI

 from N12
AI 

; N22, if possible. 

5. Find N12
 
by inverse input augmentation of N12

AI
. 
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Algorithm 7.36 

1. Define NE, N11, N21 and N12. 

2. Find N11
 
+ N21 by vertical merging of N11

 
+ N21.  

3. Derive N12
AI 

; N22 from Eq.(7.56), if possible. 

4. Find N12 by input augmentation of N12
AI

. 

5. Derive N22
 
 from N12

AI 
; N22, if possible. 

Example 7.14 

This example considers a FN with nodes N11, N21, N12 and N22 where x11 is an  

input for N11, x21,12
1,2

 is an input for N21 and the second input for N12, y12 is an out-

put for N12, y22 is an output for N22, z11,12
1,1

 is the connection from the first and 

only output for N11 to the first input for N12 and z21,22
1,1

 is the connection from the 

first and only output for N21 to the first and only input for N22. This initial FN can 

be described by the block-scheme in Fig.7.45 and the topological expression in 

Eq.(7.57) from where it can be seen that the input at the bottom propagates 

through the first layer.    

             x11                                z11,12
1,1

 

                                                     N11                                                          y12 

                                             
                                    

N12 

                                                                                                                                                  

  x21,12
1,2

                                    z21,22
1,1

                       y22 

                                       N21                        N22 

Fig. 7.45 Initial FN for Example 7.14 

{[N11] (x11
 
| z11,12

1,1
) ; [N21] (x21,12

1,2 
| z21,22

1,1
)} *                                               (7.57) 

{[N12] (z11,12
1,1

, x21,12
1,2 

| y12) + [N22] (z21,22
1,1 

| y22)}                                                                           

The input x21,12
1,2

 is propagating through the first layer of the FN within a virtual 

level between the first and the second level. This propagation can be represented 

by inserting an implicit identity node I1.5,1. This representation transforms the ini-

tial FN into a first interim FN with nodes N11, N21, N12, N22 and I1.5,1. This first  

interim FN can be described by the block-scheme in Fig.7.46 and the topological 

expression in Eq.(7.58) from where it can be seen that the bottom input propagates 

through the first layer by means of the identity node. 
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             x11                               z11,12
1,1

 

                                                     N11                                                          y12 

                                             
      

x21,12
1,2             

N12 

                                                  I1.5,1                                                                                               

   x21,12
1,2

                                   z21,22
1,1

                       y22 

                                       N21                        N22 

Fig. 7.46 First interim FN for Example 7.14 

{[N11] (x11
 
| z11,12

1,1
) ; [I1.5,1] (x21,12

1,2 
| x21,12

1,2
) ; [N21] (x21,12

1,2 
| z21,22

1,1
)} *      (7.58) 

{[N12] (z11,12
1,1

, x21,12
1,2 

| y12) + [N22] (z21,22
1,1 

| y22)}                                                                           

In order to merge the outputs of the nodes N11, I1.5,1 and N21 of the first interim FN, 

it is necessary to augment the two inputs x11 and x21,12
1,2

 so that they become 

common inputs for these three nodes. This augmentation operation transforms the 

first interim FN into a second interim FN with nodes N11
AI

, I1.5,1
AI

, N21
AI

, N12 and 

N22 whereby the merging of nodes is reflected by the replacement of N11 with 

N11
AI

,  I1.5,1
 
with I1.5,1

AI
 and N21 with N21

AI
. This second interim FN can be  

described by the block-scheme in Fig.7.47 and the topological expression in 

Eq.(7.59).  

                                                              

                                                                z11,12
1,1

 

                              N11
AI

                                                                                                          y12 

                                                                                                                                    N12 

        x11                                   

                                                        x21,12
1,2

          

     x21,12
1,2 

                  I1.5,1
AI

                                                                 

                                                                                           

 

                                                                      z21,22
1,1 

                                                           y22 

                                   N21
AI

                                                                                        N22 

 

Fig. 7.47 Second interim FN for Example 7.14 

{[N11
AI

] (x11, x21,12
1,2 

| z11,12
1,1

) ; [I1.5,1
AI

] (x11, x21,12
1,2 

| x21,12
1,2

) ;                       (7.59) 

[N21
AI

] (x11, x21,12
1,2 

| z21,22
1,1

)} *   

{[N12] (z11,12
1,1

, x21,12
1,2 

| y12) + [N22] (z21,22
1,1 

| y22)}                                                            

The second interim FN has five nodes. In this case, N11
AI

 can be output merged 

with I1.5,1
AI

 and N21
AI

 whereas N12 can be vertically merged with N22. These  
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merging operations transform the second interim FN into a third interim FN with 

nodes  N11
AI 

; I1.5,1
AI

 ; N21
AI

 and N12
 
+ N22 whereby the merging of nodes is re-

flected by the replacement of N11
AI

, I1.5,1
AI

 and N21
AI

 with N11
AI 

; I1.5,1
AI

 ; N21
AI

 and 

the replacement of N12 and N22 with N12
 
+ N22. This third interim FN can be de-

scribed by the block-scheme in Fig.7.48 and the topological expression in 

Eq.(7.60) from where it can be seen that all connections already have parallel 

paths. 

                                                             z11,12
1,1

 

  x11                                                                                                                                                    y12 

                                               
                     

x21,12
1,2          

 

   x21,12
1,2 

        N11
AI 

; I1.5,1
AI

 ; N21
AI

                                   N12
 
+ N22            y22                                         

                                                             z21,22
1,1

                        

             

Fig. 7.48 Third interim FN for Example 7.14 

[N11
AI 

; I1.5,1
AI

 ; N21
AI

] (x11, x21,12
1,2 

| z11,12
1,1

, x21,12
1,2

, z21,22
1,1

) *                         (7.60) 

[N12 + N22] (z11,12
1,1

, x21,12
1,2

, z21,22
1,1 

| y12, y22)                                                                             

The nodes N11
AI 

; I1.5,1
AI

 ; N21
AI

 and N12
 
+ N22 of the third interim FN can be 

merged horizontally due to the parallel connection paths. This merging operation  

transforms the third interim FN into a final FN with a single equivalent node 

whereby the merging of nodes N11
AI 

; I1.5,1
AI

 ; N21
AI

 and N12 + N22 is reflected by 

their replacement with node (N11
AI 

; I1.5,1
AI

 ; N21
AI

) * (N12 + N22). This final FN can 

be described by the block-scheme in Fig.7.49 and the topological expression in 

Eq.(7.61) from where it can be seen that the two composite nodes are implicit in 

the single equivalent node and the nodes in the first composite node have  

augmented inputs.  

  x11                                                                                                              y12 

                                               
                                     

 

   x21,12
1,2

        (N11
AI 

; I1.5,1
AI

 ; N21
AI

) * (N12 + N22)              y22                                         

                                                                                        

Fig. 7.49 Final FN for Example 7.14 

[(N11
AI 

; I1.5,1
AI

 ; N21
AI

) * (N12 + N22)] (x11, x21,12
1,2 

| y12, y22)                             (7.61)                      

The considerations in Example 7.14 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.37-7.40 describe the process of deriving an 

unknown node in the initial FN from Fig.7.45 when the other nodes, the implicit 
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identity node I1.5,1
AI

 and the single equivalent node NE are known. In this case, 

node NE is given by the Boolean matrix equation in Eq.(7.62). 

NE = (N11
AI 

; I1.5,1
AI

 ; N21
AI

) * (N12 + N22)                                                          (7.62)                     

Algorithm 7.37 

1. Define NE, N21, N12, N22 and I1.5,1
AI

. 

2. Find I1.5,1
AI

 by input augmentation of I1.5,1. 

3. Find N21
AI

 by input augmentation of N21. 

4. Find N12
 
+ N22 by vertical merging of N12

 
and N22.  

5. Derive N11
AI 

; I1.5,1
AI

 ; N21
AI

 from Eq.(7.62), if possible.  

6. Derive N11
AI

 from N11
AI 

; I1.5,1
AI

 ; N21
AI

, if possible. 

7. Find N11 by inverse input augmentation of N11
AI

. 

Algorithm 7.38 

1. Define NE, N11, N12, N22 and I1.5,1
AI

. 

2. Find I1.5,1
AI

 by input augmentation of I1.5,1. 

3. Find N11
AI

 by input augmentation of N11. 

4. Find N12
 
+ N22 by vertical merging of N12

 
and N22.  

5. Derive N11
AI 

; I1.5,1
AI

 ; N21
AI

 from Eq.(7.62), if possible.  

6. Derive N21
AI

 from N11
AI 

; I1.5,1
AI

 ; N21
AI

, if possible. 

7. Find N21 by inverse input augmentation of N21
AI

. 

Algorithm 7.39 

1. Define NE, N11, N21, N22 and I1.5,1
AI

. 

2. Find N11
AI

 by input augmentation of N11. 

3. Find I1.5,1
AI

 by input augmentation of I1.5,1. 

4. Find N21
AI

 by input augmentation of N21. 

5. Find N11
AI 

; I1.5,1
AI

 ; N21
AI 

by output merging of N11
AI

, I1.5,1
AI

 and N21
AI

. 

6. Derive N12
 
+ N22 from Eq.(7.62), if possible.  

7. Derive N12 from N12
 
+ N22, if possible. 

Algorithm 7.40 

1. Define NE, N11, N21, N12 and I1.5,1
AI

. 

2. Find N11
AI

 by input augmentation of N11. 

3. Find I1.5,1
AI

 by input augmentation of I1.5,1. 

4. Find N21
AI

 by input augmentation of N21. 

5. Find N11
AI 

; I1.5,1
AI

 ; N21
AI 

by output merging of N11
AI

, I1.5,1
AI

 and N21
AI

. 

6. Derive N12
 
+ N22 from Eq.(7.62), if possible.  

7. Derive N22 from N12
 
+ N22, if possible. 
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Example 7.15 

This example considers a FN with nodes N11, N21, N12 and N22 where x11,22
1,1

 is an 

input for N11 and the first input for N22, x21 is an input for N21, y12 is an output for 

N12, y22 is an output for N22, z11,12
1,1

 is the connection from the first and only output 

for N11 to the first and only input for N12 and z21,22
1,2

 is the connection from the 

second and only output for N21 to the second input for N22. This initial FN can be 

described by the block-scheme in Fig.7.50 and the topological expression in 

Eq.(7.63) from where it can be seen that the input at the top propagates through 

the first layer.   

   x11,22
1,1

                                   z11,12
1,1                                   

y12 

                                                     N11                                     N12                    

                                             
                                    

 

                                                                                                                       y22                             

              x21                               z21,22
1,2

         N22             

                                       N21                         

Fig. 7.50 Initial FN for Example 7.15 

{[N11] (x11,22
1,1 

| z11,12
1,1

) ; [N21] (x21
 
| z21,22

1,2
)} *                                               (7.63) 

{[N12] (z11,12
1,1

, x11,22
1,1 

| y12) + [N22] (z21,22
1,2 

| y22)}                                                                           

The input x11,22
1,1 

is propagating through the first layer of the FN within a virtual 

level between the first and the second level. This propagation can be represented 

by inserting an implicit identity node I1.5,1. This representation transforms the ini-

tial FN into a first interim FN with nodes N11, N21, N12, N22 and I1.5,1. This first  

interim FN can be described by the block-scheme in Fig.7.51 and the topological 

expression in Eq.(7.64) from where it can be seen that the top input propagates 

through the first layer by means of the identity input. 

   x11,22
1,1 

                                  z11,12
1,1                                    

y12 

                                                     N11                                    N12                      

                                             
      

x11,22
1,1             

 

                                                  I1.5,1                                                           y22                                 

              x21                              z21,22
1,2

         N22             

                                       N21                         

Fig. 7.51 First interim FN for Example 7.15 

{[N11] (x11,22
1,1 

| z11,12
1,1

) ; [I1.5,1] (x11,22
1,1 

| x11,22
1,1

) ; [N21] (x21
 
| z21,22

1,2
)} *      (7.64) 

{[N12] (z11,12
1,1 

| y12) + [N22] (x11,22
1,1

,
 
z21,22

1,2 
| y22)}                                                                           
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In order to merge the outputs of the nodes N11, I1.5,1 and N21 of the first interim FN, 

it is necessary to augment the two inputs x11,22
1,1 

and x21 so that they become 

common inputs for these three nodes. This augmentation operation transforms the 

first interim FN into a second interim FN with nodes N11
AI

, I1.5,1
AI

, N21
AI

, N12 and 

N22 whereby the merging of nodes is reflected by the replacement of N11 with 

N11
AI

,  I1.5,1
 
with I1.5,1

AI
 and N21 with N21

AI
. This second interim FN can be de-

scribed by the block-scheme in Fig.7.52 and the topological expression in 

Eq.(7.65).  

                                                                z11,12
1,1

                                       y12 

                              N11
AI

                                                                                   N12                        

                                                                                                                                     
     x11,22

1,1 
                                   

                                                        x11,22
1,1

          

        x21
 
                     I1.5,1

AI
                                                                 

                                                                                           

                                                                                                                 y22                 

                                                                      z21,22
1,2 

                                     N22                         

                                   N21
AI

                                                                                         

 

Fig. 7.52 Second interim FN for Example 7.15 

{[N11
AI

] (x11,22
1,1

, x21 | z11,12
1,1

) ; [I1.5,1
AI

] (x11,22
1,1

, x21
 
| x11,22

1,1
) ;                       (7.65) 

[N21
AI

] (x11,22
1,1

, x21
 
| z21,22

1,2
)} *   

{[N12] (z11,12
1,1 

| y12) + [N22] (x11,22
1,1

, z21,22
1,2 

| y22)}                                                            

The second interim FN has five nodes. In this case, N11
AI

 can be output merged 

with I1.5,1
AI

 and N21
AI

 whereas N12 can be vertically merged with N22. These merg-

ing operations transform the second interim FN into a third interim FN with nodes  

N11
AI 

; I1.5,1
AI

 ; N21
AI

 and N12
 
+ N22 whereby the merging of nodes is reflected by 

the replacement of N11
AI

, I1.5,1
AI

 and N21
AI

 with N11
AI 

; I1.5,1
AI

 ; N21
AI

 and the re-

placement of N12 and N22 with N12
 
+ N22. This third interim FN can be described 

by the block-scheme in Fig.7.53 and the topological expression in Eq.(7.66) from 

where it can be seen that all connections already have parallel paths. 
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                                                             z11,12
1,1

 

    x11,22
1,1

                                                                                                                                               y12 

                                               
                     

x11,22
1,1          

 

   
 
   x21            N11

AI 
; I1.5,1

AI
 ; N21

AI
                                   N12

 
+ N22            y22                                         

                                                             z21,22
1,2

                        

             

Fig. 7.53 Third interim FN for Example 7.15 

[N11
AI 

; I1.5,1
AI

 ; N21
AI

] (x11,22
1,1

, x21
 
| z11,12

1,1
, x11,22

1,1
, z21,22

1,2
) *                         (7.66) 

[N12 + N22] (z11,12
1,1

, x11,22
1,1

, z21,22
1,2 

| y12, y22)                                                                             

The nodes N11
AI 

; I1.5,1
AI

 ; N21
AI

 and N12
 
+ N22 of the third interim FN can be 

merged horizontally due to the parallel connection paths. This merging operation 

transforms the third interim FN into a final FN with a single equivalent node 

whereby the merging of nodes N11
AI 

; I1.5,1
AI

 ; N21
AI

 and N12 + N22 is reflected by 

their replacement with node (N11
AI 

; I1.5,1
AI

 ; N21
AI

) * (N12 + N22). This final FN can 

be described by the block-scheme in Fig.7.54 and the topological expression in 

Eq.(7.67) from where it can be seen that the two composite nodes are implicit in 

the single equivalent node and the nodes in the first composite node have  

augmented inputs.  

    x11,22
1,1

                                                                                                         y12 

                                               
                                     

 

  x21           (N11
AI 

; I1.5,1
AI

 ; N21
AI

) * (N12 + N22)              y22                                         

                                                                                        

Fig. 7.54 Final FN for Example 7.15  

[(N11
AI 

; I1.5,1
AI

 ; N21
AI

) * (N12 + N22)] (x11,22
1,1

, x21
 
| y12, y22)                             (7.67)                      

The considerations in Example 7.15 are concerned with network analysis when all 

network nodes are known. In the case of network design, at least one node is un-

known. In this context, Algorithms 7.37-7.40 from Example 7.14 describe the 

process of deriving an unknown node in the initial FN from Fig.7.50 when the 

other nodes, the implicit identity node I1.5,1
AI

 and the single equivalent node NE are 

known. In this case, node NE is given by the Boolean matrix equation Eq.(7.62) 

from Example 7.14. 

7.6   Summary on Feedforward Fuzzy Networks 

The examples presented in this chapter illustrate the application of basic  

operations, their properties and advanced operations in feedforward FNs. These 
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examples validate theoretically the linguistic composition approach used in the 

book. This applies particularly to FNs with multiple levels and multiple layers 

which are the most complex type of feedforward FNs. However, the other two less 

complex types of feedforward FNs, i.e. FNs with single level and multiple layers 

as well as FNs with multiple levels and single layer, are also quite useful in that 

they are usually part of FNs with multiple levels and multiple layers. In this con-

text, the simplest type of feedforward FNs, i.e. FNs with single level and single 

layer, are discussed only briefly as they are identical with fuzzy systems. 

The different types of feedforward FNs can accommodate different types of 

nodes, e.g. parallel nodes and sequential nodes. In this case, parallel nodes are 

used for tasks that can always be carried out at the same time whereas sequential 

nodes are used for tasks that can only be carried out one at a time. So, the type of 

tasks to be carried out in a FN determines the type of FN to be used. 

The relationship between different types of FNs and nodes is described in     

Table 7.1.  

Table 7.1 Relationship between types of FNs and nodes 

Feedforward FN Parallel nodes Sequential nodes 

Single level and  

single layer 

No No 

Single level and 

multiple layers 

No Yes 

Multiple levels and  

single layer 

Yes No 

Multiple levels and  

multiple layers 

Yes Yes 

The next chapter shows more applications of the theoretical results from  

Chapters 4-6 to FNs. In particular, several basic types of feedback FNs are  

considered. 
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Chapter 8 

Feedback Fuzzy Networks 

8.1   Preliminaries on Feedback Fuzzy Networks 

The application of basic operations, their structural properties and advanced opera-

tions in Chapter 7 is illustrated only in feedforward FNs. The examples presented 

there show the application of the above operations and their properties to the overall 

structure of FNs with single or multiple levels and layers. Although these networks 

may have a fairly complex structure, they are assumed to have connections only in a 

forward direction. Therefore, it is necessary to extend these considerations to more 

complex networks in terms of the direction of their connections.  

The current chapter describes the application of basic operations, their struc-

tural properties and advanced operations in feedback FNs. The latter are FNs some 

of whose connections are in a backward direction, i.e. from nodes residing in  

specific layers to nodes residing in the same or preceding layers. This feedback 

characteristic is reflected by left-sided arrows in the corresponding block scheme 

for the FN under consideration. In this context, a left-sided arrow represents an 

output from a node that is fed back as an input to the same or another node by 

means of a feedback node, i.e. a feedback rule base. 

Four types of feedback FNs are considered in the context of both analysis and 

design. The analysis part is presented first and is then followed by the design part. 

In the case of analysis, all feedback and network nodes are known whereby the 

aim is to derive a formula for the single node representing the linguistically 

equivalent fuzzy system. In the case of design, each feedback node is unknown at 

a time with all other feedback nodes and all network nodes known whereby the 

aim is to derive an algorithm for the unknown feedback node from the known 

feedback nodes, the known network nodes and the single node representing the 

linguistically equivalent fuzzy system. The design task can be easily extended to 

cases with more than one unknown feedback node. 

The four types of feedback FNs represent different network topologies with re-

spect to single or multiple local and global feedback in the underlying grid structure 

for the FN under consideration. Each of these types is illustrated with several exam-

ples that are presented at a fairly high level of abstraction using mainly block schemes 

and topological expressions. These formal models for FNs are at network level and 

they both lend themselves easily to advanced manipulations in the context of the lin-

guistic composition approach. Boolean matrices are used as formal models only im-

plicitly in block schemes and topological expressions as well as in design tasks. 
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All presented examples are for feedback FNs with a fairly small number of 

nodes but the extension of these examples to cases of higher dimension is straight-

forward. The only difference in this extension is the higher complexity of the for-

mulas for the derivation of the single node representing the linguistically equivalent 

fuzzy system in the case of analysis and the algorithms for the derivation of the  

unknown feedback node in the case of design.   

8.2   Networks with Single Local Feedback  

The simplest type of FN is the one with single local feedback. This network has 

only one node embraced by a feedback connection with a feedback node in it. In 

this case, the feedback is single as it appears only once but it is also local as it em-

braces only one node. There may be an arbitrary number of feedforward connec-

tions between this node and any other nodes as well as between any pair of other 

nodes. However, the presence of any feedforward connections does not remove 

the feedback characteristics of this type of FN due to the presence of the feedback 

connection with the feedback node. 

Example 8.1 

This example considers a FN with network nodes N11, N12 and feedback node F11 

embracing N11 where x11 is an input for N11, y12 is an output for N12, z11,12
1,1

 is the 

feedforward connection from the first output for N11 to the first and only input for 

N12,  v11 is the part of the feedback connection to F11 and w11 is the part of the 

feedback connection from F11. This initial FN represents a queue of two fuzzy sys-

tems that can be described by the block scheme in Fig.8.1 and the topological  

expression in Eq.(8.1) from where it can be seen that the node in the first layer is 

embraced by the feedback.  

  x11                     z11,12
1,1

                                   y12           

                                                           N12                    

      w11                N11          v11 

 

                 

                 F11 

Fig. 8.1 Initial FN for Example 8.1 

[N11 ] (x11,
 
w11

 
| z11,12

2,1
,
 
v11) * [N12] (z11,12

1,1 
| y12), [F11] (v11

 
| w11)                     (8.1)                      

The feedback node F11 represents a non-identity feedback connection. This is also 

implied by the use of different variable names for the input and the output for F11, 

i.e. v11 and w11. In order to apply the linguistic composition approach to the initial  
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FN, it is necessary to introduce a second level within the second layer of the  

underlying grid structure of the FN and to move F11 to this new grid cell.  

The above movement transforms the initial FN into a first interim FN whereby 

the non-identity feedback connection embracing the network node N11 is repre-

sented as a feedforward connection v11 between N11 and F11 and an identity  

feedback connection w11 embracing both N11 and F11. This first interim FN can be  

described by the block-scheme in Fig.8.2 and the topological expression in 

Eq.(8.2) from where it can be seen that F11 is already a feedforward node alongside 

the other two nodes. 

  x11                     z11,12
1,1

                                   y12           

                                                            N12                    

      w11                N11          v11                                          w11 

                                               F11 

                 

                  

Fig. 8.2 First interim FN for Example 8.1 

[N11 ] (x11,
 
w11

 
| z11,12

2,1
,
 
v11) * {[N12] (z11,12

1,1 
| y12) + [F11] (v11

 
| w11)}               (8.2)                      

Nodes N12 and F11 of the first interim FN can be merged vertically into a  

temporary node N12
 
+ F11. This temporary node can be further merged horizontally 

with node N11 on the left. These merging operations transform the first interim FN 

into a second interim FN with a single node whereby the horizontal merging of 

nodes N11 and N12
 
+ F11 is reflected by their replacement with node N11

 
* (N12

 
+ 

F11). This second interim FN can be described by the block-scheme in Fig.8.3 and 

the topological expression in Eq.(8.3) from where it can be seen that the single 

node is embraced by the identity feedback connection. 

  x11                                                           y12           

                                                                               

      w11                 N11
 
* (N12

 
+ F11)    

        
w11             

                                                

                 

                  

Fig. 8.3 Second interim FN for Example 8.1 

[N11
 
* (N12

 
+ F11)] (x11,

 
w11

 
| y12,

 
w11)                                                                  (8.3) 

The single node N11
 
* (N12

 
+ F11) with input set {x11, w11} and output set {y12, w11} 

can be further transformed into a single node with equivalent feedback (N11
 
* (N12

 

+ F11))
EF

 with input set {x11, x
EF

} and output set {y12, y
EF

}.This transformation 
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removes the identity feedback and makes the fuzzy system with feedback  

equivalent to a fuzzy system without feedback. As a result, the second interim FN 

is transformed into a final FN. This final FN can be described by the block-

scheme in Fig.8.4 and the topological expression in Eq.(8.4) from where it can be 

seen that the single node is not embraced by the identity feedback connection 

anymore. 

  x11                                                                     y12           

                                                                               

       x
EF

                (N11
 
* (N12

 
+ F11))

EF
    

      
   y

EF
             

                                                

Fig. 8.4 Final FN for Example 8.1  

[(N11
 
* (N12

 
+ F11))

EF
] (x11, x

EF  
| y12, y

EF
)                                                            (8.4) 

The considerations in Example 8.1 are concerned with network analysis when all 

network nodes and the feedback node are known. In the case of network design, 

the feedback node is unknown. In this context, Algorithm 8.1 describes the proc-

ess of deriving the unknown feedback node in the initial FN from Fig.8.1 when the 

network nodes and the single equivalent node NE are known. In this case, node NE 

is given by the Boolean matrix equation in Eq.(8.5). 

NE = (N11
 
* (N12

 
+ F11))

EF
                                                                                   (8.5)                       

Algorithm 8.1 

1. Define NE, N11 and N12. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to N11

 
* (N12

 
+ F11) in Eq.(8.5). 

4. Derive N12
 
+ F11 from NE in Eq.(8.5), if possible. 

5. Derive F11 from N12
 
+ F11, if possible. 

Example 8.2 

This example considers a FN with network nodes N11, N12 and feedback node F12 

embracing N12 where x11 is an input for N11, y12 is an output for N12, z11,12
1,1

 is the 

feedforward connection from the first and only output for N11 to the first input for 

N12,  v12 is the part of the feedback connection to F12 and w12 is the part of the 

feedback connection from F12. This initial FN represents a queue of two fuzzy sys-

tems that can be described by the block scheme in Fig.8.5 and the topological  

expression in Eq.(8.6) from where it can be seen that the node in the second layer 

is embraced by the feedback.  
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  x11                     z11,12
1,1

                                   y12           

                 N11                                                               

                                                w12                 N12              v12   

 

                 

                                               F12 

Fig. 8.5 Initial FN for Example 8.2 

[N11 ] (x11
 
| z11,12

2,1
) * [N12] (z11,12

1,1
,
 
w12

 
| y12, v12), [F12] (v12

 
| w12)                     (8.6)                     

The feedback node F12 represents a non-identity feedback connection. This is also 

implied by the use of different variable names for the input and the output for F12, 

i.e. v12 and w12. In order to apply the linguistic composition approach to the initial 

FN, it is necessary to introduce a second level within a third layer of the underly-

ing grid structure of the FN and to move F12 to this new grid cell. It is also neces-

sary to propagate y12 forwards through the third layer and insert an implicit  

identity node I13 in level 1 of layer 3. Likewise, it is necessary to propagate w12 

backwards through the first layer and insert an implicit identity node I21 in level 2 

of layer 1.  

The above movements and insertions transform the initial FN into a first  

interim FN whereby the non-identity feedback connection embracing the network 

node N12 is represented as a feedforward connection v12 between N12 and F12 and 

an identity feedback connection w12 embracing I21, N12 and F12. This first interim 

FN can be described by the block-scheme in Fig.8.6 and the topological expres-

sion in Eq.(8.7) from where it can be seen that F12 is already a feedforward node 

alongside the other four nodes. 

  x11                     z11,12
1,1

                                   y12                                        y12 

                 N11                                                                    I13 

      w12                                  w12                   N12              v12                          w12 

                 I21                                                        F12 

                 

                  

Fig. 8.6 First interim FN for Example 8.2   

{[N11 ] (x11
 
| z11,12

2,1
) + [I21] (w12

 
| w12)}* [N12] (z11,12

1,1
,
 
w12

 
| y12, v12) *             (8.7) 

{[I13] (y12 | y12) + [F12] (v12
 
| w12)}                                                                        

Nodes N11 and I21 of the first interim FN can be merged vertically into a temporary 

node N11
 
+ I21. Similarly, nodes I13 and F12 of the same interim FN can be merged 

vertically into another temporary node I13 + F12. These two temporary nodes can 

be further merged horizontally with node N12 in the middle. These merging  
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operations transform the first interim FN into a second interim FN with a single 

node whereby the horizontal merging of nodes N11
 
+ I21, N11 and I13 + F12 is  

reflected by their replacement with node (N11
 
+ I21) * N11 * (I13 + F12). This second 

interim FN can be described by the block-scheme in Fig.8.7 and the topological 

expression in Eq.(8.8) from where it can be seen that single node is embraced by 

the identity feedback connection. 

  x11                                                                                        y12           

                                                                               

      w12                 (N11
 
+ I21) * N12 * (I13 + F12)     

        
w12             

                                                

                 

                  

Fig. 8.7 Second interim FN for Example 8.2 

[(N11
 
+ I21) * N12 * (I13 + F12)] (x11,

 
w12

 
| y12,

 
w12)                                               (8.8) 

The single node (N11
 
+ I21) * N12 * (I13 + F12) with input set {x11, w12} and output 

set {y12, w12} can be further transformed into a single node with equivalent feed-

back ((N11
 
+ I21) * N12 * (I13 + F12))

EF 
with input set {x11, x

EF
} and output set  

{y12, y
EF

}. This transformation removes the identity feedback and makes the fuzzy 

system with feedback equivalent to a fuzzy system without feedback. As a result, 

the second interim FN is transformed into a final FN. This final FN can be de-

scribed by the block-scheme in Fig.8.8 and the topological expression in Eq.(8.9) 

from where it can be seen that the single node is not embraced by the identity 

feedback connection anymore. 

  x11                                                                                                y12           

                                                                               

      x
EF

                ((N11
 
+ I21) * N12 * (I13 + F12))

EF
     

       
  y

EF
        

                                                

Fig. 8.8 Final FN for Example 8.2  

[((N11
 
+ I21) * N12 * (I13 + F12))

EF
] (x11, x

EF 
| y12, y

EF
)                                          (8.9) 

The considerations in Example 8.2 are concerned with network analysis when all 

network nodes and the feedback nodes are known. In the case of network design, 

the feedback node is unknown. In this context, Algorithm 8.2 describes the proc-

ess of deriving the unknown feedback node in the initial FN from Fig.8.5 when the 

network nodes and the single equivalent node NE are known. In this case, node NE 

is given by the Boolean matrix equation in Eq.(8.10). 
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NE = ((N11
 
+ I21) * N12 * (I13 + F12))

EF
                                                              (8.10)                      

Algorithm 8.2 

1. Define NE, N11, N12, I21 and I13. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11

 
+ I21) * N12 * (I13 + F12) in Eq.(8.10).  

4. Find N11
 
+ I21 by vertical merging of N11

 
and I21. 

5. Find (N11
 
+ I21) * N12 by horizontal merging of N11

 
+ I21 and N12. 

6. Derive I13 + F12 from NE in Eq.(8.10), if possible. 

7. Derive F12 from I13 + F12, if possible. 

Example 8.3 

This example considers a FN with network nodes N11, N21 and feedback node F11 

embracing N11 where x11,21 is a common input for N11 and N21, y11 is an output for 

N11, y21 is an output for N21, v11 is the part of the feedback connection to F11 and 

w11 is the part of the feedback connection from F11. This initial FN represents a 

stack of two fuzzy systems that can be described by the block scheme in Fig.8.9 

and the topological expression in Eq.(8.11) from where it can be seen that the 

node in the first level is embraced by the feedback.  

                                                                       y11           

                                                                               

                               w11                N11            v11 

 

   x11,21                  

                                          F11 

 

                                                        y21 

                                          N21 

Fig. 8.9 Initial FN for Example 8.3 

[N11] (x11,21,
 
w11

 
| y11,

 
v11) ; [N21] (x11,21

 
| y21), [F11] (v11

 
| w11)                           (8.11)                       

The feedback node F11 represents a non-identity feedback connection. This is also 

implied by the use of different variable names for the input and the output for F11, 

i.e. v11 and w11. In order to apply the linguistic composition approach to the initial 

FN, it is necessary to introduce a virtual intermediate level just under the first 

level within a second layer of the underlying grid structure of the FN and to move 

F11 to this new grid cell. It is also necessary to propagate y11 forwards through the 

second layer and insert an implicit identity node I12 in level 1 of layer 2. Likewise, 

it is necessary to propagate y21 forwards through the second layer and insert an 

implicit identity node I22 in level 2 of layer 2.  
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The above movements and insertions transform the initial FN into a first  

interim FN whereby the non-identity feedback connection embracing the network  

node N11 is represented as a feedforward connection v11 between N11 and F11 and 

an identity feedback connection w11 embracing both N11 and F11. This first interim 

FN can be described by the block-scheme in Fig.8.10 and the topological expres-

sion in Eq.(8.12) from where it can be seen that F11 is already a feedforward node 

alongside the other four nodes. 

                                                                       y11                                      y11 

                                                                                      I12 

                               w11                N11            v11                                      w11 

                                                                         F11 

   x11,21                  

                                           

 

                                                        y21                           y21 

                                          N21                                       I22 

Fig. 8.10 First interim FN for Example 8.3  

{[N11] (x11,21,
 
w11

 
| y11,

 
v11) * {[I12] (y11

 
| y11) + [F11] (v11

 
| w11)}} ;                   (8.12)  

{[N21] (x11,21
 
| y21) * [I22] (y21

 
| y21)}                                                                                                   

Nodes I12 and F11 of the first interim FN can be merged vertically into a temporary 

node I12
 
+ F11. This temporary node can be further merged horizontally with node 

N11 on the left. Also, nodes N21 and I22 of the same FN can be merged horizontally 

into another temporary node N21 * I22. These merging operations transform the 

first interim FN into a second interim FN with two nodes whereby the horizontal 

merging of nodes N11 and I12
 
+ F11 is reflected by their replacement with node N11

 

* (I12
 
+ F11) and the horizontal merging of nodes N21 and I22 is reflected by their 

replacement with node N21
 
* I22. This second interim FN can be described by the 

block-scheme in Fig.8.11 and the topological expression in Eq.(8.13) from  

where it can be seen that the upper node is embraced by the identity feedback 

connection. 
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                                                                                              y11 

                                                                                       

                               w11               N11
 
* (I12

 
+ F11)            w11 

                                                                          

   x11,21                  

                                           

 

                                                                        y21 

                                               N21
 
* I22 

Fig. 8.11 Second interim FN for Example 8.3 

[N11
 
* (I12

 
+ F11)] (x11,21,

 
w11

 
| y11,

 
v11) ; [N21

 
* I22] (x11,21

 
| y21)                         (8.13)                      

The upper node N11
 
* (I12

 
+ F11) with input set {x11,21, w11} and output set  

{y11, w11} can be further transformed into a node with equivalent feedback  

(N11
 
* (I12

 
+ F11))

EF
 with input set {x11,21, x

EF
} and output set {y11, y

EF
}. This trans-

formation removes the identity feedback and makes the fuzzy subsystem with 

feedback equivalent to a fuzzy subsystem without feedback. As a result, the  

second interim FN is transformed into a third interim FN. This third interim FN 

can be described by the block-scheme in Fig.8.12 and the topological expression 

in Eq.(8.14) from where it can be seen that the upper node is not embraced by the 

identity feedback connection anymore. 

                                                                                                         y11 

                                                                                       

                               x
EF

              (N11
 
* (I12

 
+ F11))

EF
           y

EF
 

  x11,21                                                                       

                     

                                                                            y21 

                                                 N21
 
* I22 

Fig. 8.12 Third interim FN for Example 8.3 

[(N11
 
* (I12

 
+ F11))

EF
] (x11,21,

 
x

EF 
| y11,

 
y

EF
) ; [N21

 
* I22] (x11,21

 
| y21)                    (8.14)                     

In order to merge the outputs of nodes (N11
 
* (I12

 
+ F11))

EF
 and N21

 
* I22 of the third 

interim FN, it is necessary to augment the input x11,21 for N21
 
* I22 with the input 

x
EF

. This augmentation operation transforms the third interim FN into a fourth  

interim FN with common inputs for the two nodes whereby the second node N21
 
* 

I22 is transformed into a node (N21
 
* I22)

AI
 with input set {x11,21, x

EF
}. This fourth 

interim FN can be described by the block-scheme in Fig.8.13 and the topological 

expression in Eq.(8.15) from where it can be seen that the lower node has  

augmented inputs. 
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                                                                                                          y11 

                                                                                       

   x11,21                                       (N11
 
* (I12

 
+ F11))

EF
            y

EF
 

                                                                           

                     

                                                                            

   x
EF

                                                                    y21 

                                              (N21
 
* I22)

AI
 

 

Fig. 8.13 Fourth interim FN for Example 8.3 

[(N11
 
* (I12

 
+ F11))

EF
] (x11,21,

 
x

EF 
| y11,

 
y

EF
) ; [(N21

 
* I22)

AI
] (x11,21,

 
x

EF 
| y21)       (8.15)                      

The two composite nodes (N11
 
* (I12

 
+ F11))

EF
 and (N21

 
* I22)

AI
 of the fourth interim 

FN can be output merged into a single equivalent node (N11
 
* (I12

 
+ F11))

EF
 ;  

(N21
 
* I22)

AI
. As result of this merging operation, the fourth interim FN is  

transformed into a final FN. This final FN can be described by the block-scheme 

in Fig.8.14 and the topological expression in Eq.(8.16). 

                                                                                     y11 

x11,21                                                                                                               

                                                                                             y
EF

 

       x
EF

                (N11
 
* (I12

 
+ F11))

EF
 ; (N21

 
* I22)

AI      
                  

                                                                                y21 

                                                                                 

Fig. 8.14 Final FN for Example 8.3    

[(N11
 
* (I12

 
+ F11))

EF
 ; (N21

 
* I22)

AI
] (x11,21, x

EF  
| y11, y

EF
, y12)                             (8.16)                  

The considerations in Example 8.3 are concerned with network analysis when all 

network nodes and the feedback node are known. In the case of network design, 

the feedback node is unknown. In this context, Algorithm 8.3 describes the proc-

ess of deriving the unknown feedback node in the initial FN from Fig.8.9 when the 

network nodes and the single equivalent node in NE are known. In this case, node 

NE is given by the Boolean matrix equation in Eq.(8.17). 

NE = (N11
 
* (I12

 
+ F11))

EF
 ; (N21

 
* I22)

AI
                                                              (8.17)                      
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Algorithm 8.3 

1. Define NE, N11, N21, I12 and I22. 

2. Find N21
 
* I22 by horizontal merging of N21

 
and I22. 

3. Find (N21
 
* I22)

AI 
by input augmentation of N21

 
* I22. 

4. Derive N11
 
* (I12

 
+ F11))

EF 
from NE in Eq.(8.17), if possible. 

5. Confirm that N11
 
* (I12

 
+ F11))

EF 
satisfies the feedback constraints, if possible. 

6. Replace (N11
 
* (I12

 
+ F11))

EF 
with N11

 
* (I12

 
+ F11) in Eq.(8.17).  

7. Derive I12 + F11 from N11
 
* (I12

 
+ F11), if possible. 

8. Derive F11 from I12 + F11, if possible. 

Example 8.4 

This example considers a FN with network nodes N11, N21 and feedback node F21 

embracing N21 where x11,21 is a common input for N11 and N21, y11 is an output for 

N11, y21 is an output for N21, v21 is the part of the feedback connection to F21 and  

w21 is the part of the feedback connection from F21. This initial FN represents a 

stack of two fuzzy systems that can be described by the block scheme in Fig.8.15 

and the topological expression in Eq.(8.18) from where it can be seen that the 

node in the second level is embraced by the feedback.  

                                                              y11 

                                               N11 

   x11,21 

                                                                       y21           

                                                                               

                               w21                N21            v21 

 

                     

                                          F21 

Fig. 8.15 Initial FN for Example 8.4 

[N11] (x11,21
 
| y11) * [N21] (x11,21,

 
w21

 
| y21,

 
v21), [F21] (v21

 
| w21)                          (8.18)                       

The feedback node F21 represents a non-identity feedback connection. This is also 

implied by the use of different variable names for the input and the output for F21, 

i.e. v21 and w21. In order to apply the linguistic composition approach to the initial 

FN, it is necessary to introduce a virtual intermediate level just under the second 

level within a second layer of the underlying grid structure of the FN and to move 

F21 to this new grid cell. It is also necessary to propagate y11 forwards through the 

second layer and insert an implicit identity node I12 in level 1 of layer 2. Likewise, 

it is necessary to propagate y21 forwards through the second layer and insert an 

implicit identity node I22 in level 2 of layer 2.  

The above movements and insertions transform the initial FN into a first  

interim FN whereby the non-identity feedback connection embracing the network 
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node N21 is represented as a feedforward connection v21 between N21 and F21 and 

an identity feedback connection w21 embracing both N21 and F21. This first interim 

FN can be described by the block-scheme in Fig.8.16 and the topological expres-

sion in Eq.(8.19) from where it can be seen that F21 is already a feedforward node 

alongside the other four nodes. 

                                                         y11                        y11 

                                          N11                                     I12 

   x11,21 

                                                                      y21                                        y21 

                                                                                      I22 

                               w21                N21           v21                                        w21 

                                                                         F21 

                     

                                           

Fig. 8.16 First interim FN for Example 8.4  

{[N11] (x11,21
 
| y11) * [I12] (y12

 
| y12)} ;                                                                (8.19)        

{[N21] (x11,21,
 
w21

 
| y21,

 
v21) * {[I22] (y21

 
| y21) + [F21] (v21

 
| w21)}}                      

Nodes I22 and F21 of the first interim FN can be merged vertically into a temporary 

node I22
 
+ F21. This temporary node can be further merged horizontally with node N21 

on the left. Also, nodes N11 and I12 of the same FN can be merged horizontally into 

another temporary node N11 * I12. These merging operations transform the first in-

terim FN into a second interim FN with two nodes whereby the horizontal merging of 

nodes N21 and I22
 
+ F21 is reflected by their replacement with node N21

 
* (I22

 
+ F21) and 

the horizontal merging of nodes N11 and I12 is reflected by their replacement with 

node N11
 
* I12. This second interim FN can be described by the block-scheme in 

Fig.8.17 and the topological expression in Eq.(8.20) from where it can be seen that 

the lower node is embraced by the identity feedback connection. 

                                                                        y11 

                                               N11
 
* I12 

   x11,21 

                                                                                              y21 

                                                                                       

                               w21               N21
 
* (I22

 
+ F21)            w21 

                                                                          

                     

                                           

Fig. 8.17 Second interim FN for Example 8.4 
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[N11
 
* I12] (x11,21

 
| y11) ; [N21

 
* (I22

 
+ F21)] (x11,21,

 
w21

 
| y21,

 
w21)                         (8.20)                     

The lower node N21
 
* (I22

 
+ F21) with input set {x11,21, w21} and output set  

{y21, w21} can be further transformed into a node with equivalent feedback  

(N21
 
* (I22

 
+ F21))

EF
 with input set {x11,21, x

EF
} and output set {y21, y

EF
}. This trans-

formation removes the identity feedback and makes the fuzzy subsystem with 

feedback equivalent to a fuzzy subsystem without feedback. As a result, the  

second interim FN is transformed into a third interim FN. This third interim FN 

can be described by the block-scheme in Fig.8.18 and the topological expression 

in Eq.(8.21) from where it can be seen that the lower node is not embraced by the 

identity feedback connection anymore. 

                                                                                 y11 

                                                      N11
 
* I12 

   x11,21 

                                                                                                         y21 

                                                                                       

                               x
EF

              (N21
 
* (I22

 
+ F21))

EF
           y

EF
 

                                                                           

Fig. 8.18 Third interim FN for Example 8.4 

[N11
 
* I12] (x11,21

 
| y11) ; [(N21

 
* (I22

 
+ F21))

EF
] (x11,21,

 
x

EF 
| y21,

 
y

EF
)                   (8.21)                     

In order to merge the outputs of nodes N11
 
* I12 and (N21

 
* (I22

 
+ F21))

EF
 of the third 

interim FN, it is necessary to augment the input x11,21 for N11
 
* I12 with the input 

x
EF

. This augmentation operation transforms the third interim FN into a fourth in-

terim FN with common inputs for the two nodes whereby the first node N11
 
* I12 is 

transformed into a node (N11
 
* I12)

AI
 with input set {x11,21, x

EF
}. This fourth interim 

FN can be described by the block-scheme in Fig.8.19 and the topological expres-

sion in Eq.(8.22) from where it can be seen that the upper node has augmented  

inputs. 

                                                                            y11 

   x11,21                                        (N11
 
* I12)

AI
 

                                               

    x
EF

 

                                                                                                          y21 

                                                                                       

                                                      (N21
 
* (I22

 
+ F21))

EF
            y

EF
 

                                                                           

                     

Fig. 8.19 Fourth interim FN for Example 8.4 
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[(N11
 
* I12)

AI
] (x11,21,

 
x

EF 
| y11) ; [(N21

 
* (I22

 
+ F21))

EF
] (x11,21,

 
x

EF 
| y21,

 
y

EF
)        (8.22)                     

The two nodes (N11
 
* I12)

AI
 and (N21

 
* (I22

 
+ F21))

EF
 of the fourth interim FN can be 

output merged into a single equivalent node (N11
 
* I12)

AI 
; (N21

 
* (I22

 
+ F21))

EF
. As 

result of this merging operation, the fourth interim FN is transformed into a final 

FN. This final FN can be described by the block-scheme in Fig.8.20 and the  

topological expression in Eq.(8.23). 

                                                                                     y11 

x11,21                                                                                                               

                                                                                             y21 

       x
EF

                (N11
 
* I12)

AI
 ; (N21

 
* (I22

 
+ F21))

EF      
                  

                                                                                y
EF

  

                                                                                 

Fig. 8.20 Final FN for Example 8.4  

[(N11
 
* I12)

AI
 ; (N21

 
* (I22

 
+ F21))

EF
] (x11,21, x

EF  
| y11, y21, y

EF
)                            (8.23)                  

The considerations in Example 8.4 are concerned with network analysis when all 

network nodes and the feedback node are known. In the case of network design, 

the feedback node is unknown. In this context, Algorithm 8.4 describes the proc-

ess of deriving the unknown feedback node in the initial FN from Fig.8.15 when 

the network nodes and the single equivalent node NE are known. In this case, node 

NE is given by the Boolean matrix equation in Eq.(8.24). 

NE = (N11
 
* I12)

AI
 ; (N21

 
* (I22

 
+ F21))

EF
                                                              (8.24)                       

Algorithm 8.4 

1. Define NE, N11, N21, I12 and I22. 

2. Find N11
 
* I12 by horizontal merging of N11

 
and I12. 

3. Find (N11
 
* I12)

AI 
by input augmentation of N11

 
* I12. 

4. Derive (N21
 
* (I22

 
+ F21))

EF 
from NE in Eq.(8.24), if possible. 

5. Confirm that (N21
 
* (I22

 
+ F21))

EF
 satisfies the feedback constraints, if possible. 

6. Replace (N21
 
* (I22

 
+ F21))

EF 
with N21

 
* (I22

 
+ F21) in Eq.(8.24).  

7. Derive I22 + F21 from N21
 
* (I22

 
+ F21), if possible. 

8. Derive F21 from I22 + F21, if possible. 

8.3   Networks with Multiple Local Feedback  

A more complex type of FN is the one with multiple local feedback. This network 

has at least two nodes embraced by separate feedback connections with feedback 

nodes in each connection. In this case, the feedback is multiple as it appears more 

than once but it is also local as it embraces only one node. There may be an arbi-
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trary number of feedforward connections between this node and any other nodes 

as well as between any pair of other nodes. However, the presence of any feed-

forward connections does not remove the feedback characteristics of this type of 

FN due to the presence of the feedback connections with the feedback nodes. 

Example 8.5 

This example considers a FN with network nodes N11, N12, feedback node F11 em-

bracing N11 and feedback node F12 embracing N12 where x11 is an input for N11, y12 is 

an output for N12, z11,12
1,1

 is the feedforward connection from the first output for N11 to 

the first input for N12, v11 is the part of the feedback connection to F11, w11 is the part 

of the feedback connection from F11, v12 the is the part of the feedback connection to 

F12 and w12 the is the part of the feedback connection from F12. This initial FN repre-

sents a queue of two fuzzy systems that can be described by the block scheme in 

Fig.8.21 and the topological expression in Eq.(8.25) from where it can be seen that 

the node in each of the two layers is embraced by a separate feedback.  

  x11                                 z11,12
1,1

                                                   y12           

                                                                                                      

      w11                N11          v11                               w12               N12             v12 

 

                 

                 F11                                                                           F12 

Fig. 8.21 Initial FN for Example 8.5 

[N11 ] (x11,
 
w11

 
| z11,12

1,1
,
 
v11) * [N12] (z11,12

1,1
,
 
w12

 
| y12, v12),                              (8.25) 

[F11] (v11
 
| w11), [F12] (v12

 
| w12)                                                                          

The feedback nodes F11 and F12 represent non-identity feedback connections. This 

is also implied by the use of different variable names for the inputs and the outputs 

for F11 and F12, i.e. v11, w11 and v12, w12. In order to apply the linguistic composi-

tion approach to the initial FN, it is necessary to introduce a second level within a 

third layer of the underlying grid structure of the FN and to move F12 to this new 

grid cell. It is also necessary to propagate y12 forwards through the third layer and 

insert an implicit identity node I13 in level 1 of layer 3. Further on, it is necessary 

to introduce a third level within the second layer of the underlying grid structure 

of the FN and to move F11 to this new grid cell. It is also necessary to propagate 

y12 forwards through the third layer and insert an implicit identity node I33 in level 

3 of layer 3. Likewise, it is necessary to propagate w12 backwards through the first 

layer and insert an implicit identity node I31 in level 3 of layer 1.  

The above movements and insertions transform the initial FN into a first  

interim FN whereby the non-identity feedback connection embracing the network 

node N11 is represented as a feedforward connection v11 between N11 and F11 and 
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an identity feedback connection w11 embracing N11, F11 and I33. Also, the non-

identity feedback connection embracing the network node N12 is represented as a 

feedforward connection v12 between N12 and F12 and an identity feedback connec-

tion w12 embracing I31, N12 and F12. This first interim FN can be described by the 

block-scheme in Fig.8.22 and the topological expression in Eq.(8.6) from where it 

can be seen that both F11 and F12 are already feedforward nodes alongside the other 

five nodes. 

  x11                            z11,12
1,1

                                         y12                                       y12 

                                                                                                      I13 

      w11                N11        v11                                         N12            v12                         w12 

                                                                                         F12 

                                                                           

        w12                             w12                                                            w11                         w11 

                 I31                                      F11                          I33 

                 

                  

 

Fig. 8.22 First interim FN for Example 8.5   

{[N11] (x11,
 
w11

 
| z11,12

1,1
,
 
v11) + [I31] (w12

 
| w12)} *                                             (8.26) 

{[N12] (z11,12
1,1

,
 
w12

 
| y12, v12) + [F11] (v11

 
| w11)} *                                                                             

{[I13] (y12
 
| y12) + [F12] (v12

 
| w12) + [I33] (w11| w11)}                                                                      

Nodes N11 and I31 of the first interim FN can be merged vertically into a temporary 

node N11
 
+ I31. Similarly, nodes N12 and F11 of the same interim FN can be merged 

vertically into a second temporary node N12 + F11 whereas nodes I13, F12 and I33 

can be merged vertically into a third temporary node I13 + F12 + I33. This second 

interim FN can be described by the block-scheme in Fig.8.23 and the topological 

expression in Eq.(8.27) from where it can be seen that the three nodes are  

embraced by the identity feedback connections and some of the feedforward  

connections between the first and the second node have crossing paths. 

    x11                                z11,12
1,1

                                              y12                                                     y12 

                                                                                                       

   w11                                 v11                                                                  v12                                   w12 

           N11
 
+ I31                                  N12 + F11                  I13 + F12 + I33 

     w12                                  w12                                                                    w11                                  w11 

                                                                                       

                 

                  

 

Fig. 8.23 Second interim FN for Example 8.5   
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[N11 + I31] (x11,
 
w11,

 
w12

 
| z11,12

1,1
,
 
v11,

 
w12) *                                                      (8.27) 

[N12 + F11] (z11,12
1,1

,
 
w12,

 
v11

 
| y12, v12,

 
w11) *         

[I13 + F12 + I33] (y12, v12,
 
w11

 
| y12,

 
w12,

 
w11)                                                                       

In order to merge horizontally nodes N11
 
+ I31 and N12 + F11 of the second interim 

FN, it is necessary to permute the outputs input v11 and
 
w12 for N11

 
+ I31. This per-

mutation operation transforms the second interim FN into a third interim FN 

whereby the first node N11
 
+ I31 is transformed into a node (N11

 
+ I31)

PO
. This third 

interim FN can be described by the block-scheme in Fig.8.24 and the topological 

expression in Eq.(8.28) from where it can be seen that all feedforward connections 

already have parallel paths. 

    x11                                 z11,12
1,1

                                            y12                                                      y12 

                                                                                                       

   w11                                                  w12                                              v12                                   w12 

          (N11
 
+ I31)

 PO
                           N12 + F11                   I13 + F12 + I33 

     w12                                                    v11                                                 w11                                  w11 

                                                                                       

                 

                  

 

Fig. 8.24 Third interim FN for Example 8.5   

[(N11
 
+ I31)

 PO
] (x11,

 
w11,

 
w12

 
| z11,12

1,1
,
 
w12,

 
v11) *                                                (8.28) 

[N12 + F11] (z11,12
1,1

,
 
w12,

 
v11

 
| y12, v12,

 
w11) *          

[I13 + F12 + I33] (y12, v12,
 
w11

 
| y12,

 
w12,

 
w11)                                                                       

The three composite nodes (N11
 
+ I31)

 PO
, N12 + F11 and I13 + F12 + I33 of the third  

interim FN can be merged horizontally into a single equivalent node                      

(N11
 
+ I31)

 PO
 * (N12 + F11) * (I13 + F12 + I33). As result of this merging operation, 

the third interim FN is transformed into a fourth interim FN. This fourth interim 

FN can be described by the block-scheme in Fig.8.25 and the topological expres-

sion in Eq.(8.29) from where it can be seen that the single equivalent node is  

embraced by the identity feedback connections. 
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    x11                                                                                                            y12 

                                                                                                       

   w11                                                                                                                w12 

           (N11
 
+ I31)

 PO
 * (N12 + F11) * (I13 + F12 + I33) 

     w12                                                                                                                    w11 

                                                                                       

                 

                  

 

Fig. 8.25 Fourth interim FN for Example 8.5  

[(N11
 
+ I31)

 PO
 * (N12 + F11) * (I13 + F12 + I33)] (x11,

 
w11,

 
w12

 
| y12,

 
w12,

 
w11)       (8.29)                      

The node (N11
 
+ I31)

 PO
 * (N12 + F11) * (I13 + F12 + I33) with input set {x11, w11, w12} 

and output set {y12, w12, w11} can be further transformed into a node with equiva-

lent feedback ((N11
 
+ I31)

 PO
 * (N12 + F11) * (I13 + F12 + I33))

 FE
  with input set  

{x11,
 
x1

FE
,
 
x2

FE
} and output set {y12,

 
y2

FE
,
 
y1

FE
}.This transformation removes the 

two identity feedbacks and makes the fuzzy system with feedback equivalent to a 

fuzzy subsystem without feedback. As a result, the fourth interim FN is trans-

formed into a final FN. This third interim FN can be described by the block-

scheme in Fig.8.26 and the topological expression in Eq.(8.30) from where it can 

be seen that the single equivalent node is not embraced by the identity feedback 

connections anymore. 

   x11                                                                                                                    y12 

                                                                                                       

  x1
FE

                                                                                                                    y2
FE

 

          ((N11
 
+ I31)

 PO
 * (N12 + F11) * (I13 + F12 + I33))

 FE
 

  x2
FE

                                                                                                                          y1
FE

 

                                                                                       

Fig. 8.26 Final FN for Example 8.5 

[((N11
 
+ I31)

PO
 * (N12 + F11) * (I13 + F12 + I33))

FE
]                                             (8.30) 

(x11,
 
x1

FE
,
 
x2

FE 
| y12,

 
y2

FE
,
 
y1

FE
)                                                 

The considerations in Example 8.5 are concerned with network analysis when all 

network and feedback nodes are known. In the case of network design, at least one 

feedback node is unknown. In this context, Algorithms 8.5-8.6 describe the proc-

ess of deriving an unknown feedback node in the initial FN from Fig.8.21 when 

the network nodes, one of the feedback nodes and the single equivalent node NE 

are known. In this case, node NE is given by the Boolean matrix equation in 

Eq.(8.31). 
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NE = ((N11
 
+ I31)

PO
 * (N12 + F11) * (I13 + F12 + I33))

FE
                                        (8.31)                       

Algorithm 8.5 

1. Define NE, N11, N12, I31, I13, I33 and F12. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11

 
+ I31)

PO
 * (N12 + F11) * (I13 + F12 + I33) in Eq.(8.31).  

4. Find N11
 
+ I31 by vertical merging of N11

 
and I31. 

5. Find (N11
 
+ I31)

PO 
by output permutation of N11

 
+ I31. 

6. Find I13 + F12 + I33 by vertical merging of I13, F12 and I33. 

7. Derive N12 + F11 from NE in Eq.(8.31), if possible. 

8. Derive F11 from N12 + F11, if possible. 

Algorithm 8.6 

1. Define NE, N11, N12, I31, I13, I33 and F11. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11

 
+ I31)

PO
 * (N12 + F11) * (I13 + F12 + I33) in Eq.(8.31).  

4. Find N11
 
+ I31 by vertical merging of N11

 
and I31. 

5. Find (N11
 
+ I31)

PO 
by output permutation of N11

 
+ I31. 

6. Find N12 + F11 by vertical merging of N12 and F11. 

7. Find (N11 + I31)
PO 

* (N12 + F11) by horizontal merging of (N11
 
+ I31)

PO 
and       

(N12 + F11). 

8. Derive I13 + F12 + I33 from NE in Eq.(8.31), if possible. 

9. Derive F12 from I13 + F12 + I33, if possible. 

Example 8.6 

This example considers a FN with network nodes N11, N21, feedback node F11 em-

bracing N11 and feedback node F21 embracing N21 where x11,21 is a common input 

for N11 and N21, y11 is an output for N11, y21 is an output for N21, v11 is the part of 

the feedback connection to F11, w11 is the part of the feedback connection from F11, 

v21 is the part of the feedback connection to F21 and w21 the is the part of the feed-

back connection from F21.  This initial FN represents a stack of two fuzzy systems  

that can be described by the block scheme in Fig.8.27 and the topological  

expression in Eq.(8.32) from where it can be seen that the node in each of the two 

levels is embraced by a separate feedback.  
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                                                                       y11           

                                                                               

                               w11                N11            v11 

 

   x11,21                  

                                          F11 

 

                                                         y21 

                                                                               

                               w21                N21            v21 

 

                     

                                          F21 

Fig. 8.27 Initial FN for Example 8.6 

[N11] (x11,21,
 
w11

 
| y11,

 
v11) ; [N21] (x11,21,

 
w21

 
| y21,

 
v21),                                      (8.32) 

[F11] (v11
 
| w11), [F21] (v21

 
| w21)                             

The feedback nodes F11 and F21 represent non-identity feedback connections. This 

is also implied by the use of different variable names for the inputs and the outputs 

for F11 and F21, i.e. v11, w11 and v21, w21. In order to apply the linguistic composi-

tion approach to the initial FN, it is necessary to introduce a virtual intermediate 

level just under the first level within a second layer of the underlying grid struc-

ture of the FN and to move F11 to this new grid cell as well as to introduce a virtual 

intermediate level just under the second level within the second layer and to move 

F21 to this new grid cell. Besides this, it is necessary to propagate y11 forwards 

through the second layer and insert an implicit identity node I12 in level 1 of layer 

2 as well as to propagate y21 forwards through the second layer and insert an  

implicit identity node I22 in level 2 of layer 2.  

The above movements and insertions transform the initial FN into a first  

interim FN. In this case, the non-identity feedback connection embracing the net-

work node N11 is represented as a feedforward connection v11 between N11 and F11 

and an identity feedback connection w11 embracing both N11 and F11 whereas the 

non-identity feedback connection embracing the network node N21 is represented 

as a feedforward connection v21 between N21 and F21 and an identity feedback con-

nection w21 embracing both N21 and F21. This first interim FN can be described by 

the block-scheme in Fig.8.28 and the topological expression in Eq.(8.33) from 

where it can be seen that both F11 and F21 are already feedforward nodes alongside 

the other four nodes. 
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                                                                              y11                                       y11 

                                                                                      I12 

                               w11                N11            v11                                       w11 

                                                                         F11 

   x11,21                  

                                           

 

                                                                      y21                                       y21 

                                                                                      I22 

                               w21                N21           v21                                        w21 

                                                                         F21 

                     

                                           

Fig. 8.28 First interim FN for Example 8.6  

{[N11] (x11,21,
 
w11

 
| y11,

 
v11) * {[I12] (y11

 
| y11) + [F11] (v11

 
| w11)}} ;                   (8.33)     

{[N21] (x11,21,
 
w21

 
| y21,

 
v21) * {[I22] (y21

 
| y21) + [F21] (v21

 
| w21)}}                      

Nodes I12 and F11 of the first interim FN can be merged vertically into a  

temporary node I12
 
+ F11. This temporary node can be further merged horizontally 

with node N11 on the left. Also, nodes I22 and F21 of the same FN can be merged 

vertically into another temporary node I22
 
+ F21. This temporary node can be fur-

ther merged horizontally with node N21 on the left. These merging operations 

transform the first interim FN into a second interim FN with two nodes whereby 

the horizontal merging of nodes N11 and I12
 
+ F11 is reflected by their replacement 

with node N11
 
* (I12

 
+ F11) and the horizontal merging of nodes N21 and I22

 
+ F21 is 

reflected by their replacement with node N21
 
* (I22

 
+ F21). This second interim FN 

can be described by the block-scheme in Fig.8.29 and the topological expression 

in Eq.(8.34) from where it can be seen that each of the two nodes is embraced by 

separate identity feedback connections. 
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                                                                                              y11 

                                                                                       

                               w11               N11
 
* (I12

 
+ F11)            w11 

                                                                          

   x11,21                  

                                           

 

                                                                                              y21 

                                                                                       

                               w21               N21
 
* (I22

 
+ F21)            w21 

                                                                          

                     

                                           

Fig. 8.29 Second interim FN for Example 8.6 

[N11
 
* (I12

 
+ F11)] (x11,21,

 
w11

 
| y11,

 
w11) ;                                                          (8.34) 

[N21
 
* (I22

 
+ F21)] (x11,21,

 
w21

 
| y21,

 
w21)                                                                                                

The upper node N11
 
* (I12

 
+ F11) with input set {x11,21, w11} and output set  

{y11, w11} can be further transformed into a node with equivalent feedback  

(N11
 
* (I12

 
+ F11))

EF
 with input set {x11,21, x1

EF
} and output set {y11, y1

EF
}. Simi-

larly, the lower node N21
 
* (I22

 
+ F21) with input set {x11,21, w21} and output set 

{y21, w21} can be further transformed into a node with equivalent feedback                      

(N21
 
* (I22

 
+ F21))

EF
 with input set {x11,21, x2

EF
} and output set {y21, y2

EF
}. These 

transformations remove the identity feedback and make the fuzzy subsystems with 

feedback equivalent to fuzzy subsystems without feedback. As a result, the second 

interim FN is transformed into a third interim FN. This third interim FN can be 

described by the block-scheme in Fig.8.30 and the topological expression in 

Eq.(8.35) from where it can be seen that the two nodes are not embraced by the 

identity feedback connections anymore. 

                                                                                                         y11 

                                                                                       

                               x1
EF

             (N11
 
* (I12

 
+ F11))

EF
          y1

EF
 

   x11,21                                                                       

                     

                                                                                                         y21 

                                                                                       

                               x2
EF

             (N21
 
* (I22

 
+ F21))

EF
          y2

EF
 

                                                                           

Fig. 8.30 Third interim FN for Example 8.6 
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[(N11
 
* (I12

 
+ F11))

EF
] (x11,21,

 
x1

EF 
| y11,

 
y1

EF
) ;                                                     (8.35) 

[(N21
 
* (I22

 
+ F21))

EF
] (x11,21,

 
x2

EF 
| y21,

 
y2

EF
)                    

In order to merge the outputs of nodes (N11
 
* (I12

 
+ F11))

EF
 and (N21

 
* (I22

 
+ F21))

EF
 

of the third interim FN, it is necessary to augment the input x11,21 with the inputs 

x1
EF

 and x2
EF

. This augmentation operation transforms the third interim FN into a 

fourth interim FN with common inputs for the two nodes whereby the upper node 

(N11
 
* (I12

 
+ F11))

EF
 is transformed into a node ((N11

 
* (I12

 
+ F11))

EF
)

AI
 with input set 

{x11,21,
 
x1

EF
,
 
x2

EF
} and the lower node (N21

 
* (I22

 
+ F21))

EF
 is transformed into a 

node ((N21
 

* (I22
 

+ F21))
EF

)
AI

 with the same input set. This fourth  

interim FN can be described by the block-scheme in Fig.8.31 and the topological 

expression in Eq.(8.36) from where it can be seen that the two nodes have  

augmented inputs. 

                                                                                                      

                                                                                                  y11 

   x11,21                                                    

                                              ((N11
 
* (I12

 
+ F11))

EF
)

AI
        y1

EF
           

    x1
EF

                                                                     

                                               

    x2
EF

  

                                                                             

                                                                                                  y21 

                                                                                                                 

                                              ((N21
 
* (I22

 
+ F21))

EF
)

AI
        y2

EF
                                 

              

        

Fig. 8.31 Fourth interim FN for Example 8.6 

[((N11
 
* (I12

 
+ F11))

EF
)

AI
] (x11,21,

 
x1

EF
,
 
x2

EF 
| y11,

 
y1

EF
) ;                                        (8.36) 

[((N21
 
* (I22

 
+ F21))

EF
)

AI
] (x11,21,

 
x1

EF
,
 
x2

EF 
| y21,

 
y2

EF
)                                                                          

The two nodes ((N11
 
* (I12

 
+ F11))

EF
)

AI
 and ((N21

 
* (I22

 
+ F21))

EF
)

AI
 of the fourth  

interim FN can be output merged into a single equivalent node ((N11
 

*  

(I12
 
+ F11))

EF
)

AI 
; ((N21

 
* (I22

 
+ F21))

EF
)

AI
. As result of this merging operation, the 

fourth interim FN is transformed into a final FN. This final FN can be  

described by the block-scheme in Fig.8.32 and the topological expression in 

Eq.(8.37). 
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                                                                                                                                                y11 

 x11,21                                                                                         

                      
      

                                                                                                                                y1
EF

 

  x1
EF

                                                                               

                 ((N11
 
* (I12

 
+ F11))

EF
)

AI 
; ((N21

 
* (I22

 
+ F21))

EF
)

AI
          y21                                                 

  x1
EF

 

                                                                                                         y2
EF

  

                                                                                      

Fig. 8.32 Final FN for Example 8.6  

[((N11
 
* (I12

 
+ F11))

EF
)

AI 
; ((N21

 
* (I22

 
+ F21))

EF
)

AI
]                                              (8.37) 

(x11,21,
 
x1

EF
,
 
x2

EF 
| y11,

 
y1

EF
,
 
y2

EF
)                                          

The considerations in Example 8.6 are concerned with network analysis when all 

network and feedback nodes are known. In the case of network design, at least one 

feedback node is unknown. In this context, Algorithms 8.7-8.8 describe the proc-

ess of deriving an unknown feedback node in the initial FN from Fig.8.27 when 

the network nodes, one of the feedback nodes and the single equivalent node NE 

are known. In this case, node NE is given by the Boolean matrix equation in 

Eq.(8.38). 

NE = ((N11
 
* (I12

 
+ F11))

EF
)

AI 
; ((N21

 
* (I22

 
+ F21))

EF
)

AI
                                        (8.38)                      

Algorithm 8.7 

1. Define NE, N11, N21, I12, I22 and F21. 

2. Find I22
 
+ F21 by vertical merging of I22

 
and F21. 

3. Find N21
 
* (I22

 
+ F21) by horizontal merging of N21 and I22

 
+ F21. 

4. Confirm that (N21
 
* (I22

 
+ F21))

EF 
satisfies the feedback constraints, if possible. 

5. Replace (N21
 
* (I22

 
+ F21))

EF 
with N21

 
* (I22

 
+ F21) in Eq.(8.38). 

6. Find (N21
 
* (I22

 
+ F21))

AI 
by input augmentation of N21

 
* (I22

 
+ F21). 

7. Derive ((N11
 
* (I12

 
+ F11))

EF
)

AI 
from NE in Eq.(8.38), if possible. 

8. Find (N11
 

* (I12
 

+ F11))
EF 

by inverse input augmentation of                     

((N11
 
* (I12

 
+ F11))

EF
)

AI
. 

9. Confirm that 
 
(N11

 
* (I12

 
+ F11))

EF 
satisfies the feedback constraints, if possible. 

10. Replace (N11
 
* (I12

 
+ F11))

EF 
with N11

 
* (I12

 
+ F11) in Eq.(8.38). 

11. Derive I12 + F11 from N11
 
* (I12

 
+ F11), if possible. 

12. Derive F11 from I12
 
+ F11, if possible. 
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Algorithm 8.8 

1. Define NE, N11, N21, I12, I22 and F11. 

2. Find I12
 
+ F11 by vertical merging of I12

 
and F11. 

3. Find N11
 
* (I12

 
+ F11) by horizontal merging of N11 and I12

 
+ F11. 

4. Confirm that (N11
 
* (I12

 
+ F11))

EF 
satisfies the feedback constraints, if possible. 

5. Replace (N11
 
* (I12

 
+ F11))

EF 
with N11

 
* (I12

 
+ F11) in Eq.(8.38). 

6. Find (N11
 
* (I12

 
+ F11))

AI 
by input augmentation of N11

 
* (I12

 
+ F11). 

7. Derive ((N21
 
* (I22

 
+ F21))

EF
)

AI 
from NE in Eq.(8.38), if possible. 

8. Find (N21
 

* (I22
 

+ F21))
EF 

by inverse input augmentation of                     

((N21
 
* (I22

 
+ F21))

EF
)

AI
. 

9. Confirm that 
 
(N21

 
* (I22

 
+ F21))

EF 
satisfies the feedback constraints, if possible. 

10. Replace (N21
 
* (I22

 
+ F21))

EF 
with N21

 
* (I22

 
+ F21) in Eq.(8.38). 

11. Derive I22 + F21 from N21
 
* (I22

 
+ F21), if possible. 

12. Derive F21 from I22
 
+ F21, if possible. 

8.4   Networks with Single Global Feedback  

Another fairly simple type of FN is the one with single global feedback. This net-

work has at least two nodes embraced by a feedback connection with a single 

feedback node in this connection. In this case, the feedback is single as it appears 

only once but it is also global as it embraces more than one node. There may be an 

arbitrary number of feedforward connections between these nodes and any other 

nodes as well as between any pair of other nodes. However, the presence of any 

feedforward connections does not remove the feedback characteristics of this type 

of FN due to the presence of the feedback connections with the feedback node. 

Example 8.7 

This example considers a FN with network nodes N11, N12 and feedback node 

F12,11 embracing N11 and N12 where x11 is an input for N11, y12 is an output for N12, 

z11,12
1,1

 is the feedforward connection from the first and only output for N11 to the 

first and only input for N12, v12,11 is the part of the feedback connection to F12,11 

and w12,11 is the part of the feedback connection from F12,11. This initial FN repre-

sents a queue of two fuzzy systems that can be described by the block scheme in 

Fig.8.33 and the topological expression in Eq.(8.39) from where it can be seen that 

the two nodes in the first and only level are embraced by the feedback.  

  x11                                                                                                    y12           

                                                   z11,12
1,1

                                             

     w12,11            N11                                                                        N12         v12,11 

 

                 

                                                    F12,11                                                  

Fig. 8.33 Initial FN for Example 8.7   
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[N11 ] (x11,
 
w12,11

 
| z11,12

1,1
) * [N12] (z11,12

1,1 
| y12, v12,11), [F12,11] (v12,11

 
| w12,11)   (8.39)                       

The feedback node F12,11 represents a non-identity feedback connection. This is 

also implied by the use of different variable names for the input and the output for 

F12,11, i.e. v12,11 and w12,11. In order to apply the linguistic composition approach to 

the initial FN, it is necessary to introduce a second level within a third layer of the 

underlying grid structure of the FN and to move F12,11 to this new grid cell. It is 

also necessary to propagate y12 forwards through the third layer and insert an  

implicit identity node I13 in level 1 of layer 3.  

The above movements and insertions transform the initial FN into a first  

interim FN whereby the non-identity feedback connection embracing the network 

nodes N11 and N12 is represented as a feedforward connection v12,11 between N12 

and F12,11 and an identity feedback connection w12,11 embracing N11, N12 and F12,11. 

This first interim FN can be described by the block-scheme in Fig.8.34 and the 

topological expression in Eq.(8.40) from where it can be seen that F12,11 is already 

a feedforward node alongside the other three nodes. 

  x11                                                                                     y12                                        y12 

                                           z11,12
1,1

                                            I13 

     w12,11            N11                                                        N12         v12,11                       w12,11 

                                                                                       F12,11 

                                                                           

         

Fig. 8.34 First interim FN for Example 8.7     

[N11] (x11,
 
w12,11

 
| z11,12

1,1
) * [N12] (z11,12

1,1 
| y12, v12,11) *                                   (8.40)                       

{[I13] (y12
 
| y12) + [F12,11] (v12,11

 
| w12,11)}                                                                      

Nodes I13 and F12,11 of the first interim FN can be merged vertically into a  

temporary node I13 + F12,11. This temporary node can be further merged horizon-

tally with nodes N11 and N12 on the left. These merging operations transform the 

first interim FN into a second interim FN with a single equivalent node whereby 

the horizontal merging of nodes N11, N12 and I13 + F12,11 is reflected by their  

replacement with node N11
 
* N12 * (I13 + F12,11). This second interim FN can be de-

scribed by the block-scheme in Fig.8.35 and the topological expression in 

Eq.(8.41) from where it can be seen that the single equivalent node is embraced by 

the identity feedback connection. 
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  x11                                                                               y12           

                                                                               

    w12,11                 N11
 
* N12 * (I13 + F12,11)     

      
w12,11             

                                                

                 

                  

Fig. 8.35 Second interim FN for Example 8.7     

[N11
 
* N12 * (I13 + F12,11)] (x11,

 
w12,11

 
| y12,

 
w12,11)                                               (8.41)                   

The node N11
 
* N12 * (I13 + F12,11) with input set {x11, w12,11} and output set   

{y12, w12,11} can be further transformed into a node with equivalent feedback (N11
 

* N12 * (I13 + F12,11))
EF

  with input set {x11,
 
x

EF
} and output set {y12,

 
y

EF
}. This 

transformation removes the identity feedback and makes the fuzzy system with 

feedback equivalent to a fuzzy system without feedback. As a result, the second  

interim FN is transformed into a final FN. This final interim FN can be described 

by the block-scheme in Fig.8.24 and the topological expression in Eq.(8.42), from 

where it can be seen that the single equivalent node is not embraced by the  

identity feedback connection anymore. 

  x11                                                                                          y12           

                                                                               

      x
EF

                   (N11
 
* N12 * (I13 + F12,11))

EF
     

     
    y

EF
            

                                                

                 

Fig. 8.36 Final FN for Example 8.7    

[(N11
 
* N12 * (I13 + F12,11))

EF
] (x11,

 
x

EF 
| y12,

 
y

EF
)                                                 (8.42)                      

The considerations in Example 8.7 are concerned with network analysis when all 

network nodes and the feedback node are known. In the case of network design,  

the feedback node is unknown. In this context, Algorithm 8.9 describes the  

process of deriving the unknown feedback node in the initial FN from Fig.8.33 

when the network nodes and the single equivalent node NE are known. In this 

case, node NE is given by the Boolean matrix equation in Eq.(8.43). 

NE = (N11
 
* N12 * (I13 + F12,11))

EF
                                                                      (8.43)                      
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Algorithm 8.9 

1. Define NE, N11, N12, I13 and F12,11. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to N11

 
* N12 * (I13 + F12,11) in Eq.(8.43).  

4. Find N11
 
* N12 by horizontal merging of N11

 
and N12. 

5. Derive I13 + F12,11 from NE in Eq.(8.43), if possible. 

6. Derive F12,11 from I13 + F12,11, if possible. 

Example 8.8 

This example considers a FN with network nodes N11, N21 and feedback node 

F11,21 embracing N11 and N21 where x11,21 is a common input for N11 and N21, y11 is 

an output for N11, y21 is an output for N21, v11,21 is the part of the feedback connec-

tion to F11,21 and w11,21 is the part of the feedback connection from F11,21. This  

initial FN represents a stack of two fuzzy systems that can be described by the 

block scheme in Fig.8.37 and the topological expression in Eq.(8.44) from where 

it can be seen that the feedback has a downward direction from the first to the  

second level.  

                                                                     y11           

                                                                               

                                                      N11        v11,21 

 

   x11,21                  

                                         F11,21 

 

                        w11,21                                 

                                                                     y21      

                                                     N21             

 

                     

Fig. 8.37 Initial FN for Example 8.8    

[N11] (x11,21
 
| y11,

 
v11,21) ; [N21] (w11,21,

 
x11,21

 
| y21), [F11,21] (v11,21

 
| w11,21)           (8.44)                      

The feedback node F11,21 represents a non-identity feedback connection. This is 

also implied by the use of different variable names for the input and the output for 

F11,21, i.e. v11,21 and w11,21. In order to apply the linguistic composition approach to 

the initial FN, it is necessary to introduce a virtual intermediate level just under 

the first level within a second layer of the underlying grid structure of the FN and 

to move F11,21 to this new grid cell. Besides this, it is necessary to propagate y11 

forwards through the second layer and insert an implicit identity node I12 in level 1  
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of layer 2 as well as to propagate y21 forwards through the second layer and insert 

an implicit identity node I22 in level 2 of layer 2.  

The above movements and insertions transform the initial FN into a first  

interim FN. In this case, the non-identity feedback connection embracing the net-

work nodes N11 and N21 is represented as a feedforward connection v11,21 between 

N11 and F11,21 and an identity feedback connection w11,21 from F11,21 to N21. This 

first interim FN can be described by the block-scheme in Fig.8.38 and the topo-

logical expression in Eq.(8.45) from where it can be seen that F11,21 is already a 

feedforward node alongside the other four nodes. 

                                                                              y11                                       y11 

                                                                                      I12 

                                                    N11          v11,21                                  w11,21 

                                                                        F11,21 

   x11,21                  

                                           

                        w11,21                                                                              

                                                                     y21                                   y21 

                                                    N21                                      I22              

                                                                          

                     

Fig. 8.38 First interim FN for Example 8.8    

{[N11] (x11,21
 
| y11,

 
v11,21) * {[I12] (y11

 
| y11) + [F11,21] (v11,21

 
| w11,21)}} ;             (8.45)             

{[N21] (w11,21,
 
x11,21

 
| y21) * [I22] (y21

 
| y21)}                                                         

Nodes I12 and F11,21 of the first interim FN can be merged vertically into a tempo-

rary node I12
 
+ F11,21. This temporary node can be further merged horizontally with 

node N11 on the left. Also, nodes N21 and I22 of the same FN can be merged  

horizontally into another temporary node N21 + I22. These merging operations 

transform the first interim FN into a second interim FN with two nodes whereby 

the horizontal merging of nodes N11 and I12
 
+ F11,21 is reflected by their replace-

ment with node N11 * (I12
 
+ F11,21) and the horizontal merging of nodes N21 and I22

 

is reflected by their replacement with node N21
 
* I22. This second interim FN can 

be described by the block-scheme in Fig.8.39 and the topological expression in 

Eq.(8.46) from where it can be seen that the lower node has an uncommon input. 
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                                                                                                                     y11 

                                                                              

                                                     N11 * (I12
 
+ F11,21)            w11,21 

                                                                         

                     

                                           

   x11,21                  w11,21                                                                         

                                                                                      y21 

                                                    N21
 
* I22                                                    

                                                                          

                     

Fig. 8.39 Second interim FN for Example 8.8    

[N11 * (I12
 
+ F11,21)] (x11,21

 
| y11,

 
w11,21) ; [N21

 
* I22] (w11,21,

 
x11,21

 
| y21)               (8.46)                      

In order to merge the outputs of nodes N11 * (I12
 
+ F11,21) and N21

 
* I22 of the  

second interim FN, it is necessary to augment the input x11,21 for N11 * (I12
 
+ F11,21)  

with the input w11,21. This augmentation operation transforms the second interim 

FN into a third interim FN with common inputs for the two nodes whereby the 

first node N11 * (I12
 
+ F11,21) is transformed into a node (N11 * (I12

 
+ F11,21))

AI
 with 

input set {w11,21,
 
x11,21}. This third interim FN can be described by the block-

scheme in Fig.8.40 and the topological expression in Eq.(8.47) from where it can 

be seen that the upper node has augmented inputs. 

                           w11,21                                                                          y11 

                                                                         

                                                (N11 * (I12
 
+ F11,21))

AI
        w11,21 

                                                                         

                     

                                           

   x11,21                  w11,21                                                                       

                                                                                      y21 

                                                    N21
 
* I22                                                    

                                                                          

                     

Fig. 8.40 Third interim FN for Example 8.8    

[(N11 * (I12
 
+ F11,21))

AI
] (w11,21,

 
x11,21

 
| y11,

 
w11,21) ;                                             (8.47) 

[N21
 
* I22] (w11,21,

 
x11,21

 
| y21)                                                                                                              

The two nodes (N11 * (I12
 
+ F11,21))

AI
 and N21

 
* I22 of the third interim FN can be 

output merged into a single equivalent node (N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22). As a 
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result of this merging operation, the third interim FN is transformed into a fourth 

interim FN. This fourth interim FN can be described by the block-scheme in 

Fig.8.41 and the topological expression in Eq.(8.48) from where it can be seen that 

the single equivalent node is embraced by the identity feedback connection. 

                                                                                       y11 

     w11,21 

                                                                                w11,21 

x11,21           (N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22) 

                                                                                   y21 

 

 

 

Fig. 8.41 Fourth interim FN for Example 8.8     

[(N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22)] (w11,21,

 
x11,21

 
| y11,

 
w11,21,

 
y21)                      (8.48)                      

The node (N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22) with input set {w11,21, x11,21} and output 

set {y11, w11,21, y21} can be further transformed into a node with equivalent feed-

back ((N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22))

EF
 with input set {x

EF
,
 
x11,21} and output set 

{y11,
 
y

EF
,
 
y21}.This transformation removes the identity feedback and makes the 

fuzzy system with feedback equivalent to a fuzzy system without feedback. As a 

result, the fourth interim FN is transformed into a final FN. This final interim FN 

can be described by the block-scheme in Fig.8.42 and the topological expression 

in Eq.(8.49) from where it can be seen that the single equivalent node is not  

embraced by the identity feedback connection anymore. 

                                                                                  y11 

       x
EF

  

                                                                                  y
EF

 

x11,21         ((N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22))

EF
 

                                                                                   y21 

Fig. 8.42 Final interim FN for Example 8.8    

[((N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22))

EF
] (x

EF
,
 
x11,21

 
| y11,

 
y

EF
,
 
y21)                        (8.49)                      

The considerations in Example 8.8 are concerned with network analysis when all 

network nodes and the feedback node are known. In the case of network design, 

the feedback node is unknown. In this context, Algorithm 8.10 describes the proc-

ess of deriving the unknown feedback node in the initial FN from Fig.8.37 when 

the network nodes and the single equivalent node NE are known. In this case, node 

NE is given by the Boolean matrix equation in Eq.(8.50). 
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NE = ((N11 * (I12
 
+ F11,21))

AI
 ; (N21

 
* I22))

EF
                                                        (8.50)                     

Algorithm 8.10 

1. Define NE, N11, N21, I12, I22 and F11,21. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11 * (I12

 
+ F11,21))

AI
 ; (N21

 
* I22) in Eq.(8.50).  

4. Find N21
 
* I22 by vertical merging of N21

 
and I22. 

5. Derive (N11 * (I12
 
+ F11,21))

AI
 from NE in Eq.(8.50), if possible. 

6. Find N11 * (I12
 
+ F11,21)

 
by inverse input augmentation of (N11 * (I12

 
+ F11,21))

AI
. 

7. Derive I12
 
+ F11,21

 
from N11 * (I12

 
+ F11,21), if possible. 

8. Derive F11,21
 
from I12

 
+ F11,21, if possible. 

Example 8.9 

This example considers a FN with network nodes N11, N21 and feedback node F21,11 

embracing N21 and N11 where x11,21 is a common input for N11 and N21, y11 is an output 

for N11, y21 is an output for N21, v21,11 is the part of the feedback connection to F21,11 

and w21,11 is the part of the feedback connection from F21,11. This initial FN represents 

a stack of two fuzzy systems that can be described by the block scheme in Fig.8.43 

and the topological expression in Eq.(8.51) from where it can be seen that the feed-

back has an upward direction from the first to the second level.  

                                                            

                                                                      y11        

                             w21,11          N11         

 

   x11,21                  

                                         F21,11 

 

                                                      v21,11                                 

                                                                           

                                                     N21            y21 

 

Fig. 8.43 Initial FN for Example 8.9  

[N11] (x11,21,
 
w21,11

 
| y11) ; [N21] (x11,21

 
| v21,11,

 
y21), [F21,11] (v21,11

 
| w21,11)           (8.51)                      

The feedback node F21,11 represents a non-identity feedback connection. This is 

also implied by the use of different variable names for the input and the output for 

F21,11, i.e. v21,11 and w21,11. In order to apply the linguistic composition approach to 

the initial FN, it is necessary to introduce a virtual intermediate level just above 

the second level within a second layer of the underlying grid structure of the FN 

and to move F21,11 to this new grid cell. Besides this, it is necessary to propagate 

y11 forwards through the second layer and insert an implicit identity node I12 in 
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level 1 of layer 2 as well as to propagate y21 forwards through the second layer and 

insert an implicit identity node I22 in level 2 of layer 2.  

The above movements and insertions transform the initial FN into a first interim 

FN. In this case, the non-identity feedback connection embracing the network 

nodes N11 and N21 is represented as a feedforward connection v21,11 between N21 and 

F21,11 and an identity feedback connection w21,11 from F21,11 to N11. This first interim 

FN can be described by the block-scheme in Fig.8.44 and the topological expres-

sion in Eq.(8.52), from where it can be seen that F21,11 is already a feedforward node 

alongside the other four nodes. 

                                                                                

                                                                      y11                          y11 

                             w21,11          N11                            I12 

 

   x11,21                  

                                          

 

                                                      v21,11                      w21,11          

                                                                                    F21,11 

                                                     N21            y21                                        y21 

                                                                         I22 

Fig. 8.44 First interim FN for Example 8.9 

{[N11] (x11,21,
 
w21,11

 
| y11) * [I12] (y11

 
| y11)} ;                        

{[N21] (x11,21
 
| v21,11,

 
y21) * {[F21,11] (v21,11 | w21,11) + [I22] (y21

 
| y21)}}              (8.52)                       

Nodes F21,11 and I22 of the first interim FN can be merged vertically into a  

temporary node F21,11 + I22. This temporary node can be further merged horizontally 

with node N21 on the left. Also, nodes N11 and I12 of the same FN can be merged 

horizontally into another temporary node N11 + I12. These merging operations trans-

form the first interim FN into a second interim FN with two nodes whereby the 

horizontal merging of nodes N11 and I12
 
is reflected by their replacement with node 

N11
 
* I12 and the horizontal merging of nodes N21 and F21,11 + I22 is reflected by their 

replacement with node N21 * (F21,11 + I22). This second interim FN can be described 

by the block-scheme in Fig.8.45 and the topological expression in Eq.(8.53) from 

where it can be seen that the upper node has an uncommon input. 
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                                                                                     y11 

                             w21,11           N11
 
* I12             

                                                                         

   x11,21        

                                           

                                                                                                                    w21,11 

                                                                                       

                                                       N21 * (F21,11 + I22)              y21                                             

                                                                          

Fig. 8.45 Second interim FN for Example 8.9 

[N11
 
* I12] (x11,21,

 
w21,11

 
| y11) ; [N21 * (F21,11 + I22)] (x11,21

 
| w21,11,

 
y21)              (8.53)                      

In order to merge the outputs of nodes N11
 
* I12 and N21 * (F21,11 + I22) of the  

second interim FN, it is necessary to augment the input x11,21 for N21 * (F21,11 + I22)  

with the input w21,11. This augmentation operation transforms the second interim 

FN into a third interim FN with common inputs for the two nodes whereby the 

second node N21 * (F21,11 + I22) is transformed into a node (N21 * (F21,11 + I22))
AI

 

with input set {x11,21,
 
w21,11}. This third interim FN can be described by the block-

scheme in Fig.8.46 and the topological expression in Eq.(8.54) from where it can 

be seen that the lower node has augmented inputs. 

                                                                                     y11 

                             w21,11           N11
 
* I12             

   x11,21                                                                        

           

                                           

                                                                                                                    w21,11 

                                                                                       

                             w21,11           (N21 * (F21,11 + I22))
AI

          y21                                             

                                                                          

                     

Fig. 8.46 Third interim FN for Example 8.9 

[N11
 
* I12] (x11,21,

 
w21,11

 
| y11) ;                                                                            (8.54) 

[(N21 * (F21,11 + I22))
AI

] (x11,21,
 
w21,11

 
| w21,11,

 
y21)   

The two nodes N11
 
* I12 and (N21 * (F21,11 + I22))

AI
 of the third interim FN can be 

output merged into a single equivalent node (N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
. As 

result of this merging operation, the third interim FN is transformed into a fourth 

interim FN. This fourth interim FN can be described by the block-scheme in 
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Fig.8.47 and the topological expression in Eq.(8.55) from where it can be seen that 

the single equivalent node is embraced by the identity feedback connection. 

                                                                                   y11 

     x11,21 

                                                                                 w21,11 

w21,11          (N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
 

                                                                                   y21 

 

 

 
Fig. 8.47 Fourth interim FN for Example 8.9 

[(N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
] (x11,21,

 
w21,11

 
| y11,

 
w21,11,

 
y21)                      (8.55)                      

The node (N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
 with input set {x11,21, w21,11} and output 

set {y11, w21,11, y21} can be further transformed into a node with equivalent feed-

back ((N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
)

EF
 with input set {x11,21, x

EF
} and output set 

{y11,
 
y

EF
,
 
y21}.This transformation removes the identity feedback and makes the 

fuzzy system with feedback equivalent to a fuzzy system without feedback. As a 

result, the fourth interim FN is transformed into a final FN. This final interim FN 

can be described by the block-scheme in Fig.8.48 and the topological expression 

in Eq.(8.56), from where it can be seen that the single equivalent node is not  

embraced by the identity feedback connection anymore. 

                                                                                  y11 

     x11,21    

                                                                                  y
EF

 

 x
EF

          ((N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
)

EF
 

                                                                                   y21 

Fig. 8.48 Final interim FN for Example 8.9   

[((N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
)

EF
] (x11,21, x

EF 
| y11,

 
y

EF
,
 
y21)                       (8.56)                      

The considerations in Example 8.9 are concerned with network analysis when all 

network nodes and the feedback node are known. In the case of network design, 

the feedback node is unknown. In this context, Algorithm 8.11 describes the proc-

ess of deriving the unknown feedback node in the initial FN from Fig.8.43 when 

the network nodes and the single equivalent node NE are known. In this case, node 

NE is given by the Boolean matrix equation in Eq.(8.57). 

NE = ((N11
 
* I12) ; (N21 * (F21,11 + I22))

AI
)

EF
                                                       (8.57)                       
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Algorithm 8.11 

1. Define NE, N11, N21, I12, I22 and F21,11. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11

 
* I12) ; (N21 * (F21,11 + I22))

AI
 in Eq.(8.57).  

4. Find N11
 
* I12 by vertical merging of N11

 
and I12. 

5. Derive (N21 * (F21,11 + I22))
AI

 from NE in Eq.(8.57), if possible. 

6. Find N21 * (F21,11 + I22)
 
by inverse input augmentation of (N21 * (F21,11 + I22))

AI
. 

7. Derive F21,11 + I22
 
from N21 * (F21,11 + I22), if possible. 

8. Derive F21,11 from F21,11 + I22, if possible. 

8.5   Networks with Multiple Global Feedback  

The most complex type of FN is the one with multiple global feedback. This net-

work has at least two sequences of nodes with at least two nodes in each sequence 

such that all nodes in a sequence are embraced by a separate feedback connection  

with a feedback node in it. In this case, the feedback is multiple as it appears more 

than once but it is also global as it embraces more than one node within a  

sequence. There may be an arbitrary number of feedforward connections between 

these nodes and any other nodes as well as between any pair of other nodes. How-

ever, the presence of any feedforward connections does not remove the feedback 

characteristics of this type of FN due to the presence of the feedback connections 

with the feedback nodes. 

Example 8.10 

This example considers a FN with network nodes N11, N12 and  N13, feedback node 

F12,11 embracing N11 and N12 and feedback node F13,12 embracing N12 and N13 

where x11 is an input for N11, y13 is an output for N13, z11,12
1,1

 is the feedforward 

connection from the first and only output for N11 to the first input for N12, z12,13
1,1

 is 

the feedforward connection from the first output for N12 to the first and only input 

for N13, v12,11 is the part of the feedback connection to F12,11, w12,11 is the part of the 

feedback connection from F12,11, v13,12 is the part of the feedback connection to 

F13,12 and w13,12 is the part of the feedback connection from F13,12. This initial FN 

represents a queue of three fuzzy systems that can be described by the block 

scheme in Fig.8.49 and the topological expression in Eq.(8.58) from where it can 

be seen that the three nodes in the first and only level are embraced by two  

partially overlapping  feedbacks.  
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  x11                          z11,12
1,1

                                        z12,13
1,1

                                         y13           

                                                                                    

     w12,11              N11                w13,12                N12             v12,11                        N13             v13,12 

 

                 

                                                                        F12,11                                                  

 

                                                                                          F13,12 

Fig. 8.49 Initial FN for Example 8.10 

[N11 ] (x11,
 
w12,11

 
| z11,12

1,1
) * [N12] (z11,12

1,1
, w13,12

 
| z12,13

1,1
, v12,11) *                   (8.58) 

[N13] (z12,13
1,1 

| y13, v13,12), [F12,11] (v12,11
 
| w12,11), [F13,12] (v13,12

 
| w13,12)                                            

The feedback nodes F12,11 and F13,12 represent non-identity feedback connections. 

This is also implied by the use of different variable names for the inputs and the 

outputs for F12,11 and F13,12, i.e. v12,11, w12,11 and v13,12, w13,12. In order to apply the 

linguistic composition approach to the initial FN, it is necessary to introduce a sec-

ond level within a fourth layer of the underlying grid structure of the FN and to 

move F13,12 to this new grid cell. It is also necessary to propagate y13 forwards 

through the fourth layer and insert an implicit identity node I14 in level 1 of layer  

4. Further on, it is necessary to introduce a third level within the fourth layer of the 

underlying grid structure of the FN and to move F12,11 to this new grid cell. It is 

also necessary to propagate v12,11 forwards through the third layer and insert an 

implicit identity node I33 in level 3 of layer 3. Likewise, it is necessary to propa-

gate w13,12 backwards through the first layer and insert an implicit identity node I31 

in level 3 of layer 1.  

The above movements and insertions transform the initial FN into a first  

interim FN whereby the non-identity feedback connection embracing the network 

nodes N11 and N12 is represented as a feedforward connection v12,11 between N12 

and F12,11 and an identity feedback connection w12,11 embracing N11, N12, I33 and 

F12,11. Also, the non-identity feedback connection embracing the network node N12 

and N13 is represented as a feedforward connection v13,12 between N13 and F13,12 

and an identity feedback connection w13,12 embracing I31, N12, N13 and F13,12. This 

first interim FN can be described by the block-scheme in Fig.8.50 and the topo-

logical expression in Eq.(8.59) from where it can be seen that both F12,11 and F13,12 

are already feedforward nodes alongside the other six nodes. 
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  x11                      z11,12
1,1

                               z12,13
1,1

                         y13                                   y13 

                                                                                                                    I14 

     w12,11             N11                                      N12                                       N13    v13,12                   w13,12 

                                                                                                     F13,12 

                                                                           

      w13,12                        w13,12                                                 v12,11             v12,11                            w12,11 

                 I31                                                           I33                 F12,11 

                 

                  

 

                                  

Fig. 8.50 First interim FN for Example 8.10   

{[N11 ] (x11,
 
w12,11

 
| z11,12

1,1
) + [I31] (w13,12

 
| w13,12)} *                                        (8.59) 

[N12] (z11,12
1,1

, w13,12
 
| z12,13

1,1
, v12,11) *         

{[N13] (z12,13
1,1 

| y13, v13,12) + [I33] (v12,11
 
| v12,11)} *  

{[I14] (y13
 
| y13) + [F13,12] (v13,12

 
| w13,12) + [F12,11] (v12,11

 
| w12,11)}                                                      

Nodes N11 and I31 of the first interim FN can be merged vertically into a temporary 

node N11
 
+ I31. Similarly, nodes N13 and I33 of the same interim FN can be merged 

vertically into a second temporary node N13 + I33. Also, nodes I13, F13,12 and F12,11 

can be merged vertically into a third temporary node I14 + F13,12 + F12,11. These 

three temporary nodes can be further merged horizontally with node N12
 
 between 

the first and the second temporary node into a single equivalent node                      

(N11
 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11). These merging operations 

transform the first interim FN into a second interim FN with a single node. This 

second FN can be described by the block-scheme in Fig.8.51 and the topological 

expression in Eq.(8.60) from where it can be seen that the single equivalent node 

is embraced by the identity feedback connections. 

  x11                                                                                                    y13 

                                                                                                                     

     w12,11                                                                                                                                                   w13,12 

                  (N11
 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11)                                                        

      w13,12                                                                                                                                                 w12,11 

                  

                 

                  

 

Fig. 8.51 Second interim FN for Example 8.10 
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[(N11
 
+ I31)

 
* (N12 + F11) * (I14 + F12 + I33)]                                                       (8.60) 

(x11,
 
w12,11,

 
w13,12

 
| y12,

 
w13,12,

 
w12,11)                                                     

The node (N11
 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11) with input set             

{x11, w12,11, w13,12} and output set {y13, w13,12, w12,11} can be further transformed 

into a node with equivalent feedback ((N11
 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + 

F12,11))
FE

 with input set {x11,
 
x1

FE
,
 
x2

FE
} and output set {y12,

 
y2

FE
,
 
y1

FE
}.This trans-

formation removes the two identity feedbacks and makes the fuzzy system with 

feedback equivalent to a fuzzy subsystem without feedback. As a result, the sec-

ond interim FN is transformed into a final FN. This final FN can be described by 

the block-scheme in Fig.8.52 and the topological expression in Eq.(8.61) from 

where it can be seen that the single equivalent node is not embraced by the  

identity feedback connections. 

  x11                                                                                                       y13 

                                                                                                                     

      x1
FE

                                                                                                                                                           y2
FE

 

                ((N11
 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11))

 FE
                                                  

      x2
FE

                                                                                                                                                           y2
FE

 

                  

                 

Fig. 8.52 Final FN for Example 8.10  

[((N11
 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11))

 FE
]                                 (8.61)              

(x11,
 
x1

FE
,
 
x2

FE 
| y12,

 
y2

FE
,
 
y1

FE
)                                                 

The considerations in Example 8.10 are concerned with network analysis when all 

network and feedback nodes are known. In the case of network design, at least one 

feedback node is unknown. In this context, Algorithms 8.12-8.13 describe the 

process of deriving an unknown feedback node in the initial FN from Fig.8.49 

when the network nodes, one of the feedback nodes and the single equivalent node 

NE are known. In this case, node NE is given by the Boolean matrix equation in 

Eq.(8.62). 

NE = ((N11
 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11))

 FE
                          (8.62)                      
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Algorithm 8.12 

1. Define NE, N11, N12, N13, I14, I31, I33 and F13,12. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11

 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11)

 
in 

Eq.(8.62).  

4. Find N11
 
+ I31 by vertical merging of N11

 
and I31. 

5. Find (N11
 
+ I31) * N12

 
by horizontal merging of (N11

 
+ I31) and N12. 

6. Find N13
 
+ I33 by vertical merging of N13

 
and I33. 

7. Find (N11
 
+ I31) * N12 * (N13 + I33) by horizontal merging of (N11

 
+ I31) * N12 and 

(N13 + I33) . 

8. Derive I14 + F13,12 + F12,11 from NE in Eq.(8.62), if possible. 

9. Find I14 + F13,12 by vertical merging of I14 and F13,12. 

10. Derive F12,11 from I14 + F13,12 + F12,11, if possible. 

Algorithm 8.13 

1. Define NE, N11, N12, N13, I14, I31, I33 and F11,12. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11

 
+ I31) * N12 * (N13 + I33) * (I14 + F13,12 + F12,11)

 
in 

Eq.(8.62).  

4. Find N11
 
+ I31 by vertical merging of N11

 
and I31. 

5. Find (N11
 
+ I31) * N12

 
by horizontal merging of (N11

 
+ I31) and N12. 

6. Find N13
 
+ I33 by vertical merging of N13

 
and I33. 

7. Find (N11
 
+ I31) * N12 * (N13 + I33) by horizontal merging of (N11

 
+ I31) * N12 and 

(N13 + I33) . 

8. Derive I14 + F13,12 + F12,11 from NE in Eq.(8.62), if possible. 

9. Derive F13,12 from I14 + F13,12 + F12,11, if possible. 

Example 8.11 

This example considers a FN with network nodes N11 and N21, feedback node 

F11,21 embracing N11 and N21 and feedback node F21,11 embracing N21 and N11 

where x11,21 is a common input for N11 and N21, y11 is an output for N11, y21 is an 

output for N21, v11,21 is the part of the feedback connection to F11,21, w11,21 is the 

part of the feedback connection from F11,21, v21,11 is the part of the feedback  

connection to F21,11 and w21,11 is the part of the feedback connection from F21,11. 

This initial FN represents a stack of two fuzzy systems that can be described by 

the block scheme in Fig.8.53 and the topological expression in Eq.(8.63) from 

where it can be seen that the feedback is bidirectional from the first to the second 

level and vice versa.  
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                                                                      y11           

                                                                               

                               w21,11        N11         v11,21 

 

                     

   x11,21                                   F11,21 

 

                                         F21,11 

                       w11,21                       v21,11             

                                                                           

                                                      N21           y21 

 

Fig. 8.53 Initial FN for Example 8.11  

[N11] (x11,21,
 
w21,11

 
| y11,

 
v11,21) ; [N21] (w11,21,

 
x11,21

 
| v21,11,

 
y21),                         (8.63) 

[F11,21] (v11,21
 
| w11,21), [F21,11] (v21,11

 
| w21,11)                                                                

The feedback nodes F11,12 and F12,11 represent non-identity feedback connections. This 

is also implied by the use of different variable names for the inputs and the outputs 

for F11,12 and F12,11, i.e. v11,12, w11,12 and v12,11, w12,11. In order to apply the linguistic 

composition approach to the initial FN, it is necessary to introduce a virtual interme-

diate level just under the first level within a second layer of the underlying grid struc-

ture of the FN and to move F11,21 to this new grid cell as well as to propagate y11 for-

wards through the second layer and insert an implicit identity node I12 in level 1 of 

layer 2. It is also necessary to introduce a virtual intermediate level just above the 

second level within the second layer and to move F21,11 to this new grid cell of the un-

derlying grid structure of the FN as well as to propagate y21 forwards through the sec-

ond layer and insert an implicit identity node I22 in level 2 of layer 2.  

The above movements and insertions transform the initial FN into a first  

interim FN. In this case, the non-identity feedback connection embracing the net-

work nodes N11 and N21 is represented as a feedforward connection v11,21 between 

N11 and F11,21 and an identity feedback connection w11,21 from F11,21 to N21. Also, 

the non-identity feedback connection embracing the network nodes N21 and N11 is 

represented as a feedforward connection v21,11 between N21 and F21,11 and an iden-

tity feedback connection w21,11 from F21,11 to N11. This first interim FN can be de-

scribed by the block-scheme in Fig.8.54 and the topological expression in 

Eq.(8.64) from where it can be seen that F11,21 and F21,11 are already feedforward 

nodes alongside the other four nodes. 
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                                                                              y11                                       y11 

                                                                                       I12 

                              w21,11         N11          v11,21                                  w11,21 

                                                                        F11,21 

                     

   x11,21                                        

                                                                      

 

                       w11,21                       v21,11                      w21,11          

                                                                                     F21,11 

                                                     N21            y21                                        y21 

                                                                          I22 
 

Fig. 8.54 First interim FN for Example 8.11 

{[N11] (x11,21,
 
w21,11

 
| y11,

 
v11,21) * {[I12] (y11

 
| y11) + [F11,21] (v11,21

 
| w11,21)}} ;  (8.64)                      

{[N21] (w11,21,
 
x11,21

 
| v21,11,

 
y21) * {[F21,11] (v21,11 | w21,11) + [I22] (y21

 
| y21)}}                                     

Nodes I12 and F11,21 of the second interim FN can be merged vertically into a tem-

porary node I12
 
+ F11,21 which can be further merged horizontally with node N11 on 

the left. Also, nodes F21,11 and I22 can be merged vertically into another temporary 

node F21,11 + I22 which can be further merged horizontally with node N21 on the 

left. These merging operations transform the first interim FN into a second interim 

FN with two nodes whereby the horizontal merging of nodes N11 and I12
 
+ F11,21 is 

reflected by their replacement with node N11 * (I12
 
+ F11,21) and the horizontal 

merging of nodes N21 and (F21,11 + I22)
 
is reflected by their replacement with node 

N21 and (F21,11 + I22). This second interim FN can be described by the block-

scheme in Fig.8.55 and the topological expression in Eq.(8.65) from where it can 

be seen that each of the two nodes has an uncommon input. 

                                                                                     y11 

                                                                              

                            w21,11             N11 * (I12
 
+ F11,21)           w11,21 

                                                                         

                     

   x11,21                                           

                                                                                          

                                           

                               w11,21                                                                        w21,11 

                                                                                       

                                                      N21 * (F21,11 + I22)              y21                                             

                                                                          

Fig. 8.55 Second interim FN for Example 8.11 
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[N11 * (I12
 
+ F11,21)] (x11,21,

 
w21,11

 
| y11,

 
w11,21) ;                                                  (8.65)                      

[N21 * (F21,11 + I22)] (w11,21,
 
x11,21

 
| w21,11,

 
y21)                                                                  

In order to merge the outputs of nodes N11 * (I12
 
+ F11,21) and N21 * (F21,11 + I22)  of 

the second interim FN, it is necessary to augment the common input x11,21 for               

N11 * (I12
 
+ F11,21) with the input w11,21. It is also necessary to augment this  

common input for N21 * (F21,11 + I22) with the input w21,11. These augmentation  

operations transform the second interim FN into a third interim FN with common 

inputs for the two nodes whereby the first node N11 * (I12
 
+ F11,21) is transformed 

into a node (N11 * (I12
 
+ F11,21))

AI
 with input set {w11,21, x11,21,

 
w21,11}and the second 

node N21 * (F21,11 + I22) is transformed into a node (N21 * (F21,11 + I22))
AI

 with the 

same input set. This third interim FN can be described by the block-scheme in 

Fig.8.56 and the topological expression in Eq.(8.66), from where it can be seen 

that the both nodes already have augmented inputs. 

                      w11,21 

 

                                                                                                                            y11 

                                                     (N11 * (I12
 
+ F11,21))

AI
                        

                            w21,11                                                                   w11,21 

                                                                         

                     

   x11,21                                           

                                                                                          

                                           

                              w11,21                                                                         w21,11 

                                                                                       

                                                                                                y21                                             

                                        (N21 * (F21,11 + I22))
AI

                    

                            w21,11 

 
 

Fig. 8.56 Third interim FN for Example 8.11 

[N11 * (I12
 
+ F11,21)] (w11,21,

 
x11,21,

 
w21,11

 
| y11,

 
w11,21) ;                                        (8.66)                      

[N21 * (F21,11 + I22)] (w11,21,
 
x11,21,

 
w21,11

  
| w21,11,

 
y21)                                                                  

The two nodes (N11 * (I12
 
+ F11,21))

AI
 and (N21 * (F21,11 + I22))

AI
 of the third interim 

FN can be output merged into a single equivalent node (N11 * (I12
 
+ F11,21))

AI
 ;  

(N21 * (F21,11 + I22))
AI

. As result of this merging operation, the third interim FN is 

transformed into a fourth interim FN. This fourth interim FN can be described by 

the block-scheme in Fig.8.57 and the topological expression in Eq.(8.67) from 

where it can be seen that the single equivalent node is embraced by the identity 

feedback connections. 
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                                                                                                         y11 

w11,21                                                                                                   

                                                                                                               w11,21 

     x11,21                                                                                                                                                

                   (N11 * (I12
 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
          w21,11                                               

      w21,11                                                                                                                                                  

                                                                                                    y21 

                 

                  

 

 
 

Fig. 8.57 Fourth interim FN for Example 8.11 

[(N11 * (I12
 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
]                                                  (8.67) 

(w11,21,
 
x11,21,

 
w21,11

 
| y11,

 
w11,21,

 
w21,11,

 
y21)                                                                    

The node (N11 * (I12
 

+ F11,21))
AI

 ; (N21 * (F21,11 + I22))
AI

 with input set             

{w11,21, x11,21, w21,11} and output set {y11, w11,21, w21,11, y21} can be further trans-

formed into a node with equivalent feedback                     

((N11 * (I12
 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
)

FE
 with input set {x1

FE
,
 
x11,21,

 
x2

FE
} 

and output set {y11,
 
y1

FE
,
 
y2

FE
,
 
y21}.This transformation removes the two identity 

feedbacks and makes the fuzzy system with feedback equivalent to a fuzzy sub-

system without feedback. As a result, the fourth interim FN is transformed into a 

final FN. This final FN can be described by the block-scheme in Fig.8.58 and the 

topological expression in Eq.(8.68) from where it can be seen that the single 

equivalent node is not embraced by the identity feedback connections anymore. 

                                                                                                          y11 

      x1
FE

                                                                                                   

                                                                                                                 y1
FE

 

     x11,21                                                                                                                                                

                 ((N11 * (I12
 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
)

FE
        y2

FE
                                                

      x2
FE

                                                                                                                                                  

                                                                                                     y21 

                 
 

Fig. 8.58 Final FN for Example 8.11   

[((N11 * (I12
 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
)

FE
]                                            (8.68)         

(x1
FE

, x11,21, x2
FE 

| y11, y1
FE

, y2
FE

, y21)                                                 
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The considerations in Example 8.11 are concerned with network analysis when all 

network and feedback nodes are known. In the case of network design, at least one 

feedback node is unknown. In this context, Algorithms 8.14-8.15 describe the 

process of deriving an unknown feedback node in the initial FN from Fig.8.53 

when the network nodes, one of the feedback nodes and the single equivalent node 

NE are known. In this case, node NE is given by the Boolean matrix equation in 

Eq.(8.69). 

NE = ((N11 * (I12
 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
)

FE
                                      (8.69)                     

Algorithm 8.14 

1. Define NE, N11, N21, I12, I22 and F21,11. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11 * (I12

 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
 in Eq.(8.69).  

4. Find F21,11 + I22 by vertical merging of F21,11 and I22. 

5. Find N21 * (F21,11 + I22)
 
by horizontal merging of N21 and (F21,11 + I22). 

6. Find (N21 * (F21,11 + I22))
AI

 by input augmentation of N21 * (F21,11 + I22). 

7. Derive (N11 * (I12
 
+ F11,21))

AI
 from NE in Eq.(8.69), if possible. 

8. Find N11 * (I12
 
+ F11,21) by inverse input augmentation of (N11 * (I12

 
+ F11,21))

AI
. 

9. Derive I12
 
+ F11,21 from N11 * (I12

 
+ F11,21), if possible. 

10. Derive F11,21 from I12
 
+ F11,21, if possible. 

Algorithm 8.15 

1. Define NE, N11, N21, I12, I22 and F11,21. 

2. Confirm that NE satisfies the feedback constraints, if possible. 

3. Make NE
 
equal to (N11 * (I12

 
+ F11,21))

AI
 ; (N21 * (F21,11 + I22))

AI
 in Eq.(8.69).  

4. Find I12
 
+ F11,21 by vertical merging of I12

 
and F11,21. 

5. Find N11 * (I12
 
+ F11,21) by horizontal merging of N11 and (I12

 
+ F11,21). 

6. Find (N11 * (I12
 
+ F11,21))

AI
 by input augmentation of N11 * (I12

 
+ F11,21). 

7. Derive (N21 * (F21,11 + I22))
AI

 from NE in Eq.(8.69), if possible. 

8. Find N21 * (F21,11 + I22) by inverse input augmentation of (N21 * (F21,11 + I22))
AI

. 

9. Derive F21,11 + I22 from N21 * (F21,11 + I22), if possible. 

10. Derive F21,11  from F21,11 + I22, if possible. 

8.6   Summary on Feedback Fuzzy Networks 

The examples presented in this chapter illustrate the application of basic opera-

tions, their properties and advanced operations in feedback FNs. These examples 

validate theoretically the linguistic composition approach used in the book. This 

applies particularly to FNs with multiple local feedback and multiple global feed-

back which are more complex type of feedback FNs. However, the other two less 

complex types of feedforward FNs, i.e. FNs with single local feedback and FNs 

with single global feedback, are also quite useful in that they are usually part of 

FNs with multiple local feedback and FNs with multiple global feedback.  
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The different types of feedback FNs represent different type regression  

mappings, e.g. mono-variable, poly-variable, one-step and many-step. In particu-

lar, single feedback shows mono-variable regression whereas multiple feedback 

shows poly-variable regression. Also, local feedback reflects one-step regression 

whereas global feedback reflects many-step regression. So, the type of  regression 

in a FN determines the type of FN to be used. 

The relationship between different types of FNs and regressions is described in     

Table 8.1.  

Table 8.1 Relationship between types of FNs and regressions 

Feedback FN  Mono-variable 

regression 

Poly-variable 

regression 

One-step 

regression 

Many-step 

regression 

Single local Yes No Yes No 

Single global Yes No No Yes 

Multiple local No Yes Yes No 

Multiple global No Yes No Yes 

The next chapter shows further extension and validation of the results from 

Chapters 4-8 on FNs. In particular, some generalised theoretical examples and  

applied case studies of FNs are considered. 
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Chapter 9 

Evaluation of Fuzzy Networks 

9.1   Preliminaries on Fuzzy Network Evaluation 

The application of basic operations, their structural properties and advanced  

operations is illustrated in Chapters 7-8 for fairly abstract FNs. The examples pre-

sented there show the application of the above operations and their properties to 

the overall structure of these networks. Although the latter may be good testing 

examples for the underlying FN theory, they reflect only some variations of the 

main types of network topologies introduced for both feedforward and feedback 

FNs. Therefore, it is necessary to extend these considerations in a more applied 

context in terms of generalised examples and case studies.  

The current chapter evaluates the theoretical results on FNs from Chapters 4-8 

in the context of assessment of structural complexity, composition of HFSs, de-

composition of SFSs, indicators of model performance and applications in case 

studies. One part of the evaluation is based on general network theory as a FN can 

be viewed as a specific type of network. Another part of the evaluation builds on 

general systems theory as a FN represents a system of fuzzy systems. The rest of 

the evaluation is based on comparison with SFSs and HFSs which are widely used 

as applications of fuzzy logic. 

The evaluation of the theoretical results is considered in the context of both analy-

sis and design. However, the analysis part is covered in more detail than the design 

part in some sections such as the one with the case studies. This is due to the fact that 

it is usually easier to analyse a FN on the basis of a HFS than to design a FN from a 

SFS. Moreover, it can be seen from the examples in Chapters 7-8 that network analy-

sis tasks always have a unique solution whereas network design tasks may have  

multiple solutions or no solution at all. 

The evaluation presented in this chapter demonstrates the applicability of FNs 

for solving some real problems without going into specific details. In this sense, 

the formal models for FNs used are mainly at network level, i.e. in the form of 

block schemes and topological expressions. Most formal models at node level 

such as Boolean matrices and binary relations are embedded implicitly in the 

block schemes and topological expressions.  

All presented case studies are for FNs with a fairly small number of inputs and a 

single output. However, the extension to case studies of higher dimension is straight-

forward. The only difference in this extension is the more complex structure of the 

FN in the case of more inputs and the multiple use of the single equivalent node in the 

case of multiple outputs. 
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9.2   Assessment of Structural Complexity  

Structural complexity is an attribute of any general type of network. This attribute can 

be assessed by different measures and it is often linked to important network proper-

ties such as robustness.  The latter shows the ability of the network to maintain some 

functionality when some of its links, nodes or even whole clusters are damaged.  

In this context, a FN can also be assessed with respect to its structural complex-

ity. Such an assessment may be useful not only for the analysis of existing FNs in 

terms of robustness but also for the design of new FNs that are robust to different 

types of damage.  

A basic measure of structural complexity for a FN is the number of non-identity 

nodes. This number includes both feedforward and feedback nodes. Identity nodes 

are excluded from the considerations as they do not affect the existing complexity. 

In particular, feedforward identity nodes are used only for manipulating feedfor-

ward identity mappings propagating through at least one layer in the underlying 

grid structure of the network. As far as feedback identity nodes are concerned, 

they are used only for representing feedback identity mappings which are  

eventually removed from the underlying grid structure of the network. 

Another basic measure of structural complexity for a FN is the number of  

non-identity connections. This number includes both feedforward and feedback con-

nections. Identity connections are excluded from the considerations as they also do 

not affect the existing complexity. In this sense, feedforward and feedback identity 

connections are used only as inputs and outputs for feedforward and feedback identity 

nodes, respectively. 

A more specific measure of structural complexity for a FN is the overall num-

ber of cells in the grid structure. This number can be obtained by multiplying the 

number of horizontal levels by the number of vertical layers. Identity nodes are in-

cluded in the considerations as they may affect the number of cells, e.g. newly  

introduced identity nodes may lead to the appearance of new cells in the underly-

ing grid structure of the network. This measure applies to both feedforward and 

feedback identity nodes.  

Another more specific measure of structural complexity for a FN is the number 

of populated cells in the grid structure. This number can be obtained by enumerat-

ing all non-empty cells. Identity nodes are also included in the considerations as 

they may affect the number of populated cells, e.g. newly introduced identity nodes 

may be moved to new non-empty cells in the underlying grid structure of the net-

work. This measure also applies to both feedforward and feedback identity nodes.  

A more general measure of structural complexity for a FN is the average width, 

i.e. the average path length from first layer nodes to last layer nodes in the grid struc-

ture. This length can be obtained by first summing the number of links between any 

pair of nodes such that the first node is in the first layer and the last node is in the last 

layer. The sums for each pair are then summed and divided by the number of pairs. 

This measure reflects the width of the FN from left to right in a temporal context as 

the layers in the grid structure represent some kind of temporal hierarchy.  
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Another more general measure of structural complexity for a FN is the average 

depth, i.e. the average path length from first level nodes to last level nodes in the 

grid structure. This length can be obtained by first summing the number of links 

between any pair of nodes such that the first node is in the first level and the last 

node is in the last level. The sums for each pair are then summed and divided by 

the number of pairs. This measure reflects the depth of the FN from top to bottom 

in a spatial context as the levels in the grid structure represent some kind of spatial 

hierarchy.  

9.3   Composition of Hierarchical Fuzzy Systems  

The most common type of fuzzy system with multiple rule bases is the HFS. This 

fuzzy system is introduced in Chapter 2 and it has two major forms – forward and 

backward. In the first case, inputs are gradually added to rule bases in subsequent 

layers in an increasing order, i.e. from the first to the last input. In the second case, 

inputs are gradually added to rule bases in subsequent layers in a decreasing order, 

i.e. from the last to the first input.  

A HFS can be converted into an initial FN which can then be composed into a 

final FN. The latter is similar to a SFS with a single rule base which is also intro-

duced in Chapter 2. The two examples below consider the above two-step  

sequence of conversion and composition for a forward and backward HFS, respec-

tively. Both examples relate to network analysis and they are presented in a  

general form. 

Example 9.1 

This example considers an initial HFS in a forward form with a set of ‘m’ inputs             

{x1, x2,…, xm}, a set of ‘m-1’ nodes {N11, N12,…, N1,m-1}, a set of ‘m-2’ connec-

tions {z
1
, z

2
,…, z

m-2
} and a single output y.  Each connection represents a current 

iteration of the output and the number of connections is equal to the number of it-

erations. This initial HFS can be described by the block-scheme in Fig.9.1 and the 

topological expression in Eq.(9.1) from where it can be seen that each network 

node has two inputs and one output. 

     x1                        z
1
                         z

2
                          z

m-2
 

                                                                                                                                   y 

x2         N11                       N12                       ……                       N1,m-1 

                                               

x3                                                

                                                                       

………...                                               

xm 

 

Fig. 9.1 HFS for Example 9.1 
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[N11] (x1,
 
x2 | z

1
) * [N12] (z

1
,
 
x3 | z

2
) * … * [N1,m-1] (z

m-2
,
 
xm | y)                          (9.1)                      

The initial HFS can be converted into an initial FN by representing all identity 

mappings propagating through any layers in the grid structure with the sets of 

identity nodes {I21}, … ,{Im-1,1, Im-1,2,
 
…}. This initial FN can be described by the 

block-scheme in Fig.9.2 and the topological expression in Eq.(9.2). It can be seen 

from there that each network node has two inputs and one output whereas each 

identity node has one input and one output. 

     x1                        z
1
                         z

2
                          z

m-2
 

                                                                                                                                   y 

x2         N11                       N12                       ……                       N1,m-1 

                                               

x3                   x3                             

             I21                                                        

………...                                               

xm                                   xm                        xm                                    xm 

           Im-1,1                                 Im-1,2                                 …… 

Fig. 9.2 Initial FN for Example 9.1  

{[N11] (x1,
 
x2 | z

1
) + [I21] (x3

 
| x3) + … + [Im-1,1] (xm

 
| xm)} *                                (9.2) 

{[N12] (z
1
,
 
x3 | z

2
) + … +  [Im-1,2] (xm

 
| xm)} *  

…………………… *  

[N1,m-1] (z
m-2

,
 
xm | y)                                                                                                                           

The initial FN can be composed into a final FN by merging first vertically and 

then horizontally all network and identity nodes into a single equivalent node 

*p=1
m–1

 (N1p + +q=p+1
m–1 

Iqp). This final FN can be described by the block-scheme in 

Fig.9.3 and the topological expression in Eq.(9.3) from where it can be seen that 

the single equivalent node has ‘m’ inputs and one output. 

     x1                         

                                                                                                                                    

x2                                                             y 

              *p=1
m–1

 (N1p + +q=p+1
m–1 

Iqp)                                                       

………...                          

xm 

 

Fig. 9.3 Final FN for Example 9.1  
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[*p=1
m–1

 (N1p + +q=p+1
m–1 

Iqp)] (x1, x2,…, xm | y)                                                    (9.3) 

If the HFS for Example 9.1 has a set of ‘n’ outputs {y1, y2,…, yn}, then it must be 

presented as a set of ‘n’ independent HFSs. In this case, the two-step sequence 

above is repeated for each HFS and its output.  

Example 9.2 

This example considers a HFS in a backward form with a set of ‘m’ inputs             

{x1, x2,…, xm}, a set of ‘m-1’ nodes {Nm-1,1, Nm-1,2,…, Nm-1,m-1}, a set of ‘m-2’ 

connections {z
1
, z

2
,…, z

m-2
} and a single output y.  Each connection represents a 

current iteration of the output and the number of connections is equal to the num-

ber of iterations. This HFS can be described by the block-scheme in Fig.9.4 and 

the topological expression in Eq.(9.4) from where it can be seen that each network 

node has two inputs and one output. 

     x1 

 

………...                                               

    xm-2 

 

    xm-1                                                                             

                                                                                                                                   y 

     xm         Nm-1,1       z
1
         Nm-1,2       z

2
          ……      z

m-2
        Nm-1,m-1 

                                                

Fig. 9.4 HFS for Example 9.2  

[Nm-1,1] (xm-1,
 
xm | z

1
) * [Nm-1,2] (xm-2, z

1
 | z

2
) * … * [Nm-1,m-1] (x1 ,

 
z

m-2
 | y)         (9.4)                     

The HFS can be converted into an initial FN by representing all identity mappings 

propagating through any layers in the grid structure with the sets of identity nodes 

{I11, I12, …}, … ,{Im-2,1}. This initial FN can be described by the block-scheme in 

Fig.9.5 and the topological expression in Eq.(9.5). It can be seen from there that 

each network node has two inputs and one output whereas each identity node has 

one input and one output. 
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     x1                                       x1                                   x1                         x1 

                    I11                                   I12                                   …… 

………...                                               

    xm-2                    xm-2 

                  Im-2,1 

    xm-1                                                                             

                                                                                                                                   y 

     xm         Nm-1,1       z
1
         Nm-1,2       z

2
         ……       z

m-2
        Nm-1,m-1 

                                                

Fig. 9.5 Initial FN for Example 9.2  

{[I11] (x1
 
| x1) + … + [Im-2,1] (xm-2

 
| xm-2) + [Nm-1,1] (xm-1,

 
xm | z

1
)} *                    (9.5) 

…………………… *  

{[I12] (x1
 
| x1) + … + [Nm-1,2] (xm-2,

 
z

1
 | z

2
)} *  

[Nm-1,m-1] (x1,
 
z

m-2
 | y)                                                                                                                          

The initial FN can be composed into a final FN by merging first vertically and then 

horizontally all network and identity nodes into a single equivalent node *p=1
m–1

 

(+q=1
m–1–p 

Iqp + Nm-1,p). This final FN can be described by the block-scheme in Fig.9.6 

and the topological expression in Eq.(9.6) from where it can be seen that the single 

equivalent node has ‘m’ inputs and one output. 

     x1                         

                                                                                                                                    

……... …                                                       y 

    xm-1        *p=1
m–1

 (+q=1
m–1–p 

Iqp + Nm-1,p)                                                       

                          

xm 

 

Fig. 9.6 Final FN for Example 9.2  

[*p=1
m–1

 (+q=1
m–1–p 

Iqp + Nm-1,p) (x1,…, xm-1, xm | y)                                               (9.6)                      

If the HFS for Example 9.2 has a set of ‘n’ outputs {y1, y2,…, yn}, then it must be 

presented as a set of ‘n’ independent HFSs. In this case, the two-step sequence 

above is repeated for each HFS and its output.  

9.4   Decomposition of Standard Fuzzy Systems  

The most common type of fuzzy system is the SFS. A SFS can be decomposed 

into an initial FN which can then be converted into a final FN. The latter is similar 
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to a HFS with multiple rule bases. The two algorithms below consider the above 

two-step sequence of decomposition and conversion into a forward and backward 

HFS, respectively. Both algorithms relate to network design and they are  

presented in a general form.  

The sequence of decomposition and conversion of a SFS into a HFS using FNs 

is an inverse image of the sequence of conversion and composition of a HFS into a 

SFS using FNs. In either case, the initial and the final FNs act as a bridge between 

the SFS and the HFS. 

Algorithm 9.1 follows from Example 9.1. The algorithm can be used with 

Figs.9.1-9.3 and Eqs.(9.1)-(9.3) whereby the ordering of the figures and the equa-

tions is reversed. In this case, NE,k is the single equivalent node for the fuzzy  

subnetwork with the first ‘k’ inputs of all ‘m’ inputs to the SFS. This single 

equivalent node is given by Eq.(9.7) which is special case of Eq.(9.3). 

NE,k = *p=1
k–1

 (N1p + +q=p+1
k–1 

Iqp)                                                                          (9.7) 

Algorithm 9.1 

1. Find N11 from the first two inputs and the output. 

2. If m=2, go to step 9. 

3. Set k=3. 

4. While k≤m, do steps 5-7. 

5. Find NE,k from the first k inputs and the output. 

6. Derive N1,k–1 from Eq.(9.7) for NE,k, if possible. 

7. Set k=k+1. 

8. Endwhile. 

9. End. 

Algorithm 9.2 follows from Example 9.2. The algorithm can be used in conjunc-

tion with Figs.9.4-9.6 and Eqs.(9.4)-(9.6) whereby the order of the figures and the 

equations is reversed. In this case, NE,k is the single equivalent node for the fuzzy 

subnetwork with the last ‘k’ inputs of all ‘m’ inputs to the SFS. This single 

equivalent node is given by Eq.(9.8) which is special case of Eq.(9.6). 

NE,k = *p=1
k–1

 (+q=1
k–1–p 

Iqp + Nk-1,p)                                                                       (9.8) 

Algorithm 9.2 

1. Find Nm–1,1 from the last two inputs and the output. 

2. If m=2, go to step 9. 

3. Set k=3. 

4. While k≤m, do steps 5-7. 

5. Find NE,k from the last k inputs and the output. 

6. Derive Nm–1,k–1 from the formula for NE,k, if possible. 

7. Set k=k+1. 

8. Endwhile. 

9. End. 
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9.5   Indicators of Model Performance 

SFSs, HFSs and FNs can be used as models of different processes. These models 

can be built on the basis of measured data or expert knowledge. The quality of the 

models can be quantified using different performance indicators. For this purpose, 

four model performance indicators are discussed further in this section. These are 

the Feasibility Index (FI), the Accuracy Index (AI), the Efficiency Index (EI) and 

the Transparency Index (TI). Some of these indicators are similar to indicators al-

ready used in fuzzy systems whereas the others are novel and specific to FNs.  

The first model performance indicator considered is the FI. This indicator is 

approximate in that it gives a general indication of the extent to which it is  

possible to build a model in the first place. The FI is given by Eq.(9.9).  

FI = (sum i=1
n 
pi ) / n                                                                                             (9.9) 

The notations in Eq.(9.9) are as follows: ‘n’ is number of non-identity nodes, ‘pi’ is 

number of inputs to the i-th non-identity node and ‘sum’ is a symbol for arithmetic 

summation. The assumption made here is that it is easier to build a model for a 

smaller average number of inputs per node in the model. Also, identity nodes are 

excluded from this indicator as they are virtual nodes for converting a HFS into a 

FN which do not affect the feasibility. It is obvious from Eq.(9.9) that a lower FI 

implies better model feasibility.  

The second model performance indicator considered is the AI. This indicator is 

precise in that it gives a specific indication of the mean absolute difference be-

tween the model and the data, i.e. the modelling error. The AI is given by 

Eq.(9.10).  

AI = sum i=1
nl  

sum j=1
qil  

sum k=1
vji 

(|yji
k
 – dji

k
| / vij)                                             (9.10) 

The notations in Eq.(9.10) are as follows: ‘nl’ is the number of  nodes in the last 

layer, ‘qil’ is the number of outputs from the i-th node in the last layer, ‘vji’ is the 

number of discrete values for the j-th output from the i-th node in the last layer, 

‘yji
k
’

 
is the simulated k-th discrete value for the j-th output from the i-th node in 

the last layer and ‘dji
k
’

 
is the measured k-th discrete value for the j-th output from 

the i-th node in the last layer, ‘sum’ is a symbol for arithmetic summation and ‘| |’ 

is a symbol for absolute value. In this case, identity nodes are included in this  

indicator alongside any other nodes in the last layer as their outputs also have to 

be compared with the data. It is obvious from Eq.(9.10) that a lower AI implies 

better model accuracy.  

The third model performance indicator considered is the EI. This indicator is 

precise in that it gives a specific indication of the overall number of rules in the 

model. The EI is given by Eq.(9.11).  

EI = sum i=1
n 
(qi

FID 
. ri

FID
)                                                                                   (9.11) 
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The notations in Eq.(9.11) are as follows: ‘n’ is the number of non-identity net-

work nodes, ‘qi
FID

’  is the number of outputs from the i-th non-identity node with 

an associated FID sequence, ‘ri’  is the number of rules for the i-th non-identity 

node with an associated FID sequence and ‘sum’ is a symbol for arithmetic sum-

mation. In this case, a model is more efficient if the overall number of rules is 

smaller as this number is proportional to the overall amount of computations. 

Also, identity nodes are excluded from this indicator as they are virtual nodes for 

converting a HFS into a FN which do not affect the efficiency. It is obvious from 

Eq.(9.11) that a lower EI implies better model efficiency.  

The last model performance indicator considered is the TI. This indicator is  

approximate in that it gives a general indication of the extent to which the model 

can be inspected from the inside, i.e. as a white box rather than a black box. The 

TI is given by Eq.(9.12).  

TI = (p + q) / (n + m)                                                                                        (9.12) 

The notations in Eq.(9.12) are as follows: ‘p’ is the overall number of inputs, ‘q’ is 

the overall number of outputs, ‘n’ is the number of non-identity nodes, ‘m’ is the 

number of non-identity connections and ‘sum’ is a symbol for arithmetic summa-

tion. The assumption made here is that it is easier to inspect a model from the in-

side in the presence of fewer inputs and outputs for the overall model as well as in 

the presence of more submodels and interactions between them. Also, identity 

nodes are excluded from this indicator as they are virtual nodes for converting a 

HFS into a FN which do not affect the transparency. It is obvious from Eq.(9.12) 

that a lower TI implies better model transparency.  

9.6   Applications for Case Studies 

The applications of some of the theoretical results from Chapters 4-8 and some of 

the evaluation methods from the preceding sections of this chapter are illustrated 

for two case studies. The first case study deals with mortgage assessment which is 

based on expert knowledge from the bank industry [110]. The second case study 

deals with product pricing which is based on statistical data from the retail  

industry [55, 122]. 

Case Study 9.1  

This case study is about a decision support system for assessing mortgage applica-

tions. The assessment is based on separate evaluations of the applicant and the 

property. The input factors taken into account for the evaluation of the applicant 

are their asset and the income. For the evaluation of the property, the input factors 

taken into account are its price and location. The outputs from these two evalua-

tion stages are the applicant status and the property status. These outputs, together 

with the interest on the mortgage and the income of the applicant, are fed as input 
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factors for the evaluation of the amount of credit that can be given to the applicant. 

The output from this third evaluation stage is the credit status. 

The decision support system above can be represented by an initial FN. The  

latter can be described by the block-scheme in Fig.9.7 and the topological expres-

sion in Eq.(9.13). The notations used in the figure and the equation are as follows: 

N11 is the rule base for the applicant evaluation, N21 is the rule base for the prop-

erty evaluation, N12 is the rule base for the credit evaluation, x11,12
1,3 

is the appli-

cant income, x11
2 

is the applicant asset, x12
2 

is the mortgage interest, x21
1 

is the 

property location, x21
2 

is the property price, z11,12
1,1 

is the applicant status, z21,12
1,4 

is 

the property status and y12
 
is the credit status. 

 

 x11,12
1,3 

                         z11,12
1,1 

      

                                                                                                                                    

 x11
2
          N11                                             y12                                  

                                                     N12 

 x12
2
                                              

                       

 x21
1
                                                

                                z21,12
1,4

 

      x21
2
          N21                                       

 

Fig. 9.7 Initial FN for Case Study 9.1  

{[N11] (x11,12
1,3

,
 
x11

2
 | z11,12

1,1
) + [N21] (x21

1
,
 
x21

2
 | z21,12

1,4
)} *                             (9.13) 

[N12] (z11,12
1,1

, x12
2
,
 
x11,12

1,3
,
 
z21,12

1,4
 | y12)      

There are two identity mappings propagating  through the first layer of the under-

lying grid structure of the initial FN - x11,12
1,3 

and x12
2
. These mappings can be  

presented by the identity nodes I01 and I1.5,1, respectively. As a result of this pres-

entation, the initial FN can be transformed into a first interim FN. The latter can 

be described by the block-scheme in Fig.9.8 and the topological expression in 

Eq.(9.14).  
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                  I01  

 x11,12
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 x11
2
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 x12
2
                   x12

2
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      x21
2
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Fig. 9.8 First interim FN for Case Study 9.1  

{{[I01] (x11,12
1,3

 | x11,12
1,3

)  ; [N11] (x11,12
1,3

,
 
x11

2
 | z11,12

1,1
)} +                               (9.14) 

[I1.5,1] (x12
12

 | x12
12

) +  [N21] (x21
1
,
 
x21

2
 | z21,12

1,4
)} *                              

[N12] (z11,12
1,1

, x12
2
,
 
x11,12

1,3
,
 
z21,12

1,4
 | y12)    

The outputs x11,12
1,3 

and z11,12
1,1 

from nodes I01 and N11
 
in the first interim FN could 

be merged if I01 is first augmented as I01
AI

 with the input x11
2
. This augmentation 

operation transforms the first interim FN into a second interim FN. The latter can 

be described by the block-scheme in Fig.9.9 and the topological expression in 

Eq.(9.15).  
 

                     I01
AI
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Fig. 9.9 Second interim FN for Case Study 9.1  
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{{[I01
AI

] (x11,12
1,3

,
 
x11

2
 | x11,12

1,3
)  ; [N11] (x11,12

1,3
,
 
x11

2
 | z11,12

1,1
)} +                    (9.15) 

[I1.5,1] (x12
12

 | x12
12

) +  [N21] (x21
1
,
 
x21

2
 | z21,12

1,4
)} *                              

[N12] (z11,12
1,1

, x12
2
,
 
x11,12

1,3
,
 
z21,12

1,4
 | y12)           

The outputs x11,12
1,3 

and z11,12
1,1 

from nodes I01
AI

 and N11
 
in the second interim FN 

can already be merged as both nodes have the same common inputs x11,12
1,3

 and 
 

x11
2
. This merging operation transforms the second interim FN into a third  

interim FN. The latter can be described by the block-scheme in Fig.9.10 and the 

topological expression in Eq.(9.16).  
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Fig. 9.10 Third interim FN for Case Study 9.1  

{[I01
AI 

; N11] (x11,12
1,3

,
 
x11

2
 | x11,12

1,3
, z11,12

1,1
) +  [I1.5,1] (x12

12
 | x12

12
) +                (9.16) 

[N21] (x21
1
,
 
x21

2
 | z21,12

1,4
)} * [N12] (z11,12

1,1
, x12

2
,
 
x11,12

1,3
,
 
z21,12

1,4
 | y12)           

The nodes I01
AI 

; N11, I1.5,1 and N21 in the third interim FN can be merged vertically. 

This merging operation transforms the third interim FN into a fourth interim FN. 

The latter can be described by the block-scheme in Fig.9.11 and the topological 

expression in Eq.(9.17).  
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Fig. 9.11 Fourth interim FN for Case Study 9.1  



9.6   Applications for Case Studies 259

 

[(I01
AI 

; N11) + I1.5,1 + N21]                                                                                  (9.17) 
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The first three outputs from node (I01
AI 

; N11) + I1.5,1 + N21 in the fourth interim FN 

can be permuted such that the first output becomes third, the second output be-

comes first and the third output becomes second. This permutation operation 

transforms the fourth interim FN into a fifth interim FN. The latter can be de-

scribed by the block-scheme in Fig.9.12 and the topological expression in 

Eq.(9.18).  
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Fig. 9.12 Fifth interim FN for Case Study 9.1  
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]                                                                            (9.18)            
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The nodes ((I01
AI 

; N11) + I1.5,1 + N21)
PO

 and N21 in the fifth interim FN can be 

merged horizontally. This merging operation transforms the fifth interim FN into a 

final FN. The latter can be described by the block-scheme in Fig.9.13 and the 

topological expression in Eq.(9.19).  

 

 

 

 



260 9   Evaluation of Fuzzy Networks

 

    x11,12
1,3 

                                                                                        
 
      

                                                                                                                             

 x11
2
                                                                                                                                                      

                                                                                                 
 x12

2
                                                                          y12 

                   ((I01
AI 

; N11) + I1.5,1 + N21)
PO 

* N12                         

 x21
1
                                                

                                                                                

      x21
2
                                                         

 

Fig. 9.13 Final FN for Case Study 9.1  
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The structural complexity of the FN for this case study can be assessed using the 

measures introduced in Section 9.2. It can be seen from the initial FN in Fig.9.7 

that the number of non-identity nodes is 3 and the number of non-identity connec-

tions is 2. As far as the other measures of structural complexity of the FN are con-

cerned, they can be found from the first interim FN and are as follows: overall 

number of cells – 8, number of populated cells – 5, average width – 1, average 

depth – 0.  

Case Study 9.2  

This case study is about a decision support system for determining product prices. 

The determination is based on the maximum cost that a retailer is willing to pay to 

a manufacturer or a trader for the provision or the delivery of a certain quantity of 

a product. The input factors taken into account for the determination of the price 

are the expected selling price of the product, the margin, i.e. the relative difference 

between the price and the cost of the product, and the expected sell through, i.e. 

the relative quantity of the product expected to be sold. The output from this  

process is the max cost, i.e. the maximum cost of the product.   

The decision support system above can be represented by a SFS. The latter can 

be described by the block-scheme in Fig.9.14. The notations used are as follows: 

N is the rule base for the SFS, x1 is the expected selling price, x2 is the margin, x3 

is the expected sell through and y is the max cost.  

   x1                                                                                                                                                     

                                                                                                 
   x2                           y 

                   N                      

   x3                                                

                                                                                

Fig. 9.14 SFS for Case Study 9.2  
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In addition, the decision support system above can be represented by a HFS. 

The latter can be described by the block-scheme in Fig.9.15. The notations used 

are as follows: N11 is the first rule base for the HFS, N12 is the second rule base for 

the HFS, x1, x2 , x3 and y have the same meanings as for the SFS whereas z is the 

provisional max cost, i.e. the provisional maximum cost of the product.  

   x1                                                                                             

                               z                                                          
   x2          N11                                         y 

                                              N12 

                                                   

             x3                                                                      

 

Fig. 9.15 HFS for Case Study 9.2  

Finally, the decision support system above can be represented by an initial FN 

with two levels and two layers. The latter can be described by the block-scheme in 

Fig.9.16 whereby most notations used are the same as the ones for the HFS. The 

only new notation here is the identity rule base I21 representing the propagation of 

the identity mapping x3 through the first layer. In this context, N11 and N12 are   

network rules bases.   

        x1                                                                                             

                               z                                                          
   x2          N11                                         y 

                                              N12 

                                                   

        x3                    x3                                                

                 I21 

Fig. 9.16 Initial FN for Case Study 9.2  

The initial FN can be transformed into a final FN with a single equivalent rule 

base. The latter can be described by the block-scheme in Fig.9.17 whereby most 

notations used are the same as the ones for the SFS in Fig.9.14. The only differ-

ence here is that the rule base N for the SFS is replaced by the single equivalent 

rule base (N11 + I21) * N12 for the FN.  
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   x1                                                                                                                                                     

                                                                                                 
   x2                                                  y 

                  (N11 + I21) * N12                      

   x3                                                

                                                                                

Fig. 9.17 Final FN for Case Study 9.2  

The inputs x1, x2 , x3  are presented by five linguistic terms each, as shown in 

Figs.9.18-9.20. Тhese terms represent triangular fuzzy membership functions that 

cover uniformly the whole variation range for the inputs. For consistency, all 

variation ranges are normalised between 0 and 100. 

 

Fig. 9.18 Linguistic terms for first input in Case Study 9.2 

 

Fig. 9.19 Linguistic terms for second input in Case Study 9.2  
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Fig. 9.20 Linguistic terms for third input in Case Study 9.2  

The output y and the connection z are presented by eleven linguistic terms 

each, as shown in Figs.9.21-9.22. Тhese terms also represent triangular fuzzy 

membership functions that cover uniformly the whole variation range for the out-

put and the connection. Similarly, all variation ranges are normalised between 0 

and 100. 

 

Fig. 9.21 Linguistic terms for output in Case Study 9.2  

 

Fig. 9.22 Linguistic terms for connection in Case Study 9.2  
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The rule base for the SFS is shown as an integer table in two parts in             

Tables 9.1-9.2. This rule base is derived from statistical data about the product 

pricing process. The derivation is done using a clustering approach whereby the 

rules represent an approximation of the input-output data points from the data set 

for the process. 

Table 9.1 First part of rule base for SFS in Case Study 9.2 

x1 x2 x3 y x1 x2 x3 y x1 x2 x3 y 

1 1 1 1 2 1 1 1 3 1 1 1 

1 1 2 1 2 1 2 2 3 1 2 4 

1 1 3 1 2 1 3 4 3 1 3 6 

1 1 4 1 2 1 4 5 3 1 4 9 

1 1 5 1 2 1 5 6 3 1 5 11 

1 2 1 1 2 2 1 1 3 2 1 1 

1 2 2 1 2 2 2 2 3 2 2 3 

1 2 3 1 2 2 3 3 3 2 3 5 

1 2 4 1 2 2 4 4 3 2 4 7 

1 2 5 1 2 2 5 5 3 2 5 9 

1 3 1 1 2 3 1 1 3 3 1 1 

1 3 2 1 2 3 2 2 3 3 2 2 

1 3 3 1 2 3 3 2 3 3 3 4 

1 3 4 1 2 3 4 3 3 3 4 5 

1 3 5 1 2 3 5 4 3 3 5 6 

1 4 1 1 2 4 1 1 3 4 1 1 

1 4 2 1 2 4 2 1 3 4 2 2 

1 4 3 1 2 4 3 2 3 4 3 2 

1 4 4 1 2 4 4 2 3 4 4 3 

1 4 5 1 2 4 5 2 3 4 5 4 

1 5 1 1 2 5 1 1 3 5 1 1 

1 5 2 1 2 5 2 1 3 5 2 1 

1 5 3 1 2 5 3 1 3 5 3 1 

1 5 4 1 2 5 4 1 3 5 4 1 

1 5 5 1 2 5 5 1 3 5 5 1 
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Table 9.2 Second part of rule base for SFS in Case Study 9.2 

x1 x2 x3 y x1 x2 x3 y 

4 1 1 1 5 1 1 1 

4 1 2 5 5 1 2 6 

4 1 3 9 5 1 3 11 

4 1 4 11 5 1 4 11 

4 1 5 11 5 1 5 11 

4 2 1 1 5 2 1 1 

4 2 2 4 5 2 2 5 

4 2 3 7 5 2 3 9 

4 2 4 9 5 2 4 11 

4 2 5 11 5 2 5 11 

4 3 1 1 5 3 1 1 

4 3 2 3 5 3 2 4 

4 3 3 5 5 3 3 6 

4 3 4 7 5 3 4 9 

4 3 5 9 5 3 5 11 

4 4 1 1 5 4 1 1 

4 4 2 2 5 4 2 2 

4 4 3 3 5 4 3 4 

4 4 4 4 5 4 4 5 

4 4 5 5 5 4 5 6 

4 5 1 1 5 5 1 1 

4 5 2 1 5 5 2 1 

4 5 3 1 5 5 3 1 

4 5 4 1 5 5 4 1 

4 5 5 1 5 5 5 1 

The two rule bases for the HFS are shown as integer tables in Tables 9.3-9.4. 

These rule bases are derived from statistical data about the two subprocesses 

within the product pricing process. The derivation is also done using a clustering 

approach whereby the rules represent an approximation of the input-output data 

points from the data sets for the subprocesses. 
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Table 9.3 First rule base for HFS in Case Study 9.2 

x1 x2 z x1 x2 z x1 x2 z 

1 1 1 3 1 6 5 1 11 

1 2 1 3 2 5 5 2 9 

1 3 1 3 3 4 5 3 6 

1 4 1 3 4 2 5 4 4 

1 5 1 3 5 1 5 5 1 

2 1 4 4 1 9 - - - 

2 2 3 4 2 7 - - - 

2 3 2 4 3 5 - - - 

2 4 2 4 4 3 - - - 

2 5 1 4 5 1 - - - 

Table 9.4 Second rule base for HFS in Case Study 9.2 

z x3 y z x3 y z x3 y 

1 1 1 5 1 1 9 1 1 

1 2 1 5 2 3 9 2 5 

1 3 1 5 3 5 9 3 9 

1 4 1 5 4 7 9 4 11 

1 5 1 5 5 9 9 5 11 

2 1 1 6 1 1 10 1 1 

2 2 2 6 2 4 10 2 6 

2 3 2 6 3 6 10 3 10 

2 4 3 6 4 9 10 4 11 

2 5 3 6 5 11 10 5 11 

3 1 1 7 1 1 11 1 1 

3 2 2 7 2 4 11 2 6 

3 3 3 7 3 7 11 3 11 

3 4 4 7 4 10 11 4 11 

3 5 5 7 5 11 11 5 11 

4 1 1 8 1 1 - - - 

4 2 3 8 2 5 - - - 

4 3 4 8 3 8 - - - 

4 4 6 8 4 11 - - - 

4 5 7 8 5 11 - - - 

The rule base for the FN is shown as an integer table in two parts in               

Tables 9.5-9.6. This rule base is derived using merging operations on the two 

nodes from the HFS and the associated identity node.  
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Table 9.5 First part of rule base for FN in Case Study 9.2 

x1 x2 x3 y x1 x2 x3 y x1 x2 x3 y 

1 1 1 1 2 1 1 1 3 1 1 1 

1 1 2 1 2 1 2 3 3 1 2 4 

1 1 3 1 2 1 3 4 3 1 3 6 

1 1 4 1 2 1 4 6 3 1 4 9 

1 1 5 1 2 1 5 7 3 1 5 11 

1 2 1 1 2 2 1 1 3 2 1 1 

1 2 2 1 2 2 2 2 3 2 2 3 

1 2 3 1 2 2 3 3 3 2 3 5 

1 2 4 1 2 2 4 4 3 2 4 7 

1 2 5 1 2 2 5 5 3 2 5 9 

1 3 1 1 2 3 1 1 3 3 1 1 

1 3 2 1 2 3 2 2 3 3 2 3 

1 3 3 1 2 3 3 2 3 3 3 4 

1 3 4 1 2 3 4 3 3 3 4 6 

1 3 5 1 2 3 5 3 3 3 5 7 

1 4 1 1 2 4 1 1 3 4 1 1 

1 4 2 1 2 4 2 2 3 4 2 2 

1 4 3 1 2 4 3 2 3 4 3 2 

1 4 4 1 2 4 4 3 3 4 4 3 

1 4 5 1 2 4 5 3 3 4 5 3 

1 5 1 1 2 5 1 1 3 5 1 1 

1 5 2 1 2 5 2 1 3 5 2 1 

1 5 3 1 2 5 3 1 3 5 3 1 

1 5 4 1 2 5 4 1 3 5 4 1 

1 5 5 1 2 5 5 1 3 5 5 1 
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Table 9.6 Second part of rule base for FN in Case Study 9.2 

x1 x2 x3 y x1 x2 x3 y 

4 1 1 1 5 1 1 1 

4 1 2 5 5 1 2 6 

4 1 3 9 5 1 3 11 

4 1 4 11 5 1 4 11 

4 1 5 11 5 1 5 11 

4 2 1 1 5 2 1 1 

4 2 2 4 5 2 2 5 

4 2 3 7 5 2 3 9 

4 2 4 10 5 2 4 11 

4 2 5 11 5 2 5 11 

4 3 1 1 5 3 1 1 

4 3 2 3 5 3 2 4 

4 3 3 5 5 3 3 6 

4 3 4 7 5 3 4 9 

4 3 5 9 5 3 5 11 

4 4 1 1 5 4 1 1 

4 4 2 2 5 4 2 3 

4 4 3 3 5 4 3 4 

4 4 4 4 5 4 4 6 

4 4 5 5 5 4 5 7 

4 5 1 1 5 5 1 1 

4 5 2 1 5 5 2 1 

4 5 3 1 5 5 3 1 

4 5 4 1 5 5 4 1 

4 5 5 1 5 5 5 1 

The output surfaces for the SFS, the HFS and the FN are shown in      

Figs.9.23-9.26 in three dimensions. In this case, a separate surface represents each 

of the two rule bases of the HFS. The rule bases for the SFS and the FN are repre-

sented by one surface each whereby the third input is fixed to the value in the 

middle of its variation range, i.e. 50.  
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Fig. 9.23 Output surface for SFS in Case Study 9.2 

 

Fig. 9.24 Output surface for first rule base of HFS in Case Study 9.2  
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Fig. 9.25 Output surface for second rule base of HFS in Case Study 9.2  

 

Fig. 9.26 Output surface for FN in Case Study 9.2  

The simulation results for the SFS, the HFS and the FN are shown in  

Figs.9.27-9.29 where the data and the model output are presented in blue and 

green, respectively. In this case, each of the three models is simulated for all 125 

possible permutations of the discrete crisp values of the inputs 0, 25, 50 75, 100.  
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Fig. 9.27 Simulation results for SFS in Case Study 9.2  
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Fig. 9.28 Simulation results for HFS in Case Study 9.2  
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Fig. 9.29 Simulation results for FN in Case Study 9.2  
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The comparative evaluation of the SFS, the HFS and the FN is shown in Table 9.7. 

This evaluation uses the performance indicators introduced by Eqs. (9.9)-(9.12).  

Table 9.7 Comparative evaluation of SFS, HFS and FN for Case Study 9.2 

Performance  SFS HFS FN 

Feasibility 3 2 2 

Accuracy 2.86 5.57 3.64 

Efficiency 125 80 125 

Transparency 4 1.33 1.33 

Table 9.7 shows that in terms of feasibility the FN is superior to the SFS and 

equivalent to the HFS. With regard to accuracy, the FN is inferior to the SFS but 

superior the HFS. As far as efficiency is concerned, the FN is equivalent to the 

SFS but inferior to the HFS. And finally, in terms of transparency, the FN is  

superior to the SFS and equivalent to the HFS. 

The accuracy of the FN can be further improved due to the associated horizontal 

merging operation applied to some of its nodes. During this operation, the number 

of linguistic terms for the connection can be varied while preserving the overall 

number of rules in the single equivalent node for the FN. This variation may lead to 

the reduction of the approximation error from the linguistic composition of the  

associated nodes. 

Table 9.30 shows how the accuracy of the FN changes while varying the lin-

guistic terms for the connection from 0 to 50. The table presents the modelling  

error in a logarithmic scale whereby the best accuracy for the FN of 2.86 is first 

achieved for 17 linguistic terms of the connection. This improved accuracy of the 

FN is equal to the accuracy of the SFS. Further on during the above variation 

process, the accuracy of the FN remains almost steady with very small changes 

above the optimal value of 2.86.  
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Fig. 9.30 Change of accuracy for FN in Case Study 9.2  

The results in Table 9.30 can be interpreted in the context of composing a HFS 

into a SFS. During this composition process, the accuracy is maximised at a fixed 

loss of efficiency due to the increased number of rules in the final SFS. At the same 

time, there is a full preservation of feasibility and transparency as the FN is associated 

directly with the initial HFS. 

Similarly, the results in Table 9.30 can be extended in the context of decomposing 

a SFS into a HFS. During this decomposition process, the efficiency can be improved 

at a fixed rate while minimising the loss of accuracy. This can be achieved by utilis-

ing the multiple solutions for the node identification operation in horizontal merging.  

In this case, the number of rules in the final HFS is reduced for the solution that guar-

antees the smallest increase of the error for the initial SFS. At the same time, there is 

no change of feasibility and transparency as the FN is associated directly with the  

initial SFS. 

9.7   Summary on Fuzzy Network Evaluation 

The results presented in this chapter illustrate several evaluation methods for FNs and 

some applications of these methods. All methods are presented only in a metric based 

context, i.e. in a quantifiable manner without any comparative references. These 

method include the ones based on assessment of structural complexity, composition 

of HFSs, decomposition of SFSs and indicators of model performance. However, the 

application of these methods for the case studies is presented also in a comparison 

based context, i.e. with comparative references to SFSs and HFSs. 

Also, some of the evaluation methods presented and their applications are  

extensions of existing methods and applications while others are quite novel. For 
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example, the methods based on assessment of structural complexity, indicators of 

model performance and the applications for the case studies are extensions of ex-

isting methods and applications whereas the methods based on composition of 

HFSs and decomposition of SFSs are novel. 

The different types of evaluation methods for FNs are described in Table 9.8. 

Table 9.8 Types of evaluation methods for FNs  

Evaluation  

methods 

Metric  

based 

Comparison 

based 

Extension Novel 

Assessment of 

structural complexity 

Yes No Yes No 

Composition of  

HFSs 

Yes No No Yes 

Decomposition of 

SFSs 

Yes No No Yes 

Indicators of 

model performance 

Yes No Yes No 

Applications for 

case studies 

Yes Yes Yes No 

The next chapter gives a general conclusion to the results presented in all  

preceding chapters. In particular, it highlights these results in the context of  

theoretical significance, methodological impact and application areas. 
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Chapter 10 

Conclusion 

10.1   Theoretical Significance of Fuzzy Networks 

The first objective of this book is the introduction of a theoretical framework for 

FNs as a novel type of fuzzy systems. In this context, Chapters 3-6 provide a solid 

basis for such a framework by means of formal models, basic operations,  

structural properties and advanced operations for FNs. 

The theoretical framework described in the book represents a novel application 

of discrete mathematics and systems theory. In particular, the framework uses the 

concepts of Boolean matrix and binary relation for formal modelling of FNs. 

These concepts are widely used in discrete mathematics and some of its applica-

tions such as graph theory and network theory. At the same time, the framework 

uses some concepts from systems theory such as sequential and parallel subsys-

tems in series and in parallel. Subsystems are widely used in systems theory and 

some of its applications such as cybernetics and connectionism. 

The theoretical framework is illustrated by numerous examples. The examples 

facilitate the understanding of this framework and demonstrate its versatility. They 

also provide a good basis for extending the framework to FNs with more complex 

topologies. 

10.2   Methodological Impact of Fuzzy Networks 

The second objective of this book is the presentation of an applied methodology 

for using the theoretical framework for FNs. In this context, Chapters 7-8 provide 

a solid basis for such a methodology by means of feedforward and feedback FNs. 

The applied methodology described in the book represents an extension of 

SFSs and HFSs. In particular, the methodology considers a FN as a compact way 

of representing a HFS whereby structure as a complexity attribute is dealt with 

during the composition process to improve accuracy as a system property. At the 

same time, the methodology considers a FN as a detailed way of representing a 

SFS whereby dimensionality as a complexity attribute is dealt with during the  

decomposition process to improve efficiency as a system property.  

In the context of the consideration above, a FN considers nonlinearity and un-

certainty as complexity attributes in the same way as a SFS or a HFS. In this case, 

feasibility and transparency as system properties are not affected during the above 

composition and decomposition processes. In particular, after composing a HFS 
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into a SFS by means of a FN, the feasibility and transparency of the HFS are  

preserved for the SFS. Likewise, after decomposing a SFS into a HFS by means of 

a FN, the feasibility and transparency of the SFS are not changed for the HFS. 

Apart from being an extension, the methodology also acts as a bridge between 

SFSs and HFSs. This is done by using a FN to compose a HFS into a SFS or to 

decompose a SFS into a HFS whereby either accuracy or efficiency as perform-

ance indicators can be improved significantly at the expense of a reasonable dete-

rioration of the other performance indicator. This bridging capability improves  

the flexibility of fuzzy systems as models depending on the preferences and  

requirements to these models. 

The applied methodology is illustrated by numerous examples. The examples 

facilitate the understanding of this methodology and demonstrate its versatility. 

They also provide a good basis for extending the methodology to FNs with more 

complex connections. 

10.3   Application Areas of Fuzzy Networks  

The third objective of this book is the consideration of subject areas for utilising 

the applied methodology for FNs. In this context, Chapter 9 provides a solid basis 

for such subject areas by means of two case studies. 

The subject areas described in the book are from the bank and the retail indus-

tries. However, the results can be used in many other application areas where the 

knowledge or data about the process to be modelled can be provided in a modular 

fashion, i.e. for each interacting subprocess by means of an individual rule base. 

Such modular processes are quite common in many areas such as decision mak-

ing, manufacturing, communications, transport and finance [3, 8, 14, 40, 84, 120, 

125, 131, 132, 133, 147, 150, 158, 159, 165, 168]. In this case, the interacting 

modules can be decision making units, manufacturing cells, communication 

nodes, traffic junctions or financial institutions. 

Although the results in this book are presented mainly for fuzzy rule based  

systems, most of them can be used in other application areas, e.g. deterministic 

and probabilistic rule based systems. In this sense, the presented approach can be 

easily extended to any types of rule based systems and rule based networks  

[47, 99, 114]. 

10.4   Philosophical Aspects of Book Contents  

The focus of this book is on the scientific concept of a FN. As such, this concept 

has also some philosophical aspects.  

One aspect is that a FN is a generalisation of a fuzzy system, i.e. it is a system 

of systems. Therefore, a FN is characterised by a higher level of abstraction than a 

fuzzy system. A system of systems is like a set of sets whereby each element in 

the upper level set is not an individual object but a set from the lower level sets. 
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Just as a set of sets facilitates the creation of more complex data structures, a  

system of systems facilitates the creation of more complex information structures. 

In this context, these information structures are actually knowledge structures used 

for artificial intelligence and knowledge engineering [10, 17, 31, 89, 103, 104]. 

Another aspect is that a FN is an extension of a fuzzy system. Just as a binary 

set is a special case of a fuzzy set all of whose elements are with membership de-

grees 0 and 1, a fuzzy system is a special case of a FN that has a single node and 

no connections. Similarly, a FN is a general case of a fuzzy system whose subsys-

tems are accounted for explicitly, just as a fuzzy set is a general case of a binary 

set whose elements are assigned membership degrees. 

Finally, a FN can also be used for modelling what is usually perceived as the 

most complex natural system in the world - the universe. In this context, a FN 

provides a way of looking at the universe as a collection of galaxies rather than 

taking it as a single entity. But while this type of approach has been around for 

quite a long time in cosmology and has contributed significantly to the under-

standing of the universe, it is still in its infancy in fuzzy logic. So, the author 

hopes that this book will open new horizons that will enhance substantially the 

level of understanding of complex processes in the context of fuzzy modelling. 
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