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1

INTRODUCTION

The subject of this book is image segmentation by variational methods. The focus is

on formulations which use closed curves to define the segmentation regions and on

a level set implementation of the corresponding active curve evolution algorithms.

In broad terms, image segmentation consists of dividing an image domain into

disjoint regions according to a characterization of the image within or in-between

the regions. Therefore, segmenting an image is to divide its domain into relevant

components.

Many useful applications require image segmentation. They generally involve

images too numerous or too complex to treat manually, even partly. Images can be of

various kinds. Images sensed in some segment of the electromagnetic spectrum, such

as digital pictures acquired by ordinary cameras, and satellite and medical images,

such as radar and polarimetric, come to mind first, but there are other important ones,

such as sonar and thermal [1], depth maps, and motion fields. Here following are a

few examples.

Figure 1.1 (a) shows a color image acquired by an ordinary camera. The goal

of segmentation would be, for instance, to detect the person. Figure 1.1 (b) depicts

a synthetic aperture radar (SAR) image of the Landes forest, France. A radar uses

wave scattering to record a complex signal. The SAR image is the squared norm

of this complex signal [2]. Figure 1.1 (c) shows the image of a truck moving on a

highway taken by a fixed ordinary camera. An estimate of the field of optical veloc-

ities (optical flow), depicted by arrows, is superimposed on this image at the points

of a grid over the image domain. Here, segmentation is on the basis of optical flow.

The segmentation boundary separates the figure (the truck image) from ground (the

complement of the truck image ), each of which is described by a piecewise constant

image motion field. As a final example, Figure 1.1 (d) shows an MRI (magnetic res-

onance imaging) scan of the heart. The goal of segmentation would be, for instance,

to detect the ventricular cavity.

Figure 1.2 displays, for the images of Figure 1.1, the type of image division one

may look for.

To partition an image into regions, segmentation uses a characterization of the

image in each region, i.e., descriptions which distinguish each region from the others.

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5 1,

c© Springer-Verlag Berlin Heidelberg 2010
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2 1 INTRODUCTION

(a) (b)

(c) (d)

Fig. 1.1. (a) Color image acquired by an ordinary camera, (b) SAR image of the Landes

region, (c) Traffic highway scene, for a motion based segmentation (an estimate of the optical

flow field is superimposed on the image) and, (d) MRI scan of a heart for the detection of the

ventricular cavity.

The most common of the many and diverse ways to characterize the segmentation

regions is to use a statistical parametric image model. In this case, each segmen-

tation region is characterized by its image distribution parameters, i.e., the regions

are assumed to differ by their parameters. For luminance images, scanned by or-

dinary cameras, the constant distribution model and, more generally, the Gaussian

model, are often assumed to be applicable. However, although prevalent, they are

often not applicable. For instance, natural images and textures are better represented

by a Weibull distribution [3, 4]. Images of the type SAR (synthetic aperture radar) in
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(a) (b)

(c) (d)

Fig. 1.2. Segmentations for the (a) color image (detection of the person based on a non para-

metric description of the image), (b) SAR image of the Landes region (based on a Gamma

model description of the image), (c) Traffic highway scene based on image motion (the seg-

mentation includes the moving truck shadow) and, (d) the heart image (detection of the ven-

tricular cavity).

remote sensing, and of the type polarimetric, in medical imaging and remote sensing,

require more descriptive models. The applicable models are the Gamma distribution

(SAR) and the complex Wishart (polarimetric) [2, 5, 6, 7].

Non parametric distributions can also be used to characterize a region image for

segmentation [8, 9, 10]. In this case, there is no need to learn or assume a specific an-

alytical model. Instead, a region image is described by histograms of filter responses

on the image. Common filters include the identity, edge strength measurements, and
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Gabor filters [11]. These histograms of filter responses, often called features, can be

regarded as empirical marginal densities of the underlying density of the image.

Variational formulations of image segmentation minimize an objective func-

tional which evaluates the merit of an image domain partition with respect to a set

of constraints on both the image and the partition [12]. In general, variational for-

mulations easily allow statistical models. Image constraints give rise to functional

terms called data terms, or observation terms, which measure how close an image

fits a model. As such, these terms measure the error of fit to the model [13]. Partition

constraints yield partition priors which usually describe a geometric aspect of the

partition boundaries, such as their length. The Mumford and Shah functional [14] is

fundamental:

E (g,Γ ) =
∫

Ω\K
(g0 −g)2dxdy+ρ

∫

Ω\Γ
‖∇g‖2dxdy+λρl(Γ ) (1.1)

The functional, E , is often referred to as an energy. It is associated with the par-

tition determined by image g and boundaries K. The observed image is g0; Ω is the

image domain; l designates length, and ρ (scale), λ (weight) are positive constants.

The first term is the data term. It measures how closely g approximates the observed

image data g0. The last term is a length prior. As we will see in subsequent chapters,

its effect is to bias the minimization of E toward partitions with smooth boundaries

and to avoid small partition fragments. The second term is a typical smoothness term

to bias the minimization toward a smoothly varying approximation g everywhere ex-

cept across the boundaries Γ . The partition regions are not explicit in this functional.

However, they can be made explicit, as in the following two-region Chan-Vese func-

tional [15]:

E (γ,a,b) =
∫

Rγ

(g0 −a)2dxdy+
∫

Rc
γ

(g0 −b)2dxdy+λ
∫

γ
ds (1.2)

where γ : [0,1] → R
2 is a C1 closed parametric plane curve, Rγ is the interior of γ ,

Rc
γ its complement, and a, b are the averages of g0 within Rγ and Rc

γ , respectively.

The last integral is the length of γ . The functional is called a curve evolution func-

tional because the minimization equations with respect to γ are curve evolution equa-

tions. As a result, γ is called an active curve. Variables a and b are, more generally,

called region parameters. They are the averages of g0 within Rγ and Rc
γ , respectively,

because the corresponding minimization equations defines them as such. Basically,

minimization of (1.2) seeks the best piecewise constant approximation of the original

image, g0, over a two-region partition of the image domain.

There are several key issues in segmentation by active curve functionals. One

issue is multiregion segmentation, in which several active curves are used simultane-

ously [16]. The problem is to ensure that the image domain division defined by the

solution curves is a partition, i.e., a set of non intersecting regions which cover the

image domain, and do so in a computationally efficient manner.

Another issue is image modeling. When the segmentation regions differ by their

image distribution, the problem is to determine appropriate image models to use in
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the objective functional. We mentioned three specific models, namely the Gamma

distribution for SAR images, the complex Wishart to describe polarimetric images,

and the Weibull distribution for natural and texture images. In general, image mod-

eling, which, to a large extent, is independent of segmentation, is a laborious and

intricate task.

There is also the question of determining the proper number of segmentation

regions [17]. Currently, most of the formulations assume that this number is given

beforehand, which simplifies the problem significantly. However, the number of re-

gions is not known in many applications. The problem, then, is to allow it to be a

variable in the functional minimization process.

Segmentation by motion is a topic of major importance because motion is a fun-

damental dimension in visual perception, both human and machine [18, 19]. Image

domain partitioning by means of motion can be done using either optical flow, the

apparent motion field of the environmental surfaces projection, or the actual move-

ment of the environmental objects. In either case, segmentation corresponds to the

division of the image domain into distinctly moving objects.

Finally, there is the subject of shape priors, where the segmentation focuses on

geometric patterns about which some knowledge is available beforehand, such as its

shape modulo some plane transformations [20, 21]. The problem is to describe the

shape so as to assist in driving the active curve to coincide with the pattern boundary

outline.

This book is structured based on these issues, except shape priors for which,

however, there are sources which offer a good view of the subject and literature, for

instance [20, 22, 23, 24, 25, 26, 27]. Following a presentation of the fundamental

active curve and level set segmentation methods, each issue will be the subject of a

chapter.

The efficient solution of the key problems in image segmentation, of the sort we

just mentioned, promises to enable a rich array of useful applications. Some of the

current major application areas of segmentation are:

Remote Sensing [28, 29]. Agricultural remote sensing, which originated in the

1950s, is a long-standing application. Today, most agricultural producers use remote

sensing for a variety of purposes. For instance, remote sensing can inform them on

crop disease, insect infestation, weed proliferation, and weather damage, as well pro-

vide them with crop inventory, water resources mapping, grazing land repartition and

status, and soil composition. This information, most of which is attainable through

image segmentation, affords producers precise farming management and monitoring

capabilities.

Remote sensing is also a vital tool to study ecological systems, of interest to

scientists and practitioners from various disciplines such as geology, forestry, agron-

omy, hydrology, and environmental management. The purpose is to evaluate and

monitor ecological resources. Image segmentation assists in determining the geo-

graphical repartition of the ecological units to study.

Medical image interpretation [30]. Medical imaging is becoming a major com-

ponent of patients care and medical research. It is presently used to diagnose various

clinical conditions such as diseases. It is also the focus of extensive research for the
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critical impact it can have on health care in general. Segmentation is essential in med-

ical image interpretation. For instance, segmentation serves functional neuroimaging

to map brain functions in PET (positron emission tomography) or MRI (magnetic

resonance imaging) scans. Neuroimaging is an important research tool in fields such

as cognitive neuroscience and cognitive psychology, to investigate the relationship

between cognition and neural structure and activity. Segmentation of CT and MRI

images, or of other scans, such as ultrasound and thermal, are also used to diagnose

diseases, as in mammographies, images of the lungs, or cardiac images.

Robotics. Robotics applications of computer vision are long standing and nu-

merous. Image segmentation is of fundamental importance in the field because it

can assist a visually guided mobile robot to navigate autonomously and react to the

presence of objects in its visual field [31]. A variety of images can be used for this

purpose, such as color [15], range [32], optical flow [33, 34], and images from mul-

tiple viewpoints, such as stereo [35, 36].

Visual field monitoring. Security is of great current concern in a wide range of

practical domains. Applications include monitoring traffic, securing sensitive sites

of human activity such as airports, and protecting private property. Functions of a

visual surveillance system include change detection, event recognition, and tracking

targets such as airborne devices and people.

This book on image segmentation describes several variational methods from

an algorithmic viewpoint. Each method is developed from an objective functional

which embeds constraints on both the segmentation image domain partition and the

data within each of the partition segments. The necessary conditions to optimize the

objective functional are then derived and solved numerically. Most of the methods

described in the subsequent chapters use closed regular curves to define the segmen-

tation boundaries. These curves become the segmentation variables and are com-

puted using a level set representation, i.e., each curve is represented by the zero level

set of a function defined on the image domain. The other variables are parameters

which describe the observed data in each segmentation region. For methods which

use optical flow to segment the image, the flow can be computed concurrently with

the segmentation. In this case, the flow enters the objective functional as a variable

vector field subject to constraints which allow its well posed definition and stable

computation.

Although this book covers exclusively variational and level set methods, there

are other schemes in use. Image segmentation was first studied along two traditional

veins: edge detection, to find relevant segmentation boundaries, and region growing,

to reach whole regions from seed regions [37, 38]. Edge detection is generally based

on the image gradient, combined with some form of smoothing and thresholding,

to compute an edge map. The most serious problem with edge detection as a seg-

mentation tool is that the computed edges do not, in general, form closed contours,

necessitating external and often ad hoc processes to close them [39, 40].

Region growing, which can be combined with its counterpart, region splitting,

uses region statistics to determine how and when to grow or split intermediate re-

gions. In general, region growing and splitting produce undesirably fragmented seg-

mentations with irregular boundaries [38, 41]. Moreover, the final outcome is sensi-
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tive to initialization. Both region growing and edge detection for image segmentation

are still in use in applications where these disadvantages can be overcome by expe-

rience.

Traditional methods were followed by Markov random field (MRF) modeling

methods [1, 42, 43, 44] which view an image as a realization of an MRF over the

image positional array. This description can be quite effective but minimization of

the objective function is often computationally voracious.

Graph cut combinatorial methods, which view segmentation as a discrete label

assignment problem, have been of intense interest recently [45], although they have

been used for binary images much earlier [46]. Several studies have shown that graph

cuts can be useful in image analysis [47]. For instance, very fast methods have been

implemented for image segmentation [45, 48, 49], motion and stereo segmentation

[50, 51], tracking [52], and restoration [53]. Current graph cut methods require im-

provements to include data terms of a more general definition that those they cur-

rently accommodate.

The remainder of this book is organized as follows. A focused literature review

and the corresponding references are conveniently given in each chapter.

Chapter 2 contains mathematical formulas which are used repeatedly in the sub-

sequent chapters. This includes Euler-Lagrange equations, descent formulas of opti-

mization, level set evolution equations and their discretization. It also contains equa-

tions used in motion induced segmentation, namely optical flow estimation function-

als, and the optical flow equations of three-dimensional (3D) rigid body motion.

The basic methods of variational and level set image segmentation are described

in Chapter 3. The Mumford and Shah functional [14] is presented first. This is the

fundamental formulation. All the methods we study or mention in this book, in-

cluding motion segmentation methods, use the Mumford and Shah functional as a

template, modulo terms to fit specific applications and an implementation via active

curves and level sets. The active curves are variable closed regular plane curves used

to define the segmentation boundaries. Application specific terms include geometric

priors on the segmentation boundaries, statistical models of the image distribution

in the segmentation regions, and priors which affect the number of segmentation

regions. The presentation of the Mumford and Shah functional is followed by the

Leclerc discrete implementation [54], the Zhu and Yuille active curve formulation

[55], and the Chan and Vese level set transposition [15]. Both the piecewise constant

image model and the Gaussian generalization are treated in this chapter. This chap-

ter also reviews edge based segmentation methods, namely, the Snakes scheme [56]

and the geodesic active contour [57, 58], which move a curve according to boundary

information rather than region information.

The level set methods treated in Chapter 3 are two-region partitioning methods.

These require a single active curve. Level set image partitioning into more regions

than two (multiregion segmentation) requires several curves. This raises the problem

of ascertaining that the curves converge so as to define a partition of the image do-

main, and do so efficiently. Chapter 4 describes in some detail several schemes, and

makes a statement on their computational efficiency.
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Chapter 5 reviews image models. As mentioned earlier, image segmentation

uses a characterization of the image data within each region, i.e., image descriptions

which distinguish each region from the others. The descriptions validity largely af-

fects the segmentation accuracy, i.e., the descriptions must fit the class of images to

segment. The chapter reviews segmentation functionals of the general form

D +λ
∫

γ
ds, (1.3)

where D is a data term which measures how well the image fits a specified statistical

description and λ a positive constant to weigh the contribution of the curve length

term against the data term. This chapter investigates various data terms, each cor-

responding to a particular statistical image description. Some of these descriptions

are derived from Bayesian estimation, whereas others are built on information the-

oretic concepts or measures of discrepancy (or affinity) between distributions. Each

statistical description will result in a particular active curve segmentation algorithm.

Specifically, we will study the following parametric distributions to model the image

within the segmentation regions: The Gaussian, univariate and multivariate, followed

by the more general Weibull distribution, the Gamma and generalization to the Expo-

nential family (which includes the Gamma, Poisson, Bernoulli, and others), and the

complex Wishart. We will also describe image segmentation by non-parametric dis-

tributions which, in the digital case, uses empirical image distributions (histograms)

to describe the image within the segmentation regions. In general, the data term for

such distributions evaluates the discrepancy or the similarity between two distribu-

tions. To this effect, we will study segmentation using a reference distribution (of

a region of interest), segmentation by the image domain labeling of maximum mu-

tual information and, finally, by maximum or a priori known separation between

the segmentation regions. For all the methods, examples are given to illustrate their

working.

Although the number of segmentation regions is unknown in most applications,

most current active curve methods assume that it is given beforehand. In the methods

examined in the preceding chapters, the number of regions is taken as a constant in

the segmentation functional and consequently in its optimization. How to allow it to

vary is an important question which has been generally avoided and which is taken

up in Chapter 6. We will look at methods which use a region merging prior in the

segmentation functional to alter the number of regions. Under the effect of this term,

the effective number of regions, equal to some maximum number of regions initially,

decreases automatically during the objective functional optimization to be, ideally,

the desired number of regions. We will examine two region merging priors. One is

related to the regions logarithmic area and has an entropic interpretation [17]; the

other is proportional to the number of regions and has a minimum description length

(MDL) interpretation [55, 59, 60].

Chapter 7 covers optical flow segmentation. First, it presents a minimum de-

scription length formulation. This is an application to optical flow of the Leclerc

description of the piecewise constant image segmentation [54], a discrete version

of the Mumford and Shah formulation. This is followed by a general linear para-
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metric level set method. The functional data term of this active curve formulation

uses the Horn and Shunck gradient constraint equation (Chapter 2) where each op-

tical flow component function is written as a linear combination of basis functions.

It thus measures the conformity of a linear parametric representation of optical flow

in each image segment to the image brightness pattern spatio-temporal variations.

The coefficients of the motion components as linear combinations of basis functions

characterize each image segment.

The subject of Chapter 8 is image segmentation in terms of the movement of

real objects: the segmentation regions correspond to differently moving objects in

space. Three methods are described. All assume that the objects are rigid, in which

case the motion is a screw, i.e., the composition of a three-dimensional (3D) rotation

and a three-dimensional translation. Motion is relative to the viewing system so that

simultaneous movement of objects and viewing system is allowed. The three meth-

ods differ essentially in the way 3D motion is described in the functional data term.

One method [61] uses the optical flow 3D rigid body constraint (given in Chapter

2). Therefore, it eliminates optical flow from the formulation and introduces the 3D

kinematic screw, i.e., the parameters of the instantaneous rotation and translation of

each moving object, as well as the imaged scene depth. Another method [62] uses

the essential parameters constraint (given in Chapter 2). Therefore, it describes the

rigid motion by the essential parameters, which are parameters related analytically

to the rigid body motion screw parameters of translation and rotation. Optical flow

remains in the formulation: the 3D essential parameters of each moving object and

optical flow are the unknowns to estimate, along with the segmentation boundaries

described by regular closed plane curves. The last method studied [63] is a hybrid

method: it segments the image according to optical flow, as in the methods of Chap-

ter 7, but the objective functional contains additional terms to constrain optical flow

to be the result of rigid 3D motion, via the essential parameters.

The book concludes with the Appendix which contains three items, the optical

flow estimation algorithms of Horn and Schunck and of Aubert, Kornprobst and

Deriche, and a rudimentary stereoscopic image construction from an image sequence

3D interpretation. This information can be useful when dealing with motion based

segmentation, or simply with implementations of optical flow estimation.
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2

INTRODUCTORY BACKGROUND

The variational methods of image segmentation discussed in this book minimize

functionals. In this chapter, we review some formulas we use repeatedly in the def-

inition and minimization of these functionals: Euler-Lagrange equations, gradient

descent minimization, level set representation. We also review optical flow basic ex-

pressions used in motion based segmentation.

2.1 Euler-Lagrange equations

Most of the image segmentation methods we study in this book are variational meth-

ods which use closed regular plane curves to define an image domain partition. The

objective functionals they minimize have these curves as arguments. They are, typ-

ically, the sum of integrals of one of two types, namely, integrals along a regular

closed plane curve and integrals over the region enclosed by such a curve. The Euler-

Lagrange equations corresponding to these variable domain integrals can be derived

using standard calculus of variations and, in particular, the Euler-Lagrange equations

corresponding to definite integrals [1].

2.1.1 Definite integrals

Let x1 and x2 be fixed real numbers and consider an integral of the form

E (y) =
∫ x2

x1

g(x,y,y′)dx (2.1)

where y = y(x) is a twice differentiable real function, y′ = dy
dx

, and g is a function

twice differentiable with respect to any of its arguments, x,y, and y′. Assuming there

is a function y satisfying the end point conditions y(x1) = y1 and y(x2) = y2, which

minimizes (2.1), then y satisfies the Euler-Lagrange differential equation

∂g

∂y
− d

dx

(
∂g

∂y′

)
= 0 (2.2)
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A free end point endpoint at x = x1 is expressed by the condition

∂g

∂y′

∣∣∣∣
x1

= 0 (2.3)

A similar expression holds for a free end point at x = x2:

∂g

∂y′

∣∣∣∣
x2

= 0 (2.4)

For an integral involving several dependent variables y(x), ...,z(x), of the form

E(y, ...,z) =
∫ x2

x1

g(x,y, ...,z,y′, ...,z′)dx (2.5)

where y′ = dy
dx

, ...,z′ = dz
dx

, there is an Euler-Lagrange equation similar to (2.2) for

each dependent variable:

∂g
∂y

− d
dx

(
∂g
∂y′

)
= 0

· · ·
∂g
∂ z

− d
dx

(
∂g
∂ z′

)
= 0 (2.6)

In subsequent chapters, we will encounter integrals involving scalar functions of

two independent variables. For an integral of the form

E (w) =
∫

R
g(x,y,w,wx,wy)dxdy (2.7)

where R is some fixed region of R
2, w = w(x,y) assumes some prescribed values at

all points on the boundary ∂R of R, wx and wy are the partial derivatives of w, and

g is twice differentiable with respect to each of its arguments, the Euler-Lagrange

equation is

∂g

∂w
− ∂

∂x

(
∂g

∂wx

)
− ∂

∂y

(
∂g

∂wy

)
= 0 (2.8)

When w is not specified on ∂R, we have

∂g

∂wx

dy

ds
− ∂g

∂wy

dx

ds
= 0 on ∂R (2.9)

where s is arc length and (x(s),y(s)) the corresponding parametric representation of

∂R.
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2.1.2 Variable domain of integration

Let γ : s ∈ [0,1] → (x(s),y(s)) ∈ R
2 be a simple closed plane curve parametrized by

arc length, and Rγ its interior (the region it encloses). The segmentation functionals

we will encounter in the subsequent chapters typically contain a term of the form

∫

Rγ

f (x,y)dxdy (2.10)

where f is a scalar function, i.e., independent of γ . They also typically contain the

term

∫

γ
ds (2.11)

which is the length of γ . Consider the following functional:

E (γ) =
∫

Rγ

f (x,y)dxdy+λ
∫

γ
ds (2.12)

where f is a scalar function and λ is a positive constant. To determine the Euler-

Lagrange equation corresponding to the minimization of (2.12) with respect to γ (we

assume that the problem is to minimize E , but the following discussions apply to

maximization as well), the first integral in the functional is first transformed into a

simple integral as follows. Let

P(x,y) = −1

2

∫ y

0
f (x,z)dz (2.13)

and

Q(x,y) =
1

2

∫ x

0
f (z,y)dz (2.14)

Then, using the Green’s theorem [2], we have

∫

Rγ

f (x,y)dxdy =

∫

Rγ

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

γ
Pdx+Qdy =

∫ l

0

(
Px′ +Qy′

)
ds

(2.15)

where x′ = dx
ds

and y′ = dy
ds

. Applying (2.6) to the last integral in (2.15), i.e., using

g(s,x,y,x′,y′) = P(x(s),y(s))x′(s)+Q(x(s),y(s))y′(s), yields

∂g

∂x
− d

ds

(
∂g

∂x′

)
=

(
∂Q

∂x
− ∂P

∂y

)
y′ = f y′

∂g

∂y
− d

ds

(
∂g

∂y′

)
=

(
−∂Q

∂x
+
∂P

∂y

)
x′ = − f x′ (2.16)

Therefore, orienting γ so that the outward normal is

n = (y′,−x′), (2.17)
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the component of the Euler-Lagrange equation corresponding to (2.12) due to its first

term is

f n (2.18)

The second integral of (2.12) is rewritten as

∫ l

0

(
x′2 + y′2

) 1
2

ds (2.19)

Application of (2.6), i.e., using g(s,x,y,x′,y′) =
(
(x′(s))2 +(y′(s))2

) 1
2
, gives

∂g

∂x
− d

ds

(
∂g

∂x′

)
= − d

ds

⎛
⎜⎜⎝

x′
(
(x′)2 +(y′)2

) 1
2

⎞
⎟⎟⎠= κy′

∂g

∂y
− d

ds

(
∂g

∂y′

)
= − d

ds

⎛
⎜⎜⎝

y′
(
(x′)2 +(y′)2

) 1
2

⎞
⎟⎟⎠= −κx′ (2.20)

where κ is the curvature of γ given by, independently of the parametrization [3],

κ =
x′y′′− x′′y′

(x′2 + y′2)
3
2

= div

⎛
⎜⎜⎝

y′
(
(x′)2 +(y′)2

) 1
2

,
−x′

(
(x′)2 +(y′)2

) 1
2

⎞
⎟⎟⎠= div

(
n

‖n‖

)

(2.21)

with x′′ = d2x
ds2 , y′′ = d2y

ds2 , and div is the divergence operator. Therefore, the contribu-

tion of the second integral of (2.12) to the Euler-Lagrange equation is

κn (2.22)

This gives the Euler-Lagrange equation corresponding to E (γ):

( f +λκ)n = 0 (2.23)

In the computer vision literature, the left-hand side of (2.23) is referred to as the

functional derivative of E with respect to γ , the sum of the functional derivatives of

its two component terms. It is noted dE
dγ , or ∂E

∂γ when E is also dependent on other

variables, as it is the case in the methods discussed in this book.

In a subsequent chapter, we will encounter the following integral, called a

geodesic functional :

∫

γ
hds (2.24)
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where h = h(x(s),y(s)) is a positive scalar function (the length integral in (2.11) is

a special case, with h = 1). Using previous arguments, its functional derivative, with

respect to γ , is
d

dγ

(∫

γ
hds

)
= (〈∇h,n〉+hκ)n (2.25)

and the corresponding Euler-Lagrange equation is

(〈∇h,n〉+hκ)n = 0 (2.26)

where 〈.〉 denotes the scalar product, and ∇h =
(
∂h
∂x

, ∂h
∂y

)
= (hx,hy) is the spatial

gradient of h.

The Euler-Lagrange equations corresponding to the region integral (2.10) and to

the geodesic functional (2.24) can be generalized to volume and surface integrals,

respectively. Although not used in this book, such integrals appear, for instance, in

spatio-temporal image segmentation [4]. Let S be a closed regular surface [3] in R
3.

The Euler-Lagrange equation corresponding to
∫

S hdS is

(〈∇h,n〉+2hκ)n = 0, (2.27)

where n is the external unit normal to S and κ its mean curvature function [3]. The

factor 2 appearing in this equation is due to the definition of the mean curvature. The

equation corresponding to the volume integral
∫

RS
f dV , where RS is the interior of

S, is

f n = 0 (2.28)

A detailed proof of these formulas can be found in [4].

Image segmentation functionals can involve integrals with Rγ -dependent param-

eters. A typical such integral (called a data term) is

∫

Rγ

(I −µ)2dxdy (2.29)

where I is the image and µ is its mean over Rγ . The minimization of these func-

tionals can use the Euler-Lagrange equations obtained by assuming that the region

parameters are fixed (i.e., independent of γ), leading to iterations of a greedy two-

step algorithm, one step to minimize with respect to the parameters, the other to

minimize with respect to the curve assuming that the parameters are fixed. However,

other frameworks, such as the shape calculus, which uses shape gradients [5, 6, 7],

can take the integrand dependence on γ into account to derive the necessary condi-

tions for a minimum, leading to iterations of gradient descent (fastest descent). We

will see examples of both schemes in subsequent chapters.
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2.2 Descent methods for unconstrained optimization

2.2.1 Real functions

Consider the problem of finding an unconstrained local minimum of a C1 function

f : x ∈R
N → f (x)∈R (assuming such a minimum exists). Let x : t ≥ 0 → x(t)∈R

N

be C1, and g(t) = f (x(t)). We have

dg

dt
= 〈∇ f ,

dx

dt
〉 (2.30)

Therefore, if x varies according to

dx

dt
(t) = −α(t)d(x(t))

x(0) = x0 (2.31)

where α(t) ∈ R
+ and 〈∇ f ,d〉 > 0, function g will vary according to

dg

dt
= −α〈∇ f ,d〉 (2.32)

Because ∇ f = 0 is a necessary condition for a local minimum of f and −α〈∇ f ,d〉 is

negative, x varying by (2.31) will converge to a local minimum of f , assuming such

a minimum exists on the trajectory of x. Methods of unconstrained minimization

based on (2.31) are called descent methods. Most often d = ∇ f is used (gradient,

or fastest, descent). The scaling function α is often predetermined. For instance,

α(t) = constant, or α(t) = 1/t [8]. In general, descent methods are discretized and

implemented as follows.

1. k = 0 ; x0 = x0

2. Repeat until a test of convergence is verified

dk = d(xk)
αk = argminα≥0 f (xk −αdk)
xk+1 = xk −αkdk

k ← k +1

Similar vectorial formulas apply to vectorial functions F = ( f1, ..., fn)
t by treat-

ing each component function fi as described.

2.2.2 Integral functionals

Consider the problem of minimizing (2.1), i.e., E (y) =
∫ x2

x1
g(x,y,y′)dx. Let y vary in

time, i.e., y is embedded in a one-parameter family of functions indexed by (algo-

rithmic) time t, y = y(x, t). Consider the functional
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E (y, t) =

∫ x2

x1

g(x,y(x, t),y′(x, t))dx (2.33)

where y′ = ∂y/∂x. Let us calculate the derivative of E with respect to time:

∂E

∂ t
=

∫ x2

x1

(
∂g

∂y

∂y

∂ t
+

∂g

∂y′
∂y′

∂ t

)
dx

=
∫ x2

x1

(
∂g

∂y

∂y

∂ t
+

∂g

∂y′
∂

∂ t

(
∂y

∂x

))
dx

=
∫ x2

x1

(
∂g

∂y

∂y

∂ t
+

∂g

∂y′
∂

∂x

(
∂y

∂ t

))
dx

Integration by parts of the second term of the integrand gives

∂E

∂ t
=

∂g

∂y′
∂y

∂ t

]x2

x1

+
∫ x2

x1

(
∂g

∂y
− ∂

∂x

(
∂g

∂y′

))
∂y

∂ t
dx (2.34)

Assuming that
∂y
∂ t

(x1, t) = ∂y
∂ t

(x2, t) ∀t, which is the case for each of the two compo-

nent functions of the closed curves we consider in this book, we finally have

∂E

∂ t
=
∫ x2

x1

(
∂g

∂y
− ∂

∂x

(
∂g

∂y′

))
∂y

∂ t
dx (2.35)

Therefore, varying y according to

∂y

∂ t
= −
(
∂g

∂y
− ∂

∂x

(
∂g

∂y′

))
, (2.36)

i.e.,
∂y

∂ t
= −∂E

∂y
, (2.37)

implies

∂E

∂ t
= −
∫ x2

x1

(
∂g

∂y
− ∂

∂x

(
∂g

∂y′

))2

≤ 0 (2.38)

As a result, E decreases in time. As with real functions, starting from y(0) = y0, y

will converge to a local minimum of E , assuming such a minimum exists. Equation

(2.36) is the fastest descent equation to minimize functional (2.33). Functionals of

several dependent variables are treated in a similar way.

As an example, to minimize (2.12), we adopt the descent equation

∂γ

∂ t
= −( f +λκ)n (2.39)

In the computer vision literature, the partial differential equation (2.39) is seen

as the evolution equation of curve γ along its normal at speed −( f +λκ), and γ is

called an active curve. Direct implementation of this equation, as with the algorithm

for real functions above, will iteratively displace each of the points of the curve.
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However, a curve can split and join during evolution, and such changes in the curve

topology are quite difficult, if at all possible, to effect by an explicit representation

of the curve as a set of mobile marker points. An efficient and numerically stable

implementation of such descent equations is via level sets which we outline next.

2.3 Level sets

Let γ be a simple closed curve in the image domain Ω . In the problems we address,

such curves are made to move so as to converge to delimit the desired segmenta-

tion regions. Consider a curve which evolves according to a velocity vector in the

direction of its normal at each point (Figure 2.1 a),

V = V n (2.40)

The velocities we will encounter in this book have speeds of one of three distinct

types.

Type 1. V is a function of the curvature of the evolving curve.

Type 2. V is of the form 〈F,n〉 where F is a vector field dependent on position and

possibly time (via the underlying image function, for instance) but not on the curve.

Such terms are called advection speeds in [9].

Type 3. V is a scalar function which depends on position and time but is not of the

other two types.

The closed curves delineating a segmentation region can split or merge during

evolution. These changes in a curve topology are at best extensively cumbersome to

effect using an explicit representation of a curve as a set of marker points and an

implementation of the evolution by a descent algorithm such as given in Section 2.2

for the minimization of real functions. Level sets offer an efficient and numerically

stable alternative implementation.

Let Γ be the set of smooth (C2) plane curves γ : s ∈ [0,1] → γ(s) ∈ Ω which

are closed, simple, and regular [3]. Let an active curve be represented by a one-

parameter (algorithmic time) family of curves in Γ , i.e, a function γ : s, t ∈ [0,1]×
R

+ → γ(s, t) = (x(s, t),y(s, t), t))∈Ω×R
+ such that ∀t curve γt : s→ (x(s, t),y(s, t))

is in Γ . With the level set implementation, an active curve γ is represented implicitly

as the zero level set of a function φ : R
2 ×R

+ → R:

∀s, t φ(γ(s, t)) = φ(x(s, t),y(s, t), t) = 0 (2.41)

The total derivative of (2.41) with respect to time gives, assuming φ is sufficiently

smooth,

dφ

dt
=

∂φ

∂x

∂x

∂ t
+
∂φ

∂y

∂y

∂ t
+
∂φ

∂ t
= 〈∇φ ,

∂γ

∂ t
〉+ ∂φ

∂ t
= 0 (2.42)

Because
∂γ
∂ t

= V n, we have
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(x,y)(s)p:q

V(q)

V(p)
n

(a)

y γ γ
u

Λ

0 Λ

0

Λ 0

φ φ

φ

x

(b)

Fig. 2.1. (a) Active curve γ is moving at all times and at each point according to a velocity

vector which is along its normal; (b) active curve γ is represented implicitly by the zero level

of the graph of function φ . In this figure, γ is split into two regular curves while φ remains a

function. In general, such a possibility cannot be implemented by an explicit representation of

γ as a set points.

∂φ

∂ t
= −V 〈∇φ ,n〉 (2.43)

We also have

∀s ∈ [0,1]
∂φ

∂ s
=

∂φ

∂x

∂x

∂ s
+
∂φ

∂y

∂y

∂ s
= 〈∇φ ,

∂γ

∂ s
〉 = 0 (2.44)

Therefore, because
∂γ
∂ s

is the tangent to the curve at s, ∇φ is normal to the curve.

With the convention that n is oriented outward and φ is positive inside its zero level

set, we have
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n = − ∇φ

‖∇φ‖ (2.45)

Substitution of (2.45) in (2.43) gives the temporal evolution of φ :

∂φ

∂ t
= V‖∇φ‖ (2.46)

For type 1 speeds, the curvature is given in terms of the level set function by:

κ = div

(
n

‖n‖

)
= −div

(
∇φ

‖∇φ‖

)
= −

φxxφ 2
y −2φxφyφxy +φyyφ 2

x

(φ 2
x +φ 2

y )
3
2

(2.47)

A priori, the level set evolution is specified for points on the level set function

zero level. Therefore, one must define extension velocities [9] to evolve the level set

function elsewhere. For instance, the extension velocity at a point is the velocity at

the point closest to it on the evolving curve. Extension velocities can also be defined

so that the level set function is at all times the distance function from the evolving

curve. Both of these definitions, often implemented via narrow banding [9], require

the initial curves intersect the regions they segment. This is important when a region

has unconnected components. An alternative robust to initialization, which we use in

all the methods described in this book, extends the expression of the velocity on the

evolving curve to the image domain when it can be evaluated at each point, as it is

often the case [4, 10].

At all times t, active curve γ subject to velocity (2.40) can be recovered as the zero

level set of level set function φ evolving according to (2.46). Regardless of variations

in the topology of the active curve, φ remains a function (Figure 2.1 b). Another

advantage of the level set implementation is that region membership is explicitly

maintained and readily available in the level set representation because the sign of φ
determines which points are inside curve γ , and which are outside. This information

is computationally very expensive to determine with an explicit representation of

active curves.

The book of Sethian [9] is about efficient and numerically stable discretization

of evolution equations such as those corresponding to the level set segmentation

functionals in this book. It also contains several examples of applications in various

domains. Velocities of the types 1, 2, and 3 are discretized differently as summarized

below [9]. Because the velocity of an active curve is, in general, a compound of

velocities of the three types, the discretization of (2.46) can be written as follows:

φ k+1
i j = φ k

i j +△t

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+V k
i j

(
(D0x

i j )
2 +(D0y

i j )
2
) 1

2
for type 1 terms(

max(Fk
1i j,0)D−x

i j +min(Fk
1i j,0)D+x

i j

+max(Fk
2i j,0)D−y

i j +min(Fk
2i j,0)D+y

i j

)
⎤
⎦ for type 2 terms

(
max(V k

i j,0)∇+ +min(V k
i j,0)∇−

)
for type 3 terms

(2.48)
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where i, j are indices on the discretization grid of Ω , k is the iteration index, F1,F2

are the coordinates of F appearing in the general expression of terms of type 2. Finite

difference x−derivative operators D+x (forward scheme), D−x (backward scheme),

and D0x (central scheme), are applied to φ at i, j and iteration k, i.e., D+x
i j ,D−x

i j ,D0x
i j

in (2.48) stand for D+x(φ k)i j,D
−x(φ k)i j,D

0x(φ k)i j and are given by

D+x
i j = φ k

i+1, j −φ k
i j

D−x
i j = φ k

i j −φ k
i−1, j

D0x
i j =

1

2
(φ k

i+1, j −φ k
i−1, j)

Similar comments and expressions apply to the y−derivative operators D+y,D−y,
and D0y. Finally, ∇+ and ∇− are defined by

∇+ =
(

max(D−x
i j ,0)2 +min(D+x

i j ,0)2

+max(D−y
i j ,0)2 +min(D+y

i j ,0)2
) 1

2

∇− =
(

max(D+x
i j ,0)2 +min(D−x

i j ,0)2

+max(D+y
i j ,0)2 +min(D−y

i j ,0)2
) 1

2
(2.49)

2.4 Optical flow

Let I be an image sequence, considered a differentiable function,

I : (x,y, t) ∈Ω×]0,T [→ I(x,y, t) ∈ R
+, (2.50)

where x,y are image coordinates, Ω is an open subset of the real plane to represent

the image domain, and T is the time of duration of the image sequence.

2.4.1 The gradient equation

Let P be a point on an imaged environmental surface moving relative to the viewing

system. The viewing system is symbolized as in Figure 2.3. The image p of P on the

viewing system projection plane can be viewed as moving along a trajectory in the

space-time (actual time) domain x− y− t. Let c(t) = (x(t),y(t), t) be the Cartesian

parametric representation of this trajectory. Finally, let the restriction of I to c be

h = Ioc, where o designates composition, i.e., h(t) = I(x(t),y(t), t). The hypothesis

that h is constant in time, i.e., that I does not vary along the motion trajectory c of

p,1 leads to the gradient equation of Horn and Schunck [11]:

1 This is strictly true for points on a Lambertian surface in translation relative to the viewing

system, under constant, uniform lighting.
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dh

dt
=

∂ I

∂x

dx

dt
+

∂ I

∂y

dy

dt
+
∂ I

∂ t

dt

dt
= 0 (2.51)

If we designate the partial derivatives of I by Ix, Iy, It , and dx
dt

, dy
dt

by u,v, we have

Ixu+ Iyv+ It = 0 (2.52)

Vector (u,v) is the optical velocity of p, the velocity of the projection of P onto the

image plane. The field of optical velocities over the image domain is the optical flow

[12]. The gradient equation is also referred to as the optical flow constraint. It can be

written in vector form:

〈∇I,W 〉+ It = 0 (2.53)

where ∇I = (Ix, Iy) is the spatial gradient of I and W = (u,v). The projection W⊥ of

W on ∇I is given by

W⊥ = 〈 ∇I

‖∇I‖ ,W 〉 ∇I

‖∇I‖ (2.54)

or, using (2.53):

W⊥ =

(
− It

‖∇I‖

)
∇I

‖∇I‖ (2.55)

This projection can be estimated from the first order spatio-temporal variations

of I (Figure 2.2). Therefore, the gradient equation gives the component of the optical

velocity vector in the direction of the image gradient, i.e., the direction normal to the

isophote, and only this component. This is a manifestation of the aperture problem:

the movement of a straight edge seen through an aperture is ambiguous because only

the component of motion in the direction perpendicular to the edge is determined

(Figure 2.2).

2.4.2 The Horn and Schunck formulation

Horn and Schunck minimize the following functional to estimate optical flow:

E(u,v) =

∫

Ω
(Ixu+ Iyv+ It)

2dxdy+λ
∫

Ω
(‖∇u‖2 +‖∇v‖2)dxdy (2.56)

where λ is a positive constant to weigh the relative contribution of the two terms

of the functional. The first integral, the data term, measures the conformity of the

motion field to the image sequence first-order spatial and temporal variations. The

second integral is a regularization term which measures the smoothness of the motion

field. The Euler-Lagrange equations corresponding to (2.56) are two coupled partial

differential equations:
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Isophote

It∆

I

∆

I

W

(a) (b)

Fig. 2.2. (a) The projection of the optical flow on the image gradient can be estimated from the

image first-order spatio-temporal data; whenever ∇I �= 0 it is equal to − It

‖∇I‖ ; (b) the aperture

problem: the movement of the straight edge seen though an aperture (the circular window in

this figure) is ambiguous because only the component of motion in the direction perpendicular

to the edge is determined (the solid arrow).

Ix(Ixu+ Iyv+ It)−λ∇2u = 0

Iy(Ixu+ Iyv+ It)−λ∇2v = 0, (2.57)

to which the (Neumann) boundary conditions are added:

∂u

∂n
= 0

∂v

∂n
= 0 (2.58)

where ∇2 designates the Laplacian and ∂
∂n

indicates differentiation in the direction

of the normal n to the image domain boundary ∂Ω .

There are very efficient numerical implementations to solve (2.57) [13]. Refer to

the appendix for more details.

The main problem with the Horn and Shunck method comes from the occurrence

of the Laplacian in (2.57), which causes isotropic smoothing and, therefore, blurred
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motion boundaries. The method of [14] formulates the problem so that smoothing of

motion is inhibited across motion boundaries. This formulation is described next.

2.4.3 The Aubert, Kornprobst, and Deriche formulation

The study in [14, 15] investigates the following generalization of the Horn and

Schunck functional:

E(u,v) =
∫

Ω
(Ixu+ Iyv+ It)

2dxdy+λ
∫

Ω
(ρ(‖∇u‖)+ρ(‖∇v‖))dxdy (2.59)

where ρ is a function of class C2. With ρ(z) = z2, (2.59) reduces to the Horn and

Schunck functional (2.56).

The Euler-Lagrange equations corresponding to (2.59) are

Ix(Ixu+ Iyv+ It) =
λ

2
div

(
ρ ′(‖∇u‖) ∇u

‖∇u‖

)

Iy(Ixu+ Iyv+ It) =
λ

2
div

(
ρ ′(‖∇v‖) ∇v

‖∇v‖

)
, (2.60)

with the boundary conditions

ρ ′(‖∇u‖)
‖∇u‖

∂u

∂n
= 0

ρ ′(‖∇v‖)
‖∇v‖

∂v

∂n
= 0 (2.61)

The Aubert-Deriche-Kornprobst function

ρ(s) = 2
√

1+ s2 −2 (2.62)

follows conditions which require that it allows smoothing of motion along motion

boundaries and inhibits it across [14, 15].

An efficient implementation of the formulation is described in [14, 15, 16]. Refer

to the appendix for more details.

Next, we will examine the relationship between optical flow and the three-

dimensional structure and motion of rigid objects. We will need this relationship

in Chapter 8 on image segmentation based on the movement of real objects.

2.4.4 Optical flow of rigid body motion

We symbolize physical space by the Euclidean space R
3 and the viewing system

by an orthonormal direct coordinate system S = (O;I,J,K) and central projection
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Fig. 2.3. The viewing system is symbolized by a direct orthonormal coordinate system S =
(O;I,J,K) and central projection through O on plane π (the image plane) parallel to plane PIJ

and at focal distance f from O.

through O on plane π (the image plane) parallel to plane PIJ and at distance f from

O (the focal length). This is illustrated in Figure 2.3.

Let t → B(t) be a rigid body moving in space and P a point of B. Let p be

the image of P on π . If P = XI +Y J + ZK and p = xI + yJ, we have the following

projection relations:

x = f
X

Z
y = f

Y

Z
(2.63)

If the kinematic screw of the (rigid) motion of B relative to S is (ω,T) then the

velocity of P is P′ = T +ω ×OP. Substitution of this expression in the derivative

with respect to time of each equation in (2.63) gives the following expression of

optical velocity [17]:

u = 1
Z
( f t1 − xt3)− xy

f
ω1 + f 2+x2

f
ω2 − yω3

v = 1
Z
( f t2 − yt3)− f 2+y2

f
ω1 + xy

f
ω2 + xω3

(2.64)

where T = (t1, t2, t3) and ω = (ω1,ω2,ω3). Substitution of (2.64) in the gradient

equation (2.52) gives the optical flow 3D rigid body constraint:

〈s,τ〉+ 〈q,ω〉+ It = 0 (2.65)

where vectors τ , s, and q are given by
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τ =
T

Z
, s =

⎛
⎝

f Ix

f Iy

−xIx − yIy

⎞
⎠ , q =

⎛
⎝

− f Iy − y
f
(xIx + yIy)

f Ix + x
f
(xIx + yIy)

−yIx + xIy

⎞
⎠ (2.66)

Pulling 1
z

out of each equation in (2.64), equating the resulting expressions, and

making a change of variables, leads to the following depth-free homogeneous linear

equation [18, 19]:

〈d,e〉 = 0 (2.67)

where d = (x2,y2, f 2,2xy,2x f ,2y f ,− f v, f u,−uy+ vx), and e is the vector of essen-

tial parameters:

e1 = −ω3t3 −ω2t2, e2 = −ω3t3 −ω1t1, e3 = −ω2t2 −ω1t1

e4 = ω2t1+ω1t2
2

, e5 = ω1t3+ω3t1
2

, e6 = ω2t3+ω3t2
2

e7 = t1, e8 = t2, e9 = t3

(2.68)
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3

BASIC METHODS

The purpose of this chapter is to give a synopsis of fundamental variational image

segmentation methods. Reviewed are the Mumford and Shah formulation and its

basic discrete implementations, the Zhu and Yuille region competition version by

curve evolution, the Chan and Vese level set form and, finally, the active curve edge

detection interpretations by Snakes and geodesic active contours.

3.1 The Mumford and Shah model

The Mumford and Shah variational formulation is the core of variational image seg-

mentation. It has been the subject of an impressive number of theoretical studies, for

instance [1, 2, 3, 4, 5]. It bestirred intense research and influenced numerous method-

ological and algorithmic studies. Most of the other formulations can be explained as

implementations, applications, or variants. The Mumford-Shah formulation [1] ex-

presses segmentation as joint image smoothing and boundary detection. It seeks a

smooth approximation M : x = (x,y) ∈ Ω ⊂ R
2 → M(x) ∈ R of the original image

I : Ω ⊂ R
2 → R and a set K of discontinuities, to represent the image boundaries, by

minimizing the functional

FMS(M,K) =

∫

Ω
(I −M)2dx+ρ

∫

Ω\K
‖∇M‖2dx+λρl(K) (3.1)

where ρ and λ are positive constants, l is length, and ∇M = (Mx,My) =
(
∂M
∂x

, ∂M
∂y

)

is the spatial gradient of M.

The first term, referred to as the data term, biases the solution towards an image

close to the observed image. The second term is a smoothness prior for a solution

which varies smoothly everywhere but across the edges K. The last term is a length

prior for regular boundaries.

Variational segmentation algorithms have commonly followed a simplified ver-

sion of the Mumford-Shah functional where the search for an optimal approximation

is limited to the set of piecewise constant images:

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5 3,

c© Springer-Verlag Berlin Heidelberg 2010

A. Mitiche, I. Ben Ayed, Variational and Level Set Methods in Image Segmentation,
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FMS(M,K) =∑
k

∫

Rk

(I −Mk)
2dx+λ l(K) (3.2)

where {Rk} is the partition determined by K and

M(x) = Mk ∀x ∈ Rk (3.3)

In this case, the problem is to determine a partition and a set of values Mk, each

corresponding to a constant approximation of I within a region. This limiting case

corresponds to ρ → ∞, and is known as the cartoon limit [1].

The mathematical framework of existence, uniqueness, and other mathematical

properties of the functional minimizers is beyond the scope of this book [2, 3]. In-

stead, we will simply examine some algorithmic aspects of interpretations of the

Mumford and Shah formulation.

3.1.1 Bayesian interpretation

Image segmentation can be stated as a Bayesian maximum a posteriori (MAP) esti-

mation [6, 7, 8, 9, 10, 11, 12], which determines, over all possible partitions of the

image domain, a partition of a MAP probability given an image I

P̂Ω = argmax
PΩ

P(PΩ |I) = argmax
PΩ

P(I|PΩ )P(PΩ ) (3.4)

Assuming conditional independence of I(x) and I(y) for x �= y and taking the neg-

ative of the natural logarithm in (3.4), this Bayesian estimation is converted to the

following minimization problem:

P̂Ω = argmin
PΩ

∑
k

∫

x∈Rk

− logP(I|Rk)dx− logP(PΩ ) (3.5)

Most of the variational segmentation algorithms optimize a variant of this functional

[9]. The first term is a data term which measures the likelihood of the image data

given image models within the partition regions. Generally, the region models are

specified by the choice of a parametric distribution. In this case, each region Rk is

characterized by a set of parameters which has to be estimated concurrently with the

optimal partition. A typical choice of the region model is the Gaussian distribution:

P(I|Rk) =
1√

2πσ2
k

e
− (I−µk)2

2σ2
k (3.6)

With this particular choice, the set of parameters of region Rk is {µk,σk}, where

µk and σk denote, respectively, the mean and standard deviation of the image data

within Rk. The prior term P(PΩ ) imposes prior information on the desired partition.

Commonly, the prior introduces geometric constraints on the solution. The length

prior is typical:
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P(PΩ ) ∝ e−αl(K) (3.7)

where α is a positive constant. If we further assume σk to be the same for all regions,

i.e., σk = σ ∀k, and if we set α equal to λ
σ , the Bayesian estimation in (3.4) re-

duces to the minimization of the piecewise constant Mumford-Shah functional. The

functional in (3.5) can be viewed as a statistical generalization of the cartoon model,

where piecewise constant approximations of the image data within the segmentation

regions are replaced by arbitrary probability distributions.

3.1.2 Graduated non convexity implementation

Blake and Zisserman [13] used the graduated non convexity continuation method

to minimize the Mumford and Shah functional. For simplicity, the method is often

described for one-dimensional images. Consider the one-dimensional version of the

Mumford-Shah formulation, where the problem is to determine a smooth approxi-

mation h of a function h0 defined on a real interval ω and a set of discontinuities K

by minimizing

FMS(h,K) =
∫

ω
(h−h0)

2dx+ρ
∫

ω\K
h′2dx+λρcard(K) (3.8)

where card denotes the cardinality. We can write a discrete version of FMS as follows:

F0
MS(h,K) =

n

∑
i

(hi −hi
0)

2 + f 0(hi −hi−1) (3.9)

where hi is the value at point i of h using a discretization grid of points i = 1,2, . . . ,n,

on Ω , f 0 is defined by

f 0(t) =

{
t2 if t ≤ 1

1 if t > 1

and K is the set of points verifying

K = {i|hi −hi−1| > 1} (3.10)

This functional is not convex and can have several local minima. Graduated non

convexity is a continuation method which first solves an easy problem using a con-

vex version of FMS. The unique global minimum serves as an initial approximation

to solve a nearby non convex problem. The process is iterated to solve a sequence

of problems which gradually tends to the original problem. Consider the following

version of FMS:

F
p

MS(h,k) =
n

∑
i

(hi −hi
0)

2 + f p(hi −hi−1) (3.11)

where f p is defined by
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f p(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

t2, if |t| < 1
r

1− (|t|−r)2

4p
, if 1

r
< |t| ≤ r

1, if r ≤ |t|
r =

√
4p+1

One can show that f p is convex when p ≥ 1 and, therefore, a global minimum of

f 1 can be computed. The graduated non convexity scheme seeks a minimum by

decreasing p from 1 to 0. In summary, the graduated non convexity is a continuation

scheme which iterates two steps, one minimizes a coarse version of the functional

and the other uses the result as an initialization to minimize a finer version.

3.2 The minimum description length method of Leclerc

Leclerc stated image segmentation in the discrete case, i.e., for discrete images on a

discrete domain, as the problem of determining the shortest description of an image

in terms of an a priori specified language [7]. He applied this minimum description

length (MDL) principle [14] using entropy coding to code approximations of the

image to segment. MDL is related to MAP.

3.2.1 MDL and MAP

The MAP strategy seeks a model image Mopt which maximizes the model condi-

tional probability given the observed image I:

Mopt = arg max
M∈M

P(M|I) = arg max
M∈M

P(I|M)P(M) (3.12)

where M is the set of model images in which we seek a solution. The MDL strategy

minimizes

|LI(I|M)|b + |LM(M)|b (3.13)

where LM(M) is a language describing the model images, LI(I/|M) the language

describing the observed image given a model image, and |.|b is the number of bits of

description. With the piecewise constant model, M is the set of piecewise constant

images underlying an observed image.

In information theory, when the probabilities of the discrete set of observations

(data) to describe are known, one can build an optimal descriptive language so that

the expected number of bits per description is minimal [15]. In this case, the number

of bits describing a given observation is the negative base 2 logarithm of the prob-

ability of the observation. For instance, if L opt
M is the optimal language describing

model images M (M ∈ M ) with known probabilities, we have

|L opt
M (M)|b = − log2 P(M) (3.14)
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Similarly, we have

|L opt
I (I|M)|b = − log2 P(I|M) (3.15)

where L opt
I is the optimal language describing the image given a model. Conse-

quently, the MDL strategy seeks a model image which minimizes

− log2 P(I|M)− log2 P(M) (3.16)

and, therefore, is equivalent to the MAP strategy. The choice of either strategy de-

pends on whether it is more convenient to specify a descriptive language or proba-

bilities.

3.2.2 The piecewise constant image model

Assuming that an observed digital image I is the sum of a piecewise constant image

M and noise N, both considered discrete, segmentation can be stated as the following

optimization problem:

(
Mopt ,Nopt

)
= arg min

M,N:I=M+N
|LM(M)|b + |LN(N)|b (3.17)

where LM and LN are languages describing M and N, respectively. The problem

amounts to finding

Mopt = argmin
M

|LM(M)|b + |LN(I −M)|b (3.18)

To solve this problem, one needs to specify the languages LM and LN , as well as

a computationally feasible procedure for finding Mopt . Consider piecewise constant

images. A region in such images can be described by its boundary and its constant

intensity. Region boundaries can be represented by a chain code of edge elements

between square pixels. With this description, the number of bits to code a region is

proportional to the number of elements in the chain code representation of the region

boundary plus a constant to specify the constant intensity in the region and the first

element in the chain. As a result, the code length to describe a piecewise constant

image M is proportional to the number of regions plus the length of the segmentation

boundaries.

In a piecewise constant image, edges are locations which border two regions

of different values. This instructs us to approximate the length of the segmentation

boundaries as follows:

1

2
∑
i∈D

∑
j∈Ni

(1−δ (Mi −M j)) (3.19)

where D is the discrete image domain, indices indicate pixels, Ni is some fixed

neighborhood of pixel i, and δ is given by
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δ (z) =

{
1 for z = 0

0 otherwise
(3.20)

The division by 2 accounts for each edge being counted twice in the sum of (3.19).

The code length of specification of a piecewise constant image M can be approxi-

mated as follows:

|LM(M)|b =
β

2
∑
i∈D

∑
j∈Ni

(1−δ (Mi −M j)) (3.21)

β is the sum of two terms: (a) the code length of specification of an element in the

chain and (b) the code length of specification of the constant intensity and the first

element in the chain divided by the average region boundary length.

Now recall that information theory instructs us to set the minimum number of

bits required to describe the noise, i.e., the difference between the image and the

piecewise constant model, equal to the negative base 2 logarithm of the probability

of the noise [15]:

|LN(I −M)|b = − log2 P(N) (3.22)

Assuming the values of the noise at pixels are independent and identically distributed

realizations of the same discrete random process, we have

− log2 P(N) = − log2∏
i∈D

P(Ni) (3.23)

For a noise that is discretized Gaussian,

P(Ni) =
1√

2πσ2
e
− N2

i

2σ2 , (3.24)

the minimum number of bits required to specify N over the image domain grid is,

after some algebraic manipulations,

|LN(I −M)| = c+a∑
i∈D

(
Ni

σ

)2

= c+a∑
i∈D

(
Ii −Mi

σ

)2

(3.25)

where c and a are constants which depend on the number of pixels in the image and

σ . Adding this expression to (3.21) and dropping the additive constants, the problem

in (3.18) becomes

Mopt = argmin
M

L(M)

with

L(M) = a∑
i∈D

(
Ii −Mi

σ

)2

+
β

2
∑
i∈D

∑
j∈Ni

(1−δ (Mi −M j)) (3.26)
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3.2.3 Numerical implementation

The objective functional (3.26) is not differentiable because of the presence of the

δ function. A stochastic method such as simulated annealing can carry out its min-

imization. However, such methods are notoriously expensive computationally. An

advantageous alternative is to embed the minimization (3.26) in a family of mini-

mizations indexed by the parameter of a differentiable approximation of the δ func-

tion, and use a continuation method [7, 16]. We can index the continuation on the

parameter s of the following Gaussian approximation of δ :

δ (Mi −M j) ← ei j(M,s) = e

−(Mi−Mj)
2

(sσ)2 (3.27)

Without loss of generality, we use sσ in (3.27) rather that just s to simplify some

subsequent expressions. The substitution (3.27) inscribes the original objective func-

tional in a family of functions indexed by s

L(M,s) = a∑
i∈D

(Ii −Mi)
2

σ2
+
β

2
∑
i∈D

∑
j∈N i

(1− ei j(M,s)) (3.28)

As s approaches zero, we to tend to the original functional

lim
s→0

ei j(M,s) = 0

lim
s→0

L(M,s) = L(M) (3.29)

For s tending to infinity, the second term in L(M) tends to zero and I is the unique

minimum of L(M,s). Consequently, continuation solves a first easy problem at large

s; it then gradually decreases s, at each value of which it solves the corresponding

problem using the solution to the previous problem for initial approximation. The

process continues up to a sufficiently small s. If sn,n = 1,2, . . . , is the decreasing

sequence of s, the algorithm summary is:

1. For n = 1, find the minimum M1 of L(M,s1) for some sufficiently large s1

2. Repeat until convergence

a) Set n = n+1 and sn+1 = rsn for some 0 < r < 1

b) Find a minimum Mn+1 of L(M,sn+1) by a descent algorithm

Step 2.b iterates updates of M starting from the initial value Mn. This algorithm is

conceptually similar to the graduated non convexity algorithm in [13]; it tracks a

local minimum from a coarse to a fine version of the objective function.

The necessary conditions for a local minimum of L(M,s) result in an equation

for each pixel:
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∂L(M,s)

∂Mi

=
2a

σ2
(Mi − Ii)+

2β

(sσ)2 ∑
i∈Ni

ei j(M,s)(Mi −M j) (3.30)

This system of equations can be written in vector form:

B+A(M,s)M = 0 (3.31)

where

Ai,i(M,s) =
2a

σ2
+

2β

(sσ)2 ∑
j∈Ni

ei j(M,s)(Mi −M j)

Ai, j(M,s) =

{
− 2β

(sσ)2 ei j(M,s) if j ∈ Ni

0 otherwise

bi =
−2aIi

σ2
(3.32)

System (3.31) is nonlinear. However, it can be solved efficiently by the following

Gauss-Seidel iterations applied at each iteration to the diagonally dominant linear

system of equations obtained by evaluating the exponential terms at the previous

iteration:

Mk+1
i =

−1

Ak
i,i

(
bi +∑

j �=i

Ak
i, ju

k
j

)
=

Ii +
β

as2 ∑ j∈Ni
ek

i, jM
k
j

1+ β
as2 ∑ j∈Ni

ek
i, j

(3.33)

where Ak
i, j are the coefficients of A(M,s) computed at the previous iteration and ek

i, j

is given by ek
i, j = ei, j(M

k,s).

3.3 The region competition algorithm

In this section, we examine the region competition algorithm [6] which combines

curve evolution and region merging for optimization of the Bayesian estimation func-

tional in (3.5). Assume that the number of regions is fixed and equal to N, and con-

sider the problem of finding an optimal partition into N regions according to

P̂Ω = argmin
PΩ

FZhu−Yuille (3.34)

with

FZhu−Yuille =
N

∑
k=1

(∫

Rk

− logP(I|Rk)dx+
λ

2

∮

∂Rk

ds+ν

)
(3.35)

where ∂Rk is the boundary of region Rk parametrized by arc length s; λ and ν
are positive constants; P(I|Rk) is the probability of the image within region Rk, de-

scribed by a parametric distribution (model) with parameter vector αk. In this case,
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αk characterizes the image data within region Rk and the regions are assumed to

differ by their parameters.

From a Bayesian perspective, the first term in (3.35) can be viewed as the image

likelihood in terms of the region models, and the last two terms are partition priors.

From the MDL perspective, functional (3.35) can be viewed as the continuum limit

of the Leclerc’s discrete cost function, the first term corresponding to the code length

of the specification of the image within region Rk following P(I|Rk), and the second

term to the code length of the specification of the segmentation boundaries. ν is the

code length of the specification of the distribution and the code system of region Rk,

assumed the same for all regions.

3.3.1 Optimization

Functional (3.35) depends on two types of variables, the segmentation regions deter-

mined by the set of boundaries

Γ = ∪k∈[1...N]∂Rk (3.36)

and the regions parameters. The region competition algorithm iterates two stages,

one which optimizes the functional by evolution of the set of boundaries Γ , with the

number of regions fixed, and the other which alters the number of regions by merging

neighboring regions, each stage decreasing the functional.

First stage: curve evolution

With N fixed, this first stage iterates two steps, each decreasing the functional.

First step: The first step computes the optimal regions parameters with Γ fixed

{α̂k} = argmin
αk

(
−
∫

Rk

logP(I/Rk)dx

)
(3.37)

For several parametric distributions, the optimal parameters can be computed ana-

lytically. For instance, in the case of the Gaussian distribution, each region Rk is

characterized by a mean µRk
and a variance σ2

Rk

αk = {µRk
,σRk

} with P(I|Rk) =
1√

2πσ2
Rk

e
−

(I−µRk
)2

2σ2
Rk (3.38)

The optimal parameters correspond to the maximum likelihood estimates (MLE)

which verify the necessary conditions, for k = 1 . . .N

∂
(∫

Rk
logP(I|Rk)dx

)

∂µRk

= 0

∂
(∫

Rk
logP(I|Rk)dx

)

∂σRk

= 0 (3.39)
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In the case of the Gaussian distribution, these conditions yield simply the sample

mean and variance of the image data within the segmentation regions

µ̂Rk
=

∫
Rk

Idx
∫

Rk
dx

σ̂2
Rk

=

∫
Rk

(I − µ̂Rk
)2dx

∫
Rk

dx
(3.40)

Second step: With the region parameters fixed, the second step minimizes the

functional with respect to Γ by solving the following descent equation

∂Γ

∂ t
= −∂FZhu−Yuille

∂Γ
(3.41)

Let p = (x(s),y(s)) be a point on a boundary Γk = ∂Rk which encloses region Rk,

where s is arc length and (x(s),y(s)) the corresponding parametric representation of

∂Rk. Recall from Chapter 2 that the functional derivative with respect to a simple

closed plane curve γ of
∫

Rγ
f dx, where f is independent of Rγ , is

∂
∫

Rγ
f dx

∂γ
= f n (3.42)

where n is the outward unit normal function of γ . Recall also that the functional

derivative of
∫
γ ds is

∂
∫
γ ds

∂γ
= κn (3.43)

where κ is the curvature function of γ . The application to (3.41) gives the following

evolution equation at each point p on Γ

∂Γ

∂ t
(p) = ∑

k∈bp

(
logP(I(p)|Rk)−

λ

2
κk(p)

)
nk(p) (3.44)

where bp is the set of indices of boundaries Γk containing point p

bp = {k|p is on Γk}, (3.45)

nk the external unit normal to ∂Rk, and κk the curvature of Γk.

Alternating the two steps decreases the functional and curve evolution will con-

verge because the functional is lower bounded.

Second stage: region merging

The curve evolution stage does not alter the number of regions. To optimize the

functional with respect to the number of regions, one can alternate curve evolution

with traditional statistical test region merging [6]. To merge neighboring regions, the
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merging must decrease the functional. When P(I|Rk) is Gaussian, merging of two

neighboring regions Ri and R j yields a new region Ri j = Ri ∪R j with the following

mean and variance:

µRi j
=

µRi
A(Ri)+µR j

A(R j)

A(Ri)+A(R j)

σ2
Ri j

=
σ2

i A(Ri)+σ2
j A(R j)+

A(Ri)A(R j)(µRi
−µR j

)2

A(Ri)+A(R j)

A(Ri)+A(R j)
(3.46)

where A(R) is the area of region R:

A(R) =
∫

R
dx (3.47)

The variation of the functional corresponding to merging Ri and R j is

∆FZhu−Yuille = −λ
∫

∂Ri∩∂R j

ds−ν

+

∫

Ri

logP(I|Ri)dx+

∫

R j

logP(I|R j)dx−
∫

Ri j

logP(I|Ri j)dx

= −λ l(Ri ∩∂R j)−ν +

A(Ri) log
σ2

Ri j

σ2
R j

+1

2
(3.48)

Regions Ri and R j are merged when ∆FZhu−Yuille < 0.

Algorithm

The region competition algorithm can be summarized as follows:

1. Initialize the segmentation to a partition using seed regions

2. Repeat until convergence

a) Repeat until the evolution of Γ converges

i. Fix Γ and compute the optimal regions parameters α̂k

ii. Evolve Γ according to (3.44)

b) Merge any two neighboring regions if the merging decreases the functional

Interpretation of the curve evolution equation

The evolution equation in (3.44) contains two velocities along the normal to Γ ; one

is an image dependent velocity and can be viewed as an image likelihood ratio test,

whereas the other depends solely on the curvature of Γ , not on the image, and can
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be viewed as a curvature regularization velocity.

The image dependent velocity: To examine the effect of the image velocity,

consider the case of a point p on the interface between two neighboring regions

Ri and R j, as illustrated in Figure 3.1. In this case, we have ni(p) = −n j(p) and

κi(p)ni(p) = κ j(p)n j(p). Therefore, the evolution equation in (3.44) reads:

∂p

∂ t
= −λκi(p)ni(p)+(logP(I(p)/Ri)− logP(I(p)/R j))ni(p)

= −λκi(p)ni(p)+ log
P(I(p)/Ri)

P(I(p)/R j)
ni(p) (3.49)

If we omit the curvature velocity, this evolution of Γ at point p becomes guided by

the following image likelihood ratio test, which amounts to a competition between

Ri and R j as to which region should include p:

• If
P(I(p)/Ri)
P(I(p)/R j)

> 1, i.e., the likelihood of the image at pixel p is higher when

p belongs to Ri, the image dependent velocity is positive. This causes the curve to

expand and take pixel p within region Ri.

• If
P(I(p)/Ri)
P(I(p)/R j)

< 1, i.e., the likelihood of the image at pixel p is higher when p

belongs to R j, the image dependent velocity is negative. Therefore, the curve shrinks

and leaves p in region R j.

log
P(I(p)/Ri)
P(I(p)/R j)

ni(p)

∂R j∂Ri

R j
Ri

p

Fig. 3.1. Competition between two regions under the effect of the image dependent velocity.

The curvature dependent velocity: The curvature regularization velocity, also

called the Euclidean heat flow [17, 18], has the desirable geometric effect of short-

ening and smoothing the curve (illustration in Figure 3.2).
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κ > 0

κ < 0

κ > 0

Fig. 3.2. The curvature evolution has the geometric effect of shortening and smoothing the

curve.

3.4 A level set formulation of the piecewise constant

Mumford-Shah model

The implementation of the region competition algorithm requires an explicit repre-

sentation of the segmentation boundary curve as a set of points. This implies im-

plementing the curve evolution by explicitly displacing a number of marker points

on the curve. With this implementation, errors in the curve position can accumulate

during evolution to cause inaccurate and unstable tracking. Moreover, changes in the

curve topology, when the curve splits and joins during evolution, can be practically

unrealizable [19]. Finally, the region membership of points, needed in various com-

putations, is expensive to determine. Merging regions is also expensive to effect. An

efficient, numerically stable alternative which would not be prone to such problems

is to represent the evolving curve implicitly by the zero level set of a function. Level

sets handle automatically arbitrary topological variations of the active curve, and re-

gion membership information is readily available. In this section, we examine the

Chan and Vese level set implementation of the piecewise constant Mumford-Shah

formulation in the case of two regions [20].

Let γ : s ∈ [0,1] → x(s) = (x(s),y(s)) ∈ R
2 be a simple closed plane curve

parametrized by arc length s. γ defines a partition of Ω into two regions,

R1 = Rγ

corresponding to the interior of the curve, and

R2 = Rc
γ

corresponding to the exterior. The problem consists of finding a piecewise constant

approximation of image I,
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Î =

{
µ1 in R1

µ2 in R2,

following the minimization with respect to γ and {µ1,µ2} of the functional

FChan−Vese = λ1

∫

R1

(I −µ1)
2

dx+λ2

∫

R2

(I −µ2)
2

dx+λ
∫

γ
ds+ν

∫

R1

dx (3.50)

The first two terms are data terms which measure the conformity of the image within

each region to the piecewise constant model. These can be viewed as a special case of

the data term of the region competition formulation, the case of Gaussian region dis-

tributions with variance 1. The last two terms are regularization terms, one measures

the curve length and the other the area of the region the curve encloses. These terms

promote boundary smoothness and inhibit small and isolated regions. λ1, λ2, λ , and

ν are positive constants to modulate the contribution of each term. The Chan-Vese

functional corresponds to the Mumford-Shah model of piecewise constant images

and two-region partitioning. The simple example in Figure 3.3 illustrates the rele-

vance of the Chan-Vese functional. The figure represents a region (the square object)

against a background, both with constant intensities, µ1 and µ2, respectively. Over

all possible positions of the curve, the sum of the data terms is minimized only when

the curve coincides with the boundary of the square. If the curve is inside the object,

we have F1(γ) =
∫

R1
(I −µ1)

2
dx = 0 and F2(γ) =

∫
R2

(I −µ2)
2

dx > 0. If the curve

is outside, we have F1(γ) > 0 and F2(γ) = 0. If the curve intersects the boundary

of the object, we have F1(γ) > 0 and F2(γ) > 0. These three configurations yield a

strictly positive sum of the data terms. When the curve coincides with the boundary

of the square, both data terms are zero.

3.4.1 Curve evolution minimization of the Chan-Vese functional

The Chan-Vese functional depends on two types of variables, curve γ and the regions

parameters µ1 and µ2. Its minimization can be obtained by alternating two steps, one

to optimize the functional with respect to γ by curve evolution with the parame-

ters fixed and the other to determine the optimal parameters with γ fixed. The opti-

mal parameters can be computed analytically, and turn out to be the sample means

within the regions. With the parameters fixed, the curve evolution equation mini-

mizing FChan−Vese with respect to γ is obtained by embedding γ in a one-parameter

family of curves γ : s, t ∈ [0,1]×R
+ → γ(s, t) = x(s, t) = (x(s, t),y(s, t), t)∈Ω×R

+

indexed by algorithmic time t, and solving the following descent equation:

∂γ

∂ t
= −∂FChan−Vese

∂γ
(3.51)

To compute the functional derivatives with respect to γ of the region integrals in the

Chan-Vese functional, we use the basic formula in Equation (3.42), which yields
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Ω

F1(γ) > 0 and F2(γ) > 0

γ

Ω

F1(γ) = 0 and F2(γ) > 0

γ

(a) (b)

Ω

F1(γ) > 0 and F2(γ) = 0

γ

Ω

γ

F1(γ) = 0 and F2(γ) = 0

(c) (d)

Fig. 3.3. Over all possible positions of the curve, the Chan-Vese data term is minimized only

when the curve coincides with the boundary of the square object.

∂
∫

R1
(I −µ1)

2
dx

∂γ
= (I −µ1)

2
n

∂
∫

R2
(I −µ2)

2
dx

∂γ
= −(I −µ2)

2
n

∂
∫

R1
dx

∂γ
= n (3.52)

where n is the outward unit normal to γ . The minus sign in the second equation

of the system above is due to the fact that n being the external unit normal to R1,

the external unit normal to its complement R2 is −n. The derivatives above and the

derivative of the length term in Equation (3.43) give the final evolution equation
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∂γ

∂ t
= −
(
λ1(I −µ1)

2 −λ2(I −µ2)
2 +λκ +ν

)
n (3.53)

Note that in this alternating minimization with respect to the curve and the region

parameters, we omitted the dependence of the integrands in the region integrals on

the integration domains (the regions). Recall that these integrands depend on the

region means and, therefore, on the regions. It is possible to compute accurate curve

evolution, which takes into account such dependence [21], but this is inconsequential

in the case of the Chan-Vese functional and will lead exactly to the same evolution

equation we obtained above.

3.4.2 Level set representation of curve evolution

We recall that with the level set representation, an active curve γ is recovered at all

times t as the zero level set of a function φ : R
2 ×R

+ → R

∀s, t φ(x(s, t), t) = 0, (3.54)

and region membership is readily determined by the sign of the level set function.

For instance, one can choose the convention that φ is positive inside its zero level set

and negative outside, i.e.,

R1 = {x ∈Ω |φ(x) > 0}
R2 = {x ∈Ω |φ(x) < 0} (3.55)

Recall (Chapter 2) that if curve γ evolves according to

∂γ

∂ t
= V n, (3.56)

φ evolves on its zero level according to

∂φ

∂ t
= V‖∇φ‖ (3.57)

This leads to the level set evolution equation minimizing the Chan-Vese functional

∂φ

∂ t
= −
(
λ1(I −µ1)

2 −λ2(I −µ2)
2 +λκ +ν

)
‖∇φ‖ (3.58)

where curvature κ is given by

κ = −div

(
∇φ

‖∇φ‖

)
= −

φxxφ 2
y −2φxφyφxy +φyyφ 2

x

(φ 2
x +φ 2

y )
3
2

(3.59)

The segmentation is reached at convergence, i.e., when t → +∞. A priori, the level

set evolution is specified for points on the level set function zero level. Therefore,

one must define extension velocities to evolve the level set function elsewhere [22].
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As mentioned earlier, the extension velocity at any point can be set equal to the

velocity of the closest evolving curve point. Extension velocities can also be set so

that the level set function is the distance function from the evolving curve. Both of

these definitions, which can be implemented via updates of the level set function

in a narrow band around the zero level set, require that the initial curves intersect

the regions they segment. In this book, we use an alternative whereby the extension

velocities are computed everywhere according to the same generic expression as for

the points on the active curve.

It is possible to introduce the level set representation of curve γ directly in the

segmentation functional [20] with the approximation

FChan−Vese ≈ λ1

∫

Ω
(I −µ1)

2Hε(φ)dx+λ2

∫

Ω
(I −µ2)

2(1−Hε(φ))dx

+ λ
∫

Ω
δε(φ)‖∇φ‖dx+ν

∫

Ω
Hε(φ)dx, (3.60)

where Hε and δε = H ′
ε are regularized approximations of the Heaviside function and

Dirac measure:

Hε(z) =

⎧
⎨
⎩

1 if z > ε
0 if z < −ε
1
2
[1+ z

ε + 1
π sin(πz

ε )] if |z| ≤ ε with ε > 0

The evolution equation minimizing (3.60) can be computed directly by applying the

Euler-Lagrange descent equation with respect to φ

∂φ

∂ t
= −δε(φ)

(
λ1(I −µ1)

2 −λ2(I −µ2)
2 −λdiv

(
∇φ

‖∇φ‖

)
+ν

)
(3.61)

Note that due to the Dirac δε , this evolution equation amounts to updating the level

set function in a narrow band around the zero level set, which requires that the initial

curves intersect the regions they segment. An alternative robust to initialization is to

extend the evolution to the hole image domain by replacing δε by ‖∇φ‖ [23]. This

would lead to the same evolution equation we obtained earlier in (3.58).

3.4.3 Algorithm summary

The Chan and Vese algorithm can be summarized as follows:

1. Initialize the level set function φ
2. Repeat until the evolution of φ converges

a) Update the region parameters as function of φ and the image

µ1 =
∫
φ>0 Idx∫
φ>0 Idx

and µ2 =
∫
φ<0 Idx∫
φ<0 Idx

b) Update φ according to evolution equation (3.58)
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Note that, in the implementation, the region parameter updates do not need the

expressions in step 2.a at each iteration. They can be updated more efficiently using

their previous value and pixels corresponding to a change in the sign of the level set

function.

3.4.4 Numerical implementation details of the level set evolution equation

The Chan-Vese functional, as well as various other functionals that we will examine

in subsequent chapters, result in a level set evolution equation in the general from

∂φ

∂ t
= (V −λκ)‖∇φ‖ (3.62)

where V : R
2 ×R

+ → R is a scalar function which depends on position and time. In

the case of the Chan-Vese functional, V is given by

V = −
(
λ1(I −µ1)

2 −λ2(I −µ2)
2 +ν
)

(3.63)

Discretization of evolution equations of the form (3.62) can be written using the finite

difference method in [22]:

φ k+1
i j = φ k

i j +△t

(
max(V k

i j,0)∇+ +min(V k
i j,0)∇−−λκk

i j

(
(D0x

i j )
2 +(D0y

i j )
2
) 1

2

)

(3.64)

where i, j are indices on the discretization grid of Ω , and k is the iteration index. ∇+

and ∇− are defined by

∇+ =
(

max(D−x
i j ,0)2 +min(D+x

i j ,0)2

+max(D−y
i j ,0)2 +min(D+y

i j ,0)2
) 1

2

∇− =
(

max(D+x
i j ,0)2 +min(D−x

i j ,0)2

+max(D+y
i j ,0)2 +min(D−y

i j ,0)2
) 1

2
(3.65)

where finite difference x−derivative operators D+x (forward scheme), D−x (back-

ward scheme), and D0x (central scheme), are applied to φ at i, j and iteration k, i.e.,

D+x
i j ,D−x

i j ,D0x
i j in (3.64) stand for D+x(φ k)i j,D

−x(φ k)i j,D
0x(φ k)i j and are given by

D+x
i j = φ k

i+1, j −φ k
i j

D−x
i j = φ k

i j −φ k
i−1, j

D0x
i j =

1

2
(φ k

i+1, j −φ k
i−1, j)
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Similar comments and expressions apply to the y−derivative operators D+y,D−y,
and D0y.

The curvature is discretized by computing the gradient of φ and its partial deriva-

tives at the current iteration using central differences:

κk
i, j = −

Dxx
i j (D

0y
i j )

2 −2D0x
i j D

0y
i j D

xy
i j +D

yy
i j (D

0x
i j )

2

((D0x
i j )

2 +(D0y
i j )

2)
3
2

(3.66)

where operators Dxy, Dxx, and Dyy are applied to φ at i, j and iteration k:

D
xy
i j =

φ k
i+1, j+1 −φ k

i+1, j−1 −φ k
i−1, j+1 +φ k

i−1, j−1

4

Dxx
i j = φ k

i+1, j −2φ k
i j +φ k

i−1, j

D
yy
i j = φ k

i, j+1 −2φ k
i j +φ k

i, j−1 (3.67)

3.5 Edge-based approaches

In this section, we examine edge based approaches, where curve evolution is guided

by a description of the image data on the active curve. Whereas region based ap-

proaches seek a partition of the image domain using statistics of the image data

within the segmentation regions, edge based methods detect the boundaries of the re-

gions by referring to properties along the curve. Generally, edge guided schemes use

the assumption that region boundaries correspond to high image transitions (signif-

icant edges), in addition to geometric constraints. The Snakes [24] and the geodesic

active contours [25] have been the first developments along this vein.

3.5.1 The Kass-Witkin-Terzopoulos Snakes model

The study in [24] has been a strong precursor of edge detection by curve evo-

lution. In this model, the evolution of a simple closed plane parametric curve,

γ(q) = (x(q),y(q)) : [a,b] ⊂ R → Ω ⊂ R
2, is sought by minimizing the following

functional:

FSnakes(γ) = α
∫ b

a
‖γ ′‖2dq+β

∫ b

a
‖γ ′′‖2dq−λ

∫ b

a
‖∇I(γ(q))‖2dq (3.68)

where

γ ′(q) =

(
dx(q)

dq
,

dy(q)

dq

)

and a corresponding notation for γ ′′. Factors α , β , λ are positive constants to weigh

the contribution of each term.
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The first two terms, referred to as the internal energy, enforce curve smoothness.

The third term is image data dependent and is called the external energy; it drives

the curve to places of high gradient magnitude (significant edges) which is thought

to characterize the region boundaries.

This functional has shortcomings. First, it is parametrization dependent; differ-

ent curve parameterizations can produce different results. Second, there is no mech-

anism to allow the curve to change topology during evolution. As a result, only a

single connected region against a background can be segmented. Third, the numer-

ical implementation requires updates in time of a set of marker points on the curve

following approximations of the evolution equation, which can lead to numerical in-

stability. In some cases, unwanted effects, such as overlap of the marker points, may

occur. Further discussions can be found in [19].

3.5.2 The Geodesic active contour

The geodesic active contour uses the following intrinsic edge based functional [25,

26]:

FGAC =
∫ b

a
g(‖∇I(γ(q))‖)‖γ ′(q)‖dq (3.69)

where g is a positive monotonically decreasing edge indicator function verifying

limt→+∞g(t) = 0. A common choice of g is

g(t) =
1

1+ t2
(3.70)

As with the Snakes functional, the minimization of this functional attracts the active

contour toward high transitions of the image data (significant edges) while smoothing

and shortening it. However, FGAC has important advantages. First, it is intrinsic, i.e.,

parametrization invariant. To see this, consider another parametrization

q = ϕ(r),ϕ : [c,d] → [a,b],ϕ ′ > 0

we have

FGAC =
∫ b

a
g(‖∇I(γ̄(r))‖)‖γ̄ ′(r)‖dr (3.71)

with

γ̄(r) = γ(ϕ(r)),

which shows that the functional is parametrization invariant.

Parameterizing the curve by the Euclidean arc length s, which verifies

ds = ‖γ ′(q)‖dq, (3.72)

gives
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FGAC =
∫ l(γ)

0
g(‖∇I(γ(s))‖)ds (3.73)

where l(γ) is the Euclidean length of the curve. FGAC can be interpreted as a gener-

alized length, where the Euclidean element of length ds is weighed by the edge sig-

nificance function g. The problem, then, consists of finding a minimal length curve (a

geodesic) using this image induced length measure (hence the name geodesic active

contour [25]).

Another important advantage of this functional is that, as we will see subse-

quently, the ensuing curve evolution equation is amenable to the level set representa-

tion, which affords a stable and efficient numerical implementation. Furthermore, the

functional does not require ad hoc parameters to weight the contribution of different

terms, unlike the Snakes functional.

The curve evolution equation minimizing FGAC is obtained by embedding γ in

a one-parameter family of curves γ : s, t ∈ [0, l]×R
+ → γ(s, t) = (x(s, t),y(s, t), t) ∈

Ω ×R
+ indexed by algorithmic time t, and solving the descent equation

∂γ

∂ t
= −∂FGAC

∂γ
(3.74)

The functional derivative with respect to γ of the integral over γ of a positive scalar

function h = h(x(s),y(s)) is given by (Chapter 2)

∂
∮
γ hds

∂γ
= (〈∇h,n〉+hκ)n (3.75)

where 〈.〉 indicates the scalar product. Applied to FGAC, this result leads to the

geodesic active contour evolution:

∂γ

∂ t
= −(g(‖∇I(γ)‖)κ + 〈∇g(‖∇I(γ)‖) ,n〉)n (3.76)

The first velocity is the curvature regularization velocity (called the Euclidean heat

flow) weighted by the edge indicator function g. This velocity allows curve smooth-

ing and shortening modulated by g, which inhibits the contour motion at significant

edges. Theoretically, motion stops at ideal edges where g = 0 (hence its name of stop-

ping function). This is not the case with digital edges. The second velocity attracts

the contour towards significant edges because the gradient vector ∇g points toward

the image high transitions. This velocity refines edge detection when the stopping

function is not sufficiently low everywhere on the boundary of interest, in which

case its effect becomes important.

Because the geodesic active contour is based on image information only on the

active contour, it may evolve slowly and in the wrong direction when the initializa-

tion is far from the edge of interest. One way to speed up curve evolution and control

its direction is to add a constant velocity, often referred to as a balloon force velocity

[25]:
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−νg(‖∇I(γ)‖)n (3.77)

This constant velocity can be viewed as the flow optimizing the following weighted

area of the region enclosed within the active curve:

ν
∫

Rγ

g(‖∇I‖)dx (3.78)

Coefficient ν can be of any sign, depending on the initial position of the curve with

respect to the desired boundary. If the initial curve encloses the desired boundary,

ν should be positive to speed up curve shrinking. If the initial curve is inside the

desired edge, ν should be negative to speed up curve expansion. Note that region-

based flows, such as the Chan-Vese flow, are, generally, more robust to the initial

positioning of the active curve [9] because they are guided by image information in

all the image domain, rather than only along the curve.

The level set evolution equation corresponding the geodesic active contour, with

a balloon velocity added, is

∂φ

∂ t
= g(‖∇I‖)‖∇φ‖div

(
∇φ

‖∇φ‖

)
+ < ∇g(‖∇I‖) ,∇φ > −νg(‖∇I(γ)‖)‖∇φ‖

(3.79)

Unlike Snakes, the geodesic active contour model accommodates the level set repre-

sentation, thereby handling implicitly variations in the topology of the active curve.

Therefore, it does not require prior knowledge as to the topology of the solution; it

can detect the boundaries of an arbitrary number of disconnected objects.

3.5.3 Examples

The example in Figure 3.4 illustrates the segmentation of an aeroplane image with

the Chan-Vese model. The initial curve is shown in (a), intermediate curves in (b),

(c) and (d), the final curve in (e) and the segmentation represented with the region

mean parameters obtained at convergence in (f).

The example in Figure 3.5 illustrates edge detection in a lung image with the

geodesic active contour. The initial curve is shown in (a), intermediate curves in

(b), (c) and (d), the final curve in (e) and the region within the final curve in (f).

This example illustrates how the level set representation handles implicitly arbitrary

variations in the curve topology.
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(a) Initial curve (b) iteration 125

(c) iteration 250 (d) iteration 375

(e) Final curve (iteration 600) (f) mean parameters

Fig. 3.4. Segmentation example with the Chan-Vese model: (a) initial curve; (b), (c) and (d)

intermediate positions of the curve; (e) final position of the curve; (f) segmentation represented

with the region mean parameters obtained at convergence.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.5. Lung image segmentation with a geodesic active contour: (a) the initial curve; (b),

(c), and (d) intermediate positions of the curve; (e) the final position of the curve; (f) the region

within the final curve.
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4

MULTIREGION SEGMENTATION

4.1 Introduction

In Chapter 3, level set image segmentation into two regions was stated as the evolu-

tion of a single regular closed plane curve whose interior and exterior unambiguously

define a partition of the image domain [1]. The general case of multiple regions uses

several curves which can intersect. Therefore, a two-region formulation cannot be

generalized directly by assigning a region to the interior of each curve because re-

gion membership becomes ambiguous when the curves intersect.

Let I : Ω ⊂ R
2 → R

n be an image function. Partitioning Ω into N regions, with

N > 2, requires more than one curve. In this chapter, we examine the fundamental

problem of evolving multiple curves so that, at convergence, the curves define a

partition of the image domain following the minimization of the general functional

F
(
{Ri}i∈[1,...,N]

)
= D +R (4.1)

where

• {Ri}i∈[1,...,N] is a partition, i.e., ∪i∈[1...N]Ri = Ω and Ri ∩R j = /0 for i �= j.

• D is a data term measuring how well the data fits a specified description,

usually given through statistical models:

D =
N

∑
i=1

∫

Ri

eidx (4.2)

where ei is a function which evaluates the conformity of the image data within region

Ri to a statistical model. In Chapter 3, we examined the data terms of fundamental

formulations, to which it was possible to give a Bayes/MDL interpretation.

• R is the length regularization term for smooth segmentation boundaries and

to avoid small segmentation fragments:

R = λ
N

∑
i=1

∮

∂Ri

ds (4.3)

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5 4,

c© Springer-Verlag Berlin Heidelberg 2010
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where ∂Ri is the boundary of region Ri and λ is a positive real constant to weigh the

relative contribution of the two terms in the functional.

Associating a curve to the boundary of each region and minimizing F with re-

spect to the curves may lead to an ambiguous result if the curves intersect at con-

vergence, causing the regions they define to overlap. From an initial image domain

partition into regions bounded by N closed simple plane curves {γi}, the region com-

petition algorithm in [2] evolves Γ = ∪iγi. The evolution is determined by the min-

imization of a functional which references Γ as a curve defining a partition. The

implementation of the algorithm requires a careful initialization and uses an explicit

representation of Γ as a set of points, a representation which does not accommodate

changes in the curve topology during evolution. The formulation precludes the use

of level sets because a single level set cannot represent a partition into more than two

regions. As mentioned in previous chapters, the level set representation of curves is

quite important because it allows changes in their topology during evolution, and it

can be implemented by efficient stable numerical schemes [3]. In the level set for-

malism, a curve is represented implicitly as the zero level set of a function over the

image domain. The advantages of such a representation over an explicit description

of a curve as a set of points, as with the Snakes [4] formulation, has been generally

acknowledged and well documented.

In this chapter, we examine level set multiregion segmentation methods aimed

at obtaining a partition of the image domain at completion. There are several such

methods:

(1) Adding a partition constraint to the segmentation functional

This is the method advocated in [5, 6, 7]. Each region is mapped to the inte-

rior of a curve represented implicitly by a level set function, and a term is added to

the segmentation functional to draw the solution toward a partition. This does not

guarantee a partition. Curve evolution will likely give an ambiguous segmentation if

the partition constraint is not sufficiently enforced; if it is too strongly enforced, the

curves will evolve mainly as a result of the partition constraint, not of the image data.

(2) Defining a correspondence between the regions of segmentation and the ac-

tive curves

We will examine two closely related methods [8, 9]. The method in [8] estab-

lishes a correspondence between the characteristic functions of regions and the dif-

ferent combinations of level set signs so as to guarantee, by construction, a partition

all the time during curve evolution. The method in [9] establishes a simpler, system-

atic general mapping between the segmentation regions and the regions defined by

the curves and their intersections. As with the method in [8], the mapping guarantees,

by definition, a partition at all times during curve evolution. We will give the level

set evolution equations of each method and discuss their advantages and limitations.
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(3) Image segmentation as regularized clustering

The method investigated in [10, 11, 12] views image segmentation as spatially

regularized image data clustering, or quantization [13], leading to the simultaneous

minimization of N − 1 functionals to segment an image into N regions, each mini-

mization involving a single region and its complement. The resulting curve evolution

equations produce a partition at convergence provided the curves are initialized so

as to define a partition. We will give the equations and show that curves evolving

according to these will not intersect if they do not initially.

(4) Embedding a partition constraint directly in the minimization equations

This method [14, 15] embeds directly a simple partition constraint in the curve

evolution equations. Starting from an arbitrary initial partition, the minimization is

carried out following a first order expansion of the data term with an embedded parti-

tion constraint which implements the rule that if a point leaves a region, it is claimed

by a single other region. The scheme results in a significant reduction of the compu-

tational load.

This chapter contains experimental demonstrations of the methods and compar-

isons between their computational requirements and convergence times.

4.2 Multiregion segmentation using a partition constraint

functional term

In their work devoted to the level set motion of junctions and boundaries of multiple

phases, Zhao et al. proposed a constraint to bias the solution toward a partition [5].

The scheme was later used in image segmentation [6, 7]. Each region (phase) Ri is

mapped to the interior of a curve represented implicitly by the zero level of a level

set function φi, i ∈ [1, . . . ,N]:

Ri = {x ∈Ω ,φi(x) > 0} (4.4)

The partition constraint is expressed as follows:

β
∫

Ω

(
N

∑
i=1

H(φi)−1

)2

dx (4.5)

where H is the Heaviside function

H(z) =

{
1 if z ≥ 0

0 if z < 0
(4.6)

and β is a positive constant to balance the effect of the partition constraint against

the other functional terms. Figure 4.1 illustrates how this constraint ensures coupling

multiple level set functions by enforcing the condition
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N

∑
i=1

H(φi) = 1, (4.7)

to discourage both empty regions and overlap between regions.

∑3
i=1 H(φi) = 2

∑3
i=1 H(φi) = 1

R1

∑3
i=1 H(φi) = 0R2

R3
φ2 > 0

φ1 > 0

φ3 > 0

Fig. 4.1. Illustration of the partition constraint proposed by Zhao et al. [5]

This method requires N level set functions for a segmentation into N regions.

Assigning a value to β can be problematic because curve evolution will produce

overlapping regions if the partition constraint is not sufficiently enforced, and if it

is too strongly enforced the curves will evolve more as a result of the partition con-

straint than of the image data. It is not clear how this parameter should be fixed so as

to produce a partition without occulting the role of the data term.

4.3 Multiphase level set image segmentation

We will examine the method referred to as multiphase level set image segmenta-

tion [8]. This method establishes an explicit correspondence between N regions

of segmentation and a partition defined using log2 N level set functions. Let φi :

Ω ⊂ R
2 → R, i ∈ [1, . . . ,M], be M level set functions with M = log2 N. Con-

sider the vector level set function φ = (φ1, . . . ,φM) and the vector-valued image

H(φ) = (H(φ1), . . . ,H(φM)) : Ω → {0,1}M with H being the Heaviside function.

The binary vectors in image H(φ) can have up to N = 2M values, Hi, i ∈ [1, . . . ,N].
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One can define the segmentation regions as follows:

Two pixels x and y are in the same region if and only if H(φ)(x) = H(φ)(y).

With this definition, each set

Ri = {x ∈Ω |H(φ)(x) = Hi}, i ∈ [1, . . . ,N], (4.8)

defines a region, and the corresponding N = 2M regions define, by construction, a

partition of the image domain. At all times during the evolution of the level set

functions, each pixel belongs to one and only one region, i.e., by definition, there

is neither vacuum nor overlap. This is an important advantage over the formulation

in [5, 6, 7], which encourages but does not guarantee a partition. The multiphase

functional can be written as follows:

F
(
{Ri}i∈[1,...,N]

)
=

N

∑
i=1

∫

Ω
eiχRi

dx+λ
N

∑
i=1

∫

Ω
‖∇χRi

‖dx (4.9)

where ∇ denotes the spatial gradient, χR : Ω → {0,1} is the characteristic function

of region R:

χR(x) =

{
1 if x ∈ R

0 if x ∈ Rc,
(4.10)

and Rc is the complement of R. For simplicity, the regularization term can be re-

placed by the sum of the lengths of the curves [8]:

λ
N

∑
i=1

∫

Ω
‖∇H(φi)‖dx (4.11)

Although it causes parts of the segmentation boundaries to be counted more than

once, this slight modification does not, in general, have a significant effect on the

segmentation outcome [8].

For an illustration, consider the case of a segmentation into at most four regions.

This requires two level set functions φ1 and φ2:

⎧
⎪⎪⎨
⎪⎪⎩

R1 = {x ∈Ω ,φ1(x) > 0,φ2(x) > 0}
R2 = {x ∈Ω ,φ1(x) > 0,φ2(x) < 0}
R3 = {x ∈Ω ,φ1(x) < 0,φ2(x) > 0}
R4 = {x ∈Ω ,φ1(x) < 0,φ2(x) < 0}

(4.12)

This is illustrated in Fig. 4.2. In the following, we use the piecewise constant image

model for simplicity, i.e.,

ei = (I − ci)
2, (4.13)

where ci is the parameter of region Ri. However, the formulation can be extended to

other parametric image models. Using a regularized version Hε of H (Chapter 3), the

multiregion segmentation functional becomes:
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Fε ,4 =

∫

Ω
(I − c1)

2Hε (φ1)Hε (φ2)dx

+
∫

Ω
(I − c2)

2Hε (φ1)(1−Hε(φ2))dx

+

∫

Ω
(I − c3)

2 (1−Hε(φ1))Hε (φ2)dx

+
∫

Ω
(I − c4)

2 (1−Hε(φ1))(1−Hε(φ2))dx

+ λ
∫

Ω
‖∇Hε(φ1)‖dx+λ

∫

Ω
‖∇Hε(φ2)‖dx (4.14)

φ1 < 0

φ1 > 0
φ2 < 0

φ2 = 0

φ1 = 0

φ2 > 0

curve

curve

φ1 < 0 φ1 > 0
φ2 > 0

φ2 < 0

Fig. 4.2. Correspondence between 2 = log2 4 level set functions and 4 segmentation regions

with the method in [8]

The functional depends on two types of variables: the level set functions φi, i =
1,2, and the region parameters ci, i = 1, . . . ,4. Its minimization can be carried out by

iterating two steps:

Step 1: With φ1 and φ2 fixed, minimization of Fε ,4 with respect to ci, i = 1, . . . ,4,
yields the following update equations for the region parameters:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 =

∫
φ1>0,φ2>0 Idx
∫
φ1>0,φ2>0 dx

c2 =

∫
φ1>0,φ2<0 Idx
∫
φ1>0,φ2<0 dx

c3 =

∫
φ1<0,φ2>0 Idx
∫
φ1<0,φ2>0 dx

c4 =

∫
φ1<0,φ2<0 Idx
∫
φ1<0,φ2<0 dx

(4.15)

Step 2: With ci fixed, i = 1, . . . ,4, minimization of Fε ,4 with respect to the level

set functions is performed by embedding φi, i = 1,2, into a one-parameter family of

level set functions φi(x, t) : Ω ×R
+ → R, indexed by algorithmic time t > 0, and

solving the corresponding Euler-Lagrange descent equations:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂φ1

∂ t
= δε(φ1){λdiv

(
∇φ1

‖∇φ1‖

)
+
(
(I − c4)

2 − (I − c2)
2
)
(1−Hε(φ2))

+
(
(I − c3)

2 − (I − c1)
2
)

Hε(φ2)}

∂φ2

∂ t
= δε(φ2){λdiv

(
∇φ2

‖∇φ2‖

)
+
(
(I − c4)

2 − (I − c3)2
)
(1−Hε(φ1))

+
(
(I − c2)

2 − (I − c1)
2
)

Hε(φ1)}

(4.16)

where δε is given by

δε = H ′
ε (4.17)

To extend the evolution to all the level sets of φi, i ∈ [1, . . . ,N], one can simply re-

place δε(φi) by ‖∇φi‖ in the equations.

The multiphase level set segmentation approach is often used [16, 17, 18]. It has

several desirable properties:

• By construction, it guarantees a partition at all times during curve evolution.

• It requires only log2 N level set functions for a segmentation into N regions.

• It can detect and represent triple junctions and other complex topologies.

However, it also has disadvantages:

• The complexity of the evolution equations increases exponentially with the

number of regions.

• The method evaluates an expensive point membership function, which in-

volves checking the signs of all level set intersections.
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• Rather than fixing N, the method seeks a segmentation into up to a power of 2

regions. Some of these regions can vanish. However, there is no clear indication on

the actual number of regions the method will produce. In some instances, unwanted

divisions of regions can occur, for example with images of planar intensity variations.

4.4 Level set multiregion competition

In this section, we examine the method in [9] based on a representation of an image

domain partition by a general, explicit correspondence between the N segmentation

regions and the regions of a partition defined by N−1 simple closed plane curves and

their intersections. As with the method in [8], this formulation maintains a partition

at all times by construction. However, it determines a segmentation into a fixed but

arbitrary number of regions N, rather than a power of 2 regions as in [8].

4.4.1 Representation of a partition into a fixed but arbitrary number of regions

The method uses the following mapping between the family {Rγi
} of regions en-

closed by the curves {γi} and the segmentation regions {Ri}:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1 = Rγ1

R2 = Rc
γ1
∩Rγ2

. . .
Ri = Rc

γ1
∩Rc

γ2
∩·· ·∩Rc

γi−1
∩Rγi

. . .
RN = Rc

γ1
∩Rc

γ2
∩·· ·∩Rc

γN−1

where Rc denotes the complement of region R. The family {Rγ1
, Rc

γ1
∩Rγ2

, Rc
γ1
∩

Rc
γ2
∩Rγ3

, . . .} thus obtained is, by construction, a partition of the image domain.

The representation is illustrated in Figure 4.3.

With this choice of representation of an N-region partition, and using the length

prior, the segmentation functional in (4.1) is written as:

F
(
{Ri}i∈[1,...,N]

)
=
∫

Rγ1

e1dx+
∫

Rc
γ1
∩Rγ2

e2dx+ . . .

+

∫

Rc
γ1
∩Rc

γ2
∩Rγ3

e3dx+ . . .

+
∫

Rc
γ1
∩Rc

γ2
∩Rc

γ3
···∩RγN−1

eN−1dx+ . . .

+
∫

Rc
γ1
∩Rc

γ2
∩Rc

γ3
···∩Rc

γN−1

eNdx+ . . .

+ λ
N−1

∑
i=1

∫

γi

ds (4.18)
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R2

R1

R3

γ1

γ2
γ3

R4

Fig. 4.3. Representation of a region partition into four regions (three curves).

For simplicity, the regularization term in (4.1) is taken to be curve length.

4.4.2 Curve evolution equations

Minimization of functional F with respect to curves (γi)i∈[1,...,N−1] is performed by

embedding each curve into a one-parameter family γi(s, t) : [0,1]×R
+ → Ω , i =

1, . . . ,N−1 of plane curves, indexed by algorithmic time t, and solving the following

system of evolution equations:

∂γi

∂ t
= −∂F

∂γi

, i = 1, . . . ,N −1 (4.19)

The functional derivatives ∂F
∂γi

can be computed by first rewriting in a suitable form

the area integrals in the functional. First with γ1, F is rewritten as follows:

F
(
{Ri}i∈[1,...,N]

)
=
∫

Rγ1

e1dx+
∫

Rc
γ1

Φ1dx+λ
∫

γ1

ds+λ
N−1

∑
i=2

∫

γi

ds (4.20)

where Φ1 is

Φ1 = e2χRγ2

+ e3χRc
γ2
χRγ3

+ . . .

+ eN−1χRc
γ2
χRc

γ3
. . .χRc

γN−2
χRγN−1

+ eNχRc
γ2
χRc

γ3
. . .χRc

γN−2
χRc

γN−1
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Both Φ1 and ∑N−1
i=2

∫
γi

ds are independent of γ1. Therefore, the functional derivative
∂F
∂γ1

is (Chapter 2):

∂F

∂γ1
= (e1 −Φ1 +λκ1)n1 (4.21)

where n1 is the outward unit normal to γ1, and κ1 its curvature function. For the

functional derivative ∂F
∂γ2

, F is rewritten as follows:

F
(
{Ri}i∈[1,...,N]

)
=
∫

Rγ1

e1dx+
∫

Rγ2

χRc
1
e2dx+

+
∫

Rc
γ2

χRc
1
Φ2dx+λ

∫

γ2

ds+

+ λ∑
i �=2

∫

γi

ds (4.22)

where Φ2 is

Φ2(x) = e3χRγ3

+ e4χRc
γ3
χRγ4

+ . . .

+ eN−1χRc
γ3
χRc

γ4
. . .χRc

γN−2
χRγN−1

+ eNχRc
γ3
χRc

γ4
. . .χRc

γN−2
χRc

γN−1

Here again,
∫

Rγ1
e1dx, Φ2 and ∑i �=2

∫
γi

ds have no dependence on γ2. Therefore,

∂F

∂γ2
=
(
χRc

1
(e2 −Φ2)+λκ2

)
n2 (4.23)

where n2 is the outward unit normal to γ2, and κ2 its curvature function.

The data term in (4.23) is taken into consideration only outside R1 where, ac-

cording to (4.19), the evolution of γ2 is

∂γ2

∂ t
= −∂F

∂γ2
= −(e2 −Φ2 +λκ2)n2 (4.24)

Because the evolution of γ2 within R1 will not affect the energy functional, we can

simply use the evolution equation (4.24) everywhere for γ2, which lends to a uniform

implementation.

Proceeding similarly to compute functional derivatives ∂F
∂γi

for all i, the mini-

mization of the multiregion functional is performed by the following system of cou-

pled curve evolution equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂γ1

∂ t
= −(e1 −Φ1 +λκ1)n1

∂γ2

∂ t
= −(e2 −Φ2 +λκ2)n2

...
∂γi

∂ t
= −(ei −Φi +λκi)ni

...
∂γN−1

∂ t
= −(eN−1 −ΦN−1 +λκN−1)nN−1

(4.25)

where ni is the outward unit normal to γi, κi its curvature function, and Φi is, for

i = 1, . . . ,N −1,

Φi = ei+1χRγi+1

+ ei+2χRc
γi+1

χRγi+2

+ . . .

+ eN−1χRc
γi+1

. . .χRc
γN−2

χRγN−1

+ eNχRc
γi+1

. . .χRc
γN−2

χRc
γN−1

4.4.3 Level set implementation

The implicit representation of each curve γi, i = 1, . . . ,N −1, as the zero level set of

a function φi(x, t) : Ω ×R
+ → R gives the following level set evolution equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂φ1

∂ t
= −(e1 −Φ1 +λκ1)‖∇φ1‖

...
∂φi

∂ t
= −(ei −Φi +λκi)‖∇φi‖

...
∂φN−1

∂ t
= −(eN−1 −ΦN−1 +λκN−1)‖∇φN−1‖

(4.26)

where Φi is given by

Φi = ei+1χ{φi+1>0}
+ ei+2χ{φi+1≤0}χ{φi+2>0}
+ . . .

+ eN−1χ{φi+1≤0} . . .χ{φN−2≤0}χ{φN−1>0}
+ eNχ{φi+1≤0} . . .χ{φN−2≤0}χ{φN−1≤0}

and
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χ{φ≤0} =

{
1 if φ ≤ 0

0 otherwise

χ{φ>0} =

{
1 if φ > 0

0 otherwise
(4.27)

Recall that κi is given as a function of φi by

κi = −div

(
∇φi

‖∇φi‖

)
(4.28)

The velocities can be evaluated everywhere and used to evolve the level sets

everywhere, i.e, the equations (4.26) can be generalized to evolve the level set func-

tions over the whole domain Ω .

4.5 Multiregion level set segmentation as regularized clustering

This method looks at image segmentation from the viewpoint of spatially regularized

image data clustering [10, 11]. This leads to segment N regions by the simultaneous

minimization of N − 1 functionals, each involving a single region and its comple-

ment. First, consider the minimization of (4.1) without the regularization term. The

problem consists of finding a partition which minimizes the data term D , which can

be rewritten as follows:

D =
∫

Ri

ei dx+
N

∑
j = 1

j �= i

∫

R j

e j dx (4.29)

We have the following inequalities on the second term of the right hand side of (4.29):

N

∑
j = 1

j �= i

∫

R j

e j dx ≥
∫

Rc
i

N

∑
j = 1

j �= i

e jχR j
dx

≥
∫

Rc
i

min
j �=i

(e j)dx (4.30)

The equality in the first line of (4.30) occurs for a partition, and in the second line

for a partition when

∑
j �=i

e jχR j
= min

j �=i
(e j) (4.31)

Therefore, the problem of minimizing (4.29) can be viewed as image data clus-

tering, or quantization [13], and formulated as the simultaneous minimization of the

following functionals, each corresponding to a two-region problem involving one

region and its complement:
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FRi
=

∫

Ri

ei dx+

∫

Rc
i

ψidx i = 1, . . . ,N −1 (4.32)

where ψi is

ψi = min
j �=i

(e j) (4.33)

and RN is the background region, i.e.,

RN =
N−1⋂

i=1

Rc
i (4.34)

The simultaneous minimization of the N − 1 functionals in (4.32) produces, as in

standard clustering, a partition of the image domain with ∑ j �=i e jχR j
= ψi. For

smooth segmentation boundaries and to avoid small, isolated segmentation frag-

ments, one can add to each of the functionals in (4.32) the length of the boundary of

Ri:

FRi,λ =
∫

Ri

ei dx+
∫

Rc
i

ψidx+λ l(∂Ri), i = 1, . . . ,N −1 (4.35)

The problem consists of finding the following set of regions:

⎧
⎪⎪⎨
⎪⎪⎩

R̃i = min
Ri

(
FRi,λ

)
, i = 1, . . . ,N −1

R̃N =
N−1⋂

i=1

R̃c
i

(4.36)

In the next section, we will derive the corresponding curve evolution equations,

and show that curves evolving according to these equations will not intersect if they

do not initially.

4.5.1 Curve evolution equations

Let γi : [0,1] →Ω , i = 1, . . . ,N −1, be simple closed plane curves parameterized by

arc parameter s ∈ [0,1]. Let Ri be Rγi
, the interior of γi, i = 1, . . . ,N −1. The length

of the boundary of Ri is

l(∂Ri) =
∫

γi

ds (4.37)

For each γi, i = 1, . . . ,N − 1, the curve evolution equation for the minimization of

FRi,λ is obtained by embedding γi in a family of one-parameter curves γi(s, t) :

[0,1]×R
+ →Ω , and solving the following Euler-Lagrange descent equation:

∂γi

∂ t
= −∂FRi,λ

∂γi

(4.38)
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which gives

∂γi

∂ t
= −(ei −ψi +λκi)ni, i = 1, . . . ,N −1 (4.39)

We will now show that curves which move according to these equations will not

intersect if they do not initially.

Let γi and γ j be two distinct curves. If γi and γ j do not intersect initially, they

must first meet at a set of points before they can intersect. The curve velocity, on the

right-hand side of (4.39), has two terms, the curvature term (−λκini) and the data

term (−(ei −ψi)ni). We will study the effect of each of these terms at a point of

contact.

Effect of the curvature term

Figures 4.4 and 4.5 show the two possible configurations at a point of contact (up to

an exchange of the curve names). Let x0 be the point of contact.

Ri

γ j

−κini −κ jn j

γi

R j

Fig. 4.4. Case 1

In the first case, the curvatures are both positive (κi(x0) ≥ 0, κ j(x0) ≥ 0), which

means that both curves retract and, therefore, will not cross at x0. In the second case,

the curvatures are of opposite signs (κi(x0) ≥ 0, κ j(x0) ≤ 0), which means that the

curves move in the same direction. However, because |κi(x0)| ≥ |κ j(x0)|, curve γi

retracts faster than γ j advances and, therefore, the two curves will not cross at x0.

Effect of the data term

Let di = −(ei −ψi). There are two cases to consider:

1. ei(x0) = min
l∈[1,...,N]

(el(x0)) or e j(x0) = min
l∈[1,...,N]

(el(x0))
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Ri

−κini

γi

R j

−κ jn j

γ j

Fig. 4.5. Case 2

2. ek(x0) = min
l∈[1,...,N]

(el(x0)), k �= i, k �= j

In the first case, let us assume, without loss of generality, that

e j(x0) = min
l∈[1,...,N]

(el(x0))

This means that di(x0) ≤ 0 and d j(x0) = e j(x0)− ei(x0) ≥ 0. Therefore, γi and γ j

move in the same direction, with γi advancing and γ j retracting. However, because

|di(x0)| ≤ |d j(x0)|, γ j retracts faster than γi advances and the two curves cannot cross

at x0. In the second case, we have di(x0)≥ 0 and d j(x0)≥ 0 and, therefore, the curves

retract and will not cross at x0.

4.5.2 Level set implementation

As usual, we represent each curve implicitly as the zero level of a function φi(x, t) :

Ω ×R
+ → R. As a result, the level set evolution equations corresponding to (4.39)

are

∂φi

∂ t
= −(ei −ψi +λκi)‖∇φi‖ (4.40)

As with the method in the preceding section, (4.40) can be used over the whole

domain Ω .
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4.6 Embedding a partition constraint directly in the minimization

equations

We will describe a minimization scheme which embeds directly a simple partition

constraint in the evolution equations of multiple curves [14, 15]. To expose the

method, we first revisit the two-region segmentation to rewrite the standard Euler-

Lagrange curve evolution equation using a first-order expansion of the data term.

This first-order analysis gives an interpretation of curve evolution strictly from the

point of view of pixel-membership variations, and leads to an extension to mul-

tiregion segmentation where the functional minimization embeds directly a simple,

efficient partition constraint that maintains implicitly a partition of the image domain

at all times. Basically, the partition constraint states that if a point leaves a region, it

goes to a single other region, i.e., it is claimed by a region without transiting through

others as could be the case in [10, 11].

4.6.1 Two-region segmentation: first order analysis

We use a single curve γ in the case of two regions. Let R1 = Rγ and R2 its comple-

ment: R2 = Rc
1. The minimization of F

(
{Ri}i∈[1,2]

)
with respect to γ follows the

descent equation

∂γ

∂ t
= −

∂F
(
{Ri}i∈[1,2]

)

∂γ
= −∂D

∂γ
− ∂R

∂γ
(4.41)

with

∂D

∂γ
= (e1 − e2)n (4.42)

In the following, we use a first-order expansion of the data term [14, 15] to give

a pixel membership variation interpretation to this curve evolution equation, leading

to a simple, efficient partition maintaining generalization to multiple curve evolution.

Consider an elementary unit local deformation δγ of γ along its normal n:

{
δγ = (δx,δy) = ||δγ||n
||δγ|| = 1

(4.43)

The first order expansion of D gives

D(γ +δγ) = D(γ)+ <
∂D

∂γ
,δγ > (4.44)

Because ∂D
∂γ is in the direction of n and ||δγ|| = 1, (4.44) gives

(D(γ +δγ)−D(γ))δγ =
∂D

∂γ
(4.45)
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Consider a discrete elementary variation of γ involving a single pixel p. Then the

elementary variation ∆aR of the area of region R is

{
∆aR = 1 if the curve is expanding

∆aR = −1 if the curve is shrinking
(4.46)

Let ∆ξi(p) and ∆D = D(γ+δγ)−D(γ) be the corresponding elementary variation

of ξi =
∫

Ri
eidx, i = 1,2, and of the data term. We have

∆D = ∆ξ1(p)+∆ξ2(p)

= ∆aR1
e1(p)+∆aR2

e2(p) (4.47)

Suppose, without loss of generality, that γ is expanding to contain p, i.e.,

{
∆aR1

= 1

∆aR2
= −∆aR1

= −1
(4.48)

then

∆ξ1 = ∆ξ+
1 = e1

∆ξ2 = ∆ξ−
1 = −e2 (4.49)

where the superscript + (−) indicates the increase (decrease) of the data term due to

the gain (loss) of pixel p by a region. Using (4.49), (4.47), and (4.45) gives

∂D

∂γ
=
(
∆ξ+

1 −∆ξ+
2

)
δγ

= (e1 − e2)δγ (4.50)

With δγ = n, the functional derivative of D with respect to γ is approximated by

∂D

∂γ
=
(
∆ξ+

1 −∆ξ+
2

)
n (4.51)

When γ is shrinking at p, rather than expanding, we have

⎧
⎨
⎩

∆ξ1 = −∆ξ+
1 = −e1

∆ξ2 = ∆ξ+
2 = e2

δγ = −n

(4.52)

Thus, when γ is shrinking at p we obtain the same expression of the velocity as in

(4.51). Accounting for the length regularization, we have the approximation

∂γ

∂ t
= −
(
∆ξ+

1 −∆ξ+
2 +λκ

)
n (4.53)

The corresponding level set evolution equation is

∂φ

∂ t
= −
(
∆ξ+

1 −∆ξ+
2 +λκ

)
‖∇φ‖ (4.54)
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4.6.2 Extension to multiregion segmentation

In this section, we generalize the evolution equation in (4.54) to an arbitrary, fixed

number of regions, so that the evolution of multiple curves produces a partition.

Consider a family of simple closed curves γk|k=1,...,N−1 and let Rk be the region

enclosed by γk:

Rk = Rγk
, k = 1, . . . ,N −1 (4.55)

Let

RN =
N−1⋂

k=1

Rc
k (4.56)

One can impose simple, efficient partition constraints directly on the multiregion

curve evolution as follows [14, 15]:

Partition constraints:

Constraint 1

Start from an initial partition P0 = {R0
k}k∈[1...N].

Constraint 2

Suppose we have a partition P t = {Rt
k}k∈[1,...,N] at iteration t, and let p ∈ Ω . If

p ∈ Rt
i, i ∈ [1, . . . ,N] and p leaves region Rt

i , it must move to another region R j, j ∈
[1, . . . ,N], j �= i, and only one other region, i.e.,

{
p ∈ Rt+1

j

∀k �= j,x �∈ Rt+1
k

(4.57)

To satisfy constraint (2), the curve evolution equations at p must involve at most two

curves, i.e., only two regions: region Ri which contains pixel p currently and another

region R j, j �= i. To obtain the multiregion curve evolution equations satisfying con-

straint (2), we fix curves γk,k �∈ {i, j}, and minimize the functional with respect to

the variation of γi if i �= N, and γ j if j �= N, i.e.,

⎧
⎪⎨
⎪⎩

if i �= N, ∂F
∂γi

=
∂(ξi+ξ j)

∂γi
+

∂λ
∫
γi

ds

∂γi

if j �= N, ∂F
∂γ j

=
∂(ξi+ξ j)

∂γ j
+

∂λ
∫
γ j

ds

∂γ j

(4.58)

Therefore, multiregion segmentation reduces to a two-region segmentation problem

corresponding to the variation ∆ξi +∆ξ j of D in domain Ri ∪R j. In this case, the

level set curve evolution equations corresponding to the minimization of F with

respect to γi, if i �= N, and with respect to γ j, if j �= N, are given by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if i �= N,

∂φi

∂ t
(p, t) = −

(
∆ξ+

i (p)−∆ξ+
j (p)+λκi(p)

)
‖∇φi(p, t)‖

if j �= N,
∂φ j

∂ t
(p, t) = −

(
∆ξ+

j (p)−∆ξ+
i (p)+λκ j(p)

)
‖∇φ j(p, t)‖

(4.59)

where φk is the level set function corresponding to γk,k ∈ [1, . . . ,N − 1], and κk the

curvature of the zero level set of φk. It is clear that the coupled curve evolution equa-

tions (4.59) satisfy partition constraint (2). There are two cases to consider:

Case 1: i = N or j = N

System (4.59) reduces to a single curve evolution equation corresponding to a two-

region segmentation in the domain Ri ∪R j.

Case 2: i �= N and j �= N

Omitting the contribution of the curvature term, the two evolving curves γi and γ j

have opposite velocities at p. Thus, if γi shrinks at p, γ j expands to contain it and

vice versa. If the contribution of the curvature term is important, both evolving curves

shrink and p leaves the interior of one curve to enter the background region RN .

Definition of region R j

The problem now is to define which of the regions R j, j ∈ [1, . . . ,N], j �= i, will

be involved in system (4.59). Suppose p leaves Ri to enter R j, j ∈ [1, . . . ,N], j �= i.

The resulting variation of the data term D is

∆D = ∆ξ+
j (p)−∆ξ+

i (p) (4.60)

Since the purpose is to minimize F , the sharpest variation is given by

j0 = arg min
{ j∈[1,...,N], p�∈R j}

(∆ξ+
j (p)−∆ξ+

i (p))

= arg min
{ j∈[1,...,N], p�∈R j}

∆ξ+
j (p) (4.61)

This leads to the following multiregion level set equations for all p:

∀i ∈ [1, . . . ,N], i f p ∈ Ri, do
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if i �= N,

∂φi

∂ t
(p, t) = −

(
∆ξ+

i (p)−∆ξ+
j0
(p)+λκi

)
‖∇φi(p, t)‖

if j0 �= N,
∂φ j0

∂ t
(p, t) = −

(
∆ξ+

j0
(p)−∆ξ+

i (p)+λκ j0

)
‖∇φ j0(p, t)‖

(4.62)

where i ∈ [1, . . . ,N] is the index of the region containing p and j0 is given by the best

variation (4.61).

This multiregion method has a computational advantage over the other methods

we examined in this chapter. It activates at most two evolution equations at each it-

eration, i.e., the number of level set updates is independent of the number of regions.

On the contrary, the methods in [8, 9, 5, 11] activate a number of level set evolution

equations which grows with the number of regions. For instance, the method in [8]

activates log2 N equations, and the schemes in [9, 11] require N − 1 instantiations.

Recall that the methods in [8, 9] evaluate an expensive point membership function.

For the method in [8], this involves checking the signs of all the level set intersec-

tions. For the method in [9], this involves, for a given level set, checking the sign of

all lower numbered level sets. In the next section, we will illustrates some of these

computational aspects with an experimental example.

4.6.3 Example

We show several experiments with the brain image in Figure 4.6 to illustrate the con-

vergence speed and computational load of the four multiregion segmentation meth-

ods we examined in this chapter. Figure 4.6 depicts the segmentation of the brain im-

age into three regions with the implicit partition method in [15] using the piecewise

constant image model. Figure 4.6 (a), (b), and (c) show, respectively, the position

of the initial curves, the final curves, and the final segmentation represented by the

regions means. We ran a similar experiment for each of the methods discussed in this

chapter, and plotted the evolution of the functional as a function of the number of it-

erations in Figure 4.7. The implicit partition [15] and regularized clustering methods

[11] led to decreases in the functional much faster than the explicit partition methods

in [8, 9]. For instance the method in [15] needs approximately 30 iterations to con-

verge, whereas the method in [9] needs more than 400. The good performance of the

method in [15] is due to its stepwise optimality in Equation (4.61), i.e., it effects the

maximum decrease in the functional at each curve evolution step.

Figure 4.8 shows the computation time spent at an iteration as a function of the

number of regions for the implicit partition in [15], the regularized clustering in

[11], and the explicit partition in [9]. The implicit partition method has the slowest

curve growth. This was to be expected because the number of level set updates with

this method is independent of the number of regions, unlike the other methods we

examined in this chapter.
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(a) (b) (c)

Fig. 4.6. Multiregion segmentation example with the partition constrained minimization

scheme in [15] and the piecewise constant model: (a) initial curves; (b) final positions of

the curves; (c) segmentation represented with the mean parameters obtained at convergence.
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Fig. 4.7. Evolution of the functional as a function of the iteration number for the implicit

partition method in [15], the regularized clustering in [11], and the explicit partition methods

in [8, 9].
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Fig. 4.8. The computation time spent at an iteration as a function of the number of regions for

the implicit partition in [15], the regularized clustering in [11], and the explicit partition in [9].
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5

IMAGE MODELS

5.1 Introduction

To partition an image into regions, statistical segmentation uses a characterization

of the image data distribution within each region, i.e., image descriptions which dis-

tinguish each region from the others. The descriptions validity largely affects the

segmentation accuracy, i.e., the descriptions must fit the class of images to segment.

In this chapter, we will examine various statistical descriptions in active curve image

segmentation and map each to a curve evolution equation.

Let I : Ω ⊂ R
2 → R

n be an image. A two-region active curve segmentation

method is specified by the evolution equation of a simple closed plane curve γ :

[0,1] →Ω , which defines a partition of the image domain Ω into two regions,

R1 = Rγ

corresponding to the interior of the curve, and

R2 = Rc
γ

corresponding to the exterior. The evolution equations we will derive under various

image models result from the minimization of functionals of the following general

form:

D +λ
∫

γ
ds (5.1)

where D is a data term which measures how well the image fits a specified statistical

description and λ a positive constant balancing the contribution of the curve length

term against the data term. In general, the data term depends on the statistics of

the image within the regions inside and outside the curve. We will examine various

terms, each corresponding to a different statistical image description and leading to

a different evolution equation. Some of these descriptions are derived from Bayesian

estimation, whereas others are built on information theoretic concepts or measures

of discrepancy (or affinity) between distributions. For each statistical description,

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5 5,

c© Springer-Verlag Berlin Heidelberg 2010
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we will determine the curve evolution equation to minimize the data term. These

equations are all of the form:
∂γ

∂ t
= V n (5.2)

where γ is a one-parameter family of curves γ(s, t) : [0,1]×R
+ → R

2×R
+, indexed

by algorithmic time t; n is the outward unit normal to γ , and V : R
2 ×R

+ → R is a

velocity function with coordinates of position and time, and dependent on the image

and image statistics within the segmentation regions. Accounting for the length term

of the segmentation functional, we have (Chapter 2)

∂γ

∂ t
= (V −λκ)n (5.3)

where κ is the curvature of γ . Each method will be implemented via level sets, i.e.,

by defining γ as the zero level set of a function φ : R
2×R

+ → R. The corresponding

evolution of φ is (Chapter 2)

∂φ

∂ t
= (V −λκ)‖∇φ‖ (5.4)

with κ given by

κ = −div

(
∇φ

‖∇φ‖

)
(5.5)

and the region membership by

R1 = {x ∈Ω |φ(x) > 0}
R2 = {x ∈Ω |φ(x) < 0}

(5.6)

The image models will be described in the two-region segmentation case. There

are several ways to generalize the corresponding formulations to multiregion seg-

mentation (Chapter 4) and Section 5.2.7 recalls one such way. The two-region image-

model dependent evolution equations will be given explanatory statistical interpreta-

tions and verified by experimentation.

5.2 Segmentation by maximizing the image likelihood

In Chapter 3, we have seen that image segmentation can be stated as a Bayesian

maximum a posteriori estimation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], which results in a

data term of the following general form:

L (P2
Ω |I,P) =

2

∑
i=1

∫

Ri

− logP(I|Ri)dx (5.7)
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where P2
Ω denotes a partition of the image domain Ω into 2 regions Ri, i = 1,2.

Minimization of this data term yields a partition which maximizes the image likeli-

hood given the region image models. It is crucial that the models capture the image

characteristics which distinguish one region from the other.

Models can be determined before segmentation (supervised segmentation) or

during segmentation (unsupervised segmentation). In supervised segmentation, mod-

els are generally learned from segmented training images of the same class as the

observed images to segment subsequently [8]. They can also be learned interactively

from user-specified areas in the image to segment [10]. When region models are

known beforehand, one can use the basic formula (Chapter 2)

∂
∫

Rγ
f dx

∂γ
= f n (5.8)

valid when f is a function independent of γ . For (5.7), this gives the following mini-

mization descent equation:

∂γ

∂ t
= −∂L (P2

Ω |I,P)

∂γ
= log

(
P(I|R1)

P(I|R2)

)
n (5.9)

This image dependent velocity performs a hypothesis testing by an image likeli-

hood ratio test. It alters the region membership of each point on the curve by evalu-

ation of the hypotheses that the image at the point is drawn from the model of R1 or

R2. If
P(I(p)|R1)
P(I(p)|R2) > 1, i.e., the image likelihood at point p is higher when p belongs

to R1, the speed is positive, i.e., the velocity vector is directed as the outward nor-

mal, causing the curve to expand and take p within R1; otherwise, the curve shrinks,

causing p to belong to R2.

The prevalent way to define the data term is to use a statistical parametric image

model, where each segmentation region is characterized by a set of parameters which

distinguish the region from the other. In this case, the region model parameters be-

come variables dependent on the segmentation (or on the active curve), and have to

be optimized concurrently with curve evolution minimization. In the following, we

first revisit active curve segmentation with the Gaussian distribution by taking into

account the dependence between the region model parameters and the active curve.

Then, we will examine segmentation with a number of useful parametric distribu-

tions, including the Gamma, Bernoulli, Poisson, Weibull, and Wishart. We further

discuss a minimum description length (MDL) interpretation of the functional length

term, which shows how to determine its weight systematically when used in con-

junction with a data term of the type in (5.7).

5.2.1 The Gaussian model

Consider a model which assumes that the image data in each region Ri, i ∈ 1,2, is

Gaussian with parameters µRi
and σRi

:
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PGaussian(I|Ri) =
1√

2πσ2
Ri

e
−

(I−µRi
)2

2σ2
Ri (5.10)

Because the data term measures the conformity of the image within each region to a

Gaussian model, we have

L (P2
Ω |I,PGaussian) =

2

∑
i=1

∫

Ri

G(I,µRi
,σRi

)dx (5.11)

with

G(I,µRi
,σRi

) = − logPGaussian(I|Ri)

=
1

2
log(2πσ2

Ri
)+

(I −µRi
)2

2σ2
Ri

(5.12)

This data term depends on two types of variables, the parameters of regions and the

segmentation. We recall that in the case of the Gaussian distribution, the optimal

parameters can be computed analytically, and turn out to be the sample means and

variances of the image within the regions (Chapter3)

µ̂Ri
=

∫
Ri

Idx
∫

Ri
dx

σ̂2
Ri

=

∫
Ri

(I − µ̂Ri
)2dx

∫
Ri

dx
(5.13)

These expressions show that each parameter is a function of the corresponding re-

gion domain, but the segmentation is unknown. The integrands in the region integrals

in (5.11) depend on the region parameters and, therefore, on the integration domains,

which means a dependence of the region parameters on the curve. Formally, this de-

pendence must be accounted for in the derivation of the functional with respect to the

curve [9, 12, 13, 14], a derivation which results in the curve evolution equation. In

many studies, however, such a dependence is ignored as the curve evolution equation

is deduced by assuming the distribution parameters to be independent of the curve,

which results in a greedy, possibly non-optimal algorithm which iterates two consec-

utive steps: one to evolve the curve with the region parameters fixed and the other

to compute the parameters within the curve defined regions. In this case, the curve

evolution equation in the minimization of L (P2
Ω |I,PGaussian) is

∂γ

∂ t
= −∂L (P2

Ω |I,PGaussian)

∂γ
= VGaussiann (5.14)

with

VGaussian = −(G(I, µ̂R1
, σ̂R1

)−G(I, µ̂R2
, σ̂R2

)) (5.15)
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For the particular case of the Gaussian, the dependence of the parameters on the

curve does not actually affect the curve evolution equation, which is not the case in

general. This is shown next.

Derivation by time-dependent parameters

To take into account the dependence of the region parameters on the curve, one can

use the derivative with respect to algorithmic time of region integrals having the

following general form [14]:

J =
∫

Rγ

ψ(x, t)dx (5.16)

This derivative is given by (refer to [14], Th. 4.2, p. 352)

∂J

∂ t
=
∫

Rγ

∂ψ

∂ t
dx+

∫

γ
〈ψn,

∂γ

∂ t
〉ds (5.17)

where 〈,〉 denotes the scalar product. Now, assuming the region parameters µR1
and

σR1
depend on the segmentation and, therefore, on time, the derivative with respect

to time of the first region integral in functional (5.11) can be derived using (5.17):

∂
∫

R1
G(I,µR1

,σR1
)dx

∂ t
=

∫

R1

∂G(I,µR1
,σ1)

∂ t
dx+

∫

γ
〈G(I,µR1

,σR1
)n,

∂γ

∂ t
〉ds

(5.18)

The integrand in the first term of the above derivative, which stems from the de-

pendence of the region parameters on the curve (dependence on the curve induces

dependence on time) can be expressed as follows:

∂G(I,µR1
,σR1

)

∂ t
=

∂G

∂µR1

∂µR1

∂ t
+

∂G

∂σR1

∂σR1

∂ t
(5.19)

We have

∂G

∂µR1

= − I −µR1

σ2
R1

(5.20)

and

∂G

∂σR1

=
1

σR1

− (I −µR1
)2

σ3
R1

(5.21)

Embedding these derivatives in the first term in (5.18) yields

∫

R1

∂G(I,µR1
,σR1

)

∂ t
dx = − 1

σ2
R1

∂µR1

∂ t

(∫

R1

Idx−µR1

∫

R1

dx

)

+
1

σR1

∂σR1

∂ t

(∫

R1

dx−
∫

R1

(I −µR1
)2

σ2
R1

dx

)
(5.22)
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We use (5.13) for the parameters of region R1 in (5.22) to eliminate the first term on

the right hand side of (5.18 ) and obtain the derivative of
∫

R1
G(I,µR1

,σR1
)dx with

respect to time

∂
∫

R1
G(I,µR1

,σR1
)dx

∂ t
=
∫

γ
〈G(I,µR1

,σR1
)n,

∂γ

∂ t
〉ds (5.23)

Therefore, the curve evolution equation which decreases
∫

R1
G(I,µR1

,σR1
)dx most

rapidly is

∂γ

∂ t
= −G(I,µR1

,σR1
)n (5.24)

Application to L (P2
Ω |I,PGaussian) leads to (5.15). Therefore, in the case of the

Gaussian distribution, the derivative of the region integrals with respect to time be-

have as for an integrand independent of γ , i.e., the dependence of the parameters

on the curve does not give extra terms in the evolution equation. Shape derivatives

[9, 12, 13] are an alternative to handle region dependent integrands.

Algorithm summary

The algorithm can be summarized as a two-step iteration until convergence:

1. Initialize the level set function φ
2. Iterate until convergence

a) Update the region parameters according to (5.13) for R = R1,R2 with the

regions recovered from φ according to (5.6)

b) Update φ according to (5.4) with V given by VGaussian in (5.15)

Generalization to multivariate Gaussian images

If the image is modeled as multivariate (vectorial) Gaussian within each of the two

regions Ri, with mean vector mRi
and covariance matrix ΣRi

, the data term becomes

2

∑
i=1

∫

Ri

Gvect(I,mRi
,ΣRi

)dx (5.25)

with

Gvect(I,mRi
,ΣRi

) =
n

2
log(2π)+

1

2
log(det(ΣRi

))+
1

2

(
(I−mRi

)TΣ−1
Ri

(I−mRi
)
)

(5.26)

where I is of dimension n and det denotes the determinant. In this case, the optimal

parameters can also be computed analytically, jointly with the segmentation, and turn

out to be the region sample mean vectors and covariance matrices [7, 9, 15]
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m̂
(l)
Ri

=

∫
Ri

I(l)dx
∫

Ri
dx

Σ̂
(l,k)
Ri

=

∫
Ri

(I(l)− m̂
(l)
Ri

)(I(k)− m̂
(k)
Ri

)dx
∫

Ri
dx

where Σ (l,k) denotes coefficient (l,k) of matrix Σ and m(l) is the element l of vector

m, with l,k ∈ [1, . . . ,n]. Proceeding as in the case of a scalar image, we obtain [9, 15]

∂γ

∂ t
= V vect

Gaussiann (5.27)

with

V vect
Gaussian = −

(
Gvect(I,m̂R1

, Σ̂R1
)−Gvect(I,m̂R2

, Σ̂R2
)
)

(5.28)

5.2.2 The Gamma image model

The Gamma distribution is an accurate model for the important images of the Syn-

thetic Aperture Radar (SAR) family [11]. These images are quite poorly described

by the Gaussian model. Due in part to the presence of speckle, a strong multiplicative

noise, SAR image segmentation is generally acknowledged as a difficult problem. A

radar acquires a complex signal that is the result of several elementary scatters within

a resolution cell. For a single look SAR image, the image I : Ω → R is the squared

norm of the complex signal. In the case of multi-look SAR images, the L-look image

is obtained by averaging L acquired images. A SAR image can be described in each

region R by a Gamma distribution of L looks and parameter µR [16]:

PL
Gamma(I|R) =

LL

µR(L−1)!

(
I

µR

)L−1

e
− LI

µR (5.29)

Therefore, each region is characterized by its parameter µR and the number of looks

L, which we assume does not vary with the region. The distribution in (5.29) reduces

to the exponential distribution when L = 1, a model that has often been used [17, 18,

19]. The data term for the Gamma model is (for two regions)

L (P2
Ω |I,PL

Gamma) =
2

∑
i=1

∫

Ri

− logPL
Gamma(I|Ri)dx (5.30)

As with the Gaussian model, the optimal parameter for a region has an analytic

expression, which turns out to be the sample mean within the region (Eq. 5.13).

Embedding the optimal region parameters in the data term in (5.30) yields the

following expression [11]:
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L (P2
Ω |I,PL

Gamma) = L
2

∑
i=1

A(Ri) log µ̂Ri
+ c(L, I) (5.31)

where A(R) denotes the area of region R

A(R) =
∫

R
dx (5.32)

and c(L, I) is a constant independent of the segmentation. Omitting this constant,

and with the expression of each region parameter as a function of the corresponding

region domain, the problem amounts to minimizing the following functional with

respect to the segmentation:

2

∑
i=1

A(Ri) log µ̂Ri
(5.33)

Curve evolution equation

The derivative of (5.33) with respect to γ can be written as follows:

∂ (A(R1) log µ̂R1
+A(R2) log µ̂R2

)

∂γ
= log µ̂R1

∂A(R1)

∂γ
+

A(R1)

µ̂R1

∂ µ̂R1

∂γ

+ log µ̂R2

∂A(R2)

∂γ
+

A(R2)

µ̂R2

∂ µ̂R2

∂γ
(5.34)

By the basic formula in (5.8), we have

∂A(R1)

∂γ
= n;

A(R2)

∂γ
= −n

∂S(R1)

∂γ
= In;

S(R2)

∂γ
= −In (5.35)

where S(R) is

S(R) =

∫

R
Idx (5.36)

Using these derivatives, we compute the functional derivative of each region mean

as follows:

∂ µ̂R1

∂γ
=
∂
(

S(R1)
A(R1)

)

∂γ
=

A(R1)
∂S(R1)
∂γ −S(R1)

∂A(R1)
∂γ

A(R1)2
=

(I − µ̂R1
)

A(R1)
n

∂ µ̂R2

∂γ
=
∂
(

S(R2)
A(R2)

)

∂γ
=

A(R2)
∂S(R2)
∂γ −S(R2)

∂A(R2)
∂γ

A(R2)2
=− (I − µ̂R2

)

A(R2)
n

(5.37)
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Substitution of (5.35) and (5.37) in (5.34) yields the functional derivative of the data

term (5.33) and, therefore, the descent equation to minimize L (P2
Ω |I,PL

Gamma)

∂γ

∂ t
= −∂L (PN

Ω |I,PL
Gamma)

∂γ
= VGamman (5.38)

with VGamma given by

VGamma = −
(

log µ̂R1
+

I

µ̂R1

− log µ̂R2
− I

µ̂R2

)
(5.39)

Algorithm summary

The algorithm can be summarized as a two-step iteration until convergence:

1. Initialize the level set function φ
2. Iterate until convergence

a) Update the optimal region means according to the first equation in (5.13) for

R = R1,R2, with the regions recovered from φ according to (5.6)

b) Update φ according to (5.4) with V given by VGamma in (5.39)

5.2.3 Generalization to distributions of the exponential family

In this section, we examine a generalization of the Gamma-driven curve evolution

method studied in the previous section to distributions of the exponential family

[2]. This family includes Gamma, Poisson, Bernoulli, and other distributions [20]

that can be used to describe the image within the segmentation regions. Consider

the class of active curve data terms following a general expression which measures

the conformity of the image within each region to a distribution of the exponential

family. The data term is

L (P2
Ω |I,PEF) =

2

∑
i=1

∫

Ri

− logPEF(I|Ri)dx (5.40)

where PEF(I|Ri) is given by the following general expression

PEF(I|Ri) = k(I)e{a(αRi
)h(I)+b(αRi

)} (5.41)

αR is the vector of parameters of region R; k(I) and h(I) are functions of the im-

age independent of the region parameters; a(αR) and b(αR) are functions of the re-

gion parameters but independent of the image. For several distributions, the Gamma,

Bernoulli, and Poisson, for instance, the optimal region parameters for a given region

have an analytic expression determined by the necessary conditions, for i = 1,2,
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∂
(∫

Ri
logPEF(I|Ri)dx

)

∂αRi

= 0 (5.42)

Embedding the optimal parameters in the data term (5.40) yields the following gen-

eral expression [2]

L (P2
Ω |I,PEF) = −K1

2

∑
i=1

A(Ri)H(θRi
)+K2 (5.43)

where θRi
and H depend on the distribution. The first row of Table 5.1 gives H for

the Bernoulli, Poisson, and Gamma distributions. For these distributions, θRi
turns

out to be the mean of the image within region Ri

θRi
=

∫
Ri

Idx
∫

Ri
dx

(5.44)

K1 and K2 depend on the distribution, but not on the segmentation.

Curve evolution equation

The functional derivative of the data term (5.40) with respect to γ is

∂L (P2
Ω |I,PEF)

∂γ
=

2

∑
i=1

(
∂A(Ri)

∂γ
H(θRi

)+A(Ri)H
′(θRi

)
∂θRi

∂γ

)
(5.45)

Using the derivatives of region areas and means (5.35) and (5.37) in the descent

equation minimizing L (P2
Ω |I,PEF), we arrive at the following evolution equation

∂γ

∂ t
= −∂L (P2

Ω |I,PEF)

∂γ
= VEF n (5.46)

with VEF given by

VEF = −
(
H(θR1

)−H(θR2
)+H ′(θR1

)(I −θR1
)−H ′(θR2

)(I −θR2
)
)

(5.47)

and H
′

given in the second row of Table 5.1.

Distribution Bernoulli Poisson Gamma

H(z) −z logz− (1− z) log(1− z) −z logz logz

H ′(z) log(1− z)− logz −1− logz 1
z

Table 5.1. Function H that defines the image likelihood data term for different distributions of

the exponential family.
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5.2.4 The Weibull image Model

In this section, we examine a curve evolution segmentation with a data term which

measures the conformity of the image within each region to a Weibull distribution

[5]:

PWeibull(I|Ri) =
βRi

ηRi

(
I

ηRi

)βRi
−1

e
−
(

I
ηRi

)βRi

(5.48)

Each region Ri is characterized by a shape parameter βRi
> 0 and a scale parame-

ter ηRi
> 0. Variation of the Weibull parameters yields a spectrum of models which

includes the exponential and approximations of the Gaussian and Raleigh. βR = 1

describes the image in R by the exponential distribution. βR = 3 gives an approxi-

mation of the normal distribution and βR = 2 of the Rayleigh (Figure 5.1). Therefore,

the Weibull distribution is so versatile as to represent a wide variety of images. It can

be useful in applications where the image model is uncertain or when the segmenta-

tion regions require different models. Vision studies have used the Weibull distribu-

tion to model a variety of signals such as radar [21], sonar [22], and medical images

[23, 24], as well as video shot duration [25], and stochastic textures [26].
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Fig. 5.1. Effect of the shape parameter on the Weibull distribution. βR = 1 describes the image

in R by the exponential distribution. βR = 3 gives an approximation of the normal distribution

and βR = 2 of the Rayleigh.

The Weibull model data term is

L (P2
Ω |I,PWeibull) =

2

∑
i=1

∫

Ri

wRi
(I)dx (5.49)



94 5 IMAGE MODELS

where

wRi
(I) = − logPWeibull(I|Ri)

= − log

(
βRi

ηRi

)
− (βRi

−1) log

(
I

ηRi

)
+

(
I

ηRi

)βRi

(5.50)

Minimization

The Weibull model optimal region parameters do not have an analytic expression.

However, the minimization of (5.49) can proceed by iterative two-stage greedy de-

scent, one to minimize with respect to the region parameters with the curve fixed,

and the other with respect to the curve keeping the parameters fixed.

Stage 1: We fix curve γ and minimize the data term (5.49) with respect to the region

parameters. After some algebraic manipulations, we have, for i = 1,2,

∂L (P2
Ω |I,PWeibull)

∂βRi

= −A(Ri)

βRi

−
∫

Ri

(
log

I

ηRi

−
(

I

ηRi

)βRi

log
I

ηRi

)
dx (5.51)

and the corresponding descent equations are

∂βRi

∂ t
= −∂L (P2

Ω |I,PWeibull)

∂βRi

=
A(Ri)

βRi

+
∫

Ri

(
log

I

ηRi

−
(

I

ηRi

)βRi

log
I

ηRi

)
dx (5.52)

The derivatives of (5.49) with respect to the scale parameters ηRi
, i = 1,2, are

∂L (P2
Ω |I,PWeibull)

∂ηRi

=
βRi

A(Ri)

ηRi

−βRi

∫

Ri

I
βRi

η
βRi

+1

Ri

dx (5.53)

which give the following expressions of scale parameters

ηRi
=

(∫
Ri

I
βRi dx

A(Ri)

) 1
βRi

(5.54)

When βRi
= 1, these updates correspond to the means of the image within the re-

gions.

Stage 2: With the parameters fixed, the derivative of (5.49) with respect to γ can be

obtained by application of the basic formula in (5.8). This leads to
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∂γ

∂ t
= −∂L (P2

Ω |I,PWeibull)

∂γ
= VWeibulln (5.55)

with VWeibull given by

VWeibull = −(wR1
−wR2

) (5.56)

Algorithm summary

The algorithm can be summarized as follows:

1. Initialize the level set function φ
2. Iterate until convergence

a) Iterate updates of the shape parameters according to (5.52)

b) Update the scale parameters according to (5.54)

c) Update φ according to (5.4) with V given by VWeibull in (5.56)

Step 2.a can be iterated to convergence. In practice, however, a few iterations

generally suffice.

5.2.5 The Complex Wishart Model

In this section, we examine active curve segmentation with a data term based on

the Wishart model. This model applies to polarimetric images common in remote

sensing [27] and medical imaging [28]. A polarimetric image sensor applies a wave

scattering mechanism and different transmission and reception wave polarizations to

acquire a signal which consists, at each point of the image domain positional array, of

an n×n (typically 3×3) complex matrix containing both amplitude and phase infor-

mation. Segmentation of such images is complicated by the complexity of the data,

the occurrence of multiplicative random speckle noise due to signal interference, and

overlapped region data distributions.

A polarimetric image is a multivalued image consisting at each pixel x ∈Ω of an

n×n complex Hermitian positive definite matrix D(x). With the Wishart model, we

have [27, 29, 30]

PL
Wishart(D|Ri) =

det(D)L−ne
−Ltr(Σ−1

Ri
D)

K(L,n)det(ΣRi
)L

, (5.57)

where det denotes the determinant and tr the trace; L is a fixed integer, and K(L,n)
is a constant which depends on L and n. Therefore, each region Ri is characterized

by its covariance matrix ΣRi
. The accuracy of the Wishart distribution to model po-

larimetric images has been verified in several studies [6, 27, 29, 30].

The Wishart data term measures the conformity of D within each region to a

Wishart distribution representation [6]:
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L (P2
Ω |I,PL

Wishart) =
2

∑
i=1

∫

Ri

− logPL
Wishart(D|Ri)dx (5.58)

The maximum likelihood estimate (MLE) of region covariance matrix, Σ̂Ri
, can be

derived analytically from the necessary condition

∂
∫

Ri
logPL

Wishart(D|Ri)dx

∂ΣRi

= 0 (5.59)

This gives [27]

Σ̂Ri
=

∫
Ri

Ddx

A(Ri)
(5.60)

Coefficient (l,k) of this matrix, l ∈ [1, . . . ,n] and k ∈ [1, . . . ,n], is given by

Σ̂
(l,k)
Ri

=

∫
Ri

D(l,k)dx

A(Ri)
(5.61)

Using the expression of the optimal covariance matrices in the data term yields, after

some manipulations [6]:

L (P2
Ω |D,PL

Wishart) = L
2

∑
i=1

A(Ri) logdet(Σ̂Ri
)+C(L,n,D) (5.62)

where C(L,n,D) is a constant (independent of the segmentation) which can be dis-

carded. With the expression of each optimal covariance matrix as a function of the

corresponding region domain, the problem amounts to minimizing the following

functional with respect to segmentation:

2

∑
i=1

A(Ri) logdet(Σ̂Ri
) (5.63)

Curve evolution equation

The functional derivative of the R1 term in (5.63) with respect to γ can be written as

∂A(R1) logdet(Σ̂R1
)

∂γ
= logdet(Σ̂R1

)
∂A(R1)

∂γ
+

A(R1)

det(Σ̂R1
)

∂ det(Σ̂R1
)

∂γ
(5.64)

We also have

∂ det(Σ̂R1
)

∂γ
= ∑

l,k

∂ det(Σ̂R1
)

∂ Σ̂
(l,k)
R1

∂ Σ̂
(l,k)
R1

∂γ

= ∑
l,k

Co f
(l,k)

Σ̂R1

∂ Σ̂
(l,k)
R1

∂γ
(5.65)
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where Co fΣ denotes the cofactor matrix of Σ . The functional derivative of Σ̂
(l,k)
R1

can

be written

∂ Σ̂
(l,k)
R1

∂γ
=

∂

(
S

(l,k)
D (R1)

A(R1)

)

∂γ
=

A(R1)
∂S

(l,k)
D (R1)
∂γ −S

(l,k)
D (R1)

∂A(R1)
∂γ

A(R1)2

(5.66)

where S
(l,k)
D (R1) is given by

S
(l,k)
D (R1) =

∫

R1

D(l,k)dx (5.67)

Notice that the integrand in this region integral is independent of the curve. There-

fore, it suffices to apply the basic formula in (5.8) to obtain the corresponding func-

tional derivative

∂S
(l,k)
D (R1)

∂γ
= D(l,k)n (5.68)

Embedding in (5.66) this derivative and the derivative of the region area, which we

computed earlier in (5.35), we obtain the functional derivative of coefficient (l,k) of

the region covariance matrix

∂ Σ̂
(l,k)
R1

∂γ
=

D(l,k)− Σ̂
(l,k)
R1

A(R1)
n (5.69)

Using this result in (5.65) yields

∂ det(Σ̂R1
)

∂γ
=

1

A(R1)

(

∑
l,k

Co f
(l,k)

Σ̂R1

D(l,k)−∑
l,k

Co f
(l,k)

Σ̂R1

Σ̂
(l,k)
R1

)
n (5.70)

Now notice the following equalities:

⎧
⎨
⎩
∑l,k Co f

(l,k)

Σ̂R1

D(l,k) = tr(Σ̂−1
R1

D)det(Σ̂R1
)

∑l,k Co f
(l,k)

Σ̂R1

Σ̂
(l,k)
R1

= ndet(Σ̂R1
)

(5.71)

Using these equalities in (5.70) gives the functional derivative of the determinant of

the region covariance matrix

∂ det(Σ̂R1
)

∂γ
=

det(Σ̂R1
)

A(R1)

(
tr(Σ̂−1

R D)−n
)

n (5.72)

Finally, using in (5.64) this derivative and the derivative of the region area yields,

after some manipulations
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∂A(R1) logdet(Σ̂R1
)

∂γ
=
(

logdet(Σ̂R1
)+ tr(Σ̂−1

R1
D)−n

)
n (5.73)

Similarly,

∂A(R2) logdet(Σ̂R2
)

∂γ
= −
(

logdet(Σ̂R2
)+ tr(Σ̂−1

R2
D)−n

)
n (5.74)

Using (5.73) and (5.74) in the descent equation minimizing the data term in (5.58)

leads to the curve evolution equation:

∂γ

∂ t
= −∂L (P2

Ω |D,PL
Wishart)

∂γ
= VWishartn (5.75)

with VWishart given by

VWishart = −
(

logdet(Σ̂R1
)+ tr(Σ̂−1

R1
D)− logdet(Σ̂R2

)− tr(Σ̂−1
R2

D)
)

(5.76)

Algorithm summary

The algorithm can be summarized as a two-step iteration until convergence:

1. Initialize the level set function

2. Iterate until convergence

a) Update the optimal region covariance matrices according to (5.61) with the

regions recovered from φ according to (5.6)

b) Update φ according to evolution equation (5.4) with V given by VWishart

in (5.76)

5.2.6 MDL interpretation of the smoothness term coefficient

The image likelihood data terms we examined in this section are often used in con-

junction with a smoothness term proportional to the length of the active curve γ . The

role of this term is to smooth the segmentation boundaries and prevent the occurrence

of small, isolated regions. The choice of the coefficient of this term is important be-

cause it can affect the results in a significant way [2]. In this section, we will see that

an MDL interpretation [31] of the objective functional prescribes a coefficient value

of approximately 2. We consider segmentation functionals of the following general

form:

2

∑
i=1

∫

Ri

− logP(I|Ri)dx+λ
∫

γ
ds (5.77)

Consider a digital approximation of the image, i.e., a discrete image on a discrete

image domain. The code length of its specification is the number of bits to encode γ
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and the image within the regions. To encode γ , one needs to encode a starting point

p on γ and its chain code, i.e., the chain of directions to travel from one point to the

next on it. For an eight point neighborhood, i.e., each pixel is connected to its eight

immediate neighbors, the number of bits to encode the chain code of γ is

log2 8L̂ (γ) = L̂ (γ) log2 8 bits (5.78)

Because the number of possible locations of the starting point p is Â(Ω), the number

of pixels in the image domain Ω , encoding the curve takes [32]

log2 Â(Ω)+ L̂ (γ) log2 8 bits (5.79)

If γ consists of C closed curves, the number of bits to encode it is

C log2 Â(Ω)+ L̂ (γ) log2 8 bits (5.80)

To encode the image within the regions, information theory instructs us that the

minimum number of bits required to describe the discrete set of observations is the

negative base 2 logarithm of the probability of the observations [33]. Therefore, the

number of bits to encode the image within the regions is, assuming P is sampled and

then discretized,

2

∑
i=1
∑
Ri

− log2 P(I|Ri)dx (5.81)

In nats, the total code length is

2

∑
i=1
∑
Ri

− logP(I|Ri)dx+ log8L̂ (γ)+C log Â(Ω) (5.82)

Note that the last term of (5.82) is independent of the segmentation. The first

term is a data term and the second a length term. Therefore, this MDL interpretation

of (5.77) informs us to use a smoothness term coefficient of approximately 2 (log8).

It is interesting that in the experimental simulations in [2] this value corresponds to

the minimum of the mean number of misclassified pixels. We will be able to verify

this later with an experimental example.

5.2.7 Generalization to multiregion segmentation

There are several ways of generalizing the two-region active curve segmentation for-

mulations we have examined to an arbitrary but fixed number of regions [6, 15, 34,

35, 36]. These give coupled evolution equations of multiple curves so as to guarantee

a partition of the image domain, and were reviewed in Chapter 4. In the experimen-

tal examples we give in this chapter, we use the multiregion generalization in [35]

which, we recall, represents an image domain partition into N regions by the fol-

lowing mapping between the family {Rγi
} of regions enclosed by N −1 curves {γi},

i = 1, . . . ,N −1, and the segmentation regions {Ri}, i = 1, . . . ,N:
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1 = Rγ1

R2 = Rc
γ1
∩Rγ2

. . .
Ri = Rc

γ1
∩Rc

γ2
∩·· ·∩Rc

γi−1
∩Rγi

. . .
RN = Rc

γ1
∩Rc

γ2
∩·· ·∩Rc

γi−1
∩Rc

γN−1

(5.83)

By writing the region integrals of the general form
∫

Ri
eidx, i = 1, . . . ,N, such as those

in the functionals we examined earlier, as functions of the characteristic functions of

the regions inside and outside the curves, one can use the same derivation as in the

two-region formulation to write the functional derivative of each integral (Chapter 4,

[35]). Taking the regularization term proportional to the sum of all curve lengths and

using the implicit representation of each curve γi, i = 1, . . . ,N −1, as the zero level

set of a function φi(x, t) : Ω ×R
+ → R, lead to a system of evolution equations in

the following general form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂φ1

∂ t
= −(e1 −Φ1 +λκ1)‖∇φ1‖

...
∂φi

∂ t
= −(ei −Φi +λκi)‖∇φi‖

...
∂φN−1

∂ t
= −(eN−1 −ΦN−1 +λκN−1)‖∇φN−1‖

(5.84)

where ei is given in Table 5.2 for the Gaussian, Gamma, Weibull, and Wishart distri-

butions.

Φi, we recall, is given as a function of φi by

Φi = ei+1χ{φi+1>0}
+ ei+2χ{φi+1≤0}χ{φi+2>0}
+ . . .

+ eN−1χ{φi+1≤0} . . .χ{φN−2≤0}χ{φN−1>0}
+ eNχ{φi+1≤0} . . .χ{φN−2≤0}χ{φN−1≤0}

with

χ{φ≤0} =

{
1 if φ ≤ 0

0 otherwise

χ{φ>0} =

{
1 if φ > 0

0 otherwise
(5.85)

and κi by
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κi = −div

(
∇φi

‖∇φi‖

)
(5.86)

Model ei

Gaussian (scalar images) G(I,µRi
,σRi

)

Gaussian (multivariate images) Gvect(I,mRi
,ΣRi

)

Gamma log µ̂i +
I
µ̂i

Weibull wRi

Wishart logdet(Σ̂Ri
)+ tr(Σ̂−1

Ri
D)

Table 5.2. Expressions of ei for different distributions.

5.2.8 Examples

Color image segmentation with the multivariate Gaussian model

Figure 5.2 depicts the segmentation of a real color image into four regions with the

multivariate Gaussian model and the multiregion generalization in [35]. The image

we used in Figure 5.2 has been converted from its original RGB color space to CIElab

[37] and the vector composed by the chrominance components has been used as in-

put to the algorithm. The luminance information has not been included. The original

color image is shown in Figure 5.2(a). The initial level set contours are shown in Fig-

ure 5.2(b) superimposed on the luminance image. The final four segmented regions

are depicted in Figure 5.2 (c), (d), (e), and (f).

For luminance images, sampled by standard cameras, the Gaussian model is often

assumed to be applicable. Although effective in several cases, the Gaussian model is

not adequately descriptive in general. Images acquired by sensors other than conven-

tional cameras often do not follow a Gaussian distribution, as in medical [23, 24],

sonar [22], synthetic aperture radar [11, 21], and polarimetric images [6, 27]. In the

following, we examine image segmentation with parametric models other than Gaus-

sian.

Segmentation of a SAR image with the Gamma model

Figure 5.3 depicts the segmentation into three regions of a 1-look real SAR image

of an agricultural land area. Using the Gamma model and the multiregion method

in [35], two curves were evolved from the initial positions depicted in Figure 5.3

(a). Figures 5.3 (b) and (c) show, respectively, the final position of the curves and

the corresponding segmentation represented by the region means at convergence.

Figures (d), (e), and (f) depict the segmentation regions separately.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.2. Color image segmentation into four regions: (a) original color image; (b) the three

initial curves superimposed on the luminance image; (c), (d), (e) and (f) the four segmented

regions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.3. Segmentation of a SAR image into three regions: (a) two initial curves; (b) final

curves; (c) the segmentation at convergence represented by the computed region mean param-

eters; (d), (e), and (f) the segmentation regions displayed separately.
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Example of segmentation with the Weibull model

The image shown in Figure 5.4 (a) with two initial curves (red and green) is a syn-

thetic image of three regions of different distributions. The image data in the lighter

region is generated from the Gaussian distribution. The gray region is derived from

the Rayleigh distribution, and the darker from the Poisson. The segmentation of this

image into three regions used the Weibull model and the multiregion generalization

in [35]. The final position of the curves and the corresponding segmentation are de-

picted in, respectively, Figure 5.4 (b) and (c). The results in Figure 5.4 are obtained

with the weight of the smoothness term set equal to ones (λ = 1).

Effect of the weight of the smoothness term

As an illustration of the effect of the weight of the smoothness term, Figure 5.5

shows the segmentations obtained for λ = 0.01,2, and 5. The partition boundaries

are smoother for λ = 5 but the segmentations are good for both λ = 2 and λ = 5, as

are those for the several values between 1 and 5 which we experimented with. In the

range between 1 and 5, the differences are quite small. For λ = 0.01, however, small

islands fragment the segmentation quite noticeably. Table 5.3 lists the percentage of

correctly classified pixels for various values of λ . The results in this experiment are

consistent with the MDL interpretation of the objective functional which prescribes

a value of parameter λ approximately equal to 2 [2].

(a) (b) (c)

Fig. 5.4. Segmentation into three regions of a synthetic image with different noise models

using the Weibull model and the multiregion generalization in [35]: (a) two initial curves; (b)

final position of the curves; (c) segmentation.

5.3 Maximization of the mutual information between the

segmentation and the image

In this section, we examine curve evolution by maximization of the mutual informa-

tion between the segmentation and the image [38]. The ensuing image segmentation
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(a) (b) (c)

Fig. 5.5. Effect of the weight of the length term: segmentation with λ = 0.01 in (a), λ = 2 in

(b), and λ = 5 in (c).

Weight of the length term Percentage

λ = 0.01 94.93%

λ = 1 96.49%

λ = 2 97.53%

λ = 5 97.07%

Table 5.3. Portion of correctly classified pixels for the synthetic image with different noise

models.

algorithm uses unknown, non-parametric distributions of the image within the seg-

mentation regions. These distributions have to be recovered jointly with the segmen-

tation and, therefore, prior knowledge of their form is not required. Recall that an

active curve γ defines a partition of the image domain Ω into two regions, R1 cor-

responding to the interior of γ and R2 to the exterior. This partition yields a binary

labeling, Lγ : Ω →{L1,L2}, which maps the image domain to a set of two labels

∀ x ∈Ω Lγ(x) =

{
L1 if x ∈ R1

L2 if x ∈ R2
(5.87)

Conversely, this labeling yields a segmentation into two regions. Therefore, segmen-

tation can be viewed as a labeling problem stated as the maximization of the mutual

information between the image and the labeling. Generally, the mutual information

measures the amount of dependence between two random variables. The labeling Lγ

can be viewed as a binary random variable with probabilities

{
Pr(Lγ = L1) = A(R1)

A(Ω)

Pr(Lγ = L2) = A(R2)
A(Ω)

(5.88)

The mutual information between image I and labeling Lγ is [38]

I
(
I‖Lγ
)

= H −P(Lγ = L1)h(I|Lγ = L1)−P(Lγ = L2)h(I|Lγ = L2) (5.89)



106 5 IMAGE MODELS

where H is a constant and h denotes the conditional entropy, given by

h(I|Lγ = Li) = −
∫

Ri

P(I|Ri) logP(I|Ri)dx, i = 1,2 (5.90)

The entropy of a distribution measures the amount of uncertainty associated with

it [39]. As such, each of the conditional entropies in (5.90) measures the degree of

randomness (or heterogeneity) of the image within a segmentation region. The more

homogeneous the segmentation regions, the lower the conditional entropies and the

higher the mutual information. This interpretation supports the use of the mutual

information between the labeling and the image as a criterion for segmentation. The

conditional entropy h(I|Lγ = Li) corresponds to the expected value of the logarithm

of the image distribution in region Ri. Therefore, it can be approximated by the

following sample mean [38]

h(I|Lγ = Li) ≈−
∫

Ri
logP(I|Ri)dx

A(Ri)
, i = 1,2 (5.91)

Using kernel density estimation [40], we can express the image distributions in the

segmentation regions as follows

P(I|Ri) =
εRi

A(Ri)
(5.92)

where εRi
: Ω → R is given by

εRi
(x) =

∫

Ri

K(I(x)− I(y))dy (5.93)

with K being the Dirac function or the Gaussian kernel of width σ , given by

K(h) =
1√

2πσ2
e
− h2

2σ2 (5.94)

When K is the Dirac function, the estimate in (5.92) reduces to the normalized his-

togram of the image within the corresponding region.

In the following, we examine the maximization of the mutual information by

curve evolution, which comes to minimizing the following sum of region integrals

−
2

∑
i=1

∫

Ri

log
εRi

A(Ri)
dx (5.95)

5.3.1 Curve evolution equation

The first region term in functional (5.95) can be written as follows

−
∫

R1

log
εR1

A(R1)
dx = A(R1) logA(R1)−

∫

R1

logεR1
dx (5.96)

In the second term on the right-hand side, the integrand is the logarithm of an integral

over the region the curve encloses. As such, it depends on the active curve. To take
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into account this dependence in the evolution equation, we first compute the equation

minimizing functionals in the following general form

E =
∫

Rγ

f (ε)dx (5.97)

where ε : Ω → R is given by

ε(x) =
∫

Rγ

ky(x)dy (5.98)

and ky is a scalar function independent of γ . To do so, we embed ε into a family

of functions ε(x, t) : Ω ×R
+ → R indexed by algorithmic time t, and compute the

derivatives with respect to time of E and ε using the formula in (5.17)

⎧
⎪⎨
⎪⎩

∂E
∂ t

=
∫

Rγ
f ′(ε) ∂ε∂ t

dx+
∫
γ〈 f (ε)n, ∂γ∂ t

〉ds

∂ε
∂ t

=
∫
γ〈kγn, ∂γ∂ t

〉ds

(5.99)

Note that the region integral in ∂ε
∂ t

is null because the integrand in ε is independent

of the curve and, therefore, of time. Embedding the second equation in (5.99) into

the first leads to

∂E

∂ t
=
∫

Rγ

f ′(ε)
∫

γ
〈kγn,

∂γ

∂ t
〉dsdx+

∫

γ
〈 f (ε)n,

∂γ

∂ t
〉ds

=
∫

Rγ

∫

γ
〈 f ′(ε)kγn,

∂γ

∂ t
〉dsdx+

∫

γ
〈 f (ε)n,

∂γ

∂ t
〉ds

=
∫

γ
〈
(

f (ε)+
∫

Rγ

f ′(ε)kγdx

)
n,

∂γ

∂ t
〉ds. (5.100)

Therefore, the curve evolution equation which decreases E most rapidly is

∂γ

∂ t
= −
(

f (ε)+
∫

Rγ

f ′(ε)kγdx

)
n (5.101)

To apply this to the second term on the right hand side of (5.96), we take f = − log

and (5.98) with

ky(x) = K(I(x)− I(y)) (5.102)

This gives, after some manipulations, the equation minimizing
(
−∫R1

logεR1
dx
)

∂γ

∂ t
=

(
logA(R1)+ logP(I|R1)+

1

A(R1)

∫

R1

kγ

P(I|R1)
dx

)
n (5.103)

The curve evolution equation minimizing the first term in (5.96) can be obtained

by the following descent equation and the derivative of the region area in (5.35):
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∂γ

∂ t
= −∂A(R1) logA(R1)

∂γ
= − logA(R1)

∂A(R1)

∂γ
−A(R1)

∂ logA(R1)

∂γ

= −(1+ logA(R1))
∂A(R1)

∂γ
= −(1+ logA(R1))n (5.104)

Finally, using (5.103) and (5.104) gives the curve evolution equation minimizing the

first region term in functional (5.95). The equation minimizing the second region

integral has a similar form up to the sign. This finally gives the curve evolution

equation to minimize functional (5.95)

∂γ

∂ t
= VMIn (5.105)

with VMI given by

VMI =

(
log

P(I|R1)

P(I|R2)
+

1

A(R1)

∫

R1

kγ

P(I|R1)
dx− 1

A(R2)

∫

R2

kγ

P(I|R2)
dx

)
(5.106)

and ky is given by (5.102).

5.3.2 Statistical interpretation

The first term in VMI performs a hypothesis test using an image likelihood ratio which

alters the region membership of each point on the active curve so as to increase

the homogeneity of each region according to the distribution of the image within

the region. It has a form similar to the image velocity in (5.9) we obtained earlier

by maximizing the image likelihood when the region models are assumed fixed.

Here, however, the region models are variables corresponding to the kernel density

estimates of the distributions of the image within the regions inside and outside the

active curve, which gives rise to the second and third terms in VMI . These additional

terms come from the dependence of the region models on the curve. Their role is to

refine and reinforce the effect of the image likelihood ratio which, alone, does not

account for the actual variations of the region models induced by curve evolution.

5.3.3 Algorithm summary

The algorithm can be summarized as a two-step iteration until convergence:

1. Initialize the level set function φ
2. Iterate until convergence

a) Compute the kernel density estimates of the image within the regions ac-

cording to (5.92) as well as the region areas and integrals in the second and

third terms in VMI ; the regions are recovered from φ according to (5.6)

b) Update φ according to (5.4) with V given by VMI in (5.76)
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5.4 Segmentation by maximizing the discrepancy between the

regions image distributions

In this section, we study segmentation by maximizing the discrepancy (minimizing

the similarity) between the distributions of the image in the regions inside and outside

the curve. The data term measures, via the Bhattacharyya coefficient, the amount of

overlap between the distributions of the image within the region the curve encloses

and the region outside [41]:

B(P(.|R1)‖P(.|R2)) (5.107)

where distributions P(.|R) are given by the following kernel density estimates [40]:

∀z ∈ Z P(z|R) =

∫
R K(z− I)dx

A(R)
, R = {R1,R2} (5.108)

Z is the set of values of the image, K the Dirac function or the Gaussian kernel

given by (5.94), and B(p‖q) the Bhattacharyya coefficient measuring the amount of

overlap between two distributions p and q:

B(p‖q) = ∑
z∈Z

√
p(z)q(z) (5.109)

Note that the values of B are in [0,1], where 0 indicates that there is no overlap, and

1 a perfect match. The Bhattacharyya coefficient is an affinity measure. As such, its

minimization yields a segmentation into two regions of minimal information simi-

larity.

The functional derivative of B(P(.|R1)‖P(.|R2)) with respect to γ can be written

as follows

∂B(P(.|R1)‖P(.|R2))

∂γ
=

1

2
∑

z∈Z

√
P(z|R2)

P(z|R1)

∂P(z|R1)

∂γ

+
1

2
∑

z∈Z

√
P(z|R1)

P(z|R2)

∂P(z|R2)

∂γ
(5.110)

The integrands in the region integrals in P(.|R1) (Equation 5.108), namely the region

area and the integral of K(z− I) over R1, are independent of the curve. Consequently,

applying the basic formula in (5.8) to these integrals gives

∂P(z|R1)

∂γ
=

A(R1)
∂
∫

R1
K(z−I)dx

∂γ − ∫R1
K(z− I)dx

∂A(R1)
∂γ

A(R1)2

=
1

A(R1)
(K(z− I)−P(z|R1))n (5.111)

Similarly,
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∂P(z|R2)

∂γ
= − 1

A(R2)
(K(z− I)−P(z|R2))n (5.112)

Embedding (5.111) and (5.112) into (5.110), and after some algebraic manipula-

tions, we obtain the curve evolution equation to minimize the overlap between the

distributions of the image within the segmentation regions:

∂γ

∂ t
= −∂B(P(.|R1)‖P(.|R2))

∂γ
= V B

Discrepancyn (5.113)

with V B
Discrepancy given by

V B
Discrepancy =

B(P(.|R1)‖P(.|R2))

2

(
1

A(R1)
− 1

A(R2)

)

+ ∑
z∈Z

K(z− I)

2

(
1

A(R2)

√
P(z|R1)

P(z|R2)
− 1

A(R1)

√
P(z|R2)

P(z|R1)

)

(5.114)

5.4.1 Statistical interpretation

VDiscrepancy contains two terms; the first is independent of the spatial coordinates

and vanishes with the Bhattacharyya coefficient, i.e., at maximal discrepancy. The

second is spatial coordinate dependent and amounts to an image likelihood ratio

test which alters the region membership of the points on the active curve so as to

increase the homogeneity of each region according to its current image distribution.

For a clear interpretation of the second term, assume that K is the Dirac function.

The coordinate-dependent velocity at a point p on the curve is

1

2

(
1

A(R2)

√
P(I(p)|R1)

P(I(p)|R2)
− 1

A(R1)

√
P(I(p)|R2)

P(I(p)|R1)

)
n (5.115)

The speed is positive when P(I(p)|R1) > P(I(p)|R2). Therefore, the curve expands

to take p within R1; this amounts to a likelihood ratio test which rejects the hypothe-

sis that p belongs to R2. Otherwise, a negative speed shrinks the curve, causing p to

be in R2.

5.4.2 The kernel width

Kernel width selection for density estimation has been intensively studied in statistics

[42, 43], and there are several ways of computing the optimal value of parameter

σ which occurs as a constant in (5.94) and, therefore, in (5.108). Generally, the

optimal kernel width minimizes a given error between the original density and its

estimate, and depends on the size and statistics of the data [42]. It can be computed
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accurately via iterative procedures in [42]. However, embedding such procedures into

the segmentation process results a heavy computation load. An easier, more efficient

alternative is to consider the following approximation of the optimal kernel width for

region R [41, 43]:

h = A(R)−
1
5 σ̂R (5.116)

where σ̂R is the sample standard deviation of the data within region R.

5.4.3 Algorithm summary

The algorithm can be summarized as a two-step iteration until convergence

1. Initialize the level set function φ
2. Iterate until convergence

a) Compute the kernel density estimates of the image within the regions ac-

cording to (5.108) as well as the region areas; the regions are recovered

from φ according to (5.6)

b) Update φ according to evolution equation (5.4) with V given by VDiscrepancy

in (5.114).

5.4.4 Example

The example of Figure 5.6 depicts the two-region segmentation of a real zebra image

by the maximization via the Bhattacharyya coefficient of the discrepancy between

the image distributions within the two regions. The initial curve is shown in Figure

5.6 (a), two intermediate steps in (b) and (c), and the final curve in (d).

5.5 Image segmentation using a region reference distribution

In this section, we study segmentation using a reference distribution of the image in

a region of interest [13, 44, 45]. The problem consists of finding a region within the

image domain, so that the distribution of the image within the region most closely

matches a model distribution learned a priori. Image segmentation using a reference

distribution of the image in a region of interest serves various computer vision tasks

such as tracking a moving object in an image sequence, co-segmentation, a process

which consists of finding a common region in image pairs, and content-based image

retrieval [46]. The model distribution can be learned a priori from a pre-segmented

training image, for instance an initial frame in an image sequence, or from an image

having similar contents as the image of interest. It can also be learned interactively

from user-specified regions in the image of interest.

In the following, we will examine two criteria for matching the image distribution

within the region the active curve encloses, R1, and the model distribution M. One
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(a) (b)

(c) (d)

Fig. 5.6. Two-region segmentation of a real zebra image by the maximization via the Bhat-

tacharyya coefficient of the discrepancy between the image distributions: (a) initial curve; (b)

and (c) intermediate steps; (d) final curve.

criterion is based on the Bhattacharyya coefficient and the other on the Kullback-

Leibler divergence [44]. Since the Bhattacharyya coefficient is an affinity measure,

we shall seek its maximum rather than minimum. With the Bhattacharyya coefficient,

we maximize

B(P(.|R1)‖M) (5.117)

where P(z|R1) is the kernel density estimate in (5.108). The functional derivative of

the data term in (5.117) with respect to γ can be written as follows

∂B(P(.|R1)‖M)

∂γ
=

1

2
∑

z∈Z

√
M(z)

P(z|R1)

∂P(z|R1)

∂γ
(5.118)

Combining this equation and the derivative of the region distribution in (5.111) gives

the ascent curve evolution equation to maximize (5.117)

∂γ

∂ t
=

∂B(P(.|R1)‖M)

∂γ
= V B

Matchingn (5.119)

with V B
Matching given by
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V B
Matching =

1

2A(R1)

(

∑
z∈Z

K(z− I)

√
M(z)

P(z|R1)
−B(P(.|R1)‖M)

)
(5.120)

Another way is to minimize the Kullback-Leibler divergence between model M

an the distribution of the image within R1:

K (P(.|R1)‖M) = ∑
z∈Z

M(z) log
M(z)

P(z|R1)
(5.121)

The Kullback-Leibler divergence measures the discrepancy between two distribu-

tions. As such, its minimization yields a region whose image distribution most

closely matches M. The functional derivative of the data term in (5.121) with re-

spect to γ is

∂K (P(.|R1)‖M)

∂γ
= − ∑

z∈Z

M(z)

P(z|R1)

∂P(z|R1)

∂γ
(5.122)

Combining this equation and the derivative of the region distribution in (5.111) leads

to the following descent curve evolution equation to minimize (5.121):

∂γ

∂ t
= −∂K (P(.|R1)‖M)

∂γ
= V K

Matchingn (5.123)

with V K
Matching given by

V K
Matching =

1

A(R1)

(

∑
z∈Z

K(z− I)
M(z)

P(z|R1)
−1

)
(5.124)

5.5.1 Statistical interpretation

For a clear interpretation of the Kullback-Leibler divergence velocity, let K be the

Dirac function. The velocity at a point p on the curve is

1

A(R1)

(
M(I(p))

P(I(p)|R1)
−1

)
n (5.125)

It is clear that this velocity amounts to a hypothesis test by an image likelihood ratio.

The test evaluates the hypothesis that the image at point p is drawn from model

M against the hypothesis that it is instead drawn from the image distribution in the

interior of the curve. If the image distribution in the interior of the curve at I(p) is

lower than for model M, the likelihood ratio
M(I(p))

P(I(p)|R1) is greater than 1 and causes the

curve to expand to include p in R1. This make sense because it results in increasing

the image distribution within the curve at value I(p), which means a better match

with the model at that value.

When K is the Dirac function, the velocity at a point p on the curve using the

Bhattacharyya coefficient is
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1

2A(R1)

(√
M(I(p))

P(I(p)|R1)
−B(P(.|R1)‖M)

)
n (5.126)

This velocity has a similar meaning as (5.125). The difference is that the likelihood

ratio is compared to a variable dependent on the current Bhattacharyya coefficient

rather than to 1. Notice that when P(.|R1) matches perfectly M, the likelihood ratio

and Bhattacharyya coefficient equal 1. This means that the velocities in (5.125) and

(5.126) become zero, which forces the curve to stop.

5.5.2 Summary of the algorithms

The algorithms can be summarized as follows:

1. Initialize the level set function φ
2. Iterate until convergence

a) Update the area of region R1,

b) Update the kernel density estimate of the image distribution in region R1

according to (5.108),

c) If the Bhattacharyya coefficient is used, update (5.117)

d) Update φ according to Equation (5.4) with V given by V K
Matching in (5.124)

for the Kullback–Leibler divergence, or V B
Matching in (5.120) for the Bhat-

tacharyya coefficient.

5.5.3 Example

Figure 5.7 illustrates the segmentation of a person against a background in a color

image, using a model learned from the same image and the Bhattacharyya coefficient.

The image used for segmentation was obtained from the original RGB representation

by

I = R+16G+256B (5.127)

The initial curve is shown in Figure 5.7 (a), an intermediate position in (b), and

the final in (c).

Figure 5.8 plots the evolution of the maximized affinity measure, the Bhat-

tacharyya coefficient in this example, as a function of the number of iterations. It

shows how the Bhattacharyya coefficient approaches 1 (the maximum value in this

example where the model has been learned from the image itself; in actual situations,

of course, the training and test images are distinct) during curve evolution.

5.6 Segmentation with an overlap prior

Methods using a data term which maximizes the discrepancy between the image dis-

tributions in the segmentation regions may perform poorly in situations, for instance,
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(a) (b) (c)

Fig. 5.7. Color image segmentation with a reference distribution: initial, intermediate, and

final curves are superimposed on the image in, respectively, (a), (b), and (c).
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Fig. 5.8. Color image segmentation using a reference distribution of the region of interest:

evolution of the Bhattacharyya coefficient as a function of the number of iterations.

where parts of the segmentation regions have the same image statistics, i.e., when

there is a significant overlap between the image distributions in the segmentation

regions. This occurs frequently in medical image segmentation. Figure 5.9 depicts

a typical instance, where parts of the desired regions in a cardiac image have ap-
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proximately the same image profile. This results in a significant overlap between the

distributions of these regions as depicted in Figure 5.9 (b). In this case, prior infor-

mation about such an overlap is useful to recover the desired segmentation. In the

following, we examine curve evolution minimization of a data term which measures

the conformity to a learned description of the overlap between the image distribu-

tions in the segmentation regions [47].

Again, let us assume that the target region to be delineated by the active curve is

characterized by a model M learned a priori from a segmented training image, for

instance an initial frame in an image sequence. Consider the following Bhattacharyya

measure of overlap between the distribution of the image outside the curve and the

model of the region inside:

O = B(M‖P(.|R2)) (5.128)

Further assume that a prior estimate µO of O is learned beforehand from a pre-

segmented training image. In order to incorporate information about the overlap be-

tween the image distributions in the segmentation regions, one can minimize the

following overlap prior which measures the conformity of O to the learned overlap

µO [47]:

|O −µO | (5.129)

where |.| denotes the absolute value. The functional derivative of this data term with

respect to γ can be written as follows:

∂ |O −µO |
∂γ

=
O −µO

|O −µO |
∂O

∂γ
(5.130)

The derivative of O with respect to γ can be written as follows:

∂O

∂γ
=

1

2
∑

z∈Z

√
M(z)

P(z|R2)

∂P(z|R2)

∂γ
(5.131)

Combining this equation and the derivative of the region distribution in (5.112), and

embedding the result in (5.130), we obtain the following descent curve evolution

equation minimizing (5.129):

∂γ

∂ t
= −∂O

∂γ
= VOverlapn (5.132)

with VOverlap given by

VOverlap =
O −µO

2A(R2)|O −µO |

(

∑
z∈Z

K(z− I)

√
M(z)

P(z|R2)
−O

)
(5.133)
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5.6.1 Statistical interpretation

For a clearer interpretation of the overlap prior velocity, assume that K is the Dirac

function. The velocity at a point p on the curve is

O −µO

2A(R2)|O −µO |

(√
M(I(p))

P(I(p)|R2)
−O

)
n (5.134)

This velocity is the product of two terms; one, which is coordinate dependent, can

be viewed as performing a pointwise hypothesis test by an image likelihood ratio;

the other is independent of the spatial coordinates and can be viewed as performing

a global overlap test. Notice that the hypothesis testing term has a form similar to the

velocity we examined earlier in (5.126). As such, its role is to increase or decrease

the similarity, i.e., the overlap between the image distribution outside the curve and

model M. To examine how the overlap test controls curve evolution, consider the

following two cases.

Case 1: The curve is initialized so as to define a positive overlap test, i.e.,

O > µO .

If the model at p is such that M(I(p)) > P(I(p)|R2)O2, the velocity (along the

outward normal) is positive, thereby excluding p from the region outside the curve.

Otherwise, the pixel is included. Therefore, the pointwise hypothesis test guides

curve evolution so as to decrease the overlap between the model and the distribu-

tion of the image outside the curve. This makes sense because the current overlap

is higher than its expected value. When the overlap reaches its expected value µO ,

overlap test term becomes zero, forcing the curve evolution to end.

Case 2: The curve is initialized so as to define a negative overlap test, i.e.,

O < µO .

In this case, the pointwise hypothesis test guides curve evolution so as to increase

the overlap between the model and the image distribution outside the curve. Similar

to case 1, the overlap test term ends curve evolution when the overlap reaches its

expected value.

In summary, the velocity obtained from the overlap prior can be viewed as a

pointwise hypothesis test controlled by a global overlap test as follows.

1. The overlap test ends hypothesis testing when the expected overlap mea-

sure µO is reached.

2. Given the initial overlap, the sign of the overlap test term defines the di-

rection of the hypothesis testing velocity, i.e., decides whether the hypothesis testing

term should increase or decrease the discrepancy between the model and the image

distribution outside the curve.

5.6.2 Example

The cardiac magnetic resonance (MR) image segmentation example in Figure 5.9

illustrates the use of an overlap prior. The purpose is to delineate the heart cavity in a

MR cardiac sequence given a user provided delineation in an initial frame. This task,
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of interest in automating the diagnosis of cardiovascular diseases [48], is difficult

because the intensity profiles of the cavity and the nearby background are similar.

Figure 5.9 depicts the expected (manually performed) delineation of the cavity by

the red curve in (a), a region in the nearby background enclosed within a blue curve

and intersecting the right ventricle in (a), and the significant overlap between the

image distributions in these two regions in (b). The ground truth cavity region cor-

responding to the manual delineation is shown in (c). We ran three experiments to

segment the image according to three different data terms, one containing an overlap

prior and the two others not. For the three terms, we used the same curve initializa-

tion and region models learned a priori from a previous frame. We considered (1)

segmentation with a reference distribution (SRD), i.e., the data term in (5.117) whose

optimization seeks a region consistent with a learned model; (2) segmentation with

a reference distribution and an overlap prior (SRDOP), i.e., the data term uses both

(5.117) and the overlap prior in (5.129); and (3) segmentation with a likelihood prior

(SLP), i.e., the data term is the logarithm of the image likelihood in (5.7) with the

region models fixed (learned a priori). Figure 5.9 (d) and (e) depict the regions ob-

tained with, respectively, SRD and SLP. With these methods, part of the background,

which has an intensity profile similar to the cavity, is included in the final region,

whereas adding an overlap prior, i.e., using SRDOP, biases the solution accurately

toward the cavity, giving the result in (f) which is very similar to the ground truth in

(c). The curve initialization, an intermediate step with SRDOP, and the final curve

with SRDOP are depicted, respectively, in (g), (h), and (i).

To illustrate quantitatively the effect of the overlap prior, Table 5.4 gives the fol-

lowing image statistics of the segmentations obtained with SRD, SLP, and SRDOP.

• Similarity at convergence: The Bhattacharyya measure of similarity between

the distribution of the image within the curve at convergence and the model.

• Overlap at convergence: the Bhattacharyya measure of overlap between the

regions inside and outside the curve at convergence.

For SRD and SRDOP, we obtained approximately the same similarity to the

model (refer to the first row of Table 5.4), although the corresponding regions are

different (refer to the second row in Figure 5.9). The measure of overlap obtained

with SRDOP is different from those obtained with SRD and SLP, and is approx-

imately equal to the learned prior (refer to the second row of Table 5.4). Conse-

quently, matching the distribution inside the curve to a model is not sufficient in such

situations where different regions in the image have similar distributions. The over-

lap prior allowed a correct segmentation. This typical example occurs frequently in

medical image segmentation, where parts of different regions have approximately

the same image profile. In such cases, SRD and SLP may not be able to recover

accurately the target segmentation and the overlap information can be useful.
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Method SRD SLP SRDOP

Similarity at convergence 0.98 0.95 0.98

Overlap at convergence 0.50 0.45 0.54

Table 5.4. Cardiac image segmentation example: image statistics corresponding to the seg-

mentations obtained with SRD, SLP, and SRDOP. The learned overlap measure is equal to

0.53.

0  40 80 120 160
0

0.01

0.015

0.025

0.035

0.045

Intensity

D
is

tr
ib

u
ti

o
n

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.9. A typical cardiac magnetic resonance image: (a) target delineation (manual) of the left

ventricle cavity (red curve); (b) overlap between the distributions of the cavity and the nearby

background (region inside the blue curve in (a)); (c) target region (the left ventricle cavity);

(d), (e), and (f) depict the regions obtained with, respectively, SRD, SLP, and SRDOP; (g),

(h), and (i) depict the initial curve, an intermediate step, and the final curve with SRDOP. For

the three energies, we used the same initialization in (g) and the same learning frame.
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6

REGION MERGING PRIORS

6.1 Introduction

Although the actual number of segmentation regions is not known in several applica-

tions, current active curve methods assume that it is given beforehand. In the methods

we examined so far, the number of regions occurs as a constant in the objective func-

tional and its optimization. How to allow it to vary is an important question which

has been generally avoided. A few studies have considered determining the number

of regions automatically, either during curve evolution [1] or as a process external

to curve evolution optimization [2, 3, 4]. In these studies, a region merging prior is

added to the segmentation functional to alter the number of regions. Region merging

priors cause the objective functional to decrease when regions are merged. A maxi-

mum number of regions, which is available in most applications, is used as an initial

number of regions. Under the effect of a region merging prior, the effective number of

regions, equal to the maximum number of regions initially, decreases automatically

during the optimization of the objective functional to be, ideally, the desired number

of regions. In this chapter, we examine two region merging priors. One is related

to the regions logarithmic area and has an entropic interpretation [1]; the other is

proportional to the number of regions and has a minimum description length (MDL)

interpretation [2, 3, 4]. There are fundamental differences between the two priors.

The MDL prior is independent of the curves and, therefore, does not affect the curve

evolution equations. To alter the number of regions with the MDL prior, the studies

[2, 3] alternate local region-merging operations1 and curve evolution with a fixed

number of regions. In this case, the objective functional optimization consists of sev-

eral stages, each stage consisting of curve evolution optimization followed by local

region-merging operations. By contrast, the entropic region merging prior encour-

ages region merging to occur intrinsically with curve evolution. As a result, it allows

the number of regions to vary automatically during curve evolution, thereby optimiz-

ing the objective functional implicitly with respect to the number of regions. In this

1 Region merging techniques use the repeated application of a statistical test on neighboring

regions to decide whether to merge them [5, 6].

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5 6,

c© Springer-Verlag Berlin Heidelberg 2010
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case, a maximum (initial) number of regions is used as a constant in the definition of

the segmentation functional and the optimization consists of a single stage of curve

evolution during which the effective number of regions can decrease automatically.

We will study in detail an objective functional containing the entropic prior, a

data term which measures conformity of data within each region to a piecewise con-

stant model, and the length term for smooth region boundaries. An interpretation

of the curve evolution equations minimizing this functional will show the link be-

tween region merging and multiple curve evolution: the entropic prior can cause

some curves to vanish and others to expand, thereby effectively leading to region

merging by curve evolution, although not in the traditional sense of one-step merg-

ing of two regions. Instead, regions are merged progressively by curve evolution.

Variational region merging raises two important issues which we will discuss.

One issue concerns determining the coefficient of the region merging prior. In gen-

eral, this coefficient affects the number of regions produced at convergence and it

can be quite problematic to fix its value. For the entropic prior, we will be able to de-

termine good values of the coefficient via a statistical interpretation. The other issue

concerns the influence of the initial number of regions on the segmentation.

Let us first recall the main steps of active curve segmentation into a fixed number

of regions and give a simple example to illustrate the usefulness of a region merging

prior. To segment an image I : Ω ⊂ R
2 → R into N regions is to determine a parti-

tion P = {Ri}i∈[1,...,N] of the image domain so that the image is homogeneous with

respect to some prescribed characteristics in each region. Active curve segmentation

follows the minimization of a functional generally containing a data term, to measure

the conformity of the image data within each region to a given model, and a regular-

ization term for smooth region boundaries. Consider a partition P = {Ri}i∈[1,...,N] of

Ω defined by a family of simple closed plane curves {γi}i∈[1,...,N−1]. Using the piece-

wise constant image model and the boundary length regularization, the problem is to

find the set of curves which minimizes the following functional:

F ({γi}i∈[1,...,N−1]) =
N

∑
i=1

∫

Ri

(I −µRi
)2dx+λ

N−1

∑
i=1

∫

γi

ds (6.1)

where µRi
is the region Ri parameter and λ is a positive real constant. Optimiza-

tion of the functional with respect to the region parameters determines these as the

intensity mean values inside the regions:

µRi
=

∫
Ri

Idx
∫

Ri
dx

(6.2)

Optimization with respect to {γi}i∈[1,...,N−1] yields the curve evolution equations

(Chapter 4).

The simple example in Fig. 6.1 illustrates the usefulness of a region merging

prior. Consider an image composed of two disjoint regions R1 and R2 against a

background R3 = (R1 ∪R2)
c. Let the intensities in R1, R2, and R3 be constant and

equal, respectively, to µR1
, µR2

, and µR3
. In the special case where µR1

= µR2
, there

is no incentive in model (6.1) to merge R1 and R2 because
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3

∑
i=1

∫

Ri

(I −µRi
)2dx = 0, (6.3)

which corresponds to the minimum of the data term. More generally, one can show

that, for two non intersecting regions R1 and R2, we have [7]:

⎧
⎨
⎩

∫
R1

(I −µR1
)2dx+

∫
R2

(I −µR2
)2dx ≤ ∫R1∪R2

(I −µR1,R2
)2dx

λ (∂R1 +∂R2) = λ∂ (R1 ∪R2)
(6.4)

where µR1
, µR2

, and µR1,R2
are the mean of R1, R2, and R1∪R2, respectively. Mini-

mization of (6.1) would not favor merging R1 and R2, even when µR1
= µR2

. There-

fore, it may lead to an over-segmentation when N is larger than the actual num-

ber of regions. A region merging prior in (6.1) which can merge regions, as when

µR1
= µR2

, would be beneficial. In the following, we will examine two such terms.

R3 = (R1 ∪R2)
c

R1,µR1
R2,µR2

∂R2∂R1 Ω

Fig. 6.1. Minimization of functional (6.1) with N = 3 may lead to a segmentation into 3 regions

of an image containing 2 regions.

6.2 Definition of a region merging prior

A region merging prior PRM is a function from the set of partitions of Ω to R

which satisfies the following condition:

For each partition P = {Ri}i∈[1,...,N] of Ω , and for each subset J of [1, . . . ,N]:

PRM

(
{∪ j∈J R j,{Rk}k∈[1,...,N], k/∈J }

)
< PRM

(
{Ri}i∈[1,...,N]

)
(6.5)

This condition means that any region merging must decrease the prior term.
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6.3 A minimum description length prior

Several studies used a prior having a minimum description length (MDL) interpre-

tation to merge segmentation regions; this prior is expressed as a positive constant

multiplied by the number of regions [2, 3, 4]:

PMDL = νN (6.6)

It is independent of the curves and, as such, does not affect the curve evolution equa-

tions. To alter the number of regions, it requires an additional process external to

curve evolution optimization. For instance, the region competition algorithm alter-

nates local region merging operations and curve evolution with a fixed number of

regions [2, 3]. Recall that classical region merging rests on the repeated application

of local operations, such as search, and statistical testing, to decide whether to merge

neighboring regions [5, 6]. The process is computationally costly [2, 3] and the out-

come dependent upon

• initial conditions [3],

• ad hoc parameters [3, 5, 6], such as the scale of local operations and thresholds

and,

• the order of the local operations [3, 6].

An alternative process to avoid such problems would use a prior which allows

region merging to occur intrinsically during curve evolution [1]. In the following we

study such a prior.

6.4 An entropic region merging prior

Consider the following region merging prior related to the regions logarithmic area2:

PEntropy({Ri}i∈[1,...,N]) = −β
N

∑
i=1

A(Ri) logA(Ri), (6.7)

where A(Ri) is the area of region Ri,

A(Ri) =
∫

Ri

dx, (6.8)

and β is a positive real constant to weigh the relative contribution of the region

merging term in the segmentation functional. Prior (6.7) satisfies the region merging

condition (6.5). It suffices to verify this in the case of two non empty regions Ri and

R j. Merging the regions causes the following variation of PEntropy:

∆PEntropy = −β (A(Ri)+A(R j)) log(A(Ri)+A(R j))

+ βA(Ri) logA(Ri)+βA(R j) logA(R j) (6.9)

2 For A(Ri) = 0, we pose A(Ri) logA(Ri) = 0.
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Because ⎧
⎨
⎩

A(Ri) logA(Ri) < A(Ri) log(A(Ri)+A(R j))

A(R j) logA(R j) < A(R j) log(A(Ri)+A(R j)) ,
(6.10)

we have:

A(Ri) log(A(Ri))+A(R j) log(A(R j)) < (A(Ri)+A(R j)) log(A(Ri)+A(R j))
(6.11)

Therefore, merging Ri and R j decreases PEntropy.

6.4.1 Entropic interpretation

The prior (6.7) has an entropic interpretation if we define the probability of a region

Ri by

pi =
A(Ri)

A(Ω)
, (6.12)

where A(Ω) is the area of the image domain, then

−β
N

∑
i=1

A(Ri) logA(Ri) = −βA(Ω)
N

∑
i=1

A(Ri)

A(Ω)
log

A(Ri)

A(Ω)
−βA(Ω) logA(Ω)

= βA(Ω)H({Ri}i∈[1,...,N])−βA(Ω) logA(Ω) (6.13)

where

H({Ri}i∈[1,...,N]) = −
N

∑
i=1

pi log pi (6.14)

is the partition entropy. Note that −βA(Ω) logA(Ω) is a constant independent of the

partition which can be ignored.

6.4.2 Segmentation functional

We will study the effect of the entropic region merging prior in a functional which

also contains the piecewise constant model data term and the length regularization

term. Let N be the maximum number of regions, i.e., a number such that the actual

number of regions is inferior or equal to N. Such a number is generally available in

applications. Segmentation into a number of regions less or equal to N is:
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FRM ({γi}i∈[1,...,N−1]) =
N

∑
i=1

∫

Ri

(I −µRi
)2dx

︸ ︷︷ ︸
Data term

− β
N

∑
i=1

A(Ri) logA(Ri)

︸ ︷︷ ︸
Region merging prior

+ λ
N−1

∑
i=1

∫

γi

ds

︸ ︷︷ ︸
regularization

(6.15)

In the following, we will derive the curve evolution equations minimizing FRM , and

show how the effective number of active curves can decrease automatically during

curve evolution as a result of the entropic region merging prior.

6.4.3 Minimization equations

Minimization of FRM with respect to curves {γi}i∈[1,...,N−1] is carried out by em-

bedding these into a family of one-parameter curves γi(s, t) : [0,1]×R
+ → Ω and

solving the partial differential equations:

∂γi

∂ t
= −∂FRM

∂γi

, i = 1, . . . ,N −1 (6.16)

Multiregion segmentation uses several active curves. When the interior of each curve

defines a region, curve evolution equations can lead to overlapping regions. Chapter

4 reviewed several methods of defining regions from simple closed curves so as to

guarantee a partition [8, 9, 10, 11]. Here, we use the partition constrained minimiza-

tion scheme of [11, 12] which embeds a partition constraint directly in the level set

evolution equations: if a point leaves a region Ri, it goes to a single other region

R j without transiting through others. Starting from an arbitrary initial partition, this

constraint leads to a partition. At each iteration, the scheme involves two regions

for each pixel x, the region Rk which contains x currently, and a region R j, j �= k,

which corresponds to the largest decrease in the functional were x transferred to this

region. Recall that, for a level set implementation of curve evolution equations
∂γi

∂ t
,

i = 1, . . . ,N, each curve γi is represented implicitly by the zero level set of a function

φi : Ω ⊂ R
2 → R, with the region inside γi (Ri = Rγi

) corresponding to φi > 0. For a

functional F of the form:

F ({γi}i∈[1,...,N−1]) =
N

∑
i=1

∫

Ri

eidx+λ
N−1

∑
i=1

∫

γi

ds, (6.17)

where ei, i = 1, . . . ,N are scalar functions, the multiregion partition constrained level

set equations minimizing F are given by (Chapter 4):
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⎧
⎨
⎩

if k �= N, ∂φk

∂ t
= −(ek − e j +λκk)‖∇φk‖

if j �= N,
∂φ j

∂ t
= −(e j − ek +λκ j)‖∇φ j‖

(6.18)

where κi is the curvature of the zero level set of φi, k the index of the region contain-

ing x, and j given by:

j = arg min
{i∈[1,...,N], x �∈Ri}

ei(x) (6.19)

To use this result here, we rewrite the functional in Equation 6.15 as follows (we

replace A(Ri) logA(Ri) by
∫

Ri
logA(Ri)):

FRM ({γi}i∈[1,...,N−1]) =
N

∑
i=1

∫

Ri

(I −µRi
)2dx−β

N

∑
i=1

∫

Ri

logA(Ri)dx

+ λ
N−1

∑
i=1

∫

γi

ds

=
N

∑
i=1

∫

Ri

(
(I −µRi

)2 −β logA(Ri)
)

dx
︸ ︷︷ ︸

ei

+ λ
N−1

∑
i=1

∫

γi

ds (6.20)

Thus, applying (6.18) and (6.19) to ei = (I−µRi
)2 −β logA(Ri) yields the partition

constrained level set evolution equations minimizing FRM :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if k �= N, ∂φk

∂ t
= −{

(
I(x)−µRk

)2 −
(
I(x)−µR j

)2
︸ ︷︷ ︸

Region data competition

− β (logA(Rk)− logA(R j))︸ ︷︷ ︸
Region merging

+ λκk}‖∇φk‖

if j �= N,
∂φ j

∂ t
= −{

(
I(x)−µR j

)2 −
(
I(x)−µRk

)2

− β (logA(R j)− logA(Rk))

+ λκ j}‖∇φ j‖

(6.21)

where k is the index of the region containing x, and j is given by:

j = arg min
{i∈[1,...,N], x �∈Ri}

(I(x)−µi)
2 −β logA(Ri) (6.22)
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6.4.4 A region merging interpretation of the level set evolution equations

Examination of the level set evolution equations in (6.21) reveals how region merging

can occur intrinsically during curve evolution. When two disjoint regions Rk = Rγk

(the interior of γk) and R j = Rγ j
(the interior of γ j) have close intensities (Figure 6.2

a), the velocity resulting from the data term is weak:

(
I −µRk

)2 −
(
I −µR j

)2 ≈ 0 (6.23)

Omitting the curvature term, the evolution of curves γk and γ j is mainly due to the

region merging prior velocity. As φk increases and φ j decreases under the effect of

the term (logA(Rk)− logA(R j)), this velocity expands the region having the larger

area (Figure 6.2 b), and shrinks the other region until only one curve encloses both

regions and the other curve disappears (Figure 6.2 c).

Rk

γ j

γk

R j

γk

γ j

γk

Rk

R j = /0

(a) (b) (c)

Fig. 6.2. A region merging interpretation of the curve evolution equations. (a)-(b) the evolution

of the two homogeneous active regions under the effect of the entropic region merging prior

velocity: when A(Rk) > A(R j), Rk expands and R j shrinks; (c) (γk) encloses both regions

while γ j vanishes.

6.4.5 The weight of the entropic prior

On the one hand, the data term increases when regions are merged and, on the other

hand, the entropic region merging term, −∑N
i=1 A(Ri) logA(Ri), decreases when re-

gions are merged. The role of the weighting parameter β is to balance the contri-

bution of the region merging term against the other terms so as to yield, ideally,

the actual number of regions. The weighting parameter β can be interpreted as a

unit conversion factor between the data term unit and the region merging term unit.

Therefore, and considering the form of these terms, we can take, for A(Ω) > 1:3

3 Formally, we have: A(Ω) =
∫
Ω dx. In practice, A(Ω) is an integer corresponding to the

number of pixels in the image domain. Consequently, we ignore the cases A(Ω) = 0 and

A(Ω) = 1.
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β = α

∫
Ω (I −µ)2dx

A(Ω) logA(Ω)
(6.24)

where µ is the mean intensity over the whole image, A(Ω) is the image domain

area, and α is a constant without unit. Note that
∫
Ω (I−µ)2

A(Ω) logA(Ω) is independent of the

segmentation and is the ratio of the data term to the region merging term in the case

of a partition with a single region (corresponding to the whole image domain). Using

(6.24), the sum of the data term and the region merging prior is:

N

∑
i=1

∫

Ri

(I −µRi
)2dx−α

∑N
i=1 A(Ri) logA(Ri)

A(Ω) logA(Ω)︸ ︷︷ ︸
close to 1

∫

Ω
(I −µ)2dx (6.25)

Note that the denominator in (6.24) can be viewed as a normalization factor for the

prior, and the integral in the numerator as a normalization factor for the data term

because minimizing (6.25) is equivalent to minimizing:

∑N
i=1

∫
Ri

(I −µRi
)2dx

∫
Ω (I −µ)2dx︸ ︷︷ ︸

∈[0,1]

−α
∑N

i=1 A(Ri) logA(Ri)

A(Ω) logA(Ω)︸ ︷︷ ︸
∈[0,1]

(6.26)

Therefore, a value of α close to 1 would be reasonable. The following analysis and

experimentation show that this is the case. We will need the following inequalities

which hold for a partition P = {Ri}i∈[1,...,N] of Ω :

1− logN

logA(Ω)
≤ ∑N

i=1 A(Ri) logA(Ri)

A(Ω) logA(Ω)
≤ 1 ∀A(Ω) > 1 (6.27)

Proof: The right hand side inequality in (6.27),
∑N

i=1 A(Ri) logA(Ri)

A(Ω) logA(Ω) ≤ 1, is a straight-

forward application of condition (6.5). For the left hand inequality, we apply

log(z) ≤ z−1,∀z ∈ [0,+∞[

to 1
N pi

, where pi = A(Ri)
A(Ω) ,∀i ∈ [1, . . . ,N]:

log(
1

N pi

) ≤ 1

N pi

−1,∀i ∈ [1, . . . ,N] (6.28)

Multiplying both sides of (6.28) by pi gives:
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pi log(
1

N pi

) ≤ 1

N
− pi,∀i ∈ [1, . . . ,N] ⇒

N

∑
i=1

pi log(
1

N pi

) ≤ 1−
N

∑
i=1

pi

︸ ︷︷ ︸
0

⇒ −
N

∑
i=1

A(Ri)

A(Ω)
log

A(Ri)

A(Ω)
≤ log(N)

⇒ ∑N
i=1 A(Ri) logA(Ri)

A(Ω) logA(Ω)
≥ 1− logN

logA(Ω)
,

which completes the proof of (6.27).

In practice, N is generally much smaller than A(Ω) and
∑N

i=1 A(Ri) logA(Ri)

A(Ω) logA(Ω) is close

to 1. For example, for a maximum number of regions equal to 10 and a 256x256

image, we have approximately 0.8 ≤ ∑N
i=1 A(Ri) logA(Ri)

A(Ω) logA(Ω) ≤ 1. The small interval of

variation of the normalized prior in (6.27) suggests that α will vary in a small interval

centered close to 1. Note that with a value of α close to 1 in (6.25), the sum of the

data and the region merging terms will be close to the in-between cluster distance

according to a classical data clustering relation in statistical pattern recognition [7]:

N

∑
i=1

∫

Ri

(I −µRi
)2dx

︸ ︷︷ ︸
within−cluster distance

−
∫

Ω
(I −µ)2dx

︸ ︷︷ ︸
total distance

= −
N

∑
i=1

(µRi
−µ)2

︸ ︷︷ ︸
in−between cluster distance

(6.29)

It is also possible to learn an interval of values of coefficient λ applicable to

the images of a given class. For a set of training segmentation images, this is done

by determining the values of λ which produce the desired number of regions in a

relevant set of training images and segmentation examples.

6.5 Example

6.5.1 Segmentation with the entropic region merging prior

Figure 6.3 shows segmentations of a brain image for different initial (maximum)

number N of regions (from 3 to 6). The first row of Figure 6.3 depicts the curve

initializations corresponding to the different values of N. To illustrate the influence

of the entropic region merging prior, we show the results obtained with the entropic

region merging prior (α = 1) in the second and third rows, and the results obtained

without a region merging prior (α = 0) in the fourth and fifth rows. With the entropic

region merging prior, some curves vanish at convergence (second row), leading to the

same segmentation into 3 regions (third row) for N (the initial number of regions)

going from 3 to 6 (first row). Without the region merging prior, none of the curves

disappears and the functional minimization splits up the image into exactly N re-

gions, leading to four different segmentations (fifth row). Figure 6.4 contains a plot
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of the data term at convergence versus N, for α = 0 and α = 1 (without and with

the entropic region merging prior). For α = 0 (dashed curve), the minimized data

term decreases when N increases. The region merging prior, which increases with

N, balances the effect of the data term, leading approximately to the same value at

convergence for the different values of N (solid curve). This illustrates the robust-

ness of the entropic region merging with respect to the initial (maximum) number of

regions.

Table 6.1 shows the effect of the weight of the entropic region merging prior

(parameter α) on the number of segmentation regions at convergence, using 7 initial

regions (N = 7). It lists the number of regions obtained at convergence, and the inter-

val of α values leading to this number. All the values of α in the interval [0.58,2.29]
give the same segmentation into the desired number of regions, i.e., three regions.

This is consistent with the statistical interpretation we discussed in Section 6.4.5 of

the weight of the entropic region merging prior, and which prescribes a value of α
of about 1.

α 2.31 ≤ α ≤ 7.10 0.58 ≤ α ≤ 2.29 0.36 ≤ α ≤ 0.56

regions 2 3 4

Table 6.1. Brain image: effect of the weight of the entropic region merging prior (parameter

α) on the number of regions

6.5.2 Segmentation with the MDL region merging prior

By contrast to using the entropic region merging prior, segmentation with the MDL

prior is sensitive to the initial number of regions. It cannot lead to the same segmen-

tation of the brain image into three regions for the five different initializations (the

initial number of regions varies from 3 to 7). Table 6.2 lists, for each initialization,

the intervals of ν values necessary to obtain three regions at convergence with the

MDL prior. To end region merging with a 3-region initialization, i.e., to obtain seg-

mentation into 3 regions, the weight of the MDL prior ν should be in [0,1.55(106)].
However, all ν values in this interval do not allow region merging with the 6-, 5- and

4-region initializations (refer to Table 6.2), thereby resulting in four different seg-

mentations. With the entropic region merging prior, all α values in [0.58,2.29] give

the same segmentation into 3 regions (refer to table 6.1). Fig. 6.5 plots the number

of regions obtained at convergence versus the initial number of regions for both the

entropic and the MDL prior. This demonstrates that the entropic prior is less sensitive

than the MDL prior to variations of the initial number of regions.

6.5.3 Computation time

Table 6.3 gives the computation time on a 2 GHZ machine for the brain image seg-

mentation with different initializations, for the entropic and the MDL priors. The
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Fig. 6.3. Segmentation of a brain image. Row 1: different number of regions at the initial-

ization; row 2: final curves which remained at convergence with the entropic region merging

prior (α = 1); row 3: final segmentations with the entropic region merging prior (α = 1); row

4: final curves (N curves) without a region merging prior (α = 0); row 5: final segmentations

without a region merging prior (α = 0). The displayed results are obtained with λ = 2.
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Fig. 6.4. Effect of the entropic region merging prior: graph of the minimized data term versus

the initial (maximum) number of regions (N).

Initial number of regions 7 6 5 4 3

ν(10−16) [0.93,+∞[ [(1.87,+∞[ [2.73,+∞[ [(2.43,+∞[ [0,1.55[

Table 6.2. Brain image: effect of the weight of the MDL prior (parameter ν) on the number of

regions at convergence. 3-region initialization: ν values stopping the region merging. 4-region

to 7-region initializations: ν values allowing the region merging.
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Entropic prior: α=1

MDL prior: µ=1.5(10
6
)

Fig. 6.5. Robustness with respect to variation of the initial number of region: the number

of regions obtained at convergence versus the initial number of regions using the MDL and

entropic priors.
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initial number of regions varies from 3 to 7. Segmentation with the entropic prior

needs relatively less computation time, particularly when the initial number of re-

gions increases. This was predictable because segmentation follows one stage of

curve evolution whereas segmentation with the MDL prior alternates iteratively two

stages: curve evolution and local region-merging operations.

Initial number of regions 3 4 5 6 7

Entropic prior 0.22s 0.25s 0.3s 0.35s 0.4s

MDL prior 0.65s 0.78s 1.04s 1.41s 3.21s

Table 6.3. Computation time for the the brain image segmentation when the initial number of

regions varies from 3 to 7.



References 137

References

1. I. Ben Ayed and A. Mitiche, “A region merging prior for variational level set image seg-

mentation,” IEEE Transactions on Image Processing, vol. 17, no. 12, pp. 2301–2313,

2008.

2. S. Zhu and A. Yuille, “Region competition: Unifying snakes, region growing, and

bayes/mdl for multiband image segmentation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 118, no. 9, pp. 884–900, 1996.

3. T. Kadir and M. Brady, “Unsupervised non-parametric region segmentation using level

sets,” in International Conference on Computer Vision (ICCV), 2003, pp. 1267–1274.

4. T. Brox and J. Weickert, “Level set segmentation with multiple regions,” IEEE Transac-

tions on Image Processing, vol. 15, no. 10, pp. 3213–3218, 2006.

5. F. Nielsen and R. Nock, “On region merging: The statistical soundness of fast sorting,

with applications,” in International Conference on Computer Vision and Pattern Recog-

nition (CVPR), vol. 2, 2003, pp. 19–26.

6. R. Nock and F. Nielsen, “Statistical region merging,” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 26, no. 11, pp. 1452–1458, 2004.

7. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley, 2000.

8. L. Vese and T. Chan, “A multiphase level set framework for image segmentation using

the Mumford and Shah model,” International Journal of Computer Vision, vol. 50, no. 3,

pp. 271–293, 2002.

9. C. Vázquez, A. Mitiche, and I. Ben Ayed, “Image segmentation as regularized clustering:

A fully global curve evolution method,” in International Conference on Image Processing

(ICIP), 2004, pp. 3467–3470.

10. A. Mansouri, A. Mitiche, and C. Vázquez, “Multiregion competition: A level set exten-

sion of region competition to multiple region partioning,” Computer Vision and Image

Understanding, vol. 101, no. 3, pp. 137–150, 2006.

11. I. Ben Ayed and A. Mitiche, “A partition constrained minimization scheme for efficient

multiphase level set image segmentation,” in International Conference on Image Process-

ing (ICIP), 2006, pp. 1641–1644.

12. I. Ben Ayed, A. Mitiche, and Z. Belhadj, “Polarimetric image segmentation via maxi-

mum likelihood approximation and efficient multiphase level sets,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1493–1500, 2006.



7

MOTION BASED IMAGE SEGMENTATION

7.1 Introduction

In his book on human visual perception The perception of the visual world [1], 1950,

J. J. Gibson studied the flow of projected surfaces which he called optical flow. He

characterized optical flow by speed and direction at each point of the retinal image

domain. Nakayama and Loomis [2] referred to optical flow later as the instantaneous

velocity field over the image positional domain and provided an analytic working

definition of optical velocity, the instantaneous velocity vector. In this book, we will

retain the essence of Gibson’s and Nakayama’s definition and characterization which

view optical flow as the field of optical velocities over the image domain. Taking

image in its most common mathematical sense to mean the result of an application,

a projection on the retinal domain in this case, we will also refer to optical flow as

image motion or, when there is no ambiguity, simply motion as in the title of this

chapter.

Image motion occurs whenever there is a relative motion of the viewing system

and the viewed environmental surfaces. The processing of this ever-present motion

by the human visual system plays several functions which result in a rich, effortless

perceptual ability [2]. In machine vision, motion analysis has several essential roles

as well [3, 4]. The fundamental roles are (motion) detection, to separate the image

domain into two regions, one corresponding to the moving scene objects and the

other to the background; (motion) segmentation to partition the image domain into

regions of differing motion properties; three-dimensional interpretation to explain

the image in terms of the structure and the motion of the moving real objects in the

viewed environment; and tracking to locate and follow objects in their movement

throughout an image sequence.

In this chapter, we will be concerned with motion based image segmentation,

i.e., image domain partitioning using optical flow. Motion-based segmentation is of

broad interest in vision because it serves various useful applications such as video

coding [5], video indexing and retrieval [6, 7] video event understanding [4, 8, 9],

tracking [10, 11, 12, 13], and three-dimensional interpretation [3, 14, 15, 16].

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5 7,

c© Springer-Verlag Berlin Heidelberg 2010

A. Mitiche, I. Ben Ayed, Variational and Level Set Methods in Image Segmentation,
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Optical flow is not a sensed variable; it must be estimated. One can estimate

it, using a variational method [17], for instance, and then segment it, using, for in-

stance, the Chan-Vese level set method [18] described in a preceding chapter. The

issue, in this case, is to compute a boundary preserving estimate of optical flow via

proper regularization [17, 19]. The Appendix describes two prevalent image motion

estimation methods.

An advantageous alternative to this two-step processing is joint estimation and

segmentation because estimation and segmentation are in reciprocal dependence. We

will describe two such methods, both of which can be seen as applications to optical

flow of the Mumford-Shah image segmentation functional [20] which, we recall, is

E (g,K) =
∫

Ω
(g−g0)

2dx+ρ
∫

Ω\K
‖∇g‖2dx+λρl(K) (7.1)

We recall that E is the ‘energy’, or ‘merit’, of the partition determined by the

image approximation g with boundaries K, g0 is the sensed input image, ρ (scale)

and λ (weight) are positive real constants, and l is the length of K.

The transposition of (7.1) to optical flow will bring in a term of conformity of

image motion to data, namely, the image spatial and temporal variations; a term

to embed the desired properties of the flow, smoothness, for instance; and a term

related to the length of the flow boundaries to produce regular boundaries according

to a definition, albeit implicit, of a flow edge.

The two methods we are about to describe differ in their representation of the flow

boundaries. One [21] uses the discrete Leclerc minimum description length (MDL)

formulation [22]. It references the segmentation individual edge points and, as such,

can be viewed as an implicit edge detection method. The other is a level set method,

using closed curves to delineate (optical flow) segmentation regions, each described

by the parameters of a general linear model of motion [23].

Before detailing these methods, we review briefly others which addressed joint

optical flow estimation and segmentation via functional optimization [24, 25, 26, 27].

A set of label variables over the image domain describes the segmentation in [24].

The problem is cast in a Bayesian parametric motion estimation formulation which,

under assumptions, is transformed into an energy function containing the classic

quadratic terms of smoothness of flow and conformity of flow to data, in addition to

two other terms related to the segmentation, one referencing the flow and the other

the labels of the segmentation, both terms derived under a Markov/Gibbs field model.

Three parameters control the relative contribution of the four terms. Optimization is

carried out deterministically to ease the computational burden.

The objective functional in [27] contains five terms. Two terms are related to

parametric estimation of the flow field under an affine approximation model. One

is a measure of conformity of the flow to data and the other is a smoothness prior.

Both terms use a statistically robust function rather than the quadratic function as in

[28], and are given a semi-quadratic form via the introduction of two sets of auxiliary

variables over the image domain, one set for each term. The other terms are related to

the segmentation. One term is to favor low values along the segmentation boundaries

of the smoothness related auxiliary variable. Another term is to enforce conformity
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of the motion field to the parametric model within the segmentation regions. The

last term is a region prior proportional to the length of the segmentation boundaries.

The relative contribution of the five terms in the objective functional is set by four

parameters. Optimization is carried out hierarchically for computational efficiency.

Because segmentation boundaries are implicitly defined, an external process locates

them after completion of the optimization algorithm.

Joint optical flow estimation and segmentation of a piecewise constant motion

field is cast into an active curve evolution formulation in [25]. The objective func-

tional contains a data term according to a normalized version of the Horn-and-

Schunck equation and a regularization term related to the length of the segmenta-

tion boundaries. The Euler-Lagrange equations result in active curve evolution, im-

plemented via level sets. Joint parametric estimation and segmentation, extended to

space-time, was the focus of the study in [26], which represented each component

of motion by a linear combination of a set of parameters. However, the coefficients

of the combinations were not related to any specific model of motion which would

define them as functions of image coordinates. The affine model was given as an

example and the constant model was implemented.

Other studies have regarded segmentation and estimation of motion as separate

processes and do not, therefore, account for the mutual dependence of the two pro-

cesses [29, 30, 31, 32, 33, 34].

7.2 Piecewise constant MDL estimation and segmentation of

optical flow

Leclerc [22] introduced the minimum description length (MDL) formalism in image

segmentation. Let us recall briefly from Chapter 3 the main points of the formulation,

which can be regarded as a discrete implementation of the Mumford-Shah functional

[35]. The method minimizes a discrete objective functional which assigns to an im-

age partition the code length of its specification according to a predefined description.

The energy functional for the piecewise constant model (piecewise constant g) is:

E (g) = a∑
i∈D

(
gi −g0i

σ

)2

+
β

2
∑
i∈D

∑
j∈Ni

(1−δ (gi −g j)) (7.2)

where g0 and g are, respectively, the original discrete image and its segmented ap-

proximation; indices indicate position of evaluation; Ni is some fixed neighborhood

of i; and

δ (z) =

{
1 for z = 0

0 for z �= 0
(7.3)

Using entropy coding and under the assumption that g and g0 differ by white

Gaussian noise with variance σ2, the first term of the objective functional approxi-

mates the number of bits to code the difference between g and g0. The second term

approximates the number of bits to code the boundary elements of g and the image



142 7 MOTION BASED IMAGE SEGMENTATION

values in the corresponding piecewise constant partition. Under the piecewise con-

stant model, edges are points at the border between two regions of different image

value. A partition region can be as small as a single pixel or as large as the whole

image domain.

The energy functional (7.2) of Leclerc is not differentiable because of the pres-

ence of the δ function. To determine the necessary conditions of minimization by

differentiation, one substitutes a Gaussian kernel for this δ function and uses con-

tinuation indexed by the width of the kernel: Starting from an initial large value, the

width is gradually lowered and, at each step, a solution to the corresponding problem

is computed using as initial approximation the solution to the previous problem.

We will now transpose Leclerc’s formulation to joint estimation and segmenta-

tion of optical flow.

Digital images are noisy due to various distortions such as sensor noise, sam-

pling, and digitization. Assume that noise causes the Horn and Schunck gradient

equation (see Chapter 2) to be verified only up to a Gaussian white noise, i.e.,

Ixiui + Iyivi + Iti = µi (7.4)

where i is the index in the image positional array of the point of evaluation; Ix, Iy

and It are quantized approximations of the spatial and temporal derivatives of the

image sequence; u,v are the (quantized) coordinate functions of optical flow, and µ
is quantized white Gaussian noise.

Let conformity of a motion field to image data be described by the field likelihood

with respect to the image spatial and temporal derivatives, i.e., with respect to the

residuals {Ixiui + Iyivi + Iti}i∈D. Using entropy coding, the number of bits to code this

description of a motion field W over the image positional array D is approximated

by:

− log2 P({Ixiui + Iyivi + Iti}i∈D|{(ui,vi)}i∈D) = − log2∏
i∈D

P(µi = Ixiui + Iyivi + Iti)

= c+a∑
i∈D

(
Ixiui + Iyivi + Iti

σ

)2

(7.5)

where σ is the standard deviation of µi ∀i ∈ D; a and c are constants. Let {Rk} be a

partition of the image domain and let the motion field have a parametric form within

each region of this partition.

Then the motion field can be described by its boundaries {∂Rk} and its param-

eters {Θk}. In the discrete case, the number of bits to code this description can be

approximated by

b

2
∑
k

l(γk)+∑
k

θk (7.6)

where γk is a discrete approximation of ∂Rk, l(γk) is its length measured by the

number of pixels it threads through; b is the average number of bits to code the
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direction of a line segment between two adjacent points of γk, and θk is the number

of bits to code the set of parameters Θk and the coordinates of a starting point on γk.

The division of b by 2 is due to the fact that each boundary segment appears twice

in the summation. For a piecewise constant parametric model of image motion, we

have

∑
k

l(γk) = ∑
i∈D

∑
j∈Ni

(1−δ (ui −u j)δ (vi − v j)) (7.7)

where Ni is the set of the 4-neighbors of i, and δ is defined in (7.3). If the number

of bits to code the region parameters is the same for all regions, i.e., θk = θ ∀k, the

second sum in (7.6) can be approximated by

∑
k

θk ≈ rθ (7.8)

where r is the average number of regions determined by the total number of boundary

pixels divided by the average number of pixels per boundary. Consequently, the total

number of bits bit to describe a piecewise constant motion field over a partition of

the image positional array can be approximated by

c+a∑
i∈D

(
Ixiui + Iyivi + Iti

σ

)2

+
β

2
∑
i∈D

∑
j∈Ni

(1−δ (ui −u j)δ (vi − v j)) (7.9)

with β = b+θ/d, where d is the average number of pixels per boundary. In practice,

β is approximately equal to 2; its exact value is not essential.

The minimum description length estimate of optical flow is the motion field W̃

over D which corresponds to a minimum in the total bit cost of description:

W̃ = arg min
W=(u,v)

{
a∑

i∈D

(
Ixiui + Iyivi + Iti

σ

)2

+
β

2
∑
i∈D

∑
j∈Ni

(1−δ (ui −u j)δ (vi − v j))

}

(7.10)

7.2.1 Numerical implementation

As in the original Leclerc formulation for intensity images, the objective function

(7.10) is not differentiable because of the presence of the delta function. Of course, a

stochastic method such as simulated annealing can carry out its minimization. How-

ever, such methods are notoriously demanding computationally, even when the pro-

cedure parameter updating is properly scheduled. As with the Leclerc original for-

mulation, an advantageous alternative is to embed the minimization (7.10) in a family

of minimizations indexed by the parameter of a differentiable approximation of the

δ function, and use continuation [22, 36].

We will base continuation on the following substitution:
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δ (ui −u j)δ (vi − v j) ← ei j(W,s) = e

−(ui−u j)
2−(vi−v j)

2

(sσ)2 (7.11)

Without loss of generality, we used sσ in (7.11) rather that just s in order to sim-

plify subsequent expressions. However, the parameter of continuation is s. Following

the substitution, the objective functional to minimize becomes:

E (W,s) = a∑
i∈D

(
Ixiui + Iyivi + Iti

σ

)2

+
β

2
∑
i∈D

∑
j∈Ni

(1− ei j(W,s)) (7.12)

Continuation solves problem (7.10) as follows: Let s1,s2, ... be a decreasing se-

quence of s values which tends to zero. We solve the following sequence of problems:

Minimize E (W,sl) (7.13)

For each value sl of s, the necessary conditions for a minimum of E result in two

equations for each pixel i ∈ D:

I2
xiui + IxiIyivi + IxiIti +βl ∑

j∈Ni

(ui −u j)ei j(W,sl) = 0

IxiIyiui + I2
yivi + IyiIti +βl ∑

j∈Ni

(vi − v j)ei j(W,sl) = 0 (7.14)

where βl = β log2/s2
l . This results in a large scale sparse system of equations,

most of which are linear. This instructs us to use the following Jacobi-type iterative

scheme:

uk+1
i =

−Ixi
It i − Ixi

Iyi
vk

i +βl ∑ j∈Ni
ek

i j(W,sl)u
k
j

I2
xi

+βl ∑ j∈Ni
ek

i j(W,sl)

vk+1
i =

−Iyi
Iti − Ixi

Iyi
uk

i +βl ∑ j∈Ni
ek

i j(W,sl)v
k
j

I2
yi

+βl ∑ j∈Ni
ek

i j(W,sl)
(7.15)

Iterations (7.15) are Jacobi-like because we apply, at each iteration, a Jacobi up-

date to a linear system of equations obtained by evaluating the exponential term using

the values of motion of the preceding iteration.

The solution of each problem in (7.13) is the initial approximation for the next.

As s tends to zero, we tend to the original problem (7.10) because ei j(W,s) ap-

proaches δ . For s tending to infinity, the second term in (7.12) tends to zero. This

instructs us to set the first problem with s1 large and use as initial approximation the

motion field W⊥ composed of the normal component of image motion determined

by the Horn and Schunck optical flow constraint equation (see Chapter 2). The itera-

tions terminate with sl small. In the experiments we conducted, about 100 iterations

of continuation and 5 of (7.15) sufficed.
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7.2.2 Example

The scheme is illustrated with the Marbled blocks synthetic test sequence (KOGS/

IAKS laboratory database, University of Karlsruhe, Germany). There are three tex-

tured blocks in the image. The leftmost block is not moving, the other two are. The

viewing system is not moving so that the moving blocks background is static. The

rightmost block moves to the left, slightly away from the viewing system; the small-

est block moves slightly to the left and forward in depth. The images are noised;

they are also characterized by very weak texture variation across the top edges of

the blocks. The variation of depth, and of the image motion thereof, is strong at the

blocks boundaries not in contact with the floor. The scene and the actual motion field

are shown in Fig. 7.1 a, and the MDL motion estimate in Fig. 7.1 b. The MDL es-

timation/segmentation depicted in Fig. 7.1b does not include the delineation of the

segmentation regions because the MDL representation uses only an implicit defi-

nition of motion edges. According to this representation, there is an edge between

any two pixels of different image motion; in practice, this corresponds to a severely

over-segmented image. The average motion norm error (over the whole image) is

0.13 pixel and the average direction error (on the two moving blocks) is 4.7◦. The

standard deviation for the norm is 0.2, which is similar to those of the Horn and

Shunck [28] and of the Deriche, Kornprobst, and Aubert [19] methods. The standard

deviations for the direction of 5.8 (small block) and 3.5 (large block) are also similar

to those of the methods [19, 28].

7.3 Joint segmentation and linear parametric estimation of

optical flow

The purpose of using a parametric model of motion is to partition the image into re-

gions of differing model parameters. Therefore, befitting models can not only achieve

a good segmentation but will also describe the motion field economically and accu-

rately.

Several studies have used parametric models for motion estimation and segmen-

tation [24, 26, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40] and, in general, the investiga-

tions were limited to the constant and affine models. Ideally, the model should only

account for the actual motion variations, modulo sensing noise and approximate dig-

ital representations. When segmentation is the main purpose, rather than accurate

estimation, the constant and affine models are sufficiently descriptive to segment a

variety of motion fields, such as those generated by familiar man-made rigid objects.

A model which describes finer grades of motion than are present in the underlying

true motion field would likely lead to a sketchy segmentation because it can account

for complex motion variations within a region. On the other hand, a model too sim-

ple to represent the actual variations would likely lead to a fragmented segmentation

because the model would apply in regions of smaller extent, rather than larger.

In general, accurate segmentation requires more complex models when the vari-

ations of motion are complex within or in between the segmentation regions. More
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(a)

(b)

Fig. 7.1. (a) Ground truth image motion superimposed on the first of the two Marbled block

images used in the experiment; (b) the MDL motion estimate.

complex models are also needed when the accuracy of the estimated motion is impor-

tant, e.g., for 3D interpretation [3]. Non parametric variational motion methods such

as [41, 42], which use a Mumford-Shah type functional [20], can yield very good,

boundary preserving estimates of motion but do not address explicit segmentation.

The goal in this section is to formulate joint image motion estimation and seg-

mentation as a variational problem using a general linear model of motion and active

curve evolution. The objective functional of such a formulation expands each of the

two component functions of motion in a linear space of functions V = span{θi}M
i=1,

and represents image partitions via the interior of regular simple closed plane curves.

The functional we investigate has three integral terms. One term, the data term, mea-
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sures the conformity in each segmentation region of the motion coordinate functions

representation in V to the image spatiotemporal first order variations. This is ex-

pressed, as usual, via the the optical flow constraint of Horn and Schunck.

Another term biases the segmentation toward a partition with smooth boundaries,

as is common in image segmentation. The third term biases the solution toward a

partition with high motion contrast at the region boundaries. This last term is not

essential but brings in additional information; it does not reference motion explic-

itly; instead, it uses a characterization of motion boundaries in terms of the image

spatiotemporal variations.

The general linear parametric model used here affords a wide choice of models,

such as affine, polynomial, exponential polynomial, sines/cosine, among a variety

of others. The Euler-Lagrange equations lead to an algorithm which reduces to iter-

ations of curve evolution, via level sets, and least squares estimation of the motion

parameters within each segmentation region. Therefore, the representation generality

does not overly increase the algorithmic complexity. The dependence of the param-

eters on the segmentation does not give extra terms in the curve evolution equations

[43]. Therefore, it is not necessary to assume that these parameters are independent

of the segmentation [26, 34, 40]. Also, it is not necessary to determine the param-

eters before segmentation [32, 33], or invoke a greedy algorithm in lieu of gradient

descent [44] to optimize the objective functional.

7.3.1 Formulation

For greater clarity, we will treat the case of a segmentation into two regions and then

generalize to the segmentation into a fixed but arbitrary number of regions.

Let γ : s ∈ [0,1] → Ω ⊂ R
2 be a closed simple plane curve. Let R1 = Rγ be the

region interior to γ , and R2 = Rc
γ its complement (the region exterior to γ).

Let Wi(x) = (ui(x),vi(x))T , i = 1,2, designate the image motion at x ∈ Ri. The

component functions of image motion in each of the two regions Ri, i = 1,2, are

taken to be functions in V = span{θ j}M
j=1:

Wi(x) = αT
i θ(x), i = 1,2, (7.16)

where

θ =
(
θ1 θ2 · · · θM

)T
, (7.17)

and α i, i = 1,2, are M×2 matrices of parameters:

α i =

(
αi11 αi21 · · · αiM1

αi12 αi22 · · · αiM2

)T

(7.18)

Coefficient αi jl corresponds to function θ j for the horizontal (l = 1) or vertical

(l = 2) coordinate functions of motion Wi in Ri, i = 1,2.

This representation affords a wide variety of models which generalize the cur-

rently prevalent constant and affine models [45]. For example, a polynomial function
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space of dimension one, which has six basis functions, describes affine motion, and

a polynomial function space of dimension two, with has twelve basis functions, de-

scribes general quadratic motion. Here following are two useful general models [23].

Polynomial basis: The polynomial space representation contains the constant,

affine, and quadratic motion models as instances. The basis function of a polynomial

space of degree P is described by

θ j(x) = xk−lyl , (7.19)

where x,y are the coordinates of x, j ∈ [0,(P+1)(P+2)/2], and

k =

⌊√
8 j +1−1

2

⌋

l = j− k(k +1)

2
(7.20)

The degree of the affine model is P = 1 and there are 3 basis functions:

θ0(x) = 1

θ1(x) = x

θ2(x) = y (7.21)

With digital images, x and y are discrete and x ∈ [0,W −1], y ∈ [0,H −1], where W

and H are, respectively, the width and height of the image in pixels.

DCT basis: The discrete cosine transform (DCT) basis, of degree P, specified

over an image positional array, is defined by:

θ j(x) = ρ1ρ2 cos

(
π(2x+1)q

2W

)
cos

(
π(2y+1)p

2H

)
, j ∈ [0,P2 −1] (7.22)

where

p = ⌊ j/P⌋
q = j− pP

ρ1 =

{ 1√
P

p = 0√
2
P

p ∈ [1,P−1]

ρ2 =

{ 1√
P

q = 0√
2
P

q ∈ [1,P−1]
(7.23)
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This variational formulation minimizes an objective functional which is the sum

of three integral terms:

E = Ed +λEs + εEb (7.24)

where Ed , Es, and Eb, described in detail subsequently, are, respectively, the terms of

image motion conformity to the image spatio-temporal data, smoothness of the mo-

tion segmentation boundaries, and motion contrast at region boundaries. The positive

constants λ and ε weigh the contribution of each of the three terms.

The data term: As with the previous MDL formulation, and practically all the

variational statements of image motion segmentation, the integrand in each region

data term is the squared total time derivative of the image sequence function, i.e., the

squared left-hand side of the Horn and Schunck optical flow constraint, or gradient

equation [28]:

Ed =
1

2

2

∑
i=1

∫

Ri

(〈∇I,Wi〉+ It)
2

dx (7.25)

Substitution of the optical flow component functions parametric expression (7.16)

in (7.25) gives the data term, which is a function of active curve γ:

Ed =
1

2

2

∑
i=1

∫

Ri

(
〈∇I,αT

i θ〉+ It
)2

dx (7.26)

Because the regions Ri, i = 1,2, are defined by γ , the motion coordinate parameters

in (7.26) are functions of γ .

A few studies have investigated data terms which use functions of image motion

other than the Horn and Shunck. However, these were similar, or they used optical

flow computed by an outside process using the Horn and Schunck constraint. For

instance, the data term of [26] uses the angle between the spatio-temporal gradient

and the motion vector to separate motions according to direction, rather than speed

and direction. As such, it is related to the Horn and Shunck data term. The study in

[34] uses the norm of the difference between the least squares solution of the optical

flow gradient equation in the two regions of a two-region segmentation formulation

[46].

The boundary smoothness regularization term: The common segmentation

boundary length term is used to provide smooth region contours and avoid partitions

fragmented into small components:

Es =
1

2

∫

γ
ds (7.27)

The parametric representation will provide a motion field smooth everywhere

except at motion boundaries. Therefore, a regularization term with respect to motion

is not necessary.
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The motion boundary contrast term: This term is not essential in the sense

that the problem would remain well posed if it were omitted. However, it brings in

additional information because it uses a characterization of motion boundaries in

terms of image measurements to further constrain the solution. It has the form, for

either region Ri:

Eb = −1

2

∫

γ
gds (7.28)

where function g is derived as follows [13]. Assuming that the motion field is smooth

everywhere ( i.e., ∇ui ≈ 0 and ∇vi ≈ 0) except at motion boundaries, differentiation

with respect to the image spatial coordinates of the Horn and Schunck optical flow

constraint

〈∇I,Wi〉+ It = 0 (7.29)

gives

∇(〈∇I,Wi〉+ It) = HWi +∇(It) (7.30)

≈ 0 (7.31)

where H is the Hessian matrix of the image function I, i.e., the matrix of second

order derivatives of I (we assume that I is twice continuously differentiable within

regions)

H =

(
∂ 2I
∂x2

∂ 2I
∂x∂y

∂ 2I
∂y∂x

∂ 2I
∂y2

)
(7.32)

Then, combining (7.30) with (7.29), gives the following motion boundary char-

acterization function:

g = |det(H)It −〈∇I,(H∗∇It)〉| (7.33)

where | · | denotes the absolute value and det the determinant; H∗ is the transpose of

the matrix of cofactors of H. It has the property

H∗H = det(H)I, (7.34)

where I is the identity matrix. Function g is an indicator of motion boundaries be-

cause it takes small values inside motion regions, where motion is smooth, and incon-

sistent, generally large values at motion boundaries where the optical flow constraint

equation is theoretically not valid.

Using (7.26), (7.27), and (7.28), the objective functional is:

E =
1

2

2

∑
i=1

∫

Ri

(
〈∇I,αT

i θ〉+ It
)2

dx+
1

2
λ
∫

γ
ds− 1

2
ε
∫

γ
gds (7.35)
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Parametric motion estimation and segmentation consists now of determining a

curve γ and coefficients α1,α2 which minimize functional (7.35).

This formulation can be viewed as a motion-based active curve application of

the Mumford-Shah functional [20]. It generalizes motion segmentation by con-

stant/affine representation [25] to general linear parametric segmentation. It is also

a generalization of the Chan and Vese functional [18] to general linear parametric

motion-based image segmentation.

7.3.2 Functional minimization

The minimization of (7.35) follows its derivation with respect to γ and motion pa-

rameters α1,α2 (see Chapter 2 for basic formulas).

Minimization with respect to the motion parameters

Using a shorthand matrix derivative notion, the motion parameters of each region

Ri, i = 1,2, follow the necessary conditions

∂

∂α i

(
1

2

∫

Ri

(
〈∇I,αT

i θ〉+ It
)2

dx

)
= 0, i = 1,2 (7.36)

For simplicity, the dependence of α i on γ has been omitted because it is incon-

sequential at this point. Algebraic manipulations lead to

∂

∂α i

(
1

2

∫

Ri

(
〈∇I,αT

i θ〉+ It
)2

dx

)
= Biβ i +di, i = 1,2 (7.37)

where:

• Bi is the (region dependent) 2M×2M block matrix

Bi =

(
B11

i B12
i

B21
i B22

i

)
(7.38)

where the element (m,n), m = 1, . . . ,M, n = 1, . . . ,M of sub-matrix Brc
i , r,c =

1,2 is given by

Brc
i [m,n] =

∫

Ri

IrIcθmθndx (7.39)

and where Il is the image spatial derivative with respect to the horizontal (l = 1)

and the vertical (l = 2) image coordinates.

• β i is a 2M × 1 vector constructed by (vertical) concatenation of the motion pa-

rameters α i1 and α i2 corresponding to the horizontal (u) and vertical (v) coordi-

nates of optical flow. Its elements are, where m = 1, . . . ,M,

βi[m] = αim1 (7.40)

βi[M +m] = αim2 (7.41)
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• di is a 2M×1 vector with elements, where m = 1, . . . ,M,

di[m] =
∫

Ri

It I1θmdx (7.42)

di[M +m] =
∫

Ri

It I2θmdx (7.43)

In matrix notation, the necessary conditions with respect to the motion parame-

ters (β i, i = 1,2) are:

Biβ i = −di (7.44)

A least squares estimate of the motion parameters can be computed from the lin-

ear system of the equations (7.44) (using singular value decomposition, for instance)

For each region Ri, the matrix Bi (Equation 7.38) and vector di are in terms of the im-

age first order spatio-temporal variations and the given basis functions of the image

motion representation (Equations 7.39, 7.42 and 7.43).

Minimization with respect to γ: the curve evolution equation

To write the necessary conditions for a minimum of the objective functional with

respect to γ , we need to determine its functional derivative with respect to γ (refer to

Chapter 2). The derivation will take into consideration the dependence of α1,α2 on

γ .

Let h̃ ∈ R
2M have elements, for m = 1, · · · ,M,

h̃[m] = I1θm (7.45)

h̃[M +m] = I2θm (7.46)

Recall, from the preceding section, that I1 and I2 designate the spatial derivatives of

I with respect to the horizontal and vertical image coordinates, respectively. First,

we consider the derivation of the region integrals in the data term of the objective

functional (7.35). We treat i = 1 (i.e., for region R1 = Rγ ), the treatment for i = 2

(i.e., for R2 = Rc
γ ) being identical. With the definition of h̃, and of B1, d1, and β 1 in

the preceding Section 7.3.2, and using (7.44) as well as the equalities

∫

R1

h̃h̃T dx = B1 and

∫

R1

It h̃ dx = d1

we have
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∫

R1

(
〈∇I,αT

1 θ〉+ It
)2

dx (7.47)

=
∫

R1

(
βT

1 h̃+ It

)2

dx (7.48)

= βT
1

(
B1 β 1 +d1

)
+βT

1 d1 +

∫

R1

(It)
2

dx (7.49)

= βT
1 d1 +

∫

R1

(It)
2

dx, (7.50)

which means that

∂

∂γ

∫

R1

(
〈∇I,αT

1 θ〉+ It
)2

dx (7.51)

=
∂βT

1

∂γ
d1 +βT

1

∂d1

∂γ
+

∂

∂γ

(∫

R1

(It)
2

dx

)
(7.52)

The various derivatives which appear in (7.52) are as follows. Using (7.44),

∂βT
1

∂γ
=

(
−∂dT

1

∂γ
−βT

1

∂B1

∂γ

)
(B1)

−1
(7.53)

Using the expressions of d1 and B1, the functional derivatives of the other terms

(refer to Chapter 2) are

∂d1

∂γ
= It h̃⊗n (7.54)

∂B1

∂γ
= h̃h̃T ⊗n (7.55)

∂

∂γ

(∫

R1

(It)
2

dx

)
= (It)

2
n (7.56)

where ⊗ denotes the tensor product and n is the external unit normal function of γ .

Using (7.54) and (7.55) in (7.53) gives an equation which we substitute in (7.52);

further substitution in (7.52) of (7.56) and (7.54) (which removes the tensor prod-

ucts) allows the following derivation:

∂

∂γ

∫

R1

(
〈∇I,αT

1 θ〉+ It
)2

dx (7.57)

=
((

−It h̃
T −βT

1 h̃h̃T
)

(B1)
−1

d1 + Itβ
T
1 h̃+ I2

t

)
n (7.58)

=
(
βT

1 h̃+ It

)2

n (7.59)

=
(
〈∇I,αT

1 θ〉+ It
)2

n (7.60)

(7.61)
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Therefore, the functional derivative with respect to γ behaves as for an integrand

independent of γ , i.e., the dependence of the motion parameters on the segmentation

does not give the derivative additional terms [43]. This result can be derived by a

method other than the calculus of variations [43].

Given that the (external) unit normal function to the boundary of Rc
γ is −n, the

derivative of the integral on R2 = Rc
γ in the data term, i.e., for i = 2, is

∂

∂γ

∫

R2

(
〈∇I,αT

2 θ〉+ It
)2

dx = −
(
〈∇I,αT

2 θ〉+ It
)2

n (7.62)

The functional derivatives with respect to γ of the second and third integrals of

the objective function (7.35) are (Chapter 2):

∂

∂γ

∫

γ
ds = κn

∂

∂γ

∫

γ
gds = (〈∇g,n〉+gκ)n,

which, finally, gives

∂E

∂γ
=

1

2

(
e1 − e2 +λκ− ε〈∇g,n〉− εgκ

)
n (7.63)

where κ is the mean curvature function of γ and,

ei =
(
〈∇I,αT

i θ〉+ It
)2

, i = 1,2 (7.64)

The necessary condition for a minimum of (7.35) with respect to γ follows set-

ting the right-hand side of (7.63) to zero. Embedding γ in a one-parameter family

of curves γ(s, t), indexed by algorithmic time t, the gradient descent equation corre-

sponding to (7.63) is

∂γ

∂ t
= −1

2

(
e1 − e2 +λκ− ε〈∇g,n〉− εgκ

)
n (7.65)

The algorithm can be summarized as a two-step iteration until convergence:

1. Initialize γ
2. Iterate until convergence

a) Compute the regions coefficients by least squares (7.44)

b) Move γ by performing a descent step (7.65)
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7.3.3 Level set implementation

If γ is the zero level of level set function φ : R
2 → R (see Chapter 2), the evolution

of φ is

∂φ

∂τ
= −1

2
(e1 − e2 +λκ− ε〈∇g,n〉− εgκ)‖∇φ‖ (7.66)

We recall that

κ = −div

(
∇φ

‖∇φ‖

)
(7.67)

and

n = − ∇φ

‖∇φ‖ (7.68)

7.3.4 Multiregion segmentation

There are several ways of generalizing a two-region active curve segmentation for-

mulation to an arbitrary but fixed number of regions [44, 46, 47, 48, 49, 50, 51].

These were reviewed in Chapter 4. The example in Section 7.3.5 uses the imple-

mentation in [23] of the multiregion extension in [50] which views segmentation as

regularized clustering. For a segmentation into N regions, the method uses N − 1

closed simple plane curves γi, i = 1, ...,N −1 which move according to:

∂γi

∂ t
= −(ei −ψi +λκi − ε〈∇g,ni〉− εgκi)ni (7.69)

where where κi is the curvature function of γi, ni its external unit normal function,

and

ψi = min
j �=i

(e j) (7.70)

For functionals with a data term and a regularization length term, as those used

here, the evolution equation converges to a partition, provided it starts with a partition

(Chapter 4). The effect of adding a boundary characterization term has not been

studied. The corresponding level set evolution equations are:

∂φi

∂ t
= −(ei −ψi +λκi − ε〈∇g,ni〉− εgκi)‖∇φi‖ (7.71)

7.3.5 Examples

Numerical implementation of the motion based image partitioning methods de-

scribed in this chapter use discrete approximations of the image spatial and temporal

derivatives. These approximations can be computed as described in the Appendix,

according to the Horn and Schunck prescription, for instance. Other schemes have

been used in [23] for an efficient realization of the formulation.



156 7 MOTION BASED IMAGE SEGMENTATION

The following example uses two images of a sequence showing a walking chee-

tah. The cheetah walks forward and slightly left with a nonrigid articulated move-

ment. Two legs are at rest and the other two move forward, the front leg a little faster

than the rest of the body. The camera moves to follow the animal, inducing an image

motion to the right over the extent of the image domain.

Results are shown in Fig. 7.2 for a segmentation into two regions (in this case all

multiregion extension methods are equivalent). Both the constant and affine models

are too simple to represent the image motion and, as a result, lead to fragmented,

incorrect segmentations. The DCT model with 16 basis functions gives a good seg-

mentation. The more complex DCT model produces a better segmentation. More

examples and evaluations are given in [23].

(a) Constant (b) Affine

(c) DCT with 4 basis functions and (d) DCT with 16 basis functions

Fig. 7.2. Motion segmentation and parametric estimation for the Cheetah sequence.

An accurate segmentation allows image motion to be estimated selectively within

each of its regions, i.e., within appropriate image supports. Therefore, estimation

will preserve motion boundaries and it can be quite accurate. This is illustrated on

the Marbled blocks synthetic test sequence (KOGS/IAKS laboratory database, Uni-

versity of Karlsruhe, Germany). Windows of the same two images as in the MDL

example are used. We recall that two blocks move in a static environment. The larger

moves slightly away from the viewing system to the left, and the smaller to the left

and forward in depth. The texture remains practically the same across the top edges

of the blocks. The change in depth, and in image motion thereof, is sharp across the
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occlusion boundaries not in contact with the floor. The scene and the ground truth

motion field are depicted again in Fig. 7.3 a. The segmentation and the estimated

motion obtained using a DCT representation with 16 basis functions, are depicted in

Fig. 7.3 b. The motion is accurate, on average, within 0.884◦ in direction and 0.069

of a pixel in magnitude, with corresponding standard deviations of 1.208◦ and 0.091

pixel. The corresponding values for the Horn and Schunck method are 5.114◦/4.613◦

(direction), 0.404 pixel/0.221 pixel (magnitude). Those of the boundary preserving

method in [17] are 4.199◦/3.777◦ (direction), 0.480 pixel/0.251 pixel (magnitude).

(a) (b)

Fig. 7.3. (a) An image of the Marbled block sequence and the ground truth image motion; (b)

Computed segmentation and motion using a DCT basis with 16 basis functions.
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25. D. Cremers and C. Schnörr, “Motion competition: Variational integration of motion seg-

mentation and shape regularization,” in DAGM Symposium on Pattern Recognition, 2002,

pp. 472–480.

26. D. Cremers and S. Soatto, “Variational space-time motion segmentation,” in International

Conference on Computer Vision (ICCV), 2003, pp. 886–892.
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8

IMAGE SEGMENTATION ACCORDING TO THE

MOVEMENT OF REAL OBJECTS

8.1 Introduction

In the preceding chapter, image segmentation used optical flow. The flow compo-

nents in each region were described by a linear parametric model. Therefore, the

model parameters served to distinguish the segmentation regions. We presented two

methods which differed by their representation of the segmentation boundaries. One

of the methods (Chapter 7, Section 7.2) can be viewed as an optical flow edge de-

tection method. It used the minimum description length (MDL) formulation [1], and

placed the segmentation boundary edges at points between adjacent pixels described

by distinct model parameters. The other method we described was a level set method,

using closed curves to delineate the segmentation regions each of which is described

by the parameters of a general linear model of image motion [2]. In both meth-

ods, the parametric models did not express any relationship to the movement of the

physical objects from which the optical flow arose. They were strictly statistical,

two-dimensional characterizations of the optical flow in the segmentation regions.

However, optical flow can be constrained to a three-dimensional interpretation, us-

ing, for instance, one of the expressions between optical flow and rigid body motion

in Chapter 2, Section 2.4.4. In this case, the segmentation regions will correspond to

differently moving real rigid objects.

Image segmentation according to the movement of real objects necessarily brings

in variables related to the motion or to the structure of the objects. These three-

dimensional (3D) variables are unknowns to be estimated.

The segmentation and the estimation of the 3D variables are in reciprocal de-

pendence: the segmentation requires the 3D variables of each of its regions, and the

estimation of the 3D variables must be performed over the extent of each region.

Therefore, the segmentation and the estimation of the 3D variables must be concur-

rent: methods of image segmentation according to the motion of real objects are also

methods of 3D interpretation of image sequences. These methods can also be viewed

as methods for joint optical flow segmentation and 3D interpretation because optical

flow is a function of the 3D variables of structure and motion.

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5 8,

c© Springer-Verlag Berlin Heidelberg 2010
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The purpose in this chapter is to describe methods of image segmentation accord-

ing to the movement of real objects. These are variational, level set methods. They all

assume objects are rigid and in motion relative to the viewing system, i.e., they allow

simultaneous movement of objects and viewing system. They differ in the type of

the 3D variables they use in the objective functional. One method [3] uses the optical

flow 3D rigid body constraint (Eq. 2.65) and, therefore, eliminates optical flow from

the formulation and introduces both the depth and the 3D kinematic screws of each

of the moving objects. Another method [4] uses the essential parameters constraint

(Eq. 2.67). As a result, optical flow and the 3D essential parameters of each moving

object are the unknowns, along with the segmentation of these moving objects. The

last method described [5] can be seen as a hybrid method: it segments the image ac-

cording to optical flow, as in the methods of Chapter 7, but uses additional terms in

the objective functional to constrain optical flow to be caused by a rigid 3D motion

via the essential parameters.

There are intrinsic limitations in the recovery of 3D structure and motion from

optical flow:

• An obvious limitation is that the structure of surfaces which do not move relative

to the viewing system cannot be recovered. This is reflected by the viewing system

geometry and the rigid body motion models in the optical flow equations (2.64). Both

sides of these equations become zero when a surface is not moving with respect to

the viewing system, leaving depth undermined. Also, because brightness change is

a prerequisite for motion perception, another obvious limitation is that the structure

of the parts of a moving surface which is not textured cannot be recovered, except

possibly by propagation, via regularization, from the surface textured parts. This is

shown in the rigid body constraint (2.65), the left-hand side of which becomes zero

when Ix = Iy = It = 0.

• To a 3D interpretation consistent with the optical flow corresponds a family of

scaled interpretations [6], i.e., one cannot distinguish between a surface with a given

motion and a scaled version of the surface with a correspondingly scaled motion.

This is reflected, for rigid objects, by the invariance of the optical flow equation

(2.64) to a (common) scaling of depth (structure) and the translational component of

3D motion. This invariance will also appear in the the 3D interpretation equations of

the methods in this chapter.

• A formulation which uses optical flow assumes image motion of small extent in

practice. Large extent motion requires some form of multiresolution processing.

There are also limitations specific to the methods described in this chapter:

• The number of segmentation regions, i.e., the number of moving real objects, al-

though arbitrary, is assumed known. This number appears explicitly in the level set

functionals of the methods described in this chapter. The possibility of introducing

a constraint to vary it during functional optimization as in Chapter 6 has not been

studied.
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• The second method described, which uses the essential parameters constraint (Sec-

tion 8.4), cannot distinguish between 3D motions with the same rotational compo-

nent and parallel translational components [7]. This will become clear in Section 8.4,

following the description of the method. This shortcoming can be corrected (Section

8.5).

Before describing the methods, we review briefly the literature on optical flow

3D interpretation and segmentation.

In the general context of 3D interpretation of optical flow, it is customary to

distinguish sparse from dense interpretation. Sparse interpretation computes the 3D

variables at a sparse set of feature points over the image positional array. This topic

has been addressed in numerous well documented studies [8, 9, 10]. Dense interpre-

tation computes the 3D variables over the extent of the image positional array. This

has been relatively little researched, in spite of the many studies on dense estimation

of optical flow [11, 12, 13, 14, 15, 16].

It is also customary to distinguish direct from indirect interpretation. Methods

where image motion estimation precedes interpretation are indirect, or two-stage

[17, 18, 19]. Those which compute structure without prior explicit image motion

estimation are direct methods [20, 21, 22, 23, 24, 25, 26]. In general, direct formula-

tions substitute for image motion its expression in terms of 3D variables.

Most methods assume a viewing system moving in a static environment [23]

[25, 24, 26, 27, 28]. This simplifies the problem significantly because segmentation

according to the motion of real objects is no longer at issue; the relative motion of

camera and environment is the single 3D motion to recover. When viewing system

and objects are allowed to move simultaneously and independently, segmentation

becomes essential because interpretation must consider separately each real object

motion.

Several methods, both variational [3, 4, 5, 29, 30] and non variational [17, 18, 19],

allowed the simultaneous movement of viewing system and viewed objects. In this

case, the movement of objects is relative to the viewing system which is allowed to

move.

The discrete method in [30] uses the minimum description length (MDL) encod-

ing under the assumption that the real objects movements are translations, and that

the maps of the estimated 3D variables are piecewise constant. This direct method

is an immediate generalization to 3D of the MDL optical flow segmentation method

described in the preceding chapter. The MDL encoding refers to the 3D variable lo-

cal edges rather than segmentation boundaries as closed curves. As with optical flow

segmentation, this lack of explicit region information generally leads to a fragmented

segmentation. The variational method in [29], minimizes a integral functional with

a term of conformity of the 3D interpretation to the image sequence spatio-temporal

variations, and a term of regularization based on anisotropic diffusion to preserve

edges in depth. As with the MDL formulation, segmentation is implicit and gener-

ally fragmented.

In the following, we describe the level set methods of [3, 4, 5].
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8.2 The functionals
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Fig. 8.1. The viewing system is symbolized by an orthonormal direct coordinate system S =
(O;I,J,K) and central projection through O on plane π (the image plane) parallel to plane PIJ

and at focal distance f from O.

Let Ω be the common domain of an image sequence I, acquired by a possibly

moving viewing system. Consider the problem of partitioning Ω into two regions of

distinct 3D motions relative to the viewing system. Let γ be a simple closed plane

curve and R1 = Rγ , its interior. Let R2 be the complement of R1 (R2 = Rc
1), corre-

sponding to the exterior of γ . Assuming that each region corresponds to the motion of

a real rigid object, let (ωk,Tk) designate the screw of motion assigned to Rk,k = 1,2.

The reference system has been described in Chapter 2. For the reader’s convenience,

it is depicted again here (Figure 8.1). Let Z designate the depth function over Ω . The

objective functional of the first method we will examine is:

E1(γ,{ωk,Tk}2
k=1,Z) =

2

∑
k=1

∫

Rk

(
ψ2

k +µ‖∇Z‖2
)

dx+λ
∫

γ
ds (8.1)

where µ and λ are positive real constants, and the expression of ψk,k = 1,2, is given

by the left-hand side of the optical flow 3D rigid body constraint (Eq. 2.65):

ψk = It + 〈s, Tk

Z
〉+ 〈q,ωk〉 (8.2)

with
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s =

⎛
⎝

f Ix

f Iy

−xIx − yIy

⎞
⎠ q =

⎛
⎝

− f Iy − y
f
(xIx + yIy)

f Ix + x
f
(xIx + yIy)

−yIx + xIy

⎞
⎠ (8.3)

It is clear that the first term, the data term, in the first integral of (8.1) is to

evaluate the conformity, within each region, of the 3D interpretation (depth and the

screw of motion) to the image spatiotemporal variations. The second term in this

integral is to evaluate the smoothness of depth within each region. The last term

of the functional is the usual curve length term to bias the interpretation toward a

smooth region boundary γ .

The second functional we will study is:

E2({ek}2
1,γ,u,v) =

2

∑
k=1

∫

Rk

(
〈d,ek〉2 +µ(Ixu+ Iyv+ It)

2 +ν(‖∇u‖2 +‖∇v‖2)
)

dx

+ λ
∫

γ
ds (8.4)

where (u,v) designates optical velocity, ek is the essential parameter vector of the

rigid motion of Rk, k = 1,2, and d = (x2,y2, f 2,2xy,2x f ,2y f ,− f v, f u,−uy + vx).
The elements of the essential parameter vector are related to the screw of rigid motion

by Eq. 2.68. It is clear that the first term in the integrand of the first integral is to

evaluate the conformity to optical flow of the 3D interpretation, via the essential

parameters, within each region. The other terms of the integrand are used to estimate

optical flow by the Horn and Schunck method. Note that this estimation is done

within each region, not across the region boundary γ .

The third, and last, functional we will study is:

E3(γ) =
2

∑
k=1

∫

Rk

(
(u∗−u∗k)

2 +(v∗− v∗k)
2
)

dx+λ
∫

γ
ds (8.5)

where (u∗,v∗) is a motion field consistent, in each region, with a single rigid motion

described by essential parameters and computed jointly with the essential parameters

by, for k = 1,2,

(u∗,v∗,ek) = arg min
u,v,ek

∫

Rk

(
〈d,ek〉2 +µ(Ixu+ Iyv+ It)

2 +ν(‖∇u‖2 +‖∇v‖2)
)

dx

(8.6)

and u∗k (v∗k) is the mean of u∗ (v∗) in region Rk, k = 1,2,

u∗k =
1∫

Rk
dx

∫

Rk

u∗dx

v∗k =
1∫

Rk
dx

∫

Rk

v∗dx
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E3 is a piecewise constant optical segmentation functional. However, the regions

mean optical velocities, which are the regions parameters, are constrained by (8.6) to

correspond to the motion of real rigid objects via rigid motion essential parameters.

It is clear that the first functional, E1, differs from the other two because it in-

cludes depth when the others do not, and does not involve optical flow when the

others do. The difference between functionals E2 and E3 is more subtle. The seg-

mentation in E2 depends directly on the essential parameters whereas E3 is an optical

flow based image partitioning functional although the optical flow it uses is con-

strained, by (8.6), to be consistent in each region with a rigid motion described by

the essential parameters.

From a computational point of view, the necessity to regularize depth in E1 and

its non linear occurrence are, a priori, disadvantageous. The quadratic data terms

in E2 and E3 point to a better computational behavior. Also, with both E2 and E3,

regularized depth can be automatically recovered, a posteriori, from the essential

parameter vector and optical flow.

Objective functional E2 appears less computationally demanding than E3 which

involves two minimizations, although each simple. However, we will see that, con-

trary to E3, E2 does not distinguish between screws with the same rotation and

collinear translations.

The minimization of each functional follows the Euler-Lagrange descent equa-

tions, implemented via level sets.

8.3 Minimization of E1

We need to derive the necessary conditions for a minimum of E1 with respect to the

screws of motion, depth, and the active curve.

8.3.1 Minimization with respect to the screws of motion

Each term ψk, k = 1,2, in E1 depends linearly on Tk and ωk. Therefore, minimization

of (8.1) with respect to these variables reduces to linear least-squares estimation of

the screw parameters within each region. With digital images, let Nk be the number

of pixels in region Rk, and let b be the following vector, evaluated at each point xi of

Rk:

b(xi) =
( s1

Z
,

s2

Z
,

s3

Z
,q1,q2,q3

)

xi

(8.7)

where

(s1,s2,s3)
T = s

(q1,q2,q3)
T = q (8.8)

with s and q having the meaning in Eq. 2.66 of Chapter 2. The necessary conditions

with respect to the screw of motion for region Rk are:
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Bk ρk = ck (8.9)

where

ρk = (Tk,ωk)
T (8.10)

and matrix Bk and vector ck are:

Bk =

⎛
⎜⎝

b(x1)
...

b(xNk
)

⎞
⎟⎠ ck =

⎛
⎜⎝

−It(x1)
...

−It(xNk
)

⎞
⎟⎠

This generally overdetermined linear system can be solved efficiently by singular

value decomposition [31, 32].

8.3.2 Minimization with respect to depth

Note that the data term of E1 can be rewritten as:

2

∑
k=1

∫

Ω
χk

(
ψ2

k +µ‖∇Z‖2
)

dx (8.11)

where χk is the characteristic function of region Rk. Therefore, the Euler-Lagrange

descent equation to minimize E1 with respect to depth is:

∂Z

∂ t
=

2

∑
k=1

χk

( 〈s,Tk〉
Z2

ψk +µ∇2Z

)
(8.12)

where ∇2 is the Laplacian operator. With digital images, the Laplacian in this formula

is to be estimated within each region. Estimation at a region border point can be done

according to a boundary preserving recipe [33].

8.3.3 Minimization with respect to the active curve

Let

ek = ψ2
k +µ‖∇Z‖2,k = 1,2 (8.13)

The Euler-Lagrange descent equation with respect to curve γ (determined, as usual,

according to the basic formulas in Chapter 2) is, assuming any region parameter

fixed, i.e., independent of the segmentation:

∂γ

∂τ
= −(e1 − e2 +λκ)n (8.14)

where n is the external unit normal to γ and κ is its curvature. The level set evolution

equation corresponding to (8.14) is (formulas in Chapter 2):
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∂φ

∂τ
= −(e1 − e2 +λκ)‖∇φ‖ (8.15)

where φ is the level set function, positive in the interior of γ . Recall that

κ = −div

(
∇φ

‖∇φ‖

)
(8.16)

8.3.4 Algorithm

The algorithm to minimize E1 can be summarized has follows:

1. Initialize Z and γ
2. Repeat until convergence

a) Compute the parameters of motion by least squares (Eq. 8.9)

b) Update depth using Eq. 8.12 (one or more iterations)

c) Evolve the level set using one iteration of Eq. 8.15

It is often convenient to initialize depth to correspond to a fronto-parallel plane.

The curve can be initialized systematically as a circle which covers about half the

image and approximately centered. Note that the objective functional is decreased

at each step of the algorithm (greedy algorithm). Therefore, the functional being

positive, the algorithm converges to a local minimum (assuming such a minimum

exists).

8.3.5 Uncertainty of scale in 3D interpretation

Methods of sparse 3D interpretation [8] can recover depth and the translational com-

ponent of rigid motion only up to a scale factor. This has been called the uncertainty

of scale. We ask whether a similar result holds for dense interpretation by a varia-

tional method such as the one investigated here.

Looking at the objective functional E1 also as a function of the regularization

constant µ , we have

E1(γ,{ωk,Tk}2
k=1,Z,µ) = E1(γ,{ωk,αTk}2

k=1,αZ,
µ

α2
) (8.17)

where α is a positive constant. Therefore, to a 3D interpretation corresponds an inter-

pretation scaled by α with µ adjusted. This can be checked directly in the minimiza-

tion update equations. Let the change of variables Z → Z′ = αZ and T → T′ = αT

reflect a change of scale of Z and T, where α is a positive real number. Equation

8.9 is verified by the scaled variables Z′ and T′. As to Equation 8.12, we have the

following evolution equation for Z′, after manipulation and simplification:

∂Z′

∂ t
=

〈s,T′
k〉

Z′2 ψk +µ ′∇2Z′, k = 1,2 (8.18)
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with µ ′ = µ/α2. Similarly, Equation 8.15 is verified by the scaled variables with µ
replaced by µ ′ in the expression of ek. Therefore, to any solution obtained with a reg-

ularization factor µ and initial condition Z0, corresponds, with a regularization factor

µ ′ = µ
α2 and initial condition αZ0, and for any positive real number α , a solution with

Z and T scaled by α .

8.3.6 Multiregion segmentation

There are several ways of generalizing a two-region active curve segmentation for-

mulation to an arbitrary but fixed number of regions [34, 35, 36, 37, 38, 39, 40].

These were reviewed in Chapter 4.

8.3.7 Example

This example uses two consecutive images of the Marbled blocks synthetic test se-

quence. This sequence served to test the MDL image segmentation method and was

described in the preceding chapter. We describe it again here for the reader’s conve-

nience. There are three blocks, two of which are in movement, the small block and

the large to its right. The remainder of the imaged scene is static. The larger mov-

ing block recedes slightly in depth to the left, relatively to the viewing system; the

smaller block moves to the left and forward in depth. The images are characterized

by a texture which remains practically the same across the top edges of the blocks.

They are also characterized by a sharp discontinuity in depth, and in image motion

thereof, at the blocks occluding boundaries not in contact with the floor.

The goal is to segment the images into three regions each of which corresponds

to a 3D object with a distinct motion: the small moving block, the large moving

block, and the remainder of the imaged scene (i.e., the static background, which is

an object with null motion). The scene and the two initial active curves are depicted

in Figure 8.2a. The computed segmentation is depicted in Figure 8.2b. Figure 8.2c

displays a gray level representation of the reconstructed depth of the blocks and

Figure 8.2d an anaglyph of a stereoscopic image reconstructed from the scheme’s

output. The anaglyph is to be viewed with red/blue glasses.

8.4 Minimization of E2

Minimization of E2 follows the necessary conditions for a minimum with respect

to the essential parameter vectors {ek}2
k=1, the optical flow field (u,v), and active

segmentation curve γ .

8.4.1 Minimization with respect to the essential parameter vectors

As with the screws of motion in E1, this minimization amounts to a linear least-

squares evaluation of the essential parameter vector within each region, which can be
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(a) (b)

(c) (d)

Fig. 8.2. (a) The first of the two consecutive Block sequence images used in the experiment

and the initial curves; (b) the computed 3D motion segmentation; (c) a gray level representa-

tion of the moving blocks reconstructed depth and, (d) an anaglyph of a stereoscopic image

reconstructed from the scheme’s output.

done efficiently via singular value decomposition of the matrix of the corresponding

linear system of equations:

Dkek = 0, k = 1,2, (8.19)

where Dk is the matrix the rows of which are obtained by evaluating vector d at each

point of region Rk. These equations being homogeneous, the essential parameters

are determined up to a scale factor, generally by imposing ‖ek‖ = 1.
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8.4.2 Minimization with respect to optical flow

E2 can be rewritten as follows:

E2(u,v) =
2

∑
k=1

∫

Ω
χk

(
〈d,ek〉2 +µ(Ixu+ Iyv+ It)

2 +ν(‖∇u‖2 +‖∇v‖2)
)

dx

(8.20)

This gives the following Euler-Lagrange equations:

{
∑2

k=1 χk

(
( f ek,8 − yek,9)〈d,ek〉+µIx(Ixu+ Iyv+ It)−ν∇2u

)
= 0

∑2
k=1 χk

(
(− f ek,7 + xek,9)〈d,ek〉+µIy(Ixu+ Iyv+ It)−ν∇2v

)
= 0,

(8.21)

which amounts to solving for optical flow separately within each region. The Lapla-

cian in these formulas is to be estimated within each region. As with (8.12), estima-

tion of the Laplacian at a region border point can be done according to a boundary

preserving recipe [33]. The optical flow estimations equations form a large sparse

linear system of equations which can be solved by Jacobi or Gauss-Seidel iterations,

as with the Horn and Schunck algorithm (given in the Appendix). The region bound-

ary (which is also a 3D-motion boundary), is preserved because computations are

confined to the regions interior.

8.4.3 Minimization with respect to γ

Assuming any region parameter fixed (i.e., independent of the segmentation), the

Euler-Lagrange equation with respect to γ gives the following descent equation for

the evolution of γ:

∂γ

∂ t
= −(e1 − e2 +λκ)n (8.22)

where

ek = 〈d,ek〉2, k = 1,2 (8.23)

The corresponding level set evolution equation is:

∂φ

∂ t
= −(e1 − e2 +λκ)‖∇φ‖ (8.24)

8.4.4 Recovery of regularized relative depth

For each region, the components of the kinematic screw of rigid 3D motion, (T,ω),
can be recovered analytically from the region essential parameters using Eq. 2.68 of

Chapter 2 [8]. The translation T is recovered up to a sign and a positive scale factor
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[8, 10]. When T �= 0, we use Eq. 2.64 of Chapter 2 to compute the relative depth as

a function of image motion and the components of rigid motion:

Z =

⎛
⎝ ( f t1 − xt3)

2 +( f t2 − yt3)
2

(u+ xy
f
ω1 − f 2+x2

f
ω2 + yω3)2 +(v+ f 2+y2

f
ω1 − xy

f
ω2 − xω3)2

⎞
⎠

1
2

(8.25)

Because the components of T appear in a ratio with depth in (2.64), translation

and depth are recovered up to a common scale factor which is fixed when the essen-

tial parameters are computed under a fixed norm constraint (Equation 2.67). Once

depth is computed, the sign of T is adjusted, if necessary, to correspond to positive

depth [8, 10]. Note that the recovered depth is regularized because the optical flow

and the essential parameters estimates from which it is computed are regularized

solutions of the functional minimization.

The recovery up to a scale factor of the 3D translation has two implications.

First, the depth in one region is relative to depth in another in the ratio of the norms of

their actual translational components of motion. Second, image sequences of moving

objects with the same rotational component of motion and collinear translational

components may not be properly segmented, although recovery of the scene structure

would not be affected.

8.4.5 Algorithm

The algorithm to minimize E2 can be summarized as follows:

1. Initialize the curve and optical flow

2. Repeat until convergence

a) Estimate the essential parameter vectors

b) Estimate optical flow

c) Evolve the curve according to (8.24)

The optical flow can be initialized to zero. More efficiently, it can be initialized

with the result of a few iterations of the Horn-and-Schunck algorithm applied to the

whole image (see Appendix). As with E1, the initial curve can be chosen systemati-

cally as a circle approximately centered and which covers about half the image. One

or two iterations of (8.24) suffice at step 2.a Each step assumes the other variables

fixed. Also, optical flow estimation at each step uses the estimate at the previous

step. The algorithm converges because each step decreases the objective functional

at each iteration.

The method can be generalized to multiple regions (Chapter 4).
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(a) (b)

(c) (d)

Fig. 8.3. (a) The first frame of the Cylinder sequence and initial active curve; (b) the computed

segmentation into two regions, one corresponding to the cylindrical object and the other to the

box and background; (c) a view of the recovered cylindrical surface, and (d) a view of the

recovered box and background.

8.4.6 Example

This test sequence contains three moving objects (courtesy of C. Debrunner [41]).

One object is a cylindrical surface rotating approximately 1o per frame around a

vertical axis. Its 3D translation causes an image motion of about 0.15 pixel/frame.

The second object is a flat background also moving right with a corresponding image

translation of approximately 0.15 pixel per frame. Finally, there is a box which trans-

lates right with a corresponding image translation speed of about 0.30 pixel/frame.

The movements of the box and background are parallel (3D) translations. Therefore,

the purpose is to apply the method for a 3D-motion segmentation into two regions

(refer to the explanation in Section 8.4.4), namely one region corresponding to the

imaged surface of the cylindrical object and another to the viewed parts of the box

and background together.
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Fig. 8.3a shows the first of the two consecutive frames used, on which the ini-

tial segmentation curve has been superimposed, and Fig. 8.3b the final (3D motion)

segmentation. A view of the reconstructed structure of the cylindrical object (from

a viewpoint distinct from the camera), back-shaded with the original texture is dis-

played in Figure 8.3c. Note that the recovered surface is smooth due to a regular-

ized depth. Views of the reconstructed structures for the box and background are

displayed in Figure 8.3d. Fig. 8.4 displays an anaglyph of a stereoscopic image re-

constructed from the scheme’s output.

Fig. 8.4. An anaglyph of a stereoscopic image reconstructed from the method’s output (to be

viewed with red/blue filter glasses).

8.5 Minimization of E3

Functional E3 is minimized with respect to the segmentation (curve γ), subject to Eq.

8.6. Therefore, the formulation seeks simultaneously a partition of the image domain

and an estimate of optical flow which is consistent with a single rigid body motion

in each region of the segmentation. A functional such as (8.5) is often referred to

as a piecewise constant segmentation functional [36, 42, 43]. It is the simplest form

of the general linear parametric functional [44]. The focus of such formulations is

not on computing an accurate parametric representation of an image or a flow field,

but on partitioning the image domain into regions which are assumed to differ by

the representation parameters. The justification is that a parametric representation

can be coarse and still distinguish between the regions of interest. This is the case in

this formulation which seeks a segmentation under the assumption that the desired

regions, i.e., where each region corresponds to a single rigid object in space, differ

by their average optical velocity. This assumption is generally valid for optical flow

induced by rigid body motion. If necessary, an affine model [43] can be used without
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affecting the segmentation paradigm. However, 3D interpretation requires both an

accurate optical flow estimate [8] and a segmentation where each region corresponds

to a single rigid object in space. These requirements are embodied in Eq. 8.6.

As with E2, the minimization of E3 proceeds in three iterated steps, following

initialization. As with E2, the optical flow is initialized to zero. Alternatively, it can be

initialized with the result of a few iterations of the Horn-and-Schunck algorithm (see

Appendix). The initial curve can be chosen systematically as a circle approximately

centered and which covers about half the image. The first step estimates the essential

parameter vectors ek, k = 1,2, by singular value decomposition, subject to ‖ek‖ = 1

[32]. The second step estimates optical flow, given the essential parameters and the

segmentation curve. The necessary conditions are the same as those of E2 (Eq. 8.21):

{
∑2

k=1 χk

(
( f ek,8 − yek,9)〈d,ek〉+µIx(Ixu+ Iyv+ It)−ν∇2u

)
= 0

∑2
k=1 χk

(
(− f ek,7 + xek,9)〈d,ek〉+µIy(Ixu+ Iyv+ It)−ν∇2v

)
= 0

Assuming any region parameter fixed, i.e., independent of the segmentation, the

final step moves γ , via the level set equation:

∂φ

∂τ
= −(e1 − e2 +λκ)‖∇φ‖ (8.26)

where

ek = (u∗−u∗k)
2 +(v∗− v∗k)

2, k = 1,2 (8.27)

Essentially, the algorithms for E2 and E3 differ by their curve evolution equation.

As with E2, regularized depth is recovered analytically by Eq. 8.25. The screws of

motion are recovered as in Section 8.4.4 [8]. However, this formulation can distin-

guish between collinear translations because segmentation is based on optical flow

rather than the essential parameter vectors as with E2.

As with E1 and E2, the method can be generalized to multiple regions (Chapter

4)

8.5.1 Example

This example uses two consecutive frames of the real image sequence Berber. The

sculpted head was made to rotate and move forward to the right between the two

frames. The object surface was textured by covering it with pasted newspaper. The

initial curve of segmentation is shown in Fig. 8.5a, superimposed on the first of

the two frames, and Fig. 8.5b displays the computed segmentation. A view of the

reconstructed figurine, back-shaded using the original texture, is shown in Figure

8.5c. The incorrect segmentation in Fig. 8.5d was obtained with the 3D interpretation

term removed from the functional. Fig. 8.6 displays an anaglyph of a stereoscopic

image constructed from the first image and the estimated depth. As mentioned in

Section 8.1, E3 is capable, contrary to E2, of distinguishing between distinct parallel

translations. This is illustrated in Fig. 8.7 with the Cylinder sequence, where the box

image is distinguished from the background.
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(a) (b)

(c) (d)

Fig. 8.5. (a) The first frame of the Berber sequence and initial zero level set; (b) the com-

puted segmentation into two regions, one corresponding to the figurine and the other to the

background imaged surfaces; (c) a view of the recovered figurine surface, and (d) an incorrect

segmentation obtained without the 3D term in the objective functional
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Fig. 8.6. Berber sequence: An anaglyph of a stereoscopic image reconstructed reconstructed

from the first frame and the estimated depth (to be viewed with red/blue filter glasses).

Fig. 8.7. Segmentation of the Cylinder sequence by E2 into three regions: The box is distin-

guished from the background on the basis of optical flow.
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APPENDIX

The Horn and Shunck [1] and the Aubert-Deriche-Kornprobst [2, 3] optical flow for-

mulations and algorithms are fundamental in motion analysis. They have served of-

ten as benchmarks to test other optical flow estimation methods. We have used them

repeatedly in this book (Chapters 7 and 8). The formulations have been reviewed in

Chapter 2. Here following is a summary of the algorithms.

9.1 The Horn and Schunck optical flow estimation algorithm

We recall the Horn and Schunck optical flow estimation functional [1]:

E (u,v) =
∫

Ω
(Ixu+ Iyv+ It)

2dxdy+λ
∫

Ω
(‖∇u‖2 +‖∇v‖2)dxdy (9.1)

and its corresponding Euler-Lagrange equations

Ix(Ixu+ Iyv+ It)−λ∇2u = 0

Iy(Ixu+ Iyv+ It)−λ∇2v = 0, (9.2)

with boundary conditions:

∂u

∂n
= 0

∂v

∂n
= 0 (9.3)

where ∇2 designates the Laplacian and ∂
∂n

indicates differentiation in the direction

of the normal n to the image domain boundary ∂Ω .

Let D be a regular, unit-spacing grid over Ω , the grid points indexed top-down

and left-to-right by the integers {1,2, ...,N}. A discrete approximation of the Euler-

Lagrange equations (9.2) is, for all grid point indices i ∈ {1,2, ...,N}:
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I2
xiui + IxiIyivi + IxiIti −K ∑

j∈Ni

(u j −ui) = 0

IyiIxiui + I2
yivi + IyiIti −K ∑

j∈Ni

(v j − vi) = 0 (9.4)

where (ui,vi) = (u,v)i is the optical flow vector at grid point i; Ixi, Iyi, Iti are the

spatial and temporal derivatives Ix, Iy, It evaluated at i; K is proportional to λ ; and

Ni is the set of indices of the neighbors of i for some neighborhood system. For the

8-neighborhood, card(Ni) < 8 for points on the boundary of D and card(Ni) = 8

otherwise.

In (9.2), the approximation of the Laplacian of z (where z stands for either u or v)

is proportional to z− z , where z is the neighborhood average of z. The coefficient of

proportionality is absorbed by K (which replaces the original weighting coefficient

λ ).

Rewriting (9.4), we have the following system of linear equations, for i ∈
{1, ...,N}:

(S)

⎧
⎨
⎩

(I2
xi +Kci)ui + IxiIyivi −K∑ j∈Ni

u j = −IxiIti

IxiIyiui +(I2
yi +Kci)vi −K∑ j∈Ni

v j = −IyiIti

where ci = card(Ni). Let z = (z1, ...,z2N)t ∈ R
2N be the vector defined by

∀i ∈ {1, . . . ,N} z2i−1 = ui

z2i = vi (9.5)

Also, let b = (b1, ...,b2N)t ∈ R
2N the vector defined by

∀i ∈ {1, . . . ,N} b2i−1 = −IxiIti

b2i = −IyiIti (9.6)

The system of linear equations (S) is written in matrix form as

Az = b (9.7)

where A is the 2N ×2N matrix defined by

∀i ∈ {1, . . . ,N} A2i−1,2i−1 = I2
xi +Kci

A2i,2i = I2
yi +Kci

A2i−1,2i = A2i,2i−1 = IxiIyi

∀i, j ∈ {1, . . . ,N} with j ∈ Ni A2i−1,2 j−1 = A2i,2 j = −K, (9.8)

and all other elements are zero.

System (9.7) is a large scale system of linear equations. It is also a sparse sys-

tem as most entries in matrix A are zero. Such systems are best solved by iterative

algorithms [4, 5]. In the following, we will assume that A is non-singular.
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9.1.1 Iterative resolution by the Jacobi and Gauss-Seidel iterations

Horn and Schunck [1] solve system (9.7) using the Jacobi method for a 2×2 block

division of matrix A [6].The iterations are:

uk+1
i =

I2
yi +Kci

ci(I2
xi + I2

yi)+Kc2
i
∑

j∈Ni

uk
j −

IxiIyi

ci(I2
xi + I2

yi)+Kc2
i
∑

j∈Ni

vk
j −

IxiIti

I2
xi + I2

yi +Kci

vk+1
i =

−IxiIyi

ci(I2
xi + I2

yi)+Kc2
i
∑

j∈Ni

uk
j +

I2
xi +Kci

ci(I2
xi + I2

yi)+Kc2
i
∑

j∈Ni

vk
j −

IyiIti

I2
xi + I2

yi +Kci

With the Jacobi method,the update is done for all points of the image domain

grid before the updated values are used at the next iteration. With the Gauss-Seidel

method, the updated values are used as soon as they are available. For the 2×2 block

division of matrix A, the Gauss-Seidel iterations are [6], for all i ∈ {1, . . . ,N}:

uk+1
i =

I2
yi +Kci

ci(I2
xi + I2

yi)+Kc2
i

(

∑
j∈Ni; j<i

uk+1
j + ∑

j∈Ni; j>i

uk
j

)

− IxiIyi

ci(I2
xi + I2

yi)+Kc2
i

(

∑
j∈Ni; j<i

vk+1
j + ∑

j∈Ni; j>i

vk
j

)
− IxiIti

I2
xi + I2

yi +Kci

(9.9)

vk+1
i =

−IxiIyi

ci(I2
xi + I2

yi)+Kc2
i

(

∑
j∈Ni; j<i

uk+1
j + ∑

j∈Ni; j>i

uk
j

)

+
I2
xi +Kci

ci(I2
xi + I2

yi)+Kc2
i

(

∑
j∈Ni; j<i

vk+1
j + ∑

j∈Ni; j>i

vk
j

)
− IyiIti

I2
xi + I2

yi +Kci

(9.10)

With the Jacobi iterations (9.9), (uk+1
i ,vk+1

i ), i = 1, ...,2N at iteration k + 1 are

computed using the values (uk
i ,v

k
i ), i = 1, ...,2N of the preceding iteration k. There-

fore, 4N values must be in memory store. With the Gauss-Seidel iterations (9.10),

only 2N values need storage. However, in contrast with the Gauss-Seidel iterations,

Jacobi iterations can be performed in parallel for all domain grid points, which would

be a very fast implementation.

One can show that matrix A is positive definite [6]. This implies that the Gauss-

Seidel iterations converge [4, 5]. It does not imply that Jacobi iterations converge.

However, convergence can be shown directly [6].

There is a remarkable block division which makes matrix A block tridiagonal

[6]. Combined with the property that A is symmetric positive definite, this character-

istic affords efficient resolution of the corresponding linear system [4]. For an n×n

discrete image, the blocks are 2n×2n. The block tridiagonal form is due to the fact

that points with index αn, 1 ≤ α ≤ n, do not have a neighbor on the right, and those

with index βn + 1, 0 ≤ β ≤ n− 1, do not have a neighbor on the left. The readers

interested in the details can refer to [6].
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9.1.2 Evaluation of derivatives

Horn and Schunck prescribe approximations of the image spatial and temporal

derivatives as averages of forward first differences. It is easier to read the formu-

las by looking at D as a two-dimensional grid indexed left to right horizontally and

bottom to top vertically. Let the horizontal and vertical indices be r and c, respec-

tively. Also, let the two images used be indexed 0 (current) and 1 (next). The Horn

and Schunck approximations are:

Ix(r,c) ≈ 1
4 ∑

1
∆r=0 { I(r +∆r,c+1,0)− I(r +∆r,c,0)

+I(r +∆r,c+1,1)− I(r +∆r,c,1) }
Iy(r,c) ≈ 1

4 ∑
1
∆c=0 { I(r +1,c+∆c,0)− I(r,c+∆c,0)

+I(r +1,c+∆c,1)− I(r,c+∆c,1) }
It(r,c) ≈ 1

4 ∑
1
∆r=0∑

1
∆c=0 { I(r +∆r,c+∆c,1)− I(r +∆r,c+∆c,0) } (9.11)

Alternatively, the spatial derivatives can be estimated using the following aver-

ages of central differences:

Ix(r,c) = 1
6 ∑

1
∆c=−1{ I(r +1,c+∆c)− I(r−1,c+∆c)

It(r,c) = 1
6 ∑

1
∆r=−1{ I(r +∆r,c+1)− I(r +∆r,c−1) (9.12)

Using central differences to compute the temporal derivatives would not be con-

sistent with the in-between consecutive frames velocities to be estimated because

it would require using the frames preceding and following the current, rather than

consecutive frames.

9.2 The Aubert, Deriche, and Kornprobst algorithm

The Laplacian operator which appears in the Euler-Lagrange equations associated

with (9.1) causes smoothing, and blurring thereof, across motion boundaries. To cir-

cumvent the problem, the study in [2, 3] investigated the following generalization of

the Horn and Schunck functional:

E (u,v) =
∫

Ω
(Ixu+ Iyv+ It)

2dxdy+K

∫

Ω
(g(‖∇u‖)+g(‖∇v‖))dxdy (9.13)

where g is a function of class C2. With g(z) = z2, (9.13) reduces to the Horn and

Schunck functional (9.1).

The goal of the analysis in [2, 3] was to determine functions g from conditions

that would ensure motion boundary preserving anisotropic smoothing of motion.

This led to functions such as g(s) = 2
√

1+ s2 −2. A discretization of the the Euler-

Lagrange equations corresponding to (9.13),
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Ix(Ixu+ Iyv+ It) =
K

2
div

(
g′(‖∇u‖) ∇u

‖∇u‖

)

Iy(Ixu+ Iyv+ It) =
K

2
div

(
g′(‖∇v‖) ∇v

‖∇v‖

)
, (9.14)

gives a large scale sparse system of nonlinear equations. Instead of solving such a

system, the study in [2][3] proposes a more efficient implementation using the half-

quadratic minimization algorithm applied to the following functional, the change

from the original functional justified under a duality theorem:

E (u,v,b1,b2) =
∫

Ω
(Ixu+ Iyv+ It)

2dxdy

+ K

∫

Ω

(
b1‖∇u‖2 +b2‖∇v‖2 +ψ(b1)+ψ(b2)

)
dxdy (9.15)

Two new functions, b1(x,y) and b2(x,y), called auxiliary variables, appear in this

functional. Also appears a function ψ , convex and decreasing, related implicitly to g

and such that the value of b which minimizes bs2 +ψ(b) is given by

b =
g′(s)

2s
(9.16)

This result is at the heart of the half-quadratic minimization algorithm which, fol-

lowing initialization, iterates two consecutive steps. At each iteration, a minimization

with respect to u,v, with b1,b2 considered constant, is followed by a minimization

with respect to b1,b2, with u,v considered constant. The minimization with respect

to b1,b2 is obtained analytically using (9.16).

Minimization with respect to u,v, with b1,b2 considered constant, consists of

minimizing the following functional:

∫

Ω
(Ixu+ Iyv+ It)

2 +K
(
b1‖∇u‖2 +b2‖∇v‖2

)
dxdy (9.17)

The Euler-Lagrange equations corresponding to (9.17) are given by:

Ix(Ixu+ Iyv+ It) = Kdiv(b1∇u)

Iy(Ixu+ Iyv+ It) = Kdiv(b2∇v) (9.18)

The corresponding Neumann boundary conditions are ∂u/∂n = ∂v/∂n = 0. Dis-

cretization of the equations results in a large scale sparse system of linear equations

which can be solved iteratively by the Jacobi or Gauss-Seidel method as with the

Horn and Schunck method [7]. The divergence terms in 9.18 can be discretized as in

[8].

Minimization with respect to b1,b2, with u,v considered constant, consists of

minimizing the functional
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∫

Ω

(
b1‖∇u‖2 +b2‖∇v‖2 +ψ(b1)+ψ(b2)

)
dxdy (9.19)

The unique solution is given analytically following (9.17):

b1 =
g′(‖∇u‖)

2‖∇u‖

b2 =
g′(‖∇v‖)

2‖∇v‖ (9.20)

The semi-quadratic algorithm to minimize (9.15) can be summarized as follows.

1. Initialize b1,b2

2. Repeat until convergence

a) Minimize with respect to u,v using Jacobi (or Gauss-Seidel) iterations to

solve the linear system of equations corresponding to the discretized Eq.

(9.18).

b) Minimize with respect to b1,b2 using (9.20) [b1 = g′(‖∇u‖)
2‖∇u‖ , b2 = g′(‖∇v‖)

‖∇v‖ ]

The readers interested can find the details in [2, 3].

9.3 Construction of stereoscopic images of a computed 3D

interpretation

We can evaluate subjectively a monocular image sequence 3D interpretation by

viewing anaglyphs of stereoscopic images constructed using the recovered depth.

Anaglyphs use two color channels to code depth on the original image so that view-

ing with chromatic glasses gives the impression of depth. Common, inexpensive

commercial plastic glasses are available. Printed anaglyphs are best viewed on high

quality photographic paper. When viewing on a CRT screen, high resolution and

display options for high quality color image rendering offer a clearer impression of

depth. In all cases, however, anaglyphs offer a good, inexpensive means of viewing

3D interpretation results.

Given an image and the corresponding depth map, we can construct a stereo-

scopic image using the following rudimentary scheme. Let I1 be the given image. I1

will be one of the two images of the stereoscopic pair. We will construct the other

image, I2. Let S1 be the viewing system representing the camera which acquired I1,

and S2 that of the (fictitious) camera acquiring I2. S2 is placed to differ from S1 by a

translation of amount d along the X-axis.

Let (x2,y2) be a point on the image position array of I2, corresponding to a point

P in space with coordinates (X2,Y2,Z2) in S2. The coordinates of P in S1 are

X1 = X2 +d

Y1 = Y2

Z2 = Z1 (9.21)
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The image of P in the image domain of I1 are, according to our viewing system

model (Figure 2.3):

x1 = f
X1

Z1
(9.22)

y1 = y2 (9.23)

Because depth has been estimated, coordinates (x1,y1) are known. Image I2,

which will be the second of the stereoscopic pair, is then constructed as follows:

I2(x2,y2) = I1(x̃1,y1) (9.24)

where x̃1 is the x-coordinate of the point on the image positional array of I1 with x

coordinate closest to x1. Alternatively, one can use interpolation. However, we found

it unnecessary for our purpose here. Given the stereoscopic image pair (I1, I2), an

anaglyph can be generated using [9]. Programs of other methods are freely accessible

on the web.
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Fifth, 1994.

5. J. Stoer and P.Burlisch, Introduction to numerical methods, 2nd ed. Springer, 1993.

6. A. Mitiche and A. Mansouri, “On convergence of the Horn and Schunck optical flow es-

timation method,” IEEE Transactions on Image Processing, vol. 13, no. 6, pp. 848–852,

2004.

7. G. Aubert and P. Kornpbrost, Mathematical problems in image processing: Partial differ-

ential equations and the calculus of variations. Springer Verlag, 2006.

8. P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639,

1981.

9. E. Dubois, “A projection method to generate anaglyph stereo images,” in International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, 2001, pp. 1661–

1664.



Index

3D segmentation, 161

Anaglyph viewing, 186

Depth, 164, 167, 171

Essential parameters, 165, 169, 174

Optical flow, 165, 171

Rigid body constraint, 164

Viewing system, 164

Uncertainty of scale, 168

Active curve, 21

Balloon force velocity, 53

Curvature regularization velocity, 44

Curve evolution, 21, 24, 152, 167, 171, 175

Depth, 30, 175

Descent method, 20

Integral functional, 20

Real function, 20

Vectorial function, 20

Euler-Lagrange Equations, 15

Definite integral, 15

Variable domain, 17

Functional

Boundary contrast, 150

Data term, 4, 149

Geodesic, 18

Length, 17

Chan-Vese, 4

length, 149

MDL, 140

Mumford-Shah, 4, 140

Geodesic active contour, 52

Gradient equation, 150

Green’s theorem, 17

Image motion, 139

Level sets, 22

Maximum likelihood estimate (MLE), 41

Maximum a posteriori (MAP), 34

Minimum description length (MDL), 36

Motion contrast, 150

Motion parameters, 151

Multiregion segmentation, 4, 155, 169

Mumford and Shah model, 33

Bayesian interpretation, 34

piecewise constant model, 33

Optical flow, 25, 139, 175, 181

3D rigid body constraint, 29, 164

Aperture problem, 26

Boundary contrast, 149

Boundary preserving algorithm, 184

Boundary preserving formulation, 28

Continuation method, 143

DCT basis, 148

Essential parameters, 30, 165

Gauss-Seidel iterations, 183

Gradient equation, 25

Half quadratic algorithm, 185

Horn and Schunck formulation, 26

Jacobi iterations, 183

Springer Topics in Signal Processing, DOI 10.1007/978-3-642-15352-5,

c© Springer-Verlag Berlin Heidelberg 2010

A. Mitiche, I. Ben Ayed, Variational and Level Set Methods in Image Segmentation,



190 Index

Joint estimation and segmentation, 147

Level sets, 147

Minimum description length, 141

Polynomial model, 148

Rigid body motion, 28

Horn and Schunck algorithm, 181

Linear parametric model, 145

Optical flow constraint, 150

Parametric, 3

Parametric model

DCT, 148

Polynomial, 148

Segmentation, 1

Applications, 5

Issues, 4

Motion, 139, 161

Mumford and Shah, 141

Optical flow, 139

Snakes model, 51

Uncertainty of scale, 172

Variational formulations, 4


	Contents
	1 INTRODUCTION
	References

	2 INTRODUCTORY BACKGROUND 
	2.1 Euler-Lagrange equations
	2.1.1 Definite integrals
	2.1.2 Variable domain of integration

	2.2 Descent methods for unconstrained optimization
	2.2.1 Real functions
	2.2.2 Integral functionals

	2.3 Level sets
	2.4 Optical flow
	2.4.1 The gradient equation
	2.4.2 The Horn and Schunck formulation
	2.4.3 The Aubert, Kornprobst, and Deriche formulation
	2.4.4 Optical flow of rigid body motion

	References

	3 BASIC METHODS
	3.1 The Mumford and Shah model
	3.1.1 Bayesian interpretation
	3.1.2 Graduated non convexity implementation

	3.2 The minimum description length method of Leclerc
	3.2.1  MDL and MAP
	3.2.2 The piecewise constant image model
	3.2.3 Numerical implementation

	3.3 The region competition algorithm
	3.3.1 Optimization

	3.4 A level set formulation of the piecewise constant Mumford-Shah model
	3.4.1 Curve evolution minimization of the Chan-Vese functional
	3.4.2 Level set representation of curve evolution
	3.4.3 Algorithm summary
	3.4.4 Numerical implementation details of the level set evolution equation

	3.5 Edge-based approaches
	3.5.1 The Kass-Witkin-Terzopoulos Snakes model
	3.5.2 The Geodesic active contour
	3.5.3 Examples

	References

	4 MULTIREGION SEGMENTATION
	4.1 Introduction
	4.2 Multiregion segmentation using a partition constraint functional term
	4.3 Multiphase level set image segmentation
	4.4 Level set multiregion competition
	4.4.1 Representation of a partition into a fixed but arbitrary number of regions
	4.4.2 Curve evolution equations
	4.4.3 Level set implementation

	4.5 Multiregion level set segmentation as regularized clustering
	4.5.1 Curve evolution equations
	4.5.2 Level set implementation

	4.6 Embedding a partition constraint directly in the minimization equations
	4.6.1 Two-region segmentation: first order analysis
	4.6.2 Extension to multiregion segmentation
	4.6.3 Example

	References

	5 IMAGE MODELS
	5.1 Introduction
	5.2 Segmentation by maximizing the image likelihood
	5.2.1 The Gaussian model
	5.2.2 The Gamma image model
	5.2.3 Generalization to distributions of the exponential family
	5.2.4 The Weibull image Model
	5.2.5 The Complex Wishart Model
	5.2.6 MDL interpretation of the smoothness term coefficient
	5.2.7 Generalization to multiregion segmentation
	5.2.8 Examples

	5.3 Maximization of the mutual information between the segmentation and the image
	5.3.1 Curve evolution equation
	5.3.2 Statistical interpretation
	5.3.3 Algorithm summary

	5.4 Segmentation by maximizing the discrepancy between the regions image distributions
	5.4.1 Statistical interpretation
	5.4.2 The kernel width
	5.4.3 Algorithm summary
	5.4.4 Example

	5.5 Image segmentation using a region reference distribution
	5.5.1 Statistical interpretation
	5.5.2 Summary of the algorithms
	5.5.3 Example

	5.6 Segmentation with an overlap prior
	5.6.1 Statistical interpretation
	5.6.2 Example

	References

	6 REGION MERGING PRIORS
	6.1 Introduction
	6.2 Definition of a region merging prior
	6.3 A minimum description length prior
	6.4 An entropic region merging prior
	6.4.1 Entropic interpretation
	6.4.2 Segmentation functional
	6.4.3 Minimization equations
	6.4.4 A region merging interpretation of the level set evolution equations
	6.4.5 The weight of the entropic prior

	6.5 Example
	6.5.1 Segmentation with the entropic region merging prior
	6.5.2 Segmentation with the MDL region merging prior
	6.5.3 Computation time

	References

	7 MOTION BASED IMAGE SEGMENTATION 
	7.1 Introduction
	7.2 Piecewise constant MDL estimation and segmentation of optical flow
	7.2.1 Numerical implementation
	7.2.2 Example

	7.3 Joint segmentation and linear parametric estimation of optical flow
	7.3.1 Formulation
	7.3.2 Functional minimization
	7.3.3 Level set implementation
	7.3.4 Multiregion segmentation
	7.3.5 Examples

	References

	8 IMAGE SEGMENTATION ACCORDING TO THE MOVEMENT OF REAL OBJECTS
	8.1 Introduction
	8.2 The functionals
	8.3 Minimization of E1
	8.3.1 Minimization with respect to the screws of motion
	8.3.2 Minimization with respect to depth
	8.3.3 Minimization with respect to the active curve
	8.3.4 Algorithm
	8.3.5 Uncertainty of scale in 3D interpretation
	8.3.6 Multiregion segmentation
	8.3.7 Example

	8.4 Minimization of E2
	8.4.1 Minimization with respect to the essential parameter vectors
	8.4.2 Minimization with respect to optical flow
	8.4.3 Minimization with respect to 
	8.4.4 Recovery of regularized relative depth
	8.4.5 Algorithm
	8.4.6 Example

	8.5 Minimization of E3
	8.5.1 Example

	References

	9 APPENDIX 
	9.1 The Horn and Schunck optical flow estimation algorithm
	9.1.1 Iterative resolution by the Jacobi and Gauss-Seidel iterations
	9.1.2 Evaluation of derivatives

	9.2 The Aubert, Deriche, and Kornprobst algorithm
	9.3 Construction of stereoscopic images of a computed 3D interpretation
	References

	Index
	Cover
	Contents
	1 INTRODUCTION
	References

	2 INTRODUCTORY BACKGROUND
	2.1 Euler-Lagrange equations
	2.1.1 Definite integrals
	2.1.2 Variable domain of integration

	2.2 Descent methods for unconstrained optimization
	2.2.1 Real functions
	2.2.2 Integral functionals

	2.3 Level sets
	2.4 Optical flow
	2.4.1 The gradient equation
	2.4.2 The Horn and Schunck formulation
	2.4.4 Optical flow of rigid body motion
	2.4.3 The Aubert, Kornprobst, and Deriche formulation

	References

	3 BASIC METHODS
	3.1 The Mumford and Shah model
	3.1.1 Bayesian interpretation
	3.1.2 Graduated non convexity implementation

	3.2 The minimum description length method of Leclerc
	3.2.1  MDL and MAP
	3.2.2 The piecewise constant image model
	3.2.3 Numerical implementation

	3.3 The region competition algorithm
	3.3.1 Optimization

	3.4 A level set formulation of the piecewise constant Mumford-Shah model
	3.4.1 Curve evolution minimization of the Chan-Vese functional
	3.4.2 Level set representation of curve evolution
	3.4.3 Algorithm summary
	3.4.4 Numerical implementation details of the level set evolution equation

	3.5 Edge-based approaches
	3.5.1 The Kass-Witkin-Terzopoulos Snakes model
	3.5.2 The Geodesic active contour
	3.5.3 Examples

	References

	4 MULTIREGION SEGMENTATION
	4.1 Introduction
	4.2 Multiregion segmentation using a partition constraint functional term
	4.3 Multiphase level set image segmentation
	4.4 Level set multiregion competition
	4.4.1 Representation of a partition into a fixed but arbitrary number of regions
	4.4.2 Curve evolution equations
	4.4.3 Level set implementation

	4.5 Multiregion level set segmentation as regularized clustering
	4.5.1 Curve evolution equations
	4.5.2 Level set implementation

	4.6 Embedding a partition constraint directly in the minimization equations
	4.6.1 Two-region segmentation: first order analysis
	4.6.2 Extension to multiregion segmentation
	4.6.3 Example

	References

	5 IMAGE MODELS
	5.1 Introduction
	5.2 Segmentation by maximizing the image likelihood
	5.2.1 The Gaussian model
	5.2.2 The Gamma image model
	5.2.3 Generalization to distributions of the exponential family
	5.2.4 The Weibull image Model
	5.2.5 The Complex Wishart Model
	5.2.6 MDL interpretation of the smoothness term coefficient
	5.2.7 Generalization to multiregion segmentation
	5.2.8 Examples

	5.3 Maximization of the mutual information between the segmentation and the image
	5.3.1 Curve evolution equation
	5.3.3 Algorithm summary
	5.3.2 Statistical interpretation

	5.4 Segmentation by maximizing the discrepancy between the regions image distributions
	5.4.1 Statistical interpretation
	5.4.2 The kernel width

	5.5 Image segmentation using a region reference distribution
	5.4.3 Algorithm summary
	5.4.4 Example
	5.5.1 Statistical interpretation

	5.6 Segmentation with an overlap prior
	5.5.3 Example
	5.5.2 Summary of the algorithms
	5.6.2 Example
	5.6.1 Statistical interpretation

	References

	6 REGION MERGING PRIORS
	6.1 Introduction
	6.2 Definition of a region merging prior
	6.3 A minimum description length prior
	6.4 An entropic region merging prior
	6.4.1 Entropic interpretation
	6.4.2 Segmentation functional
	6.4.3 Minimization equations
	6.4.5 The weight of the entropic prior
	6.4.4 A region merging interpretation of the level set evolution equations

	6.5 Example
	6.5.1 Segmentation with the entropic region merging prior
	6.5.2 Segmentation with the MDL region merging prior
	6.5.3 Computation time

	References

	7 MOTION BASED IMAGE SEGMENTATION
	7.1 Introduction
	7.2 Piecewise constant MDL estimation and segmentation of optical flow
	7.2.1 Numerical implementation

	7.3 Joint segmentation and linear parametric estimation of optical flow
	7.2.2 Example
	7.3.1 Formulation
	7.3.2 Functional minimization
	7.3.4 Multiregion segmentation
	7.3.5 Examples
	7.3.3 Level set implementation

	References

	8 IMAGE SEGMENTATION ACCORDING TO THE MOVEMENT OF REAL OBJECTS
	8.1 Introduction
	8.2 The functionals
	8.3 Minimization of E1
	8.3.1 Minimization with respect to the screws of motion
	8.3.2 Minimization with respect to depth
	8.3.3 Minimization with respect to the active curve
	8.3.5 Uncertainty of scale in 3D interpretation
	8.3.4 Algorithm

	8.4 Minimization of E2
	8.4.1 Minimization with respect to the essential parameter vectors
	8.3.6 Multiregion segmentation
	8.3.7 Example
	8.4.2 Minimization with respect to optical flow
	8.4.4 Recovery of regularized relative depth
	8.4.3 Minimization with respect to
	8.4.5 Algorithm
	8.4.6 Example

	8.5 Minimization of E3
	8.5.1 Example

	References

	9 APPENDIX
	9.1 The Horn and Schunck optical flow estimation algorithm
	9.1.1 Iterative resolution by the Jacobi and Gauss-Seidel iterations

	9.2 The Aubert, Deriche, and Kornprobst algorithm
	9.1.2 Evaluation of derivatives

	9.3 Construction of stereoscopic images of a computed 3D interpretation
	References

	Index

