

Embedded Systems

Series Editors

Nikil D. Dutt

Peter Marwedel

Grant Martin

For further volumes:
http://www.springer.com/series/8563

Andreas Hansson · Kees Goossens

On-Chip Interconnect
with Aelite

Composable and Predictable Systems

123

Andreas Hansson
Research & Development ARM Ltd.
Cambridge, United Kingdom
andreas.hansson@arm.com

Kees Goossens
Eindhoven University of Technology
Eindhoven, The Netherlands
k.g.w.goossens@tue.nl

ISBN 978-1-4419-6496-0 e-ISBN 978-1-4419-6865-4
DOI 10.1007/978-1-4419-6865-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010937102

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1 Introduction . 1

1.1 Trends . 1

1.1.1 Application Requirements . 1

1.1.2 Implementation and Design . 3

1.1.3 Time and Cost . 4

1.1.4 Summary . 5

1.1.5 Example System . 6

1.2 Requirements . 9

1.2.1 Scalability . 10

1.2.2 Diversity . 10

1.2.3 Composability . 11

1.2.4 Predictability . 13

1.2.5 Reconfigurability . 14

1.2.6 Automation . 15

1.3 Key Components . 16

1.4 Organisation . 18

2 Proposed Solution . 19

2.1 Architecture Overview . 19

2.1.1 Contention-Free Routing . 21

2.2 Scalability . 22

2.2.1 Physical Scalability . 23

2.2.2 Architectural Scalability . 23

2.3 Diversity . 24

2.3.1 Network Stack . 25

2.3.2 Streaming Stack . 25

2.3.3 Memory-Mapped Stack . 26

2.4 Composability . 28

2.4.1 Resource Flow-Control Scheme . 28

2.4.2 Flow Control and Arbitration Granularities 29

2.4.3 Arbitration Unit Size . 32

2.4.4 Temporal Interference . 32

v

vi Contents

2.4.5 Summary . 33

2.5 Predictability . 33

2.5.1 Architecture Behaviour . 34

2.5.2 Modelling and Analysis . 34

2.6 Reconfigurability . 35

2.6.1 Spatial and Temporal Granularity . 35

2.6.2 Architectural Support . 37

2.7 Automation . 37

2.7.1 Input and Output . 38

2.7.2 Division into Tools . 38

2.8 Conclusions . 39

3 Dimensioning . 41

3.1 Local Buses . 41

3.1.1 Target Bus . 41

3.1.2 Initiator Bus . 44

3.2 Atomisers . 46

3.2.1 Limitations . 47

3.3 Protocol Shells . 47

3.3.1 Limitations . 49

3.4 Clock Domain Crossings . 49

3.5 Network Interfaces . 50

3.5.1 Architecture . 51

3.5.2 Experimental Results . 54

3.5.3 Limitations . 55

3.6 Routers . 56

3.6.1 Experimental Results . 58

3.6.2 Limitations . 60

3.7 Mesochronous Links . 60

3.7.1 Experimental Results . 62

3.7.2 Limitations . 62

3.8 Control Infrastructure . 62

3.8.1 Unified Control and Data . 63

3.8.2 Architectural Components . 64

3.8.3 Limitations . 67

3.9 Conclusions . 67

4 Allocation . 69

4.1 Sharing Slots . 73

4.2 Problem Formulation . 76

4.2.1 Application Specification . 76

4.2.2 Network Topology Specification . 79

4.2.3 Allocation Specification . 81

4.2.4 Residual Resource Specification . 82

Contents vii

4.3 Allocation Algorithm . 84

4.3.1 Channel Traversal Order . 85

4.3.2 Speculative Reservation . 86

4.3.3 Path Selection . 89

4.3.4 Refinement of Mapping . 93

4.3.5 Slot Allocation . 93

4.3.6 Resource Reservation . 97

4.3.7 Limitations . 98

4.4 Experimental Results . 99

4.5 Conclusions . 101

5 Instantiation . 103

5.1 Hardware . 104

5.1.1 SystemC Model . 105

5.1.2 RTL Implementation . 106

5.2 Allocations . 107

5.3 Run-Time Library . 108

5.3.1 Initialisation . 109

5.3.2 Opening a Connection . 111

5.3.3 Closing a Connection . 113

5.3.4 Temporal Bounds . 115

5.4 Experimental Results . 115

5.4.1 Setup Time . 116

5.4.2 Memory Requirements . 117

5.4.3 Tear-Down Time . 118

5.5 Conclusions . 119

6 Verification . 121

6.1 Problem Formulation . 124

6.1.1 Cyclo-static Dataflow (CSDF) Graphs 125

6.1.2 Buffer Capacity Computation . 127

6.2 Network Requirements . 128

6.3 Network Behaviour . 129

6.3.1 Slot Table Injection . 129

6.3.2 Header Insertion . 130

6.3.3 Path Latency . 131

6.3.4 Return of Credits . 131

6.4 Channel Model . 132

6.4.1 Fixed Latency . 132

6.4.2 Split Latency and Rate . 134

6.4.3 Split Data and Credits . 134

6.4.4 Final Model . 134

6.4.5 Shell Model . 135

6.5 Buffer Sizing . 135

viii Contents

6.5.1 Modelling the Application . 136

6.5.2 Synthetic Benchmarks . 137

6.5.3 Mobile Phone SoC . 139

6.5.4 Set-Top Box SoC . 139

6.6 Conclusions . 140

7 FPGA Case Study . 143

7.1 Hardware Platform. 144

7.1.1 Host Tile . 145

7.1.2 Processor Tiles . 146

7.2 Software Platform . 147

7.2.1 Application Middleware . 147

7.2.2 Design Flow . 148

7.3 Application Mapping . 149

7.4 Performance Verification . 151

7.4.1 Soft Real-Time . 151

7.4.2 Firm Real-Time . 152

7.5 Conclusions . 154

8 ASIC Case Study . 157

8.1 Digital TV . 157

8.1.1 Experimental Results . 159

8.1.2 Scalability Analysis . 162

8.2 Automotive Radio . 165

8.2.1 Experimental Results . 166

8.2.2 Scalability Analysis . 167

8.3 Conclusions . 168

9 Related Work . 171

9.1 Scalability . 171

9.1.1 Physical Scalability . 171

9.1.2 Architectural Scalability . 172

9.2 Diversity . 173

9.3 Composability . 174

9.3.1 Level of Composability . 175

9.3.2 Enforcement Mechanism . 175

9.3.3 Interference . 176

9.4 Predictability . 177

9.4.1 Enforcement Mechanism . 177

9.4.2 Resource Allocation . 177

9.4.3 Analysis Method . 178

9.5 Reconfigurability . 178

9.6 Automation . 179

Contents ix

10 Conclusions and Future Work . 181

10.1 Conclusions . 181

10.2 Future Work . 183

A Example Specification . 185

A.1 Architecture . 186

A.2 Communication . 187

References . 191

Glossary . 201

Index . 205

Chapter 1

Introduction

Embedded systems are rapidly growing in numbers and importance as we crowd

our living rooms with digital televisions, game consoles and set-top boxes and our

pockets (or maybe handbags) with mobile phones, digital cameras and personal

digital assistants. Even traditional PC and IT companies are making an effort to

enter the consumer-electronics business [5] with a mobile phone market that is four

times larger than the PC market (1.12 billion compared to 271 million PCs and

laptops in 2007) [177]. Embedded systems routinely offer a rich set of features, do

so at a unit price of a few US dollars, and have an energy consumption low enough

to keep portable devices alive for days. To achieve these goals, all components of

the system are integrated on a single circuit, a System on Chip (SoC). As we shall

see, one of the critical parts in such a SoC, and the focus of this work, is the on-chip

interconnect that enables different components to communicate with each other.

In this chapter, we start by looking at trends in the design and implementation of

SoCs in Section 1.1. We also introduce our example system that serves to demon-

strate the trends and is the running example throughout this work. This is followed

by an overview of the key requirements in Section 1.2. Finally, Section 1.3 lists the

key components of our proposed solution and Section 1.4 provides an overview of

the remaining chapters.

1.1 Trends

SoCs grow in complexity as an increasing number of independent applications are

integrated on a single chip [9, 50, 55, 146, 177]. In the area of portable consumer

systems, such as mobile phones, the number of applications doubles roughly every

2 years, and the introduction of new technology solutions is increasingly driven by

applications [80, 88]. With increasing application heterogeneity, system-level con-

straints become increasingly complex and application requirements, as discussed

next, become more multifaceted [152].

1.1.1 Application Requirements

Applications can be broadly classified into control-oriented and signal-processing
(streaming) applications. For the former, the reaction time is often critical [144].

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_1, C© Springer Science+Business Media, LLC 2011

1

2 1 Introduction

Performance gains mainly come from higher clock rates, more deeply pipelined

architectures and instruction-level parallelism. Control-oriented applications fall

outside the scope of this work and are not discussed further. Signal-processing

applications often have real-time requirements related to user perception [144],

e.g. video and audio codecs, or requirements dictated by standards like DVB, DAB

and UMTS [87, 131]. For signal-processing applications, an increasing amount of

data must be processed due to growing data sets, i.e. higher video resolutions, and

increasing work for the data sets, i.e. more elaborate and computationally intensive

coding schemes [144]. As a result, the required processing power is expected to

increase by 1000 times in the next 10 years [21] and the gap between the process-

ing requirement and the available processing performance of a single processor is

growing super-linearly [88].

Delivering a certain performance is, however, not enough. It must also be

performed in a timely manner. The individual applications have different real-

time requirements [33]. For firm real-time applications, e.g. a Software-Defined

Radio [131] or the audio post-processing filter, illustrated in Fig. 1.1, deadline

misses are highly undesirable. This is typically due to standardisation, e.g. upper

bounds on the response latency in the aforementioned wireless standards [87], or

perception, e.g. steep quality reduction in the case of misses. Note that firm real-time

only differs from hard real-time, a term widely used in the automotive and aerospace

domain, in that it does not involve safety aspects. Soft real-time applications, e.g. a

video decoder, can tolerate occasional deadline misses with only a modest quality

degradation. In addition, non-real-time applications have no requirements on their

temporal behaviour, and must only be functionally correct.

task task task

task

task

task

input stream

input stream

audio post-processing

application

use-case

M-JPEG application

MPEG-1 application

output stream

to display

output stream

to speakers

Fig. 1.1 Application model

Each application has its own set of requirements, but the SoC typically executes

many applications concurrently, as exemplified by Fig. 1.1. Furthermore, applica-

tions are started and stopped at run time by the user, thus creating many different

use-cases, i.e. combinations of concurrent applications [72, 138]. The number of

use-cases grows roughly exponentially in the number of applications, and for every

1.1 Trends 3

use-case, the requirements of the individual applications must be fulfilled. More-

over, applications often span multiple use-cases and should not have their require-

ments violated when other applications are started or stopped [72, 156]. Going

from the trends in application requirements, we now continue by looking at how

the implementation and design of SoCs is affected.

1.1.2 Implementation and Design

As exemplified in Fig. 1.1, applications are often split into multiple tasks running

concurrently, either to improve the power dissipation [166] or to exploit task-level

parallelism to meet real-time requirements that supersede what can be provided by a

single processor [172]. The tasks are realised by hardware and software Intellectual
Property (IP), e.g. accelerators, processors and application code. For an optimum

balance between performance, power consumption, flexibility and efficiency, a het-
erogeneous mix of processing elements that can be tuned to the application domain

of the system is required [21]. This leads to systems with a combination of general-

purpose processors, digital-signal processors, application-specific processors and

dedicated hardware for static parts [144]. Different IP components (hardware and

software) in the same system are often developed by unrelated design teams [89],

either in-house or by independent IP vendors [51]. The diversity in origin and

requirements lead to applications using a diverse set of programming models and

communication paradigms [117].

The rising number of applications and growing need for processing power lead to

an increased demand for hardware and software. Figure 1.2 shows the well-known

hardware design gap, with capability of technology doubling every 18 months

(+ 60% annually), and hardware productivity growing more slowly, doubling every

24 months (+ 40% annually). The hardware design productivity relies heavily on

reuse of IP and platform-based design [88], and improved over the last couple of

years by filling the silicon with regular hardware structures, e.g. memory. Still,

1
9
8
1

1
9
8
5

1
9
8
9

1
9
9
3

1
9
9
7

2
0
0
1

2
0
0
5

2
0
0
9

2
0
1
3

2
0
1
7

HW/SW design gap

HW design gap

Moore’s law

log

time

HW prod. (+ 20%/yr)

SW prod. (+ 15%/yr)

HW prod. (+ 40%/yr)
(filling with IP and memory)

Tech. capab. (+ 60%/yr)

Additional SW required for HW (+ 140%/yr)

Fig. 1.2 Hardware (HW) and software (SW) design gaps [89]

4 1 Introduction

systems are not fully exploiting the number of transistors per chip possible with

today’s technology, and the gap continues to grow [80].

The increasing number of transistors on a SoC offers more integration pos-

sibilities, but the diminishing feature size complicates modularity and scalabil-

ity at the physical level [103]. Global synchronisation is becoming prohibitively

costly, due to process variability and power dissipation, and the distribution of

low-skew clock signals already accounts for a considerable share of power con-

sumption and die area [89, 139]. Moreover, with a growing chip size and dimin-

ishing feature size, signal delay is becoming a larger fraction of the clock-cycle

time [35], and cross-chip signalling can no longer be achieved in a single clock

cycle [89, 162].

In addition to the consequences at the physical level, the growing number of IPs

also has large effects at the architectural level. The introduction of more IP promises

more parallelism in computational and storage resources. This, however, places

additional requirements on the resources involved in communication that have to

offer more parallelism as well.

While the hardware design gap is an important issue, the hardware/software

design gap is far more alarming. This gap is quickly growing as the demand for soft-
ware is currently doubling every 10 months (+140%/year), with recent SoC designs

featuring more than a million lines of code [80]. The large amount of software is a

response to evolving standards and changing market requirements, requiring flexible
and thus programmable platforms. Despite much reuse of software too [189], the

productivity for hardware-dependent software lags far behind hardware productivity

and only doubles every 5 years (+15%/year).

A dominant part of their overall design time is spent in verification, thus limiting

productivity. New designs greatly complicate the verification process by increas-

ing the level of concurrency and by introducing additional application require-

ments [89]. Already, many of the bugs that elude verification relate to timing and

concurrency issues [189]. The problem is further worsened by a growing sharing

of resources. As a result of the sharing, applications cannot be verified in isola-

tion, but must first be integrated and then verified together. The monolithic analysis

leads to an explosion of the behaviours to cover, with negative impact on verifica-

tion time [166], whether done by simulation of formal analysis. Furthermore, the

dependencies between applications severely complicate the protection and concur-

rent engineering of IP, which negatively affects the time and cost of design.

1.1.3 Time and Cost

In addition to the problems related to the ability to design current and future systems,

these systems must also be designed with a low cost and a low Time To Market
(TTM), as illustrated in Fig. 1.3. Portable consumer SoCs have as-soon-as-possible
requirements on TTM [89]. The requirement is largely a response to a diminishing

product life time, where consumers replace old products much more frequently due

1.1 Trends 5

+
m

o
n
e
y
 fl

o
w

price

erodes

time to

market

start

design

start

selling

end of

life

first

profit

timelife time

decreasescosts

grow–

Fig. 1.3 Product life cycle

to rapid technology changes [89]. Mobile phone manufacturers, for example, release

two major product lines per year compared with one just a few years ago [80].

Furthermore, as the product life time decreases, the units sold must still generate

enough profit to cover the rising costs of manufacturing and design.

Profit is a major concern, as the manufacturing Non-Recurring Engineering
(NRE) cost for a contemporary SoC is in the order of $1M, and design NRE cost

routinely reaches $10M to $100M [112]. Traditionally, the rising costs are miti-

gated by high volumes and a high degree of system integration of heterogeneous

technologies [88]. However, an increasing portion of the NRE cost is going into

design and test and in 2007, for the first time in the history of SoC design, software

design cost exceeded hardware design cost, and now accounts for 80% or more

of the embedded systems development cost [89]. Thus, we see a steep increase

in NRE cost for SoC designs which is not compensated for by higher volumes

or higher margins. On the contrary, volumes are increasingly dependent on a low

TTM, and margins decrease as prices erode quicker over time. The International
Technology Roadmap for Semiconductors (ITRS) [89] goes as falr as saying that the
cost of designing the SoC is the greatest threat to continuation of the semiconductor
road map.

1.1.4 Summary

To summarise the trends, we see growing needs for functionality and performance,

coupled with increasingly diverse requirements for different applications. Addition-

ally, applications are becoming more dynamic, and are started and stopped at run

time by the user. The diversity in functionality and requirements is also reflected

in the architecture, as the applications are implemented by heterogeneous hardware

and software IP, typically from multiple independent design teams. The increasing

number of applications and resources also lead to an increased amount of resource

sharing, both within and between use-cases. We illustrate all these trends in the fol-

lowing section, where we introduce an example system that we refer to throughout

this work.

6 1 Introduction

1.1.5 Example System

The system in Fig. 1.4 serves as our design example. Despite its limited size, this

system is an example of a software-programmable, highly-parallel Multi-Processor

SoC (MPSoC), as envisioned by, e.g., [80, 88, 112]. The system comprises a

host processor, a number of heterogeneous processing engines, peripherals and

memories. Three processors, a Very Long Instruction Word (VLIW), an ARM and

a µBlaze,1 are connected to a memory-mapped video subsystem, an embedded

SRAM, an audio codec and a peripheral tile with a character display, push buttons

and a touch-screen controller. The host controls all the IPs and the interconnect,
which binds them all together.

clkSRAM

SRAM

ARMµBlazehost

clkperipheral

peripheral

memory-mapped target streaming target

streaming initiatormemory-mapped initiator

clkvideoclkaudio

VLIW

videoaudio

interconnect

clkhost clkµBlaze clkARM clkVLIW

Fig. 1.4 Example system

For our example we assume a static set of applications, defined at design time,

with tasks already statically mapped onto hardware IPs. This assumption is in line

with the design flow proposed in this work. We consider six applications running on

this system, as illustrated in Fig. 1.5. First, the two audio applications, both with firm

real-time requirements, as failure to consume and produce samples at 48 kHz causes

noticeable clicks and sound distortion. Second, a Motion-JPEG (M-JPEG) decoder

and a video game. These applications both have soft real-time requirements, as they

have a frame rate that is desirable, but not critical, for the user-perceived quality.

Lastly, the two applications that run on the host. In contrast to the previous appli-

cations, they have no real-time constraints and only need to be functionally correct.

In Fig. 1.5, the individual tasks of the applications are shown above and below the

IPs to which they are mapped, and the communication between IPs is indicated by

1 The names are merely used to distinguish the three processors. Their actual architecture is of no
relevance for the example. The three processor families have, however, been demonstrated together
with the interconnect proposed in this work.

1.1 Trends 7

filter

DACADC

videoSRAMaudioperiph.

VLIWARMµBlazehost

(a)

DAC

RTTTL

videoSRAMaudioperiph.

VLIWARMµBlazehost

(b)

VLD IDCT CC

videoSRAMaudioperiph.

VLIWARMµBlazehost

(c)

engine

videoSRAMaudioperiph.

VLIWARMµBlazehost

(d)

status

videoSRAMaudioperiph.

VLIWARMµBlazehost

(e)

init

videoSRAMaudioperiph.

VLIWARMµBlazehost

(f)

Fig. 1.5 Example applications and their mappings. (a) Audio filter application. (b) Ring-tone
player application. (c) M-JPEG decoder application. (d) Video game application. (e) Status and
control application. (f) Initialisation application

arrows. The solid-and open-headed arrows denote requests and responses, respec-

tively. We now discuss the different applications in-depth.

The audio filter task runs on the µBlaze.2 Input samples are read from the audio

line-in Analog to Digital Converter (ADC) and a reverb effect is applied by adding

attenuated past output samples that are read back from the SRAM. The output is

written back to the line-out Digital to Analog Converter (DAC) and stored in the

SRAM for future use. The Ring Tone Text Transfer Language (RTTTL) player,

2 For brevity, we assume that the processors have local instruction memories and leave out the
loading of these memories. In Chapter 7 we demonstrate how loading of instructions is taken into
account.

8 1 Introduction

running on the same µBlaze, interprets and generates the waveforms corresponding

to ring-tone character strings and sends the output to the audio line-out.

The software M-JPEG decoder is mapped to the ARM and VLIW. The ARM

reads input from SRAM and performs the Variable Length Decoding (VLD), includ-

ing the inverse zig-zag and quantisation, before it writes its output to the local mem-

ory of the VLIW. The VLIW then carries out the Inverse Discrete Cosine Transform

(IDCT) and Colour Conversion (CC) before writing the decoded pictures to the

video output, eventually to be presented to the display controller. Both the ARM

and the VLIW make use of distributed shared memory for all communication, and

rely on memory consistency models to implement synchronisation primitives used

in inter-processor communication. The other soft real-time application in our sys-

tem is a video game. The ARM is responsible for rendering the on-screen contents

and updating the screen based on user input. Memory-mapped buttons and timers

in the peripheral tile are used to provide input and calibrate the update intervals,

respectively.

Lastly, there are two non-real-time applications that both involve the host. The

initialisation application supplies input data for the decoder into the shared SRAM,

and initialises sampling rates for the audio. When the system is running, the status

and control application is responsible for updating the character display with status

information and setting the appropriate gain for the audio input and output.

The individual applications are combined into use-cases, based on constraints

as shown in Fig. 1.6a. An edge between two applications means that they may run

concurrently. From these constraints we get a set of use-cases, determined by the

cliques (every subgraph that is a complete graph) formed by the applications. The

number of use-cases thus depends on the constraints, and is typically much larger

than the number of applications. Figure 1.6b exemplifies how the user could start

and stop applications dynamically at run time, creating six different use-cases. Tra-

ditionally, use-cases are optimised independently. However, as seen in the figure,

applications typically span multiple use-cases, e.g. the filter application continues

to run as the decoder is stopped and the game started. Even during such changes,

the real-time requirements of the filter application must not be violated.

status

filter

gameplayer

init

(a)

time

filter filter

decoder

status

init

use-case transition

(b)

decoder

player player

game

Fig. 1.6 Example use-cases. (a) Example use-case constraints. (b) Example use-case transitions

1.2 Requirements 9

Already in this small system, we have multiple concurrent applications, and a
mix of firm-, soft- and non-real-time requirements. The tasks of the applications are

distributed across multiple heterogeneous resources (as in the case of the decoder

application), and the resources in turn (in this case the interconnect, SRAM and

peripheral tile) are shared between applications. The hardware IPs make use of both

bi-directional address-based memory-mapped protocols such as DTL [49], AXI [8],

OCP [147], AHB [2], PLB [160], Avalon-MM [4] (on the VLIW, ARM, µBlaze,

video, SRAM and peripheral) and uni-directional streaming protocols such as DTL

PPSD [49], Avalon-ST [4] and FSL [54] (on the µBlaze and audio). Additionally,

the system has multiple clock domains, as every IP (and also the interconnect)

resides in a clock domain of its own.

Having introduced and exemplified the trends in embedded systems, we continue

by looking at the consequences of the system design and implementation.

1.2 Requirements

The trends have repercussions on all parts of the system, but are especially important

for the design and implementation of the interconnect. The interconnect is a major

contributor to the time required to reach timing closure on the system [89]. On the

architectural level, the increasing number of IPs translates directly to a rapidly grow-

ing parallelism that has to be delivered by the interconnect in order for performance

to scale. The interconnect is also the location where the diverse IP interfaces must

interoperate. Concerning the increasing integration and verification complexity, the

interconnect plays an important role, as it is the primary locus of the interactions

between applications. The interconnect is also central in enabling real-time guaran-

tees for applications where the tasks are distributed across multiples IPs. The impact

the interconnect has makes it a key component of the MPSoC design [112, 162].

We cannot change the applications or the innovation speed, but instead can look

at simplifying the design and verification process through the introduction of aelite,

a new on-chip interconnect. We believe that the challenges introduced require a

platform template that offers:

• scalability at the physical and architectural level (Section 1.2.1), allowing a large

number of applications and IPs to be integrated on the SoC;

• diversity in IP interfaces and application communication paradigms (Sec-

tion 1.2.2) to accommodate a variety of application behaviours implemented

using heterogeneous IP from multiple vendors;

• composability of applications (Section 1.2.3), enabling independent design and

verification of individual applications and applications as a unit of reuse;

• predictability with lower bounds on performance (Section 1.2.4), enabling formal

analysis of the end-to-end application behaviour for real-time applications;

• reconfigurability of the hardware platform (Section 1.2.5), accommodating all

use-cases by enabling dynamic starting and stopping of applications; and

10 1 Introduction

• automation of platform mapping and synthesis (Section 1.2.6) to help the

designer go from high-level requirements to an implementation.

We now explain each of the requirements in more detail before detailing how this

work addresses them.

1.2.1 Scalability

The growing number of applications leads to a growing number and larger hetero-

geneity of IPs, introducing difficulties in timing validation and in connecting blocks

running at different speeds [12]. This calls for scalability at the physical level, i.e.

the ability to grow the chip size without negatively affecting the performance.

To enable components which are externally delay insensitive [35], Globally

Asynchronous Locally Synchronous (GALS) design methods are used to decouple

the clocks of the interconnect and the IPs [27, 62, 154], thus facilitating system inte-

gration [103]. Active rather than combinational interconnects are thus needed [201]

to decouple computation and communication [96, 173], i.e. through the introduction

of delay-tolerant protocols for the communication between IPs.

GALS at the level of IPs is, however, not enough. The interconnect typically

spans the entire chip, and existing bus-based interconnects have many global wires

and tight constraints on clock skew. With the increasing die sizes, it also becomes

necessary to relax the requirements on synchronicity within the interconnect [154].

Networks on Chip (NoC) alleviate those requirements by moving from synchronous

to mesochronous [29, 78, 154] or even asynchronous [12, 27, 165] communication.

To achieve scalability at the physical level we require GALS design at the level of
independent IPs, and a mesochronous (or asynchronous) interconnect.

Physical scalability is of no use unless the platform is scalable at the archi-
tectural level, i.e. supports a growing number of IPs and logical interconnections

without negatively affecting the performance. Existing bus-based solutions address

the problem by introducing more parallelism with outstanding transactions, and

improvements such as bridges and crossbars [162]. NoCs extend on these concepts

with their modular design, reuse, homogeneity and regularity [19, 43], offering high

throughput and good power efficiency [12]. For architectural scalability we require
a modular interconnect without inherent bottlenecks.

Scalability at the physical and architectural levels is necessary but not enough.

The growing number of IPs and applications leads to a growing diversity in inter-

faces and programming models that the interconnect must accommodate.

1.2.2 Diversity

As we have seen, applications have diverse behaviours and requirements. Applica-

tions like the filter in our example system have firm real-time requirements, but also

a fairly static behaviour. The M-JPEG player, on the other hand, is highly dynamic

1.2 Requirements 11

due to the input-dependent behaviour. This is also reflected in its more relaxed soft

real-time requirements. To facilitate application diversity, we require that appli-
cations are not forced to fit in a specific formal model, e.g. have design-time

schedules.

To facilitate the increased parallelism, diversity is also growing in the program-

ming models and communication paradigms used by different IPs. SoCs are evolv-

ing in the direction of distributed-memory architectures, where the processor tiles

have local memories, thus offering high throughput and low latency [140, 180],

coupled with a low power consumption [141]. As the distributed nature of the

interconnect leads to increased latencies, it is also important that the program-

ming model is latency tolerant, i.e. enables maximal concurrency. In addition

to memory-mapped communication, streaming communication (message passing)

between IPs is growing in importance to alleviate contention for shared memories

and is becoming a key aspect in achieving efficient parallel processing [112]. Hence,

we require that the interconnect offers both streaming (message passing) and dis-
tributed shared memory communication, and an established memory consistency
model.

The hardware IPs from different vendors use different interfaces, e.g. AHB [2] or

AXI [8] for processors from ARM, PLB [160] for the µBlaze family from Xilinx,

and DTL [49] for IP from Philips and NXP. To enable the use of existing IP, we
require that the interconnect supports one or more industry-standard interfaces,
and that it is easy to extend to future interfaces.

Lastly, there is also diversity in how the interconnect hardware and software is

used by the system designer. That is, the tools used for, e.g., compilation, elab-

oration, simulation and synthesis differ between users, locations and target plat-

forms. As a consequence, we require that the interconnect uses standard hardware-
description languages and programming languages for the interconnect hardware
and software, respectively.

Not only are applications diverse, they also share resources. Hence, for verifica-

tion of their requirements, there is a need to decouple their behaviours as described

next.

1.2.3 Composability

With more applications and more resources, the level of resource sharing is increas-

ing. The increased sharing causes more application interference [143, 166], causing

systems to behave in what has been described as mysterious ways [55]. In the pres-

ence of functional and non-functional application requirements the interference has

severe implications on the effort involved in verifying the requirements, and increas-

ing dynamism within and between applications exacerbates the problem [152].

Although individual IPs are pre-verified, the verification is usually done in a lim-

ited context, with assumptions that may not hold after integration. As a result,

the complexity of system verification and integration grows exponentially with the

12 1 Introduction

number of applications, far outgrowing the incremental productivity improvement

of IP design and verification [166], and making system-level simulation unten-

able [152]. Higher levels of abstraction, e.g. transaction-level modelling, mitigate

the problem but may cause bugs to disappear or give inaccurate performance mea-

sures. The high-level models are thus not able to guarantee that the application

requirements are met. Instead, we need to develop the technology that allows appli-

cations to be easily composed into working systems, independent of other applica-

tions in the system [9, 77, 90, 146].

Composability is a well-established concept in systems used in the automotive

and aerospace domains [6, 169]. In a composable platform one application can-

not change the behaviour of another application.3 Since application interference is

eliminated, the resources available before and after integration can only be different

due to the intrinsic platform uncertainty, caused by, e.g., clock domain crossings.

Composability enables design and debugging of applications to be done in isolation,

with higher simulation speed and reduced debugging scope [77]. This is possible as

only the resources assigned to the application in question have to be included in the

simulation. Everything that is not part of the application can be safely excluded. As

a result, probabilistic analysis, e.g. average-case performance or deadline miss rate,

during the application design gives a good indication of the performance that is to be

expected after integration. Application composability also improves IP protection,

as the functional and temporal behaviour before and after integration is independent

of other applications. Consequently, there is never a reason blame other applications

for problems, e.g. violated requirements in the form of bugs of deadline misses. As

a result, the IP of different Independent Software Vendors (ISV) do not have to be

shared, nor the input stimuli.

Application composability places stringent requirements on the management of

all resources that are shared by multiple applications, in our case the intercon-

nect.4 Composable sharing of resources requires admission control coupled with

non-work-conserving arbitration [205] between applications, where the amount of

resources and time resources are available, is not influenced by other applications.

For a shared memory controller, for example, the exact number of cycles required to

finish a request must depend only on the platform and the cycle in which the request

is made (and previous requests from the same application), and not the behaviour of

other applications [109].

With application composability, the quality of service, e.g. the deadline miss

rate, and bugs, e.g. due to races, are unaffected by other applications. We already

expect this type of composable behaviour on the level of individual transistors, gates,

arithmetic logic units and processors [166]. Taking it one step further, in this work

we require that applications can be viewed as design artefacts, implemented and
verified independently, and composed into systems.

3 We return to discuss other aspects of composability in Chapter 9, when reviewing related work.
4 Sharing of processors between applications is outside the scope of this work, a reasonable limi-
tation that is elaborated on in Chapter 7 when discussing our example system.

1.2 Requirements 13

Composability addresses the productivity and verification challenge by a divide-
and-conquer strategy. It does, however, not offer any help in the verification of the

real-time requirements of the individual applications. For this purpose, we need

temporal predictability [14].

1.2.4 Predictability

We refer to an architectural component as predictable when it is able to guarantee

(useful) lower bounds on performance, i.e. minimum throughput and maximum

latency [63, 90], given to an application. Predictability is needed to be able to

guarantee that real-time requirements are met for firm real-time applications, thus

delivering, for example, a desired user-perceived quality or living up to the latency

requirements in wireless standards.

Note that predictability and composability are orthogonal properties [77]. For an

illustrative example, consider our example system, and then in particular the filter

and decoder applications. If the interconnect and SRAM use composable arbitration,

as later described in Chapter 3, but the µBlaze and ARM are running a non-real-time

operating system, then the platform is composable and not predictable, because

the applications do not influence each other, but the operating system makes it

difficult, if not impossible, to derive useful bounds on the worst-case behaviour.

In contrast, if the µBlaze and ARM are used without any caches and operating

systems, but the SRAM is shared round robin, then the platform is predictable
and not composable. This is due to the fact that the applications influence each

other in the shared resource, but lower bounds on the provided service can be

computed.

Predictable resources are, however, not enough. To determine bounds on the tem-

poral behaviour of an application, the architecture and resource allocations must

be modelled conservatively according to a specific Model of Computation (MoC).

Moreover, also the application (or rather its tasks) must fit in a MoC that allows ana-

lytical reasoning about relevant metrics. Using predictability for application-level

analysis thus places limitations on the application. In addition, the MoC must be

monotonic [161], i.e. a reduced task execution time cannot result in a reduction of

the throughput or increased latency of the application [161]. Without monotonicity,

a decrease of the execution time at the task level may cause an increase at the

application level [64]. To benefit from the bounds provided by a predictable plat-

form, the MoC (but not the implementation itself) must be free of these types of

scheduling anomalies. For application-level predictability we require that the inter-
connect guarantees a minimum throughput bound and maximum latency bound and
that the temporal behaviour of the interconnect can be conservatively captured in a
monotonic MoC.

To enable composability and predictability in the presence of multiple use-cases,

the allocations of resources to applications must be reconfigurable as applications

are started and stopped.

14 1 Introduction

1.2.5 Reconfigurability

As already illustrated in Fig. 1.6, applications are started and stopped at run

time, creating many different use-cases. Reconfigurability is thus required to allow

dynamic behaviour between applications, i.e. to modify the set of running applica-

tions as illustrated in Fig. 1.7. Moreover, applications must be started and stopped

independently of one another [72, 101] to maintain composability (and predictabil-

ity if implemented by the application in question) during reconfiguration. Conse-

quently, we require that one application can be started and stopped without affecting
the other applications of the system.

filter

game

gaming use-casevideo use-case

MPEG-1

filter

M-JPEG

filter

reconfigurability (1.2.5)
offers run-time

addition and removal

of virtual platforms

composability (1.2.3)
creates a virtual platform

per application

predictability (1.2.4)
enables bounds on

the temporal behaviour

within a virtual platform

Fig. 1.7 Reconfigurable composability and predictability

The problem of reconfigurability, however, does not entail only the allocation of

resources. The allocations must also be instantiated at run time in a safe manner.

Internally, programming the interconnect involves modifications of the registers in

individual components [28, 46]. To mitigate the complexity of reconfiguration, the
abstraction level must be raised and provide an interface between the platform and

the applications [111, 115]. Moreover, it is crucial that the changes are applied in

such a way as to leave the system in a consistent state, that is, a state from which

the system can continue processing normally rather than progressing towards an

error state [102]. Simply updating the interconnect registers could cause out-of-

order delivery or even no delivery, with an erroneous behaviour, e.g. deadlock as

the outcome. In addition to correctness, some application transitions require an
upper bound on the time needed for reconfiguration. Consider for example the filter

and ring-tone player in our example system where a maximum period of silence

is allowed in the transition between the two applications. To accommodate these

applications, we require a run-time library that hides the details of the architecture
and provides correct and timely reconfiguration of the interconnect.

As we have seen, a scalable, diverse, composable, predictable and reconfigurable

on-chip interconnect addresses many problems, but also pushes decisions to design

time. However, the design effort cannot be increased, and must remain at current

1.2 Requirements 15

levels for the foreseeable future [88]. Already today, meeting schedules is the num-

ber one concern for embedded developers [189]. As a consequence, the degree of

automation, particularly in verification and implementation, must be increased.

1.2.6 Automation

Automation is central for the functional scalability of the interconnect, i.e. the abil-

ity to scale with increasing requirements, and is primarily needed in three areas.

First, in platform dimensioning and resource allocation. That is, going from high-

level requirements and constraints, formulated by the application designers to a

specification of interconnect architecture and allocations. Second, in instantiation
of the interconnect hardware and software, e.g. going from the specification to a

functional system realisation in the form of SystemC or RTL HDL. Third, in the

evaluation of the system by automating performance analysis and cost assessment.

Throughout these steps, it is important that the automated flow allows user interac-

tion at any point.

Deferring decisions to run time typically enables higher performance,5 but also

makes real-time analysis more difficult, if not impossible [109]. Compare, for exam-

ple, the compile-time scheduling of a VLIW with that of a super-scalar out-of-order

processor. Similar to the VLIW, the predictability and composability in our platform

is based on hard resource reservations made at design and compile time. Therefore,

platform mapping, essential for all SoCs [89], is even more prominent in our system.

As part of the interconnect design flow, we require a clear unambiguous way to
express the application requirements. Furthermore, we require that the design flow
is able to automatically turn the requirements into an interconnect specification by

performing the resource dimensioning and resource allocation.

Once we have a specification of the hardware and software that together con-

stitute the platform, it must be instantiated. This involves turning the hardware

specification into executable models or industry-standard hardware description lan-

guages, to be used by, e.g., Field-Programmable Gate Array (FPGA) or Application-

Specific Integrated Circuit (ASIC) synthesis tools. Additionally, the hardware must

be accompanied by the software libraries required to program and control the hard-

ware, and a translation of the allocation into a format useful to these libraries. Fur-

thermore, this software must be portable to a wide range of host implementations,

e.g. different processors and compilers, and be available for simulation as well as

actual platform instances. Thus, we require that the design flow instantiates a com-
plete hardware and software platform, using industry-standard languages.

Lastly, automation is required to help in the evaluation of the interconnect

instance. The design flow must make it possible to evaluate application-level per-

formance, either through simulation or formal analysis, and do so at multiple levels,

5 More (accurate) information is available, but with smaller scope (local). Run-time processing is
also usually (much) more constrained than design-time processing in terms of compute power.

16 1 Introduction

ranging from transaction-level to gate-level. It is also essential that the tools enable

the designer to assess the cost of the system, for example, by providing early area

estimates. To enable the efficient design, use and verification of tomorrow’s billion-

transistor chips, we require that the interconnect offers both (conservative) formal
models and simulation models, and that the latter enable a trade-off between speed
and accuracy.

1.3 Key Components

To address the aforementioned requirements, in this work, we:

• Identify the requirements for composability and predictability in multi-

application SoCs [77] (this chapter).

• Propose a complete on-chip interconnect architecture [69] with local buses,

protocol shells, clock bridges, network interfaces (NI), routers and links [78],

together with a control infrastructure for run-time reconfiguration [68]

(Chapter 3).

• Provide a resource allocation algorithm for composability and predictability [70,

74] across multiple use-cases [72], coupled with sharing of time slots [71] within

a use-case (Chapter 4).

• Deliver run-time libraries for the run-time instantiation of the resource alloca-

tions [68], ensuring correctness and giving temporal bounds on reconfiguration

operations (Chapter 5).

• Present formal models of a network channel, and show how to use them for buffer

sizing [75], and for application-level performance guarantees [79] (Chapter 6).

• Demonstrate the applicability of this work by constructing an example multi-
processor system instance, with a diverse set of applications and computational

cores, and map it to an FPGA [77] (Chapter 7).

• Evaluate the proposed interconnect and design flow using two large-scale multi-

core consumer applications (Chapter 8)

The final part of the proposed aelite interconnect is the design flow depicted in

Fig. 1.8. As shown in the figure, this work takes as its starting point the specification

of the physical interfaces that are used by the IPs. The aforementioned architecture

description is complemented by the communication requirements of the applica-

tions, specified per application as a set of logical interconnections between IP ports,

each with bounds on the maximum latency and minimum throughput. The archi-

tecture and communication specification also allows the user of the design flow to

constrain how the physical IPs are placed and how the applications are combined

temporally. These specifications are assumed to be given by the application and sys-

tem designer, referred to as the user in Fig. 1.8. The interface specifications follow

directly from the choice of IPs, and the use-case constraints are part of the early

system design. It is less obvious, however, where the requirements on the intercon-

nect stem from. Depending on the application, the desired throughput and latency

1.3 Key Components 17

D
e
s
ig

n
 t
im

e
R

u
n
 t
im

e
C

o
m

p
ile

 t
im

e

Hardware

SystemC models and

RTL for FPGA/ASIC synthesis

Software

register settings,

libraries for run-time

reconfiguration

Architecture (binding)

shells mapped to NIs,

control ports mapped to buses

Allocations

address ranges,

network paths,

time slots

1 Dimension resources (Chapter 3)

add local buses, shells, NIs, routers and links

4 Verify results (Chapter 6)

performance analysis

3 Instantiate platform (Chapter 5)

for simulation or synthesis

2 Allocate resources (Chapter 4)

assign physical resources to logical connections

Communication (given by user)

applications (Figure 1.5),

use-case constraints (Figure 1.6)

Architecture (given by user)

IP interfaces (Figure 1.4),

layout constraints

Architecture (of platform)

local buses and protocol shells,

NIs, routers and links,

control infrastructure

Analytical bounds

dataflow models,

sufficient buffer sizes and

end-to-end temporal behaviour

Simulation results

throughput and latency of

SystemC, RTL, netlist

It
e
ra

ti
o
n
 a

n
d
 b

a
c
k
 a

n
n
o
ta

ti
o
n

Communication (of platform)

control application and
its use-case constraints

Fig. 1.8 Design-flow overview

may be analytically computed, the outcome of high-level simulation models of the

application, or simply guesstimates based on back-of-the-envelope calculations or

earlier designs. Automation of this step is outside the scope of this work, but we refer

to related work that address the issue, and present a number of design examples that

illustrate possible approaches.

The outcome of the proposed design flow is a complete SoC interconnect archi-

tecture and a set of resource allocations that together implement the requirements

specified by the user. The resulting platform is instantiated (in synthesisable HDL or

18 1 Introduction

SystemC), together with the software libraries required to configure and orchestrate

use-case switches (in Tcl or ANSI C). Verification of the result is performed per

application, either by means of simulation or by using conservative models of the

interconnect. At this point, it is also important to note that the actual applications,

whether run on an FPGA or analytically modelled are evaluated together with the

interconnect.

Throughout the design flow, there are many opportunities for successive refine-

ment, as indicated by the iteration in Fig. 1.8. Iteration is either a result of failure

to deliver on requirements or a result of cost assessment, e.g. silicon area or power

consumption. It is also possible that the specification of requirements changes as a

result of the final evaluation.

1.4 Organisation

The remainder of this work is organised as follows. We start by introducing the key

concepts of aelite in Chapter 2. Thereafter, Chapter 3 begins our bottom-up descrip-

tion of the solution, introducing the design-time dimensioning of the interconnect.

This is followed by a discussion on the compile-time allocation of resources in

Chapter 4. Chapter 5 shows how the resources and allocations come together in

an instantiation at run time. Next, Chapter 6 shows how to capture the interconnect

hardware and software in an analysis model, and how it is applied in formal verifi-

cation of the end-to-end application behaviour. All the ingredients come together in

Chapter 7, where a complete example multi-processor system is designed, instanti-

ated and verified. In Chapter 8 we evaluate the entire interconnect design flow using

two large industrial case studies. Finally, we review related work in Chapter 9, and

end with conclusions and directions for future work in Chapter 10.

Chapter 2

Proposed Solution

In this chapter we give a high-level view of the building blocks of the interconnect

and discuss the rationale behind their partitioning and functionalities. We start by

introducing the blocks by exemplifying their use (Section 2.1). This is followed

by a discussion of how the interconnect delivers scalability at the physical and

architectural level (Section 2.2). Next, we introduce the protocol stack and show

how it enables diversity, both in the application programming models and in the

IP interfaces (Section 2.3). We continue by explaining how we provide temporal

composability when applications share resources (Section 2.4). Thereafter, we detail

how our interconnect enables predictability on the application level by providing

dataflow models of individual connections (Section 2.5). Next we show how we

implement reconfigurability to enable applications to be independently started and

stopped at run time (Section 2.6). Lastly, we describe the rationale behind the central

role of automation in our proposed interconnect (Section 2.7), and end this chapter

with conclusions (Section 2.8).

2.1 Architecture Overview

The blocks of the interconnect are all shown in Fig. 2.1, which illustrates the same

system as Fig. 1.4, but now with an expanded view of the interconnect, dimensioned

for the applications in Fig. 1.5 and use-cases in Fig. 1.6.

To illustrate the functions of the different blocks, consider a load instruction

that is executed on the ARM. The instruction causes a bus transaction, in this

case a read transaction, to be initiated on the data port of the processor, i.e. the

memory-mapped initiator port. Since the ARM uses distributed memory, a target
bus with a reconfigurable address decoder forwards the read request message to

the appropriate initiator port of the bus, based on the address. The elements that

constitute the request message, e.g. the address and command flags in the case of a

read request, are then serialised by a target shell into individual words of streaming

data, as elaborated on in Section 2.3. The streaming data is fed via a Clock Domain
Crossing (CDC) into the NI input queue corresponding to a specific connection. The

data items reside in that input queue until the reconfigurable NI arbiter schedules

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_2, C© Springer Science+Business Media, LLC 2011

19

20 2 Proposed Solution

flit initiator

flit target

streaming initiator

streaming target

memory-mapped initiator

memory-mapped target

memory-mapped target used

for control

µ Blaze

NI

RR

NI

NI

NI

NI

NI NI

RRR

host

bus bus

ARM VLIW

shellshellshellshel l shellshellshell

shell shell shellshell shell

atomiser atomiseratomiser atomiser

SRAMperipheral eodivaudio

busbus

C
D

C
C

D
C

n
e

tw
o
rk

in
te

rc
o
n
n
e
c
t

Fig. 2.1 Interconnect architecture overview

the connection. The streaming data is packetised and injected into the router net-

work, as flow-control digits (flits). Based on a path in the packet header, the flits are

forwarded through the router network, possibly also encountering pipeline stages on

the links, until they reach their destination NI. In the network, the flits are forwarded

without arbitration, as discussed further in Section 2.1.1. Once the flits reach the

destination NI, their payload, i.e. the streaming data, is put in the NI output queue
of the connection and passes through a clock domain crossing into an initiator shell.

2.1 Architecture Overview 21

The shell represents the ARM as a memory-mapped initiator by reassembling the

request message. If the destination target port is not shared by multiple initiators,

the shell is directly connected to it, e.g. the video tile in Fig. 2.1. For a shared

target, the request message passes through an atomiser. By splitting the request,

the atomiser ensures that transactions, from the perspective of the shared target,

are of a fixed size. As further discussed in Section 2.4, the atomiser also provides

buffering to ensure that atomised transaction can complete in their entirety without
blocking. Each atomised request message is then forwarded to an initiator bus that

arbitrates between different initiator ports. Once granted, the request message is

forwarded to the target, in this case the SRAM, and a response message is gener-

ated. The elements that constitute the response message are sent back through the

bus. Each atomised response message is buffered in the atomiser that reconstructs

the entire response message. After the atomiser, the response message is presented

to the initiator shell that issued the corresponding request. The shell adds a message

header and serialises the response message into streaming data that is sent back

through the network, hereafter denoting the NIs, routers and link pipeline stages.

On the other side of the network, the response message is reassembled by the target

shell and forwarded to the bus. The target bus implements the transaction order-
ing corresponding to the IP port protocol. Depending on the protocol, the response

message may have to wait until transactions issued by the ARM before this one

finish. The bus then forwards the response message to the ARM, completing the

read transaction and the load instruction. In addition to response ordering, the target

bus also implements mechanisms such as tagging [49] to enable programmers to

choose a specific memory-consistency model.
In the proposed interconnect architecture, the applications share the network and

possibly also the memory-mapped targets.1 Arbitration thus takes place in the NIs

and the initiator buses. Inside the network, however, contention-free routing [164]

removes the need for any additional arbitration. We now discuss the concepts of

contention-free routing in more detail.

2.1.1 Contention-Free Routing

Arbitration in the network is done at the level of flits. The injection of flits is reg-

ulated by TDM slot tables in the NIs such that no two flits ever arrive at the same

link at the same time. Network contention and congestion is thus avoided. This is

illustrated in Fig. 2.2, where a small part of the network from our example system is

shown. In the figure, we see three channels, denoted c0, c1 and c2, respectively.

These three channels correspond to the connections from the streaming port on

the µBlaze to the DAC, the request channel from the memory-mapped port on

the µBlaze to the SRAM, and the request channel from the ARM to the SRAM.

1 Memory-mapped initiator ports and target buses are not shared in the current instance, and is
something we consider future work.

22 2 Proposed Solution

3
2
1
0

3
2
1
0

3
2
1
0

R

NI

R

NI

c1

c1

c1

c0

c0

c0

c2

c2

c2

c2

c1

c0

c2

c2

NI

Fig. 2.2 Contention-free routing

Channels c0 and c1 have the same source NI and have slots 2 and 0 reserved, respec-

tively. Channel c2 originates from a different NI and also has slots 0 and 2 reserved.

The TDM table size is the same throughout the network, in this case 4, and every

slot corresponds to a flit of fixed size, assumed to be three words throughout this

work.

For every hop along the path, the reservation is shifted by one slot, also denoted

a flit cycle. For example, in Fig. 2.2, on the last link before the destination NI, c0

uses slot 3 (one hop) c1 slot 1 (one hop) and c2 slots 0 and 2 (two hops). The notion

of a flit cycle is a result of the alignment between the scheduling interval of the NI,

the flit size and the forwarding delay of a router and link pipeline stage. As we shall

see in Chapter 4, this alignment is crucial for the resource allocation.

With contention-free routing, the router network behaves as a non-blocking

pipelined multi-stage switch, with a global schedule implied by all the slot tables.

Arbitration takes place once, at the source NI, and not at the routers. As a result

each channel acts like an independent FIFO, thus offering composability. More-

over, contention-free routing enables predictability by giving per-channel bounds

on latency and throughput. We return to discuss composability and predictability in

Sections 2.4 and 2.5, respectively. We now discuss the consequences of the scala-

bility requirement.

2.2 Scalability

Scalability is required both at the physical and architectural level, i.e. the intercon-

nect must enable both large die sizes and a large number of IPs. We divide the

discussion of our proposed interconnect accordingly, and start by looking at the

physical level.

2.2 Scalability 23

2.2.1 Physical Scalability

To enable the IPs to run on independent clocks, i.e. GALS at the level of IPs, the

NIs interface with the shells (IPs) through clock domain crossings. We choose to

implement the clock domain crossings using bi-synchronous FIFOs. This offers a

clearly defined, standardised interface and a simple protocol between synchronous

modules, as suggested in [103, 116]. Furthermore, a clock domain crossing based

on bi-synchronous FIFOs is robust with regards to metastability, and allows each

locally synchronous module’s frequency and voltage to be set independently [103].

The rationale behind the placement of the clock domain crossings between the NIs

and shells is that all complications involved in bridging between clock domains

are confined to a single component, namely the bi-synchronous FIFO. Even though

the IPs have their own clock domains (and possibly voltage islands), normal test

approaches are applicable as the test equipment can access independent scan chains

per synchronous block of the system [103], potentially reusing the functional inter-

connect as a test access mechanism [20].

In addition to individual clock domains of the IPs, the link pipeline stages enable

mesochronous clocking inside the network [78]. The entire network thus uses the

same clock (frequency), but a phase difference is allowed between neighbouring

routers and NIs. Thus, in contrast to a synchronous network, restrictions on the

phase differences are relaxed, easing the module placement and the clock distri-

bution. As the constraints on the maximum phase difference are only between

neighbours, the clock distribution scales with the network size, as demonstrated

in [83]. The rationale behind choosing a mesochronous rather than an asynchronous

interconnect implementation is that it can be conceived as globally synchronous

on the outside [29]. Thereby, the system designer does not need to consider its

mesochronous nature. Furthermore, besides the clock domain crossings and link

pipeline stages, all other (sub-)components of the interconnect are synchronous and

consequently designed, implemented and tested independently.

2.2.2 Architectural Scalability

The physical scalability of the interconnect is necessary but not sufficient. The dis-

tributed nature of the interconnect enables architectural scalability by avoiding cen-
tral bottlenecks [19, 43]. More applications and IPs are easily added by expanding

the interconnect with more links, routers, NIs, shells and buses. Furthermore, the

latency and throughput that can be offered to different applications is a direct result

of the amount of contention in the interconnect. In the network, the contention can
be made arbitrarily low, and links (router ports), NIs and routers can be added up

to the level where each connection has its own resources, as exemplified in Fig. 2.3.

In Fig. 2.3a, we start with two connections sharing an NI. We then add two links

(router ports) in Fig. 2.3b (to an already existing router), thus reducing the level of

contention. Figure 2.3c continues by giving each connection a dedicated NI. Lastly,

24 2 Proposed Solution

NI

R

(a)

NI

R

(b)

NINI

R

(c)

NINI

RR

(d)

Fig. 2.3 Architecture scaling by adding links (b), NIs (c), and routers (d)

Fig. 2.3d distributes the connections across multiple routers, thus reducing the con-

tention to a minimum (but increasing the cost of the interconnect). As we shall see

in Section 2.4 the proposed interconnect also contributes to architectural scalability

by having a router network that does not grow with the number of connections.

Outside the network, the contention for a shared target port, such as an off-chip

memory controller, cannot be mitigated by the interconnect as it is inherent in the

applications. This problem has to be addressed at the level of the programming

model, which we discuss in depth in the following section. We return to discuss

scalability in Chapter 8 where we demonstrate the functional scalability using two

large-scale case studies, and also see concrete examples of the effects of inherent

sharing.

2.3 Diversity

Diversity in interfaces and programming models is addressed by the protocol stack

shown in Fig. 2.4. The stack is divided into five layers according to the seven-layer

Open Systems Interconnection (OSI) reference model [45]. As seen in the figure,

the memory-mapped protocol, the streaming protocol and the network protocol each

have their own stack, bridged by the shell and the NI. We discuss the three stacks in

turn.

IP bus atomiser shell CDC NI router link

session

transport

network

physical

data link

cmd, addr, data signals

ection

packet

phit signalsFIFO signals

transaction

consistency-
model

flit

conn-

message

streaming dataelement

memory-mapped stack streaming stack network stack

Fig. 2.4 Interconnect protocol stack

2.3 Diversity 25

2.3.1 Network Stack

The network stack is similar to what is proposed in [18, 25, 118, 123]. The NI

is on the transport level as it maintains end-to-end (from the perspective of the

network stack) connections and guarantees ordering within, but not between con-

nections [167]. A connection is a bi-directional point-to-point inter-connection,

between two pairs of initiator and target streaming ports on the NIs. Two uni-

directional channels, one in each direction, connect the two pairs of ports. Due to

the bi-directional nature of a connection, streaming ports always appear in pairs,

with one initiator and one target port. As we shall see in Section 2.4, the way in

which connections are buffered and arbitrated is central to the ability to provide

composable and predictable services in the network, and has a major impact on

the NI and router architecture. As seen in Fig. 2.4, the router is at the network

level and performs switching of packets. The last element of the network, the link

pipeline stage, is at the data link level and is responsible for the (synchronous or

mesochronous) clock synchronisation and flow control involved in the transport of

flits. The physical layer, i.e. timing, bus width and pulse shape, is governed by the

phit (physical digit) format.

From the perspective of the IPs, the network behaves as a collection of distributed

and independent FIFOs (or virtual wires), with data entering at a streaming target

port, and at a later point appearing at a corresponding streaming initiator port (deter-

mined by the allocation). Thus, the network stack is completely hidden from the IPs,

and only used by means of the streaming stack.

2.3.2 Streaming Stack

The streaming stack is far simpler than the network stack, and only covers the two

lowest layers. The NI, clock domain crossing, shell and IPs with streaming ports

(like the µBlaze in our example system or the video blocks in [183]) all make direct

use of this stack. The data-link level governs the flow control of individual words

of streaming data. The streaming ports make use of a simple FIFO interface with

a valid and accept handshake of the data. The physical level concerns the FIFO

signal interface. For robustness, the streaming interfaces use blocking flow control
by means of back pressure. That is, writing to a streaming target port that is not

ready to accept data (e.g. due to a full FIFO) or reading from a streaming target

port that has no valid data (e.g. due to an empty FIFO) causes a process to stall. We

return to discuss the blocking flow control and its implications in Section 2.4.

As illustrated in Fig. 2.5, the NI bridges between the streaming stack and network

stack by establishing connections between streaming ports and embedding stream-

ing data in network packets. The connections are thus, via the streaming stack,

offering bi-directional point-to-point streaming communication, without any inter-
pretation or assumptions on the time or value of the individual words of streaming

data. Moreover, with FIFO ordering inside a network channel, it is up to the users

of the network, e.g. IPs and buses to implement a specific inter-channel ordering.

26 2 Proposed Solution

session

transport

network

data link

physical

NIrouterlinkrouterNICDCshellbus shellCDC busatomiser

point-to-point memory-mapped communication

distributed shared memory-mapped communication

point-to-point streaming communication

Fig. 2.5 Bridging the protocol stacks

Both the aforementioned properties are key in enabling diversity in communication

paradigms and programming models, as described below.

The most basic use of the streaming stack is exemplified in Fig. 2.1 by the µBlaze

that communicates with the audio directly via the streaming ports of the NI. One

connection is sufficient to interconnect the two blocks, with one channel carrying

data from the ADC to the µBlaze and the other channel from the µBlaze to the

DAC. Only raw data, i.e. signed pulse-code-modulated samples, is communicated

across both channels that are completely homogeneous [77].

2.3.3 Memory-Mapped Stack

In contrast to the simple FIFO interface of the streaming ports, memory-mapped

protocols are based on a request–response transaction model and typically have

interfaces with dedicated groups of wires for command, address, write data and read

data [2, 4, 8, 49, 147, 160]. Many protocols also support features like byte enables

and burst transactions (single request multiple data elements). The block that bridges

between the memory-mapped ports of the IPs and the streaming ports of the NIs is a

shell that (independently) serialises the memory-mapped request and response mes-

sages. As illustrated in Fig. 2.5, the shells enable point-to-point memory-mapped
communication by bridging between the elements of a bus-protocol message, e.g.

the address, command flags or individual words of write data, and words of stream-

ing data by implementing the data-link protocol of both the bus stack and the

streaming stack. As already mentioned, the network places no assumptions on the

time and value of individual words of streaming data, and also not on the size,

syntax, semantics or synchronisation granularity of messages. Consequently, the

shells enable streaming communication and memory-mapped communication to

co-exist in the interconnect. Moreover, different pairs of memory-mapped initia-

tors and targets may communicate using different protocols, thus enabling multiple

memory-mapped protocols.

The shells work on the granularity of a single memory-mapped initiator or

target port. However, a memory-mapped initiator port often uses distributed

2.3 Diversity 27

memory [168], and accesses multiple targets, based on e.g. the address, the type of

transaction (e.g. read or write) or dedicated identifier signals in the port inter-

face [147]. The use of distributed memory is demonstrated by the host and ARM

in Fig. 2.1. As the ARM accesses more than one target port, the outgoing requests

have to be directed to the appropriate target, and the incoming responses ordered
and presented to the initiator according to the protocol. In addition to the use of

distributed memory at the initiator ports, memory-mapped target ports are often

shared by multiple initiators, as illustrated by the SRAM in Fig. 2.1. A shared target

must hence be arbitrated, and the initiators’ transactions multiplexed according to

the protocol of the target port. Next, we show how distributed and shared memory-

mapped communication, as shown in Fig. 2.5, is enabled by the target buses and

initiator buses, respectively.

Despite all the multiplexing and arbitration inside the network we choose to add

buses outside the network. The primary reason why the network is not responsible

for all multiplexing and arbitration is the separation of bus and network stacks. The

network stack offers logical (bi-directional) point-to-point connections, without any

ordering between connections. Ordering of, and hence synchronisation between,

transactions destined for different memories depends on particular IP port protocols

and is therefore addressed outside the network, in the target buses. The ordering

and synchronisation between transactions place the buses at the session level in the

stack, and adds a fifth layer to the interconnect protocol stack, as seen in Fig. 2.4.

At the network level in the bus stack we have messages in the form of requests and

responses. It is the responsibility of the bus to perform the necessary multiplexing

and direct messages to the appropriate destination. Each message is in turn con-

structed of elements and the data-link layer is responsible for the flow control and

synchronisation of such elements. Finally, the physical layer governs the different

signal groups of the bus interface.

The division of the protocol stack clearly separates the network from any session-

level issues and pushes those responsibilities to the buses. The network is thereby

independent of the IP protocols and relies on target buses for distributed memory

communication, and initiator buses for shared memory communication. The divi-

sion enables the interconnect to support different types of bus protocols and differ-

ent memory consistency models. The choice of a consistency model, e.g. release
consistency [59], is left for the IP (and bus) developer. That is, the interconnect

provides the necessary mechanisms, and it is left for the IPs to implement a specific

policy. There are no restrictions on the consistency model, but to exploit the paral-

lelism in the interconnect, it is important that the ordering is as relaxed as possible.

The importance of parallelism, e.g. through transaction pipelining, is emphasised

by the large (10–100 cycles best-case) latency involved in receiving response from

a remotely located target.2

Note that the stack separation does not exclude the option to implement the

protocol-related ordering and arbitration in the protocol shell, i.e. merge the bus

2 If the ARM and SRAM in Fig. 2.1 run at 200 MHz and the network at 500 MHz, the best-case
round-trip for a read operation is in the order of 30 processor cycles.

28 2 Proposed Solution

and shells as suggested in [168]. An integrated implementation may result in a more

efficient design [91]. Indeed, placing both the shell and bus functionality inside such

a block enables a design where the lower layers involved in the protocol translation

functionality are shared by the ports, thus potentially achieving a lower hardware

cost and latency. The main drawback with such a monolithic approach is the com-

plexity involved in handling multiple concurrent transactions, while complying with

both the bus protocol (on the session level) and streaming protocol. Our proposed

division of the stack enables us to bridge between protocols on the lower layers,

something that involves far fewer challenges than attempting to do so on the ses-

sion level [118]. Furthermore, by having buses that complies with the IP protocol

it is possible to reuse available library components. It is also possible to verify the

buses independent of the network with established protocol-checking tools such as

Specman [34], and to use any existing functional blocks for, e.g. word-width and

endianness conversion, or instrumentation and debugging [192]. Lastly, thanks to

the clear interface between shell and NI, the shells belonging to one IP port, e.g. the

two shells of the ARM in Fig. 2.1, can easily be distributed over multiple NIs, e.g.

to increase the throughput or provide lower latency.

2.4 Composability

As discussed in Chapter 1, we refer to a system where applications do not influence

each other temporally as composable. Application composability is easily achieved

by using dedicated resources for the different applications. This, however, is often

too costly (in terms of power and area) or even impossible. Consider, for example,

the case of an off-chip memory where pin constraints limit the number of memories.

To fulfil the requirement on application composability, it is thus necessary to offer

composable resource sharing by removing all interferences between applications.

Four properties are central to the ability of providing composable sharing:

• the flow-control scheme used by the shared resource,

• the respective granularities of flow control and arbitration,

• the size of an arbitration unit,
• the temporal interference between arbitration units.

We now look at these properties in turn, using the abstract shared resource in

Fig. 2.6 to illustrate the concepts. This resource corresponds to, e.g., the router

network or the SRAM in Fig. 2.1.

2.4.1 Resource Flow-Control Scheme

Flow control is the process of adjusting the flow of data from a sender to a receiver

to ensure that the receiver can handle all of the incoming data. The most basic flow-

control mechanism is dropping. If the resource is not ready (e.g. the buffer is full or

2.4 Composability 29

shared

resource

arbitration

unit

flow-control

unit

flow control

sender receiver

Fig. 2.6 Resource sharing

the receiver is busy), then data is simply dropped. However, dropping data and thus

making the flow-control lossy complicates the use of the resource in a larger context

and requires expensive recovery mechanisms to provide lossless and ordered service

on higher levels [164]. Moreover, as discussed in Section 2.5, lossy flow control

conflicts with predictability, as the number of retransmissions must be bounded.

Rather than dropping data, we choose to use a robust flow-control scheme where

the producer waits for the availability of the resource, thus avoiding retransmissions.

The most basic implementation of lossless flow-control uses (synchronous) hand-

shake signals (e.g. valid and accept) between the sender and receiver. This solution

requires no extra book keeping, but restricts the throughput (when the handshake

is pipelined) or clock speed (when not pipelined) [150, 158]. An alternative flow-

control mechanism uses credits to conservatively track the availability of space on

the receiving side. Credit-based flow control can be pipelined efficiently and does

not limit the throughput. It does, however, introduce additional counters (for storing

credits) and wires (for transmitting credits). As we shall see, our interconnect uses

both handshake-based and credit-based flow control at appropriate points.

With the introduction of flow control (handshake or credit based), we can trans-

mit data between the sender and receiver in a lossless fashion. In case the receiver

is busy, the sender blocks. For a resource that is not shared, the blocking is not

a problem (from the perspective of composability), as only the unique application

is affected. However, blocking is problematic for composable sharing as we must

ensure that applications do not interfere temporally. That leads us to the next issue,

namely the respective granularities of flow control and arbitration.

2.4.2 Flow Control and Arbitration Granularities

The second property that is important for composable resource sharing are the

respective flow control and arbitration granularities. To illustrate the problem, con-

sider the initiator bus where the arbiter schedules bus transactions, i.e. complete read

and write transactions. Thus, arbitration decisions are taken at the level of transac-

tions. Flow control, however, is done at the finer element level [8, 49, 160]. It is thus

possible that a decision is taken and subsequently blocks while in progress, due to

lack of either data or space. This is illustrated in Fig. 2.7, which shows the arbitration

30 2 Proposed Solution

clock

1 2 3 4 5 6 7

actual time

(could be ∞)

minimum time

(finite and expected)

cmd

A1

4D3D1D

data valid

address

burst size

write data

data last

data accept

cmd accept

D2

idle write

4

idle

Fig. 2.7 Timing diagram of memory-mapped write transaction

unit of size 4 in Fig. 2.6 in greater detail. Using e.g. DTL [49], a memory-mapped

write command (of size 4) is presented in cycle 1, and accepted in cycle 2 together

with the first data element. The second data element, however, is not yet available

in cycle 3, e.g. due to a slow initiator. Thus, the resource is stalled (and blocked)

for everyone, waiting for the write data element that is only presented in cycle 4. A

similar situation arises for a read transaction when the read data elements are not

presented or accepted in consecutive cycles. While the handshakes on the element

level ensure lossless transfer of the write data, they also lead to an unknown time

before a new arbitration unit can be scheduled, because it depends on the behaviour

of the users (IPs and applications) rather than the behaviour of the resource. Hence,

due to the discrepancy in levels between taking and executing decisions, the user

behaviour affects the resource sharing.

To avoid blocking on the level of flow-control units, we incorporate the avail-

ability of data at the source and space at the destination as preconditions for the

arbiter in both the NI and the initiator bus. Thus, the arbiter must conservatively
know how much data is available at the source and how much space is available

at the destination and ensure that sufficient data and space are available prior to

the scheduling of a transaction or packet. This way, we implement non-blocking

flow control on complete arbitration units, similar to what is proposed in [132].

As a result, buffering per application is needed both before and after the shared

2.4 Composability 31

resource. In our case the buffering is provided by the sending (data) and receiv-

ing (space) NI for the network, and by the atomiser (data and space) for a shared

target.

An alternative to raising the level of flow control to complete arbitration units,

as we do in the proposed interconnect, is to change the level of arbitration, and

implement pre-emption of transactions and packets, respectively. Doing so is noth-

ing more than replacing the shared resource in Fig. 2.6 with one or more instances of

the whole figure, as illustrated in Fig. 2.8. In other words, the problem is pushed one

level down, and it becomes necessary to offer parallel states, with independent flow

control and buffering, for the elements and flits (rather than transactions and pack-

ets) of all applications. This is, for example, the approach taken in multi-threaded

OCP [147], and in networks based on virtual circuits [12, 27, 154, 162, 165] where

every router is a resource as depicted in Fig. 2.8.

flow control flow control

flow-control

and arbitration unit

shared

resource

Fig. 2.8 Resource sharing by pre-emption

The reason we choose to raise the level of flow control rather than lowering the

level of arbitration for shared targets is that many IPs simply do not support it.

Only the OCP protocol offers such support,3 and even for IPs using this particular

protocol it is an optional profile implemented by few IP providers. For the network,

the decision is based on design complexity and implementation cost. In contrast to

network with virtual circuits, our routers and link pipeline stages are stateless [186].

As a result, they are not negatively affected by the number of resource users, in

this case the number of applications (translating to a number of virtual circuits, i.e.

parallel states and buffers) or the real-time requirements of the applications (the

depth of the buffers). Instead, the entire router network (with pipeline stages) in

our proposed interconnect can be seen as a single non-blocking shared resource,

as shown in Fig. 2.6. The price we pay for the raised level of arbitration is that

the NIs require end-to-end flow control, as discussed later in Chapter 3. Moreover,

the NI has to know the size of the arbitration units, i.e. the packets. The arbitra-

tion unit size is indeed the third important point in enabling composable resource

sharing.

3 AXI currently does not allow multi-threading in combination with blocking flow control.

32 2 Proposed Solution

2.4.3 Arbitration Unit Size

The third point arises due to the choice of raising the flow-control granularity rather

than lowering the arbitration granularity (i.e. pre-empting). As a consequence of this

decision, the size of an arbitration unit must be known. Moreover, when taking a

scheduling decision, the whole arbitration unit must be present in the sending buffer

(to avoid placing assumptions on the incoming data rate, i.e. the module inserting

data in the buffer). Thus, the maximum arbitration unit size must be known, and the

sending buffer sized at least to this size. The same holds for the receiving buffer

(with similar arguments as for the sending buffer). In fact, due to the response time

of the shared resource and the time required to return flow control, the receiving

buffer needs to hold more than one maximum sized arbitration unit to not negatively

affect the throughput. We continue by looking at how the problem of variable arbi-

tration unit size is addressed in the network and for the shared targets, respectively.

In the network, we solve the problem with variable packet sizes by letting the

arbiter in the sending NI dynamically adapt the size of packets to fit with the number

of flow-control credits that are currently available. That is, if space is only avail-

able for a packet of two flits, then that size is used for the current packet, even if

more data is available in the input (sending) buffer. As a consequence, a packet is

never larger than the receiving buffer (since the amount of flow-control credits never

exceed its size). The buffers can hence be sized in any way (for example to satisfy

a specific temporal behaviour as shown in Chapter 6), and the packet sizes adapt

dynamically.

For a shared target the situation is more complicated as the size of the arbitration

units is decided by the initiators that present the transactions to the initiator bus.

Making worst-case assumptions about the maximum arbitration unit is costly in

terms of buffering if that size is seldom (or never) used. Moreover, some memory-

mapped protocols, most notably AHB [2] and OCP [147], have sequential burst

modes where there is no maximum size (referred to as an un-precise burst in OCP).

The atomiser, described in detail in Chapter 3, addresses those issues by chopping

up transactions into fixed-size sub-transactions that are presented to the arbiter in

the initiator bus. The fixed size is also important for the fourth and last item, namely

the temporal interference between two arbitration units.

2.4.4 Temporal Interference

The fourth and last part of temporally composable resource sharing is time itself.

Composability requires that the time at which an arbitration unit is scheduled and

the time at which it finishes does not depend on the presence or absence of other

applications. This can be ensured by always enforcing the maximum temporal inter-
ference of other applications. Note that the response time of the shared resource, i.e.

the time it takes to serve a complete arbitration unit, does not matter for compos-

ability (although it is important for predictability as discussed later). For example,

if we would clock gate the resource (and arbiter) in Fig. 2.6 an arbitrary period of

2.5 Predictability 33

time, this changes the time at which arbitration units are scheduled (unpredictably),

but the interference is unaffected and the resource is still composable. However,

enforcing the worst-case temporal behaviour (per application), also including the

uncertainty of the platform, is a sufficient but not necessary condition for compos-

ability.

In the network, the maximum interference between applications is enforced by

time multiplexing packet injection according to the slot table and enforcing the max-

imum size (per packet and flit). Even when a packet does not occupy complete flits

(i.e. finishes early), the size specified in the slot table is enforced from the perspec-

tive of other applications. The links accept one phit every cycle, and there is no

contention in the router network (due to the contention-free routing). Consequently,

the time between the scheduling of packets is known and determined by the slot

table.

For a shared target port, the time between arbitration decisions depends on the

transaction granularity of the atomisers (a write requires at least as many cycles as

write data elements) and the behaviour of the specific IP. For the SRAM in Fig. 2.1,

for example, the atomisers issue transactions of one element, and a new transaction

can be issued every two cycles. Similar to the network, the initiator bus uses TDM-

based arbitration to enforce the maximum interference between applications.

2.4.5 Summary

To summarise, from the perspective of the applications, our interconnect imple-

ments composable resource sharing by using pre-emptive arbitration and enforcing

maximum application interference. Thus, composability is achieved without enforc-
ing the worst-case temporal behaviour. The network is pre-emptive at the level of

connections, but implemented using non-pre-emptive sharing at the level of packets.

Similarly, a shared target is pre-emptive at the level of transactions, but implemented

using non-pre-emptive sharing at the level of sub-transactions. For this purpose, a

new component, namely the atomiser, is introduced. The rationale for not choosing

a lower level of pre-emption is reduced cost and compliance with existing memory-

mapped protocols. The rationale for not choosing a higher level of pre-emption, i.e.

consider the entire interconnect as a non-blocking shared resource, as proposed in

the time-triggered architectures [100, 157], is that this pushes the responsibilities of

ensuring availability of data and space onto the IPs. In doing so, the interconnect is

no longer suitable for general applications, which conflicts with our requirements

on diversity.

2.5 Predictability

There are two important parts to predictability, namely having an architecture built

from blocks that deliver bounds on their temporal behaviour [12, 26, 63, 95, 108,

122, 154, 157, 165, 193], and choosing a model in which those behaviours can

34 2 Proposed Solution

analysed together with the behaviours of the applications [24, 182, 185]. We start

by presenting the architecture, followed by the rationale behind the selected analysis

technique.

2.5.1 Architecture Behaviour

To provide bounds on the end-to-end temporal behaviour of an application, all the

resources used by the application, e.g. the network, must be predictable, i.e. offer

useful bounds on their individual temporal behaviours. If a resource is also shared

between tasks of the same application, an intra-application arbiter is required to

facilitate admission control, resource reservation and budget enforcement [120]. The

intra-application arbiter thus prevents a misbehaving or ill-characterised task from

invalidating another task’s bounds. In contrast to the composable sharing discussed

in Section 2.4, the work-conserving [205] intra-application arbiter does not enforce

worst-case interference and can distribute residual capacity (slack) freely between

the individual tasks (or connections) of the application, possibly improving perfor-

mance.

In situations where an application requires bounds on its temporal behaviour

and a (predictable) resource is shared also with other applications, it is possible

to separate intra- and inter-application arbitration. As already mentioned, the intra-

application arbiter can distribute capacity within an application and thus reduce

the discretisation effects on resource requirements or use the scheduling freedom

to improve average-case performance [71]. The cost, however, is in the additional

level of arbitration and buffering that must be added. Therefore, in our proposed

interconnect, we currently use only one level of arbitration, both within and between

applications.

2.5.2 Modelling and Analysis

For application-level predictability, the entire application and platform must be cap-

tured in a specific MoC. Thus, a model is needed for every block in Fig. 2.1 that

is to be used by a real-time application. Moreover, for the shared resources, i.e.

the network and the initiator buses, the arbitration mechanism must be modelled.

Having temporal bounds on the behaviour of every component is necessary, but not

sufficient. For example, in Chapter 4, we allocate network resources to guarantee the

satisfaction of local latency and throughput bounds, inside the network. However,

as we have seen in Section 2.4, the flow control and arbitration is affected by the

availability of buffer space. Consequently, it is necessary to also model the effects

of buffers and flow control, between every pair of components, also considering

potential variations in the granularity of arbitration units (e.g. read and write trans-

actions).

2.6 Reconfigurability 35

Taking these considerations into account, we choose to capture the temporal

behaviour of the interconnect using Cyclo-Static Dataflow (CSDF) as the MoC [24].

The rationale for doing so is that dataflow analysis [182], in contrast to e.g. real-

time calculus, enables us to capture the effects of flow control (bounded buffers)

and arbitration in a straightforward manner. As we shall see in Chapter 6, run-

time arbiters from the broad class of latency-rate servers [185] can be modelled

using dataflow graphs [198]. This enables us to construct a conservative model of

a network channel, capturing both the interconnect architecture and resource allo-

cations, derived in Chapter 4. Additionally, dataflow graphs cover a wide range of

application behaviours, even with variable-production and consumption rates [199],

enabling us to capture the platform and the mapping decisions with a good accuracy,

i.e. with tight bounds [127]. Dataflow graphs also decouple the modelling tech-

nique and analysis method, thereby enabling us to analyse the same dataflow model

with both fast approximation algorithms [15] and exhaustive back-tracking [44].

Using dataflow analysis it is possible to compute sufficient buffer capacities given

a throughput (or latency) constraint, and to guarantee satisfaction of latency and

throughput (and periodicity) constraints with given buffer sizes [10].

2.6 Reconfigurability

We have already seen examples in Fig. 1.6 of how applications are started and

stopped at run time, creating many different use-cases. The different use-cases

have different communication patterns (connection topology) and throughput and

latency requirements (connection behaviour) that the interconnect must accommo-

date. Moreover, as stated in Chapter 1, starting or stopping one application should

not affect the other applications that are running. We now look at the impact those

requirements have on the granularity of reconfiguration and the interconnect archi-

tecture.

2.6.1 Spatial and Temporal Granularity

Figure 2.9 shows the example system, with the same progression of use-cases as

already shown in Fig. 1.6b, but here illustrating the reconfiguration (resource allo-

cation) granularity, both spatial and temporal. Given that the connection topolo-

gies and behaviours vary per use-case, a first approach is to allocate resources per

use-case [138], as illustrated in Fig. 2.9a. However, applications are disrupted on

use-case transitions, i.e. no composable or predictable services can be provided.

Even if an application is present in multiple use-cases, e.g. the filter in the figure,

resources used to provide the requested service are potentially different. As the

label global reconfiguration in Fig. 2.9a illustrates, a use-case transition involves

closing and subsequently opening all connections (of all applications) for the two

use-cases. Not only does this cause a disruption in delivered services, but it leads to

36 2 Proposed Solution

global
reconfiguration

one allocation
per use-case

one application uses different
resources in different use-cases

time

filter player playerfilter

decoder game

status

init

(a)

time

one allocation
for all use-cases

no
reconfiguration

one application uses the same
resources independent of use-case

filter player playerfilter

decoder game

status

init

(b)

time

one allocation
per application

local
reconfiguration

one application uses the same
resources independent of use-case

filter player filter

decoder
init

player

game

status

(c)

Fig. 2.9 Spatial and temporal allocation granularities

unpredictable reconfiguration times as in-flight transactions of all the running appli-

cations must be allowed to finish [102, 145], even if we only want to reconfigure one

application.

Undisrupted service for the applications that keep running is achieved by extend-

ing the temporal granularity to one allocation for all use-cases [137]. As shown in

Fig. 2.9b this removes the need for reconfiguration on use-case transitions. While

delivering undisrupted services to the applications, the requirements of the synthetic

worst-case use-case are over-specified, with a costly interconnect design as the

result [138]. Moreover, if the architecture of the interconnect is given, it may not be

possible to find an allocation that meets the worst-case use-case requirements, even

though allocations exist for each use-case individually. The worst-case approach is

also not applicable to connections that make direct use of the streaming stack. Since

a streaming port is only connected to one other port at any given point in time,

reconfiguration is required.

The approach we take in this work is to perform resource allocation on the

granularity of applications, as later described in Chapter 4. The rationale for doing

so is that it introduces spatial (in addition to temporal) granularity thus allowing

2.7 Automation 37

local reconfiguration, as shown in Fig. 2.9c. Similar to the worst-case approach,

applications are allocated with the same resources independent of the use-case and

are unaffected when other applications are started or stopped. However, reconfig-

uration enables us to share resources (bus ports, NI ports, links and time slots)

between mutually exclusive applications (e.g. init, decoder and game in Fig. 2.9c),

thus reducing the cost of the interconnect [72].

Although our proposed approach allows the user to specify both a spatial and

temporal granularity of reconfiguration, it is not required to use this feature, i.e. it is

possible to only distinguish the temporal axis. This is achieved by having one single

worst-case application (a fully connected constraint graph), or mutually exclusive

applications (no edges in the constraint graph). The methodologies in [137, 138] are

thus subsumed in this more general framework.

2.6.2 Architectural Support

There are three modules in the interconnect architecture that are reconfigurable: the

target bus, NI and initiator bus. The rationale behind making the target bus and the

NI reconfigurable is that they are the two modules where different destinations are

decided upon. In the target bus, an initiator port is selected based on the destination

address. Similarly, in the (source) NI, a streaming initiator port (in the destination

NI) is selected based on the path and port identifier. The NI is also one of the two

locations where arbitration is performed. Thus, both the NI and initiator bus are

reconfigurable, such that the service given to different connections can be modified

at run time.

In Fig. 2.1 we see that the aforementioned modules have a memory-mapped

control port. Thus, all reconfiguration is done using memory-mapped communi-

cation, reading and writing to the control registers of the individual blocks. The

rationale for using memory-mapped communication is the diversity it enables in

the implementation of the host. Any processor that has a memory-mapped inter-

face can be used in combination with the run-time libraries, as we shall see in

Chapter 5.

2.7 Automation

The proposed design flow, as shown in Fig. 1.8, extends on the flow in [62] and

addresses two key problems in SoC design. First, the need for tools to quickly and

efficiently generate application-specific interconnect instances for multiple appli-

cations. Second, the need for performance verification for a heterogeneous mix of

firm, soft and non-real-time applications. We first discuss the rationale behind the

input and output of the flow, followed by our reasons for dividing the design flow

into multiple independent tools.

38 2 Proposed Solution

2.7.1 Input and Output

As we have already discussed in Chapter 1, this work takes as its starting point

the specification of the physical interfaces that are used by the IPs, constraints on

how the applications can be combined temporally, and the requirements that each

application has on the interconnect. The reason for focusing on the requirements

on the interconnect rather than application-level requirements is to allow applica-

tion diversity by not placing any assumptions on the applications. The real-time

requirements are described per application, and on a level that is understood by

the application designer, e.g. through latency and throughput bounds. Furthermore,

the design flow makes no distinction whether the requested throughput and latency

reflect the worst-case or average-case use of a particular application. Thus, depend-

ing on the applications, the input to our design flow might stem from analytical

models, measurements from simulation models, or simply guesstimates based on

back-of-the-envelope calculations or previous designs.

Based on the input specification, it is the responsibility of the design flow to

automatically generate a complete hardware and software interconnect architecture.

There are two important properties of the design-flow output. First, it is possible to

turn the output into a physical implementation in the form of an FPGA or ASIC.

Second, depending on the application, it is possible to verify application-level per-

formance using a variety of simulation-based and formal techniques. Hence, also

the output of the design flow reflects the application diversity.

2.7.2 Division into Tools

The design flow is split into separate tools for several reasons. First, breaking the

design flow in smaller steps simplifies steering or overriding heuristics used in each

of the individual tools, enhancing user control. It is, for example, possible for the

user to construct the entire architecture manually, or modify an automatically gen-

erated architecture by, e.g., inserting additional link-pipeline stages on long links.

Second, splitting the flow reduces the complexity of the optimisation problem, and

simpler, faster heuristics can be used. This results in a low time-complexity at the

expense of optimality. As we shall see, pushing decisions to compile time is key

as it enables us to guarantee, at compile time, that all application requirements are

satisfied, and that all the use-cases fit on the given hardware resources. However,

complexity is moved from the platform hardware and software to the design tools,

leaving us with a set of challenging problems. As we shall see in Chapters 4 and 6,

tools that rely on low-complexity approximation algorithms are central to the inter-

connect design flow. Higher-level optimisation loops involving multiple tools can

then be easily added, as illustrated by the arrows on the left hand side of Fig. 1.8.

Third, parts of the flow can be more easily customised, added, or replaced by the

user to tailor the flow or improve its performance.

2.8 Conclusions 39

2.8 Conclusions

In this chapter, we present the rationale behind the most important design choices

of our interconnect. We introduce the modular building blocks of the hardware and

software architecture, and explain how they, together with the design flow, enable us

to satisfy the requirements in Chapter 1. In the succeeding chapters, we return to the

concepts introduced in this chapter as we explain in-depth how the dimensioning,

allocation, instantiation and verification contribute to the requirements.

Chapter 3

Dimensioning

Composable and predictable services require allocation of resources. Prior to the

allocation, however, the resources must be dimensioned. Additionally, the resources

must enable an allocation to be instantiated and enforced. In this chapter, which

corresponds to Step 1 in Fig. 1.8, we show how the architectural building blocks are

dimensioned and how they implement the aforementioned requirements.

The modules of the interconnect are introduced top down, following the steps

in Fig. 3.1. Step 1.1 bridges between the network and the IP ports by dimension-

ing buses (Section 3.1) together with atomisers (Section 3.2), protocol shells (Sec-

tion 3.3) and clock domain crossings (Section 3.4). Thereafter, Step 1.2 dimensions

the network topology, namely the NIs (Section 3.5), the routers (Section 3.6) and

links (Section 3.7). The final part of the interconnect dimensioning is the addition of

the control infrastructure (Section 3.8), corresponding to Step 1.3 in Fig. 3.1. All the

modules presented in this chapter, i.e. buses, atomisers, shells, clock domain cross-

ings, NIs, routers and link pipeline stages, are available both as SystemC models

and synthesisable HDL, demonstrated on several FPGA instances of the platform.

We conclude this chapter by summarising how the dimensioning contributes to the

requirements from Chapter 1 (Section 3.9).

3.1 Local Buses

Distributed memory communication is implemented by the target bus, as described

in Section 3.1.1. The target bus is complemented by the initiator bus that imple-

ments shared-memory communication, as elaborated on in Section 3.1.2. Next, we

describe the target bus and initiator bus in more detail.

3.1.1 Target Bus

A target bus, as shown in Fig. 3.2a, connects one memory-mapped initiator to mul-

tiple targets. The target bus is multiplexer based and very similar to an AHB-Lite

layer [2]. The primary responsibility of the target bus is to direct requests to the

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_3, C© Springer Science+Business Media, LLC 2011

41

42 3 Dimensioning

Communication (given by user)

applications (Figure 1.5),
use-case constraints (Figure 1.6)

Architecture (given by user)

IP interfaces (Figure 1.4),
layout constraints

Architecture (of platform)

local buses and protocol shells,
NIs, routers and links,
control infrastructure

Communication (of platform)

control application and
its use-case constraints

1.1 Add buses and shells to ports

Streaming ports with one connection per initiator and target

1.2 Create a network topology

NIs, routers and links based on user specification

1.3 Add the control infrastructure

Enable the host to reconfigure the interconnect

Fig. 3.1 Dimensioning flow

generic number

of target ports

optionally programmable

address decoder

in
it
ia

to
r

id

c
m

d
/a

d
d

r/
s
iz

e

re
a

d
d

a
ta

/

m
a

s
k
/l
a

s
t

write data/

mask/last

addr

decoder

(a)

generic number

of initiator ports

optionally programmable

bus arbiter

ta
rg

e
t

id

w
ri

te
d

a
ta

/

m
a

s
k
/l
a

s
tre

a
d

d
a

ta
/

m
a

s
k
/l
a

s
t

cmd/addr/size

req

arbiter

(b)

Fig. 3.2 Local target bus (a) and initiator bus (b) architectures

3.1 Local Buses 43

appropriate target, based on the address of the request. To reduce the negative

impact of latency, the target bus allows multiple outstanding transactions, even to

different targets. The target bus also enforces response ordering according to the

protocol specification. That is, responses are returned in the order the requests where

issued (within a thread [8, 147], if applicable). As seen in Fig. 3.2a, the ordering of

responses is enforced by storing a target identifier for every issued request. These

identifiers are then used to control the demultiplexing of responses. The ordering

guarantees of the target bus, together with mechanisms like tagging [49], are lever-

aged by the IP to implement a certain memory-consistency model, e.g. release con-

sistency, thus enabling the programmer to reason about the order in which reads and

writes to the different targets take place.

As exemplified by the ARM and the host in Fig. 2.1, a target bus is directly

connected to all initiator ports that use distributed memory communication. Each

target bus is individually dimensioned by determining the number of concurrent

targets accessed by the initiator it is connected to. Traditional bus-based systems

require the designer to determine which targets should be reachable (if using sparse

bus-layers), and what static address map to use. We only have to determine how
many targets should be reachable and not which ones. At run time, the target

bus address decoder is reconfigured through the memory-mapped control port, as

illustrated by the control port in Fig. 3.2a. Thus, the address map is determined

locally per target bus, and per use-case. As we shall see in Section 3.8, the tar-

get bus is also used in the control infrastructure, but then with a static address

decoder.

3.1.1.1 Experimental Results

Figure 3.3 shows the synthesis results of the target bus as the number of initiator

ports is varied. Two different bus instantiations are evaluated, with a programmable

and fixed address decoder, respectively. In both cases, we limit the address decod-

ing to the five topmost bits of the 32-bit address and allow a maximum of four

outstanding responses (stored in a fully synchronous pointer-based flip-flop FIFO).

The width of the read and write data interfaces are 32-bits.

Throughout this work, synthesis results are obtained using Cadence Ambit with

NXP’s 90-nm Low-Power technology libraries. For a given clock frequency target,

we use a 50% clock duty cycle, 20% of the cycle time as input and output delay

with 10% clock skew. We disable clock-gate insertion as well as scan insertion and

synthesise under worst-case commercial conditions. For every design point, e.g.

for the different number of ports in Fig. 3.3, we perform a binary search on the

target frequency to establish the maximum achievable frequency, and stop when

the difference in achieved cycle time is less than 0.1 ns. Note that all synthesis

results reported throughout this work are before place-and-route, and include cell
area only. After layout, the area increases and the maximum frequency drops (an

utilisation higher than 85% is difficult to achieve and frequency reductions of up to

30% are reported in [162] for a 65-nm technology).

44 3 Dimensioning

Area (fixed)
Area (programmable)

Frequency

Number of initiator ports

C
e

ll
a

re
a

(µ
m

2
)

M
a

x
im

u
m

fr
e

q
u

e
n

c
y

(M
H

z
) 25000

20000

15000

10000

5000

0
12108642

850

800

750

700

650

600

550

Fig. 3.3 Target bus area and frequency

The first thing to note about the results in Fig. 3.3 is that the maximum frequency

for the two architectures is the same, for any number of ports. This is due to the

fact that the address decoding is pipelined in both cases, and the critical path starts

at the registered decoder output. Even with 12 ports, the target bus runs at more

than 550 MHz, which is sufficient for most contemporary IPs. The cell area for the

target bus is minuscule, in the order of 0.01 mm2, with the non-programmable bus

occupying slightly less area than the programmable one.

3.1.1.2 Limitations

Currently, the only protocol supported by the HDL libraries is DTL. As DTL is

single-threaded, read data and write (tag) acknowledgements are returned to the

initiator in the order the requests where issued. This is fine for simple applications

that expect responses from different target to come back in order, but it also couples

the behaviour of multiple applications mapped to the same IP. In such cases, the

initiator port becomes a shared resource, much like what is described in Section 2.4.

Thus, a similar mechanism is required to enable composable sharing of the port.

In our current implementation we do not allow multiple applications to share an
initiator port. Moreover, our implementation of tagging [49] only supports tags that

are issued concurrently with a write transaction (with write valid driven high), and

not retroactive tagging, where the request has already finished. This is not inherent

limitation and can be addressed in future implementations of the bus.

3.1.2 Initiator Bus

An initiator bus, as shown in Fig. 3.2b, connects multiple memory-mapped initiators

to a shared target. The initiator bus is responsible for demultiplexing and multiplex-

ing of requests and responses, respectively. Similar to the target bus, the initiator

bus implements transaction pipelining with in-order responses. It is the primary

responsibility of the initiator bus, together with the atomisers, as we shall see in

3.1 Local Buses 45

Section 3.2, to provide composable and predictable sharing of the target port. The

only requirement placed on the application designer is that shared target locking [8]

(depreciated in the AXI standard) is not used. Alternatively locks could be used per

application, based for example on memory regions. Note that the arbitration in the

initiator buses is decoupled from the arbitration in the network, and that different

initiator buses can have different arbiters with varying characteristics.

Initiator buses are placed in front of shared target ports, as exemplified by the

SRAM and peripheral in Fig. 2.1. Similar to the target buses, each initiator bus

is dimensioned individually based on the maximum number of concurrent initia-

tors sharing the target port. If the target port is only shared within an application,

we instantiate a predictable (work-conserving) round-robin arbiter. Should the port

be shared between applications, which is the case for both the peripheral port and

SRAM in our example system, we instantiate a composable and predictable TDM

arbiter. Similar to the target buses, the initiator buses are reconfigured at run time

using memory-mapped control ports. Depending on the arbiter, the bus is run-time

configured with, e.g., an assignment to TDM slots, the size of a TDM wheel, or

budget assignments for more elaborate arbiters [3].

3.1.2.1 Experimental Results

The synthesis results in Fig. 3.4 show how an initiator bus with a non-programmable

round-robin arbiter (the most complex arbiter available in the current implementa-

tion) and a maximum of four outstanding transactions scales with the number of

target ports.1 Similar to the target bus, the total cell area is in the order of 0.01 mm2,

even when the operating frequency is pushed to the maximum. Moreover, even the

larger instances of the bus run at more than 550 MHz, which is more than what

most IPs require. The initiator bus can be pipelined further if higher frequencies are

desired.

Area
Frequency

Number of target ports

C
e
ll

a
re

a
(µ

m
2
)

M
a
x
im

u
m

fr
e
q
u
e
n
c
y

(M
H

z
) 20000

15000

10000

5000

0
12108642

780

760

740

720

700

680

660

640

620

600

580

560

Fig. 3.4 Initiator bus area and frequency

1 Note that the outstanding transactions are only for the target itself. There could be many more
ongoing transactions in the interconnect.

46 3 Dimensioning

3.1.2.2 Limitations

Similar to the initiator bus, the only protocol currently supported by the HDL

libraries is DTL. Moreover, the bus arbitrates at the transaction level, but performs

flow control at the element level. Thus, as discussed in Section 2.4, two challenges

remain to share a target composably and predictably. First, the level flow control

must be raised to the level of arbitration, i.e. complete transactions. Second, the

transaction size must be bounded. Hence, the initiator bus needs to be complemented

with atomisers to provide composable and predictable sharing of the target port.

3.2 Atomisers

The atomiser, shown in Fig. 3.5, complements the initiator bus by breaking multi-

word transactions into multiple one-word transactions, and by performing flow con-

trol at the level of transactions. As seen in the figure, the atomiser transparently

splits and merges transactions from the perspective of the initiator using it. This

is achieved by storing the original transaction sizes and merging responses, e.g. by

only asserting the read-last signal when a read transaction completes. After the split,

the uniformly sized transactions are passed on to the request generator, before being

presented to the arbiter in the initiator bus.

size

cmd/addr/size

space decr

space

mask/last
write data/

mask/last
read data/

uniformly sized requests

req

generator

filling

counter

space

counter

split

merge

Fig. 3.5 Atomiser architecture

The request generator implements transaction-level flow control, similar to the

Memory Transaction Level (MTL) protocol [132]. A write request is only presented

to the target bus when all request data is present, i.e. the filling of the request buffer

is larger than the burst size (in the current implementation fixed at one element).

Similarly, a read request is only presented when the response data can be immedi-

ately accepted, i.e. there is sufficient space in the response buffer. The space counter

is decremented already at the moment the request is presented on the initiator port.

This is to ensure that the buffer space is available at the time the response data

arrives, independent of any pipelining in the target the atomiser is connected to.

3.3 Protocol Shells 47

As part of the dimensioning, an atomiser is added before every port of an initiator

bus, thus enabling pre-emptive scheduling and flow control at the level of transac-

tions. Together with appropriate arbiter in the initiator bus (e.g. a TDM arbiter),

the atomisers provide composable and predictable sharing of the target port. The

atomiser achieves a frequency of 650 MHz and occupies an area in the order of

0.01 mm2 (dominated by the response buffer) when dimensioned for an SRAM

with six cycles response time.

3.2.1 Limitations

The interleaving of transactions enabled by the atomiser potentially violates the

atomicity of the protocol used by the IPs. However, for AXI [8], OCP [147] and

DTL [49] atomicity is only assumed at the byte level, which our current imple-

mentation complies with. Alternatively, in multi-threaded protocols [8, 147], the

parallelism between connections can be made explicit via OCP connection- and

AXI thread-identifiers.

An important limitation of the proposed atomiser architecture is that it is

restricted to (sub-)transactions of a single word. This fits nicely with the SRAM

available in our experimental platform, as we shall see in Chapter 7. SDRAM con-

trollers, however, typically require larger bursts to achieve a reasonable memory

efficiency [3]. We consider it future work to add shared SDRAM, and thus also

more elaborate atomisers, to the platform template.

3.3 Protocol Shells

The protocol shells bridge between memory-mapped ports and the streaming ports

of the network. As seen in Fig. 2.1, shells are connected either directly to the IPs

(on the µBlaze, VLIW and video tile), to the ports of the target buses (on the bus

of the host and ARM), or to the atomisers of the initiator buses (on the bus of the

peripheral and SRAM). For a specific memory-mapped protocol there is a target

shell, an initiator shell and their associated message formats, as shown in Fig. 3.6.

Next we give an overview of the functionality of the shells, followed by an in-depth

discussion of their architecture.

To illustrate the functionality of the shells, consider the DTL target shell in

Fig. 3.6a. The request encoder awaits a valid command (from the initiator port con-

nected to the shell), then serialises the command, burst size, address and potential

flags. In the case of a write, it also serialises the data elements, together with the

masks (sometimes referred to as byte enables or strobes) and the write last signal.

In the initiator shell, the request decoder does the opposite, and on the arrival of a

request message it drives the command, address and burst size signals. If the trans-

action is a write, the initiator shell also presents the write data along with its masks

and the last signal. Responses follow a similar approach in the opposite direction.

48 3 Dimensioning

data

accept

valid

data

accept

valid

write mask

accept

address

size

accept

valid

write data

write last

accept

valid

read data

read mask

read last

cmd

request

encoder

response

decoder

(a)

s
iz

e
c
m

d

m
a
s
k

re
a
d

d
a
ta

ls
t=

0

m
a
s
k

re
a
d

d
a
ta

ls
t=

0

m
a
s
k

re
a
d

d
a
ta

ls
t=

0

m
a
s
k

re
a
d

d
a
ta

ls
t=

1
m

a
s
k

3
1

3
5
..3

2

m
a
s
k

3
1
..0

a
d
d
re

s
s

3
1
..0

5
..0

3
6

w
rite

d
a
ta

w
rite

d
a
ta

ls
t=

0

ls
t=

1

m
a
s
k

3
6

re
a
d

d
a
ta

ls
t=

0

0
..
3
1

3
2
..
3
5

(b)

data

accept

valid

valid

accept

data

accept

valid

write data

write last

accept

valid

read data

read mask

read last

accept

cmd

address

size

write mask

request

decoder

response

encoder

(c)

Fig. 3.6 Target shell (a) and initiator shell (c), with associated message formats (b)

The initiator shell encodes the read data, together with the mask and last signal, only

later to be decoded and reassembled by the target shell.

The shell architecture is largely dependent on three properties of the memory-

mapped protocol. First, the division into a request and response part depends on

whether the protocol supports split transactions or not. Second, the number of

streaming port pairs (connections) depends on the amount of concurrency that

the protocol allows, e.g. through independent threads. Third, the message format

depends on the signals of the interface. We now discuss these three properties in

turn.

The division into an independent request and response part, as shown in Fig. 3.6,

is suitable for protocols like DTL, AXI and OCP, where requests and responses are

split. Additionally, the write- and read-last signal (or similar) is used by the encoders

and decoders to determine the end of requests and responses (as opposed to using

counters). Thus, the finite state machines that implement the encoders and decoders

are only coupled externally, through the initiator or target they are connected to,

but not internally within the shells. For protocols like AHB and OPB, with limited

or no support for split transactions, there is a much tighter coupling and the state

machines are either merged or communicating, thus placing the AHB protocol shell

on the transport level in the protocol stack, as discussed in Section 2.3.

The second important design choice in the shell architecture is the number of

pairs of streaming port, i.e. connections. More connections give more parallelism,

but do so at a higher cost, and offer little or no benefit if the protocol does not exploit

the added parallelism. Thus, for DTL (and PLB), where the command group for read

and write is shared, we choose to only use one connection per memory-mapped

initiator and target pair. Thus, the shells in Fig. 3.6 have one pair of streaming

ports. For protocols like OCP or AXI, with independent read and write channels,

3.4 Clock Domain Crossings 49

two connections can be used, one for read transactions and one for write transac-

tions. Moreover, with support for multiple independent threads [8, 147], each thread

can be given its own connection(s). However, our separation of the protocol stacks

allows the thread identifier [8] and connection identifier [147] to be used at other

granularities than the connections. Hence, the shells enable different amounts of

parallelism for different protocols, but for simplicity we assume one connection per

shell throughout this work.

The third property that is of great importance is the message format. Normally,

the streaming protocol is narrower, i.e. uses fewer wires, than the memory-mapped

protocols. Thus, as exemplified by the command group and write data group in

Fig. 3.6b, the signal groups of the memory-mapped interfaces are (de)serialised. The

proposed message format is tailored for DTL, but is suitable also for other similar

protocols like PLB. Different shells may use different message formats, allowing

multiple memory-mapped protocols to co-exist. We do not attempt to use a uni-

fied message format, as it is typically not possible to seamlessly translate between

different protocols (although such claims are made in [7]). The reason is that the

protocols are not compatible on the higher levels in the protocol stack, e.g. in terms

of ordering, errors, masking, etc.

The DTL initiator and target shell are not parametrisable, and achieve a max-

imum frequency of 833 MHz, with an area of 2,606 and 2,563 µm2, for initiator

shell and target shell, respectively.

3.3.1 Limitations

The current implementation of the shells assume that the address and data width of

the memory-mapped interface is 32 bits. Additionally, our current implementations

of the shells do not support error codes and aborted transactions. We consider it

future work to extend the functionality of the shells. Moreover, due to the serialisa-

tion and header insertion, the shells emphasise the importance of burst transactions.

The aforementioned issue can be solved by moving the clock domain crossing into

the shell (assuming the network is running at a higher clock speed). In our proposed

interconnect, the shell is in the IP clock domain, and a separate block is responsible

for the clock domain crossing.

3.4 Clock Domain Crossings

For simplicity, and compatibility with both ASIC and FPGA design flows, this work

uses a grey-code pointer-based bi-synchronous FIFOs [41] to implement the clock

domain crossings between IPs and the network. The FIFOs are compatible with

standard CAD tools [103] and let the IPs (or shells) robustly interface with the

network with high throughput (one transfer per clock cycle) and a small latency

overhead (two clock cycles). As the last part of Step 1.1 of the dimensioning flow

50 3 Dimensioning

µBlaze

bus

ARM

shellshell shell

two concurrent

connections

one concurrent

connection

distributed memory

Fig. 3.7 IP port dimensioning

in Fig. 3.1, a bi-synchronous FIFO is connected to all streaming ports on shells or

IPs that are not in the network clock domain. Figure 3.7 shows the end result for

the µBlaze and ARM, with buses, shells and clock domain crossings added to their

ports based on the type of port and number of concurrent connections.

The bi-synchronous FIFO scales to high clock speeds, achieving more than

700 MHz for a 37-bit wide and 3-word deep FIFO using our 90-nm technology

libraries. The aforementioned FIFO instance occupies roughly 5,000 µm2. The same

FIFO architecture is used for the flit-synchronous links in Section 3.7. More efficient

implementations of bi-synchronous FIFOs, with lower latency and area require-

ments, are presented in [154, 196]. These FIFOs could be used as part of our inter-

connect to improve the performance and reduce the cost.

3.5 Network Interfaces

After the addition of the clock domain crossings, we move to Step 1.2 of the dimen-

sioning flow in Fig. 3.1 and create a network topology. The network, consisting

of NIs, routers and links, connects the streaming ports on the shells and IPs over

logical connections. As already discussed in Chapter 2, a connection comprises

two uni-directional channels. The NI is responsible for providing each channel with

lossless and ordered data transmission, with an upper bound on latency and a lower

bound on throughput.

To avoid buffer overflows within the network and thus provide lossless services,

credit-based end-to-end flow control is used.2 As we shall see, each channel has a

dedicated FIFO in both the sending and receiving NI. To ensure in-order delivery,

the path through the network is determined per channel by source routing. That is,

the path is embedded in the packet header by the sending NI, and the routers follow

the directions in the header. The path is thus the same for all flits belonging to a

2 For best-effort connections in the Æthereal architecture, the end-to-end flow control ensures free-
dom from message-dependent deadlock [73].

3.5 Network Interfaces 51

specific channel. The bounds on latency and throughput are provided by means of

contention-free routing, as described in Section 2.1. We now look at the details of

the NI architecture.

3.5.1 Architecture

Figure 3.8a illustrates the division of the NI into a buffer part a scheduler part, and a

register file, and highlights the subcomponents together with their control and data

dependencies. We present the subcomponents in turn.

one per port

in/out pair

scheduler subcomponentbuffer subcomponent register file

generic

number of

streaming

ports

valid/data

queue id

credit decr

space decr

accept

valid/data

valid

valid

flit data

flit data

queue id/space

TDM

scheduler

req

generator

credit

counter

reg file

flit
ctrl

HPU

reg ctrl

filling

counter

s
p
a
c
e

c
re

d
it
s

queue id

(a)

p
a
y
lo

a
d

d
a
ta

e
o
p
=

0
v
ld

=
1

p
a
y
lo

a
d

d
a
ta

e
o
p
=

0
v
ld

=
1

p
a
y
lo

a
d

d
a
ta

e
o
p
=

0
v
ld

=
1

p
a
y
lo

a
d

d
a
ta

e
o
p
=

1
v
ld

=
1

3
8

3
7

v
ld

=
1

e
2
e
fc

3
6
..3

1
2
9
..0

3
8

3
7

e
o
p
=

0
p
a
th

e
o
p
=

1
v
ld

=
1

v
ld

=
0

p
a
y
lo

a
d

d
a
ta

3
6
..
0

header phit

payload phit

(b)

Fig. 3.8 NI architecture (a) with associated flit format (b)

3.5.1.1 Buffer Subcomponent

The buffer subcomponent is dimensioned for a specific number of streaming port

pairs, hereafter referred to simply as a port since they always appear in pairs. As

we shall see in Chapter 4, we defer the NI dimensioning to the resource allocation,

where also the mapping of IPs to NIs is decided. Thus, in Step 1.2 in Fig. 3.1, the NI

52 3 Dimensioning

is dimensioned with only one streaming port to be used by the control infrastructure

as discussed in Section 3.8.

Each input and output port has a unique FIFO. Each target streaming port cor-

responds to an input queue, with data from the IP to the network. Similarly, an

initiator FIFO port corresponds to an output queue. The size (number of words) and

implementation (e.g. asynchronous or synchronous, ripple-through [196] or pointer-

based, binary or grey-code pointers [41], state retention or not) is selected per FIFO.

The input and output queues are given default sizes (determined on a per-network

basis) in the dimensioning flow. In Chapter 6 we show how to determine minimal

buffer sizes given the application requirements.

A filling counter (conservatively) tracks the occupancy in the input queue.3 Sim-

ilarly, each output queue corresponds to a credit counter. The latter (conservatively)

tracks the number of words freed up in the FIFO that are not yet known to the

sending NI. Throughout this work, we assume that the entire NI is in one clock

domain, with any clock domain crossing located outside the NI. This simplification

(with respect to [168]) enables us to use synchronous counters for queue filling and

credits. The number of bits allocated for the counters, uniform throughout the NI, is

also a design-time architectural parameter decided by the largest buffer size used.

3.5.1.2 Scheduler Subcomponent

The scheduler subcomponent has one flit port, seen on the right in Fig. 3.8a, and one

port for each FIFO in the buffer subcomponent. When data or credits are present in

the input and output queue, respectively, the request generator for that port informs

the scheduler. Based on the slot table and the architectural constants in Table 3.1, the

scheduler decides from which port data or credits are sent the next flit cycle. Thus,

scheduling is done at the level of flits, as is the decrementing of credit and space

counters, although these track words rather than flits. Consequently, with a flit size

sflit of three words, the scheduler only takes a decision every three cycles. Counter

updates are thus pipelined and do not affect the critical path of the NI.

Table 3.1 Architectural constants of the NI

Symbol Description Value Unit

sflit Flit size 3 Words
stbl Slot table size – Flits
shdr Packet header size 1 Words
spkt Maximum packet size 4 Flits
scrd Maximum credits per header 31 Words

The flit control unit is responsible for constructing the actual flit for the port

decided upon by the scheduler. If the current port is different from the one scheduled

in the previous flit cycle, a packet header containing the path and any potential

3 In the case of a pointer-based FIFO the counter can be implemented as part of the FIFO.

3.5 Network Interfaces 53

credits is inserted, as shown in Fig. 3.8b. The header occupies shdr words of the flit.

The remaining words of the flit (assuming shdr < sflit) carry payload in the form

of data from the input queue. Headers are also forcefully inserted after a maximum

packet size spkt to prevent starvation of credits (as discussed later in Chapter 6).

The flit control is responsible for updating the space and credit counters, and for

driving the accept signal to the input queue as data is sent. As shown in Fig. 3.8b, a

fixed number of bits are reserved for sending credits. Consequently, maximally scrd

credits can be sent in one header.

In the other direction, for flits coming from the router network, the Header Pars-

ing Unit (HPU) decodes the flits and deliver credits to the appropriate space counter,

and data to the appropriate output queue. Note that there is no need for an accept

signal from the output queue to the HPU due to the end-to-end flow control.

3.5.1.3 Register File

The register file is programmable through a memory-mapped target port and is

divided into three distinct tables: (1) the channel table containing the path and a

request-generator enable bit; (2) the space table, holding the current space counter

value, but also the programmed maximum as a reference and two enable bits for

the end-to-end flow control; and (3) the slot table which contains the time wheel

used by the scheduler. The channel and space table have one entry per target port,
whereas the slot table is of arbitrary length, and holds port identifiers (that are one-

hot encoded in a pipelined fashion before they are used as control signals by the

multiplexer in front of the flit control). The slot-table size stbl, and even the register

file organisation, is determined per network instance.

The most important property of the register file is the fact that it enables run-time

reconfiguration. Moreover, the register file is organised such that one connection

(port) can be modified without affecting other connections on the same NI, thus

enabling undisrupted partial reconfiguration, something we return to discuss in

Chapter 4. Note that it is not possible to program the credit counters. In fact, for

reconfiguration to be robust, changes to a channel must only take place when those

counters are at zero, and there is no data in the FIFOs or in the router network.

We discuss these requirements in more depth in Chapter 5. To implement robust

reconfiguration the register file offers observability of quiescence for the individual

ports through the reference space counters and filling counters.

3.5.1.4 Flit Format

The NI schedules connections at the level of flits, each one further subdivided into

physical digits (phits), i.e. the actual words sent over the wires between two mod-

ules. Due to the use of source routing, there are two different types of phits: headers

and payload. A detailed description of the two types follow.

When a new connection is scheduled, i.e. a new packet starts, the first flit carries

a packet header, consisting of the path to the destination FIFO and any potential

credits belonging to the connection in the destination NI. As already mentioned,

54 3 Dimensioning

throughout this work we assume that the header size, denoted shdr is one phit. Thus,

as seen in Fig. 3.8b, the header (1 phit) does not occupy the entire flit, and even a

header flit is able to carry payload data (2 phits). Within the header phit, the path

field is 30 bits and holds a sequence of output ports, encoding the path through the

router network and lastly the port in the destination NI. Along each hop, the router

or NI looks at the lowest bits (corresponding to the 2-logarithm of its arity) of the

path and then shifts those bits away. The 30 bits are sufficient to span 10 hops in a

network where all the routers and NIs have 8 ports (or less). An example of such a

topology is a 5 by 5 mesh with 4 NIs per router, i.e. a total of 100 NIs, supporting

roughly 1,000 connections (depending on the number of ports per NI). Not having

fixed bit fields, as used in e.g. [12] (where a hop is always represented by three bits),

allows arbitrary topologies with a varying number of ports per router and NI.

In contrast to all other NoCs we are aware of, we impose no restrictions on the

path, i.e. even loops are allowed. Due to the contention-free routing there is no

need to impose restrictions in order to avoid routing deadlock or message-dependent

deadlock [73]. Consequently, we allow flits to turn around in a router and go back to

the output port that corresponds to the input where the flit came from. As we shall

see in Chapter 4, this is used when two pairs of streaming ports on the same NI are

communicating with each other. The connection then goes from one port on the NI,

to the router and back to another port on the same NI.

The payload phits, unlike the header phit, have no meaning to the NIs or routers,

and are simply forwarded. In other words, like a true protocol stack, the network
is oblivious to the contents of the payload. A flit contains no information about its

payload, unlike NoCs that rely on Virtual Circuits (VC) to avoid message-dependent

deadlock [73], in which case the flits have control information about the messages

they carry to enable the network to put them in the appropriate buffers or use specific

scheduling algorithms.

The flit format allows arbitrary-length packets, but as already discussed, the NIs

end packets after a maximum number of flits. The latter is important to provide

temporal bounds on the return of credits as we shall see in Chapter 6.

3.5.2 Experimental Results

We split the synthesis of the NI into (1) buffers, (2) slot table and (3) the complement

of these parts. The reason for the division is that the buffers grow with their depth,

the slot table in the number of ports and the number of slots, and the remainder

(scheduler and register file) in the number of ports. A discussion of the three parts

follow.

All NI buffers are of a uniform width, 37 bits, corresponding to the message

format of the shells, as discussed in Section 3.3. The synthesis results in Fig. 3.9

therefore show the maximum frequency and the associated cell area for 37-bit

wide FIFOs of varying depth. The FIFO implementation in question is a fully

synchronous, pointer-based Flip-Flop FIFO. We see that the larger FIFOs achieve

3.5 Network Interfaces 55

Area

Frequency

FIFO depth (words)

M
a

x
im

u
m

fr
e

q
u

e
n

c
y

(M
H

z
) 20000

15000

10000

5000

0
12108642

1000

950

900

850

800

750

700

650

C
e

ll
a

re
a

(µ
m

2
)

Fig. 3.9 Flip-flop FIFO area and frequency

maximum frequencies of around 650 MHz. The area grows linearly with the depth,

as expected. The actual size of the FIFOs depends on the application and buffer

sizing, a topic we return to in Chapter 6.

The second part of the NI is the slot table, implemented as a register file. The

width of the register is the number of bits needed to represent all the ports (plus one

to denote an unscheduled slot). The depth is the number of slots, i.e. stbl. Synthesis

results give that the area of the register file is roughly 45 µm2 per bit.

Lastly, the synthesis results for the scheduler subcomponent and remaining reg-

ister files are shown in Fig. 3.10. The first thing to note is that, in contrast to the

previously presented modules, there is a considerable constant part that does not

change with the number of ports (the HPU and flit control). The results also show

that even the NI scheduler, being one of the more complex parts of the interconnect,

achieves clock frequencies well above 600 MHz for NIs with up to eight ports.

M
a

x
im

u
m

fr
e

q
u

e
n

c
y

(M
H

z
)

Area
Frequency

Number of ports

50000

40000

30000

20000

10000

0
12108642

700

680

660

640

620

600

580

C
e

ll
a

re
a

(µ
m

2
)

Fig. 3.10 NI scheduler area and frequency

3.5.3 Limitations

Our connection model does not easily extend to (router-based) multicast, as pro-

posed in [157]. The reason is the difficulties associated with implementing a robust

56 3 Dimensioning

flow-control scheme for multiple destinations, i.e. the lack of a scalable end-to-end

flow-control scheme for that type of connection. In [157] this problem is avoided by

limiting the scope to applications where sufficient space can be guaranteed at design

time.

The NI architecture, as presented here, has a design-time fixed slot-table size,

and even using a subset of the slots is not possible. The reason is the challenges

involved in changing the value globally, across the entire network, without causing

inconsistencies between NIs (both during and after the change).

A more severe limitation than the fixed slot-table size is that the (maximum) num-

ber of connections, i.e. streaming ports are determined at design time. Moreover,

also the buffer sizes are design-time parameters and no adaptations are possible after

the network hardware is instantiated. Using SRAMs instead of dedicated FIFOs

allows for redistribution within that NI, but one read and write port is needed for

every IP (and one for the network) to allow them to access the buffers concurrently.

Moreover, having a shared SRAM complicates partial reconfiguration, as we then

have to address also fragmentation of the memory space.

In addition to the limitations of the NI architecture, there are four major lim-

itations with the TDM-based arbitration it uses. First, the granularity of through-

put allocation is determined by the slot table size. As we shall see this is not a

major problem since capacity in the network is abundant and larger slot tables

come at a very low cost. Second, latency and throughput are inversely propor-

tional. That is, a channel that requires low latency needs many (properly distributed)

slots, potentially wasting network capacity. Third, channels from the same applica-

tion are temporally composable, even though predictable sharing between them is

sufficient. We return to this point in Chapter 4. Fourth, neighbouring routers and

NIs rely on flit-level synchronicity. We address this issue in Section 3.7 where we

show how to implement this assumption in a mesochronous, i.e. phase-tolerant [83],

network.

3.6 Routers

The responsibility of the routers is to get the data of all connections from one point

of the chip to another, based on header contents of the packets. The router, depicted

in Fig. 3.11, consists of three pipeline stages, corresponding to a flit size of three

phits. The first stage synchronises the input data. Thereafter, a Header Parsing Unit

(HPU) determines the output port based on the path encoded in the packet header,

similar to what we have already seen in the NI. The selected output port for the

specific HPU remains the same until an end-of-packet bit is encountered, similar to

what is proposed in [157]. In contrast to the Æthereal architecture [63], the control

bits are explicit signals and do not need any decoding, which removes the HPU from
the critical path. The output port numbers are one-hot encoded before being fed to

the multiplexer-based switch which determines the assignment of input to output

ports. A phit appears on an output port three cycles after being presented to an input

port.

3.6 Routers 57

in1

inn

out1

outn

data’

port id

data’

port id

data

valid

data

valid

valid

data

valid

data

switch

HPU

HPU

Fig. 3.11 Router architecture

The router has no routing table and only a one-word buffer per input port. It

also has no link-level flow control and no arbiter because contention is avoided

through off-line scheduling of the flits. The router also has no notion of TDM slots

and blindly forwards the data on the inputs. In contrast to VC-based NoCs [12, 27,

154, 162, 165], the router is not negatively affected by the number of connections or

service levels (more and deeper buffers, wider multiplexers), the real-time require-

ments of the connections (deeper buffers), or the introduction of link pipelining

(deeper buffers or flow-control-aware pipeline elements). Pipelining the link can

easily be done by moving the input register onto the link itself. This differs from

traditional NoCs where pipelined links affect the link-level flow control because the

feedback signals take multiple clock cycles [162].

The benefits over the combined guaranteed and best-effort services of the Æthe-

real architecture are as follows: (1) All connections are isolated and given bounds on

their temporal behaviour, thus achieving composability and predictability. (2) Not

having best-effort communication reduces the router to one VC and removes the
need for link-level flow control. This greatly simplifies a mesochronous imple-

mentation, thus achieving scalability at the physical level as detailed in Sec-

tion 3.7. (3) The hardware implementation is much simpler, thus enabling lower
area and higher speed, i.e. a better cost/performance trade-off, as we shall see in

Section 3.6.1.

At design time, the data width of the router (and NI) is determined. Throughout

this work we assume 37 bits to match the message formats in Fig. 3.6b. Addi-

tionally, each router is dimensioned by choosing the number of input and out-

put ports (potentially different) depending on the network topology. The choice

of a physical topology is largely dependent on two things: the logical topology

of the connections and physical-level enablers. First, a realisation of the logical

topology, i.e. the user requirements, relies on the resource allocation, as discussed

later in Chapter 4. The physical network topology must hence be dimensioned

such that an allocation can be found. In contrast to works based on virtual chan-

nels [12, 27, 154, 162, 165], it is only the throughput and latency requirements, and

not the number of connections, that put requirements on the network topology. The

reason is that the router network is stateless [186] and does not limit the number

58 3 Dimensioning

of connections using a link or passing through a router. This is also discussed in

Section 2.2.

Second, and equally if not more important are the physical-level enablers, i.e.

the routability of high-arity routers and the maximum inter-node link length [162].

With the proposed network, in contrast to many other NoCs, the designer is given

full freedom in dimensioning the network, with any router topology, any number
of links between two routers, and potentially an asymmetrical number of inputs and

output ports in a router. No distinction is made whether a router port is connected

to another router or an NI. Thereby, a router can be connected to an arbitrarily large

number of NIs to form either an indirect network (no NI) or what other works have

referred to as concentrated topologies (more than one NI).

3.6.1 Experimental Results

To determine the area, a number of router instances are synthesised. Figure 3.12

shows the trade-off between target frequency and total area for an arity-5 router

with 32-bit data width (used for comparison with [63]). As seen in the figure, the

router occupies less than 0.015 mm2 for frequencies up to 650 MHz, and saturates

at 825 MHz. The area and frequency of the router is independent of the number of

connections passing through the router, unlike VC-based NoC architectures such

as [12, 27, 165], and the synthesis results differ significantly from the combined

guaranteed and best-effort service router of Æthereal, that occupies 0.13-mm2 and

runs at 500 MHz, when synthesised in a 130 nm CMOS technology [63]. Just

like the conclusion drawn for Mango [27], we see that the guaranteed-service-only
architecture is using less area than a simple fair arbiter, and comparing our pro-

posed router to that of Æthereal, the difference is roughly 5× less area and 1.5×

the frequency when the two implementations are synthesised in the same 90-nm

technology.

C
e

ll
a

re
a

(µ
m

2
)

850800750700650

Frequency (MHz)

600550500

18000

17500

17000

16500

16000

15500

15000

14500

14000

Fig. 3.12 Router frequency and area trade-off

3.6 Routers 59

Figure 3.13a shows how the router scales with the arity when synthesised for

maximum frequency. We observe a similar drop in maximum frequency as reported

in [162]. The stepwise reduction in frequency is caused by the priority-encoded mul-

tiplexer tree inside the switch. For every power of two, another level of multiplexers

is added. Note that a lower utilisation is to be expected for high-arity routers during

placement and routing thus increasing their total area further [162].

Area

Area

Frequency

Arity

M
a

x
im

u
m

fr
e

q
u

e
n

c
y

(M
H

z
) 30000

25000

20000

15000

10000

5000

0
765432

1300

1250

1200

1150

1100

1050

1000

950

900

850

(a)

M
a

x
im

u
m

fr
e

q
u

e
n

c
y

(M
H

z
) 880

860

840

820

800

780

760

740

Frequency

Word width (bits)

C
e

ll
a

re
a

(µ
m

2
)

C
e

ll
a

re
a

(µ
m

2
)

160000

140000

120000

100000

80000

60000

40000

20000

0
256224192160128966432

(b)

Fig. 3.13 Synchronous router area and frequency for varying arity and data width. (a) Varying
router arity for 32-bit data width. (b) Varying data width for arity-6 router

Figure 3.13b shows how the data width affects the area and obtainable frequency.

We observe that the area grows linearly with the word width while the operating

frequency is reduced, also with a linear trend. It is clear from our experiments

that the router scales to both high arities and wide data widths, thus offering mas-

sive amounts of throughput at a low cost, e.g. an arity-6 router offers 64 Gbps at

0.03 mm2 for a 64-bit data path.

60 3 Dimensioning

3.6.2 Limitations

In contrast to networks with only best-effort services, resources must be reserved

in advance and are not available to other connections. It is important to note, how-

ever, that (1) the routers are much cheaper than in the original Æthereal architec-

ture, and (2) reservations do not have to correspond to the worst-case behaviour

if this is not needed by the application. That is, an application with no or soft

real-time requirements may request resources corresponding to its average-case

behaviour.

A limitation that the basic router shares with Æthereal is that the network requires

a (logically) globally synchronous clock. This places strict requirements on the

placement of routers and the distribution of a clock. The link delay problem can

be mitigated by using pipelined (synchronous) links [162, 184], thus shortening

the wire length. With the proposed router architecture, this is possible by moving

the input register, as shown in Fig. 3.11, onto the link itself. However, the clock

skew between neighbours must still be sufficiently low to avoid sampling in critical

timing regions, severely limiting scalability. This problem is mitigated or completely

removed with the introduction of mesochronous links.

3.7 Mesochronous Links

The choice of a link greatly affects how sensitive the network is to wire delays

and what clock distribution scheme is possible. When the routers and NIs share a

clock and thus have the same nominal frequency but different phase relationships,

mesochronous links mitigate skew constraints in the clock tree synthesis. Most

importantly, mesochronous networks are scalable [29], since the phase difference

between regions is allowed to be arbitrary.

Normally, link-level flow control and multiple VCs complicate the imple-

mentation of mesochronous (and asynchronous) NoCs [12, 113, 154, 165], due

to the increased number of control signals required. The latency involved in

the handshakes is also reported to limit the maximum achievable operating fre-

quency [29] (and limiting the throughput in an asynchronous NoC [27]). In our

network architecture, there is no need for link-level flow control and only one
VC is required, independent of the number of connections/service levels. This is

a major difference with existing mesochronous/asynchronous networks. The chal-

lenge is to provide composable and predictable services without global (phase)

synchronicity.

To hide the differences in clock phases we do not only put bi-synchronous FIFOs
between neighbouring elements [113, 121, 154], but also allocate a time slot for
the link traversal, thus hiding the difference in phase. The architecture of the link

consists of a bi-synchronous FIFO [124, 196] and a Finite State Machine (FSM),

as shown in Fig. 3.14. The FIFO adjusts for the differences in phase between

the writing and reading clock, where the former is sent along with the input data

3.7 Mesochronous Links 61

(often referred to as source synchronous), thus experiencing roughly the same signal

propagation delay [29]. The FSM tracks the receiver’s position within the current flit

(0, 1 and 2). If the FIFO contains at least one word (valid is high) the cycle a new

flit cycle begins (state 0), the FSM keeps the valid signal to the router and the accept

signal to the FIFO high during the succeeding flit cycle (3 clock cycles). Like [154],

we assume that the skew between the reading and writing clock is at most half a

clock cycle, and that the bi-synchronous FIFO has a forwarding delay less than

the number of phits in a flit (1 or 2 cycles) and a nominal rate of one word per

cycle. Under these assumptions, the re-alignment of incoming flits to the reading

clock ensures that (1) flits are presented to the router in their assigned time slot,

i.e. not too early and not too late, and that (2) the three phits of a flit are forwarded

to the router in consecutive cycles. The FSM thus re-aligns incoming flits to the

flit cycles of the reading clock, achieving flit synchronicity over a mesochronous

link.

With the aforementioned behaviour, the FSM ensures that it always takes three
cycles (in the reading clock domain) for a flit to traverse a link. This aligns the

flit to flit-cycle boundaries by introducing additional latency. The three cycles are

enough to absorb the latency of the FIFO and the skew between the writing and

reading clock. Moreover, as the phase difference is guaranteed to be bounded,

the FIFO is chosen with sufficient storage capacity to never be full (four words).

The FIFO does not need to generate a full/accept signal, and all handshakes are
local, i.e. they stay within the link (and do not limit the clock frequency). There

is no need for any link-level flow control or handshakes between the links, routers

or NIs.

The mesochronous links are the last part of our network. The links are inserted as

part of the dimensioning, i.e. topology selection, based on the envisioned floorplan

and physical distances between routers and NIs. In Fig. 3.15, we see the network

topology as dimensioned for the example system. As seen in the figure, different

links can have a different number of pipeline stages. Note that the NIs have no

streaming ports at this stage. During the allocation in Chapter 4, the shells (and IP

ports) are mapped to NIs and streaming ports are added.

clk + δclk

data

valid valid

accept

clk_wr clk_rd

data

valid’

Fig. 3.14 Link architecture

62 3 Dimensioning

RRRRR

NI

NININI

NINI

NI

Fig. 3.15 Network topology of the example system

3.7.1 Experimental Results

For the mesochronous links the area is in the order of 1,500 µm2 when using

the custom FIFOs from [196], or roughly 3,300 µm2 with the non-custom FIFOs

from [154]. For an arity-5 router with mesochronous links the complete router

with links is in the order of 0.032 mm2. This is significantly smaller than the

mesochronous router in [154], or the asynchronous router in [12], that occupies

0.082 mm2 and 0.12 mm2 (scaled from 130 nm), respectively. Also note that these

two NoCs offer only two service levels and no composability.

3.7.2 Limitations

The mesochronous links are only applicable if the entire network has the same

nominal clock rate. If the routers and NIs are plesiochronous (or even hete-
rochronous) [121], then adapting the link is not sufficient. Some routers and NIs

will be faster than others, and they must be slowed down to guarantee that input and
output is flit-synchronous relative to neighbouring network elements. In this work

we only allow a mesochronous network, and refer the reader to [78] for details on

how to address the aforementioned issues.

3.8 Control Infrastructure

With the introduction of the different blocks of the interconnect, we have seen a

number of programmable blocks, i.e. the NIs and the buses. In Fig. 2.1, for exam-

ple, there are nine memory-mapped control ports used for run-time reconfiguration

of the interconnect. Using memory-mapped reads and writes, one or more hosts,

typically general-purpose CPUs, use those control ports to configure the blocks and

thereby open and close connections [68, 168]. To open a connection from the ARM

to the SRAM, for example, the host must first configure the address decoder of the

target bus. Next, the source NI of the request channel (going from the ARM to the

SRAM) must be configured with the path and time slots allocated to the channel.

Similarly, the source NI of the response channel also requires configuration. Finally,

the initiator bus in front of the SRAM is configured with an allocation according to

3.8 Control Infrastructure 63

the specific details of the arbiter implementation. As illustrated by this example, the

host has to access multiple different control ports, located at different places in the

interconnect topology (and eventually also in the chip layout).

To enable the host to reach the control ports that are distributed across the

interconnect and configure the buses and NIs (and potentially also IPs), a control
infrastructure is needed. A dedicated control interconnect [115, 203], traditionally

implemented as a control bus, raises the question whether the control interconnect is

scalable at the physical and architectural level. If not, the interconnect on the whole

is not scalable. In this work, similar to [46, 68], we address the aforementioned issue

by unifying the data and control interconnect, thus creating a virtual control infras-
tructure. Doing so, however, raises a number of challenges that must be addressed.

First, resources must be allocated to the control connections, as discussed in

Section 3.8.1. Second, the control ports (unconnected in Fig. 2.1) must be connected

by extending the interconnect architecture with control buses. This is discussed in

depth in Section 3.8.2. With the control connections and control buses in place, it

remains for the host to orchestrate the control infrastructure at run time. We return

to this topic in Chapter 5.

3.8.1 Unified Control and Data

The control connections enable the host to reuse the interconnect also for memory-

mapped control communication, thus providing a scalable control infrastructure. As

the last step of the design-time dimensioning, the control connections are added as

an application, named control, together with the user applications. In addition, a

use-case constraint is added, stating that the control application may run together

with all other applications. This is seen at the bottom of Fig. 3.1, as the additions to

the communication specification given by the user.

Traditionally, the control connections are implemented using best-effort ser-

vices [46, 68], as shown in Table 3.2. With best-effort connections, no resource

reservations have to be made for the control connections that are both seldom used,

and have low throughput requirements. However, no upper bound can be given on

the execution time of the control operations, e.g. the time to instantiate an appli-

cation. In the proposed network that offers no best-effort services, both the control

connections and the user-specified connections enjoy composable and predictable

services. As we shall see in Chapter 5, this enables temporal bounds on the recon-

figuration operations (opening and closing of connections). Furthermore, the control

application enjoys the same isolation as the user applications [68] and is not affected

when other applications are started or stopped. Hence, the host becomes what is

referred to as a trusted network authority in [100], and a design fault or a hardware

fault in one application cannot affect the service given to any of the other applica-

tions in the system (including the control application). The drawback compared to

using best-effort communication is the need for permanent resource reservations,

because the host must always be able to open and close connections. We minimise

64 3 Dimensioning

Table 3.2 Control infrastructure implementations

Shared interconnect Quality of service

Wolkotte et al. [203] No Best effort
Marescaux et al. [115] No Predictable
Hansson and Goossens [68] Yes Best effort
This work Yes Composable and predictable

the cost of the control connections by using the concept of channel trees [71], thus

allowing them to share slots (and NI buffers) as further discussed in Chapter 4.

The addition of the control application is necessary to reuse the interconnect for

both control and data, but we also have to connect the control ports in Fig. 2.1

to the interconnect. Next, we describe how control buses complement the control

connections in reaching the control registers from the host using nothing but

memory-mapped communication.

3.8.2 Architectural Components

In addition to the control connections (from NI to NI), control buses are needed to

connect all control ports to the network. The control buses address two important

issues. First, the host must be able open and close control connections and use them

to program the remote NIs and buses. Moreover, it must be able to do so without

using the network, to avoid a boot-strapping problem. The host must also be able to

be involved in other applications than the control application, e.g. the initialisation

and status application in our example system. Second, as already mentioned, it is

not only the NIs that need configuration, but also the initiator and target buses.

These buses may be in different clock domains than the network and control bus,

which must be addressed. We now show how to reuse the modules that have been

introduced in this chapter to implement these requirements, through the local and

remote control buses illustrated in Fig. 3.16.

3.8.2.1 Local Control Bus

Starting with the local control bus in Fig. 3.16a, we see that the proposed architec-

ture consist of three major building blocks. First, a control bus, i.e. a target bus with a

fixed address decoder (Section 3.1), to which the host is directly connected. Second,

a number of target and initiator shells (Section 3.3). Third, clock domain crossings

(Section 3.4), here only shown as dotted lines. From left to right, according to the

numbering in Fig. 3.16a, the local control bus enables the host to:

1. execute boot code,

2. program the local NI,

3. reach remote control buses,

4. program the host’s own target bus,

3.8 Control Infrastructure 65

bus

fixed addr decoder

data addr spacectrl addr space

for the host itself
ctrl addr space

for other IPs

ctrl bus

flash shell

shell

bus

shell shellshellshellshellshell

CDC

shell

target

1.

boot code

2.

NI

programm-
able addr
decoder

6.

bus of other IP

host

(a)

bus

fixed addr decoder

ctrl bus

shell

shell

initiator

shell shell shell

CDC

NI

(b)

3. 4. 5.

Fig. 3.16 Local (a) and remote (b) control buses

66 3 Dimensioning

5. use the aforementioned target bus, and

6. program buses belonging to other IPs.

Thanks to the fixed address decoder, a non-volatile flash memory connected to

the first port of the local control bus solves the boot strapping of the host processor.4

The flash memory holds sufficient information for the host to open one connec-

tion to another memory, and continue the execution and instantiation of the control

application from there. Furthermore, as only the host has access to the control infras-

tructure, the boot sequence is secure [47], e.g. for digital rights management.

Once the host has booted, it is able to open and close connections using the

remaining ports on the local control bus. As we shall see in Chapter 5, the second

port is used to open and close the control connections to other remote control buses.

The third port enables the host to use the control connections (once they have been

opened using the second port) to access remote control buses. Through the fourth

port the host programs its own target bus, which is used for other applications than

control. Once the bus is programmed, the fifth port can be used for user applications.

Thus, the control address space is part of the host’s normal address map, and all user

connections (of the host) go via a reconfigurable target bus (similar to other IPs). The

sixth port is used to configure a bus of an IP other than the host itself. Potentially

there are more such ports on the local control bus. A final point to note in Fig. 3.16a

is that the control ports belonging to other IPs are potentially in different clock

domains, and that the crossings are implemented by connecting a target shell and

initiator shell back to back (with bi-synchronous FIFOs in between). Moreover, in

contrast to what is shown in Fig. 3.16a, it is not required that the target bus of the

host (for user connections) and the buses of other IPs are connected to the same

NI as the local control bus. It could, in fact, be five different NIs (only the second

and third port of the local control bus must be connected to the same NI). It is also

possible to move the fourth port, used to program the address decoder of the host’s

target bus, to a remote control bus.

3.8.2.2 Remote Control Bus

A remote control bus, as shown in Fig. 3.16b, is accessed via the network and has

only a subset of the ports needed by the local control bus. As already mentioned,

the host accesses the remote control bus through the target shell in Fig. 3.16a by

opening a control connection to the initiator shell in Fig. 3.16b. By opening different

control connections (to different NIs), the host is able to access all the remote control

buses through the same port. Through each remote control bus in turn, the host

can configure the NIs and any buses attached to it. Chapter 5 explains in greater

depth how the interconnect reconfiguration is done, using the control infrastructure

4 The alternative, although not currently implemented, is to have a reset state of the local NI where
at least one connection is already set up from the instruction and data port of the host to a memory
where the boot code is stored.

3.9 Conclusions 67

proposed here. In contrast to the local control bus that is in the host clock domain,

we place the remote control buses in the network clock domain. Thereby, clock

domain crossings are only required for the control ports of the initiator and target

buses, and not for the NI itself. Similar to the local control bus, it is not required for

the ports of the IPs to be connected to the same NI as the remote control bus.

3.8.3 Limitations

Our discussion on the control infrastructure is focused on systems with a single

host. As we shall see in Chapter 5, this is a reasonable assumption for contemporary

SoCs, but is not a scalable solution. Having only one host, however, is no inherent

requirement of the proposed methodology. It is possible to have multiple hosts, each

with its own virtual control infrastructure, and distribute the responsibility of the

interconnect across the hosts. In fact, as the control infrastructure is based on the

concepts of distributed shared memory, it is even possible to allow multiple host

to share the control infrastructure by adding an initiator bus before every (remote)

control bus. With multiple hosts, we believe it is possible to scale the proposed

solution to large SoCs, with 100 of control ports. Moreover, by establishing a hier-
archy among the hosts, it is possible to synchronise the access to different control

registers such that all modifications are consistent. We return to describe these issues

in Chapter 5, there in the context of a single host.

3.9 Conclusions

In this chapter we have presented the building blocks of the interconnect and shown

how they are dimensioned. We summarise by evaluating the contribution to the dif-

ferent high-level requirements in Chapter 1.

The interconnect offers scalability at the physical and architectural level. The

physical scalability is achieved by using GALS for all IPs, and mesochronous links

inside the network. This alleviates the designer from strict requirements on clock

skew and link delay, thus enabling an effective distributed placement of the network

components even for larger die sizes. The architectural scalability stems from the

ability to add more links, routers, NIs, shells and buses without negatively affecting

the services of the existing components.

The interconnect supports diverse IPs and applications. No requirements are

placed on the IP’s use of the network, thus offering application diversity. Further-

more, thanks to the separation of the network, streaming and bus-protocol stacks,

streaming as well as distributed shared memory communication is offered, with an

established memory-consistency model (release consistency). The interconnect also

support multiple concurrent memory-mapped protocols. Currently, we do however

require that the same protocol (stack) is used by all the buses in the system.

68 3 Dimensioning

In the proposed network, just as Æthereal, composability is based on contention-

free routing, with complete isolation of connections. Composable sharing of

memory-mapped targets is provided through the use of target buses and atomisers.

Predictability is provided as the latency and throughput in the network follows

directly from the waiting time in the NI (plus the time required to traverse the path),

and the fraction of slots reserved, respectively. Performance analysis at the appli-

cation level is possible by modelling the entire interconnect in a dataflow graph,

something we discuss in depth in Chapter 6.

To enable reconfigurability we place a virtual control infrastructure on top of

the interconnect. This results in a unified data and control interconnect, with reuse

of existing shells and buses, where control enjoys the same isolation and temporal

bounds as other applications. The reconfigurability is thus scalable, composable,

predictable and additionally secure and robust.

The contributions to the automation lies primarily in selecting, adding and con-

necting components, pushing the complexity of allocating and using those resources

to future chapters. Nevertheless, the three steps in Fig. 3.1 correspond to three tools

in the design flow for bus and shell instantiation, network topology generation,

and addition of the control infrastructure. Additionally, the area models described

throughout this chapter are included in an area-estimation tool that quickly shows

the total area requirements of the interconnect, and the distribution across different

components.

Obviously, all the qualitative properties, outlined above, do not come for free.

We do believe, however, that the interconnect provides a good performance nor-
malised to silicon area. The important observation about the silicon area is that the

interconnect is dominated by the NIs that in turn are dominated by their buffers.

Buffer sizing is therefore of utmost importance, and we return to see the impact of

the NI buffers in Chapter 6. The silicon area of the interconnect, in the context of a

complete system, is exemplified in Chapters 7 and 8.

Chapter 4

Allocation

Resource allocation is the process of assigning the resources of the interconnect

of Chapter 3 to the individual applications, based on their requirements and the

use-case constraints. Allocations are created and verified at design or compile time.

Hence, run-time choices are confined to choosing from the set of fixed allocations.

While limiting the run-time choices to a set of predefined use-cases, this is key as it

enables us to guarantee, at compile time, that all application constraints are satisfied,

and that all the use-cases fit on the given hardware resources. In this chapter, which

corresponds to Step 2 in Fig. 1.8, we present an allocation algorithm that matches

the application requirements with the interconnect resources.

To realise a logical connection between the IP ports, the resource-allocation part

of the design flow, shown in Fig. 4.1, must,

1. in case of distributed memory communication, allocate a target port on the target

bus. Similarly, allocate an initiator port on the initiator bus in case of shared

memory communication. The selection of a bus port implicitly selects a shell on

each side of the network (there is a one-to-one mapping). After this step, every

connection is allocated two communicating pairs of streaming ports.

2. if the resource allocation is done at design time, then decide where in the network

topology the shells (or IPs in the case of a streaming protocol) are connected.

The streaming ports from the previous step are consequently connected to NIs.

After this step, every connection is allocated an NI on each side of the network

(possibly the same).

3. for the two channels that constitute the connection, select paths through the

router network, starting and ending at the NIs determined in the previous step.

On the selected paths, allocate an appropriate set of time slots such that the

throughput and latency requirements are met. After this step, the allocation is

complete and the logical connection can be instantiated.

The first step is only needed in those cases where a connection passes through

an initiator or target bus, exemplified in Fig. 4.2 by the decoder’s connection from

the ARM to the SRAM, illustrated with dotted arrows. In Chapter 3 we only dimen-

sioned the buses, i.e. we only decided the number of bus ports, and did not yet

decide what connection uses what port in what use-case. The allocation of ports to

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_4, C© Springer Science+Business Media, LLC 2011

69

70 4 Allocation

Architecture (binding)

shells mapped to NIs,

control ports mapped to buses

Allocations

address ranges,

network paths,

time slots

one connection per bus port and use-case

2.1 Allocate bus ports for connections

selects a location in the network topology

2.2 Allocate NIs for streaming ports on shells and IPs

supporting dynamic reconfiguration

2.3 Allocate paths and time slots for channels

control infrastructure
NIs, routers and links,

local buses and protocol shells,
layout constraints,

Architecture Communication

applications,
use-case constraints,

control application and
its use-case constraints

Fig. 4.1 Allocation flow

connections is made by a greedy heuristic that iterates over the applications, based

on the number of use-cases they span. The intuition behind this ordering is that

the ports used by an application cannot be used by any other application that runs

concurrently. Hence, the more use-cases an application spans, the more restrictions

are imposed on the not-yet-allocated applications.

After allocating the bus ports on both sides of the network, each connection is

associated with two pairs of streaming ports. In case of a memory-mapped protocol,

these streaming ports are located on the shells. For a streaming protocol, on the

other hand, the ports are those of the IP itself (possibly with a clock domain crossing

in between). After performing the bus-port allocation, the succeeding steps of the

allocation flow no longer looks at connections between IPs, but rather individual

channels between streaming ports. These mappable ports are shown in Fig. 4.2. As

we shall see, the remaining two steps of the compile-time allocation flow perceive

applications as channels between mappable ports.

After the bus ports are assigned to connections, the second step decides the spatial

mapping of mappable ports to NIs, i.e. where in the given network topology, shown

in Fig. 3.15, to connect them. The mapping has a large impact on the succeeding

steps, and greatly affects the energy, area and performance metrics of the system [86,

148]. More importantly, the mapping influences the ability to satisfy the application

guarantees during succeeding steps [70]. Traditionally [85, 86, 133–135], mapping

is perceived as a special case of the NP-complete Quadratic Assignment Problem

4 Allocation 71

p ī pj̄ pk̄ pl̄ pm̄ p n̄

pā pb̄ pc̄ pd̄ pē pf̄ p ḡ p h̄

pi pj pk pl pm pn

pa pb pc pd pe pf pg ph

shell shell shellshell shell

atomiser atomiseratomiser atomiser

SRAMperipheral videoaudio

busbus

µBlazehost

bus bus

ARM VLIW

shellshellshellshell shellshellshell

Fig. 4.2 Mappable ports of the example system

(QAP) [155]. Intuitively, the QAP can be described as the problem of assigning a

set of mappable ports to a set of locations (NIs) with given distances (path length)

between the locations and communication weights between the ports. The goal is

then to map the ports onto locations in such a way that the sum of the products of

weights and distances is minimal. As we shall see, the introduction of constraints

such as latency requirements and slot alignment calls for other approaches than the

traditional QAP formulation.

The last step of the allocation flow concerns the use of the network itself, and

determines the channel path and slots. The resulting allocation must adhere to the

channel’s throughput and latency requirements. The allocation algorithm proposed

in this chapter takes a network-centric approach and excludes the effects the buses

and IPs (and also flow control between these components) have on the end-to-

end temporal behaviour. We return to discuss the rationale behind this decision in

Chapter 6 where we also demonstate how to incorporate the end points and dimen-

sion the NI buffers using dataflow analysis techniques.

72 4 Allocation

We must find a set of resources such that the requirements of every channel

are fulfilled. The large design space, coupled with the many constraints, leads to

algorithms with high computational complexity. The mapping of shells to NIs alone

is NP-hard, and so are the constrained path selection and slot allocation. To sim-

plify the problem, the resource allocation is therefore done using heuristic algo-

rithms. In [62, 85, 86, 133, 134, 136] the mapping and path selection is functionally

decomposed into modules on the basis of a flowchart. Each module has its sepa-

rate constraints and optimisation goals e.g. map by clustering based on through-

put requirements and route based on contention and hop count. However, mapping

decisions anticipate and rely on the abilities of the path-selection (and in our case

slot-allocation) algorithm to find feasible routes between the locations decided by

the mapping algorithm. In contrast to the large body of optimising mapping and

path-selection algorithms that only look at channel throughput requirements and link

capacity [85, 86, 133, 134, 136], we additionally adhere to the latency requirements

of the channel, and the restrictions imposed by the pipelined virtual circuits (i.e. slot

alignment).

Instead of basing mapping decisions on distance and volume estimations, and

path-selection decisions on simple capacity metrics, we propose a tighter coupling

between the three resource allocation phases [70]. As we shall see in this chapter,

and as illustrated in Fig. 4.3, we exploit the close correspondence between the two

spatial allocation problems and let the path-selection algorithm take the mapping

decisions by incorporating the mappable ports (shells and streaming ports of IPs)

in the path-selection problem formulation. Similarly, we include the slot allocation

in the path pruning to guarantee that a traversed path is able to satisfy a channel’s

requirements.

traditional

path selection
traditional

mapping

unified mapping

and path selection

shell

shell

NI R

RNI

NI R

Fig. 4.3 Unified mapping and path selection

Before discussing the actual algorithms that transform the requirements and con-

straints into allocations, we start by showing how to exploit mutually exclusive

channels not only between applications, but also within an application, by shar-

ing time slots (Section 4.1). We proceed by introducing the problem formulation

(Section 4.2). Then, the algorithm for allocating network resources (Section 4.3)

4.1 Sharing Slots 73

follows. We end this chapter with experimental results (Section 4.4) and conclusions

(Section 4.5).

4.1 Sharing Slots

Contention-free routing is non-work-conserving [205], i.e. the arbiter in the NI may

be idle even when there is data available to be sent (on connections other than the

one currently scheduled). Although the time in the router network is minimal (no

contention), flits have to wait for their slots in the NIs, even if there are no other flits

in the network. As a result, the average latency is relatively high even in a lightly

loaded system [26, 205]. Moreover, latency and throughput are inversely propor-

tional. That is, the larger the slot table and the fewer slots are reserved, the higher

the latency as the distance between reserved slots increases. Another issue with the

contention-free routing is that it is a type of frame-based arbitration, where low

throughput channels in combination with limited allocation granularity are a source

of over-dimensioning [128] and can lead to under-utilisation of resources [171, 205].

The latter is, for example, the case for the control connections that all have minus-

cule throughput requirements.

The discretisation and latency effects are mitigated through the introduction of

channel trees, where time slots are reserved for sets of communication channels that

form a tree around a shared source or destination port [71]. As illustrated in Fig. 4.4,

this formation of trees occurs naturally at memory-mapped target ports shared by

multiple initiators and at memory-mapped initiator ports that use distributed mem-

ory, i.e. access multiple targets. For an initiator with distributed memory, the request

channels diverge, and the response channels converge. Correspondingly, for a shared

target, the response channels diverge and the request channels converge. The set-top

box SoC shown in Fig. 4.5 illustrates how channels are formed in an actual system

instance. In this system, trees are formed around the external SDRAM, but also

around the two CPUs, responsible for the peripherals and accelerators belonging to

their respective task domain.

initiator

target

target

target

converging responses

initiator

target

target

target

diverging requests

target

initiator

initiator

initiator

converging requests

target

initiator

initiator

initiator

diverging responses

Fig. 4.4 Channel trees

74 4 Allocation

MIPS trees SDRAM trees TriMedia trees

IC debug

CPU debug

USB

UART

ISO UART CRC DMA

IEEE 1394 LLC

PCI/XIO

2D renderer

bridge

TriMedia

bridge

scaler

int. controller

audio I/O

SPDIF I/O

stream DMA

serial interface

SDRAM

MPEG-2 dec.

image proc.

video proc.

MIPS

Fig. 4.5 The Viper set-top box SoC [50]

As described in Section 2.1.1, slot allocation is traditionally only correct if every

slot of a link is allocated to at most one channel per use-case. However, by reserving

slots for trees of channels within one application, we are able to allow channels used

in a mutually exclusive manner to share a slot reservation. The sharing enables us

to either keep the sum of discretised requirements (first discretise, then sum) and

reduce the average-case latency, or to reduce the number of slots by reserving the

sum of non-discretised requirements (first sum, then discretise). Figure 4.6a illus-

trates an example in which four channels, cA, cB , cC and cD require 1
40 , 2

40 , 3
40 and

4
40 of the link capacity respectively. The slot reservation is shown both in the form

of the slot table of the source NI, and along every hop of the channels’ paths. Due to

the granularity, the slot table requires at least 40 slots. It is possible to use a smaller

slot table at the expense of over-allocation, e.g. use a table with only four slots and

assign a single slot to each channel. A minimum of four slots is still required though.

In Fig. 4.6b, the slots that were previously reserved for cA, cB , cC and cD are now

collectively reserved for the set that comprises all four channels. Hence, each of the

channels may access the network in slots 0–9. In addition, with the introduction of

{cA, cB , cC , cD}, it is possible to redistribute the ten slots equidistant over the TDM

table. This distribution not only minimises the worst-case waiting time for a slot but

also enables a reduction of the table size by a factor of ten. The reduced table has

four slots and requires only a single slot allotted to the newly introduced channel

tree. We return to discuss the details of this example in Section 4.3.3.

The channel trees are isolated from each other and other individual chan-

nels. Thereby, the trees cover the entire spectrum from reservations per chan-

nel [105, 122, 168, 174] to reservations per port [202]. The channel trees do, how-

ever, require an additional level of (intra-application) scheduling to ensure that the

constituent channels are mutually exclusive, and that they are scheduled so that

real-time guarantees can be given to them [171]. As shown in Fig. 4.4, we dis-

tinguish between diverging and converging channel trees. Request channels form

diverging trees at initiator ports, and response channels at shared target ports. Cor-

respondingly, response channels converge at initiator ports and request channels

at target ports. For a diverging tree, the contention resolution requires only minor

4.1 Sharing Slots 75

7 c
D

9 cD

8

6

5 c
C

4 c
C

3 cC

2 c
B

1

0 c
A

c
B

39

10

c
D

c
D

0

1

2

2,3

3,4

5,6

4–6 5–7

7–10 8–11

6-8

9–12

7–9

6–9

NIA NIB

NIC

NIDNIR

(a)

3–12

2–111–100-9

2–11

1–10

9

8

7

6

5

4

3

2

1

0

10

39

3–12

3–12

2–11 4–13

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

{c
A
, c

B
, c

C
,c

D
}

2–11

3–12

NIA NIB

NIC

NIDNIR

(b)

Fig. 4.6 Diverging channels on a 2 × 3 mesh, without (a) and with (b) trees

adaptations of the source NI [71]. The reason is that they all originate from the

same NI and that the contention resolution is local. A tree of converging channels,

however, requires more elaborate forms of contention resolution since the schedul-

ing decisions are distributed across the source NIs of the channels and they only

meet along their path to the destination NI. The problem of contention resolution

within the converging tree is thus distributed. In the simplest case, with an initiator

at the root of the tree, the mutually exclusive use of the response channels can be

guaranteed by only allowing one outstanding request (and thus only one response

travelling back to the initiator). This is, however, at the cost of pipelining and paral-

lelism, and in the general case a second arbitration scheme must be added on top of

the TDM.

76 4 Allocation

In contrast with [71], where additional arbitration is added to the NI,1 we restrict

ourselves to channel sets where the mutual exclusion is explicitly managed by the

IP at the root of the channel tree. By doing so, we push the responsibility for man-

agement of the individual channels outside the NI, leaving the NI architecture unaf-

fected and unaware of the sharing of slots. The explicitly managed channel trees fit

well with our virtual control infrastructure, where the host sequentially accesses a

large number of targets, each with their own low-throughput request and response

channels. The channel trees enable the control infrastructure to grow to a large num-

ber of NIs without consuming more than one slot per link. Even though we limit the

scope to channel trees managed by the IP, the sharing of slots must be considered in

the resource allocation, as discussed later.

4.2 Problem Formulation

An essential part of the resource allocation is the specification of application require-

ments and constraints. The formulation enables the user to express what qualitative

and quantitative properties a valid solution should have. It also enables partial spec-

ifications, where steps in the allocation are either completely left determined (e.g.

shells already mapped), or only partially performed (e.g. some connections already

assigned to buses).

The specification can be divided into four parts, related to, respectively, the appli-

cation requirements, the network topology, the resource allocations and finally the

residual resources. An in-depth description of each part follows.

4.2.1 Application Specification

The first part of the problem formulation is the specification of what requirements

the applications have on the interconnect. Throughout this chapter we use capital

letters to denote sets.

Definition 1 From the perspective of the network, an application a is a directed

non-multigraph, a(Pa, Ca), where the vertices Pa represent the mappable ports,

and the arcs Ca represent the set of channels between the ports. There is never more

than one channel between a given pair of (mappable) ports. Each channel in the

application c ∈ Ca is associated with a minimum throughput constraint, ρ(c), and

a maximum latency constraint, θ(c). The source and destination of c are denoted

src(c) and dst(c).

The end points of the application channels, i.e. the mappable ports, are ports that

connect to NIs, as illustrated in Fig. 4.2. For IPs with streaming ports, the mappable

1 These architectural additions are at this moment only available in SystemC and not in the syn-
thesisable HDL implementation of the proposed interconnect.

4.2 Problem Formulation 77

ports correspond directly to the IP ports, potentially connected via a clock domain

crossing. For memory-mapped ports, however, the application formulation excludes

the buses and shells, and takes a network-centric approach. The reason we exclude

the buses and shells is that their (temporal) behaviour is largely dependent on the

specific protocol and IP behaviour (in the case of an initiator bus). We exemplify

how to include specific instances of the buses and shells in the end-to-end perfor-

mance analysis in Chapter 7.

The filter application, introduced in Fig. 1.5a and here shown in Table 4.1, serves

to illustrate how the compile-time flow perceives an application. The filter has four

channels, interconnecting eight ports, two on the audio codec (pk and pk̄), two

directly on the µBlaze (pc and pc̄), two on the shell of the µBlaze (pd and pd̄)

and two on one of the shells of the bus in front of the SRAM (pl and pl̄ , decided

by the bus-port allocation). The names of the ports correspond to the notation in

Fig. 4.2. The two channels between the processor and the audio codec carry only

raw audio (streaming) data, and the two channels corresponding to the commu-

nication between the processor and SRAM carry (memory-mapped) request and

response messages, respectively. Thus, the throughput requirements of the latter

reflect not only the data seen by the ARM, but also message headers added by the

shells (depending on the protocol and data width). The applications are refined into

a specification according to Definition 1 after Step 2.1 in Fig. 4.1.

Table 4.1 Specification of the filter application

Source Destination Throughput (Mbps) Latency (ns)

pc pk̄ 1.5 Mbps 1,000 ns
pk pc̄ 1.5 Mbps 1,000 ns
pd pl̄ 5 Mbps 500 ns
pl pd̄ 3 Mbps 500 ns

Irrespective of what data a channel carries, the requirements on temporal

behaviour are expressed by two values, similar to the well-known framework of

latency-rate servers [185]. The throughput requirement is a lower bound on the

average throughput from the input queue in the source NI to the output queue in the

destination NI. The latency requirement is an upper bound on the time a single data

item (word) can spend from being at the head of the input queue in the source NI,

until it is placed in the output queue of the destination NI. It should be noted that

the bounds on latency and throughput do not include the effects of end-to-end flow

control. In other words, the network resource allocation assumes that the scheduler

in the source NI is only governed by the slot table and never stalled due to lack of

credits. We return to discuss how to take end-to-end flow control into account in

Chapter 6.

The throughput and latency requirements are inputs to the compile-time flow. It is

therefore up to the user to decide how the numbers are derived, e.g. by back-of-the-

envelope calculations, guesstimates based on previous products, high-level simula-

tion, code analysis or analytical models. It should be noted that the design flow does

not require the user specification to capture the worst-case behaviour. If a worst-case

78 4 Allocation

allocation is not needed, for example in the case of a soft real-time application, then

the communication requirements may reflect the expected or average-case use of

the interconnect (or any other value decided by the user). Note, however, that the

composability and predictability of the interconnect are not affected by over- or

under-provisioning of resources. In the case of over-provisioning, the result is an

unnecessarily costly interconnect. In the case of under-provisioning (of throughput

or buffers), the interconnect slows the communication down to be means of flow

control at the edges (NIs). The formulation of applications and requirements used

in this work are also compatible with existing specification formats [62], which we

return to discuss in Chapter 6.

As discussed in Section 4.1, mutually exclusive channels are allowed to form

slot-sharing trees [71].

Definition 2 The channel trees correspond to a partition of Ca into jointly exhaus-
tive and mutually exclusive sets. The equivalence relation this partition corresponds

to considers two elements in Ca to be equal if they have the same source or des-

tination port. The channel set, i.e. equivalence class, of a channel c is denoted [c].

For the resource allocation, the channel trees add additional constraints, as the

channels constituting a tree share their time slots. For simplicity, the allocation

algorithms currently assume that the throughput and latency requirements for all

channels in a tree are the same.

Definition 3 The set of applications is denoted A. We define the complete set of
ports P as the union over all applications, P =

⋃

a∈A Pa . Similarly, the complete
set of channels C =

⋃

a∈A Ca .

In our example system, A = {filter, player, decoder, game, init, status, control}.
Note that the resource allocation perceives the control application (added as part of

the control in infrastructure in Section 3.8.1) like any other application. The set of

ports P contains all the ports that are to be mapped to NIs. We have already seen 28

of those ports in Fig. 4.2, with the port pairs pa through pn , but in fact our example

system has 42 mappable ports in total. The remaining 14 ports belong to the control

infrastructure, with one port pair per NI, here after denoted p0 through p6, for the

seven NIs respectively.

Definition 4 A use-case u ⊆ A is a set of applications that run simultaneously. Let

U denote the set of use-cases. Let Ua ⊆ U denote the set of use-cases containing
an application a, and similarly let Uc ⊆ U denote the set of use-cases containing a
channel c.

A number of example use-cases, e.g. u = {status, decoder, player, control},
are already shown in Fig. 1.6b (after the addition of the control infrastructure). An

undirected graph, exemplified by Fig. 1.6, expresses which applications may run in

parallel. With this constraint formulation, every clique in the graph corresponds to a

use-case. Hence, the process of going from the user-specified constraint graph to a

set of use-cases is merely a question of applying a clique-detection algorithm [151].

Doing so for our example system, we get six possible use-cases listed in Table 4.2.

4.2 Problem Formulation 79

Table 4.2 Example system use-cases

Use-case Applications

u0 {control, init, filter}
u1 {control, init, player}
u2 {control, status, decoder, filter}
u3 {control, status, decoder, player}
u4 {control, status, game, filter}
u5 {control, status, game, player}

With the exception of the control application, we have already seen these six use-

cases in Fig. 1.6b. Note that Definition 4 restricts the set of use-cases, i.e. application

combinations, but does not restrict the order in which the use-cases appear. It is thus

possible to go between any pair of use-cases.

To be able to constrain the mapping of ports to NIs, we allow port groups and

map groups instead of individual ports.

Definition 5 The set of mapping groups correspond to a partition Q of P , where

the elements of Q are jointly exhaustive and mutually exclusive. The equivalence

relation this partition corresponds to considers two elements in P to be equal if they

must be mapped to the same location, i.e. the same NI. The equivalence class q of a

port p is denoted [p].

The introduction of mapping groups is, in fact, necessary to ensure that the two

ports in a streaming port pair, for example pa and pā in Fig. 4.2, are both mapped

to the same NI. As already discussed in Chapter 3 this is necessary due to the bidi-

rectional nature of a connection (data travelling on one channel relies on the return

channel for the delivery of flow-control credits). Additionally, the grouping of ports

enables the designer to express more complex physical layout requirements, similar

to what is proposed in [162]. It is, for example, possible to group ports from one or

more IPs depending on voltage and frequency islands in the layout. For an example

of how mapping groups are used, consider the µBlaze in Fig. 4.2. The streaming

port pair of the processor forms one group, just as the two streaming ports on the

processor’s shell. To ensure that all four ports (pc, pc̄, pd and pd̄) are mapped to the

same NI, we add a port group to the architecture description, as illustrated by the

constraints in Appendix A.

4.2.2 Network Topology Specification

The second part of the problem formulation, and also part of the input specification,

is the network topology, given by the user.

Definition 6 The network topology is a strongly connected directed multigraph. The

set of vertices N is composed of three mutually exclusive subsets, Nr , Nn and Nq .

Nr contains routers and links, Nn network interfaces, and Nq mapping-group nodes.

The latter are dummy nodes to allow unmapped mapping groups to be integrated in

80 4 Allocation

the network graph. The number of mapping-group nodes is equal to the number of

port groups to be mapped, |Nq | = |Q|. The NIs and mapping-group nodes together

form the set of mappable nodes Nm = Nn ∪ Nq .

The set of edges L contains the physical network links between nodes in Nr and

Nn , and dummy mapping links that connect nodes in Nq to nodes in Nn . A router is

allowed to have any number of links while NIs and link pipeline stages always have

one egress link and one ingress link. Source and destination of l are denoted src(l)
and dst(l).

Figure 4.7 shows the network model for our example system in Fig. 2.1 (before

the mapping to NIs is completely decided upon). We clearly see that the core of the

graph is merely reflecting the physical network topology. Routers and link pipeline

stages, i.e. the nodes in Nr , are grouped together since there is no need to distinguish

between the two. From a resource-allocation point of view, there is no difference

between a 1-arity router and a link pipeline stage. Similar to the routers and link

pipeline stages, there is a direct correspondence between the NIs in the architecture

and the nodes in Nn . The naming of ingress and egress links, as shown in Fig. 4.7,

refers to the direction relative to the NIs. In contrast to the nodes in Nr and Nn ,

Fig. 4.7 Network model of the example system

4.2 Problem Formulation 81

the mapping-group nodes Nq do not correspond to any physical network block, but

merely act as the starting location for any port group not yet mapped to an NI. As

we shall see, Nm contains all nodes to which the elements of Q can be mapped.

The mapping constraints introduced in the application specification are used to

ensure that a group of ports are mapped together. We also enable the designer to

restrict to which NIs the group is mapped.

Definition 7 The set of eligible NIs ǫ(q) ⊆ Nn constrains the mapping of a group q
to a subset of the available NIs.

Rather than allowing the design flow to choose any NI as the location for a map-

ping group, it is thus possible to constrain the choice to a set of NIs that are, e.g., on

the perimeter of the chip layout (for an off-chip memory controller), or close to each

other physically (for a large IP with multiple ports). Note, however, that even with

multiple eligible NIs, all ports within a group are mapped to a single NI. In Fig. 4.7

we have chosen to let all IPs but the ARM have their ports in a single mapping group.

As a result, there are nine mapping groups and consequently nine mapping-group

nodes in the graph. The topology of links between the mapping-group nodes and

the NIs is determined by the eligible NIs. To automatically arrive at a mapping of

ports to NIs similar to what is depicted in Fig. 2.1, we have constrained the mapping

by having only one eligible NI for all groups besides the ports of the ARM and

the SRAM. For a typical system, we start with far less restrictive constraints than

what is shown in Fig. 4.7, and even have mapping groups where all the NIs in

the system are considered eligible, i.e. ǫ(q) = Nn , for all the groups. For clarity,

we refrain from cluttering the figure with such an example and also exclude the

mapping-group nodes of the control infrastructure. In addition to what is shown in

Fig. 4.7, each control bus constitutes one mapping group, and is constrained to a

single NI. The specification of eligible NIs is exemplified in Appendix A.

4.2.3 Allocation Specification

The application requirements and network topology are both inputs to the compile-

time flow and together constitute all we need to formulate the allocation problem,

captured by a mapping function and an allocation function.

Definition 8 The mapping of port groups onto the mappable nodes of the network

is determined by the mapping function mapi : Q → Nm that maps port groups

to mappable nodes. As the resource allocation progresses, this function is refined.

Our starting point is an initial mapping, map0, where every q ∈ Q is mapped to

a unique nq ∈ Nq . Let the set of mapped ports P ′
i denote those elements p ∈ P

where mapi ([p]) ∈ Nn . From our definition of map0 it follows that P ′
0 = ∅.

The range of map0 initially covers only Nq , i.e. all port groups are mapped to

the dummy mapping nodes. Note that it is possible for a port group q to have a set

of eligible NIs containing only one item, |ǫ(q)| = 1, either due to user constraints,

or because the allocation algorithm is executed with a fixed hardware architecture

82 4 Allocation

where the mapping is already decided. We have already seen multiple examples of

such constraints in Fig. 4.7. Even in those cases, the allocation algorithm starts by

mapping the group to a mapping-group node, but the latter is then only connected

to a single NI. As the algorithm progresses, the range of mapi covers both Nq and

Nn partially. Thus, some groups are mapped to NIs while others are still mapped

to mapping-group nodes. Successive refinements of mapi progressively replace ele-

ments of Nq with elements of Nn until a final mapping is derived, where the range

of mapi exclusively contains elements of Nn . At this point, all ports are mapped to

NIs, i.e. P ′
i = P .

In addition to the mapping of source and destination port to NIs, each channel

requires a path between these two NIs, and a set of time slots on the links of the

path.

Definition 9 An allocation function alci : C → seq L × T associates each channel

with a path φ and a set of time slots T ∈ P(Stbl), for a given iteration. A path φ ∈

seq L is a sequence of links. The same slot table size stbl is used throughout the entire

network and Stbl denotes the set of natural numbers smaller than stbl (including

zero). P(Stbl) is the powerset of Stbl, i.e. the set of all subsets of Stbl. The time slots

are given relative to the first link, head φ, as a set of natural numbers. Initially, for

alc0, all channels have an empty path and no time slots are reserved.

Definition 9 clearly shows that each channel is associated with a single set of

resources. That is, the path and slots of a channel (and thus also the connection and

application it is part of) are always the same, irrespective of other channels.2 As

we have seen in Section 2.6, having an allocation that is independent of the current

use-case is key in enabling partial run-time reconfiguration on the granularity of

applications.

As previously discussed in Chapter 3, the slots are shifted one step for every hop

along the path. Hence, it suffices to specify the slot allocation relative to the first link

in the path. The reason we choose the first link is that, for the final path (without any

links to mapping-group nodes), the first link corresponds to the ingress link of the

source NI, i.e. the NI where the slot allocation of the channel in question is enforced.

We elaborate on this when discussing how channels are opened in Chapter 5.

4.2.4 Residual Resource Specification

The final part of the problem formulation is neither part of the input nor the output of

the resource allocation. During the allocation of channels, however, we must know

what resources are already occupied and what resources that are still available for

the not-yet-allocated channels.

2 Even channels in trees have their own path and set of slots. The allocation algorithm, however,
ensures that they all have the same slots.

4.2 Problem Formulation 83

Definition 10 A slot table t ∈ seq Ca is a sequence of length stbl where every ele-

ment is a set of channels (in a channel tree). An empty slot is represented by ∅. The

set of available slots for a channel c in a slot table t is denoted σ(c, t) ∈ P(Stbl).

In contrast to the allocation that contains a set of slots per channel, a slot table

(one per link), takes a network-centric perspective and conveys for every time slot

what channels are (potentially) using a link. This is exemplified in Fig. 4.8a, where

four different slot tables are shown after the allocation of channels c0 and c1, with

c0 and c3 being in the same channel tree. Due to the channel trees, many channels

may occupy the same time slot (c0 and c3), although of course not at the same

time. The available slots include both empty slots and those slots where a channel

is already part of the reservation. For example, channel c3 has two available slots

on the western ingress link, σ(c3, 〈{c0, c3}, {c0, c3}, {c1}〉) = {0, 1}, despite there

being no empty slots on the link in question.

l2l1

∅, c0, c3 , c0, c3

∅, ∅, ∅

c0, c3 , c0, c3 , c1 ∅c0, c3 , c0, c3 ,c1 , ∅, ∅

c0

c1

(a)

l2l1

c2 , ∅, ∅

c0

c2

∅, c0, c3 , c0, c3

∅, c2 , ∅

(b)

Fig. 4.8 Residual resources for use-case u0 (a) and u1 (b)

As Fig. 4.8 already shows, each combination of applications gives rise to its own

set of residual resources. For example, channel c1 is only present in u0, whereas c2

is only in u1. It is thus necessary to distinguish between the resources available in

the different use-cases.

Definition 11 For every use-case u ∈ U , each link l ∈ L has a residual slot table
ti (u, l). Additionally, the residual resources consist of the capacity not yet reserved

capi (u, l) ∈ N measured in a number of slots, and a set of link users denoted

usei (u, l) ∈ P(C).

The slot tables are used to store the reservations of already allocated channels,

and thus hold the same information as alci , only organised differently. The latter

serves to answer the question what slots are allocated to a specific channel, whereas

the slot tables are used in evaluating potential paths and thus have to answer what

slots are available to a channel. In addition to the residual slot table of a link, the

capacity captures the throughput requirements of all link users. While this informa-

tion might seem redundant in the presence of the residual slots, we do not only use

it to reflect what is reserved by already allocated channels, but also channels that

are not yet allocated, but where either the source or the destination port is mapped

84 4 Allocation

to an NI. When a port is mapped to an NI, there is only one ingress and egress link

that has to accommodate the requirements of the channel. Consequently, we use

the capacity and link users to reflect what channels are or will be using a link. We

discuss this further when the allocation algorithm is introduced. Similar to the map-

ping and allocation function, the residual resources change over iterations and are

therefore subscripted with an index. Initially, ∀u ∈ U and ∀l ∈ L , cap0(u, l) = stbl,

use0(u, l) = ∅ and t0(u, l) = 〈∅, . . . , ∅〉. That is, the capacity of all links is stbl,

no link has any users, and all slot tables are empty.

The functions introduced in Definition 11 enable the allocation algorithm to eval-

uate individual links. When allocating paths, however, looking at the slot table of a

single link is not enough. Due to the requirements on slot alignment imposed by the

pipelined virtual circuits, the slot tables along a path together determine what slots

are available. To facilitate evaluation of an entire path we thus introduce the path
slot table.

Definition 12 A path φ = 〈l1, . . . , lk〉 has a path slot table ti (u, φ) where every

residual link slot table ti (u, l j), j = 1 . . k, is shifted cyclically j − 1 steps left

and a slot in ti (u, φ) is the element-wise union of all shifted tables, for the specific

iteration i and use-case u.

Consider, for example, the path φ = 〈l1, l2〉 traversed by c1 in Fig. 4.8a where

ti (u0, l1) = 〈{c0, c3}, {c0, c3}, {c1}〉 and ti (u0, l2) = 〈{c1}, ∅, ∅〉. After cyclically

shifting the slot table of l2 one step left, giving us 〈∅, ∅, {c1}〉, we arrive at ti (u, φ)

being 〈{c0, c3}, {c0, c3}, {c1}〉.

Until this point, we have only looked at residual resources for individual use-

cases. Channels, as we have seen, typically span multiple use-cases. Therefore,

when allocating a channel c in an iteration i , the resources available on a specific

link l are determined by looking not at one use-case, but rather at all use-cases in Uc.

Definition 13 The aggregate slot table ti (c, φ) is an element-wise union across the

use-cases in Uc. The aggregate capacity capi (c, l) is defined as minu∈Uc capi (u, l),
i.e. the minimum capacity across the use-cases. Finally, the aggregate link users,

denoted usei (c, l), is defined as
⋃

u∈Uc
usei (u, l), i.e. the union across the use-cases.

Now it is time to put Definitions 1 through 13 into practice and look at how they

all come together in the resource allocation algorithm.

4.3 Allocation Algorithm

With the bus ports allocated, it remains to map the mappable ports to NIs, and

to select paths and time slots so that the channel requirements are fulfilled. Two

important requirements can be identified and the onus is, in both cases, on the

unified allocation algorithm. First, the latency and throughput requirements of

individual channels must be satisfied. Second, all channels must fit within the avail-

able resources.

4.3 Allocation Algorithm 85

Algorithm 4.3.1 Allocation of all channels C

1. let the set of unallocated channels C ′
0 := C

2. while C ′
i �= ∅:

a. let c denote the most critical channel (Section 4.3.1)
b. let C ′

i+1 := C ′
i \ [c]

c. for every channel in [c]
i. remove speculative capacity reservations (Section 4.3.2)

ii. select a constrained path (Section 4.3.3)
iii. refine the mapping function (Section 4.3.4)
iv. find a slot allocation (Section 4.3.5)
v. reserve resources (Section 4.3.6)

3. connect the control ports of the buses according to the mapping

As already mentioned, we use a heuristic algorithm where the mapping process

is combined with the path selection and slot allocation, resulting in quick pruning of

the solution search space [70]. The core of the proposed algorithm for mapping of

multiple applications onto a network is outlined in Algorithm 4.3.1 and introduced

here, after which further explanations follow in Sections 4.3.1 through 4.3.6.

The body of the allocation algorithm is iteration over the monotonically decreas-

ing set of unallocated channels C ′
i . In every iteration, we choose the most critical

channel that has not yet been assigned a path and time slots, and potentially has

source and destination ports not yet mapped to NIs. Once a channel is selected, a

path (that also determines the NI mapping [70]) is selected, based on the resources

that are available in all use-cases in which this channel is present [72]. After select-

ing a path, the mapping is refined if the source or destination is a mapping-group

node. On this path, a set of time slots are selected such that throughput and latency

requirements are met. Thereafter, the allocation of the channel is updated and the

residual resources of the use-cases it spans are refined. To mitigate resource frag-

mentation, the allocation steps are repeated for all the channels in a tree before

selecting a new channel [71]. If the channels in a tree are not allocated consecutively,

chances are that the slots leading to minimal fragmentation are already reserved.

The procedure is repeated until all channels are allocated. As further discussed

in Section 4.3.7, we never backtrack to re-evaluate an already allocated channel.

This results in low time complexity at the expense of optimality (or even failure to

accommodate all channels). Once all channels are allocated, we connect the control

ports of the initiator and target buses to the control buses of the NIs. We now discuss

the different steps of the allocation algorithm.

4.3.1 Channel Traversal Order

The allocation algorithm is based on greedy iteration over the channels, and the

order is therefore of utmost importance. The order should reflect how difficult it is

to satisfy the requirements of a certain channel, and simultaneously aim to reduce

86 4 Allocation

resource fragmentation. Therefore, the order in which channels are allocated, i.e.

their criticality, takes four different measures into account. In order of priority:

1. The number of use-cases that the channel spans |Uc|.

2. The number of channels in the channel tree |[c]|.
3. The latency requirement θ(c).
4. The throughput requirement ρ(c).

Note that the selection of the most critical channel is done across all applications in

parallel. Next, we discuss the different metrics and their ordering.

The first measure asserts that channels spanning many use-cases are allocated

early. This ordering aims to reduce resource fragmentation as an application span-

ning several use-cases may only use time slots that are available in all the use-cases.

Hence, for our example system, the channels of the control application are allo-

cated first (with |Uc| = 6), followed by the status application (having |Uc| = 4),

irrespective of the temporal requirements of any channel. The second measure is

similar to the first in that channels in a tree may only use the resources available in

all the branches. In conclusion, the first two measures sort the channels based on the

constraints they impose on resource availability, rather than the requirements of the

individual channels.

The third and fourth measures are different from the first two in that they are

concerned with the temporal requirements of the channels. In contrast to many

other network-allocation algorithms, we do not look only at throughput, but also

at latency requirements. Moreover, as seen in Definition 1, the latency require-

ment is given as an absolute time rather than a number of hops. The criticality

prioritises latency over throughput since the former places requirements both on

the number of slots and their distribution, whereas the latter is only concerned

with the number of slots. We return to discuss the details of the slot allocation in

Section 4.3.5.

The channel traversal order highlights two important points. First, due to the

sharing of time slots between mutually exclusive applications, the use-cases must

be taken into account to avoid resource fragmentation. This is also the case for

mutually exclusive channels within an application, i.e. in a channel tree. Second,

latency requirements, that are often overlooked in network resource allocation, place

more restrictions on the resource allocation than throughput requirements.

4.3.2 Speculative Reservation

Once a channel c has been selected, the next step is to prepare for the path selec-

tion by restoring potential capacity reservations. When the source port src(c) of a

channel c is mapped to an NI, the communication burden placed on the ingress and

egress links of the NI is not necessarily determined by c alone. This is due to the

mapping groups, as all ports in [src(c)] are fixed to the same NI. Hence, all channels

emanating from those ports must be accommodated on the egress link of that NI.

4.3 Allocation Algorithm 87

Similarly, the ingress link of the same NI has to accommodate all channels incident

to those ports. Just as for the source port, when the destination port dst(c) is mapped

to an NI, all channels to or from the mapping group [dst(c)] are forced to use that

same NI.

The aforementioned issue arises due to the fact that channels are interdependent,
but allocated independently, thus failing to recognise that the channels are linked via

the mapping groups of their source and destination ports. Failing to acknowledge the

above may result in overallocation of network resources. Numerous channels, still

not allocated, may be forced to use the ingress and egress link due to a mapping

that is already fixed. An NI may thereby be associated with a set of implicit require-

ments, not accounted for when evaluating possible paths. Ultimately this may cause

the allocation to fail. Rather than attempting to allocate multiple channels simul-

taneously, we choose to incorporate the knowledge of the interdependent channels

(sharing a port group) through speculative reservations.

Reservations are made after a channel is allocated, during the refinement of the

mapping, as described Section 4.3.4. These reservations are then taken into account

when evaluating paths in Section 4.3.3. If the mapping of either source or destination

port is refined, we speculatively reserve capacity on the ingress and egress link of

the corresponding NI for all interdependent unallocated channels. We do not know

what paths these channels will eventually occupy, but the ingress and egress link

is fixed at the moment the port is mapped to an NI. At this point we also have no

knowledge of exactly what time slots are needed by the interdependent channels.

Instead, we estimate the capacity by looking at the throughput requirements of the

channels.3

Algorithm 4.3.2 shows how ingress capacity is reserved when a port p is mapped

to an NI, i.e. mapi ([p]) ∈ Nn . The first step is to identify the unallocated channels

that have a source port in the same mapping group as p (potentially even the same

port in the case of channel trees). Then, for every such channel and every use-case

that channel is in, we see if it is already using the ingress link. Due to the channel

sets it is possible that another channel already made a reservation for the entire set. If

not, a reservation is made. Similarly, for egress reservations, Algorithm 4.3.3 looks

Algorithm 4.3.2 Ingress capacity reservation for port p

1. for all unallocated channels c ∈ C ′
i where src(c) is in [p]

a. for all u ∈ Uc, if c /∈ usei (u, l), where l is the ingress link of mapi ([p])

i. let capi+1(u, l) = capi (u, l) − ρ(c)
ii. let usei+1(u, l) = usei (u, l) ∪ [c]

iii. if capi+1(u, l) < 0 fail

3 The latency requirement is hence only considered in the path evaluation and slot allocation. How-
ever, as a pre-processing step, we adjust the throughput requirement to also reflect the minimum
number of slots required to satisfy the latency requirement.

88 4 Allocation

Algorithm 4.3.3 Egress capacity reservation for port p

1. for all unallocated channels c ∈ C ′
i where dst(c) is in [p]

a. for all u ∈ Uc, if c /∈ usei (u, l), where l is the egress link of mapi ([p])

i. let capi+1(u, l) = capi (u, l) − ρ(c)
ii. let usei+1(u, l) = usei (u, l) ∪ [c]

iii. if capi+1(u, l) < 0 fail

at channels where the destination ports are in the same group as the newly mapped

port.

For both ingress and egress reservations, it is possible that the capacity of a

link goes below zero as the reservation is performed. In those cases, the algorithm

(implemented in C++) throws an exception, thereby allowing the outer loop of the

allocation algorithm to take appropriate measures. We return to discuss how such

exceptions are handled, and the potential failure of the allocation algorithm in Sec-

tion 4.3.7.

The speculative reservations enable us to incorporate knowledge of yet unallo-

cated channels in the path selection. When a channel is about to be allocated, how-

ever, those speculative reservations must first be removed to reflect what resources

are actually available prior to the allocation. Thus, if the source or destination port

is already mapped to an NI, speculative reservations are removed from the ingress

link in Algorithm 4.3.4 and egress link in Algorithm 4.3.5.

Comparing Algorithm 4.3.4 with Algorithm 4.3.2, it is clear that the former

performs nothing but the inverse operations. Algorithm 4.3.5, in restoring egress

reservations, looks at the destination rather than the source node of the channel, and

the egress rather than ingress link of the corresponding NI. Other than these two

points, the algorithms for restoring ingress and egress reservations are identical.

Algorithm 4.3.4 Remove ingress capacity reservation for c

1. if src(c) ∈ P ′
i

a. for all u ∈ Uc, if c ∈ usei (u, l), where l is the ingress link of mapi ([src(c)])

i. let capi+1(u, l) = capi (u, l) + ρ(c).
ii. let usei+1(u, l) = usei (u, l) \ [c]

Algorithm 4.3.5 Remove egress capacity reservation for c

1. if dst(c) ∈ P ′
i

a. for all u ∈ Uc, if c ∈ usei (u, l), where l is the egress link of mapi ([dst(c)])

i. let capi+1(u, l) = capi (u, l) + ρ(c).
ii. let usei+1(u, l) = usei (u, l) \ [c]

4.3 Allocation Algorithm 89

It is worth noting that in case a mapping group has a set of eligible NIs with only

one NI, the mapping is in fact known, and speculative reservations are possible,

even before the allocation starts. This is, for example, the case for the most of the

port groups in our example system in Fig. 4.7. In our current implementation of the

allocation algorithm we accommodate this knowledge by preceding the allocation

of channels with a refinement of the mapping for all groups q where |ǫ(q)| = 1.

4.3.3 Path Selection

The path selection is a central part of the allocation algorithm, as it determines the

mapping, the path through the network and valid time slots. While fulfilling the

requirements of the individual channel, the path should also use as few resources

as possible to improve the likelihood of a successful allocation for all remaining

channels. Three things set our problem apart from general constrained path selec-

tion [38]:

• All channels and requirements are known up-front.

• We have to consider the alignment of slots along the path.

• The residual resources depend on the use-case.

An in-depth discussion of these differences follows.

First, the knowledge of future requirements is an important parameter when

selecting a path for a new channel as it enables better planning and management

of resources [65]. In our path-selection algorithm, knowledge of future channels is

incorporated through the speculative reservations that are used both as path con-

straints, and as part of the cost function. Future (unallocated) channels that have

their source or destination port mapped are thus accounted for, albeit only by means

of an estimation of their required capacity. We return to discuss the details of the

cost function and path constraints in further depth when the algorithm is presented.

The second difference with existing path-selection algorithms, where constraints

such as hop count and throughput are common [38, 195], is that slots on consecutive

links must be aligned. Hence, it is not only a matter of slot availability on a link-

to-link basis, as this fails to reflect the temporal dependencies introduced by the

pipelined virtual circuits [70]. Consider, for example, a situation where a channel

c4 arrives at the router in Fig. 4.8a through the northern ingress link. If we look

only at residual capacity for the individual links, c4 prefers the link going east (two

available slots) over the one heading south (one available slot). However, if c4, due

to an already traversed path φ, is limited to use the first slot on the egress link,

e.g. with a path slot table t (u0, φ) = 〈{c5}, {c5}, ∅〉, then south is actually a better

choice than east, since going east would leave us with a slot table with no available

slots, a clearly unfeasible path.

Another problem related to the slot alignment is that alternative paths to the same

intermediate node may result in widely varying sets of available slots. Thus, in con-

trast to traditional relaxation-based path-optimisation methods such as Dijkstra [48]

90 4 Allocation

or Bellman-Ford [16, 53], the best partial path is not necessarily the one with low-

est cost [38]. Due to the alignment of slots on future links, a low cost path might

eventually lead to a violation of the constraints, making a higher cost (but feasible)

partial path beneficial.

The third difference is that the availability of resources depends on the channel

being allocated, and what use-cases that channel spans. When evaluating paths it is

thus necessary to consider what applications may run in parallel with a channel that

is currently being allocated, and what resources are already reserved by the channels

in those applications. We return to discuss the three differences and how they affect

the path selection as the different parts of the algorithm are presented.

The outer loop of the path selection is seen in Algorithm 4.3.6. The search is

based on A*Prune [110], continuously evaluating the intermediary least-cost path

rather than the intermediary least-cost node [48]. Compared to the algorithm pro-

posed in [70], this allows us to store a number of paths to each intermediate node,

thus addressing the aforementioned issue of slot alignment. The search begins at

the node where the source of the channel is currently mapped. The algorithm starts

by determining which time slots are available even before the first link.4 This is

done by pruning all slots occupied by other channels in any of the already allocated

branches. Consider for example the allocation of cC in Fig. 4.6b, with cA and cB

already allocated. Only the slots that are available on both paths are considered for

cC . In every iteration of Algorithm 4.3.6 we see if the last link in the path leads to

the node where the destination of the channel is mapped. If so, and the path contains

more than one link, then the selection is complete and the path returned. The reason

we require the path length to be more than one link is to prevent paths going directly

from a mapping node to an NI.5 A path must never go via a mapping-group node

(only start at the source and end at the destination) and must incorporate at least one

physical network link (even with the source and destination mapped to the same NI).

Note that the path check cannot be incorporated in the pruning process as a partial

path must be allowed to go through the NI, and then leave it again before returning.

Algorithm 4.3.6 Selection of a path for channel c

1. determine the available slots t based on [c]

2. visit mapi ([src(c)]) with the preceding path 〈〉 and slot table t

3. while there are paths in the path priority queue

a. let φ denote the least cost path
b. let n denote dst(last φ)

c. if n = mapi ([dst(c)]) and |φ| > 1 return φ

d. else visit n with the preceding path φ

4 For converging channel trees we swap the source and destination and perform the path selection
backwards. This is to facilitate the derivation of available slots.
5 The other way round is prevented by the link pruning in Algorithm 4.3.7.

4.3 Allocation Algorithm 91

Algorithm 4.3.7 Visit a node n with a preceding path φ

1. for every egress link l of n

a. if dst(l) ∈ Nq and dst(l) �= mapi ([dst(c)]) then reject l
b. else if l ∈ φ then reject l
c. else if c /∈ usei (c, l) and ρ(c) > capi (c, l) then reject l
d. else if ti (c, φ) cannot accommodate θ(c) and ρ(c) then reject l
e. else append l to φ and push on the path queue

The check thus rejects paths that are not valid as final paths (but are perfectly fine

as partial paths). If the destination is not found or the path is not valid, the search

continues from the current node onwards by visiting this node with the current path

preceding it.

The top-level selection algorithm relies on pruning for an efficient traversal of

the design space. Path pruning is done when visiting a node, and is crucial for

the speed of the algorithm and quality of the solution.6 In addition to the criteria

for pruning, the cost function plays an important role in deciding which candidate

path is preferred. Next we describe the pruning criteria, followed by the path cost

function.

Algorithm 4.3.7 describes the procedure of visiting a node. As seen in the algo-

rithm, we have four pruning criteria that a link has to pass, appearing in the given

order due to the time it takes to evaluate them (fast to slow). First, to avoid traversing

links that cannot possibly lead to valid path, we only visit a mapping-group node if

it is the destination node. This rule improves the speed of the path selection by

not exploring parts of the design space that contain unfeasible solutions. Second,

to avoid loops, we do not traverse links that are already part of the path. There

are situations when a path loop might be positive for the slot alignment (using the

network links as intermediate storage), but we choose to limit the search space in

favour of a faster path selection. Third, if the link is not already used by the channel

(due to an interdependent channel), the aggregate residual capacity must be suffi-

cient to accommodate the throughput requirement. Here we see that the knowledge

of other channels is incorporated through the capacity reservations. Moreover, due

to the formulation of the capacity function, the rule takes the multiple use-cases into

account and guarantees that the link has the required residual capacity in all use-

cases spanned by the channel in question. The last pruning criterion, also related

to the channel requirements, is based on time-slot availability, similar to what is

proposed in [70]. We determine the available slots on the partial path, and prune the

link if the intermediate slot table cannot accommodate the throughput and latency

requirements. The fourth rule addresses the problem of slot alignment by consider-

ing the link given the already traversed path. The aggregate slot table function also

takes the multiple use-cases into account by merging the tables across the use-cases

6 The pruning also makes it easy to incorporate path restrictions, e.g. to avoid deadlock. This is
used when allocating resources for best-effort connections in Æthereal.

92 4 Allocation

of the channel. Thus, if the path selection is able to find a set of slots that fulfil the

latency and throughput requirements in the aggregate slot table, then these slots are

available in all use-cases of the channel. Note that the check does not perform the

actual slot allocation. Instead, it is a fast evaluation based solely on the residual slots

and the maximum slot distance.

With the criteria for pruning in place, what remains for the path selection to be

complete is the cost function that determines the order in which paths are eval-

uated. As shown in Definition 14, we include both slot availability and resource

consumption in the cost measure by using a linear combination of hop count and

channel contention, as suggested in [106]. Minimising hop count is beneficial as it

conserves network resources, i.e. time slots on the links, and reduces power con-

sumption [86, 181]. In addition to hop count, we incorporate contention by taking

the maximum of two different measures. The first measure is the estimated average

load (actual capacity minus reserved speculative capacity), similar to what is pro-

posed in [94].7 The differences in residual resources for the use-cases is taken into

account by using the aggregate capacity function, returning the minimum capacity

available in any of the use-cases of the channel being allocated. Since capacity reser-

vations are only used on the ingress and egress links of the NIs, the second measure

in the max expression is the reduction in the number of available slots incurred

by the last link, i.e. the difference between what is available after 〈l1, . . . , lk−1〉 and

〈l1, . . . , lk〉, respectively. Thus, when allocating a channel tree, the link cost is based

on how much capacity is available (including what is already reserved for the tree).

This serves to maximise the overlap between the individual channels, for example

by choosing the path ⋆⋆ instead of ⋆⋆⋆ for channel cC in Fig. 4.6b. The coefficients

serve to control the normalisation and importance of the contention and distance

measures, and they enable the user of the compile-time flow to influence the order

in which paths are evaluated.

Definition 14 When allocating a channel c, the cost of a path φ = 〈l1, . . . , lk〉,
with a partial path φ′ = 〈l1, . . . , lk−1〉, is determined by cost (φ) = cost (φ′) +

αcap max (stbl−capi (c, lk), |σ(ti (c, φ
′))|−|σ(ti (c, φ))|)+αdist where cost (〈〉) = 0

and the two coefficients αcap and αdist control the importance and normalisation of

the cost contributions.

With the cost function in place, the path-selection algorithm is complete. Before

moving to the mapping refinement, however, a few properties are worth highlight-

ing. As seen in Algorithms 4.3.6 and 4.3.7, the inclusion of the mapping-group

nodes has minimal impact on the path-selection algorithm, that unknowingly is tak-

ing mapping decisions. Similarly, through the formulation of aggregate capacity and

aggregate slot table, the complexities of multiple use-cases and slot alignment are

taken into account without changing the basic path-selection procedure.

7 The authors suggest selecting of paths that interfere least with future channels through a heuristic
called Minimum Interference Routing Algorithm (MIRA). The algorithm does not only consider the
ingress and egress links but also calculates an interference metric for every intermediate link in the
network.

4.3 Allocation Algorithm 93

4.3.4 Refinement of Mapping

Once a path φ is selected for a channel c, Algorithm 4.3.8 checks whether src(c)
is not yet mapped to an NI. If not, the first link in φ (from a mapping-group node

to an NI) decides the NI to which the port group is to be mapped and the current

mapping function is refined with the newly determined mapping to a node in Nn .

This refinement affects every port in [src(c)] that is now in P ′
i+1. When the mapping

is updated, we also reserve ingress and egress capacity for the source on the NI in

question. This is done according to Algorithms 4.3.4 and 4.3.5.

Similar to the source mapping refinement in Algorithm 4.3.8, we perform the

corresponding update for the destination in Algorithm 4.3.9. If the destination of c
is mapped to a mapping-group node, then we update the mapping function with the

source node of the last link in the path (from an NI to a mapping-group node). As

a last step, we also reserve ingress and egress capacity on the NI for the destination

port of the channel.

After the refinement step, the ports in [src(c)] and [dst(c)] are all mapped to NIs,

i.e. they are in P ′
i+1. Moreover, all channels incident to or emanating from any of

these ports are either allocated (c /∈ C ′
i) and have permanent capacity reservations

along the entire path given by alci (c), or are yet unallocated (c ∈ C ′
i) in which case

they have speculative capacity reservations on the ingress and egress links of the

two NIs.

Algorithm 4.3.8 Refine mapping for source of c

1. if src(c) /∈ P ′
i

a. let mapi+1 = mapi ⊕ {[src(c)] → nn} where nn is dst(head φ)

b. reserve ingress and egress capacity for src(c) on nn

Algorithm 4.3.9 Refine mapping for destination of c

1. if dst(c) /∈ P ′
i

a. let mapi+1 = mapi ⊕ {[dst(c)] → nn} where nn is src(last φ)

b. reserve ingress and egress capacity for dst(c) on nn

4.3.5 Slot Allocation

After the path selection and refinement of the mapping function, we reach the point

where all the efforts spent in performing reservations and evaluating candidate paths

are to be put to the test when attempting to find a set of time slots such that the

latency and throughput requirements of the channel are fulfilled. There are multiple

challenges that the slot allocation algorithm has to address. First, the algorithm must

deliver both latency and throughput guarantees. This translates to constraints both on

94 4 Allocation

Algorithm 4.3.10 Allocate slots for a channel c on a path φ

1. let t = ti (c, φ)

2. if σ(c, t) = ∅ fail

3. let first = min σ(c, t)

4. let T0 = {first}

5. accommodate the latency requirement θ(c) − |φ|

6. accommodate the throughput requirement ρ(c)

the distances between slots and the number of slots reserved. Second, the throughput

requirements must take the insertion of packet headers into account. That is, a slot

does not always carry the same amount of payload data.

As seen in Algorithm 4.3.10, we start by determining what resources are already

reserved by finding the aggregate slot table of the path. The allocation immediately

fails if no slot is available. Next, we determine the first available slot in the aggre-

gate table, first. In addition, the first slot is put in the set of taken slots, T , where

we store the slot allocation of the current channel. After the initialisation, we pro-

ceed by accommodating the scheduling latency of the channel, that is, the latency

requirement of the channel after subtracting the latency contribution of the entire

path. The latter is, due to the pipelined virtual circuits and absence of contention,

directly proportional to the length of the path. Allocation of the latency requirement

is done according to Algorithm 4.3.11, followed by allocation of the throughput

requirement, as described in Algorithm 4.3.12. We now discuss the two algorithms

in detail.

Algorithm 4.3.11 Accommodate the latency θ for a channel c

1. let step = ⌊θ⌋

2. if first > step fail

3. let previous0 = first

4. let current0 = first

5. while first + stbl − 1 − previous j ≥ step

a. if previous j + step > stbl

i. let currentk = stbl − 1

b. else

i. let currentk = previous j + step

c. while currentk > previous j and currentk /∈ σ(c, t)

i. let currentk+1 = currentk − 1

d. if currentk = previous j fail

e. let T j+1 = T j ∪ {currentk}
f. let previous j+1 = currentk

4.3 Allocation Algorithm 95

The scheduling latency of a channel is determined by the distance between

reserved slots.8 Thus, to guarantee an upper bound on the latency, is necessary to

find a set of slots such that the distance between reserved slots is below a certain

maximum value. A lower latency bound reduces the allowed distance, and conse-

quently increases the number of slots required. This clearly illustrates the inverse

coupling between throughput and latency incurred by the TDM arbitration.

The latency allocation algorithm, as shown in Algorithm 4.3.11, starts by deter-

mining the maximum allowed step, measured in a number of slots. The step conser-

vatively rounds the latency requirement down. If the first slot is already larger than

the step, then the allocation fails. Then, the algorithm iteratively evaluates if the

gap between the first slot in the succeeding slot-table revolution and the previously

allocated slot is bigger than or equal to the maximum step. If the two slots are further

than step apart, then the allocation is not yet complete and we enter the loop that

starts by determining where to continue the search. In the general case, we simply

move one step forward by incrementing current. Should that slot be outside the

first revolution of the table, then the search continues from the last slot of the slot

table. The inner loop performs a linear search towards the previously allocated slot

(by reducing current by one), thus ensuring that the maximum distance is strictly

smaller than the step. If no available slot is found before encountering the previ-

ously allocated slot, the allocation fails. Once a slot is found, it is placed in the set

of T slots, and the previous slot is updated. After Algorithm 4.3.11 completes, T
holds the allocated slots and the overall allocation in Algorithm 4.3.10 moves on to

accommodate the throughput requirement.

Figure 4.9 illustrates the slot allocation of a channel with a latency requirement

of 4.3 slots. The first available slot is slot 3, and the step is conservatively rounded

down to 4. After slot 3, the algorithm encounters slot 7 that is unavailable. Going

towards the previously allocated slot, the linear search stops at slot 6, as it is the first

available slot. From slot 6, we do not add the entire step. Instead, we go to the last

slot of the table, and continue the search at slot 9. As this slot is available, it is added

to the taken slots, thereby completing the latency allocation.

With the latency accommodated, it remains to ensure that enough slots are allo-

cated to meet the throughput requirement. The throughput is determined by the slot

table size, the number of slots allocated, the flit size, but also by the number of

packet headers required. As described in Chapter 3, the header insertion is deter-

mined by the reservation of the preceding slot. That is, if the preceding slot is empty

or allocated to another channel, then a new packet starts, and a header is inserted.

In addition, to avoid starvation of the end-to-end flow control credits, the architec-

ture enforces a maximum number of consecutive slots before headers are forcefully

inserted.

Allocation of the throughput requirement, as described in Algorithm 4.3.12, con-

tinues where the latency allocation finished by determining the capacity allocated

after accommodating the latency requirement. The requirement as well as the capac-

8 We return to discuss the latency and throughput of a channel in Chapter 6.

96 4 Allocation

current0 = 3
current1 = 7
current2 = 6
current3 = 9

current0 = 3
current1 = 4
current2 = 5

available slotoccupied slot

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

allocate θ = 4 .3

allocate ρ = 9 .6

T = {3, 6, 9}

T = {3}

T = {3, 4, 5, 6, 9}

Fig. 4.9 Slot allocation

ity is measured in words per slot table revolution. For every slot that is already

in the set of taken slots, we conservatively add the amount of payload data of a

header flit. Next, the algorithm, which is based on linear search, starts from the

first available slot. As we search through the set of available slots, we record how

many consecutive slots we reserve by incrementing counter. The value of counter
is then used to determine the payload size of the next slot. If the current slot is

not available, then we reset the counter to reflect that a header must be inserted in a

succeeding flit. In the case of an available slot, we see if it is already reserved during

the latency allocation, i.e. if it is in T . If the slot is indeed taken, then we deduct the

conservative capacity added during the initialisation of Algorithm 4.3.12. During

Algorithm 4.3.12 Accommodate the throughput ρ for a channel c

1. let capacity0 = |T |(sflit − shdr)

2. let current0 = first

3. let counter0 = 0

4. while capacity j < ρ and current j > stbl

a. if current j /∈ σ(c, t) let counter j+1 = 0
b. else

i. if current j ∈ T let capacity j+1 = capacity j − (sflit − shdr)

ii. else let T j+1 = T j ∪ current j

iii. if counter j = 0 let capacity j+1 = capacity j + sflit − shdr

iv. else let capacity j+1 = capacity j + sflit

v. if counter j = spkt − 1 let counter j+1 = 0
vi. else let counter j+1 = counter j + 1

5. if capacity < ρ fail

4.3 Allocation Algorithm 97

the initialisation we are forced to assume that the slot carries a header, but it might

now be in a block of consecutive slots. If the slot is not yet taken, then we add it to

T . Next, the payload words are added to the capacity, based on whether the current

slot is the first one in a group or not. Finally, the counter is updated based on a

comparison with the maximum packet size. After the loop completes, we compare

the allocated capacity with the requested throughput and the allocation fails if the

requirement is not satisfied.

Continuing our example in Fig. 4.9, the throughput allocation, that has to accom-

modate 9.6 words of payload data, starts by deriving how much capacity is already

reserved during the latency allocation. In this case T contains three slots, which

gives us capacity0 = 6 (assuming sflit = 3 and shdr = 1). From slot 3, we then begin

the linear search. For slot 3, that is already taken, we remove sflit − shdr from the

capacity, only to add it again as counter0 = 0. Moving to slot 4, the slot is added to

the set of taken slots, and we add sflit to the reserved capacity since counter1 = 1

(assuming spkt = 4). After the addition of slot 4 capacity2 = 9, which is still smaller

than the requirement. The throughput allocation continues by evaluating slot 5, and

adds this slot as well. An additional sflit words are added to the reserved capacity

and the allocation stops. The final set of slots, T = {3, 4, 5, 6, 9}, have a maximum

distance of 3 slots and allow 13 words to be sent in one slot table revolution.

After executing Algorithms 4.3.11 and 4.3.12, Algorithm 4.3.10 completes and

the slots in T are sufficient to accommodate the latency and throughput requirement

of the channel or one of the algorithms failed during the allocation. In case of failure,

the slot allocation throws an exception, indicating whether the latency or throughput

allocation failed. If the slot allocation is successful, the set of slots in T are passed

on to the resource reservation.

4.3.6 Resource Reservation

As the last step of the allocation algorithm, it remains to update the allocation and

residual resources to reflect the decisions taken during the path selection and slot

allocation. Algorithm 4.3.13 starts by refining the allocation function. Then, the

reservation continues by traversing the path, and for each link the slot table, capac-

ity and link users are updated for all the use-cases of the channel. Note that the

reservation is done for all channels in [c]. The capacity reservation is similar to

Algorithms 4.3.2 and 4.3.3. In contrast to the speculative reservations, the update

of the link capacity is not using the throughput requirement of the channel (tree),

but rather the number of reserved slots. Before removing the capacity, we remove

any previous capacity reserved by the channel (tree). This capacity is determined

by looking a the number of slots previously reserved to the channel. For every link

along the path, the slot table of the link is merged with the newly reserved slots

(without any conflicts between channels). After each link, the reserved slots are

incremented by one, reflecting the pipelined nature of the channels.

Similar to the speculative reservation, Algorithm 4.3.13 might fail due to insuffi-

cient link capacity, capi+1(u, l) < 0, after performing the reservation. In such cases,

98 4 Allocation

Algorithm 4.3.13 Reservation of path φ and slots T for a channel c

1. let alci+1 = alci ⊕ {c → (φ, T)}

2. for c′ ∈ [c] and u ∈ U ′
c and l ∈ φ′, determined by the path of alci+1(c

′)

a. if l = head φ′ or l = last φ′

i. if c′ ∈ usei (u, l)

A. let capi+1(u, l) = capi (u, l) + |set of slots of alci (c
′)|

ii. let capi+1(u, l) = capi (u, l) − |T |
iii. let usei+1(u, l) = usei (u, l) ∪ [c]

b. let ti+1(u, l) = ti (u, l) with T reserved to [c]
c. add one (modulo stbl) to every element in T

an exception is thrown indicating which link causes the problem. If the reservation

is performed without violating any link capacity, the allocation of c is complete and

Algorithm 4.3.1 continues by selecting a new channel for allocation. The resource

reservation completes our exposition of the allocation algorithm, and we continue

by looking at the limitations of the proposed solution.

4.3.7 Limitations

Although the proposed compile-time allocation flow has many merits, it is not with-

out limitations. Starting at the problem formulation, our definition of an application

allows independent starting and stopping of applications, but it does not allow for

any variation within applications. That is, an application with multiple modes [60]

(or scenarios) is either considered a single application or multiple independent appli-

cations. In the former case it might be necessary to over-dimension the requirements

to those of the most demanding mode. In the latter case, on the other hand, the

connections are stopped and started on mode changes, leading to disruptions in the

provided service. It is possible, however, to provide bounds on the transition, as we

shall see in Chapter 5. Moreover, the modes can be grouped to minimise the number

of disruptions, similar to what is proposed in [138], but here on the application

level.

The proposed algorithms are all heuristics that might fail even if a solution exists.

If the algorithm is executed at design time and the application requirements cause

the allocation to fail, it is possible to extended the network topology, similar to what

is proposed in [12]. The potential extensions include more NIs and thus fewer chan-

nels per ingress and egress link, alternatively more routers or more links between

routers and thus fewer channels per link inside the router network. It is also possible

to loosen the mapping constraints, and thereby divide the requirements of different

connections across more NIs. Similarly, the sets of eligible NIs can be extended to

allow more flexibility in the mapping. The designer can also steer the algorithm by

4.4 Experimental Results 99

defining stricter sets of eligible NIs for the mapping groups. Increasing the slot table

size helps reducing discretisation effects and thus helps in satisfying throughput

requirements. As a last option, an increased interconnect clock frequency simpli-

fies the task of finding an allocation. All of the aforementioned options are only

possible at design time. At compile time, the allocation is pass or fail. That is, if

a set of allocations are found, then they satisfy the requirements and there are no

late surprises. Should the allocation fail, the only option is to change the use-case

constraints or requirements of individual channels. Back tracking has been shown to

improve the success rate of the allocation algorithm [188], but is currently not part

of our implementation.

4.4 Experimental Results

To evaluate the scalability of the proposed algorithm, and its ability to find feasible

solutions, we apply it to a range of random synthetic test cases. We vary the number

of IPs (strictly the number of ports), and evaluate systems with 16, 32, 64 and 128

memory-mapped initiators and targets. To accommodate the IPs, we use a 2×2,

2×4, 4×4, and 8×4 mesh, respectively. For all network topologies we use two NIs

per router and a slot table size of 32 slots and an operating frequency of 500 MHz.

All ports of an IP are placed in a mapping group, and the set of eligible NIs is not

restricted. That is, the ports of an IP (as a set) can be mapped to any NI.

In addition to varying the number of IPs, we also vary the number of applications

mapped to them. Each application has a random number of connections, selected

based on a normal distribution with an average of 10 connections and a standard

deviation of 5. The source and destination IPs of the connections are chosen ran-

domly, but not uniformly. To reflect the communication patterns of real SoCs, with

bottleneck communication, characterising designs with shared off-chip memory, a

fourth of the IPs have a probability of being chosen that is four times higher than the

others. For each connection with the applications, throughput and latency require-

ments are varied across three bins respectively (30, 300 and 3,000 ns, in combination

with 3, 30, and 300 Mbps). This reflects for example a video SoC where video flows

have high throughput requirements, audio has low throughput needs, and the control

flows have low throughput needs but are latency critical.

As the last parameter, we vary the number of edges each application adds to

the use-case constrains. With each edge, the size of the cliques grow and more

applications are thus running in parallel. This translates to fewer use-cases, but

also more contention and less opportunity to re-use resources between mutually

exclusive applications.

We evaluate 100 benchmarks for each design point, and the value presented is

the average of those runs.9 In addition to the execution time, we also report the

9 In fact, the execution time varies significantly. In some cases the standard deviation in execution
time is in the order of half the reported mean time.

100 4 Allocation

failure rate, that is, how many of the 100 runs failed. A failure occurs when no

feasible solution is found. It is possible that no feasible solution exists for the given

requirements or that a solution was not found. There is no attempt made to recover

from a failed allocation, e.g. by relaxing constraints, adding links or increasing the

slot table size. Similarly, we do not attempt to reduce cost in the case of a successful

allocation by, e.g., using a smaller interconnect or reducing the operating frequency.

Some of these techniques are, however, part of the larger design flow as shown in

Fig. 1.8.

We start by looking at scalability for different topology sizes. The results in

Fig. 4.10 show how the execution time and failure rate scales when varying the

number of IPs and network sizes. Independent of the topology size, we consider

four applications, and two constraint edges for each application. For the smaller

system sizes, there is thus more contention, since the same IPs are more likely to

be involved in multiple applications. This results in a failure to allocate 30% of

the designs. For the larger system sizes, all allocations are successful. However, as

clearly seen in Fig. 4.10, the execution time grows exponentially due to the path

selection algorithm. For contemporary systems, with a few tens to hundreds of IPs,

the time is still reasonable.

Execution time

Failure rate

Topology size (number of ports)

E
xe

c
u
ti
o
n

ti
m

e
(s

)

Fa
ilu

re
ra

te
(%

)

30

25

20

15

10

5

0
128643216

100

80

60

40

20

0

Fig. 4.10 Scaling with the number of IP ports and network size

Figure 4.11 shows the behaviour when scaling the number of applications, but

leaving the number of IPs and the network topology constant. The system used for

the experiments has 128 IPs, and independent of the number of applications one con-

straint edge is added for each of them. As seen in Fig. 4.11, every single allocation is

successful for 2, 4 and 8 applications. When the number of applications reaches 16,

however, almost 30% of the allocations fail. This is result of the increased contention

for the shared bottleneck IPs, and the choice to force all ports of a specific IP to

one NI (i.e. the grouping of ports). Figure 4.11 also shows how the execution time

grows with the number of applications (and thus connections and channels). The

foundation of the allocation algorithm is iteration over the channels, but for each

channel we iterate over all unallocated channels when managing reservations. This

suggest a quadratic growth in the number of channels, but the experiments suggest

that the execution time grows roughly linearly with the number of applications.

4.5 Conclusions 101

Execution time

Failure rate

Number of applications

E
xe

c
u

ti
o

n
ti
m

e
(s

)

Fa
ilu

re
ra

te
(%

)

80

70

60

50

40

30

20

10

0
16842

100

80

60

40

20

0

Fig. 4.11 Scaling with the number applications

Lastly, we fix both the number of IPs and applications, and instead vary the num-

ber of constraint edges. Figure 4.12 illustrates the failure rate and execution time for

a system with 128 IPs and 16 applications. The first point, with one constraint edge

per application, corresponds to the point with 16 applications in Fig. 4.11. As the

number of edges in the constraint graph increase, the use-cases grow in size, and

reduce in number. Figure 4.12 shows that the execution time and failure rate follow

each other closely, and both increase with the amount of contention in the network.

With fewer constraint edges, the allocation algorithm is able to exploit the mutually

exclusivity and share resources between applications that are not part of the same

use-case.

Execution time

Failure rate

Number of constraint edges

E
xe

c
u

ti
o

n
ti
m

e
(s

)

Fa
ilu

re
ra

te
(%

)

120

100

80

60

40

20

0
8421

100

80

60

40

20

0

Fig. 4.12 Scaling with the number constraint edges

4.5 Conclusions

In this chapter we have presented the allocation part of the design flow, empha-

sising the problem formulation and the algorithms used to allocate resources. We

summarise by evaluating the contribution to the different high-level requirements in

Chapter 1.

102 4 Allocation

Rather than contributing positively to scalability, the compile-time flow limits

the scalability due to the complexity of the algorithms. Despite the use of heuristics,

the core of the path selection is A*Prune which is known to have exponential growth

in run time for certain problem instances [110]. The problem is mitigated by using a

path-selection algorithm based on Dijkstra, as proposed in [70], but this on the other

hand compromises the quality of the solution and might cause the allocation to

fail. For contemporary systems, with hundreds of IPs and connections, the proposed

algorithms are sufficient, but other approaches might be necessary as the problem

size grows.

The resource allocation contributes to application diversity by not making any

assumptions about how the resources are used. In contrast to e.g. [156, 188], the

requirements of individual channels do not infer anything about the application

behaviour, and can be worst-case or average-case requirements. Another important

property for the diversity of the compile-time flow is that requirements are expressed

as latency and throughput bounds, similar to well-established frameworks [185].

Requirements are thus specified on a level that can be understood by the application

designer, who needs no knowledge about the interconnect implementation.

The compile-time flow contributes to composability through the formulations of

use-cases as combinations of applications, and resource allocations on the level of

channels. Given these, the algorithm allocates resources such that two concurrent

applications never contend. Moreover, the compile-time flow has an important con-

tribution to predictability as the channels are assigned resources that guarantees the

fulfilment of their throughput and latency requirements. Additionally, the problem

formulation and allocation algorithms ensures reconfigurability at the level of appli-

cations, by assigning resources such that applications can be started and stopped

independently.

The most important contribution of this chapter is to the automation of the pro-

posed interconnect. After dimensioning the interconnect, all the application require-

ments have to be translated into resource allocations. This translates into deciding

what bus ports, NIs, paths and time slots to use, and the design space is truly

enormous. Our proposed heuristic algorithm quickly prunes the vast number of

infeasible options, by incorporating time-slot alignment in the path evaluation, and

tightly coupling path selection and mapping of IPs to NIs. The compile-time flow

corresponds to two different tools in the design flow, one for assigning bus ports and

one for the mapping, routing and slot allocation.

Chapter 5

Instantiation

After completing the dimensioning and allocation, the interconnect can be

instantiated. An instantiation consists of two parts. First, the hardware, in the form of

SystemC models or HDL. Second, the software, comprising the resource allocations

and the appropriate run-time libraries. With both the hardware and software in place,

the entire interconnect can be simulated or synthesised. This chapter, corresponding

to Step 3 in Fig. 1.8, takes its starting point in a complete specification of the archi-

tecture and resource allocation, and addresses the challenges involved in turning the

specification into a hardware and software realisation.

To instantiate the hardware, the appropriate blocks must be created and intercon-

nected. As we already know from Chapter 3, many blocks are parametrisable and

require the appropriate values to be set. In addition to the instantiation of individual

library modules, such as buses and routers, these modules must also be connected

according to the architecture description. On the network and interconnect level

we thus have to generate instance-specific hardware. The last part of the hardware

instantiation is a set of auxiliary files that are required by the ASIC/FPGA tools for,

e.g., HDL elaboration, simulation and RTL synthesis.

The hardware is of no use without the appropriate (host) software. To instantiate

the latter, the first step is to translate allocations into source code. At run-time, the

host then instantiates these allocations as a result of trigger events [145]. To do so,

however, the host must know how to access the register files in the programmable

hardware components, i.e. the NIs and buses. This requires detailed knowledge

about the register layout of the individual components. Moreover, the configuration

registers are distributed across the interconnect and the host must also be able to

reach the individual registers.

In addition to the challenges involved in instantiating one specific allocation, the

host must also be able to close connections. When modifying or closing connections,

both the interconnect and the IPs must be left in a consistent state, that is, a state

from which the system can continue processing normally rather than progressing

towards an error state [102]. Simply updating the NI registers could cause out-of-

order delivery inside the network, or even loss of data, with an erroneous behaviour,

e.g. deadlock, as the outcome [68]

Lastly, besides correctness, certain applications require a bound on the time

needed to start up, e.g. to guarantee a certain initialisation time, or a bound on

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_5, C© Springer Science+Business Media, LLC 2011

103

104 5 Instantiation

the transition time when switching between two closely related applications, e.g.

two different decoders (applications) in a software-defined radio. This time includes

opening (and closing) their connections. Beyond prior work, we enable upper

bounds on execution time for the reconfiguration operations (with unavoidable

assumptions on the IP behaviour).

As mentioned, the instantiation is divided into three parts, as illustrated in

Fig. 5.1. We start by describing the hardware instantiation for simulation as well

as synthesis (Section 5.1). We follow this by a discussion on how the allocations

are translated into software (Section 5.2), and how together they are used by the

host with the run-time libraries (Section 5.3). We end this chapter by presenting

experimental results (Section 5.4) and conclusions (Section 5.5).

Hardware
SystemC models and

RTL for FPGA/ASIC synthesis

Software
register settings,

libraries for run-time

reconfiguration

3.3 Provide the host run-time library
run-time starting and stopping of applications

3.2 Instantiate the resource allocation
translate into source code

3.1 Instantiate the hardware
create and connect the blocks

Architecture
local buses and protocol shells,

NIs, routers and links,

control infrastructure

shells mapped to NIs,

control ports mapped to buses

Allocations
address ranges,

network paths,

time slots

Fig. 5.1 Instantiation flow

5.1 Hardware

The end goal of the run-time instantiation is a RTL hardware description that can

be turned into a physical implementation. Such a description is, however, inade-

quate for design space exploration due to low simulation speed. Therefore, the HDL

description is generated together with a transaction-level SystemC model for each

component. SystemC enables component descriptions with object-oriented design

patterns, by offering a collection of interfaces and a simulation kernel. With a com-

bination of both SystemC models and HDL descriptions, it is possible to refine

descriptions from the functional to transaction, cycle-, bit-accurate and finally to

gate level. Thus, very large scale integration and software implementations can

5.1 Hardware 105

proceed in parallel, as advocated in [166]. We first describe the instantiation of the

SystemC model, followed by the hardware description of the interconnect.

5.1.1 SystemC Model

For SystemC simulation, we use run-time parsing and instantiation of the hardware

(rather than compiling a fixed interconnect instance). Thus, when executing the sim-

ulator, as described in Chapter 6, the modules are created dynamically by calling the

appropriate constructors. The dynamic creation allows easier exploration of differ-

ent interconnect architectures (by simply changing the XML specification), at the

price of slightly lower simulation performance. Depending on the type of module,

different constructors are called, and the individual modules are responsible for their

own parameter interpretation and port instantiation. This makes it easy to extend the

SystemC model with new modules and relieves the simulator from knowing what

information different modules need, and how they use it. Each instantiated module

also registers its ports to make them known to the top-level that has to connect

them. Once all modules are instantiated, the simulator connects the module ports

according to the architecture specification.

To facilitate comparison between the different abstraction levels, there is a one-

to-one correspondence between architectural units in the HDL and modules in the

SystemC simulator. Furthermore, all naming of modules and ports is determined

purely based on identifier fields in the XML and is thus consistent throughout

SystemC and HDL. However, in contrast to the hardware description, the Sys-

temC model does not make use of module hierarchies. Moreover, the two hardware

instances differ greatly in speed and accuracy. In the SystemC model, the network is

flit accurate on the inside and cycle accurate on the edges (NIs). The other compo-

nents of the interconnect (buses, shells and atomiser) are cycle accurate. The inter-

faces to the IPs are either on the transaction level or cycle level, leaving this choice to

the user of the SystemC model. Thanks to the higher abstraction levels, the SystemC

model is roughly three orders of magnitude faster than bit-level HDL simulation

and five orders of magnitude faster than gate-level netlist simulation. Additionally

it offers more observability, with monitors for e.g. the temporal behaviour of con-

nections and buffer levels in the NIs. We return to discuss these differences when

evaluating application performance in Chapter 6.

Like the actual hardware description, the SystemC model of the interconnect

requires run-time configuration. The SystemC model offers three different host

implementations, depending on the purpose of the simulation. First, an ubiquitous
host that does not use the control infrastructure, but instead makes use of the global

observability and controllability (through pointers) to directly access the individual

registers. The ubiquitous host carries out configuration operations instantaneously,

and is useful when the user wishes to abstract from the time involved in opening and

closing connections. Second, an ideal host where all computation is done without

progressing the simulation time, i.e. infinitely fast. The configuration operations,

106 5 Instantiation

however, are carried out using memory-mapped reads and writes over the actual

control infrastructure. That is, computation is abstracted from, but the communi-

cation is modelled cycle accurate. Third, the ARM host implementation shown in

Fig. 5.2, comprising a SWARM instruction-set simulator of an ARM7 [42]. The

processor has a von Neumann architecture, and a target bus (with a static address

decoder) within the tile determines whether the read and write transactions go to

the local memory or to the interconnect. The external initiator port in Fig. 5.2

corresponds to the port on the host in Fig. 3.16a. The run-time libraries and the

allocations are compiled and linked using a standard ARM tool chain (e.g. gcc or

armcc) and automatically loaded to the local memory when instantiating the host

tile.1 In contrast to the ideal host, the ARM host executes the actual run-time library

functions and thus includes both cycle-accurate computation and communication. In

this model every instruction takes two cycles to fetch due to the bus address decoder

and SRAM memory controller.

swarm

instruction-set

simulator

boot code,

run-time library,

register settings

bus

SRAM ARM

static address decoder

Fig. 5.2 ARM host instantiation

In addition to the interconnect and the host, the SystemC model also contains

the IP modules, e.g. accelerators, other instruction-set simulators, and input/output

peripherals. In the case a model of the IP is not available, library implementations

of initiators and targets are provided in the form of traffic generators and memory

controllers. We return to discuss the details of those in Chapter 6.

5.1.2 RTL Implementation

In contrast to the SystemC model, the instantiation of the interconnect RTL imple-

mentation is done by printing the HDL of the network and interconnect level,

together with the appropriate support scripts for RTL synthesis. Once instantiated,

the synthesisable HDL description of the interconnect can be used together with

HDL simulators, as well as standard ASIC and FPGA back-end design flows.

The instantiation of the RTL implementation makes use of a limited number

of parametrisable modules, as already introduced in Chapter 3. Bottom up, these

1 In a real implementation this step requires more elaborate boot strapping, as discussed in
Chapter 3.

5.2 Allocations 107

modules are, link pipeline stages, routers, NIs, clock domain crossings, initiator and

target shells, atomisers, and (programmable) initiator and target buses. Each of these

modules has generics to control everything from the width of specific signal groups

on a shell, to the register layout of the NI or the number of ports and the address

map of a (non-programmable) target bus. For all the parametrisable modules, it is the

responsibility of the run-time instantiation flow to assign the appropriate generics,

based on the architecture specification.

The individual modules are instantiated in a design hierarchy with two levels.

The first level contains only the network (NIs, routers and links) and is a structural

description of the network topology. The interface of the network level is the ports of

the NIs, i.e. the streaming ports and memory-mapped control ports. No flit ports are

thus visible at this level. The second level surrounds the network with the remainder

of the interconnect. Thus, both the network level and interconnect level are instance-

specific structural descriptions of the architecture.

As already discussed, the hardware is not only design-time parametrisable, but

also run-time configurable. Therefore, to use the interconnect RTL implementation,

we also need to instantiate a host, similar to what is done in the SystemC model.

In the RTL implementation we do not have the option of using a ubiquitous host.

Instead we rely on a programmable exerciser, similar to the ideal host. This exerciser

configures the interconnect using memory-mapped communication, without having

to perform any computation. We also offer the option of using an ARM9 instruction-

set simulator as the host, corresponding closely to the ARM host in the SystemC

model. In the latter case the allocations and run-time library are loaded into the

tightly coupled memories of the processor.

Like the SystemC model, the RTL implementation also includes behavioural

models of traffic generators and memory controllers. The latter are used for all

IPs for which no model or implementation is available. With the IPs, the hardware

instantiation is complete, and we continue by introducing the first part of the soft-

ware instantiation, namely the resource allocations.

5.2 Allocations

For the interconnect hardware to be useful, the resource allocations must be instan-

tiated. While the task of orchestrating the instantiation falls on the run-time library,

the functions of the library require information about the actual allocations, and

also about the architecture of the interconnect. This information must therefore be

translated into software, as part of the instantiation.

The translation of allocations to source code uses C structures for connections,

and they in turn use structures for bus address-decoder settings and channels. Each

channel also uses structures for the path and slot reservation. In the end, the alloca-

tions are translated into a collection of connection definitions, each one composed

of nothing but unsigned integers and characters. The allocation of the virtual control

infrastructure is instantiated like any other application.

108 5 Instantiation

Besides the resource allocations, the run-time library requires information about

the instance-specific architectural constants. This includes the register layout of the

NI and the flit header format. Additionally, the instantiation conveys the number of

NIs and to which NI the host is connected. As we shall see next, the latter infor-

mation is necessary to determine if an NI is local or remote when executing the

operations of the run-time library.

5.3 Run-Time Library

Similar to [145, 168, 170, 176], the interconnect configuration is done by a general-

purpose CPU and is initiated by events in the system, caused by, e.g., a user com-

mand to start or stop an application, an embedded resource manager [31, 104] or

mode switches in the incoming streams [170]. The configuration of the intercon-

nect is hidden from the application programmer by an application-level run-time

API [144] to start and stop applications. Thereby, it is the responsibility of the con-

figuration management system, not the user, to determine the specific ordering of the

operations to apply [102] and guarantee the correctness and temporal behaviour of

those operations. When starting and stopping applications, the opening and closing

of individual connections is left to the interconnect run-time library software. The

run-time library hides the underlying implementation and eases integration as well

as modifications [111]. This allows for easy porting to a wide range of host imple-

mentations, such as the PC-based host used for the FPGA instantiation in Chapter 7.

The final outcome is a set of calls to memory-mapped read and write operations,

which is the only processor-specific part of the library.

The host controls the interconnect through three top-level operations:

1. initialise the control infrastructure,

2. open a new connection, and

3. close an existing connection.

The host functionality is implemented in portable C libraries [68, 77] to be

executed on e.g. an embedded ARM or µBlaze processor, and three functions

art_cfg_init, art_open_conn and art_close_conn, corresponding to the three top-

level operations. The initialisation is performed as part of the bootstrap procedure,

before any calls to the other functions. It instantiates the connections of the control

infrastructure, from every remote NI back to the local NI such that the control infras-

tructure can be used for the interconnect reconfiguration.2 Once the initialisation is

complete, the last two operations open and close user connections, respectively. The

opening or closing of a connection requires us to configure one NI on each side of

the network, and potentially also an initiator bus and a target bus. The registers of

those modules are not necessarily directly in the proximity of the host, so for each

2 The initialisation is an optimisation. The most basic approach is to open and close the configura-
tion connections every time they are used.

5.3 Run-Time Library 109

of these four locations, the general procedure is to open a control request channel

from the host to the module in question, perform the programming, and then close

the control request channel.

We now describe the three top-level operations, followed by a discussion on how

to derive temporal bounds on the execution of the operations.

5.3.1 Initialisation

The control connections are opened in the initialisation phase, as illustrated in

Fig. 5.3. The figure contains a subset of the architecture of the example system, and

shows only the modules that are involved in the configuration of the interconnect,

i.e. the buses, the NIs and the control infrastructure. The port names for the ARM

and SRAM correspond to the mappable ports in Fig. 4.7, and now we also include

the ports that are used for the control infrastructure. The latter are indexed with

numerals rather than literals to distinguish between control ports and user ports.

p2 pl

p0 pep1

pl̄p2̄

p0̄ pēp1̄

ININ

NI

ctrl bus

SRAM

bus

host

subctrl bus ctrl bus

ARM

2

4

passive control channels

1, 3

Fig. 5.3 Control connection initialisation

A control connection, like any other connection, consists of two channels. The

control request channel connects the streaming target port on the host NI (p0 in

Fig. 5.3) to the initiator port on the remote NI (p1̄ and p2̄). Similarly, control

response channels connects the target ports on the remote NIs (p1 and p2) to the

110 5 Instantiation

Algorithm 5.3.1 Open control request channel

1. if the current NI is remote

a. if the current NI is not the active NI (initialised to the local one)

i. if the active NI is remote, close the control request channel

b. configure the path and the destination port identifier in the local NI
c. let the active NI refer to the current NI

initiator port on the local NI (p0̄). The control request channels together constitute

a channel tree and thus share their time slots. Moreover, all the buffers used for the

control connections are uniformly sized across the remote NIs. It is thus possible to

configure the remote space (initial amount of credits) and the slot reservation once,

independent of the number of control request channels. Once the shared slots are

reserved and the space is configured, we proceed by opening a control request and

response channels to and from every remote NI.

The opening of a control request channel is done by the function

art_open_cfg_req according to Algorithm 5.3.1. The control request channel makes

the register in a remote NI accessible via the local control bus, the network, and

the remote control bus. The algorithm begins by evaluating if the NI is remote. For

the control request channels, this is always the case (as we call the operation for all

the remote NIs), but for a general open or close operation the target NI might also

be the local one. If the NI is indeed remote, we see if it is already connected. As

seen in Fig. 5.3, one control request channel is always active, i.e. left unused but

open. In these cases there is no need to re-open the channel. Should the current NI

be different from the active one, the control request channel to the latter is closed.

The final step in opening the control request channel is to configure the path and

the destination port identifier in the local NI. As previously mentioned, the slot

reservation and the remote space is initialised once and does not need any further

configuration. Note that the opening of the control request channel involves only

manipulation of registers in the local NI, as indicated by the arrows marked 1 and 3

in Fig. 5.3.

With the control request channel in place, we proceed by also opening a con-

trol response channel for the remote NI in question. The response channel enables

communication of responses, e.g. the result of a read operation, back to the host.

The control response channel is opened like any user channel is, according to Algo-

rithm 5.3.2. That is, by writing to the registers of the remote NI, indicated by the

arrows marked 2 and 4 in Fig. 5.3, the host sets the path, the destination port iden-

tifier, the remote space and the time slots. As a last step, the response channel is

enabled for scheduling. For the response channels we also use a channel tree and

thus share the time slots. However, even with the same slots being used on the links

going to the host, each remote NIs has its own slot reservation since the number of

hops (and thus the offset of the slots relative to the shared links) differ.

5.3 Run-Time Library 111

Due to the use of end-to-end flow control, the output buffer in the remote NI must

be sufficiently large to fit three complete write commands (the minimum needed to

execute Algorithm 5.3.2). If the output queue in the remote NI is smaller than this,

the local NI runs out of credits before the remote NI is able so send any credits back,

and the configuration (and entire system) deadlocks. In contrast to the user-specified

connections, it is possible to let the connections of the control infrastructure not use

end-to-end flow control. Not using end-to-end flow control makes it possible to close

a control request channel as soon as the data is sent. Not having any flow control also

removes the aforementioned constraint on the buffer sizes. However, not using flow

control pushes the responsibility of timely consumption onto the control bus of the

remote NI and the register files it is connected to. If these modules do not consume

data equally fast as it arrives, e.g. due to multiple clock domains, configuration data

is lost, with an undefined behaviour as the result. This is clearly unacceptable, and

we therefore choose to use end-to-end flow control, and pay the price in time and

buffering.

Algorithm 5.3.2 Open a channel

1. set the path and the destination port

2. set the initial space to the size of the output queue

3. set the time slots

4. set the enable flag

The response channels are left unused, but open, when moving to the initial-

isation of other remote NIs. This is illustrated in Fig. 5.3 by the passive control

channels going to the NI of the ARM. Hence, in contrast to the request channels,

the control response channels are set up once and are in place and ready to be used

when opening and closing user-specified connections. As we have already seen in

Algorithm 5.3.1, the control request channels are closed for every remote NI by

calling the function art_close_cfg_req. Closing a channel, as later discussed in Sec-

tion 5.3.3, involves waiting for all data to be sent, and any potential credits to return.

These two conditions ensure that the connection has reached a quiescent state and

that it is safe to reconfigure the interconnect. We return to discuss quiescence on the

interconnect and IP level in Section 5.3.3. Before detailing how to close channels,

however, we look at how channels are opened.

5.3.2 Opening a Connection

Once the initialisation is complete, we proceed to open the user-defined connections.

Figure 5.4 shows the opening of a connection from the ARM to the SRAM. The

first step is to establish a control request channel to the remote NI of the target bus

(arrow 1). Once this channel is in place, the address decoder of the bus is configured,

using the function art_set_addr_dec (arrow 2). Next, we proceed to open the first

112 5 Instantiation

p2 pl

p0 pep1

pl̄p2̄

p0̄ pēp1̄

NIIN

NI

ctrl bus

ctrl busctrl bus

SRAM

bus

host

bus

ARM

2

3

1, 4

5

6

Fig. 5.4 Opening a user-specified connection

user channel, in this case the request channel going from the ARM to the SRAM

(pe to pl̄). The specific NI is already active, and we do not have to open a control

request channel before opening the request channel according to Algorithm 5.3.2

(arrow 3). We have already seen this algorithm being used during the initialisation,

and now we apply it to the user channel.

Algorithm 5.3.2 in turn calls a number of internal functions for encoding of

the structure fields, e.g. art_create_path, and for writing to the specific registers,

e.g. art_set_flowctrl and art_set_slots. Once the request channel from the ARM to

the SRAM is opened, the configuration request channel to the NI of the ARM is

closed and the NI of the SRAM becomes the active one (arrow 4). The opening

of the connection continues by opening the response channel, also according to

Algorithm 5.3.2 (arrow 5). The final step involves the configuration of the initiator

bus in front of the SRAM (arrow 6). Also here we make use of the fact that the

control port of the bus is connected to the active NI. There is thus no need to close

and open any configuration request channel before configuring the bus. After the

configuration of the initiator bus, the connection between the ARM and SRAM is

opened and can be used. The connection remains in this state until it is closed by

the host.

5.3 Run-Time Library 113

5.3.3 Closing a Connection

Algorithm 5.3.3 shows the procedure for closing a channel. When comparing with

the algorithm for opening of a channel (Algorithm 5.3.2), we see that the first step is

to await quiescence before conducting any actual reconfiguration. An opened chan-

nel is possibly in use, and the step serves to ensure that no information is lost. We

return to discuss quiescence after presenting the remaining steps of Algorithm 5.3.3.

After quiescence is reached, the closing of a channel is essentially the opening in

reverse. First we disable the port, and then the slot reservation is removed. Note that

there is no need to reset the space counter. The value causes no harm, and is set

again as part of the channel opening procedure. Similarly, it is not necessary to reset

the path and destination port. A new channel using the same port simply overwrites

the old values.

Algorithm 5.3.3 Close a channel

1. await quiescence

2. unset the enable flag

3. unset the slots

Closing a connection is more challenging than opening one, as we have to ensure

that no information is lost, and that the IPs and the building blocks of the inter-

connect are left in a consistent state. Using the definition of [102], a module is

quiescent if (1) it will not initiate new transactions, (2) it is not currently engaged in

a transaction that it initiated, (3) it is not currently engaged in servicing a transaction,

and (4) no transactions have been or will be initiated which require service from this

module. The same requirements apply not only to transactions in memory-mapped

communication, but also to elements of streaming data and packets. When quies-

cence is reached on both the IP and interconnect level (all three stacks), a change

can take place with a consistent state as the outcome.

The interconnect has no knowledge about potential outstanding transactions on

the IP level. Furthermore, it is possible that an IP is involved in transactions with

multiple other IPs, and that completion of one transaction depends on other transac-

tions with other IPs [102]. Hence, quiescence on the IP level must be implemented

by the IPs themselves. Starting at the ARM in Fig. 5.4, the processor must not

initiate any new transactions, but still accept and service transactions that are out-

standing. In terms of memory-mapped transactions, this translates to:

1. No new requests must be initiated, but ongoing request (e.g. a write burst) must

finish.

2. All initiated transactions that require a response must be allowed to finish.

For an ARMv5 instruction-set processor the steps can be implemented using a

memory barrier operation. Similar functionality is offered by the VLIW used in

our example instance in Chapter 7. However, it is possible that such operations are

114 5 Instantiation

not available, e.g. in the SWARM that only implements the ARMv4 instruction-set

architecture. The memory mapped initiator (in this case the ARM host) is then under

the impression that (posted) requests finish at the moment the interconnect accepted

them. The aforementioned Step 1 thus requires the interconnect to also deliver the

request to the final destination. Moreover, the availability of barrier operations relies

on the memory-mapped protocol stack. Thus, for a streaming initiator we only

assume that it offers functionality to stop injecting data and the responsibility of

delivery is pushed to the interconnect.

When the initiator is quiescent, it still remains to ensure quiescence in the inter-

connect. Before quiescence is reached, all streaming data must be delivered to

the destination. Hence, it must leave the input queue traverse the network, and

be consumed from the output queue. In addition to delivering any outstanding

data, also credits must be delivered (in both directions). That is, they must leave

the source NI, traverse the network, and be added to the space counter in the

destination NI. Algorithm 5.3.4 ensures that the aforementioned conditions are

fulfilled.

Algorithm 5.3.4 Await quiescence

1. wait until the input queue is empty

2. wait until no credits are present

3. wait until the remote space reaches its original value

In best-effort networks that do not employ end-to-end flow control, quiescence

in the router network, has to be implemented by, e.g., inserting a special tagged

message as an end-of-stream marker [145], thus requiring the co-operation of the

IPs. Thanks to the guaranteed services, and the presence of end-to-end flow control,

we know that all streaming data relating to the channel in question has left the

network when Algorithm 5.3.4 completes. As the input queue is emptied, the space

counter is decremented accordingly. After this step, the data is either in the router

network, in the output buffer, or already consumed by the target. It is not until all

data is consumed that all credits are sent back. Thus, the last condition conserva-

tively ensures that all streaming data belonging to the channel has left the network.

Algorithm 5.3.4 on its own does not ensure that credits that are sent have reached

the destination NI (only that they leave the source NI). The algorithm is therefore

applied also to the channel going in the reverse direction.

The steps in Algorithm 5.3.4 are carried out by repeatedly polling memory-

mapped registers in the source NI. One single word (32 bits) returns one bit per port

indicating if the input queue is empty, if the credit counter is zero, and if the remote

space is equal to what it was last programmed to (as part of the channel opening). For

this purpose, the register file for space is mirrored, and only one copy is decremented

and incremented when flits are sent and credits returned, respectively.

5.4 Experimental Results 115

5.3.4 Temporal Bounds

The time required to perform the different control operations, also taking the open-

ing and closing of control connections into account, is determined by three terms.

First, the time the host requires to issue the programming operations, capturing the

time needed to calculate or read the allocation from background memory. As we

shall see in Section 5.4, the host has a major impact on the time required for recon-

figuration. Second, the time required program the control registers, determined by

the resources allocated to the virtual control infrastructure, and the amount of data

communicated. Third and last, the time before the IP is quiescent, which greatly

depends on the transactional state of the IP.

Starting with the first and second term, both the host implementation, the run-

time library functions, and their use of the virtual control infrastructure can be

captured in one of the models proposed in Chapter 6. Given the path and time

slots assigned to a control connection, it is thus possible to derive an upper bound

on the time required to open the control request channel, configure the remote NI

or bus, and close the control request channel. The challenge is to capture the host

implementation, i.e. the execution of the run-time library instructions on a processor.

Once this is accomplished, the host is connected to the network via a protocol shell,

just like any other IP, and the posted write transactions that implement the control

operations are thus modelled similar to what is proposed in Chapter 6.

The third term in the reconfiguration time depends on the IP. In the general case,

the time until a connection is quiescent cannot be bounded for a close operation.

Closing the channel without awaiting a quiescent state is possible, but requires some

guard functionality in the IP. This requires knowledge about the low-level details of

the interconnect and complicates the IP design and separation of the protocol stacks.

Therefore, we do not consider it in this work. Instead, we assume that it is possible

to bound the time required to reach a quiescent state by inserting reconfiguration
points [145] in the applications. With such functionality offer by the IPs, the total

reconfiguration time can be conservatively bounded.

5.4 Experimental Results

To evaluate the scalability and predictability of the run-time library, we instantiate a

number of randomly generated applications, and study the temporal behaviour and

memory requirements. Throughout our experiments, we assume a word width of

32 bits used by both the IPs and the interconnect. The network, IPs and ARM host

(including the local bus and memory) are all operating at 100 MHz.

To assess the impact of the host execution time, we compile two different binaries

for the ARM. First, one with the connection structures and the run-time library

as described in this chapter. Second, one where the allocations are pre-compiled

into plain read and write calls, thus removing all computation and minimising the

amount of function calls. Both binaries are compiled using arm-elf-gcc version 3.4.3

with the compiler options −mcpu=arm7−Os.

116 5 Instantiation

5.4.1 Setup Time

The first measure we study is the time required to initialise the control connec-

tions and how this grows with the number of (remote) NIs. Figure 5.5 shows the

effect of increasing the mesh size from 1×4 to 5×4, constantly having two NIs

per router. It is clear that the control infrastructure is not the limiting factor, as the

ARM is consistently more than 2 times slower than the ideal host for the read/write

implementation. The slow down stems from the 2 cycle delay in instruction fetches.

The library slows the ARM host down another 7 times, making it roughly 15 times

slower than the ideal host. The slow down roughly corresponds to number of arith-

metic operations needed for every load or store. All three implementations show a

linear growth, as expected with a constant work per NI.

ARM library
ARM read/write
Ideal processor

Number of NIs

T
im

e
(µ

s
)

403224168

350

300

250

200

150

100

50

0

Fig. 5.5 Initialisation time for different number of NIs

Figure 5.6 shows the effect on the cumulative setup time when varying the num-

ber of connections on a fixed 4×4 mesh with two NIs per router. The connections

are opened one by one according to Algorithm 5.3.2, with the control request chan-

nel opened and closed for every single channel. The setup time is measured from

the point when initialisation of all the control response channels is completed. The

ARM library

ARM read/write

Ideal processor

Number of connections

T
im

e
(µ

s
)

150140130120110100908070605040302010

3000

2500

2000

1500

1000

500

0

Fig. 5.6 Setup time for different number of connections

5.4 Experimental Results 117

impact of the latter is shown in Fig. 5.5 (the scenario with 32 NIs). Also in this

experiment the ARM is roughly 2 times slower than the ideal host when using

read/write calls, and 15 times slower with the library implementation. Again, we

see that the time required grows linearly with the number of connections.

We also evaluate the possibility to exploit locality when multiple channels share

the same source NI and there are no ordering constraints between the channels, e.g.

when opening connections. We iterate over the NIs rather than over the connections

when opening a set of channels. This makes optimal use of Algorithm 5.3.1, as

the active NI remains the same for as long as possible. Consequently, for every

NI, the control request channel only has to be opened and closed once, reducing

both the amount of programming required, and the time spent awaiting quiescence.

After applying this strategy, the cumulative time still grows linearly with the number

of connections, but at a much slower rate. For the ideal host, the time required

to open all connections is less than half or what is shown in Fig. 5.6. Similarly

for the ARM implementations, the total setup time is roughly 40% less using this

technique.

The observed maximum-case setup times for a single connection are 1.09, 3.04

and 16.72 µs for the three implementations. Comparing with [68], where best-effort

connections are used for the virtual control infrastructure, it is clear that the time

introduced due to the infrastructure is much larger when using guaranteed services.

The average time required to open a connection, for example, is reported to be 246

ns in [68], compared to almost 1 µs in this work. The fundamental difference, for

which we pay a price in higher average case, is that worst-case bounds can be given.

Using the analytical formulation, as proposed in Section 5.3.4, 1.41 µs is an upper

bound on the reconfiguration time for the worst-case connection, which is allocated

2 out of 16 slots in the request direction and 1 slot in the response direction. The

discrepancy with the measured 1.09 is partly due to the run-time conditions being

less adverse than the worst case, but also to our choice of model (Fig. 6.5a), where

pipelining is not taken into account.

5.4.2 Memory Requirements

Next, we assess the memory requirements of the ARM binary. To reduce the mem-

ory footprint, we also specify the bit widths of the different fields in the connection

structure. Note though that bit members generally worsen the execution time as

many compilers generate inefficient code for reading and writing them.

The binary size for a varying number of NIs is shown in Fig. 5.7. The various

instantiations correspond to the same mesh networks as in Fig. 5.5, here together

with a 40 connection use-case. Expanding the library functions to read and write

calls roughly doubles the size. This is to be compared with the 15-fold speedup

observed in Fig. 5.5.

Figure 5.8 shows the corresponding scaling with the number of connections.

Here, the difference between the library and the read/write implementation becomes

more obvious as the number of connections grows. As an example, using read and

write calls instead of the library functions increases the size with 140%, from 18 kb

118 5 Instantiation

ARM library, bit fields
ARM library

ARM read/write

Number of NIs

B
in

a
ry

s
iz

e
(b

y
te

s
)

403224168

25000

20000

15000

10000

5000

0

Fig. 5.7 Binary size for different number of NIs

to 43 kB, for the 150 connection case. From Fig. 5.8, we conclude that the effect

of bit members is only a few percent reduction of the binary size. Moreover, as

expected, we observe an execution time that is slightly worsened, although the mea-

sured increase is a mere 1.2%. Taking both these facts into account it is hardly

justifiable to employ bit members unless memory footprint is absolutely critical.

ARM library, bit fields

ARM library

ARM read/write

Number of connections

B
in

a
ry

s
iz

e
(b

y
te

s
)

150140130120110100908070605040302010

60000

50000

40000

30000

20000

10000

0

Fig. 5.8 Binary size for different number of connections

5.4.3 Tear-Down Time

Similar to Fig. 5.6, Fig. 5.9 shows the cumulative execution time required to tear

down a use-case with a varying number of connections. Quiescence is enforced

by instructing the IPs (traffic generators) to stop, and then using Algorithm 5.3.4.

Hence, in contrast to the open operations where the time until a quiescent state

is reached is zero, the tear down also involves waiting for in-flight transactions to

finish. Here, we assume ideal IPs, where reconfiguration points occur between every

single transaction. Even with this ideal model, the IP modules play an important

part in determining the total time required to carry out a tear down operation. For

5.5 Conclusions 119

ARM library

ARM read/write

Ideal processor

Number of connections

T
im

e
(µ

s
)

150140130120110100908070605040302010

2000

1500

1000

500

0

Fig. 5.9 Tear-down time

example, the measured worst case tear-down time is 12 µs for all three methods, due

to a slow IP. The influence of the IP also causes a large variation across the different

connections. For the ARM the fastest tear-down operation is completed in a little

more than 1 µs while the library implementation requires 4.8 µs. The ideal host does

the corresponding action in 12 ns, as the connection emanates from the local NI and

only involves local reads and writes. Note that closing a channel (Algorithm 5.3.3)

requires less programming than opening a channel (Algorithm 5.3.2). Thus, if the

IPs is quiescent, closing is in fact faster than opening.

Table 5.1 summarises the analytical approximations of the linear terms in

Figs. 5.5, 5.6, 5.7 and 5.8. The ARM library is roughly a factor six slower than the

read/write calls, but has only half the binary size. Moreover, the library is reusable

and can be compiled independent of the allocations. A combination of the two

approaches is also possible. If the system frequently changes between a pre-defined

set of applications, it is possible to pre-compute the instruction sequences for start-

ing and stopping the applications in question, and thereby speedup the transition.

Table 5.1 Linear approximations of execution time and binary size

Ideal host ARM read/write ARM library

Initialisation time / NI (ns) 375 784 6,385
Setup time / conn. (ns) 936 2,506 13,594
Tear-down time / conn. (ns) 852 2,305 9,575
Binary size / NI (bytes) – 149 67
Binary size / conn. (bytes) – 262 104

5.5 Conclusions

In this chapter we have presented the instantiation flow of the interconnect hardware

and software. We summarise by evaluating the contribution to the different high-

level requirements in Chapter 1.

120 5 Instantiation

The run-time instantiation, in its current form, limits the interconnect scalability
as it uses a centralised host. In our evaluation, we see that the time required to

reconfigure the interconnect is already substantial, and that it grows linearly with the

size of the network and the amount of connections. However, the proposed run-time

libraries do not inherently limit the scalability, and it is possible to distribute the

work across multiple hosts. Different configuration operations can thus overlap in

time, and the memory requirements are distributed across the hosts. In addition to

the centralised host, the scalability is currently also limited in the SystemC model, as

it unconditionally instantiates the entire system. The simulation speed thus degrades

with the system size. To improve the scalability, it is possible to only instantiate the

applications (IPs and interconnect components) of the current running use-case.

The contributions to diversity are many. First, the instantiation of the interconnect

hardware and software uses industry-standard languages, and can thus be used with

a wide range of target platforms and tools. Second, the hardware is instantiated both

as transaction-level SystemC models and HDL RTL, to enable diversity in the speed

an accuracy offered. Third, the dynamic hardware instantiation of the SystemC sim-

ulator offers easy addition of new modules. Lastly, the run-time library presents

the user with a high-level view, facilitating diverse types of host implementations.

Furthermore, the host libraries are provided as portable ANSI C code.

The run-time instantiation contributes to composability by performing the recon-

figuration operations on the level of individual connections. Connections are thus

started and stopped independently. The operations are also predictable, as the con-

nections of the virtual control infrastructure are used to carry reconfiguration data.

The challenge in providing temporal bounds on the reconfiguration operations lies

in bounding the time required for the host to issue the operations, and in the case of

closing, the time until the IPs are quiescent.

The main contribution of this chapter is the reconfigurability of the interconnect.

Through a basic set of operations, the run-time library allows the user to dynam-

ically open and close connections. The low level details of the interconnect are

hidden, easing integration as well as modifications. Reconfiguration of the tasks

running on IP modules [93, 144, 170] is an important task that lies outside the scope

of this work.

Another important contribution of this chapter is the automation of hardware and

software instantiation. Turning high-level specifications into HDL and C code is a

tedious and error prone job. The run-time design flow greatly simplifies the task of

the user by fully automating this process. We see examples of the automation in

Chapter 7 where an entire system instance is created in a matter of hours.

Chapter 6

Verification

In the previous chapters, we have seen how the communication requirements of

the applications are turned into a complete interconnect instance. The allocation

of communication requirements, however, only covers the network and excludes

the effects of end-to-end flow control. When NI ports are added as part of the

dimensioning in Chapters 3 and 4, all buffers are given a default size, and until

now we have assumed that the buffers are sufficiently large. If this is not the case,

the application performance suffers, and conversely, if the buffers are unnecessarily

large they waste power and area [28, 56, 79, 168]. In addition to the network, also the

clock domain crossings, shells, atomisers and buses affect the performance and must

be considered. Furthermore, the communication requirements are merely a result of

higher-level application requirements, and it remains to verify that the applications

have the expected functional and temporal behaviour when they are executed on

the system instance, i.e. taking the interdependencies between the tasks, the IPs

and the interconnect into account. Thus, for an existing interconnect instance, we

must be able to determine the temporal behaviour of the applications mapped to it,

given fixed NI buffer sizes. On the other hand, if we are designing an interconnect

specifically for a set of applications, then it is desirable to determine sufficiently
large NI buffers. In this chapter, which corresponds to Step 4 in Fig. 1.8, we show

how to verify the application-level performance requirements (considering the entire

interconnect) and how to size the NI buffers.

In the dimensioning, allocation and instantiation, the design flow does not distin-

guish between different types of applications. That is, all requirements are treated

the same, whether they stem from a firm, soft or non-real-time application. The

difference lies in what the requirements represent, e.g. worst-case or average-case

throughput, and how they are derived by the application designer. In contrast to

earlier steps in the design flow, here we need different approaches to verify the func-

tional and temporal behaviour for different types of applications, and size their NI

buffers accordingly. We first look at the wide range of options for verification based

on simulation, and continue with the main contribution of this chapter: conservative
models of the network channels that enable firm real-time guarantees.

Simulation, potentially based on statistical models [84], is a common approach

to evaluate application performance [40, 135], and is the first step in our verification

flow, depicted in Fig. 6.1. Using either the SystemC or RTL instantiation of the

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_6, C© Springer Science+Business Media, LLC 2011

121

122 6 Verification

Hardware
SystemC models and

RTL for FPGA/ASIC synthesis

Software
register settings,

libraries for run-time

reconfiguration

4.1 Simulate interconnect and applications
collect statistics for throughput, latency and buffers

Analytical bounds

dataflow models,

suffcient buffer sizes and

end-to-end temporal behaviour

Simulation results

throughput and latency of

SystemC, RTL, netlist

4.3 Construct dataflow models of network channels
architecture and allocations decide behaviour

4.2 Analyse and present simulation results
generate high-level summaries of the behaviour

4.4 Apply dataflow analysis on application level
combine interconnect and application models

Fig. 6.1 Performance verification flow

interconnect, the designer can include the IPs and applications in the form of, e.g.,

transaction-level models, instruction-set simulators, or actual RTL implementations.

In addition to any application-specific instrumentation, the interconnect provides

extensive statistics concerning the throughput and latency of individual connections

(for both SystemC and RTL simulation), together with the buffer usage in the NIs.

Thus, it is possible to evaluate the performance and choose appropriate buffer sizes.

As already discussed in Chapter 5, the instantiation flow also includes traffic gener-

ators and memory models, for those cases where no models of the IPs are available.

The verification flow also presents high-level summaries of the simulation results.

As part of the evaluation, it is also possible to compare the throughput and latency

for the different levels of simulation, i.e. SystemC, RTL and netlist.

Simulation places no restrictions on the applications and is suitable for verifi-

cation of applications with soft or no real-time requirements. However, simulation

(in the general case) is not able to guarantee that the application requirements are

met, even for the specific input trace. The composability of our interconnect ensures

that the observed behaviour is independent of other applications. It is thus not

necessary to consider variations due to changes in the input traces or behaviours

of other applications in the system. This is a major qualitative difference with

other (non-composable) interconnects and a crucial step in reducing verification

complexity. Even with interference from other applications removed, however, a

different starting time or uncertainty in the platform itself (e.g. due to a clock

domain crossing) might cause variations in the application behaviour. As a result, the

6 Verification 123

application might not deliver the expected performance, possibly even deadlock or

exhibit timing related bugs when it is executed again, on the same system instance,

with the same input trace. The inability to guarantee a certain temporal behaviour

makes simulation an inappropriate technique for performance verification and buffer

sizing for firm real-time applications.

The techniques proposed in [39, 56] overcome the limitations of simulation by

modelling the application behaviour by means of a traffic characterisation. Thus,

the work takes a network-centric approach and includes the IPs, buses, atomisers

and shells in the characterisation. The work presented in [56] uses linear bounds to

characterise traffic, while [39] assumes strictly periodic producers and consumers.

NI buffer sizes are computed such that for every traffic source that adheres to the

characterisation, there is always sufficient space in the buffer to allow data produc-

tion. However, finding a traffic characterisation is difficult if not impossible as it is

limited to point-to-point network channels. Thus, it is not possible to capture depen-

dencies between different network channels, e.g. the synchronisation between chan-

nels in the target buses and initiator buses, or the dependencies between requests and

responses for a memory-mapped target such as the SRAM. All these restrictions on

the traffic characterisation severely limit the applicability of the methods. More-

over, neither of the approaches allow the availability of buffer space to influence

the production time of data. Thereby, they are only able to compute buffer sizes

given a temporal behaviour, and not the reverse. Hence, it is not possible to derive

the temporal behaviour given fixed buffer sizes, i.e. to map a new application to an

already existing interconnect instance.

As the main contribution of this chapter, we show how to construct a dataflow

graph that conservatively models a channel of any network that offers guaranteed

latency and throughput. As illustrated in Fig. 6.1, the generation of dataflow models

is the third step in the verification flow. We exemplify the technique by construct-

ing several models of the proposed network architecture. The applicability of the

model is illustrated by using it together with state-of-the-art dataflow analysis tech-

niques [15] to derive conservative bounds on buffer sizes in the NIs and temporal

behaviour of the applications. This is the fourth and last step in the verification

flow. If the verification flow fails, the communication requirements (the input to the

design flow in Fig. 1.8) are adjusted accordingly, i.e. by increasing the requested

throughput or decreasing the requested latency. In the case of a successful verifi-

cation, the architecture description is (back) annotated with the minimal sufficient

buffer sizes, and the interconnect is instantiated anew.

To evaluate our proposed channel model, we restrict our application model and

compare computed buffer sizes with existing approaches [39, 56], for a range of SoC

designs. Coupled with fast approximation techniques, buffer sizes are determined

with a run time comparable to existing analytical methods [56], and results compa-

rable to exhaustive simulation [39]. For larger SoC designs, where the simulation-

based approach is infeasible, our approach finishes in seconds. Moreover, in Chap-

ter 7 we demonstrate how the dataflow models enable us to capture the behaviour of

both the application and the entire interconnect (not only the network) in one model,

thus greatly improving the applicability compared to [39, 56].

124 6 Verification

The remainder of this chapter is structured as follows. We start by presenting the

terminology and concepts of dataflow graphs together with their applications (Sec-

tion 6.1). Next, we formulate the requirements on the interconnect (Section 6.2) and

give a detailed description of the temporal behaviour of our proposed network archi-

tecture (Section 6.3), after which our proposed model of a communication channel

is derived (Section 6.4). We compare the run time and buffer sizes derived using our

approach with those of [39, 56] (Section 6.5). We end this chapter with conclusions

(Section 6.6).

6.1 Problem Formulation

In this chapter we address the problem of verifying the performance requirements

of the applications, and sizing of the NI buffers of the proposed interconnect. As

discussed in Chapter 2, an end-to-end performance analysis requires us to conser-

vatively characterise the behaviour of the applications, the behaviour of the IPs that

run the applications, and the behaviour of the entire interconnect. We assume that

the application models are given as variable-rate dataflow graphs [199]. Moreover,

we assume that all hardware and software tasks, in the application as well as the

architecture, only execute when they have input data available and sufficient space

in all output buffers, i.e. they do not block during execution. In accordance with the

proposed interconnect we assume blocking flow control.

In constructing a model of the interconnect we must consider that the behaviour

of the target and initiator buses depend heavily on the IPs to which they are con-

nected. For example, in Chapter 7 we show how to construct a conservative model

for the target bus and SRAM in our example system, including detailed knowledge

of the specific memory controller. Due to the difficulties in constructing a general

model for the aforementioned parts of the interconnect, we restrict ourselves to con-

structing a model of the network. Thus, given a network architecture that offers

guaranteed latency and throughput for individual channels, we must construct a

channel model, as illustrated in Fig. 6.2, that conservatively models the network,

and allows us to verify the application requirements and size the NI buffers. As seen

in the figure, two instances of the model (one for each channel of a connection)

conservatively captures the behaviour of a connection, from NI to NI. In Fig. 6.2,

and throughout this chapter, dashed arrows are used to denote flow control (in this

case the accept signal of the streaming interfaces as discussed in Chapter 3).

Once we have a dataflow graph of the interconnect and the application, it can be

used to compute buffer capacities, to guarantee deadlock freedom, to guarantee sat-

isfaction of latency and throughput constraints, and to guarantee periodic behaviour

of sources and sinks [10, 15]. Figure 6.3 shows an example producer–consumer

application, with the corresponding dataflow model on top. A producer task, e.g. a

software task running on a processor, communicates via a buffer with a consumer

task, e.g. the scheduler in an NI. If the buffer is full, the producer stalls, and the

consumer stalls if the buffer is empty. The dataflow graph is divided in components

6.1 Problem Formulation 125

R R ININ

channel model

channel model

Td = Tresp, φd = φresp, Tc = Treq , , φc = φreq

Td = Treq , φd = φreq , Tc = Tresp, φc = φresp

Fig. 6.2 Architecture and corresponding model

rc = 1rc = 2rp = 2, 1

11, 21, 2 1 2 2

d

d

producer component consumer component

producer task

prod cons

consumer task

1

11

vc,ρvc,θvp

1

12 12

Fig. 6.3 Example buffer capacity problem with a producer and consumer task

that form a partitioning of the graph. This is exemplified in Fig. 6.3 by a pro-

ducer component that models the producer task, and a consumer component that

models consumer task. Note that the dataflow model also includes an edge from

the consumer component to the producer component. This is because a task in the

implementation only starts when there are sufficient free buffer locations, i.e. space,

in all its output buffers. As already exemplified in Fig. 6.2, this type of edges are

represented with dashed arrows.

Next, Section 6.1.1 provides a brief introduction to CSDF graphs and the termi-

nology used in the analysis. For further details and examples, see e.g. [10, 15, 44].

There after, in Section 6.1.2, we show how to compute a sufficient buffer capacity d
given a requirement on the minimum throughput of the complete dataflow graph.

6.1.1 Cyclo-static Dataflow (CSDF) Graphs

A Cyclo-Static Dataflow (CSDF) graph [24] is a directed graph G = (V, E, δ, τ, π,

γ, κ) that consists of a finite set of actors V , and a set of directed edges,

E = {(vi , v j)|vi , v j ∈ V }. Actors synchronise by communicating tokens over

126 6 Verification

edges. This is exemplified in Fig. 6.3, where tokens, modelling data, flow from

actor vp to the actors vc,θ and vc,ρ , and tokens, modelling space, flow from vc,θ to

vp. The graph G has an initial token placement δ : E → N, as exemplified by the

single token on the self edges of vp and vc,ρ , and the d tokens on the edge between

them.

An actor vi has κ(vi) distinct phases of execution, with κ : V → N, and tran-

sitions from phase to phase in a cyclic fashion. An actor is enabled to fire when

the number of tokens that will be consumed is available on all its input edges. The

number of tokens consumed in a firing k by actor vi is determined by the edge

e = (v j , vi) and the current phase of the token consuming actor, γ : E × N → N,

and therefore equals γ (e, ((k − 1) mod κ(vi)) + 1) tokens. The specified number

of tokens is consumed atomically from all input edges when the actor is started. By

introducing a self edge (with tokens), the number of simultaneous firings of an actor

is restricted. This is used in the example graph in Fig. 6.3, where actor vc,θ models

latency, i.e. it does not have a self edge, and actor vc,ρ models throughput, i.e. it can

only consume and produce tokens at a certain rate.

The response time τ(vi , f), τ : V × N → R, is the difference between the finish

and the start time of phase f of actor vi . The response time of actor vi in firing k is

therefore τ(vi , ((k − 1) mod κ(vi)) + 1). When actor vi finishes, it atomically pro-

duces the specified number of tokens on each output edge e = (vi , v j). The number

of tokens produced in a phase are denoted by π : E × N → N. In the example, vp

has the response time sequence τp = 〈2, 1〉 and vc,θ has the response time sequence

τc,θ = 〈2〉. In this graph, vp consumes and produces two tokens in the first phase

from the edges to and from vc,θ and vc,ρ , respectively. For brevity, the notation x y

denotes a vector of length y in which each element has value x . In the example, this

is seen on the self edge of vp where 12 = 〈1, 1〉.

For edge e = (vi , v j), we define Π(e) =
∑κ(vi)

f =1 π(e, f) as the number of tokens

produced in one cyclo-static period, and Γ (e) =
∑κ(v j)

f =1 γ (e, f) as the number of

tokens consumed in one cyclo-static period. We further define the actor topology Ψ

as an |E | × |V | matrix, where

Ψmi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Π(em) if em = (vi , v j) and vi �= v j

−Γ (em) if em = (v j , vi) and vi �= v j

Π(em) − Γ (em) if em = (vi , vi)

0 otherwise

If the rank of Ψ is |V | − 1, then a connected CSDF graph is said to be consis-
tent [24]. For a consistent CSDF graph, there exists a finite (non-empty) schedule

that returns the graph to its original token placement. Thus, the implementation it

models requires buffers of finite capacity.

We define the vector s of length |V |, for which Ψ s = 0 holds, and which deter-

mines the relative firing frequencies of the cyclo-static periods. The repetition vec-

tor q of the CSDF graph determines the relative firing frequencies of the actors and

is given by

6.1 Problem Formulation 127

q = Λs with Λik =

{

κ(vi) if i = k
0 otherwise

The repetition rate qi of actor vi is therefore the number of phases of vi within

one cyclo-static period times the relative firing frequency of the cyclo-static period.

For the example in Fig. 6.3, the vector s is found to be [2 6 3]T, and the repetition

vector is q = [4 6 3]T.

For a strongly connected and consistent CSDF graph, we specify the required

minimum throughput as the requirement that every actor vi needs to fire qi times

in a period µ [44]. In [130] it is shown how also latency requirements can be taken

into account. Given such a requirement on the period µ, sufficient buffer capacities

are computed, as discussed in Section 6.1.2.

A CSDF graph is said to execute in a self-timed manner when actors start execu-

tion as soon as they are enabled. An important property is that self-timed execution

of a strongly connected CSDF graph is monotonic in time [198]. This means that

no decrease in response time or start time of any firing k of any actor vi can lead to

a later enabling of firing l of actor v j . We return to discuss the importance of this

property in the following section.

6.1.2 Buffer Capacity Computation

Two conditions must hold to compute the buffer capacity using dataflow analy-

sis [15]. First, there must be a one-to-one relation between components in the

dataflow graph and tasks (e.g. NIs) in the implementation. Second, the model of each

component must be conservative. That is, if component models task, then it should

hold that if data arrives not later at the input of the task than tokens arrive at the

input of the component in the model, then data should be produced not later by the

task than tokens are produced by component. The mentioned relation between token

arrival and production times is required to hold for tokens that represent data as well
as space. As previously mentioned, the self-timed execution of a strongly connected

CSDF graph is monotonic, i.e. there are no scheduling anomalies in the model.
Together with conservative component models, this means that bounds on buffer
sizes, throughput and latency are valid even if a component produces or consumes
faster in the actual implementation. Thus, in the implementation the scheduling

order can change, but the bounds are still valid.

In addition to a model that fulfils the aforementioned conditions, we also need

an algorithm to perform the analysis. There are multiple existing algorithms,

e.g. [15, 44, 188, 197], and the choice of an algorithm enables a trade-off between

the tightness of the bounds and the execution time. In this work, we choose to use

a low-complexity (polynomial) approximation technique [15]. In this algorithm,

which is described in depth in [15], a schedule is constructed for each actor indi-

vidually that satisfies the throughput constraint. Subsequently, token production and

consumption times resulting from these schedules are linearly bounded. Using these

linear bounds, sufficient differences in start times of the individual schedules are

128 6 Verification

derived such that tokens are always produced before they are consumed. These

minimal differences in start times form the constraints in a network flow problem

that computes minimal start times that satisfy these constraints, thereby minimising

the required buffer sizes. Buffer sizes are in the end determined using the computed

start times together with the linear bounds on token production and consumption

times.

With a conservative model at the component level and one of the analysis algo-

rithms in [15, 44, 188, 197] it is possible to derive sufficient buffer capacities. For

example, assuming that the producer and consumer components in Fig. 6.3 con-

servatively model the producer and consumer task, we can apply the algorithm

in [15] to the dataflow graph. A sufficient buffer capacity is computed by finding

a token placement d such that the throughput constraint is satisfied, e.g. µ = 6.

For the example graph, we have that the graph deadlocks with d = 2, while with

d = 3 the graph has a period of 16. The throughput constraint is satisfied with

d = 7.

We proceed by showing what is required from a network for these modelling

techniques to be applicable. Then we demonstrate how to construct multiple dif-

ferent models of a network channel and evaluate the applicability of the proposed

technique for buffer sizing and performance verification.

6.2 Network Requirements

In this section we discuss what must be considered in the NoC architecture to con-

struct a channel model as shown in Fig. 6.2, i.e. of the streaming point-to-point

communication. First, the channel flow control must be blocking. In other words,

data is never lost if a buffer is full, and reading from an empty buffer causes the

reading party to stall until data is available. This is the most common way to imple-

ment lossless flow control in NoCs, and is used in e.g. [26, 63, 90, 95, 108] (and

probably many others), although not in [157].

Second, we require that all the arbitration points of a channel can be modelled as
latency-rate servers [185], independent of other channels. Any number of arbitra-

tion points is allowed, and the resources (such as buffers and links) do not have to be

statically partitioned to individual channels. Note that the arbitration scheme does

not have to be TDM-based and the sharing not composable. In fact, latency-rate

characterisation is possible for any starvation-free arbiter. Examples of NoCs that

fulfil these requirements are the TDM-based NoCs in [63, 90, 108], and that all

have a single arbitration point per channel. Other examples, with multiple arbitra-

tion points are [95] and [26] that use round-robin and rate-controlled static-priority

arbitration, respectively.

For a NoC architecture that fulfils the requirements, the latency and throughput

must be conservatively modelled. Although this initially might sound like an easy

task, the actual NoC implementation has a wide range of mechanisms (pipelin-

ing, arbitration, header insertion, packetisation, etc.) that affect the latency and

6.3 Network Behaviour 129

throughput and have to be taken into account. We exemplify this in the following

section where we look at the behaviour of our proposed network.

6.3 Network Behaviour

The latency and throughput of a channel is determined by the resources allocated

to a connection, and the direction of the channel, i.e. request or response. As we

have seen in Chapter 4, the allocation is captured by the slot table and the path, Treq,

φreq, Tresp and φresp for request and response channel, respectively. As suggested in

Fig. 6.2, when analysing the request channel, we must also take the response channel

into account and vice versa. This is due to the end-to-end flow control that travels

back on the channel in the opposite direction. Note that credits travelling on the

request channel do not affect data on the request channel (rather they are embedded

in the header as shown in Chapter 3), and similar for the response channel.

As we will see in the following sections, the behaviour depends on the number

of slots reserved and the distance between them (Section 6.3.1), the number of slots

that contain headers (Section 6.3.2), the length of the path through the network

(Section 6.3.3), and the availability of flow-control credits (Section 6.3.4). Addi-

tionally, a number of architectural constants affect the temporal behaviour. We have

already seen the most important ones in Table 3.1. For the purpose of the analysis in

this chapter, Table 6.1 adds additional constants that are particular to the temporal

behaviour of the NI. We now present the different contributions in the order they

appear when a data word traverses a channel and credits are returned.

Table 6.1 Constants particular to the temporal behaviour of the NI

Symbol Description Value Unit

pn TDM slot table period sflit × stbl Cycles
θp,NI NI (de)packetisation latency 1 Cycles
θd,NI NI data pipelining latency 2 Cycles
θc,NI NI credit pipelining latency 2 Cycles

6.3.1 Slot Table Injection

Data injection is regulated by the set of slots reserved on the forward channel, Td .

As discussed in Chapter 3, all slot tables in the network have the same number of

slots, stbl and the flit size is fixed at sflit. Thus, the period in cycles, denoted pn , is

the same throughout the NoC. As we have seen in Chapter 4, the number of slots

reserved affects the throughput and latency of the channel whereas the distances

between reserved slots only contributes to the latency. In the channel model, we use

|Td | to denote the number of slots in the set of reserved slots (i.e. the size).

130 6 Verification

Definition 15 Let dd(T) denote the upper bound on the latency, in network cycles,

from the arrival of a word at the ingress point of the channel until the average data

rate can be sustained when using the slots in T .

Exhaustive search over the possible arrival times is used to determine dd(Td).1

For most practical cases, however, the latter is simply the largest distance between

two allocated slots. This is exemplified in Fig. 6.4, by Td = {1, 2, 3, 5, 8, 9} with

|Td | = 6 and dd(Td) = 3sflit, which happens when a single word appears in the first

cycle of slot 5.

credits

data

slotsTd slotsTc

� �φd

� �φc

= 2

= 3

NINI

x
x

1
2
3
4
5
6
7
8
9

x

x

x

x

x

x

1
2
3
4
5
6
7
8
9

x

Fig. 6.4 Example channel with slot tables and paths

6.3.2 Header Insertion

Besides data, the forward channel also carries headers. This affects the (net)

throughput of the channel, and it is necessary to bound how much of the capacity is

used to send headers rather than data. As discussed in Chapter 3, the header insertion

is governed by the NI, based on the reservations in the slot table, and the maximum

packet size, spkt. The header has a fixed size of shdr words, with shdr < sflit. For a

group of consecutive slots, the first one always has to include the path, and hence

a packet header. Consider for example Td in Fig. 6.4 where slots 5 and 8 include

a packet header (slot 1 follows after slot 9). In addition, with spkt = 4, also slot 3

includes a packet header (as it comes after 8, 9, 1 and 2). We must provide a lower
bound on the rate of data sent, and hence an upper bound on how many phits are

used for headers rather than data.

Definition 16 Let ĥ(T) denote an upper bound on the number of headers inserted

during a period of pn when using the slots in T .

1 In fact, it suffices to exhaustively evaluate all intervals that start with a reserved slot and end with
an empty slot [142].

6.3 Network Behaviour 131

In the example, ĥ(Td) = 3, which occurs, for example, if we start in slot 4. Note

that the bound assumes that data is present for the whole duration of pn .

6.3.3 Path Latency

As all rate regulation is done in the NI, the traversal of the router network only adds

to the latency of the channel, and does not affect the throughput. The latency for

a path φ depends on the number of hops, denoted |φ|, the pipelining depth of the

routers (which is equal to the flit size sflit), and the de-packetisation latency of the

NI, denoted θp,NI .

Definition 17 Let θp(φ) = θp,NI + |φ|sflit denote the path latency of a path φ.

That is, the path latency is determined by the time required to (de)packetise the

flit plus the time it takes for the complete flit to traverse the NoC. In Fig. 6.4,

θp(φd) = θp,NI + 2sflit.

6.3.4 Return of Credits

As discussed in Chapter 3, credit-based end-to-end flow control works as follows.

Whenever a word is scheduled for injection in the router network, a counter in the

sending NI is decremented. If the counter reaches zero, no more data is sent for the

channel in question. When words are consumed from the receiving NI, credits are

accumulated and sent back. Hence, there are credits going in the reverse direction,

affecting the latency and throughput of the channel.

The credits are returned in the packet headers of the reverse channel and hence

do not interfere with the data on the reverse channel. The number of headers depend

on the set of slots on the reverse channel Tc. To conservatively model the return of

credits, we need to determine a lower bound on the rate at which they are sent back,

and an upper bound on the latency before they are sent. This is to be compared with

the bounds determined for the injection of data in Section 6.3.1.

Definition 18 Let ȟ(T) denote a lower bound on the number of headers inserted

during any interval pn when using the slots in T .

For each header, a maximum of scrd credits are sent, as discussed in Chapter 3. In

addition to bounds on the rate of credits, we must also bound the latency.

Definition 19 Let dc(T) denote an upper bound on the latency between the arrival

of credits (i.e. a word is consumed from the receiving NI) until the average credit

rate can be sustained when using the slots in T .

When deriving the latency bound, the slot table allocation, as well as the maxi-

mum packet size is taken into account, just as for the data. Looking at the example,

dc(Tc) = 4sflit and ȟ(Tc) = 2, which happens when starting in slot 9.

132 6 Verification

The credit return is the last mechanism that affects the latency and throughput

of a channel, and we now continue by constructing a model that captures all the

different mechanisms.

6.4 Channel Model

In this section we show how to construct a dataflow graph that conservatively mod-

els a network channel using the expressions we derived in Section 6.3. We start

with a coarse model in Section 6.4.1 and successively refine it until we arrive at

our final model in Section 6.4.4. Section 6.4.5 complements the channel model by

capturing the behaviour of the protocol shells. In Section 6.5 we use the proposed

channel models together with models of the application and apply dataflow anal-

ysis [15, 44] to the constructed CSDF graph to determine conservative bounds on

the required buffer capacities. Finally, to demonstrate the full potential, the model is

used in Chapter 7 to verify application-level performance guarantees, using formal

analysis.

6.4.1 Fixed Latency

Our first model, depicted in Fig. 6.5a, has only one actor vcd , with a single token

on the self edge. This prohibits an execution to start before the previous execution

has finished. As seen in the figure, the actor only fires when buffer space is available

in the consumer buffer, denoted βc, and then frees up space in the producer buffer,

denoted βp. The response time of the actor, τcd , appearing below the graph, captures

the worst-case latency a data word can ever experience. This happens when a word

arrives and there are no credits available in the producer NI. Next, we present the

four terms that together constitute the response time.

The first term, θc(Tc) = θc,NI + dc(Tc), captures the worst-case latency for the

injection of credits. The latency is a sum of (1) the maximum cycles spent updating

the credit counter on data consumption and the maximum latency until the credits

are seen by the NI scheduler, and (2) the maximum number of cycles without any

slots reserved. The second term, θp(φc), corresponds to the time required in the

router network to return the credits to the producer NI. With data and credits avail-

able, it only remains to bound the time until the data is available in the consumer

buffer.

Similar to the injection of credits, θd(Td) = θd,NI + dd(Td) bounds the

latency experienced by a data word in the sending NI. The latency consist of (1)

the number of cycles before a word that is accepted by the NI is seen by the

scheduler, and (2) the worst-case latency for data. The fourth and last term is

attributable to the router network in the forward direction, which adds a latency of

θp(φd).

6.4 Channel Model 133

1

1 1
1

1 1

1

βc

vcd

τcd = θc(Tc) + θp(φc) + θd(Td) + θp(φd)

βp

(a)

vρvθ

1 1

1

1

1

1

111

βp

τθ = θc(Tc) + θp(φc) + θd(Td) + θp(φd)

βc

τρ = pn / min(ρ−1

d
(Td), ρ−1

c (Tc))

(b)

1

1

1 1

1 1

1

1

1

1

vd

vc

1

1

βc

βp

τd = θd(Td) + θp(φd)

τc = θc(Tc) + θp(φc)

(c)

vd,ρvd,θ

vc,φ vc,θ

vd,φ

vc,ρ

1 1

1

11

τc,θ = θc(Tc)τc,ρ = pn/ρ −1
c (Tc)τc,φ = θp(φc)

1
11

1

1

1

111

βc

βp
1

τd,θ = θd(Td) τd,φ = θp(φd)τd,ρ = pn/ρ −1

d
(Td)

11

1

1 1

(d)

Fig. 6.5 Different channel models. (a) Data and credits joined. (b) Data and credits joined, latency
and rate split. (c) Data and credits split. (d) Data and credits split, latency and rate split

The model in Fig. 6.5a is sufficient to model the NoC channels and perform buffer

sizing and application-level performance analysis. It is, however, overly conserva-

tive as it does not distinguish between credits and data, and assumes a worst-case

arbiter state for every data and credit item that is sent. Note in particular that only

latencies appear in the model. The number of slots reserved, for data as well as

credits, are not taken into account, which is overly pessimistic.

Next, we show how it is possible to refine the model along two different axes.

First, by looking over a larger interval we can create less conservative models. If

data/credits arrive fast enough, we only have to assume the worst-case state for the

first item. For subsequent items we have more knowledge about the state [185].

This leads to a model where latency and rate are split. Second, by distinguishing

between the forwarding of data and return of credits, we capture the fact that the two

happen in parallel. This leads to a model where data and credits are split. Finally,

we present a model that combines both these refinements.

134 6 Verification

6.4.2 Split Latency and Rate

We split our first model into multiple actors according to Fig. 6.5b. The difference

with Fig. 6.5a is that the latency, now modelled by vθ , can be experienced by more

than one word at a time, i.e. the actor has no self edge. Instead, the actor vρ bounds

the rate at which data and credits are sent. With one token on the self edge, the

response time of the actor is a conservative bound on how long time it takes to serve

one word after an initial latency τθ . As seen in the figure, the response time is the

period of the TDM wheel, pn , divided by the minimum of the maximum number of

data words and maximum number of credits. The number of data words is bounded

from above by ρ−1
d (Td) = sflit|Td | − ĥ(Td)shdr, i.e. the number of words reserved

during pn minus the maximum space required for headers. Similarly, the credits are

bounded by ρ−1
h (Tc) = ȟ(Tc)scrd. In this channel model, we see that the latency

experienced is the sum of the credit and data latency, and the rate is determined by

the minimum, i.e. the most limiting, of the two.

6.4.3 Split Data and Credits

Our third model, shown in Fig. 6.5c, splits the data and credits into two different

actors, vd and vc. Actor vd that models the arbitration on the forward channel fires

when it has input data and credits available, as seen by the edge from vc. The firing

of vd also frees up one buffer space, as seen by the edge going back to the producer.

The return of credits is modelled by vc that fires when a word is consumed from

βc. The response times of the actors, appearing above and below the graph, capture

the time it takes for a word/credit to be scheduled by the NI and traverse the path

through the network. Compared to our first model, we see that the latency for data

and credits now appear as the response time of vd and vc respectively. We also see

the asymmetry between the producer buffer βp that is local, and the consumer buffer

βc that is located in the receiving NI.

6.4.4 Final Model

By splitting the model into a data and credit part, as well as a latency and rate

part, we arrive at our final model, shown in Fig. 6.5d. In the forward direction,

data experiences scheduling latency and rate regulation in the NI, modelled by vd,θ

and vd,ρ . The router network also adds latency, vd,φ . For the return of credits, the

situation is similar. The NI is modelled by vc,θ and vc,ρ , and the router network by

vc,φ . In our final model, we use independent actors to model latency/throughput and

data/credits.

Note that the channel models are independent of the application using it. If the

application behaviour changes, or the model of an application is refined, nothing

has to be modified in the channel model. Similarly, the application model is not

6.5 Buffer Sizing 135

affected if the channel model is replaced or refined, i.e. by choosing one of the

aforementioned levels of detail.

6.4.5 Shell Model

So far we have only modelled the NI and router network (including any pipelined

links), and to apply the model to point-to-point memory-mapped communication we

must also model the protocol shells. As discussed in Chapter 3, the shell is closely

coupled to the IP and the protocol it uses. In Table 6.2 we summarise the behaviour

of the shell as described in Chapter 3, and show how the current shell implementa-

tions transform the read and write messages of a memory-mapped protocol into a

number of words of streaming data. As seen in the table, the size of a burst, from

the perspective of the NI, depends on the burst size of the IP, the transaction type,

the channel direction, and the size of the message headers. Table 6.2 shows the

case when an element of the memory-mapped protocol fits within the width of the

network links. As seen in the table, a read operation requires the read command (plus

potential flags) and the address to be sent as a request. The response, in turn, carries

the actual data as well as status information. For a write operation, the command,

flags and address are sent together with the data (and potentially a write mask).

When executing a write operation, the target may also return status information and

error codes.

Table 6.2 Burst sizes for different channel types

IP Shell Total
Transaction Direction (words) (words) (words)

Read Request 0 hreq,r hreq,r

Read Response b hresp,r b + hresp,r

Write Request b hreq,w b + hreq,w

Write Response 0 hresp,w hresp,w

Note that the shell model only captures command handshakes and data transfers

for request and responses, i.e. point-to-point communication. Higher-level proto-

col issues, e.g. coupling between requests and response or dependencies between

different request from the same initiator are captured in the model of the applica-

tion together with the behaviour of the initiator and target buses, as discussed in

Chapter 7.

6.5 Buffer Sizing

In this section we demonstrate the applicability of the model by comparing the run

time and buffer sizes derived using our approach with those of [39, 56]. Using the

terminology of [39], we will hereafter refer to the two approaches as analytical and

simulated, respectively. Moreover, using our proposed channel model, we also show

136 6 Verification

the differences using the dataflow model with fast approximation algorithms [15]

and exhaustive back-tracking [44]. Thus, we use the same model as input, but two

different tools in the analysis. The run time is measured by using the Linux com-

mand time, looking at the user time, including potential child processes. The reason

we use this command is that the dataflow analysis tools are separate binaries that

are called for every connection that is analysed in the NoC design flow [62]. For the

dataflow analysis, the time includes the forking of the parent process, the writing

of XML files describing the CSDF graphs to disk, and then reading and parsing of

those files.

The first step to comparing with [39, 56] is to adopt an equivalent application

model. There after, we apply the methodologies to a range of synthetic benchmarks,

a mobile phone SoC design, and a set-top box SoC.

6.5.1 Modelling the Application

To facilitate comparison with existing work, we choose to employ a model that

subsumes [39, 56], where the input specification is done per connection, and con-

tains a transaction type, i.e. read or write, a transaction size b ∈ N in words, and a

period p ∈ N in network clock cycles (if the IP and NoC are using different clock

frequencies).

Similar to [39], our channel model is based on the notion of streaming point-to-

point communication between a producer and consumer. To determine the sizes of

the four connection buffers,2 where the initiator and target acts as both producer and

consumer, we first look at the data going from initiator to target to determine βreq,i

and βreq,t . Thereafter, we swap the roles and let the target be the producer and the

initiator the consumer to determine βresp,t and βresp,i .

Dividing the buffer calculation for request and response channel into two sepa-

rate steps, implicitly assumes that the production and consumption inside the IPs is

completely decoupled, i.e. there is no relation between consumption and production

times of the IP. Again, this is to keep the model comparable to [39, 56], and is

addressed in the case study in Chapter 7.

Figure 6.6a shows the models we adopt for periodic producers. Since we model

an IP that produces words on a bus interface, we know that a burst of more than

one word cannot be produced in one cycle. This is reflected in the model, where

only one token is produced per actor phase. Space is acquired in the first b phases,

each taking one cycle. Data is released in the last b phases, also taking one cycle

each. Both actors have a cumulative response time of p. Note that the model of the

consumer is completely symmetrical, with the only difference being which edges

represent data and credits. Hence, the consumer acquired data in the first b phases,

and releases the space the data occupied in the last b phases.

2 Two for the request channel and two for the response channel.

6.5 Buffer Sizing 137

v

1

τ = 1p

1p1p

1b, 0p−b 0p−b, 1b

(a)

v

1

1p1p

τ = 1p

1b, 0p−b0p−b, 1b

(b)

Fig. 6.6 IP models used for buffer-size comparison. (a) Producer. (b) Consumer

If the producer acquires its space later in the implementation, then the buffer

capacities computed with this dataflow model are still sufficient. This is because

space will arrive in time to allow for consumption times according to the model,

which implies that space arrives in time for these later consumption times. If the

producer actually releases its data earlier, then still the computed buffer capacities

are sufficient. This is because an earlier production of data can only lead to an earlier

enabling of the data consumer, i.e. the NI. This is because of the one-to-one relation

between components in the implementation and the model, together with the fact

that the dataflow model is monotonic in the start and response times. The reasoning

for the case in which the IP consumes instead of produces data is symmetric.

6.5.2 Synthetic Benchmarks

To assess the performance over a broad range of designs we choose to compare

the different algorithms on a set of randomly generated use-cases. The benchmarks

follow the communication patterns of real SoCs, with bottleneck communication,

characterising designs with shared off-chip memory, involving a few cores in most

communication. All generated designs have 40 cores, with an initiator and a target

port, connected by 100 connections. Throughput and latency requirements are var-

ied across four bins respectively. This reflects for example a video SoC where video

flows have high throughput requirements, audio has low throughput needs, and the

control flows have low throughput needs but are latency critical. A total of 1,000

benchmarks are evaluated, using the proposed channel model more than 200,000
times in total, with widely varying requirements.

Figure 6.7a shows the distribution of the total buffering requirements, relative to

the analytical approach [56]. As seen in the figure, both the simulation-based algo-

rithm and the algorithms using our dataflow model result in significant reductions on

the total buffer size. Averaging over all the benchmarks, we see a reduction of 36%

using the dataflow approximation algorithm, 41% using the exhaustive simulation

and 44% when applying the exact dataflow analysis. Moreover, the distribution of

relative improvement is much wider for the simulation-based algorithm, ranging all

the way from 5% up to 45%. The dataflow model, on the other hand, consistently

results in an improvement of more than 30%, and even 35% in the case of exact

138 6 Verification

analysis. The large improvements stem from rather small slot tables (<32 slots),

and thereby a large allocation granularity (with 32 slots, each slot corresponds to

roughly 63 Mbps). While this leads to an increased burstiness and larger buffers

using the analytical method, the dataflow analysis leverages the reduced response

times, thereby reducing the buffer sizes.

Dataflow approximation [15]
Dataflow exact [44]

Simulated [39]

Distribution of relative buffering per design

R
e

la
ti
ve

fr
e

q
u

e
n

c
y

o
f

o
c
c
u

re
n

c
e

0.950.90.850.80.750.70.650.60.550.5

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a)

Dataflow approximation [15]
Dataflow exact [44]

Simulated [39]

Distribution of relative run-time per design

R
e

la
ti
ve

fr
e

q
u

e
n

c
y

o
f

o
c
c
u

re
n

c
e

4096204810245122561286432168

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(b)

Fig. 6.7 Relative run time (b) and buffer size (a) compared to [56]

The run times measured when deriving the aforementioned buffer capacities are

also compared to [56] and the relative distribution is shown in Fig. 6.7b. It is clear

from the experiment that the dataflow approximation algorithm is roughly one order

of magnitude slower than the analytical approach, being on average 11 times slower.

Note though that the run time is still below a second for an entire SoC design. The

exact dataflow analysis and the simulation, on the other hand, are three orders of

magnitude slower, averaging at 450 and 520 times the execution time of [56] (but

6.5 Buffer Sizing 139

faster algorithms for the exact dataflow analysis exist [188]). The run time of the

simulation-based algorithm depends heavily on the period of the producer, network

and consumer. As the generated designs use relatively small slot tables, the run times

are in the order of minutes.

6.5.3 Mobile Phone SoC

A phone SoC with telecom, storage, audio/video decoding, camera image encoding,

image preview and 3D gaming constitutes our first design example. The system has

13 cores (27 ports distributed across an ARM, a TriMedia, two DSPs, a render-

ing engine, etc.), one off-chip DDR memory, one on-chip SRAM plus a number

of peripherals. Communication is done via memory, and the NoC is running at a

frequency of 235 MHz.

The total buffer size and the time needed to derive all buffers, for all the use-

cases, are shown in Table 6.3. As explained in [39], the buffer sizes are determined

per use-case and then the maximum for every buffer is used in the architecture.

Again, we see that the dataflow-based methods results in improvements of 30 and

34% respectively. The simulation, however, only reduces the buffers by 12%, thus

performing significantly worse than for the synthetic benchmarks. Moreover, while

the dataflow approximation technique results in run times that are comparable to

those seen in the synthetic benchmarks, the exact analysis and the simulation-based

approach are roughly 10,000 and 100,000 times slower than [56]. The reason for

the increased run time is a large number of low throughput connections with long

periods.

Table 6.3 Buffer sizes for mobile phone system

Algorithm Run time (s) Total buffers (words) Impr. (%)

Analytical [56] 0.05 1,025 ref
Simulated [39] 6,845 799 12
Dataflow approx. [15] 0.78 721 30
Dataflow exact [44] 547 680 34

6.5.4 Set-Top Box SoC

Our second design example is a set-top box with four different use-cases, all having

hot spots around three SDRAM ports and 100–250 connections. These connections

deliver a total throughput of 1–2 Gbps to 75 ports distributed across 25 IP modules.

With more than 500 connections to be analysed, this constitutes the largest exam-

ple. The slot table size is also larger, 67 slots, to accommodate a wide variety of

throughput requirements.

As with the mobile phone SoC, we look at the total buffer capacity required

across the use-cases and the run time needed to compute the buffer sizes. The

140 6 Verification

results are presented in Table 6.4, except for the simulation-based that had not even

finished the first use-case after running 24 h. Simulating one least common multiple

for every possible scheduling interleaving is therefore often impractical for a design

of this size. For the dataflow analysis, the approximation algorithm is almost as

fast as [56], since the ratio of computation and file I/O is far larger than for the

previous examples. It should be noted that this time also includes four invocations

of the exact algorithm, as the heuristic failed to find a solution. Exclusive use of

the exact algorithm, on the other hand, is considerably slower, again due to a very

large solution space. The slot table size for this design is also fairly large, leading

to smaller discretisation effects, and this benefits the analytical algorithm that uses

less conservative bounds. At the same time, the dataflow analysis does not have

the opportunity to reduce the buffering requirements by exploiting lower response

times, and we see a relative improvement of only 22% for the exact analysis.

Table 6.4 Buffer sizes for set-top box system

Run time Total buffers Impr.
Algorithm (s) (words) (%)

Analytical [56] 6.10 9,190 ref
Simulated [39] – – –
Dataflow approx. [15] 6.87 7,818 15
Dataflow exact [44] 15,229 7,170 22

While 7,170 words of buffering in the NIs might seem costly, it should be noted

that most of this buffering is located close to the memory controller, and its three

ports. It is thus possible to use a few large dual-ported SRAMs rather than dedicated

FIFOs. Thereby, the roughly 24 kb worth of buffering occupies only 0.2 mm2 [149]

in a 65-nm CMOS technology.

6.6 Conclusions

In this chapter we have presented the verification part of the design flow. We have

shown a number of different possible verification methodologies, and demonstrated

in detail how to derive a formal model of a network channel to enable buffer siz-

ing and application-level performance analysis. We summarise by evaluating the

contribution to the different high-level requirements in Chapter 1.

The verification flow contributes to the scalability of the interconnect by enabling

performance evaluation per application, thanks to the composability of the inter-

connect. This is an important difference with existing platforms where the size of

the system negatively impacts simulation speed [166] (more to simulate and more

behaviours to cover), making system-level simulation untenable [152] as a verifica-

tion technique.

The contribution to diversity lies in the many different ways the verification can

be performed, i.e. by simulation on multiple levels, or by using formal models of the

platform. The latter can also be used both for worst-case and typical-case analysis

6.6 Conclusions 141

depending on the requirements of the application. Thus, depending on the require-

ments and assumptions placed on the application, different types of analysis are

offered.

As we have seen in this chapter, the verification flow relies on composability
to offer scalability. It does, however, not offer any contributions to composability

itself. Predictability, on the other hand, is the focus of this chapter. We show how

to construct a dataflow model of a network channel, requiring only that the specific

network uses blocking flow control and that the arbitration points can be modelled as

latency-rate servers. We demonstrate that a channel in our network is a latency-rate

server, and present a detailed model of such a channel. The proposed model has been

evaluated quantitatively by comparing with existing buffer-sizing approaches on a

range of SoC designs. If the application has a dataflow model, it can be combined

with the presented channel model to include the temporal behaviour of the com-

munication between tasks. This enables verification of firm-real time end-to-end

constraints.

Similar to composability, the verification flow has no contribution to the reconfig-
urability of the interconnect. Looking at automation, however, there are number of

important contributions. The verification flow offers fully automated simulation and

evaluation of the interconnect, using either the SystemC, RTL or netlist instantiation

or the hardware. Furthermore, after a completed simulation, the flow presents the

user with detailed traces as well as high-level performance overviews (e.g. latency,

throughput and buffer usage). In addition, the verification flow generates dataflow

models of the network channels. Using these models (and possibly models of the

applications), buffer sizes are automatically computed and back-annotated.

Chapter 7

FPGA Case Study

Using our example system from Chapter 1, we have seen how the interconnect is

dimensioned, how resources are allocated and how the resulting hardware and soft-

ware is instantiated and verified. In this chapter, we take the last step and demon-

strate the diversity, composability, predictability, reconfigurability and automation

of our interconnect by creating an actual system instance.1 This instance, depicted

in Fig. 7.1, is equivalent to the system in Fig. 1.4 in that it comprises: a host,

three processor cores, an SRAM controller, an audio ADC/DAC, a memory-mapped

video subsystem and a peripheral tile with a character display, push buttons and a

touch screen controller. However, we now use three homogeneous VLIW processors

instead of a µBlaze, an ARM and a VLIW. Moreover, as we shall see, all IPs other

than the processors, i.e. the memory and I/O functionality, are integrated on the

board level, with on-chip wrappers.

We map the six applications from Fig. 1.5 on our system instance. However, we

restrict our evaluation to three applications, namely the initialisation application,

the M-JPEG decoder and an the audio post-processing filter. The reason we choose

to focus on these three applications is that they have diverse behaviours and real-

time requirements, and use both streaming and memory-mapped communication.

The audio filter represents one extreme, with firm real-time requirements. To verify

the requirements, the filter must be implemented in such a way that a conservative

schedule for the entire application can be derived at design time, thus guaranteeing

periodicity of the ADC and DAC. Such restrictions are not desirable, and also not

necessary for the decoder that has a data-dependent behaviour, which is typical for

compression and decompression functions [107]. Thus, the amount of data produced

or consumed, and the processing delay varies over time. Despite the dynamic tem-

poral behaviour, however, we want a tight estimated on the decoding time for a

given set of test images. Lastly, for the initialisation there are no requirements on

the temporal behaviour. In addition to the diversity in behaviours and requirements,

the selected applications make use of both memory-mapped and streaming commu-

nication, and share both the network and the initiator bus of the SRAM.

1 In this chapter we do not demonstrate scalability due to the limited resources on our target FPGA.

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_7, C© Springer Science+Business Media, LLC 2011

143

144 7 FPGA Case Study

VLIW

clkVLIW

VLIW

clkVLIW

VLIW

clkVLIW

clkvideoclkaudio

videoaudio

clkSRAM

SRAM

clkperipheral

peripheral

clkhost

host

interconnect

board

FPGA

desktop

Fig. 7.1 Example platform instance

We start by introducing the hardware platform (Section 7.1) and software plat-

form (Section 7.2). Then, the applications are mapped to our instance (Section 7.3),

and we show how composability enables independent analysis of the applications,

using different techniques (Section 7.4). We end this chapter with conclusions (Sec-

tion 7.5)

7.1 Hardware Platform

For our system instance, we use an RC340 board from Agility DS. We place the

three processors, the interconnect and the display controller on the Xilinx Virtex4

LX-160 FPGA. On the FPGA, we also include wrappers for all the board-level

interfaces. At the board level, the FPGA is connected to a USB 2.0 interface through

which the host interfaces with the rest of the system. Also at the board level, our

system contains a character LCD display, a touch screen controller, an audio codec,

a DVI transmitter and two banks of 8 MB SRAM. One memory bank is used by

the SRAM controller, and one by the display controller. Various wrappers bridge

between board-specific APIs used by Agility and the industry-standard DTL [49]

protocol used by the VLIW. Currently, streaming interfaces are only used by the

audio codec, whereas the other wrappers all use memory-mapped interfaces.

7.1 Hardware Platform 145

The audio codec, SRAM controller and video memory are introduced in Chap-

ter 1. The peripheral tile, shown in Fig. 7.2, internally contains a target bus that is

responsible for multiplexing between the character display, touch-screen controller,

buttons and timers based on the address. Note the reuse of the bus with a static

address decoder from Chapter 3. Our platform instance has only one shared mem-

ory. While this is common, either for cost reasons or due to a limited number of

pins [107], a single shared memory is inherently non-scalable, as the performance is

directly affected by the amount of applications sharing it [90] (see the discussion on

architectural scalability in Chapter 2). It should be noted that the interconnect does

not constrain the number of memories, but currently only supports composable and

predictable sharing of SRAMs, as discussed in Chapter 3. Next, we elaborate on the

functionality of the two components that are specific for this instance, namely the

host and processor tiles.

bus

static address decoder

char.

disp.

touch

screen
buttons timer

Fig. 7.2 Peripheral tile

7.1.1 Host Tile

Rather than having the host embedded on the FPGA, e.g. in the form of an ARM

processor, we choose to let the host interface with the board using a USB connection.

Through a board-specific API, it is thereby possible for a normal PC to take the role

of the host. By means of the on-chip wrapper, the PC appears as a memory-mapped

initiator (with a DTL interface) to the interconnect. Coupled with software libraries

for the PC, reads and writes are done through a high-level API, disclosing nothing

about the link-level protocol used for the USB communication.

The USB communication libraries together with the run-time API of the inter-

connect, as described in Chapter 5, enable the PC to open and close connections. The

two libraries are compiled into a host binary using any native compiler, such as gcc.

The resource allocations themselves are stored in the non-volatile memory of the

PC (e.g. a hard disk or flash memory). Thus, in contrast to the control infrastructure

introduced in Chapter 3, there is no need for a non-volatile memory on the local con-

trol bus of the host. The major drawback with performing all reconfiguration from an

external host is that no temporal bounds can be given on the control operations (both

due to the USB connection and the PC). It is thus not possible to guarantee upper

bounds on the time required to start and stop applications, as done in Chapter 5.

146 7 FPGA Case Study

Having the host placed outside the FPGA greatly improves observability and con-

trollability, and makes it easy to control not only the interconnect, but also the other

IPs, and then in particular the processors. The binaries of the processors are cross-

compiled, as later discussed in Section 7.2, and stored in the non-volatile memory of

the PC. Using the run-time libraries of the processors, the PC uploads binaries and

data to the processors, and starts and stops execution dynamically at run time. All

the aforementioned operations require access to a target port on the processors, and

the host uses the connections of the initialisation application to reach those ports.

We now describe the processors in greater depth.

7.1.2 Processor Tiles

The processor tiles, depicted in Fig. 7.3, are based on Silicon Hive [175] VLIW

processing cores. The processor are customisable, making it possible to adapt the

costs and the performances to a given application, as advocated in [92, 166]. The

architecture has a number of characteristics that fits well with our requirements from

Chapter 1.

private data

buffer administration

communication buffers

streaming API

software tasks

VLIW core
data

memory

streaming bus interf.

program

memory

Fig. 7.3 Processor tile

The processors contribute to the architectural scalability by having their own

private program and data memory, in our instance 32 kbyte program memory and

32 kbyte data memory. Having memory distributed over the different processing

devices provides higher throughput with lower latency, which results in a higher

performance at a lower power consumption [180]. Instructions are executed from

a local memory thus removing the latency-critical reads from external memories.

Moreover, the memories are accessible through a target port on the processors

bus interfaces, thus avoiding central bottlenecks by forming a distributed memory

together with the dedicated memory tile. Arbitration between multiple external ini-

tiator ports is implemented by a (predictable) round-robin arbiter.

The Silicon Hive processors also contribute to the diversity by offering

both memory-mapped and streaming communication interfaces. The cores use

a memory-mapped architecture, with support for multiple load-store units. The

initiator interface on the processor enables reads and writes to memories exter-

nal to the processor. In addition to the traditional load-store units, the proces-

sor template also has send-receive units that act as instruction-mapped streaming

7.2 Software Platform 147

interfaces [107, 191]. For applications that use streaming communication, e.g. our

audio filter, it is thus possible to match the architecture to the application, as advo-

cated in [92].

The processor template is also appropriate for applications that require pre-
dictability. The processor core has no caches that complicate performance analy-

sis. Furthermore, unlike a super-scalar processor, the VLIW has no bypassing or

hazard detection mechanisms. As we will see in Section 7.4, the aforementioned

properties enable us to easily determine the execution time of tasks by analysis of

the instruction schedule of the VLIW.

The major limitation of the Silicon Hive processors is that they do not support

pre-emptive multi-tasking. It is hence not possible to share a processor in a compos-

able way, i.e. eliminating all application interference. As a result, we do not allow

multiplexing of task belonging to different applications on the same processor. Note,

however, that this is not a fundamental issue, and merely a result of the specific pro-

cessor architecture. Moreover, we allow processor sharing between tasks belonging

to the same application, e.g. by a static-order scheduling strategy, where the order

in which the tasks execute are determined before the application is started [14].

7.2 Software Platform

While the hardware of the system plays an important role, there are also two essen-

tial pieces of software. First, the application middleware, i.e. libraries that facili-

tate inter-processor communication, further discussed in Section 7.2.1. Second, and

most importantly, the top-level design flow that helps in defining, realising and ver-

ifying the entire system. This software component is discussed in Section 7.2.2.

7.2.1 Application Middleware

To facilitate synchronisation and communication between tasks running on the pro-

cessors (in our case the VLD, IDCT and CC tasks of the decoder), an implementa-

tion of the C-HEAP [144] protocol2 is offered as a part of the platform. The protocol

specifies an API for token-based FIFO communication, built on shared memory.

Synchronisation is done using pointers in a memory-mapped FIFO-administration

structure.

C-HEAP fits well with the proposed interconnect for several reasons. First, it

does not use interrupts or target locking for synchronisation, but instead relies on

polling. With interrupt-based synchronisation, it is difficult or even impossible to

bound the frequency of interrupts and the execution time incurred by them [99].

Second, the local memories of the processors are suitable for mapping communi-

2 C-HEAP in its entirety is not only a protocol for cooperation and communication between tasks,
but also a top-down design methodology and an architectural template [144].

148 7 FPGA Case Study

cation buffers, as shown in Fig. 7.3. Using the local memories of the processors

enables low-latency access to data with random access in acquired data and space.

Moreover, changes in element size and FIFO length are possible even after final sili-

con realisation. Third, by keeping two copies of the buffer administration, both at the

producer and consumer side [144], all read operations (polling) are local and only
posted write operations traverse the interconnect (also known as the information
push paradigm [99]). The advantage of only writing and never reading remotely is

the reduced impact of the interconnect latency. We exemplify the use of the C-HEAP

implementation in Section 7.4.

7.2.2 Design Flow

The hardware flow, depicted in Fig. 7.4, takes its starting point in high-level descrip-

tions of the processors, peripherals and their interfaces. The Silicon Hive tooling

instantiates the processors used in the design according to their individual descrip-

tions. More details about this process are found in [175]. The tools are configured to

generat RTL tailored specifically for FPGA implementation. Using board-specific

APIs, the peripherals and their wrappers are instantiated using Agility’s tools. The

latter directly generate a netlist for the peripherals. Lastly, the IP interface descrip-

tion is used to generate an interconnect instance, all according to the interconnect

design flow proposed in this work.

1
m

in
3
0

m
in

9
0

m
in

high-level

description

bitstream

synthesised

netlist

register-transfer

level implementation

processors

processors

IP interfaces

this work

peripherals

Agility DK Design

interconnect

Synplicity Synplify

processors and

interconnect
peripherals

Xilinx Foundation

entire system

Silicon HiveFlex

Fig. 7.4 Hardware design flow

7.3 Application Mapping 149

The starting point of the software flow, depicted in Fig. 7.5, is the same descrip-

tion of the cores that is used in Fig. 7.4. Here, it is used to generate processor-specific

libraries for the retargeteable assembler and linker. These are then used to compile

the source code that is to be run on the processors. The end result is microcode,

then can be uploaded and executed on the embedded processors. In parallel with the

embedded microcode, the code needed to orchestrate the execution on the proces-

sors and the configuration of the interconnect is produced and linked together with

the Silicon Hive and interconnect run-time libraries, as discussed in Chapter 5.

1
m

in
1

m
in

high-level

source code

linked
binaries

and libraries

description

application code

this work

communication

run-time library

allocations

Silicon HiveFlex Silicon HiveSD

gcc

host binary
processor

microcode

Silicon HiveCC

processor models

processors system

run-time library

memory map

Fig. 7.5 Software design flow

As shown by the time line on the left hand side in Fig. 7.4, the trajectory

from high-level specifications to an entire multi-processor system (that fulfils those

requirements) takes only a couple of hours. Moreover, as we have seen in Chapter 4,

it is possible to change the resource allocation (at compile time rather than design

time) after the hardware is fixed. Consequently, it is possible to accommodate new or

modified applications, assuming that the requirements do not exceed the resources

that are available. Modifications to the host software and application code are per-

formed within minutes, as illustrated on the left hand side of Fig. 7.5. We now show

how to apply the flows to our example applications.

7.3 Application Mapping

The starting point for the M-JPEG decoder is sequential C code that is split into

multiple tasks according to Fig. 1.5c, i.e. one processor executes the VLD and a

second processor is responsible for the IDCT and CC.3 Communication between

3 In fact, the parallelisation is done by master students as part of a MSc course where the proposed
case study, including the interconnect, is used as part of the experimental platform [76].

150 7 FPGA Case Study

the processors is implemented using the C-HEAP API, with FIFO data mapped to

circular buffers in the local memory of the receiving processor. The original code

is easily ported to the platform (although not optimised), requiring only an explicit

mapping of variables and communication buffers to memories. The VLD together

with the inverse zig-zag and quantisation occupies 24.3 kB program memory and

6.7 kbyte data memory (not counting the C-HEAP FIFOs). The second processor

involved in the M-JPEG decoding executes the IDCT and CC, requiring 13.4 kbyte

of program memory. The encoded input image is read from the SRAM by the first

processor, and written to the frame buffer by the second processor. The decoder

applications relies solely on memory-mapped communication, with four network

connections realising the communication: one each for accesses to the SRAM and

video, and two (write-only connections) for the inter-processor communication.

The audio post-processing application, shown in Fig. 7.7a, comprises three tasks.

First, the source ADC, periodically producing signed 16-bit pulse code modulated

stereo samples. Second, the actual filter task, executed on the processor. Third, the

DAC, which acts as a periodic sink. The filter task receives input samples from the

ADC via a streaming port and adds a two-tap reverberation effect by mixing in past

samples that are read from the SRAM. The output is then sent both to the DAC

using streaming communication and stored in the background memory for future

mixing with the input. Thus, the processor uses streaming for the communication

with the ADC and DAC, and shared-memory communication for reading and writ-

ing reference samples in the background memory. The filter application requires

two connections (with the channels to and from the ADC and DAC sharing one

connection), and has one out of three time slots allocated in the target bus of the

SRAM.

The last application is the initialisation done by the host. Besides loading encoded

JPEG images into the background memory and configuring the peripherals (in this

case the sampling rate for the ADC and DAC), the initialisation application is

responsible for boot strapping the processors by loading their local program and

data memories. Rather than only having two connections, as shown in Fig. 1.5f, this

application therefore has five connections, as detailed in Appendix A.

Network resources are allocated to the six different applications using the

compile-time flow described in Chapter 4. The amount of resource needed for the

filter application is determined based on its firm real-time requirements and strictly

periodic behaviour (as described in Section 7.4). For the decoder, the amount of

resources requested are based on rough estimates of how much data needs to be

communicated on average between the different tasks. The performance of the

decoder can thus be improved by asking for additional resources, a trade-off left

for the application designer. For the initialisation application, we do not specify any

latency requirement and request only a minuscule throughput. Furthermore, since

we know that the host performs the various initialisation tasks in a serial fashion, we

specify two channel trees, for the request and response channels of the initialisation

application. While conserving the interconnect resources, as a result, we must also

open and close these connections when switching between the different targets, e.g.

the peripheral, SRAM or the local memories in one of the processor tiles.

7.4 Performance Verification 151

The complete architecture is mapped to the target FPGA, using Synplicity Syn-

plify 8.8 and Xilinx Foundation 9.1, as shown in Fig. 7.4. The resulting design

occupies 96 (33%) block RAMs, 25 (26%) DSPs, 18397 (13%) flip flops and 57682

(42%) LUTs. The obtained maximum clock frequency (with the interconnect and

processors in one synchronous island) is 48 MHz, and the tools estimate a total

equivalent gate count of roughly 7.8 Mgates. As already discussed, the SRAM, the

audio codec, the USB µcontroller and the display controller are all integrated on the

board level, with only the wrappers occupying resources on the FPGA.

7.4 Performance Verification

We proceed to analyse the performance of the decoder and the filter (the initialisa-

tion application has no real-time requirements). The analysis is done independently

for the two applications, first looking at the decoder, and then at the filter. Moreover,

as we shall see, the analysis technique is different for the two applications.

7.4.1 Soft Real-Time

The decoder is data dependent, in that the different decoding steps require a varying

amount of computation (and communication) for different images. An image with

a large amount of detail contains more high-frequency components and has a larger

file size. As a consequence, more data must be read from the background memory,

and it also takes longer to execute the VLD. Therefore, two images, denoted small
and large, are used to evaluate the performance of the decoder. Both images have

XGA resolution, and only differ in the amount of details in the picture.

The performance of the decoder is analysed by simulation and by instrumenta-

tion on the actual FPGA implementation. For the specific input traces, we evalu-

ate the end-to-end performance of the decoder by using the channel models from

Chapter 6 to determine the communication behaviour (in contrast to plain

behavioural SystemC models). The results of the evaluation are shown in Fig. 7.6.

Comparing the ideal interconnect with instantaneous communication to the

actual FPGA instance in Fig. 7.6, we see that communication has a relatively small

contribution to the total decoding time. The difference in time between the two

is merely 11% and 2%, for the large and small file size, respectively.4 Continu-

ing by looking at the simulation results, with the most detailed channel model, the

end-to-end performance is within 8% and 2% of the time measured on the FPGA

for the two files, respectively. This clearly shows that it is reasonable to use the

channel model proposed in Chapter 6 to evaluate the end-to-end performance of

soft real-time applications.

4 It should be noted that the processor core we use is extremely simple not optimised in any way
for JPEG decoding.

152 7 FPGA Case Study

FPGA

Figure 6.5(d)

Figure 6.5(c)

Figure 6.5(b)

Figure 6.5(a)

instantaneous

File size

E
xe

c
u
ti
o
n

ti
m

e
(M

c
y
c
le

s
)

smalllarge

700

600

500

400

300

200

100

0

Fig. 7.6 Execution time using different channel models

7.4.2 Firm Real-Time

In this section, we demonstrate how to model the complete filter application as a

CSDF graph, and thus enable verification of the firm requirements on end-to-end

temporal behaviour. The worst-case analysis of the complete application is made

possible by the predictability of the interconnect and the IPs (in particular the pro-

cessor on which the filter task is executed). We choose to model the filter applica-

tions and its mapping to the architecture as a CSDF [182] graph. The choice of a

MoC is up to the designer, but many signal-processing applications can be repre-

sented by dataflow graphs and the expressivity of CSDF is sufficient for the filter

application. It also fits with the models of the interconnect presented in Chapter 6.

The filter, shown in Fig. 7.7a, comprises three tasks. First, the source ADC, peri-

odically producing signed 16-bit pulse-code-modulated stereo samples. Second, the

actual filter task, executed on a statically scheduled VLIW without caches. Third, the

DAC, which acts as a periodic sink. Both ADC and DAC have a sampling frequency

of 48 kHz, and the interconnect, processor and memory run at 48 MHz on an FPGA

instance of the system. The filter task receives input samples from the ADC via the

network and adds a two-tap reverberation and echo effect by mixing in past samples.

The output is then sent both to the DAC and stored in the background memory for

future mixing with the input. The filter application is firm real-time, as failing to

consume and produce samples in 48 kHz leads to noticeable clicks in the output.

The dataflow model of the filter application is shown in Fig. 7.7b, with time indi-

cated in network cycles (at 48 MHz). The ADC and DAC are modelled by single

actors that have a response time of 1,000. The two connections, and hence four

channel models, are indicated by the grey boxes in Fig. 7.7b. Every grey box corre-

sponds to any one of the channel models in Fig. 6.5. The filter task, the processor

it is running on, and its associated protocol shell, are all modelled by vfilter. Finally,

the SRAM, the initiator bus and the protocol shell of the SRAM are modelled by

vmem, using the technique proposed in [187]. A detailed discussion of the last two

actors follow.

7.4 Performance Verification 153

ADC filter DAC

(a)

vfilter

c1 c3

c2,respc2,req

vmem

vDACvADC

1

1

11

a = 1, 0, 0, 0

b = 2, 2, 0, 3

c = 0, 1, 1, 0

e = 2, 2, 3

f = 1, 1, 0

d = 0, 0, 0, 1

τADC = 1000

τDAC = 1000

τmem = 63

τfilter = 42, 77, 4

1 1

14 14

13 13

a

b c

d

e f

1 1
1

1

1

1

(b)

Fig. 7.7 Task graph and dataflow model of the audio post-processing filter. a Task graph. b

Dataflow model

The filter actor vfilter has four phases, corresponding to the two read operations,

the actual calculation, and the writing of output. The rates for the network channels

are indicated by a, b, c and d in Fig. 7.7b. Note that the rate is the same for both the

consumption (incoming edge) and production (outgoing edge). In the first phase,

an input sample is read from the ADC, and a read request is sent to the memory

(hreq,r). In the second phase, the read response from the first phase returns one

reference sample from memory (1 + hresp,r), and a new read request is sent to the

memory. In the third phase, the read response from the second read returns. In the

fourth and last phase, the output sample is written to memory (1 + hreq,w) and sent

to the DAC. The response times of the different phases are determined by manual

analysis of the program flow [37]. The first two phases take four cycles each, partly

due to the shell. Thereafter, 77 processor cycles are spent performing arithmetic

operations and accessing local memory (without any contention). Finally, another

four cycles are spent writing the output.

The memory actor vmem models the shell, target bus and SRAM (no atomiser

is needed as the processor always issues transactions of a single word) with a

fixed access time of six cycles. The shell spends two cycles reassembling the bus

transaction, and four cycles are due to pipelining of the controller and the TDM

arbiter (more elaborate arbitration schemes are possible [198]). The production and

consumption rates of the request and response channel are indicated by e and f in

Fig. 7.7b. Reads and writes from the filter to the memory share the same connection.

This is a complication, as the production and consumption rates of vmem are different

for the two types of operations (and also depend on the burst size). Assuming worst-

case message sizes may lead to deadlock [199]. Therefore, we model the memory

154 7 FPGA Case Study

with three phases, corresponding to the three accesses of the filter (read, read and

write). This is not a generally applicable technique, and is only possible as the order

of the operations is fixed. There are, however, more elaborate dataflow models that

enable variable-rate [199], but this is outside the scope of this work. In the first and

second phase, a read request is received (hreq,r), and a reference sample is sent back

to the filter (1 + hresp,r). In the third phase, a write request is received (1 + hreq,w),

without sending back a response (as hrespw
= 0). The response time for all the

phases is 6 cycles, as previously discussed.

After performing the manual analysis, the filter model in Fig. 7.7b, together with

a channel model from Chapter 6 is used to determine an interconnect allocation and

buffer sizes such that the ADC and DAC are guaranteed to produce and consume

samples in 48 kHz. Using the dataflow graph, the algorithm presented in [197] con-

structs a conservative periodic schedule. The existence of such a schedule confirms

that the sink and source tasks of the filter application can indeed execute strictly

periodically. Indeed, observations of the FPGA implementation confirm that the

ADC and DAC do not suffer from overflow or underflow.

This simple example application, being just a pipeline with three tasks, high-

lights a number of important points. First, that even a very simple application like

the filter requires a large amount of tedious analysis in order to derive a dataflow

model. It would be virtually impossible to attempt a similar analysis for the image

decoder for example. Second, how the channel model proposed in this work is easily

included in a dataflow model of the application to capture the temporal behaviour of

inter-task communication. Third, how the mapping to an architecture gives rise to

cyclic dependencies even though the application is a pipeline. The coupling between

requests and responses is inherent in memory-mapped communication, and must be

captured in the model. Fourth, how cyclic dependencies are taken into account in

the dataflow model. Fifth, that more elaborate dataflow models, with variable-rate,

are beneficial even for very simple applications.

7.5 Conclusions

In this chapter we show how the interconnect and design flow proposed in this

work is used to generate a complete multi-processor system instance, and map it

to an FPGA. While this chapter demonstrates the applicability and maturity of the

proposed interconnect, the target platform is not a highly-integrated low-cost SoC,

but rather a system that is distributed across multiple chips and packages, costing

several thousand US dollars. Moreover, since we are using an FPGA rather than an

ASIC, the clock speed and area of the interconnect is roughly an order of magnitude

worse than what is reported in Chapter 3. Nevertheless, despite its relatively high

cost and poor performance, this case study enables us to put the problem statement

and the requirements from Chapter 1 to the test.

With the FPGA case study, we demonstrate how diverse applications, with soft

and firm real-time requirements are independently analysed, looking at different

7.5 Conclusions 155

metrics, and using different methodologies. In the analysis we do not consider

any of the other applications in the system. This is made possible by the com-
posability of our interconnect, and is a major qualitative difference with existing

MPSoC platforms. With the filter application as our example, we demonstrate how

the predictability of our interconnect enable us to derive bounds on the end-to-end

temporal behaviour. Similarly, for the decoder, we derive conservative bounds on

performance for specific input images. Reconfigurability is used by the host to open

and close connections when the different applications are started and stopped at

run time, e.g. to dynamically stop the filter and replace it with the ring-tone player

without affecting the other applications. Finally, thanks to the automation the entire

system is generated in a matter of hours, based on high-level specifications and

requirements.

Chapter 8

ASIC Case Study

In this chapter we exercise the proposed interconnect and design flow on two

large-scale examples that have close connection to real industrial products. In con-

trast to Chapter 7, where we focus on the qualitative concepts and study a few appli-

cations in detail, we now turn to larger scale examples that represent state-of-the-art

SoCs for consumer multimedia applications. This allows us to evaluate not only the

physical and architectural, but also the functional scalability, i.e. the ability to scale

the interconnect with increasing requirements. Using the two examples we evaluate

the quantitative aspects of the proposed interconnect and also look in greater detail

on the scalability of the entire design flow.

Our two examples are both high-end chips with a high degree of IP integration.

The first example resembles a digital TV set-top box ASIC in the line of designs

described in [61, 97]. The second example is an automotive info-tainment ASIC. In

both cases, the architecture consists of one or more microcontrollers, supported by

several domain- or function-specific hardware cores. As discussed in Chapter 1, this

is to achieve a high computational performance at an acceptable power consump-

tion. However, as we shall see, the communication requirements differ between the

two examples, with the TV SoC having mostly high-throughput latency-tolerant

connections with large burst sizes, whereas the automotive SoC has a large number

of latency-critical connections with small burst sizes. As we shall see, these differ-

ences have major repercussions on the area and power consumption of the resulting

interconnects.

We start with an in-depth look at the TV SoC (Section 8.1), and continue with

the automotive system (Section 8.2). We end this chapter with conclusions (Sec-

tion 8.3).

8.1 Digital TV

We now put the proposed design flow to use with an example inspired by NXP’s

PNX85500, which is a complete one-chip digital TV, aimed at the cost-sensitive

midrange market. The PNX85500 delivers multi-standard audio decoding and

multi-standard analogue and digital video decoding. The front-end video processing

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_8, C© Springer Science+Business Media, LLC 2011

157

158 8 ASIC Case Study

functions, such as DVB-T/DVB-C channel decoding, MPEG-2/MPEG-4/H.264

decoding, analog video decoding and HDMI reception, are combined with advanced

backend video picture improvements. One of the key differentiators is the video

enhancement algorithms, e.g. Motion Accurate Picture Processing (MAPP2), Halo

reduced Frame Rate Conversion and LCD Motion Blur Reduction. The MAPP2

technology provides state-of-the-art motion artefact reduction with movie judder

cancellation, motion sharpness and vivid colour management. High flat panel screen

resolutions and refresh rates are supported, including 1,366×768 and 1,920×1,080

at 100 Hz / 120 Hz. The high resolution is coupled with multiplexing of multiple

high-definition streams, multiple video outputs and multiple audio outputs. The

SoC supports a rich set of I/O standards (e.g. PCI, USB, Ethernet, UART) and

opens many possibilities for new TV experiences with IPTV and Video On Demand

(VOD).

We consider the processor cores and IP blocks given, and a schematic architec-

ture is shown in [97]. The SoC contains multiple programmable processors with

caches: a MIPS for control, three TriMedia processors for audio/video, one MIPS

DSP, and a 8,051 processor for power management and control. The TriMedia

VLIWs are used for computation (and communication) intensive image processing,

e.g. Halo Reduced Frame Rate Conversion, with on-the-fly compression of video

traffic to and from the off-chip SDRAM. In addition to the processors, the SoC

contains a large number of function-specific hardware IP cores. Those accelerator

IPs are used for, e.g., audio and video decoding, video scaling and enhancement,

graphics, and I/O (LVDS, HDMI, Ethernet, USB, Flash, SPI, PCI and I2C). Finally,

the SoC has a range of peripherals for clocking, debug, timers, etc. The SoC is

built around a physically centralised memory architecture. Two central off-chip

memory controllers connect with two large external SDRAMs, with a 16-bit and

32-bit wide data path, respectively. The SoC contains 11 chiplets and five major

frequency domains, from 27 MHz (many IPs) to 200 MHz (majority of IPs) to over

450 MHz (processors). The complete XML description of the IP architecture (cor-

responding to the top left architecture specification in Fig. 1.8) occupies roughly

250 lines.

A major design challenge is the on-chip communication, with 110 memory-

mapped ports distributed across the IPs (the majority read-only or write-only), con-

tributing to almost 100 logical connections. Predictability is a design constraint,

and the communication requirements are given. A majority of the connections have

relaxed latency requirements (>1,000 ns), as the function-specific hardware IP cores

make use of prefetching read accesses and posted write accesses. The deep pipelin-

ing makes these connections latency tolerant. Processor instruction fetches (from

cache misses), on the other hand, have very low latency requirements (<100 ns)

and have relatively small transaction sizes, but require a limited throughput. Some

accelerators, e.g. the display controller, are also latency constrained. With the

most critical low-latency connections implemented through direct connections to

the memory controller, and several low-throughput peripheral connections merged,

this translates to 53 physical ports and 45 logical interconnections for the on-chip

8.1 Digital TV 159

interconnect, all formulated in a 260 line specification (corresponding to the top

right communication specification in Fig. 1.8).

Figure 8.1 shows the distribution of throughput requirements for the 45 con-

nections, with a total of 4,402 MB/s (1461 Mbyte/s write, 2,941 Mbyte/s read).

Note that this is the data throughput for the memory-mapped communication, not

accounting for commands and addresses, byte masks, etc. Burst sizes vary from

64 bytes through 128 and 256 bytes, with the majority of the IPs using the latter

(with a mean of 240 bytes). Including the additional address and command signals

results in a raw throughput of 4,560 Mbyte/s to be delivered by the network.

Write
Read

Distribution of throughput requirements

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

>300300270240210180150120906030

12

10

8

6

4

2

0

Fig. 8.1 Write and read throughput distribution (number of connections vs. throughput in Mbyte/s)

It is worth noting that this particular case study does not make use of the recon-

figurability offered by the interconnect. The reason is that the specification is deter-

mined without assuming any such functionality (which is unique for NoCs). All

connections are thus assumed to be concurrent, and a re-design with reconfigurabil-

ity in mind could benefit from mutually exclusive applications and connections.

8.1.1 Experimental Results

As discussed in Chapter 3, topology selection is not an automated part of the design

flow. The tools do, however, aid in translating a high-level topology description

into an XML specification. For this example we chose a 2 by 3 mesh network (six

routers) with two NIs connected to all routers but one (11 NIs in total). The router

arity is thus kept at five for a single router and four for the remaining ones. This

topology offers one NI for each chiplet, aiming to simplify the layout. The network

is clocked at 533 MHz, which is the highest IP clock frequency.

The latency requirement, as discussed in Chapter 4, for low-latency connections

is specified to 50 ns (not including the memory scheduler and controller). Given

the requirements of the connections and the physical topology, the proposed design

160 8 ASIC Case Study

flow finds a resource allocation for the single use-case with a network slot table

size of 24. The resulting allocation XML file occupies just over 1,000 lines and

the corresponding architecture description is almost 4,000 lines, all automatically

generated by the design flow. As the final part of the dimensioning, the NI buffers

are sized using the approach from Chapter 6, and the distribution of the NI queue

sizes is shown in Fig. 8.2. The large burst sizes lead to increased buffering in the

NIs, and a total of 2,249 words (of 37 bits) in output queues and 2,232 words in

input queues (3,060 on the initiator side and 1,621 on the target side). In total the

NI buffers store roughly 24 kbyte, and the buffers have a big influence on the area

requirements which we evaluate next.

Output queue
Input queue

Distribution of NI queue sizes

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

> 646432168421

35

30

25

20

15

10

5

0

Fig. 8.2 NI queue size distribution (words of 37 bits)

Using the same synthesis setup as described in Chapter 3, i.e. Cadence Ambit

with Philips 90-nm Low-Power technology libraries, the synthesised interconnect

occupies a cell area of 5.5 mm2 with 4.7 mm2 (85%) in NI buffers. The large fraction

in buffers is due to the register-based FIFO implementation, and with FIFOs based

on dual-ported SRAMs the area is reduced to roughly 2.6 mm2 with 1.7 mm2 (65%)

in buffers. Further reduction is possible with dedicated FIFOs [196], which results

in a total area of 1.6 mm2 with 0.7 mm2 (44%) in buffers. A break down of the

remaining area is shown in Table 8.1, including a comparison with area estimation

models based on the synthesis of the individual blocks in Chapter 3. As seen in

the table, the high-level area estimation is within 10% of the result reported by the

synthesis tool, making it a useful tool for early cost evaluation. Note that the area

reported is cell area only, thus before place and route, and clock-tree insertion.

Table 8.1 Area requirements

Module Instances Area (mm2) Discrepancy (%)

Router 6 0.08 +10
NI 11 0.41 −10
Shell 54 0.23 −8
Bus 6 0.08 +9

8.1 Digital TV 161

To get further insight into the area requirements and the power consumption

of the interconnect instance, we synthesise the design using Synopsys Design

Compiler Ultra in topographical mode. The synthesis uses TSMC’s low-power

65-nm libraries (9 track with a raw gate density of 0.85 Mgate/mm2) employing

mixed Voltage Threshold (VT) synthesis with both high- and low-VT libraries. The

synthesis is performed on a flattened design with multi-stage clock gating enabled,

using integrated clock gates from the technology library. The power minimisation

is driven by activity traces captured in RTL simulation using traffic generators to

mimic the IP behaviour.

The total area after synthesis is estimated at 2.5 mm2 (9,781 cells), which is to be

compared with the 5.5 mm2 using the 90-nm libraries. Once again the FIFO imple-

mentation used is the register-based FIFO, leading to a dominant part of the area

spent in buffering. The area of the buffers is, however, reduced by the clock gating

as many multiplexers in the FIFOs can be replaced. A total of 7,500 clock gating

elements are inserted, resulting in 97% of the 25,0000 registers in the design being

gated. At a global (worst-case) operating voltage of 1.08 V the cell power is esti-

mated at 80 mW and the net switching power at 43 mW. The total dynamic power,

under worst-case conditions, is 123 mW and the leakage power is estimated at 3 mW

(or roughly 2.5% of the total power consumption). Roughly 22% of the dynamic

power is spent in the clock tree. We can conclude that the low-power libraries, in

combination with mixed-VT synthesis leads to an implementation where leakage-

minimisation techniques like power gating, which is costly in level shifters, are not
worthwhile.

Next, we evaluate the behaviour of the generated interconnect hardware and soft-

ware by simulation, using an instance of the entire system with traffic generators to

mimic the IP behaviour. Instrumentation is (automatically) inserted in SystemC and

VHDL testbenches respectively to observe the utilisation of the different modules,

the latency of individual packets in the network, and the end-to-end latency and

throughput between the IPs. The cycle-accurate SystemC simulation executes with

a speed of roughly 50 kcycles/s on a modern Linux machine (1 ms of simulated time

in less than 20 s). The corresponding VHDL testbench is roughly 200 times slower,

with 0.2 kcycles/s. Simulation of the synthesised netlist is again a factor 100 slower,

reducing the speed to roughly a cycle per second. Note that the throughput and

latency of all connections is guaranteed, but the simulation results give additional

confidence and insight in the actual average throughput and latency for the particular

use case.

First, looking at the critical low-latency connections (specified to 50 ns as previ-

ously mentioned) they consistently have an average network latency of 19 ns and a

maximum across all the connections of 42 ns. For a specific low-latency connection,

the end-to-end latency for a 128 byte read transaction, including the memory con-

troller and memory access, is 280 ns on average and 308 ns for the observed worst

case (corresponding to 190 processor cycles at 533 MHz). All the 45 connections

have an observed throughput and latency that meets the user-specified requirements,

and this behaviour is consistent in both SystemC and VHDL simulation. Comparing

SystemC, behavioural VHDL and netlist simulation we see slight differences in the

statistical traffic profile. The reason for the discrepancies is a the use of different

162 8 ASIC Case Study

traffic generators for the SystemC and VHDL testbenches. The results, however,

looking at the end-to-end latency and throughput, are within ±3%. The simulation

results confirm that the requested performance is delivered.

Next, we look at the utilisation of the interconnect, as observed during simula-

tion. The TDM-based arbitration of the network requires low-latency connections to

reserve a larger number of appropriately spaced time slots. As a consequence, these

slots are often unused. The utilisation does hence not reflect the reserved slots, but

rather the slots that are actually used at run time. We first look at the ingress and

egress links of the network, i.e links that connect an NI to a router. Since the NI is

comparatively more expensive, the chosen topology aims to minimise the number of

NIs. The ingress and egress links are therefore more likely to have a high utilisation

compared to the average over the entire network. For the TV SoC, the average NI

link utilisation is 49%, with a minimum of 27% and a maximum of 64%. This is

to be compared with an overall network link utilisation of 22%. The link with the

lowest utilisation is only used 12% of the time. The relatively low utilisation of the

network stresses the importance of using clock gating as part of the logic synthesis.

Register-level and module-level clock gating ensures that the power consumption

is proportional to the usage of the gates rather than the sheer number of gates.

As already mentioned, the total interconnect power consumption, under worst-case

conditions and with register-based FIFOs, is estimated at 125 mW.

8.1.2 Scalability Analysis

Having evaluated our proposed interconnect in the context of the contemporary

digital TV SoC, we now continue to look at how the interconnect scales with the

requirements, and how suitable it is for future generation multimedia applications.

As discussed in [97], the number of latency-critical connections has stayed low and

fairly constant during the past six generations of TV SoCs in the Nexperia platform.

The total throughput, however, and the number of latency-tolerant function-specific

hardware IPs grow over time. These key trends are a result of stable functional

subsystems being moved to latency-tolerant implementations as the functionality

matures. The latter is a necessary trend to fit more functionality on a single SoC

and still be able to serve the latency-critical connections within acceptable bounds.

The on- and off-chip throughput is scaling with the generations, but the latency (in

absolute time) is fairly constant, leading to growing memory access latencies (mea-

sured in processor cycles). With a growing number of latency-critical connections

the communication pattern would be inherently non-scalable.

Our first scaling experiment fixes the IPs and their 45 connections, and only

scales the throughput requirements (leaving the latency untouched). For each design

point, we re-run the entire interconnect design flow using the new (scaled) require-

ments. For each point, we evaluate two different network topologies. First, a

minimum mesh, determined by a simple loop that increases the dimensions until

a feasible resource allocation (one that satisfies all requirements) is found. For

simplicity, the number of NIs is fixed at three per router. Second, a point-to-point

8.1 Digital TV 163

topology where each connection is mapped to two unique NIs interconnected by

a router (to allow for instantiation of the resource allocation during run-time). A

maximum of 32 TDM slots is allowed in both cases. Once a resource allocation is

found, we determine sufficiently large buffer sizes (also verifying the performance

bounds using dataflow analysis) and estimate the required area using the models

from Chapter 3. Thus, for every point we determine two complete hardware and

software interconnect instances that satisfy all the requirements.

Figure 8.3 shows the area, both with and without buffers, for the two topologies

as the throughput requirements are scaled from 0.2 to 3.4 times the original TV SoC.

The area estimates once again assume a 90-nm process and register-based FIFOs

and are thus overly conservative. However, as we are interested in the scaling the

absolute numbers are not critical. What is more interesting is the trend as the scaling

factor is increased. For scaling factors below three, the total area is growing linearly

for both topologies, with the area of the mesh being roughly 25% smaller than the

point-to-point topology (75% smaller when excluding the buffers). Although not

visible in the figure, the mesh area excluding the buffers is increasing in a stair

case as the number of routers and NIs grow. Increased throughput leads to different

mapping and routing decisions as the connections are balanced on a larger inter-

connect. As expected, the point-to-point topology area is constant when the buffers

are not considered. With scaling factors above three, the mesh area is increasing

faster, approaching the area of the point-to-point topology, and after 3.4 no feasi-

ble resource allocation is found for either of the two topologies. This is due to the

inherent sharing of the IP ports where the scaled requirement eventually saturate

the capacity. Thus, the point of contention is pushed to the IPs ports and there exist

no possible topologies and resource allocations, for any NoC architecture or design

flow.

Point-to-point area with buffers
Point-to-point area without buffers

Mesh area with buffers
Mesh area without buffers

Throughput scaling factor

C
e
ll

a
re

a
(m

m
2
)

3.532.521.510.50

18

16

14

12

10

8

6

4

2

0

Fig. 8.3 Scalability of throughput requirements

We have seen that the interconnect scales linearly with the throughput require-

ments when the number of connections is kept constant. Now we look at how

the interconnect scales with the number of latency-tolerant connections. Rather

164 8 ASIC Case Study

than extrapolating a next-generation TV SoC, we randomly select a subset of the

connections of the original example, and do so for fractions ranging from 0 to 1

in increments of 0.1. For each design point (belonging to a specific fraction) we

repeat the random selection 10 times. As a result, for each point we re-run the

entire design flow 10 times with (potentially) different subsets of the communi-

cation specification. For each run we determine the minimum mesh as before. After

finding a feasible resource allocation the buffers are sized and the interconnect area

estimated.

Figure 8.4 shows the area estimates with and without buffers, with each point

showing the average of the 10 runs together with the standard deviation. Once

again, the absolute numbers are not particularly important as they depend heav-

ily on the chosen technology node and buffer implementation. What is important

is that both Fig. 8.4a, b, show a clear linear trend. This suggests that the inter-

connect architecture and design flow is providing functional scalability and thus

Mesh area without buffers

Connection scaling factor

C
e

ll
a

re
a

(m
m

2
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a)

Mesh area with buffers

Connection scaling factor

C
e
ll

a
re

a
(m

m
2
)

10.80.60.40.20

10

8

6

4

2

0

(b)

Fig. 8.4 Scaling the number of connections. (a) Area without buffers. (b) Area with buffers

8.2 Automotive Radio 165

able to accommodate a growing number of connections with a roughly constant

cost/performance ratio.

8.2 Automotive Radio

Our second example is a software-defined radio SoC, aimed at the automotive indus-

try. Although mobility, connectivity, security and safety drive the automotive indus-

try, there is an accelerated adoption of consumer features in cars, with home enter-

tainment also in your car. The main applications include high-quality, real-time,

interactive audio and video, with standards like DAB, DVB-H, DVB-T, T-DMB, HD

Radio, etc. While delivering a true multimedia experience, the SoC must also meet

automotive quality demands. Due to the nature of the SoC, there is an essential need

for a powerful and flexible multi-standard, multi-channel software-defined radio,

with efficient channel decoder processing.

Similar to the digital TV SoC, we consider the processor cores and IP blocks

given. The example is inspired by a SoC contains three programmable processors

with caches: an ARM Cortex for control, and two Embedded Vector Processors [22]

(EVP). The EVPs constitute the core of the software-defined radio. In addition to

the processors, the SoC contains a large accelerator subsystem. The accelerators are

involved in signal-processing and I/O (several DACs and ADCs, DMA and USB).

In contrast to the digital TV SoC, this system is not making use of a physically

centralised memory architecture, as it has many on-chip (more than 10) SRAMs

in addition to the external SDRAM. As we shall see, the result is less inherent

contention in the communication patterns. The SoC contains 7 chiplets and 9 clock

domains, ranging from 100 to 350 MHz with the majority of the IPs running at 100

or 200 MHz.

Communication is central to the SoC with 68 IP ports using both memory-

mapped and streaming communications with a total of 52 logical connections. Many

of the IPs do not use posted/pipelined transactions and their communication is there-

fore latency-critical. In contrast to the digital TV it is thus not only cache traffic

that is latency critical. Due to the real-time nature of the application, predictabil-

ity is crucial for all on-chip communication. After merging a few low-throughput

connections to peripherals, the on-chip interconnect must accommodate 43 ports

(distributed across 12 IPs), with 32 logical interconnections. Roughly half of these

connections have latency requirements below 100 ns.

Figure 8.5 shows the distribution of throughput requirements, with a total of

2,151 Mbyte/s (997 Mbyte/s write, 1,154 Mbyte/s read). Including command and

address this amounts to 4,183 Mbyte/s to be delivered by the network. Note that this

is almost the double due to the small burst sizes, varying between 4 and 128 bytes

(mean of 31 bytes). Compare this to the digital TV where we almost exclusively

have large bursts, making the raw throughput requirement of the two case studies

very similar. Although the throughput requirements are not much different, we shall

see that the burst size has a tremendous impact of the NI buffers, and consequently

the interconnect area and power.

166 8 ASIC Case Study

Write
Read

Distribution of throughput requirements

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

>120120105907560453015

12

10

8

6

4

2

0

Fig. 8.5 Write and read throughput distribution

Similar to the TV SoC, this case study does not exploit the support for multiple

use-cases.

8.2.1 Experimental Results

For the automotive SoC, we use a 3 by 3 mesh (nine routers) with two NIs connected

to the corner routers, one NI for the remaining peripheral routers, and no NI for the

central router (12 NIs in total). The router arity is thereby kept low and the topology

is still large enough to enable the IPs to be placed around the interconnect, grouped

according to chiplets and clock domains. For this case study, the network is clocked

at 400 MHz which is double the frequency of most IPs.

Given the requirements, an interconnect instance is generated with a slot table

size of 21 and the buffers are sized according to the proposed design flow. The

distribution of NI queue sizes is shown in Fig. 8.6, with a total of 442 words in

input queues, and 587 words in output queues (453 on the target side and 576 on the

initiator side) the total capacity is roughly 5 kbyte. Compared to the TV SoC this is

roughly four times less buffering per connection, largely due to the big difference in

average burst size.

The difference in buffer size also has a big impact on the interconnect area.

Using the same 90-nm libraries and the same setup as for the TV SoC, the total

cell area for the automotive SoC interconnect is 2.13 mm2 with 1.41 mm2 (66%)

in register-based NI buffers. With dual-ported SRAMS this is reduced to 1.22 mm2

with 0.5 mm2 (40%) in buffers, or as little as 0.9 mm2 with 0.22 mm2 (23%) in

buffers when implemented using dedicated FIFOs [196]. An area break down is

shown in Table 8.2, including both the results from synthesis and the high-level

area-estimation models. Just as for the TV SoC, the area estimation is within 10%,

suggesting the models can be used reliably for early design-space exploration and

evaluation.

8.2 Automotive Radio 167

Output queue
Input queue

Distribution of NI queue sizes

F
re

q
u

e
n
c
y

o
f

o
c
c
u
re

n
c
e

>646432168421

20

15

10

5

0

Fig. 8.6 NI queue size distribution (words of 37 bits)

Table 8.2 Area requirements

Module Instances Area (mm2) Discrepancy (%)

Router 9 0.13 +10
NI 12 0.32 −8
Shell 43 0.18 0
Bus 8 0.07 −4

We synthesise also this interconnect using Synopsys Design Compiler Ultra,

aiming to minimise the power consumption. The details are the same as described

in Section 8.1. The total area after synthesis is estimated at 0.78 mm2 (4,784 cells)

and 90% of the 76,474 registers are clock gated. At worst-case conditions, the cell

power is estimated at 41.2 mW and the net switching power at 15.4 mW, resulting

in a total dynamic power consumption of only 57 mW. The leakage is reported to

be less than 1 mW, once again demonstrating the abilities of the low-power libraries

and mixed-VT synthesis. Roughly 27% of the total power is spent in the clock tree.

Similar to the TV SoC, we perform SystemC and HDL simulations on the instan-

tiated interconnect. Once again, all throughput and latency requirements are satis-

fied, and this behaviour is consistent for all the different instantiations. Looking at

the utilisation during simulation, the automotive SoC has an average NI link utilisa-

tion of 30% with a minimum of 7% and a maximum of 75%. The low utilisation of

the NI links is due to the very strict latency requirements which limits the amount

of sharing. The overall network link utilisation is also low, only 20%. As previously

discussed, the relatively low utilisation highlights the importance of clock gating, as

used in our experiments.

8.2.2 Scalability Analysis

We continue our evaluation with two different scaling experiments, similar to what is

described for the TV SoC in Section 8.1. First, scaling the throughput requirements

168 8 ASIC Case Study

between 0.2 and 4.8, we compare the area of a minimum mesh and a point-to-point

topology. Figure 8.7 shows the result, both with and without buffers. The heuristics

used in the mesh sizing results in an area that is growing in a stair case, which is

now visible as the total area is less dependent on the buffers. The total area is grow-

ing linearly for both topologies until they saturate at a scaling factor of 4.8 where

the requirements can no longer be allocated. At this point the mesh area is almost

equivalent to the point-to-point topology, using a 5 by 4 mesh with 3 NIs per router.

Comparing the results with the TV SoC we clearly see the consequences of having

a more distributed communication pattern (more memories) as the throughput can

be scaled further (4.8 compared to 3.4).

Point-to-point area with buffers
Point-to-point area without buffers

Mesh area with buffers
Mesh area without buffers

Throughput scaling factor

C
e
ll

a
re

a
(m

m
2
)

543210

7

6

5

4

3

2

1

0

Fig. 8.7 Scalability of throughput requirements

Next we evaluate the scalability with respect to the number of connections. In

contrast to the TV SoC we now include all connections (latency critical and latency

tolerant) in the selection. Again we look at 10 different design points and run the

entire design flow 10 times per point. Figure 8.8 shows the area with and without

buffers. Although there is a considerable variation in the results, the linear trend

is clear. We have thus shown that also for this example, with a larger number

of latency-critical connections, but a more distributed communication pattern, the

design flow offers functional scalability.

8.3 Conclusions

In this chapter we demonstrate the use of the proposed interconnect and design

flow using two large-scale industrial case studies. In contrast to previous chapter,

we evaluate the quantitative aspects of the interconnect with focus on the scala-
bility. Rather than targeting an FPGA, we look at the performance and cost in the

context of an ASIC flow, targeting modern CMOS technologies. For the two case

studies, we show the large impact burst sizes have on the interconnect area and

8.3 Conclusions 169

Mesh area without buffers

Connection scaling factor

C
e
ll

a
re

a
(m

m
2
)

10.80.60.40.20

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a)

Mesh area with buffers

Connection scaling factor

C
e
ll

a
re

a
(m

m
2
)

10.80.60.40.20

2.5

2

1.5

1

0.5

0

(b)

Fig. 8.8 Scaling the number of connections. (a) Area without buffers. (b) Area with buffers

power consumption, and quantify the influence latency-critical connections have

on the network utilisation. Even with a low utilisation, our interconnect achieves

a competitive performance/area. The utilisation is, however, central for the perfor-

mance/power trade off, where it determines what kind of low power technique to

apply. The relatively low utilisation (around 25%) stresses the importance of clock

gating in the logic synthesis to minimise dynamic power. We show that low-power

mixed-voltage-threshold libraries lead to leakage power being less than 3% in a 65-

nm technology. To evaluate the functional scalability, we generate many hundreds

of application-specific interconnect instances based on our two case studies, and

show that the proposed interconnect is able to accommodate a growing number of

requirements with a constant cost/performance ratio.

Chapter 9

Related Work

After completing our detailed exposition of the proposed on-chip interconnect, we

now look at related work, and how they address the requirements from Chapter 1.

Throughout this chapter, we highlight the contributions of our proposed interconnect

and how it compares to the related works. For a more detailed exposition of the key

concepts, we refer back to Chapter 2.

9.1 Scalability

We divide the discussion on scalability in two parts. First, we look at how different

interconnects address physical scalability, i.e. the ability to scale the interconnect

to larger die sizes without impairing the performance. Thereafter we raise the level

and look at architectural scalability, i.e. the ability to add more applications and IPs

without negatively affecting the performance.

9.1.1 Physical Scalability

Traditional single-hop interconnects have a limited physical scalability as they intro-

duce long global wires [43]. Multi-hop interconnects, spanning from segmented

buses [36, 159] to NoCs [19, 43, 173], address the wire-length issue by splitting

the interconnect into multiple (pipelined) segments. However, even with a NoC, the

clock distribution scheme limits the physical scalability.

Many networks [63, 108, 122, 157] rely on a (logically) globally synchronous
clock. While techniques such as link pipelining have been proposed to overcome

link latency [162, 184], the cycle-level synchronicity severely constrains the clock

distribution [200] and negatively affects the scalability [29].

On the other end of the spectrum, a range of asynchronous networks [12, 27, 165]

completely remove the need for a clock, and aim to leverage the characteristics

of asynchronous circuits to reduce power and electromagnetic emissions. While

offering physical scalability, these networks rely on not yet well-established design

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_9, C© Springer Science+Business Media, LLC 2011

171

172 9 Related Work

methodologies and verification techniques. They also complicate the provision of

composable and predictable services.1

To overcome the disadvantages of global synchronicity, but still enable a

traditional synchronous design style, the networks in [29, 113, 154, 200] use

mesochronous and asynchronous links [124] between synchronous network ele-

ments. By allowing local phase differences, clock distribution and placement is

greatly simplified [200]. Moreover, the global phase difference is allowed to grow

with chip size. In fact, mesochronous network interconnecting many tens of pro-

cessors have already been demonstrated [67, 83, 194]. An additional benefit of

mesochronous network is that they can be perceived as synchronous on the outside

of the network [29]. This greatly simplifies the provision of composable services.

The constraints on the clock distribution within the interconnect apply also to the

(global) control infrastructure. Thus, dedicated interconnects [115, 203] that rely on

global synchronicity impair the overall physical scalability and must be avoided. By

reusing one and the same interconnect for both user data and control, as proposed

in [46, 68, 157], the problem is reduced to providing one scalable interconnect.

In addition to relaxing the constraints on the clock distribution within the inter-

connect, it is crucial for physical scalability that IPs are able to use independent

clocks (from each other as well as the interconnect). While asynchronous networks

natively offer a GALS design approach at the IP level, e.g. through the use of paus-

able clocks [13], synchronous and mesochronous networks must add clock domain

crossings at the interfaces to the IPs. Solutions based on bi-synchronous FIFOs,

placed inside the NIs, are proposed in [28, 63, 154]. Such a clock domain crossing,

e.g. [196] that is used in [63], is robust with regards to metastability and offers a

simple protocol between synchronous modules, while still allowing every module’s

frequency and voltage to be set independently [103].

In this work we extend on the logically synchronous Æthereal [63] network by

offering mesochronous links [78]. Similar to [46, 68] the same interconnect is used

for both data and control, but we introduce dedicated control buses that allow the

overall control infrastructure to be used in a system where the IPs run at differ-

ent clock frequencies. Moreover, with respect to [168], we move the clock domain

crossings outside the NI, thus improving modularity and greatly simplifying the

design.

9.1.2 Architectural Scalability

Moving from the physical to the architectural level, scalability is the ability to

accommodate a growing number of applications and IPs, without compromising

their performance. Similar to the physical scalability, single-hop interconnects limit

also the architectural scalability. In bus-based interconnects, e.g. the Silicon Back-

plane [202], the performance decreases as the amount of sharing increases. In

1 A globally asynchronous implementation of our proposed router network is possible [52, 78]
without any change to the concepts, but the uncertainty pertains the length of a slot (in absolute
time), determined by all the routers together.

9.2 Diversity 173

crossbar-based interconnects, e.g. Prophid [107], a growing number of IPs lead to

a rapid growth in silicon area and wire density. This in turn causes layout issues

(e.g. timing and packing) and negatively affects performance [162]. Although the

problem can be mitigated by using a partial crossbar [135], the key to architectural

scalability is a distributed multi-hop interconnect.

In a multi-hop interconnect, e.g. Sonics MX [179] that uses a hybrid shared-bus

and crossbar approach, the individual buses and crossbars are not scalable on their

own. Rather, the architectural scalability comes from the ability to arbitrarily add

more buses and crossbars without negatively affecting the performance of other

parts of the interconnect. A segmented bus [36, 159] achieves architectural scala-

bility by partitioning a bus into two or more segments, operating in parallel, and

connected by bridges. NoCs extend on the concepts of segmented buses and offer a

more structured approach to multi-hop interconnects [19, 43].

From the perspective of architectural scalability, there is an important distinction

to be made between NoCs where arbitration is performed at every hop (routers),

e.g. [12, 27, 154, 162, 165] and those where arbitration only takes place only at the

edges (NIs) of the network, as done in Nostrum [122], aSoC [108], Æthereal [63],

TTNoC [157], and our proposed network. The works in [12, 27, 154, 162, 165]

use virtual channels to provide connection-based services. As a consequence, the

router area grows quadratically with the number of connections passing through it.

Moreover, the maximum frequency of the router is also reduced, and the router is

likely to be part of the critical path of the network. In contrast to the NoCs that

rely on virtual channels, the NoCs in [63, 108, 122, 157] as well as our proposed

interconnect all have stateless [186] routers. Thus, the router is independent of the

number of connections in terms of area (number and depth of buffers) and speed

(arbitration). This moves the router out of the critical path and pushes the issue of

scalability to the NIs. As shown in Chapter 3, the scalability of the NI is negatively

affected by the size of the TDM tables (which depends on the number of connections

and their requirements), but can be heavily pipelined.

In this work we extend on the architectural scalability of Æthereal [63] by

offering a significantly smaller and faster router design [78]. This is achieved by

excluding best-effort services. Moreover, extending on [168], memory-mapped ini-

tiator ports that use distributed memory communication may use different NIs

for the connections to different targets. Similarly, a memory-mapped target port

that is shared by multiple initiators may distribute the connections across multi-

ple NIs. Thus, it is possible to push the point of contention all the way to the

shared target port and offer arbitrarily low latency and high throughput in the

interconnect.

9.2 Diversity

Applications and IPs in a system typically come from different providers and aim to

provide widely varying services to the user. Thus, diversity is important on all levels

ranging from application requirements, down to the physical interfaces of the IPs.

174 9 Related Work

Much work on NoCs is focused on the router network and does not address

communication at the IP level. For example, networks with adaptive routing [153]

typically ignore the ordering even within a connection and it is unclear how to (effi-

ciently) use such a network to interconnect IPs.

NI architectures that provide connection-level services are presented in [28,

32, 150, 157, 168, 184, 201]. A specialised NI, tightly coupled to an accel-

erator, is implemented and evaluated in [32]. The NI in [157] takes a slightly

more general approach, offering time-triggered exchange of application-level mes-

sages. However, the problem of flow control, even at the packet level, is pushed

to the IPs. Communication must consequently take place at a priori-determined

instants [99], placing many constraints on the behaviour of the IP. Streaming-

like and memory-mapped communication at the level of connections is provided

by [168] and [28, 150, 184, 201], respectively. The NIs in [28, 150, 156, 184] inter-

face with the IPs using OCP interfaces. However, they only use OCP as a data-link

level protocol and ignore higher-level protocol issues like ordering between con-

nections. Only [168, 201] address distributed and shared memory communication.

However, neither of the works discusses the impact of memory-consistency models

on the protocol stack.

With more elaborate programming models, it is also necessary to address the

issue of message-dependent deadlock [178]. Most NoCs rely on strict ordering

with separate physical or logical networks, thus severely limiting the programming

model (e.g. to pure request-response protocols). End-to-end flow control is proposed

in [73] to avoid placing any restrictions on the dependencies between connections

outside the network.

In this work, we consider event-triggered communication with explicit flow con-

trol, thus enabling a wide range of applications. The interconnect is optimised for

streaming communication but offers also distributed shared memory-mapped com-

munication, with well-defined memory-consistency models and no restrictions on

the programming model. Extending on [63, 168], we clearly separate the network

stack, the streaming stack and the memory-mapped stack. This is accomplished by

unifying the ports on the NIs, by limiting the functionality of the protocol shells to

the data-link level (and thus completely decoupling message and packet formats),

and by extending the network with buses.

9.3 Composability

Composability is a well-established concept in systems used in the automotive and

aerospace domains [6, 98, 169]. An architecture is said to be composable with

respect to a system property if system integration does not invalidate this property

once the property has been established at the subsystem level [98]. In this work, sim-

ilar to [77, 90, 101, 109, 143, 169] the property we look at is the temporal behaviour.

There are, however, large differences in the level of composability, the mechanisms

used to enforce it, and the level of interference allowed. We now discuss these three

topics in greater depth.

9.3 Composability 175

9.3.1 Level of Composability

In [101], composability is provided at the level of components (what we refer to as

tasks). Composability of tasks, also within an application, limits the scope to appli-

cations for which a static schedule (for all tasks of all applications) can be derived

at design time, and the interfaces of the tasks (components) are fully specified in the

value domain and in the temporal domain [99]. Such a specification is not feasible

for, e.g., for dynamic applications like a video decoder or I/O interfaces. Thus, in

contrast to [101], this work provides temporal composability of applications (what

is called a disjoint subgroup of cooperating components in [101]) rather than tasks.

Despite the difference in level of composability, the principles of composability,

as suggested in [101], still apply. At the application level, the first principle, inter-
face specification, is trivially met as we currently limit ourselves to no (temporal)

interactions between applications. Note, however, that non-consumable reads and

writes, i.e. non-interfering interactions, are allowed. That is, one application may

(over-)write output in a buffer that is read (sampled) by another application. An

example is shown in Fig. 1.1, where the MPEG-1 decoder application produces

samples using, e.g., a double-buffering scheme, and the most recent sample is read

by the audio post-processing task. The second principle, stability of prior services,

is provided at the level of applications. Thus integrating a new application does

not affect other applications, as long as their allocations remain unchanged. The

third principle, non-interfering interactions, is the very foundation of our proposed

interconnect as it eliminates all interference between connections and hence also

applications. The fourth principle, error containment, is also provided at the level

of applications as there is no possibility of an error in one application affecting

another. Note, however, that we currently do not enforce spatial containment (i.e.

fixed regions) at shared target ports. The last principle, fault masking, is something

we consider to be orthogonal to composability (when provided at the application

level).

9.3.2 Enforcement Mechanism

In the automotive and aerospace domains composability is traditionally achieved by

not sharing any resources [169]. This approach, however, is much too costly in the

consumer-electronics domain, where resources, such as accelerators, interconnect

and memories, are shared between applications [50]. Nostrum [122], Æthereal [63]

and TTNoC [157] offer TDM-based composable (and predictable) services at the

level of individual connections. The TTSoC architecture extends those services to

the task level by making the entire system time-triggered. The complexity of inter-

actions between tasks (and thus applications) is moved to upholding and adhering

to the coarse global time base and the global schedule. The responsibility of doing

so is pushed all the way to the IPs, e.g. data is lost if the IPs do not adhere to the

schedule. A similar approach is proposed in [109], where the IPs are responsible for

all contention resolution.

176 9 Related Work

In this work, in contrast to [109, 157], we do not base composability on the con-

cepts of a time-triggered architecture, but instead use an event-triggered architecture
with budget enforcement [14] that does not place any restrictions on the applications.

Inside the network and at shared targets, we completely remove the uncertainty in

resource supply by using hard resource reservations [163], where the amount of

service and the time at which an application receives its service is independent of

other applications. We use the concept of contention-free routing [164] to provide

composable sharing of the network at the level of connections. In contrast to [157]

we place no responsibilities on the network end-points. Extending on [63, 168] we

enable composable sharing of memory-mapped target ports. However, in our current

implementation, we do not allow sharing of processors between applications (work

in progress).

9.3.3 Interference

Composability, as defined in this work, does not allow any application interference

at all, down to the clock cycle level. This is different from the TTSoC architec-

ture [101], where interference (between tasks) is allowed as long as it is within

a coarse-grained time step, bounded both from above and below. Thus, jitter is

allowed at a fine-grained level, as long as the characterisation is still valid on the

coarser grain. The restrictions on interference are further relaxed in [90, 114, 143]

that only bound interference from above and not from below.

As an implication of removing rather than limiting interference, the capacity

unused by one application cannot be given to another one. The reason for our

strict definition is that, in the general case, it is not possible to say what effects

a small perturbation at the task level would have on the complete application. If

work-conserving arbitration is used between applications [143], even temporar-

ily [114], the application composability is lost. A task can be given more resources,

and allocated resources at an earlier point in time, both as the result of another
application’s behaviour. While the additional resources or earlier service might

seem positive at first, for a general application, more resources does not always

result in a improved quality of service. More resources might trigger bugs, e.g. due

to races that are schedule dependent. Additionally, scheduling anomalies [64] lead to

situations where an earlier service for an individual task may lead to reduced perfor-

mance at the application level. It is also possible that schedule-dependent decisions
inside an application cause a reduction in quality. Even an improved deadline miss

rate is not always positive, as rapidly changing quality levels are perceived as non-

quality [1, 31, 204]. All the aforementioned effects depend on the other applications

in the system. In other words, verification is monolithic, unless all applications are

free of errors and have a known (and characterised) worst-case behaviour and fit in

a monotonic model of computation.

In this work, we completely remove all application interference. Capacity unused

by one application is not given to another one, thus enabling temporal application

9.4 Predictability 177

composability without placing any requirements on the applications. Unused capac-

ity can, however, be distributed within one application at the channel trees, by dis-

tinguishing inter-application and intra-application arbitration [71].

9.4 Predictability

We split the discussion of predictability into three aspects: the mechanism used to

enforce a specific temporal behaviour in shared resource, the allocation of these

resources to the applications, and the analysis of the mechanism and allocation

together with the applications.

9.4.1 Enforcement Mechanism

Many NoCs provide latency and throughput bounds for one or more connec-

tions [12, 26, 63, 95, 108, 122, 154, 157, 165, 193]. Most common are guarantees

based on virtual circuits [12, 27, 154, 165]. With strict priority arbitration in the

routers [12, 154, 165], only one virtual channel per link can be given bounds on its

latency and throughput, due to the lack of rate regulation. Hence, connections cannot

share links. The Mango NoC overcomes the problems of strict priority-based arbi-

tration by introducing a rate-regulator [27]. A similar approach, albeit with different

scheduling mechanisms is used in [95] and [193]. As we have already seen, Nos-

trum [122], aSOC [108], Æthereal [63] and TTNoC [157] implement the guarantees

by globally time-multiplexing the communication channels.

In this work, we use the concept of contention-free routing [164] to enable

bounds on latency and throughput in the network. In contrast to other on-chip inter-

connects, we offer predictability not only in the network, but also at shared target

ports through the insertion of buses and atomisers.

9.4.2 Resource Allocation

With the ability to offer throughput and latency guarantees in the network, it remains

a problem to allocate the resources for the different connections. The NoC archi-

tecture must be coupled with tooling that enables a designer to go from high level

requirements to resource allocations. Many works only demonstrate the provision of

latency and throughput guarantees for a handful connections [12, 27, 122, 154, 165]

(and some works none at all). For the networks where a large number of connections

have been demonstrated [63], the automation is focused on throughput and does not

discuss the provision of latency guarantees [70–72].

In this work, we guarantee both the throughput and latency requirements of indi-

vidual channels are satisfied. Moreover, we demonstrate the ability to do so for many

hundreds of connections, with widely varying requirements.

178 9 Related Work

9.4.3 Analysis Method

Even with bounds on throughput and latency inside the network, to enable pre-

dictable temporal behaviour at the application level, it is necessary to include the
application and the buffers between the application and the NoC in the performance

analysis [79, 82].

Simulation is a common approach to performance analysis [135]. Trace-based

buffer sizing provides an optimal bound on the buffer size for the given input traces.

However, it does not guarantee that the derived size is sufficient for other traces, i.e.

for other traces the performance requirements might not be met and the application

might even deadlock. The algorithm in [39] uses exhaustive simulation of given

periodic traces. While the method provides tight bounds, it does so at the price of

a high run time, requiring hours or even days for larger SoC designs. Moreover,

the applications, as well as the NoC, are assumed to be completely periodic, thus

severely limiting the scope.

More generally applicable than exhaustive simulation is to use conservative lin-

ear bounds on the production and consumption of data [56]. Assuming it is possible

to find such a traffic characterisation, the buffers are sized so that they are never full.

The coarse application model results in a low run time of the analysis, at the cost of

large buffers. The restrictive application model also limits the scope of applications,

and it remains a problem to derive a conservative traffic characterisation for a given

application. Moreover, both the aforementioned approaches [39, 56] are unable to

determine the temporal behaviour for given buffer sizes, which may be necessary if

an application is mapped on an existing architecture.

In [75, 82, 126] the application, as well as the NoC, is modelled using dataflow

graphs. Thereby, in contrast to [39, 56], it is possible to either compute buffer sizes

given the application requirements or derive bounds on the temporal behaviour

(latency and throughput) for given buffer sizes [15, 131, 182]. The latter is demon-

strated in [82, 126] where applications are mapped to an existing NoC platform.

However, [82, 126] do not discuss what NoC properties are necessary to derive such

a model or how it can be applied to other NoCs. Additionally, neither of the works

compare the dataflow analysis with existing approaches for buffer sizing.

In this work, we give a detailed exposition on how to construct a dataflow graph

that conservatively models a NoC communication channel, and the relation between

the architecture and the model. We demonstrate how the model can be used to deter-

mine buffer sizes for given requirements, and to derive guarantees on the temporal

behaviour of an actual application.

9.5 Reconfigurability

A comprehensive model of dynamic change management is given in [102]. The

work discusses the requirements of the configuration management and the implica-

tions of evolutionary change of software components. A practical but more limited

9.6 Automation 179

approach to dynamic application reconfiguration in multi-processor SoCs is pre-

sented in [93, 170]. Reconfiguration of the interconnect is, however, not addressed.

Much work is focused on complete NoC design and compilation flows [23, 62,

111]. While the works suggest automated generation of control code [62] and stan-

dardised NoC application programming interfaces [111], no details are given on

how these dynamic changes are safely implemented.

Methodologies for dynamic run-time reconfiguration of NoCs are presented

in [145, 176]. Both works assume little or no design time knowledge about the

applications and defer mapping decisions to run time. While offering maximal

flexibility, guaranteeing that an application’s requirements are met is difficult due

to possible resource fragmentation over time. Mitigating the problem necessitates

complex migration schemes with unpredictably large delays [145] as applications

are interrupted during migration. In [72], multiple use-cases are allocated at com-

pile time, enabling guarantees on seamless starting and stopping of a given set of

applications. However, while showing how to determine allocations, the work does

not show how to deploy them at run time.

The works in [46, 68, 115, 203] describe how to implement a control infras-

tructure for network reconfiguration. A dedicated control interconnect is used

in [115, 203], whereas the functional interconnect is used to carry control data

in [46, 68]. Limited or no details are given in [46, 115, 203] of how to actu-

ally use the infrastructure to ensure a consistent state after, as well as during,

reconfiguration. The actual detailed reconfiguration process is investigated in [68]

and a library for NoC reconfiguration is presented. None of the aforementioned

works [46, 68, 115, 203] provide temporal bounds on the reconfiguration operations.

In this work, extending on [68], we show how to efficiently use the guaranteed

services of the NoC to implement a virtual control infrastructure as two channel

trees [71]. Moreover, we show how this enables temporal bounds on the reconfig-

uration operations. Through the structured addition of control buses, we provide

a scalable and generic control infrastructure. In contrast to [145, 176] we assume

that the mapping of tasks to IPs is fixed, and do not allow run-time reallocation of

resources.

9.6 Automation

A large body of works on interconnect automation focus on the problem of mapping

IPs onto the NoC topology and routing of the connections [85, 86, 133, 134, 136].

In [85] a branch-and-bound algorithm is used to map IPs onto a tile-based archi-

tecture, using static xy routing. In [86] the algorithm is extended to route with the

objective of balancing network load. In [133, 134, 136] a heuristic improvement

method is used. Routing is repeated for pair-wise swaps of IPs in the topology,

thereby exploring the design space in search for an efficient mapping. In [136] the

algorithm integrates physical planning. In contrast to the aforementioned works, a

greedy non-iterative algorithm is presented in [62] that presents a complete intercon-

nect design flow. In this flow, mapping is done based on IP clustering after which

180 9 Related Work

paths are selected using static xy routing. All the aforementioned works rely on

a multi-step approach where mapping is carried out before routing. Routing and

mapping objectives do hereby not necessarily coincide. The routing phase must

adhere to decisions taken in the mapping phase which invariably limits the routing

solution space. In [85, 86, 133, 134, 136], multiple mapping and routing solutions

are evaluated iteratively to mitigate the negative effects mapping decisions may have

on routing.

Routing objectives are discussed in [66, 195] and implications with common-

practice load-balancing solutions are addressed in [119]. Routing algorithms

that incorporate temporal guarantees assume static schedules on the application

level [65, 81, 136, 157, 188], i.e. known message production and consumption times,

thus severely limiting their applicability.

Resource allocation for multiple use-cases is addressed in [137] by generating

a synthetic worst-case use-case. The result is one allocation spanning all potential

use-cases. This approach is subsumed in [138], where the lack of scalability in the

synthetic worst-case solution is addressed by allocating resources on the granularity

of aggregated use-cases. Undisrupted services are provided within the constituent

use-cases, but do not cover use-case transitions. The reason is that binding of appli-

cations to resources is done per use-case [138]. Thus, going from one use-case to

another is either done without any change (for the interconnect) or requires global

reconfiguration. Not only does this cause a disruption in delivered services, but

it leads to unpredictable reconfiguration times as in-flight transactions must be

allowed to finish when tearing down communication between IPs [68, 102, 145].

The other alternative, avoiding reconfiguration altogether by allocating a synthetic

worst-case use-case covering the requirements of all use-cases [137], leads to a

much too costly interconnect design [138]. Moreover, if the platform architecture is

given, it may not be possible to find an allocation that meets the worst-case use-case

requirements, even though allocations exist for each use-case individually.

In addition to the problem of resource allocation, much work focus on generating,

exploring, evaluating, and comparing NoC architectures and instantiations, some

targeting FPGAs [11, 58, 129], and others taking a more general approach [17, 23,

62]. Performance verification [57], although with a very limited application model

(periodic producers and consumers), is also part of the flow in [62].

In this work, our dimensioning and allocation flow unifies the spatial mapping of

IPs, and the spatial and temporal routing of communication. The proposed solution

is fundamentally different from [62, 85, 86, 133, 134, 136] in that mapping is no

longer done prior to routing but instead during it. Moreover, we consider the com-

munication real-time requirements, and guarantee that constraints on throughput

and latency are met, irrespective of how the IPs use the network. This work is, to the

best of our knowledge, the first to enable partial reconfiguration of the interconnect

with starting and stopping of one application without affecting other applications.

Our current allocation flow does, however, not support modes or scenarios within

applications, as proposed in [60]. Extending on [62], we offer a complete design

flow, going from communication requirements to an instantiated and verified inter-

connect instance.

Chapter 10

Conclusions and Future Work

The complexity of system verification and integration is exploding due to the grow-

ing number of real-time applications integrated on a single chip. In addition, the

applications have diverse requirements and behaviours and are started and stopped

dynamically at run time. To reduce the design and verification complexity, it is cru-

cial to offer a platform that enables independent implementation, verification and

debugging of applications.

In this work we introduce aelite, a composable and predictable on-chip intercon-

nect that eliminates interference between applications without placing any require-

ments on their behaviour. In the previous chapters, we have shown how to dimension

the architecture, how to allocate resources for the applications, how to instanti-

ate the interconnect hardware and software, and how to verify that the result satisfies

the application requirements. In this chapter, we revisit the requirements formulated

in Chapter 1, and discuss how the different chapters contribute in addressing them

(Section 10.1). Finally, we present directions for future work (Section 10.2).

10.1 Conclusions

An overview of the contributions of the individual chapters of this work is provided

in Table 10.1. In the table, a positive contribution is indicated with a ‘+’ and a

negative contribution with a ‘−’. In case the specific requirement is not touched

upon by the specific chapter, the space is left blank.

Starting with the scalability of the proposed interconnect, it is offered at the phys-

ical, architectural level and functional level, as demonstrated in Chapter 8. However,

the scalability of the design flow is currently limited by the resource allocation and

instantiation. As we have seen in the experimental results of Chapter 4, the execution

time of the heuristic allocation algorithm grows exponentially in the size of the net-

work topology. Hence, the proposed algorithm is limited to a few hundred IPs and

complementary techniques (e.g. partitioning into sub-networks) or completely dif-

ferent algorithms are required to offer scalability also in this part of the design flow.

Similarly for the instantiation, as described in Chapter 5, our design flow uncon-

ditionally instantiates the entire system (hardware), even if we are only interested

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4_10, C© Springer Science+Business Media, LLC 2011

181

182 10 Conclusions and Future Work

Table 10.1 Contributions to the problem statement

Dimensioning Allocation Instantiation Verification

Scalability + − − +
Diversity + + + +
Composability + + −
Predictability + + + +
Reconfigurability + + +
Automation + + + +

in using the instantiation to design or verify a subset of the applications. To offer

scalability, the instantiation should exploit the composability of the interconnect, as

discussed in Section 10.2.

Diversity is offered across all parts of the flow. The dimensioning offers diversity

in interfaces, programming models and communication paradigms. The allocation

offers diversity in the formulation (and interpretation) of requirements, e.g. worst-

or average-case. In the instantiation, we offer diversity in accuracy and speed of the

simulation models, and in the tooling and implementation of the target platform, e.g.

ASIC or FPGA, and different host implementations. Finally, for the verification, our

proposed interconnect accommodates probabilistic as well as worst-case analysis,

based on either simulation or formal models (or even a combination).

Composability is offered by the architecture as part of the dimensioning, and

also in the allocation of resources to individual connections. However, as we have

already seen in the discussion of scalability, the composability of our interconnect

is not considered in the instantiation. As a result, the composability is negatively

affected. To address this issue, the design flow should only instantiate the required

subset of the architecture, i.e. the virtual platform of the application in question. The

verification relies on, but does not contribute to composability.

Every part of the design flow contributes to the predictability. The dimension-

ing uses modules with predictable behaviour, and the allocation exploits these

behaviours when deriving an allocation that satisfies the applications’ communi-

cation requirements. The instantiation also contributes to the predictability of the

interconnect by offering temporal bounds on the reconfiguration operations. Lastly,

the verification raises the level of predictability from individual network channels, to

end-to-end performance verification at the application level. As we shall see in our

discussion of future work, we consider it an important extension to also automate

the construction of formal models for the sharing of memory-mapped target ports.

Reconfigurability is an important part of the dimensioning, where a few selected

modules enable a host to change the logical topology and the temporal behaviour of

the interconnect connections. The dimensioning also contributes by adding a virtual

control infrastructure on top of the functional interconnect. The allocation flow has a

major contribution to the reconfigurability as it enables dynamic partial reconfigura-

tion. As we have seen in Chapter 2, the granularity of allocations is key in enabling

applications to be started and stopped without affecting other applications that keep

running. Using the allocations, the run-time library of the instantiation flow con-

tributes to the reconfigurability by ensuring correctness and providing temporal

10.2 Future Work 183

bounds on the configuration operations. As seen in Table 10.1, the verification does

not contribute (in either a positive or negative way) to the reconfigurability.

The last requirement, automation, is contributed to by all parts of the flow. As

we have demonstrated in Chapters 7 and 8, the proposed flow enables us to go from

high-level requirements into a system instance within hours, and addresses the need

for performance verification for a heterogeneous mix of firm, soft and non real-time

applications.

10.2 Future Work

The proposed interconnect serves as a first step towards a composable and pre-

dictable system-level design method. However, there are many important extensions

and improvements to be made. Our research may be continued in the following

directions:

• A first extension to the presented case studies is to also evaluate the perfor-

mance of the proposed interconnect after layout. Only then is it possible to really

assess the contributions of the mesochronous links and the claims on physical

scalability.

• Our proposed interconnect does not address deep sub-micron effects, e.g. electro-

migration, voltage-drop and on-chip variations, that are becoming predominant

at 65 nm [112]. Thus, techniques are needed to recover from errors and offer

resiliency at the physical as well as the architectural level.

• The power consumption of the interconnect is an important cost aspect not inves-

tigated in this work. We do, however, provide a modular interconnect, with ideal

boundaries for power and clock domains. Moreover, due to the well-known for-

warding delays, datapath self-gating in routers and NIs is a straightforward exten-

sion that could be evaluated. The ability to identify quiescence also opens up

opportunities for safely gating the power or clock of the NI buffers.

• To increase the benefits of the aforementioned power awareness, the run-time

library functions can also be used together with a power management library

(when opening and closing connections). Together with hardware support, e.g.

clamping of the network link signals, this affords safe power down of parts of the

interconnect.

• Currently we assume that the entire interconnect is in one voltage and frequency

island, and that there are no run-time variations in supply voltage or frequency.

To conserve power, the importance of dynamic voltage and frequency scaling is

growing and a possible extension is to split the interconnect into multiple voltage

and clock domains, possibly with different word widths.

• Our proposed interconnect currently uses TDM arbiters to achieve composability,

also at the shared target ports. As discussed in Chapter 2, this is not a requirement.

As long as all arbiters can be characterised as latency-rate servers [185] it is

possible to eliminate the application interference by enforcing the worst-case

184 10 Conclusions and Future Work

bounds. Thus, it is possible to use e.g. rate-controlled priority-based arbiters [3],

where unlike TDM it is possible to distinguish between the allocated latency and

rate.

• In addition to more elaborate arbitration schemes, we also consider the distinc-

tion between inter- and intra-application arbitration an important extension. By

separating the two levels, the interconnect is able to offer application compos-

ability, and still distribute slack within an application. The additional degree of

freedom opens up many new opportunities (and challenges) for the management

and allocation of resources.

• Moving from the interconnect architecture to the IPs, we consider the inclu-

sion of caches an important extension. Caches introduce two problems that

must be addressed, namely composable sharing between applications [125],

and cache coherency. The interconnect currently supports software-based cache

coherency [190] (as it requires no additional functionality besides what is

described in Chapter 3), but not hardware-based cache coherency. Moreover,

composable sharing of caches is currently not supported.

• Currently. we do not allow memory-mapped initiator ports, as used for example

by the processors, to be shared between applications. To offer composable shar-

ing also of these ports and consequently also processors, a mechanism similar to

what is proposed in Section 2.4 (i.e. buffers on both sides of the shared resource

and flow control and arbitration at the same granularity) is required. In contrast

to the hardware solution used for shared target ports, also the operating system

(or at least the middleware used for communication) of the processor must be

adapted.

• In addition to the architectural extensions, we consider run-time resource alloca-

tion, similar to what is proposed in [145], an important extension to our proposed

interconnect. Currently we assume that the set of applications is given at compile

time. By implementing the allocation algorithms on an embedded processor, it is

possible to offer run-time additions of applications. There are, however, many

challenges involved in finding and verifying an allocation using very limited

computational resources.

• Currently, our design flow (automatically) only generates models for the network

channels and protocol shells. Thus, we consider it an important extension to also

include formal models of the initiator buses and shared targets. For a given set of

(pre-characterised) targets, it would thereby be possible to generate a model of

the complete interconnect architecture and resource allocation.

With this rather extensive list of directions for future research, we conclude that

the our composable and predictable on-chip interconnect not only serves to make

applications first-class citizens in embedded systems, but also opens many new

exciting research directions.

Appendix A

Example Specification

The proposed design flow in Fig. 1.8 takes its starting point in a description of the IP

architecture and the communication requirements. Here, we show the two example

XML files for the system used in Chapter 7.

The architecture specification is shown in Section A.1. The file starts with the

architectural constants governing the network behaviour, as introduced in Table 3.1.

Note that the slot table size stbl is not fixed and that the design flow automatically

decides on a smallest possible size. After the constants, the clocks in the architecture

are listed. The main part of the architecture description is the IPs. Every IP has a

unique name and a type that informs the design flow of any specific behaviours,

e.g. the host, or implementations, e.g. pearl_ray that refers to a specific VLIW

processor. Every IP has a number of ports, also with a unique name (within the

block). Each port also has a type and a protocol. The type is either initiator or target,

and the protocol is memory-mapped (MMIO_DTL) or streaming (FIFO_AE). For

memory-mapped target ports, we also specify the base address and capacity (i.e.

address range) for the configuration of the address decoders in the target buses.

The last part of the architecture specification is the layout constraints, i.e. the port

groups and eligible NIs. Every block that is added and as part of the dimensioning in

Chapter 3 uses post-fix naming, e.g. vliw1_pi_bus is the (automatically added) target

bus connected to the port pi on the IP called vliw1. Using regular expressions [30],

it is thereby easy to group all ports on that bus as vliw1_pi_bus.* or simply all ports

on the IP as vliw1.*. The specification of eligible NIs also uses regular expressions,

but relies on knowledge of the naming scheme used in the topology generation (or a

manually specified topology). In this case, we use a 5×1 mesh, as shown in Fig. 2.1,

and the expression NIx(0|2)y0n[0−1] matches four NIs.

The communication requirements are shown in Section A.2. The description lists

the applications, and within each application there are a number of connections.

The names of initiator and target ports correspond to the IP and port identifiers in

Section A.1. In addition to the start and end point, a connection also specifies a

throughput requirement (‘bw’ in Mbps) and a latency requirement (in ns) for writes

and reads, respectively. Note that for connections between two memory-mapped

ports, it is also possible to specify a burst size. This is to enable to the design flow

to account for the serialisation of request and response messages. As seen in the

A. Hansson, K. Goossens, On-Chip Interconnect with Aelite, Embedded Systems,
DOI 10.1007/978-1-4419-6865-4, C© Springer Science+Business Media, LLC 2011

185

186 A Example Specification

specification of, e.g., the decoder, it is possible to not specify a latency requirement.

The last part of the communication specification is the constraints on how applica-

tions are allowed to be combined into use-cases. We rely on regular expressions also

here, to formulate the constraints shown in Fig. 1.6a. The use-case constraints for

the status application, for example, are specified using negative lookahead [30] to

include everything but the initialisation application.

A.1 Architecture

<architecture id="fpga">

<parameter id="clk" type="string" value="fpga_54MHz" />

<parameter id="maxpcklen" type="int" value="4" unit="flits" />

<clk id="usb_48MHz" period="20.83" />

<clk id="fpga_54MHz" period="18.52" />

<clk id="video_65MHz" period="15.38" />

<clk id="audio_25MHz" period="39.72" />

<ip id="host" type="Host">

<parameter id="clk" type="string" value="usb_48MHz" />

<port id="pi" type="Initiator" protocol="MMIO_DTL" />

</ip>

<ip id="vliw1" type="pearl_ray">

<port id="pst" type="Target" protocol="FIFO_AE" />

<port id="psi" type="Initiator" protocol="FIFO_AE" />

<port id="pt" type="Target" protocol="MMIO_DTL">

<parameter id="address" type="int" value="0x08000000" />

<parameter id="capacity" type="int" value="32" unit="kbyte" />

</port>

<port id="pi" type="Initiator" protocol="MMIO_DTL" />

</ip>

<ip id="vliw2" type="pearl_ray">

<port id="pst" type="Target" protocol="FIFO_AE" />

<port id="psi" type="Initiator" protocol="FIFO_AE" />

<port id="pt" type="Target" protocol="MMIO_DTL">

<parameter id="address" type="int" value="0x08000000" />

<parameter id="capacity" type="int" value="32" unit="kbyte" />

</port>

<port id="pi" type="Initiator" protocol="MMIO_DTL" />

</ip>

<ip id="vliw3" type="pearl_ray">

<port id="pst" type="Target" protocol="FIFO_AE" />

<port id="psi" type="Initiator" protocol="FIFO_AE" />

A.2 Communication 187

<port id="pt" type="Target" protocol="MMIO_DTL">

<parameter id="address" type="int" value="0x08000000" />

<parameter id="capacity" type="int" value="32" unit="kbyte" />

</port>

<port id="pi" type="Initiator" protocol="MMIO_DTL" />

</ip>

<ip id="sram" type="IP">

<parameter id="clk" type="string" value="video_65MHz" />

<port id="pt" type="Target" protocol="MMIO_DTL">

<parameter id="address" type="int" value="0x30000000" />

<parameter id="capacity" type="int" value="8192" unit="kbyte" />

</port>

</ip>

<ip id="video" type="IP">

<parameter id="clk" type="string" value="video_65MHz" />

<port id="pt" type="Target" protocol="MMIO_DTL">

<parameter id="address" type="int" value="0x38000000" />

<parameter id="capacity" type="int" value="4096" unit="kbyte" />

</port>

</ip>

<ip id="audio" type="IP">

<parameter id="clk" type="string" value="audio_25MHz" />

<port id="pst" type="Target" protocol="FIFO_AE" />

<port id="psi" type="Initiator" protocol="FIFO_AE" />

</ip>

<ip id="peripheral" type="IP">

<port id="pt" type="Target" protocol="MMIO_DTL">

<parameter id="address" type="int" value="0x40000000" />

<parameter id="capacity" type="int" value="16" unit="kbyte" />

</port>

</ip>

<constraint id=’host’ port=’host.*’ nis=’NIx0y0n0’ />

<constraint id=’vliw1’ port=’vliw1.*’ />

<constraint id=’vliw2’ port=’vliw2.*’ />

<constraint id=’vliw3’ port=’vliw3.*’ />

<constraint id=’sram’ port=’sram.*’ nis=’NIx(0|2)y0n[0-1]’/>

<constraint id=’video’ port=’video.*’ />

<constraint id=’peripheral’ port=’peripheral.*’ />

</architecture>

A.2 Communication

<communication>

<application id=’filter’>

<connection id=’0’>

<initiator ip=’vliw1’ port=’psi’/>

188 A Example Specification

<target ip=’audio’ port=’pst’/>

<write bw=’1.5’ latency=’1000’ />

</connection>

<connection id=’1’>

<initiator ip=’audio’ port=’psi’/>

<target ip=’vliw1’ port=’pst’/>

<write bw=’1.5’ latency=’1000’ />

</connection>

<connection id=’2’>

<initiator ip=’vliw1’ port=’pi’/>

<target ip=’memory’ port=’pt’/>

<write bw=’1.5’ burstsize=’4’ latency=’500’ />

<read bw=’3’ burstsize=’4’ latency=’500’ />

</connection>

</application>

<application id=’player’>

<connection id=’0’>

<initiator ip=’vliw1’ port=’psi’/>

<target ip=’audio’ port=’pst’/>

<write bw=’1.5’ latency=’1000’ />

</connection>

</application>

<application id=’decoder’>

<connection id=’0’>

<initiator ip=’vliw2’ port=’pi’/>

<target ip=’vliw3’ port=’pt’/>

<write bw=’8’ burstsize=’4’/>

</connection>

<connection id=’1’>

<initiator ip=’vliw2’ port=’pi’/>

<target ip=’sram’ port=’pt’/>

<read bw=’1’ latency=’600’ burstsize=’4’/>

</connection>

<connection id=’2’>

<initiator ip=’vliw3’ port=’pi’/>

<target ip=’vliw2’ port=’pt’/>

<write bw=’0.1’ burstsize=’4’/>

</connection>

<connection id=’3’>

<initiator ip=’vliw3’ port=’pi’/>

<target ip=’video’ port=’pt’/>

<write bw=’8’ burstsize=’4’/>

</connection>

</application>

<application id=’game’>

<connection id=’0’>

<initiator ip=’vliw2’ port=’pi’/>

<target ip=’peripheral’ port=’pt’/>

<write bw=’0.1’ burstsize=’4’/>

</connection>

A.2 Communication 189

<connection id=’1’>

<initiator ip=’vliw2’ port=’pi’/>

<target ip=’video’ port=’pt’/>

<write bw=’8’ burstsize=’4’/>

</connection>

</application>

<application id=’status’>

<connection id=’0’>

<initiator ip=’host’ port=’pi’/>

<target ip=’peripheral’ port=’pt’/>

<write bw=’0.1’/>

</connection>

</application>

<application id=’init’>

<connection id=’0’>

<initiator ip=’host’ port=’pi’/>

<target ip=’vliw11’ port=’pt’/>

<read bw=’0.1’ burstsize=’64’/>

<write bw=’0.1’ burstsize=’64’/>

</connection>

<connection id=’1’>

<initiator ip=’host’ port=’pi’/>

<target ip=’vliw2’ port=’pt’/>

<read bw=’0.1’ burstsize=’64’/>

<write bw=’0.1’ burstsize=’64’/>

</connection>

<connection id=’2’>

<initiator ip=’host’ port=’pi’/>

<target ip=’vliw33’ port=’pt’/>

<read bw=’0.1’ burstsize=’64’/>

<write bw=’0.1’ burstsize=’64’/>

</connection>

<connection id=’3’>

<initiator ip=’host’ port=’pi’/>

<target ip=’peripheral’ port=’pt’/>

<write bw=’0.1’ burstsize=’64’/>

</connection>

<connection id=’4’>

<initiator ip=’host’ port=’pi’/>

<target ip=’sram’ port=’pt’/>

<write bw=’0.1’ burstsize=’64’/>

</connection>

<tree queue="merged">

<channel connection="0" direction="request" />

<channel connection="1" direction="request" />

<channel connection="2" direction="request" />

<channel connection="3" direction="request" />

<channel connection="4" direction="request" />

</tree>

<tree queue="merged">

190 A Example Specification

<channel connection="0" direction="response" />

<channel connection="1" direction="response" />

<channel connection="2" direction="response" />

<channel connection="3" direction="response" />

<channel connection="4" direction="response" />

</tree>

</application>

<constraint type="allow" appl="filter"

with="(status|decoder|init|game)" />

<constraint type="allow" appl="player"

with="(status|decoder|init|game)" />

<constraint type="allow" appl="decoder"

with="(status|filter|player)" />

<constraint type="allow" appl="game"

with="(status|filter|player)" />

<constraint type="allow" appl="status"

with="^((?!init).)*$" />

<constraint type="allow" appl="init"

with="(player|filter)" />

</communication>

References

[1] Abeni L, Buttazzo G (2004) Resource reservation in dynamic real-time systems. Real-Time
Systems 27(2):123–167

[2] AHBLite (2001) Multi-Layer AHB, AHB-Lite Product Information. ARM Limited, San
Jose, CA

[3] Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM memory
controller. In: Proc. CODES+ISSS

[4] Altera (2008) Avalon Interface Specifications. Altera Corporation, San Jose, CA. Available
on www.altera.com

[5] Anderson MR (2004) When companies collide: the convergence to consumer electronics.
Strategic News Service, Friday Harbor, WA

[6] ARINC653 (1997) ARINC Specification 653. Avionics Application Software Standard
Interface

[7] Arteris (2005) A comparison of network-on-chip and busses. White paper
[8] AXI (2003) AMBA AXI Protocol Specification. ARM Limited, San Jose, CA
[9] Azimi M, Cherukuri N, Jayashima D, Kumar A, Kundu P, Park S, Schoinas I, Vaidya A

(2007) Integration challenges and tradeoffs for tera-scale architectures. Intel Technology
Journal 11(3):173–184

[10] Bambha N, Kianzad V, Khandelia M, Bhattacharyya S (2002) Intermediate representations
for design automation of multiprocessor DSP systems. Design Automation for Embedded
Systems 7(4):307–323

[11] Bartic T, Desmet D, Mignolet JY, Marescaux T, Verkest D, Vernalde S, Lauwereins R, Miller
J, Robert F (2004) Network-on-chip for reconfigurable systems: from high-level design
down to implementation. In: Proc. FPL

[12] Beigne E, Clermidy F, Vivet P, Clouard A, Renaudin M (2005) An asynchronous NOC
architecture providing low latency service and its multi-level design framework. In: Proc.
ASYNC

[13] Beigné E, Clermidy F, Miermont S, Vivet P (2008) Dynamic voltage and frequency scaling
architecture for units integration within a GALS NoC. In: Proc. NOCS

[14] Bekooij M, Moreira O, Poplavko P, Mesman B, Pastrnak M, van Meerbergen J (2004) Pre-
dictable embedded multiprocessor system design. LNCS 3199:77–91

[15] Bekooij MJG, Smit GJM (2007) Efficient computation of buffer capacities for cyclo-static
dataflow graphs. In: Proc. DAC

[16] Bellman R (1957) Dynamic Programming. Princeton University Press, Princeton, NJ
[17] Benini L (2006) Application specific NoC design. In: Proc. DATE
[18] Benini L, de Micheli G (2001) Powering networks on chips. In: Proc. ISSS
[19] Benini L, de Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Computer

35(1):70–80
[20] van den Berg A, Ren P, Marinissen EJ, Gaydadjiev G, Goossens K (2008) Bandwidth anal-

ysis for reusing functional interconnect as test access mechanism. In: Proc. ETS

191

192 References

[21] van Berkel K (2009) Multi-core for mobile phones. In: Proc. DATE
[22] van Berkel K, Heinle F, Meuwissen P, Moerman K, Weiss M (2005) Vector processing as

an enabler for software-defined radio in handheld devices. EURASIP Journal on Applied
Signal Processing 16:2613–2625

[23] Bertozzi D, Jalabert A, Murali S, Tamhankar R, Stergiou S, Benini L, Micheli GD (2005)
NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE
Transactions on Parallel and Distributed Systems 16(2):113–129

[24] Bilsen G, Engels M, Lauwereins R, Peperstraete J (1996) Cyclo-static dataflow. IEEE Trans-
actions on Signal Processing 44(2):397–408

[25] Bjerregaard T, Mahadevan S (2006) A survey of research and practices of network-on-chip.
ACM Computing Surveys 38(1):1–51

[26] Bjerregaard T, Sparsø J (2005) A router architecture for connection-oriented service guar-
antees in the MANGO clockless network-on-chip. In: Proc. DATE

[27] Bjerregaard T, Sparsø J (2005) A scheduling discipline for latency and bandwidth guaran-
tees in asynchronous network-on-chip. In: Proc. ASYNC

[28] Bjerregaard T, Mahadevan S, Grøndahl Olsen R, Sparsø J (2005) An OCP compliant net-
work adapter for GALS-based SoC design using the MANGO network-on-chip. In: Proc.
SOC

[29] Bjerregaard T, Stensgaard M, Sparsø J (2007) A scalable, timing-safe, network-on-chip
architecture with an integrated clock distribution method. In: Proc. DATE

[30] Boost (2009) Boost c++ libraries. Available from: http://www.boost.org
[31] Bril RJ, Hentschel C, Steffens EF, Gabrani M, van Loo G, Gelissen JH (2001) Multimedia

QoS in consumer terminals. In: Proc. SiPS
[32] van de Burgwal MD, Smit GJM, Rauwerda GK, Heysters PM (2006) Hydra: an energy-

efficient and reconfigurable network interface. In: Proc. ERSA
[33] Buttazo GC (1977) Hard Real-Time Computing Systems: Predictable Scheduling Algo-

rithms and Applications. Kluwer Publishers, Dordrecth
[34] Cadence SpecMan (2009) Cadence specman. Available from: http://www.cadence.com
[35] Carloni L, McMillan K, Sangiovanni-Vincentelli A (2001) Theory of latency-insensitive

design. IEEE Transactions on CAD of Integrated Circuits and Systems 20(9):1059–1076
[36] Chen J, Jone W, Wang J, Lu HI, Chen T (1999) Segmented bus design for low-power sys-

tems. IEEE Transactions on VLSI 7(1):25–29
[37] Chen K, Malik S, August D (2001) Retargetable static timing analysis for embedded soft-

ware. In: Proc. ISSS
[38] Chen S, Nahrstedt K (1998) An overview of quality-of-service routing for the next genera-

tion high-speed networks: problems and solutions. IEEE Network 12(6):64–79
[39] Coenen M, Murali S, Rădulescu A, Goossens K, De Micheli G (2006) A buffer-sizing algo-

rithm for networks on chip using TDMA and credit-based end-to-end flow control. In: Proc.
CODES+ISSS

[40] Coppola M, Grammatikakis M, Locatelli R, Maruccia G, Pieralisi L (2008) Design of Cost-
Efficient Interconnect Processing Units: Spidergon STNoC. CRC Press, Boca Raton, FL

[41] Cummings CE (2002) Simulation and Synthesis Techniques for Asynchronous FIFO
Design. Synopsys Users Group, Mountain View, CA

[42] Dales M (2000) SWARM – Software ARM. http://www.cl.cam.ac.uk/∼ mwd24/phd/swarm.
html

[43] Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:
Proc. DAC

[44] Dasdan A (2004) Experimental analysis of the fastest optimum cycle ratio and mean algo-
rithms. ACM Transactions on Design Automation of Electronic Systems 9(4):385–418

[45] Day J, Zimmermann H (1983) The OSI reference model. Proceedings of the IEEE
71(12):1334–1340

[46] Dielissen J, Rădulescu A, Goossens K, Rijpkema E (2003) Concepts and implementation of
the Philips network-on-chip. In: IP-Based SOC Design

References 193

[47] Diguet J, Evain S, Vaslin R, Gogniat G, Juin E (2007) NOC-centric security of reconfig-
urable SoC. In: Proc. NOCS

[48] Dijkstra EW (1959) A note on two problems in connection with graphs. Numerische Math-
ematik 1(5):269–271

[49] DTL (2002) Device Transaction Level (DTL) Protocol Specification. Version 2.2. Philips
Semiconductors, Washington, DC

[50] Dutta S, Jensen R, Rieckmann A (2001) Viper: a multiprocessor SOC for advanced set-top
box and digital TV systems. IEEE Design and Test of Computers 18(5):21–31

[51] Ernst D (2004) Limits to modularity: a review of the literature and evidence from chip
design. Economics Study Area Working Papers 71, East-West Center, Honolulu, HI

[52] Felicijan T (2007) Asynchronous tdma networks on chip. Tech. rep., Royal Philips Elec-
tronics

[53] Ford LR, Fulkerson DR (1962) Flows in Networks. Princeton University Press, Princeton,
NJ

[54] FSL (2007) Fast Simplex Link (FSL) Bus v2.11a. Xilinx, Inc, San Jose, CA
[55] Gal-On S (2008) Multicore benchmarks help match programming to processor architecture.

In: MultiCore Expo
[56] Gangwal O, Rădulescu A, Goossens K, Pestana S, Rijpkema E (2005) Building predictable

systems on chip: an analysis of guaranteed communication in the Æthereal network on
chip. In: Dynamic and Robust Streaming in and Between Connected Consumer-Electronics
Devices, Kluwer, Dordrecht

[57] Gangwal OP, Janssen J, Rathnam S, Bellers E, Duranto M (2003) Understanding video pixel
processing applications for flexible implementations. In: Proc. DSD

[58] Genko N, Atienza D, Micheli GD, Mendias J, Hermida R, Catthoor F (2005) A complete
network-on-chip emulation framework. In: Proc. DATE

[59] Gharachorloo K, Lenoski D, Laudon J, Gibbons P, Gupta A, Hennessy J (1990) Mem-
ory consistency and event ordering in scalable shared-memory multiprocessors. In: Proc.
ISCA

[60] Gheorghita SV, Palkovic M, Hamers J, Vandecappelle A, Mamagkakis S, Basten T, Eeck-
hout L, Corporaal H, Catthoor F, Vandeputte F, De Bosschere K (2009) System-scenario-
based design of dynamic embedded systems. ACM Transactions on Design Automation of
Electronic Systems 13(1):1–45

[61] Goossens K, Gangwal OP, Röver J, Niranjan AP (2004) Interconnect and memory orga-
nization in SOCs for advanced set-top boxes and TV—evolution, analysis, and trends. In:
Nurmi J, Tenhunen H, Isoaho J, Jantsch A (eds) Interconnect-Centric Design for Advanced
SoC and NoC, Kluwer, Dordrecht Chap 15, pp. 399–423

[62] Goossens K, Dielissen J, Gangwal OP, González Pestana S, Rădulescu A, Rijpkema E
(2005) A design flow for application-specific networks on chip with guaranteed performance
to accelerate SOC design and verification. In: Proc. DATE

[63] Goossens K, Dielissen J, Rădulescu A (2005) The Æthereal network on chip: concepts,
architectures, and implementations. IEEE Design and Test of Computers 22(5):21–31

[64] Graham R (1969) Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics 17(2):416–429

[65] Guérin R, Orda A (2000) Networks with advance reservations: The routing perspective. In:
Proc. INFOCOM

[66] Guérin R, Orda A, Williams D (1997) QoS routing mechanisms and OSPF extensions. In:
Proc. GLOBECOM

[67] Halfhill TR (2006) Ambric’s new parallel processor. Microprocessor Report
[68] Hansson A, Goossens K (2007) Trade-offs in the configuration of a network on chip for

multiple use-cases. In: Proc. NOCS
[69] Hansson A, Goossens K (2009) An on-chip interconnect and protocol stack for multiple

communication paradigms and programming models. In: Proc. CODES+ISSS

194 References

[70] Hansson A, Goossens K, Rădulescu A (2005) A unified approach to constrained mapping
and routing on network-on-chip architectures. In: Proc. CODES+ISSS

[71] Hansson A, Coenen M, Goossens K (2007) Channel trees: reducing latency by sharing time
slots in time-multiplexed networks on chip. In: Proc. CODES+ISSS

[72] Hansson A, Coenen M, Goossens K (2007) Undisrupted quality-of-service during reconfig-
uration of multiple applications in networks on chip. In: Proc. DATE

[73] Hansson A, Goossens K, Rădulescu A (2007) Avoiding message-dependent deadlock in
network-based systems on chip. VLSI Design 2007:1–10

[74] Hansson A, Goossens K, Rădulescu A (2007) A unified approach to mapping and routing
on a network on chip for both best-effort and guaranteed service traffic. VLSI Design 2007:
1–16

[75] Hansson A, Wiggers M, Moonen A, Goossens K, Bekooij M (2008) Applying dataflow
analysis to dimension buffers for guaranteed performance in Networks on Chip. In: Proc.
NOCS

[76] Hansson A, Akesson B, van Meerbergen J (2009) Multi-processor programming in the
embedded system curriculum. ACM SIGBED Review 6(1)

[77] Hansson A, Goossens K, Bekooij M, Huisken J (2009) Compsoc: a template for composable
and predictable multi-processor system on chips. ACM Transactions on Design Automation
of Electronic Systems 14(1):1–24

[78] Hansson A, Subburaman M, Goossens K (2009) Aelite: a flit-synchronous network on chip
with composable and predictable services. In: Proc. DATE

[79] Hansson A, Wiggers M, Moonen A, Goossens K, Bekooij M (2009) Enabling application-
level performance guarantees in network-based systems on chip by applying dataflow anal-
ysis. IET Computers and Design Techniques

[80] Henkel J (2003) Closing the SoC design gap. Computer 36(9):119–121
[81] Ho WH, Pinkston TM (2003) A methodology for designing efficient on-chip interconnects

on well-behaved communication patterns. In: Proc. HPCA
[82] Holzenspies P, Hurink J, Kuper J, Smit G (2008) Run-time spatial mapping of streaming

applications to a heterogeneous multi-processor system-on-chip MPSoC. In: Proc. DATE
[83] Hoskote Y, Vangal S, Singh A, Borkar N, Borkar S (2007) A 5-GHz mesh interconnect for

a teraflops processor. IEEE Micro 27(5):51–61
[84] Hu J, Marculescu R (2004) Application-specific buffer space allocation for networks-on-

chip router design. In: Proc. ICCAD
[85] Hu J, Mărculescu R (2003) Energy-aware mapping for tile-based NoC architectures under

performance constraints. In: Proc. ASP-DAC
[86] Hu J, Mărculescu R (2003) Exploiting the routing flexibility for energy/performance aware

mapping of regular NoC architectures. In: Proc. DATE
[87] Ilitzky DA, Hoffman JD, Chun A, Esparza BP (2007) Architecture of the scalable commu-

nications core’s network on chip. IEEE Micro 27(5):62–74
[88] ITRS (2007) International technology roadmap for semiconductors. System Drivers
[89] ITRS (2007) International technology roadmap for semiconductors. Design
[90] Jantsch A (2006) Models of computation for networks on chip. In: Proc. ACSD
[91] Jantsch A, Tenhunen H (2003) Will networks on chip close the productivity gap? In: Net-

works on Chip, Kluwer Academic Publishers, Dordrecht, pp. 3–18
[92] Jerraya A, Bouchhima A, Pétrot F (2006) Programming models and HW-SW interfaces

abstraction for multi-processor SoC. In: Proc. DAC
[93] Kang J, Henriksson T, van der Wolf P (2005) An interface for the design and implementation

of dynamic applications on multi-processor architecture. In: Proc. ESTImedia
[94] Kar K, Kodialam M, Lakshman TV (2000) Minimum interference routing of bandwidth

guaranteed tunnels with MPLS traffic engineering applications. IEEE Journal on Selected
Areas in Communications 18(12):2566–2579

[95] Kavaldjiev N (2006) A run-time reconfigurable network-on-chip for streaming DSP appli-
cations. PhD thesis, University of Twente

References 195

[96] Keutzer K, Malik S, Newton AR, Rabaey JM, Sangiovanni-Vincentelli A (2000) System-
level design: orthogonalization of concerns and platform-based design. IEEE Transactions
on CAD of Integrated Circuits and Systems 19(12):1523–1543

[97] Kollig P, Osborne C, Henriksson T (2009) Heterogeneous multi-core platform for consumer
multimedia applications. In: Proc. DATE

[98] Kopetz H (1997) Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, Dordrecht

[99] Kopetz H, Bauer G (2003) The time-triggered architecture. Proceedings of the IEEE
91(1):112–126

[100] Kopetz H, Obermaisser R, Salloum CE, Huber B (2007) Automotive software development
for a multi-core system-on-a-chip. In: Proc. SEAS

[101] Kopetz H, El Salloum C, Huber B, Obermaisser R, Paukovits C (2008) Composability in
the time-triggered system-on-chip architecture. In: Proc. SOCC

[102] Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change manage-
ment. IEEE Transactions on Software Engineering 16(11):1293–1306,

[103] Krstić M, Grass E, Gürkaynak F, Vivet P (2007) Globally asynchronous, locally syn-
chronous circuits: overview and outlook. IEEE Design and Test of Computers 24(5):430–
441

[104] Kumar A, Mesman B, Theelen B, Corporaal H, Ha Y (2008) Analyzing composability of
applications on MPSoC platforms. Journal of Systems Architecture 54(3–4):369–383

[105] Laffely A (2003) An interconnect-centric approach for adapting voltage and frequency in
heterogeneous system-on-a-chip. PhD thesis, University of Massachusetts Amherst

[106] kyung Lee Y, Lee S (2001) Path selection algorithms for real-time communication. In: Proc.
ICPADS

[107] Leijten J, van Meerbergen J, Timmer A, Jess J (2000) Prophid: a platform-based design
method. Journal of Design Automation for Embedded Systems 6(1):5–37

[108] Liang J, Swaminathan S, Tessier R (2000) aSOC: A scalable, single-chip communications
architecture. In: Proc. PACT

[109] Lickly B, Liu I, Kim S, D Patel H, Edwards SA, Lee EA (2008) Predictable programming
on a precision timed architecture. In: Proc. CASES

[110] Liu G, Ramakrishnan KG (2001) A*Prune: an algorithm for finding K shortest paths subject
to multiple constraints. In: Proc. INFOCOM

[111] Lu Z, Haukilahti R (2003) NOC application programming interfaces: high level commu-
nication primitives and operating system services for power management. In: Networks on
Chip, Kluwer Academic Publishers, Dordrecht

[112] Magarshack P, Paulin PG (2003) System-on-chip beyond the nanometer wall. In: Proc. DAC
[113] Mangano D, Locatelli R, Scandurra A, Pistritto C, Coppola M, Fanucci L, Vitullo F, Zandri

D (2006) Skew insensitive physical links for network on chip. In: Proc. NANONET
[114] Marescaux T, Corporaal H (2007) Introducing the SuperGT network-on-chip. In: Proc. DAC
[115] Marescaux T, Mignolet J, Bartic A, Moffat W, Verkest D, Vernalde S, Lauwereins R (2003)

Networks on chip as hardware components of an OS for reconfigurable systems. In: Proc.
FPL

[116] Martin A, Nystrom M (2006) Asynchronous techniques for system-on-chip design. Pro-
ceedings of the IEEE 94(6):1089–1120

[117] Martin G (2006) Overview of the MPSoC design challenge. In: Proc. DAC
[118] Martin P (2005) Design of a virtual component neutral network-on-chip transaction layer.

In: Proc. DATE
[119] Matta I, Bestavros A (1998) A load profiling approach to routing guaranteed bandwidth

flows. In: Proc. INFOCOM
[120] Mercer CW, Savage S, Tokuda H (1994) Processor capacity reserves: operating system sup-

port for multimedia systems. In: Proc. ICMCS
[121] Messerschmitt D (1990) Synchronization in digital system design. IEEE Journal on Selected

Areas in Communication 8(8):1404–1419

196 References

[122] Millberg M, Nilsson E, Thid R, Jantsch A (2004) Guaranteed bandwidth using looped con-
tainers in temporally disjoint networks within the Nostrum network on chip. In: Proc. DATE

[123] Millberg M, Nilsson E, Thid R, Kumar S, Jantsch A (2004) The nostrum backbone – a
communication protocol stack for networks on chip. In: Proc. VLSID

[124] Miro Panades I, Greiner A (2007) Bi-synchronous FIFO for synchronous circuit communi-
cation well suited for network-on-chip in GALS architectures. In: Proc. NOCS

[125] Molnos A, Heijligers M, Cotofana S (2008) Compositional, dynamic cache management for
embedded chip multiprocessors. In: Proc. DATE

[126] Moonen A (2004) Modelling and simulation of guaranteed throughput channels of a hard
real-time multiprocessor system. Master’s thesis, Eindhoven University of Technology

[127] Moonen A, Bekooij M, van den Berg R, van Meerbergen J (2007) Practical and accurate
throughput analysis with the cyclo static data flow model. In: Proc. MASCOTS

[128] Moonen A et al. (2005) A multi-core architecture for in-car digital entertainment. In: Proc.
GSPX

[129] Moraes F, Calazans N, Mello A, Möller L, Ost L (2004) HERMES: an infrastructure for low
area overhead packet-switching networks on chip. Integration VLSI Journal 38(1):69–93

[130] Moreira O, Bekooij M (2007) Self-timed scheduling analysis for real-time applications.
EURASIP Journal on Advances in Signal Processing pp. 1–14

[131] Moreira O, Valente F, Bekooij M (2007) Scheduling multiple independent hard-real-time
jobs on a heterogeneous multiprocessor. In: Proc. EMSOFT

[132] MTL (2002) Memory Transaction Level (MTL) Protocol Specification. Philips Semicon-
ductors, Washington, DC

[133] Murali S, de Micheli G (2004) Bandwidth-constrained mapping of cores onto NoC archi-
tectures. In: Proc. DATE

[134] Murali S, de Micheli G (2004) SUNMAP: a tool for automatic topology selection and gen-
eration for NoCs. In: Proc. DAC

[135] Murali S, De Micheli G (2005) An application-specific design methodology for STbus
crossbar generation. In: Proc. DATE

[136] Murali S, Benini L, de Micheli G (2005) Mapping and physical planning of networks on
chip architectures with quality of service guarantees. In: Proc. ASP-DAC

[137] Murali S, Coenen M, Rădulescu A, Goossens K, De Micheli G (2006) Mapping and config-
uration methods for multi-use-case networks on chips. In: Proc. ASP-DAC

[138] Murali S, Coenen M, Rădulescu A, Goossens K, De Micheli G (2006) A methodology for
mapping multiple use-cases on to networks on chip. In: Proc. DATE

[139] Muttersbach J, Villiger T, Fichtner W (2000) Practical design of globally-asynchronous
locally-synchronous systems. In: Proc. ASYNC

[140] Nachtergaele L, Catthoor F, Balasa F, Franssen F, De Greef E, Samsom H, De Man H (1995)
Optimization of memory organization and hierarchy for decreased size and power in video
and image processing systems. In: Proc. MTDT

[141] Nachtergaele L, Moolenaar D, Vanhoof B, Catthoor F, De Man H (1998) System-level
power optimization of video codecs on embedded cores: a systematic approach. Journal
of VLSI Signal Processing 18(12):89–109

[142] Nelson A (2009) Conservative application-level performance analysis through simulation
of a multiprocessor system on chip. Master’s thesis, Eindhoven University of Technology

[143] Nesbit K, Moreto M, Cazorla F, Ramirez A, Valero M, Smith J (2008) Multicore resource
management. IEEE Micro 28(3):6–16

[144] Nieuwland A, Kang J, Gangwal O, Sethuraman R, Busá N, Goossens K, Peset Llopis R,
Lippens P (2002) C-HEAP: a heterogeneous multi-processor architecture template and scal-
able and flexible protocol for the design of embedded signal processing systems. Design
Automation for Embedded Systems 7(3):233–270

[145] Nollet V, Marescaux T, Avasare P, Mignolet JY (2005) Centralized run-time resource man-
agement in a network-on-chip containing reconfigurable hardware tiles. In: Proc. DATE

References 197

[146] Obermaisser R (2007) Integrating automotive applications using overlay networks on top of
a time-triggered protocol. LNCS 4888:187–206

[147] OCP (2007) OCP Specification 2.2. OCP International Partnership
[148] Ogras UY, Hu J, Marculescu R (2005) Key research problems in NoC design: a holistic

perspective. In: Proc. CODES+ISSS
[149] Ohbayashi S et al. (2007) A 65-nm SoC embedded 6T-SRAM designed for manufactura-

bility with read and write operation stabilizing circuits. IEEE Journal of Solid-State Circuits
42(4):820–829

[150] Ost L, Mello A, Palma J, Moraes F, Calazans N (2005) MAIA: a framework for networks
on chip generation and verification. In: Proc. ASP-DAC

[151] Osteen R, Tou J (1973) A clique-detection algorithm based on neighborhoods in graphs.
International Journal of Parallel Programming 2(4):257–268

[152] Owens J, Dally W, Ho R, Jayasimha D, Keckler S, Peh LS (2007) Research challenges for
on-chip interconnection networks. IEEE Micro 27(5):96–108

[153] Palesi M, Holsmark R, Kumar S, Catania V (2009) Application specific routing algorithms
for networks on chip. IEEE Transactions on Parallel and Distributed Systems 20(3):316–330

[154] Panades I, Greiner A, Sheibanyrad A (2006) A low cost network-on-chip with guaranteed
service well suited to the GALS approach. In: Proc. NANONET

[155] Pardalos PM, Rendl F, Wolkowicz H (1994) The quadratic assignment problem: a survey
and recent developments. In: Quadratic Assignment and Related Problems. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol 16, American Mathemati-
cal Society, Providence, RI

[156] Paukovits C (2008) The time-triggered system-on-chip architecture. PhD thesis, Technische
Universität Wien, Institut für Technische Informatik

[157] Paukovits C, Kopetz H (2008) Concepts of switching in the time-triggered network-on-chip.
In: Proc. RTCSA

[158] Peeters A, van Berkel K (2001) Synchronous handshake circuits. In: Proc. ASYNC
[159] PIBus (1994) PI-Bus Standard OMI 324. Siemens AG, ver. 0.3d edn
[160] PLB (2003) Processor Local Bus (PLB) v3.4. Xilinx Inc, San Jose, CA
[161] Poplavko P, Basten T, Bekooij M, van Meerbergen J, Mesman B (2003) Task-level timing

models for guaranteed performance in multiprocessor networks-on-chip. In: Proc. CASES
[162] Pullini A, Angiolini F, Murali S, Atienza D, De Micheli G, Benini L (2007) Bringing NoCs

to 65 nm. IEEE Micro 27(5):75–85
[163] Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource kernels: a resource-centric

approach to real-time systems. In: Proc. MMCN
[164] Rijpkema E, Goossens K, Rădulescu A, Dielissen J, van Meerbergen J, Wielage P,

Waterlander E (2003) Trade offs in the design of a router with both guaranteed and best-
effort services for networks on chip. IEE Proceedings Computers and Digital Techniques
150(5):294–302

[165] Rostislav D, Vishnyakov V, Friedman E, Ginosar R (2005) An asynchronous router for
multiple service levels networks on chip. In: Proc. ASYNC

[166] Rowen C, Leibson S (2004) Engineering the Complex SOC: Fast, Flexible Design with
Configurable Processors. Prentice Hall PTR, Upper Saddle River, NJ

[167] Rădulescu A, Goossens K (2004) Communication services for network on silicon. In:
Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation, Marcel
Dekker, New York, NY

[168] Rădulescu A, Dielissen J, González Pestana S, Gangwal OP, Rijpkema E, Wielage P,
Goossens K (2005) An efficient on-chip network interface offering guaranteed services,
shared-memory abstraction, and flexible network programming. IEEE Transactions on CAD
of Integrated Circuits and Systems 24(1):4–17

[169] Rumpler B (2006) Complexity management for composable real-time systems. In: Proc.
ISORC, IEEE Computer Society, Washington, DC

[170] Rutten M, Pol EJ, van Eijndhoven J, Walters K, Essink G (2005) Dynamic reconfiguration
of streaming graphs on a heterogeneous multiprocessor architecture. IS&T/SPIE Electron
Imag 5683

198 References

[171] Saha D, Mukherjee S, Tripathi S (1994) Multi-rate traffic shaping and end-to-end perfor-
mance guarantees in ATM networks. In: Proc. ICNP

[172] Sasaki H (1996) Multimedia complex on a chip. In: Proc. ISSCC
[173] Sgroi M, Sheets M, Mihal A, Keutzer K, Malik S, Rabaey J, Sangiovanni-Vincentelli A

(2001) Addressing the system-on-a-chip interconnect woes through communication-based
design. In: Proc. DAC

[174] Shoemaker D (1997) An optimized hardware architecture and communication protocol for
scheduled communication. PhD thesis, Massachusetts Institute of Technology

[175] Silicon Hive (2007) Silicon hive. Available from: http://www.siliconhive.com
[176] Smit LT, Smit GJM, Hurink JL, Broersma H, Paulusma D, Wolkotte PT (2004) Run-time

mapping of applications to a heterogeneous reconfigurable tiled system on chip architecture.
In: Proc. FPT

[177] Smith B (2008) ARM and Intel battle over the mobile chip’s future. Computer 41(5):15–18
[178] Song YH, Pinkston TM (2000) On message-dependent deadlocks in multiproces-

sor/multicomputer systems. In: Proc. HiPC
[179] SonicsMX (2005) SonicsMX Datasheet. Sonics, Inc. Available on www.sonicsinc.com
[180] Soudris D, Zervas ND, Argyriou A, Dasygenis M, Tatas K, Goutis C, Thanailakis A (2000)

Data-reuse and parallel embedded architectures for low-power, real-time multimedia appli-
cations. In: Proc. PATMOS

[181] Srinivasan K, Chatha KS, Konjevod G (2005) An automated technique for topology and
route generation of application specific on-chip interconnection networks. In: Proc. ICCAD

[182] Sriram S, Bhattacharyya S (2000) Embedded Multiprocessors: Scheduling and Synchro-
nization. CRC Press, Boca Raton, FL

[183] Steenhof F, Duque H, Nilsson B, Goossens K, Peset Llopis R (2006) Networks on chips for
high-end consumer-electronics TV system architectures. In: Proc. DATE

[184] Stergiou S, Angiolini F, Carta S, Raffo L, Bertozzi D, de Micheli G (2005) ×pipes Lite: a
synthesis oriented design library for networks on chips. In: Proc. DATE

[185] Stiliadis D, Varma A (1998) Latency-rate servers: a general model for analysis of traffic
scheduling algorithms. IEEE/ACM Transactions on Networking 6(5):611–624

[186] Stoica I, Zhang H (1999) Providing guaranteed services without per flow management. In:
Proc. SIGCOMM

[187] Stuijk S, Basten T, Mesman B, Geilen M (2005) Predictable embedding of large data struc-
tures in multiprocessor networks-on-chip. In: Proc. DSD

[188] Stuijk S, Basten T, Geilen M, Ghamarian A, Theelen B (2008) Resource-efficient routing
and scheduling of time-constrained streaming communication on networks-on-chip. Journal
of Systems Architecture 54(3–4):411–426

[189] TechInsights (2008) Embedded Market Study, TechInsights, Ottawa ON
[190] van den Brand J, Bekooij M (2007) Streaming consistency: a model for efficient MPSoC

design. In: Proc. DSD
[191] Vercauteren S, Lin B, De Man H (1996) Constructing application-specific heterogeneous

embedded architectures from custom HW/SW applications. In: Proc. DAC
[192] Vermeulen B, Goossens K, Umrani S (2008) Debugging distributed-shared-memory com-

munication at multiple granularities in networks on chip. In: Proc. NOCS
[193] Weber WD, Chou J, Swarbrick I, Wingard D (2005) A quality-of-service mechanism for

interconnection networks in system-on-chips. In: Proc. DATE
[194] Wentzlaff D, Griffin P, Hoffmann H, Bao L, Edwards B, Ramey C, Mattina M, Miao CC,

Brown JF, Agarwal A (2007) On-chip interconnection architecture of the tile processor.
IEEE Micro 27(5):15–31

[195] Widyono R (1994) The design and evaluation of routing algorithms for real-time channels.
Tech. Rep. TR-94-024, University of California at Berkeley & Int’l Comp. Sci. Inst.

[196] Wielage P, Marinissen E, Altheimer M, Wouters C (2007) Design and DfT of a high-speed
area-efficient embedded asynchronous FIFO. In: Proc. DATE

References 199

[197] Wiggers M, Bekooij M, Jansen P, Smit G (2007) Efficient computation of buffer capacities
for cyclo-static real-time systems with back-pressure. In: Proc. RTAS

[198] Wiggers M, Bekooij M, Smit G (2007) Modelling run-time arbitration by latency-rate
servers in dataflow graphs. In: Proc. SCOPES

[199] Wiggers MH, Bekooij MJ, Smit GJ (2008) Buffer capacity computation for throughput
constrained streaming applications with data-dependent inter-task communication. In: Proc.
RTAS

[200] Wiklund D, Liu D (2003) SoCBUS: switched network on chip for hard real time embedded
systems. In: Proc. IPDPS

[201] Wingard D (2004) Socket-based design using decoupled interconnects. In: Interconnect-
Centric design for SoC and NoC, Kluwer, Dordrecht

[202] Wingard D, Kurosawa A (1998) Integration architecture for system-on-a-chip design. In:
Proc. CICC

[203] Wolkotte P, Smit G, Rauwerda G, Smit L (2005) An energy-efficient reconfigurable circuit-
switched network-on-chip. In: Proc. IPDPS

[204] Wüst C, Steffens L, Verhaegh W, Bril R, Hentschel C (2005) QoS control strategies for
high-quality video processing. Real-Time Systems 30(1):7–29

[205] Zhang H (1995) Service disciplines for guaranteed performance service in packet-switching
networks. Proceedings of the IEEE 83(10):1374–1396

Glossary

Acronyms and Abbreviations

ADC Analog to digital converter

ANSI American National Standards Institute

API Application program interface

ASIC Application-specific integrated circuit

AXI Advanced eXtensible interface [8]

CC Colour conversion

CSDF Cyclo-static dataflow

DAC Digital to analog converter

DSP Digital signal processor

DTL Device transaction level [49]

FPGA Field-programmable gate array

FSM Finite state machine

GALS Globally asynchronous locally synchronous

HDL Hardware description language

IDCT Inverse discrete cosine transform

IP Intellectual property

ISV Independent software vendor

ITRS International technology roadmap for semiconductors

JPEG Joint photographic experts group

MoC Model of computation

MPSoC Multi-processor system on chip

MTL Memory transaction level [132]

NI Network interface

NoC Network on chip

NRE Non-recurring engineering

OCP Open core protocol [147]

OSI Open system interconnection

QAP Quadratic assignment problem

RTL Register transfer level

RTTTL Ring tone text transfer language

201

202 Glossary

SoC System on chip

Tcl Tool command language

TDM Time-division multiplexing

TTM Time to market

VC Virtual channel

VLD Variable length decoder

VLIW Very long instruction word

VT Voltage threshold

XML eXtensible markup language

Symbols and Notations

The list of symbols and notations is split into six categories. The first category

contains the symbols and notations used for architectural constants. The second

category is related to the input specification of application requirements. The third

category covers the description of network topologies. This is followed by symbols

and notations used to describe resource allocation in the fourth category. The fifth

category contains the symbols and notations used in to capture the intermediate

residual resources during the allocation The sixth and last category pertains to the

symbols used to describe the temporal behaviour in the channel model.

Architectural Constants

sflit flit size (words)

stbl slot table size (flits)

shdr packet header size (words)

spkt maximum packet size (flits)

scrd maximum credits per header (words)

pn slot table period (cycles)

θp,NI NI (de)packetisation latency (cycles)

θd,NI NI data pipelining latency (cycles)

θc,NI NI credit pipelining latency (cycles)

Application Requirements

a application

Pa set of ports in application a
Ca set of channels in application a
ρ(c) minimum throughput of channel c
θ(c) maximum latency of channel c
src(c) source port of channel c

Glossary 203

dst(c) destination port of channel c
[c] equivalence class (tree) of a channel c
A set of applications

P complete set of ports

C complete set of channels

u use-case

U set of use-cases

Ua set of use-cases with application a
Uc set of use-cases with a channel c
q mapping group

Q set of mapping groups

[p] equivalence class (group) of a port p

Network Topology

N set of network nodes

L set of network links

Nr set of routers and link-pipeline stage nodes

Nn set of network interface nodes

Nq set of mapping-group nodes

src(l) source node of a link l
dst(l) destination node of a link l
Nm set of mapping nodes

ǫ(q) set of eligible network interfaces for a group q

Resource Allocation

mapi (q) mapping of port group q
P ′

i set of mapped ports

alci (c) allocation for channel c
φ network path

T set of time slots

Stbl the set of natural numbers smaller than stbl

Residual Resources

t slot table

σ(c, t) set of slots available for channel c in table t
ti (u, l) residual slot table for link l in use-case u
capi (u, l) residual capacity of link l in use-case u
usei (u, l) set of channels using link l in use-case u
ti (u, φ) slot table for path φ in use-case u

204 Glossary

ti (c, φ) aggregate slot table for channel c after traversing φ

capi (c, l) aggregate capacity of link l for channel c
usei (c, l) aggregate set set of channels using a link l

Channel Model

dd(T) upper bound on latency for data subjected to T

ĥ(T) upper bound on number of headers in T
θp(φ) path latency

ȟ(T) lower bound on number of headers in T
dc(T) upper bound on latency for credits subjected to T

Index

A

Actor, 125

Address

decoder, 43

Admission control, 12, 34

Allocation, 69

bus, 69

function, 82

Application, 76

diversity, 38

mutually exclusive, 37

Arbitration, 22, 27

frame-based, 73

granularity, 29

intra-application, 34

level, 29

round-robin, 45

two-level, 34

unit, 28, 30

work-conserving, 34

Atomicity, 47

Atomiser, 21, 32, 46

Automation, 15

tools, 37

B

Back annotation, 123

Back pressure, 25

Behaviour

independent, 122

temporal, 34

Bound

conservative, 123

Bridge, 10

Budget enforcement, 34

Buffer

circular, 150

C

Channel, 21, 25, 76

converging, 74

critical, 85–86

diverging, 74

interdependent, 87

traversal, 86

tree, 64, 73, 78

Characterisation

conservative, 124

traffic, 123

C-HEAP, 147

Clock

asynchronous, 10

bi-synchronous, 23, 49, 60

gating, 43

mesochronous, 10, 23

phase, 23

skew, 10, 60

synchronisation, 25

synchronous, 10

Clock Domain Crossing, 19, 49

FIFO, 172

Compile time, 38

Composability, 12, 28

Congestion, 21

Connection, 19, 25

ordering, 25

Conservative

behaviour, 124

bound, 123

characterisation, 124

model, 121, 127

Consistency

model, 27, 43

release, 27

Consumption

atomic, 126

205

206 Index

Contention, 21, 24
inherent, 24

Contention-free routing, 21
Control

address space, 66
application, 63
bus, 63–64
buses, 63
connections, 63
port, 64

Cost/performance ratio, 165
Crossbar, 10

D

Dataflow
analysis, 35, 127
buffer dimensioning, 35
cyclo-static, 35
model, 123

Dataflow graph, 123
consistent, 126
cyclo-static, 125
variable-rate, 124

Deadlock
message-dependent, 54
routing, 54

Dependency, 123
Design flow, 16, 147
Divide-and-conquer, 13

E

Edge
dataflow, 125
self, 126

Element, 19
Embedded system, 1
Execution, 126

self-timed, 127

F

FIFO
hardware, 166

Finish time, 126
Firing, 126
Flit, 20

cycle, 22, 52
format, 53
payload, 54

Flow control
blocking, 25
credit-based, 29, 50
end-to-end, 31, 50
handshake, 29
link-level, 60

lossy, 29
non-blocking, 30
transaction-level, 46

H

Hop, 22, 74
multi, 171
single, 171

Host, 64
Hot spot, 139

I

Initiator bus, 21, 41, 44
Initiator shell, 20, 47
Input queue, 19
Instantiation, 103
Intellectual Property, 3
Interconnect, 6

on-chip, 9
Interface, 11
Interference, 11

worst-case, 32
Interrupt, 147
ITRS, 5

L

Latency-rate server, 77
Library

inter-processor communication, 147
Link

egress, 80
ingress, 80
mesochronous, 60
pipeline, 57

Lock, 147
Locking, 45

M

Mapping
constraint, 81
eligibility, 81
function, 81
group, 79
refinement, 93

Memory
distributed, 11, 19, 27, 43
shared, 11, 27

Memory-consistency model, 21
Message

format, 49
request, 19, 26
response, 21, 26

Metastability, 23
Middleware, 147
Model of computation, 13

Index 207

Monotonic, 13, 127

Multi-tasking

preemptive, 147

Multicast, 55

N

Network, 21

Network interface, 50

buffers, 51

register file, 53

scheduler, 52

Network on Chip, 10

NRE, 5

O

Ordering, 21, 25, 27

Output queue, 20

P

Packet, 25

header, 20, 52–53

length, 54

Packetisation, 20

Path, 20

cost function, 91

pruning, 90–91

selection, 89

Payload, 20

Phase, 126

Phit, 25, 54

Place and route, 43

Platform-based design, 3

Polling, 147

Port

mappable, 70

pair, 79

Power

dynamic, 161

gating, 161

leakage, 161

Pre-emption, 31

Predictability, 13, 33

Programming model, 24

Protocol

bridge, 28

memory-mapped, 24

network, 24

stack, 24

streaming, 24

R

Raw data, 26

Real-time, 2

firm, 2

soft, 2

Reconfigurability, 14

Reconfiguration

global, 35

granulatiry, 35

partial, 37, 53

quiescence, 53

run-time, 62, 82

Requirement

latency, 71, 77, 94

throughput, 71, 77, 94

Reservation

speculative, 88

Resource

fragmentation, 85

interference, 28

over-provisioning, 78

reservation, 97

sharing, 28

under-provisioning, 78

Response time, 126

Restriction

application, 122

Router

stateless, 173

S

Scalability

architectural, 22

functional, 15, 157

physical, 22

Scheduling

anomaly, 13, 176

freedom, 34

interval, 22

Shell, 26

Signal groups, 27

Signal processing, 1

Slot

alignment, 89

availability, 92

distance, 95

Slot table, 21, 53, 83

Soure routing, 50

Stack

layers, 28

memory-mapped, 26

separation, 27

streaming, 25

Stall, 25

Start time, 126

Stateless, 31

208 Index

Streaming, 11
data, 25

Successive refinement, 18
Synchronisation, 27
Synchronous

logically, 172
Synthesis, 43

area, 43
System on Chip, 1

T

Tagging, 44
Target bus, 19, 41
Target shell, 19, 47
Testbench, 161
Thread, 31, 49

single, 44
Time

consumption, 136
production, 123

Time To Market, 4
Token

C-HEAP, 147
dataflow, 125

Topology, 79
arbitraty, 54
concentrated, 58
indirect, 58

Trace
activity, 161
input, 122

Traffic generator, 161
Transaction, 19, 26

address, 26

burst, 26
command, 26
in-flight, 36
local read, 148
ordering, 43
outstanding, 43
pipelining, 44
posted write, 148
request, 47
response, 47
split, 48
sub-, 32

U

Use-case, 8, 78
constraint, 78
constraints, 16
progression, 35
transition, 35
worst-case, 36

User, 16
conrol, 38

V

Verification
monolithic, 176

Virtual
circuit, 31
wire, 25

VLIW, 6

W

Write
posted, 148

	Contents
	1 Introduction
	1.1 Trends
	1.1.1 Application Requirements
	1.1.2 Implementation and Design
	1.1.3 Time and Cost
	1.1.4 Summary
	1.1.5 Example System

	1.2 Requirements
	1.2.1 Scalability
	1.2.2 Diversity
	1.2.3 Composability
	1.2.4 Predictability
	1.2.5 Reconfigurability
	1.2.6 Automation

	1.3 Key Components
	1.4 Organisation

	2 Proposed Solution
	2.1 Architecture Overview
	2.1.1 Contention-Free Routing

	2.2 Scalability
	2.2.1 Physical Scalability
	2.2.2 Architectural Scalability

	2.3 Diversity
	2.3.1 Network Stack
	2.3.2 Streaming Stack
	2.3.3 Memory-Mapped Stack

	2.4 Composability
	2.4.1 Resource Flow-Control Scheme
	2.4.2 Flow Control and Arbitration Granularities
	2.4.3 Arbitration Unit Size
	2.4.4 Temporal Interference
	2.4.5 Summary

	2.5 Predictability
	2.5.1 Architecture Behaviour
	2.5.2 Modelling and Analysis

	2.6 Reconfigurability
	2.6.1 Spatial and Temporal Granularity
	2.6.2 Architectural Support

	2.7 Automation
	2.7.1 Input and Output
	2.7.2 Division into Tools

	2.8 Conclusions

	3 Dimensioning
	3.1 Local Buses
	3.1.1 Target Bus
	3.1.2 Initiator Bus

	3.2 Atomisers
	3.2.1 Limitations

	3.3 Protocol Shells
	3.3.1 Limitations

	3.4 Clock Domain Crossings
	3.5 Network Interfaces
	3.5.1 Architecture
	3.5.2 Experimental Results
	3.5.3 Limitations

	3.6 Routers
	3.6.1 Experimental Results
	3.6.2 Limitations

	3.7 Mesochronous Links
	3.7.1 Experimental Results
	3.7.2 Limitations

	3.8 Control Infrastructure
	3.8.1 Unified Control and Data
	3.8.2 Architectural Components
	3.8.3 Limitations

	3.9 Conclusions

	4 Allocation
	4.1 Sharing Slots
	4.2 Problem Formulation
	4.2.1 Application Specification
	4.2.2 Network Topology Specification
	4.2.3 Allocation Specification
	4.2.4 Residual Resource Specification

	4.3 Allocation Algorithm
	4.3.1 Channel Traversal Order
	4.3.2 Speculative Reservation
	4.3.3 Path Selection
	4.3.4 Refinement of Mapping
	4.3.5 Slot Allocation
	4.3.6 Resource Reservation
	4.3.7 Limitations

	4.4 Experimental Results
	4.5 Conclusions

	5 Instantiation
	5.1 Hardware
	5.1.1 SystemC Model
	5.1.2 RTL Implementation

	5.2 Allocations
	5.3 Run-Time Library
	5.3.1 Initialisation
	5.3.2 Opening a Connection
	5.3.3 Closing a Connection
	5.3.4 Temporal Bounds

	5.4 Experimental Results
	5.4.1 Setup Time
	5.4.2 Memory Requirements
	5.4.3 Tear-Down Time

	5.5 Conclusions

	6 Verification
	6.1 Problem Formulation
	6.1.1 Cyclo-static Dataflow (CSDF) Graphs
	6.1.2 Buffer Capacity Computation

	6.2 Network Requirements
	6.3 Network Behaviour
	6.3.1 Slot Table Injection
	6.3.2 Header Insertion
	6.3.3 Path Latency
	6.3.4 Return of Credits

	6.4 Channel Model
	6.4.1 Fixed Latency
	6.4.2 Split Latency and Rate
	6.4.3 Split Data and Credits
	6.4.4 Final Model
	6.4.5 Shell Model

	6.5 Buffer Sizing
	6.5.1 Modelling the Application
	6.5.2 Synthetic Benchmarks
	6.5.3 Mobile Phone SoC
	6.5.4 Set-Top Box SoC

	6.6 Conclusions

	7 FPGA Case Study
	7.1 Hardware Platform
	7.1.1 Host Tile
	7.1.2 Processor Tiles

	7.2 Software Platform
	7.2.1 Application Middleware
	7.2.2 Design Flow

	7.3 Application Mapping
	7.4 Performance Verification
	7.4.1 Soft Real-Time
	7.4.2 Firm Real-Time

	7.5 Conclusions

	8 ASIC Case Study
	8.1 Digital TV
	8.1.1 Experimental Results
	8.1.2 Scalability Analysis

	8.2 Automotive Radio
	8.2.1 Experimental Results
	8.2.2 Scalability Analysis

	8.3 Conclusions

	9 Related Work
	9.1 Scalability
	9.1.1 Physical Scalability
	9.1.2 Architectural Scalability

	9.2 Diversity
	9.3 Composability
	9.3.1 Level of Composability
	9.3.2 Enforcement Mechanism
	9.3.3 Interference

	9.4 Predictability
	9.4.1 Enforcement Mechanism
	9.4.2 Resource Allocation
	9.4.3 Analysis Method

	9.5 Reconfigurability
	9.6 Automation

	10 Conclusions and Future Work
	10.1 Conclusions
	10.2 Future Work

	A Example Specification
	A.1 Architecture
	A.2 Communication

	References
	Glossary
	Index
	Cover
	Contents
	1 Introduction
	1.1 Trends
	1.1.1 Application Requirements
	1.1.2 Implementation and Design
	1.1.3 Time and Cost
	1.1.4 Summary
	1.1.5 Example System

	1.2 Requirements
	1.2.1 Scalability
	1.2.2 Diversity
	1.2.3 Composability
	1.2.4 Predictability
	1.2.5 Reconfigurability
	1.2.6 Automation

	1.3 Key Components
	1.4 Organisation

	2 Proposed Solution
	2.1 Architecture Overview
	2.1.1 Contention-Free Routing

	2.2 Scalability
	2.2.1 Physical Scalability
	2.2.2 Architectural Scalability

	2.3 Diversity
	2.3.2 Streaming Stack
	2.3.1 Network Stack
	2.3.3 Memory-Mapped Stack

	2.4 Composability
	2.4.1 Resource Flow-Control Scheme
	2.4.2 Flow Control and Arbitration Granularities
	2.4.4 Temporal Interference
	2.4.3 Arbitration Unit Size

	2.5 Predictability
	2.4.5 Summary
	2.5.1 Architecture Behaviour
	2.5.2 Modelling and Analysis

	2.6 Reconfigurability
	2.6.1 Spatial and Temporal Granularity

	2.7 Automation
	2.6.2 Architectural Support
	2.7.1 Input and Output
	2.7.2 Division into Tools

	2.8 Conclusions

	3 Dimensioning
	3.1 Local Buses
	3.1.1 Target Bus
	3.1.2 Initiator Bus

	3.2 Atomisers
	3.3 Protocol Shells
	3.2.1 Limitations

	3.4 Clock Domain Crossings
	3.3.1 Limitations

	3.5 Network Interfaces
	3.5.1 Architecture
	3.5.2 Experimental Results
	3.5.3 Limitations

	3.6 Routers
	3.6.1 Experimental Results

	3.7 Mesochronous Links
	3.6.2 Limitations

	3.8 Control Infrastructure
	3.7.1 Experimental Results
	3.7.2 Limitations
	3.8.1 Unified Control and Data
	3.8.2 Architectural Components

	3.9 Conclusions
	3.8.3 Limitations

	4 Allocation
	4.1 Sharing Slots
	4.2 Problem Formulation
	4.2.1 Application Specification
	4.2.2 Network Topology Specification
	4.2.3 Allocation Specification
	4.2.4 Residual Resource Specification

	4.3 Allocation Algorithm
	4.3.1 Channel Traversal Order
	4.3.2 Speculative Reservation
	4.3.3 Path Selection
	4.3.4 Refinement of Mapping
	4.3.5 Slot Allocation
	4.3.6 Resource Reservation
	4.3.7 Limitations

	4.4 Experimental Results
	4.5 Conclusions

	5 Instantiation
	5.1 Hardware
	5.1.1 SystemC Model
	5.1.2 RTL Implementation

	5.2 Allocations
	5.3 Run-Time Library
	5.3.1 Initialisation
	5.3.2 Opening a Connection
	5.3.3 Closing a Connection

	5.4 Experimental Results
	5.3.4 Temporal Bounds
	5.4.1 Setup Time
	5.4.2 Memory Requirements
	5.4.3 Tear-Down Time

	5.5 Conclusions

	6 Verification
	6.1 Problem Formulation
	6.1.1 Cyclo-static Dataflow (CSDF) Graphs
	6.1.2 Buffer Capacity Computation

	6.2 Network Requirements
	6.3 Network Behaviour
	6.3.1 Slot Table Injection
	6.3.2 Header Insertion
	6.3.4 Return of Credits
	6.3.3 Path Latency

	6.4 Channel Model
	6.4.1 Fixed Latency
	6.4.3 Split Data and Credits
	6.4.4 Final Model
	6.4.2 Split Latency and Rate

	6.5 Buffer Sizing
	6.4.5 Shell Model
	6.5.1 Modelling the Application
	6.5.2 Synthetic Benchmarks
	6.5.3 Mobile Phone SoC
	6.5.4 Set-Top Box SoC

	6.6 Conclusions

	7 FPGA Case Study
	7.1 Hardware Platform
	7.1.1 Host Tile
	7.1.2 Processor Tiles

	7.2 Software Platform
	7.2.1 Application Middleware
	7.2.2 Design Flow

	7.3 Application Mapping
	7.4 Performance Verification
	7.4.1 Soft Real-Time
	7.4.2 Firm Real-Time

	7.5 Conclusions

	8 ASIC Case Study
	8.1 Digital TV
	8.1.1 Experimental Results
	8.1.2 Scalability Analysis

	8.2 Automotive Radio
	8.2.1 Experimental Results
	8.2.2 Scalability Analysis

	8.3 Conclusions

	9 Related Work
	9.1 Scalability
	9.1.1 Physical Scalability
	9.1.2 Architectural Scalability

	9.2 Diversity
	9.3 Composability
	9.3.1 Level of Composability
	9.3.2 Enforcement Mechanism
	9.3.3 Interference

	9.4 Predictability
	9.4.1 Enforcement Mechanism
	9.4.2 Resource Allocation

	9.5 Reconfigurability
	9.4.3 Analysis Method

	9.6 Automation

	10 Conclusions and Future Work
	10.1 Conclusions
	10.2 Future Work

	A Example Specification
	A.1 Architecture
	A.2 Communication

	References
	Glossary
	Index

