

Andreas Tolk and Lakhmi C. Jain

Intelligence-Based Systems Engineering

Intelligent Systems Reference Library,Volume 10

Editors-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain

University of South Australia

Adelaide

Mawson Lakes Campus

South Australia 5095

Australia

E-mail: Lakhmi.jain@unisa.edu.au

Further volumes of this series can be found on our homepage: springer.com

Vol. 1. Christine L. Mumford and Lakhmi C. Jain (Eds.)

Computational Intelligence: Collaboration, Fusion

and Emergence, 2009

ISBN 978-3-642-01798-8

Vol. 2.Yuehui Chen and Ajith Abraham

Tree-Structure Based Hybrid

Computational Intelligence, 2009

ISBN 978-3-642-04738-1

Vol. 3.Anthony Finn and Steve Scheding

Developments and Challenges for
Autonomous Unmanned Vehicles, 2010

ISBN 978-3-642-10703-0

Vol. 4. Lakhmi C. Jain and Chee Peng Lim (Eds.)

Handbook on Decision Making: Techniques

and Applications, 2010

ISBN 978-3-642-13638-2

Vol. 5. George A.Anastassiou

Intelligent Mathematics: Computational Analysis, 2010

ISBN 978-3-642-17097-3

Vol. 6. Ludmila Dymowa

Soft Computing in Economics and Finance, 2011

ISBN 978-3-642-17718-7

Vol. 7. Gerasimos G. Rigatos

Modelling and Control for Intelligent Industrial Systems, 2011

ISBN 978-3-642-17874-0

Vol. 8. Edward H.Y. Lim, James N.K. Liu, and Raymond S.T. Lee

Knowledge Seeker – Ontology Modelling for Information

Search and Management, 2011

ISBN 978-3-642-17915-0

Vol. 9. Menahem Friedman and Abraham Kandel

Calculus Light, 2011

ISBN 978-3-642-17847-4

Vol. 10.Andreas Tolk and Lakhmi C. Jain

Intelligence-Based Systems Engineering, 2011

ISBN 978-3-642-17930-3

Andreas Tolk and Lakhmi C. Jain

Intelligence-Based Systems
Engineering

123

Prof.Andreas Tolk
Engineering Management & Systems

Engineering

242B Kaufman Hall

Old Dominion University

Norfolk,VA 23529

USA

E-mail: atolk@odu.edu

Prof. Lakhmi C. Jain
School of Electrical and Information

Engineering

University of South Australia

Adelaide

Mawson Lakes Campus

South Australia SA 5095

Australia

E-mail: Lakhmi.jain@unisa.edu.au

ISBN 978-3-642-17930-3 e-ISBN 978-3-642-17931-0

DOI 10.1007/978-3-642-17931-0

Intelligent Systems Reference Library ISSN 1868-4394

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general
use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

The International Council on Systems Engineering (INCOSE) defines Systems

Engineering as an interdisciplinary approach and means to develop successful

systems. It focuses on defining the customers needs and requirements early in

the development cycle. It then documents the requirements. It then proceeds with the

design synthesis and system validation and develops an overview of the complete

problem which involves Manufacturing, Operations, Cost & Scheduling. The

Performance, Training & Support, Testing, and Disposal are then developed. Systems

Engineering integrates all of the disciplines and specialty groups into a joint team

effort to form a structured development process which proceeds from the concept

stage of production to full final operation. The full Systems Engineering operation

considers both the business and the technical needs of all customers. The goal is to

provide a quality product that meets the user needs and hopefully without unwanted

surprises in the completed item.

In the present time, these activities and processes are increasingly supported by

means of Information Technology (IT). Support using IT always leads to the question

of how much such processes can be either automated or semi-automated. In other

words: is it possible to increase the quality of systems by using intelligence-based

systems engineering. The intention of this book is to answer the questions such as

what emerging methods and solutions are able to use intelligence-based systems

engineering, what current solutions already exist, what theoretic constraints are

known, and other questions ranging between theory and practice. The chapters

contain contributions from conferences, research, PhD theses, and the experience of

the experts in this area. In this book, we establish a research agenda and begin to fill

the gaps in this body of knowledge.

We hope to gain the support of practitioners and scholars by this volume. It is also

hoped to help researchers identify domains of interest and to develop systems

engineering to an even higher level.

Andreas Tolk

USA

Lakhmi C. Jain

Australia

Contents

Chapter 1

Towards Intelligence-Based Systems Engineering and
System of Systems Engineering . 1
Andreas Tolk, Kevin MacG. Adams, Charles B. Keating

1 Introduction . 1
2 Intelligence-Based Systems . 2

2.1 Characteristics of Intelligence-Based Systems 2
2.2 How to Capture Intelligence . 4

3 Systems Engineering . 6
3.1 Traditional Systems Engineering 7
3.2 System of Systems . 8
3.3 System of Systems Engineering . 10
3.4 System of Systems Engineering Methodology 11
3.5 Intelligence-Based Systems Engineering 16

4 Contributions to These Topics within This Volume 18
References . 20

Chapter 2

Future Directions for Semantic Systems . 23
John F. Sowa

1 The Knowledge Acquisition Bottleneck 23
2 Natural Language Processing . 24
3 Reasoning and Problem Solving . 27
4 Semantic Web . 30
5 Language Analysis and Reasoning . 35
6 Integrating Semantic Systems . 43
References . 45

Chapter 3

Defining and Validating Semantic Machine to Machine
Interoperability . 49
Claudia Szabo, Saikou Y. Diallo

1 Introduction . 49
2 State of the Art in Interoperability . 50

VIII Contents

2.1 Semantics of Data for a Machine 53
2.2 Formal Representation of Data for a Machine 55
2.3 Semantic Machine to Machine Interoperability 58

3 Formal Validation of Interoperable Federations 63
3.1 Knowledge Representation . 66
3.2 Formal Validation of Model Execution 68
3.3 Reference Model . 68
3.4 Formal Validation Process . 69

4 Summary and Recommendations . 72
References . 72

Chapter 4

An Approach to Knowledge Integration Applied to a
Configuration Problem . 75
Maria Vargas-Vera, Miklos Nagy, Dietmar Jannach

1 Introduction . 75
2 Related Work . 77

2.1 Expert Systems - Knowledge Bases 77
2.2 Ontologies View . 78
2.3 Databases . 80
2.4 Knowledge Management. 80

3 Scenario . 81
3.1 Constraint Satisfaction Problem (CSP) 82
3.2 Case Study: Computer Configuration Problem 83
3.3 Constraint Graph . 84

4 Mapping Process . 84
5 Knowledge Integration Framework . 92

5.1 Algorithms for Detecting and Correcting
Overlappings . 94

6 Evaluation . 97
6.1 Mapping Quality . 99
6.2 Configuration Quality . 100

7 Conclusions . 102
References . 103

Chapter 5

Simulation-Based Systems Design in Multi-actor
Environments . 107
Michele Fumarola, Mamadou D. Seck, Alexander Verbraeck

1 Introduction . 107
1.1 Outline of the Chapter . 108

2 Designing Systems . 108
3 Systems Approaches . 111

3.1 Systems Simulation in Design . 112
3.2 Soft Systems Methodology . 113

Contents IX

4 Designing a Multimethodological Approach 118
4.1 Component Based Modeling . 118
4.2 Different Levels of Abstraction . 119
4.3 Structing Alternatives . 121
4.4 Participatory Design . 123

5 Conclusion . 123
References . 124

Chapter 6

Distributed Simulation Using RESTful Interoperability
Simulation Environment (RISE) Middleware 129
Khaldoon Al-Zoubi, Gabriel Wainer

1 Introduction . 129
2 Background on Distributed Simulation 132
3 RISE Middleware API . 136
4 RISE-based Distributed CD++ Simulation Algorithms 137

4.1 Distributed CD++ (DCD++) Architecture 139
4.2 DCD++ Simulation Synchronization Algorithms 143

5 Distributed Simulation Interoperability Standards 148
References . 155

Chapter 7

Agile Net-Centric Systems Using DEVS Unified Process 159
Saurabh Mittal

1 Introduction . 160
2 Related Technologies . 162
3 DEVS Unified Process with DEVS/SOA 163

3.1 Discrete Event Systems Specification 163
3.2 Web Services and Interoperability Using XML 165
3.3 An Abstract DEVS Service Agent 166
3.4 DEVS/SOA Framework for Net-Centric Modeling

and Simulation . 166
3.5 DEVS Unified Process a.k.a DUNIP 169

4 Multi-layered Agent-Based Test Instrumentation System
Using GIG/SOA . 171
4.1 Deploying Test Agents over the GIG/SOA 172
4.2 Implementation of Test Federations 173

5 Abstract DEVS Service Wrapper . 174
6 Workflow Composition and DoDAF-Based Mission

Threads . 175
6.1 Web Service Work Flow Formalism 177
6.2 Mapping of DEVS, BPEL and DoDAF Artifacts

with WSWF Formalism . 180
7 Case Study . 182

X Contents

7.1 DEVS Wrapper Agent . 182
7.2 Workflow Design, Analysis and Execution 185

8 Agility in DEVS Unified Process . 191
9 Conclusions and Future Work . 193
10 Acronyms . 196
References . 197

Chapter 8

Systems Engineering and Conversational Agents 201
James O’Shea, Zuhair Bandar, Keeley Crockett

1 Introduction . 201
2 The Scope of CAs . 202

2.1 Spoken Dialogue Systems . 202
2.2 Chatterbots . 203
2.3 Natural Language Processing Based Dialogue

Management Systems . 203
2.4 Goal-Oriented CAs . 204
2.5 Embodied CAs . 206

3 Practical Applications of CAs . 207
3.1 CAs for Selling . 207
3.2 A GO-CA Student Debt Advisor 210

4 Design Methodology for GO-CAs . 212
4.1 Knowledge Engineering . 212
4.2 Implementation . 213
4.3 Scripting Language . 214
4.4 Evaluation . 217
4.5 Maintenance . 219

5 Novel Algorithms – Short Text Semantic Similarity 221
5.1 The STASIS Algorithm . 222
5.2 Latent Semantic Analysis . 224

6 Research Opportunities . 225
7 Conclusions . 226
References . 227

Chapter 9

Advanced Concepts and Generative Simulation Formalisms
for Creative Discovery Systems Engineering 233
Levent Yilmaz, C. Anthony Hunt

1 Introduction . 233
1.1 Motivation . 236
1.2 Scientific Problem Solving with Computational

Models . 236
2 Models and Principles of Creative Problem Solving 239

2.1 Background . 239
2.2 Models of Creative Cognition . 240

Contents XI

3 Generative Parallax Simulation: Basic Concepts 242
3.1 An Abstract Model of Creative Cognition 242
3.2 Abstract Specification of the Structure and

Dynamics of GPS . 243
3.3 Implications of the Ecological Perspective 246

4 Meta-simulation of GPS . 246
4.1 Conceptual Model for GPS Simulator 246
4.2 Meta-simulation Parameters . 249
4.3 Qualitative Analysis of Results and Discussion 249

5 Discussion and Future Work . 255
5.1 Improving Autonomy in Schema Evolution and

Diffusion . 255
5.2 Toward Adaptive Growth of Analogue Ensembles

for Creative Discovery Systems . 256
5.3 Strategic and Context Sensitive Exploration 256

6 Conclusions . 257
References . 257

Chapter 10

Establishing a Theoretical Baseline: Using Agent-Based
Modeling to Create Knowledge . 259
Jose J. Padilla, Saikou Y. Diallo, Andres A. Sousa-Poza

1 Introduction . 259
2 Systems Engineering and Its Challenges 260
3 Theory and Theory Creation . 263
4 Building Theory through M&S . 266

4.1 Existing M&S Methodologies/Methods for Theory
Building . 270

4.2 A Methodology for Theory Building Using M&S 274
4.3 Selecting the Modeling Paradigm 275

5 Test Case: Building a Theory of Understanding Using
Agents . 276
5.1 Brief on ABM and Its Relevance on Theory

Building . 276
5.2 Importance of Understanding to Problem

Situations . 277
5.3 Implementing the Methodology for Theory Building

Using M&S . 277
6 Final Remarks and Conclusion . 281
7 List of Acronyms . 282
References . 282

XII Contents

Chapter 11

“The User Around the Marketplace”: Automatic
Engineering of Interactive E-commerce Applications 285
Mart́ın López-Nores, Yolanda Blanco-Fernández, José J. Pazos-Arias

1 Introduction . 285
2 Background . 287
3 Elements to Engineer Personalized Interactive

Applications . 290
4 The Personalization Procedures . 293

4.1 Reasoning-Driven Recommendation of Items 293
4.2 Composition of Interactive Commercial

Applications . 295
4.3 Feedback . 296

5 Our Proposal in DTV Advertising . 297
5.1 A Simple Example . 298
5.2 Experimental Evaluation . 300

6 Conclusion . 303
References . 303

Chapter 12

Wireless Sensor Network Anomalies: Diagnosis and
Detection Strategies . 309
Raja Jurdak, X. Rosalind Wang, Oliver Obst, and Philip Valencia

1 Introduction . 309
2 Types of WSN Anomalies . 310

2.1 Network Anomalies . 313
2.2 Node Anomalies . 315
2.3 Data Anomalies . 316
2.4 Other Anomalies . 318

3 Anomaly Detection Strategies . 318
3.1 Architecture . 320
3.2 Usability . 321

4 Design Guidelines and Conclusions . 323
References . 324

Chapter 13

Enterprise Ontologies –Better Models of Business 327
Ian Bailey

1 Introduction – Intelligence-Led Systems Engineering 327
1.1 Introduction – Business Ontologies 329
1.2 Information System Requirements Gathering 329
1.3 Driving-Out Complexity . 331
1.4 Stovepipes . 331

2 What Is Needed for Better Information Systems? 332

Contents XIII

2.1 Better Analysis – Getting Your Hands Dirty 333
2.2 Flexibility – Using the Full Range of Logic 334
2.3 Consistency – Sophisticated, Repeatable Analysis . . . 335
2.4 Implementation – New Ways of Storing 335

3 A New Approach to Information Systems Development 336
3.1 Introducing the BORO Method 336
3.2 Managing Time . 337

4 Addressing Arguments against Ontology 340
5 Conclusions . 341

5.1 Literature Search . 341
References . 341

Author Index . 343

List of Contributors

Kevin MacG. Adams
National Centers of System of

Systems Engineering

Old Dominion University

Norfolk, VA, USA

Khaldoon Al-Zoubi
Dept. of Systems and Computer

Engineering Carleton University

Ottawa, ON. K1S 5B6

Canada

Ian Bailey
Model Futures Limited

London, United Kingdom

Zuhair Bandar
School of Computing, Mathematics &

Digital Technology

Manchester Metropolitan University

Manchester M1 5GD

United Kingdom

Yolanda Blanco-Fernández
Department of Telematics

Engineering

University of Vigo

Vigo, Spain

Keeley Crockett
School of Computing, Mathematics &

Digital Technology

Manchester Metropolitan University

Manchester M1 5GD

United Kingdom

Saikou Y. Diallo
Virginia Modeling Analysis and

Simulation Center

Old Dominion University

Norfolk, VA, USA

Michele Fumarola
Delft University of Technology

The Netherlands

C. Anthony Hunt
Department of Bioengineering and

Therapeutic Sciences

University of California

San Francisco, CA, USA

Dietmar Jannach
Technical University of Dortmund

Baroperstraße 301

D-44227 Dortmund, Germany

Raja Jurdak
CSIRO ICT Centre

and University of

Queensland/School of ITEE

Brisbane, QLD

Australia

Charles B. Keating
Engineering Management and

Systems Engineering

Old Dominion University

Norfolk, VA, USA

XVI List of Contributors

Martín López-Nores
Department of Telematics

Engineering

University of Vigo

Vigo, Spain

Saurabh Mittal
Dunip Technologies

Tempe, AZ, USA

Miklos Nagy
KMI, Open University

Milton Keynes, MK7 6AA

England, UK

Oliver Obst
CSIRO ICT Centre

Sydney, NSW

Australia

James O’Shea
School of Computing, Mathematics &

Digital Technology

Manchester Metropolitan University

Manchester M1 5GD

United Kingdom

José J. Padilla
Virginia Modeling Analysis and

Simulation Center

Old Dominion University

Norfolk, VA, USA

José J. Pazos-Arias
Department of Telematics

Engineering

University of Vigo

Vigo, Spain

Mamadou D. Seck
Delft University of Technology

The Netherlands

Andres Sousa-Poza
Engineering Management and

Systems Engineering

Old Dominion University

Norfolk, VA, USA

John F. Sowa
VivoMind Research, LLC

Croton on Hudson, New York

USA

Claudia Szabo
Department of Computer Science

National University of Singapore

Singapore

Andreas Tolk
Engineering Management and

Systems Engineering

Old Dominion University

Norfolk, VA, USA

Philip Valencia
CSIRO ICT Centre

Brisbane, QLD

Australia

Maria Vargas-Vera
Computing Department

Open University

Milton Keynes, MK7 6AA

England, UK

Alexander Verbraeck
Delft University of Technology

The Netherlands

Gabriel A. Wainer
Dept. of Systems and Computer

Engineering Carleton University

Ottawa, ON. K1S 5B6

Canada

X. Rosalind Wang
CSIRO ICT Centre

Marsfield, NSW

Australia

Levent Yilmaz
Department of Computer Science and

Software Engineering

Auburn University

Auburn, AL, USA

Resumes of Contributing Authors

Kevin MacG. Adams is a Principal Research Scientist at the National Centers for

System of Systems Engineering (NCSoSE) of Old Dominion University in Norfolk,

Virginia. He holds a Ph.D. in systems engineering from Old Dominion University,

dual Master’s degrees in Materials Engineering and Naval Architecture and Marine

Engineering from the Massachusetts Institute of Technology, and a Bachelor’s degree

in Ceramic Engineering from Rutgers University. His research focuses on system of

systems engineering, systems engineering methodologies, software engineering

project management frameworks, the philosophy of science, and the use of enterprise

architectures. He is a retired Navy submarine engineering duty officer, a senior

member of the Institute of Electrical and Electronics Engineers (IEEE), a member of

the American Association of University Professors, and the United States Naval

Institute.

Khaldoon Al-Zoubi is a Ph.D. student in Electrical Engineering within the Department

of Systems and Computer Engineering, Carleton University, Ottawa, Canada. He is also

a senior software analyst and programmer with over 13 years of industry experience

occupying a number of seniority and leadership positions. His industry experience

spreads over wide range of areas such as embedded software and mobility, air-traffic

software management and telecommunications, and security software for explosive and

narcotics detections.

Ian Bailey founded Model Futures in 2004 to provide software, consultancy and

training in information management. He specializes in enterprise architecture and

ontology. He was the technical lead in the development of the UK MOD Architecture

Framework (MODAF) and co-developed the SOA views for the NATO Architecture

Framework. He is the lead modeler in the multi-nation IDEAS ontology project,

which targets to become a common foundation ontology for defense enterprise

architecture. Previous to working with MODAF, Ian was editor of the ISO10303-233

systems engineering standard. Most of his professional life prior to Model Futures

was spent integrating and re-engineering large scale information systems for

customers such as Amec, BAE Systems, BP, Shell and Volvo. He has a Ph.D. in data

mapping and a first degree in mechanical engineering. He is a fellow of the Institute

of Engineering and Technology (IET).

Zuhair Bandar is a Reader in Intelligent Systems at MMU. He received his Ph.D. in

AI and Neural Networks from Brunel University, his M.Sc. in Electronics from the

University of Kent and his B.Sc. in Electrical Engineering from Mosul University. He

is a co-founder of the ISG and his research interests include the application of AI to

XVIII Resumes of Contributing Authors

psychological profiling. He is the Technical Director of Convagent Ltd, an MMU

spinout company which provides business rule automation with natural language

interfaces using conversational agents.

Yolanda Blanco-Fernández was born in Orense, Spain in 1980. She received the

Telecommunications Engineering Degree from the University of Vigo in 2003, and

the Ph.D. degree in Computer Science from the same University in 2007. Nowadays,

she is an assistant professor in the Department of Telematics Engineering, teaching in

courses related to network management systems, multimedia services and operating

systems. Her main research activity involves development of personalization services

for Interactive Digital TV and e-commerce, by applying technological foundations

borrowed form the Semantic Web, Web 2.0 and cloud computing.

Keeley Crockett is a Senior Lecturer at MMU. She received her Ph.D. in Machine

Learning from MMU and her B.Sc. in Computation from the University of

Manchester Institute of Science and Technology. She is a committee member of the

IEEE Women into Computational Intelligence Society and a full member of the IEEE

Computational Intelligence Society. Her main research interests include fuzzy

decision trees, applications of fuzzy theory, and data mining. She is a knowledge

engineer and founding member of Convagent Ltd.

Saikou Y. Diallo is a Research Assistant Professor with the Virginia Modeling,

Analysis and Simulation Center (VMASC) at Old Dominion University, Suffolk, VA.

He received his B.Sc. in Computer Engineering and his M.S. and Ph.D. in Modeling

and Simulation from Old Dominion University. He is author of several awarded

articles on interoperability and composability. His research focus is on the theory of

interoperability.

Michelle Fumarola is a Ph.D. student at the Systems Engineering Group of Delft

University of Technology. His Ph.D. research is focused on developing simulation

games for decision making with a strong visual component.

C. Anthony Hunt is Professor of Bioengineering and Therapeutic Sciences at the

University of California in San Francisco, where he directs the BioSystems Group. He

earned a Ph.D. in pharmaceutical chemistry from the University of Florida and B.Sc.

degrees in both chemistry and applied biology from the Georgia Institute of

Technology. He chairs the BioSystems Group that develops and uses advanced

modeling and simulation methods to achieve deeper insight into the networked

micromechanisms that link molecular level events with higher level phenomena and

operating principles at cell, tissue, organ, and organism levels in the presence and

absence of interventions. He is a member of the Editorial Boards of Simulation,

Transactions of the SCS, the International Journal of Knowledge Discovery in

Bioinformatics, and the Journal of Computational Biology and Bioinformatics

Research. He is a Fellow of the American Association for the Advancement of

Science and the American Association of Pharmaceutical Scientists, a Director of The

McLeod Modeling and Simulation Network, and a member of several professional

scientific and engineering associations.

 Resumes of Contributing Authors XIX

Dietmar Jannach is a full professor at Technische Universität Dortmund, Germany

and the head of the e-Services Research Group. His research interests include

interactive recommender systems and conversational preference elicitation,

engineering of knowledge-based systems and web applications as well as the

application of Artificial Intelligence in industry. He has authored and co-authored

more than 100 scientific papers in these areas and published papers in journals such as

Artificial Intelligence, AI Magazine, IEEE Intelligent Systems and on conferences

such as IJCAI and ECAI.

Raja Jurdak is a Principal Research Scientist at CSIRO ICT Centre. He holds a

Ph.D. in Information and Computer Sciences and an MS in Computer Engineering

from the university of California, Irvine and a BE in Computer and Communications

Engineering from the American University of Beirut. He is an adjunct Associate

Professor at University of Queensland's School of Information Technology and

Electrical Engineering. He is also a member of the IEEE and the IEEE

Communications Society. His current research interests focuses on modeling,

optimization, and real world deployments of energy-efficient and highly responsive

sensor networks. He has over 40 peer-reviewed journal and conference publications,

as well as a book published by Springer titled Wireless Ad Hoc and Sensor Networks:

A Cross-Layer Design Perspective.

Charles B. Keating is a Professor of Engineering Management and Systems

Engineering at Old Dominion University located in Norfolk, Virginia. He also serves

as the Director for the National Centers for System of Systems Engineering

(NCSoSE) where his research is focused on development and testing of theory,

methodologies, and technologies to more effectively deal with complex system

problems. Prior to joining the university, Dr. Keating had over 12 years of experience

in command and technical engineering management positions in the U.S. Army,

Texas Instruments, and Newport News Shipbuilding. Dr. Keating holds a B.Sc. in

Engineering from the United States Military Academy (West Point), an M.A. in

Management from Central Michigan University, and a Ph.D. in Engineering

Management from Old Dominion University. His current research interests include:

System of Systems Engineering, Complex System Problem Domains, and Complex

System Governance.

Martín López-Nores was born in Pontevedra, Spain in 1980. He received the

Telecommunications Engineering Degree from the University of Vigo in 2003, and

the Ph.D. degree in Computer Science from the same University in 2006. Nowadays,

he is an associate professor in the Department of Telematics Engineering, teaching in

courses related to computer networks, operating systems and information services.

Starting from works on applied formal specification techniques, his research interest

have evolved to embrace the design and development of interactive services for a

range of consumer electronics devices, the design and evaluation of communication

protocols and innovative applications for mobile ad-hoc networks, and the

management of health-related data in semantics-based recommender systems and

pervasive computing environments.

XX Resumes of Contributing Authors

Saurabh Mittal is the President and founder of Dunip Technologies, Tempe, AZ,

USA and is also a Research Scientist at US Air Force Research Lab (AFRL), 711th

Human Performance Wing, for L-3 Communications, Link Simulation and Training

Branch in Mesa, AZ. His work at AFRL involves multiformalisms, cognitive

modeling and net-centric systems engineering. He holds a Ph.D. (2007) and an M.S.

(2003), both in Electrical and Computer Engineering from the University of Arizona,

Tucson. He was recognized with Golden Eagle Award, highest recognition to any

civilian by Joint Interoperability Test Command and US Air Force, supporting the US

Warfighter for his work on Generic Network System Capable of Planned Expansion

(GENETSCOPE) in 2006. His research focuses on Discrete Event modeling using

DEVS Formalism, net-centric system of systems engineering with DEVS Unified

Process, executable architectures using Department of Defense Architecture

Framework (DoDAF), simulation-based computing and large scale M&S

infrastructures using Service oriented architecture. He is a member of Institute of

Electrical and Electronics Engineers (IEEE), Association of Computer Machinery

(ACM), and Society for Modeling and Simulation International (SCS).

Miklos Nagy is a Ph.D. candidate at the Open University’s Knowledge Media

Institute. His research interests are Uncertain Reasoning, Ontology Mapping, Multi-

agent systems and information integration using Semantic Web technologies. His

current research focuses on the development of intelligent multi-agent systems that

can exploit the emerging Semantic Web’s large-scale data. Miklos Nagy received his

MSc in Information Engineering from the University of Miskolc, Hungary.

Oliver Obst is Research Scientist at the Adaptive Systems Team at the Australian

Commonwealth Scientific and Research Organization (CSIRO) in Sydney. He holds a

Ph.D. and a M.Sc. in computer science, both from the University of Koblenz-Landau

in Koblenz, Germany. He is affiliated as an honorary associate with the School of

Information Technologies of the University of Sydney. His research fields are

information processing in neural networks, the application of information-theory to

guide self-organization in complex systems, the representation of sensory

information, as well as the emergence of coding for both technical and biological

systems. His work involves development of new machine learning algorithms and

architectures, as well as their applications to real world problems, for example in fault

detection in distributed systems, such as smart electrical grids or sensor networks. He

is a member of the International Neural Network Society (INNS), and the German

Informatics Association (GI e.V.).

James O’Shea is a senior lecturer at Manchester Metropolitan University (MMU).

He received his B.Sc. in Chemistry from Imperial College. He worked in computer

R&D at International Computers and as an independent consultant under the UK

Microelectronics Applications Project until 1985. After joining MMU, he developed a

research interest in AI and co-founded the Intelligent Systems Group (ISG). In

addition to his work in the field of CAs, he is one of the inventors of the Silent Talker

lie detector, which has attracted worldwide interest.

Jose J. Padilla is a Post Doctoral Research Associate with the Virginia Modeling,

Analysis and Simulation Center (VMASC) at Old Dominion University, Suffolk, VA.

 Resumes of Contributing Authors XXI

He received his Ph.D. in Engineering Management from Old Dominion University.

He also holds a B.Sc. in Industrial Engineering from the Universidad Nacional de

Colombia, Medellín, and an M.B.A. International Business from Lynn University,

Boca Raton, Florida. His research interests are on the nature of the process of

understanding and how it contributes to the perception of complexity for a human or a

computer agent.

José J. Pazos-Arias is Full Professor at Department of Telematics Engineering at the

University of Vigo (Spain). He received his degree in Telecommunications

Engineering from the Technical University of Madrid (Spain-UPM) in 1987, and his

Ph.D. degree in Computer Science from the Department of Telematic Systems

Engineering at the same University in 1995. He is the director of the Interactive

Digital TV Laboratory, which is currently involved with national and international

projects, receiving funds from both public institutions and industry. With the aim of

combining the power of semantic reasoning technologies and the participation

phenomena arising in the knowledge society, he is currently involved in the use of

social-semantic technologies to assist the users when it comes to facing complex

decision takings in the cloud. In this regard, he is highly interested in gaining deeper

knowledge in social network analysis and emergent semantics.

Mamadou D. Seck received his Ph.D. degree from the Paul Cezanne University of

Marseille and his MS and M.Eng Degrees from Polytech’ Marseille, France. He is

currently an Assistant Professor in the Systems Engineering section at the

Technology, Policy, and Management department of Delft University of Technology.

His research interests include modeling and simulation formalisms, dynamic data

driven simulation, human behavior representation and social simulation, and agent

directed simulation.

Andres Sousa-Poza is an Associate Professor of Engineering Management and

Systems Engineering at Old Dominion University. He holds a B.Sc. in Mechanical

Engineering from the University of Cape Town, South Africa, and M.S. and Ph.D.

degrees in Engineering Management from the University of Missouri-Rolla, USA. He

is the co-founder and present chair of the Management and Engineering in Complex

Situations Forum (MECS Forum). He is affiliated with the National Centers for

System of Systems Engineering (NCSoSE) as a senior researcher.

John F. Sowa spent thirty years working on research and development projects at

IBM and is a cofounder of VivoMind Research, LLC. He has a B.Sc. in mathematics

from MIT, an MA in applied mathematics from Harvard, and a Ph.D. in computer

science from the Vrije Universiteit, Brussel. He is a fellow of the American

Association for Artificial Intelligence. With his colleagues at VivoMind, he has been

developing novel methods for using logic and ontology in systems for reasoning and

language understanding. He designed the language of conceptual graphs, which has

been adopted as one of the three normative dialects of the ISO/IEC standard for

Common Logic.

Claudia Szabo is a Research Assistant at the Department of Computer Science,

National University of Singapore. She received her B.Sc. from the "Politehnica"

University of Bucharest and is a Ph.D. candidate in Modeling and Simulation at the

XXII Resumes of Contributing Authors

National University of Singapore. Her research evaluates simulation composability

and interoperability, with a focus on formal validation. A unique aspect of her work is

to enable trade-off analysis between validation accuracy and computational cost. She

is the author of several awarded articles of composability and validation, including the

2009 ACM SIGSIM Best Ph.D. Student Paper Award.

Andreas Tolk is Associate Professor for Engineering Management and Systems

Engineering at Old Dominion University in Norfolk, Virginia. He holds a Ph.D. and

an M.S. in computer science, both from the University of the Federal Armed Forces

of Germany in Munich. He is affiliated as a Senior Research Scientist with the

National Centers for System of Systems Engineering (NCSoSE) in Norfolk, Virginia,

and the Virginia Modeling Analysis and Simulation Center (VMASC) in Suffolk,

Virginia. His research focuses on integratability and composability of model-based

solutions and modeling and simulation based systems engineering. He is member of

the American Society for Engineering Management (ASEM), Association for

Computing Machinery (ACM), Institute of Electrical and Electronics Engineers

(IEEE), Military Operational Research Society (MORS), National Defense Industrial

Association (NDIA), Simulation Interoperability Standards Organization (SISO), and

Society for Modeling and Simulation International (SCS). He was recognized with the

Excellence in Research Award of the Frank Batten College of Engineering and

Technology and received the first Technical Merit Award of SISO.

Philip Valencia is a Research Engineer at the Autonomous Systems Laboratory

within the Commonwealth Scientific and Research Organization (CSIRO) ICT

Centre. He holds bachelor degrees in Engineering (Electronic) and IT from the

Queensland University of Technology, Brisbane, Australia and is undertaking Ph.D.

studies at the University of Queensland. He has eight years research experience with

wireless sensor network technologies as well as background in machine learning

which he has brought together to research distributed online learning for wireless

sensor and actuation networks.

Maria Vargas-Vera is a Lecturer in Computing at the Open University, England UK.

She received her Ph.D. from the Artificial Intelligence Department at Edinburgh

University and her MSc in Computer Science from the National University of Mexico

(UNAM). She was awarded Fellow of the British Computer Society (FBCS) from

November 2009. Her current research focuses on Automatic Construction of

Ontologies from Text, Ontology Mapping and E-Learning Applications using

Semantic Web Technologies. Maria Vargas-Vera has published many research papers

in prestigious journals and international conferences and she is a member of program

committees of international conferences and workshops. Also, she is an Associated

Editor of the International Journal of Knowledge and Learning (IJKL) and the Journal

of Emerging Technologies in Web Intelligence (JETWI).

Alexander Verbraeck got his M.Sc. in mathematics in 1987 and his Ph.D. in 1991

from Delft University of Technology in the Netherlands. Until 1992 he also had his

own software company, focusing on consultancy and software development for

educational institutes. He worked as assistant professor in information systems until

1995, when he was appointed associate professor in the systems engineering group of

 Resumes of Contributing Authors XXIII

the faculty of Technology, Policy and Management (TPM) of TU Delft. He is the

chair of the Systems Engineering research group and he has been department chair of

the Department of Information, Communication and Systems of the TPM Faculty of

TU Delft. He was the original author and program manager of the BETADE strategic

research program of TU Delft. He has also been appointed part-time research

professor at the R.H. Smith School of Business of the University of Maryland, USA.

Gabriel Wainer is Associate Professor at the Department of Systems and Computer

Engineering of Carleton University, Ottawa, ON, Canada. He is head of the Advanced

Real-Time Simulation lab, located at Carleton University's Centre for advanced

Simulation and Visualization. He received the M.Sc. (1993) and Ph.D. (1998) in

Computer Science from the Universidad de Buenos Aires, Argentina, and IUSPIM

(now Polytech de Marseille), Université Paul Cézanne, Aix-Marseille III, France.

Previously, he was Assistant Professor in the Computer Sciences Department of the

Universidad de Buenos Aires, and held visiting positions in numerous places,

including the Arizona Center of Integrated Modeling and Simulation (ACIMS,

University of Arizona), Laboratory of Systems Sciences of Marseille (LSIS-CNRS),

University of Nice, Polytech de Marseille, INRIA Sophia-Antipolis (France). He is

the Vice-President Publications, and was a member of the Board of Directors of the

Society for Computer Simulation International (SCS). He is the author of three books

and over 200 articles in different venues. He has collaborated in the organization of

over 100 conferences and is co-founder of the SIMUTools Conferences. He has been

the recipient of various awards, including the IBM Eclipse Innovation Award, a

Leadership award by SCS, and various Best Paper awards. He has been awarded

Carleton University's Research Achievement Award and the First Bernard P. Zeigler

DEVS Modeling and Simulation Award.

Rosalind Wang is currently a research scientist in the ICT Centre, CSIRO. She

received her Ph.D. in Mechatronics Engineering from the University of Sydney,

Australia in 2009. Her research interests are machine learning, graphical models, and

pattern recognition.

Levent Yilmaz is Associate Professor of Computer Science and Software

Engineering and holds a joint appointment with the Industrial and Systems

Engineering department at Auburn University. He received his B.Sc. degree in

Computer Engineering and Information Sciences from Bilkent University and M.S.

and Ph.D.. degrees in Computer Science from Virginia Tech. His research interests

are in Modeling & Simulation, Agent-directed Simulation, and Complex Adaptive

Systems, focusing in theory and methodology of modeling and simulation to advance

scientific discovery and theory formation, and to develop robust decision support

systems and models of socio-technical, cognitive, and cultural systems, such as

science of science and innovation policy. He is a member of the Board of Directors of

SCS and is the Editor-in-Chief of Simulation: Transactions of the Society for

Modeling and Simulation International. He is member of ACM, IEEE Computer

Society, Society for Computer Simulation International (SCS), and Upsilon Pi

Epsilon.

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 1–22.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 1

Towards Intelligence-Based Systems Engineering and

System of Systems Engineering

Andreas Tolk, Kevin MacG. Adams, and Charles B. Keating

Department of Engineering Management and Systems Engineering
National Centers of System of Systems Engineering

Old Dominion University
Norfolk, Virginia 23508-2563, USA

atolk@odu.edu, kmadams@odu.edu, ckeating@odu.edu

Abstract. This introductory chapter defines intelligence-based systems with
focus on semantic systems, simulation systems, and intelligent agents. Semantic
systems define the foundation to communicate systems engineering challenges
using logic, simulation systems introduce the dynamic component, and intelli-
gent agents can introduce alternatives roles. It then gives an overview of tradi-
tional systems engineering as well as system of systems engineering showing
the need to emphasize the system of systems perspective in modern engineering
approaches. Finally, both views are aligned, providing a scope for intelligence-
based systems engineering and the contributions of the following book chapters
are summarized in relationship to this scope.

Keywords: intelligent agents, ontology, semantic system, simulation system,
system of systems engineering, systems engineering.

1 Introduction

The definition of insanity as “doing the same thing over and over again and expecting
different results” is attributed to Albert Einstein. In contrast, a collective definition for
intelligence is the ability to comprehend, to understand and profit from experience, or
to make sense out of the environment and react appropriately. In the light of these two
extremes, this introductory chapter defines what intelligence-based systems are, and
what this means for systems engineering and systems of systems engineering.

Starting with a summary of the state of the art, as among others identified by
Buede [1], it can be observed that most of our current systems have been designed
starting with a set of well defined requirements. These requirements are often based
on operational concepts that identify context and external systems and that are used
to derive (a) input and output requirements that identify what a system shall accept
and produce, (b) system-wide and technology requirements that are building a set of
operational constraints, (c) trade-off requirements that allow optimizing system de-
sign decisions within these constraints, and (d) qualification requirements that allow
validation and verification to be conducted. These requirements lead to building a
functional architecture describing the capabilities of the system, a physical architec-
ture that describes the resources that comprise the system, and finally an allocated

2 A. Tolk, K.M. Adams, and C.B. Keating

architecture that merges the functional and the physical view, including interface
design, integration and qualification. The result is a well-defined system that has a
well defined behavior for all identified input constellation in the form of expected
output produced. As a rule, the capabilities defined in the functional architecture
are fixed. The system will do the same thing over and over again. Under many cir-
cumstances, this is exactly what we would want. Nobody wants to push down the brake
pedal of a car expecting anything else but that the car stops. We expect the same
results. However, what if the environment changes? What if the world in which a
system was originally defined no longer exists?, like we currently see it in so many
military systems that were defined at the time of the Cold War, but still have to be
used today? Simply expecting the system to change its behavior qualifies as insanity,
so we need intelligent systems that are able to comprehend, understand and profit
from experience.

The next section will define intelligence-based systems. Following these defini-
tions and examples, the third section will evaluate the relation of such systems with
systems engineering. The fourth section will do the same for the new and emerging
field of system of systems engineering that adds at least one additional layer of com-
plexity to the challenges to be addressed. Finally, the last section will describe the
contributions comprised in this book in the light of these findings.

2 Intelligence-Based Systems

Intelligence-based systems should not be confused with the often narrowly used term
intelligence system, which refer to a variety of Artificial Intelligence (AI) methods,
such as neural networks, evolutionary algorithms, expert systems, diagnostic systems,
symbolic AI, and other related topical areas. These systems are limited to AI applica-
tions, and intelligent systems engineering describes the engineering of such intelligent
systems, not the use of intelligence to support systems engineering. The scope we take
in this chapter – and in this book in general – includes the design and engineering of
such intelligent systems, but is not limited to this view. We are interested in merging
the state of the art of intelligence as it can be provided via AI methods to support
systems engineering and system of systems engineering. How can these three aspects
be of mutual support, resulting in better systems that are able to comprehend, under-
stand and profit from experience. This is the objective of intelligence-based systems
engineering: to base systems and their design on AI methods to build better systems.

2.1 Characteristics of Intelligence-Based Systems

In order to support this objective of intelligence-based systems engineering, it is first
important to better understand the characteristic properties of intelligence-based sys-
tems. The following list is neither complete nor exclusive, but it reflects the collective
definition of various views on AI, intelligence-based solutions, model-based predic-
tion and control, and similar contributions. Figure 1 depicts these characteristics that
are used in the collective definition, which are self-explaining, robust, fault tolerant,
adaptive, self-optimizing, deductive, learning, cooperative, autonomous, and agile. As

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 3

we will see, these terms have partly overlapping definitions and have to be understood
in the context of the collective definition, which means that not all definitions use all
terms.

Fig. 1. Characteristic Properties of Intelligence-based Systems

Self-explaining doesn’t mean that the system is obvious without any explanation
necessary, but that the system can explain how it came to a certain decision. In tradi-
tional systems, the system behavior does not change. If a system is able to modify its
behavior, it is often needed to understand how and why a decision has been made by
the system. The explanation component of expert systems used for diagnosis, which
traditionally could be generated by tracing the line of reasoning used by the underly-
ing inference engine to answer the questions: “Why is your answer to the question the
one you recommend?” For systems that are able to modify themselves being able to
explain their reason is mandatory to ensure credibility.

Robust as a characteristic property of a system means that the system behaves well
and adequate not only under ordinary conditions, but also under unusual conditions
that stress the original requirements and derived assumptions. In other words, robust
systems do not break easily, but are able to continue to behave well even under vari-
ant circumstances that could lead to failure of system.

Fault tolerant systems behave well and continue to adequately perform even if one
or more of its internal system components fail or break. It may be important to differ-
entiate between a fault, which is a defect in the system that can cause an error, which
is a subset of the system status that may lead to system failure, which is a deviation in
actual system behavior and its desired behavior according to the requirements.

Adaptive systems in general react to changes, in particular to changes in the envi-
ronment or the context of the system. Whenever the environment or context of the

4 A. Tolk, K.M. Adams, and C.B. Keating

system changes the system itself changes as well in order to accommodate these
changes. As a consequence, adaptive systems behave well and adequate even in
changing environments.

Self-organizing systems organize their internal components and capabilities in new
structures without a central or an external authority in place. These new structures can
be temporal and spatial. In some cases, instead of self-organizing the term self-
optimizing is used synonymously, although not all self-organizing structures represent
the optimal structure, but the assumption is that self-organizing systems are organiz-
ing themselves to become better.

Deductive systems are well known from mathematics: based on a set of axioms and
rules, they can deduct new insights by applying the rules to the axioms as well as to
the resulting new facts. This is done using an underlying inference engine. Applying
these ideas, deductive systems can discover new facts that they can use for their deci-
sion process on how to modify themselves to behave well and adequate.

Learning systems generally observe the achieved results and compare them with
the desired outcome. Using methods such as reinforcement learning, decisions that led
to positive results are enforced while those with negative results are avoided. Learn-
ing can also occur by observing other systems and the results of their activities. In
every case, learning is connected with the observation of cause and effects.

Cooperative systems expose social capabilities. This means that cooperative sys-
tems interact with other systems – and potentially humans as well – via some kind of
communication language. This interaction is not limited to pure observation, but such
a system can exchange plans, distribute tasks, etc. Whiteboard technologies are as often
used as direct communication. An interesting side effect is that such cooperative sys-
tems can themselves then become a self-organizing system of systems.

An autonomous system performs the desired tasks and behaves well and adequate
even in unstructured environments without continuous human guidance. In the do-
main of robotics, autonomy is described as a collection of additional characteristics,
in particular sensor capabilities to observe chaotic, unpredicted variables and to react
to keep the system on track utilizing the available degrees of freedom.

In general, agile systems are able to manage and apply knowledge effectively so
that they behave well and adequate in continuously changing and unpredicted envi-
ronments. In systems engineering, agility is often in particular connected with the
development phase of systems and reflects the ability to immediately react on changes
in the requirements.

Without doubt, additional characteristic properties can be identified that are desir-
able for such systems, such as self-healing. However, if a system is adaptive, elf-
optimizing, and fault-tolerant, self-healing is a result. Similar arguments can be made
for the quest to reduce risk and vulnerability and other desirable characteristics.

2.2 How to Capture Intelligence

There are many methods applied in AI to capture intelligence. This chapter deliberately
focuses on a limited subset that is of particular interest to systems engineering and for
which examples are given in other chapters of this books. Using the well known cate-
gories of Ackoff [2], we distinguish between data, information, knowledge, under-
standing, and wisdom. We understand data as a collection of facts. Information is data

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 5

in a context allowing answering questions like who, what, where, and when. Knowl-

edge is applied information answering the question how. Understanding introduces an
answer to the question why, and wisdom finally evaluates understanding and general-
izes the findings, allowing application of understanding in other domains than the
original source of gaining understanding.

In this chapter and this book, we apply semantic systems or use general ontological
means to capture and model data and information. Applying these pieces of informa-
tion on who, what, where, and when in the context of simulation introduces the as-
pects addressed by knowledge: how. Adding agents allows running not only one but
many simulations and comparing alternative courses of action. To communicate be-
tween agents, ontology is needed to provide the basis for the communication language
supporting the exchange of information. Figure 2 shows the three elements applied in
this book.

Fig. 2. Components to Capture Intelligence

A recent book edited by Yilmaz and Ören [3] copes with the various aspects of
agent-directed simulation and systems engineering. They also show the increasing
importance modeling and simulation methods in general and agent-directed simula-
tions in particular play for intelligence-based systems. Software agents expose many
of the characteristic properties described earlier in this chapter.

Agents help designing communication and coordination protocols in the system
and may even become a surrogate for a human user. Simulation helps answering
questions about the achieved behavior, performance and robustness, giving first feed-
back about the quality of the design. In addition, simulation can be used for decision
support by providing “what if” scenarios as well as for training and education pur-
poses. In addition, agents are likely to replace, to a certain degree, objects that have
traditionally been exploited in systems engineering. An interesting aspect evaluated is
to replace the functions traditionally developed within the functional architecture of a

6 A. Tolk, K.M. Adams, and C.B. Keating

system as defined in [1] with agents. As this agent already possesses many character-
istics of intelligence-based systems, the result is likely to be close to our objective.
However, all three aspects shown in figure 2 are important.

Another example of interest described in [3] is autonomic computing, as it also
shares many characteristic properties. Autonomic computing is a potential strategy
and philosophy in systems design and management that aims to cope with increasing
complexity in the presence of constant change addressing the area of systems of sys-
tems engineering which involves: (a) large scope and great complexity of integration
efforts; (b) collaborative and dynamic engineering; (c) engineering under the condi-
tion of uncertainty; (d) continuing architectural reconfiguration; (e) simultaneous
modeling and simulation of emergent behavior; and (f) stakeholders with competing
goals and objectives.

Utilizing the characteristics of software agents, autonomic systems are based on ar-
chitectures and mechanisms that facilitate self-configuration and adaptation through
learning, anticipation, and robust designs to be able to adjust and fine tune system
parameters to emerging situations in this environment. The main characteristics are
self-configuration, self-healing, and self-optimization. The autonomic computing
control loop moves from gathering data from resources in the system’s environment
(sensor) to registering to be notified as the sensors observe changes in the environ-
ment (monitor). Next, the status of the environment and operational components’
ability to react to change is perceived, interpreted, and understood (analyze) while
necessary information about the managed resources, data, and policies are being pro-
vided to the system (knowledge). If the analysis and knowledge cannot identify a
proper reaction to unforeseen environmental conditions, the reasoning and planning
components take control to generate a new plan and identify a sequence of actions to
act on the system configurations. Then, those actions are translated into executable
commands (execute). These key tenets of autonomic systems (sensor, monitor, ana-
lyze, knowledge, reason/plan, execute) provide a roadmap for building intelligence-
based systems using all three components mentioned above.

However, the title of this book is not “systems engineering of intelligence-based
systems,” but “intelligence-based systems engineering,” which also includes the ap-
plication of these methods and technologies to improve the traditional systems engi-
neering process and the emerging new field of system of systems engineering. The
next section will describe the principles of systems engineering and identify where
intelligence-based methods can be applied.

3 Systems Engineering

The genesis for systems engineering in particular in the United States has been attrib-
uted to complexity. Early pioneers in the systems engineering field emphasize in-
creasing system complexity as the principal causative factor, although they recognize
that this is far from a complete explanation [4] [5]. To explain this, some historical
background is warranted.

In the late 1930s the fledgling radio, television, and telephone industries in the
United States recognized the need for a systems approach in the development of mod-
ern telecommunications services. The Radio Corporation of America (RCA) and its

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 7

subsidiary, the National Broadcasting Company (NBC) were interested in the expan-
sion of their television broadcast domain. At the same time, the Bell Telephone Com-
pany was interested in the expansion of their long-distance telephone network. Both
companies initiated technical studies aimed at increasing their markets through the
use of new broadband technologies that were beginning to emerge in the early 1940s.
However, these exploratory studies and experimentation were interrupted by the Sec-
ond World War.

During the Second World War, the American military used large numbers of scien-
tists and engineers to help solve complex logistical and strategic bombing problems
related to the war effort. Many of these efforts made significant contributions to the
philosophy and techniques of what was then called Operations Research. At the same
time, the need for many novel types of electronic gear for airborne use gave rise to a
wide variety of component devices, popularly known as black boxes. These were
ingenious devices, but their application in terms of the entire system of which they
were merely parts was a matter of improvisation [4]. Inevitably, many of the engi-
neers and scientists working on these black boxes were required, by necessity, to look
ahead to the ultimate goal – the system. When the war ended a number of corpora-
tions (most notably the RAND Corporation, the Bell Telephone Laboratories and
RCA) hired much of this pool of talented scientists and engineers to provide services
to both the government and the telecommunications industry. These seasoned practi-
tioners were able to capitalize upon the lessons from their war-time experiences in the
development and implementation of the modern telecommunications and electrical
power systems. The telecommunications system development efforts provide for
much of the early literature on systems engineering. Schlager [6], in a nationwide
survey found that the Bell Telephone Laboratories was probably the first organization
to use the term systems engineering. If true, this places the start of what we call sys-
tems engineering, in the early 1940s.

3.1 Traditional Systems Engineering

The emergence of systems engineering in the 1940s was an outgrowth of the need to
deal with large, expensive systems. The early textbooks [5] [7] [8] on systems engi-
neering had an emphasis on topics such as decision making, problem solving, and
analysis of alternatives. The texts relied heavily on the techniques and analytical
methods from Operations Research [9] [10] [11]. A 1957 definition of systems engi-
neering characterizes its early role [12].

“The design of systems in which the output is a set of specifications

suitable for constructing a real system out of hardware.” (p. 1-4)

Over the next 30 years systems engineering assumed responsibility for not only the
technical elements surrounding systems, but the life cycle management responsibili-
ties as well. Systems engineering was, in-part, responsible for the delivery of large
complicated projects of national importance that included the Polaris submarine, and
the Mercury and Gemini space programs. By 1998 the definition of systems engineer-
ing had evolved to [13].

8 A. Tolk, K.M. Adams, and C.B. Keating

“An interdisciplinary collaborative approach to derive, evolve, and

verify a life-cycle balanced system solution which satisfies customer

expectations and meets public acceptability.” (p. 11)

In 30 years, systems engineering had evolved to include life-cycle management
responsibilities, customers, and the public in its definition. Traditional Systems Engi-
neering (TSE) has developed the frameworks and methodologies [13] [14] to success-
fully conceive, design, acquire, and field large multi-purpose systems. Three often
used models developed in support of TSE most readers will recognize are (a) the
waterfall model [15], (b) the Vee-model [16], and (c) the spiral model [17].

The waterfall model is characterized by the sequential evolution of phases in which
as a rule only the two consecutive phases are connected with each other and the feed-
back is seen as the exception, not the rule. It starts with a set of requirements that are
refined for the system and its component, followed by an analysis. The analysis is
followed by the detailed design and the implementation of this design. Once the sys-
tem is implemented, it is tested and afterwards operationally used. Some newer ver-
sions include maintenance and retirement as well. All versions of the waterfall model
have the philosophy in common that if the engineer is doing a good job in all phases,
he can successfully reach the project end. The Vee-model follows a slightly different
philosophy by integrating the user into the engineering process. It starts with user
requirements and ends with user acceptance. The two parts of the Vee are built by the
phases comprised in the decomposition and definition of system components in the
downward steps, and the integration and verification phases building the upward
steps. On all levels, phases of the decomposition and definition are connected to re-
spective integration and verification phases, such as verifying that the correct parts are
built, verifying that configuration items are assembled correctly, verifying that the
system performs as requested, and validating that the system fulfills all requirements.
Overall, the feedback between the different phases and the possibility of corrections
of earlier phases that are not necessarily mistakes of the systems engineer build the
philosophy. The last model, the spiral model, is based on waterfall and Vee model
ideas. It assumes that several iterations through the phases of these models will
be needed resulting in a spiral in which each iteration leads to the next iterations ob-
jectives. Feedback is the rule and no longer the exception. The spiral model is an
iterative model that combines elements of the classic waterfall model with the charac-
teristic of prototyping and produces an evolutionary approach to engineering. The
four major phases are (1) management planning, (2) engineering, (3) customer evalua-
tion, and (4) risk analysis. The major distinguishing feature of the spiral is that by
including a formal risk analysis phases, it introduced a risk-driven approach to the
development process.

Systems Engineering therefore evolved well. However, the 21st century presented a
new problem for systems engineering: the system of systems. The next section will
exemplify that the traditional methods are insufficient to address these new challenges
so that a new theory is needed that allows to derive methods and implement solutions.

3.2 System of Systems

Most 20th century systems were designed and implemented to satisfy specific func-
tional objectives. The objectives were typically focused on the requirements in a single

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 9

functional area (i.e. accounting, inventory control, manufacturing, railroads, highways,
etc.), resulting in a number of vertically independent, or stove-piped, systems within an
organization or society. Few were designed to satisfy all of the functions required by
the organization or society they were serving and as such are classified as monolithic
in structure.

Today, large numbers of 20th century systems operate within these functional
stovepipes, providing functionality inside but not across the stovepipes. Initial efforts
to bridge the functional stovepipes have focused on integrating 20th century systems
through a series of system-to-system interfaces. However, 21st century managers are
no longer satisfied with disparate systems lashed together with complex interfaces and
data validation routines. Enterprise Resource Planning (ERP) systems were supposed
to be the panacea for the business world, replacing stove-piped legacy systems with a
single system encompassing all of a company’s functional requirements. In 1998 it
was estimated that businesses around the world were spending $10 billion per year
[18] on enterprise systems and that figure probably doubles when you add in associ-
ated consulting expenses.

By the turn of the century, a new type of system, beyond that envisioned by the late
Russell Ackoff in his paper The Systems Revolution [19], began to emerge. It is the
super-system, the metasystem, the system-of-systems which is made up of compo-
nents which are large-scale systems themselves. If we are to understand system-of-
systems we must be able to differentiate them from the more common monolithic
systems.

Although the term system-of-systems has no widely accepted definition, Maier
notes that the notion is widespread and generally recognized [20]. The following
distinguishing characteristics have been proposed [20] [21].

1. Operational Independence of the Individual Systems: A system-of-systems is
composed of systems that are independent and useful in their own right. If a system-
of-systems is disassembled into the component systems, these component systems are
capable of independently performing useful operations independently of one another.

2. Managerial Independence of the Systems: The component systems not only can
operate independently, they generally do operate independently to achieve an in-
tended purpose. The component systems are generally individually acquired and inte-
grated and they maintain a continuing operational existence that is independent of the
system of systems.

3. Geographic Distribution: Geographic dispersion of component systems is often
large. Often, these systems can readily exchange only information and knowledge
with one another, and not substantial quantities of physical mass or energy.

4. Emergent Behavior: The system-of-systems performs functions and carries out
purposes that do not reside in any component system. These behaviors are emergent
properties of the entire system-of-systems and not the behavior of any component
system. The principal purposes supporting engineering of these systems are fulfilled
by these emergent behaviors.

5. Evolutionary Development: A system-of-systems is never fully formed or com-
plete. Development of these systems is evolutionary over time and with structure,
function and purpose added, removed, and modified as experience with the system
grows and evolves over time.

10 A. Tolk, K.M. Adams, and C.B. Keating

These distinguishing characteristics begin to place some degree of formality on the
notion of system-of-systems, but something is missing. In order to go beyond the tradi-
tional perspective of a fully integrated system-of-systems which perfectly shares data
in what we call hard interoperability, we must invoke a more systemic view. The ideal
state for a system-of-systems requires what we will call systemic interoperability. Sys-
temic interoperability is a holistic view of interoperability and requires compatibility in
worldview and conceptual, contextual, and cultural interoperability, allowing the sys-
tem-of-systems to act consistently with regard to purpose, function, and form. In other
words, it is not sufficient to align the implementation details of the participating sys-
tems, but the underlying conceptualization and the assumptions and constraints need to
be aligned as well. This is where System of Systems Engineering comes into play.

3.3 System of Systems Engineering

During the evolution of TSE, the educational texts [22] [23] [24] and curricula elimi-
nated topics on the fundamental concepts and properties associated with systems and
include few soft topics to encompass the rich context and human situations that real-
world systems of systems engineering problems present.

Man-made systems of systems require a holistic, systemic understanding of both
the technical problem and the contextual framework present in order to arrive at satis-
factory solutions. A new set of methodologies and frameworks based upon formal
systems principles are required. The new methodologies will also require new sup-
porting methods, techniques, and tools.

The emerging discipline of System of Systems Engineering (SoSE) is attempting to
address the problems associated with systems-of-systems. Because these problems are
messy traditional methodologies of systems engineering are excluded from considera-
tion in this context. Russell Ackoff coined the concept of a “mess” and “messes” [25]:

“Because messes are systems of problems, the sum of the optimal

solutions to each component problem taken separately is not an

optimal solution to the mess. The behavior of the mess depends more

on how the solutions to its parts interact than on how they interact

independently of each other. But the unit in OR is a problem, not a

mess. Managers do not solve problems, they manage messes.” (p.
100)

Keating et al. [26] cite three important problems that TSE is not prepared to address
when facing a complex metasystem problem:

1. Has not been developed to address high levels of ambiguity and uncertainty
in complex systems problems . . . it strains to adequately respond to ill-
structured problems with constantly shifting requirements.

2. Does not completely ignore contextual influences on system problem formu-
lation, analysis, and resolution, but places context in the background.

3. Is not prepared to deliver incomplete or partial solutions that include iterative
design and implementation after deployment.

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 11

Keating et al [26] provisionally define SoSE as:

“The design, deployment, operation, and transformation of

metasystems that must function as an integrated complex system to

produce desirable results. These metasystems are themselves

comprised of multiple autonomous embedded complex systems that

can be diverse in technology, context, operation, geography, and

conceptual frame.” (p. 23)

Multiple, autonomous, embedded, complex systems function as a single meta-system,
or system-of-systems. This is possibly the most daunting task ever presented to sys-
tems engineers. It exists within a unique new context and will require an entirely new
methodological problem solving approach.

From a programmatic and enterprise viewpoint, TSE emphasized a system-centric
view with individually designed, developed, implemented and optimized solutions,
which necessarily incorporated the danger of stovepipes and fragmentation. What is
envisioned, however, is an integrated system approach in which each system provides
capabilities in an easy and composable way to support the rapid reconfiguration. To
support this vision, a methodology is needed that guides systems engineers in the new
system of systems problem domain.

3.4 System of Systems Engineering Methodology

Currently, there is no widely accepted approach to conducting System of Systems
Engineering (SoSE) efforts. However, there is recognition that approaches must
address challenges of increasingly complex systems that must be conceived, built,
operated, and evolved in a changed landscape marked by: (1) an exponential rise in
the demand, accessibility, and proliferation of information, (2) increasing interde-
pendence and demands for interoperability between systems that have previously
been developed, tested, operated, and maintained in isolation, (3) missions and flow
down requirements that are subject to rapid and potentially radical shifts due to pol-
icy, organizational, funding, or other factors beyond the technical aspects of the sys-
tem, and (4) demands for the accelerated fielding of systems that are technically
incomplete, but offer an improved alternative to what is presently available [27].

The SoSE Methodology [28] is a rigorous engineering analysis that invests heavily
in the understanding and framing of the problem under study. By conducting a rigor-
ous engineering analysis of the problem and its associated context, the SoSE Method-
ology minimizes the chance that a Type III error or solving the wrong problem
precisely and efficiently [29] [30] may be committed early on in a SoSE analysis. It is
important that the SoSE Methodology is not taken as a prescriptive approach to ad-
dressing complex SoSE problems. Instead, the SoSE Methodology must be taken as a
guide, to be adapted to the particular circumstances that define its application. Other-
wise, it will not serve its intended purpose: to provide a high level adaptable structure
to guide rigorous exploration of complex systems problem situations.

The SoSE Methodology is intended to provoke rigorous analysis – resulting in the
potential for alternative decision, action, and interpretations for evolving complex
system of systems solutions. The SoSE Methodology is based in facilitating inquiry
that is as much about thinking and framing of problems, their context, and managing
emergent conditions as it is about taking decisive action. The SoSE Methodology was

12 A. Tolk, K.M. Adams, and C.B. Keating

purposefully built and seeks to provoke higher levels of inquiry, systemic analysis,
and advance understanding of seemingly intractable problems enroute to more robust
solutions.

We position the SoSE Methodology to be consistent with Checkland’s [31] per-
spective of a methodology, which suggests that a methodology provides a framework,
more specific than philosophy, but more general than a detailed method or tool.
Therefore, a systems-based methodology must provide a framework that can be
elaborated to effectively guide action. There are several critical attributes for a meth-
odology and these are consistent with the current state of evolution for the SoSE
Methodology. These critical attributes are discussed in the next section.

There are several critical attributes in the SoSE Methodology that are consistent
with the current state of evolution for SoSE. Although the listing is certainly not in-
tended to be exhaustive, we offer these as insight to our thinking with respect to the
characteristics that make the SoSE Methodology sustainable. The nine (9) critical
attributes and how the SoSE Methodology satisfies these are presented in Table 1.

Table 1. Critical Attributes of the SoSE Methodology

Attribute Explanation

Transportable Must be capable of application across a spectrum of complex systems engineering
problems and contexts. The appropriateness (applicability) of the methodology to a
range of circumstances and system problem types must be clearly established as the
central characteristic of transportability.

Theoretically and
Philosophically
Grounded

Must have a linkage to a theoretical body of knowledge as well as philosophical
underpinnings that form the basis for the methodology and its application. The
theoretical body of knowledge for the SoSE Methodology is systems theory.

Guide to Action Must provide sufficient detail to frame appropriate actions and guide direction of
efforts to implement the methodology. While not prescriptively defining how
execution must be accomplished, the methodology must establish the high level
what’s that must be performed.

Significance Must exhibit the holistic capacity to address multiple problem system domains,
minimally including contextual, human, organizational, managerial, policy,
technical, and political aspects of a SOSE problem.

Consistency Must be capable of providing replicability of approach and results interpretation
based on deployment of the methodology in similar contexts. The methodology is
transparent, clearly delineating the details of the approach for design, analysis, and
transformation of the SOS.

Adaptable Must be capable of flexing and modifying the approach, configuration, execution, or
expectations based on changing conditions or circumstances – remaining within the
framework of the guidance provided by the methodology, but adapting as necessary
to facilitate systemic inquiry.

Neutrality Attempts to minimize and account for external influences in application and
interpretation. A methodology must provide sufficient transparency in approach,
execution, and interpretation such that biases, assumptions, and limitations are
capable of being made explicit and challenged within the methodology application.

Multiple Utility Supports a variety of applications with respect to complex SOS, including, new
system design, existing system transformation, and assessment of existing complex
SOS initiatives.

Rigorous Must be capable of withstanding scrutiny with respect to: (1) identified linkage/basis
in a body of theory and knowledge, (2) sufficient depth to demonstrate detailed
grounding in relationship to systemic underpinnings, including the systems
engineering discipline, and (3) capable of providing transparent results that are
replicable with respect to results achieved and accountability for explicit logic used
to draw conclusions/interpretations.

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 13

The foundations of the SoSE Methodology are found in two primary aspects,
namely (a) the theoretical and philosophical foundations for systems and (b) the seven
perspectives of an enabling methodology shown in figure 3.

Perspective"I
Framing"the"System"
Under"Study

Perspective"II
Designing"the"Unique"
Methodology

Perspective"IV
SoSE"Exploration"and"Analysis

Perspective"III
Designing"the"SoSE"
Team

Perspective"VII
Assessing"the"Impact"
of"the"SoSE"Study

Perspective"VI
Reporting"the"Results
of"the"SoSE"Study

Perspective"V
Transforming"the"
Analysis"into"Action

Foundation

Systems"Principles

Fig. 3. The SoSE Methodology

First, the underlying theoretical and philosophical grounding are derived from sys-
tems theory. The principles, laws, and concepts central to the SoSE Methodology are
from systems theory [32]. These principles, laws, and concepts are central to every-
thing that follows in application of the SoSE Methodology to a specific problem do-
main. In effect, they define the thinking that supports following decision, action, and
interpretation essential to effective SoSE. This sets the stage for a consistent approach
to deployment of the SoSE Methodology by participants.

The second aspect of the SoSE Methodology is found in the seven perspectives
that exist throughout a SoSE effort. Each perspective is:

• Essential to a holistic SoSE treatment of a problem area,

• Applied in iterative fashion throughout a SoSE project effort,

• Exists in relationship to all other perspectives, informing and informed by
other perspectives,

• Can have a different priority at different times during an effort,

• Flexible in application, requiring tailoring depending on the context and
problem domain, and

• Consists of detailed elements (that will vary in application) that serve to
structure the application of the perspectives.

14 A. Tolk, K.M. Adams, and C.B. Keating

Each of the seven perspectives is briefly presented in the following paragraphs.

Perspective I: Framing the System under Study. This perspective is designed to rigor-
ously structure the system problem, the contextual setting and environment within
which the problem system exists. Key execution elements in this perspective include:

• Generalize the Wide Context for the System under Study – establish the cir-
cumstances, factors, conditions, and patterns that are characteristic of the
situation surrounding the system of systems (SoS).

• Characterize the System under Study – understand the basic structure and
characteristics of the system of systems under study, including the SoS’s ob-
jectives, functions, environment, resources, components, and management.

• Characterize the Complex Nature of the System Domain under Study –
establish the complex nature of the SoS and problem domain.

• Present the System Domain as Characteristically Complex - present the SoS
under study as a complex systems problem.

• Frame the SoSE Problem - depict the problem situation by expressing the
structure, elements of processes and the situation.

• Define Study Purpose, Reformulated Problem Statements and Objectives -
clearly explain the nature, purpose, high-level approach, and objectives for
the effort.

• Conduct Stakeholder Analysis - explicitly account for and address the multi-
ple interests (rational and irrational, inside & outside) which can impact
achievement of system objectives.

• Conduct Contextual Analysis - account for the set of circumstances, factors,
conditions, values and/or patterns that are influential in constraining and
enabling the SoS engineering process, the SoS solution/recommendation
design, SoS solution/recommendation deployment considerations, and inter-
pretation of outputs/outcomes stemming from the effort.

Perspective II: Designing the Unique Methodology. This perspective designs a unique
methodology based on the problem and the problem context.

• Construct High-Level Design for the Study - construct a unique high-level
methodology that will adequately support the study objectives and the SoS
context. This must be compatible with the problem and problem context.

• Develop the Analytic Strategy - create the design for quantitative and quali-
tative exploration (data collection and analysis) necessary to understand and
make decisions concerning the SoS under study.

• Develop Assessment Criteria and Plan - construct a set of measurable per-
formance criteria that can be used during and after the problem study to en-
sure continued fit of problem, context, methodology and capability to meet
study objectives.

Perspective III: Designing the SoSE Team. This perspective designs the team to
undertake the SoSE study, taking into account the nature of the SoS problem and the
team resources, skills, and knowledge that can be brought to bear for the problem.

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 15

• Assess Team Knowledge, Skills, and Abilities (KSA) - develop an inventory
of team knowledge, skills, and abilities (KSA) that may be used in the study.

• Match Team KSA to the Analytic Strategy and Unique Methodology - based
on the KSAs; establish assignments, roles, and expectations for the team in
performing the study. Team expectations and selection of task leaders estab-
lished.

• Establish Team Expectation Performance Assessment - construct a set of
measurable performance criteria that can be used during and after the SoS
problem study to evaluate the performance of the team.

Perspective IV: SoSE Exploration and Analysis. This perspective is designed to
explore and conduct the emergent analysis by executing the analytic strategy and
SoSE Management Plan (SoSEMP).

• Build the SoSE Management Plan (SoSEMP) - The SoSEMP defines how
the SoS study will be organized, the structure of the team, and how the SoSE
process will be designed to provide products that directly support the study
goals and objectives requirements.

• SoSE Exploration and Analysis - conduct exploration and analysis for each
of the study objectives by executing elements of the analytic strategy.

Perspective V: Transforming the Analysis into Action. This perspective is designed to
transform the results of the emergent analysis by guiding implementation of the
analysis recommendations.

• Define Implementation Goals, Objectives and Activities - clearly explain the
nature of the implementation, purpose, high-level approach, and objectives
necessary to support the desired SoS outputs and outcomes.

• Modify the SoSE Management Plan (SoSEMP) - add activities to the inte-
grated schedule that ensures that the tasks from the implementation
objectives tree are properly resourced to support the implementation goals,
objectives, and activities.

• Implementation of the Exploration and Analysis Recommendations - change,
modify, or construct processes for the SoS under study to implement recom-
mendations.

Perspective VI: Reporting the Results of the SoSE Study. This perspective reports the
results of the SoSE effort to capture the transformation of the analysis into action.

• Developing the Engineering Report - develop a coherent set of artifacts (data,
analyses, correlations, etc) that can provide specific findings and recommen-
dations that directly impact the SoS problem under study.

• Internal Evaluation of the Engineering Report - evaluate the study report
using the set of measurable performance criteria previously developed.

Perspective VII: Assessing the Impact of the SoSE Study. This perspective is de-
signed to assess the impact of the report on the real-world SoS problem under study.

16 A. Tolk, K.M. Adams, and C.B. Keating

• Evaluating the Initial Impact of the Engineering Report - evaluate the impact
that the SoSE study report had on the real world system problem and its
environment.

• Plan for Follow-up and Follow-through - evaluate the impact analysis and
develop a set of actions to follow-up and follow-through on the analysis.

The SoSE Methodology provides a high level framework, philosophically based in sys-
tems theory, which offers a systemic, non-prescriptive guide to practitioners in SoSE. It
is important to note three particular aspects concerning the SoSE Methodology.

1. The core of the methodology resides in the underlying foundation system
principles. This establishes the systemic worldview that permits execution
and interpretation of everything else that follows in the SoSE analysis. If this
worldview is not correct, it is doubtful that the ensuing analysis will have the
appropriate emphasis or effectiveness in execution.

2. The perspectives in the methodology are not intended to be approached as a
linear stepwise set of perspectives to be accomplished independent or mutu-
ally exclusive of one another. On the contrary, there should be continual re-
framing and revisiting of perspectives and their execution elements as the
SoSE analysis progresses. In fact, emphasis on particular perspectives or se-
quencing may, and probably will vary depending on: (1) the nature of the
problem, (2) the sophistication of the participants in systemic SoSE experi-
ence/expertise, and (3) the nature of the context within which the problem is
embedded.

3. It would be naïve to think that the methodology will have effective results if
it is applied by those without sufficient grounding in the system fundamen-
tals and/or approached as a prescriptive sequential set of steps that, if per-
formed in a rote fashion, will generate successful SoSE outcomes. Only
through appreciation of these limitations and considerations will the
approach be capable of deployment as it has been intended.

In summary, the SoSE Methodology is a holistic framework that contains the theo-
retical foundation in systems theory that substantiates the use of perspectives and
execution elements for addressing complex systems problems. It addresses not only
the system internal challenges, but it addresses the context and external systems as
well and changes the introspective processes into processes that take extrospective
viewpoints into account as well.

3.5 Intelligence-Based Systems Engineering

How can intelligence-based systems help to realize intelligence-based systems engi-
neering? Based on current research, the following aspects can help migrating TSE
towards SoSE and ultimately intelligence-based systems engineering:

• Increased used of semantic systems technology and ontological means within
systems engineering: In order to capture requirements in an unambiguous
way and to better communicate them within teams, the increased use of
semantic systems technology is needed. An example is transforming

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 17

requirements into logical expressions of a system’s ontology. This allows not
only to check their consistency, it also allows to directly communicate them
with intelligent software components, as they understand logic, and also fa-
cilitates the validation and verification, as logical expressions are easier to
evaluate than volumes of prosaic text. Controlled vocabularies that are dis-
tributed within the enterprise by Enterprise Lexical Services as described in
[33] can be the first step. Such efforts need to be followed by defining
thesauri and taxonomies that will support the lexical analysis between sys-
tems to detect redundancies and gaps regarding required versus available
system capability. As shown in [34], for a full support of interoperable and
composable system of systems higher levels of ontological support are nec-
essary in support of data, process, and constraint engineering.

• Increased use of simulation technology in support of systems engineering: As
stated by van Dam during his lecture at Stanford [35]: “If a picture is worth

a 1000 words, a moving picture is worth a 1000 static ones, and a truly in-

teractive, user-controlled dynamic picture is worth 1000 ones that you watch

passively.” That makes simulation very interesting not only for managers
and decision makers, it also encourages the use of decision support simula-
tion systems for systems engineering. While traditional decision support sys-
tems are used to compile useful information from raw data and documents
that are distributed within the potentially very heterogeneous enterprise
infrastructure, decision support simulation systems can be used to obtain,
display and evaluate operationally relevant data in agile contexts by execut-
ing models using operational data exploiting the full potential of M&S and
producing numerical insight into the behavior of complex systems. The idea
of executable system architecture is already exploited. If simulation is inte-
grated appropriately into the TSE and SoSE processes, communication will
be increased and mistakes in the design can be identified earlier.

• Increased use of intelligent agent technology in support of systems engineer-
ing: As mentioned earlier, Yilmaz and Ören [3] dedicated a whole book to
the synergisms of agent-directed simulation and systems engineering. With
their ability to support the development of robust, fault tolerant, adaptive,
self-optimizing, learning, social capable, autonomous, and agile solutions,
they are a good match to support intelligence-based systems engineering.
Replacing functions delivering the system capability by intelligent software
agents delivering the system capability opens interesting new opportunities.
Furthermore, in particular if combined with the rigorous use of ontological
means to capture requirements and results within all phases, agents can sup-
port or even take over many routine jobs, freeing system engineers to focus
on the more challenging phases of the process.

Although already powerful when applied stand alone, the support can be significantly
increased when all methods are applied orchestrated in a distributed enterprise infrastruc-
ture. New information integration methods, based on semantic systems and derived
standards, allow homogeneous support even in heterogeneous environments. Further-
more, new paradigms are exploited, like contribution of agents to the theoretical

18 A. Tolk, K.M. Adams, and C.B. Keating

and philosophical foundations for systems, validation of systems based on semantic
means, and more. A research agenda for this domain is still an open requirement within
the community that must comprise system engineers, computer scientists, modeling and
simulation experts, and engineering managers. Contributions of all these domains are
necessary to address the new challenges and enable new options. This discussion needs
to be completed by integrating all project management challenges as well, such as ex-
tending the Body of Knowledge for Project Management [36] for intelligent-based sys-
tems engineering with special focus on applicability for risk management, value and cost
management, and related tool support for a new generation of system architecture
frameworks. Finally, these new insights need to be integrated into the education of future
experts at colleges and universities. We are only at the beginning of this set of challenges.

However, the contributions to this book are a good start into this endeavor and rep-
resent a variety of common approaches towards intelligence-based systems engineer-
ing. They all have in common that the systems engineering community in general and
the contributing authors in particular understand the need for the application of se-
mantic systems, simulation technology and intelligent agents to overcome the intro-
spective blocks and move towards agile and robust SoSE to enable intelligence-based
systems engineering.

4 Contributions to These Topics within This Volume

This volume comprises a selection of state-of-the-art contributions to the topics dis-
cussed above, focusing on but not limited to semantic systems, simulation technology,
and intelligent agents. The common theme is systems engineering and its relation to
intelligence-based solutions. All authors were invited by the editors to submit their
work based on their recognition in the field and the applicability of their findings to
improve intelligence-based systems engineering, complex systems development,
knowledge-based engineering, etc.

The work on Semantic Systems for Intelligence-based Systems Engineering by
John Sowa describes the foundations for the use of ontology-based solutions. This
chapter describes the foundations for expressing, sharing, and using knowledge and as
such describing the essence of intelligence-based communication needs.

As one of the focal points of intelligence-based systems engineering is the support
by intelligent machines, understanding within such machines is absolutely essential to
be effective and efficient and to avoid significant errors by misinterpretations. The
work on Defining and Validating Semantic Machine to Machine Interoperability by
Claudia Szabo and Saikou Diallo is based on awarded academic research in this do-
main helps to better understand the challenges and provides first solutions of interest
to the scholars and practitioners in the field.

An even more practical approach using a particular problem domain is given by
Maria Vargas-Vera, Miklos Nagy, and Dietmar Jannach. They describe An Approach

to Knowledge Integration applied to a Configuration Problem in which several of the
theoretic results of the earlier chapters are applied.

With the chapter on Multiple Worlds, a Framework for Modeling and Simulation

Based Design by Michele Fumarola, Mamadou Seck, and Alexander Verbraeck the

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 19

domain of simulation and the support of systems engineering is entered. Many engi-
neering applications are philosophically dominated by a positivistic world view of
physics-driven independent entities that interact under Newton’s laws. The work on
SoSE should that such a limited view is no longer sufficient, but multiple views need
to be aligned, and simulations can help to do so.

A more technical aspects, namely that of how to integrate such simulation knowl-
edge into the potentially heterogeneous enterprise infrastructure, is dealt with in the
chapter Distributed Simulation Using RESTful Interoperability Simulation Environ-

ment (RISE) Middleware by Khaldoon Al-Zoubi and Gabriel Wainer. Web services
have been identified in may papers as a potential universal integration tool, but the
overhead is often the negative characteristic speaking against them. RESTful services
avoid the overhead, allowing the integration of simulation capability.

The Discrete Event System Specification (DEVS) formalism for simulation sys-
tems emerged from systems engineering efforts two decades ago. Using the results of
the simulation community to improve DEVS and merging various trends into the
DEVS Unified Process (DUNIP) allows now the development of Agile Net-centric

Systems using DUNIP-Based Event Driven Architectures described by Saurabh Mit-
tal. As intelligent agents can be part of this simulation-based systems engineering
approach, this chapter connects both worlds.

Starting with a practical view on Systems Engineering and Conversational Agents,

James D. O'Shea introduced the intelligent agent topic explicitly. Conversational
agents are known for their contributions to improving man-machine interfaces, in-
cluding allowing for multiple representations in multiple modalities. The chapter also
gives practical application examples for the semantic means introduced in the earlier
chapter by Sowa.

The use of agents to enable innovative internal capabilities is demonstrated in Lev-
ent Yilmaz and C. Anthony Hunt’s chapter Toward Advanced Concepts and Genera-

tive Simulation Formalisms for Creative and Robust Discovery Systems. This chapter
shows how many of the characteristic properties identified above are implemented by
agent-like structures and support intelligence-based systems engineering in new ways.

Jose J. Padilla, Saikou Y. Diallo, and Andres A. Sousa-Poza even go one step be-
yond. In their chapter Establishing a Theoretical Baseline: Using Agent-Based Mod-

eling to Create Knowledge the idea to use intelligent agents as “research partners” is
not only motivated, they report on successful applications of this idea to drive simula-
tion beyond the scope of being pure computational activity, but becoming a knowl-
edge generating activity.

Bringing agents out of the laboratory and to users of systems is described in Artifi-

cial Intelligence Support for “The User around the Marketplace”: Automatic Engi-

neering of Interactive E-commerce Applications by Martin Lopez-Nores, Yolanda
Blanco-Fernandez, and Jose J. Pazos-Arias. This is an e-commerce application that
can be used as an example who to embed systems into a broader, agile, and highly
complex environment.

Another application example is given in the chapter on Wireless Sensor Network

Anomalies: Diagnosis and Detection Strategies by Raja Jurdak, X. Rosalind Wang,
Oliver Obst, and Philip Valencia. As wireless sensor networks are tightly coupled
regarding their development and operational environment. Each development phase has

20 A. Tolk, K.M. Adams, and C.B. Keating

immediate reactions in the use of the networks, making them emerging systems within a
system of systems. Without the application of intelligence-based methods, the systems
engineer could easily become overwhelmed.

The book ends with the chapter on Enterprise Ontologies – Better Models of Busi-

ness by Ian Bailey, which is a critical review of claims, success, and perception
thereof from a practitioner in the field of ontological systems and their application.
With several years of experience from conducting projects, this chapter provides
insights of interest to enthusiasts and critics in this field. He also applies a unique
style and practical criticism of a domain that is often perceived wrongly as too
academic and with no practical relevance.

In summary, this book should provide interesting material for scholars and practi-
tioners. It comprises theoretic contributions as well as practical applications. It shows
how the main contributing domains can and need to be combined in order to support
intelligent-based systems engineering.

Moreover, the book in general and the chapters in particular also show that many
niches are still open and gaps in the body of knowledge are waiting to be filled. In par-
ticular doctoral students should be able to use this book in search of valuable topics that
need to be evaluated in detail and closed to promote the discipline of intelligence-based
systems engineering.

By combining papers from industry experts with those of leading scholars and pre-
senting them side by side, this book should be a valuable contribution to everyone
being interested in the field of intelligence-based systems engineering and contribute
to fruitful discussions on research agendas as well as applications in the field.

References

[1] Buede, D.M.: The Engineering Design of Systems, Models and Methods, 2nd edn. John
Wiley and Sons, Inc., New York (2009)

[2] Ackoff, R.L.: From Data to Wisdom. Journal of Applied Systems Analysis 16, 3–9
(1989)

[3] Yilmaz, Ören (eds.): Agent-Directed Simulation and Systems Engineering. Wiley, Berlin
(2009)

[4] Engstrom, E.: System Engineering – A Growing Concept. Electrical Engineering 76,
113–116 (1957)

[5] Goode, H., Machol, R.: Systems Engineering: An Introduction to the Design of Large-
Scale Systems. McGraw-Hill Book Company, New York (1957)

[6] Schlager, K.: Systems Engineering – Key to Modern Development. IRE Trans., Prof. Gp.
Eng. Management 3, 64–66 (1956)

[7] Hall, A.: A Methodology for Systems Engineering. D. Van Nostrand Company, Inc.,
Princeton (1962)

[8] Flagle, C., Huggins, W., Roy, R.: Operations Research and Systems Engineering. The
Johns Hopkins Press, Baltimore (1960)

[9] Morse, P., Kimball, G. (eds.): Methods of Operations Research. John Wiley & Sons, New
York (1951)

[10] McCloskey, J., Trefethen, F.: Operations Research for Management. Johns Hopkins
Press, Baltimore (1954)

Towards Intelligence-Based Systems Engineering and System of Systems Engineering 21

[11] Churchman, C., Ackoff, R., Arnoff, E. (eds.): Introduction to Operations Research. John
Wiley & Sons, New York (1957)

[12] Machol, R. (ed.): Systems Engineering Handbook. McGraw-Hill Book Company, New
York (1965)

[13] IEEE 1220. IEEE Standard 1220: Application and Management of the Systems Engineer-
ing Process. The Institute of Electrical and Electronics Engineers, New York (1998)

[14] EIA 632, Electronics Industries Alliance Standard 632: Processes for Engineering a Sys-
tem.Electronics Industries Alliance, Arlington (1999)

[15] Royce, W.W.: Managing the Development of Large Software Systems. In: IEEE West
Conference, pp. 328–338. IEEE, Los Alamitos (1970)

[16] Forsberg, K., Mooz, H.: The Relationship of System Engineering to the Project Cycle. In:
Proceedings of the 1st Annual Conference of the National Council on Systems Engineer-
ing, Chattanooga, TN (1991)

[17] Boehm, B.: A Spiral Model of Software Development and Enhancement. ACM
SIGSOFT Software Engineering Notes 11(4), 14–24 (1986)

[18] Davenport, T.: Putting the Enterprise into the Enterprise System. Harvard Business Re-
view 76(4), 121–131 (1998)

[19] Ackoff, R.: The Systems Revolution. Long Range Planning 7(6), 2–20 (1974)
[20] Maier, M.: Architecting Principles for Systems-of-Systems. Systems Engineering 1(4),

267–284 (1998)
[21] Sage, A., Cuppan, C.: On the Systems Engineering and Management of Systems of Sys-

tems and Federations of Systems. Information, Knowledge, Systems Management 2(4),
325–345 (2001)

[22] Blanchard, B., Fabrycky, W.: Systems Engineering and Analysis, 5th edn. Prentice Hall,
Upper Saddle River (2010)

[23] Kosiakoff, A., Sweet, W.: Systems Engineering Principles and Practice. John Wiley and
Sons, Hoboken (2003)

[24] Sage, A., Armstrong, J.: Introduction to Systems Engineering. Wiley-Interscience, New
York (2000)

[25] Ackoff, R.: The Future of Operational Research Is Past. Journal of the Operational Re-
search Society 30(2), 93–104 (1979)

[26] Keating, C., Rogers, R., Unal, D., Dryer, D., Sousa-Poza, A., Safford, R., Peterson, W.,
Rabadi, G.: System of Systems Engineering. Engineering Management Journal 15(3), 35–
44 (2003)

[27] Keating, C.B.: Emergence in System of Systems. In: Jamshidi, M. (ed.) Systems of Sys-
tems Engineering: Innovations for the 21st Century, pp. 169–190. John Wiley and Sons,
Hoboken (2009)

[28] Adams, K. MacG., Keating, C.B.: SoSE Methodology Rev 0.2. NCSoSE Technical Re-
port 009-2009.National Centers for System of Systems Engineering, Norfolk, VA (2009)

[29] Mitroff, I., Featheringham, T.R.: On Systematic Problem Solving and the Error of the
Third Kind. Behavioral Science 19(6), 383–393 (1974)

[30] Mosteller, F.: A K-sample Slippage Test for an Extreme Population. Annals of Mathe-
matical Statistics 19(1), 58–65 (1948)

[31] Checkland, P.: Systems Thinking, Systems Practice. John Wiley & Sons, New York
(1993)

[32] Adams, K. MacG.: Systems principles: Foundation for the SoSE Methodology. Interna-
tional Journal for System of Systems Engineeing (in press, 2010)

22 A. Tolk, K.M. Adams, and C.B. Keating

[33] Durham, J.: Enterprise Lexicon Services. In: Proc. of 11th International Business Rules
Forum, Orlando, FL (2008)

[34] Tolk, A., Diallo, S.D., King, R.D., Turnitsa, C.D.: A Layered Approach to Composition
and Interoperation in Complex Systems. In: Complex Systems in Knowledge based Envi-
ronments: Theory, Models and Applications. SCI, vol. 168, pp. 41–74 (2009)

[35] van Dam, A.: Education: the unfinished revolution. ACM ComputingSurveys(CSUR) 31(4),
Article No. 36 (1999)

[36] Project Management Institute, A Guide to the Project Management Body of Knowledge
(PMBOK® Guide), 4th edn. Project Management Institute Series on Project Management
(PM) and PM Standards, Newton Square (2008)

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 23–47.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 2

Future Directions for Semantic Systems

John F. Sowa

Abstract. For over thirty years, the complexity of knowledge acquisition has

been the greatest obstacle to widespread use of semantic systems. The task of

translating information from a textbook to a computable semantic form requires

the combined skills of a linguist, logician, computer scientist, and subject-

matter expert. Any system that requires its users to have all those skills will

have few, if any, users. The challenge is to design automated tools that can

combine the contributions from multiple experts with different kinds of skills.

This article surveys systems with different levels of semantics: lightweight,

middleweight, and heavyweight. Linked data systems with lightweight

semantics are easy to develop, but they can’t interpret the data they link. The

heavyweight systems of traditional AI can perform deep reasoning, but they

place too many demands on the knowledge engineers. No one can predict what

innovations will be discovered in the future, but commercially successful

systems must satisfy two criteria: first, they must solve problems for which a

large number of people need solutions; second, they must have automated and

semi-automated methods for acquiring, analyzing, and organizing the required

knowledge.

1 The Knowledge Acquisition Bottleneck

Computers can process numbers, data structures, and even axioms in logic much faster
than people can. But people take advantage of background knowledge that computers
don’t have. Hao Wang (1960), for example, wrote a program that proved all 378
theorems in propositional and first-order logic from the Principia Mathematica. On a
slow vacuum-tube computer, Wang’s program took an average of 1.1 seconds per
theorem — far less time than Whitehead and Russell, the two brilliant logicians who
wrote the book. But the theorems in the Principia require a negligible amount of built-in
knowledge — just five axioms and a few rules of inference. The computer Wang used
had only 144K bytes of RAM, but that was sufficient to store the rules and axioms and
manipulate them faster than professional logicians.

During the 1970s and ’80s, rule-based expert systems and programs for processing
natural languages became quite sophisticated. But most applications required an
enormous amount of background knowledge to produce useful results. Knowledge
engineers and subject-matter experts (SMEs) had to encode that knowledge in formal
logic or some informal rules, frames, or diagrams. The experts were usually highly
paid professionals, such as physicians or geologists, and the knowledge engineers
required long years of training in logic, ontology, conceptual analysis, systems design,
and methods for interviewing the experts. For critical applications, the investment in
knowledge acquisition produced significant results. For other applications, the cost of
defining the knowledge might be justified, but the AI tools were not integrated with

24 J.F. Sowa

commercial software. Furthermore, most programmers did not know how to use AI
languages and tools, and the cost of training people and adapting tools was too high
for mainstream commercial applications.

During the 1990s, vast amounts of data on the World Wide Web provided raw data
for statistical methods. Machine learning, data mining, and knowledge discovery
found patterns more cheaply and often more accurately than rules written by experts.
The more challenging goal of language understanding was largely abandoned in favor
of statistical methods for information retrieval and information extraction. Although
statistical methods are useful, they don’t generate a semantic representation suitable
for further reasoning or for explanations in ordinary language.

At the beginning of the 21st century, the Semantic Web adapted the AI technologies
of the 1980s to the vast resources of the World Wide Web. But the mainstream
commercial software, which had never been integrated with AI technology, was just as
isolated from the Semantic Web. For most programmers and web masters, the languages
and tools of the Semantic Web were unfamiliar, there was no migration path from
conventional software to the new technology, and the task of knowledge acquisition was
just as difficult as ever.

The complexity of knowledge acquisition increases with the complexity of the
semantics, the amount of detail that must be specified, and the interdependencies
among different aspects of the knowledge base. To relate different methods, this
article uses a three-way distinction: heavyweight semantics is represented in a formal
logic with detailed axioms that can support extended reasoning; middleweight
semantics is based on formal or informal notations that support a modest amount of
reasoning, but with less complexity than heavyweight semantics; lightweight
semantics uses tags to classify information, to check simple constraints on types and
connections, but not to perform extended reasoning.

Many systems use variations of these three kinds of semantics. Section 2 of this
article uses the distinction to compare systems for natural language processing (NLP).
Section 3 applies it to systems for reasoning and problem solving. Section 4 analyzes
the Semantic Web technologies in these terms. Section 5 shows how the VivoMind
Language Processor (VLP) uses all three kinds of semantics for language analysis and
reasoning. The concluding Section 6 discusses the requirements for commercially
successful systems and the ways of using AI technology to design and implement
them.

2 Natural Language Processing

Documents that people write to communicate with other people are rarely as precise
as logic. Yet people can read those documents and relate them to formal notations for
science, mathematics, and computer programs. They can derive whatever information
they need, reason about it, and apply it at an appropriate level of precision. That
flexibility is essential for a system of knowledge acquisition — automated, semi-
automated, or at least computer assisted. For the past half century, AI researchers and
computational linguists have tried to achieve that goal.

Some of the most successful NLP systems use lightweight semantics. One of the first
was the Georgetown Automatic Translator (GAT), for which research was terminated in
1963. Under the name Systran, it became the most widely used machine-translation

 Future Directions for Semantic Systems 25

system in the 20th century. A version is still available on the web under the name
Babelfish. For each pair of languages to be translated, Systran uses a large dictionary of
equivalent words and phrases. The computer processing consists of a limited amount of
movement and adjustment to accommodate the syntactic differences between each
language pair (Hutchins 1995). Constructing those dictionaries by hand requires many
person-years of effort. With the large volumes of documents available on the web,
statistical methods for detecting and aligning equivalent pairs have become more widely
used. Although these techniques are useful for MT, they don’t produce a semantic
representation that can be used for reasoning. Hybrid systems that combine statistics with
shallow parsing and templates are widely used for information extraction, but Hobbs and
Riloff (2010) noted that such systems have reached a barrier of about 60% accuracy in
recall and precision.

The most sophisticated NLP systems use heavyweight semantics based on some
version of logic. Typical systems have two distinct levels: syntactic analysis to
generate a parse tree and semantic interpretation to map the parse tree to a logical
form. But after forty years of research, no system based on that approach can read one
page of a high-school textbook and use the results to solve the problems as well as a B
student. Even pioneers in logic-based methods have begun to doubt their adequacy.
Kamp (2001), for example, admitted that “the basic concepts of linguistics — and
especially those of semantics — have to be thought through anew” and “many more
distinctions have to be drawn than are dreamt of in current semantic theory.”

To understand the issues, consider the combination of syntax, semantics, and
database structure necessary to analyze a question and answer it. As an example, the
Transformational Question Answering system (Petrick 1981) analyzed English
questions and used middleweight semantics about the subject matter to map English
to and from logic. TQA also used heavyweight semantics to map logic to and from
the SQL query language, which has the expressive power of first-order logic. The
parser evolved from a research project that Petrick (1965) designed for his PhD
dissertation under Chomsky’s supervision. After joining IBM, Petrick collaborated
with other researchers to develop TQA as an English front-end to a relational
database.

To evaluate TQA’s potential, IBM management wanted to test it on actual users.
The nearby city of White Plains served as a test case. During the 1974 gasoline
shortage, city officials had to search land-use records by hand to find the locations of
all gas stations so that police could go there to direct traffic. Later, the records were
stored on a computer, but somebody had to write a new program and print a new
report for every question. Every follow-on question required another program. In
1978, the IBM researchers loaded the land-use files on a relational database at
Yorktown, customized TQA to access the database, and connected it to a dedicated
terminal in the city hall.

For a full year, the White Plains officials and land-use planners could type English
questions to TQA and get immediate answers. Of 788 questions typed during the year,
TQA answered 65% correctly and failed to parse 35%. For most parsing failures, the
users rephrased the sentence in a way that TQA could answer. Occasionally, they
called the IBM developers for help. Overall, the users loved it. They were unhappy
when the trial period ended, and IBM unplugged the terminal (Damerau 1981).

26 J.F. Sowa

Following are some questions that TQA answered correctly:

 !"#$%&$#!'$#(#")$"*'"$(+$#!'$,"*-')&$%.$/"*0$1$2)(-3$456$
7(/$8".9$#/($+"8%)9$!(:&'&$"*'$#!'*'$%.$#!'$;"3$<%0='$
<'&%0'.#&$>&&.6$
 !'*'$"*'$#!'$","*#8'.#$0/'))%.=&$/!%-!$!"?'$8(*'$#!".$
@A$:.%#&$
/!%-!$"*'$8(*'$#!".$1$&#(*%'&$!%=!$(.$B"3'$C#6$

The TQA test showed that subject-matter experts, who had no training in
programming or database software, could effectively use an English front-end to
conventional software. It also showed the kind of syntax and semantics that was
needed to customize a language processor for each application. The syntax of the
phrase ward 6 block 72 is familiar to the SMEs, but it is rare in ordinary English. The
TQA developers added grammar rules for many such phrases before the test period.
During the test, they analyzed the questions that TQA failed to parse correctly and
revised the grammar to accommodate them. The TQA users also learned to adjust
their grammar to accommodate the parser.

The test version of TQA also generated a rudimentary echo that showed how each
question was parsed. Unfortunately, some echos used syntax that the parser failed to
recognize when the users typed them back. Mueckstein (1983) later designed Q-
TRANS to generate an echo that TQA could always parse. Following is a question
processed by TQA:

What parcels in the R5 zone on Stevens St. have

greater than 5000 sq. ft.?

TQA translated that question to the following SQL:

SELECT UNIQUE A.JACCN, B.PARAREA

FROM ZONEF A, PARCFL B

WHERE A.JACCN = B.JACCN

AND B.STN = 'STEVENS ST'

AND B.PARAREA > 5000

AND A.ZONE = R5;

Q-TRANS translated that SQL to the following echo:

R%.0$#!'$"--(:.#$.:82'*&$".0$,"*-')$"*'"&$+(*$)(#&$#!"#$!"?'$
#!'$&#*''#$."8'$CIGXGKC$CIO$"$,"*-')$"*'"$(+$=*'"#'*$#!".$
@AAA$&FE$+#EO$".0$D(.%.=$-(0'$<@E$

These examples show the kind of customization required by any processor that maps

natural language queries to and from a computer system: first, an ontology of the

entities, relations, and constraints in the subject matter; second, a lexicon that maps

words and phrases to and from the ontology; third, specialized syntax for patterns that

are rare in ordinary language; and finally, mappings of the ontology to computer

formats and interfaces. To simplify the task, Damerau (1988) designed a tool to

 Future Directions for Semantic Systems 27

enable “database administrators to generate robust English interfaces to particular
databases without help from linguistic experts.” IBM management, however, decided
that it was too complex for most customers and the potential market was too small to
be profitable. Therefore, they canceled the TQA project.

TQA was one of many NLP systems that demonstrated usefulness for some
applications, but were not commercially successful. Systems with lightweight
semantics, such as Systran, have been more successful. Some of the most successful
are search engines that index documents by the words they contain without using any
explicit semantics. Google improved the search with statistical methods for deriving
some implicit semantics from the patterns of cross references. In general, systems
based on lightweight semantics depend on the readers to use their background
knowledge to fill in the gaps, but no human army could process the huge volumes of
data on the web. For some applications, statistical methods can filter out much of the
irrelevant data, but even a thousand-to-one reduction in petabytes still leaves
terabytes. NLP systems with heavyweight semantics are necessary to interpret the
details.

3 Reasoning and Problem Solving

Since the 1950s, research in AI explored a wide range of techniques from neural
networks to formal logic. But the classical AI paradigm combines some knowledge
representation language with some formal or informal methods of reasoning. Two
classical system of radically different sizes illustrate the problems and the range of
possible solutions: the very large Cyc system, which shows the power of a general-
purpose, heavyweight semantics; and a simpler system designed for online sales, which
shows the ease of use of middleweight semantics combined with semi-automated
methods for knowledge acquisition.

The expert systems of the 1980s showed that the level of expertise increased as
more rules and facts were added. Some AI experts estimated that a human level of
intelligence could be achieved with less than a million concepts encoded in some
computable form. Lenat and Feigenbaum (1987) summarized the arguments:

• Lenat estimated that encyclopedic coverage of the common knowledge of
typical high-school graduates would require 30,000 articles with about 30
concepts per article. That justified the Cyc Project, whose name comes from
the stressed syllable of encyclopedia.

• The Japanese Electronic Dictionary Research Project (EDR) estimated that
the knowledge of an educated speaker of several languages would require
about 200K concepts represented in each language.

• Marvin Minsky noted that less than 200,000 hours elapses between birth and
age 21. If each person adds four new concepts per hour, the total would be
less than a million.

For the Cyc Project, they concluded that a knowledge base “of under a million
frames” could be constructed in one decade with $50 million and less than two
person-centuries of work.

28 J.F. Sowa

The original version of Cyc was an informal system of frames with heuristic
procedures for processing them (Lenat & Guha 1990). But as the knowledge base grew,
the dangers of contradictions, spurious inferences, and incompatibilities became critical.
As a result, the frames had to be more highly structured, and the procedures became more
systematic and tightly controlled. Eventually, the CycL language and its inference
engines were rewritten as a superset of first-order logic with extensions to support
defaults, modality, metalanguage, and higher-order logic. The most significant
innovation was a context mechanism for partitioning the knowledge base into a basic
core and an open-ended collection of independently developed microtheories (Guha
1991).

After the first 25 years, Cyc grew far beyond its original goals: 100 million dollars
had been invested in 10 person-centuries of work to define 600,000 concepts by 5
million axioms organized in 6,000 microtheories. Cyc can also access relational
databases and the Semantic Web to supplement its own knowledge base. For some
kinds of reasoning, Cyc is faster and more thorough than most humans. Yet Cyc is not
as flexible as a child, and it can’t read, write, or speak as well as a child. It has not yet
achieved the goals of the “sweeping three-stage research programme” outlined by
Lenat and Feigenbaum in 1987:

1. “Slowly hand-code a large, broad knowledge base.”
2. “When enough knowledge is present, it will be faster to acquire more

through reading, assimilating data bases, etc.”
3. “To go beyond the frontier of human knowledge, the system will have to rely

on learning by discovery, carrying out research and development projects to
expand its KB.”

The first goal has been achieved. The second goal was far more difficult than
expected. Cyc cannot yet read a textbook and map the knowledge to CycL, and it can
only access external databases whose metadata or ontology has been mapped to CycL
concepts. The third goal is still a dream.

Even though Cyc did not achieve all the original goals, it remains the world’s
largest body of knowledge represented in logic and suitable for detailed deduction.
For any given problem, Cyc automatically selects the required axioms and an
inference method that is suitable for that problem. The Cyc tools can also be used as a
development platform for defining axioms that can drive other inference engines. As
an example, Peterson et al. (1998) designed a knowledge compiler to translate a
subset of axioms from CycL to more restricted logics that drive a deductive database:
Horn-clause rules for the inference engine, and database constraints stated in SQL
WHERE-clauses. For a sample problem, they extracted 5532 axioms (about 1% of the
five million axioms in the Cyc knowledge base). Of those axioms, 84% could be
translated directly to Horn-clause rules for performing inferences. The remaining
16%, which required full first-order logic, were translated to update constraints in
SQL to ensure that the database is always consistent with the axioms.

For the first dozen years, the Cyc Project focused on research, but the academic
research was not easy to commercialize. Later, they gradually increased the time
devoted to applications. As a result, Cyc earned more money from applications in the
years 2008 to 2010 than in the previous 24 years. Some of the fastest growing
applications are in medical informatics. At the Cleveland Clinic, about 1700 axioms

 Future Directions for Semantic Systems 29

from the general Cyc ontology are used to understand and respond to a typical query.
The applications show considerable promise, but most application programmers find
it difficult to adapt their software and databases to the Cyc knowledge base. Although
Cyc is primarily a reasoning system, it also supports an English interface, which
requires customization similar to TQA.

In contrast with Cyc, which has been in continuous development for over 25 years,
smaller AI systems can be implemented much faster. As an example, Tesco, a large
UK retailer, sells a variety of goods, ranging from groceries to electronic equipment.
For their online branch, Tesco.com, they wanted a flexible system that employees
could update dynamically. One software vendor designed a system based on RDF and
OWL, but Tesco employees could not modify it. Calling an OWL expert for every
update would be too slow, and hiring one for every store would cost too much. They
needed a simpler system that current employees could modify without lengthy and
costly training.

As an alternative, Gerard Ellis, an employee of the vendor, designed and
implemented a prototype of a more flexible system in just a few weeks. Tesco liked it,
and the complete system was delivered to them in a few months (Sarraf & Ellis 2006).
Unlike the heavyweight semantics of Cyc, which requires professional knowledge
engineers to update and modify, the Tesco system had middleweight semantics that
could be updated by Tesco employees who had no training in AI, logic, or ontology.
Automated tools could also check that the knowledge base is consistent and help
Tesco employees correct any errors. The reason why Ellis could implement the new
system so quickly is that he had spent a dozen years in developing a toolkit of AI
software and related technologies (Ellis et al. 1994). To replace the system that used
RDF+OWL, he put together the following components:

• Conceptual graphs (CGs) as the internal knowledge representation with basic
tools for storing, retrieving, and manipulating CGs. Communication with
other components was based on the Conceptual Graph Interchange Format
(CGIF).

• A version of controlled English (CE) as the notation for subject-matter
experts (SMEs) with tools to map CE to and from CGIF.

• Ripple-down rules (RDR) as the technology for learning, reasoning, and
maintaining the knowledge base with a mapping to and from CGIF.

The SMEs were Tesco employees, who used controlled English to edit the rules, get
an explanation of how a conclusion was derived, and correct any errors by typing the
conclusion that should have been derived. This application was designed for selling
groceries and later adapted for the electrical and wine departments.

Ripple-down rules are derived from a decision tree that is compiled to a nest of if-
then-else statements (Quinlan 1993; Compton et al. 2006). The raw data for deriving a
decision tree is a set of cases, each of which is described by one or more conditions
and one or more conclusions. Each link of the tree is labeled with one condition, and
each leaf (end point) shows one or more conclusions implied by the conjunction of all
the conditions leading to that leaf. To derive a complete and consistent tree, the
algorithms detect possible conflicts, show the conflicting cases, and request additional
information to resolve the conflicts. For major updates, the algorithms can derive a
new tree from the raw data, but for minor editing, they can make local changes to the

30 J.F. Sowa

tree. For the Tesco application, SMEs describe the cases by CE statements, and the
system generates the rules. Following are some rules derived for the grocery
application:

• If a television product description contains "28-

inch screen", add a screen_size attribute_inches

with a value of 28.

• If a recipe ingredient contains butter, suggest

"Gold Butter" as an ingredient to add to the

basket.

• If a customer buys 2 boxes of biscuits, the

customer gets one free.

• If the basket value is over £100, delivery is free.

• If the customer is a family with children, suggest

"Buy one family sized pizza and get one free".

The RDR rule format has proved to be convenient for SMEs from a wide range of

backgrounds, especially medical informatics. Compton et al. (2006) describe an

application developed by pathologists who used RDR tools to derive a knowledge

base of 16,000 rules from a set of 6 million cases. But RDR is just one of a large class

of tools for case-based reasoning, which overlap methods of machine learning. Some

of them, like RDR, draw sharp distinctions that can be expressed in a subset of logic.

Others use statistics, clustering algorithms, neural networks, and fuzzy logic for

learning and reasoning from cases without sharp boundaries. Still others use

analogies, which can derive sharp or fuzzy distinctions under varying conditions.

In summary, a large ontology such as Cyc does not, by itself, lead to successful

commercial applications. A great deal of work on customization and knowledge

acquisition is necessary to adapt Cyc to more conventional software. The Tesco.com

application shows how systems with middleweight semantics can often simplify the

task of knowledge acquisition. But the people who develop systems that SMEs find

easy to use require advanced education and a toolkit of sophisticated software. With

appropriate tools and methodologies, a convenient front-end could make any system

easier to use. A challenging research goal is to develop an integrated knowledge

acquisition system that could support both AI and conventional software.

4 Semantic Web

The Semantic Web was inspired by Tim Berners-Lee, but it was designed by a
committee. It evolved from a keynote speech at the First World Wide Web
Conference (Berners-Lee 1994):

Adding semantics to the Web involves two things: allowing documents
which have information in machine readable forms, and allowing links
to be created with relationship values.

At this level of detail, nobody could object. But the speech didn’t describe the
machine readable formats, the kinds of relationship values, the logical operations on

 Future Directions for Semantic Systems 31

those values, or any influence from the 40 years of research on semantics in artificial
intelligence, computational linguistics, and software engineering. The W3
Consortium, which met for the first time at that conference, took charge of the design.
Although every branch and nearly every aspect of computer science was represented
by one or more members of the W3C, a design by committee is a compromise of good
people pulling in different directions for good, but often conflicting reasons. By 2001,
some components of the Semantic Web had been specified by W3C
recommendations, but the only consensus on the overall architecture was the so-called
“layer cake” at the left of Figure 1.

Fig. 1. The architectural layer cakes for the Semantic Web

The new layer cake on the right of Figure 1 developed toward the end of the
decade. The differences between the two cakes show significant changes in the
evolution of the Semantic Web:

1. The original cake had clear layers that built on one another. The new cake
adds more boxes, as one might expect, but it also lets some layers dip
beneath their earlier foundations.

2. The Resource Description Framework (RDF), which was defined by XML
Schema, now extends below XML. One extension allows RDFa, which
consists of single attribute tags, to be placed in any XML area. But other
variations have been used or proposed.

3. The digital signature pipe, which was supposed to be based on XML, is
replaced by a cryptography pipe that goes beneath all layers, since XML and
the browsers that process it cannot guarantee security.

4. The ontology vocabulary layer has been replaced by four loosely related
boxes. The Web Ontology Language (OWL) could be used with the other
boxes, but applications that use them are more likely to avoid OWL.

5. The logic layer has shrunk to a smaller box for a unifying logic, since the
components beneath it use some sort of logic, but each of them has its own
independently defined semantics.

32 J.F. Sowa

6. Proof rests on top of the unifying logic, but it also dips beneath it to the Rule
Interface Format (RIF).

7. Trust is the only layer that has not changed, primarily because nobody really
knows how to achieve it.

The evolution of these components can clarify their interrelationships and suggest
future directions. RDF began with a diagram by Tim Berners-Lee that showed how
the links between documents formed a Giant Global Graph. The detailed specification
evolved from an internal dispute in the Cyc Project. The director, Doug Lenat, wanted
a single unified CycL language, but the associate director, R. V. Guha, considered
CycL too complex for most users. Guha wanted a simpler subset of logic that would
allow SMEs to read, write, and edit at least some of the knowledge base. Whatever
the issues may be, Guha left Cyc to join Apple, where he designed a language called
the Meta Content Framework (MCF). He later collaborated with Tim Bray to
represent MCF in XML terms (Guha & Bray 1997). MCF was renamed RDF when it
became a W3C recommendation, and Bray promoted it enthusiastically. But he later
expressed serious concerns about the way it had developed (Bray 2003):

Conceptually, nothing could be simpler than RDF. You have
Resources, which by definition are identified by URIs. The resources
have Properties, which by convention are identified by URIs. The
properties have Values, which can be strings or numbers or Resources.
Everything’s a triple: (Resource, Property, Value)...

Speaking only for myself, I have never actually managed to write down
a chunk of RDF/XML correctly, even when I had the triples laid out
quite clearly in my head. Furthermore — once again speaking for
myself — I find most existing RDF/XML entirely unreadable. I think
the Semantic Web people have taken on a job that’s already tough, and
are adding difficulty, and increasing the probability of failure, by
sticking to the currently broken RDF/XML syntax.

Various tools provide more readable notations for triples, which are translated to and
from the XML format. A popular alternative is the JavaScript Object Notation
(JSON), which can represent an RDF triple as [R, P, V]. A collection of property-

value pairs for the same resource could be written more compactly as {P1:V1,

P2:V2, ..., Pn:Vn}. JSON is a humanly readable notation that is directly

processed by JavaScript.
Although MCF had only a modest amount of logic, Guha and Bray noted that it

could be used to describe its own structure and datatypes: “This self-description
allows MCF to be its own schema definition language. This in turn allows MCF to be
dynamically extended by an author or application.” That principle was carried over to
RDF: the base RDF notation has no built-in ontology, and RDF Schema (RDFS)
contains a metalevel ontology for stating constraints on types and relations. The logic
base (LBase) of RDF is simple, but quirky (Guha & Hayes 2002; Hayes 2003). A
triple with three names (URIs or literals) represents a relation R applied to two
arguments A and B: R(A,B). A collection of triples represents a conjunction:

R1(A1,B1) ∧ R2(A2,B2) ∧ R3(A3,B3).

 Future Directions for Semantic Systems 33

But any argument slot could contain a URI that specifies a relation. In fact, a relation
could even be applied to itself:

R1(A1,R2) ∧ R2(R1,B2) ∧ R3(R2,R3).

Furthermore, RDF allows “blank nodes” that represent anonymous entities: a triple of
the form R(A,_) would say that something A is related by the relation R to some
unspecified resource. In effect, a blank node represents an existentially quantified

variable: (∃x)R(A,x). If a blank node happens to occur in the relation slot, then the

quantifier ranges over relations: (∃r)r(A,B). That triple would say that there exists

an unspecified relation r between A and B. The LBase semantics shows that this logic
is consistent, but it allows combinations that go beyond the usual first-order logic.

To support reasoning, some version of logic with suitable rules of inference is
required. For 2400 years, the most widely used version for representing and reasoning
about ontology has been Aristotle’s syllogisms. Description logics (DLs) are a family
of formalisms that extend Aristotle’s logic with features such as cardinality
constraints and Boolean combinations of categories. McGuinness et al. (2002)
showed how two description logics, DAML and OIL, could be adapted to the RDF
notation to form OWL. But the combination of DLs with RDF exacerbated old
controversies and created new ones.

For thirty years, the DL community has been divided between practitioners who
use highly expressive languages to implement applications and theoreticians who
prove theorems about computational complexity. The Loom and PowerLoom
systems, for example, have been widely used for practical applications (MacGregor
1991; Chalupsky et al. 2006). But the theoreticians ignored PowerLoom because it’s
too expressive: it’s possible to state undecidable problems. Yet every major
programming language is undecidable, and programmers want more expressiveness,
not less. For any language, reducing the expressive power does not make the easy
problems easier to define or faster to solve. It just makes the hard problems
impossible to express. The PowerLoom language became undecidable because the
users asked for more expressive power; none of them asked for decidability.

CycL is an extremely expressive language, but undecidability has never been an
obstacle. On the contrary, OWL has created more obstacles by its draconian measures
to enforce decidability: the constraints on OWL cause all models to be tree structured.
A benzene molecule, for example, has a ring of six carbon atoms. In OWL, it’s not
possible to state or imply that they form a ring, because a ring is not a tree. In Cyc, a
knowledge engineer can choose tree models when appropriate and thereby guarantee
decidability. Chemists, architects, and airplane designers, however, require graphs
with cycles. They have developed highly efficient ways of representing them in both
procedural and logic-based languages. They can represent them in Cyc, but not in
OWL.

Computational complexity is a critical issue, and software engineers have
developed ways of addressing it. Structured programming, design patterns, and their
associated methodologies help programmers in several ways: provide a toolkit of
useful, repeatable techniques; guide a design toward structures that are known to be
safe, decidable, and efficient; and support tests for detecting problematical aspects.
Yet all these methods are optional. They don’t stop creative programmers from
exploring innovative ways of using their highly expressive languages to invent new

34 J.F. Sowa

patterns. Software engineers also observe a time-honored principle: “Premature
optimization is the root of all evil.” Fine tuning one component is irrelevant and even
counterproductive before its relationships to all other components are thoroughly
understood.

The fragmentation of the ontology layer in Figure 1 is the result of developing the
components independently without considering their roles in an integrated system. In
the 1980s, description logics were used as one part of a hybrid system: a DL would
define concept types in the terminology component (T-Box) while a more general
logic used those types in the assertional component (A-Box). By giving priority to
definitions in the T-Box, the hybrid had a modal effect of making T=box statements
necessarily true with respect to the statements in the A-Box. The hybrid structure also
allowed tradeoffs that improved efficiency while simplifying the task of knowledge
acquisition. Some systems had three levels: a T-Box for defining concept and relation
types, and an A-Box that was split between a rule-based reasoning system and a
database for storing ground-level facts. Cyc has similar levels internally, but all levels
use different subsets of the very expressive CycL notation.

That point about databases raises another issue: commercial web sites usually
include relational DBs, which are as important as any component in the layer cakes.
Some people claim that RDBs are obsolescent, but they still run the world economy.
Furthermore, vendors of RDBs provide SPARQL interfaces to the tables, and vendors
of triplestores provide SQL interfaces to theirs. Back in the 1980s, query systems like
TQA might have been successful if their semantics could be derived as a byproduct of
the database design methodology. In fact, Figure 2 shows a proposal from that era that
could have and should have supported such systems (Tsichritzis & Klug 1978).

Fig. 2. The ANSI/SPARC conceptual schema

 Future Directions for Semantic Systems 35

The conceptual schema at the center of Figure 2 represents semantics, which
includes logic and ontology. Unlike the layer cakes, Figure 2 makes semantics the
foundation and relegates syntactic formats to the periphery. The same conceptual
schema could represent the semantics of data organized in tables, networks, or
hierarchies. And the meaning would remain constant under mappings to different
application programs or user interfaces. Instead of leaving semantics for the
comments, tools based on Figure 2 could begin with words and phrases the SMEs
understand and create lexicons for systems like TQA. Unfortunately, the final C of
SPARC represented a committee with conflicting experts pulling in different
directions. The conceptual schema remained a technical report, and not a standard.

In summary, the goals of the Semantic Web were good, but the emphasis on syntax
was a distraction. The strategy must begin with semantics: knowledge representation,
reasoning methods, and knowledge acquisition. Guha had hoped to design a simpler
notation than CycL, but the syntactic details of the components — RDF, RDFS,
OWL, RIF, and SPARQL — dwarf the CycL manual in size and complexity. For
special purposes, the semantics of a notation like SKOS (Simple Knowledge
Organization System) is defined by a mapping to a larger component like OWL. That
mapping enables OWL applications to use knowledge entered through SKOS. But
there is no unified semantics that can define, relate, and share knowledge among all
the components. Cyc, for example, allows each item of knowledge to be entered once
and be reused in as many different ways as necessary. But the components of the
layer cake have overlapping semantics, they tend to compete with one another, and
any sharing that might occur is on an ad hoc basis. A coherent strategy should build
on a unified semantic foundation, simplify knowledge acquisition, and promote the
original goals of sharing and reusing knowledge among all systems connected through
the WWW.

5 Language Analysis and Reasoning

The Holy Grail of knowledge acquisition is to design computer systems that can read

a textbook and map it to logic. But that task is difficult, even for logicians. Hans

Kamp, for example, was a graduate student at UCLA when he got a summer job at the

RAND Corporation to translate an article from the Scientific American to logic. His

thesis advisor, Richard Montague (1970), had claimed that

There is in my opinion no important theoretical difference between

natural languages and the artificial languages of logicians; indeed, I

consider it possible to comprehend the syntax and semantics of both

kinds of languages within a single natural and mathematically precise

theory.

But when Kamp tried to translate the article from English to logic, he found that the

mapping was far more difficult than anyone had thought. Some factual statements were

fairly straightforward. But most sentences required new ontological assumptions, new

translation rules, and sometimes ad hoc decisions about word senses and anaphoric

36 J.F. Sowa

references. That experience led him to develop discourse representation theory (DRT) on

formal principles that went beyond Montague’s (Kamp & Reyle 1993). Other linguists

and logicians added more details and variations. But by the early 21st century, most of

them agreed with Kamp that the basic principles “have to be thought through anew.”

Even though a direct translation from language to logic or other computable form

is not always possible, the opposite mapping from a formal language to a natural

language is much easier and more systematic. It is also possible to relate formal

programs to the documents that describe them, but the task requires a looser kind of

analogy rather than a direct translation. The VivoMind Analogy Engine (VAE), for

example, was used in legacy re-engineering: analyze and compare the programs and

documentation of software in daily use that was up to forty years old (LeClerc &

Majumdar 2002; Sowa & Majumdar 2003). Although the documents specified how

the programs were supposed to work, nobody knew what errors, discrepancies, and

obsolete business procedures might be buried in the code. Following is an excerpt

from one of them:

The input file that is used to create this piece of the Billing Interface for

the General Ledger is an extract from the 61 byte file that is created by

the COBOL program BILLCRUA in the Billing History production

run. This file is used instead of the history file for time efficiency. This

file contains the billing transaction codes (types of records) that are to

be interfaced to General Ledger for the given month.

For this process the following transaction codes are used: 32 — loss on
unbilled, 72 — gain on uncollected, and 85 — loss on uncollected. Any
of these records that are actually taxes are bypassed. Only client types
01 — Mar, 05 — Internal Non/Billable, 06 — Internal Billable, and 08
— BAS are selected. This is determined by a GETBDATA call to the
client file.

No computer program could translate that text to an executable program, and even
professional programmers would need much more analysis before deciding how to
design the system. The problem of comparing previously written programs to the
documents that describe them is much easier, but not trivial. Note that the text
contains a large amount of jargon, and it mixes English words with the names of
programs, files, and variables. Instead of references by name, some files are
mentioned by descriptions such as “the 61 byte file that is created by the COBOL
program BILLCRUA.” The text also uses ad hoc syntax, such as “32 — loss on
unbilled.”

The project required an analysis of 100 megabytes of English, 1.5 million lines of

COBOL programs, and several hundred JCL scripts, which called the programs and

specified the data files and formats. Over time, the English terminology, computer

formats, and file names had changed. Some of the format changes were caused by new

computer systems and business practices, and others were mandated by different versions

of federal regulations. The goal was to generate an English glossary of all processes and

data, to note and generate cross references for all changes of terminology and definitions

over time, to define the specifications for a data dictionary, to create dataflow diagrams

 Future Directions for Semantic Systems 37

of all processes, and to detect inconsistencies between the documentation and the

implementation. Off-the-shelf software was available for analyzing COBOL programs,

but not for analyzing the documentation and relating it to the programs. A major

consulting firm estimated that the project would require 40 people for two years to read

all the documentation, relate it to the software, create all the cross references, and

produce the desired results.

For this project, Arun Majumdar and André LeClerc produced those results in 15

person weeks instead of 80 person years. To do that, they used VAE combined with a

language analyzer called Intellitex, which translated English to conceptual graphs.

The elapsed time was 8 weeks: 4 weeks for design, ontology, and additional

programming for I/O formats; 3 weeks to run Intellitex, VAE, and the new programs

on all the data; and 1 week to produce a CD-ROM with the results, which were

exactly what the company had asked the consulting firm to produce.

During the computation, the combination of VAE and Intellitex analyzed the English

documentation in terms of the semantic patterns specified by the COBOL programs and

JCL scripts. Key to that analysis was a common knowledge representation in conceptual

graphs (Sowa 2008). Even more important were the strategy and tools for using CGs:

• The first step is to use off-the-shelf grammars to analyze COBOL and JCL

and add a back-end for generating conceptual graphs instead of executable

instructions. That analysis also generates a lexicon of all the names of

programs, files, and variables with cross references to the text sources and

the CG translations.

• The next step uses VAE to index the CGs from COBOL and JCL to make

them accessible while Intellitex is analyzing English. For N graphs, the

indexing time is proportional to (N log N), but the time for VAE to find all

graphs within a given semantic distance of a particular graph is proportional

to (log N).

• Since English sentences are frequently ambiguous, many different CGs can

be derived from the same sentence. During the analysis, VAE checks each

option against the previously generated CGs to determine which ones are the

most likely. Any CGs that match something derived from the programs are

saved and indexed. The others are discarded as irrelevant.

• Pronouns and other anaphoric references are resolved by matching the newly

generated CGs to other CGs derived from the same document. Names and

vague references like “the 61 byte file” can be matched to any CGs derived

from the entire corpus. Context surrounding the coreferent nodes can also be

used to resolve ambiguities.

When VAE compares a CG derived from the current sentence to CGs derived from the

programs or other documents, an exact match confirms the accuracy. If one CG has more

or less detail than the others, there is no contradiction. Perhaps some program didn’t need

all the detail, or some document didn’t mention it. But sometimes two CGs might

38 J.F. Sowa

represent different pathways through the background knowledge. Figure 3 shows

different paths through the company’s database from market to location.

Fig. 3. Different paths for relating market to location

VAE discovered that the CG derived from the documentation showed that the

company’s market regions are determined by the location of its business units. Sony

Pictures, for example, would be in the California market, where the company has a

business unit. But the CG derived from the COBOL programs shows that the market

region is computed from the location of the client headquarters. Sony Pictures would

therefore be in the Japan market. Some programmer had made a mistake, and

management was making decisions based on incorrect assumptions. Nobody noticed

the discrepancy until VAE discovered it.

As another example, the ontology implied that every employee is a human being

and no human being is a computer. But CGs derived from COBOL showed that some

employees were computers. The trail of pointers from those CGs led to a comment

buried in a COBOL program that described an ad hoc patch. Back in 1979, two

computers were used to assist human consultants. The company had standard

procedures to bill customers for time spent by their employees, but there was no

provision to bill for computer time. Therefore, the programmer named the computers

Bob and Sally and assigned employee IDs to them. This was a “temporary” patch that

would be removed when the project was finished. But few people clean up after

finished projects. As a result, Bob and Sally remained employees for over 20 years

before VAE discovered them.

Intellitex has a simple grammar, but it always produces some CG for any sentence.

If a word is not in its lexicon, Intellitex capitalizes the word as a starting hypothesis

about the associated concept type. If no parse is found for some string of words, it

 Future Directions for Semantic Systems 39

uses the completely unspecified relation (Link) to connect adjacent words. As an

example, Intellitex would translate the phrase “32 — loss on unbilled.” to a

conceptual graph of the following form:

[Integer: 32]→(Link)→[Punctuation: "—"]→(Link)→
[Loss]→(On)→[Entity]←(Thme)←[Unbilled]

The first line contains a concept of the integer 32 linked to some punctuation linked to
a CG for the phrase loss on unbilled. The concept [Entity] in the second line is

derived from a canonical graph for the participle unbilled, which by default would
have some unspecified entity as its theme (Thme). Then VAE would compare this

graph to the previously generated graphs to find anything similar. For this example,
VAE found comments in the data division of a COBOL program that mentioned
“transaction code” and other comments that related 32 to the phrase “loss on
unbilled.” Similar phrases, such as “72 — loss on uncollected,” used the same
punctuation for the same semantics. But VAE also found that the syntactically similar
phrase “06 — Internal Billable” was related to client types rather than transaction
codes. To derive generalizations, detect exceptions, and refine hypotheses, some
learning algorithms were later combined with VAE.

More recently, a new VivoMind Language Processor (VLP) has replaced the old
Intellitex (Majumdar et al. 2008, 2009). One of the first applications was for analyzing
documents about oil and gas fields, and answering extended queries by geologists who
wanted to evaluate the potential for exploring new regions. Two geologists visited the
VivoMind offices on a Monday morning and brought a collection of 79 documents in
the geosciences domain. They ranged in size from 1 to 50 pages, some described sites of
interest for oil and gas exploration, and others were chapters from a textbook on
geology that VLP could use to extract background knowledge. The documents were not
tagged or annotated in any way, except for the usual formatting tags intended for human
readability.

The first test was to run the documents through VLP without adding any domain
ontology and let the geologists ask questions. The answers were not bad, but they
weren’t much better than a typical search engine applied to the same documents. As a
result of the analysis, VLP also produced a list of all terms that were not found in its
lexicon. For the next four days, the geologists worked with the VivoMind staff to
generate a domain ontology with lightweight and middleweight semantics. The first
task was to classify the unknown words in several categories, such as Rock,
RockFormation, Hydrocarbon, and GeologicalAge. Another task was to add domain-
dependent word senses for common words, such as basin, cap, corridor, fan, feeder,
field, and reservoir. The third task was to add a modest amount of background
knowledge for resolving some of the ambiguities. The first task, which used
lightweight semantics, was completed in about two days. It made a major
improvement in the quality of the answers.

The next two tasks used Common Logic Controlled English (CLCE) to state some
middleweight semantics. Instead of formal definitions, new word senses for the
common words were introduced by stating simple CLCE sentences that use them in
the new sense:

40 J.F. Sowa

A cap on a well is a barrier.

A field that contains a hydrocarbon is under

ground.

A reservoir that contains a hydrocarbon is under

ground.

The background knowledge was also stated in CLCE:

Some ground is under water.

No city is under water.

Every reservoir that contains a hydrocarbon is

in a field that contains a hydrocarbon.

The geologists learned to write such statements during their visit, and they continued
to add more background knowledge after they left. CLCE is general enough to
represent full first-order logic (Sowa 2004), but this level of detail was sufficient for
the task. Following is a sample sentence:

The Diana field is situated in the western Gulf of Mexico
260 km (160 mi) south of Galveston
in approximately 1430 m (4700 ft) of water.

If the sentence had ended with the word Mexico, the syntax would be unambiguous.
But the measures in the next two lines, the parenthetical expressions, and the points
for attaching prepositional phrases create ambiguities. Is Diana field or the Gulf of
Mexico south of Galveston? What is in the water? Diana field, the Gulf of Mexico, or
Galveston? After a devastating hurricane, Galveston was under water, but background
knowledge should imply that cities are usually not under water. Majumdar et al.
(2008) describe the VLP organization and how it uses background knowledge to
resolve such ambiguities.

After they had added sufficient semantics to the domain ontology, the geologists
who developed it invited another geologist from an oil company to test the system. He
brought a small file that described a prospective site. He wanted VLP to compare all
the sites it had analyzed to the following description, rank the sites that were most
similar, and determine both the similarities and the differences for each site:

Turbiditic sandstones and mudstones deposited as a passive margin
lowstand fan in an intraslope basin setting. Hydrocarbons are trapped
by a combination of structural and stratigraphic onlap with a large gas
cap. Low relief basin consists of two narrow feeder corridors that open
into a large low-relief basin approximately 32 km wide and 32 km long.

From the 79 documents it had analyzed, VLP found 17 sites that had some similarity.

The most similar was in the Vautreuil region of France. It based that evaluation on

three of the 79 documents. The report that described the Vautreuil site was essential,

but VLP also extracted information from two chapters of the geology textbook in

order to relate the geologist’s query to that report. The screen shot in Figure 4 shows

how those documents are related to the query.

 Future Directions for Semantic Systems 41

Fig. 4. Relating documents to a query

The oval at the center of Figure 4 represents the query. At the right is a short
description of the Vautreuil region. That summary was extracted from a site report
about the Vautreuil region written by McCaffrey and Kneller, represented by the box
at the top. The six ovals surrounding the query oval contain English phrases, whose
translations to conceptual graphs led to the documents used to answer the query.
Three of those phrases were not found in the site report, but they led to the box for
Chapter 45, from which VLP extracted CGs with background information that it used
to interpret the site report. The three phrases above the query oval occurred in both
the site report and Chapter 44 of the textbook. The result is a network of conceptual
graphs that connect the geologist’s query to the Vautreuil report via background
graphs derived from chapters 44 and 45. The little red triangles in Figure 4 are links to
windows that display relevant paragraphs from the source documents. Clicking on
detail leads to a side-by-side comparison of the similarities and differences between
the Vautreuil site and the site described by the geologist’s query.

The VLP analysis goes into greater depth and precision than current systems for
information retrieval (IR) and information extraction (IE). For each of the 17 sites
related to the query, VLP found multiple documents that contained CGs derived from
the query, CGs from the site report, and CGs from the textbook or other reports that
contained background information. In a sense, VLP “learns” new information by
reading a book. But for each query, it focuses only on those parts of the book that are
useful for relating the query to the answer. This method is very different from current
IR, IE, and DB systems:

42 J.F. Sowa

• IR systems typically use a “bag of words” method to measure the similarity
of a query to a document that might contain an answer to that query. But they
don’t extract the information and summarize it in a table or paragraph. It’s
possible to apply IR methods to individual paragraphs, but that technique
would miss documents in which the significant words are scattered in
different paragraphs. And no IR systems connect partial information from
multiple documents.

• IE systems extract particular pieces of information, and some can link
multiple pieces from different documents. Typical IE systems use predefined
templates that specify expected syntactic and semantic patterns, but they
have stagnated at about 60% accuracy. Hobbs and Riloff (2010) noted “it is
not clear what we can do to overcome [that barrier], short of solving the
general natural language problem in a way that exploits the implicit relations
among the elements of a text.” As Figure 4 shows, VLP doesn’t need
predefined templates. CGs derived from the query enable it to find implicit
relations in a textbook and exploit them to generate precise answers.

• DB systems can relate and combine information from multiple sources, but
they use query languages like SQL and SPARQL. Some support English-like
front ends, but they face the same customization problems as TQA and Cyc.
Furthermore, all the information they access must be predigested and
translated to whatever format the database system requires.

Although conceptual graphs are defined as a formal logic, precise logic cannot be
derived from a vague sentence. The CG that represents a sentence is actually derived
by combining CGs from previously acquired knowledge. The precision of the result is
determined by the precision of the original CGs. This method violates Frege’s
principle of compositionality, which says that the meaning of a sentence is derived
from the meaning of the words it contains and the grammar rules for combining
words. Montague was a strict adherent: each word is defined by one or more logical
expressions, and each grammar rule has an associated semantic rule for combining
those expressions. Montague allowed some words to have multiple meanings, but the
grammar rules check semantic constraints to determine the correct option in each
case. To support context-dependent references, Kamp’s DRT uses information outside
the sentence to determine interconnections. Both neat and scruffy systems make
tradeoffs between the amount of meaning stored in the lexicon and the amount
derived from context or general background knowledge. The high-speed analogy
engine enables VLP to find and use much more background knowledge than most
NLP systems.

In summary, VLP uses a combination of lightweight, middleweight, and
heavyweight semantics. For any text, the broad outline of meaning comes from
lightweight resources such as WordNet combined with middleweight ontologies with
few axioms and definitions. The detail comes from background knowledge
represented in conceptual graphs. At the heavyweight extreme, those CGs may be
derived from formal logics, programming languages, and highly structured databases.
The Common Logic standard (ISO/IEC 2007) specifies a model-theoretic semantics
for CGs. But CGs have extensions beyond the CL standard (Sowa 2006, 2008), and
they can also be used with “scruffy” heuristic methods.

 Future Directions for Semantic Systems 43

6 Integrating Semantic Systems

Semantic systems have different interfaces for people with different requirements and
skills. People with no training in programming or artificial intelligence, either casual
users or subject-matter experts, should have interfaces that take advantage of their
knowledge of the subject and their knowledge of their native language. Conventional
programming tools and AI languages require different kinds of skills, and developers
with experience in either or both should be able to collaborate. Automated and semi-
automated tools should assist all developers in the stages of design, implementation,
testing, and integration with other systems. The examples of Systran, TQA, Tesco,
Cyc, and VLP illustrate the issues:

• Systran required highly trained linguists to design the dictionaries, but the
resulting translations could be read by large numbers of people with no
special training. TQA required DB administrators with special skills to
customize the system for every application, even though the number of users
of an application might be small. The cost of customization per TQA user
was much higher than the cost per Systran user.

• Tesco wanted a more flexible system that could provide helpful suggestions
to customers who visited their website. The software vendor designed a
reasoning system based on OWL, but Tesco employees could not modify it.
Ellis designed a new system with the same kind of interface for Tesco
customers, but with a simpler interface for Tesco employees. Ellis’s design
reduced the cost for updates by Tesco, but many software vendors don’t have
employees with PhDs in computer science.

• Cyc was developed by 10 person-centuries of programmers and PhDs in
several different fields. The cost of customizing Cyc is similar to the cost of
customizing TQA, and success depends on the number of users per
application. Each client must pay Cyc experts to customize the AI
technology. That is a source of revenue for Cycorp, but it limits their market
to large clients that can afford to pay.

• The Tesco system used a version of controlled English to enable employees
with no AI training to read and update the knowledge base. The language for
TQA users was called English, and it had greater expressive power than
Tesco English, but it was just as tightly controlled. VLP was designed to
process unrestricted natural languages, but it also supports controlled English
for SMEs who update, supplement, and correct its knowledge base. All three
systems show that users who know the subject matter can adapt to controlled
NLs and use them effectively.

• People with every level of skills find diagrams helpful as a supplement to
both natural and artificial languages. For the legacy re-engineering project,
the VivoMind system translated the internal conceptual graphs to the more
conventional dataflow diagrams and system structure diagrams used by
programmers and systems analysts. The screen shot in Figure 4 is one of
several kinds of diagrams that VLP generates from the internal CGs. They
enable a geologist or other SMEs to explore the network of inferences and
associations at different levels of detail. At each step, the system can follow

44 J.F. Sowa

the pointers from any CG to display the paragraph or paragraphs from which
it was derived.

All five systems connect AI technology with conventional software, but the esoteric
theories, languages, and methodologies of AI limit their use by most programmers
and webmasters. With relational databases, Codd (1970, 1979) introduced first-order
logic as the semantic foundation for database query languages. The conceptual
schema illustrated in Figure 2 was an attempt to introduce even more semantics into
database systems. It stimulated thirty years of research and collaboration between the
AI and database communities, but most of that technology remains isolated from
mainstream IT. To be successful, AI developers must find ways to simplify their
development tools and integrate them with commercial software.

In contrast with the slow transfer of AI research to applications, the original World
Wide Web addressed a specific problem with a well-defined goal: combine hypertext
with the Internet, and let physicists get any report by clicking on a citation. It worked
so well that everybody wanted to use it. The Semantic Web, however, began with the
vague idea of adding semantics to the links. AI researchers, who were eager to
promote their tools and theories, proposed them to the W3C. Those proposals led to
the boxes in the layer cakes of Figure 1. Meanwhile, skeptics like Shirky (2005)
claimed that “ontology is overrated.” Like the conceptual schema, ontology is a fertile
field for research, but most programmers who use XML for data interchange ignore
OWL.

Yet the Semantic Web has been developing a valuable set of tools, and they should
be better integrated with both AI technology and more conventional software. One
way to begin is to fill the box for “unifying logic” in Figure 1 with Common Logic
(ISO/IEC 2007). The semantic foundation for Common Logic is based on a proposal
by Hayes and Menzel (2001). Guha and Hayes (2002) adopted that semantics
for RDF, and it is compatible with every logic in the layer cakes. Common Logic
has also been adopted as the unifying logic for the UML diagrams, which are widely
used to specify conventional software (OMG 2010). A unifying logic can support
development tools with precisely defined mappings between components from
different communities with different notations and methodologies.

A promising opportunity for semantic applications is the movement toward Linked
Open Data (LOD), and the largest single collection of data is held by the US
Government. Vivek Kundra, the chief information officer, summarized the issues:

Just consider the huge experience gap that Americans have when they
go online to make a hotel reservation or buy a book through Amazon
versus how they interact with the public sector — whether it’s paying
taxes, applying for student aid or applying for Social Security benefits.
(Quoted by Moyer 2010)

Yet Kendra’s examples are far more complex than buying a book or reserving a hotel
room. Commercial websites handle those routine transactions very well, just by using
conventional programs and databases. For complex reservations, travelers prefer to
talk with a human agent, even if they have to pay a service charge. For most
commercial sites, the help facilities are notoriously poor, and it’s unlikely that they
could answer the kinds of questions people would ask about taxes, student aid, or

 Future Directions for Semantic Systems 45

social security. Search engines are popular because they’re easy to use for finding
documents, but some knowledgeable person or computer would have to read and
understand them to answer such questions.

In the interview, Kendra used the term data sets, not documents, and most of those
data sets are stored in databases. The initial goals are to make the data accessible by
interfaces to the web, but those interfaces need not use AI technology. For many of
them, tags that mark the datatypes are the only semantics. Such tags are useful for
both conventional software and AI technology, but detailed reasoning requires more
semantics. Fortunately, AI technology can also derive the semantics. The US
Government is the world’s largest publisher, and every data set is described or
mentioned in many documents. A user-friendly interface should relate that data to the
documents and answer questions by extracting related paragraphs. But most LOD
projects aren’t using NLP methods to process the documents and relate them to the
data sets.

The VivoMind examples in Section 5 show how an integrated system of semantic
tools can process both structured data and unstructured texts. The legacy re-
engineering project shows that formal semantics derived from a subject can be used to
interpret reports and manuals about the subject. The method of answering a
geologist’s query shows how NLP systems can integrate semantics derived from
multiple sources to analyze documents and answer questions. These methods are at
the cutting edge of applied research, but they are likely to evolve rapidly during the
coming decade. That evolution is inevitable, and better tools can facilitate the
transition.

References

Berners-Lee, T.: W3 future directions, Keynote speech. In: First International Conference on

the World-Wide Web, May 25-27. CERN, Geneva (1994),

 http://www.w3.org/Talks/WWW94Tim/

Bray, T.: The RDF.net challenge (2003),

http://www.tbray.org/ongoing/When/200x/2003/05/21/RDFNet

Chalupsky, H., MacGregor, R.M., Russ, T.: PowerLoom Manual. ISI, Marina Del Rey, CA

(2006)

Codd, E.F.: A relational model of data for large shared data banks. Comm. ACM 13(6), 377–

387 (1970)

Codd, E.F.: Extending the relational model to capture more meaning. ACM Transactions on

Database Systems 4(4), 397–434 (1979)

Compton, P., Peters, L., Edwards, G., Lavers, T.G.: Experience with ripple-down rules.

Knowledge Based Systems 19(5), 356–362 (2006)

Damerau, F.J.: Operating statistics for the Transformational Question Answering System.

American Journal of Computational Linguistics 7(1), 30–42 (1981)

Damerau, F.J.: Prospects for knowledge-based customization of natural language query

systems. Information Processing and Management 24(6), 651–664 (1988)

Ellis, G., Levinson, R.A., Robinson, P.J.: Managing complex objects in Peirce. International J.

of Human-Computer Studies 41, 109–148 (1994)

Feigenbaum, E.A., McCorduck, P.: The Fifth Generation. Addison-Wesley, Reading (1983)

46 J.F. Sowa

Guha, R.V.: Contexts: A Formalization and Some Applications, PhD dissertation, Stanford, and

Technical Report ACT-CYC-423-91, MCC, Austin, TX (1991)

Guha, R.V., Bray, T.: Meta Content Framework using XML, W3C (1997),

http://www.w3.org/TR/NOTE-MCF-XML-970624

Guha, R.V., Hayes, P.J.: LBase: Semantics for languages of the semantic web (2003),

http://www.w3.org/TR/2003/NOTE-lbase-20031010/

Hayes, P.J., Menzel, C.: A semantics for the Knowledge Interchange Format. In: Workshop on the

IEEE Standard Upper Ontology, IJCAI 2001 (2001),

 http://reliant.teknowledge.com/IJCAI01/

HayesMenzel-SKIF-IJCAI2001.pdf

Hayes, P. (ed.): RDF Semantics. W3C Recommendation (2004),

http://www.w3.org/TR/rdf-mt/

Hobbs, J.R., Riloff, E.: Information extraction. In: Indurkhya, N., Damerau, F.J. (eds.)

Handbook of Natural Language Processing, 2nd edn. CRC Press, Boca Raton (2010)

Hutchins, W.J.: Machine translation: a brief history. In: Koerner, E.F.K., Asher, R.E. (eds.)

Concise History of the Language Sciences: from the Sumerians to the Cognitivist, pp. 431–

445. Pergamon Press, Oxford (1995)

ISO/IEC, Common Logic (CL) — A Framework for a family of Logic-Based Languages, IS

24707, International Organisation for Standardisation, Geneva (2007)

Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)

Kamp, H.: Levels of linguistic meaning and the logic of natural language (2001),

http://www.illc.uva.nl/lia/farewell_kamp.html

Kassoff, M., Genesereth, M.R.: PrediCalc: a logical spreadsheet management system.

Knowledge Engineering Review 22(3), 281–295 (2007)

Moyer, M.: Digitizer in chief, an interview with Vivek Kundra. Scientific American 303(4),

90–94 (2010)

LeClerc, A., Majumdar, A.: Legacy revaluation and the making of LegacyWorks. Distributed

Enterprise Architecture 5(9) (2002)

Lenat, D.B., Feigenbaum, E.A.: On the thresholds of knowledge. In: Proc. IJCAI 1987, pp.

1173–1182 (1987)

Lenat, D.B., Guha, R.V.: Building Large Knowledge-Based Systems. Addison-Wesley,

Reading (1990)

Majumdar, A.K., Sowa, J.F., Stewart, J.: Pursuing the goal of language understanding. In:

Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 21–42.

Springer, Heidelberg (2008), http://www.jfsowa.com/pubs/pursuing.pdf

Majumdar, A.K., Sowa, J.F.: Two paradigms are better than one and multiple paradigms are

even better. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.) (2009),

 http://www.jfsowa.com/pubs/pursuing.pdf

MacGregor, R.A.: The evolving technology of classification-based knowledge representation

systems. In: Sowa, J.F. (ed.) Principles of Semantic Networks, pp. 385–400. Morgan

Kauffmann, San Mateo (1991)

McGuinness, D.L., Fikes, R., Hendler, J., Stein, L.A.: DAML+OIL: An ontology language for

the Semantic Web. IEEE Intelligent Systems 17(5) (2002)

Montague, R.: Universal grammar (1970); reprinted in Montague, R.: Formal Philosophy,

pp. 222–246. Yale University Press, New Haven

Mueckstein, E.-M.M.: Q-Trans: Query translation into English. In: Proc. IJCAI 1983, pp. 660–

662 (1983)

OMG, Semantics of a Foundational Subset for Executable UML Models, Object Management

Group (2010), http://www.omg.org/spec/FUML/1.0

 Future Directions for Semantic Systems 47

Peterson, B.J., Andersen, W.A., Engel, J.: Knowledge bus: generating application-focused

databases from large ontologies. In: Proc. 5th KRDB Workshop, Seattle, WA (1998),

http://sunsite.informatik.rwth-aachen.de/Publications/

CEUR-WS/Vol-10/

Petrick, S.R.: A recognition procedure for transformational grammars, PhD dissertation. MIT,

Cambridge (1965)

Petrick, S.R.: Field testing the TQA System. In: Proc. 19th Annual Meeting of the ACL,

pp. 35–36 (1981)

Quinlan, J.R. (ed.): C4.5: Programs for Machine Learning. Morgan-Kaufmann, San Mateo

(1993)

Sarraf, Q., Ellis, G.: Business rules in retail: the Tesco.com story. Business Rules Journal 7(6)

(2006)

Shirky, C.: Ontology is overrated. Talk presented at the O’Reilly Emerging Technology

Conference, San Diego (2005),

 http://www.shirky.com/writings/ontology_overrated.html

Sowa, J.F.: Graphics and languages for the flexible modular framework. In: Wolff, K.E.,

Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 31–51.

Springer, Heidelberg (2004)

Sowa, J.F.: Worlds, models, and descriptions. Studia Logica, Special Issue Ways of Worlds

II 84(2), 323–360 (2006)

Sowa, J.F.: Conceptual graphs. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook

of Knowledge Representation, pp. 213–237. Elsevier, Amsterdam (2008)

Sowa, J.F., Majumdar, A.K.: Analogical reasoning. In: de Moor, A., Lex, W., Ganter, B. (eds.)

ICCS 2003. LNCS (LNAI), vol. 2746, pp. 16–36. Springer, Heidelberg (2003),

 http://www.jfsowa.com/pubs/analog.htm

Tsichritzis, D.C., Klug, A.(eds.): The ANSI/X3/SPARC DBMS framework. Information

Systems 3, 173–191 (1978)

Wang, H.: Toward mechanical mathematics. IBM Journal of Research and Development 4, 2–22

(1960)

Whitehead, A.N., Russell, B.: Principia Mathematica, 2nd edn. Cambridge University Press,

Cambridge (1910/1925)

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 49–74.

springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 3

Defining and Validating Semantic Machine to Machine

Interoperability

Claudia Szabo
1
 and Saikou Y. Diallo

2

1 Department of Computer Science National University of Singapore Computing 1, 13

Computing Drive Singapore 117417

Claudias@comp.nus.edu.sg
2 Virginia Modeling Analysis and Simulation Center, 1030 University Blvd

Suffolk, VA, 23435
Sdiallo@odu.edu

Abstract. Current approaches to interoperability focus on the technical aspects

related to connecting systems through the development of technical standards and

frameworks and the semantic aspects of exchanging data through the development

of common reference models (CRM), ontology or federated schemas. This chapter

will show that those approaches are computationally equivalent and will formally

define what pure machine to machine semantic interoperability is as opposed to

human in the loop interoperability where a human is needed to assess semantic

equivalence. A formal method for validating federations under certain conditions is

also provided. The validation process looks at general model properties of the

composed artifact, such as ensuring that the federations execute correctly without

hanging. Next, the aggregated execution of the federation is formally compared

with the execution of a reference federation. Comparisons consider time-based

orderings and semantic closeness according to an ontology that describes

federations and exchanged data.

Keywords: Modeling, Simulation, Interoperability, Composability, Validation.

1 Introduction

The term interoperability
1
 is used to mean different but closely related things

depending on the application area. Nations and companies are ready and willing to

invest in “interoperable solutions” even though it is not clear what that really means

or what an interoperable solution represents. It is however clear that just like

composition, and validation
2
, interoperability is more a practice than a science. As a

result it is difficult to come to a consensus on what the problems inherent to

interoperability are, how they are categorized and whether they can be solved. Issues

such as multi resolution, multi scope and multi structure that are not central in

software interoperation take on a new dimension in model based interoperation

because each system is a purposeful abstraction of reality [1]. Consequently solutions

1 The work on the formal aspects of interoperability is drawn from [38].

50 C. Szabo and S.Y. Diallo

dealing with technical issues such as connectivity or syntactical alignment while

sufficient for software and hardware interoperability fall short when it comes to

model based systems [2].

One of the main roadblocks to interoperability for model based system is the issue

of semantic inaccessibility. As stated in [3]:

“The semantic rules of the component simulation tools and the semantic intentions of

the component designers are not advertised or in any way accessible to other

components in the federation. This makes it difficult, even impossible, for a given

simulation tool to determine the semantic content of the other tools and databases in

the federation, termed the problem of semantic inaccessibility. This problem manifests

itself superficially in the forms of unresolved ambiguity and unidentified redundancy.

But, these are just symptoms; the real problem is how to determine the presence of

ambiguity, redundancy, and their type in the first place. That is, more generally, how

is it possible to access the semantics of simulation data across different contexts?

How is it possible to fix their semantics objectively in a way that permits the accurate

interpretation by agents outside the immediate context of this data? Without this

ability—semantic information flow and interoperability—an integrated simulation is

impossible”.

The challenge is therefore to make data in systems semantically accessible to other

systems so that they make use of it. The idea that systems can access the semantics of

data produced by other systems without a human in the loop making decisions about

semantic equivalence is interesting but is it possible? In this chapter, we will attempt

to answer this question by presenting what semantic interoperability means for a

machine and how to validate a federation of interoperating machines. The first part of

the chapter will focus on defining interoperability and examining how it is currently

understood. We will also formally define what interoperability is for machines at the

data level. The second part will focus on validating a federation of interoperating

machines and ascertaining that the federation is behaving in accordance with the

desired expectations. We will conclude with a series of observations and

recommendations for agent supported machine to machine interoperability at the

semantic level.

2 State of the Art in Interoperability

In this section, we examine definitions of interoperability in order to derive a shared

understanding of the basic expectations when we use the term “interoperability”.

Webster’s online dictionary defines interoperability as

“the ability to exchange and use information (usually in a large heterogeneous

network made up of several local area networks)” [4]

 Defining and Validating Semantic Machine to Machine Interoperability 51

The Department of Defense (DoD) defines interoperability as

“the condition achieved among communications-electronics systems or items of

communications-electronics equipment when information or services can be

exchanged directly and satisfactorily between them and/or their users. The degree of

interoperability should be defined when referring to specific cases.”[5]

The Institute of Electrical and Electronics Engineers (IEEE) defines interoperability as

“the ability of two or more systems or components to exchange information and to

use the information that has been exchanged”[6].

Another definition of interoperability is proposed by the International Organization

for Standardization/International Electrotechnical Commission (ISO/IEC) as

“The capability to communicate, execute programs, or transfer data among various

functional units in a manner that requires the user to have little or no knowledge of

the unique characteristics of those units.”[7]

While these definitions are not formal, they emphasize two points that are recurrent in

all of the working definitions of interoperability found in the literature:

Information Exchange: Interoperable systems are characterized by their ability to

exchange information. It is also clear from these definitions that interoperability is at

the system level and more precisely systems that are implemented on a computer.

This definition also takes the position that interoperability is a condition that must be

achieved which implies that systems are interoperable when they are interoperable.

The IEEE definition defines interoperability as inherent to a system (its ability to

exchange information) which implies that systems are interoperable if they are

interoperable. These two definitions are both tautological and contradict one another

which show that the understanding of what interoperability is at the basic level is not

consensual. The ISO definition focuses solely on the technical side of interoperability

and ignores the semantics and pragmatic aspects of data i.e. its usefulness. However,

it is still an applicable definition because it talks about data instead of information.

Usability of Information: The other aspect stressed in these definitions is the notion of

usability or usefulness of the information exchanged. The natural question that arises

immediately is who determines what is useful and is this determination done before,

during or after the information exchange. In the case of the IEEE, the use of

information is determined by the receiving system as the wording indicates, which

implies that not only the receiving system is able to process information it can also

determine which information it can use and which it should throw out. It also points

to the fact that there is a direction of information flow and it is important to identify it

during interoperation. The difficulty for machine to machine interoperability is in this

second part because machines do not have the ability to ascertain meaning as humans

do and typically treat data as bits and bytes. Meaning has to be imposed from outside

the machine through the use of models (in this case a protocol or standard is

considered a model).

52 C. Szabo and S.Y. Diallo

The distinction between data and information is important because all information is

data but the converse is not true. According to [8], data are simply a set of symbols, facts

or figures, while information is data that are processed to be useful and provides answers

to questions such as “who”, “what” etc…. The differentiation between data and

information is essential because typically computers deal with data while humans deal

with higher levels of abstraction such as information, knowledge and wisdom [9].

Nonetheless, it is possible to represent information in a computer by relating data in a

structure. The term interoperability as described in the earlier definitions point to not only

information but useful information. In Ackoff’s categorization, useful information is

knowledge and gaining understanding through knowledge is the ultimate goal of

interoperability. However, there must be a transition between data, information and

knowledge that allows a formulation of a useful formal definition of interoperability.

The next important question is the determination of what is useful. In the current

state of the art, the determination of what is useful is completely dependent on the

system receiving the data and the sending system is not able to determine whether

what is exchanged is useful. The current approach is to introduce an interface that will

ensure usefulness by codifying all relevant transactions and translations between

machines. The interface qualifies as a model whose role is to broker information

between models. If we want a machine to determine what is useful such a model is

required and the machine must be able to generate it. However, the introduction of an

interface does not answer the question as to what is useful and actually leads to a

paradox if we were to use a machine (read software agent) to generate the interface:

Paradox 1: Let’s consider two models A and B which are interoperable through an

interface I. If I is a model then A and I are also interoperable and therefore an

interface I1 is required between A and I. I1 is also a model and therefore and interface

I2 is required. To generalize, interface In and A are interoperable requires and

interface In+1 which leads to an infinite sequence.

The same logic can be applied to I and B. Consequently, the introduction of an

interface is an outcome of interoperability not interoperability itself. For machines,

this paradox resolves itself at the bit and bytes level as there is usually an agreement

on hardware protocols to directly connect machines. However, the problem remains

intact in that we still do not know what interoperability means for a machine let alone

what semantic interoperability means. From the definitions above, we do know that

interoperability involves the exchange of data and the use of data once it is

exchanged. Consequently, it is safe to conclude that understanding what the semantics

of data are for a machine is a good starting point for understating what semantic

interoperability means for a machine.

The next section examines data models and Data Modeling Theory (DMT) in order

to explain the semantics of data. DMT has focused on defining data models and

conveying meaning between machines over the past forty years. Current approaches

to data modeling and databases such as the Entity-Relationship (ER) model [10] and

the Relational Model (RM) [11] are some of two of the well known models of DMT.

In the case of machine to machine interoperability, each machine has an internal

representation of data, and in this part of the chapter, we focus on data solely without

 Defining and Validating Semantic Machine to Machine Interoperability 53

any direct concerns for the functions that produce or consume data. These functions

are examined when we discuss federation validation as they capture part of the

behavior of the federation.

2.1 Semantics of Data for a Machine

A data model in Data Modeling Theory is usually a means to store data that is

relevant to an activity. Typically, this model is caputred as a database which is

different from a model that is developped to answer a modeling question. In this

chapter, we are interested in models in the Modeling and Simulation (M&S) sense of

the term i.e. a purposeful abstraction of a referent (real or imagined things).

Consequently, semanctic machine to machine interoperability is similat to M&S

interoperability and the problem we are addressing can be reduced to identfying how

agents can help enable semantic machine to machine interoperability. The model in

DMT is an abstraction of reality but not a purposeful one in the M&S sense. The

model of data represented in machine must be a purposeful one because it captures

the meaning intended by the designer of the model. In [12] the author argued the need

to differentiate between the real world and the model of the real world and showed

that if a question that is relevant to the real world is posed to a model of this world

that did not consider the question in the first place, it leads to the problem of

incomplete information. This problem simply does not exist in M&S because of the

purposeful nature of the model. Further, different modelers might model the same

thing differently, one as an object the other as an attibute. Objects, attributes and

value domains are possible representations of a referent. The selection of objects,

attibutes and value domains depends on the purpose of the model or the modeling

question one is trying to answer.

DMT has focused on capturing and communicating more semantics through two

main forms. The first is the introduction of hierarchical structures to represent how

things are related and the second is the reliance on terms to carry the meaning of what

is represented. While the reliance on structure is adequate for machines as they can

easily represent and capture structures, the reliance on terms to carry meaning

presents a central problem. Aside from the issue that machines cannot understand the

meaning of terms, the problem is that a term is a model because just like any model it

is an abstraction of reality. This observation leads to another paradox that is stated as

follows:

Paradox 2: Given a term that has some meaning, it takes a least one term to describe

it. The describing term needs at least one term describe it, etc…, which leads to an

infinite recursion.

This paradox is similar to the “symbol-grounding problem” found in Artificial

Intelligence [13]. In order to avoid this paradox, a starting point must be provided in

the form of either an initial set of terms that all agree upon or a description of terms

that all can refer to. This description of terms can be in a dictionary, a taxonomy or an

ontology. The problem in agreeing to an initital set of terms is that each machine can

have an internal representation of data using its own set of terms. Therefore, Paradox

2 is avoided not by agreing on a common set of terms to be used universally but by

54 C. Szabo and S.Y. Diallo

establishing equivalence between sets of terms. The first condition for establishing

equivalence is to guarantee that each term corresponds to a unique string within a

model and that the term has one and only one meaning (imposed from the outside).

This notion is formally captured in the next section as a domain.

The structure of models as reviewed in this section are assumed to be unique for a

given referent. For machine to machine interoperability, there exist multile possibly

equivalent structures. Further the structure addresses how things are related and not

how they change with respect to one another. DMT needs the strucure for the purpose

of data integrity meaning data that belongs together is always provided as whole or

not at all. However, in the current understanding of interoperability, the idea of

integrity is not explicitely supported due to the independence assumption which is

described as follows:

Independence assumption: For a given model, each element within the model exists

independently from any other element.

The independence assumption is the driving force behind the definition of

interoperability and the inteoprability approaches reviewed in the previous section.

However, this assumption leads to multiple versions of the truth in a federation of

models, that is to say that if two identical elements participate in different structures

they might change differently for the same input. As a simple example, let’s consider

model one where a tank has a crew (tank and crew are objects that are related) and

model two where a crew is part of a tank (crew is an attribute of the tank). If the

models interoperate over tank or exchange information about the tank, the destruction

of a tank results in the destruction of the crew in model two while the crew might still

be alive in model one if they were not in the tank at the time it was destroyed. In this

federation, it is possible for the crew to be both dead and alive at the same time.

Consequently in defining machine to machine interoperability, it is essential to avoid

the independence assumption and treat it as a special case.

 This section motivates the need to separate the structure of models from the

meaming of terms. The structure of models in Data Modeling Theory is applicable to

M&S and brings the additional element of data integrity to avoid the independence

assumption at work in the approaches to interoperability. The reliance on terms to

carry meaning leads to an infinite recursion which can be avoided by creating a

domain of validity for the terms used in a model in the form of a set and allowing

equivalence relations to be established between sets. The section shows that the

definition of a data model in M&S should take into account the modeling question

and allow all possible representations of the referent to be captured. The separation

between the referent and the model of the referent are shown to be essential in

interoperability. The next section introduces a formal specification of data in

machines based on the discussion presented in this section. This formal specification

takes into account the aspects of data from Data Modeling Theory and conceptual

modeling as well as additional aspects essential to M&S.

 Defining and Validating Semantic Machine to Machine Interoperability 55

2.2 Formal Representation of Data for a Machine

A formal definition of a model has to take into account not only the model but also its

relation to the referent on one hand, and its relation to the simulation on the other

hand. In order for a machine to account for the semantics of the model, it is important

to decouple the description of the model from its representation and its representation

from its implementation. The three terms-entities, properties, value domains-

constitute the core of a data model in Data Modeling Theory. For agents, this chapter

adds the notion of a domain which is similar to the traditional view of the value

domain (a collection of values that an attribute can take) but is generalized to

encompass the domain of discourse. Finally, the term element is used to mean

anything real or imagined that can be described and/or observed. The five terms are

defined as follows:

Elements are real or imaginary things.

Entities are abstractions of elements. It is worth noting that by this definition any

abstraction including processes and relationships are considered entities.

Properties are the characteristics of an element.

Symbols are the representations of elements. Symbols can be numbers, strings,

images, text or a combination of symbols.

A domain is a collection of unique symbols. The domain is the set of elements that

belong to a context. Every element is uniquely identifiable within a given domain.

It is important to note that elements are used to separate the notions of entities and

properties and how they are related. Elements can be modeled as entities or properties

and then related to form the entity-property relationship. This separation of elements

and how they are represented reflects the general case and therefore subsumes the

entity-property-value triple introduced by the ER and RM.

Given these definitions, let us first formally capture a conceptualization of the

referent:

Definition 1. Let S be the set of elements, Ω the set of entities, Π the set of properties,

V the set of symbols. A conceptualization S is formally captured by the categorization

of elements into entities, properties or symbols. Formally a conceptualization S is a

partial function F defined such that:

ሺܵሻܨ ൌ ቐΩ ݂݅ ܵ ݈ܾ݅݉ݕݏ ܽ ݏ݅ ܵ ݂݅ ܸ ݕݐݎ݁ݎ ܽ ݏ݅ ܵ ݂݅ ߎ ݕݐ݅ݐ݊݁ ݊ܽ ݏ
A function is a binary relation between sets in which every ordered pair has a

different first member. A partial function is a function for which not every member

participates in the relation [14]. The definition of a conceptualization as a partial

function accounts for the complexity of elements and the fact that it is impossible to

capture them completely for non-trivial cases. Staying with functions, a bijection,

surjection and injection are defined as follows [14]:

56 C. Szabo and S.Y. Diallo

Injection: For every element in S, ݔ, ݔ ൌ .ሺܵሻܨ

Bijection: A function is bijective if it is injective and surjective.

There is no requirement that reality be injective (distinct elements of S map to

entities, properties or symbols) or surjective (every entity, property and symbol in

their respective set must refer to an element) during the conceptualization process.

However, once a commitment is made, a representation (capture) of FሺSሻ must be

bijective and consequently always have an inverse. An inverse is a function G such

that for an element s and an entity, property, or symbol ݔ, ሻݔሺܩ ൌ ሻݏሺܨ ݂݅ ݏ ൌ .ݔ

Definition 2 captures the need to express the conceptualization process as a

bijective function.

Definition 2. An element within S is an entity, a property or a symbol, otherwise

stated the three sets are mutually disjoint.

The introduction of the domain as a collection of symbol provides one way to avoid

paradox 2. To illustrate, let’s consider the following problem absent the notion of a

domain:

Given two conceptualizations, is it possible to determine whether they are equal?

This question is central in interoperability as it determines whether the information

exchange is meaningful. Since conceptualizations are partial functions and two

functions F and G are said to be equal if ݏܩ=ݏܨ for every element s, this question can be reduced to a problem known as the Equivalence Problem and has been

shown to be unsolvable in the general case (Hein, 2002). For machine to machine

interoperability it means that, in general, given two representations we cannot

determine whether they refer to the same referent. This finding is not surprising

considering that even for humans this is a difficult endeavor. Consequently, semantic

interoperability for machines is limited to comparing sets of terms and structures

without regard to what it is they represent in the real (or imaginary) world.

Having established that fact, let’s now consider the domain and the following

definition:

Definition 3. Given a set S of elements and a non-empty set of domains Δ, every

element in S is associated with a domain.

Mathematically, we define the tuples:

• α is a subset of Ω XΔ, the Cartesian product of entities and domains

• ȕ is a subset of Π X Δ, the Cartesian product of properties and domains

• Ȗ is a subset of V X Δ, the Cartesian product of symbols and domains

For every element s belonging to S, s belongs to α, ȕ or Ȗ. In addition α, ȕ and Ȗ are

disjoint as a consequence of definition 2. The domain reduces terms to their assigned

symbol. Terms have the meaning assigned to it its domain which might or might not be

the same as other meanings it has in other domains. Assigning meaning to a term is a

modeling decision captured by definition 3. Determining equality between

conceptualizations is reduced to determining equality between domains by definition 3.

 Defining and Validating Semantic Machine to Machine Interoperability 57

A direct consequence of the introduction of the domain is the shift in the role of a referent

which is now undistinguishable from the conceptualization at least in terms of its

description. The distinction while existing in reality disappears once conceptualizations

are captured.

Having captured a model description, we need to capture the structure of a model as a

means to carry semantics. A model of a conceptualization is one of the many possibly

equivalent representations of the conceptualization which itself is one of the many

possibly equivalent conceptualizations of a referent. Conceptualizations might or might

not be related through a relationship relation. The following definition is a generalization

of all possible relationships including relationships between relationships that are

expressible within this formalism:

Definition 4. Given Δ the set of domains, we define the relation ߩ as the subset of Δ X

Δ the Cartesian product of domains.

The relation ρ captures the relationship between entities and entities, entities and

properties, entities and symbols, properties, properties and symbols and symbols and

symbols. In addition ρ captures relationships between relationships if one considers

that all the relationships in definition 1.3 are elements that have as domain a subset of

Δ X Δ and therefore abide by the previous definitions. The relation ρ is a graph with

vertices Δ.

Having defined the conceptualization, let us now define a model of the

conceptualization:

Definition 5. A model M of a conceptualization S denoted MS is the relation (α, ȕ, Ȗ, ρ).

By definition 5 a model is also a representation of a conceptualization. If M is

countable, M is computable and further if M is finite and countable it can

implemented on a digital computer. However, results derived from these definitions

are not limited to computable functions but should apply in general. The model avoids

the paradoxes by separating the referent, a conceptualization of the referent and a

model of the conceptualization. The semantics are captured by a collection of

groupings of symbols and how they are related. Several additional observations

should be pointed out with these definitions. The first observation is that the referent

and a model of the referent are not required to be finite and/or countable and therefore

are not required to be computable. The second observation is that the definitions do

not make any assertions about inherent semantic relationship between the sets. In this

sense any model of the referent is captured under these definitions.

Definition 1 does not take a position on which set to capture first and in fact does

not require any set to be non-empty except for the domain. It is perfectly acceptable to

view the world in terms of properties and symbols or entities and domains.

Consequently, the definition does not espouse any predetermined description of the

referent. Most importantly, the semantics of the referent and the model are explicitly

captured by the quadruple. The introduction of the domain as part of the specification

in definition 3 plays the same role as the use of labels to carry meaning but in a

58 C. Szabo and S.Y. Diallo

formal way. Definition 4 accounts for the semantic relationships between entities. The

existence of a relationship between entities implies a relationship between the

domains of these entities. Definition 4 implies that a new domain is created by

relating entities and the domain thus created is the context of the relationship.

Definition 5 is a generalization of the traditional view of a model in which entities

have properties which have values and those values can in turn be grouped into a

value domain. The traditional view does not cover a model in which entities interact

and are affected by their environment. In this case, entities might or might not have

properties explicitly modeled; nonetheless there are properties of the environment that

are affecting their interactions and properties of their behavior (the exchange of

Protocol Data Unit between entities is a simple example). This is the case for example

in multi-agent models. Another simple example is a grouping of properties of several

entities to form a context or the occurrence of events in event-based simulations or the

modeling of structures in System Dynamics. Definition 5 covers all these models

within its specification and additionally allows relationships to be related within its

specification.

Having defined a model and shown that interoperability for machines reduces to

comparing domains and relationships between domains in this section, the section

will define and discuss machine to machine interoperability.

2.3 Semantic Machine to Machine Interoperability

In general, while there are guidelines and best practices for modeling, a normalization

process as practiced in Data Modeling Theory might result in a model that does not fit

the scope and resolution originally intended. At this juncture, it is more important for

the model to be separated from the business rules that dictate the interactions with it.

This separation is also very useful in augmenting the ability of models to interoperate

as it distinguishes between the semantics of the data model and the semantics of the

interactions with the data model. As a reminder from the previous section, a model of

a referent MS is the relation (Ω, Π, V, ρ) which is a composition of the subset of the

Cartesian product of entities and domains, properties and domains, symbols and

domains, and domains with themselves. We distinguish between existential

dependency and transformational dependency.

Definition 6. Let X, Y be sets of entities, properties or symbols with respective

domains ΔX and ΔY, Y is existential dependant on X denoted XΦY or Φ(X, Y) if the

existence of Y implies the existence of X.

Every element is existentially dependent on itself and it is worth noting that the set

thus defined is a subset of ρ the Cartesian product of domains which is nonempty

implying that Φ is also nonempty. By this definition, multi valued dependency is the

particular case where Φ is a function and X, Y are sets of properties where Y has

cardinality one. Existential dependency is a generalization of traditional conceptual

modeling relationships (is-a, part-of, has-a, etc…) that is able to capture the idea that

a designated grouping of elements (entities, properties, symbols) has some meaning

 Defining and Validating Semantic Machine to Machine Interoperability 59

[15]. Traditionally the meaning of these groupings is carried by a semantic label

assigned to Φ (is-a, parent-of, child-of), but in this case the meaning is carried by the

grouping of the two domains. In practical terms, semantic labels are meaningful to

human consumers, but for computers it translates into an association between

elements in one namespace with others in the same or a different namespace. The

label is then another term used to capture existential dependency. As a simple

example, let’s take the statement “son-of (parents, child)” to mean “a child is the son

of its parents”. It can be easily verified that the existence of a child depends on the

existence of its parents. This statement allows the identification of the entities that are

members of son-of but it falls short of capturing all the characteristics of the relation

i.e. what does it mean to be the son-of an entity and how to automatically identify

those entities. Let’s assume that this is an inheritance relationship as the label

suggests, then son-of means that a child has at least all of the properties of the parent

in addition to its own. This is another existential dependency but this time between

the properties of the entities. We write son-of å(ΠYك ΠX) to capture this relationship.

Let us now assume, that son-of also means that a son has to have certain properties

assigned a constant value. The easiest example is to require that all sons be male. We

write son-of å (ΠY = SexåSexؠMale) to capture that relationship. It is worth noting

that because this is an existential dependency between symbols, we use equivalent

instead of equal to capture the requirement that a function translating the symbol of Y

into “Male” must exist for the property “Sex”. This example illustrates the need to

express the meaning of a label in terms of dependencies between entities, properties

and symbols. It also shows that dependencies exists between domains for humans but

must be expressed between terms to have meaning for machines.

Existential dependencies capture the fact that a set of elements (entities, properties,

symbols) cannot exist without another. Transformational dependencies exist when in

the process of interacting with the model; an update to an element (entity, property,

symbol) implies an update to another which often will be the case when users or other

systems are interacting with the system.

Definition 7. Let X, Y be sets of entities, properties or symbols with respective

domains ΔX and ΔY, Y is transformational dependant on X denoted XΘY or Θ(X, Y) if

a change to Y implies a change to X.

It is trivial to show that every element is transformational dependent on itself and Θ is

a subset of ρ which means that Θ is nonempty. Change could be the creation, deletion

or update of an element similar to the specification presented in [16]. The nature of

the change can be captured similarly to existential dependency. As a simple example,

a symbol y of Y is transformational dependant on a symbol x of X thusly

Θ(X, Y)åy ൌ x 3.

Similar to existential dependency, a transformational dependency between domains

can translate into dependencies at the entity, property and symbol level. Continuing

with the previous example, in son-of, child is not transformational dependant

(transformational independent) of parents because a change in parents does not imply

a change in child. It is important to note that contrary to intuition, existential

dependency does not imply transformational dependency.

60 C. Szabo and S.Y. Diallo

Interoperability and current approaches to interoperability have been reviewed in the

previous section. While the focus is on interoperability, it is obvious that interoperation is

subsumed within that concept. Interoperation is perceived to be necessary but not

sufficient for interoperability. The definitions and models of interoperability as well as

industry standards for interoperability are evidence of this common understanding with

an accent on semantic interoperability. The review also shows that semantic

interoperability can be enhanced by agreeing on the meaning of labels and models either

through standardization or a CRM. Interactions with the model are subsumed within this

agreement whatever form it takes. Based on the formalism developed in this chapter, it

has been shown that instead of interoperability, current approaches address

interoperation. Without using any particular definition, the review done in section two

shows that key characteristics of interoperability are the exchange of information and the

use of the information thus exchanged. The exchange of information is interoperation and

the evaluation of its usefulness determines the degree of interoperability between the

systems. Using the formalism defined previously we can formally examine

interoperability and interoperation.

Interoperation informally captures information exchange between systems.

Interoperation is formally defined along with its characteristics and requirements as

follows:

Definition 8. (Interoperation): Let MS be an arbitrary model of a referent S, Φ the set

of existential dependencies within M and Θ the set of transformational dependencies

within M, a model A is said to interoperate with M if there is a subset of Φ in A or A

and M interoperate, denoted A Φ M if ߔሺܣሻߔځሺܯሻ ് .

A and M are said to interoperate over the subset of Φ which represents the

intersection of the sets of existence dependencies between the models. The subset of

Φ over which A and M interoperate is the set of elements that A can produce and M

can process. By definition this subset is the Common Reference Model (CRM) of A

and M. The degree of interoperation between A and M is the cardinality of the CRM.

Definition 9. (Existence condition): Given two models A and M, A and M interoperate

implies the existence of a CRM.

Interoperability informally captures the notion of the use of information once it is

exchanged. The fact that A and M interoperate does not mean does that they are

interoperable. Interoperability requires the ability of M to use what it receives from A

or conversely the ability of A to interact with M following the rules of interaction of

M. To illustrate, the following proposition is stated:

Definition 10. (Interoperability): Let MS be an arbitrary model of a referent S, Φ the

set of existential dependencies within M and Θ the set of transformational

dependencies within M, a model A and M are interoperable denoted ܯ߆ܣ, if A and M

can interoperate and ߆ሺܣሻ ת ሻܯሺ߆ ് .

Having defined interoperation (the exchange of information) and interoperability (the

exchange and use of information), we can now use Graph Theory to study the

 Defining and Validating Semantic Machine to Machine Interoperability 61

implications of these definitions for machine to machine interoperability. Graph

theory is an area of mathematics focused on the study of connections between pairs of

objects or collections of objects [14]. This area of mathematics is relevant to a theory

of interoperability because as discussed in the previous section, a model is a

composition of relations between elements which results in a structure. The

representation of a model as graph is equivalent to its representation as a relation. The

representation of models as graphs allows us to inherit all the findings of Graph

Theory and apply them to interoperation and interoperability. The determination of a

CRM is similar to finding the similarity between two or more graphs. We will

examine the complexity of finding a CRM and formally show that current approaches

to interoperability are equivalent. This finding motivates the need for heuristics that

enables interoperation and interoperability.

There are different types of graphs but in this chapter the term graph is used to

mean multigraph. A multigraph is formally defined as the triple ܩ ൌ ሺܸ, ,ܧ Αሻ where

• ܸ is the finite set of vertices or nodes

 is the finite set of edges ܧ •

:ܣ • ܧ ՜ the identity map ,ܧ

From the definitions of a model provided earlier, many graphs can be specified.

However, the most general case is to define a finite set of elements as the set of

vertices ܸ, ܧ ൌ ሺߙ ߚ ߛ ሻ the union of all possible relationships betweenߩ

elements and ܣ: ܧ ՜ .the function that relates entities and their relationships ܧ

A model is simply the graph ܩ ൌ ሺܸ, ,ܧ Αሻ as formulated above. The formulation

of G subsumes the existence condition; that is to say that a formulation of a model as

a graph contains the formulation of all of its existential dependencies.

Two graphs G and H isomorphic if there is an edge preserving morphism between

G and H. Formally, two graphs are isomorphic if there exist a function: ݂: ܩ ՜ .݁ݒ݅ݐ݆ܾܿ݁݅ ݏ݅ ݂ ݀݊ܽ ܪ

The definition of isomorphism leads to the following definition:

Definition 11. Two models G and H interoperate if and only if they are isomorphic.

This definition is consistent with previous conditions of interoperation as the

existence of an isomorphic between the two models is equivalent to stating that they

intersect. Interoperation between N models is defined as follows:

Definition 12. A collection of models G1, G2,…,Gn interoperate if and only if they are

isomorphic.

Definition 4.2 is also consistent with the notion that interoperation is bounded. Simply

stated, the degree of interoperation is the cardinality of the isomorphic class which is

finite and bounded by the smallest and largest isomorphic set. Previously in this

chapter, interoperability has been defined as the intersection of the transformational

dependencies between models. In term of a graph, if the set V of vertices is defined as

the set of elements and the set ܧ of edges as the set of transformation dependencies,

definition 4.2 can be reformulated as follows:

62 C. Szabo and S.Y. Diallo

Definition 13. A collection of models G1, G2,…,Gn are interoperable if and only if

they are isomorphic.

Interoperability and interoperation are similar (intersection of dependencies) with the

difference that interoperation is a necessary condition for interoperability. Interoperation

and interoperability are simply the specification of a CRM and a set of rules governing

interactions with the CRM. Based on these findings, the fundamental question of interest

in studying interoperation and interoperability is:

The fundamental question of interoperability: Given a modeling question and a set

of models can a CRM be identified?

This question is important because of the implications carried by the answer. If the

answer is yes it means there is potentially an algorithm that could take the modeling

question and models as inputs and provide the corresponding CRM. If this algorithm

is efficient is terms of time and/or memory space, it would mean that interoperability

can be solved in general at a reasonable cost. Conversely, if the answer is no and a

CRM cannot be identified it would mean that the best that can be done is to engineer a

solution that would be the closest to answering the modeling question. The degree of

closeness is determined by the modeler by inspection or by a metric such as time,

space or correctness. Current approaches to interoperability (common framework and

common standard) assume that the fundamental question of interoperability is

decidable and solutions can be constructed.

The questions as posed can be mapped to decision problems that are well known

and have been studied in Computational complexity theory. Complexity theory is an

area of mathematics and computer science that is focused on studying and classifying

computational problems based on criteria such as time and resources required to

provide a solution (Hein, 2002). A decision problem is a type of computational

problem in which a yes-no answer is provided based on a given input (Hein, 2002). In

terms of classifications a problem is said to be:

Polynomial(P) if the answer to the question can be provided in polynomial time by a

deterministic Turing Machine (computer).

Non deterministic polynomial (NP) if the answer to the question can be verified in

polynomial time.

NP-Complete if the problem is in NP but there is no known efficient algorithm to

solve it.

NP-Hard if the problem is at least as hard as NP-Complete problems.

The question of determining whether a CRM exist can be formulated as a decision

problem in which the inputs are two or more models and the answer is yes they are

isomorphic or no they are not. The determination of the existence of a CRM can be

formulated as follows:

The fundamental question of interoperability reformulated: Are two or more graphs

isomorphic?

This problem is known as the graph isomorphism problem for which it is not known

whether it is in P or NP. A generalization of this problem known as the subgraph

 Defining and Validating Semantic Machine to Machine Interoperability 63

isomorphism problem in which the input is two graphs and the question is whether a

subgraph in one is isomorphic to a subgraph in the other. The subgraph isomorphic

problem is NP-Complete. As a result, for the general case, there is no known efficient

algorithm to find the answer to the first question. That is to say, regardless of the

approach taken to generate or identify a CRM, there is no known way to efficiently

find the CRM. Consequently with respect to a computer, all current approaches are

equivalent in that they are providing heuristics to obtain a CRM. In terms of

interoperation and interoperability, it is worth noting that the decision problems

addressed so far only focus on structure and as such are a subset of the general

problem of interoperability. The question as to whether two or more elements are

identical still needs to be answered. This question as discussed in the previous section

is reduced to comparing two or more sets of strings as there is no algorithm that can

determine whether two conceptualizations are the same. As a result, interoperation

and interoperability are at least as complex as NP-Complex problems, which lead to

the formulation of the following observations:

Observation 1: The determination of whether models interoperate is at least NP-

Complete.

Observation 2: The determination of whether models are interoperable is at least

NP-Complete.

The overall complexity of interoperation and interoperability is possibly NP-Hard if

one assumes an oracle that can identify equivalent elements instantaneously and an

algorithm that resolves redundancies in polynomial time.

From this observation, all approaches to interoperability are equivalent in that they

represent heuristics that approximate the CRM. In this section, we have shown that it is

important to distinguish interoperation (the exchange of information) and interoperability

(the ability to use the information once it is exchanged). Interoperation is a necessary

condition for interoperability and both are only possible over the intersection of the

existential and transformational dependencies. This observation means that the

interoperability space diminishes as more models join a federation, contrary to the state

of the art that points to an increase in the interoperability space as more models join a

federation. The observations on the complexity of interoperability do not mean that

interoperability is not possible, and in fact federations are developed constantly in

practice. It just means that only a semi-automated approach will work and in the next

section we show how to validate a federation of interoperating models assuming they can

be composed (interoperable at the model level).

3 Formal Validation of Interoperable Federations

The previous sections presented what semantic interoperability means for machines

and showed that it can only be accomplished through heuristics. This section focuses

64 C. Szabo and S.Y. Diallo

on the validation of composed models as another way
2
 to determine whether

interoperating models are indeed representative of the modeling question one wants to

have answered. In this chapter we talk about composition of models and

interoperability of simulations in keeping with [17].

The validation of the composed artifact is of paramount importance to increase model

credibility and user confidence in adopting composable models [18],[19]. A recent

finding of the World Technology Evaluation Center states that “without validation,

computational data are not credible, and hence, are useless” [20]. This is because

simulation models are widely used to support critical decision-making [21], [22].

However, the validation process is often a lengthy, manual process that mandates the

presence of at least one system expert. For example, the process of Verification,

Validation, and Accreditation (VV&A) for modeling and simulation in the US

Department of the Navy defines seven user roles and thirteen important steps grouped in

five categories, namely, conceptual model validation, design verification, implementation

verification, and results validation [23]. Furthermore, the costs of VV&A constitute a

large part of the model development cost [21]. The benefits of an automated validation

process of a composed model are significant.
The validation of interoperable federations is a non-trivial problem [19], [24]. This

is because composition is not a closed operation with respect to validation since

semantically valid components do not necessary form valid compositions [18].

Moreover, reused components are developed for different purposes and when

composed may result in emergent properties [25]. Similarly, the context in which a

reused component was developed and validated might differ from the new context of

the composed model [24],[26]. Next, different validation perspectives must be

considered, such as logical aspects of deadlock, safety, and liveness, temporal aspects

such as the behavior of components and compositions over time, and formal aspects

such as the need to provide a formal measure of the validity of compositions, also

called “figure of merit”[27].

We define semantic validity as follows:

A composition of federations is semantically valid and its federations are said to be

semantically composable if and only if:

(a) federations to be integrated behave correctly to form a valid composition

both externally, with respect to their neighbors, and internally when safety

and liveness properties are preserved over time, and

(b) the resulting composition produces valid output.

Studies of semantic composability validation show that the validity of a model is not a

fixed point and there are many valid models but with different degrees of validity

[28]. Current approaches to validate composed models are theoretically elegant but

are not practical to implement [19] or are computationally expensive and thus do not

2 The work on semantic composability validation is drawn from [39].

 Defining and Validating Semantic Machine to Machine Interoperability 65

scale well [29]. Other approaches focus on the experimental model validation at the

cost of reasoning about composition at conceptual levels [40].

We propose a dual-step elimination strategy for the validation of semantic

composability, as shown in Figure 1.

Fig. 1. Population of Composable Models

Our validation approach first discards invalid models through the validation of

general model properties, such as safety and liveness for instantaneous and timed

transitions [28][34]. We cover various perspectives on the definition of model

properties, such as formal, practical, timeless, and timed, among others. Moreover, we

propose a composability index as a measure of the degree of data alignment in the

composition. Models that have passed the first validation step might still be invalid.

Furthermore, to increase model credibility, formal guarantees and measures are

required. Towards a formal guarantee of the composed model validity, we perform

formal validation with respect to a reference model using a novel time-based

formalism [28]. As a certificate of quality of the validity of the composed model, we

introduce the semantic metric relation ܸߝ, which quantifies state similarities based on

semantically-sugared components defined in our component-based ontology.

66 C. Szabo and S.Y. Diallo

Our dual-step semantic validation process is shown in Figure 2.

Fig. 2. Layered Validation Process

This section discussed formal validation of interoperable federations in the context of

the CRM discussed above. The formal validation process calculates the closeness of the

composed federation’s execution to that of a reference model. The main assumption in

the formal validation of semantic composability is that there exists interoperability

between components, which is guaranteed by the CRM discussed above and in parts by

the first layer, e.g 1.1. and 1.2., in the validation process presented above.

The proposed validation process employs semantic knowledge about the federation

and its application domain, which is captured using a component-based ontology

described in the next section.

3.1 Knowledge Representation

An important issue in addressing composability, in particular semantic composability,

is expressing domain or component knowledge in an unambiguous, standardized

format. An ontology is an organized knowledge representation to capture object

information in a particular domain [30] in formats readable by humans and computers

alike. Ontologies are conceptual models that capture and explain the vocabulary used

in semantic applications guaranteeing communication free of ambiguities [31]. When

 Defining and Validating Semantic Machine to Machine Interoperability 67

applied to the modeling and simulation domain, ontologies facilitate model discovery

and integration and the development of formal methods for simulation and modeling

[32]. Ontologies can be used to express syntax and semantics to facilitate

communication and allow for automated semantic checking. Furthermore, they are

employed to express the resource discovery request and determine whether the

discovered model is reusable. An ontology should ideally focus on the description of

a simulation component to facilitate semantic validation of compositions, as well as to

support component discovery and reuse.

COSMO (COmponent Simulation and Modeling Ontology) [33] is an ontology for

describing component-oriented simulation within and across application domains.

COSMO semantically enriches the description of model components to support model

discovery, model reuse as well as semantic composability validation of the discovered

models. The ontology consists of sets of classes to describe simulation components

and their compositions. The hierarchies in the COSMO ontology span two main

directions, as shown in Figure 3. To achieve generality across application domains

and at the same time support specific application domain requirements, we include

first a simulation oriented component hierarchy, followed by an application domain

oriented component hierarchy. The second set of classes describes components with

respect to their attributes and behavior expressed as a state machine. We assume that

irrespective of the simulation component's implementation and worldview, its

behavior can be represented as a finite state machine initially provided by the

component creator. Transitions in the state machine from an initial to a final state are

triggered by an arrival event or an elapse in a time interval. The final state can be

determined by some conditions on the component's attributes and the transition may

produce output. The classes for attribute, behavior, worldview, transition, state, data,

condition as well as simulation concepts such as time, distributions, etc. are defined in

the ontology.

Fig. 3. Ontology for Component-based Simulation Development

In the construction of COSMO, we assume that the problem space is divided into

several application domains. For each application domain, we further assume that

68 C. Szabo and S.Y. Diallo

there exist several base components or base federations, which represent fundamental

entities specific to the application domain. The base components form the atomic

building blocks for each simulator in the application domain. For example, for the

Queueing Networks application domain, we can assume the base components Source,

which creates jobs, Server, which services the jobs created by the Source, and Sink,

which collects all jobs from the Server components. Similarly, for a Military Training

Simulation application domain, base components could be Tank and SoldierTroop.

This separation into application domains facilitates reasoning about composition

because application domain specific knowledge can be captured using ontologies (as

shown in Figure 3) and using compositional grammars to describe syntactic

composability. Furthermore, the validation process is meaningful and more accurate

as we will see in the following.

3.2 Formal Validation of Model Execution

Assuming that a composed federation interoperates correctly, we validate the

execution of the composed federation by comparing it to the execution of a reference

model [28]. For this, we first propose a time-based formalism to represent federations

as functions of states over time. Next, the formalism representing the composed

federation is executed and compared with the execution of a reference model,

considering semantic knowledge captured in the ontology described above.

We first present a discussion about the reference model and how it is obtained. An

overview of our formal definitions of components, simulation, and validity in the

context of the proposed five-step validation process follows.

3.3 Reference Model

The proposed validation process aims to provide a formal measure of composition

validity by comparing the composed model with a reference composition made up of

reference components or federations. We consider that for each type of base

component or base federation there exist a reference model in the repository, initially

provided by domain experts. The reference base component models describe what the

domain experts consider to be the ideal component behavior. The generic descriptions

lack specific attributes (e.g. sampling distributions for time attributes) and are without

an implementation. We assume that for each base component type (e.g. Source in

Queueing Networks Application domain) there exist different base component

implementations in the repository (e.g. SourceOpen - a Source component for open

queueing network systems). A reference component is a generic, desirable

representation of a base component ideally provided by domain experts when the new

application domain is added to the framework. Ideally, the reference components

should describe what the system experts consider to be the desirable base component

behavior. It should be generic in the sense that their description lacks any real data

values. It follows that the reference model composed from the generic reference

components is only a description of the desired simulation, without an attached

implementation. Throughout the validation process, the generic reference components

attributes will be instantiated using the same attribute values used by the

 Defining and Validating Semantic Machine to Machine Interoperability 69

corresponding components in the composed model. The base component

implementations may differ widely from the reference base component models.

3.4 Formal Validation Process

Figure 4 presents our five-step validation process [28].

Fig. 4. Formal Validation Process

The first four steps of the validation process, namely Formal Component

Representation, Unfolding and Sampling, Composition, and Simulation are applied

separately to the components and reference components. Components and reference

components (annotated with a star symbol (
*
)) from the composition and reference

composition respectively, are formally represented as functions of their states over

time. The formal component representations are input to the Unfolding and Sampling

step, in which the component representation is adjusted to fit our validation process.

Based on the composed model topology, the unfolded representations obtained from

the Unfolding and Sampling step are composed as mathematical functions in the

Composition step. The Simulation step applied to the composition and reference

composition results in a composition simulation, L(M), and reference composition

simulation, L(M). The Composition step formally composes the functional

representations based on our mathematical composability definition, which considers

the time moments when the functions are activated. As such, L(M) and L(M
*
) consist

of time-ordered simulation schedules of the function executions. Lastly, in the

Validation step, we first attempt to determine whether L(M) and L(M
*
) are exact

matches. This is done by determining strong equivalence between L(M) and L(M
*
). If

strong equivalence is not possible, we introduce the semantic relation ఌܸ to determine

70 C. Szabo and S.Y. Diallo

weak equivalence only between related states, i.e. the parts in the two executions that

are semantically related. If ఌܸ is not a weak bisimulation relation between L(M) and

L(M
*
), then the model is invalid. Figure 5 illustrates the approach using a single-

server queue example.

Fig. 5. Formal Model Execution Validation

The five steps in our validation process are as follows:

a) Formal Component Representation – In this step, federations are formally

represented as mathematical functions of states over time as below.

 The formal representation of a simulation component Fi is a function ݂: ܺ ՜ ܻ, where ܺ ൌ ܫ ൈ ܵ ൈ ܶ , and ܻ ൌ ܱ ൈ ܵ ൈ ܶ . Ii and Oi are the

set of input/output messages, Si is the set of states and Ti is the set of

simulation time intervals at which the component changes state.

b) Unfolding and Sampling – This step unfolds the function definition from

above over the simulation time using sampled values. Normally, the function

definition in Step a) is a cyclic expression which gets executed many times

through the simulation execution time T. For example, for a Source

component, the formal representation would be: ݂ሺ, ݏ , ሻݐ ՜ ሺ ܱ , ݏ , ݐ ∆ݐሻ , where ∆ݐ is sampled from an exponential distribution. This expression

is not useful because f will get called many times throughout the simulation

execution time T. As such, sampling for values of ∆ݐ is performed and the

function execution is unfolded. We perform this operation for an unfolding

degree ߬ number of times. Details are presented in [28] and [34]. Step a) and

 Defining and Validating Semantic Machine to Machine Interoperability 71

b) are applied for the reference components in a similar manner, using the

same sampled values used for the composed federations.

c) Composition – The Composition step validates that the functions are

mathematically composable. We obtain constraints on the time variables

obtained in the unfolding step considering a simple observation derived from

the connection of the federations, namely, that if Fi is connected with Fj with

Fj requiring input from Fi, then Fj cannot execute its transitions that require

input until has Fi produced output. For federations that require input to

proceed, we also consider the average time spent by messages from the

senders to the receiver. The equations obtained for the time attributes are

solved using an open source constraint solver such as Choco [35]. The

equations are solved both for the composed federations and the composed

reference model. The function calls are then ordered based on the solutions

for the time attributes.

d) Simulation – Based on the time values obtained in the Composition step, an

interleaved simulation run is obtained for the composed federation

simulation and for the reference model. The simulation runs are represented

as Labeled Transition Systems (LTS) [36], L(M) and L(M
*
), as follows.

Given a composed model M and its simulation S(M). The simulation run S is

represented as a LTS where nodes represent the entire composition state as a

reunion of the individual component states, and edges are labeled to facilitate

the validation process. To facilitate accurate comparison between L(M) and

the reference LTS L(M
*
), the edge labels contain the name of the function

called to exit the node, its duration, and its output: <function_name(fout),

duration(fout), output(fout)>. We consider the duration rather than the time

moment when fout begins to execute, because the time moments at which the

functions fout start to execute are already ordered through the directed nature

of simulation S.

e) Validation – This step validates the composed federation against the

composed reference model. We consider two possible relations between the

simulation of the composed model and the simulation of the reference model,

L(M) and L(M
*
) respectively: strong equivalence relation [37] and our

proposed semantic parametric metric relation, ܸߝ. Informally, strong

equivalence between L(M) and L(M
*
) validates that L(M) is exactly the same

or included in L(M
*
), including the sequence of the function calls and the

edge labels. If this is not possible, we propose the semantic parametric

relation ܸߝ as a weak bisimulation relation. ܸߝ considers only parts of L(M)

and L(M
*
) that are semantically close and validates that they appear in the

same sequence in L(M) and L(M
*
). Semantic closeness considers attributes

that are close or similar in COSMO ontology. For such attributes, we assign

a higher weight to those that have the same value in the model and the

reference model or have been showing the same modification trend.

72 C. Szabo and S.Y. Diallo

4 Summary and Recommendations

In this chapter, we presented and defined semantic interoperability and discussed

what it means for machines. Interoperability based on the definitions provided cannot

be fully automated so heuristics are required to fully support federations. Another

approach to interoperability and composability is to assume the existence of a perfect

model, develop a federation and validate it against the perfect model. The chapter

shows how to define and validate a federation of models using ontology and semantic

similarity metrics. The authors identify two main directions for future research. The

first area focuses on the development of formal theory of interoperability that includes

not only data interoperability but also an algebra that captures the existential and

transformational dependencies. Such algebra will move the community a step closer

to understanding interoperability beyond data. One of the main observations is that

interoperability being the intersection of models is a limiting factors and therefore it is

better to have models (and machines) collaborate to answer a given question rather

than have them interoperate and produce the least common denominator. This algebra

will help define criteria for collaboration and orchestration of models.

The other area of research is how to develop and validate the next generation of

models. So far, the community assumes that a model is necessarily a model of reality

and models derived from the same referent are equivalent. However, this is not true in

the general case, especially in a post-positivist world in which we are interested in

more than physical objects. The idea of validation for instance rests on the existence

of a perfect model usually a physical one. What if we do not have access to that

model? Further, what if the goal is to define the main characteristics of the perfect

model in order to generate sub models of interest (this is particularly true when one

uses simulation to develop theory). The authors encourage the reader to reflect on the

use of agents and M&S in support of training and experimentation which is prevalent

today and to also help prepare a paradigm shift towards the use of agents and M&S as

a mean to gain new insights into physical and non-physical entities (Human Social

Cultural Behavior for instance). The authors, as many others believe that this new

paradigm is the way of the future and it is one that presents the most challenges for

the scientific community.

References

1. Davis, P.K., Anderson, R.H.: Improving the Composability of Department of Defense

Model and Simulations. RAND National Defense Research Institute (2004)

2. Hofmann, M.A.: Challenges of Model Interoperation in Military Simulations. Simulation 80,

659–667 (2004)

3. Benjamin, P., Akella, K., Verna, A.: Using ontologies for simulation integration. In:

Winter Simulation Conference, pp. 1081–1089 (2007)

4. Webster’s Online Dictionary. Interoperability (2008)

5. Department of Defense Website,

http://www.dtic.mil/doctrine/jel/doddict/data/i/02802.html

6. IEEE: A Compilation of IEEE Standard Computer Glossaries, New York (1990)

7. ISO/IEC: International Technology for Learning, Education, and Training, Geneva (2003)

8. Ackoff, R.: From Data to Wisdom. J. of Applied Syst. Analysis 16, 3–9 (1989)

 Defining and Validating Semantic Machine to Machine Interoperability 73

9. Rowley, J.: The Wisdom Hierarchy: Representations of the DIKW Hierarchy. J. of

Information Science, 163–180 (2007)

10. Chen, P.P.: The Entity-Relationship Model – Toward a Unified Data View. ACM

Transactions on Database Systems 10(3), 9–36 (1976)

11. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications of

the ACM 13(6), 377–387 (1970)

12. Lipski, W.: On Semantic Issues Connected with Incomplete Information Databases. ACM

Transactions on Database Systems (TODS) 4(3), 262–296 (1979)

13. Turing, A.: Computing Machinery and Intelligence. Mind, 433–460 (1950)

14. Hein, J.: Discrete Structures, Logic, and Computability, 2nd edn. Jones and Bartlett

Publishers, Inc., USA (2002)

15. Sowa, J.: Top Levels of the KR Ontollogy,

http://www.jfsowa.com/ontology/toplevel.htm

16. Dori, D.: Object-Process Methodology – A Holistic Systems Paradigm. Springer, New

York (2002)

17. Page, E.H., Briggs, R., Tufarolo, J.A.: Toward a Family of Maturity Models for the

Simulation Interconnection Problem. In: Spring Simulation Interoperability Workshop

(2004)

18. Balci, O.: Verification, Validation and Accreditation of Simulation Models. In: Winter

Simulation Conference, pp. 135–141 (1997)

19. Petty, M., Weisel, E.: A Composability Lexicon. In: Simulation Interoperability Workshop

(2003)

20. Glotzer, S., Kim, S., Cummings, P., Deshmukh, A., Head-Gordon, M., Karniadakis, G.,

Petzold, L., Sagui, C., Shinozuka, M.: WTEC Panel on International Assessment of

Research and Development in Simulation-based Engineering and Science. World

Technology Evaluation Center, Maryland (2009)

21. Hartley, D.S.: Verification, Validation in Military Simulations. In: Winter Simulation

Conference, pp. 925–931 (1997)

22. Min, F., Ma, F., Yang, M.: A Knowledge-based Method for the Validation of Military

Simulation. In: Winter Simulation Conference, pp. 1395–1402 (2007)

23. NAVMSMO: Depatment of the Navy, Modeling and Simulation Verification, Validation,

and Accreditation Implementation Handbook (2004)

24. Tolk, A., Muguira, J.: The Levels of Conceptual Interoperability Model (LCIM). In: IEEE

Fall Simulation Interoperability Workshop (2003)

25. Gore, R., Reynolds, P.F.: Applying Causal Inference to Understand Emergent Behavior.

In: Winter Simulation Conference, pp. 712–721 (2008)

26. Bartholet, R.G., Brogan, D.D., Reynolds, P.F., Carnahan, J.C.: In Search of the

Philosopher’s Stone: Simulation Composability Versus Component-Based Software

Design. In: Fall Simulation Interoperability Workshop (2004)

27. Kasputis, S., Ng, H.G.: Composable Simulations. In: Winter Simulation Conference, pp.

1577–1584 (2000)

28. Szabo, C., Teo, Y.M.: A Time-based Formalism for the Validation of Semantic

Composability. In: Winter Simulation Conference, pp. 1411–1422 (2009)

29. Traore, M.K.: Analyzing Static and Temporal Properties of Simulation Models. In: Winter

Simulation Conference, pp. 897–904 (2006)

30. Sowa, J.F.: Knowledge Representation: Logical, Philosophical and Computational

Foundations. Brooks/Cole, Pacific Grove, CA (1999)

31. Breitman, K.K., Casanova, M.A., Truszkowski, W.: Semantic Web: Concepts, Technologies

and Applications. Springer, London (2007)

74 C. Szabo and S.Y. Diallo

32. Miller, J.A., Fishwick, P.A.: Ontologies for Modelling and Simulation: Issues and

Approaches. In: Winter Simulation Conference, pp. 259–264 (2004)

33. Teo, Y.M., Szabo, C.: An Integrated Approach to Composable Modeling and Simulation.

In: Annual Simulation Symposium, pp. 103–110 (2008)

34. Szabo, C., Teo, Y.M.: On the Validation of Semantic Composability in Data-Driven

Simulations. In: ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed

Simulation, pp. 73–80 (2010)

35. Sourceforge.: Choco: A Constraint Programming System (2010),

http://sourceforge.net/projects/choco/

36. Srba, J.: On the Power of Labels in Transition Systems. In: International Conference on

Concurrency Theory, pp. 277–291 (2001)

37. Park, D.: Concurrency and Automata on Infinite Sequences. In: GI-Conference on

Theoretical Computer Science, pp. 167–183

38. Diallo, S.Y.: Towards a Formal Theory of Interoperability. Old Dominion University,

Norfolk (2010)

39. Szabo, C.: Composable Models and Their Formal Validation. National University of Singapore

(2010)

40. Leye, S., Uhrmacher, A.M.: A Flexible and Extensible Architecture for Experimental

Model Validation. In: Proceedings of SIMUTools (2010)

Chapter 4

An Approach to Knowledge Integration Applied
to a Configuration Problem

Maria Vargas-Vera1, Miklos Nagy2, and Dietmar Jannach3

1 Computing Department
The Open University, UK
mvargasvera@gmail.com

2 Knowledge Media Institute(Kmi)
The Open University, UK

M.Nagy@open.ac.uk
3 Computer Science Department

Technical University of Dortmund, Germany
Dietmar.Jannach@tu-dortmund.de

Abstract. This chapter presents a framework for knowledge integration
based on mappings between similar concepts in constraint graphs asso-
ciated to a configuration problem. In particular, the chapter is devoted
to one of the problems which could arise when performing collaborative
knowledge integration, namely detecting knowledge overlaps. The solu-
tion to the overlapping problem relies on the use of matching algorithms.
To illustrate our approach we present as a case study a computer con-
figuration problem. This problem is important as it has the promise to
become an alternative approach for the current knowledge integration so-
lutions. Through our approach the real cost of integration can be reduced
as it is not necessary to invest a great amount of resources beforehand a
truly integrated system can be operational.

Keywords: Knowledge integration, Semantic Web, Constraint program-
ming.

1 Introduction

An important challenge in several fields ranging from design of expert systems to
collaborative design construction in engineering is to integrate several sources of
knowledge created by different stakeholders. This is not a new problem as it has
been around for several decades i.e. CAD (Computer-Assisted Design) systems.
In our proposal, we attempt to design a new solution approach, which amal-
gamates research outputs from Ontology Alignment (in particular distributed
solutions) and Fuzzy Logic in order to provide an alternative solution to the
problem of knowledge integration.

There exists no unique definition of knowledge integration. Therefore, we need
to first clarify the different meanings of the term Knowledge Integration. The def-
initions found in the fields of Artificial Intelligence, Ontologies, Databases and
Knowledge Management vary strongly. For example, in the Artificial Intelligence

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 75–105.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

76 M. Vargas-Vera, M. Nagy, and D. Jannach

community, Knowledge Integration is seen as the process of integrating knowl-
edge into an existent body of knowledge [24]. Knowledge integration refers to
the identification of how new and prior knowledge interact while incorporat-
ing new information into a knowledge base. In contrast, the view taken from
Knowledge Management is that knowledge integration is a fundamental man-
agement practice. According to Grant [15], the organization’s primary concern
is the integration of its dispersed knowledge resources in order to apply them
to a “production of a new artifact” as a mean of creating new knowledge out of
novel combinations of existing knowledge [15].

In the context of Artificial Intelligence, the problem of knowledge integration
can also be seen as a scenario of building distributed knowledge bases in a collab-
orative way. These knowledge models need to be integrated into a single model.
However, while integrating knowledge several problems could arise. One of them
is the problem of overlaps and conflicts in the knowledge as subtle and unexpected
interactions of knowledge could appearwith the newly added knowledge [24]. How-
ever, in our opinion knowledge integration is the process of creating an unified
knowledge model by means of integrating individual models made by different
knowledge engineers. This integration is basically a reconciliation of the terms and
relations used by each knowledge engineer while building their own model.

Furthermore, the basic argument is that knowledge cannot be viewed as a
simple conceptualization of the world, but it has to represent some degree of in-
terpretation. Such interpretation depends on the context of the entities involved
in the process. This idea is rooted in the fact the different entities’ interpreta-
tions are always subjective, since they occur according to an individual schema,
which is than communicated to other individuals by a particular language. These
schemas called mental spaces, contexts, or mental models have been investigated
in the past [10] [14] [20].

The motivating scenario of our work is that we assume that large knowledge
bases are typically constructed by different knowledge engineers or domain experts
in an incremental and collaborative way. However, as the individual parts of the
knowledge bases may also be developed independently by different teams or orga-
nizational units, one or more knowledge integration phase are required in the over-
all process in order to detect and resolve conflicts and overlaps. The development
of a knowledge base for a product configuration system [30] is a typical example
as different organizational units contribute technical and process- or marketing-
related constraints on legal product constellations. The problem is even harder,
when the configurable product is delivered by multiple providers in a supply-chain
[4], and requires the cross-company integration of knowledge bases and interfaces.
Another example, the creation of a 3D-virtual campus where several departments
of the Open University (OU) collaborated in the whole design of the campus i.e.
Library, Research School, Computing Department, among others [29].

Our suggested approach to knowledge integration deals, in a first instance,
with the overlapping problem. The detection of the overlapping problem is per-
formed by mappings between the knowledge models. Therefore, the main con-
tribution of this chapter is to propose as a solution to the overlapping problem

An Approach to Knowledge Integration Applied to a Configuration Problem 77

based on matching algorithms which use Dempster-Shafer and Fuzzy Voting
Model. An scenario to illustrate the knowledge integration using DSSim best
methods is outlined in our case of study.

The chapter is organized as follows. Section 2 provides an overview of related
work. Section 3 presents a case scenario that illustrates the overlapping problem
when performing knowledge integration. Section 4 describe details of the map-
ping process. Section 5 shows our framework to knowledge integration. Section
6 presents an evaluation of our methodology to knowledge integration. Finally,
in Section 7 we present our conclusions and describe our future work.

2 Related Work

Several research communities have investigated the information integration prob-
lem. This lead to numerous different approaches in a way in which different
information sources can be integrated. After an analysis of the literature we
have identified four perspectives on our literature review. These perspectives are
Knowledge Based Systems, Ontologies, Databases and Knowledge Management.
The first perspective deals with problems in knowledge modeling in particular
in expert systems. The second perspective is the work in the Ontologies field
ranging from ontology merging to alignment. The third perspective, Databases,
is more related to data integration which consists of providing an unified view
on the data stored in different databases with different models. The Knowledge
Management perspective is not explored in too much detail as is not the main
focus of this chapter.

2.1 Expert Systems - Knowledge Bases

Murray [23] presents an approach to knowledge integration as a machine learn-
ing task. He implemented a system called REACT which is a computational
model that identifies three activities. (1) “Elaboration”: describes, how new and
prior knowledge interact, although this feature is restricted to focus only on
selected segments of prior knowledge. (2) “Recognition”, which identifies the
consequences of new information for relevant prior knowledge and (3) “Adapta-
tion”, which exploits the learning opportunities by modifying the new and prior
knowledge. A learning opportunity occurs when a property of a particular object
in the learning context can be generalized into a property for every instance of a
class of objects. Empirical evidence indicates that indeed knowledge integration
helps knowledge engineers to integrate new information into a large knowledge
base.

Knowledge Integration has became an essential element in the Semantic Web
Community. For example, knowledge integrations allows to access services which
offer knowledge contained in various distributed databases associated with se-
mantically described web portals. In this context Zygmunt et al., propose a

78 M. Vargas-Vera, M. Nagy, and D. Jannach

framework for knowledge integration supported by using an agent-based archi-
tecture [35]. The approach relies very much on the integration of ontologies by
the gradeAgent which estimates the similarity between classes and properties in
the ontology. The approach uses algorithms of lexical and structural comparison.
The checking of similarity between larger parts of a graph is performed with the
use of Similarity Flooding algorithm. The approach also applied additional tech-
niques based on a thesaurus when looking for synonyms and on the use of high
level ontology to adjust concepts from the ontology to a given set of concepts
which identify important notions. The framework does not handle uncertainty
in the similarity metrics. In principle, it seemed as a good solution but in real
scenarios the notion of uncertainty limited to a crisp mappings 0 or 1 made a
strong limitation in a proper identification of matching concepts and properties.

2.2 Ontologies View

The knowledge engineering community uses ontologies as the main approach
for resolving semantic differences in heterogeneous data sources. Based on this
approach several categories can be identified to Data Integration. One of them
is to create a global ontology. In this way all the different sources share the same
ontology in order to make the information integration possible. These solutions
fit well when the number of sources is limited and a consensus can be achieved
between partners. However, for real life scenarios, this solution is inflexible in
nature and is not considered as a viable alternative in the context of knowledge
integration.

Ontology merging aims to achieve semantic integration through merging dif-
ferent source ontologies into a consistent union of the source ontologies. These
systems make use of the fact that different ontologies have overlapping frag-
ments that is the basis of the merging process. FCAMERGE [13] offers a global
structural approach to the merging process. It takes the source ontologies and
extracts instances from a given set of domain-specific text documents by apply-
ing natural language processing techniques. Based on the extracted instances the
system apply formal concept analysis techniques to derive a lattice of concepts
as a structural result of merge process. The produced result is explored and
transformed to the merged ontology by the ontology engineer. PROMPT [11]
is a semi-automatic ontology merging tool that makes initial suggestions based
on linguistic similarity between class names then performs automatic updates,
finds new conflicts and makes new suggestions.

Ontology mapping aims to achieve semantic integration through the creation
of mappings between concepts, attributes etc. between two ontology entities.
Based on database schema integration solutions a wide range of techniques has
been proposed from manually defined rules to semi automatic approaches that
make use of machine learning, heuristics, natural language processing and graph
matching algorithms. MAFRA [1], a mapping framework for distributed ontolo-
gies supports in interactive, incremental and dynamic ontology mapping process

An Approach to Knowledge Integration Applied to a Configuration Problem 79

in the Semantic Web context. The main contribution of this approach is that
it creates a true distributed ontology mapping framework that is different from
mediator based approach. GLUE [2] evolved from a mediator based LSD [9]
data source schema matching, applies machine learning techniques and similarity
measures based on joint probabilistic distributions.

Since ontology mapping problem is one of the first steps in the direction of
Semantic Web based data and information integration it has become an active
research topic recently. As a consequence numerous ontology mapping systems
have been proposed but only a handful of them have participated in the Ontol-
ogy Alignment Initiative (OAEI)1, which serves as a comparison benchmark for
such systems. ASMOV) [19] is an automatic ontology mapping approach, which
carries out the mapping in two phases. In the first phase different similarity
measures are calculated and combined in order to establish preliminary map-
ping pairs. In the second phase the system carries out a semantic verification, in
order to detect semantically inconsistent mappings and their causes. RiMOM[34]
is an ontology mapping approach that uses the combination of different strate-
gies in order to achieve the good results. The different strategies are selected
based on the characteristics of the source ontologies and the pre-defined rules.
Anchor-Flood [31] is an ontology mapping system, which has been developed
in the context of International Patent Classification (IPC) in order to exploit
the available taxonomy of related terms in an abstract and align it with the
taxonomy of IPC ontology. The mapping is done in two phases. First part is the
ontology mapping, where the concepts and properties in the different ontolo-
gies are aligned. The second part of the mapping process is the mapping of the
instances of the ontologies. Anchor-Flood approach assumes that neither ontol-
ogy concepts nor an instance comprises the full specification in its name or URI
alone. TaxoMap [17] is an ontology mapping tool, which was designed to support
information integration between different sources. The mapping process is ori-
ented from ontologies that describe external resources (named source ontology)
to the ontology (named target ontology) of different web portals. However the
system design assumes that target ontology is supposed to be well-structured,
whereas source ontology can be a flat list of concepts. Therefore TaxoMap heav-
ily relies on the labels it uses a moropho-syntactic analysis for tagging text with
part-of-speech and lemma information and a similarity measure which compares
the trigraph of the concept labels. Lily [33] is an ontology mapping system for
integrating information described by heterogeneous ontologies. The system em-
ploys hybrid matching strategies to create the mappings for both normal and
large scale ontologies.

Summing up the suggested solutions ranges from creation of global views of
ontologies, mapping or combining. However we believe that the creation of a
global view (or global ontology) is a limited solution as it seems to work when
the number of models is limited. The mapping solution is more appealing as the
combining solution seems to be not scalable.

1 http://oaei.ontologymatching.org/

80 M. Vargas-Vera, M. Nagy, and D. Jannach

2.3 Databases

In the database community several solutions have been proposed. However not
all approaches [6] have been implemented in real life applications. The charac-
teristics of these approaches are that they all have inputs and outputs, which is
supplied or processed by a human designer. The inputs are usually the domain
models including entity relationships, views and sometimes queries whereas the
outputs are conceptual models, global schemas, mapping rules or conflicts. The
majority of approaches based on a mediator architecture that involve logical
database schemas, which are used as shared mediated views over the queried
schemas. A number of systems have been proposed e.g. TSIMMIS [12], Informa-
tion Manifold[21], InfoSleuth [7], MOMIS [8] , LSD [3] that shows the flexibility
and the scalability of these approaches. In particular, MOMIS is focused a data
integration from scientific data sources but it also been applied to other domains
like building a tourism information provider [8]. The problem, however, is that
these solutions rely on the initial idea of database schema integrations namely
to create a global view, which will be used as a mediator between the different
sources. According to Halevy [16] the major bottleneck in setting up a data in-
tegration framework in databases community is the effort required to create the
source description and more specifically writing the semantic mappings between
the sources and the mediated schema. Of course, we share the same opinion and
this can be understood as we expand more in this issue.

The database integration schema’s solution requires that an integrated global
schema is designed from the local schemas, which refers to existing databases.
This global schema is a virtual view of all databases taken together in a dis-
tributed database environment. The conceptual modelling of a database (DB)
schema is mainly based on Entity-Relationship (ER) model or Unified Modelling
Language (UML) class diagrams. There are two design approaches namely direct
and gradual. In the direct approach, user requests are processed all at once and
the whole DB schema is created directly. This approach is appropriate in the
cases of designing small DB schemas, but it is inappropriate in cases when a
complex DB schema should be integrated. The gradual approach is used when
the number and complexity of user requests are beyond the designer’s power of
perception. Design of a complex DB schema is based on a gradual integration of
external schemas. An external schema is a structure that, at the conceptual level,
formally specifies the user’s view on a DB schema. Each transaction program
that supports a user request is based on an external schema, which is associated
to it. After being created, external schemas are integrated into a conceptual DB
schema. Nevertheless this idea has been developed further once the ontologies
have been proposed as described in section 2.2.

2.4 Knowledge Management

Hung [18] present an empirical study that investigates the patterns of knowl-
edge integration in the collaborative development of system on a chip (SoC)
by semiconductor firms. The study focused on the central interactive process

An Approach to Knowledge Integration Applied to a Configuration Problem 81

for engineering applications and experimental practice to enhance knowledge in-
tegration and technology innovation for rapid product development. A process
model for knowledge integration via experimental practice is presented; further
explanation can be found in [18]. The process of knowledge integration is trig-
gered by new requirements i.e. new product features or testing methods, which
cannot be resolved based on the current knowledge. This integration process
depends upon knowledge already existing in the organization as well as new
external knowledge. The outcome of the process is a technological innovation
and the fact that the knowledge of the organization is enhanced by means of
knowledge integration. The Knowledge Management perspective which appears
related to our work is the one based on the Distributed Knowledge Management
(DKM) approach explored in the Knowledge Management community [22], in
which subjective and social aspects of the real world are taken into account.
However, this perspective is not going to be explored as is out of the scope of
this chapter.

Summing up we could say that there are some commonalities between the
four perspectives namely Knowledge Based Systems, Ontologies, Databases and
Knowledge Management. The work on knowledge based systems community is
concerned with interaction of knowledge when a new piece of knowledge is found
and added to the knowledge base. The work on knowledge integration found in
the ontology merging community appears to be suitable for detecting overlapping
between different knowledge bases. The work in the Database community is more
concerned with data integration. Finally, the fourth one is however more related
to a processes/products specifications and organizational aspects, which need
to be modified when adding new knowledge as the solution relies in adapting a
known case to the new situation.

3 Scenario

The scenario presented in this chapter illustrates the problem of different views
of knowledge modeled by different departments within an organization. Let us
imagine the scenario where we have a Computer manufacturing firm formed
with three departments, for example, Sales, Technical Design Manufacturing and
Software Department. Each of these departments have already pre-established
functions within the organization. These functions are not shown explicitly in
Figure 1 but they are part of the box Enterprise Resource Planning (ERP). The
Configuration Logic stores the CSP (Constraint Satisfaction Problem) applied
to Computer Configuration.

Customers request a computer with certain specification using the interface
provided by the “configuration system” then as, a second step, the “configuration
system” returns “Quotes” and then the customer could make an order using the
on-line system.

82 M. Vargas-Vera, M. Nagy, and D. Jannach

Fig. 1. Computer configuration system

3.1 Constraint Satisfaction Problem (CSP)

This section gives firstly a brief descriptions of Constraint Satisfaction Problem
(CSP) and related terminology and secondly our Case Study namely computer
configuration problem using the definition given in section 3.1.

Definition 1. A CSP is a triple P = {V, D,C}, where V = {v1, v2, ..., vn} is

the set of variables called the domain variables;
D = {D1, D2, ..., Dn} is the set of domains. The domain is a finite set con-

taining possible values for the corresponding variables;
C = {c1, c2, ..., cn} is the set of constraints. A constraint ci is a relation

defined on a subset of {vi, ..., vk} of all the variables; that is, {Di, ..., Dk} ⊇ ci.

The structure of a CSP may be represented by a constraint graph, which is
defined as follows: variables are represented with nodes, and the constraints
between them are represented with edges. The labels of the edges represent the
constraints and the labels of the nodes represent the domain of the variables.

Definition 2. Assignment: It is a mapping from a set of variables to their cor-
responding domains. Let vi be a variable and Di its domain. The process that vi
takes a value, say di from the domain Di is called assignment. Such an assign-
ment is denoted (vi, di).

An Approach to Knowledge Integration Applied to a Configuration Problem 83

For a CSP problem which has a set of variables, say v1, v2, ..., vm the assign-
ment for all the variables is denoted {(v1, d1), (v2, d2), ..., (vm, dm)}. When all
the variables are assigned a value, the assignment is called complete, otherwise
partial.

3.2 Case Study: Computer Configuration Problem

The case of study proposed in this chapter is a restricted version of a computer
configuration problem. The problem of configuration is defined as a CSP (Con-
straint Satisfaction Problem) problem where we define our model using Vari-
ables, Domain for the variables and Constraints over the variables. The main
goal is to obtain an assignment (i.e. a value for all the variables). The CSP is
defined formally as follows:

Variables:

Table 1. Variables

V1 OS

V2 Memory

V3 Hard disk size

V4 CPU

V5 Monitor

V6 Mouse

V7 Video card

V8 Graphics card

V9 Gaming PC

V10 Keyboard

V11 Monitor resolution

Table 2. Domain

D1 OS Vista, XP, MAC-OS, Windows 7,Linux

D2 Memory 512 MB, 1024 MB, 2048 MB, 3072 MB

D3 Hard disk size 160 GB, 180 GB, 320 GB

D4 CPU Pentium 4, Intel Centrino

D5 Monitor 14 inches,18 inches,19 inches,20 inches

D6 Mouse Logitech, Magic mouse

D7 Video card NVIDIA 600series, NVIDIA 700series, NVIDIA 800series

D8 Graphics card GeForce 7600series, GeForce 7800series, GeForce 7900series

D9 Gaming PC yes,no

D10 Keyboard Win keyboard,Mac Keyboard

D11 Monitor resolution low,medium,high

84 M. Vargas-Vera, M. Nagy, and D. Jannach

Constraints:

Table 3. Constraints

C1 IF OS = “XP ′′ THEN Memory ≤ 2048 MB

C2 IF Monitor = “20 inches′′ THEN Graphics card = “GeForce 7800 series′′

C3 IF OS = “XP ′′ THEN CPU = “Pentium 4′′

C4 IF OS = “V ista′′ THEN CPU = “Pentium 4′′

C5 IF OS = “XP ′′ THEN Hard disk size ≥ “500 MB′′

C6 IF Gaming PC = “yes′′ THEN Graphics card = “NV IDIA 8000series′′

C7 IF Gaming PC = “yes′′ THEN Memory ≥ “2048′′

C8 IF Gaming PC = “yes′′ THEN Hard disk size ≥ “160GB′′

C9 IF Monitor ≥ 20inches THEN MonitorResolution = “high′′

C10 IF OS = “MAC − OS′′ THEN Keyword = “Mac Keyboard′′

3.3 Constraint Graph

In order to represent the problem we use graphs, which can be defined as follows:

Definition 3. Constraints are represented in a graph called constraint graph.
Each node in this graph is labelled by a variable name together with a set of
possible values for that variable. A directed constraint connected(i,j) connects a

pair of nodes i and j if the value of the variable labeling i is constrained by the
value of the variable labeling j.

To illustrate our approach to mapping, we have taken the initial constraints
graphs built by different engineers using different knowledge models. These orig-
inal graphs hold by our individual departments are depicted in Figure 2 and 3.
These graphs use standard computer jargon although, they have discrepancies on
the name of variables used. The term V ideo card and Graphics card (variable
names) were used by different knowledge engineers to refer to the same concept.
The latest problem suggested that in order to perform knowledge integration
we have to perform mappings between nodes in the constraints graphs. For the
sake of clarity, we only presents overlaps in one node of the graph but this is
not always the case. Figure 2 uses as variable name called V ideo card whilst in
Figure 3 the variable name is Graphics card.

A unified view of two constraints graphs was produced (manually) by joining
two initial constraints graphs. This unified view is depicted in Figure 4. In one
hand, Figure 4 partially shows a constraint graph with nine variables namely OS,
Memory, Hard disk size, CPU, Monitor, Gaming PC, Video card, Graphics card
and Monitor Resolution.

4 Mapping Process

The main objective of the mapping is to identify that nodes in the constraint
graphs are equivalent e.g. the “Video card” node (shown in Figure 3) is equivalent

An Approach to Knowledge Integration Applied to a Configuration Problem 85

Fig. 2. A Constraint graph for the computer configuration problem using variable
Graphics card

with the “Graphics card” node presented in Figure 2. In order to proceed with the
comparisons, we need to compare all possible node combinations of the graphs
shown in Figure 2 and Figure 3 and select the ones, which are the most similar
or nothing if there is no similarity between the nodes.

Once the constraint graphs have been established the system need to establish
mappings between the hardware items represented as nodes in the graph. The
problem can be represented as the ontology-mapping problem in order to find
correspondences between the items. The objective of the ontology mapping is
to use different similarity measures in order to establish the mappings. However
in practice one similarity measure or some technique can perform particularly
well for one pair of concepts or properties and particularly badly for another
pair of concepts or properties, which has to be considered in any mapping algo-
rithm. In our ontology-mapping approach we use different software agents where
each agent carries only partial knowledge of the domain and can observe it from
its own perspective where available prior knowledge is generally uncertain. Our
main argument is that knowledge cannot be viewed as a simple conceptualiza-
tion of the world, but it has to represent some degree of interpretation. Such
interpretation depends on the context of the entities involved in the process.
In order to represent these subjective probabilities in our system we use the
Dempster-Shafer theory of evidence [32], which provides a mechanism for mod-
elling and reasoning uncertain information in a numerical way, particularly when

86 M. Vargas-Vera, M. Nagy, and D. Jannach

Fig. 3. A Constraint graph using variable Video card

it is not possible to assign belief to a single element of a set of variables. Further
our proposed solution involves consultation of background knowledge, assess-
ment of similarities, resolving conflicts between the assessments and finally the
selection of possible mappings i.e. items that are named differently but are the
same in practice. As an example consider that we need to determine that the
“Video card” is equivalent to the “Graphics card”. In this case our hypothesis
(H) is that these items are equivalent but we need to find evidences that support
or contradict our initial hypothesis. In our case we create several hypothesises
comparing each element of the constraint graph to each other. As an example
consider that the following three hypothesises were selected from all available
ones:

H1(equivalent) = {video card} ⇔ {graphics card}

H2(equivalent) = {video card} ⇔ {mouse}

Hn(equivalent) = {video card} ⇔ {termn}

Further it is advisable that during the similarity assessment we use different
similarity algorithms i.e. use different agents that are specialised in a particular
similarity assessment. Since the hierarchy of the constraint graph cannot be
exploited for similarity assessment the only way is to utilise the nodes in order
to detect the mappings. As such consider that we use three agents using different
string similarity measures. The steps to produce the mappings are as follows:

An Approach to Knowledge Integration Applied to a Configuration Problem 87

Fig. 4. A Constraint graph for the computer configuration problem with 9 variables

Step 1 consult background knowledge: In this step using general background
knowledge e.g. WordNet we try to determine the meaning of the terms. Our
case is specialised as the computer shop only sells electronics therefore other
meanings e.g. art context of graphics can be excluded from the process. After
consulting background knowledge we can extend our initial terms using sister
terms and direct hypernyms with the following computer science related terms:

V ideo card = {videodisplay, graphics, picture, graph}

Graphics card = {picture,movie, video, image, visual representation}

Mouse = {trackball, rotatableball, cursor control device}

Step 2 similarity assessments: Using different string similarities e.g. Jaccard,
Jaro-Winkler, Monge-Elkan we have found that

Agent1 : H1(mapping) = 0.80;H2(mapping) = 0.3

Agent2 : H1(mapping) = 0.72;H2(mapping) = 0.2

Agent3 : H1(mapping) = 0.64;H2(mapping) = 0.2

After the belief assessments we can establish that H1 is the preferred choice
between the available hypothesises and that H2 does not contain contradictory
beliefs. However H1 contains contradictions because Agent 2 belief does not
support sufficiently that H1 can be selected. The different strategies for selecting

88 M. Vargas-Vera, M. Nagy, and D. Jannach

the contradicting belief is out of the scope of this paper but for our scenario we
use the rule of thumb that in an ordered list of beliefs at least 2 agents should
have the same belief otherwise there is a contradiction. In our framework all the
numerical values represent the belief mass function that each agent can deduce
from the similarity calculations. The represented beliefs are the interpretation
of each agent and such they are subjective. Once the beliefs in similarities have
been established agents need to select the hypothesis with the highest belief.
In our example this corresponds to the H1 namely that the “Video card” and
“Graphics card” could be similar. Before the mapping is selected we need to
verify that the original beliefs are not contradicting.

Step 3 verification and resolution of contradictions: It is important to point
out that our proposed approach does not utilise thresholds for defining what
is contradicting or not. e.g. if the difference is greater than 0.5 then there is
a contradiction. Our solution makes use of comparisons between each agent’s
belief and eliminates the one that can be contradictory with the majority of the
beliefs. The strategies for selecting, which agent should start evaluating trust is
a complex issue and is out of the scope of this paper. However in our scenario we
consider a basic rule that tries to establish similar beliefs of at least two agents.
Therefore the beliefs in similarities need to be ordered and the agent whose
belief function value is the smallest (smaller then the highest and greater than
the smaller) will start to the trust evaluation process. In our example Agent 2 is
in the position of detecting such contradiction as both Agent 1 and Agent 3 has
different belief on the similarity. The question in this case is to trust Agent 1 and
support that “Video card” and “Graphics card” is equivalent or trust Agent 3
whose belief is lower and probably discharge the mapping.

In order to resolve the contradiction we use the fuzzy voting model [5] be-
cause the different beliefs in similarity can be resolved if the mapping algorithm
can produce an agreed solution, even though the individual opinions about the
available alternatives may vary. We propose a solution for reaching this agree-
ment by evaluating trust between established beliefs through voting, which is
a general method of reconciling differences. Voting is a mechanism where the
opinions from a set of votes are evaluated in order to select the alternatives that
best represent the collective preferences. Unfortunately deriving binary trust like
trustful or not trustful from the difference of belief functions is not so straight-
forward since the different voters express their opinion as subjective probability
over the similarities.

For a particular mapping this always involves a certain degree of vagueness
hence the threshold between the trust and distrust cannot be set definitely for
all cases that can occur during the process. Additionally there is no clear transi-
tion between characterising a particular belief highly or less trustful. Therefore
our argument is that the trust membership or belief difference values, which
are expressed by different voters can be modelled properly by using fuzzy rep-
resentation. Before each agent evaluates the trust in other agent’s belief over
the correctness of the mapping it calculates the difference between its own and
the other agent’s belief. Depending on the difference it can choose the available

An Approach to Knowledge Integration Applied to a Configuration Problem 89

trust levels e.g. if the difference in beliefs is 0.08 (belief of Agent 2 - Agent 3
and belief of Agent 3 - Agent 2) then the available trust level can be high and
medium. We model these trust levels as fuzzy membership functions. In fuzzy
logic the membership function (x) is defined on the universe of discourse U and
represents a particular input value as a member of the fuzzy set i.e. µ(x) is a
curve that defines how each point in the U is mapped to a membership value
(or degree of membership) between 0 and 1. Our membership functions are as
follows:

Definition 4. Similarity is an input variable and is the result of some syntactic
or semantic similarity measure between two terms/nodes in the ontology. These
similarity measures can be obtained using a wide variety of standard techniques
like Jaccard distance or node distance in source and target graphs that represent
the ontology fragments. In terms of fuzzy representation we propose three values
for the fuzzy membership value χ(x) = {low, average, high}.

Definition 5. Belief is an input variable, which describes the amount of justified
support to A that is the lower probability function of Dempster, which accounts
for all evidence Ek that supports the given proposition A. Consequently the belief
value is equivalent to the normalised sum of similarity values that is calculated
based on the evidences that support the hypothesis. We propose two values for
the fuzzy membership value β(x) = {weak, strong}.

Definition 6. Belief difference is an input variable, which represents the agents
own belief compared to the other agents’ belief over the correctness of a mapping

in order to establish mappings between concepts and properties in the ontology.
Therefore during conflict resolution we calculate the level of difference by com-
paring agent x belief to agents x-1, x+1 beliefs over the similarity. We apply three
values for the fuzzy membership value µ(x) = {small, average, large}.

Definition 7. Trust is the output variable and represent the level of trust we can
assign to the combination of our input variables. The trust is therefore calculated
by applying the fuzzy rules on the fuzzy input variables. We propose three values
for the fuzzy membership value τ(x) = {low,medium, high}.

Once each input and output variables have been initialised we run the fuzzy
system2 that defuzzifies the result defined by our output variable i.e. trust. Dur-
ing fuzzy reasoning we have the linguistic output variables, which need to be
translated into a crisp (i.e. real numbers, not fuzzy sets) value. The objective is to
derive a single crisp numeric value that best represents the inferred fuzzy values
of the linguistic output variable. Defuzzification is such inverse transformation,
which maps the output from the fuzzy domain back into the crisp domain. In our
ontology mapping system we have selected the Center-of-Area (C-o-A) defuzzi-
fication method. The C-o-A method is often referred to as the Center-of-Gravity
method because it computes the centroid of the composite area representing the
output fuzzy term. In our system the trust levels are proportional with the area

2 http://jfuzzylogic.sourceforge.net/

90 M. Vargas-Vera, M. Nagy, and D. Jannach

of the membership functions therefore other defuzzification methods like Center-
of-Maximum (C-o-M) or Mean-of-Maximum (M-o-M) does not correspond well
to our requirements.

Consider the set of words
{Low trust(L t),Medium trust(M t), High trust(H t)} as labels of a linguis-
tic variable trust with values in U=[0,1]. Given a set “m” of voters where each
voter is asked to provide the subset of words from the finite set T(L), which are
appropriate as labels for the value u. The membership value χµ(w)(u) is taking
the proportion of voters who include u in their set of labels, which is represented
by w. The main objective when resolving conflict is to have sufficient number of
independent opinions that can be consolidated. To achieve our objective we need
to introduce more opinions into the system i.e. we need to add the opinion of the
other agents in order to vote for the best possible outcome. Therefore we assume
for the purpose of our example that we have 10 voters (agents). Formally, let us
define

V = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10} (1)

T (L) = {Lt,Mt, Ht}

The number of voters can differ however assuming 10 voters can ensure that

1. The overlap between the membership functions can proportionally be dis-
tributed on the possible scale of the belief difference [0..1]

2. The work load of the voters does not slow the mapping process down

Let us start illustrating the previous ideas with a small example. By definition
consider three linguistic output variables L representing trust levels and T(L)
the set of linguistic values as T (L) = {Low trust,Medium trust,High trust}.
The universe of discourse is U, which is defined as U=[0,1]. Then, we define the
fuzzy sets per output variables {(Low trust), (Medium trust), (High trust)}
for the voters where each voter has different overlapping trapezoidal, triangular
or Gauss membership functions as depicted in Figure 5.

The difference in the membership functions represented by different vertices
depicted in Figure 5 ensures that voters can introduce different opinions as they
pick the possible trust levels for the same difference in belief. The possible set of
trust levels L=TRUST is defined by the Table 4. Note that in the table we use
a short notation Lt stands for Low trust, Mt stands for Medium trust and Ht

stands for High trust. Once the input fuzzy sets (membership functions) have
been defined the system is ready to assess the output trust memberships for the
input values. Both input and output variables are real numbers on the range
between [0..1]. Based on the difference of beliefs, own belief and similarity of the
different voters the system evaluates the scenario.

The evaluation includes the fuzzification which converts the crisp inputs to
fuzzy sets, the inference mechanism which uses the fuzzy rules in the rule-base to
produce fuzzy conclusions (e.g., the implied fuzzy sets), and the defuzzification
block which converts these fuzzy conclusions into the crisp outputs. Therefore

An Approach to Knowledge Integration Applied to a Configuration Problem 91

Fig. 5. Possible membership functions

each input (belief difference, belief and similarity) produces a possible defuzzi-
fied output (low, medium or high trust) for the possible output variables. Each
defuzzified value can be interpreted as a possible trust level where the linguistic
variable with the highest defuzzified value is retained in case more than one
output variable is selected. As an example consider a case where the defuzzified
output has resulted in the situation described in Table 4. Note that each voter
has its own membership function where the level of overlap is different for each
voter. Based on a concrete input voting agent nr 1 could map the defuzzified
variables into high, medium and low trust whereas voting agent 10 to only low
trust.

Table 4. Possible values for the voting

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Lt Lt Lt Lt Lt Lt Lt Lt Lt Lt

Mt Mt Mt Mt Mt Mt

Ht Ht Ht

Note that behind each trust lever there is a real number, which represents
the defuzzified value. These values are used to reduce the number of possible
linguistic variables in order to obtain the vote for each voting agent. Each agent
retains the linguistic variable that represents the highest value and is depicted
in table 5.

92 M. Vargas-Vera, M. Nagy, and D. Jannach

Table 5. Voting

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Ht Mt Lt Lt Mt Mt Lt Lt Lt Lt

Taken as a function of x these probabilities form probability functions. They
should therefore satisfy:

∑
Pr(L = w|x) = 1 (2)

w ∈ T (L)

which gives a probability distribution on words:

∑
Pr(L = Low trust|x) = 0.6 (3)

∑
Pr(L = Medium trust|x) = 0.3 (4)
∑

Pr(L = High trust|x) = 0.1 (5)

Therefore applying the appropriate input variables and the basic fuzzy rules
the system will determine that as a result of voting and given the difference in
belief x = 0.08 (belief of Agent2 - Agent 3 and belief of Agent 3 - Agent 2) the
combination should not consider the belief of the third agent since based on its
difference compared to another beliefs it turns out to be a distrustful assessment.
The before mentioned process is then repeated as many times as many different
beliefs we have for the similarity i.e. as many as different similarity measures
exist in the ontology mapping system.

Step 4 belief combination: Once the conflicts have been resolved and the
distrustful beliefs have been eliminated the individual beliefs can be combined
to a more coherent belief. This belief combination is done using the Dempster’s
combination rule:

mij(A) = mi ⊕mj =
∑

EkEk′

mi(Ek) ∗mj(Ek′) (6)

where we have two individual belief mass functions mi(Ek) and mj(Ek′) and i

and j represent two different agents. After the belief combination the belief in
H1 equals 0.79 and for H2 equals 0.25. As a consequence we can deduce that the
“Video card” and “Graphics card” are the same component.

5 Knowledge Integration Framework

Ontologies offer interoperability and the possibility of a real integration of het-
erogenous sources. The vision of the Semantic Web predicts that existing
resources i.e. databases, data on web pages will be described using ontologies.

An Approach to Knowledge Integration Applied to a Configuration Problem 93

These ontologies would either be created by individuals, organisations or as a
result of converting existing thesaurus like WordNet. These resources will be
user by software applications in order to determine the meaning of concepts,
properties and to exchange these meanings in a certain context. Therefore in
our Knowledge Integration framework we have included two ontologies contain-
ing the background knowledge for the Computer Configuration Problem. We
assess similarities in the provided ontologies in order to find similar structures
and terms. This background knowledge is used later at the level of the CSP
solver so overlapping knowledge can be detected effectively using DSSim created
background knowledge from domain ontologies.

The integration framework used in this work is depicted in Figure 6 where
the flow of control between modules is shown. The picture shows the knowledge
models used in the framework. In our particular case, we are using as knowl-
edge models ontologies from PC online shops. These ontologies were built by
ourselves and they are written in OWL the standard ontologies language. Then,
we populate our ontologies using the values of two on-line shops. The suggested
framework is generic as a first instance (for testing our ideas) the two models
are OWL ontologies however, other formalisms could be used for building the
models, for example, the formalisms which could be easily converted into the
OWL ontology language.

We assume in our Knowledge Integration framework that each model has been
built by different knowledge engineers and therefore, overlapping and contradic-
tions of knowledge might occur. Our solution to the overlapping knowledge is
performed by using DSSim. Although, for the purpose of this chapter, DSSim
is presented as a black box as it has been described elsewhere [25] [26] [28] [27].
DSSim is an ontology alignment system based on Dempster Shafer and a fuzzy
voting model. Besides DSSim uses background knowledge and WordNet to assess
similarity between classes an properties in ontologies. The models are the input
to our DSSim system which produces the mappings detected between the mod-
els. Currently, for the purpose of the experiment shown in the next section we are
dealing only with two ontologies (i.e. two models). However, the framework can
be extended to deal with multiple knowledge models. Preliminary results suggest
that one problem addressed in our knowledge integration framework namely the
detection of overlapping knowledge can be solved using the mappings obtained
by DSSim.

The integrator module uses DSSim outputs and makes requests for approval
of mappings to the knowledge engineer or human expert. The “mapping informa-
tion” obtained by DSSim is passed to the Integrator module which then modifies
the constraints graphs using the approval information provided by the knowl-
edge engineer. Finally, the modified Constraint Satisfaction Problem (modified
constraint graph) is passed to the choco solver which solves the Constraint Sat-
isfaction Problem and returns results to the final user. In our research we used
choco as it is a standard constraint solver which can be integrated with Java.
Therefore, it fits very well with our overall knowledge integration framework.

94 M. Vargas-Vera, M. Nagy, and D. Jannach

The “Configuration System Interface” is the front-end to our users. Cur-
rently is not an elaborated interface as our priority was to test our ideas on the
knowledge integration framework. Next section presents an experiment using two
knowledge models on our case of study (a restricted version of a configuration
problem).

5.1 Algorithms for Detecting and Correcting Overlappings

Two different algorithms play a key role in our framework as they deal with
detection and correction of overlaps i.e. mappings and the resolution of the con-
straint satisfaction program (CSP). Our strategy of combining these algotithms
is to create a clear split between the steps considering performance reasons.
Knowledge integration on real domains is a challenging and complex task, in-
volving two computationally expensive operations:

1. Mapping terms between different sources: In order to detect overlapping in
the configurations we need to create mappings between all possible items
in the inventory (all instances in both ontology 1 and ontology 2). This
operation typically involve comparisons on a state space that is the cartesian
product of the different inventory items.

INVn×INVm = {(itemn, itemm)|itemn ∈ INVn and itemm ∈ INVm} (7)

Consequently the possible comparisons increases as the number of inventory
items increases therefore a real time comparison can easily become unfea-
sible. Further in real life scenarios the inventory cannot change between
proposing two configurations to the user therefore the mapping can be and
should be done only when the inventory in the sources are changing. As a
result we create the mappings between the inventory items first and we run
the mapping algorithm when necessary during the knowledge integration.

2. CSP search strategy and model solving: A key ingredient of any constraint
solving approach is the appropriate construction of the search tree and the
definition of the search algorithm. A common approach is by assigning vari-
ables to certain values however the size of the search tree is proportional to
the number of variables and domain values we use in the model. Therefore
finding a solution for a certain problem can easily become unfeasible in real
time if the number of components for the configuration is increasing. Un-
fortunately contrary to the mapping generation the constraint satisfaction
problem need to be resolved in the real time every time the user asks for a
certain quote from the system. Therefore in our approach we need to put an
upper limit on the time the algorithm can run in order to provide answer to
the user’ query.

The ontology mapping process that includes the fuzzy voting is described in
Algorithm 1. The input of the algorithms are the similarity matrixes that contain
various similarity measures. The output of this algorithm is the mapping file
in the OAEI format. This mapping file describes, which items are equivalent

An Approach to Knowledge Integration Applied to a Configuration Problem 95

Fig. 6. Knowledge Integration Framework for a Configuration Problem

96 M. Vargas-Vera, M. Nagy, and D. Jannach

in the different inventories e.g. “Video card and Graphics card”. As we have
described before the algorithms iterates through the similarity matrixes and
tries to establish and combine the Dempster belief functions using scenario and
evidences (line 1-7). In case the evidences are contradictory a number of voters
are created in order to determine, which belief can be trusted (line 8-14). Once
the trusted beliefs have been selected the algorithm combines the beliefs and
creates the mapping file based on these beliefs (line 16-17). This iterative process
finishes once all items from inventory 1 have been compared with all the items
in inventory 2. In our scenario these inventories contain all the instances in the
ontologies.

Input: Similarity belief matrixes Sn×m = {S1, .., Sk}
Output: Mapping candidates
for i=1 to n do1

BeliefVectors BeliefVectors ← GetBeliefVectors(S[i, 1−m]) ;2

Concepts ← GetBestBeliefs(BeliefVectors BeliefVectors) ;3

Scenario ← CreateScenario(Concepts) ;4

for j=1 to size(Concepts) do5

Scenario ← AddEvidences (Concepts) ;6

end7

if Evidences are contradictory then8

for count=1 to numberOf(Experts) do9

Voters ← CreateVoters(10) ;10

TrustValues ← VoteTrustMembership(Evidences) ;11

ProbabilityDistribution ←12

CalculateTrustProbability(TrustValues) ;
Evidences ← SelectTrustedEvidences(ProbabilityDistribution)13

;
end14

end15

Scenario ← CombineBeliefs(Evidences) ;16

MappingList ← GetMappings(Scenario) ;17

end18

Algorithm 1. Creating mapping for component overlap detection

On the other side the configuration selection based on CSP solution is not an
iterative process, however solving the problem itself can pose challenges in terms
of computational complexity. The algorithm is described on Algorithm 2. The
inputs of the algorithm are the inventory items in different sources, the mapping
file and the requested items from the user if any.

The first step is to create a sample configuration using information from the
requested items that has been specified by the user e.g. user wants Intel pro-
cessors only. The sample configuration will contain items from both inventory
1 and 2 therefore it may contain similar items. These similar items are eliminated

An Approach to Knowledge Integration Applied to a Configuration Problem 97

from the configuration (line 2) using the mapping file that was generated by the
ontology mapping algorithm. The next step is to create the CSP model that we
wish to solve using the sample configuration (line 3). After we iterate through on
each item in the configuration and transform it to a CSP variable together with
its possible domain (line 4-6). Then we assign the constraints for the problem
(line 7) and solve the CSP problem using our established model(line 8). Finally
we can read out the suggested configuration from the model, which will be used
as a quote to send back to the user.

Input: Inventoryn, Inventorym,Mappingfile, Requesteditems

Output: Suggested configuration
SampleConfiguration ← GetSampleConfiguration (InventoryItems,1

RequestedItems) ;
SampleConfiguration ← EliminateSimilarNodes (Mappings) ;2

CPMModel ← CreateCPMModel (SampleConfiguration) ;3

for i=1 to NumOfComponents do4

CPMVariablei = CreateVariables (GetComponentDomain5

(SuggestedConfiguration i)) ;
end6

Constraints ← CreateConstraints () ;7

CPMModel ← SolveCPMProblem () ;8

SuggestedConfiguration ← GetSuggestedConfiguration (CPMModel) ;9

Algorithm 2. Resolving the configuration problem

6 Evaluation

In order to evaluate our approach we have carried out experiments (process is
depicted in Figure 7) using two ontologies that were created from two on line PC
(Personal Computers) store. Both ontologies contain categories and instances of
items that are sold in the on-line shop. The main objective of our experiment
was to evaluate how accurate our knowledge integration approach is. During
the experiments we have generated 100 random configurations that simulates
a customer choice and we have evaluated the correctness of the configurations
after the two ontologies were mapped into each other.

The main idea of our experiment was to show the integration of our sample
ontologies and then to use the integrated model for solving a computers config-
uration problem. The evaluation was performed in two phases. In the first phase
we integrated two knowledge models (i.e. ontologies) from two online PC shops.
The evaluation comprises to perform mapping between classes and properties
of the two ontologies. In this task we had used our DSSim system [26] which
is a mapping system based on Dempster-Shafer Theory described in detail in
[25] [26] [27]. Although, the ontologies used in the experiment (presented in this
chapter) are rather small our DSSim is equipped to deal with large ontologies
[28]. In fact, DSSim has been tested with very large ontologies from the Ontology
Alignment Evaluation Initiative (OAEI).

98 M. Vargas-Vera, M. Nagy, and D. Jannach

Fig. 7. Experimental process

The second part of the experiment is the solution of the CSP problem using
the mappings generated in the first phase. To illustrate our solution we started
by selecting just one PC configuration (basic configuration). Once the solution
to the basic configuration of computers was obtained. Then, we carried out
the experiments using the two remaining configurations namely medium and
expensive configuration which were solved in a similar fashion. Therefore, in a
first instance, we focussed our attention to the constraints associated to the basic
configuration. These constraints are C1...C10 defined in section 3.2. Our solution
used a constraint solver choco which is widely used in the CSP community. The
notion basic, medium and expensive configurations have been represented with
the number of components assuming that the more expensive a configuration is
the more components the configuration will contain. In our experiment the basic
configuration has 30, the medium has 50 and the expensive has 70 components.

We have carried out experiments based on the computer configuration prob-
lem described in the section 3.2. In order to make it as close to real situation as
possible we have created 2 ontologies based on two online computer shops that
sell a wide variety of PC Components and Accessories. One shop is the Micro
Direct Ltd 3 from the UK and the second is Newegg 4 from the US. For the
experiments we have created ontologies that contain only partial component list
from both sites. The number of classes, properties and instances included in the
ontologies are described on Table 6.

3 http://www.microdirect.co.uk
4 http://www.newegg.com/

An Approach to Knowledge Integration Applied to a Configuration Problem 99

Table 6. Example ontology complexities

Microdirect.co.uk Newegg.com

Classes 102 121
Properties 47 46
Individuals 197 242

Subclass axioms 96 118
Equivalent classes axioms 19 5

6.1 Mapping Quality

The first step of or experiment is to create a mapping file using DSSim in or-
der to detect overlapping elements from the two ontologies. The idea behind
our scenario and experiments is to integrate two data sources through ontol-
ogy mapping. In practice this means that our solution should make it possible
to create configurations from two different shops without physically integrating
the databases. The mapping file generated by our algorithm contains 93 map-
pings. These mappings range from the very obvious to hidden correspondences
between concepts and properties e.g. Memory - Memory, ATi Graphics Card
Video card. In addition we have created manually a mapping file between the
ontologies in order to compare with the one that is generated by the system. This
evaluation was measured with recall and precision, which are useful measures
that have a fixed range and meaningful from the mapping point of view.

There are two typical measures for assessing the performance:

Definition 8. Precision: A measure of the usefulness of a hit list, where hit list
is an ordered list of hits in decreasing order of relevance to the query.

Definition 9. Recall: A measure of the completeness of the hit list and shows

how well the engine performs in finding relevant entities.

Recall is 100% when every relevant entity is retrieved. However it is possible to
achieve 100% by simply returning every entity in the collection for every query.
Therefore, recall by itself is not a good measure of the quality of a search engine.
Precision is a measure of how well the engine performs in not returning non
relevant documents. Precision is 100% when every entity returned to the user
is relevant to the query. There is no easy way to achieve 100% precision other
than in the trivial case where no document is ever returned for any query. Both
precision and recall has a fixed range: 0.0 to 1.0 (or 0% to 100%). A good map-
ping algorithm must have a high recall to be acceptable for most applications.
The most important factor in building better mapping algorithms is to increase
precision without worsening the recall.

Before we present our evaluation let us discuss what improvements one can
expect considering the mapping precision or recall. Most people would expect
that if the results can be doubled i.e. increased by 100% then this is a remark-
able achievement. This might be the case for anything but ontology mapping.

100 M. Vargas-Vera, M. Nagy, and D. Jannach

In reality researchers are trying to push the limits of the existing matching algo-
rithms and anything between 10% and 30% is considered a good improvement.
The objective is always to make improvement in preferably both in precision
and recall.

Table 7. Mapping quality

Value

Precision 0.66
Recall 1.0

Based on the result (depicted on Table 7) we can conclude that the recall rate
is 100% therefore all the possible mappings have been found by the system. How-
ever the precision is 66 %, which indicates that some additional mapping were
found and they are incorrect. The precision rate is high and indeed the man-
ual mapping has resulted in the mapping file that contain only the equivalence
relationships e.g. CPU - CPU between items. Our algorithm also identified not
equivalence relations e.g. Motherboards - Server Motherboard and this decreases
the precision of the system.

6.2 Configuration Quality

In the second experiment we create random configurations using components
from both shops i.e. ontologies. For example we take the memory from Microdi-
rect and select the Monitor from Neweggs. The number of components can range
between 30 and 70 depending on the configuration type.

In step three using the mapping file created in step 1 we eliminate the overlap-
ping components from the configuration. For example if Video card was selected
from ontology 1 and Graphics card was also selected to the configuration we
leave only one of them in the configuration.

During step four we take the available prices for each component in the con-
figuration. In practice we take all instances of each component and add them
as variables for the CSP problem. For example for the Video card we take Sap-
phire Radeon HD 5850 1GB or XFX ATI RADEON 4650. All these variables
will feed into our CSP solver engine as textual variables.

In step 5 we run the CSP solver in order to get what are the process we can
spend on each component in order to produce the suggested configuration. Given
the fact that there is no guarantee that the CSP problem can be resolved in a
timely manner we put a 10 second constraint on the choco solver in order to
limit the available time for each experiment. In case the solver cannot find an
optimal solution the random configuration will be returned.

In Step 6 we select the concrete components that fit into our maximum amount
we can spend on each component.

An Approach to Knowledge Integration Applied to a Configuration Problem 101

The process from step 2 to 6 is repeated 100 times in order to obtain reason-
able amount of data that can be analysed. We are interested in measuring how
well our proposed approach can perform in order to integrate knowledge from
different sources. We measure how often overlapping elements are removed from
random configurations and how often overlapping items have to be evaluated
from the random configurations.

The experimental results are depicted in Figure 8.

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100

O
v

e
rl

a
p

Experiments

Overlap in configurations

Basic configurations
Medium configurations

Expensive configurations

Fig. 8. Overlapping components

Table 8. Ovelapping component statistics

Min overlap Max overlap Average overlap No overlap

Basic configuration 0 5 1.45 21
Medium configuration 0 10 3.83 1

Expensive configuration 2 13 7 0

As depicted in Figure 8 and Table 8 the number of overlapping elements per
configuration varies from 0-13. According to the experiments 79 % of the basic
configuration, 99 % of the medium configuration 100 % for the expensive con-
figuration represents cases where the overlapping elements have to be removed.
In practice it means the knowledge integration occurs between 79-100 % per-
cent of the cases. This is remarkable and in operational systems where users are
involved this represents a considerable percentage. Based on our experiments
we can establish that knowledge integration can improve the PC configuration
precision in the majority of the cases.

102 M. Vargas-Vera, M. Nagy, and D. Jannach

Our experiments have showed that the result of constraint satisfaction prob-
lem for the PC configuration improves if the number of components for the
configuration increases. This can be explained with the fact that with the more
complex a configuration is the more overlapping in the CSP graph can occur.
This is encouraging as our main objective is to establish a solution for the knowl-
edge integration problem.

7 Conclusions

This chapter presented an approach to knowledge integration of several knowl-
edge models. These knowledge models were created by different stakeholders. As
a case of study to demonstrate our approach we introduced a restricted version
of the computer configuration problem. Our case of study was modeled as a
Constraint Satisfaction Problem and the constraints graphs were produced. The
detection of overlapping pieces of knowledge and its solution was performed by
means of DSSim, a agent-based system which uses similarity algorithms coupled
with a fuzzy voting model.

The experiment shown was performed using two knowledge models and it was
divided in two phases. The first phase was detection of overlapping knowledge
and correction using our DSSim system. The second phase is the Constraint
Satisfaction Problem using choco (the constraint solver). Our preliminary find-
ings are encouraging and they are the baseline for assessing the usefulness of our
Knowledge Integration. Of course, more work needs to be done in order to fulfill
our expectations of a generic framework for Knowledge Integration. Future work
comprise to carry out experiments using more knowledge models.

We have established a set of initial experiments and measures that combines
ontology mapping and constraint satisfaction in a real word scenario. Our pro-
posed experimental context for knowledge integration is the logical federation
of two on-line PC stores, without physically creating a unified database. The
federation is carried out only the overlapping elements of the two different data
sources in order to being able to eliminate the number of equivalent components
for the proposed configuration. Our ontologies used during the experiment con-
tain only a fraction of the information that can be extracted from the two on
line stores. Nevertheless our results are encouraging since even these relatively
small ontologies produce 79-100 % of overlaps in the configurations. The more
elements we include in our ontologies the higher overlapping components will
emerge in these configurations. Therefore based on our current experiments we
can conclude that the knowledge integration can occur in the majority of the
cases and such approach can improve the overall situation of the system. How-
ever in the future we intend to investigate further what influences the number of
overlapping elements that occur in random configurations. In terms of constraint
satisfaction our experiments have showed that only the expensive configuration
performs well as the medium and basic contains far too much configuration that
do not match the users criteria. One explanation is the limited number of in-
stances in the two ontologies. We expect that the more instances we will include

An Approach to Knowledge Integration Applied to a Configuration Problem 103

into our ontologies i.e. more PC components the better our constraint can be
met for the basic and medium configuration. In general our experiments have
showed that our approach is promising however it requires more experiments
with larger ontologies in order to further assess the strengths and weaknesses of
our approach.

References

1. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA – A mApping fRAmework for
distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002)

2. AnHai, D., Jayant, M., Pedro, D., Alon, H.: Learning to map between ontolo-
gies on the semantic web. In: WWW 2002: Proceedings of the 11th International
Conference on World Wide Web, pp. 662–673. ACM, New York (2002)

3. AnHai, D., Pedro, D., Alon, H.: Reconciling schemas of disparate data sources: a
machine-learning approach. SIGMOD Rec. 30(2), 509–520 (2001)

4. Ardissono, L., Felfernig, A., Felfernig, E., Friedrich, G., Goy, A., Jannach, D.,
Petrone, G., Schäfer, R., Zanker, M.: A framework for the development of per-
sonalized, distributed web-based configuration systems. AI Magazine 24, 93–108
(2003)

5. Baldwin, J.F.: Mass assignment fundamentals for computing with words. In: L.
Ralescu, A. (ed.) IJCAI-WS 1997. LNCS, vol. 1566, pp. 22–44. Springer, Heidelberg
(1999)

6. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

7. Bayardo Jr., R.J., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A.,
Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M.,
Shea, R., Unnikrishnan, C., Unruh, A., Woelk, D.: Infosleuth: agent-based semantic
integration of information in open and dynamic environments. In: SIGMOD 1997:
Proceedings of the 1997 ACM SIGMOD International Conference on Management
of Data, pp. 195–206. ACM, New York (1997)

8. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: The momis approach
to information integration. In: ICEIS, pp. 194–198 (2001)

9. Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources:
A machine-learning approach. In: SIGMOD Conference, pp. 509–520 (2001)

10. Fauconnier, G.: Mental Spaces: Aspects of Meaning Construction in Natural Lan-
guage. MIT Press, Cambridge (1985)

11. Fridman, N.N., Mark, M.: Prompt: Algorithm and tool for automated ontology
merging and alignment. In: Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence, pp. 450–455. AAAI Press / The MIT Press (2000)

12. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Sagiv, Y., Ullman, J., Vas-
salos, V., Widom, J.: The tsimmis approach to mediation: Data models and lan-
guages. Journal of Intelligent Information Systems 8, 117–132 (1997)

13. Gerd, S., Alexander, M.: Fca-merge: bottom-up merging of ontologies. In: IJCAI
2001: Proceedings of the 17th International Joint Conference on Artificial Intelli-
gence, pp. 225–230. Morgan Kaufmann Publishers Inc., San Francisco (2001)

104 M. Vargas-Vera, M. Nagy, and D. Jannach

14. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)

15. Grant, R.M.: Toward a knowledge-based theory of the firm. Strategic Management
Journal 17, 109–122 (1996)

16. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: The teenage years. In:
VLDB, pp. 9–16 (2006)

17. Hamdi, F., Niraula, B.S.N.B., Reynaud, C.: Taxomap in the oaei 2009 alignment
contest. In: Proceedings of the 4th International Workshop on Ontology Matching
(OM 2009). CEUR Workshop Proceedings, vol. 551, pp. 230–237 (2009)

18. Hung, H.F., Kao, H.P., Chu, Y.Y.: An empirical study on knowledge integration,
technology innovation and experimental practice. Expert Systems with Applica-
tions 35(1-2), 177–186 (2008)

19. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Asmov: Results for oaei 2009.
In: Proceedings of the 4th International Workshop on Ontology Matching (OM
2009). CEUR Workshop Proceedings, vol. 551, pp. 152–159 (2009)

20. Johnson-Laird, P.: Mental Models. Harvard University Press, Cambridge (1983)
21. Levy, A.Y.: The information manifold approach to data integration. IEEE Intelli-

gent Systems 13, 12–16 (1998)
22. Matteo, B., Paolo, B., Paolo, T.: Enabling distributed knowledge manage-

ment: Managerial and technological implications. Tech. rep., Ingegneria e Scienza
dell’Informazione, University of Trento (2002)

23. Murray, K.S.: Learning as Knowledge Integration. Ph.D. thesis, The university of
Texas, Austin (1995)

24. Murray, K.S.: Ki: A tool for knowledge integration. In: AAAI/IAAI, vol. 1, pp.
835–842 (1996)

25. Nagy, M., Vargas-Vera, M., Motta, E.: Multi agent ontology mapping frame-
work in the AQUA question answering system. In: Gelbukh, A., de Albornoz,
Á., Terashima-Maŕın, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 70–79.
Springer, Heidelberg (2005)

26. Nagy, M., Vargas-Vera, M., Motta, E.: Multi-agent ontology mapping with uncer-
tainty on the semantic web. In: Proceedings of the 3rd IEEE International Confer-
ence on Intelligent Computer Communication and Processing, pp. 49–56 (2007)

27. Nagy, M., Vargas-Vera, M., Motta, E.: Managing conflicting beliefs with fuzzy trust
on the semantic web. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS
(LNAI), vol. 5317, pp. 827–837. Springer, Heidelberg (2008)

28. Nagy, M., Vargas-Vera, M., Stolarski, P.: Dssim results for oaei 2008. In: Proceed-
ings of the 3rd International Workshop on Ontology Matching, pp. 147–159 (2008)

29. Rapanotti, L., Barroca, L., Vargas-Vera, M., Minocha, S.: deepjthink: a second
life campus for part-time research students at a distance. Tech. rep., The Open
University (2009)

30. Sanjay, M., Felix, F.: Towards a generic model of configuraton tasks. In: IJCAI
1989: Proceedings of the 11th International Joint Conference on Artificial Intelli-
gence, pp. 1395–1401. Morgan Kaufmann Publishers Inc., San Francisco (1989)

31. Seddiqui, M. H., Aono, M.: Anchor-flood: Results for oaei 2009. In: Proceedings of
the 4th International Workshop on Ontology Matching (OM 2009). CEUR Work-
shop Proceedings, vol. 551, pp. 127–134 (2009)

32. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

An Approach to Knowledge Integration Applied to a Configuration Problem 105

33. Wang, P., Xu, B.: Lily: Ontology alignment results for oaei 2009. In: Proceed-
ings of the 4th International Workshop on Ontology Matching (OM 2009). CEUR
Workshop Proceedings, vol. 551, pp. 186–192 (2009)

34. Zhang, X., Zhong, Q., Shi, F., Li, J., Tang, J.: Rimom results for oaei 2009. In:
Proceedings of the 4th International Workshop on Ontology Matching (OM 2009).
CEUR Workshop Proceedings, vol. 551, pp. 208–215 (2009)

35. Zygmunt, A., Koźlak, J., Siwik, L.: Agent-based environment for knowledge inte-
gration. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 885–894. Springer, Heidel-
berg (2009)

Chapter 5

Simulation-Based Systems Design in Multi-actor
Environments

Michele Fumarola, Mamadou D. Seck, and Alexander Verbraeck

Delft University of Technology, The Netherlands

Abstract. Much of the performance of a logistic system is determined
by the quality of its design. A rich body of knowledge has been developed
during the last decades that supports the product as well as the process of
designing. Design methods for systems have initially defined the product
by providing a framework to construct models to analyze the constructed
artifact. This approach, which would later be coined the hard systems
approach, would turn out to contain flaws in assumptions concerning of
the existence of an (quasi-) optimal solution and by neglecting humans
involved in the process. However, the techniques developed to support the
approach, most notably simulation, have matured and are now commonly
used to analyze designs. A major shift in approach took place to redeem
for the perceived failures in systems design processes. This resulted in
a tendency to focus on the diverging views of actors involved in the
process, which was termed as the soft systems approaches. To profit
from both sides, multimethodological approaches have been presented,
assuming that a combination is feasible to take the best of both worlds.
Participative simulation sessions have the potential to support the design
processes: (1) in a multi-actor environment with diverging stakes, and (2)
without ignoring the fact that human decision making relies on implicit
knowledge that is insufficient and unreliable to evaluate decisions, thus
requiring simulation for support. In this chapter, we present the rationale
for requiring a multimethodological approach and discuss which aspects
should be covered based on existing research literature.

Keywords: container terminal, system design method, simulation.

1 Introduction

Today’s supply chains rely heavily on advanced logistics systems to transport
goods. Efficiency is ever so important, leading to a preference for faster and
more precise automated equipment. The technical challenges, high investments,
and the societal and environmental impact depend upon multiple actors, or
stakeholders, to lead the decision making process for designing these logistics
systems. This imposes challenges that become increasingly difficult to address.

Logistics systems are typically designed and analyzed from a systems engi-
neering perspective. Simulation, optimization methods, linear programming, and

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 107–127.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

108 M. Fumarola, M.D. Seck, and A. Verbraeck

other mathematical techniques are used to analyze and optimize logistics sys-
tems. One of the prominent examples of logistics systems that require this kind
of methods, are container terminals [61][8]. The analysis and optimization is
performed using a pre-defined utility function that is usually expressed in key
performance indicators. The decision making process involves multiple actors
which have varying stakes in the process. These stakes can often be contradic-
tory, which can hinder the decision making process.

A case study that we performed at a large container terminal operator exposed
the great complexity in the decision making process from both the system’s as
actor’s perspective. De Bruijn and Herder [17] discuss how important it is to an-
alyze both perspectives to achieve a complete analysis. The system’s perspective
of the design process of container terminals has been discussed often and thor-
oughly in literature: overviews are given by Steenken et al. [61], Stahlbock and
Voss [60] and Vis and de Koster [66]. In Hu [32] and Derksen [19], whose work
resulted from the case study, an analysis of the actors involved in the decision
making process was carried out. The major identified actors are involved with

– innovation as a way to deploy novel equipment to increase productivity;
– business as to keep costs and revenues in balance;
– engineering as to design a technically feasible terminal;
– and, finally, environment and safety.

In previous research [24], we discussed the challenging design process in light
of the complexity from both the system as the actor perspective. We concluded
that the design process needs to be supported in order to face these challenges.
In this chapter, we will explore existing literature and provide the constructs to
support a design process.

1.1 Outline of the Chapter

Following the introduction on the relevance of our research, we will continue by
exploring existing literature on the subject at hand. In Section 2, we will provide
an extensive overview on the multiple discipline involved to design (logistics)
systems. In Section 4 we will provide the constructs found in literature that
are needed to support a design process from the system as well as the actor
perspective. We will provide a discussion and conclusions in Section 5.

2 Designing Systems

In the early sixties of the previous century, Alexander [3] presented his seminal
work that introduced the notion of methods in design studies. Up to that point,
a design effort was considered a craft that relied solely on intuition and skills.
Alexander postulated that design methods could aid the designer in fitting the
form (the design artifact) to its environment: “every design problem begins with
an effort to achieve fitness between two entities: the form in question and its
context”. To fit the form to its environment, formal methods and techniques
should be required for both design products and design processes. Although the

Simulation-Based Systems Design in Multi-actor Environments 109

method he presented turned out to be unsuccessful for numerous reasons, the
prior misconception of rejecting formal procedures in design was abandoned.
This led to an abundance of novel design methods from 1962 onwards [16].

During the same period as the design method movement, a modern under-
standing of systems thinking gained traction in science and engineering. Holistic
thinking was put next to reductionism, which dominated science for a long pe-
riod of time. Von Bertalanffy’s general systems theory [68] was readily translated
to new fields like operations research and systems engineering [1]. Hall [27] clar-
ified the distinction between the two by pointing out that operations research is
concerned with optimizing existing systems, and systems engineering’s concern
is focused on the design of new systems. Jenkins [36] sharpened the difference by
suggesting that system engineering looks at the total system whereas operations
research tinkers at the level of the more mechanical sub-systems. It is important
to note that the recognition of systems engineering as focused on design binds
system’s thinking to Alexander’s idea on formal procedures for design studies.

At the crossroad of system’s thinking and design lies Simon’s [58] contribution.
He observed that a design process must follow a specific path of first structuring
the problem, followed by a formulation of alternative solutions based upon se-
lected criteria and finally by a selection of the best alternative. Human’s bounded
rationality limits the designer’s capabilities in exploring the solution space, and
thus precludes from finding an optimal solution. This limit is due to various
factors such as incomplete information, cognitive limitation of the designer and
time pressure. The designer cannot and should not aim for optimizing while de-
signing, but should compromise between satisfying and optimizing, which Simon
denotes as satisficing. Based on these premises, future system engineers would
go about accepting the paradigm as follows: : “There is a desired state, S(1), and
a present state S(0), and alternative ways of getting from S(0) to S(1). ‘Problem
solving,’ according to this view, consists of defining S(1) and S(0) and selecting
the best means of reducing the difference between them” [11]. More specifically,
the idea ruled supreme that the problem task to tackle would be about selecting
the efficient means.

Design studies are carried out in different fields, most notably architecture and
engineering. Design is considered the essence of engineering [69]. Hubka [34][49]
suggested to design technical artifacts as systems that are connected to their
environment by means of input and outputs. The system can be divided into
subsystems taking into consideration their boundaries. Hubka argued this would
be fundamental to define appropriate systems at any stage of abstraction, analy-
sis or classification. Pahl and Beitz [49] pinpoint that from this notion onwards,
it was a short steps towards using system’s theory in design processes and specify
that “systems approach reflects the general appreciation that complex problems
are best tackled in fixed steps, each involving analysis and synthesis”. Similarly,
van Gigch [64] discusses the systems approach as a methodology of design. In
his work, he presents modeling as the fundamental aspect of the system design
process. Modeling implies that “the modeler abstracts properties from things in
order to obtain a representation of the physical world”. The abstraction process

110 M. Fumarola, M.D. Seck, and A. Verbraeck

plays an important role in design as designers go through it to refine images of
reality through different levels of conceptualization. The importance of models
and emphasis on abstraction is further given by Hoover and Renderle [31]. They
discuss that abstract models can be defined at different stages in the design
process to test design decisions and to provide a framework for making design
refinements.

In engineering design, the aforementioned notions on design space exploration,
abstraction and modeling have found considerable impact in methods and sup-
port systems. Engineering design denotes a “systematic, intelligent process in
which designers generate, evaluate, and specify concepts for devices, systems,
or processes whose form and function achieve clients’ objectives or users’ needs
while satisfying a specified set of constraints” [22]. Choosing among design al-
ternatives is a common underlying concept for many methods. Hazelrigg [28][29]
goes as far as framing a truly rational process to produce the best possible result
using ‘a mathematics for design’. Many others have proposed constructs to struc-
ture and choose among alternatives: such constructs include trees [7], matrices
[20], rankings, and charts [48]. Methods focusing on modeling on different level
of abstraction also exist, most prominently in the work presented by Paredis
et al.. [50].

System’s thinking as originally understood in operations research and sys-
tems engineering did not fulfill its promises. This induced Ackoff [2] to call for
a new paradigm that would break away from the ever-increasing “mathemati-
zation” of the field. Operations research and systems engineering did not pay
attention on the actors involved in the decision making process. Particularly with
regards to management problems, this was recognized as an important shortcom-
ing. Mingers [45] discusses that traditional systems engineering designs systems
starting from the purpose of the envisioned systems and working backwards with
mathematical techniques to find ways to achieve their objectives. This is based
on the flawed assumption that the objectives are clearly stated at the beginning
of the design process.

An important step forwards was taken with the introduction of the soft sys-
tems methodology by Checkland [13]. Acknowledging changing requirements,
different actors with different stakes and opinions, and the importance of a learn-
ing process, proved to be fundamental to develop the soft systems methodology.
The methodology stood the test of time and, after some revisions, is still suc-
cessfully used today [14][15]. The so called hard systems methods in operations
research and systems engineering had to face competition with a number of new
soft systems methods. A taxonomy for system’s approaches, called the system
of systems methodology, presented by Jackson [35], was developed to help select
a suitable system’s approach for a given problem task. Subsequently, Mingers
[43] argued that the whole set of methods could be classified according to ontol-
ogy, epistemology and axiology, that is what they model, how they model and
why the model. According to this classification, the hard systems method lays
the importance on the artifact. Conversely, soft systems methods tend to focus
on the users, whether they can understand and discuss the problem situation.

Simulation-Based Systems Design in Multi-actor Environments 111

Because of the different foci of both types of methods, the question arises whether
multimethodology can exist: why choose one or the other when we can exploit
both to best tackle a problem (situation)?

3 Systems Approaches

Robinson [55] talks about a continuum between soft and hard instead of bipolar
extremes. This is motivated by novel interactive simulation environments de-
veloped in the nineties that can deal with uncertainty (changing requirement
and lack of knowledge about the system) by allowing incomplete or estimated
data. These environments can lead to discussions, which can be framed as a soft
systems approach. Soft system methods emerged due to unsatisfactory appli-
cations of hard system methods to wicked or ill defined problems. This led to
an abandonment of formal methods developed with the hard systems mentality
and favored the loose frameworks known as soft systems methods. However, this
choice is unfortunate, as both types of methods have their disadvantages that
can be overcome by seeking an appropriate combination.

A tendency towards combining hard and soft systems methods is reflected
in the results of surveys conducted among practitioners and in the amount of
papers reported using a multimethodological approach that are published in
prominent journals of the field. A major survey reported by Munro and Mingers
[46], show that in situations where a combination of hard and soft systems is
considered useful there is a slight preference towards discrete event simulation.
Unfortunately, no clear reasons are given for this preference. To understand
what justifies a successful implementation of discrete event simulation with a
soft systems method, we have to rely on other case studies.

Mingers and Rosenhead [44] report case studies where a multimethodology
was used in problematic situations. Among these case studies, several instances
of simulation studies were conducted using a soft systems approach, more specif-
ically studies by Lehaney and Paul [42], Lehaney and Hlupic [40], and Bennett
and Worthington [10]. In these cases, soft systems methodology is used to sup-
port the model building phase of the simulation studies. This participative action
brings the model closer to the problem owner and allows discussion on the model
to explore the problem. A brief list of recent contributions that explore this pos-
sibility further show that this is a viable approach:

– Kotiadis [38] discusses how soft systems methodology can be used to de-
termine the conceptual model’s most important component, the simulation
study objectives. The case study was conducted to improve a health care
system.

– Lehaney et al. [41] present a case study that was initially meant as a conven-
tional resource allocation simulation study, but that ended up as a simulation
based discussion to reveal issues of misunderstanding within the studied or-
ganization and poor communication that led to misallocation of resources.

112 M. Fumarola, M.D. Seck, and A. Verbraeck

– den Hengst et al. [18] Explore how soft OR principles can be used for col-
laborative simulation. They conducted a case study in the Dutch airline in-
dustry and concluded that the combination is promising, but more research
is needed to tackle a number of issues encountered in their research.

– Pidd [51] advocates the use of ‘soft’ approaches to make sure analysts tackle
the right problem in a situation study. He provides a general guideline on
how such a study can be carried out.

– Baldwin [6] states that classical simulation studies cannot be conducted in
health care or other fast-changing businesses. According to the authors, this
is due to the vague problem formulation phase present in simulation studies.
They argue this phase is crucial and present their approach that puts more
attention on defining the problem.

– Robinson [53] discusses how discrete event simulation can facilitate a discus-
sion among stakeholders to identify problems in a user support helpline.

Although this is most probably not a complete list of studies showing this type
of approach, we can treat it as a list of prominent examples from which we can
draw conclusions. These studies show that in designing socio-technical systems,
multimethodology is used for in framing the problem, learning about the problem
and finding viable solutions. In each study, strong points are identified in both
types of approaches, and exploited in the overarching approach. In the next
sections, we will analyze both the hard side and the soft side of these studies, to
identify their weak and strong points.

3.1 Systems Simulation in Design

Many definitions of systems exist, which generally include the idea of parts
interacting with one another to form a coherent whole realizing a certain purpose.
In a mathematical sense, a system has been defined as a set of variables and a
set of relations between them. This mathematical object is often used as a model
of a system in nature or as a model of an envisioned system to be engineered.
An evaluation of the natural or envisioned system’s performance can be done
through the computational analysis of this model.

As we saw in the previous sections, design is a goal seeking activity which
tries to reduce a gap between a current state and a desired state with the help
of an engineered artifact. In this activity, system models have been used to eval-
uate whether an alternative solution takes us close enough to the desired state.
The complexity of the design problem generally forbids the use of optimization
techniques alone. Thus, the goal seeking behavior is assumed by the designer,
and not by the model itself, which is neutral and structurally static. The com-
putational model - used as a replacement of reality- is altered until its output
variables give satisfactory results.

In the classical systems engineering lifecycle, the modeling and simulation
methodology is used for analysis. Other tools, such as CAD, are used for design.
Modeling and simulation is only used to evaluate the design choices that have

Simulation-Based Systems Design in Multi-actor Environments 113

been reached using other tools. This is because designers are not generally com-
fortable in modeling using simulation languages which still require specialized
knowledge. Furthermore, model building is generally a costly and time consum-
ing activity which is externalized to analysts or consultants. Integrating design
and evaluation activities could improve the quality of the designed artifacts and
make the design process smoother.

To achieve this goal of facilitating modeling for a better integration in the de-
sign cycle, component based approaches look promising. Modular system frame-
works are key enablers. The discrete event systems specification [70] and similar
formalisms are particularly well adapted to help achieving that goal. Well tested
simulation model components with well defined interfaces can be made available
to the designer. The design activity then means to couple the different compo-
nents in order to achieve a certain function. With the predefined components,
the user does not have to worry about the underlying complexities. The focus
can be completely put on the design itself.

Computational models and components are mathematical objects, made of
variables and operators. They are obtained after a process of abstraction which
gets rid of most of the complexity in the real system. The modeler - to make
the task feasible - chooses a certain theoretical or pragmatic perspective, draws
a boundary as tight as possible around the system of interest, selects a set of
relevant variables, and chooses to exclude other variables. After this process of
abstraction, the model reflects the system of interest, but it also strongly reflects
the intentions and preconceived ideas of the modeler. If this model has to be used
in a multi-actor design activity, all stakeholders are implicitly asked to adhere
to the paradigm of the conceptual designer, otherwise, all questions and ideas
they may have based on the model can be out of scope or meaningless.

Using simulation in design also raises the question of model validity. The
system being designed does not exist in real life, or at least not in its desired state.
Replicative validation techniques, which are based on a statistical comparison
between the model and the real system, are not applicable. To be of any use,
the model used in a design activity should at least have predictive validity. To
support fruitful discussion on the real envisioned system, the model should be
structurally valid as well. Of course, the fact that the components are valid does
not guarantee that the aggregated model is equally valid.

A final note on simulation based design concerns the static structure of most
simulation languages. A framework for simulation based designed should allow
models to see their structure altered dynamically during runtime. Formalisms
with such capabilities have been introduced recently [9][33].

3.2 Soft Systems Methodology

Checkland’s soft systems methodology (SSM) plays a prominent role in mul-
timethodological approaches. The approaches presented in each study at the
beginning of this section differ in how much they adhere to the methodology:
some prefer to call their approach ‘softer’ whereas others explicitly state using
SSM. We will briefly present SSM.

114 M. Fumarola, M.D. Seck, and A. Verbraeck

SSM differs from hard systems approaches in the way it perceives systems.
Whereas hard systems approaches provide an ontological perspective on systems
(Which entities are present? What are their relationships?), soft systems take an
epistemological stance and discuss systems as a human’s view on reality, hence a
human construct used for understanding. In contrast with hard systems thinking,
SSM does not focus on the solution, rather on a learning process actors go
through while dealing with the problem situation. Hirschheim et al. [30] describe
SSM as “a framework which does not force or lead the systems analysts to a
particular ‘solution’, rather to an understanding”. Throughout the many years
of development, SSM has matured and has gone through many versions: the
most widely used version is known for its seven stages.

The Seven Stage Soft Systems Methodology

The seven stages of classic SSM are about (1) defining the problem, (2) ex-
pressing the problem, (3) finding the root definitions of relevant systems, (4)
developing conceptual models, (5) compare the conceptual model with reality,
(6) define interventions, and (7) undertake action to improve the situation.

During the first stage, the problem situation is assessed. By collecting all sorts
of data, one tries to gather a broad set of information available on the problem
situation. No restrictions are given as to how much information is needed: this
phase’s sole purpose is to explore. In the next phase, expressing the problem,
the information is structured to achieve a coherent expressive picture of the
situation. The result of the second phase is composed of rich pictures, named to
pinpoint the need of expressing the problem situation in all its richness. The rich
pictures, which are preferably literally pictures (i.e. drawings or diagrams), could
take into consideration structures, processes, climate, people issues expressed by
people, and conflicts.

The third stage is about finding the so called root definitions: the perspectives
or motivations of each actor in the rich picture. This phase commences by explor-
ing the different perspectives of actors, in a rather unstructured form. After all
perspectives have been identified, a structured analysis is carried out on the key
perspective using the CATWOE model development process. CATWOE stands
for customers, actors, transformation, welthanschauung (worldview), owner, and
environment.

In the fourth stage, a conceptual model is constructed using the root defini-
tions. The conceptual models would ideally be diagrams that demonstrate how
each actor envisions a system that can fulfill the root definitions. The fifth stage
is to compare the conceptual models with reality, to find incongruence but also
to understand how the real world can be improved to meet the conceptual mod-
els. How these improvements can be achieved, is explored in the sixth phase by
developing specific ideas. The last stage, contains the action to actually carry
out these improvements in the real world.

It is important to note that all these stages do not serve as a strict framework
to follow but are open to interpretations, variations, and iterations. The process

Simulation-Based Systems Design in Multi-actor Environments 115

serves as base to achieve understanding among actors and identify objectives.
The flexibility offered by this process, results in different adaptations that fit the
best to the given problem, something we will discuss in the following section.

Simulation Studies from a Soft Systems Perspective

Pidd [51] explains why and how SSM can be useful in a simulation study. Mod-
eling and simulation revolves often around implementing code, whether it is in
general purpose languages such as Java or in simulation environments such as
Arena (where the logic is constructed using building blocks). It is however impor-
tant that a conceptual model is build first, to avoid implementing a simulation
model that does not fully address the problem or that shows discrepancies with
reality. The conceptual model that is developed in the fourth stage of SSM is
ideal for developing a simulation model: it covers the different perspectives of
the actors and, ideally, it went through much iteration.

Kotiadis [38] follows a similar approach as Pidd and uses the conceptual model
gathered from SSM sessions. The focus lies mainly on the simulation study ob-
jectives that can be determined based on the definitions of efficacy, efficiency,
and effectiveness. This extension of SSM [12] is used to specify the Performance
Measurement Model (PMM): this model is constructed similarly to the concep-
tual model of the classic SSM. Using the PMM, one can go about finding out
performance criteria, breaking the performance criteria into specific monitor-
ing activities, decide what action might be taken based on these activities, and
decide which activities might be evaluated in a simulation model.

Baldwin et al. [6] argue that Lehaney and Paul’s [42] approach, and later
also used by Lehaney et al. [41], is merely a first step towards combining SSM
with simulation. Lehaney and Paul use simulation in the fourth phase of SSM
to speed up the process by using quick-and-dirty simulation modeling. Model-
ing and simulation, in their view, can be used to enhance understanding and
interpersonal communication of the stakeholders. However, contrarily to what is
stated in other studies, the modeling effort should be present to understand the
problem and should therefore not happen after the problem has been identified.
Modeling becomes a way of communicating between stakeholders and the stake-
holders should be involved into the modeling effort from the very beginning.
They underline the need for an iterative process where stakeholders provide re-
quirements for the modeling effort and the model produces new information for
the stakeholder, something that is shown in Figure 1.

A looser approach to soft methods is taken by Robinson [53] who states that
his “study involved a facilitated discussion around a simulation model about
possible improvements to a problem situation”. Instead of following a strict
SSM process, he prefers to adapt the classic simulation process such as the one
presented by Law and Kelton [39]. The methodology has different steps: (1)
defining the objectives, (2) conceptual modeling, (3) model development, (4)
verification, (5) validation, and (6) facilitation. In contrast to classic simulation

116 M. Fumarola, M.D. Seck, and A. Verbraeck

Fig. 1. The iterative modeling process presented by Balwin et al. [6]

studies, the data used for this study was neither complete nor reliable. Because
of this, a facilitated discussion was organized instead of performing experiments
with the simulation model. The simulation model was not used “as a tool that
could accurately evaluate alternative options, but rather as a focus of debate, a
means for learning about the problem situation and for reaching an agreement
to act”. This multimethodological approach is presented in a diagram, shown in
Figure 2, that highlights the different aspects that can be considered “hard” and
the one that can be considered “soft”.

Fig. 2. The multimethodological approach presented by Robinson [53]

Den Hengst et al. [18] follow Robinson’s approach in using simulation models
to facilitate a discussion. Their approach follows five steps: (1) conceptualize
problem, (2) create and validate empirical model, (3) construct alternative mod-
els and conduct experiments, (4) choose most preferred solution, and (5) imple-
ment solution. They discuss a case study that provides some valuable insights in
the use of simulation models for this kind of interactive purposes. They present
the following problems or difficulties:

Simulation-Based Systems Design in Multi-actor Environments 117

– Building the simulation models required a lot of time and expertise: ‘building
the simulation model both conceptually and empirically took an average of
two working days per week over a period of five months for two modellers
who had significant simulation modelling experience’ [18].

– Due to the complex code to build the simulation model, verification and vali-
dation was extremely difficult. In retrospect, they argue this could have been
avoided because the validation did not add anything useful to the process.

– Lack of knowledge in simulation modeling resulted in a hard to accept model.
The chosen simplifications and animation did not provide enough trust in
the simulation model.

– Running the experiments took a long period of time. The chosen simulation
environment required several hours to run full simulation experiments, which
was unacceptable in an interactive session.

Discussion

It is clear that using simulation models as a base for discussion is useful and
provides fruitful results. Aughenbaugh and Paredis [4] provide a very thorough
and to-the-point explanation as to what simulation can bring to design and
decision making:

Without modeling and simulation, design relies on implicit knowl-
edge. Implicit knowledge is unreliable in that designers do not know the
assumptions and uncertainty in the knowledge explicitly. When decisions
are coupled and require input from several experts, there is no way to
make tradeoffs using only implicit knowledge about uncertainties.

Whereas traditional simulation studies focus on finding the optimal solution,
soft systems approaches aim at achieving shared understanding in a group to
support decision making. This is achieved by applying an iterative process that
continues until all actors are satisfied with the model. However, as the studies
have shown, using the simulation models does not go without any hurdles. The
presence of various actors with diverging worldviews provides challenges to the
simulation environment.

Robinson [54] identifies three modes of simulation practice: (1) simulation as
software engineering, (2) simulation as a process of organizational change, and
(3) simulation as facilitation. The predominant part of simulation practice takes
place in the first mode (the construction of large and complex simulation models)
whereas there is little to be found in the third mode. This implies that most
simulation environments are constructed following a hard systems paradigm.
According to Rosenhead [56] this means that

– problem formulation is in terms of a single objective;
– there are overwhelming data demands;
– people are treated as passive objects;
– there is a single decision-maker with abstract objectives from which concrete

actions can be deduced;

118 M. Fumarola, M.D. Seck, and A. Verbraeck

– and there is an attempt to abolish future uncertainty, pre-taking future
decisions.

This paradigm is implemented in modern simulation environments where users
create one single detailed model per project (instead of various models for diverg-
ing opinions), users need to input a large amount of data, and there is a single
optimal solution. If we were to use these simulation environments in a soft sys-
tems approach, a couple of issues would arise. A major issue is the construction
the simulation model: simulation models take considerable time and expertise
to develop. Although modern simulation packages relief developers from a lot
of work, they are still not appropriate for interactive modeling sessions. Once
build, the simulation environment requires some time to run full simulation ex-
periments. Finally, the focus on a single model would restrict the exploration of
the solution space.

4 Designing a Multimethodological Approach

In the previous section, we have introduced relevant literature on design meth-
ods from a systems engineering perspective. This led us to identify the main
constructs needed for a design method, but also various shortcomings of the
discussed approaches. The combination of these construct would entail a mul-
timethodological approach. The constructs which will be discussed throughout
this section are:

– Modularity and component based simulation: as proposed by den Hengst et

al. [18], simulation models require a lot of effort and time to develop. Simula-
tion models that are constructed of pre-defined components can be malleable
to support an iterative design process, without requiring an intervention by
simulation experts.

– Different levels of abstraction: in conceptually challenging domains such as
engineering design, abstraction becomes a powerful tool to cope with large
amount of data and complexity.

– Structing alternatives: as fundamental part of design methods, the definition
and evaluation of alternatives

– Participatory design: a engineering design process is seldom performed by a
actor or even a single person. Many actors are involved and all of them try
to achieve their own objectives. A design process should support a certain
convergence of interests of all actors.

In the following sections, we will discuss how these constructs can be imple-
mented in a design method. We will formulate them in terms of our application
domain, container terminals, to come to an instantiation of the design method.

4.1 Component Based Modeling

Den Hengst et al. argued that simulation models take much time and effort
to construct. Pre-defined simulation components let users build new simulation

Simulation-Based Systems Design in Multi-actor Environments 119

models by focusing on the structure without requiring knowledge about the inner
behavior of the components. Another important feature of component-based
modeling is modularity, which can be facilitated by port-based communication:
such an approach has been adopted by Paredis et al. [50]. Once this approach is
adopted, reusability of components becomes highly enhanced.

The notion of components has its origins in software engineering, which by
now has become common practice for software development [59]. Component-
based simulation has been adopted recently (compared to pure software engi-
neering applications) but has quickly become a popular research topic [47]. A
comprehensive overview on components in modeling and simulation is given by
Verbraeck [65] who advocates the construction of a library of easy to use compo-
nents to quickly create alternatives throughout a design process. Indeed, compo-
nents provide the major advantage of being self-contained, reusable, replaceable
and customizable. The use of simulation model components for design is also
strongly advised in various other research for the same reasons [5][37][52][62].

In Section 3.1 we discussed the DEVS formalism that supports hierarchy,
modularity, and composability. These are the exact features to be exploited to
support simulation-based design [33][72][73]. To model a container terminal, an
ontology can be determined to identify every single component that is needed
to design a terminal. This would mainly boil down to identifying equipment
present at a terminal and, as we will see in the following section, identifying the
components for higher abstraction levels. Each component is modeled in DEVS
and the ontology is presented in Figure 3 which is based on the System Entity
Structure formalization [71].

4.2 Different Levels of Abstraction

Abstraction is powerful mechanism and is required to deal with uncertainty,
problem complexity, and cognitive limitations of designers [26][31][63]. A typical
design process starts with an incomplete picture of the design problem, which
makes is not feasible to directly start with a detailed solution. From a cognitive
perspective, Visser [67] notes that designing is an iterative process of generating
designs, transform them and evaluate them. The difference between the first and
last artifact is a question of degree of specification, completeness, and abstrac-
tion. A similar view is proposed by Goel [26], who writes “Design, at some very
abstract level, is the process of transforming one set of representations (the de-
sign brief) into another set of representations (the constract documents)”. Yet
another similar formulation is put forward by Ullman et al. [63] as “a design
problem typically begins with a set of functional constraints expressed very ab-
stractly; during the design process, the level of abstraction of the design state is
progressively reduced until is detailed enough to be manufactured”.

During a design process, models can be constructed that are specific to pre-
defined abstraction levels. Ullman et al. [63] do this by selecting three levels of
abstractions: ‘abstract’, ‘intermediate’, and ‘concrete’. For each level, they define
a conceptual model. Similarly, Schimdt and Cagan [57] define an abstraction
grammar which makes it possible to model components at different abstraction

120 M. Fumarola, M.D. Seck, and A. Verbraeck

Fig. 3. An ontological representation of a container terminal helps defining the compo-
nents needed for simulation-based design. The container terminal is mainly decomposed
into a subset of the equipment used at a terminal. Other decompositions are due to
different abstraction levels, which are explained in Section 4.2. (This ontology was
originally presented in Fumarola et al.[23]).

Simulation-Based Systems Design in Multi-actor Environments 121

levels. Paredis et al. [50] go a step further by constructing simulation models
at different levels of abstraction. This solution lets designers analyze simulation
results throughout the design process, even in the initial phases characterized
by rough and incomplete designs. Further down the process, abstract simulation
models are replaced by more concrete implementations, up until the end, where
highly detailed simulation models are used to gather precise simulation results.

Abstraction in container terminal design processes can be enacted through
spatial aggregation, as pictured in Figure 4. Looking at a container terminal
at the whole, we achieve a typical black-box situation: we gather information
about the behavior of the complete system but lack knowledge about the struc-
tural composition (noted as situation (A) in Figure 4). At a lower abstraction
level, we can take the various zones of a container terminal into consideration
such as yard and quay. The initial black-box container terminal is decomposed
into interconnected zone-models (noted as situation (B) in Figure 4). At the
lowest abstraction level, zones are decomposed into the contained equipment
that operate in that zones (noted as situation (C) in Figure 4). The reversed
function of the described decomposition is the aggregation of equipment: e.g.
a set of quay cranes becomes the quay-zone, and the set of all equipment be-
comes the black-box container terminal. This decomposition is also sketched in
Figure 3.

4.3 Structing Alternatives

Defining alternatives is one of the fundamental steps in most design methods,
which we discussed extensively in Section 2. Human’s bounded rationality im-
pedes a large exploration of the design space: design studies are mostly limited
to a few competitive alternatives. The large amount of alternatives that could
be generated in a multi-actor environment is usually kept to a bare minimum
by scrapping (supposedly) unfeasible designs in the early stages of the design
process. The need for structuring and comparing alternatives has induced re-
searchers in proposing solutions such as trees, matrices, rankings and charts.

Controlled experiments described by Dwarakanath and Wallace [21] bring
more insights into the way designers think. Designers tend to follow paths along
conceptual tree-like structures to assess alternative designs. Branches are made
when different alternatives are being considered. Whenever a solution seems un-
desirable, pruning takes place to remove unwanted paths. The experiments led
to a number of observations that stress the fact that designers go through an
iterative process of finding alternatives, evaluate them (either formal or on intu-
ition) and eliminate alternatives that perform less than the others. Although this
experiment mainly studied informal methods, another experiment, documented
by Girod et al. [25], discusses that using formal approaches tend to spawn bet-
ter results. The formal approach forces designers to structurally evaluate their
design and document the design process.

The results from these experiments lead us to propose a conceptual tree as a
way to structure a design process. The tree elegantly embodies the generation
of alternatives with branches. In light of the aforementioned constructs, the

122 M. Fumarola, M.D. Seck, and A. Verbraeck

Fig. 4. Different levels of spatial abstractions that can be constructed of a container
terminal. Each abstraction has a specific simulation model, specified in DEVS [70].
Situation (A) specifies a simulation model at the highest abstraction level: the model
is characterized by the use of stochastic distributions to output performance measures.
In situation (B), a container terminal is decomposed in different zones, each zone having
a specific simulation model. Finally, situation (C) shows a highly structured container
terminal, with simulation models for each type of equipment.

Simulation-Based Systems Design in Multi-actor Environments 123

nodes of the tree contain alternative models (each model representing a design)
that are constructed using pre-defined components. The breadth of the tree is
defined by the number of alternative designs. The abstraction levels changes by
constructing the tree in depth: the upper nodes of the tree contain the initial
rough (highly abstract) models whereas deeper into the tree, we can find more
detailed (concrete) models.

4.4 Participatory Design

The aforementioned constructs support a design process in a multi-actor envi-
ronment: simulation components help to quickly generate solutions, abstraction
levels lead the design process from rough artifacts to detailed solutions, and
structuring the solutions supports designers in assessing too many alternatives.

A multi-actor design process is an iterative process where different actors try
to achieve their own, sometimes conflicting, goals. A simulation environment sup-
ports analyzing decisions which are otherwise assessed based on the designer’s
implicit knowledge. By having a means to compare different alternative (per-
taining to the different goals of the actors) analytically, grounded decisions can
be made and insight can be provided into unforeseen failures or unexpected suc-
cesses of certain decisions. The collaborative exploration of the solution space
entails the learning process which is sought after by traditional soft systems
approaches.

In the introduction given in Section 1, we discussed the different actors that
are involved in the design process of container terminals. These actors are char-
acterized by their goals: innovative solutions, reducing costs, feasible solutions,
and adhering to environmental and labor regulations. In traditional simulation
studies, conceptual designs are developed that are the results of negotiations be-
tween the actors. Major decisions are made before the actual simulation study
has been performed and are based on informal assessments. By bringing formal
techniques closer to the conceptual design process, discussions can be grounded
and shared understanding can be achieved. This leads to an approach that is
‘soft with a hard centre’ [53].

5 Conclusion

Designing systems in a multi-actor environment is complex from the system as
well as the actor perspective. Although classic operations research and systems
engineering did not fully accomplish to provide successful approaches, they did
provide valuable techniques to analyze systems. Due to an increased interest in
facilitating the design process from an actor perspective, we do have insights
in how actors behave and how we can support them. Multimethodological ap-
proaches are being developed and researchers commit themselves in covering
both perspectives of complexity in design methods.

Starting from existing literature, we have presented the constructs that are
needed in a multi-actor design method. The totality of constructs presents an

124 M. Fumarola, M.D. Seck, and A. Verbraeck

approach that is formal in describing the design artifact (using simulation com-
ponents) and informal for the design process (actors have to explore the design
space, without being restricted by an inflexible design method). Therefore, it is
not a matter of “picking sides”: to fully cover the complexity present in a design
process, constructs from both approaches can be used.

We have shown how an approach that combines constructs from both the hard
as well as the soft system’s perspective that can be used in the design process of
container terminals. To operationalize a design method using these constructs, a
design environment has been implemented that visualizes and simulates designs
that have been defined in AutoCAD. It can be concluded that to better support
decision makers in a multi-actor environment, a multimethodological approach
can be used wherein simulation is used as a tool for conceptual design and
discussion.

References

1. Ackoff, R.: Science in the systems age: Beyond IE, OR, and MS. Operations Re-
search 21, 661–671 (1973)

2. Ackoff, R.L.: The future of operational research is past. The Journal of the Oper-
ational Research Society 30, 93–104 (1979)

3. Alexander, C.: Notes on the synthesis of form. Harvard University Press, Cam-
bridge (1964)

4. Aughenbaugh, J., Paredis, C.: The role and limitations of modeling and simulation
in systems design. In: ASME 2004 International Mechanical Engineering Congress
and Exposition, pp. 13–22. American Society Of Mechanical Engineers (2004)

5. Balci, O., Bertelrud, A., Esterbrook, C., Nance, R.: Visual simulation environment.
In: Medeiros, D., Watson, E., Carson, J., Manivannan, M. (eds.) Proceedings of
the 1998 Winter Simulation Conference, pp. 279–287. Institute of Electrical and
Electronics Engineers, Inc., Piscataway (1998)

6. Baldwin, L., Eldabi, T., Paul, R.: Simulation in healthcare management: a soft
approach (mapiu). Simulation Modelling Practice and Theory 12, 541–557 (2004)

7. Banares-Alcantara, R.: Representing the engineering design process: two hypothe-
ses. Computer-Aided Design 23, 595–603 (1991)

8. Banks, J., Carson, J., Nelson, B., Nicol, D.: Discrete-Event System Simulation, 5th
edn. Prentice Hall, Englewood Cliffs (2009)

9. Barros, F.: Dynamic structure multiparadigm modeling and simulation. ACM
Transaction on Modeling Computer Simulation 13(3), 259–275 (2003)

10. Bennett, J., Worthington, D.: An example of a good but partially successful OR
engagement: Improving outpatient clinic operations. Interfaces 28, 56–69 (1998)

11. Checkland, P.: The origins and nature of hard systems thinking. Journal of applied
systems analysis 5, 99–110 (1978)

12. Checkland, P.: Soft systems methodology: a 30-year retrospective. John Wiley &
Sons, Chichester (1981)

13. Checkland, P.: Systems thinking, systems practice. John Wiley & Sons, Chichester
(1981)

14. Checkland, P.: Learning for Action: A Short Definitive Account of Soft Systems
Methodology, and Its Use Practitioners, Teachers and Students. John Wiley &
Sons, Chichester (2006)

Simulation-Based Systems Design in Multi-actor Environments 125

15. Checkland, P., Poulter, J.: Systems Approaches to Managing Change: A Prac.
Springer, London (2010)

16. Cross, N.: Science and design methodology: a review. Research in engineering de-
sign 5, 63–69 (1993)

17. de Bruijn, H., Herder, P.: System and actor perspectives on sociotechnical sys-
tems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans 39, 981–992 (2009)

18. den Hengst, M., de Vreede, G., Maghnouji, R.: Using soft OR principles for col-
laborative simulation: a case study in the Dutch airline industry. Journal of the
Operational Research Society 58, 669–682 (2007)

19. Derksen, T.: Modelling Modes of Operation: A DSS and a decision making process
on the selection of the mode of operation for APM Terminals. Master’s thesis, Delft
University of Technology, the Netherlands (2009)

20. Dieter, G.: Engineering Design: A Materials and Process Approach. McGraw-Hill,
New York (1983)

21. Dwarakanatha, S., Wallacea, K.: Decision-making in engineering design: Observa-
tions from design experiments. Journal of Engineering Design 6, 191–206 (1995)

22. Dym, C., Agogino, A., Frey, D., Leifer, L.: Engineering design thinking, teaching,
and learning. Journal of Engineering Education 94, 103–120 (2005)

23. Fumarola, M., Seck, M., Verbraeck, A.: A DEVS component library for simulation-
based design of automated container terminals. In: Proceedings of the 3rd Inter-
national ICST Conference on Simulation Tools and Techniques, Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering (2010)

24. Fumarola, M., Versteegt, C.: Supporting automated container terminal design pro-
cesses with 3d virtual environments. In: Yand, H., Yuen, S. (eds.) Handbook of
Research on Practices and Outcomes in Virtual Worlds and Environment, IGI
Global (2011)

25. Girod, M., Elliott, A., Burns, N., Wright, I.: Decision making in conceptual engi-
neering design: an empirical investigation. Proceedings of the Institution of Me-
chanical Engineers, Part B: Journal of Engineering Manufacture 217, 1215–1228
(2003)

26. Goel, V.: Sketches of Thought. The MIT Press, Cambridge (1995)
27. Hall, A.: A Methodology for Systems Engineering. von Nostrand (1962)
28. Hazelrigg, G.: A framework for decision-based engineering design. Journal of Me-

chanical Design 120, 653–659 (1998)
29. Hazelrigg, G.: An axiomatic framework for engineering design. Systems engineer-

ing 121, 342–348 (1999)
30. Hirschheim, R., Klein, H., Lyytinen, K.: Information Systems Development and

Data Modeling: Conceptual and Philosophical Foundations. Cambridge University
Press, Cambridge (1995)

31. Hoover, S., Rinderle, J.: Models and abstractions in design. Design studies 12,
237–245 (1991)

32. Hu, H.: Choosing the Optimal Mode of Operation for Marine Container Terminals.
Master’s thesis, Delft University of Technology, the Netherlands (2008)

33. Hu, X., Zeigler, B.: Model continuity in the design of dynamic distributed real-time
systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans 35(6), 867–878 (2005)

34. Hubka, V., Eder, W.: Theory of technical systems. Springer, Heidelberg (1988)
35. Jackson, M., Keys, P.: Towards a system of systems methodologies. The Journal

of the Operational Research Society 35, 473–486 (1984)

126 M. Fumarola, M.D. Seck, and A. Verbraeck

36. Jenkins, G.: The systems approach. In: Beishon, J., Peters, G. (eds.) Systems
Behaviour, 2nd edn. Harper & Row, London (1969)

37. Kindler, E., Coudert, T., Berruet, P.: Component-based simulation for a reconfig-
uration study of transitic systems. Simulation 80, 153–163 (2004)

38. Kotiadis, K.: Using soft systems methodology to determine the simulation study
objectives. Journal of Simulation 1, 215–222 (2007)

39. Law, A., Kelton, W.: Simulation Modelling and Analysis. McGraw Hill Higher
Education, New York (2000)

40. Lehaney, B., Hlupic, V.: Simulation modeling for resource allocation and planning
in the health sector. Journal of the Royal Society of Health 115, 382–385 (1995)

41. Lehaney, B., Malindzak, D., Khan, Z.: Simulation modelling for problem under-
standing: a case study in the East Slovakia coal industry. Journal of the Operational
Research Society 59, 1332–1339 (2008)

42. Lehaney, B., Paul, R.: The use of soft systems methodology in the development
of a simulation of outpatient services at Watford General Hospital. Journal of the
Operational Research Society 47, 864–870 (1996)

43. Mingers, J.: A classification of the philosophical assumptions of management sci-
ence methods. Journal of the operational research society 54, 559–570 (2003)

44. Mingers, J., Rosenhead, J.: Problem structuring methods in action. European Jour-
nal of Operational Research 152, 530–554 (2004)

45. Mingers, J., White, L.: A review of the recent contribution of systems thinking to
operational research and management science. European Journal of Operational
Research (2010)

46. Munro, I., Mingers, J.: The use of multimethodology in practice: results of a survey
of practitioners. Journal of the Operational Research Society 53, 369–378 (2002)

47. Oses, N., Pidd, M., Brooks, R.: Critical issues in the development of component-
based discrete simulation. Simulation Modelling Practice and Theory 12, 495–514
(2004)

48. Otto, K.: Measurement methods for product evaluation. Research in Engineering
Design 7, 86–101 (1995)

49. Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach, 2nd edn.
Springer, Heidelberg (1995)

50. Paredis, C., Diaz-Calderon, A., Sinha, R., Khosla, P.: Composable models for
simulation-based design. Engineering with Computers 17, 112–128 (2001)

51. Pidd, M.: Making sure you tackle the right problem: linking hard and soft methods
in simulation practice. In: Henderson, S., Biller, B., Hsieh, M.H., Shortle, J., Tew,
J., Barton, R.R. (eds.) Proceedings of the 2007 Winter Simulation Conference, pp.
195–204. Institute of Electrical and Electronics Engineers, Inc., Piscataway (2007)

52. Qin, S., Harrisonb, R., Westb, A., Jordanovc, I., Wrighta, D.: Conceptual design
of industrial systems: an approach to support collaboration. Computers in Indus-
try 50, 153–164 (2003)

53. Robinson, S.: Soft with a hard centre: Discrete-event simulation in facilitation. The
Journal of the Operational Research Society 52, 905–915 (2001)

54. Robinson, S.: Modes of simulation practice: approaches to business and military
simulation. Simulation Modelling Practice and Theory 10, 513–523 (2002)

55. Robinson, S.: PSMs: looking in from the outside. Journal of the Operational Re-
search Society 58, 689–691 (2007)

56. Rosenhead, J., Mingers, J.: Rational Analysis for a Problematic World Revisited:
Problem Structuring Methods for Complexity, Uncertainty and Conflict. John Wi-
ley & Sons, Chichester (2001)

Simulation-Based Systems Design in Multi-actor Environments 127

57. Schmidt, L., Cagan, J.: Recursive annealing: A computational model for machine
design. Research in Engineering Design 7, 102–125 (1995)

58. Simon, H.: The Sciences of the Artificial, 3rd edn. The MIT Press, Cambridge
(1996)

59. Sommerville, I.: Software engineering, 7th edn. Addison Wesley, Reading (2004)
60. Stahlbock, R., Voss, S.: Operations research at container terminals: a literature

update. OR Spectrum 30, 1–52 (2008)
61. Steenken, D., Voss, S., Stahlbock, R.: Container terminal operation and opera-

tions research – a classification and literature review. In: Gunther, H.O., Kim, K.
(eds.) Container Terminals and Automated Transport Systems. Springer, Heidel-
berg (2005)

62. Stein, J., Stein, J., Louca, L.: A component-based modeling approach for system
design: Theory and implementation. In: Proceedings of the 1995 International Con-
ference on Bond Graph Modeling and Simulation, pp. 109–115 (1995)

63. Ullman, D., Dietterich, T., Stauffer, L.: A model of the mechanical design process
based on empirical data. Artificial Intelligence for Engineering, Design, Analysis
and Manufacturing 2, 33–52 (1988)

64. van Gigch, J.: System design modeling and metamodeling. Plenum Press, Plenum
Publishing Corporation, New York (1991)

65. Verbraeck, A.: Component-based distributed simulations. the way forward? In: Pro-
ceedings of the 18th Workshop on Parallel and Distributed Computer Simulation,
pp. 141–148. IEEE Computer Society Press, Los Alamitos (2004)

66. Vis, I., de Koster, R.: Transshipment of containers at a container terminal: An
overview. European Journal of Operational Research 147, 1–16 (2003)

67. Visser, W.: The Cognitive Artifacts of Designing. Lawrence Erlbaum Associates,
Mahwah (2006)

68. Von Bertalanffy, L.: An outline of general system theory. The British Journal for
the Philosophy of Science 1, 134–165 (1950)

69. White, K.: Systems design engineering. Systems Engineering 1, 285–302 (1999)
70. Zeigler, B.P., Praehofer, H.: Theory of Modeling and Simulation. Academic Press,

London (2000)
71. Zeigler, B., Hammonds, P.: Modeling and simulation-based data engineering: intro-

ducing pragmatics into ontologies for net-centric information exchange. Academic
Press, London (2007)

72. Zeigler, B., Mittal, S.: Enhancing DoDAF with a DEVS-based system lifecycle
development process. In: Proceedings of the 2005 IEEE International Conference
on Systems, Man and Cybernetics, pp. 3244–3251. IEEE Computer Society Press,
Los Alamitos (2005)

73. Zia, M., Mustafiz, S., Vangheluwe, H., Kienzle, J.: A modelling and simulation
based process for dependable systems design. Software and Systems Modeling 6(4),
437–451 (2007)

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 129–157.

springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 6

Distributed Simulation Using RESTful Interoperability

Simulation Environment (RISE) Middleware

Khaldoon Al-Zoubi and Gabriel Wainer

Department of Systems and Computer Engineering,

Carleton University Centre for Visualization and Simulation (V-Sim)

Ottawa, ON K1S-5B6 Canada

kazoubi@connect.carleton.ca, gwainer@sce.carleton.ca

Abstract. Distributed simulation practice outside the military sector is still limited.

Having plug-and-play or automatic middleware interoperability is one of the main

challenges is needed to advance distributed simulation, as indicated by several

surveys; hence, interoperability must be achieved effortlessly with rational cost.

They further indicate the need of having general pluggable container where

lightweight commercial-off-the-shelf (COTS) simulation components can be

plugged into the container with minimal development time. However, existing

middleware solutions have been complex so far to overcome these distributed

simulation issues. The RESTful Interoperability Simulation Environment (RISE) is

the first existing middleware to be based on RESTful Web-services. RISE uses the

Web plug-and-play interoperability style to overcome distributed simulation issues.

Our focus here on plugging simulation components into RISE and on

interoperating independent-developed simulation engines to perform the same

distributed simulation session.

Keywords: Distributed Simulation, REST, Web-service, SOA, Interoperability,

DEVS, CD++.

1 Introduction

Distributed simulation technologies were created to execute simulations on distributed

computer systems (i.e., on multiple processors connected via communication

networks) [15]. Distributed Simulation is a computer program that models real or

imagined systems over time. On the other hand, distributed computer systems

interconnect various computers (e.g. personal computers) across a communication

network. Distributed simulation offers many benefits such as: (1) allowing across-

organization simulation collaboration in order to participate in same simulation run

without the need of physically being in the same location, hence enabling simulation

assets reuse, (2) Allowing complex simulation incremental development. In this case,

a complex model can be divided into smaller models so they can be developed and

verified individually. Afterward, these smaller models can be integrated together to

form the overall complex simulation model. Other benefits also include reducing

execution time, interoperating different vendor simulation toolkits, providing fault

130 K. Al-Zoubi and G. Wainer

tolerance and information hiding – including the protection of intellectual property

rights [6][15] .

Distributed Simulation middleware is responsible of connecting and synchronizing

several simulation components across geographical regions, allowing simulation

assets reuse without being physically at the same location. Interoperating scattered

simulation assets is the main challenge of a distributed simulation middleware. In

practice, making independently developed applications interact with each other is not

a trivial task, since this interaction involves not only passing remote messages, but

also synchronizing them (i.e. interpreting messages and reacting to them correctly).

Particularly, simulation packages can be based on different formalism, implemented

independently by different teams, or support different synchronization algorithms. In

general, modelers use the simulation tools that they are familiar with, and can be

experts within a simulation tool environment, but unable to use others.

The defense sector is currently one of the largest users of distributed simulation

technology, mainly to provide virtual distributed training environment between

remote parties, relying on the High Level Architecture (HLA) [21] middleware to

provide a general architecture for simulation interoperability and reuse. On the other

hand, the current adoption of distributed simulation in the industry is still limited in

spite of HLA introduction in 1996. Other technologies such as CORBA and SOAP-

based Web-services (WS) were used outside the military sectors to overcome HLA

interoperability and scalability issues. However, existing distributed simulation

middlewares still lack of plug-and-play interoperability, dynamicity, and composition

scalability. Those approaches are described in the background section.

Lack of plug-and-play and dynamic interoperability to interface independent-

developed simulation components, and the ability to reuse commercial-off-the-shelf

(COTS) simulation components effortlessly are documented needed features in future

distributed simulation middleware, as indicated by a number of surveys of experts from

different simulation backgrounds such as [6][28]. Those surveys pointed out that having

plug-and-play or automatic middleware interoperability is one of the main challenges to

advance distributed simulation use in the industry; hence, interoperability must be

achieved effortlessly with rational cost. They further indicate the need of having general

pluggable container where lightweight commercial-off-the-shelf (COTS) simulation

components can be plugged into the container with minimal development time. COTS

concept reduces the cost of distributed simulation with the “Try-before-buy” mentality.

This concludes that plug-and-play can mean two things. The first one is that any

component in the overall system structure can be replaced with another one easily

without affecting the entire system. The second one is that independent-developed

simulation components can interoperate (synchronize) with each other for the same

distributed simulation run. To achieve plug-and-play or Automated/semi-automatic

interoperability between independent-developed simulation packages, not only semantics

must be standardized but also flexible to adapt to future changes. Further, simulation

functionalities should be self-contained components (black boxes) that: (1) Hide their

internal software design and implementation, hence interact with other components with

self-contained messages (e.g. XML messages) that are not tied to software

implementation, uncomplicated to standardize and easy to adapt to future changes.

Further, this point becomes more important since already existing simulation packages

should be expected to have no or minimal software implementation changes to comply

 Distributed Simulation Using RISE Middleware 131

with any new proposed standards, (2) Connect with other components via universal

standardized interface (i.e. uniform connectors). In this case, components can be plugged

into a complex structure easily, since they already know how they will be connected to

other existing components in the structure, (3) Reached via unique universal standardized

addressing scheme from anywhere, and (4) Support dynamic interoperability at runtime.

Simulation components should be able to join/disjoin the overall structure without other

components pre-knowledge. In other words, no new code or compilation should be

required to achieve components interoperability. This point goes beyond simulation

components to any device. In this case, real devices may be introduced into the

simulation loop without stopping (and perhaps recompiling code) and restarting the

current simulation-run in progress. We show here that RESTful Web-services

interoperability contains the ingredients to advance distributed simulation on those fronts.

RESTful Web-services [26] imitates the Web interoperability style. The major

RESTful Web-services (i.e. Web style) interoperability principles are universal

accepted standards, resource-oriented, uniform channels, message-oriented, and

implementation hiding. These principles are the Web interoperability characteristics;

hence, REST is a reverse engineering of the Web interoperability style. Thus, REST

has been in used in many products since the 1990’s, but without its official name

“REST”. On the other hand, the Representational State Transfer (REST) is first used

in [13] to describe the Web architecture principles. The name is derived because of

the fact that on the Web a resource transfers its representation (state) in a form of a

message to another resource. For example, a Web browser transfers a URI

representation (e.g. as HTML document) using HTTP GET channel. REST exposes

all services as resources with uniform connectors (channels) where messages are

transferred between those resources through those uniform channels (i.e. called

methods in HTTP standards). Because those characteristics conform to universally

accepted standards, REST subsequently contains the recipe of plug-and-play and

dynamic interoperability with infinite composition scalability. REST is a style,

analogy with object-oriented, therefore, system designers must conform to those

principles to obtain those benefits [26].

REST is usually implemented using HTTP, URIs, and usually XML because these

are the main pillars of the Web today. In this case, resources (services) are named and

addressed by URIs, resources connectors are HTTP channels, and connectivity

semantics are usually described in XML messages. RESTful Web Services has been

gaining increased attention with the advent of Web 2.0 [25] and the concept of

mashup. Mashup applications deliver new functions and services on the Web by

combining different information or capabilities from more than one existing source,

allowing reusability and rapid development. Nowadays, RESTful Web-service is

supported in conjunction with SOAP-based Web-services in tools developed by

leading companies such as IBM [19] and Sun Microsystems (e.g. NetBeans IDE

[24]).

Based on these ideas, we designed RESTful Interoperability Simulation

Environment (RISE) middleware (formally called RESTful-CD++ [1][2][35]). RISE

strictly follows the Web standards and interoperability style, hence, to avoid losing

the main provided benefits such as plug-and-play and dynamic capabilities. Our main

132 K. Al-Zoubi and G. Wainer

motivations behind proposing such plug-and-play middleware with dynamic

capabilities is to provide practical solutions for distributed simulation identified

needed capabilities to overcome its limited use in the industry while maintaining

rational cost. Having dynamic plug-and-play/automatic interoperability is recognized

needed capabilities in a distributed simulation middleware [6][28][35].

Thanks to RESTful Web-services principles, RISE, which is the first existing

RESTful WS middleware, is designed as a multipurpose online plug-and-play

simulation interoperability middleware. First, the middleware provides a pluggable

container to support different simulation components (e.g. CD++ [34]); hence,

components become online Web services with minimal development time. Plugging

commercial-off-the-shelf (COTS) simulation components quickly reduces cost and

increases reusability. We plugged the distributed CD++ (DCD++) into RISE,

allowing conservative-based distributed simulation between different CD++

instances. RISE-based DCD++ is described here along with its synchronization

algorithms. Second, RISE forms the foundation for developing distributed simulation

standards [3][30][31][32][33]. From our DEVS standardization [30][31][32][33]

experience and the rationale behind CORBA declining [17], having practical

standards indicates certain features that standards must be have such as simple to

support, avoid software changes to legacy systems, allow legacy systems to use their

existing resources (e.g. modeling methods), and allow different teams to evolve

independently. The RISE-based standard is described here, aiming in interoperating

independent-developed simulation packages.

In addition, RISE provides different functionalities that are not covered here such as

making simulation assets part of workflows, Web 2.0 mashup, and Data fusion (DF).

Workflows enable simulation experiments automation, repeatability and reusability, as

described in [4]. Mashup concept groups various services from different providers and

presents them as a bundle in order to provide single integrated service. IBM enterprise

mashup solutions [19] [20] argue that integrating different RESTful plugging functions

(called widgets) enable self-designed service Aggregation and information, rapid

application development, unlock legacy systems via Web 2.0 [25] without major

software upgrade. Thus, one of RISE objectives is to mashup applications/devices into

simulation loop, allowing better-obtained results and analysis. DF is defined as

collecting information from different sources to achieve inferences, which potentially

leads to better accuracy from relaying on a single source of information. DF is applied by

the military to build integrated images from various information sources in battlefields

[27]. DF is similar to mashup in a sense of putting information into simulation loop. DF

is highly dynamic, which makes it easier to achieve using RESTful WS plug-and-play

interoperability.

2 Background on Distributed Simulation

At present, most works in distributed simulation are invested in optimizing simulation

algorithms and in achieving efficient interoperability between different independent-

developed simulation entities. These two areas define the current challenges of

distributed simulation and future trends [28]. For further thorough details, we discuss

distributed simulation current state-of-the-art in [35].

 Distributed Simulation Using RISE Middleware 133

Parallel/distributed simulations are typically composed of a number of sequential

simulations where each is responsible of part of the entire model. Each of these

subparts is a sequential simulation, which is usually referred to as a logical process

(LP). The main purpose of synchronization algorithms is to produce the same results

as if the simulation were preformed sequentially in a single processor. The second

purpose is to optimize the simulation speed by executing the simulation as fast as

possible. They fall in two categories: Conservative and optimistic. Conservative

algorithms were introduced in late 1970s by Chandy-Misra [9] and Bryant [8]. This

approach always satisfies local causality constraint via ensuring safe timestamp-

ordered processing of simulation events within each LP. In current systems, the

common implementation of conservative-based distributed simulation cycle to

advance simulation time (e.g. [9][10][39]) is summarized as follows: (1) Time-

coordinator requests minimum time from all LPs. (2) Time-coordinator calculates

global minimum time, broadcasts it to all LPs, and waits for their replies. (3) Time-

coordinator instructs all LPs to execute events with the minimum global time, waits

for all LPs replies, and starts again with step #1. In optimistic algorithms, each LP

maintains its Local Virtual time (LVT) and advances “optimistically” without explicit

synchronization with other processors. On the other hand, a causality error is detected

if a LP receives a message from another processor with a timestamp in the past (i.e.

with a time-stamp less than the LVT); such messages are called straggler messages.

To fix the detected error, the LP must rollback to the event before the straggler

message timestamp; hence undo all performed computation. Time Warp algorithms

focus on providing efficient rollback by reducing memory and communication

overhead such as the mechanisms presented in [15].

Distributed simulation Middleware main objective is interfacing different

simulation environments, allowing synchronization for the same simulation run across

a distributed network. Those simulation entities are usually heterogeneous. For

example, each simulation environment may differ from other entities in its simulation

engine, algorithms, model representation, and formalism. This comes as no surprise

that a number of surveys placed the middleware of distributed simulation as the most

area of interest to overcome current distributed simulation challenges and to meet

future expectation, as indicated by a number of surveys of experts of different

simulation background [6][28].

The defense sector is currently one of the largest users of distributed simulation

technology, mainly to provide virtual distributed training environment between

remote parties, relying on the High Level Architecture (HLA) [21] middleware to

provide a general architecture for simulation interoperability and reuse. On the other

hand, the current adoption of distributed simulation in the industry is still limited.

Further, HLA could not make a breakthrough in the industry since its adoption in

1996 due to a number of issues such as its complexity, tied to programming languages

and lack of interoperability in interfacing different Run-Time Infrastructure (RTI)

vendors, since RTI-to-RTI interface is not standardized. RTI is the software layer that

connects and synchronizes different HLA simulation entities (called federates)

together where federates are interfaced with local RTIs via callback function interface

(Figure 1). The HLA interoperability and scalability issues have caused the

consideration of using existing Service-oriented architectures (SOA) technologies in

134 K. Al-Zoubi and G. Wainer

distributed simulation middleware, mainly CORBA [18], SOAP-based WS [12], and

RESTful WS [26].

Fig. 1. HLA Interaction Overview Model

WSDL and SOAP are the main elements enable SOAP-based Web-services (WS)

interoperability. SOAP-based Web-services provides interoperability in a similar way

as CORBA: WSDL corresponds to IDL role whereas SOAP corresponds to ORB data

marshalling/serialization function. Further, Web-service ports addressed by URIs

whereas CORBA objects addressed by references. Both ports and objects contain a

collection of procedures (i.e. called services by WS) similar to a Java/C++ classes.

Those procedures glue software components across the network, hence providing and

RPC-style type of software interoperability, as shown in Figure 2. The server exposes

a group of services via ports (Figure 2). Each service is actually an RPC where

semantic are described via that procedure parameters. Client programmers need to

construct service stubs with their software at compile time. Clients, at run time,

consume a service by invoking its stub, which is in turn converted into XML SOAP

message (to describe the RPC call), wrapped within HTTP message and sent to the

server port, using the appropriate port URI. Once the message is received at the server

side, the HTTP server passes the message into the SOAP layer (usually called SOAP

engine like Apache AXIS [36]). SOAP engines are usually running inside HTTP

servers as Java programs, called Servlets. The SOAP layer parses the SOAP message

and converts it into an RPC call, applied to the appropriate procedure of the proper

port. The server returns results into clients in the same way. Thus, the SOAP message

role is to provide a common representation among all parties to the invoked procedure

at runtime. In a distributed simulation environment, different components act as peers

to each other. This means that each acts as client when it needs to send information

while acts as a server via exposing different RPCs (i.e. services), as shown in Figure

2. Service providers need to publish their services, as XML WSDL documents.

Clients programming stubs (Figure 2) are generated via compiling the WSDL

document into programming stubs. Programmers then need to write the body of those

stubs and compiling them with their software. [23][29] are examples of SOAP-based

WS distributed simulation.

In reality, RPCs are heterogeneous interface, since they were invented by different

programmers, and need to be written and compiled before being used. RPCs also

expose internal implementation, leading to impractical and complex interoperability

standards. It is almost impossible to interoperate independent-developed simulation

systems via RPC-style without requesting major software implementation changes.

This makes it impractical to support. Further, existing solutions lack of composition

 Distributed Simulation Using RISE Middleware 135

scalability, for example, programming stub is needed for every remote service.

However, in case of HLA the scalability is even worst, since the RTI is treated like a

bus where all simulation entities use it for synchronizations. Furthermore, API

complexity makes it difficult for distributed simulation to break outside expert

programmers circle.

Fig. 2. SOAP-based WS RPC-based Architecture Model

RESTful WS exposes all services as resources with uniform connectors (channels)

where messages are transferred between those resources through those uniform

channels. REST is usually implemented using HTTP, URIs, and usually XML

because these are the main pillars of the Web today. In this case, resources (services)

are named and addressed by URIs, resources connectors are HTTP channels (usually

called methods), and connectivity semantics are usually described in XML messages

(Figure 3). RESTful applications APIs are expressed as URI templates [16] that can

be created at runtime. Variables in URI templates (written within braces {}) are

assigned at runtime by clients before a request is sent to the server, enabling clients to

name their services URIs at the server side. For example, username in template

<…/users/ {username}> can be substituted with any string to get the actual URI

instance (such as <…/users/user1> or <…/users/user2>). Further, URIs may include

query variables to define the request scope by appending them to a URI after the

question mark “?”. For instance, request via GET channel to URI <http://www.

google.com/search?q=DEVS> would instruct Google search engine to return

information only about keyword “DEVS”. RESTful services can be described

formally using XML either using Application Description Language (WADL) [37] or

WSDL 2.0 [22][38].

Fig. 3. RESTful WS Architecture Model

136 K. Al-Zoubi and G. Wainer

From distributed simulation viewpoint, there are some differences between SOAP-

based WS and RESTful WS as follows: (1) SOAP groups all services as procedures

and expose them via a port (i.e. addressed by single URI) whereas REST exposes

each service as a resource (i.e. addressed by single URI). (2) SOAP-based WS

communicates simulation information (i.e. semantics) in form of procedure

parameters whereas REST defines them as XML messages. (3) SOAP-based WS

transmits all SOAP messages (i.e. RPC description) using HTTP POST channel

whereas REST uses all HTTP channels to transfer simulation semantics. (4) SOAP-

based WS clients need to have a stub for each corresponding service while REST

clients communicate in the same uniform way. (5) SOAP-based WS client stubs

skeleton usually built via tools, but they still need to be written, integrated with

existing software and compiled by programmers whereas REST does not usually

require this process, hence follows a dynamic approach.

REST critics usually raise few issues such as REST only uses the four HTTP

channels to transfer all messages so that those methods might not be enough for some

applications: mainly, GET (to read), POST (to append new data), PUT (to

create/update), and DELETE (to remove). This misleading comes from naming those

virtual channels as “methods” in HTTP standards (RFC 2616 [14]), hence being

confused with regular programming methods. Perhaps, it is ample to mention that

SOAP-based WS transfers all SOAP messages using only the HTTP POST channel,

thus, single method is enough in this case. Another issue is that REST heavily

depends on HTTP, on other hand; SOAP-based WS can send SOAP messages using

different protocol from HTTP like TCP/IP. This is because SOAP is a message

describes an RPC via a network so that it can be sent using TCP socket. This is a

misleading issue because: (1) HTTP is the Web protocol, thus sending SOAP

messages using different protocol from HTTP makes it not Web service any more,

hence complicates interoperability with other heterogeneous even further. (2) REST is

message-oriented, thus, those messages are portable to different protocols like

TCP/IP. For example, all simulation synchronization messages presented here

portable to different protocol, similar to SOAP. However, a universal standard is part

of REST principles and makes no sense to use different protocol from HTTP.

3 RISE Middleware API

Each experiment is wrapped up and manipulated via a set of URIs (i.e. an experiment

API), hence allowing their online access from anywhere. Simulation experiment is

various resources (URIs) hold all necessary information for simulation setup such as

model scripts and model partitions where they are simulated in a single simulation

run. These URIs are created and manipulated according to the middleware URI

template (API), shown in Figure 4. The full RISE design and API described in [1][2].

The URI API template can be created at runtime. Variables (written within braces {})

in URI templates are assigned at runtime by clients before a request is sent to the

server. The resource that best matches the request’s URI will receive the request and

it will become its responsibility to respond to the client.

Line #1 (Figure 4) shows a specific user workspace. This allows multiple users to

use the middleware where each owns a single workspace (e.g. …/workspaces/Bob).

 Distributed Simulation Using RISE Middleware 137

Line #2 holds a specific service supported by RISE such as DCD++ (e.g.

…/workspaces/Bob/DCDpp). In this case, for instance, other simulation components

may be supported by RISE similar to adding new links to a Web site. Modelers

(clients) usually interact with a number of resources during the course of a simulation

experiment, as shown in Lines 3-6: (1) the framework resource (Line #3) holds an

experiment input data (such as the model source code, simulation input variables and

sub-models interconnections). The POST channel is used to submit files to a

framework. PUT is used to create a framework or update simulation configuration

settings. DELETE is used to remove a framework. The GET channel is used to

retrieve a framework state. (2) A simulation resource (Line #4) wraps an active

simulation engine (e.g. CD++), which interacts with other remote simulation, if any. It

is worth to note that in case of DCD++, this URI is the modeler single entry to a

simulation experiment. However, it needs to communicates with other URIs (e.g. on

different machines) to perform distributed simulation. This resource exchanges

synchronized messages with other simulation entities (in case of distributed

simulation) via the POST channel, and POST can be used by modelers to input

variables in order to manipulate simulation at runtime dynamically. The PUT channel

is used to create this resource, hence to start simulation. The DELETE channel is used

to abort simulation and remove this resource. (3) The results resource (Line #5) holds

the simulation output files (if the simulation was completed successfully). The GET

channel is used to retrieve results where the DELETE channel is used to remove those

results. The PUT and POST channels are disabled for this resource. (4) The debug

resource (Line #6) holds model-debugging files. For example, a modeler can print

debugging information inside his model source code to be retrieved later via this

resource. The GET channel is used to retrieve model-debugging files where the

DELETE channel is used to remove those files. PUT and POST channels are disabled

for this resource.

Fig. 4. Simulation Experiment API in RISE

4 RISE-based Distributed CD++ Simulation Algorithms

This section discuss the distributed CD++ (DCD++) simulation session between

different CD++ instances. At this point, a modeler should have already created an

experiment URI (i.e. …/{framework}) where {framework} is the experiment name

created by the modeler. Note that this URI is the parent for all other URIs that are

created or deleted during the simulation process. This section is divided into two

138 K. Al-Zoubi and G. Wainer

parts: the first part discusses the distributed simulation architecture while the second

part discusses the simulation synchronization algorithms. The CD++ is plugged into

RISE as shown in Figure 5 where each CD++ instance is reached via a URI and

accessed via HTTP channels.

The purpose of the simulation manager (Figure 5) component is to manage a

distributed CD++ (DCD++) simulation engine instance in the distributed simulation

environment where various DCD++ instances participate to execute single simulation

experiment. A simulation engine instance is usually called Logical processor (LP) in

the distributed simulation environment, CD++ in our case. The simulation manager is

able to synchronize a DCD++ instance with another remote DCD++, using the

presented algorithms and semantics here. It is also capable to synchronize a DCD++

instance with none-CD++ simulation engine using standard protocols semantics,

hence the ability of multiple semantics support. In DCD++, single DEVS or Cell-

DEVS model is partitioned among those DCD++ engines where each instance

simulates its partition.

Fig. 5. Distributed Simulation between two CD++ instances

DCD++ follows the conservative synchronization approach in which the casualty is

strictly prohibited. On the other hand, it provides a number of improvement

techniques comparing to other existing conservative-based simulation summarized as

follows: (1) it avoids the required steps to loop all simulation entities to calculate the

simulation global minimum time and then broadcasting it to all entities before an

entity being able to proceed. This allows Root coordinator (which manages time) to

start a new simulation phase without asking each logical processor (LP) its minimum

time. (2) It aggregates remote simultaneous events together in single XML message,

hence reducing the cost of several network messages to the cost of one message. (3)

Provides modelers with experimental framework template where they can freely

create as many as they like of different simulation scenarios. (4) It avoids unnecessary

remote message transmission when it can be performed locally. (5) It avoids

involving irrelevant models within current simulation phase (i.e. models that do not

have events to execute or to send/receive at current time). This method can ignore

huge part of the model partitions at certain simulation phases. (6) It uses simultaneous

message transmissions to avoid blocking messages when a number of messages need

to be sent to multiple remote LPs. (7) Exploiting thread-pool concepts to avoid

creating a thread every time a message is sent. (8) Reusing TCP connections to

transmit multiple HTTP messages to avoid establishing a connection with every

message, which is very expensive.

 Distributed Simulation Using RISE Middleware 139

4.1 Distributed CD++ (DCD++) Architecture

In the RESTful DCD++ grid various machines need to coordinate and exchange

simulation messages (as HTTP messages) to carry out the simulation. Each physical

machine in the grid needs to have at least one instance of the RISE middleware

installed on it, since the DCD++ is plugged into it, as shown in Figure 6. DCD++

instances act as peers to each other. This means that when a simulation message is

sent to an URI, the sender is an HTTP client, delivering an HTTP request using an

HTTP channel where the receiver URI is a server, processing HTTP requests and

responding with HTTP responses according to the HTTP standards.

Figure 6 shows an example of three DCD++ engines in distributed simulation

conference where each DCD++ instance is plugged into RISE middleware. This

conference represents an experiment during active simulation. The modeler

manipulates and interacts with the simulation via the main DCD++ instance URIs,

which resides on the main RISE middleware. The main RISE is the server that the

modeler has on it a user account, selects it to setup experiments, and executes them.

CD++ simulation engines are actually online simulation services that can be reached

via URIs and accessed via HTTP channels. Thus, a main RISE in an experiment is not

necessary the main middleware in another experiment. Further, the main server (e.g.

machine #3 in Figure 6) sets up experiment resources on supportive servers on behalf

of the modeler. In this case, the main RISE owns those resources; hence, it instructs

supportive servers to hide all of its resources from external users. After all, those

resources are URIs on the Web.

Fig. 6. Conceptual View of a Distributed Simulation Session

Plugging components (e.g. DCD++) into the middleware provides a separation

between provided services and the middleware. This clearly provides a number of

advantages such as simulation components become independent of underlying

technology, hence moving easily to another technology that might appear in the

future, and applying the concept of pluggable container middleware where

lightweight commercial-off-the-shelf (COTS) simulation components can be plugged

into the middleware with minimal development time. COTS concept reduces the cost

of distributed simulation with the business mentality of “Try-before-buy” attitude

[6][28].

Each active DCD++ simulation component instance is wrapped by URI

(…/{framework}/simulation), as shown in Figure 7. The modeler creates this URI via

PUT channel on the main RISE server to start the simulation, which in turn starts the

simulation on other supportive RISE servers. The request to start a simulation on

RISE creates all necessary Inter-Process Communication (IPC) queues, simulation

140 K. Al-Zoubi and G. Wainer

managers and the DCD++ simulation engines. During active simulation, as shown in

Figure 7, simulation managers send messages to remote active-simulation URIs

(where it is then passed to the corresponding simulation manager). Simulation

managers communicate with the actual CD++ simulation engines via operating

system IPC queues, since CD++ runs as a separate process outside RISE middleware.

It is worth to note that the modeler may use URI (…/{framework}/simulation) to

manipulate simulation during runtime such as inserting an external event (i.e.

simulation input variable) to change the course of the simulation. This is helpful

during simulation training session when instructors like to change conditions during

an exercise.

Fig. 7. DCD++ Simulation Session between Two Machines

The DCD++ virtual network (Figure 7) is constructed and destructed based on the way

a modeler partitions the model under simulation between different machines. Figure 8

shows example of DCD++ XML model partitioning information for both standard DEVS

models (the top figure) and the Cell-DEVS model (the bottom figure). Model partitioning

is a section of a larger XML configuration document for customizing the entire

experiment options. The model-partitioning document describes each atomic model or

cells zone location. Thus, the DCD++ virtual network shown in Figure 7 is reconstructed,

if modeler redistributed models across different machines. Note that the DCD++

simulation session is actually performed among different URIs (within one or more RISE

instances) coordinating among each other. However, those URIs are usually located on

different physical machines. Note further that a RESTful-CD++ is identified via its port

and IP address (Figure 8), relieving modelers of figuring out full URIs path every time a

model is moved to another machine.

Fig. 8. XML Model Partitioning Example

 Distributed Simulation Using RISE Middleware 141

The modeler (i.e. client GUI software) is expected to check on the active simulation

status periodically. This is usually done via GET channel to URI

(…/{framework}?sim=status). In this case, RISE responds with an XML document

similar to the following: <Simulation><Status>RUNNING</Status></Simulation>.

The simulation goes into different states (from the modeler viewpoint), as shown in

Figure 9: IDLE, INIT, RUNNING, ABORTED, ERROR, DONE and STOPPING.

When a framework is created, the status is initialized with the IDLE state, which

indicates that the simulation was never run on this framework. It moves into the INIT

state upon receiving the request to start the simulation. The simulation goes into

RUNNING state, if initialization was successful. The RUNNING state indicates that all

simulation engines everywhere are up and running. In this state, the CD++ simulation

engines can exchange simulation messages. Further, the modeler can manipulate

simulation like inserting external events. Furthermore, dynamic online simulation results

can be retrieved during this state. The simulation goes from RUNNING state to ERROR

because of various possible errors such as failing to transmit a simulation message or a

server failure in the grid. Further, the simulation goes into ABORTED state, if the

modeler chooses to stop the simulation during the RUNNING state (via applying

DELETE method to resource {framework}/simulation). In the normal completion, the

simulation goes into STOPPING state. In this state, the main server collects simulation

results from all supportive servers. The simulation goes into ERROR if it fails to stop

properly such as failing to collect results from supportive servers or failing to stopping

supportive simulations. Upon normal completion, the simulation status goes into DONE

state, which means simulation results can now be retrieved from URI

…/{framework}/results. Note that releasing system resources such as Linux queues,

threads and processes occur in all exiting states: ABORTED, ERROR and STOPPING.

Fig. 9. Simulation State Diagram

Simulation is automatically aborted (to ensure simulation accuracy) by a simulation

manager, if, for any reason, it fails to transmit a simulation message to a remote

simulation URI during a session. In this case, if the simulation manager is supportive, it

aborts simulation and silently removes itself from the distributed simulation conference.

On the other hand, if it is the main simulation manager, it also aborts simulation on all

other supportive servers, since it is the actual owner of all simulation resources in the

session. To make the matter worse, suppose a supportive server fails while the main

server is waiting for a DONE simulation message from a process on that failed

supportive server (simulation phases are discussed in next section). In this case, the Root

coordinator, which drives the whole simulation, cannot advance the simulation to another

phase because it is waiting for a DONE message from a dead simulation participant. This

142 K. Al-Zoubi and G. Wainer

is a deadlock situation. To overcome this possibility of deadlock, the main simulation

manager starts a watchdog thread at the beginning of the simulation (and stops it at the

end of the simulation) to keep watching all supportive simulation resources, as shown in

Figure 10. The watchdog sends periodic (e.g. every two minutes) messages to every

simulation URI checking if it is alive or dead. The main simulation manger only hears

from the watchdog the bad news, which leads to aborting the simulation everywhere.

Therefore, the session stays in deadlock at most for the watchdog period before the

simulation is aborted. Supportive servers also need to watch the main server (Figure 10).

This allows them to release system resources such as processes, threads, connections, and

IPC queues.

Fig. 10. Watchdog Periodic Checking in a Simulation Session

HTTP messages are synchronous. This means that when an HTTP message is sent via

TCP connection, the sender is blocked until a response is received. This argument also

applies to the RPC-style SOAP-based web-services because SOAP messages (that

describe RPCs) are enveloped in HTTP messages; hence, it is still an HTTP synchronies

transmission. This fact often goes unnoticed by SOAP-based WS programmers. This is

because SOAP engines handle SOAP messages at a different layer of the software stack.

Further, SOAP engines are often used from a third-party provider through available open

source like Apache AXIS [36]. HTTP synchronies transmission is obviously a

performance concern, particularly when multiple messages need to be sent at the same

time to different destinations. For this reason, simulation messages are transmitted

concurrently where each message lives on its own thread. Figure 11 shows example of

two simulation managers. The top manager is sending two concurrent messages (each

message is actually an HTTP client thread) where the bottom manager is receiving two

messages concurrently (assuming via the same URI). Therefore, receiving messages by a

simulation manager must be thread-safe to avoid message contention, since each request

is handled by a separate thread. Further, in this case only the sender-message thread is

blocked until the HTTP response is received back without blocking the entire application

or other messages transmission. Note that all RISE threads are started from a thread pool,

avoiding a new thread creation every time a thread is started.

Security is always a concern when communicating in cloud computing environment

as in the case of RESTful-Web services. Other based RESTful Web-services such as

Amazon Web-service (AWS) which requires developers to apply for an “Access Key

ID” and a “Secret Access Key” [5]: The “Access Key ID” identifies the developer who is

accessing AWS while the “Secret Access Key” is used to generate a keyed-Hash

Message Authentication Code (HMAC), enabling AWS to authenticate the user. HMAC

is calculated over service (i.e. URI), operation (e.g. user authorized to use POST channel

or not to use), and timestamp (i.e. to prevent replay attacks). To prevent in-flight

 Distributed Simulation Using RISE Middleware 143

tampering, AWS recommends all requests should be sent over HTTPS [5]. This scenario

is portable for RISE. On the other hand, we chose to encode user name and password into

a single string with base 64 encoding according to HTTP Basic Authentication method,

defined in RFC 2617. This method does not add extra overhead, and it is supported by

Web browsers and Web programming languages. Therefore, all simulation messages

need to be authenticated according to this method. Note that the main server authorizes

all simulation participants to use POST channel on all URIs, allowing them to pass

simulation messages within the simulation conference.

Fig. 11. Concurrent Message Passing to/from Simulation Managers

4.2 DCD++ Simulation Synchronization Algorithms

DCD++ executes the model by passing messages among the different processors in the

model hierarchy. Coordinators are the processors responsible for executing coupled

models while Simulators are associated with atomic models and they are responsible for

executing each of the DEVS functions defined by the model depending on the time and

type of the received message. A Root coordinator is in charge of driving the simulation as

a whole and interacting with the environment, since DCD++ is a conservative-based

engine. Because DCD++ is a conservative-based engine, there is a special coordinator

called Root coordinator which is responsible for the following: (1) Starting and stopping

the simulation, (2) Connecting the simulator with the environment in terms of passing

external events/output from/to the environment, and (3) Advancing the simulation clock.

As shown in Figure 12, “coordinator” processors coordinate the simulation of one or

more coupled/atomic models where “simulator” processors simulate atomic models. The

processors are created and initialized at the beginning of the simulation in a hierarchy that

matches the model hierarchy in terms of the parent-child relationship.

Fig. 12. Message exchange during a simulation cycle

A number of simulation messages are used to synchronize simulation among

processors hierarchy, shown in Figure 12. Simulation messages can be categorized as

follows: (1) Content messages represent events generated by a model. Content simulation

144 K. Al-Zoubi and G. Wainer

messages include External messages (X) and Output messages (Y). Output messages (Y)

are usually converted to external messages for their destinations. (2) Synchronization

messages cause the simulation to move into another simulation phase (those phases

discussed next). Synchronization messages include Initialize message (I), Internal

message (*), Collect message (@), and Done message (D). Initialize message (I) starts

the initialization phase. Internal message (*) starts the transition simulation phase. The

top model Coordinator propagates it downward in the hierarchy. Collect message (@)

starts the collection phase. Done message (D) marks a simulation phase end. It is also

used by Coordinators to identify which children needs to be simulated at the next phase.

It further used to calculate the global minimum simulation time.

The simulation phases for the entire simulation are driven by the Root coordinator

(which is the parent of the highest model’s coordinator). They are divided into three

phases (shown in Figure 13): (1) Initialization phase initializes all models in the

hierarchy; hence, it eventually executes every initialization method of every atomic

model. In response, a DONE message propagates upward in the model hierarchy where

each Coordinator calculates the minimum next change of its children and passes it in a

DONE message to its parent. Eventually, the Root receives DONE message with

smallest time, which updates the simulation clock and starts the Collection phase. (2) In

the Collection phase, some of the output messages are collected to ensure their execution

at the same time with internal events. (3) In the Transition phase, all the collected

external messages are executed along with simultaneous internal events. The Root

coordinator handling of a DONE message arrival is described in Figure 14.

Fig. 13. Root Coordinator Simulation Phases State Diagram

Fig. 14. Root Coordinator Handling DONE Message Algorithm

The head/proxy is originally intended to solve redundant number of messages from

remote CD++ processors back to their parent coordinator. The main motivation behind

Head/Proxy algorithm is that network messages in distributed environment are expensive

 Distributed Simulation Using RISE Middleware 145

and have direct affect on performance. For example, assume the coordinator in Figure 15

is coordinating three simulators where two of its children (simulator #2 and #3) are

residing on a remote machine. Figure 15 shows a fragment of the collection phase

messages when the coordinator receives a collect (@) message from its parent. As shown

in Figure 15, Simulator 3 sends an output message to the parent coordinator to translate it

to external message for Simulator 2. Obviously, the transmission of those two messages

(in Figure 15) could have been avoided if another coordinator (we call proxy) was placed

in server 2 so that converting the output message (from simulator 3) to an external

message (to simulator 2) is done locally, as shown in Figure 16.

Fig. 15. Unnecessary remote messages in distributed simulation

The idea of the head/proxy depends on using two kinds of coordinators for each

coupled DEVS/Cell-DEVS model: (1) Head Coordinator: is responsible for

synchronizing the model execution, interacting with upper level coordinators and

message routing among the local and remote model components. (2) Proxy Coordinator:

is responsible for message routing among the local model components dispensing with

the need to send remote messages if the head coordinator is residing on a different

machine than that used to run the sending and receiving processors. The advantage of

using proxy coordinators (as shown Figure 16) is that converting all remote messages

between local processors to local messages. The proxy coordinator forwards one DONE

message to the head coordinator once it receives all DONE messages from its children.

Note that in this collection phase (Figure 16) simulator #2 does not forward the external

message to the Atomic #2 model. In this phase, simulator #2 inserts the external message

in its bag, waiting for the next internal (*), which starts the next transition phase. This

allows simulator #2 to execute any scheduled internal events along with the already

collected external message simultaneously.

Fig. 16. Proxy Advantage of Preventing Unnecessary remote messages

146 K. Al-Zoubi and G. Wainer

Proxy coordinators avoid remote message transmission when it is possible to route

them locally, but still forward all none-local messages to the head coordinator. For

example, suppose the output message from simulator #3 is transmitted to simulator #1

(instead of simulator #2), as shown in Figure 17. In this case, the proxy coordinator

has no choice but to transmit the external message to the head coordinator remotely.

The external message ends up queued at simulator #1, waiting to be executed in the

next transition phase upon receiving internal (*) message from head coordinator. In

fact, simulation events that are exchanged in the same simulation phase are

simultaneous events; hence, they need to be executed in the same virtual time. To

clarify this point, consider how Root coordinator advances simulation Time and

phases, as shown Figure 18, which is a depiction of the model hierarchy partitions

shown in Figure 17. Assume that Simulators #2 and #3 outputs a job to simulator #1

every two seconds where Simulator #1 takes one second to process each regardless of

the number of jobs are being process. In this simple example, shown in Figure 18-A:

(1) as part of simulation initialization, I message is sent to the Head coordinator,

which passes it to Simulator #1 and Proxy coordinator. Consequently, the Proxy

reroutes message I to Simulator #2 and #3. Simulator #2 and #3 reply with D

messages with a scheduled change in two seconds from now. (2) Root advances time

to (t2) and starts Collection phase by sending @ message to Head coordinator, which

only sends it to the proxy. This message is not send Simulator #1 because it did not

schedule a change in previous phase, hence becomes irrelevant in this phase. The

Proxy passes @ message to Simulator #2 and #3, which cause them to send two jobs

(i.e. Y message) to Simulator #1 (via Head and Proxy coordinators). Simulator #1

receives these Y messages as external messages (X) where it holds them to be

executed in the next phase. (3) Root starts transition phase causing Simulator #1 to

schedule a change at one second from now (when it will execute the two received

jobs). In addition, Simulators #2 and #3 schedule a change at two seconds from now

(when they will produce their next jobs).

Fig. 17. Head/Proxy Remote messages Transmission

Figure 18 shows two types of messages: Remote and local. All exchanged messages

between the Head and Proxy coordinator are remote messages (shown in red); hence,

they are usually measured in range of milliseconds to seconds. On the other hand, all

other messages are local (shown in blue); hence, they are measured in few microseconds

in DCD++, since a processor simply sends a message by inserting it in the unprocessed

events queue. To reduce the communication high cost, the DCD++ groups simultaneous

events heading to the same destination in one message. For example, as shown in Figure

18-B, the proxy sends two Y messages and D messages for the cost of one message. This

 Distributed Simulation Using RISE Middleware 147

shows huge improvement in performance, particularly, for models with intensive

communication overhead. Grouping remote simultaneous events make sense for obvious

performance reasons, but also avoid inaccurate simulation results or deadlock in the

simulation. This is because P-DEVS messages, as previously mentioned, belong into two

categories: (1) Content messages (i.e. Y and X) represent DEVS models communication.

These messages must be exchanged within a simulation phase. (2) Synchronization

Messages (I, @, * and D) synchronize the start or an end of simulation phase; hence, they

mark simulation phases boundaries. Therefore, Content messages must arrive at

destination within the correct simulation phase to be executed at the correct virtual time.

Further, synchronization messages must arrive at the start or end of the correct simulation

phase to ensure correct simulation and to avoid deadlock, since a Coordinator may hang

forever waiting for a synchronization message to be able to start a new phase or end the

current phase. Of course, we can never guarantee message arrival at destination in the

same order of their transmission order. On the other hand, DCD++ guarantees the correct

message-order arrival by grouping messages in one XML document, as shown Figure 19.

Fig. 18. DCD++ Simulation Phases and Time Advancement

Fig. 19. Multiplexing Simultaneous Simulation Messages Together

148 K. Al-Zoubi and G. Wainer

The simulation message contains (at least) the following information (see

Figure 19): Message type, simulation time, source processor Id, destination port Id,

content value, next change time, sender model Id, and destination Processor Id.

DCD++ keeps unique IDs for each model, port and processor (i.e. coupled model

coordinator or atomic model simulator) in the DCD++ grid. In this case, simulation

managers always organize messages in the order they received from the DCD++

engine, allowing them to be handled in the correct order upon arrival at destination.

Simultaneous messages aggregation is accomplished by having message bags in

simulation managers to hold content messages to remote processors where those

messages are sent with the first synchronization message (i.e. indicates the start/end

of a phase) heading to the same processor, according to the shown algorithm in

Figure 20. Message aggregation shows clearly that XML message-oriented semantics

is much flexible to handle than procedure parameters semantics as in the RPC-style

approaches.

Fig. 20. Dispatching Simulation Messages in Single XML Document

5 Distributed Simulation Interoperability Standards

The need for a widely accepted standardized framework is growing necessity nowadays,

allowing sharing and reusability across organizations, laboratories and research teams.

On the other hand, the specialization of knowledge and fragmentation in the distributed

simulation field has also grown than ever. This caused the DEVS simulation community

to start the interoperability standardization effort to interoperate various DEVS-

based simulation packages together (e.g. CD++ [34]). DEVS standard proposals

[30][31][32][33] categorized the standards into two parts: (1) Standardizing DEVS

model representation allows a platform-independent DEVS model representation so that

it can be executed by a DEVS-based simulator. In this case, a model may be retrieved

and executed locally without the need to perform distributed simulation for obvious

performance reasons. (2) Since, it is not always possible to run simulation locally on

single or multiprocessor machine, the second part deals with Standardizing

Interoperability Middleware protocol for interfacing different simulation environments

allowing synchronization for the same simulation run across a distributed network

regardless of their model representation, as shown in Figure 21. The second part is

handled by the distributed simulation middleware, hence our presented topic here. The

basic requirements of the interoperability standards are to allow legacy systems to run

 Distributed Simulation Using RISE Middleware 149

their specific model representations, practical software changes (i.e. wrapper to translate

messages from/to standardized protocol, see Figure 21), flexible for improvements,

independent of any formalism or technology.

Fig. 21. Concept of Standardized Distributed simulation Middleware

Plugging simulation components into RISE, enabling them to be online, hence

accessed via URIs on the Web is one objective of RISE. Further, those components

may need to synchronize between each other to simulate a single model within the

same simulation model, hence distributed simulation session. In this case, distributed

simulation synchronization is still under one team control. Thus, protocols can be

customized as needed for specific simulation environment similar to DCD++

previously discussed here. On the other hand, having different independent-developed

simulation environment synchronize between each other is another story of

complexity. The main complex issue is to bring different teams agree on an

interoperability standard. In reality, people do not support standards that require

software changes that might affect an existing implementation. The preferred solution

is usually by having a wrapper that translates standards from/to local messages.

Further, programmers, in practice, do not like to read complex standards, particularly

when they are simply evaluating standard proposals without being forced to use it.

The lesson learned of the process of having DEVS interoperability standards is that

standards should be simple and quickly to understand, fast to support, and without

software changes to existing systems. RISE-based standards, presented here, uses the

RESTful Web-services plug-and-play and dynamic interoperability style to overcome

these issues. The RISE-based proposal details are described in [3] where we discussed

all of the submitted proposals by the DEVS community in [30][31][32][33]. The

following summarizes the RISE-based proposals in conjunction with the needed

wrappers for both CD++ [34] and DEVS/SOA [33] that allow both environments to

interoperate.

The RISE-based standards [3][30][31][32][33] divides the entire simulation space

into domains. Each domain wraps a DEVS model and DEVS-based simulation engine

to simulate that model. Each domain is accessed via three URIs (i.e. the wrapper API

in Figure 21) to exchange semantics (i.e. synchronization and configuration) as

standardized XML messages. The wrapper API (i.e. URIs) is created at runtime for

each experiment setup. The standards completely hide interior implementation

domain, avoiding software changes in existing implementation. For example,

150 K. Al-Zoubi and G. Wainer

RESTful DCD++ performs distributed simulation while DEVS/SOA uses

DEVSJAVA [11] engine to perform distributed simulation using SOAP-based WS.

Interoperability is achieved at three levels: (1) the interoperability framework

architecture level (API), (2) The model interoperability level, and (3) the simulation

synchronization level. These aspects are summarized next.

The interoperability framework architecture level (API) provides the URI template

that allows modelers to setup experiment resources across the network, as shown in

Figure 22. These resources (URIs) are described as follows: (1) …/{framework}:

represents a simulation environment domain. It is named by the modeler upon creation.

The modeler uses this URI to submit all necessary information, including RISE XML

configuration. (2) …/{framework}/simulation: represents active simulation in a domain,

hence used by other domains to exchange simulation messages to synchronize a

simulation session. The modeler further uses this URI to start/abort simulation, and to

manipulate simulation during runtime or to retrieve online results while simulation is in

progress. (3) …/{framework}/results: is automatically created by a domain upon

completing the simulation successfully, maintaining simulation results and future results

retrieval.

Fig. 22. A Domain Wrapper Application Programming Interface (API)

The model interoperability level provides XML rules for binding different models

together. This XML document is provided via PUT channel to URI …/{framework}

as part of its initial configuration before a simulation is conducted. However, any

dynamic changes during runtime are submitted to URI …/{framework}/simulation.

This is mainly when a domain joins/disjoins a simulation session at runtime.

Connecting models across domains is a straightforward step, because of our

assumption that each domain contains an entire model with external ports. For

example, Figure 23 shows two models placed at two different domains. In this case,

the model is wrapped in URI …/{framework}: The first model URI is …/Domain1

and the second model URI is …/Domain2. Each model, in Figure 23, has two external

ports connected to the other model ports. This interconnection is shown in the XML

 Distributed Simulation Using RISE Middleware 151

document in Figure 24. For example, Lines 7-10 shows the connection link of port

OUT1 (at …/Domain1) to port IN1 (at …/Domain2). The XML document also shows

other configuration such as “Type” at Line 3 is set to “O”, indicating that the

simulation will be synchronized according RISE conservative based algorithm; hence,

“Type” attribute can be set to “O” to conduct optimistic synchronization. Line #5

selects the main domain, which is mainly needed to manage the conservative-based

simulation. Based on this document Figure 24, each domain needs to build a routing

table to identify each of its output port connections so that messages can be

transmitted to their destination.

Fig. 23. Models Interconnection across Domains

Fig. 24. Model Interconnection XML Configuration

The simulation synchronization level provides high-level simulation algorithms

(i.e. conservative/optimistic) and synchronization channels in order to carry

simulation among different domains. In the optimistic type, XML synchronization

messages are sent directly to other domains, since domains should be able to detect

errors (e.g. due to straggler messages) and fix them. On the other hand, the

conservative type needs to place a Time-Management component (e.g. called here

RISE-TM) to synchronize all participants to satisfy local causality constraint via

ensuring safe timestamp-ordered processing of simulation events within each domain.

Our focus here is on the conservative-type algorithms, since it involves more work

from the standards perspective.

RISE-TM executes a simulation cycle in the following steps, as shown in

Figure 25: (1) Execute all events in all domains at current time. This starts a new

simulation cycle with current or newly calculated RISE time. RISE-TM always starts

the first phase with time zero. The domains must always execute all events with

152 K. Al-Zoubi and G. Wainer

current RISE time, if any, and respond to the RISE-TM with the following

information: all external messages generated for other domains stamped with RISE

time (or larger), and its next time. The next time is the time of next event in a domain

larger than RISE time. (2) Once RISE-TM receives all replies from relevant domains,

it calculates the next RISE time and starts a new simulation cycle.

Fig. 25. RISE Conservative-based Simulation Cycle at Time t

Fig. 26. RISE-TM and Domains Exchanged Messages Example

Figure 26-A shows an example of messages sent by RISE-TM to a domain (i.e.

step #1 in Figure 25). Line #2, in Figure 26-A, specifies the current RISE time, hence

every event with this time, in this domain, must be executed in this cycle. Lines 3-17

enclose all collected external messages from all other domains, if any. Figure 26-B

shows an example of a domain reply to RISE-TM (i.e. step #2 in Figure 25).

Line #2, in Figure 26-B, indicates the URI of the source domain. Lines 3-15

enclose all of this domain generated external messages to other domains. Line #4

specifies the count of enclosed messages. Lines 5-10 define the first external message.

Line #6 specifies the execution time of this message. Line #7 specifies the model

destination port (see Figure 23 and Figure 24). Line #8 specifies the message content.

Line #9 indicates the destination domain (see Figure 23 and Figure 24). Line #14

specifies the minimum time of all enclosed external messages. RISE-TM must

include this time when calculating next RISE time. Line #16 specifies the time of the

next event of that domain. RISE-TM must include this time when calculating next

RISE time. Further, it is recommended that RISE-TM does not include domains in the

 Distributed Simulation Using RISE Middleware 153

next simulation cycle if they have nothing to do. Note that this value must be set to “-

1”, indicating infinity, if there is no more events in that domain. This XML document

guarantees that all of the domain events stamped with RISE time have executed. This

guarantee must be ensured by the RISE-TM by ensuring that the “next” event time

(i.e. Line #16 shown in Figure 26-B) is larger than the current RISE time, since it is

the time of the next event in a domain. Therefore, domains must only respond once

with this XML document.

This method simplifies the synchronization protocol to avoid impractical software

changes for a simulation package implementation. It also intended to handle

synchronization between DEVS to None-DEVS simulation environments, since it

hides all details behind wrappers, including DEVS formalism. The following

discusses the changes require to interoperate DCD++ and DEVS/SOA simulation

environments to conduct single simulation session. We focus here is on the simulation

synchronization level of the standard.

In DCD++, the Simulation manager (see Figure 7) on the main server is the RISE

wrapper (Figure 21) of the entire DCD++ domain. It is worth to note that other

supportive DCD++ machines are not even aware of being part of a session bridged to

another heterogeneous simulation environment. The simulation manager of the main

server is extended to act as RISE-TM (i.e. the coordinator of all heterogeneous

domains), or as a domain wrapper (i.e. it is being coordinated by other heterogeneous

domain), as shown in Figure 25. Therefore, the main simulation manager handles

exchanged messages between DCD++ machines according to its specific algorithms,

while treat RISE messages according to the standards. Thus, the main DCD++

modifications is in adding new synchronization level between the main simulation

manager and its associated CD++ engine. This is done in three parts: (1) having the

CD++ engine forward all Y (i.e. output) messages that is intended to other domains to

the simulation manager. These are the Y messages received by the Root coordinator

(see Figure 18). Regular CD++ considers those messages as output to the

environment. (2) Having simulation-manager forward all X messages, received from

other domains, to its associated CD++ engine. (3) The CD++ needs to ask the

simulation-manager permission before advancing the simulation clock beyond RISE

time upon starting new simulation phase (see Figure 18). These parts are discussed in

the next paragraphs.

First, the CD++ Root coordinator forwards all Y (i.e. output) messages to its

associated simulation manager. This message also includes the simulation timestamp

and the model source port. Note that the CD++ does not know where those messages

need to be sent; hence, it treats them as output messages to the simulation

environment. At this point, the simulation-manager converts those Y messages into X

(i.e. external) messages and stores them so that they can be transmitted altogether in

single XML document. The simulation-manager also needs to add the destination port

and URI. This is easily done based on routing tables constructed based on the

configuration document (Figure 24). For example, Y messages received from port

OUT1 in Domain-1, at Figure 23, need to be routed to port IN2 of domain-2. Once

those messages need to be transmitted, the simulation-manager builds the XML

message, shown in Figure 26-B, and sends them to RISE-TM. However, if this

simulation manager is the acting as the RISE-TM, it merges them with other domains

messages, if any, and sends them back to relevant domains, as shown in Figure 26-A.

154 K. Al-Zoubi and G. Wainer

Note that this special treatment is only for RISE messages, but messages belong to the

DCD++ region need to be handled according to its specific algorithms.

Second, the simulation-manger needs to filter its domain X messages upon their

arrival from other domains, and forwards them to the CD++. The simulation manager

receives them as the message shown in Figure 26-B, if it is the acting RISE-TM while

receives as the message shown in Figure 26-A, if it is not the acting RISE-TM.

Subsequently, the CD++ saves them in special queue until the beginning of next

simulation cycle where Root coordinator will insert them in the simulation event list

similar to any other local events.

Third, the CD++ needs to consult the simulation manager before advancing to new

cycle (Figure 18). The entire DCD++ simulation cycles are driven by the Root

coordinator, specifically, upon a DONE message arrival, as described in Figure 14. In

this case, the Root checks DCD++ next event time against last known RISE time, it

then proceeds if they are equal to each other. Otherwise, (1) it requires RISE Time

update from simulation manager, (2) Insert any received external messages from other

domains into the simulation event list, (3) calculate next event time, and (4) report

next time to simulation manager. Based on the next event time and the current RISE

time, the simulation manager knows the end of the current simulation cycle. These

steps are handled in the following algorithm:

While (RISE Time != DCD++ Next Time) {

Get RISE Time from Simulation Manager;

Insert Other Domains Collected X messages;

Calculate new DCD++ Next Time;

Report Next Time to Simulation manager;

}

DEVS/SOA [33] uses DEVSJAVA [11] simulation engine to perform distributed

simulation using SOAP-based WS. As illustrated in Figure 27, the DEVS/SOA

protocol is executed as following (shown in Figure 27): (Step #1 and #2) the highest

coordinator (i.e. Root) requests the next event time of each of its children simulators

and coordinators. Messages nextTN and outTN are performed in a single RPC

invocation. (2) The Root requests each of its children to compute its output messages

to other simulators (i.e. getOut and outTN). (3) Finally, each simulator executes its

ApplyDeltFunc method, which computes the combined effect of the received

messages and internal scheduling on its state.

Fig. 27. DEVS/SOA Distributed Simulation Protocol

 Distributed Simulation Using RISE Middleware 155

DEVS/SOA needs to have wrapper (see Figure 21) to translate internal

DEVS/SOA commands, shown in Figure 27, into RISE messages. This wrapper,

similar to DCD++ simulation manager, needs to exchange RISE XML messages in

HTTP envelopes. Further, the Root coordinator should not advance beyond current

RISE time. The major requirements of this wrapper is to translate DEVS/SOA RPC

internal commands into RISE XML messages (Figure 26) and vice versa, as follows.

RISE XML message (Figure 27-A) corresponds to DEVS/SOA "nextTN",

"getOut", "ApplyDelta" calls. Upon this message arrival from RISE-TM, all

DEVS/SOA simulators must execute all internal/external events at this cycle time (i.e.

element <Time>). Further, RISE-TM forwards previous output messages from

previous cycles, if any, in this message.

RISE XML message (Figure 27-B) corresponds to DEVS/SOA "returnOut" and

"OutTN" calls: (1) returnOut (i.e. output message) is RISE external message, defined

in element <XEvent>. (2) OutTN (i.e. next time) defined in element <Time>.

References

[1] Al-Zoubi, K., Wainer, G.: Performing Distributed Simulation with RESTful Web-

Services Approach. In: Proceedings of the Winter Simulation Conference (WSC 2009),

Austin, TX, pp. 1323–1334 (2009)

[2] Al-Zoubi, K., Wainer, G.: Using REST Web Services Architecture for Distributed

Simulation. In: Proceedings of Principles of Advanced and Distributed Simulation

(PADS 2009), Lake Placid, New York, USA, pp. 114–121 (2009)

[3] Al-Zoubi, K., Wainer, G.: RISE: REST-ing Heterogeneous Simulation Interoperability.

In: Proceedings of the Winter Simulation Conference (WSC 2010), Baltimore, Maryland,

USA (2010)

[4] Al-Zoubi, K., Wainer, G.: Managing Simulation Workflow Patterns using Dynamic

Service-Oriented. In: Proceedings of the Winter Simulation Conference (WSC 2010),

Baltimore, Maryland, USA (2010)

[5] Amazon Web-services: Security Best Practices (2010),

http://awsmedia.s3.amazonaws.com/

Whitepaper_Security_Best_Practices_2010.pdf (accessed June 2010)

[6] Boer, C., Bruin, A., Verbraeck, A.: A survey on distributed simulation in industry.

Journal of Simulation 3(1), 3–16 (2009)

[7] Boukerche, A., Zhang, M., Xie, H.: An Efficient Time Management Scheme for Large-

Scale Distributed Simulation Based on JXTA Peer-to-Peer Network. In: Proceedings of

the IEEE/ACM Distributed Simulation and Real-Time Applications (DS-RT 2008),

Vancouver, BC, Canada (2008)

[8] Bryant, R.E.: Simulation of packet communication architecture computer systems.

Massachusetts Institute of Technology, Cambridge (1977)

[9] Chandy, K.M., Misra, J.: Distributed Simulation: A Case Study in Design and

Verification of Distributed. Programs. IEEE Transactions on Software Engineering SE-

5(5), 440–452 (1979)

[10] Cheon, S., Seo, C., Park, S., Zeigler, B.P.: Design and Implementation of Distributed

DEVS Simulation in a Peer to Peer Network System. In: Proceedings of the Advanced

Simulation Technologies Conference, Arlington Virginia (2004)

156 K. Al-Zoubi and G. Wainer

[11] DEVSJAVA,

http://www.acims.arizona.edu/SOFTWARE/software.shtml

(accessed June 2010)

[12] Erl, T., Karmarkar, A., Walmsley, P., Haas, H., Yalcinalp, L.U., Liu, K., Orchard, D.,

Tost, A., Pasley, J.: Web Service Contract Design and Versioning for SOA. Prentice-Hall,

Englewood Cliffs (2008)

[13] Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures.

Doctoral dissertation, University of California, Irvine (2000),

 http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 (accessed October 2008)

[14] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:

Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,

 http://www.w3.org/Protocols/rfc2616/rfc2616.html

 (accessed October 2008)

[15] Fujimoto, R.M.: Parallel and distribution simulation systems. John Wiley & Sons, New

York (2000)

[16] Gregorio, J.: URI Templates,

http://bitworking.org/projects/URI-Templates/

(accessed October 2008)

[17] Henning, M.: The Rise and Fall of CORBA. Communications of the ACM 51(8) (August

2008), http://queue.acm.org/detail.cfm?id=1142044

 (accessed March 2010)

[18] Henning, M., Vinoski, S.: Advanced CORBA programming with C++. Addison–Wesley,

Reading (1999)

[19] IBM Mashup Center,

http://www-01.ibm.com/software/info/mashup-center/

(accessed June 2009)

[20] IBM Software Group: Why Mashups Matter,

ftp://ftp.software.ibm.com/software/lotus/lotusweb/

portal/why_mashups_matter.pdf (accessed June 2009)

[21] Khul, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems: An

Introduction to High Level Architecture. Prentice-Hall, Englewood Cliffs (1999)

[22] Mandel, L.: Describe REST Web services with WSDL 2.0,

http://www.ibm.com/developerworks/webservices/

library/ws-restwsdl/ (accessed May 2009)

[23] Mittal, S., Risco-Martín, J.L., Zeigler, B.P.: DEVS-based simulation web services for net-

centric T\&E. In: Proceedings of the 2007 Summer Computer Simulation Conference,

San Diego, California, USA (2007)

[24] NetBeans IDE, http://www.netbeans.org/ (accessed June 2009)

[25] O’Reilly, T.: What Is Web 2.0 (2005),

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/

what-is-web-20.html (accessed May 2009)

[26] Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., Sebastopol

(2007)

[27] Shahbazian, E.: Introduction to DF: Models and Processes, Architectures, Techniques and

Applications. In: Multisensor Fusion, pp. 71–97. Kluwer Academic Publishers, Dordrecht

(2000)

 Distributed Simulation Using RISE Middleware 157

[28] Strassburger, S., Schulze, T., Fujimoto, R.: Future trends in distributed simulation and

distributed virtual environments: results of a peer study. In: Proceedings of Winter

Simulation Conference (WSC 2008), Miami, FL, pp. 777–785 (2008)

[29] Wainer, G., Madhoun, R., Al-Zoubi, K.: Distributed Simulation of DEVS and Cell-DEVS

Models in CD++ using Web Services. Simulation Modelling Practice and Theory 16(9),

1266–1292 (2008)

[30] Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martín, J.L., Sarjoughian, H., Zeigler, B.P.:

DEVS Standardization: Foundations and Trends. In: Wainer, G., Mosterman, P. (eds.)

Discrete-Event Modeling and Simulation: Theory and Applications, ch. 15. CRC Press,

Taylor and Francis (October 2010) (expected publication)

[31] Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martín, J.L., Sarjoughian, H., Zeigler, B.P.:

An Introduction to DEVS Standardization. In: Wainer, G., Mosterman, P. (eds.) Discrete-

Event Modeling and Simulation: Theory and Applications. CRC Press, Taylor and

Francis (October 2010) (expected publication)

[32] Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martín, J.L., Sarjoughian, H., Zeigler, B.P.:

Standardizing DEVS Model Representation. In: Wainer, G., Mosterman, P. (eds.)

Discrete-Event Modeling and Simulation: Theory and Applications, ch. 17. CRC Press,

Taylor and Francis (October 2010) (expected publication)

[33] Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martín, J.L., Sarjoughian, H., Zeigler, B.P.:

Standardizing DEVS Simulation Middleware. In: Wainer, G., Mosterman, P. (eds.)

Discrete-Event Modeling and Simulation: Theory and Applications, ch. 18. CRC Press,

Taylor and Francis (October 2010) (expected publication)

[34] Wainer, G.: Discrete-Event Modeling and Simulation: A Practitioner’s Approach. CRC

press, Taylor & Francis Group, Boca Raton, Florida (2009)

[35] Wainer, G., Al-Zoubi, K.: An Introduction to Distributed Simulation. In: Banks, C.,

Sokolowski, J. (eds.) Modeling and Simulation Fundamentals: Theoretical Underpinnings

and Practical Domains, ch. X. Wiley, New Jersey (2010)

[36] Web Services AXIS, http://ws.apache.org/axis/ (accessed October 2008)

[37] Web Application Description Language (WADL), https://wadl.dev.java.net/

(accessed October 2008)

[38] WSDL 2.0: Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language, http://www.w3.org/TR/wsdl20/ (accessed July 2010)

[39] Zeigler, B.P., Doohwan, K.: Distributed supply chain simulation in a DEVS/CORBA

execution environment. In: Proceedings of Winter Simulation Conference (WSC 1999),

Phoenix, Arizona, USA (December 1999)

Chapter 7

Agile Net-Centric Systems
Using DEVS Unified Process

Saurabh Mittal

DUNIP Technologies
PO Box 26218, Tempe AZ 85285 USA

saurabh.mittal@duniptechnologies.com

http://www.duniptechnologies.com

Abstract. Industry and government are spending extensively to transi-
tion their business processes and governance to Service Oriented
Architecture (SOA) implementations for efficient information reuse, inte-
gration, collaboration and cost-sharing. SOA enables orchestrating web
services to execute such processes using Business Process Execution Lan-
guage (BPEL). Business Process Modeling Notation (BPMN) is another
method that outputs BPEL for deployment. As an example, the Depart-
ment of Defenses (DoD) grand vision is the Global Information Grid that
is founded on SOA infrastructure. The SOA infrastructure is to be based
on a small set of capabilities known as Core Enterprise Services (CES)
whose use is mandated to enable interoperability and increased infor-
mation sharing within and across Mission Areas, such as the Warfighter
domain, Business processes, Defense Intelligence, and so on. Net-Centric
Enterprise Services (NCES) is DoDs implementation of its Data Strat-
egy over the GIG. However, composing/orchestrating web services in a
process workflow (a.k.a Mission thread in the DoD domain) is currently
bounded by the BPMN/BPEL technologies. With so much resting on
SOA, their reliability and analysis must be rigorously considered. The
BPMN/BPEL combination neither has any grounding in system theoret-
ical principles nor can it be used in designing net-centric systems based
on SOA in its current state. In this work we present a system theoret-
ical framework using the DEVS Unified Process (DUNIP) that allows
bifurcated model-continuity based life cycle process for simultaneous de-
velopment of the executable system using web-services (including the
model) and the automated generation of Test-suite for Verification and
Validation. The entire net-centric system, which includes artifacts like
the model, the simulation and the real system, is deployed on SOA. The
simulation system is made possible on a recently developed DEVS-based
service framework called DEVS/SOA. We will show the design of DEVS-
agents based on WSDLs and how they are composed towards the systems
specification. We will demonstrate how agility is an inherent character-
istic of such a system founded on DUNIP. We will also present the case
of Department of Defense Architecture Framework (DoDAF) and how
agility can be applied to the design and evaluation process.

Keywords: DEVS, DUNIP, DoDAF, SOA, WSWF, NCES, GIG.

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 159–199.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

http://www.duniptechnologies.com

160 S. Mittal

1 Introduction

Industry and government are spending extensively to transition their business
processes and governance to Service Oriented Architecture implementations for
efficient information reuse, integration, collaboration and cost-sharing. Service
Oriented Architecture (SOA) enables orchestrating web services to execute such
processes using Business Process Execution Language (BPEL) [4]. Business Pro-
cess Modeling Notation (BPMN) [5] is another method that outputs BPEL for
deployment. As an example, the Department of Defense’s (DoD grand vision
is the Global Information Grid that is founded on SOA infrastructure. As il-
lustrated in Figure 1, the SOA infrastructure is to be based on a small set of
capabilities known as Core Enterprise Services (CES) whose use is mandated
to enable interoperability and increased information sharing within and across
Mission Areas, such as the Warfighter domain, Business processes, Defense In-
telligence, and so on) [16]. Net-Centric Enterprise Services (NCES) [30] is DoD’s
implementation of its Data Strategy over the GIG. NCES provide SOA infras-
tructure capabilities such as service and metadata registries, service discovery,
user authentication, machine-to-machine messaging, service management, or-
chestration, and service governance.

Fig. 1. Core enterprise services in Global Information Grid [16]

Agile Net-centric Systems Using DUNIP 161

However, composing/orchestrating web services in a process workflow (a.k.a
Mission thread in the DoD domain) is currently bounded by the BPMN/BPEL
technologies. Moreover, there are few methodologies to support such composi-
tion/orchestration. Further, BPMN and BPEL are not integrated in a robust
manner and different proprietary BPMN diagrams from commercial tools fail
to deliver the same BPEL translations. Today, these two technologies are by
far the only viable means whereby executives and managers can devise process
flows without touching the technological aspects. With so much resting on SOA,
their reliability and analysis must be rigorously considered. The BPMN/BPEL
combination neither has any grounding in system theoretical principles nor can
it be used in designing net-centric systems based on SOA in its current state.

In this research work we provide a proof of concept of how Discrete Event
System Specification (DEVS) Formalism can deliver another process work flow
mechanism to compose web services in a SOA. A DEVS System is composed
of events and components/systems that produce and consume those events. An
event is any change in state that merits attention from self/other systems. These
systems can be either a simple atomic black box that perform a single task only
or they may be a complex system of systems that receive the event and delegate
it to one of its sub-components. We will employ DEVS Formalism to a net-
centric system deployed using Web Services. Such an architecture where events
work along with web services is aptly termed as Service Oriented Architecture
(SOA). During this process of designing the net-centric system, we will propose
Web Service Work Flow (WSWF) formalism and show how it is executed on
the recently developed DEVS/SOA [28] distributed modeling and simulation
framework.

In addition to supporting SOA application development, the framework en-
ables verification and validation testing of application. We will also describe
how WSWF can be mapped to high level system descriptive frameworks like
Department of Defense Architecture Framework (DoDAF) [9],[10],[11], and Sys-
tem Entity Structure (SES). We will demonstrate the execution of WSWF in
a complete case-study in which a workflow is composed and executed using
DEVS/SOA framework.

Finally, this paper will establish that the DEVS Unified Process inherently
is agile and that when deployed on SOA makes it a truly interoperable and
testable framework. The paper is organized as follows. Section 2 presents the re-
lated technologies. Section 3 describes the underlying technologies that include
DEVS, DUNIP, Web Services, Abstract DEVS Service Agent, and DEVS/SOA
framework. Section 4 presents layered architecture of Agent-based Test Instru-
mentation System on/using Global Information Grid using SOA (GIG/SOA).
Section 5 deals with Abstract DEVS Service wrapper in detail and also dis-
cusses how statistics gathering is integrated with the wrapper design. Section 6
presents the workflow composition and how high-level specifications, as specified
by frameworks like DoDAF, can be reduced to WSWF formalism. It is discussed
using ontology based System Entity Structure (SES) framework that is targeted
to modeling, simulation, systems design and engineering. Section 7 presents a

162 S. Mittal

complete case study demonstrating the usage of WSWF. Section 8 presents some
ideas on agility inherent in the DEVS Unified Process. Finally, Section 9 lists
conclusions and future work.

2 Related Technologies

In 2003 there were more than 10 recognized groups defining standards for BPM
related activities. 7 of these bodies were working on modeling definitions so its
no wonder that the whole picture got very confused [31]. Fortunately there has
been a lot of consolidation, and currently only 3 key standards to really take
notice:

1. BPMN
2. XPDL
3. BPEL

The Business Process Modeling Notation (BPMN) is a standardized graphical
notation for graphically representing business processes workflows in a Business
Process Diagram (BPD). The BPD is based on a flowcharting technique that is
similar to UML Activity diagrams. BPMNs primary goal is to provide a standard
notation that is readily understandable by all business stakeholders. Stakehold-
ers in this definition include business analysts, technical developers and business
managers. BPMN is primarily constrained to support only the concepts related
to business processes. Consequently, there is no support for modeling organiza-
tional structure, hierarchical functional breakdowns, data schemas and various
other sorts of mapping that are needed for a systems specification. Needless to
say, apart from the BPMN graphical elements that are visually appealing and
easier to communicate among business users, it provides limited tangible sys-
tem requirements that are hard to trace back to the constituent systems. With
the advent of SOA, these business processes have taken the shape of services.
While it shows the orchestration of services, it does not mandate any execution
platform or testing platform to build a system. It works in conjunction with
Business Process Execution Language (BPEL), that is a standard in itself, to
deliver executable code for mockups and concept validation. This is a needed
feature, however plagued with lack of roundtrip engineering, mismatch between
transformations from BPMN to BPEL and vice-versa, ambiguities and confusion
with multiple tool vendors leading to isolated BPMN models.

BPEL is an ”execution language” the goal of which is to enable definition of
web service orchestrations. It’s actually an acronym for Web Services Business
Process Execution Language (WS-BPEL) and has no standard graphical nota-
tion. Ultimately, BPEL is all about bits and bytes being moved from place to
place and manipulated. BPEL code is normally generated from BPMN specifi-
cation as BPMN is the overarching specification that uses BPEL as its execution
platform. The fundamental difference between the BPMN and BPEL specifica-
tions makes it very difficult to generate human-readable BPEL code.

Agile Net-centric Systems Using DUNIP 163

The XML Process Definition Language (XPDL) is a format to interchange
business process definitions between different workflow products. It defines an
XML Schema for specifying the declarative part of workflow/business processes.
It is described not an executable programming language like BPEL, but specifi-
cally a process design format that literally represents the ”drawing” of the pro-
cess definition, such as the X and Y position of the nodes. XPDL is effectively
the file format or ”serialization” of BPMN. More generally, it can also support
any design method or process model that uses the XPDL meta-model. XPDL
is a proven format for process design interchange, and it is the most practical
standard for establishing a Process Design Ecosystem.

BPEL has largely been promoted by tool vendors and articles like [57], [58]
argue that shortcomings of BPEL outweigh its benefits and simple flash tools
can be made that could render BPMN using XPDL formats and execute the
process model. Summarizing, currently there is no popular means other than
BPMN/BPEL to design a web service workflow orchestration and supposedly
no system theoretical foundation to build a net-centric system.

3 DEVS Unified Process with DEVS/SOA

3.1 Discrete Event Systems Specification

Discrete Event System Specification (DEVS) [39] is a formalism, which provides
a means of specifying the components of a system in a discrete event simulation.
In DEVS formalism, one must specify Basic Models and how these models are
connected together. These basic models are called Atomic Models (Figure 2) and
larger models which are obtained by connecting these atomic blocks in meaning-
ful fashion are called Coupled Models (Figure 3). Each of these atomic models
has inports (to receive external events), outports (to send events), set of state

variables, internal transition, external transition, and time advance functions.
Mathematically it is represented as 8-tuple system:

M =< X, S, Y, δint, δext, δcon, λ, ta >

where

X is the set of input values

S is the set of states

Y is the set of output values

δint : S → S is the internal transition function

δext : Q × Xb → S is the external transition function,

where Xbis a set of bags over elements in X, Q is the total state set

δcon : S × Xb → S is the confluent transition function,

subject to δcon(s, φ) = δint(s)

λ : S → Yb is the output function

ta : S → R(0+,inf) is the time advance function

164 S. Mittal

Fig. 2. Hierarchical components at two levels

Fig. 3. Hierarchical components for multi-level systems

The models description (implementation) uses (or discards) the message in the
event to do the computation and delivers an output message on the outport
and makes a state transition. A DEVS-coupled model designates how atomic
models can be coupled together and how they interact with each other to form a
complex model. The coupled model can be employed as a component in a larger
coupled model and can construct complex models in a hierarchical way. The
specification provides component and coupling information. The coupled DEVS
model is defined as follows.

M =< X, Y, D, Mij, Ij , Zij >

where

X is a set of inputs

Y is a set of outputs

D is a set of DEVS component names

Agile Net-centric Systems Using DUNIP 165

for each i ∈ D,

Mi is a DEVS component model

Ii is the set of influences for I

for each j ∈ Ii,

Zij is the i-to-j output translation function.

A Java-based implementation of DEVS formalism, DEVSJAVA [40], can be used
to implement these atomic or coupled models. DEVS formalism consists of mod-
els, the simulator and the Experimental Frame as show in Figure 4. We will
focus our attention to these two types of models i.e. atomic and coupled.

Fig. 4. DEVS separation of the model, the simulation and the Experimental Frame

3.2 Web Services and Interoperability Using XML

The Service oriented Architecture (SOA) framework is a framework consisting of
various W3C standards, in which various computational components are made
available as services that interact in an automated manner achieving machine-
to-machine interoperable interaction over the network. The interface is specified
using Web Service Description language (WSDL) [38] that contains information
about ports, message types, port types, and other relating information for bind-
ing two interactions. It is essentially a client server framework, wherein client
requests a service using a SOAP message that is transmitted via HTTP protocol
in the XML format. A Web service is published by any commercial vendor at a
specific URL is consumed/requested by another commercial application on the
Internet. It is designed specifically for machine-to-machine interaction. Both the
client and the server encapsulate their messages in SOAP wrappers.

The fundamental concept of web services is to integrate software application as
services. Web services allow the applications to communicate with other applica-
tions using open standards. To offer DEVS-based simulators as web services, they

166 S. Mittal

must have the following standard technologies: communication protocol (Simple
Object Access Protocol, SOAP [35]), service description (Web Service Descrip-
tion Language, WSDL), and service discovery (Universal Description Discovery
and Integration, UDDI).

3.3 An Abstract DEVS Service Agent

As a crucial part of our workflow, we have designed an Abstract DEVS Ser-
vice Agent to link DEVS models with Web Services and to generate statistics
regarding remote method calls and response times.

Figure 5 depicts an illustrative example. Our proposed model consists of two
DEVS atomic models. The DEVS Web Service Consumer invokes the remote
operation provided by means of an external transition. When the operation is
processed, this atomic model calculates the round-trip-time (RTT) taken by such
operation and directs both the RTT and the received response from the Web
Service to the DEVS Logger atomic model. At the end of the simulation, the
DEVS Logger provides statistics such as operations executed successfully, the
RTT consumed per operation, etc.

The DEVS Web Service Consumer needs to be configured by means of: (a)
the URL of the Web Service, (b) name of the operations offered by the web
service, and (c) the parameters needed by these operations. This information
is specified in the WSDL document. In order to avoid to the user to extract
this information by hand, we have implemented a wrapper which automatically
generates the DEVS Web Service Consumer for a Web Service. Thus, given
a WSDL address, our framework is able to generate the corresponding DEVS
Service Agent. Details on how this wrapper is built are given in Section 5.

Fig. 5. Schematic showing the architecture of DEVS Agent Service Model

3.4 DEVS/SOA Framework for Net-Centric Modeling and
Simulation

DEVS Modeling Language (DEVSML) is a way of representing DEVS mod-
els in the XML language [22]. The DEVSML is built on JAVAML [3], which
is an XML representation of JAVA. DEVSML takes its power from the un-
derlying JAVAML that is needed to specify the behavior logic of atomic and

Agile Net-centric Systems Using DUNIP 167

coupled models. The DEVSML models are transformable to JAVA in both
forward and reverse directions. It is an attempt to provide interoperability
between various models and create dynamic scenarios. The layered architec-
ture of this capability is shown in Figure 6. At the top is the application layer
that contains model in DEVSJAVA or DEVSML. The second layer is the DE-
VSML layer itself that provides seamless integration, composition and dynamic
scenario construction resulting in portable models in DEVSML that are complete
in every respect. These DEVSML models can be ported to any remote location
using the net-centric infrastructure and be executed at any remote location. An-
other major advantage of such capability is total simulator transparency. The
simulation engine is totally transparent to model execution over the net-centric
infrastructure. The DEVSML model description files in XML contains meta-data
information about its compliance with various simulation builds or versions to
provide true interoperability between various simulator engine implementations.
This has been achieved for at least two independent simulation engines as they
have an underlying DEVS protocol to adhere to. This has been made possible
with the implementation of a single atomic DTD and a single coupled DTD that
validates the DEVSML descriptions generated from these two implementations.
Such run-time interoperability provides great advantage when models from dif-
ferent repositories are used to compose bigger coupled models using DEVSML
seamless integration capabilities. More details about the implementation can be
seen at [22].

The DEVS/SOA framework [28] is analogous to other DEVS distributed sim-
ulation frameworks like DEVS/HLA, DEVS/RMI and DEVS/CORBA [32],[13],
[36],[7],[17],[41]. The distinguishing mark of DEVS/SOA is that it uses SOA as
the network communication platform and XML as the middleware and thus acts
as a basis of interoperablity using XML [27]. Furthermore, it uses web-services
as the underlying technology to implement the DEVS simulation protocol.

The complete setup requires one or more servers that are capable of running
DEVS Simulation Service, as shown in Figure 7. The capability to run the simu-
lation service is provided by the server side design of DEVS Simulation protocol
supported by the latest DEVSJAVA Version 3.1 [1].

The numerous modes of DEVS model generation are beyond the scope of this
paper (the interested reader is referred to [24]. Once a DEVS model package is
developed, the next step is simulation as illustrated in Figure 7.The DEVS/SOA
client (Figure 8) takes the DEVS models package and through the dedicated
servers hosting DEVS simulation services, it performs the following operations:

– Upload the models to specific IP locations i.e. partitioning (Figure 9)
– Run-time compile at respective sites
– Simulate the coupled-model
– Receive the simulation output at clients end

This section has laid the foundation of net-centric DEVS framework called
DEVS/SOA that allows deployment of DEVS models to specific IP addresses

168 S. Mittal

Fig. 6. Layered architecture of DEVSML towards transparent simulators in net-centric
domain

Fig. 7. Execution of DEVS models using DEVS/SOA framework

and allows interoperability between DEVS models using DEVSML. It provides
a layered framework in which the models are transparent to their simulators. In
the next section we will see how the net-centric DEVS is applicable to testing of
Global Information Grid based on Service Oriented Architecture (GIG/SOA).
A sample movie of DEVS/SOA in action is available at [34].

Agile Net-centric Systems Using DUNIP 169

Fig. 8. DEVS/SOA client hosting a distributed simulation

Fig. 9. Server assigned to models using manual model partitioning

3.5 DEVS Unified Process a.k.a DUNIP

This section describes the bifurcated Model-Continuity process [24] and how var-
ious elements like automated DEVS model generation, automated test-model
generation (and net-centric simulation over SOA are put together in the pro-
cess, resulting in DEVS Unified Process (DUNIP) [12],[24]. The DEVS Unified
Process (DUNIP) is built on the bifurcated Model-continuity based life-cycle
methodology. The design of simulation-test framework occurs in parallel with
the simulation-model of the system under design. The DUNIP process consists
of the following elements:

1. Automated DEVS Model Generation from various requirement specification
formats

2. Collaborative model development using DEVS Modeling Language (DE-
VSML)

170 S. Mittal

3. Automated Generation of Test-suite from DEVS simulation model
4. Net-centric execution of model as well as test-suite over SOA

Considerable amount of effort has been spent in analyzing various forms of re-
quirement specifications, viz, state-based, Natural Language based, UML-based,
Rule-based, BPMN/BPEL-based and DoDAF-based, and the automated pro-
cesses which each one should employ to deliver DEVS hierarchical models and
DEVS state machines [15],[24]. Simulation execution today is more than just
model execution on a single machine. With Grid applications and collabora-
tive computing the norm in industry as well as in scientific community, a net-
centric platform using XML as middleware results in an infrastructure that
supports distributed collaboration and model reuse. The infrastructure pro-
vides for a platform-free specification language DEVS Modeling Language (DE-
VSML) [22] and its net-centric execution using Service-Oriented Architecture
called DEVS/SOA [23]. Both the DEVSML and DEVS/SOA provide novel ap-
proaches to integrate, collaborate and remotely execute models on SOA. This
infrastructure supports automated procedures for test-case generation leading
to test models.

Using XML as the system specifications in rule-based format, a tool known
as Automated Test Case Generator (ATC-Gen) was developed which facilitated
the automated development of test models [18],[19],[42]. DUNIP (Figure 10) can
be summarized as the sequence of the following steps:

1. Develop the requirement specifications in one of the chosen formats such as
BPMN, DoDAF, Natural Language Processing (NLP) based, UML based or
simply DEVS-based for those who understand the DEVS formalism.

2. Using the DEVS-based automated model generation process, generate the
DEVS atomic and coupled models from the requirement specifications using
XML

3. Validate the generated models using DEVS W3C atomic and coupled
schemas to make them net-ready capable for collaborative development, if
needed. This step is optional but must be executed if distributed model de-
velopment is needed. The validated models which are Platform Independent
Models (PIMs) in XML can participate in collaborative development using
DEVSML.

4. From step 2, either the coupled model can be simulated using DEVS/SOA
or a test-suite can be generated based on the DEVS models.

5. The simulation can be executed on an isolated machine or in distributed
manner (using SOA middleware if the focus is net-centric execution). The
simulation can be executed in real-time as well as in logical time.

6. The test-suite generated from DEVS models can be executed in the same
manner as laid out in Step 5.

7. The results from Step 5 and Step 6 can be compared for verification and
validation process.

Agile Net-centric Systems Using DUNIP 171

Fig. 10. The complete DEVS Unified Process

4 Multi-layered Agent-Based Test Instrumentation
System Using GIG/SOA

A DEVS distributed federation is a DEVS coupled model whose components
reside on different network nodes and whose coupling is implemented through
middleware connectivity characteristic of the environment, e.g., SOAP for
GIG/SOA, The federation models are executed by DEVS simulator nodes that
provide the time and data exchange coordination as specified in the DEVS ab-
stract simulator protocol. The DEVS Agent Monitoring System or Test Instru-
mentation System (TIS) is a DEVS coupled system that observes and evaluates
the operation of the DEVS coupled system model. The DEVS models used to
observe other participants are the DEVS test-agents. The TIS should provide a
minimally intrusive test capability to support rigorous, ongoing, repeatable and
consistent testing and evaluation (T&E). Requirements for such a test imple-
mentation system include ability to

1. deploy agents to interface with SoS component systems in specified assign-
ments

2. enable agents to exchange information and coordinate their behaviors to
achieve specified experimental frame data processing

3. respond in real-time to queries for test results while testing is still in progress
4. provide real-time alerts when conditions are detected that would invalidate

results or otherwise indicate that intervention is required

172 S. Mittal

5. centrally collect and process test results on demand, periodically, and/or at
termination of testing.

6. support consistent transfer and reuse of test cases/configurations from past
test events to future test events, enabling life-cycle tracking of SoS perfor-
mance.

7. enable rapid development of new test cases and configurations to keep up
with the reduced SoS development times expected to characterize the
reusable web

8. service-based development supported on the GIG/SOA.

Many of these requirements are not achievable with current manually-based
data collection and testing. Instrumentation and automation are needed to meet
these requirements. Net-centric Service Oriented Architecture (SOA) provides a
currently relevant technologically feasible realization of the concept. As discussed
earlier, the DEVS/SOA infrastructure enables DEVS models, and test agents in
particular, to be deployed to the network nodes of interest. [26],[43] provides
complete detail on how such observers can be autogenerated and be executed
using DEVS/SOA.

4.1 Deploying Test Agents over the GIG/SOA

Figure 11 depicts a logical formulation test federation that can observe a System
Under Test (SUT) to verify the message flow among components as derived from
information exchange requirements. In this context, a mission thread is a series
of activities executed by operational nodes. In playing out this thread, DEVS
test models are informed of the current activities (or see to detect their onset)
as well as the operational nodes that execute these messages. These test models
watch messages sent and received by the components that host the participating
operational nodes. The test models check whether such messages are the ones
that should be sent or received under the current function.

Fig. 11. Multi-layered Agent-based Test Instrumentation Framework

Agile Net-centric Systems Using DUNIP 173

The test-agents are contained in DEVS Experimental Frames (EF) are im-
plemented as DEVS models, and distributed EFs are implemented as DEVS
models, or agents as we have called them, reside on network nodes. Such a fed-
eration, illustrated in Figure 12, consists of DEVS simulators executing on web
servers on the nodes exchanging messages and obeying time relationships un-
der the rules contained within their hosted DEVS models. This DEVS Agent
Monitoring System that contains DEVS models interacts with real world web
services, as we shall in Section 7 case study.

4.2 Implementation of Test Federations

A test federation observes an orchestration of web-services to verify the message
flow among participants adheres to information exchange requirements. A good
way to specify these requirements is through Department of Defense Architecture
Framework (DoDAF) that have specific documents (OV-3 and SV-6) to localize
these information exchanges [9]. These documents very well define the input
and output messages for the constituent system and operational components. As
derived from DoDAF inputs, a mission thread is a series of activities executed by
operational nodes and employing the information processing functions of web-
services. As discussed in [26],[43], test agents watch messages sent and received
by the services that host the participating operational nodes. Depending on
the mode of testing, the test architecture may, or may not, have knowledge of
the driving mission thread under test. If thread knowledge is available, DEVS
test agents can be aware of the current activity of the operational nodes it is
observing. This enables it to focus more efficiently on a smaller set of messages
that are likely to provide test opportunities. A DEVS distributed federation is a
DEVS coupled model whose components reside on different network nodes and
whose coupling is implemented through middleware connectivity characteristic of
the environment, e.g., SOAP for GIG/SOA, The federation models are executed
by DEVS simulator nodes that provide the time and data exchange coordination
as specified in the DEVS abstract simulator protocol.

To help automate set-up of the test we use a capability to inter-covert be-
tween DEVS and XML. DEVSML allows distributing DEVS models in the form
of XML documents to remote nodes where they can be coupled with local ser-
vice components to compose a federation [23],[24]. The layered middleware ar-
chitecture capability is shown earlier in Figure 6. Such run-time interoperability
provides great advantage when models from different repositories are used to
compose models using DEVSML seamless integration capabilities. Finally, the
test federation is illustrated in Figure 12 where different models (federates) in
DEVSML collaborate for a simulation exercise over GIG/SOA.

This section has laid out the framework on the creation and execution of a
DEVS-based test instrumentation system. More details on the TIS design aspects
can be seen in [26]. In the next section we will demonstrate how it can be applied
to web services framework.

174 S. Mittal

Fig. 12. Protypical DEVS Test Federation

5 Abstract DEVS Service Wrapper

This section will provide details about the role of DEVS interface with a live
web service. This is the most crucial step as it links a live web service with a
modeling and simulation framework. It is the seat of model-continuity [52] where
a DEVS atomic model performs the dual role of a model as well as a wrapper
for a real software application utilizing web services.

Web services are utilized using web service clients that are created by vari-
ous open source and commercially available tools such as Eclipse Web Service
Toolkit (WST), Netbeans IDE, Websphere etc.. All of them use the WSDL as
the input to generate the web service client. In our implementation we utilize
the Axis2 framework to generate clients. Our choice of Axis2 plugin is driven by
the implementation platform of DEVS/framework which is Axis/Java. However,
it doesnt matter which method is used to generate the client.

A DEVS model has two modes of operation: an internal behavior representa-
tion and an external behavior representation. In developing a DEVS wrapper,
which would be effectively a DEVS web service client, we will implement the
external behavior. The concept is shown in the top half of Figure 13. The detail
is shown in the lower half of the same Figure 13. It shows the mapping between
the Axis layers, specifically the Axis binding layer and the DEVS elements. It
describes the external event that is triggered whenever there is message exchange
through the Axis client. This triggered event informs the DEVS atomic model
that wraps this Axis client. Such an arrangement does not create any bottle-
neck or any pipe between the actual Axis client and the network. The DEVS
wrapper is informed of the round-trip-time (RTT) when the actual service has
been executed its completion. Consequently, it is a passive observer and offers
no interference to the true communication between the client and the live web

Agile Net-centric Systems Using DUNIP 175

Fig. 13. DEVS Wrapper implementation over an Axis Web Service client

service. By inserting a specific set of code in any Axis generated client, we can
create a DEVS wrapper that is ready to become a part of a test-agent federation
coupled system, as described in the previous section.

Having described the basic DEVS Web service wrapper, the next task in line
is the creation of a coupled model, a web service workflow to be more specific to
actually utilize the DEVS modeling and simulation capabilities.

6 Workflow Composition and DoDAF-Based Mission
Threads

Web service workflows and orchestration is generally done using BPEL or BPMN
or hard-coded in a language specific platform implementation such as Java or
.NET. However, to create a DEVS coupled model there are numerous ways [24].
For example the most recent XML-Based Finite Deterministic DEVS (XFD-
DEVS) [25] uses XML as the preferred means to develop a Platform Indepen-
dent Model for both atomic and coupled models. Providing another method to
create a web service workflow is beneficial for both the communities. Not only
does it provide modeling and simulation capabilities to the existing Web Service
architecture, it also establishes DEVS as a production environment that can
effectively create application level code using system theoretical concepts.

Another mode of system level design is made possible by System Entity Struc-
ture (SES) [44]. The SES is a high level ontology framework targeted to mod-
eling, simulation, systems design and engineering. Its expressive power, both in

176 S. Mittal

strength and limitation, derive from that domain of discourse. An SES is a for-
mal structure governed by a small number of axioms that provide clarity and
rigor to its models. The structure supports hierarchical and modular compo-
sitions allowing large complex structures to be built in stepwise fashion from
smaller, simpler ones. Tools have been developed to transform SESs back and
forth to XML allowing many operations to be specified in either SES directly
or in its XML guise. The axioms and functionality based semantics of the SES
promote pragmatic design and are easily understandable by data modelers. To-
gether with the availability of appropriate tool support, it makes development of
XML Schema transparent to the modeler. Finally, SES structures are compact
relative to equivalent Schema and automatically generate associated executable
simulation models.

The most recent Department of Defense Architecture Framework (DoDAF)
application to GIG/SOA is another contender to compose web service work-
flows for mission-thread design and evaluation. DoDAF, as applicable to mission-
thread testing, consists of three views: Operational View (OV), Systems View
(SV) and Technical View (TV). It comprises of 26 documents to describe a mis-
sion thread. Wrapping head around such documents require sufficient level of
understanding and experience with C4ISR frameworks. The main documents
are listed in Table 1.

For more detailed analysis of DoDAF, refer [20],[21]. Figure 14 shows the
various DoDAF views map into the SES framework.

Operational and System perspectives are considered two different decompo-
sitions of the system under consideration. They are represented by correspond-
ing nodes called aspects labeled by the names, Operational View and System
View, respectively. The Operational View aspect has entities labeled opNodes
(operational nodes) and activities. The various operational views of DoDAF

Table 1. Relevant DoDAF products

Description DoDAF Type

Overview and Summary Information AV-1
High-Level Operational Concept Description OV-1
Operational Node Connectivity Description OV-2
Operational Information Exchange Matrix OV-3
Organizational Relationships OV-4
Operational Activity Model OV-5
Operational Event Trace Description OV-6b,c
Systems Interface Description SV-1
Communication Description SV-2
Systems to Systems Matrix SV-3
Functionality Description SV-4
Operational Activity to Function Traceability
Matrix

SV-5

Data Exchange Matrix SV-6
Technical Standards Profile TV-1

Agile Net-centric Systems Using DUNIP 177

Fig. 14. Mapping of DoDAF documents to System Entity Structure (SES)

(other than OV-4) are easily interpreted as describing the entities and their
interactions. Likewise, the System View aspect has entities labeled functions with
DoDAF views that are associated with the functions and their interactions. The
one exception is SV-5 which is a relation between the functions of the System
View and the activities of the Operational View. This view describes how the
activities are implemented via executable functions supplied by the system.

Although the current DoDAF specification provides an extensive methodology
for system architectural development, it is deficient in several related dimensions
absence of integrated modeling and simulation support, especially for model-
continuity throughout the development process, and lack of associated testing
support [20]. To overcome these deficiencies, we described an approach to support
specification of DoDAF architectures within a development environment based
on DEVS-based modeling and simulation. The authors [20],[45] enhanced the
DoDAF specification to incorporate M&S as a means to develop executable
architecture [2] from DoDAF specifications and provided detailed DoDAF to
DEVS mapping leading to simulation, and feasibility analysis.

6.1 Web Service Work Flow Formalism

So, after providing an overview of various frameworks that can compose a web
service workflow, or simply a process workflow based on certain goals, objectives
or requirements, we can deduce the information we need to compose a workflow
and develop an automated procedure towards DEVS based design and analysis.

178 S. Mittal

The information set for a Web Service workflow formalism can be described in
a four element tuple as:

WSWF :< W, M, F, X >

where,

W : Set of Web service definitions (WSDLs) or Agents each with a valid URL

M : Set of web service methods

F : defined as < C, L, D >

where,

C is a set of W-M pairs with each pair as a source or destination

L is a set of partner links with each link containing a

src and dest pair defined in C

D is a type of workflow mode which can either be a

sequence, while, holdSend or concurrent type which are

corresponding to the BPEL specifications

X is a Set of messages,

where,

each Message contains Data and is defined by time of entry in system,

rate, whether it is periodic or stochastic and can be either an Input

message or an Output message

The WSWF is expressed in SES as shown in Figure 15 and Figure 16:

Fig. 15. SES representation of Web Service Work Flow Formalism

Agile Net-centric Systems Using DUNIP 179

Fig. 16. SES representation of Workflow entity from Figure 15

The WSWF is represented using natural language as shown below:

From FORMALISM perspective, WSWF is made of SystemDefinitions,

ServiceMethods, and Workflow!

From INFO perspective, WSWF is made of messages!

From SystemContainter perspective, SystemDefinitions is made

of more than one SystemComponent!

From MethodContainer perspective, ServiceMethods is made of

more than one ServiceMethod!

From MessageContainer perspective, Messages is made of more

than one Message!

From SystemStructure perspective, SystemComponent is made of URL!

From MessageStructure perspective, Message is made of DATA!

From WorkflowStructure perspective, Workflow is made of

WorkflowMode, ComponentServiceMethodPairs, and PartnerLinks!

From InfoStructure perspective, ServiceMethod is made of

InfoExchanges!

From INFO perspective, InfoStructure is like MessageContainer!

SystemComponent can be WSDL, or USERAGENT in SystemType!

Message can be InputMsg, or OutputMsg in MessageType!

Message has timeOfStart, period, is_Periodic, and is_Random!

InputMsg has SystemComponent!

ServiceMethod has methodName, parameters, and messageCount!

WorkflowMode can be Sequence, While, HoldSend, or Concurrent in

WorkflowType!

180 S. Mittal

From WhileStructure perspective, While is made of Condition!

Sequence has order, and count!

HoldSend has holdTime!

Concurrent has List!

From ComponentSMPairContainer perspective, ComponentService-

-MethodPairs is made of more than one ComponentServiceMethodPair!

From PartnerLinkContainer perspective, PartnerLinks is made of

more than one PartnerLink!

PartnerLinks has ComponentCount and PortCount!

the range of PartnerLink’s ComponentCount is RANGE with

values(2,2)!

the range of partnerLink’s PortCount is RANGE with value(2,2)!

From PartnerLinkStructure perspective PartnerLink is made of

ComponentServiceMethodPair, and Ports!

ComponentServiceMethodPairs can be Src, or Dest in ComponentType!

From PortContainer perspective, Ports is made of more than one

Port!

Port can be Inport, or Outport in PortType!

By expressing the SES for WSWF formalism in restricted natural language, it is
made executable using SES-DEVS methodology as elaborated in Zeiglers recent
book [43]. Using the SES builder [33], we can very well extract the DTD and/or
schema for WSWF. The generated DTD for WSWF is available at [59].

6.2 Mapping of DEVS, BPEL and DoDAF Artifacts with WSWF
Formalism

The WSWF information set can very well be extracted from the DoDAF in-
formation set. WSWF formalism has also been mapped to XML-Based Finite
Deterministic DEVS (XFDDEVS) [25],[46] atomic and coupled models. XFD-
DEVS is defined by the following tuple:

Atomic XFDDEV S = < incomingMessageSet,

outgoingMessageSet,

StateSet,

T imeAdvanceTable,

InternalT ransitionTable,

ExternalT ransitionTable,

OutputTable >

Coupled XFDDEV S = < ModelSet,

CouplingSet >

Agile Net-centric Systems Using DUNIP 181

The table below shows the mapping with BPEL as well. Although mapping to
WSWF to BPEL is in early stages, WSWF does have the information set that
is required to generate a BPEL file and the associated WSDL file as well. The
code to DEVS models has been autogenerated using technologies like JAXB
and XSLT. The autogenerated code provides us the DEVS skeleton in platform
independent implementation in XML which could be transformed to platform
specific implementation in Java, C++ or C#. More information on platform
independent DEVS model generation can be seen at [25]. This skeleton can be
easily augmented for any run-time capabilities. Providing detailed code imple-
mentations have been retained for brevity.

Table 2. WSWF Mapping with DoDAF, XFDDEVS, and BPEL

WSWF DoDAF XFDDEVS BPEL

W OV-2, OV-4,
SV-4

ModelSet Process

M OV-5, OV-6 StateSet, ExternalTransi-
tionTable

Basic Activities,
PartnerLink-PortType
definitions

F
C W, M, OV-2,

OV-8
ExternalTransitionTable
paramss, InternalTransi-
tionTable params

PartnerLink params, source
and target specs in both ba-
sic and structured activities

L SV-2 CouplingSet PartnerLinks
D SV-5, OV-5,

OV-6
ExternalTransitionTable,
InternalTransitionTable

StructuredActivities

X SV-6, OV-3 ExternalTransitionTable,
OutputTable

Messages in accompanying
WSDL

The WSWF formalism is a new way to compose web service workflows that
is expressed in SES-XML methodology. Since it is expressed in XML, it can be
mapped easily to XPDL and possibly BPEL too. Since it is largely textual, it
can retrieve information from static DoDAF documents as per Table 1. This
detailed mapping, however, is not the focus of the current research and will be
reported in our forthcoming publication. Going further in our development and
execution of this workflow, the following sequential process provide the needed
steps in order to do performance evaluation using DEVS test models [26],[24]
or execution using DEVS/SOA framework as a real application. In terms of
net-ready capability testing, what is required is the communication of live web
services with those of test-models designed specifically for them. The approach
is:

1. Specify the scenario using WSWF
2. Develop the DEVS model (or generate DEVS workflow)
3. Auto-generate the test-models from DEVS models (using DUNIP as de-

scribed in [26])

182 S. Mittal

4. Run the model and test-model over SOA (as per DUNIP)
5. Execute as a real-time simulation with live web services embedded in DEVS
6. Execute the test-models with real-world web services (live)
7. Compare the results of steps 5 and 6 to perform verification and validation.

7 Case Study

This case study is divided into two parts:

1. The first study demonstrates the execution of a web service encapsulated in
a DEVS wrapper Agent and the associated obtained statistics.

2. The second study extends the first study by developing a workflow that
utilizes more than one web services in a workflow manner. It demonstrates
the following:
– Observe user activity with DEVS Agent via WSDL-based access to col-

laborative service
– Deploy DEVS virtual user models to simulate humans in collaboration

scenario with human user in the loop
– Show how DEVS agent observers communicate with other DEVS agent

via DEVS/SOA infrastructure.

7.1 DEVS Wrapper Agent

In this most basic demonstration, we use only one web service. This web service
executes a chat session between two users. The schematic is shown in Figure 17.
In our example, we execute the session with a live person and a DEVS agent.
The live person here is Jim Client that connects to the CHAT service via an
Internet browser at [6]. The chat session is executed using the GUI as shown in
Figure 18.

Fig. 17. Schematic showing basic execution of DEVS Wrapper Agent

Agile Net-centric Systems Using DUNIP 183

Fig. 18. Chat service client engaged with another chat particpant

The DEVS agent is defined according to the WSWF formalism as follows:

<W>: CHAT:

<W1:CHAT>:http://150.135.220.240:8080/ChatServiceCollaboration

/services/ChatService?wsdl

<A1:Jim>: Jim:localhost:8080

<M>: Methods:

<M1> postMessage()

<M2> getAllMessages()

<M3> getLastMessageId()

<M4> registerAuthor()

<M5> getUsers()

<M6> getAllMessagesForAuthor()

<F>:"Flow specifications"

<C>

<C1:Src>A1-M1

<C2:Src>A1-M2

<C3:Src>A1-M4

<C4:Src>A1-M5

<C5:Dest>W1-M1

<C6:Dest>W1-M2

<C7:Dest>W1-M4

<C8:Dest>W1-M5

<L>

<L1>C1-C5

<L2>C2-C6

<L3>C3-C7

<L4>C4-C8

<D>

<D1>M1-HoldSend

184 S. Mittal

<D2>M2-While-infinity

<D3>M4-HoldSend

<D4>M5-While-infinity

<X>: Set of Messages

<InputMsg>

<I1>W1-M1{string:T1:0:false:false}

<I2>W1-M4{string:T0:0.1:true:false}

<OutputMsg>

<O1>M2{string:T2:1:true:false}

<O2>M5{string:T2:1:true:false}

<W> tag contains description of the Chat Web Service as W1 and the agent de-
scription as A1 along with their URL. <M> contains the list of service methods
that may be used in the process flow. <F> contains the flow description cat-
egorized into <C,L,D> as per the WSWF. <C> provides the source and des-
tination specification for a W/A defined in <W> with <M>. <L> specifies the
coupling between the sources and destinations as defined in <C>. <D> con-
tains the execution of methods in <M> in logic implementation. For example,
<D1>M1-HoldSend implies that the method M1 is to executed in HoldSend man-
ner. Similarly, <D2>M2-While- infinity implies that M2 will be executed in-
definitely when invoked or bounded by any condition. <X> specifies the input
and output message structures in <InputMsg, OutputMsg> tags. The structure
of <InputMsg> as specified in WSWF SES is <SystemComponent-Method{Data:
time of Start: R+: isPeriodic: isRandom>. For example, the specification
<I1>W1-M1string:T1:0:false:false implies that the message I1 is an in-
put to W1, method M1 with data as string. It starts at T1 with period
0. Any non-zero value means that the message will be incoming at a pe-
riodic rate. The next boolean variable false implies that it is not peri-
odic. The last variable false implies that it is not random either. Similary,
<I2>W1-M4string:T0:0.1:true:false implies that M4 at W1 is to be invoked
by string data message with a periodic rate of 0.1. The <OutputMsg> has a
similar structure except the fact that it does not contain any information about
the system component. It only contains information about the method in <M> as
it is just an output message. Whenever method <Mx> is invoked, it returns with
the parametric details as in <O1>M2string:T2:1:true:false.

It is worth stressing here that the messages flow through the linkages as
specified in <L>. This acts as a coupling for the DEVS models. There are
two DEVS models in the WSWF instance described above, viz. W1 and A1.
Based on the coupling information for ex. <L4>C4-C8 implies that the source
is Agent <C4:Src>A1-M5 and the destination is Web service <C8:Dest>W1-M5.
The source sends a message invoking method M5 at the destination. If there
is a specification on how M5 should be invoked in <InputMsg> listing, then
the source has to ensure that it conforms to that specification. In this exam-
ple there is no specification for M5. This implies that there are no parame-
ters to be passed, but just the invocation. At the destination side, M5 has a

Agile Net-centric Systems Using DUNIP 185

specification <O2>M5string:T2:1:true:false, which implies that whenever M5
returns a value, it will according to this <OutputMsg> specification.

The statistics for each of the methods in <M> is gathered according to the
autogenerated agent GUI monitor at the agents end. The statistics are largely
the round trip time (RTT) for each of <M>. The GUI in Figure 19 also shows
the SOAP messages that are exchanged between the pairs as specified in <W>.

Fig. 19. Associated statistics GUI for an encapsulated Web Service in DEVS Atomic
Model

7.2 Workflow Design, Analysis and Execution

The previous demonstration has established that we can encapsulate a live web
service within a DEVS atomic model using an XML based formalism such as
WSWF. It also establishes that we can create virtual users as DEVS agents
that input and communicate with live users. Having such capability allows us to
build upon the advances of DEVS hierarchical component based modeling and
simulation. In the next demonstration, we will build a workflow with two live
web services and all the clients as virtual users.

DEVSJAVA Execution on a Single Machine The first service is the same
CHAT service and the second service is a weather service [37]. In this demon-
stration, we will show that virtual users are engaged in chat session and one
user requests weather from another user. The second user (Jim Client) shown in
Figure 20 requests the weather from the Weather web service and reports it back
to the first user using the CHAT service. We will then also execute the entire
scenario as a self-contained coupled model on DEVS/SOA with these virtual
agents deployed at different IP addresses. The schematic is shown in Figure 20.

186 S. Mittal

Fig. 20. Schematic of Workflow scenario with two virtual DEVS agents

The workflow according to WSWF formalism is defined as follows:

<W>: CHAT-and-WEATHER:

<W1:CHAT>:<http://150.135.220.240:8080/ChatService Collaboration/

services/ChatService?wsdl>

<W2:WEATHER>: http://www.webservicex.net/WeatherForecast.asmx.

<A1:JIM>: Jim:localhost:8080

<A2:USER>: User:localhost:8080

<M>: Methods:

<M1> postMessage()

<M2> getAllMessages()

<M3> getLastMessageId()

<M4> registerAuthor()

<M5> getUsers()

<M6> getWeather()

<F>:"Flow specifications"

<C>

<C1:Src>{A1,A2}-M1

<C2:Src>A1-M2

<C3:Src>{A1,A2}-M4

<C4:Src>A1-M5

<C5:Src>A2-M6

<C6:Dest>W1-M1

<C7:Dest>W1-M2

<C8:Dest>W1-M4

<C9:Dest>W1-M5

<C10:Dest>W2-M6

<L>

<L1>C1-C6 //notice that both A1 and A2 are coupled to W1-M1

<L2>C2-C7

<L3>C3-C8 //notice that both A1 and A2 are coupled to W1-M4

<L4>C4-C9

<L5>C5-C10

<D>

Agile Net-centric Systems Using DUNIP 187

<D1>M1-HoldSend:5

<D2>M2-While-infinity

<D3>M4-HoldSend

<D4>M5-While-infinity

<D5>M6-HoldSend

<X>: Set of Messages

<InputMsg>

<I1>W1-M1{string:T1:5:true:false}

<I2>W1-M4{string:T0:0.1:true:false}

<I3>W2-M6{string:T3:0:false:false}

<I4>A2-M1(string:T4:0:false:false)

<OutputMsg>

<O1>M2{string:T2:1:true:false}

<O2>M5{string:T2:1:true:false}

<O3>M6{string:T3:0:false:false}

where, T0 > 0, T1&T2 > 0, and T3,T4>T1,T2.

The description of WSWF instance above is on the same lines as of previous
example. However, instead of just one, there are two services in this instance
as specified by <W1> and <W2>. The two services are: the Chat Service and
the publically available Weather service. There is an addition method <M6>

that invokes the Weather service. There are two agents viz., Jim and USER.
The USER is a virtual user and is modeled as a DEVS Agent and Jim is a live
person. A DEVS agent is a computer program implemented as a DEVS model.

Fig. 21. Snapshot of execution of workflow case study as depicted in Figure 21

188 S. Mittal

It is engaged in chat session with Jim and reports back the results of Weather

service when the request to invoke comes from Jim, the real user.
The demonstration has been structured in a manner that it be executed in a

single machine. To execute it on remote machines we will be using DEVS/SOA
which is described in the next sub-section. To execute it on a single machine,
DEVSJAVA platform is sufficient. Figure 21 shows the virtual user USER in
black console and the Jim real user in the Chat window. Notice that the Jim client
also has the monitor running that invokes method <M4> and <M5> at the Chat

Web service. The GUI also shows the DEVSJAVA simulation viewer which
shows that DEVSJAVA is being used to run the scenario. The Jim client requests
weather from USER client. The USER invokes <W2> web service, and reports back
the result by method <M1> to the Chat Service.

To provide complete performance analysis of the workflow as per the GUI in
Figure 21 is outside the scope of the paper and has been retained.

Execution on DEVS/SOA Framework. The scenario remains the same as
in preview sub-section. However, the execution is made on DEVS/SOA platform
(Figure 22). The real user Jim has now been replaced by another virtual client.
The only modification in the WSWF instance is the following:

<W>: CHAT-and-WEATHER:

<W1:CHAT>:<http://150.135.220.240:8080/ChatService Collaboration/

services/ChatService?wsdl>

<W2:WEATHER>: http://www.webservicex.net/WeatherForecast.asmx.

<A1:USER1>: User1:150.135.218.205:8080

<A2:USER2>: User2:150.135.220.240:8080

Fig. 22. Execution of Workflow scenario with DEVS/SOA framework

The generated Java code is fed to the DEVS/SOA client GUI as reproduced again
in Figure 23. USER2 in the generated code is given the Class name PerfMonitor

for differentiation. The Class VirtualUser is USER1. The USER1 is assigned an IP
address 150.135.218.205:8080 and USER2 at 150.135.220.240: 8080. These

Agile Net-centric Systems Using DUNIP 189

Fig. 23. Models package being executed using DEVS/SOA client

Fig. 24. IP assignment of models for Workflow scenario

virtual users are then sent to these respective IP addresses. These IP addresses
provide the DEVS Simulation service and Apache Tomcat servers are used as
containers at these IPs. The other dependent files are also uploaded at corre-
sponding IPs. The assignment can be done manually as shown in
Figure 24. Once uploaded, the files are compiled at run-time at the servers end
and a distributed simulation is executed between these remote machines. Once
the simulation is over, the result is communicated back into the console win-
dow as shown in Figure 23. The detailed output of the simulation run is shown
below. As can be seen from the output below, VirtualUser sent three requests

190 S. Mittal

and got responses with different delays. The responses are communicated by the
other USER2 after invoking the Weather service. The result is also sent back
to VirtualUser, as,

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5.

Models assigned specifically to respective Server IP:

--Component Model: SimUserDemo --> 150.135.218.205:8080

--Component Model: VirtualUser --> 150.135.218.205:8080

--Component Model: PerfMonitor --> 150.135.220.240:8080

--Component Model: WeatherDataServer --> 150.135.220.240:8080

Uploading in progress... please wait...

Initiating UPLOAD...

Uploading files to server 150.135.220.240:8080

Files uploaded.

Uploading files to server 150.135.218.205:8080

Files uploaded.

Compilation in progress....please wait....

Starting compilation at remote servers.....

Compiling project at 150.135.220.240:8080...

Success: true

Project compiled.

Compiling project at 150.135.218.205:8080...

Success: true

Project compiled.

Waiting to start SIMULATION....

Simulation in Progress....please wait...

Running simulation ...

21 iterations.

Simulators output:

150.135.220.240 output:

VirtualUser: sent a request

Avg. delay = 375.0 milliseconds

Spurious response count = 0

Outstanding requests = 0

VirtualUser: response length 48

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5

VirtualUser: sent a request

Avg. delay = 355.25 milliseconds

Spurious response count = 0

Outstanding requests = 0

VirtualUser: response length 48

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5

SIMULATION over!

Agile Net-centric Systems Using DUNIP 191

Hybrid Execution Using DEVS/SOA and DEVSJAVA. Once we have
such DEVS coupled workflow system, we can extend this system by replacing any
virtual user with a live user. Figure 25 below shows the schematic of such opera-
tion and a demonstration is made available as an .avi file at [8]. In the schematic
below the DEVS coupled system is augmented with other DEVS agents for re-
porting statistics etc, basically the idea being, such DEVS enabled workflows
can now participate in live modeling and simulation exercises in real-time.

Fig. 25. WSWF formalism based workflow using DEVS as middleware for live modeling
and simulation exercises

8 Agility in DEVS Unified Process

Agile software methodologies have taken quite a notice these recent years pri-
marily due to the factors such as volatile ever-changing requirements, dynamic
technological landscape, high employee turnover, and most importantly, satisfy-
ing the business needs. [50] summarizes it as:

Agile development is not defined by a small set of pratices and techniques
but defines a strategic capability, a capability to create and respond to
change, a capability to balance flexibility and structure, a capability
to draw creativity and innovation out of a development team, and a
capability to lead organizations through turbulence and certainty.

There is a fundamental shift in the approach of delivering the product by hard-
line requirements specifications supported by methodologies like Capability Ma-
turity Model (CMM) and CMM Integration (CMMI) and the Agile practices.
While the former delineates defined repeatable processes so that the performance
can be measured within very close tolerances, the latter is more geared towards
employing the latest advancement in technologies, to explore, and to deliver the
product as soon as possible. The key point of agile practices is the inclusion
of software engineering life cycle in each iteration so that the features deliv-
ered are production ready at the end of each iteration. While the vision of most
projects are clear, what remains fuzzy are the exact requirement specifications
that the developers are faced with. With agile practices, a constant dialogue
with the customer, repeatable testing procedures, incremental development and
using the latest technology, the requested feature can be delivered in the next

192 S. Mittal

Table 3. Agile Methodology and DEVS Unified Process

Phase Agile Methodology DEVS Unified Process (DUNIP)

Model Identify the domain
and business use-case
requirements and spec-
ify in domain specific
languages such as UML,
etc.

DUNIP begins by taking requirements
in different formats like DoDAF, UML,
State-based, NLP and transform them
into platform independent XML mod-
els

Implementation Transform your mod-
els into executable code
with running unit-tests

From PIMs, the DUNIP engine gen-
erates code in platfrom specific mod-
els (PSMs) such as Java, C++, C#
etc. With strong DEVS theory un-
derlying each of the atomic models,
the models can be verified mathemati-
cally, as well as graphical with various
DEVS toolsets such as DEVSJAVA.
Unit-testing for each transition or an
event is inherent in DEVS.

Test Identify defects, ensure
quality and verify re-
quirements

With DUNIP, the development of test
suite is done in parallel with that of the
model. Test models are generated from
the XML-based PIMs. The test models
verify the atomic model’s operation at
various levels of system specifications,
such as I/O pair, I/O function, etc. The
Experimental Frames are also designed
at this stage that ensure the require-
ments are met through the test models.

Deployment Plan the delivery and
make it available to end
users

With ready deployment capabilities per
model-continuity principles to SOA in-
frastructure, and zero transition times,
the model is the actual software and is
readily moved to the production servers

Configuration
Management

Managed access to
project artifacts

DUNIP is very well positioned to
reuse and contribute to Model repos-
itory. PIMs are a strong contender for
such tracking and version management.
PSMs can very well be source versioned
using tools like Subversion etc.

Project Manage-
ment

Manage people, project,
iterations and budget

These qualities are universal and due to
the component nature of DEVS tech-
nology, the project plan can very well
be partitioned into iterative cycles and
milestones

Environment Ensure that proper pro-
cess, guidance, and tools
are available for the team

DEVS has been in existence for over
30 years and there is a large commu-
nity that is available for support in ba-
sic theory and toolsets.

Agile Net-centric Systems Using DUNIP 193

iteration without changing the entire project vision. The DEVS Unified Process,
similarly is based on agile methodology. Table 3 lists the similarities with each
phase of agile development methodology [51].

Table 3 establishes that DEVS Unified Process has all the needed phases
of being agile and the model continuity [52] enables any DEVS artifiact to be
a real software. With DUNIP’s SOA edge, we have any DEVS model that is
available as a web service. Modeling and Simulation in today’s world is more
than just a software. It is an enabling technology that has far reaching impact
on any nations’ progress and advance the forefront of various technologies in
many domains such as biology, chemistry, phyiscs, space science, etc. While there
are customized M&S software for different problem sets and different domains,
an agile methodology is another ace that when employed could incorporate the
latest advancements in software engineering discipline and apply it to the M&S
solution at hand.

9 Conclusions and Future Work

Service Oriented Architecture (SOA) have come a long way and many of the
businesses are seriously considering migration of their IT systems towards SOAs.
DoDs initiative towards migration of GIG/SOA and NCES requires reliability
and robustness, not only in the execution but in the design and analysis phase as
well. Web service orchestration is not just a research issue but a more practical
issue for which there is dire need. Further, Service Oriented Architecture must
be taken as another instance of system engineering for which there must be
a laid out engineering process. Modeling and Simulation provides the needed
edge. Lack of methodologies to support design and analysis of such orchestration
(except BPEL related efforts) cost millions in failure. This research has proposed
that Discrete Event Formalism can be used to compose and analyze Web service
workflows. The DEVS theory, which is based on system theoretic concepts, gives
solid grounding in the modeling and simulation domain.

The prime motivation of applying DEVS system theoretical principles to these
emerging net-centric systems comes from an editorial by Carstairs [53] that de-
mands a M&S framework at higher levels of system specifications where System
of systems interact together using net-centric platform. At this level, model in-
teroperability is one of the major concerns. The motivation for this work stems
from this need of model interoperability and the characterists of net-centric sys-
tems that are easier to simulate, test and deploy with an underlying foundation
of systems engineering principles. DEVS, which is known to be component-based
system, based on formal systems theoretical framework is the preferred means.
Table 4 outlines how it could provide solutions to the challenges in net-centric
design and evaluation.

The net-centric DEVS framework as laid out in this chapter required en-
hancement to these basic DEVS capabilities. Furthermore, this work describes
distributed simulation using the web service technology. After the development
of World Wide Web, many efforts in the distributed simulation field have been

194 S. Mittal

Table 4. Solutions provided with DEVS Technology in support of M&S for T&E

Desired M&S capability for
Test and Evaluation (T&E)

Solutions provided by DEVS M&S technology

Support for DoDAF need for
executable architectures using
M&S such as mission based test-
ing for GIGSOA

DEVS Unified Process [24],[29] provides methodology
and SOA infrastructure for integrated development
and testing, extending DoDAF views [20].

Interoperability and cross-
platform M&S using GIG/SOA

Simulation architecture is layered to accomplish the
technology migration or run different technological
scenarios [54]. Provide net-centric composition and
integration of DEVS ’validated’ models using Simu-
lation Web services [22].

Automated test generation and
deployment in distributed simu-
lation

Separate a model from the act of simulation itself,
which can be executed on single or multiple dis-
tributed platforms [39]. With its bifurcated test and
development process, automated test generation is in-
tegral to this methodology [42].

Test artifact continuity and
traceability through phases of
system development

Provide rapid means of deployment using model-
continuity principles and concepts like ’simulation be-
comes reality’ [52].

Real-time observation and con-
trol of test environment

Provide dynamic variable structure component mod-
eling to enable control and reconfiguratin of simula-
tion on the fly [55],[56]. Provide dynamic simulation
tuning, interoperability testing and benchmarking

made for modeling, executing simulation and creating model libraries that can
be assembled and executed over WWW. By means of XML and web services
technology these efforts have entered upon a new phase. The proposed DEVS
Modeling Language (DEVSML) is built on eXtensible Markup Language (XML)
as the preferred means to provide such transparent simulator implementation. A
prototype simulation framework called DEVS/SOA has been implemented us-
ing web services technology. It is currently at the forefront of DEVS net-centric
research platform [47]. The central point resides in executing the simulator as
a web service. The development of these kind of frameworks will help solve
large-scale problems and guarantees interoperability among different networked
systems and specifically DEVS-validated models. This chapter focused on the
overall approach, and the symmetrical SOA-Based architecture that allows for
DEVS execution as a Simulation SOA.

We have shown how a web service can be encapsulated into a DEVS atomic
model and can be put towards a coupled DEVS system with other live web
services as well as other DEVS models. We also have demonstrated the proposed
use of Web Service Work Flow (WSWF) formalism in composing SOA, much like
the same functionalities of BPEL. We have also described how WSWF can be
mapped to DoDAF elements using the System Entity Structure (SES) and could
achieve creation of DEVS net-centric coupled systems based on SOA. We have
also shown how the developed DEVS coupled system can be simulated using

Agile Net-centric Systems Using DUNIP 195

the basic DEVSJAVA framework as well as distributed DEVS/SOA framework.
Further, on the basis of our earlier work on DEVS/SOA we have basis for:

– Agent-Implemented Test Instrumentation
– Net-centric Execution using Simulation Services
– Distributed Multi-level Test Federations
– Analysis that can help optimally tune the instrumentation to provide confi-

dent scalability predictions.
– Mission Thread testing and data gathering:

• definition and implementation of military-relevant mission threads to
enable constructing and/or validating models of user activity.

• Comparison with current commercial testing tools shows that by repli-
cating such models in large numbers it will be possible to produce more
reliable load models than offered by conventional use of scripts.

We have taken the challenge of constructing net-centric systems as one of de-
signing an infrastructure to integrate existing Web services as components, each
with its own structure and behavior with DEVS components and agents. The
net-centric system is analogous to a System of System (SoS) where in hierar-
chical coupled models could be created. Various workflows can be integrated
together using component based design. The net-centric system can be specified
in many available frameworks such as DoDAF, SES, BPMN/BPEL, UML, or by
using an integrative systems engineering-based framework such as DEVS. The
proposed Web Service Work Flow formalism binds various frameworks like SES,
BPEL, DoDAF and DEVS.

In this research, we have discussed the advantages of employing an M&S-
integrated framework such as DEVS Unified Process (DUNIP) and its supporting
DEVS/SOA infrastructure. We illustrated how M&S can be used strategically to
provide early feasibility studies and aid the design process. We have established
the capability to develop a live workflow example with complete DEVS interface.
In this role, DEVS acts as a full net-centric production environment. Being
DEVS enabled, it is also executable as a system under test (SUT) model towards
various verification and validation analysis that can be performed by coupling
this SUT with other DEVS test models. Last but not the least, the developed
DEVS system can be executed by both real and virtual users to the advantage
of various performance and evaluation studies. We also summarized how DUNIP
is agile and each of its modules fit to the agile practices.

As components comprising SoS are designed and analyzed, their integration
and communication is the most critical part that must be addressed by the
employed System of System (SoS) M&S framework. We discussed DoDs Global
Information Grid (GIG) as providing an integration infrastructure for SoS in the
context of constructing collaborations of web services using the Service Oriented
Architecture (SOA). The DEVS Unified Process (DUNIP), in analogy to the
Rational Unified Process based on UML, offers a process for integrated develop-
ment and testing of systems that rests on the SOA infrastructure. The DUNIP
perspective led us to formulate a methodology for testing any proposed SOA-
based integration infrastructure, such as DISAs Net-Centric Enterprise Services.

196 S. Mittal

The present research is being considered and refined for standardization with the
DEVS Standardization group [47],[48],[49]. Clearly, the theory and methodology
for such net-centric SoS development and testing are at their early stages.

10 Acronyms

ATC-Gen Automated Test Case Generator
BPEL Business Process Execution Language
BPMN Business Process Modeling Notation
C4ISR Command, Control, Communications, Computers, Intelligence, Surveil-

lance and Reconnaissance
CES Core Enterprise Services
CMMI Capability Maturity Model Integration
CORBA Common Object Request Broker Architecture
DEVS Discrete Event System Specification
DEVSML DEVS Modeling Language
DoD Department of Defense (US)
DoDAF Department of Defense Architecture Framework
DTD Document Type Definition
DUNIP DEVS Unified Process
GIG Global Information Grid
HLA High Level Architecture
HTTP Hyper Text Transfer Protocol
JAXB Java Advanced XML Binding
NCES Net-Centric Enterprise Services
NLP Natural Language Processing
OV Operational View (in DoDAF)
PIM Platform Independent Model
PSM Platform Specific Model
RMI Remote Method Invocation
RTT Round Trip Time
SES System Entity Structure
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SUT System Under Test
SV System View (in DoDAF)
T&E Test and Evaluation
TIS Test Instrumentation System
TV Technical View (in DoDAF)
WSDL Web Service Description Language
WSWF Web Service Workflow Formalism
XFDDEVS XML-Based Finite Deterministic DEVS
XML eXtensible Markup Language
XPDL XML Process Definition Language
XSLT Extensible Stylesheet Language Transformations
UDDI Universal Description Discover and Integration
UML Unified Modeling Language

Agile Net-centric Systems Using DUNIP 197

References

1. ACIMS software site, http://www.acims.arizona.edu/SOFTWARE/software.

shtml (last accessed September 2010)
2. Atkinson, K.: Modeling and Simulation Foundation for Capabilities Based Plan-

ning. In: Simulation Interoperability Workshop (Spring 2004)
3. Badros, G.: JavaML: a Markup Language for Java Source Code. In: Proceedings

of the 9th International World Wide Web Conference on Computer Networks, pp.
159–177 (2000), http://www.badros.com/greg/JavaML/

4. Business Process Execution Language, http://www.ibm.com/developerworks/

library/specification/ws-bpel/

5. Business Process Modeling Notation, http://www.bpmn.org
6. CHAT SOA web service, http://www.saurabh-mittal.com/demos/ChatClient
7. Cheon, S., Seo, S., Park, S., Zeigler, B.P.: Design and Implementation of Dis-

tributed DEVS Simulation in a Peer to Peer Networked System. In: Advanced
Simulation Technologies Conference, Arlington, VA (2004)

8. Chat-Weather Service Demo as.avi file, http://duniptechnologies.com/

training/demos/DEVS CHAT Weather RealUserDemo.avi

9. DoDAF Working Group, DoD Architecture Framework Ver. 1.0 Vol. III: Deskbook,
DoD (August 2003)

10. DOD Instruction 5000.2 Operation of the Defense Acquisition System (May 12,
2003)

11. DoD Architecture Framework Working Group 2004, DOD Architecture Framework
Ver. 1.0, vol. 1 Definitions and Guidelines, Washington, D.C. (February 9, 2004)

12. DUNIP: A Prototype Demonstration, http://duniptechnologies.com/training/
demos/dunip.avi

13. Fujimoto, R.M.: Parallel and Distribution Simulation Systems. Wiley, Chichester
(1999)

14. Joint Interoperability Test Command, a Defense Information Systems Agency,
http://jitc.fhu.disa.mil/

15. Martin, J.L.R., Mittal, S., Zeigler, B.P., Manuel, J.: From UML Statecharts to
DEVS State Machines using XML. In: IEEE/ACM Conference on Multi-Paradigm
Modeling and Simulation, Nashville (September 2007)

16. Department of Defense GIG Architectural Vision, Ver. 1.0, prepared by DoD CIO
(June 2007), http://www.defenselink.mil/cio-nii/docs/GIGArchVision.pdf

17. Kim, K., Kang, W.: CORBA-Based Multi-threaded Distributed Simulation of Hi-
erarchical DEVS Models: Transforming Model Structure into a Non-hierarchical
One. In: International Conference on Computational Science and Its Applications,
ICCSA, Italy (2004)

18. Mak, E.: Automated Testing using XML and DEVS. MS Thesis, Uni-
versity of Arizona (2006), http://www.acims.arizona.edu/PUBLICATIONS/PDF/

Thesis EMak.pdf

19. Mak, E., Mittal, S., Hwang, M.H.: Automating Link-16 Testing using DEVS and
XML. Journal of Defense Modeling and Simulation 7(1), 39–62 (2010)

20. Mittal, S.: Extending DoDAF to Allow DEVS-Based Modeling and Simulation.
Journal of Defense Modeling and Simulation JDMS, Special Issue on DoDAF 3(2),
95–123 (2006)

21. Mittal, S., Mak, E., Nutaro, J.J.: DEVS-Based Dynamic Modeling & Simulation
Reconfiguration using Enhanced DoDAF Design Process. Journal of Defense Mod-
eling and Simulation, Special Issue on DoDAF 3(4), 239–267 (2006)

http://www.acims.arizona.edu/SOFTWARE/software.shtml
http://www.acims.arizona.edu/SOFTWARE/software.shtml
http://www.badros.com/greg/JavaML/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.bpmn.org
http://www.saurabh-mittal.com/demos/ChatClient
http://duniptechnologies.com/training/demos/DEVS_CHAT_Weather_RealUserDemo.avi
http://duniptechnologies.com/training/demos/DEVS_CHAT_Weather_RealUserDemo.avi
http://duniptechnologies.com/training/demos/dunip.avi
http://duniptechnologies.com/training/demos/dunip.avi
http://jitc.fhu.disa.mil/
http://www.defenselink.mil/cio-nii/docs/GIGArchVision.pdf
http://www.acims.arizona.edu/PUBLICATIONS/PDF/Thesis_EMak.pdf
http://www.acims.arizona.edu/PUBLICATIONS/PDF/Thesis_EMak.pdf

198 S. Mittal

22. Mittal, S., Martin, J.L.R., Zeigler, B.P.: DEVSML: Automating DEVS Simulation
over SOA using Transparent Simulators. In: DEVS Syposium (2007)

23. Mittal, S., Martin, J.L.R., Zeigler, B.P.: DEVS-Based Web Services for Net-centric
T&E. In: Summer Computer Simulation Conference (2007)

24. Mittal, S.: DEVS Unified Process for Integrated Development and Testing of Ser-
vice Oriented Architectures. Ph. D. Dissertation, University of Arizona (2007),
http://acims.arizona.edu/PUBLICATIONS/PDF/Thesis_Mittal.pdf

25. Mittal, S., Hwang, M.H., Zeigler, B.P.: XFD-DEVS: An Implementation of W3C
Schema for XML-Based Finite Deterministic DEVS, in progress, Demo, http://
duniptechnologies.com/research/xfddevs

26. Mittal, S., Zeigler, B.P., Martin, J.L.R., Sahin, F., Jamshidi, M.: Systems of Sys-
tems Engineering for 21st Century. In: Modeling and Simulation for System of
systems Engineering (2008)

27. Mittal, S., Zeigler, B.P., Martin, J.L.R.: Implementation of Formal Standard for
Interoperability in M&S/System of Systems Integration with DEVS/SOA. Interna-
tional Command and Control C2 Journal, Special Issue: Modeling and Simulation
in Support of Network-Centric Approaches and Capabilities 3(1) (2009)

28. Mittal, S., Martin, J.L.R., Zeigler, B.P.: DEVS/SOA: A Cross-Platform Framework
for Net-Centric Modeling and Simulation in DEVS Unified Process. SIMULATION:
Transactions of SCS 85(7), 419–450 (2009)

29. Mittal, S., Zeigler, B.P.: DEVS Unified Process for Integrated Development and
Testing of System of Systems. In: Critical Issues in C4I, AFCEA-George Mason
University Symposium (May 2008)

30. Net-Centric Enterprise Service, http://www.disa.mil/nces/ (last accessed
September 2010)

31. Jon, P.: XPDL: The Silent Workhorse of BPM (April 2007), online article, http://
www.bpm.com/FeatureRO.asp?FeatureId=232 (last accessed September 2010)

32. Sarjoughian, H.S., Zeigler, B.P.: DEVS and HLA: Complimentary Paradigms for
M&S? Transactions of the SCS 17(4), 187–197 (2000)

33. SESBuilder, An Integrated Tool to utilize System Entity Structure (2007), http://
www.sesbuilder.com/

34. DEVS/SOA sample demonstration in.avi format, http://duniptechnologies.

com/training/demos/demoSOADEVS.avi

35. Simple Object Access Protocol, http://www.w3.org/TR/soap/
36. Seo, C., Park, S., Kim, B., Cheon, S., Zeigler, B.P.: Implementation of Distributed

High-performance DEVS Simulation Framework in the Grid Computing Environ-
ment. In: Advanced Simulation Technologies Conference (ASTC), Arlington, VA
(2004)

37. Weather web service at, http://www.webservicex.net/WeatherForecast.asmx
38. Web Services Description Language, http://www.w3.org/TR/wsdl
39. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation. Aca-

demic Press, New York (2000)
40. DEVSJAVA, http://www.acims.arizona.edu/SOFTWARE/devsjava licensed

CBMSManuscript.zip

41. Zhang, M., Zeigler, B.P., Hammonds, P.: DEVS/RMI-An Auto-Adaptive and Re-
configurable Distributed Simulation Environment for Engineering Studies. ITEA
Journal (July 2005)

42. Zeigler, B.P., Fulton, D., Hammonds, P., Nutaro, J.: Framework for M&SBased
System Development and Testing In a Net-Centric Environment. ITEA Journal of
Test and Evaluation 26(3), 21–34 (2005)

http://acims.arizona.edu/PUBLICATIONS/PDF/Thesis_Mittal.pdf
http://duniptechnologies.com/research/xfddevs
http://duniptechnologies.com/research/xfddevs
http://www.disa.mil/nces/
http://www.bpm.com/FeatureRO.asp?FeatureId=232
http://www.bpm.com/FeatureRO.asp?FeatureId=232
http://www.sesbuilder.com/
http://www.sesbuilder.com/
http://duniptechnologies.com/training/demos/demoSOADEVS.avi
http://duniptechnologies.com/training/demos/demoSOADEVS.avi
http://www.w3.org/TR/soap/
http://www.webservicex.net/WeatherForecast.asmx
http://www.w3.org/TR/wsdl
http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/CBMSManuscript.zip
http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/CBMSManuscript.zip

Agile Net-centric Systems Using DUNIP 199

43. Zeigler, B.P., Hammonds, P.: Modeling& Simulation-Based Data Engineering: In-
troducing Pragmatics into Ontologies for Net-Centric Information Exchange. Aca-
demic Press, New York (2007)

44. Zeigler, B.P., Zhang, G.: The System Entity Structure: Knowledge Representation
for Simulation Modeling and Design. In: Widman, L.E., Loparo, K.A., Nielsen,
N.R. (eds.) Artificial Intelligence, Simulation and Modeling, pp. 47–73. Wiley, New
York (1989)

45. Zeigler, B.P., Mittal, S.: Enhancing DoDAF with DEVS-Based System Life-cycle
Process. In: IEEE International Conference on Systems, Man and Cybernetics,
Hawaii (October 2005)

46. Martin, J.L.R., Mittal, S., Mendel, J., Zeigler, B.P.: eUDEVS: Executable UML
Using DEVS Theory of Modeling and Simulation. Invited paper to SIMULA-
TION 85(11-12), 750–777 (2009)

47. Wainer, G., Al-Zoubi, K., Dalle, O., Hill, D., Mittal, S., Martin, J.L.R., Sar-
joughian, H., Touraille, L., Traore, M., Zeigler, B.P.: Discrete Event Modeling and
Simulation: Theory and Applications. In: DEVS Standardization: Ideas, Trends
and Future. CRC Press, Boca Raton (2010)

48. Wainer, G., Al-Zoubi, K., Dalle, O., Hill, D., Mittal, S., Martin, J.L.R., Sar-
joughian, H., Touraille, L., Traore, M., Zeigler, B.P.: Discrete Event Modeling and
Simulation: Theory and Applications. In: Standardizing DEVS Model Representa-
tion. CRC Press, Boca Raton (2010)

49. Wainer, G., Al-Zoubi, K., Dalle, O., Hill, D., Mittal, S., Martin, J.L.R., Sar-
joughian, H., Touraille, L., Traore, M., Zeigler, B.P.: Discrete Event Modeling and
Simulation: Theory and Applications. In: Standardizing DEVS Simulation Middle-
ware. CRC Press, Boca Raton (2010)

50. Highsmith, J.: What is Agile Software Development? STSC Crosstalk, Journal of
Defense Software Engineering (2002)

51. Ambler, S.W.: The Agile Unified Process, http://www.ambysoft.com/unified

process/agileUP.html

52. Hu, X., Zeigler, B.P.: Model Continuity in the Design of Dynamic Distributed
Real-Time System. IEEE Transactions on Systems, Man and Cybernetics - Part
A 35(6), 867–878 (2005)

53. Carstairs, D.J.: Wanted: A New Test Approach for Military Net-centric Operations.
Guest Editorial, ITEA Journal 26(3) (2005)

54. Sarjoughian, H., Zeigler, B.P., Hall, S.: A Layered Modeling and Simulation Archi-
tecture for Agent-Based System Development. Proceedings of IEEE 89(2), 201–213
(2001)

55. Mittal, S., Zeigler, B.P., Hammonds, P., Veena, M.: Network Simulation Environ-
ment for Evaluation and Benchmarking HLA/RTI Experiments. JITC report, Fort
Huachuca (December 2004)

56. Hu, X., Zeigler, B.P., Mittal, S.: Dynamic Configuration in DEVS Component-
based Modeling and Simulation. SIMULATION: Transaction of the Society of
Modeling and Simulation International 81(2), 91–102 (2005)

57. Vigneras, P.: Why BPEL is not the holy grail of BPM. InfoQ (October 2008),
http://www.infoq.com/articles/bpelbpm

58. Swenson, K.: BPEL: Who needs it anyway?, http://www.bpm.com/

bpel-who-needs-it.html

59. Mittal, S.: Document Type Definition (DTD) for Web Service Workflow Formalism
(2009), http://duniptechnologies.com/binding/wswf.dtd

http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.infoq.com/articles/bpelbpm
http://www.bpm.com/bpel-who-needs-it.html
http://www.bpm.com/bpel-who-needs-it.html
http://duniptechnologies.com/binding/wswf.dtd

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 201–232.

springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 8

Systems Engineering and Conversational Agents

James O’Shea, Zuhair Bandar, and Keeley Crockett

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan

University, Chester St., Manchester M15GD, United Kingdom

{j.d.oshea,z.bandar,k.crockett}@mmu.ac.uk

Abstract. This chapter describes Conversational Agents (CAs) in the context of

Systems Engineering. A CA is a computer program which interacts with a user

through natural language dialogue and provides some form of service. CA

technology has two points of interest to systems engineers: the use of systems

engineering techniques in CA research and the application of CAs in project

development. CAs offer the opportunity to automate more complex applications

than are feasible with conventional web interfaces. Currently such applications

require a human expert in the domain to mediate between the user and the

application. The CA effectively replaces the human expert. This chapter

reviews the current capabilities of various CA technologies, outlines a

development methodology for systems engineering practitioners interested in

developing real world applications and suggests a number of directions for

systems engineers who wish to participate in CA research.

Keywords: Conversational agent, systems engineering, dialogue, evaluation,

methodology, semantic similarity, short text.

1 Introduction

In the early decades of computing ordinary people did not have any interaction with

computers at all, any information that was needed for an application was entered by

specialised clerks. This was followed by a period (largely driven by the internet) in

which users could drive simple applications by entering simple facts and figures

directly. Recently an explosion of internet use has demanded that ordinary people

interact with complex applications, and the trend is for these to be of increasing

complexity. Such applications would normally require a domain expert to interview

the user to obtain the necessary information.

Automating such processes represents a serious challenge to computing

practitioners. This chapter describes a possible way forward, Conversational Agents

(CAs). CA technology has two points of interest to systems engineers: the use of

systems engineering techniques in CA research and the application of CAs in project

development.

A CA is a computer program which interacts with a user through natural language

dialogue and provides some form of service.

Typically this dialogue system serves a business goal such as providing information,

advice or selling. A suitably-designed CA plays the role of the human expert and is

202 J. O’Shea, Z. Bandar, and K. Crockett

generally in charge of the conversation; such CAs are fundamentally intelligence-based

systems.

The idea of a computer taking the role of a human in conversation was first proposed

by Alan Turing [1], as a test of machine thought. Although there has been substantial

philosophical debate about the Turing Test [2-4], it has no impact on the validity of CAs.

Practical CAs aspire to provide the user with the kind of advice or services that would

come from a knowledgeable or experienced human, but in a purely behavioural sense.

This form of CA presents with "Intentionality", that is it displays beliefs, desires and

intentions concerning objects, events and states of affairs in the real world [5] – but it is

not required to have a “mind.”

The applications that have been proposed for practical CAs include health care

dialogue systems [6], real estate sales [7], phone call routing [8], intelligent tutoring [9]

and natural language interfaces to databases [10, 11].

Probably the most effort has been expended on CAs for online customer self-service,

which provide the user with the kind of services that would come from a knowledgeable

or experienced human. In 2005 there were at least 10 major companies operating in this

area, including IBM and strategic partners of Microsoft [12]. At least 28 patents have

been registered concerning CAs and closely related technologies. Despite this effort,

success has been mixed and more research will be required to achieve the goal of a

functional CA which can fill the role of a human [6].

2 The Scope of CAs

The term “CA” can have a very broad scope including:

• Spoken Dialogue Systems

• Chatterbots

• NLP-based Dialogue Management Systems

• Goal-Oriented CAs

• Embodied CAs

2.1 Spoken Dialogue Systems

Spoken Dialogue Systems (SDSs) are concerned with the conversion of speech into text.

The average user might expect to interact with a CA by speaking to it directly and having

the speech interpreted by SDS algorithms. In fact the field is insufficiently developed for

this to be practical for anything but trivial applications. This is due to the relatively high

error rates involved in converting the audio input into text. The performance of SDSs is

usually measured as the Word Error Rate (WER) which takes account of the numbers of

insertions, deletions and substitutions needed to correct a transcribed segment of speech

[13].

Consequently, work on SDS systems falls into two categories.

The first covers systems which can convert speech from members of the general

population and the second covers systems which are trained to recognise speech from a

particular speaker.

Systems which cover the population split into two further categories, small vocabulary

and large vocabulary.

 Systems Engineering and Conversational Agents 203

Small vocabulary systems, in use since the 1990s for applications like paying bills,

need to recognise the digits plus a few other words such as “account”. These systems

are capable of recognising tens of words and can achieve WERs of less than 1% under

ideal conditions [14].

Large vocabulary systems contain tens of thousands of words [15] and represent

the ideal interface for a CA. Unfortunately such systems have high word error rates,

examples being a range of 18.4% -35.5% [16] and a particular WER of 25% [17].

Although small vocabulary systems are in routine use the individual words are

simply matched as symbols and no real conversation takes place. More research is

needed to improve the WER of larger vocabulary systems to make SDSs truly useful

for CAs.

2.2 Chatterbots

Chatterbots are the direct outcome of attempts to create a system that would pass the

Turing Test and are also stimulated by the Loebner prize which offers a substantial

cash prize for passing a version of the test. The objective is to pass as a human for a

limited period of time. Consequently chatterbots are programs that engage a human in

social conversation and attempt to prolong the conversation for as long as possible.

Chatterbot development is driven by a “cat and mouse” game between developers

and judges. The chatterbot is considered successful if it can prolong a conversation,

no matter how banal or purposeless, for the time period without being detected as a

machine by a judge.

The dominant technology in chatterbots is Pattern Matching. This approach

requires scripts that define the conversation to be executed by a pattern-matching

engine. The scripts contain rules which in turn contain patterns. The chatterbot

responds to a user utterance based on the best match to one of its patterns.

Chatterbot developers program tricks into their systems to convince the user (as a

substitute for real thought) and when users are in a judging mode they indulge in

unnatural antisocial behaviour to “out” the chatterbot [18].

Although the technology behind chatterbots may be useful as a component of CAs,

the chatterbot in itself is too limited to have use as a practical CA.

2.3 Natural Language Processing Based Dialogue Management Systems

Natural Language Processing (NLP) is largely concerned with document retrieval,

information extraction, and text categorisation [19].

There is an established interest [20] in applying established NLP procedures such

as using parsing, keyword extraction and formation of a structured lexicon to systems

which engage in dialogue.

In initial work there was a lack of substance when it came to reasoning about the

meaning of user utterances and the production of relevant responses. Modularisation

(or compartmentalisation) of NLP based systems leads to these problems being

lumped together as Natural Language Understanding (NLU).

The dominant approach to NLU is the frame-based system [21-23]. This is

effective for simple applications such as making bookings for journeys or theatre

seats. A related approach is the use of state-based systems, popular in healthcare [6].

204 J. O’Shea, Z. Bandar, and K. Crockett

These undergo state transitions triggered by the content of user utterances. Some

success has been achieved with limited systems in which tight constraints are placed

on the utterances that the users can produce. This can be done with forced choice

questions (e.g. yes or no answers) or the detection of a very restricted set of highly

salient speech fragments; however the dialogue may be unnatural. More flexible

dialogue is possible, using more powerful grammars and probabilistic/empirical

techniques, but is not trusted when high accuracy of understanding of the user intent

is required [6].

The most promising NLP-based approach (used within a CA) currently being

investigated, at the University of Cambridge, uses phrasal grammar rules to extract

the dialogue act type and a list of attribute/value pairs from each utterance and a

template-based response generator [24, 25]. However, this approach has only been

evaluated in the laboratory, with a simple domain, Towninfo, which recommends

restaurants, museums and similar destinations of interest to tourists.

Despite the considerable effort put into NLP, it has a number of problems for use

in real-time CAs. The first is whether the chains of computationally intensive

processes involved will scale up to real-word applications deployed on the web,

especially when large numbers of users are involved. Secondly, each process has a

particular error rate and the cumulative effect of these may affect the classification of

user utterances. Thirdly, NLP relies on grammatically correct sentences, yet most user

utterances are not properly-formed. Repair processes to remedy this incur a further

computational overhead. Fourthly, research into NLP is fragmentary in nature. For

example recent work has focussed on monitoring the human’s engagement [26, 27],

interaction control [28, 29] or determining if a party is being addressed [30]. What is

really required is a concerted effort to produce a less sophisticated, but functional,

system.

2.4 Goal-Oriented CAs

A Goal-Oriented CA has a deep strategic purpose in holding the conversation and its

design incorporates mechanisms that enable it to focus the conversation on achieving

a goal. This is what distinguishes it from a Chatterbot.

The original design objective of chatterbots was to prolong social chit-chat, thus

they are easily de-railed by human users when used for practical applications.

A Goal-Oriented CA (GO-CA), on the other hand, is specifically designed to

interact with a human, using natural language dialogue, to achieve a particular

business goal - such as providing information, advice or selling. It plays the role of an

empowered human in a productive application or task. Thus the GO-CA [31] may

spend more time leading the conversation and asking questions than the human.

In general terms the human approaches the GO-CA with a problem or need. In

current implementations [31] a pattern matching dialogue front end is combined with

a rule-based system, which contains a model of the problem domain that is expressed

in terms of a set of attributes. Through the process of dialogue, appropriate attributes

are captured to model the particular problem experienced by the user and identify the

appropriate solution.

The GO-CA is a mixed-initiative system (from time to time either the human or the

agent may take control of the conversation). Due to the goal-oriented nature of the

 Systems Engineering and Conversational Agents 205

agent it will take the initiative in the first instance and will always return to the goal

after the human has diverted the conversation (for example to ask for a clarification of

something said by the agent).

Figure 1 shows the generic architecture for a typical GO-CA [31]. This is intended

to take on challenging real-world applications in which the human user may present

adversarial, disruptive or deceptive behaviour at times during the conversation.

Fig. 1. Goal-Oriented CA architecture

Modularisation is an important element of the architecture. New modules can be

added for extended functionality or existing ones omitted if not required. In this

particular CA the rule-based system takes the form of an expert system. In another the

application required an interface that allowed the agent and the users to communicate

by SMS text messaging.

The architecture is best described by considering a dialogue transaction between

the agent and a user.

1. The first step in a dialogue transaction is for the expert system to identify the

attribute (or next attribute) whose value is to be captured.

2. The expert system passes this requirement to the Discourse Manager (DM).

3. The DM invokes the dialogue agent (DA) which produces a suitable

utterance for the agent and returns this to the DM.

4. The DM passes the agent’s utterance to the web interface which sends it to

the user.

5. The user replies to the agent and the web interface passes the user utterance

to the DM.

6. The DM invokes the DA to determine if it contains the required attribute.

7. If the attribute has not been captured, go to step 3.

8. When the attribute has been captured, the discourse agent passes the attribute

to the expert system, which updates its model.

206 J. O’Shea, Z. Bandar, and K. Crockett

9. If further attributes are required by the expert system, go to step 1.

10. The solution to the problem is communicated to the user.

11. At this stage the user may end the conversation or continue by asking

clarification questions.

The interface can consist of a text-based, instant messaging-style system which is

very familiar to users of social networking applications. It is also possible to use a

speech recognition system (currently this would need to be trained for a specific user;

large vocabulary word recognition may be feasible in the future).

The database is used for long-term storage of user attributes (e.g. start date with

employer) and the logic processing engine provides domain-specific computational

tasks (e.g. date calculations).

The common feature between GO-CAs and chatterbots is the prevalence of the

technique of pattern matching. However a GO-CA will engage in extended dialogue,

during the course of which it will appear to have mental states that are directed at

states of affairs in the world e.g. beliefs, desires, hopes, perception, intention etc.

Whereas chatterbot-based systems typically present a business’s FAQ list with a

human face, GO-CAs are intended to give sophisticated advice on topics such as

bullying and harassment in the workplace [31].

2.5 Embodied CAs

An Embodied CA (ECA) is characterised by a multimodal interface which includes a

facial display, hand gestures, posture etc., interaction with a human (or representation

of a human in a computer environment) and a dialogue system where both verbal and

nonverbal devices advance and regulate the dialogue between the user and the

computer [32].

The degree of embodiment can vary considerably. At its simplest it involves a

graphic representation of the agent capable of facial expressions, where the intention

is to provide a generally heightened sense of realism. One example of this approach is

a virtual museum guide used to investigate the kind of dialogue that embodied agents

provoke from humans [33]. The most advanced view of embodiment encompasses

facial expressions and gestures by the agent coupled with the reading of gestures from

the user [32, 34, 35]. This extends to the modelling of emotions on the part of the

agent [35].

Whilst there is clear potential for embodiment to improve GO-CAs, for example

through disambiguating pronouns such as this and that using pointing gestures and

shared visual space [32, 36], the dialogue tasks attempted remain relatively simple.

The REA agent [37] uses chatterbot-style social engagement combined with a

linear attempt to collect a very small number of attributes in order to make a property

recommendation. ECAs are generally used with very low-stakes applications, where

there is little to lose if the agent fails to operate correctly, for example museum guides

[33, 34, 38].

Research continues in this field, but tends to follow fragmentary and specialised

interests rather than focussing on the holistic problem of building a GO-CA for real-

world applications [27, 29] [39].

 Systems Engineering and Conversational Agents 207

3 Practical Applications of CAs

The primary interest of this chapter is the development of CAs for real-world

applications. There are two requirements that a CA technology must meet to achieve

this:

• It must be capable of handling extended dialogue about complex tasks

• It must be capable of operating in real-time when deployed over the internet.

We begin this section with an overview of the use of the various forms of CA in

selling. This is followed by a description of a more challenging application where the

stakes are higher, leading to more complex user behaviour.

3.1 CAs for Selling

Selling is an obviously useful activity and customers often have difficulty in making

choices about a purchase, requiring assistance from a human sales person.

The move to selling over the internet reduces costs but removes this human

element. A CA can rectify this problem. Selling is a challenge that can be met at a

number of different levels of complexity, which makes it a useful vehicle for

comparing CAs. Also, in its more challenging forms it creates work for practitioner

systems engineers which has a clear value for their business clients.

From the systems engineering research point of view it is sufficiently demanding

as a test of new theories, processes and tools, and it has been attempted across the

scope of CAs described above, from SDSs to embodied CAs.

Influential early work in selling using SDS was stimulated by the DARPA air

travel challenge [40]. Attributes collected from the user were origin, destination, date

(of flight), time (of flight), airline, trip-type (one-way or return), hotel and car. The

attributes were collected in a linear fashion and there was no interaction between

them, apart from asking whether ground arrangements were required before asking

about the hotel and car requirements [41]. Walker also used a restaurant booking

application to investigate multi-attribute decision making. In this case the restaurants

were modelled using 6 attributes: food quality, cost, decor, service, food type and

neighbourhood. The attributes were scored on a scale and the combination of scores

was used to make recommendations [42].

Recent work on SDS introduces more sophisticated processing of the user

utterances, for example with more support of user barge-ins (interruptions) [43]. But

current work confirms the limited number of attributes that can be managed using an

SDS system [44].

The current position is that the SDS approach is limited to transactions that require

a small number of factual answers and these are characterised by situations where the

user has already made the decision to buy, for example in booking travel

arrangements. Real-world systems have been deployed effectively for the payment of

utility bills where only recognition of digits and a few additional words is required to

make a payment.

SDSs currently fail to meet the requirement to handle more extended dialogue,

with the general population, principally because of the high word error rate with large

vocabularies. Current SDS technology does not achieve a suitable word error rate for

208 J. O’Shea, Z. Bandar, and K. Crockett

speech from the general population for the size of vocabulary needed for more

sophisticated applications.

A significant number of chatterbot systems have been developed for selling over

the past couple of decades. Furthermore, the chatterbot is the only form of agent to

have been deployed on large companies’ websites for real interaction with the general

public. Examples include Hank (Coca Cola), Kate (Ford) and Anna (IKEA) [45]. Of

these agents Hank and Kate have failed to prosper. They have been replaced on the

websites by FAQ systems with question entry boxes and these do not encourage the

user to enter into dialogue. The IKEA bot, Anna, still has a visible presence on the

IKEA website. Anna presents as a 2-D cartoon head and shoulders figure. She is a

sales assistant who accepts typed input and replies with text, which is also spoken by

a female voice synthesiser. The agent blinks, smiles and makes occasional posture

changes but can not be considered as truly embodied as these gestures have no

significance in the conversation. In terms of dialogue Anna is extremely limited,

simply pointing customers to the IKEA catalogue, for example:

User: I'm having a barbecue

Anna: I'm really not sure what it is you're trying to

say. Can you please try and re-phrase your question or

statement.

User: do you sell barbecue accessories

Anna: EHere you will find the Decoration Accessories

Category.

User: do you sell plastic glasses

Anna: Please have a look at the Glasses Subcategory.

Under these circumstances a human sales agent could have told an anecdote about

organising a barbecue, gone through specific examples of the utensils required and

prompted the purchase of additional items, so clearly an opportunity has been missed.

Selling chatterbots are still under development, a recent example being Susan,

hosted on the Kegel Motorcycles website [46]. Susan is described in the chatbots.org

site as “. . . an attractive, smart and bright cowgirl who not only talks with clients but

also presents multimedia.” Susan appears on the website as more conservatively

dressed and a little more sober in manner than the original description. Susan is

composed from video clips of a real woman speaking the dialogue. Susan uses a few

gestures (pointing to self, pointing to menus, dialogue box etc.) and expresses

boredom if there are pauses in the conversation (for example by tapping on the glass

of the monitor as if it were a window). Despite appearances, the behaviour is quite

superficial and is a long way from qualifying as genuine embodiment.

Furthermore, the interaction hardly qualifies as dialogue because it is so

constrained. The opportunity to exploit social chat in the selling has been sacrificed to

achieve robustness. Susan repeatedly refers the user to a menu below the dialogue

 Systems Engineering and Conversational Agents 209

box, there is an overall menu of topics covered by the side of the agent and during

typing an auto-correct style “did you mean . . .” steers the user towards one of Susan’s

standard replies. For example:

User: I’m 55, what sort of bike should I get?

Susan Try the menu buttons on the left

The menu displayed to accompany this includes much off-topic information such as

company history, financing deals etc.

Real-world applications require the capture and analysis of attributes from the

user’s utterances. It should be noted that neither Anna nor Susan do this to any

noticeable degree and are thus less analytical than the SDS DARPA travel systems.

The one strength of the chatterbot is social chat. The original instantiation of Susan

seemed to encourage this as the video clips were of a pretty, flirtatious cowgirl.

Whilst this is probably consistent with the brand image required for a motorcycle

vendor, it also underlines the weakness of chatterbot technology. Experience in

developing CAs shows that users are likely to be attracted to this kind of site for two

reasons. The first is to flirt with the chatterbot. The second, particularly with such a

human representation, is to test it to breaking point (much like the behaviour of

Loebner prize judges).

Social chat creates a paradox at the heart of chatterbot systems. On one hand the

social chat capabilities improve the user’s experience, which ought to make

chatterbots more effective as sales agents. On the other hand purposeless chat does

not progress the conversation to achieve the client’s objectives.

Conventional chatterbots are not equipped with the necessary mechanisms to

achieve both requirements, hence the development of the GO-CA.

Selling has been of interest to the NLP based community for the past two decades

as exemplified by the SCHISMA theatre bookings project [47]. Schisma projects

began with text-based interfaces and an intention to move to SDS interfaces “in the

near future” [48]. Progress may be judged by recent work which combines NLP

techniques with an SDS interface. The NLP element is sophisticated, involving

semantic parsing, context free grammar and dialogue act recognition. The SDS

component however, is only capable of recognising 263 words (trained using data

from British speakers).

The theatre booking task is a little more sophisticated than the SDS systems

described earlier. Attributes to be captured include actors, authors, performances

(category theatre/opera as well as title), dates and venues. This entails the recognition

of data types such as number, date, time etc. in the utterance, which is performed with

error correction before the parsing stage.

Although this work is interesting, it is only partially implemented and the research

still makes use of the Wizard of Oz approach (in which a human simulates the CA)

for collecting corpus data.

Of all the techniques, one might have expected NLP to produce working, robust,

systems - however these do not exist in the real world. There are two principal

reasons for the failure of NLP to produce. First, NLP requires chains of processes

such as stemming, pos-tagging, syntactical repair and parsing which can lead to

210 J. O’Shea, Z. Bandar, and K. Crockett

cumulative errors in recognising a user utterance. Disambiguation is a further problem

as the usages and senses of English words are not easily identified. To make things

worse, as observed by Donald Michie, “Real chat utterances are mostly unparsable.

They are concerned with associative exchange of mental images. They respond to

contextual relevance rather than to logical or linguistic links.”[49].

The second problem is the high computational complexity of NLP processes which

raises serious questions about its scalability for a CA deployed over the web serving

multiple users. For example the UK national flu service received 9.3 million hits per

hour on the first day of operation (resulting in it crashing even though this was a

simple menu-based system)[50].

GO-CAs have also been developed for selling; one such is VSA [51]. The system

is described as dialectical and goals are driven through an internal process of

argument about logical formalisations of the dialogue. The sales process is divided

into 3 phases, before sale (identifying needs and suitable products), sale (negotiation

to make a deal) and after sale (which was not dealt with in Morge’s study). The scope

of the system is not clear, but one example dialogue in which a quilt is sold has 4

attributes, allows the user to barge-in, volunteering information and also allows the

user to question the agent. Although the agent was developed using commercial

software, there is no indication of any real-world deployment.

Although the chatterbots like Anna and Susan present a human face, these are not

genuinely embodied. The distinguishing feature of embodied CAs is that the gestures

and expressions are purposeful in contributing channels of information to the

dialogue. An early and well-known ECA is REA, the real estate sales agent [32]. REA

is indicative of the greater interest in embodiment than dialogue in ECA research. A

typical study using REA captured 3 pieces of information in a linear sequence: the

city the user wanted to live in, the number of bedrooms desired and acceptable level

of rent. The objective of the study was to investigate whether the use of social

language fostered trust in the agent on the part of the user. Current work continues to

take a strong interest in social behaviour, such as the display of emotions [52], rather

than deployable systems.

ECAs are still relatively immature. They build embodiment on top of existing

dialogue management techniques and inherit their weaknesses. They have not been

used to tackle the kinds of applications of interest in this chapter and consequently

their potential advantage (disambiguation through gesture) has not been put to a

serious test. The leaves the GO-CA is the most currently promising technology for

developing real-world applications. The following section describes a GO-CA which

ran for 8 years, advising university students about debt problems.

3.2 A GO-CA Student Debt Advisor

Adam, the student debt advisor, operated from 2002 to 2010. Adam was designed for

a very specific application, to assist a student who had received a warning letter about

debt to the university. An important distinction between Adam and a chatterbot

system is that Adam was not intended to counsel students about their feelings about

debt, rather to follow the steps necessary to pay the debt off.

Adam’s rule-based system uses 23 different debt-based attributes, as well as

collecting some information not used for decision making, such as the student name.

 Systems Engineering and Conversational Agents 211

By analysing combinations of the attributes, Adam directs the student to one of 26

different actions to solve the debt problem. Analysis is performed by a decision tree,

so only the subset attributes required to traverse from the root to the appropriate leaf

need to be collected. There are many different routes through the tree with

corresponding dialogue structures.

One outcome of the knowledge engineering phase is that the tree is designed to

process and complete the most frequent solutions first, reducing the computational

load on servers in the deployed system.

For example, in the previous telephone-based system, one of the most common

calls was from students who had paid off the debt and wanted assurance that no

further proceedings would be taken. This situation is caught with the attribute

Have_paid_already in the first conversational context.

The many conversational contexts within the Dialogue Manager are decomposed

into 4 groups:

• Conventional dialogue

• Filter

• Oracular Layer

• Aliza Layer

The contexts making up the Conventional Dialogue put the questions to the user to

acquire attributes, perform clarification tasks and provide the instructions (diagnosis).

The filter is executed every time the user types an utterance, regardless of the

current context in the main dialogue. It performs two tasks. First, it contains a small

number of rules to detect highly obvious statements of the values of any of the 23

attributes. So if a user volunteers additional attributes in the current context, they will

still be recognised and captured. Secondly it is used to detect racist or other highly

offensive language in the conversation (which results in the conversation being

terminated).

The oracular layer is responsible for answering questions put to the system. These

include the many possible requests for information or clarification required to supply

the attribute values to Adam, as well as general questions.

The Aliza layer (named for its resemblance to the Eliza chatterbot) layer contains

general chat. This allows Adam to respond to social remarks included in the

conversation. It also includes light-hearted responses to personal, challenging or

antisocial remarks by the user.

A user utterance is first passed through the Filter and then (if the desired attribute

is not captured) to the Conventional Dialogue layer. If the conventional dialogue layer

does not have rules that can process the utterance it is analysed to see if it is a

question, if so the utterance is passed to the Oracular layer, if not it is passed to the

Aliza layer.

Adam has one simulated emotion, irritation. This can build up or dissipate over a

number of dialogue transactions. If a certain level is reached Adam will terminate the

conversation. This can happen very quickly (in the case of extremely offensive

language from the user) or more gradually with warnings (in the case of the user

failing to co-operate with Adam’s conversational strategy).

Having illustrated the power of the GO-CA, the following section describes a

methodology for developing them.

212 J. O’Shea, Z. Bandar, and K. Crockett

4 Design Methodology for GO-CAs

The software development methodology for the GO-CA combines elements of the

staged approach used in the Waterfall model with elements of prototyping or iterative

development. The major stages are shown in figure 2.

Fig. 2. Design Methodology for GO-CAs

4.1 Knowledge Engineering

Knowledge usually extracts information about a domain from many different sources,

including:

• Managers in the client organisation

• Practitioners in the client organisation who interact with the customers

who will use the CA being developed

• Documented procedures of the client organisation (e.g. workflow charts)

• 3
rd

 party websites (e.g. government legislation concerning the domain)

• Telephone logs of customer calls related to the domain.

Many organisations do not have formalised processes, instead custom and practice is

handed from one generation of employees to another in an oral tradition. This can

lead to a reliance on a small number of key individuals in an organisation. Where an

organisation has a formalised process for the problem domain, this may not be

followed in practice for a variety of reasons e.g. experience and gut feelings,

Knowledge

Engineering

Implementation

Evaluation

Maintenance

 Systems Engineering and Conversational Agents 213

reluctance to change or simply lack of knowledge. So a highly important aspect of

knowledge engineering is to formalise the process in the first case or to establish

exactly what process should be followed in the second.

To achieve this, a series of meetings is held with key personnel in the organisation

who are most knowledgeable about the process and if appropriate, some meetings

with the organisation’s customers are held.

The processes are refined and the problem domain is expressed in a structured way

such as a rule-based system. Figure 3 shows a section of a decision tree rule-based

system for bullying and harassment.

Fig. 3. Bullying and harassment decision tree example

The constructed rule-based system will be validated using a walk-through process

and then approved as a true representation of the domain before it is implemented.

When the rule-based system is implemented as an executable program, it is

interfaced with the DM and provides the logic for the CA.

A copy of the knowledge base, which includes the rules and other knowledge

acquired during the process will be passed on to the scripters, for example particular

terminology used in the domain.

The rule base provides information, in terms of its size and complexity, about the

overall effort required to construct the CA and is a useful recourse for cost and effort

estimation (similar to function point analysis).

4.2 Implementation

All of the components in figure 1 require implementation effort to varying degrees.

The user interface is an area where substantial quantities of library code may already

exist. In this case effort is restricted to relatively simple tasks in laying out the radio

buttons, text boxes etc. Likewise if the application requires a database it is likely to

exist already within the organisation (e.g. personnel database), in which case most of

the effort involves interfacing it to the system. The logic processing engine may also

be able to benefit from previously existing code, for example calculating the number

of days expired between two calendar dates is quite a common task.

214 J. O’Shea, Z. Bandar, and K. Crockett

The rule-based system is the product of the knowledge engineering stage described

previously. This is often implemented as high-level code executed on a generic

engine. The engine is likely to be a stable piece of code which is re-usable between

applications. Rarely, an application may introduce some new demand which requires

an engine modification.

Each application will require a customised DM. The DM is the glue that binds the

other components of the CA together. Its principal function is to maintain the list of

attributes required by the rule-based system. As each new attribute is requested by the

system, the DM takes control, continually re-entering the DA until a transaction

between the agent and the user captures the required attribute. So the DM is unique to

each application, but is relatively small in size.

The bulk of development effort is spent on the DA. The DA is implemented using

a scripting language which executes on an interpreting engine.

4.3 Scripting Language

Most scripts use the pattern matching technique, which has been identified as one of

the most common and capable methods for developing dialogues that seem to be

coherent and intelligent to users [6]. One of the most influential pattern matching

approaches was published widely during the 1990s [53] in “The Zen of Scripting

Verbots.” This stimulated the production of a number of scripting languages [54] in

use today.

A script file consists of rules each of which contains a number of patterns and a

response, executed by an engine, for example the DA in figure 1. A user utterance is

compared with the patterns in a rule and a numerical activation is calculated (the

better the match, the higher the activation). When all of the rules have been processed,

the rule with the highest activation fires and its response is used to reply to the user. A

threshold can be set for the activation, below which a rule can not fire. If no rule

exceeds the activation a default rule will recover the thread of discussion. If useful

information is generated as a result of the rule firing it is passed to other programs

making up the agent for relevant action.

The rules will often be divided into contexts to make them more manageable,

corresponding to modularisation of conventional code. An application may require

many script files covering the various conversational contexts that may occur and

there are also mechanisms for switching contexts.

Every time the user types an utterance, every pattern in every rule in the current

context must be tested and each test requires multiple passes through the utterance

and the pattern. If a user utterance fires a rule that switches to a new context, then the

whole process may have to be repeated until there is a match. Pattern matching is a

computationally intensive process and producing scalable CAs depends on skilled

context design by the people who write the scripts as well as the software engineers

who create the engines. The technique is illustrated by the following example,

adapted from Plantec [53]:

Consider a pair of activation-based rules:
<what-work>

a:0.5

p:60 What *your*job*

 Systems Engineering and Conversational Agents 215

p:60 How *earn* living*

r:I’m a full time Verbot

+:<explain>

<explain>

a:0.5

p:60 What *you* mean*

p:60 *Eh*

p:60 *explain*

r: I am a computer program that chats with you.

Suppose the first user utterance is

 “What is your job?”

The engine will begin by comparing it with the first pattern in the first rule:

What *your* job*

In brief the “What” sections of both strings match, but the following “is” and “your”

do not. However the wildcard * is able to absorb the “is” and matching continues for

the “your” substring. Wildcards are allowed to match nothing so the terminal * on

“your” is ignored and the substring “job” matches. Finally the “?” symbol on the end

of “job” in the utterance is absorbed by the terminal * in the pattern. This is a match

which generates a positive numerical score. This score also depends on how close the

match between the utterance and the pattern is (for example how much of the

utterance the wildcards have to absorb).

The second pattern in the first rule is then tested and it falls at the first post,

because the “H” in How fails to match the “W” in what and there are no leading

wildcards to accommodate the difference.

When the second rule is processed the first pattern will begin by matching but will

fail at the point where "job" is compared to "mean." The process continues for the

remaining patterns.

So the first rule fires (wins) and the agent will reply

"I'm a full time Verbot."

At this point the user will make another utterance. If there were no matches with

contextually meaningful rules, the script could fall back on a general rule that would

reply with something like:

"What on earth you mean by that?"

"Eh?”

or
"Could you explain that for me please?"

In a large base of rules the corresponding patterns (or variants on them) could occur

many times so a promotion mechanism is used to ensure that the correct rule fires.

The entry +:<explain> at the end of the first rule temporarily boosts the

activation for the rule <explain> for the next few utterances that the user makes. This

feature is known as promotion and the complementary process which temporarily cuts

the activation, -: is known as demotion. Various decay functions can be set to govern

216 J. O’Shea, Z. Bandar, and K. Crockett

the return to the original activation over successive utterances in the conversation.

This gives some feel for the complexity that can be involved in debugging a large CA.

Other features of scripting include the large range of tuneable parameters for

example:

a:0.5 sets a base activation value for the rule, which is principally used to allow

one of the rules to fire when matched.

p:60 sets an activation strength for an individual pattern; this is used to prioritise

patterns within a rule or instances of a pattern when it appears several times in

different rules.

Part of the success of pattern matching may be attributed to its abilities in feature

extraction and forming associations. Two particular mechanisms allow it to mimic (to

a limited extent) properties of human consciousness. The first is the promotion /

demotion of selected rules. This simulates the “stream of consciousness” in which a

particular thought comes into the foreground of consciousness against a background

of other partially-activated thoughts and ideas [55]. The second is the organisation of

rules into contexts (so named because they correspond to a particular conversational

context). This allows the agent to focus its attention on a particular topic and prevents

misfiring of rules that would correspond to a human being distracted. For example, if

a user introduces the name Pluto into a conversation the context could be astronomy

or it could be Mickey Mouse’s dog. If each of these topics has a corresponding

context, when one is being executed by the DA the rules in the other (and all other

contexts) are inaccessible.

Creating scripts is a highly skilled craft [49], requiring the anticipation of user

utterances, generation of permutations of the utterances and generalisation of patterns

through the replacement of selected terms by wild cards. Modifications to rules

containing the patterns can impact on the performance of other rules and modern

pattern matching systems contain many parameters that further modify their

behaviour.

The main strengths of the technique described in this section are:

• It works well within its limits and it’s about the only technique that currently

works at all for extended dialogues.

• The computational engines for such systems are well-developed and robust;

they are rarely crashed by unexpected user input.

• The scripting method separates out language skills from coding skills. People

with language skills can become scripters without learning a great deal of

computer science.

However, it also suffers from a number of weaknesses, some of which are:

• Writing patterns which match user inputs effectively is a labour intensive

process and the scripters must be highly skilled at selecting key words or

phrases and integrating them with wildcards.

• The CA’s responses to the user must also be crafted to maintain the dialogue

along predictable lines. Transactions which are plausible in isolation can be

stilted or incoherent as a complete conversation.

• The organisation of rules into coherent contexts involves another set of skills,

similar to the design of coherent modules in conventional programming. Failure

 Systems Engineering and Conversational Agents 217

to do this results in systems that are difficult to test and debug. They are also

easily destabilised by the addition of a single rule.

These drawbacks have an impact on development costs, maintainability and

scalability.

However, on the important issue of scalability, pattern matching systems do not

require pre-processing stages such as stemming, pos-tagging, syntactical repair and

parsing. This is an important consideration as a real-world system could have millions

of instances of the CA running simultaneously on the organisation’s servers.

4.4 Evaluation

It is possible to evaluate the rule-based system before the rest of the CA is constructed.

This is performed using a technique known as “Wizard of Oz” in which a human

simulates the CA interface and operates the rule-based system [56]. Users believe they

are talking to a real CA because the wizard is hidden by the interface. All of the “agent’s”

dialogue is provided by the wizard, who extracts the attributes for the rule-based system.

A substantial amount of work has been done on evaluating agents as a whole. The

seminal work in this area was the creation of the PARADISE framework [57] which

was applied to evaluate the DARPA communicator SDS [58]. An important feature of

PARADISE is the application of linear regression for deriving abstract, indirect

attributes such as User Satisfaction in terms of directly measurable attributes [59].

The PARADISE framework continues to provide the framework for current

evaluation of CAs including further development of evaluation methodologies [60],

CAs for navigation [61], dialogue management strategies [62], tutoring [56] (in

press), human-robot dialogue [63] and companion agents [64].

The metrics used to evaluate CAs can be broken down into 3 categories:

• Aspirational Subjective Measures

• Attempted Subjective Measures

• Objective Measures

Prima facie, the subjective measures are important, but they are also difficult to

measure with the scientific rigour one might expect of a physical variable such as

voltage.

4.4.1 Aspirational Subjective Measures

A number of publications discuss very high level, abstract and subjective concepts

which would be very difficult to measure as a single attribute. The most common

attributes are:

• Usability [40, 56, 65-69]

• User satisfaction [56, 65, 68, 70-72]

• Agent credibility [70, 73, 74]

The first two are common but difficult to measure attributes from the field of software

engineering [59]. There are many more intangible and vague attributes mentioned in

studies, including: “Fun to talk with” [38], “lovely, pleasant, black humorous” [70],

218 J. O’Shea, Z. Bandar, and K. Crockett

“Intimacy, Benevolence” [37], “Comfort, Solidarity, Familiarity” [75] and “Trust,

Uncertainty, Attractive” [66].

4.4.2 Attempted Subjective Measures

Some studies then go on to attempt to measure a subset of subjective attributes. These

are largely measured using Likert or Likert-like attitude rating scales. Attributes

measured in this way include:

• Ease of use / Task ease [56, 58, 61, 63, 69, 76-78]

• Ease of the user understanding the agent [56, 58, 63, 66, 76, 77]

• The agent’s understanding of the user comprehension [56, 65, 66, 77]

• Various cognitive attributes related to comprehension and complexity [56,

61, 65, 67, 73, 76]

• Various attributes related to the reliability of the agent and the ease of

correcting misunderstandings [65, 76]

• Various attributes concerning the user’s expertise (of the domain or using the

agent) [58, 66, 67, 77]

• The efficiency or effectiveness of the agent [56, 63, 65-67, 76, 78]

• Various attributes about command and control of the conversation [65, 73,

76] [66, 67]

• The pace of the interaction [76, 77]

• Whether the agent behaved as expected [56, 58, 61, 64, 65, 77]

• How natural the agent’s behaviour seemed [61, 73, 75, 78]

• Various positive emotional attributes (e.g. friendliness, enjoyment) [65, 66]

[63, 75, 76]

• Various negative emotional attributes (e.g. boredom, fluster) [63, 65, 76]

• Whether the user would use again [58, 65, 76, 77] or prefer human service

[56, 61, 76]

There are also a substantial number of attributes which occur once or twice including

“like further help” [65], “narrative skills” [70], “needs improvement” [76], “question

answering capability” [70] and “how much willing to pay” [37].

4.4.3 Objective Measures

Most studies include a set of objective measures. Generally speaking, there is a leap

of faith that these in some way reflect the aspirational subjective measures that appear

at the beginning of published studies. The only systematic and scientific approach was

that taken by the PARADISE framework [58]. Attributes measured in this way

include:

• Dialogue / Conversation length [38, 40, 58, 61, 63, 65, 72, 73]

• Count of dialogue turns [9, 40, 58, 61, 63, 72, 77-79]

• Various measures of success at utterance or task completion level [58, 61,

63, 65, 68, 72, 79]

• Various counts of errors, corrections or percentage error rates [6, 38, 61, 63,

64, 71, 77, 79]

 Systems Engineering and Conversational Agents 219

• Various counts of correct actions by the agent (e.g. answering questions) [58,

66, 67, 70]

• Various speech recognition accuracy measures [9, 74, 76]

Again there are a substantial number of attributes which occur once or twice including

“mental workload” [72], “learning gains” (in a tutoring system) [9], count of help

messages [76], percentage of time user spent looking at (embodied) agent [67] and

user trust of agent (using a standardised measure from psychology) [37].

All recent work makes use of some of the fundamental PARADISE measures

whilst adding some application-specific elements. For example, companion agents

add more emotional evaluation including the nature of the relationship between the

user and the companion, and the appearance, personality, emotion demonstrated and

social attitudes of the companion [64].

4.5 Maintenance

CAs require maintenance in the same manner as any other form of software, however

their nature dictates that at the current state of the art they require it to a greater

degree. There are 3 drivers of the maintenance requirement, these may be termed:

• Conventional bugs

• The user paradigm shift

• Domain stability

4.5.1 Conventional Bugs

Conventional bugs are the same as those in other software; these may be syntax errors

or logic errors. They can occur in the three classes of software making up the agent,

the rule-based system, the dialogue scripts and the engines. Most errors in the rule-

based system will be discovered and removed during the latter stages of the

Knowledge Engineering process. However, as with any software development process

some will get through.

Once a development team has a set of established engines (such as the DA in

figure 1), they will become a relatively infrequent source of bugs and the usual pattern

is established of bugs arising largely as a matter of upgrades to the functionality of an

engine. As the dialogue scripts are specifically written for each application they differ

from previous code and are more likely to provide a source of bugs. Detecting and

correcting conventional bugs is a very familiar process for systems engineers,

consequently the other two classes pose the greater challenge for CA developers.

4.5.2 The User Paradigm Shift

Knowledge engineering is an excellent way of capturing existing processes for the

production of a CA. However, it does capture the status quo, in which user behaviours

are shaped by the social interaction with a human expert and the understanding that

the expert will have specific expectations of the conversation. However, when faced

with a web-based CA the human users behave differently.

One example is the student debt advice system developed [31]. This system was

designed to steer students through the process of obtaining the money to pay off their

debts to the university by chasing late payments from the student loan company,

220 J. O’Shea, Z. Bandar, and K. Crockett

seeking alternative sources of access funding etc. However, after the system was

deployed on the web, logs showed a significant number of students accessing it before

starting university to find ways to avoid getting into debt.

This immediately faces the maintainer with decisions, whether to cater for the

changed demands from the users, if so to what degree, and how much cost and effort

can be justified for implementation.

Considering the goal-oriented architecture, a limited change could be accommodated

by adding to the scripts executed by the DM whereas a more extensive change would

also require the creation of new attributes processed by the rule-based system. Changing

both creates more maintenance effort (modifications to the DM would also be required to

communicate the attributes between the DM and rule-based system). Consequently the

temptation is to limit the changes to rules in the scripts, but relying too much on scripted

rules without the discipline of the rule-based system leads to unstable behaviour of the

kind exhibited by poorly-performing chatterbots.

4.5.3 Domain Stability

By far the most serious problems arise from domain instability. Domain instability

refers to the rate of change in the environment in which the CA operates. There are a

number of sources of domain instability. The client commissioning an agent operates

in some form of market. When the agent is completed and released into the market all

may be well, but markets change over time affecting the relevance of the agent.

Another very important source of change is legislation. Many agents will be required

to comply with (or explain) requirements of government legislation. Unless the agent

is kept up-to-date again it will become less relevant and will generate fewer

satisfactory outcomes from the dialogues.

One particular example of this is the UK student loan system which was fundamental

to the student debt advisor. This system has changed virtually every year following

changes of policy and changes of government.

How may these maintenance challenges be met? One way to tackle the volume of

work in maintaining pattern matching systems is to improve the efficiency of the

laborious process of hand-crafting the rules in the scripts. Tools have been developed

[31] to automate pattern generation and process standardised dialogue templates by a

fill-in-the-blanks approach. Other possible tools under consideration include a conflict

detector to find conflicts between similar patterns in different rules. This would solve

the common problem of adding new rules which overlap with existing rules and

conflict with them in firing. Also, current testing requires manually typing utterances

into the agent and checking the responses. A regression testing tool containing its own

scripts of user utterances with expected outputs from the agents could make this

process more efficient. Again regression testing is important to ensure that changes to

an agent have not introduced new problems. Test data for regression testing may be

accumulated from logs of earlier user evaluations or from conversational scenarios

created to design the contexts.

The second approach is to develop an entirely new method of matching user

utterances, which does not require the generation of large numbers of patterns. One

promising technique, Short Text Semantic Similarity is described in the following

section.

 Systems Engineering and Conversational Agents 221

5 Novel Algorithms – Short Text Semantic Similarity

The potential for Short Text Semantic Similarity (STSS) algorithms to improve CAs

arises from their replacement of the pattern matching component. Suppose an STSS

algorithm produces a numerical measure of semantic similarity, this could be used to

make judgments such as:

• A pair of STs is identical in meaning

• A pair of STs is completely unrelated in meaning

• One pair of STs is more similar in meaning than another.

Consequently an incoming user utterance could be compared with a number of

prototype statements from the domain and an appropriate action and response chosen

based on the value of the best match. Consider the following patterns, taken from a

rule in a student debt advisor system:

p:15 *can*not *afford *pay*

p:15 *can*not *afford *full amount*

p:15 *<problem>* pay*

p:15 (many more)

These patterns will match utterances such as:

I cannot afford to pay you anything this term

I can’t afford the full amount but I could manage to pay a third

There is a difficulty in paying because I was mugged

(amongst many others).

It is clear that even with wildcards for generalisation, many patterns will be needed

for good coverage of the overall conversational space. Also there will be a need for

skilled scripters who can anticipate user utterances, generate permutations of the

utterances, reduce these permutations through generalisation to patterns (use of wild

cards) and, very importantly, anticipate interactions between rules.

The alternative offered by STSS is to build the rules from a set of prototype or

archetype STs. Suppose, instead of patterns; we had rules containing the following

STs:

I can not afford to pay. (ps1)

My money has not come from the Student Loan Company. (ps2)

The user utterance

I cannot afford to pay you anything this term. (u)

would be compared with all of the prototype statements using the STSS algorithms

and the highest similarity match would win, as expressed in equation 1:

 sim(ps1,u) > sim(ps2,u) (1)

The rule containing ps1 would win and the action specified for the rule would be

taken (an attribute set, response to user generated etc.)

222 J. O’Shea, Z. Bandar, and K. Crockett

Early work on text similarity was concerned with relatively long documents.

Consequently similarity was measured using exact matches between words in relatively

long vectors of words selected from their respective documents based on their

significance [80, 81] Utterances in dialogue are much shorter, and two utterances which

convey largely the same meaning may share no common words at all.

5.1 The STASIS Algorithm

The STASIS algorithm [82] was specifically designed to overcome this problem. Its

key features are:

• Short vectors derived only from the words in the STs

• Use of function words, specific word forms (no stemming/lemmatisation)

• Exploitation of word order information.

Function words are high-frequency closed-class words e.g. articles and auxiliary verbs. In

the two sentences “Could you pass the salt?” and “Did you pass the salt?” a single word

changes the speech act [83], the overt meaning and the subtle implications of the basic

propositional content.

Following the larger-scale publication of STASIS [82], there has been a flurry of work

in the STSS field. The majority of subsequent work in the field is either derivative from

or influenced by STASIS [84-94]. Accordingly, the following description of STASIS

should prove useful to Systems Engineers wishing to develop STSS algorithms.

STASIS uses two stages to calculate the overall semantic similarity between two Short

Texts: construction of two vectors (semantic and word-order), followed by combination

of the similarity information obtained by the vectors. This is shown in figure 4.

In the following, taken from [82], the lexical database, corpus and word similarity

measure components can be replaced by alternatives, although the word similarity

measure used in [95] is recommended.

Jo
in

t
w

o
rd

 s
e
t

Raw semantic

vector 1

Order vector

1

Raw semantic

vector 2

Order vector

2

Semantic vector

1

Semantic vector

2

Lexical

database
Corpus

S
en

te
n

ce

1

S
e
n
te

n
ce

2

Semantic

similarity

Order

similarity

S
en

te
n

ce
 s

im
il

a
r
it

y

Fig. 4. STASIS sentence similarity computation diagram

 Systems Engineering and Conversational Agents 223

In summary the semantic similarity is calculated as follows:

• A joint word set T is derived from all of the distinct words in two short texts,

T1 and T2 (equation 2).

}{ 2121 mwwwTTT A=∪=

 (2)

• A lexical semantic vector š is derived from the joint word set for each short

text. Each entry, ši(i=1,2,...,m), is determined by the semantic similarity of

the corresponding word in the joint word set to a word in the short text

(where m equals the number of words in the joint word set). Semantic

similarity between non-identical words is calculated using the Wordnet

ontology.

The words are weighted according to their information content [96] using equation 3:

)~()(iii wIwIss ⋅⋅=

%
 (3)

where)(iwI is the information content of a word in the joint word set and)~(iwI is

the information content of its associated word in the short text.

• The semantic similarity (Ss) between the two short texts is calculated using a

cosine-like measure between the semantic vectors s1 and s2 using a cosine-

like function (equation 4):

 21

21

ss

ss

⋅

⋅
=sS

 (4)

Word order similarity is calculated as follows:

• Word order vectors, r1 and r2 are constructed using the index numbers of

words from the joint word set to represent the words in each of the short

texts.

• The word order similarity component (Sr) is calculated as the normalised

difference in word order (equation 5):

 21

21
1

rr

rr

+

−
−=rS

 (5)

Finally short text similarity is calculated using a weighted sum of the two components

using equation 6:

21

21

21

21
21)1(),(

rr

rr

ss

ss

+

−
−+

⋅

⋅
= δδTTS

 (6)

The parameter δ (which adjusts the relative contributions of semantic and word order)

is in the range 0.5 < δ < 1 and was chosen empirically. Some preliminary experiments

have shown potential for significant improvement in performance by optimising δ

224 J. O’Shea, Z. Bandar, and K. Crockett

through linear regression or by combining the two components using a Neural

Network [97]. Recent work on embedding the STASIS algorithm in a CA has shown

considerable promise [92].

5.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) offers an alternative approach to STSS measurement

[98]. Although it was originally designed for document retrieval, the LSA website has

a front-end for calculating the similarity between pairs of sentences [99]. There are a

number of implementations available on the web. A full description of LSA can be

found in [98].

The first stage of LSA is the construction of a semantic space as follows:

• The collection of documents comprising the space is pre-processed to

remove all but the most useful terms

• A term-by-document matrix is constructed (X)

• This large matrix is decomposed by Singular Value Decomposition into 3

other matrices, one derived from the terms (T0), one from the documents (D0)

and a diagonal matrix (S0) linking them

• The reduction in the size of S0, which reduces the size of T0 and D0

• An approximation of the original space, X̂ , is reconstructed according to

equation 7:

'ˆ TSDXX =≈ (7)

LSA generalises by spreading information from a cell to its related cells; whereas X

contains a small number of 1s and a large number of 0s, X̂ will contain many more

non-zero values. Thus when a text is projected into the semantic space, more cells

(and therefore spatial dimensions) contribute to its representation, enabling LSA to

calculate a similarity even when no co-occurrence exists between particular terms.

Short text similarity is calculated as follows:

• A row in the semantic space is formed for each ST

• If a text did not appear in the original space it is constructed as a pseudo

object using equation 8:

1−
′= TSXD qq (8)

The method for this is disclosed in [100].

• Similarity is measured as the angle between the vectors representing the two

short texts using equation 9:

'2'ˆˆ TTSXX = (9)

The performance of LSA depends on the semantic space. It is possible to use the best

performing semantic space from LSA’s creators [98], in which case only the steps for

similarity calculation are required.

 Systems Engineering and Conversational Agents 225

6 Research Opportunities

There are opportunities for systems engineers to perform research on virtually every

aspect of CAs. Starting with SDS, the key problem is the vocabulary. The ultimate

research aim must be a universal SDS interface that allows CAs to be deployed over the

internet for the general population. However, the state of the art is a high WER with large

vocabulary systems or a small vocabulary with more reliable systems [14, 16]. Potential

lines of research are:

• The production of multi-classifier systems adding more diverse elements

such as neural networks to the current statistically-based techniques

• Development of generic (rather than customised) medium-sized vocabularies

that would be re-usable across different projects in the same general domain

• Development of an open SDS protocol that locates the speech recognition in

the user’s mobile phone (such a system would be trained only once and

would act as the SDS front end for any application the phone owner wished

to use).

Chatterbot systems still offer a useful starting point for systems engineers to become

involved in CA research or development. In particular, the ALICE AIML chatterbot

technology is readily available and well documented. Furthermore, ALICE also

illustrates that there is potential for introducing new creative techniques to improve

chatterbots: the symbolic reduction (SRAI) instruction allows an AIML chatterbot to re-

enter itself recursively to decompose complex user utterances. Potential lines of

chatterbot research are:

• Development of software tools to improve productivity of scripting

• Development of tools to support debugging and maintenance

• The extension of chatterbot engine functionality.

The chief problem of Natural Language Processing is that CA development has a minor

role in the field as a whole, with its main interests being in areas such as information

retrieval and machine translation. Undoubtedly many interesting and novel algorithms,

architectures and processes have been developed, but in a piecemeal fashion. Therefore

the research challenges for NLP systems are:

• The construction and evaluation of real-world systems that can be deployed

for use by the general public

• Measurement of the scalability of such systems to realistic numbers of users

in real-time.

GO-CAs are a recent development and opportunities for research are plentiful. Some

lines include:

• Development of alternative top-level component architectures (for example

through the use of alternative intelligent components such as neural networks

to drive the goals)

• Development of alternative methods for the DA to communicate with the

other components (at present the DA is a pattern matching engine)

• Application of new algorithms such as STSS within the DA

• Development of new knowledge engineering tools and processes

• Development of authoring and maintenance tools

226 J. O’Shea, Z. Bandar, and K. Crockett

ECAs present the same kinds of opportunities for systems engineers as NLP systems.

ECA research interest has shifted from fairly mundane but obviously useful topics such

as disambiguation through pointing at objects and co-operative use of objects such as

maps in shared visual space, to more abstract topics like measuring engagement in multi-

party dialogues and simulation of emotions. Again the immediate research topics of

interest to a systems engineer should be:

• Development of ECAs using current properties that are believed to be useful

(e.g. pointing, emphatic gestures etc.)

• Applying such ECAs to realistic problems requiring larger numbers of

complex attributes

• Objective evaluation of the gain (in terms of metrics such as successful task

completion, length of dialogue etc.) obtained from ECA features.

7 Conclusions

CA technology is something that all systems engineers should be aware of. GO-CA

technology has reached the point where it is possible to build and deploy real-world

applications and some systems engineers in industry will find that this forms part of

projects they will work on during their careers. How far CAs penetrate into

mainstream computing will depend on research in the short and medium term. This

research, particularly involving development of authoring and maintenance tools, and

the objective evaluation of tools, algorithms and techniques, will be crucially

dependent on the skills of the systems engineer to be successful.

Glossary

ALICE: Artificial Linguistic Internet Computer Entity

CA: Conversational Agent

DA: Dialogue Agent

DARPA: Defense Advanced Research Projects Agency

DM: Dialogue Manager

ECA: Embodied Conversational Agent

GO-CA: Goal Oriented Conversational Agent

LSA: Latent Semantic Analysis

NLP: Natural Language Processing

NLU: Natural Language Understanding

PARADISE: a framework for evaluating and comparing the performance of

spoken-language dialogue systems

REA: a Real Estate Agent

SCHISMA: SCHouwburg Informatie Systeem (a Dutch theatre booking system)

SDS: Spoken Dialogue System

SMS: Short Message Service (texting)

SRAI: Symbolic Reduction Artificial Intelligence

STASIS: a specific instance of an STSS algorithm

STSS: Short Text Semantic Similarity

VSA: Virtual Seller Agent

WER: Word Error Rate

 Systems Engineering and Conversational Agents 227

References

1. Turing, A.M.: Computing Machinery and Intelligence. Mind, New Series 59(236), 433–460

(1950)

2. Gunderson, K.: The Imitation Game. Mind, New Series 73(290), 234–245 (1964)

3. Searle, J.R.: Minds, brains and programs. Behavioural and Brain Sciences 3, 417–424

(1980)

4. Block, N.: Psychologism and behaviourism. The Philosophical Review LXXXX(1), 5–43

(1981)

5. Searle, J.R.: Mind, Language and Society. Weidenfield & Nicholson (1999)

6. Bickmore, T., Giorgino, T.: Health dialog systems for patients and consumers. J. Biomed.

Inform. 39(5), 556–571 (2006)

7. Cassell, J., et al.: Embodied CAs (2000)

8. Gorin, A.L., Riccardi, G., Wright, J.H.: How may I help you? Speech Communication 23,

113–127 (1997)

9. Graesser, A.C., et al.: AutoTutor: An Intelligent Tutoring System With Mixed Initiative

Dialogue. IEEE Transactions on Education 48(4), 612–618 (2005)

10. Owda, M., Bandar, Z., Crockett, K.: Conversation-Based Natural Language Interface to

Relational Databases. In: IEEE/WIC/ACM International Conferences on Web Intelligence

and Intelligent Agent Technology - Workshops (2007)

11. Glass, J., et al.: A Framework for Developing Conversational User Interfaces. In: Fourth

International Conference on Computer-Aided Design of User Interfaces, Funchal, Isle of

Madeira, Portugal, pp. 347–358 (2004)

12. McGeary, Z., et al.: Online Self-service: The Slow Road to Search Effectiveness. In:

Customer Relationship Management (2005)

13. Hunt, M.J.: Figures of Merit for Assessing Connected Word Recognisers. Speech

Communication 9, 239–336 (1990)

14. Hosom, J.-P.: Automatic Speech Recognition at CSLU (2003),

http://cslu.cse.ogi.edu/asr/ (cited October 20, 2010)

15. Hunt, A.: comp.speech FAQ Section 6 (1997),

http://www.speech.cs.cmu.edu/comp.speech/Section6/Q6.1.html

(cited October 20, 2010)

16. Raut, C.K.: Discriminative Adaptive Training and Bayesian Inference for Speech

Recognition. In: Emmanuel College, University of Cambridge (2009)

17. Hillard, D.L.: Automatic Sentence Structure Annotation for Spoken Language Processing.

In: Electrical Engineering, University of Washington (2008)

18. Zdenek, S.: Passing Loebner’s Turing test: A case of Conflicting Discourse Functions.

Minds and Machines 11, 53–76 (2001)

19. Jackson, P., Moulinier, I.: Natural Language Processing for Online Applications, 2nd edn.

Natural Language Processing. John Benjamins Publishing Company, Amsterdam (2007)

20. Zdravkova, K.: Conceptual Framework for an Intelligent ChatterBot. In: 22nd International

Conference Information Technology Interfaces ITI 2000, pp. 189–194 (2000)

21. Minker, W., Bennacef, S., Gauvain, J.-L.: A stochastic case frame approach for natural

language understanding. In: Fourth International Conference on Spoken Language, ICSLP

1996, Philadelphia, PA, pp. 1013–1016 (1996)

22. Farquhar, A., Fikes, R., Rice, J.: The Ontolingua Server: a Tool for Collaborative

Ontology Construction. Journal of Human-Computer Studies 46, 707–728 (1997)

228 J. O’Shea, Z. Bandar, and K. Crockett

23. Sagae, K., et al.: Towards Natural Language Understanding of Partial Speech Recognition

Results in Dialogue Systems. In: NAACL HLT 2009, pp. 53–56. Association for

Computational Linguistics, Boulder (2009)

24. Young, S., et al.: The Hidden Information State model: A practical framework for

POMDP-based spoken dialogue management. Computer Speech and Language, Special

Issue on Evaluation 24(2), 150–174 (2010)

25. Lefevre, F., et al.: k-Nearest Neighbor Monte-Carlo Control Algorithm for POMDP-

Based Dialogue Systems. In: The SIGDIAL 2009 Conference: The 10th Annual Meeting

of the Special Interest Group on Discourse and Dialogue, London, UK, pp. 272–275

(2009)

26. Bohus, D., Horvitz, E.: Learning to Predict Engagement with a Spoken Dialog System in

Open-World Settings. In: The SIGDIAL 2009 Conference: The 10th Annual Meeting of

the Special Interest Group on Discourse and Dialogue, London, UK (2009)

27. Bohus, D., Horvitz, E.: Models for Multiparty Engagement in Open-World Dialog. In:

SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and

Dialogue, Queen Mary University of London, pp. 225–234 (2009)

28. DeVault, D., Sagae, K., Traum, D.: Can I finish? Learning when to respond to

incremental interpretation results in interactive dialogue. In: The SIGDIAL 2009

Conference: The 10th Annual Meeting of the Special Interest Group on Discourse and

Dialogue, London, UK, pp. 11–20 (2009)

29. Skantze, G., Gustafson, J.: Attention and Interaction Control in a Human-Human-

Computer Dialogue Setting. In: The SIGDIAL 2009 Conference: The 10th Annual

Meeting of the Special Interest Group on Discourse and Dialogue, London, UK, pp. 310–

313 (2009)

30. op den Akker, H., op den Akker, R.: Are You Being Addressed? - real-time addressee

detection to support remote participants in hybrid meetings. In: The SIGDIAL 2009

Conference: The 10th Annual Meeting of the Special Interest Group on Discourse and

Dialogue, London, UK, pp. 21–28 (2009)

31. Crockett, K., et al.: Bullying and Debt: Developing Novel Applications of Dialogue

Systems. In: Knowledge and Reasoning in Practical Dialogue Systems (IJCAI), pp. 1–9.

IJCAI, Pasadena (2009)

32. Cassell, J., et al.: More Than Just a Pretty Face: Conversational Protocols and the

Affordances of Embodiment. Knowledge-Based Systems 14, 55–64 (2001)

33. Robinson, S., et al.: What would you ask a CA? Observations of Human-Agent Dialogues

in a Museum Setting. In: Language Resources and Evaluation Conference 2008,

Marrakech, Morocco, pp. 1125–1131 (2008)

34. Babu, S., et al.: “What Would You Like to Talk About?” An Evaluation of Social

Conversations with a Virtual Receptionist. In: Gratch, J., Young, M., Aylett, R.S., Ballin,

D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 169–180. Springer,

Heidelberg (2006)

35. Lance, B.J., Marsella, S.C.: A model of gaze for the purpose of emotional expression in

virtual embodied agents. In: International Conference on Autonomous Agents, Estoril,

Portugal, pp. 199–206 (2008)

36. Gergle, D., Rosé, C.P., Kraut, R.E.: Modeling the Impact of Shared Visual Information on

Collaborative Reference. In: The SIGCHI Conference on Human Factors in Computing

Systems, pp. 1543–1552 (2007)

37. Bickmore, T., Cassell, J.: ’How about this weather?’ Social Dialog with Embodied CAs.

In: The American Association for Artificial Intelligence (AAAI) Fall Symposium on

“Narrative Intelligence”, Cape Cod, MA, pp. 4–8 (2000)

 Systems Engineering and Conversational Agents 229

38. Kopp, S., et al.: A Conversational Agent as Museum Guide – Design and Evaluation of a

Real-World Application. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D.,

Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 329–343. Springer,

Heidelberg (2005)

39. Bevacqua, E., et al.: An expressive ECA showing complex emotions. In: AISB 2007 -

Artificial and Ambient Intelligence, Newcastle University, Newcastle upon Tyne, UK

(2007)

40. Walker, M.A., Hirschman, L., Aberdeen, J.: Evaluation for Darpa Communicator Spoken

Dialogue Systems. In: Language Resources and Evaluation Conference, Athens, Greece

(2000)

41. Walker, M.A., Passonneau, R., Boland, J.E.: Quantitative and Qualitative Evaluation of

Darpa Communicator Spoken Dialogue Systems. In: The 39th Annual Meeting on

Association for Computational Linguistics, Toulouse, France, pp. 515–522 (2001)

42. Walker, M.A., et al.: Speech-Plans: Generating Evaluative Responses in Spoken

Dialogue. In: International Conference on Natural Language Generation, pp. 73–80

(2002)

43. Giraudo, E., Baggia, P.: EVALITA 2009: Loquendo Spoken Dialog System. In:

Evaluation of NLP and Speech Tools for Italian EVALITA 2009, Reggio Emilia, Italy

(2009)

44. Rigo, S., et al.: The 2009 UNITN EVALITA Italian Spoken Dialogue System. In:

Evaluation of NLP and Speech Tools for Italian EVALITA 2009, Reggio Emilia, Italy

(2009)

45. De Angeli, A.: Ethical implications of verbal disinhibition with CAs. PsychNology

Journal 7(1), 49–57 (2009)

46. Kegel. Kegel - Oldest Harley Dealer, http://kegelmotorcycles.com/ (cited

March 23, 2010)

47. Hulstijn, H., et al.: Topics in schisma dialogues. In: Twente Workshop on Language

Technology 11 (TWLT11), University of Twente (1996)

48. Andernach, T., et al.: Language Analysis for Dialogue Management in a Theatre

Information & Booking System. In: 15th International Conference on Language

Engineering, AI 1995, Montpellier, pp. 351–362 (1995)

49. Michie, D.: Return of the Imitation Game. Electronic Transactions in Artificial

Intelligence 6(B), 205–220 (2001)

50. BBC. Tories criticise flu advice line 2009 06:45 GMT, Friday, July 24 (2009), 07:45 UK,

http://news.bbc.co.uk/1/hi/health/8166444.stm (cited June 24, 2009)

51. Morge, M., Abdel-Naby, S., Beaufils, B.: Towards a dialectical approach for CAs in

selling situations. In: The 9th International Conference on Autonomous Agents and

Multiagent Systems, Toronto, Canada, pp. 127–144 (2010)

52. Lance, B., Marsella, S.: A Model of Gaze for the Purpose of Emotional Expression in

Virtual Embodied Agents. In: 7th Int. Conf. on Autonomous Agents and Multiagent

Systems (AAMAS 2008), Estoril, Portugal, pp. 199–206 (2008)

53. Plantec, P.: The Zen of Scripting Verbots (1998),

http://web.archive.org/web/19991013075513/vperson.com/

verbotzen30tt.html (cited September 28, 2004)

54. Sammut, C.: Managing Context in a CA. Electronic Transactions in Artificial

Intelligence 5(B), 191–201 (2001)

55. Dehaene, S., Naccache, L.: Towards a cognitive neuroscience of consciousness: basic

evidence and a workspace framework. Cognition 79, 1–37 (2001)

230 J. O’Shea, Z. Bandar, and K. Crockett

56. Forbes-Riley, K., Litman, D.: Designing and evaluating a wizarded uncertainty-adaptive

spoken dialogue tutoring system. Computer Speech and Language, Special Issue on

Evaluation 25(1), 105–126 (2011)

57. Walker, M.A., et al.: PARADISE: a framework for evaluating spoken dialogue agents. In:

The 35th Annual Meeting of the Association for Computational Linguistics, Madrid,

Spain, pp. 271–280 (1997)

58. Walker, M.A., et al.: Darpa communicator dialog travel planning systems: The June 2000 data

collection. In: EUROSPEECH 2001 7th European Conference on Speech Communication and

Technology 2nd INTERSPEECH Event, Aalborg, Denmark, pp. 1371–1374 (2001)

59. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach. PWS

(1998)

60. Kato, T., Matsushita, M., Kando, N.: Bridging Evaluations: Inspiration from Dialogue

System Research. In: SIGIR 2010 33rd Annual International ACM SIGIR Conference,

SIGIR, pp. 3–4 (2010)

61. Dethlefs, N., et al.: Evaluating Task Success in a Dialogue System for Indoor Navigation.

In: SemDial 2010 14th Workshop on the Semantics and Pragmatics of Dialogue, pp. 143–

146 (2010)

62. Lee, C., et al.: Recent Approaches to Dialog Management for Spoken Dialog Systems.

Journal of Computing Science and Engineering 4(1), 1–22 (2010)

63. Foster, M.E., et al.: Evaluating Description and Reference Strategies in a Cooperative

Human-Robot Dialogue System. In: The 21st International Joint Conference on Artificial

Intelligence, Pasadena, California, USA, pp. 1818–1823 (2009)

64. Webb, N., et al.: Evaluating Human-Machine Conversation for Appropriateness. In: The

7th Conference on International Language Resources and Evaluation (LREC 2010),

Valletta, Malta (2010)

65. Bouwman, G., Sturm, J., Boves, L.: Incorporating confidence measures in the Dutch train

timetable information system developed in the ARISE project. In: ICASSP 1999, pp.

493–496 (1999)

66. Semeraro, G., et al.: Evaluation and Validation of a Conversational Agent Embodied in a

Bookstore. In: Carbonell, N., Stephanidis, C. (eds.) UI4ALL 2002. LNCS, vol. 2615, pp.

360–371. Springer, Heidelberg (2003)

67. Andersen, V., et al.: A methodological approach for designing and evaluating intelligent

applications for digital collections. Applied Artificial Intelligence 17(8-9), 745–771

(2003)

68. Lamel, L., et al.: User evaluation of the MASK kiosk. Speech Communication 38(1),

131–139 (2002)

69. Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge

University Press, Cambridge (1990)

70. Yuan, X., Chee, Y.S.: Design and evaluation of Elva: an embodied tour guide in an

interactive virtual art gallery. Computer Animation and Virtual Worlds 16(2), 109–119

(2005)

71. McKevitt, P., Partridge, D., Wilks, Y.: Why machines should analyse intention in natural

language dialogue. Int. J. Human-Computer Studies 51, 947–989 (1999)

72. Le Bigot, L., Jamet, E., Rouet, J.-F.: Searching information with a natural language

dialogue system: a comparison of spoken vs. written modalities. Applied Ergonomics 35,

557–564 (2004)

73. Cassell, J., Vilhjálmsson, H.: Fully Embodied Conversational Avatars: Making Communica-

tive Behaviors Autonomous. Autonomous Agents and Multi-Agent Systems 2(1), 45–64

(1999)

 Systems Engineering and Conversational Agents 231

74. Massaro, D.W., et al.: Developing and evaluating CAs. In: Cassell, J., et al. (eds.)

Embodied CAs, pp. 286–318. MIT Press, Cambridge, MA (2000)

75. Cassell, J., Bickmore, T.: Negotiated Collusion: Modeling Social language and its

Relationship Effects in Social Agents. User Modeling and User-Adapted Interaction 13,

89–132 (2003)

76. Lamel, L., et al.: The LIMSI RailTel System: Field trial of a telephone service for rail

travel information. Speech Communication 23(1-2), 67–82 (1997)

77. Litman, D.J., Pan, S.: Designing and Evaluating an Adaptive Spoken Dialogue System.

In: User Modeling and User-Adapted Interaction, vol. 12, pp. 111–137 (2002)

78. Sanders, G.A., Scholtz, J.: Measurement and Evaluation of Embodied CAs. In: Cassell, J.,

et al. (eds.) Embodied CAs. MIT Press, Cambridge, MA (2000)

79. Bouwman, G., Hulstijn, J.: Dialog Strategy Redesign with Reliabilty Measures. In: 1st Int.

Conf. on Language Resources and Evaluation, Granada, Spain, pp. 191–198 (1998)

80. Spärck-Jones, K.: A Statistical Interpretation of Term Specificity and its Application in

Retrieval. Journal of Documentation 28, 11–21 (1972)

81. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.

Communications of the ACM 18(11), 613–620 (1975)

82. Li, Y., et al.: Sentence Similarity Based on Semantic Nets and Corpus Statistics. IEEE

Transactions on Knowledge and Data Engineering 18(8), 1138–1150 (2006)

83. Austin, J.L.: In: Urmson, J.O. (ed.) How to do things with Words: The William James

Lectures delivered at Harvard University in 1955, 2nd edn. Harvard University Press,

Cambridge, MA (1975)

84. Ferri, F., Grifoni, P., Paolozzi, S.: An Approach to Multimodal Input Interpretation in

Human-Computer Interaction. In: The Nineteenth International Conference on Software

Engineering Knowledge Engineering (SEKE 2007), Boston, MA, USA, pp. 664–669

(2007)

85. Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text Relatedness Based on a Word

Thesaurus. Journal of Artificial Intelligence Research 37, 1–39 (2010)

86. Min, F., Wenyin, L., Chen, W.: Answer Clustering and Fusion in a User-Interactive QA

System. In: Second International Conference on Semantics, Knowledge and Grid, p. 41

(2006)

87. Gacitua-Decar, V., Pahl, C.: Automatic Business Process Pattern Matching for Enterprise

Services Design. In: 2009 World Conference on Services - II, Bangalore, India, pp. 111–

118 (2009)

88. Huang, J.-J., Changt, S.-T., Hu, S.-Y.: Searching for Answers via Social Networks. In: 5th

IEEE Consumer Communications and Networking Conference, CCNC 2008, Las Vegas,

NV, pp. 289–293 (2008)

89. Capuano, N., et al.: On-Demand Construction of Personalized Learning Experiences

Using Semantic Web and Web 2.0 Techniques. In: Ninth IEEE International Conference

on Advanced Learning Technologies, pp. 484–488. IEEE Computer Society, Washington,

DC (2009)

90. Inkpen, D.: Semantic Similarity Knowledge and its Applications. Studia Universitatis

Babes-Bolyai Informatica LII(1), 11–22 (2007)

91. Achananuparp, P., Hu, X., Shen, X.: The Evaluation of Sentence Similarity Measures. In:

Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 305–316.

Springer, Heidelberg (2008)

92. O’Shea, K., Bandar, Z., Crockett, K.: Towards a New Generation of CAs Based on

Sentence Similarity. Lecture Notes Electrical Engineering, vol. 39, pp. 505–514 (2009)

232 J. O’Shea, Z. Bandar, and K. Crockett

93. O’Shea, K., Bandar, Z., Crockett, K.: A Novel Approach for Constructing CAs using

Sentence Similarity Measures. In: Proceedings of the World Congress on Engineering

WCE 2008, London, U.K., pp. 321–326 (2008)

94. Liu, X., Zhou, Y., Zheng, R.: Sentence Similarity based on Dynamic Time Warping. In:

International Conference on Semantic Computing, ICSC 2007, pp. 250–256 (2007)

95. Li, Y., Bandar, Z., McLean, D.: An Approach for Measuring Semantic Similarity between

Words Using Multiple Information Sources. IEEE Transactions on Knowledge and Data

Engineering 15(4), 871–882 (2003)

96. Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure and its

Application to Problems of Ambiguity in Natural Language. Journal of Artificial

Intelligence Research 11, 95–130 (1999)

97. O’Shea, J.: A Framework for Applying Short Text Semantic Similarity in Goal-Oriented

CAs. In: Computing and Mathematics. Manchester Metropolitan University, Manchester

(2010)

98. Landauer, T.K., Foltz, P.W., Laham, D.: An Introduction to Latent Semantic Analysis.

Discourse Processes 25, 259–284 (1998)

99. Laham, D.: Latent Semantic Analysis @ CU Boulder (1998), LSA website,

http://lsa.colorado.edu/ (cited January 20, 2008)

100. Deerwester, S., et al.: Computer information retrieval using Latent Semantic Structure,

U.S.P. Office. Bell Communications Research Inc.: United States of America (1989)

Chapter 9

Advanced Concepts and Generative Simulation
Formalisms for Creative Discovery Systems

Engineering

Levent Yilmaz1 and C. Anthony Hunt2

1 Auburn University
yilmaz@auburn.edu

2 University of California at San Francisco
c.hunt@ucsf.edu

Abstract. While M&S has been widely used in engineering and compu-
tational sciences to facilitate empirical insight, optimization, prediction,
and experimentation, the role of simulation in supporting early foresight
phases of creative problem solving received less attention. We advocate
models of creative cognition to rethink simulation modeling so that cre-
ativity is enhanced rather than stifled. Generative Parallax Simulation
(GPS) is introduced as a strategy and a generic and abstract specifica-
tion for its realization is presented. GPS is based on an evolving ecology
of ensembles of models that aim to cope with ambiguity, which per-
vades in early phases of model-based science and engineering. Besides its
contributions as a modeling and simulation methodology in support of
creativity, GPS provides a fertile and useful domain as an application
testbed for parallel simulation.

1 Introduction

Advances inmultimodel formalisms (Zeigler and Oren, 1986;Fishwick and Zeigler,
1992) and exploratory modeling techniques (Davis and Bigelow, 2000) resulted in
significant improvement in dealing with uncertainty and enhancing computational
productivity in complex system analysis. However, as the use of computational
modeling and simulation become pervasive, scientists are moving from the com-
parably well-understood and safe territory of computational productivity to the
more ambiguous domain of discovery, creativity, and innovation (Schneiderman,
2007).

To demonstrate the utility of viewing scientific knowledge generation as an
evolving complex adaptive ecology of analogue ensembles, we introduce a strat-
egy to leverage principles of complex systems thinking to foster creative discovery
through strategic and context-sensitive creation and evaluation of many mecha-
nistic analogue (model) schemas. Those easily falsified are discarded. Those that
survive a round of falsification provide features that can be copied and assem-
bled differently to make new schemas, and a few of the mechanisms represented
may be successful in initially non-intuitive ways. We expect those will lead to

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 233–258.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

234 L. Yilmaz and C.A. Hunt

new insight; some may catalyze creative leaps that otherwise may be slow in
coming when only the domain of expensive wet-lab experimentation is avail-
able. Mechanism schemas that survive several rounds of falsification will stand
as an ensemble of concretized theories of how a morphogenic emerges. The ap-
proach has the potential to become a new means of stimulating creativity while
advancing biomedical science and engineering.

For the purpose of this article, creativity is interpreted as the production of
novel and useful ideas (Amabile, 1996). More specifically, creative discovery is
viewed as the product of a process that involves concept (e.g., model) combina-
tion, expansion, metaphor, and analogy along with mechanisms acting in concert
to expand the frontiers of knowledge and conceptualization in a domain. Hence,
creativity can be seen as a system by which processes transform and create
structures to produce results that are novel, yet rooted in existing knowledge
(Ward et al., 1997).

Generative Parallax Simulation (GPS) views novelty as an emergent phe-
nomenon; it harnesses the principles of self-organization and draws from the
science of complexity to enable simulation technology development to enhance
discovery in model-based science and engineering. The proposed approach is in-
fluenced by and extends on the promise and success of our recent work on Sym-
biotic Adaptive Multisimulation (Mitchell and Yilmaz, 2008) that views model
behavior generation as a complex adaptive system. By leveraging models of cre-
ative cognition (Sawyer, 2008), we delineate simulation modeling concepts to
improve computational discovery.

Creative processes often involve a broad idea generation phase that is ap-
proached from different perspectives, followed by idea evaluation and selection
(Amabile, 1996) . Because creativity requires novel yet useful solutions to make
creative leaps, appropriate trade offs between constraints and flexibility are
needed over the models’ representation of the problem. Hence, the effective-
ness of simulation systems that support creative discovery will rely heavily on
their ability to start behaving robustly across a large number of hypotheses,
constraints, and propositions, followed by narrowing toward a limited range of
conditions that are found to be plausible in terms of explaining extensible set
of attributes. Development of such simulation systems will require progress in
addressing the following:

– when does discovery involve exploitation of a problem space, and when does
it involve exploring alternative problem representations?

– what are appropriate trade offs between constraints and flexibility in sup-
porting incremental and iterative expansion of the model space to explain
expanding sets of mechanisms and attributes underlying the phenomena of
interest?

– how can models and theories of creative cognition help us rethink simulation
modeling so that creativity is enhanced rather than stifled?

The concepts introduced herein coupled with preliminary explorations are mov-
ing us toward answers. In Figure 1, they are shown as the domain of generative

Creative Discovery Systems Engineering 235

Fig. 1. Generative and Exploratory Simulation

modeling and analysis, which precedes exploratory analysis and computational
experimentation. To demonstrate the proposed concepts, we use model-based
scientific study of biological systems as a motivating scenario. For clarity, we re-
strict discussions to problem solving in the biological domain, where uncertainty
is ample. Further, our initial focus is on problems requiring deeper insight into
causal mechanisms responsible for such biological phenomena as epithelial mor-
phogenesis. Nevertheless, the ideas presented are generalizable. A major thrust
of GPS is that by automating (large parts of) generating and exploring simula-
tion models, we can foster creativity and dramatically enhance the generation
of foresight into epithelial morphogenesis, our motivating scenario. Achieving
measurable scientific progress will motivate extension of the approach into other
domains. Following the success of earlier work on Symbiotic Adaptive Multisim-
ulation (Mitchell and Yilmaz, 2008), we leverage principles of complex systems
thinking in simulator design to propose GPS as a method based on adaptive
evolutionary ecologies of model ensembles.

The rest of the paper is organized as follows. In section 2, a motivating sce-
nario is presented to emphasize the significance of generative modeling approach
for improving creativity problem solving. To set the context for desirable charac-
teristics for next generation intelligent simulators and to provide a basis for com-
putational support for creative processes, section 3 overviews confluence models
of creativity. Building on these cognitive and social models of creativity, section
3 outlines design principles for creativity support simulation systems by intro-
ducing a generic formalism for GPS. Section 4 focuses on meta-simulation study
of GPS to better understand its dynamics. In section 5, we discuss limitations of
GPS and suggest mechanisms to improve its ability to generate novel and useful
models as a creative evolutionary system and recommend potential avenues of

236 L. Yilmaz and C.A. Hunt

future research. We conclude in section 6 by emphasizing the value of GPS in
addressing uncertainty and ambiguity during early phases of model-based science
and engineering.

1.1 Motivation

We use the metaphor of traditional cycles of scientific advancement, where hy-
potheses are formulated from a body of knowledge and their testable conse-
quences are evaluated. To sharpen the focus, the specific system on which we
use to motivate proposed concepts is epithelial cells undergoing morphogenesis
or repair (Kim et al., 2008, 2009). The analogue (model) systems described are
testable hypotheses about mechanisms that may be responsible for specified at-
tributes of epithelial cell cultures. The problem is straightforward yet complex:
discover plausible mechanisms, consistent with current, expanding knowledge,
for sets of perspective-dependent behaviors. There are no ”correct” mechanisms.
In many cases there may be multiple, equally valid mechanisms. The approach
advanced herein uses computational modeling and simulation in new ways. The
proposed work is predicated on the conjecture that theories of creativity and
creative cognition, in conjunction with principles of complex adaptive systems
thinking facilitate reconsidering the use of simulation so that creative discovery
in model-based exploration of complex systems can be enhanced rather than
stifled.

The space of behaviors and mechanisms of living systems, even cultured cells
in vitro, is much larger than the space of attributes that can be measured using
today’s technologies (Engelberg et al., 2008; Lam and Hunt, 2008). The scien-
tific method requires focusing on a finite number of observations during each
experiment and clamp down onconstrainother system behaviors to limit the in-
fluence of unmeasured attributes. Triangulating on the real system by building
perspective dependent models of the type described here (i.e., evolving ecology of
multiple ensembles of models) will help provide deeper insight. Parallax Simula-
tion is based on that triangulation concept. However, the inherent sequentiality
of iterative, one-at-a-time model development limits research progress by limit-
ing the way the generators can be assembled to fill the simulated attribute space.
Completely exploring the potential attribute space becomes infeasible with even
a relatively small number of operating principles (i.e. abstract mechanisms).

1.2 Scientific Problem Solving with Computational Models

Figure 2 depicts the space of models used in biological research. Like much of
biology, epithelial morphogenesis, is complex and a great deal remains obscure.
Even when studying a single epithelial cell-line, such as Madin-Darby canine kid-
ney (MDCK) cells, use of two different experimental conditions can change the
mix of phenotypic attributes observed. It is as if we are observing the biological
system from two different perspectives.

To demonstrate that we understand how molecular level details within mam-
malian cells interconnect at different levels and emerge as a dynamic,

Creative Discovery Systems Engineering 237

Fig. 2. Bridging the Gap between Model Organisms and Computational Models: Model
types are arranged according to abstraction level versus biological character. The
Biomimetic axis indicates the degree to which a model resembles its referent. Sta-
tistical models are to the lower left (blue). Model organisms are to the upper right
(red).

multi-attribute systemic phenotype, we need models and methods that can
bridge the gap between wet-lab systems, such as MDCK cell cultures, and the
current generation of inductive, mathematical models, such as those used in
pharmacokinetics (PK) and pharmacodynamics (PD). We need computer-based
models that, although still abstractions, have extant mechanisms that generate
emergent properties analogous to how biological counterpart properties emerge
during experiments. The current generation of biological systems models (green)
are inductive, partially heuristic, partially predictive, biomimetic, functional and
structural models used for evaluating canalizing aspects of data obtained from a
referent systems located on the other side of the gap. On the other hand, models
that can bridge the gap will be heuristic, biomimetic analogues (models) that can
be used to evaluate explicit mechanistic hypotheses from different experimental
perspectives in the context of many aspects of the referent. The in vitro models
such as MDCK cell cultures are fundamentally different from their mammalian
referents.

Figure 3 demonstrates phenotype overlap of different model systems. Each cir-
cle represents a set of relevant, measurable phenotypic attributes, viewed from
related perspectives: epithelial cells within an animal model, MDCK cell cultures,
and two somewhat different validated models of MDCK cells (Grant et al., 2007).
The white spots within the MDCK phenotype illustrate specific, measurable at-
tributes. The area of overlap between in vivo and MDCK cultures represents
situations in which attributes and generative mechanisms are similar. The areas
of overlap between the phenotypes of two in silico models and cultured MDCK
cells: measurable properties of the analogue during execution are similar to cor-
responding measures of MDCK cultures. Each model is of a different perspective
of the same system. In part B, after multiple rounds of revision and validation,
the models in A have evolved. The larger area of overlap (interpenetration)

238 L. Yilmaz and C.A. Hunt

Fig. 3. Phenotype Overlap of Different Model Systems

means that a larger set of each models relevant phenotypic attributes (and gen-
erative mechanisms / operating principles) have been judged similar to a target
set of MDCK counterparts. It may take multiple, somewhat different analogues
to obtain broad coverage of in vitro attributes.

The task of discovering abstract, atomic, cell-level operating principles for in
vitro morphogenesis requires multiple models and, perhaps, multiple experimen-
tal contexts in which those multiple models live. Initial success has been achieved
(Grant et al., 2007; Kim et al., 2008) through the serial development of models,
adding and removing various operating principles, executing the model, and fal-
sifying against validation data from the referent. The fundamental method being
employed is: a) hypothesize and implement operating principles, which can stand
in for biological mechanisms, b) execute those implementations, c) determine a
fine-grained falsification for the systemic behavior of the implementation, and
d) modify, add, or remove operating principles and iterate. This method is a
basic exploration of the forward and inverse maps from generator to phenomena
and vice versa. This genotype/phenotype mapping is the most basic multi-scale
nature of the research. It is based on falsification of the sequentially, iteratively
developed models, not simply positive validation. The model validates only when
it can no longer be falsified.

GPS is introduced as an effective means of identifying which analogue com-
ponent or feature to change to extend the coverage of targeted attributes. That
change may require addition of a new component, increasing spatial or tempo-
ral granularity, giving new capabilities to components, replacing a basic com-
ponent with composites, changing experimental conditions etc. Once that has
been achieved, it is important to explore and measure the changes that occur
in an analogue’s behavior within the parameter space close to that of the cur-
rent parameter vector. Again, automated methods are needed. So doing is more
than a form of sensitivity analysis. Some behaviors may suggest specific wet-lab
experiments. Others may show a shift to abiotic behaviors (in Figure 2, moving
away from a region of overlap). It can be useful to understand what analogue
parameter changes move behaviors from a biomimetic region to an abiotic region.
Therefore, a combination of divergent and convergent mechanisms in hypothe-
ses generation and evaluation is critical to facilitate creative discoveries that are

Creative Discovery Systems Engineering 239

meaningful and useful to scientists to better understand the phenomena of in-
terest. Achieving a set of targeted attributes is a procedure for systematically
reducing ambiguity while providing a degree of validation. Once that has been
achieved, it is important to explore and measure the changes that occur in an
analogue’s behavior within the parameter space close to that of the current pa-
rameter vector. Again, automated methods are needed. So doing is more than a
form of sensitivity analysis.

Such methods allow us to approach a biologically inspired form of modeling
derived from synergistic integration of evolutionary dynamics and ecological per-
spective, which we call generative modeling. The ability to instantiate, execute,
and if necessary, evolve multiple models, in parallel, all of which take similar but
slightly different perspectives on the same referent (biological) system, opens
the door to the automatic generation and selection (by falsification) of many
somewhat different hypothetical, including non-intuitive mechanisms for that
referent. In other words, the above ability would allow us to construct, execute,
and falsify, many more hypotheses for the way a biological system works than can
be achieved feasibly through our current sequential, iterative, modeling methods.
Modeling throughput would increase exponentially. Such an exponential increase
in model and hypothesis throughput would promote creative discovery and in-
crease opportunities for creative leaps; that increase is necessary for generative
simulation to begin significantly supplanting some of the current trial and error
methods in domains like development of new therapeutics.

2 Models and Principles of Creative Problem Solving

There has been extensive research on creativity, discovery, and innovation at
different levels spanning from cognition in individuals to groups, organizations,
and collective creativity in large-scale community forms of organization. While
significant process is achieved in many disciplines, the topic is relatively new for
the modeling and simulation discipline.

2.1 Background

To improve creativity and discovery in model-based science and engineering,
advanced simulation technologies can be extended to provide facilities and
opportunities that go beyond its conventional experimentation capabilities. Prin-
ciples of creative problem solving help establish the role of evolutionary dynamics
in generating novelty.

– As indicated by Gero and Kazakov (1996), evolution is creative in the sense
of generating surprising and innovative solutions.

– Analogous to creative and innovative problem solving, evolutionary mech-
anisms improve solutions iteratively over generations (Gero and Kazakov,
1996).

– Ambiguity and lack of clarity about knowledge about existing relations
between the requirements for ideal solution and forms that satisfy these
requirements (Rosenman, 1997) are useful opportunities for creativity.

240 L. Yilmaz and C.A. Hunt

– Exploring a search space in an effective and efficient manner and ability to
explore alternative search spaces by redefining the problem representation
are critical in creative problem solving. To the extent that evolutionary mech-
anisms that do not have considerable freedom to vary their representations
are clearly not creative (Gero, 1996).

– Creativity requires transfer of knowledge and use of metaphor (Holland,
1998) and analogical reasoning across disciplines (Goldberg, 1999). Hence,
evolutionary dynamics coupled with ecological perspective that favors trans-
fer is more likely to be creative.

2.2 Models of Creative Cognition

Bottom-up theories of creativity include generate and explore model
(Smith and Blakenship, 1991), systems model of creativity Csikszenthmihalyi
(1999) and evolutionary models of creativity (Campbell, 1960; Simonton, 1999).
The commonality between these models is two-fold. First, they all hypothe-
size and substantiate that creativity is influenced by synergistic interaction and
confluence of environmental factors. Second, their underlying mechanisms are
based on the principles of models of evolutionary systems. That is, creative ideas
emerge through a process analogous or similar to natural selection process.

Systems Model of Creativity. According to systems view of creativity intro-
duced by Csikszenthmihalyi (1999), creativity is not the product of an individual,
but rather the interaction between the individuals, social context, and the prob-
lem domain. For creativity to occur, original and novel contributions submitted
by individuals should be evaluated for inclusion as new body of knowledge in the
domain. Individual contributions are predicated on the practices and knowledge
stored in the problem domain, so that novelty can be produced as a variation
in the content of the domain. Figure 4 depicts the components and interactions
of this model. The domain is considered as a critical component of creativity
because it is impossible to introduce a variation without reference to an existing
pattern specified in the domain knowledge. The technical contributions made by
individuals that produce creative solutions to domain-specific problems. Such
technical contributions induce novel variations in the domains that constitute
the context.

Generate and Explore Model. The view of creative problem solving as a
bottom-up generative process is the basis for the generate and explore model.
Introduced by Smith and Blakenship (1991), the model is based on a two-stage
process. In the first stage, the individual generates pre-inventive forms, which
are ideas and conceptual structures that might be useful for creative production.
In the second phase that primarily focuses on exploration of the pre-inventive
structures to interpret their utility for solving specific problems. The generation
phase can leverage various cognitive processes. The individual may retrieve prior

Creative Discovery Systems Engineering 241

Fig. 4. Systems Model of Creativity

learned concepts for evaluation, or transform concepts in novel ways or configure
them in new forms to orient the solution in a new context. Constraints on the
final product can be imposed to influence the generation and exploration phases.

Evolutionary Models of Creativity. According to Campbell (1960), three
major conditions are necessary for creative thinking: (1) similar to organic evolu-
tion, there should be a mechanism to generate new ideas in the form of ideational
variation; (2) following the generation of new ideas, specific criteria must be used
to select those ideas that are useful for the problem under consideration; (3) the
variations that are selected should be retained and used for reproducing new
ideas in future generations. The arguments against Campbell’s model of cre-
ative cognition focus on the need for incorporation of experience and learned
behavior. Campbell (1960) extensive quotes Poincare (1908) to signify the role
of blind variation at some point in the process to bring true novelty before the
production of experience in a particular problem domain.

In elaborating Campbell’s view, Simonton (1999) proposes a chance config-
uration model that applies evolutionary perspective to mental elements, which
are fundamental psychological units that are manipulated and combined to gen-
erate new forms and complex mental units. Mental elements are elaborated and
combined via a process of chance permutation, which are carried out in the
unconscious. In retaining ideational variations, Simonton (1999) proposes that
permutations differ in terms of their stability. Stability is defined as the affinity
and coherence of mental elements in the proposed configuration. The greater the
stability of a combination, the greater the chance that it will be selected and
retained for attention by the consciousness.

242 L. Yilmaz and C.A. Hunt

3 Generative Parallax Simulation: Basic Concepts

Development of simulation methods that support creative problem solving
requires leveraging principles that explain emergence of creativity. The perspec-
tive examined in this work is the creative cognition world-view that focuses on
bottom-up idea generation and evaluation strategies that enable optimal com-
binations of explorative and exploitative modes of inquiry.

3.1 An Abstract Model of Creative Cognition

Examination of creative cognition models reveals three main components that
interact with each other to produce useful novelty: Domain, Generator, and
Evaluator. We define a high-level reference model (see Figure 5) to delineate
each component along with its role.

")'!%(
@'8125;>
;0326/;>

087;<:/47<;>
3=98<32;2;A

')"#&
$#(#*!,)*

+%'-&!,)*?
')"#&

#.!&-!,)*

"/&', 1%)'-#16 %/.120#*.216
!4.%3/.#, 0',#3/.1

.'5 -/&', '.1'-$,'

0'2#*.'& -/&',1

(''&$#%+

Fig. 5. Generate and Explore Reference Model

Domain: The domain embodies the ensemble of plausible models (problem for-
mulations), hypothesized mechanisms believed to represent referent processes,
constraints (e.g., experimental conditions, range of values of known variables),
phenomena being explored, plus schemas (e.g., meta-models) used to specify
analogues.

Generator: The generation phase of the creative cognition process can be based
on any number of novelty generation actions. To be successful in improving cre-
ative insight into a problem, a simulation platform and its underlying mecha-
nisms need to be aware of principles and operators underlying the process for
generating creative novelty. Sawyer (2008) discusses and illustrates four major
operators that often enable creative outcomes:

Creative Discovery Systems Engineering 243

– concept elaboration - extending existing concepts (e.g., analogue) through
new features and constraints to obtain more specialized concepts.

– concept combination - requires integration of two or more concepts to obtain
a new novel concept.

– concept transfer - involves establishing a metaphor through analogy to reuse
a collection of related concepts in a new context.

– concept creation - refers to invention of new concepts that do not exist in
the problem domain

Evaluator: Analogue composition is a hypothesis: these components as com-
posed become a mechanism upon execution, and that mechanism will lead to
measurable phenotypic attributes that mimic prespecified, targeted, referent
attributes. A more interesting analogue is one capable of a greater variety of
phenotype mimicry, and for which the mappings from analogue to referent mech-
anisms can be concretized; conceptual mappings cannot. Improved analogue-to-
referent mappings at the mechanism level are expected to lead to deeper insight.
Analogues capable of greater mimicry of targeted attributes are retained. Phe-
nomimetic measures are needed to compare phenotype overlap: attribute similar-
ity. Comparative phenometrics will depend on the relative ability of two or more
analogues to achieve prespecified measures of similarity to referent. Included will
be quantitative validation metrics as well as more qualitative measures, such as
behavioral similarities. Comparative phenometrics should also take into account
the degree of phenotype overlap and mechanistic similarity between analogues.
Substantial multi-attribute similarity coupled with some mechanistic divergence
has the potential to catalyze creative leaps. The feedback provided back to the
generator improves its effectiveness in selecting the model generation operators
through a learning mechanism.

3.2 Abstract Specification of the Structure and Dynamics of GPS

To formalize GPS, we define the structure of the domain of models as a graph of
ensembles, G = (V, R), where V is the set of nodes, and each node v ∈ V denotes
an ensemble of models, and R is the set of relations depicting affinity (e.g.,
similarity in terns of function and form) between the ensembles. Each ensemble E

has a neighborhood N(E), which refers to a connected subgraph of G containing
E. For our purposes, each ensemble contains a collection of metaobjects, each
one of which specifies the schema of a corresponding model. Figure 6 depicts
the structure of graph of ensembles. The strength of relations (e.g., w(i, k) or
w(k, i)) between ensembles signify the degree of similarity analogues in the source
ensemble exhibit with respect to phenotypic attributes of the target ensemble’s
referent.

To evolve model schemas and their metaobjects, we need an encoding scheme.
Although the encoding of a schema depends on the purpose of the study and
aspects that will be evolved during the process of generative simulation, for
simplicity and purpose of demonstration, we may assume for demonstration

244 L. Yilmaz and C.A. Hunt

!

w(ik)

w(ki)

 model

schema

Fig. 6. Graph of Model Ensembles

purposes that each schema is a binary sequence of length n from the space
{0, 1}n. We denote the set of schemas with S and define a population function,
P , as

P : V → S (1)

The population function can be extended via a neighborhood function N : V →
2V , which returns for a given node x ∈ V , all nodes, y ∈ V in G, where (x, y) ∈ R.
Hence, P (N(E)), where E ∈ V , returns all schemas contained in the neighbor-
ing ensembles. One can however also access schemas within a given ensemble by
taking neighborhood equal to a specific ensemble. At any given round of gen-
eration, T , the schema population of the neighborhood of an ensemble, E, is
given by P (N(E), T). Similarly, the population of a specific ensemble is defined
as P ({E}, T), and the number of schemas in ensemble is N = NE;T .

Evaluation - Phenometrics: Given the above specification, we need to define
evolutionary aspects of the ensemble. Three major factors are of interest within
the morphogenesis domain. First, analogues that exhibit behaviors similar to
those targeted must be favored, as they generate sufficiently valid behavior, if
a similarity measure value exceeds a prespecified threshold. Second, those ana-
logues that use divergent mechanisms yet have a sufficient level of validity may
facilitate discovery of novel mechanisms. Consequently, they should be retained.
Finally, those analogues that demonstrate success in generating behaviors and
features imposed by neighboring ensembles should be favored, as they may be
able to extend their usefulness and scope. Analogues that satisfy the constraints
of multiple phenotypic attributes will relate to schemas from more than one
ensemble: they are expected to have larger impact. The similarity for a given
ensemble v is defined as Fa : S → [0, 1]. Fa(s), where s ∈ S, returns similarity
of the analogue with schema s within the ensemble v. For a given schema, its
performance is the degree of similarity of corresponding analogue behaviors to
targeted phenotypic attributes. The extent function, Fe : N(E) × S → [0, 1],
measures the degree of relevance of the schema with respect to ensembles in

Creative Discovery Systems Engineering 245

N(E). The total similarity of schema s in ensemble E is the weighted sum of its
validity and extent:

f(s) = αaFa + αeFe (2)

where αa + αe = 1. Adjustment of these parameters enables examination of
alternative population evolution strategies. So doing may suggest effective and
efficient methods for discovering analogues that are qualified to mimic selected
sets of attributes.

Generation: The similarity functions specify how the schemas in the ensem-
ble will be judged. Schema generation uses general schema transformation op-

erators. A transformation operator is defined as a function t : Sm → S for
some integer m. The generative simulation system has a collection of opera-
tors, R = {ti, i = 1, 2, . . . , J}, that enable generation of alternative forms and
structures. Elaboration involves refinement of a schema and is similar to a mu-
tation operation with m = 1, while combination is analogous to a crossover
operation, with m = 2. Each transformation operator, ti, is associated with a
weight, wi, that determines frequency of its application. The generation of new
schema involves a stage of schema selection, followed by interactions to create
new schemas. At each round, schemas with similarity values less than a prede-
fined threshold are dropped. The remaining population in P ({E}, t) representing
ensemble E is replaced with a new interim population φ consisting of schemas in
P ({E}, T) with different frequencies. Using the conventional GA fitness propor-
tionate parent selection mechanism, we compute for each schema its probability

of selection: f(s)∑
j∈E f(j) . The expected number of copies of each schema (metaob-

ject) in the interim population is then given by f(s)

f
, where f = 1

N

∑
j∈E f(j)

the average similarity measure of the population. The frequency of each schema
is therefore approximately proportional to its total similarity. The interaction
between selected schemas proceeds as follows. A schema is selected from the
interim population φ. A transformation operator tj is selected with a probabil-
ity proportional to its weight wj . If the arity of the transformation operator is
m, then the remaining m − 1 schemas are randomly selected from the interim
population φ. Following application of the transformation operator the produced
schema is included in the new population: P ({E}, T +1). The interaction process
is repeated N times to generate a new full population.

Transfer: Given the set of edges, R ⊆ V × V of the ensemble graph, G, each
edge (Ei, Ej) is associated with two components: wij and wji. These components,
shown in Figure 6 as the strength of relations, are positive integers that define
transfer rates from Ei to Ej and Ej to Ei, respectively, and Q =

∑
j wij ≤ N .

Each schema s in the ensemble has a propensity to transfer µ(s), which is a
monotonic function of the change of similarity over k iterations. Initially, wij

for each ensemble i is set to a low value. These transfer rates, which emulate
conceptual transfer and analogy-based discovery, may change over time. Learning
takes place as information about the similarity of copied and transferred models
is gathered. If models that are transferred from Ei to Ej improve their average

246 L. Yilmaz and C.A. Hunt

similarity, the transfer rate for migration from Ei to Ej is updated to increase
number of transfers; otherwise, the transfer rate is decreased. At each round of
evaluation, for every (Ei, Ej) in the analogue ensembles graph, the population
in ensemble i is scanned to locate K schemas with µ(s) ≥ γtransferThreshold and
from these schemas a subset of size proportional

mij

Q
schemas are selected for

transfer to Ej .

3.3 Implications of the Ecological Perspective

The generation and transfer mechanisms update the contents and structure of the
ensemble graph as an evolving ecology. The network of ensembles enables inter-
action between models. The boundaries denote separate attributes and targeted
objectives in the referent. Ensembles communicate with each other and share
models across their boundaries. An overall solution is discovered through con-
tinual flows of models so that ensembles in the graph can sustain themselves and
improve the impact and usefulness of local solutions. Those models that do not
survive after migration to other ensembles are considered as falsified. Exchanges
of models in this evolving ecology of ensembles are sustained by pervasive coop-
eration, because a model that migrates to a new ensemble contributes its traits
to its new context. Furthermore, viewing a solution to complex multi-aspect and
multi-attribute problem as an evolving ecology achieves stability and resilience
through richness and complexity of interaction. Due to synergistic combination
of evolution and ecological perspective, the generated solution that is defined
in terms of an ensemble of ensembles is flexible due to consequence of multiple
feedback loops that keep the solution in a state of dynamic balance. That is,
the solution is not biased toward a single targeted attribute; hence, the solution
is not optimized toward one specific aspect. Rather, ensembles fluctuate around
their optimal forms.

4 Meta-simulation of GPS

Preliminary experiments are conducted to better understand the operating
regime and parameter ranges that improve integrated differentiation in a hypo-
thetical model space. To this end, we present a meta-simulation study of evolving
ensembles of model schemas. For the purpose of this article, meta-simulation is
defined as the simulation study of a simulation method for the purpose of better
understanding its behavioral dynamics and patterns that emerge as a result of
sensitivity to parameters, which are related to creative cognition model discussed
above.

4.1 Conceptual Model for GPS Simulator

As shown in Figure 7, the collection of models is comprised of four ensembles,
each constituting a quadrant of the grid. Each ensemble contains a set of model
schemas. A model schema is specified as a binary vector of length 40. Each ele-
ment (i.e., bit) of the vector depicts a trait that a model belonging to associated

Creative Discovery Systems Engineering 247

Fig. 7. Initial State of the Meta-simulation

ensemble representing one of the four perspectives or aspects involved in the hy-
pothetical abstract problem. In comparison to the motivating scenario examined
in section 2, each ensemble represents a separate targeted attribute.

Each bit in the vector representing a trait is interpreted as a component (e.g.,
axiom, indicators for existence or lack of a variable, low or high levels of val-
ues for a specific variable). Ideally, in realistic problems, a set of components is
used as primitive blocks to construct solutions through an evolutionary design
mechanism to generate problem representations and configurations to facilitate
discovery of novel and useful solutions. The constraints involved in plausible
configurations should play a critical role in selective retainment of solutions, but
in our simplified scenario, we use a practical solution by favoring those schemas
that maximize the value of the bit vector. Given that our goal is simply to exam-
ine sensitivity of our evolving ecology framework to parameters discussed below
and to interpret emergent patterns pertaining to degree of integrated (useful)
differentiation (novelty) in the schema space, as opposed to demonstration of
its performance on a specific problem, this simplified treatment for analysis is
acceptable for the purpose at hand.

Figure 8 depicts the encoding scheme for elements of each ensemble. There are
four ensembles, a, b, c, and d, which are initialized with collections of schemas.
Each schema is defined in terms of 40 bits divided into four sections, Va, Vb,
Vc, and Vd, with 10 bits each. At the time of initialization, the binary vector
of a schema that belongs to ensemble k is set in such a way that each bit in
Vk is set randomly to either 0 or 1. The bits in the remaining sections are set

248 L. Yilmaz and C.A. Hunt

! " " " " !
Va Vb Vd

! ! ! ! !

! ! ! ! ! "
Va Vb Vd

" " ! ! "

a b

c d

Fig. 8. Encoding of Schemas in Model Ensembles

to 0. Following the initialization phase, the simulation engine starts evolving
the ecology of model ensembles in accordance with the generation, evaluation,
and transfer mechanisms defined in the previous section. These mechanisms
are guided by a set of parameters shown in simulation parameters section of
Figure 7. At each time step, list of schemas in each ensemble are evaluated
to determine their fitness against objective functions associated with the local
ensemble, as well as ensembles in its neighborhood, if ecological fitness is required
in the evolution process. The objective functions for each ensemble indicate
which configurations of schema vectors are favored in that specific ensemble
that targets a particular attribute or aspect of the problem under consideration.
For ensembles a, b, c, and d, objective functions are defined as

Oa : m(Va) + m(Vb) + m(Vc),
Ob : m(Vb) + m(Vc) + m(Vd),
Oc : m(Va) + m(Vc) + m(Vd),
Od : m(Va) + m(Vb) + m(Vd).

The mapping m : V → R is a function that maps binary vectors (e.g., V) onto
real numbers that represent the values of bit vectors. That is, given a bit vector
Vi =< bj , bj−1, . . . , b0 >, m(Vi) = b0 + 2b1 + . . . + 2bj . Note that when coupled
with simulations of individual models, actual evaluation criteria will be based
on assessment of simulation outputs and their similarity to targeted attribute.
This enables exploration and potential discovery of behavioral configurations
and schemas that favor models, which can successfully evolve through various
transformation operators and feedback to explain multiple phenotypic attributes.
Interpenetration of models into multiple ensembles is an indicator for the degree
of integration and usefulness of generated schemas to facilitate expressive ef-
fectiveness and relevance, while courting for sufficient level differentiation for
emergence of novelty.

Creative Discovery Systems Engineering 249

4.2 Meta-simulation Parameters

Those schemas that score well with respect to a selection threshold are qualified
for retainment. They are transferred to the next generation. The parameters
of the simulation and their influence on the evolution of model ensembles are
defined as follows.

– Local and Ecological Similarity: These parameters refer to attribute sim-
ilarity (i.e., αa) and extent (i.e., αe) parameters of the abstract specification,
respectively. For instance, in our hypothetical problem, the overall fitness of
a schema in ensemble a is defined in terms of attribute similarity and extent
parameters: F = αaOa + 1

3αe(Ob + Oc + Od). While Oa depicts the similar-
ity of a schema in the local context in which it was originally defined. The
remaining part of the formula facilitates retention of those that are able to
migrate to and succeed in other ensembles .

– Combination Frequency: Variation and transformation of schemas take
place by either elaboration (update of its own traits) or transfers from other
schemas. Combination frequency defines the probability at which a combina-
tion operator that transfers traits (e.g., components) is selected. Exchanging
traits across multiple schemas is a prerequisite for inducing variability and
inheritance of generative mechanisms that are successful in multiple ana-
logues.

– Mutation (Elaboration) Frequency and Rate: A mutation frequency
is the probability that the transformation operation selected during the gen-
eration phase involves elaboration or update of its own components. The
rate parameter specifies the probability of mutation for a single component
during the scan of the components of the section of the binary vector that
belongs to an ensemble from which the schema originated.

– Selection Ratio: This parameter (i.e., β) controls the degree of receptivity
of the evaluator. From a given set of N schemas in an ensemble, βN schemas
are selected as being sufficiently phenomimetic to induce a selective pressure
toward the evolution of even more phenomimetic solutions.

– Migration Rate: This parameter controls the number of schemas that are
transferred from a source ensemble to a target ensemble. Each cycle, schemas
designated by migration rate are selected and transferred to a neighboring
ensemble. The purpose of transfer is to control the rate at which traits and
components are exchanged across ensembles. Increased transfer rates are
expected to improve analogues and facilitate interpenetration of their mech-
anistic components.

4.3 Qualitative Analysis of Results and Discussion

To study the behavior and sensitivity of GPS to the above parameters, a meta-
simulation was performed to observe emergent patterns pertaining to interpene-
tration of analogue mechanistic components across distinct, yet related, targeted

250 L. Yilmaz and C.A. Hunt

attributes (i.e., four quadrants). While the capability of an analogue to increase
its phenotype overlap and survivability in a new context after transfer is an
indicator for its usefulness and extent, dominance of one analogue type across
all contexts may be an indicator for lack of differentiation. Failure to achieve
balance between differentiation and integration is expected to result in decreased
adaptiveness, diversity, and hence an inability of the analogue ensemble to mimic
future additions to the set of targeted attributes while retaining similarity for
already validated attributes. Just like a controller that is rich and diverse in
terms of its possible actions while being resilient in the presence of unforeseen
perturbations in its environment, sufficiently differentiated analogue ensembles
are more likely to adapt when the set of targeted attributes is expanded.

To better understand and discuss the behavior of generative ensembles of ana-
logues as a creative evolutionary system, we examine emergent patterns under
various environmental conditions along with the evolutionary dynamics defined
by model migration (transfer) rate, selection ratio, degree and importance of
ecological similarity, and frequency of schema combination use.

Migration Rate. The migration rate between ensembles is defined in terms of
the number of schemas that are selected randomly from the new population for
transfer to a related ensemble. Figure 9 demonstrates emergent patterns as the
number of transferred schemas increase.

(a) Migration Rate = 0 (b) Migration Rate = 10 (c) Migration Rate = 20

(d) Migration Rate = 30 (e) Migration Rate = 40

Fig. 9. Impact of Migration Rate on Schema Diffusion

Creative Discovery Systems Engineering 251

In Figure 9-(a), migration rate is 0; hence, ensembles are completely differen-
tiated and original distribution is kept intact. Increasing the rate to 10 schema
transfers per iteration, the number of schema types reduces and stabilizes at 3.
Further increase in migration rate to 20 schemas per iteration changes the con-
figuration and allocation of schemas; yet, there still exist 3 types of schemas with
one schema dominating 2 out of 4 ensembles. Once the migration rate reaches 30
schemas per iteration, the equilibrium state contains a single schema type that
dominates all ensembles. Transferring useful schema traits from other ensembles
improves both local and relational fitness of schemas that inhabit the target en-
semble, as they inherit through combination useful traits to improve usefulness
to the source ensemble. More importantly, those transferred models that mi-
grate back to their source domain bring back traits that improve local schemas,
which then inhibit interpenetration of future non-local ensembles. Therefore,
those types of schemas that improve their local, as well as ecological fitness
faster compared to other types start dominating and increasing their interpen-
etration resulting in decreased differentiation. Therefore, although knowledge
transfer (e.g., analogy, metaphor) are powerful mechanisms for inducing novelty,
moderate levels of transfer is needed to balance differentiation and integration.

Selection Ratio. Selection ratio (β) controls the size of the original population
of schemas that are transferred to the next generation in the same ensemble.
That is, small levels of selection ratio indicates high degree of critic and selective
pressure toward highly fit schemas. On the other hand, large values are indicative
of friendly, criticism-free environment that places little constraint. Figure 10
depicts emergent patterns for increasing levels of selection ratios in the range
from 0.1, which imposes high degree of constraint, to 0.9 that is close to a critic-
free environment.

None of the configurations, except when selection ratio is 0.9, result in co-
existence of multiple schema types in a single domain. While the highest level
of selection ratio enables interpenetration and co-habitance of multiple schema
types to induce diversity, the emergent organizational pattern points out a dis-
ordered state, as opposed to meaningful overlap across ensembles. Since the
threshold for survival of a transferred model schema is too low, its co-existence
with other schema types in multiple ensembles is not necessarily an indication
of balanced integrated differentiation. On the other hand, medium-high and
medium-low levels for β enables sustainable penetration of schemas to other
ensembles. When β is medium-low (e.g., 0.3), through earlier migrations and
combinations, those schema that exhibit slightly higher levels of performance
compared to local schema can dominate in a new domain (e.g., ensemble). When
β is increased to medium-high (e.g., 0.7), despite significant level of random fluc-
tuations, certain schemas are slightly favored and improve their position for the
next iteration. As β increases, the propensity of selective pressure drops sig-
nificantly, leading to a disordered state as shown in Figure 10-(e). At medium
levels of β, the original configuration and degree of differentiation is kept intact
since local schemas that have high local fitness find opportunity to reproduce
sufficient number of offspring schemas inhibit sustainment of non-local schemas.

252 L. Yilmaz and C.A. Hunt

(a) Selection Ratio = 0.1 (b) Selection Ratio = 0.3 (c) Selection Ratio = 0.5

(d) Selection Ratio = 0.7 (e) Selection Ratio = 0.9

Fig. 10. Impact of Selection Ratio on Schema Diffusion

As selection ratio drops to its minimal levels, we observe that selective pres-
sure penalizes experimentation with alternative schema types. The uniformity
observed within each domain signifies lack of diversity, which may be explained
by high-level of (re)combination frequency in the current configuration. Prelim-
inary results suggest the need for exhaustive exploration of the range between
medium-high and high levels of β to determine if there is a critical threshold
between the disordered state and desired ordered, yet differentiated phase. Also,
interaction between levels of combination frequency and selection ratio needs
to be examined to explain uniformity and hence lack of interpenetration within
each domain for all levels of β, except when it is high.

Ecological Similarity. To improve interpenetration of schemas with the goal of
inducing diversity and resilience, evolution of existing schemas requires consid-
eration of not only fitness against the constraints of the local ensemble, but
also its neighboring domains. The expectation is that schemas that exhibit
greater similarity in their local ensemble are more likely to survive and sustain
when transferred to neighboring ensembles, if relational similarity is factored in.
Figure 11 presents a distribution of schemas under different levels of ecological
fitness. In part (a) the diffusion and interpenetration of schemas are significantly
restrained because schemas that were favored in their local context failed to sur-
vive when they were transferred to a new context.

Creative Discovery Systems Engineering 253

(a) Ecological Fitness =
0.0

(b) Ecological Fitness =
0.3

(c) Ecological Fitness =
0.5

(d) Ecological Fitness =
0.7

(e) Ecological Fitness =
0.9

Fig. 11. Impact of Ecological Fitness on Schema Diffusion

As shown in Figures 11 (b) and (c), small to medium levels ecological fit-
ness avoid global uniformity and keeps ensembles distinct, while the level of
differentiation and diversity within each domain is weak. On the other hand,
intra-domain diversity and hence interpenetration of model schemas are observ-
able in the domain located in the top right corner when ecological fitness is set
to 0.7. Further exploration in this region of operation and interaction with other
factors (e.g., combination frequency) are needed to identify when interpenetra-
tion peaks. Note that as indicated in Figure 11 (b) each one of the domains
become visibly unified and schema diversity disappear. Primary reason for lack
of intra-domain differentiation is that schemas that are not necessarily fit with
respect to local constraints survive when ecological fitness is high; and these
schemas are likely to become extinct and dominated by random fluctuations by
even slightly fit schemas that migrate from other ensembles.

Combination Frequency. Schema combination is a powerful transformation
operator that we expect will facilitate achieving creative leaps, especially when
remote, meaningful and useful associations are made. On the other hand, in-
creased frequency of schema combination is expected to restrain diversity.

As shown in Figures 12-(a), (b), and (c), increase in combination frequency
leads to decrease in the types of schemas, leading to global uniformity. Also, for

254 L. Yilmaz and C.A. Hunt

(a) Combination Freq. =
0.1

(b) Combination Freq. =
0.3

(c) Combination Freq. =
0.5

(d) Combination Freq. =
0.9

Fig. 12. Impact of Combination Frequency on Schema Diffusion

even moderate amount of combination intra-domain diversity (e.g., interpene-
tration of schemas) drops significantly. In comparison to (c), the pattern in (d),
when frequency is significantly increased to 0.9, demonstrates reduction of inter-
penetration of schemas to other ensembles. In (c), however, although uniformity
starts emerging, a small subset schemas originated elsewhere are still able to sus-
tain in neighboring domains. Likewise, in contrast to (a), the pattern in (b), with
slight increase in combination frequency, maintains same degree of global unifor-
mity, while degree of interpenetration and diversity within individual domains
starts declining.

Summary and Evaluation of Qualitative Analysis. Interaction between
multiple parameters require further study. However, preliminary results on sen-
sitivity to selected parameters confirm expectations about the role of combi-
nation frequency, knowledge transfer, significance of ecological perspective, and
intensity of selective pressure on the degree of integrated differentiation that is
conducive to creative discovery. The demand for interpenetration is based on
the anticipation that models with distinct mechanisms can co-exist in the same
ensemble to suggest alternative explanations for the same phenomena, and hence
as a corollary improve discovery process. Yet, complete random and disordered
distribution of models makes it difficult to establish coherent explanation and
analysis of the phenomena and its phenotypic properties.

Creative Discovery Systems Engineering 255

Observations with this simplified abstract model suggest the use of moderate
transfer rates across ensembles to avoid global uniformity. Presumably, hav-
ing a single model that can explain all targeted phenotypic attributes seems
to be powerful. However, lack of differentiation is less likely to cope with new
empirical regularities in new experimental conditions. Experimentation related
to sensitivity to selective pressure reveals that non-critical and constraint free
environment is likely to lead pseudo-random distribution of models leading to
significant entropy and disorder. Optimal levels of differentiation and interpen-
etration are observed at medium levels of selective pressure. We also observed
that ecological fitness levels that are slightly higher than medium levels improve
interpenetration, while improving overall global integration. Finally, high degrees
of combination frequency as compared to elaboration inhibits interpenetration,
while significantly increasing global uniformity.

5 Discussion and Future Work

The proposed approach and its abstract model is capable of evolving and trans-
fer of schemas to improve ability of the ensembles to generate and explore the
search space and discover schemas that exhibit better analogue-referent similar-
ity. However, various limitations pertaining to emulation of creative cognition
still exist and are discussed in the sequel along with suggestions for future work.

5.1 Improving Autonomy in Schema Evolution and Diffusion

A significant limitation of the proposed strategy in its current form is its reliance
on an extrinsic objective function and the simplifying assumption that targeted
attributes are fixed and that each such phenotypic attribute is associated with
an objective function. The objective function represents the empirical regularity
against which the accuracy of models in the ensemble is tested. Yet, behavioral
similarity can be based on qualitative assessment of patterns. Although trans-
formation operators of GPS facilitate rich interaction, selection of schemas are
exclusively predicated on predefined extrinsic functions, often the degree of em-
beddedness of schemas within the competition environment in which selective
pressure is applied is limited. However, through attraction and repulsion pro-
cesses based on local or global information, schemas can locally interpret their
context, chose from their options of available transformation operators, and eval-
uate their fitness and effectiveness against requisite phenotypic properties. That
is, consideration of implicit encoding of selective pressure in the environment
may facilitate self-organization of schemas in a decentralized manner so that
qualification of models is decided in a bottom-up manner, instead of explicitly
encoding reproduction and generation using a central component. Clustering of
model schemas around components that depict phenotypic attributes will be
the consequence of self-organization in a decentralized and open-ended genera-
tive process.

256 L. Yilmaz and C.A. Hunt

5.2 Toward Adaptive Growth of Analogue Ensembles for Creative
Discovery Systems

The strategy presented in this study is based on a fixed graph structure.
Although relations between nodes of ensembles are open to adjustment by
reinforcing schema transfer rates to strengthen or weaken the connections, it
is assumed that all targeted attributes and phenotypic properties and expected
regularities are known in advance. To support the incremental and iterative strat-
egy presented in the motivating scenario, it is desirable to refine the solution to
facilitate growth of the graph structure as new opportunities and challenges are
provided by the environment. Instead of using the fixed graph structure, an
open creative discovery system needs ability to build the structure in a bottom-
up manner. Yet, schemas that transfer to new domains (environments) do not
have capabilities to develop new modalities and functional relations suitable for
their new context. However, our preliminary experiments suggest the potential
for having generative and reproducing structures to possess not just one, but
multiple phenotypic properties, which involve specific functional relations used
in generation of phenotypic properties from information used to encode schemas.
Similar to the general feature of evolution by which new functions are performed
by organs arise from pre-existing organs, individual schemas may evolve pheno-
typic structures from existing ones to utilize new types of behavior. Possession
of multiple behavioral mechanisms might have an adaptive advantage over those
that possess single mechanisms when used in a new context.

5.3 Strategic and Context Sensitive Exploration

Although mechanisms of selection in the creative process are akin to those in
evolutionary selection, it is critical to recognize that novelty is not generated
randomly. Unlike traditional evolutionary computational mechanisms, which of-
ten involve breadth-first style of exploration based on large number of genotypes
that are mutated or combined to generate variation and/or facilitate optimiza-
tion, creative discoveries are created through depth-first exploration. Specifically,
novelty is generated strategically by taking into consideration the internal model
of the relations between the elements of the problem domain. While establish-
ing remote associations and flexibility in combining concepts improve creative
result, the process is not random, as combinations should yield meaningful and
coherent meanings in the problem domain. The challenge is to define an inter-
nal model and constraints for selective elaboration, combination, and transfer
of concepts to grow and extend the model base. Furthermore, awareness of the
context and its constraints is critical for the evaluator to assess the value and
utility of the generated concepts in a meaningful, coherent, and consistent man-
ner. Context-sensitive evaluation of produced model schemas may be predicated
on the empirical regularities associated with the perspective (e.g., experimental
conditions, phenotypic attributes, aspect, resolution, scale) of the problem, for
which the ensemble is designed a priori or generated during exploration.

Creative Discovery Systems Engineering 257

6 Conclusions

Parallax models will allow us to approach a biologically inspired form of model-
ing derived from synergistic integration of evolutionary dynamics, creative cogni-
tion, and ecological perspective. The ability to instantiate, generate, transform,
execute, and if necessary, evolve multiple models, in parallel, all of which take
similar but slightly different perspectives on the same referent (biological) sys-
tem, opens the door to the automatic generation and selection (by falsification)
of many somewhat different hypothetical, including non-intuitive mechanisms
for that referent. In other words, the above ability would allow us to construct,
execute, and falsify, many more hypotheses for the way a biological system works
than can achieved feasibly through our current sequential, iterative, modeling
methods. Modeling throughput would increase exponentially. Such an exponen-
tial increase in model and hypothesis throughput would promote creative dis-
covery and increase opportunities for creative leaps; that increase is necessary
for generative simulation to begin significantly supplanting some of the current
trial and error methods in domains like development of new therapeutics.

Development and use of GPS has potential to advance computational science
and achieve targeted objectives on at least two fronts: life science experimental
methods and information science and theory and methodology of M&S. The
outcome envisioned could in time change how biological research is done and how
life scientists are trained, while opening new territories for systems engineering.
Demonstrating faster-paced methods for achieving a deeper understanding of
morphogenesis will catalyze additional scientific advances on other fronts.

References

Amabile, M.T.: Creativity in Context: Update to the Social Psychology of Creativity,
Westview, Boulder, CO (1996)

Campbell, D.T.: Blind variation and selective retention in creative thought as in other
knowledge processes. Psychological Review 67, 380–400 (1960)

Csikszenthmihalyi, M.: Implications of a systems perspective for the study of creativity.
In: Handbook of Creativity, pp. 313–338 (1999)

Davis, P.K., Bigelow, J.H.: Exploratory analysis enabled by multiresolution, multiper-
spective modeling. In: Proceedings of the 2000 Winter Simulation Conference, pp.
127–134 (2000)

Engelberg, J.A., Ropella, G.E., Hunt, C.A.: Essential operating principles for tumor
spheroid growth. BMC Syst. Biol. (2008),
http://www.ncbi.nlm.nih.gov/pubmed/19105850

Fishwick, P., Zeigler, B.P.: A multimodel methodology for qualitative model engineer-
ing. ACM Transactions on Modeling and Simulation 2(1), 52–81 (1992)

Gero, J.S.: Computers and creative design. In: The Global Design Studio, National
University of Singapore, pp. 11–19 (1996)

Gero, J.S., Kazakov, V.: An exploration-based evolutionary model of generative design
process. Microcomputers in Civil Engineering 11, 209–216 (1996)

Goldberg, D.: The race, the hurdle, and the sweet spot: Lessons from genetic algorithms
for the automation of design innovation and creativity. In: Evolutionary Design by
Computers. Morgan Kaufmann, San Francisco (1999)

http://www.ncbi.nlm.nih.gov/pubmed/19105850

258 L. Yilmaz and C.A. Hunt

Grant, M.R., Mostov, K.E., Tisty, T.D., Hunt, C.A.: Simulating properties of in vitro
epithelial cell morphogenesis. PLoS Comput. Biol. 2(e129) (2007)

Holland, J.H.: Emergence: Chaos to Order. Oxford University Press, Oxford (1998)
Kim, H.S.J., Park, S., Yu, W., Mostov, K.E., Matthay, M.A., Hunt, C.A.: Systems

modeling of alveolar morphogenesis in vitro. In: Proc. ISCA 20th International Con-
ference on Comp. Appl. Ind. Engr., pp. 141–144 (2008)

Kim, S.H.J., Park, S., Yu, W., Mostov, K.E., Matthay, M.A., Hunt, C.A.: A compu-
tational approach to unravel cellular principles of alveolar morphogenesis. Technical
Report: UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of
California, San Francisco (09-PONE-RA-08124) (2009)

Lam, T.N., Hunt, C.A.: Discovering plausible mechanistic details of hep-
atic drug interactions. Drug Metab. Dispos. (published October 20, 2008),
doi:10.1124/dmd.108.023820

Mitchell, B., Yilmaz, L.: Symbiotic adaptive multisimulation: An autonomic simulation
framework for real-time decision support under uncertainty. ACM Transactions on
Modeling and Computer Simulation 19(1), 1–31 (2008)

Poincare, H.: Mathematical creation. In: The Creative Process: A Symposium, Mentor
(1908)

Rosenman, M.: The generation of form using and evolutionary approach. In: Evolu-
tionary Algorithms in Engineering Applications. Springer, Heidelberg (1997)

Sawyer, K.: Group Genius: The Creative Power of Collaboration. Basic Books, New
York (2008)

Schneiderman, B.: Creativity support tools: accelerating discovery and innovation.
Communications of the ACM 50(12), 20–32 (2007)

Simonton, D.K.: Origins of genius: Darwinian perspectives on creativity. Oxford Uni-
versity Press, Oxford (1999)

Smith, S.M., Blakenship, S.E.: Incubation and the persistence of fixation in problem
solving. American Journal of Psychology 104, 61–87 (1991)

Ward, T.M., Smith, S.M., Vaid, J.: Conceptual structures and processes in creative
thought. In: Creative Thought: An Investigation of Conceptual Structures and Pro-
cesses, pp. 1–27. American Psychological Association (1997)

Zeigler, B.P., Oren, T.: Multifaceted. multiparadigm modeling perspectives: Tools for
the 90s. In: Proceedings of the 1986 Winter Simulation Conference, pp. 708–712
(1986)

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 259–284.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 10

Establishing a Theoretical Baseline: Using Agent-Based

Modeling to Create Knowledge

Jose J. Padilla1, Saikou Y. Diallo1, and Andres A. Sousa-Poza2

1 Virginia Modeling, Analysis, and Simulation Center (VMASC),
1030 University Blvd., Suffolk, VA

2 Engineering Management and Systems Engineering Department,
Old Dominion University, Norfolk, VA

{jpadilla,sdiallo,asousapo}@odu.edu

Abstract. This chapter focuses on the application of a methodology and method
on how to create theory from existing theory using Modeling and Simulation
(M&S). Unlike traditional approaches of building theory based on direct
observation or modeling observable phenomena, the methodology and method
presented focus on creating a model out of derived premises from literature on
the phenomenon of interest. This model is later simulated to gain insight into
the phenomenon through the study of patterns and analysis of data. The M&S
process provides traceability, structure, and precision while checking for
preconceived ideas about the phenomenon by comparing them with theories
found in the body of knowledge. The development of a theory of understanding
is presented as a test case. The paradigm of choice was agent-based modeling
(ABM). ABM was found to be the most appropriate for the test case as derived
premises can be coded as rules of interaction.

Keywords: Theory Building Methodology, Modeling and Simulation (M&S),
Agent-Based Modeling (ABM), Systems Engineering (SE).

1 Introduction

In a recent workshop at the Virginia Modeling, Analysis & Simulation Center
(VMASC), researchers and practitioners debated whether Modeling and Simulation
(M&S) was a set of techniques, which could amount to a discipline, and that could be
used to make science. Needless to say there was no consensus in which part, of an
apparent spectrum, M&S was located. One group argued that M&S are techniques that
some disciplines use to enhance their problem solving and/or decision making
capabilities. The use of M&S’ techniques takes place when phenomena of interest are
expensive - resources and/or time - or dangerous to study. In these cases, models and
simulations are used to studying, for instance flow dynamics in aerospace engineering,
logistics in industrial engineering, or effects of feedback in decision making in business
schools among others. A second group argued that M&S is the grouping of these
techniques under one discipline’s umbrella. Such discipline focuses on studying and
improving the use of such techniques. Further, this group suggested that there are topics
that are of unique interest of M&S as a discipline, namely interoperability of systems and

260 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

composability of models. A third and last group presented that M&S is a science. The
science perspective argued that M&S serves the greater purpose of creating new
knowledge through the rigorous use of the aforementioned techniques in combination
with mathematical and statistical means to gain insight into problems. The departure
point in this perspective is the need of answering a modeling or research question. The
science perspective seeks to create new theories or hypotheses using M&S that help
explain observable/measurable or observable/non-measurable phenomena. Dealing with
observable and measurable phenomena belongs to the empirical realm whereas M&S
focuses on replicating a real life phenomenon in an artificial world. In this case, M&S
serves as a constructive environment that provides descriptive and/or predictive
capabilities to the researcher. This environment becomes the reality for the researcher
and conclusions in this environment are expected to be comparable to those that reality
would have given had the researcher had access to it. This approach is widely used in
social sciences and in engineering.

A less explored idea in engineering is that of using M&S to develop new theory,
especially about ill-defined problems or phenomena. When dealing with problems for
which there are not measurements and even no consensus on what the problem is,
they are quickly catalogued as problems outside of engineering. However, these
problems have, in some cases, a negative effect on engineering activities. Such is the
case of problems found by systems engineers.

In systems engineering, as in most engineering disciplines, academicians and
practitioners are focused on solving well-defined problems leaving ill-defined problems
outside of scope. To do so, methodologies and techniques need to be created that assist
individuals in problem identification and problem solution through knowledge
application. However, in order to apply knowledge, knowledge needs to be created.
Lessons learned and patents, for instance are some of the pragmatic results of
knowledge creation. Another instance of knowledge creation is that of theories.
Theories are explanation of a phenomenon; they say what the phenomenon is, what it
does and how it does it.

This chapter focuses on the premise that insight can be gained through M&S for
engineering activities. This insight, it is argued, is conducive to the creation of
knowledge especially in areas such as systems engineering.

This chapter is organized as such: section 2 provides a background on systems
engineering and the need of theory that considers problems not addressed by systems
engineering techniques. Section 3 provides a background on theory and theory
development. Section 4 focuses on the importance of M&S and its relevance as a
rationalist approach to theory development and some of the methodologies and methods
found in the body of knowledge. Section 5 presents a test case of how a methodology and
method that use M&S can be applied to assess how understanding contributes to human-
driven complexity. Human-driven complexity is a problem of importance to systems
engineering. Finally, section 6 presents final remarks and conclusion of this work.

2 Systems Engineering and Its Challenges

Systems engineering is a compelling case for using M&S as it focuses on problems
considered complex. These problems are complex not only because of their size in

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 261

terms of elements and interactions, but also because of the uncertainty human beings
bring to the table. Systems engineering, as a multidisciplinary discipline, must deal
with these issues in a multidisciplinary manner which implies the consideration of the
effect of individuals in conjunction with technological challenges. However, systems
engineers have mostly focused on technical solutions to problems. These solutions
depart from the premise that the corresponding problems were objectively defined and
the solutions can be ergodically defined. Further, this focus on solutions leave little
space for new theory development especially when there are problems that affect SE
that cannot be objectively defined and solved with corresponding technical solutions.

This focus on objectivity has been challenged by methodological approaches such
as Soft Systems Methodology – SSM – [1] and from theoretical efforts such as system
of systems engineering - SoSE – [2]. Both efforts depart from the premise that
problems as the result of objective consensus is seldom if at all achieved. When
problems are not agreed upon, but still are perceived as problems by some, they are
called problem situations. Vennix [3] in p. 13 posits the nature of these problems as:

One of the most pervasive characteristics of messy problems is that

people hold entirely different views on (a) whether there is a

problem, and if they agree there is, (b) what the problem is. In that

sense messy problems are quite intangible and as a result various

authors have suggested that there are no objective problems, only

situations defined as problems by people.

The implication of this description is that in problems where more than one individual is
involved, we should not be referring to them as problems. Flood and Carson [4] also
make a point about the nature of these problems. They present that the hard school
accepts that problems exist and it can be known what the problem is. The soft school,
according to [4] p. 98, “accepts plurality in human understanding and interests rejects the
hard view, preferring to assume situations are problematic rather than to accept that
problem exists.”

SSM and SoSE depart from the premise that they are working in problems outside
of SE domain. [5] presents a list of characteristics that these problem have that leave
them outside of the realm of SE.

• Holism: they suggest that problems within complex systems should not be

reduced to the component level. This is echoed throughout the literature,
however, there are not suggested methods how to holistically deal with this
type of problems beyond the consideration of looking at everything.

• Complementarity: this concept based on systems theory says that there are
multiple perspectives where each and every one is both correct and incorrect.
This principle makes more obvious the difficulty of holism in this kind of
problems given that not individual can have a perspective of everything.

• Pluralism: Pluralism is in line with the complementarity principle. However,
it takes into account that each individual has a different objective or purpose
within a group setting. They suggest that these differences may be due to
different worldviews, theories in use, or predispositions towards a problem.

262 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

• Emergence: they refer to emergence as the property of the system problem
domain to evolve over time that affects the effective establishment of
requirements. Emergence is considered within the broader literature as the
behavior of a system that is due to the behavior of individual parts. This is
where the idea of holism makes sense in studying this type of problems and
why reducible approaches do not capture the effect of the interactions among
parts.

• Boundaries: they contend that these problems are considered open system
problems; with ambiguous, fluid, and negotiable boundaries. These
characteristics also make these problems difficult to map action and outcome
which is highly dependent (outcome) on initial conditions.

• Metasystem: it refers to the integration of multiple systems and the
challenges that integration has on the metasystem.

• Context: context is referred as the “circumstances, factors, conditions, and
patterns that both enable and constrain a complex system solution,
deployment of that solution, and interpretation of the results of deployment.”
(Keating in [5] p. 27). The importance of the concept is highlighted in [6].

This list is a sample of characteristics attributed to this kind of problems in the
literature. As it can be observed from this list, not only is there much ambiguity in the
use of terms but also there are no conditions under which these characteristics arise in
a problem or if they are presented simultaneously. Although these problems are
suggested to be outside of the interest of SE, they are still encountered by system
engineers. Therefore, these problems are still SE problems for which SE approaches

are insufficient to address them. This is where new theories that increase the coverage
of SE are highly needed. Further, new theories need to be rigorous and properly
bounded for them to be used as baseline for future research.

Some areas where new theory from a SE perspective could be useful are:

• Complexity: almost used as a buzzword for something considered
“extremely” difficult is not properly defined in SE beyond its basic definition
of something with a great number parts and relations among parts. Unlike
work in areas such as mathematics and computer science that have accepted
definitions of complexity, complexity has an ambiguous meaning in SE. This
ambiguity stems in part that there is not agreed definition on complexity or
measure for that matter, especially when a part of it is human-driven.

• Multiple stakeholders: complementarity and pluralism are conditions present
in SE problems. Interdisciplinary work that considers group decision making
and problem solving should be integrated to the core of work in SE.
Problems under mechanic-unitary contexts are the exception and not the rule.

• Holism and emergence: How can an individual be holistic where
complementarity and pluralism are present? Holistic may take a different
connotation with the idea of emergence given that the focus is not on the
whole, but on emergent patterns [7] According to [7], if a reductionist
perspective bases its analysis on parts, a holistic perspective bases its
perspective in the identification of emergent patterns or lack thereof and not
on the whole problem. [8] p. 11 mentions that “only if we use a holistic

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 263

approach, by considering both the both the bottom-up and the top-down
pattern formation process, can we understand the emerging patterns and
dynamics.” In other words, holism is required to deal with or describe
problems that present emergence unlike problems that can be described
through its parts.

Although not an exhaustive list, these areas provide a glimpse on the problems faced
by systems engineers. Problems that were so far thought to be outside of the SE realm
are affecting SE efforts. In particular, problems for which their formulation and the
formulation of solutions is extremely difficult. Given that there are many perspectives
of a problem, it is highly likely that there are many problem formulations. Likewise,
as there are many problem formulations, there are many possible solutions. The
resulting formulation, even under a consensus, cannot be tested and its possible
effects cannot be foreseen with certainty. This is where efforts such as SSM and SoSE
play a role into considering perspectives about the problem and its formulation.
Further, it also shows the lack of appropriate theories that provide insight into areas
such as human-driven complexity, how to conduct holism, or how to adjust for
emergence. These new theories should provide much needed definitions and ways of
assessing problem situations in a manner that assist systems engineers’ efforts.

3 Theory and Theory Creation

Theories are an important output of the knowledge creation process and one of the
most important goals of conducting research.

Theory development is contingent on how we create and justify knowledge claims,
and from a research point of view, using empirical or rationalist approaches. [9] suggests
two independent strategies for theory construction. The first one he calls a generalizing

theoretical strategy whose objective are to explain and to generalize about the lawful
phenomena of open systems. It has a systematic structure (hypothetico/deductive),
contains ordinary language, uses inductive abstract methods, and its possible result is the
consolidation of theories or data. The second he calls pure theoretical strategy whose
objective is to predict the behavior of lawful phenomena in close systems. It has a formal
structure (mathematics, logic) and it contains no ordinary language, uses idealization as a
method and is the accumulation of theory. [9]’s position is consistent with [10] position
of the dual meaning of the word theory. For [10], the word theory can mean practical
theory or pure theory; the former refers to a generalization developed as a basis for
judgment and analysis of facts to anticipate the future and guide action whereas the latter
refers to speculation without reference to practical application, and not need to describe
reality. According to [9] p. 192, “generalizing and pure theoretical strategies are not
mutually exclusive and in practice more sociological theories reflect their mixture,
however, some of the features may be incompatible or at least independent”. Before
deepening in the different theory building approaches, let’s take a look at a more general
approach.

At a general level, [11] suggests that a complete theory must contain four essential
elements:

264 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

What: which factors (variables, constructs, concepts)

logically should be considered as part of the explanation of

the social or individual phenomena of interest? Two criteria

exist for judging the extent to which we have included the

“right” factors: comprehensiveness (i.e. are all relevant

factors included?) and parsimony (i.e. should some factors be

deleted because they add little additional value to our

understanding?).

How: Having identified a set of factors, the researchers

next question is: how are they related? Operationally this

involves using arrows to connect boxes. Such a step adds

order to the conceptualization by explicitly delineating

patterns. In addition, it typically introduces causality.

Although the researcher may be unable to adequately test

these links, restrictions in methods do not invalidate the

inherent causal nature of theory. Together the What and How

elements constitute the domain or subject of the theory.

Why: What are the underlying psychological, economic, or

social dynamics that justify the selection of factors and the

proposed causal relationships? The rationale constitutes the

theory’s assumptions- the theoretical glue that welds the

model together. During the theory development process, logic

replaces data as the basis for evaluation.

Who, Where, When: These conditions place limitations on

the propositions generated from a theoretical model. These

temporal and contextual factors set the boundaries of

generalizability, and as such constitute the range of the

theory.

An empirical approach to theory development is proposed by [12]. [12] sees it, ideally
and initially, as a logical, linear sequence of phases that later becomes circular and
self-repeating when the researcher becomes more familiar with it. The steps as he
presents them are (p. 12-18):

• Preliminary Phase, which implies defining the theory domain and that

familiarity exists with the phenomenon from the researcher’s side in the
domain in question.

• Identifying Inadequacies in Present Theory or what it is more commonly
known as identifying the “gap”. He suggests that answers to questions such
as: is there new evidence or experience which appears to challenge existing
theory? Or are there conflicting theories about certain areas? Shed the
existing inadequacies in existing theories.

• Making Explicit One’s Value-Orientation, which reflects the worldviews,
predispositions and biases of the researcher. In this, the empirical researcher

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 265

tries to be as objective as possible in collecting data to test his/her
hypotheses.

• Selecting Appropriate Constructs and Models in which the researcher selects
“a central integrating construct capable of encompassing the entire focal
domain.” [12] Not only does the researcher needs to define constructs, but
also develop theoretical models in order to define relationships among the
constructs.

• Developing a Constructual Framework, in which the researcher uses the
previously selected constructs and models to build a more complete
framework.

• Formulation of Hypotheses. Hypotheses need to be formulated in observable
and measurable terms that allow for experimental verification.

• Testing Hypotheses according to rigorous application of the scientific
method.

• Formulating theory as the result of the testing of the hypotheses being aware
of not generalize beyond the boundaries of the data.

• Concretizing or finalizing theory formulation and transferring the theory to
practical operating terms.

• Empirical Testing and Utilization which implies the broader use of the
theory if viable.

• Theory Building as a Circular Process which starts all over again with
identifying inadequacies and ways of improving the generated theory.

A rational approach for theory development is presented by Weick in [13]. In this, Weick
poses the case of theoretical work not limited by validation (in the correspondence sense),
but by usefulness by using mapping, conceptual development, and speculative thought. He
argues in p. 519 that “when theorists build theory, they design, conduct, and interpret
imaginary experiments”. Imaginary experiments may take the form of conjecture
simulated possible scenarios out of representations built from interviews, reports, or
observation. These possible scenarios allow for the inclusion of a greater number of
heterogeneous variations, more selection criteria, and greater diversity. Overall, he
suggests three steps: Formation of problem statement that can vary in detail, accuracy and
incorporated assumptions. Thought Trials or conjectures about how to solve a problem are
usually in the form of if-then-else statements. Weick contends that a “greater number of
diverse conjectures produce better theory than a process characterized by a smaller
number of homogeneous conjectures”. Finally, Self-selection criteria are the alternatives
to select thought trials. In this case also applies the premise that the greater the number of
diverse criteria, the higher the probability that those conjectures which are selected will
result in a good theory.

Either empirical or rational approaches have a basic requirement: rigor. Rigor, in
both cases, translates into a well structured process for which conclusions can be
traced back to originating hypotheses or premises. In addition, precision plays a key
role on the process of building theory by eliminating any ambiguity that detracts from
the value of the created knowledge. On the empirical case, validation takes the form
of justification based on data and their correspondence to observable event that leads
to the eventual confirmation of a theory based on testing. Empiricism is based on the

266 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

correspondence theory of truth that says that truth consists in a certain agreement or
correspondence between a statement and the so-called “fact” or “reality” [14].
According to Popper in [15]: “Truth is correspondence with the facts (or with
reality); or more precisely, that a theory is true if and only if it corresponds to the
facts.” (p. 420)

On the rational case, validation takes the form of coherence of premises within a
system of premises that are considered to be true. Rationalism is based on the
coherence theory of truth. Firth in [16] posits that:

The coherence theory of concepts is a doctrine that all our concepts

are related to one another in such a way that we cannot be said

fully to have grasped any one of them unless we have grasped all

the others: they form an organic conceptual scheme, it is said, a

system of meanings which cohere in such a way that introducing a

new concept at any one point in the system has repercussions which

are felt through the system.

Coherence theory of knowledge holds that knowledge claims require justification, but
also that no belief can be justified except by reference to other beliefs [17].

It is noted that in most cases under the empirical paradigm, theory building and
theory testing are bundled under the theory creation process despite being two
separate processes. Approaches such as grounded theory, which are empirical by
nature, are focused on developing new theory without considering how the new
theory is to be tested. These approaches are considered by some researchers as soft
approaches due to their exploratory nature which entails not having defined variables
or constructs for measurement. These variables or constructs are supposed to emerge
during the process of observation of the phenomenon of interest. More traditional
empirical methods depart from hypotheses which provide the bases for testing a
theory. However, the theory in this case has already been formulated. Under the
rationalist paradigm, testing can be seen as a test for consistency of the assembled
system of premises as it explains a phenomenon and the degree of how well the
resulting theory explains the originating premises without contradiction.

SE has benefited from both approaches. For instance, from empiricism when testing
products developed under the SE process and from rationalism when speculating about
new products through the use of modeling and simulation (M&S). M&S, although a
purely rational approach, is considered empirical by many when results from simulations
are comparable to data obtained from reality. However, in most cases, M&S is used
when access to reality is limited due to resources or personal harm. The role of M&S in
theory building is presented in the following section.

4 Building Theory through M&S

To define modeling and simulation and its methodological impact the concepts of
systems, model, and simulation need to be defined. These concepts play an important
role on creating a world that replicate reality where questions can be asked about the
phenomenon of interest.

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 267

According to [18]:

A system is a set of two or more elements that satisfies the following

three conditions:

• The behavior of each element has an effect on the behavior

of the whole.

• The behavior of the elements and their effects on the whole

are interdependent

• However subgroups of the elements are formed, each has

an effect on the behavior of the whole and none has an

independent effect on it.

A system, therefore, is a whole that cannot be divided into

independent parts. From this, two of its most important properties

derive: every part of a system has properties that it loses when

separated from the system, and every system has some properties –

its essential ones – that none of its parts do…The essential

properties of a system takes as a whole derive from the interactions

of its parts, not their actions taken separately. Therefore, when a

system is taken apart it loses its essential properties. Because of this

– and this is the critical point – a system is a whole that cannot be

understood by analysis.

This account brings to the foreground the holistic premise that no reductionist approach
should be able to capture a system. However, the positivistic idea of breaking systems
into parts and relations among parts is one of the most powerful and used ideas of
systems perspective so far. This idea, for instance, has worked well for systems engineers
when dealing with technologically oriented systems.

According to [19] an observer must be careful as referring to “the system”. This
designation “may refer to the whole system quite apart from any observer to study it –
the thing as it is in itself; or it may refer to the set of variables (or states) with which
some given observer is concerned” (p. 106). He posits that the observer must give up
any ambition to know the whole system and focus on a partial knowledge of the
system that although incomplete, it is sufficient for practical purposes. [20] also
highlights the importance of the observer of a system. Beer posits that the purpose of
the system is given by the observer, making it not only subjective, but also
conditioned to the acceptance or rejection of boundaries.

From and M&S perspective it can be said that the system is a way of capturing the
phenomenon of interests from reality, the one an individual is interested in modeling.
However, a way an individual has to represent that system is through a model.

According to [21], a model is a representation of a system, entity, phenomenon, or
process. According to Zeigler et al. in [22], a model is a system specification, such as
a set of instructions, rules, equations, or constraints for generating input/output
behavior. [22] go on to say that a model must be understood with respect to a source
system – real or virtual environment that we are interested in modeling - and an
experimental frame – which is a specification of the conditions with which the system
is observed or experimented –. This is consistent with [23] premise that “a model is
intended to represent or simulate some real, existing phenomenon, and this is called

268 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

the target of the model” (p. 4). In other words, a system from reality cannot be fully
captured given that each observer has his/her own representation of it and each one of
these representation has the potential of becoming a model.

A simulation is the execution of a model to replicate its behavior [22]. [21] define
simulation as the act of using a simulation engine to execute a dynamic model in
order to study its representation of the model’s behavior over time. [24] define it as a
method that involves creating a computational representation of the underlying
theoretical logic that links constructs together within a world. These representations
are then coded into software that is run repeatedly under varying experimental
conditions in order to obtain results. This position is consistent with [25] that present
simulation as used as a method of theory development given that we can express
theories as procedures in the form of a computer program, which is more precise than
the textual form of the procedure, which is helpful in refining the theory.

The triad of system, model, and simulation and its implications are highlighted by
the semiotic triangle of M&S (Figure 1). The semiotic triangle comes from the work
of Ogden and Richards in 1926 reflecting that people discuss a referent at the concept
level not at the referent level. This implies that we debate concepts from reality and
not reality itself. Likewise for M&S; given that system cannot be capture (basic
premise of M&S), we can capture it through a model that later we implement on a
simulation. The variation in how we perceive and understand reality leads to different
models of that reality; all models correct, but all incomplete as problem situations
premise is.

Fig. 1. The Semiotic Triangle of M&S [26]

The impact of modeling and simulation in this work is better expressed by [24]:

Simulation is particularly suited to the development of simple

theory because of its strengths in enhancing theoretical precision

and related internal validity and in enabling theoretical elaboration

and exploration through computational experimentation. In

particular, simulation relies on some theoretical understanding of

the focal phenomena in order to construct a computational

representation. Yet simulation also depends on an incomplete

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 269

theoretical understanding such that fresh theoretical insights are

possible from the precision that simulation enforces and the

experimentation that simulation enables.

The point brought up by this excerpt is the capability generated by M&S to not only
provide structure and precision in a rationalist effort, but also an experimental setting
where an individual can generate data and generate insight from the analysis of data.
This is especially true when dealing with complex phenomena where it is difficult to
establish causality allowing the researcher to explore possibilities and test the
boundaries of new theories.

According to [27] the interest of doing simulation is to work on a “target” or real
world phenomenon in which the researcher is interested and create a “model” of this
target which is simpler to study than the target itself hoping that the conclusions
drawn about the model will apply to the target. Subsequently, this creates the ability
to handle models with numerically indeterminate parameters such as unknown initial
conditions or coefficient of equations [28]. [28] mentions that most simulation models
allow substituting these formal parameters by hypothetical numerical values making
them useful for making inferences for two reasons: 1) it allows to study the
consequences of a model without empirically based parameters estimates which
generally make conclusions time- and context dependent; and 2) it enables us to study
models with many parameters, thus reflecting the full complexity of the verbally
formulated theories behind them.

According to [24] simulation has become highly significant as a methodology
because not only can it provide superior insight into complex theoretical relationships
among constructs especially when empirical limitations exist, but also because it can
provide an analytically precise means of specifying assumptions. This insight into
complex theoretical constructs is even more important given that, because of the
nature of complexity, we may not even be able to establish causal relationships
between action and response, between input and output. This implies that any
multiple of perspectives can be equally valid in describing the phenomenon due to
multiplicity of outcomes. Each one of these perspectives is now necessary and all
need to be considered. However, empirically this cannot be done. This is where
simulation comes into place; as placing reality as a subset of the perspective,
perspectives that now become possible alternatives. This is consistent with the
assessment in [29] that computer simulation can be used for exploring substantive
theories and theory development, not by the use of data or empirical testing, but by
the derivation of consequences of formal assumptions about a phenomenon, (their
context was dyadic processes).

[29] are concerned with answering two questions: does the model closely represent
the interpersonal processes about which they are theorizing and does it derive
consequences correctly? To achieve this they suggest some rules:

1. Every tie from the simulation to the model to the substantive theory needs to

be made explicit.
2. The way each algorithm in the simulation works needs to be laid out so

others can judge its appropriateness (make aspects of methodology explicit).

270 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

3. Every constraint on variables, parameters, numbers of runs and so forth need
to be justified.

4. All justification must be in light of the substantive interpretations to be made
of the model being simulated.

Hanneman in [30] states that simulation models are formalizations of theories applied
to particular scenarios making them concrete and explicitly dynamic, extremely useful
in understanding and revising theory because they provide explicit and systematic
way of deducing implications about outcomes overtime. Hanneman goes to say:

Models produced by theorists often suggest how a theory may play

out in particular circumstances, but they tend to be quite vague

about the explicit causal dynamics. Models produced by empirical

analysts tend to be either restricted by the necessities of the

mechanics of parameter estimation (if quantitative) or highly

particularistic and informal about causal dynamics (if qualitative).

Simulation analysts, because their focus is on understanding the

model itself and because their technique demands it, must be exact

and specific in attempting to specify causal dynamics that

accomplish satisfactory translation between the two.

In all it can be said that modeling and simulation is thus used as a formalizing tool to
elaborate on theories in a manner that can enhance its theoretical precision and enabling
theoretical elaboration and exploration through a computational representation.

Although there are many researchers describing the virtues of using M&S for building
theory, there are not many formally described methodologies that present this process.
Some of those approaches are presented in the following section.

4.1 Existing M&S Methodologies/Methods for Theory Building

According to the Webster Online dictionary the definitions of methodology and method
are:

• Methodology is a body of methods, rules, and postulates employed by a

discipline.

• Method is a systematic procedure, technique, or mode of inquiry employed

by or proper to a particular discipline or art.

Both definitions highlight a distinction between these terms; the latter is contained
within the former. This distinction is important given that in most cases they are used
interchangeably. A methodology focuses on the high level philosophical perspective a
researcher has to create knowledge. This perspective assists into how knowledge
claims are justified under particular epistemological and ontological leanings. For
instance, an empiricist departs from the premise of existence of objectively
observable and measurable phenomena within reality to create knowledge. A
rationalist, on the other hand, departs from the premises of a created, artificial, and
incomplete reality dependent on the individual perspective. In other words, reality is a

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 271

construct an individual creates to understand reality and that depends on his/her
perspective. For an empiricist reality exists and it is not dependent on the individual’s
perspective. Methodologically, the empiricist relies on methods that allow him/her to
capture that reality in a manner that it is measurable. The rationalist, on the other
hand, relies on methods that allow him/her to create an artificial world. How close the
created world is to reality is “not the necessarily” the priority as long as insight is
drawn. It is said “not necessarily” because researchers always look for closeness to
reality. However, in many cases this is not achievable.

It is important to note that a researcher usually abides under a philosophical
underpinning; the one he/she considers it the “best” way to create knowledge or do
research. This “best” way varies from discipline to discipline with methodologies/methods
more widely accepted than others.

M&S has both empirical and rational roots depending on the departing point.
However, M&S is by nature a rational approach given that it creates an artificial
world to understand reality.

There are several methodological candidates for building theory using simulation
with pros and cons depending on the starting point. Methodologically, all these
approaches are variations of the semiotic triangle as presented in figure 1 that attempt
to capture a referent through a model and then simulate the model to gain insight into
the referent. However, they have different emphases.

 [24] propose a method for developing theory using simulation. Simulation’s
primary value is in experimentation to produce new theory. They suggest the
following method:

• Research Question
• Identify simple theory (conceptual modeling)
• Chose simulation approach
• Create computational representation
• Verify computational representation
• Experiment to build novel theory
• Validate with empirical data (if available)

The research question should reflect the deep understanding of the literature and relates
to a substantial theoretical issue. A simple theory is the combination of one or several
theoretical ideas. The simple theory is then elaborated upon by adding constructs
throughout the simulation process. Assuming that simulation is the best choice, the next
step is the selection of the simulation approach and become a crucial step given that
the chosen paradigm can hinder or facilitate the theoretical progress. Creating the
computational representation of the theory involves the operationalization of constructs,
building the algorithms that follow the theoretical logic, and the specification of
assumptions. Now, to ensure that the computational representation is in accordance with
the theoretical logic, the verification of the computational representation is needed. This
is basically the internal validity of the model and the checking that the model is doing,
computationally, what is supposed to be doing. Experimentation is suggested as the heart
of the value of the simulation method for developing theory. According to [24],
experimentation builds new theory by revealing fresh theoretical relationships and novel

272 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

theoretical logic and enabling experimentation across a wide range of conditions by
changing the software code.

This method is consistent with the M&S premise departs from the premise that
insight is gained through experimentation through simulation. However, this method
departs from the assumption that there exists a simple theory without elaborating on
how to attain it, how to assess its level of simplicity, or where to obtain the constructs
used in the simulation to elaborate on the theory. Further, this method may be more
appropriate for theory testing than for theory building given that a theory already has
been formulated. It is noted that a simple theory for a researcher may be a complex
theory for someone else. Finally, this approach seems to be focused more on the
simulation aspect than on the modeling aspect. Although simulation is important to
establish a computer experimental environment in order to generate data, modeling
provides the structure and traceability to capture the phenomenon of interest. The
underlying assumption is that if the simulation runs then the model was properly built
and that is not necessarily the case.

[31] present a method on how to conduct “good axiomatic quantitative research” in
Operations Management (OM). They propose two methods, one that is based on
mathematical modeling and the other on simulation. Given that the latter is the one of
interest, its suggested steps are:

• Conceptual Modeling
• Justification of proposed solution
• Experimental design
• Analysis of results
• Interpretation of results

According to [31], conceptual modeling departs from scientific OM literature on the
topic of interest with accepted anchor articles that contain descriptions of the general
characteristics in addition to recent articles containing particular information to the
process or problem being studied. Justification of the proposed solution present
evidence that a propose heuristic may perform well under either of two settings: an
old problem being studied with new techniques or solutions and a new problem being
studied with existing techniques or solutions. The experimental design contains all
factors that can have an impact on the results. These factors need to be varied in the
simulation over ranges of values and kept sufficiently low so simulation and further
data analysis can be performed efficiently and effectively. After the simulation is
performed, analysis on the results is needed. This can be performed using different
statistical techniques which can be used depending on the research question. Lastly,
interpretation of results is conducted within the context of the problem seeking to
derive conclusions about the original questions and to formulate new questions.

Unlike [24], [31] considers the modeling aspect. However, it does not elaborate
how conceptual modeling must be conducted considering that conceptual modeling is
a broad research area [26]. In this case, it is perhaps assumed that conceptual
modeling is an objective process given that in OM problems are well-defined unlike
problem situations. Further, [34] suggest that only OM articles on the topic of interest
are accepted. This condition discards the possibility of using articles outside of OM
that can shed light on the phenomenon of interest. It is noted that in OM is widely

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 273

used the practice of building models upon existing models. For instance, a just in time
model that considers earliness (a) can be used to build a just in time model that
considers earliness and tardiness (b). In this case, model (a) becomes the solution that
is modified to address problem (b). In this sense, these problems are of interest to the
OM community only.

[32] present a methodology and a method called Rationalist Inductive. It is rationalist
given that it builds on a system of premises and not on data. It is inductive given that its
focus is on theory building and not theory testing. The methodology (fig. 2) has three
components: Exploration and selection, rationalist structuration, and conclusion. The
exploration and selection stage seeks relevant theories that help answer the research
question and provide the axiomatic foundation of the research. This includes the initial
establishment of premises, axioms, and context. Rationalist structuration takes the
theories from the previous stage and produces a coherent structure needed by bounding
and fine tuning the system of beliefs and premises. Theories are put together by the
means of a mathematical, logical, or computational model. Finally, conclusion is the
materialization of the rational inductive process in a form of a pattern or patterns
resulting from the model that explain the theory. In terms of a method, [32] provide a
way of mapping the induction-based methodology and the research process using
modeling and simulation techniques. The method (fig. 2) starts with the identification of
a problem, premises, and context out of the body of knowledge; continues with the
definition of premise and context; then follows with the simulation aspects of selection,
execution, and testing; and ends with interpretation of results and conclusions.

Fig. 2. Rationalist/Inductive Methodology and Method [32]

274 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

The method consists in identifying premises from the body of knowledge and put
them together in a coherent system where assumptions are made explicit and no
contradictions are created. Coherence is then established via modeling and simulation
and from the results of the simulation an interpretation is conducted. This approach is
based on the traceability of the resulting theory to the set of premises and the set of
premises to the body of knowledge as a form of validation of the theory. However, the
method, as [24], focuses more on the simulation as a way to establish coherence and
generate data for drawing insight. Further, it does not establish criteria of selection of
premises and which to include in the simulation.

It is noted that in all three cases modeling takes a supporting role to the simulation
effort. In other words, modeling is important as long as the simulation is the one
providing the insight. However, the modeling process can also create theory that can
be enriched with results from the simulation process. In addition, these approaches do
not explicit provide mechanism for studying ill-defined problems. The proposed
approach covers the development of theories for this kind of problems.

4.2 A Methodology for Theory Building Using M&S

The purpose of the chapter is not to provide a new method, but to exemplify how a
general methodology to building theory using M&S can be used. Further, it shows how a
method can be derived from such methodology that can be used when the problem is ill-
defined. The methodology used, similar to [24], [31], and [32], is rational in the sense
that it creates a world to study a phenomenon in reality. In addition, like [24], [31], and
[32], it considers simulation an integral part, but also focuses on the modeling process
and on the correspondence of the model and its simulation. Unlike [24], [31] and [32],
the methodology provides criteria for developing the conceptual model, especially on
how premises are identified and put together in a system of premises. It is noted that,
unlike [31], it is not bound to the use of articles from one discipline only. It draws from
any discipline that provides insight into the phenomenon at hand. Finally, unlike [24] it
does not depart from a simple theory or from existing models as it may be the case in
[31]; it departs from many theories towards building a new theory.

The methodology consists of three parts: A research question, capturing reality in
a model through the identification of common threads and assumption in related
literature, and implementing the model in a simulation that better answer the research
question. It can be observed that this methodology is rational given that its focus is on
creating a reality to deal with a phenomenon and not on observing reality to deal with
the phenomenon in question.

The research question provides the seed of what the researcher wants to study and
it relates to a problem or phenomenon of interest. In engineering, for instance, it is
required that the problem is justified answering questions like why is it a problem? Or
what do we gain with solving such a problem? In this sense, the research question
must consider the problem at hand and why its solution is important to the body of
knowledge.

Capturing reality in a model is needed to provide an axiomatic structure upon which
rigor can be established. To “capture” reality and create an artificial world, theories from
different areas that address the problem at hand are gathered, analyzed, and most
importantly, explain why some are included and others are discarded. Possible reasons

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 275

for this filtering are: administrative, to reduce the number of working theories to a
manageable size; rigor, pruning inconsistent, ambiguous, and contradictory arguments
within a theory; commonalities, identify what are the common thematic threads and
assumptions across all participating theories. The premise behind creating a model that
eventually can be implemented in a simulation is that the model be formal and for that it
must be precise so the resulting theory can be formal and precise. The identified common
thematic threads are used to create constructs and relations among constructs.
Assumptions are used as sub-problems that need to be addressed or solved. In addition,
they serve as a pragmatic way to verify the resulting theory as the challenged assumption
was properly addressed with the resulting theory. In the process of putting constructs
together, as system of premises as highlighted by [32] is being built. It is important to
note that this system of premises is built with “filtered’ theories and not with theories as
they are. This is because theories-as-they-are present contradictions and inconsistencies
that must be identified before putting the system together so coherence can be
established. Conflicting elements usually reside in unchallenged assumptions or poor
definitions. It is noted that the modeling process itself may provide theoretical insight by
building a structure and considering combinations that were not possible until constructs
were defined.

As in [24], [31], and [32], the simulation is a computer implementation of the model
with the purpose of further establishing formality (computer program is a function that
may or may not be written in mathematical terms), provide an experimentation setting,
and generating data. Data can be qualitatively and quantitatively assessed to gain insight
about the phenomenon of interest.

One important aspect to consider is the correspondence between modeling and
simulation. In addition to the possibility of many models explaining a system or
phenomenon of interest, there may be many possible simulations of one model.
Although a researcher may not control the different perspectives captured in different
models, he/she may control the simulation of his/her model by constraining it to the
simulation that best answers the research question. For instance, a model that shows
how a capability can be improved does not explain what the capability is and vice
versa. If the research question is what interoperability is, it is important to focus on a
model and a corresponding simulation that focus on establishing a baseline of what
interoperability is. On the other hand, if the question is how to improve
interoperability, the focus is not on defining interoperability, but on how to improve it
under certain conditions.

4.3 Selecting the Modeling Paradigm

The selection of the most appropriate paradigm of M&S to answer the research question
is an important aspect of the theory building process. A simple heuristic that can assist
the researcher in this effort is based on the premises generated in the modeling process. A
basic guide is provided by answering the following questions:

1. Can causality be established that describe the relation among constructs of an
identified dominant structure?

2. Is there an identifiable sequence of events?
3. Are there premises that can be used as rules of behavior?

276 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

If the answer to question 1 is yes, then System Dynamics is the most appropriate
paradigm given that equations can be established through causally among constructs
and within the identified dominant structure. If yes to question 2, then Discrete Event
(DE) Simulation is the most appropriate paradigm given that sequence of events
describing entity flow are the bases for DE. If yes to question 3, then ABM is the
most appropriate paradigm given that constructs can be seen as agents and premises
as underlying rules of behavior. For a more elaborated explanation on paradigm
selection in systems engineering, the reader can refer to [33] for further information.
For the test case, SD was not selected because causality among constructs could not
be established within a dominant structure nor the dominant structure be identified.
DE was not selected because a sequence of events was not identified among the
defined constructs. Finally, ABM was selected because constructs and relations
among constructs could be defined as agents and rules of behavior of agents.

5 Test Case: Building a Theory of Understanding Using Agents

5.1 Brief on ABM and Its Relevance on Theory Building

According to [25], p. 172 “although there is no generally agreed definition of what an
‘agent’ is, the term is usually used to describe self-contained programs that can control
their own actions based on their perceptions of their operating environment.” [34] define
an agent as “anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through actuators.” Perception in this context “refer to
the agent’s perceptual inputs in a given instant” and the term percept sequence as “the
complete history of everything the agent has perceived.” [35] propose that an agent
should perceive its environment, and act in its environment. Further, an agent should
communicate with other agents to establish a social ability. Moreover, an agent should be
autonomous, outside of central control, and flexible, being able to react to, pursue goals,
or adapt to changes in its environment.

[36] present three main contributions of ABM to the advancement of theory:

• Explicitizing: The ABM environment demands an exacting level of clarity
and specificity in expressing a theoretical model and provides the tools,
structures and standard practices to achieve this high level.

• Emergence: The computational power of ABM enables the researcher to
mobilize an otherwise static list of conjectured behaviors and witness any
group-level patterns that may enfold through multiple interactions between
the agents who implement these conjectured behaviors.

• Intra/interdisciplinary collaboration: The lingua franca of ABM enables
researchers who otherwise use different frameworks terminology and
methodology to understand and critique each others’ theory and even challenge
or improve the theory by modifying/and or extending the computational
procedures that underlie the model.

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 277

Explicitazing is important given that demands to state assumptions and presuppositions
about the model and about the system or theory being modeled. In addition, it provides a
level of formalization and precision that would not be achieved if the theory is expressed
in natural language [23]. Emergence occurs when interaction among parts of a system or
objects in a model at a lower level give rise to different types of parts or objects at a higher
level [25]. This interaction among objects translates to interaction among agents making
emergence a characteristic widely associated with this modeling paradigm given the
behavior arising from the interaction of individual agents that was not a behavior
programmed directly into the system. Finally Intra/interdisciplinary collaboration allows
for researchers across disciplines to work with one another towards solving common
problems which is of particular importance for SE.

5.2 Importance of Understanding to Problem Situations

As previously mentioned, a problem situation is where there is no agreement on what
the problem is or even that there is a problem. Problem situations are ever more
pervasive in SE efforts challenging the objectivity assumption that is centerpiece in
the discipline. Given that objectivity cannot or should not be assumed, a measure of
complexity is no solely on the number of parts and relations among parts, but also on
how a person understands a problem differently than another. Understanding is a
common thread found from topics ranging from complexity to decision making and
learning, especially when referring to human-driven complexity. [4], p. 24 state that
“in general, we associate complexity with anything we find difficult to understand.”
[37] p. 131 concurs with this assessment and states that “in addition to the common
sense characterization of the degree of complexity as the number of interrelated parts,
it also has a somewhat subjective connotation since it is related to the ability to
understand or cope with the thing under consideration.” This dependence on the
individual to seeing problems as complex extends to systems engineering where
formulations and decisions are made by a group of stakeholders.

In terms of learning and decision making, [38] remarks that we use learning to
revise our understanding of the world and in so doing we affect the decisions we
make. In terms of problem solving, [39], p. 308 note that “the definition of the initial
state would reflect the individuals’ understanding of the nature of the problem at the
beginning, and the desired end-state would be described as the goal expected to be
achieved by solving the problem.”

Although it can be seen that understanding is an important concept, first it is not
properly defined and second it has not been studied to assess how it can affect
concepts of interest to systems engineers such as complexity.

5.3 Implementing the Methodology for Theory Building Using M&S

As previously mentioned, different methods may abide by a particular methodology.
The methodology presented, unlike [24], [31], and [32], provides detail in the
modeling process, in the simulation process, and their correspondence depending on
the research question. Figure 3 shows one method that abides by the presented
methodology and shows how it is implemented in the topic of understanding [7].

278 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

Fig. 3. Implementing the Methodology to build a Theory of Understanding (Adapted from [7])

The formulation of the research question is first. In this case the question is: what is

understanding? As it was presented in section 2 and section 5.2, the definition of this
concept is of great importance towards better understanding human-driven complexity.
Following the formulation of the research question and problem formulation, a literature
review on the Body of Knowledge (BOK) of the concept of understanding is conducted.
Three areas in the body of knowledge have studied understanding, namely epistemology,
cognitive science, and computer science. From these three areas, two schools of thought
were identified. The schools of thought have common thematic threads and assumptions.
Common threads correspond to the concepts of knowledge (K), worldview (W), and
problem (P). In addition, conditions such as appropriateness and that understanding can be
seen as a process and output is also found. The main assumption found was the problem
can be objectively defined (Objectivity Assumption). This assumption subsequently allows
understanding to be evaluated through the matching of a solution to the problem. This
assumption does not stand, as mentioned, when dealing with problem situations. This
assumption becomes a sub-problem that needs to be addressed. The common threads
become constructs that are used to create the axiomatic structure in the form of a meta-
construct (Construct of Understanding). Unlike knowledge, worldview, and problem,
appropriateness and process/output do not become constructs but conditions that regulate
the interaction of constructs and a way to understanding respectively. Finally, K, W, and P
were divided up in two constructs each (six constructs total) based on the descriptions on
respective descriptions found in the literature. To further study the six constructs an
expanded literature review was required. The six constructs in conjunction with the
appropriateness condition provide the basic derived premises from the BOK that later can
be implemented as a rule base in a computer program.

It is noted that the two identified schools of thought can be explained with the built
meta-construct therefore establishing that it does not contradict the existing theory. In
addition, a new school of thought was identified. This school of thought addresses the sub-
problem posited when challenging the objectivity assumption by considering different
formulations of the problem. This new school of thought becomes a new theoretical insight
derived from the modeling process.

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 279

The built model is then simulated. This simulation serves as the ultimate way of
evaluating the rigor of the model by making it run in a computer and verify that results
are consistent with the encoded premises. In other words, verifying that the match
between model and simulation is established by seeking answers to the research question.
In this moment, the model becomes the reality upon which the researcher performs
experiments to collect data to draw insight about the phenomenon. It is important to note
that this simulation sought to establish a baseline of what the process of understanding
was like and not to seek how to ‘better understand’. The work in the BOK focuses
repeatedly on better understanding despite understanding not being properly defined. In
addition, the use of ‘better understanding’ is convoluted with processes such as learning
and problem solving.

To conduct experiments, a design of experiments that would consider all possible
combinations among constructs was established. The six constructs in addition with a time
constraint (also based on the literature) became seven (7) variables or factors for
consideration. Considering at least two levels for each factor (reflecting high or low levels
of a particular knowledge, worldview, or problem type) was calculated that 128
experiments were needed (27). A pilot run of ten (10) experiments was performed to
calculate the number of runs necessary to attain a 95% confidence interval with a 10%
margin of error. It was determined that 250 runs were needed. Given that there were three
schools of thoughts and each needed to be studied separately (no theory was found on how
they would intertwine), three (3) different run scenarios were established. Considering
scenarios, runs, and initial conditions, it was determined that 96000 experiments were
needed.

To implement the derived premises and to conduct the experiments ABM was used.
Each one of the six factors became an individual agent that interacts with the others

based on the appropriateness derived condition. K agents would interact with W and P
agents, W with K and P, and P with K and W. No interaction among K, among W, and
among P was defined given that no theory, corresponding to understanding, would
establish how those interactions would take place. It is noted that high or level of K, W,
or P are represented by a high or low number of agents and these numbers ultimately
affect their interaction. In addition, to be able to establish the baseline, some restrictions
were imposed:

• As presented in the proposed approach, no predisposed idea of the phenomenon
by the researcher was considered. Every premised needed to be based on the
BOK.

• All forms of movement and interaction were defined as random.
• No memory and sequencing of events were introduced.

These restrictions were necessary to eliminate any imposition on the way the simulation
should behave in the process of looking for emergence based on simple rules of
interaction.

Finally, two output variables were considered: one called effort which reflected the
interaction between K, W, and P agents and the second called time. Effort, or the failed
interaction between K, W, and P, was based on the proposed definition of understanding
and was stored in a counter. Time was a counter that stored the length a problem would
take to be understood. The 96000 experiments would account for both variables and
identify them for each initial condition of the 128 and for each scenario.

280 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

To capture the model of the phenomenon of understanding, unified modeling language
(UML) was used. Although UML diagrams captured most of the part components and
behavior of the model, shortcomings were found due to the modeling paradigm. For
instance, the sequence diagram presents sequences between entities. On an agent
representation, agents run in parallel instead on a predefined sequence. Nonetheless, the
diagram was useful to capture the basic interaction among the three types of agents (K, W,
and P) as it can be seen in figure 4.

Figure 4 shows how K, W, and P agents relate to one another depending on the school
of thought in consideration. For instance, for the school of thought named KP then W, the
match starts with K and P and locking onto one another for a period of time. In this period
of time (definable by the user), K and P wait for W to finalize the match and update the
counter. The diagram does not capture when K and P separates after the user defined time
frame runs out. This separation is needed to avoid the effect of memory in the matching of
K, W, and P. The separation can be captured by an activity diagram.

A complementary form of capturing the conceptual model towards an agent
implementation is with propositional logic (Russel and Norvig, 2003). In this case,
propositional logic captures the behavior of agents in the form of logical connections
between clauses. For instance, Ai ∧Bi ∧ Ci where A = K in patch, B = W in patch, and C
= P in patch, i = type of K, W, or P (Boolean). When i has the same value, understanding
occurs, otherwise, the person does not understand.

Fig. 4. Sequence Diagram for the Model of Understanding [7]

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 281

Finally, the model was implemented in an application called Netlogo. The interface
allows for establishing the desired initial conditions that reflect the different
experiments, the school of thought, and the time frame. The output, although can be
observed on the interface per run, it is capture (for all runs) in a file that can be
exported to a spreadsheet and analyzed with a package that facilitates statistical
analysis. In this particular case, SPSS was used to conduct statistical analysis ranging
from normality tests to parametric and non-parametric comparison of means.

The analysis of data was initiated by a qualitative analysis; observing whether there
was a discernable pattern in the data. Time did not provide a discernable pattern,
however, effort did. This pattern was used to conduct the statistical analysis of data
that was mostly based on the comparison of means for each initial condition within
and across schools of thought. The main finding was that initial conditions clustered
on seven levels. In level 7 the individual had extreme difficulty in understanding the
problem compared to difficulty in level 6. Level 1, 2, 3, and 4 were ‘close’ in terms of
effort compared to level 5, 6, and 7. Levels 5 and 6 were relatively close compared to
level 7. This separation of effort in terms of levels provided the insight on degree of
complexity based on understanding, or lack of it, especially when considering the
different distances between levels. This implies that for a person is better to be in
level 6 than in level 7 while being at level 4 and 3 makes not a great difference.

The insights drawn from the three schools of thought and from the analysis of data
allows the formulation of a theory of understanding that: defines understanding, what
understanding is, what it does, and how it does it and provides insight into concepts
such as complexity which are of importance to system engineers.

In the methodological aspect, it is highlighted that the resulting theory contributes
to the BOK and explains existing school of thoughts while challenging existing
assumptions.

6 Final Remarks and Conclusion

Theory creation is, in many cases, an overlooked aspect of the research endeavor. The
over emphasis and imposition, in some cases, of empiricism limit the production of
new theories and trade them for their testing. Paul Feyerabend (1924-1994), a well-
known contemporary philosopher, posited that many of the major human scientific
achievements of mankind do not come through empirical means. He suggests that any
method is the method and researchers, in their investigative processes, should not
constraint to one method in particular. As such, new methods that advance the
creation of new knowledge should be welcomed as long as they facilitate the
researcher’s goal while providing rigor and consistent outputs. In other words,
methodologies and methods should be selected on the basis of their appropriateness to
the problem at hand and research question and not by the religious imposition of one
particular research mentality.

This chapter presents a methodology and method that guide the researcher in building
theory out of existing theory with the assistance of Modeling and Simulation. It is shown
that this approach is of particular importance when studying ill-defined problems. To
support this argument, it is presented that theory can be built through empirical or
rational means. In the latter case, the researcher is likely to have data, means of

282 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

measurement, and access to an objectively defined problem. In the former, limited to no
access to data, no means of measurement, and lack of consensus about the problem are
predominant. To overcome the limitations in the former case, researchers may rely on
speculation, argumentation, or thought processes to develop theories. It is presented that
M&S can be used effectively and efficiently as a conduit to establishing rigorous
research to theoretical endeavors. This rigor is established in the form of traceability,
structure, and precision when modeling and through a computable implementation of a
model. It is suggested that this approach can be used to develop new theories in
disciplines such as systems engineering. Systems engineering is a compelling case of a
discipline where problems are becoming more human-oriented. These new types of
problems are not currently addressed by the technology-focus of the discipline. New
theories have surfaced to address these human-oriented issues under the umbrella of new
disciplines, even though these problems still affect systems engineers. The majority of
these theories are based on anecdotal experience or speculation on how these issues can
be resolved. Although widely used, these theories do not or insufficiently cover many
different issues such as the human-driven complexity of a problem. As a way to highlight
the methodology, a test case is presented. This case showcases how through the proposed
methodology a theory of understanding was built. This theory not only provides insight
into the phenomenon of understanding but also insight into the human-driven complexity
of a problem. Agent-based Modeling was used to implement the model captured from the
literature in a computable form and generate data that further generated insight.

7 List of Acronyms

ABM: Agent-based Modeling
BOK: Body of Knowledge
DE: Discrete Event
K: Knowledge
M&S: Modeling and Simulation
P: Problem
SD: System Dynamics
SE: Systems Engineering
SoSE: System of Systems Engineering
SSM: Soft Systems Methodology
UML: Unified Modeling Language
VMASC: Virginia Modeling, Analysis and Simulation Center
W: Worldview

References

1. Checkland, P., Scholes, J.: Soft Systems Methodology. Wiley, New York (1990)
2. Keating, C.B., Unal, R., Sousa-Poza, A., Dryer, D., Rogers, R., Safford, R., Peterson, W.,

Rabadi, G.: System of Systems Engineering. Engineering Management Journal 15(3), 35–
44 (2003)

3. Vennix, J.: Group Modeling Building. Wiley, New York (1996)

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge 283

4. Flood, R., Carson, E.: Dealing with Complexity: An Introduction to the Theory and
Application of Systems Science. Plenum Press, New York

5. Keating, C., Padilla, J.J., Adams, K.: System of Systems Engineering Requirements:
Challenges and Guidelines. Engineering Management Journal 20(4), 24–31 (2008)

6. Keating, C.: Paradoxes in the Engineering of Complex System of Systems. In: Proceedings
from the 29th American Society for Engineering Management National Conference, West
Point, NY, November 12-15 (2008)

7. Padilla, J.J.: Towards a Theory of Understanding within Problem Situations. Doctoral
Thesis at Old Dominion University, Norfolk, VA (2010)

8. Hubler, A.: Predicting Complex Systems with a Holistic Approach. Complexity 10(3), 11–
16 (2005)

9. Freese, L.: Formal Theorizing. Annual Review of Sociology 6, 187–212 (1980)
10. Allin, B.: Theory: Definition and Purpose. Journal of Farm Economics 31(3), 409–417

(1949)
11. Whetten, D.: What Constitutes a Theoretical Contribution? Academy of Management

Review 14(4), 490–495 (1989)
12. Hearn, G.: Theory Building in Social Work. University of Toronto Press, Canada (1958)
13. Weick, K.: Theory Construction as Discipline Imagination. Academy Management

Review 14(4), 516–531 (1989)
14. Hempbel, C.: On the Logical Positivists’ Theory of Truth. Analysis 2(4), 49–59 (1935)
15. Keuth, H.: Tarki’s Definition of Truth and the Correspondence Theory of Truth.

Philosophy of Science 45, 420–430 (1978)
16. Firth, R.: Coherence, Certainty, and Epistemic Priority. The Journal of Philosophy 61(19),

545–557 (1964)
17. Walker, R.C.S.: Spinoza and the Coherence Theory of Truth. Mind 94(373), 1–18 (1985)
18. Ackoff, R.: Ackoff’s best: His Classic Writings on Management. John Wiley and Sons,

New York (1999)
19. Ashby, W.R.: An Introduction to Cybernetics. Methuen and Co., New York (1984)
20. Beer, S.: The Heart of Enterprise. John Wiley and Sons, New York (1979)
21. Davis, P., Anderson, R.: Improving the Composability of Department of Defense Models

and Simulations. RAND Corporation, Santa Monica (2003)
22. Diallo, S., Tolk, A., Weisel, E.: Simulation Formalisms: Review and Comparison of

Existing Definitions of Key Terms. In: Fall Simulation Interoperability Workshop. 07F-
SIW-061 (2007)

23. Gilbert, N.: Agent-based models. SAGE Publications, Thousand Oaks (2008)
24. Davis, J., Eisenhardt, K., Bingham, C.: Developing Theory through Simulation Methods.

Academy of Management Review 32(2), 480–499 (2007)
25. Gilbert, N., Troitzsch, K.: Simulation for the Social Scientist. Open University Press, New

York (2005)
26. Tolk, A., Diallo, S., King, R., Turnitsa, C., Padilla, J.J.: Conceptual Modeling for

Composition of Model-Based Complex Systems. In: Robinson, S., Brooks, R., Kotiadis,
K., Van Der Zee, D. (eds.) Conceptual Modeling for Discrete-Event Simulation, pp. 355–
381. CRC Press, Boca Raton (2010)

27. Gilbert, N.: Models, Processes and Algorithms: Towards a Simulation Toolkit. In:
Suleiman, R., Troitzsch, K., Gilbert, N. (eds.) Tools and Techniques for Social Science,
pp. 3–16. Physica-Verlag, Heidelberg (2000)

28. Muller, G.: Computer-Assisted Interfacing: On the Use of Computer Simulation for Theory
Construction. In: Suleiman, R., Troitzsch, K., Gilbert, N. (eds.) Tools and Techniques for
Social Science, pp. 26–47. Physica-Verlag, Heidelberg (2000)

284 J.J. Padilla, S.Y. Diallo, and A.A. Sousa-Poza

29. Leik, R., Meeker, B.: Computer Simulation for Exploring Theories: Models of Interpersonal
Cooperation and Competition. Sociological Perspectives 38(4), 463–482 (1995)

30. Hanneman, R.: Simulation Modeling and Theoretical Analysis in Sociology. Sociological
Perspectives 38(4), 457–462 (1995)

31. Bertrand, J.W.M., Fransoo, J.C.: Operations Management Research Methodologies Using
Quantitative Modeling. International Journal of Operations & Production Management 22(2),
241–264 (2002)

32. Sousa-Poza, A., Padilla, J.J., Bozkurt, I.: Implications of a Rationalist Inductive Approach
in System of Systems Engineering Research. In: Proceedings of IEEE International
Conference on System of Systems Engineering, Systems, Man, and Cybernetics (2008),
doi:10.1109/SYSOSE.2008.4724186

33. Hester, P., Tolk, A.: Applying Methods of the M&S Spectrum for Complex Systems
Engineering. In: Proceedings from the Spring Simulation Conference, Orlando, Fl, April
11-15 (2010)

34. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper
Saddle River (2003)

35. Tolk, A., Uhrmacher, A.: Agents: Agenthood, Agent Architectures, and Agent Taxonomies.
In: Yilmaz, L., Ören, T. (eds.) Agent-Directed Simulation & Systems Engineering, pp. 87–
126. John Wiley & Sons, New York (2009)

36. Abrahamson, D., Wilensky, U.: Piaget? Vygotsky? I’m game!: Agent-based Modeling for
Psychology Research. Paper presented at the annual meeting of the Jean Piaget Society,
Vancouver, Canada (2005)

37. Klir, G.: Complexity: Some General Observations. Systems Research 2(2), 131–140 (1985)
38. Sterman, J.: Learning in and About Complex Systems. System Dynamics Review 10(2-3),

291–330 (1994)
39. Nair, K.U., Ramnarayan, S.: Individual Differences in Need for Cognition and Complex

Problem Solving. Journal of Research in Personality 34, 305–328 (2000)

Chapter 11

“The User Around the Marketplace”:
Automatic Engineering of Interactive

E-commerce Applications

Mart́ın López-Nores, Yolanda Blanco-Fernández, and José J. Pazos-Arias⋆

Department of Telematics Engineering, University of Vigo,
ETSE Telecomunicación, Campus Universitario s/n, 36310 Vigo, Spain

{mlnores,yolanda,jose}@det.uvigo.es
http://idtv.det.uvigo.es

Abstract. When thinking about opportunities for e-commerce, it is nec-
essary to differentiate scenarios in which the user’s aims and attention
are close to the items that may be offered to him (e.g. when he has just
entered an online bookshop) from scenarios in which they are not (e.g.
in delivering publicity while he watches TV). The support available for
the former is quite advanced nowadays, especially thanks to the devel-
opment of recommender systems. On the contrary, in cases in which the
user gets to know about interesting items casually, there is much place
to provide him with better guidance and thereby increase the number of
transactions accomplished online. The key aspects have to do with con-
textualizing the selection of the items that will be offered to the users,
delivering the information they may find more valuable and understand-
able in the most accessible way, and identifying the most convenient
providers taking into account not only price and availability but also
the users’ location. We describe a system that furnishes these features,
relying on semantic and rule-based reasoning techniques to automati-
cally compose interactive services that let the users browse details of
(and purchase online) various kinds of items they might be interested in,
as inferred from knowledge about their individual preferences, interests
and needs. A prototype targeted at improving Digital TV advertising is
described.

1 Introduction

The evolution of e-commerce technologies in the last few years has been domi-
nated by the consolidation of recommender systems, which apply a range of ar-
tificial intelligence techniques to proactively discover the items that best match
the preferences, interests and needs of each individual at any time. There are
recommenders working behind the scenes in many e-commerce sites [1,2], where

⋆ Work supported by the Ministerio de Ciencia e Innovación (Gobierno de España)
research project TIN2010-20797, and by the Conselleŕıa de Educación e Ordenación
Universitaria (Xunta de Galicia) incentives file 2007/000016-0.

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 285–307.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

http://idtv.det.uvigo.es

286 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

it makes perfect sense to face the visitors with lists of items they may appreciate,
as inferred from records of their previous purchases. This is because the user’s
aims and attention are sufficiently close to the items that may be recommended
to him: e.g. if he has just entered an online bookshop, it is most likely that he will
be looking for a new read. In such contexts, which we classify under the metaphor
“th e user inside the shop”, the actions triggered by the user selecting one item
from the list are straightforward, so the recommender system has completed its
task. In contrast, whenever the user is not focused on the kind of items that may
be recommended to him (e.g. when watching a movie on TV), the opportunities
for e-commerce should arise from non-invasive, casual discovery of potentially
interesting stuff, as much related as possible to whatever his interests are at the
moment (e.g. the topic of the aforementioned movie). In fact, one would expect
the recommender to go further that assembling a list of items, for example, to
select the most convenient offers from among various providers, to look for the
pieces of information that describe each item in the most complete or accessible
way for the user in question, to arrange the most suitable interfaces to place an
order through whichever device, etc. In other words, with “the user around the

marketplace”, we believe a recommender can be put in charge of building the

shop in which the user will feel most comfortable to browse potentially interest-
ing items.

The discussion above puts forward a concept of online shop that differs from
the traditional one. Nowadays, it is almost straightforward for any provider to
build a web site to browse the items of a catalogue, to manage shopping carts,
to process payments, and so on. However, those sites deliver information in a
one-size-fits-all manner, i.e. all the users are always faced with the same infor-
mation, which may contain uninteresting data or be difficult to understand at
all. Obviously, it should not be a task for human developers to create suitable
sites or applications for all the different users, considering also the multiplicity of
items, access devices and contexts —simply because no workforce would suffice.
To address this problem, we describe in this chapter a system that uses semantic
and rule-based reasoning techniques to automatically engineer interactive com-
mercial applications, personalized according to information about the individual
preferences, interests and needs of the users. As the distinctive features of the
proposal, it is possible to contextualize the selection of the items that will be
offered, to personalize the information delivered and to link the most convenient
providers, taking into account not only price and availability but also the users’
location. Since the decision of which providers to link is not made beforehand,
we are promoting an open environment that lowers the barriers for providers to
trade over the Internet and that ensures visibility, just like the traditional search
engines (e.g. Google or Bing) have been doing for decades as a prelude to “the
user inside the shop” experiences.

The chapter is organized as follows. First, in Section 2, we provide an overview
of the state-of-the-art in the areas of recommender systems, web services and
web mashups, which are directly related to our proposal. Afterwards, Section 3
describes the elements that come into play during the composition of interactive

Automatic Engineering of Interactive E-commerce Applications 287

commercial applications in our system, whereas Section 4 explains the proce-
dural questions. Section 5 shows how this proposal has been implemented in
the context of DTV advertising, also including the results of preliminary experi-
ments aimed at assessing personalization quality and users’ satisfaction. Finally,
Section 6 provides a brief summary of conclusions.

2 Background

As regards the classical goal of identifying the most suitable items for a given
user, recommender systems work by matching the information in a user pro-

file against metadata descriptions of the items available. The first possibility
explored to do so was content-based filtering, which consists in making recom-
mendations by looking at contents that gained the target user’s interest in the
past [3, 4]. This strategy is easy to adopt, but bears a problem of overspecial-

ization: the recommendations tend to be repetitive for considering that one will
always appreciate the same kind of stuff. To tackle this problem, the scientific
community came up with user-based collaborative filtering, which proceeds by
evaluating not only the profile of the target user, but also those of users with
similar interests (his/her neighbors) [5, 6]. This approach solved the lack of di-
versity in the recommendations, but faces problems like poor performance with
people whose preferences are dissimilar to the majority (the gray sheep). An al-
ternative was item-based collaborative filtering, which recommends items related
to others that the target user liked in the past, considering two items related
when users who like the one tend to like the other as well [7]. However, this
approach faces problem like sparsity: when the number of items available to rec-
ommend is high, it is difficult to find users with similar valuations for common
subsets. Not surprisingly, there exist hybrid approaches that attempt to neutral-
ize the weaknesses and combine the strengths of content-based and the different
variants of collaborative filtering [8, 9].

Regardless of the filtering strategy, the first recommender systems used heuris-

tics or syntactic matching techniques, which relate items by looking for common
words in their attached metadata. These techniques miss a lot of knowledge
during the personalization process, because they are unable to reason about the
meaning of the metadata (for example, it is not possible to link items about
“Golden Retriever” with items about “Boxer”, as the two words are dissimilar).
Besides, they are a source of overspecialization, because the recommendations so
computed can only include items very similar to those the users already know.
To go one step beyond in personalization quality and diversity, research is now
focused on applying techniques from the Semantic Web, which enable reason-
ing processes that gain insight into the meaning of words (so that, for example,
“Golden Retriever” and “Boxer” can be automatically recognized as two breeds
of dogs, the latter having nothing to do with a combat sport). The key here
lies within the use of ontologies [10] to describe and interrelate items and their
attributes by means of class hierarchies and labeled properties (see Figure 1).

288 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

The most popular language to build ontologies nowadays is OWL (Web Ontology

Language) [11].

Fig. 1. The structure of an ontology

One promising line of research in personalization is that of context aware-

ness, aimed at acquiring information about physical and social situations to
maximize the value of the information delivered to the users. The knowledge
available about context can be added to that in the user’s profile to drive the
selection of contents and services. Regarding formats and length, it is possible
to match the time the user will have to read or watch material, the size of the
screens where it will be presented, the input mechanisms available, etc. As for
the semantics, the goal is basically to identify the topics the user may welcome
at a given moment: news, entertainment, medical advice, etc. Historically, the
first possibility explored in context awareness was to develop location-sensitive
mobile applications that would display different pieces of information follow-
ing the users’ moves in indoor environments (e.g. museums) or outdoors (e.g. in
guided city tours) [12,13]. Other dimensions were progressively added, like infor-
mational context (e.g. inferred from words or pictures on screen), infrastructure
(e.g. input devices available or surrounding communication resources) and phys-
ical conditions (noise, light, etc). The recent works on affective computing [14],
coupled with theories on emotion and cognition, make it possible to take the
user’s feelings (mood, stress, etc) into consideration as well.

In all of the aforementioned works, recommender systems limited themselves
to providing the users with lists of the items that best match the information
stored in their profiles, so there is practically nothing in literature about gen-
erating personalized interactive applications in an automated fashion. A solu-
tion to this problem can be inspired by the extensive literature of web services

Automatic Engineering of Interactive E-commerce Applications 289

composition, that builds upon standards like WSDL (Web Services Description

Language) or OWL-S (OWL-Services) to characterize functional elements (the
web services) in terms of inputs and outputs, some conceptualization of their
internal processing or purpose, etc. Specifically, OWL-S involves three interre-
lated subontologies: Profile (“what the service does” for purposes of discovery),
Process Model (“how the service works” for invocation and composition) and
Grounding (a realization of the process model into detailed specifications of
message formats and protocols). Leaning on this standard, there exist various
composition engines that can automatically provide the back-end logic of many
e-commerce services on the Internet [15, 16, 17, 18], in some cases considering
user preferences about non-functional aspects like quality of service, payment
methods, security or privacy [19]. In contrast, as regards the front-end of the
applications, there have been few attempts to automate the generation of user
interfaces from web service descriptions [20,21], and there remains an open issue
in the selection of the pieces of information to display within those interfaces,
taking into account user preferences about content sources, topic, language, ac-
cessibility and so on. These aspects have been recently addressed in the area of
web mashups, which are value-added web applications developed by integrating
heterogeneous elements from various web sources, including RSS/Atom feeds,
web services, content scraped from third-party web sites, or portable software
components commonly called widgets [22]. The automatic generation of person-
alized mashups was addressed in [23], relying a number of ontology-based models
to describe users of web portals and their potential information needs, and then
applying rule-based reasoning to bring multiple resources together.

Notwithstanding the aforementioned advances, the support available nowa-
days for the paradigm of “the user around the marketplace” is still insufficient in
two main aspects. The first one relates to the quality of the automatic generation
processes, because the resulting applications may fail to make a cohesive whole
out of pieces of information retrieved from diverse sources [24]. The second aspect
has to do with the format of the applications, since there are plenty of consumer
devices out there which offer specific development platforms instead of general
engines to properly run web apps. This is important because of the current
global trends of the Internet: as noted in [25], after many years in which more
than 90% of the traffic corresponded to HTML data delivered via the HTTP
or HTTPS protocols (i.e. to web browsing), the percentage has now shrunk to
less than 25%; the rest has been taken up by non-web applications like peer-
to-peer file transfers, e-mail, virtual private networks, the machine-to-machine
communications of APIs, VoIP calls, online games, movie streaming, etc. There-
fore, it is increasingly necessary to develop means to automatically generate
platform-specific applications. The aim of our work is to do so in the realm of
Digital TV technologies. This is a domain where the deficient support for “the
user around the marketplace” is especially apparent, because most of the stake-
holders’ expectations by the mid 1990’s are yet to be realized. Initially, every-
one envisaged lucrative opportunities for entertainment and e-commerce, due to
the possibility of delivering interactive applications jointly with the audiovisual

290 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

contents [26]. Standards like MHP (Multimedia Home Platform) and various
supporting tools have made things easier and easier for development and de-
ployment, but interactive DTV applications are still the exception rather than
the rule. Yet, there exist a few systems that aim to personalize electronic pro-
gramming guides and TV advertising, again by means of simple heuristics [27],
syntactic matching techniques [28,29] or semantic reasoning [30]. Unfortunately,
none of those systems has generalized the possibility of linking the programs
or the advertisements with interactive applications —no matter how simple—
that would let the users browse details of the corresponding items, purchase on-
line, subscribe to the notification of novelties, etc. At the most, they could link
programs and advertisements to one from among a set of manually-developed
applications (which is certainly insufficient) or to some URL that would open
the web site of a specific provider. Thus, it is clear that much of the potential of
Digital TV technologies for e-commerce remains underexploited.

3 Elements to Engineer Personalized Interactive
Applications

The system we describe in this chapter extends the proposal of [22] to generalize
the provision of interactive commercial applications in “the user around the mar-

ketplace” scenarios, introducing the ability to personalize (i.e. to craft according
to the knowledge available about the target user) not only the type of service
provided, but also the information displayed (which may come from different
sources, just like in web mashups) and the commercial functionalities enabled.
The elements that come into play in the composition of such applications are
determined by the semantic and rule-based nature of the reasoning behind the
personalization features. Next, we enumerate those elements briefly to get an
overall idea of our approach:

– First, we use a domain ontology (expressed in OWL) to formally represent
the concepts and relationships of the e-commerce domain, as well as the
properties of the items available to recommend and the properties that may
be used to characterize the user’s context. This ontology brings together
metadata from several specifications, including MPEG-7 and eCl@ss.1 At
the core, there is a hierarchy that classifies items and their attributes as
shown in the micro-excerpt of Fig. 2, which includes a documentary about
the Bergamo Alps, vinegar and wine brands from the Italian city of Modena,
and a sports car also manufactured in Modena.

– To capture the information available about the user’s interests, preferences
and needs, we manage profiles that store demographical information (e.g.
gender, age, marital status, income, etc) plus consumption histories to keep
track of items purchased/consumed in the past. Those items are linked to a
number between −1 and 1 called the degree of interest (DOI) of the user in

1 We chose eCl@ss instead of other products-and-services categorization standards for
the reasons of completeness, balance and maintenance discussed in [31].

Automatic Engineering of Interactive E-commerce Applications 291

Items Taxonomy

Items

Perishables Motor items Tourism items

Food Drink Vehicles
Motor
journals Guidebooks

Audiovisual
contents

Cars Motorbikes

traveling

Bergamo

Modena

Italian
regions

vinegar wine sports car sports
motorbike

Racing Sports
magazine

guide
Bergamo Alps
documentary

subClassOf

instanceOf

labelled property

hasRegion

hasRegion
hasRegion

hasRegion

hasTopic
hasTopic

hasRegion
hasRegion

Fig. 2. A micro-excerpt from the items taxonomy of the domain ontology

them: 1 represents the greatest liking; −1 the greatest disliking. This number
may be explicitly provided by the user or inferred from ratings given to other
related concepts in the domain ontology —the procedure in this regard is
identical to the one presented in [28].

– In order to decide whether a given item or a related piece of information
might be appealing to a user, our system runs a hybrid filtering strategy
against his preferences and the semantic annotations of the item in the do-
main ontology (further details will be given in Sect. 4.1). For example, the
reasoning can relate the Rac in g S p or ts magazine and a sp or ts c ar of Fig. 2
through the ancestor M otor items ; likewise, a given guidebook and Berg-

amo Alps documentary would be recognized as similar items because they
share the attribute traveling, and also because they are bound to two Italian

regions (Modena and Bergamo are sibling attributes).

– The services provided by the interactive commercial applications are charac-
terized semantically as per the OWL-S standard, which provides an extensive
ontology of functions where each class corresponds to a class of homogeneous
functionalities. On top of that ontology, we have built a services taxonomy

that represents the capabilities of the elements that may be included in
an application. A micro-excerpt from the services taxonomy is depicted in

292 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

OWL-S Web Services
Taxonomy

OWL-S Templates

sports car guide

subClassOf

instanceOf

labelled property

e-Services

Information
Services

Selling-oriented
Services

AccommodationVehicleSellingBookSelling AirlineTicketing TourSelling

CarSelling

CompactCar
Selling

SportCar
Selling

OWL-S
Service #1

OWL-S
Service #4

OWL-S
Service #3

OWL-S
Service #2

hasTypeofService

hasTemplatehasTemplate hasTemplate

hasTypeofService hasTypeofService

hasTypeofService

<owl:Class rdf:ID=”Dealer”>
...
<owl:Class rdf:ID=”Map”>
...
<owl:Class rdf:ID=”Calendar”>
...

<owl:Class rdf:ID=”Airline”>
...
<owl:Class rdf:ID=”Accommodation”>
...
<owl:Class rdf:ID=”Map”>
...
<owl:Class rdf:ID=”Photo”>
...
<olw:Class rdf:ID=”Payment”>
...
<owl:Class rdf:ID=”Text”>

<owl:Class rdf:ID=”SportCar”>
...
<owl:Class rdf:ID=”Photo”>
...
<owl:Class rdf:ID=”Video”>
...

Template #4-1

Template #4-2

Template #2-1

Fig. 3. A micro-excerpt from the taxonomy of semantic web services and templates

Fig. 3, with each item linked to different types of services by hasTypeofService

properties.
Actually, the domain ontology merges the items and services taxonomy, so
that the semantic reasoning features can relate the functionalities available
to the items recorded in the user profiles. For example, the guidebook about
Modena is associated to a type of service (denoted by OWL-S Service #1 in
Fig. 3) that may be used to purchase one copy while browsing information
about the main tourist attractions of Modena; it is also linked to a service
(OWL-S Service #2) that may be used to purchase a travel to this Italian
region with possibilities to book accommodation and flight. Similarly, the

Automatic Engineering of Interactive E-commerce Applications 293

sports car is linked to a service (OW L -S Service #3) that may be used to
simply describe its features, and to a second one (OWL-S Service #4) that
may offer the chance to arrange an appointment with a dealer.

– Whereas the OWL-S service descriptions define functionalities from an ab-
stract point of view, their implementation is accomplished by means of tem-

plates, which are reusable and configurable pieces that provide the code that
glues together different functional elements and pieces of content. This in-
cludes the programming of the user interfaces and the logic needed to interact
with web services as per the SOAP (Simple Object Access Protocol) stan-
dard [30]. Actually, a same type service as described above can be offered
delivered multiple templates, which differ from each other in the interactive
elements or the pieces of information shown to the user. This fact is rep-
resented in Fig. 3, where the elements of each template are identified by
semantic concepts (e.g. Map, Dealer or Calendar), conveniently formalized
in the ontology.

4 The Personalization Procedures

The support we propose in this chapter for “the user around the marketplace”, as
explained in Section 1, brings in innovations regarding the reasoning behind the
recommendation of items and the composition of personalized, interactive com-
mercial applications. The procedures followed in these two tasks are explained in
Sections 4.1 and 4.2, respectively. Some final considerations about the feedback

needed to keep the users’ profiles updated —a key aspect to ensure the quality
and accuracy of the personalization— are given in Section 4.3.

4.1 Reasoning-Driven Recommendation of Items

In our approach, the selection of items is done by matching the information cap-
tured in the user’s profile with the classes and properties from the ontology that
characterize his context and those of the items available to recommend. To this
aim, we incorporate content-based filtering and collaborative filtering strategies.
Next, we briefly explain how our two filtering strategies decide whether a given
item I is appealing to a user U , whose profile is denoted by P .

Content-Based Strategy. Our content-based strategy consists of computing
a matching level between the item I and U ’s preferences, by averaging the values
of similarity between I and the items stored in the profile P , weighed by their re-
spective DOIs. Intuitively, the matching level grows with the similarity between
I and the favorite items for U (i.e. those with the highest ratings in his pro-
file). To measure such similarity, we have adapted the semantic similarity metric
presented in [31], that quantifies the strength of the relationships that can be in-
ferred —from the knowledge captured in the domain ontology— between I and
U ’s preferences. Specifically, our metric considers not only the explicit relations
defined by the hierarchy of classes, but also others which are hidden behind the

294 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

attributes of the items. Therefore, we talk about two similarity criteria, which
are finally weighed and combined by means of a factor α ∈ [0, 1].

– The notion of hierarchical similarity has appeared in many previous
approaches (see for example [32, 33, 34]), and consists of valuing the rela-
tionship between two nodes of the ontologies by the existence and specificity
of a common ancestor in a hierarchy of classes. In our approach, the value of
hierarchical similarity between I and each item i in U ’s profile grows with
the depth of their lowest common ancestor (LCA) and also with its prox-
imity to I and i in the items taxonomy. The depth of a node is given by
the number of hierarchical links traversed to reach the node from the root of
the hierarchy; thereby, the hierarchical similarity between two nodes is 0 if
they do not have other common ancestor than the root class. For example,
in Fig. 2, the sports car is more similar to the sports motorbike than to the
Racing Sports magazine, because the LCA between the two sports vehicles is
more specific (deeper) than the LCA between the sports car and the motor

magazine (i.e. depth(Vehicles)=2 > depth(Motor items)=1).
– The notion of inferential similarity consists of measuring similarity by look-

ing at relationships between the semantic attributes of the items compared.
In this regard, two items are considered similar if they have common at-
tributes (e.g. traveling for the guidebook and the Bergamo Alps documen-
tary in Fig. 2) or sibling ones (e.g. Modena and Bergamo). To calculate the
value of inferential similarity between I and i, in addition to the existence of
common or sibling attributes, we consider the level of interest of U in such
attributes (i.e. his/her DOI indexes in those attributes). Consequently, infer-
ential similarity between both items is high when they share many attributes
and when these attributes are highly rated in U ’s profile.

After computing the matching level between U and the item I (by combining
the semantic similarity values and DOI indexes), our content-based strategy
recommends the item to the user if the resulting value is greater than a given
threshold. Otherwise, I is considered again by the collaborative strategy.

Collaborative Strategy. Our collaborative strategy starts out by delimiting
the neighborhood of the user U , matching his profile P against those of other
users. To this aim, we first create a rating vector containing the DOIs of the
item classes most appealing or most unappealing to the user (identified by DOIs
close to 1 and −1, respectively). Next, we look for other profiles that contain
DOIs for at least 70% of those classes, and create their respective rating vectors.
Finally, we compute the Pearson-r correlation [2] between the rating vector of
each partial stereotype and the vector corresponding to the user U .

The user’s neighborhood is formed by the profiles that yield correlation values
greater than a given threshold γ. Once the neighbors have been identified, we
predict the level of interest of the user in the item I by considering both his
preferences and the interest of his neighbors in it. Specifically, if a neighbor has
rated this item, we use his DOI index; otherwise, we predict his level of interest

Automatic Engineering of Interactive E-commerce Applications 295

by computing the matching level between I and the neighbor’s preferences as
explained above. As a result, the interest value predicted for I is greater when
this item is very appealing to the selected neighbors and these are strongly
correlated with U ’s preferences. Again, I is finally recommended to the user
when the predicted interest is greater than a given threshold.

4.2 Composition of Interactive Commercial Applications

The generation of an interactive commercial application is triggered when the
user shows interest in one of the items recommended to him. Then, it is necessary
to decide which type of service best matches his preferences, and which is the
most convenient template to create one application that provides the service.
The selected template must be finally populated by retrieving contents for each
one of its interactive elements.

In order to select the type of service to provide, we adopt an approach similar
to the one presented in [35], which consists in using SWRL (Semantic Web

Rules Language) rules to relate user preferences and context information in a
personalization system. We have defined a set of rules to associate personal
information of the users (such as hobbies and income) with the kind of services
classified into the services taxonomy. The user preferences are antecedents in the
rules, while the service types appear in their consequents. For example, by the
SWRL rule #1 shown below, we infer that a user with sufficient income who is
fond of traveling may appreciate services that permit to book a tour (instead
of services that, for instance, only describe the tourist attractions of a given
destination). Likewise, SWRL rule #2 makes it possible to conclude that a user
with high income will likely be interested in services for the selling of luxury
items (to the detriment of services that, for instance, only provide information
about them). Such inferences are made by a Description Logic (DL) reasoning
module that computes a relevance factor for each type of service associated to
the item chosen by the user. Obviously, the factor is greater when the type of
service appears in the consequent of a rule whose antecedent is highly rated
among the user’s preferences.

SWRL rule #1

user (?u) ∧ swrlb:notEqual (income (?u), “LOW”) ∧
swrlb:equal (hobby (?u), “TRAVEL”) ⇒
appealingTypeOfService (?u,?ws) ∧ TourSellingService (?ws)

SWRL rule #2

user (?u) ∧ swrlb:equal (income(?u), “HIGH”) ⇒
appealingTypeOfService (?u,?ws) ∧ LuxuryItemsSellingService (?ws)

296 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

Having selected a type of service, the next step is to decide which one of
the templates associated to it may be most interesting for the user. In other
words, the goal is to identify the most suitable interactive elements to assem-
ble an interactive application about the item selected by the user. This decision
is driven by both the user preferences (e.g. the kind of elements the user has
accessed in previous applications) and parameters such as the computational
power, input/output capabilities or availability of a return channel for bidirec-
tional communication. Therefore, for example, we refrain from using templates
with maps in the case of users who have never fiddled with such artifacts in pre-
vious applications, while we limit the amount of text to be shown in the case of
small screen devices or with users who have never fully read lengthy descriptions
of other items.

Following the selection of a template to shape the application, we use a
semantics-enhanced registry based on the UDDI (Universal Description, Dis-

covery and Integration) standard [30] to look for services categorized under the
selected service type, and also for contents to place in all the elements of the
selected template. For example, assembling an application via Template #2-1
shown in Fig. 3 requires to discover selling services that offer information about
airlines and hotels providers, as well as maps and photos of rooms. Our reg-
istry works much like the one presented in [36], which takes advantage of the
expresiveness of OWL-S to match the capabilities offered against the requested
ones. In this line, we have developed an OWL-S/UDDI matchmaker to map
the OWL-S service profile into the corresponding WSDL representations of the
services offered in the semantic registry. To conclude, it is necessary to invoke
the OWL-S services discovered in the preceding step, by exploiting the WSDL
descriptions of message formats and in/out arguments provided by the service
groundings. This way, our application composition logic retrieves contents that
are pre-filtered considering the user preferences, which are finally put into the
template.

It is worth noting that, for certain types of services, we can populate tem-
plates with information about providers who are not listed in the registry, either
because they are online but do not offer a web services interface (as it happens
with many providers listed in sites like PriceGrabber, PriceRunner or bizrate),
or because they have never even thought about e-commerce (as many small- to
medium-sized enterprises known to the Yellow Pages or Google Maps). The inter-
est of showing these providers to a user may have to do with the price/availability
of their offerings or their physical proximity to his location.

4.3 Feedback

The interaction between a user and the interactive applications generated for him
makes it possible to infer useful information to update his profiles and to refine
future recommendations of items and tailor-made applications. To begin with,
the user can rate the composed item. If he does so, his rating is also assigned to
the item being advertised in the applications, so that both the item and its rating
are stored in his profile. Otherwise, we can infer ratings from parameters such

Automatic Engineering of Interactive E-commerce Applications 297

as the time spent interacting with the application and the number of interactive
elements reviewed in it. This information is exploited by our content-based and
collaborative strategies during the selection of the most relevant items for each
user, as detailed in Sect. 4.1.

Feedback is also harnessed to infer useful information for the selection of the
most suitable templates for each user. In this regard, we track, for example, the
kind of interactive elements mostly accessed by each user (e.g. videos against
photos), the length of the textual descriptions the user queried in previous ap-
plications (which can be easily inferred from the scrolling), and his preferences
for some specific information provider (e.g. the user tends to go through photos
extracted from Flickr against those from TwitPick), just to name a few possi-
bilities. All these parameters help improve the quality of the future personalized
i-spots shown to the user.

5 Our Proposal in DTV Advertising

We have implemented the approach described in this chapter as an enhancement
to the MiSPOT recommender system [28], which could select the most suitable
advertisements to display while the user is watching TV, matching the knowledge
available about the user with the semantic characterization of the items available
to recommend and the low-level (color, texture, motion, ...) or high-level (type of
show, topic, genre, ...) features of the scenes. The new version of the system offers
the possibility of linking the advertisements with interactive applications to run
on MHP set-top boxes. This environment poses a number of specific design and
implementation challenges, mainly related to the fact that Digital TV is still
much based on broadcasting, with no means for bidirectional communication
available in many cases.

Since we want the personalization features to be permanently available, even
in scenarios with only downstream communication from servers to receivers, we
have to run the filtering procedures locally in the latter. To this aim, we have
adapted the logic presented in Section 4 to the architecture of Figure 4, that
works as follows:

– First, as it is not possible to broadcast at the same time all the available
items, functional elements, templates and pieces of information, we make a
pre-selection to deliver only the material that is potentially most interesting
for the audiences expected at any given moment in the region covered by the
broadcasting facilities. This is a filtering process in itself, though not driven
by the profile of an individual user, but rather by a set of stereotypes that
average the preferences and needs of different groups of users.

– Second, we have devised a pruning procedure to reduce the amount of in-
formation to be handled by the receivers. This procedure consists of cutting
off metadata from the domain ontology to leave only the most relevant con-
cepts about the pre-selected items. As a result, we get partial ontologies of
a manageable size for the receivers to work with, plus partial stereotypes to
support the final filtering.

298 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

Fig. 4. The architecture of the enhanced MiSPOT system

– Following the pre-selection and pruning processes, a planning module in
the Digital TV head-end takes care to arrange items, functional elements,
templates, pieces of information, partial ontologies and partial stereotypes
in the broadcast emissions. When those data have been loaded into the
receivers, it is finally possible to run the filtering algorithms to decide what
items will be offered to each individual user, and to build the corresponding
personalized interactive applications.

– Clearly, with no way to communicate with remote servers, the collaborative
filtering strategy cannot do with the profiles of real users, but rather with
the partial stereotypes delivered through broadcast. We keep this pseudo-

collaborative approach anyway because it helps overcome the problem of
overspecialization that is typical of content-based strategies. Likewise, we
have introduced means to differentiate three different modes of interactiv-
ity that make sense in Digital TV: real interactivity, requiring permanent
access to the Internet for information retrieval; local interactivity, dealing
exclusively with contents delivered in the broadcast streams; and deferred

interactivity, halfway between the others, storing and forwarding information
when a return channel is available from time to time.

– The semantic registry is accessed via a proxy module running in the receivers,
that provides a unique interface to retrieve elements regardless of whether
they are received through broadcast or through the return channel.

5.1 A Simple Example

To illustrate the reasoning and the functionalities enabled by the new version
of the MiSPOT system, we shall consider the case of a childless man from Lon-
don in his early 20s, with significant income and subscribed to the Racing Sports

Automatic Engineering of Interactive E-commerce Applications 299

Fig. 5. Warping the sports car logo over a bus

magazine. This viewer is currently watching a documentary about Italy, using
a high-end Digital TV receiver permanently connected to a cable network. The
provider’s repository of advertising material contains logos and videos for a range
of cars and tourist resorts worldwide.

Assume that, as shown in the top-left corner of Fig. 5, the current scene of
the movie is set in a noisy city street, and that the producers have identified
the banner on the bus as a suitable place to render static images with an as-
pect ratio nearing 4:1. As the first step in the MiSPOT operation, the low-level
scene matching discards audio and video advertisements, and the same happens
with non-fitting static images. Then, the semantic similarity metric identifies the
cars as the most suitable items to advertise within this scene, because cars are
commonly found in city streets and the semantic characterization of the tourist
resorts makes them more suitable for relaxing scenes.

When it comes to reasoning about the viewer’s preferences, the data in his
profile lead to finding a sports car as a potentially interesting item, for several
reasons: (i) the explicit interest in motor sports reinforces the relevance of cars
over tourist resorts, as we do not know anything about the viewer’s fondness
for traveling; (ii) the viewer’s high economic power does not disregard him as a
potential client for expensive items; and (iii) the viewer does not need space for
children, which could promote other types of cars instead of sports ones. The

300 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

specific brand selected in this example was found more relevant than others in
this context because it has its headquarters in the Italian city of Modena. Thus,
the car’s logo ends up rendered within the hook as shown in the bottom-right
corner of Fig. 5.

We assume that the viewer feels curious about the sports car and activates
the advertisement using his remote control, which tells the system to compose
an i-spot about it. In doing so, the high level of income first leads the SWRL
engine to select a car selling service instead of one that would simply provide
information about the car. Next, the computing and communication capabilities
of the viewer’s high-end receiver makes it possible to use a template with de-
manding interactive elements like maps and video players. Finally, the viewer’s
for motor-related issues suggests getting information from specialized sites like
w w w .autoguide.com. Figures 6 to 8 show a few snapshots of the resulting i-spot:
the first one displays information about the car’s specifications retrieved from
the aforementioned web site; another tab provides a collection of pictures from
Flickr and videos from Youtube; the last one provides an interactive map to lo-
cate dealers of the car brand around the region where the viewer lives, plus a
calendar to arrange an appointment for a test drive.

Fig. 6. Snapshots of the interactive application assembled for the sports car (I)

5.2 Experimental Evaluation

Within the aforementioned settings, we conducted experiments to assess the
personalization quality achieved by the MiSPOT system in terms of precision

(%of advertised items that the viewers rate positively) and overall perception of

Automatic Engineering of Interactive E-commerce Applications 301

Fig. 7. Snapshots of the interactive application assembled for the sports car (II)

Fig. 8. Snapshots of the interactive application assembled for the sports car (III)

302 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

our proposal. The experiments involved 60 viewers recruited among our gradu-
ate/undergraduate students and their relatives or friends. They made up a di-
verse audience, with disparate demographic data and educational backgrounds;
there were nearly as many men as women (54% vs 46%), with ages ranging from
12 to 55 years old.

Prior to making any recommendations, we defined a set of 15 stereotypes by
clustering the viewer profiles that had built up during previous experiments with
the AVATAR recommender system [40]. Specifically, 14 clusters contained the
profiles that had comparatively high (close to 1) or comparatively low (close to
−1) DOIs for items classified under Sports, Nature, Technology, Science, Health,
Culture or Traveling. One final cluster gathered the profiles that did not meet
any of those conditions. From each cluster, one stereotype was computed by
averaging the DOIs of the profiles they contained. Having done this, we asked
each viewer to rate his/her interest in topics related to Sports, Nature, Tech-

nology, Science, Health, Culture and Traveling with a number between 0 and 9,
and their individual profiles were then initialized by weighing the DOIs of the
corresponding stereotypes.

The viewers interacted with our prototype system during at least 6 hours over
a period of 3 months. After each session, the viewers were faced with a list of
the items that had been advertised to them, which they had to rate between 0
and 9. At the end, we collected the log files and analyzed the data, measuring
62% precision, which is lower than the performance achieved by current server-
based recommender systems, but much greater than the precision of syntactic
approaches to receiver-side personalization in Digital TV (e.g. in [40] we had
measured the approach of [41] to reach barely above 20%).

As regards the viewers’ perceptions, we ran a poll offline asking them to rate
the personalization service, the new advertising model and the interest of enhanc-
ing the traditional TV publicity with interactive commercial functionalities. The
results are shown in Table 1.

To begin with, it is noticeable that the viewers’ satisfaction with the person-
alized offerings was quite high, with 68% of the viewers rating the experience

Table 1. Experimental results: Viewers’ opinions

Very positive Positive Neutral Negative

Opinion about the personal-
ized offerings

29% 39% 23% 9%

Opinion about the advertis-
ing model

36% 31% 18% 15%

Interest in the interactive
applications

29% 39% 21% 11%

Opinion about the function-
alities delivered

19% 46% 23% 12%

Quality and coherence of the
contents displayed

12% 28% 33% 27%

Automatic Engineering of Interactive E-commerce Applications 303

positively or very positively. Many of the test subjects noticed that the quality of
the recommendations increased as they interacted with the system (obviously,
thanks to the relevance feedback), but they agreed that the targeting of the
publicity was not any worse than usual even during the first sessions. In what
concerns the advertising model, the viewers’ appreciation was just as good, with
67% of positive or very positive ratings. Here, almost 15% of the viewers consid-
ered the product placements a nuisance, but this was often due to cases in which
the integration of the advertisements within the TV programs was not always
as smooth as desired —a question of technical refinements. Finally, regarding
the interactive applications, a significant number of viewers (more than 35%)
admitted that they do not yet think of using the TV receivers for anything else
than TV watching. Anyway, nearly 65% of them gave positive or very positive
ratings to the functionalities delivered, which confirms the interest of the local
and deferred interactivity modes. The bad news have to do with the quality and
coherence of the contents displayed. In line with the comments given in [24], this
fact reveals that it is necessary to develop more fine-grained reasoning about
the contents, or to restrict the possible sources by requiring greater amounts of
metadata.

6 Conclusion

In this chapter, we have motivated the need to improve the support offered
nowadays to casual e-commerce experiences through different media, by means
of suitable personalization tools and engines to generalize the provision of in-
teractive applications. The key aspects have to do with contextualizing the se-
lection of the items that will be offered to the users, delivering the information
they may find more valuable and understandable in the most accessible way, and
identifying the most convenient providers. We have described a system that fur-
nishes these features through a combination of semantic and rule-based reasoning
techniques.

References

1. Hung, L.: A personalized recommendation system based on product taxonomy for
one-to-one marketing online. Expert Systems with Applications 29, 383–392 (2005)

2. Cho, Y., Kim, J.: Application of Web usage mining and product taxonomy to col-
laborative recommendations in e-commerce. Expert Systems with Applications 26,
233–246 (2004)

3. Ardissono, L., Gena, C., Torasso, P., Bellifemine, F., Chiarotto, A., Difino, A.,
Negro, B.: User modeling and recommendation techniques for personalized Elec-
tronic Program Guides. In: Personalized Digital Television, pp. 474–486. Targeting
programs to individual users. Kluwer Academic Publishers, Dordrecht (2004)

4. Foltz, P.W., Dumais, S.T.: Personalized information delivery: An analysis of infor-
mation filtering methods. Commun. ACM 35(12), 51–60 (1992)

5. Leung, C.W., Chan, S.C., Chung, F.L.: A collaborative filtering framework based
on fuzzy association rules and multiple-level similarity. Knowledge and Information
Systems 10(3), 357–381 (2006)

304 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

6. Mobasher, B., Jin, X., Zhou, Y.: Semantically-enhanced collaborative filtering on
the Web. In: Web Mining: Applications and techniques, pp. 57–76. Idea Group,
Hershey (2004)

7. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on the World Wide Web, Hong Kong, China, pp. 285–295 (2001)

8. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction 12(4), 331–370 (2002)

9. Smyth, B., Cotter, P.: Surfing the digital wave: Generating personalized TV list-
ings using collaborative, case-based recommendation. In: Proceedings of the 3rd
International Conference on Case-Based Reasoning, Munich, Germany, pp. 561–
571 (July 1999)

10. Staab, S., Studer, R. (eds.): Handbook on ontologies. Springer, Heidelberg (2003)
11. McGuinness, D., van Harmelen, F.: Web Ontology Language overview. W3C Rec-

ommendation (2004)
12. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-

ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)
13. di Flora, C., Ficco, M., Russo, S., Vecchio, V.: Indoor and outdoor location-based

services for portable wireless devices. In: 25th International Conference on Dis-
tributed Computing Systems, Columbus, USA, pp. 244–250 (June 2005)

14. Stanojevic, M., Vranes, S.: Semantic classifier for affective computing. In: Inter-
national Conference on Computational Intelligence for Modelling Control & Au-
tomation, Vienna, Austria, pp. 849–854 (July 2009)

15. Hu, S., Muthusamy, V., Li, G., Jacobsen, H.A.: Distributed automatic service com-
position in large-scale systems. In: Proceedings of the 2nd International Conference
on Distributed Event-Based Systems, Rome, Italy, pp. 233–244 (July 2008)

16. Kvaloy, T.A., Rongen, E., Tirado-Ramos, A., Sloot, P.: Automatic composition
and selection of semantic web services. In: Sloot, P.M.A., Hoekstra, A.G., Priol,
T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 184–192.
Springer, Heidelberg (2005)

17. Lin, N., Kuter, U., Hendler, J.: Web Service composition via problem decomposi-
tion across multiple ontologies. In: Proceedings of the IEEE Congress on Services,
Salt Lake City, USA, pp. 65–72 (July 2007)

18. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for Web
Service composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2004)

19. Agarwal, S., Lamparter, S.: User preference based automated selection of web
service compositions. In: Proceedings of the Workshop on Dynamic Web Processes,
in Conjunction with ICSOC, Amsterdam, The Netherlands, pp. 1–12 (December
2005)

20. He, J., Yen, I.L.: Adaptive user interface generation for web services. In: Proceed-
ings of the IEEE International Conference on e-Business Engineering, Hong Kong,
China, pp. 536–539 (October 2007)

21. Pei, Z., Zhenxiang, Z.: A framework for personalized service website based on
TAM. In: Proceedings of the International Conference on Service Systems and
Service Management, Troyes, France, pp. 1598–1603 (October 2006)

22. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: The new generation of
Web applications. IEEE Internet Computing 12(5), 13–15 (2008)

23. Bakalov, F., König-Ries, B., Nauerz, A., Welsch, M.: Ontology-based multidimen-
sional personalization modeling for the automatic generation of mashups in next-
generation portals. In: Proceedings of the 1st International Workshop on Ontologies
in Interactive Systems, Liverpool, UK, pp. 75–82 (September 2008)

Automatic Engineering of Interactive E-commerce Applications 305

24. Cappiello, C., Daniel, F., Matera, M., Pautasso, C.: Information quality in
mashups. IEEE Internet Computing 14(4), 14–22 (2010)

25. Anderson, C., Wolff, M.: The web is dead. long live the Internet. Wired Magazine
(September 2010)

26. Morris, S., Smith-Chaigneau, A.: Interactive TV standards. Focal Press (2005)
27. Thawani, A., Gopalan, S., Sridhar, V.: Context-aware personalized ad insertion in

an Interactive TV environment. In: Proceedings of the 4th Workshop on Person-
alization in Future TV, Eindhoven, The Netherlands (August 2004)

28. Kastidou, G., Cohen, R.: An approach for delivering personalized ads in interactive
TV customized to both users and advertisers. In: Proceedings of the 4th European
Conference on Interactive Television, Athens, Greece (May 2006)

29. Lekakos, G., Giaglis, G.: A lifestyle-based approach for delivering personalised ad-
vertisements in digital interactive television. Journal of Computer-Mediated Com-
munications 9(2) (2004)

30. López-Nores, M., Pazos-Arias, J.J., Garćıa-Duque, J., Blanco-Fernández, Y.,
Mart́ın-Vicente, M.I., Fernández-Vilas, A., Ramos-Cabrer, M., Gil-Solla, A.:
MiSPOT: Dynamic product placement for digital TV through MPEG-4 process-
ing and semantic reasoning. Knowledge and Information Systems 22(1), 101–128
(2010)

31. Paternò, F., Santoro, C., Spano, L.: Model-based design of multi-device interactive
applications based on web services. In: Gross, T., Gulliksen, J., Kotzé, P., Oestre-
icher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS,
vol. 5726, pp. 892–905. Springer, Heidelberg (2009)

32. Hepp, M., Leukel, J., Schmitz, V.: A quantitative analysis of product categorization
standards: Content, coverage and maintenance of eCl@ss, UNSPSC, eOTD, and
the RosettaNet Technical Dictionary. Knowledge and Information Systems 13(1),
77–114 (2007)

33. Walsh, A.E.: UDDI, SOAP, and WSDL: The Web Services Specification reference
book. Pearson Education, London (2002)

34. Blanco-Fernández, Y., Pazos-Arias, J., Gil-Solla, A., Ramos-Cabrer, M., López-
Nores, M., Garćıa-Duque, J., Fernández-Vilas, A., Dı́az-Redondo, R., Bermejo-
Muñoz, J.: AVATAR: Enhancing the personalized television by semantic inference.
International Journal of Pattern Recognition and Artificial Intelligence 21(2), 397–
422 (2007)

35. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain struc-
ture to compute similarity. ACM Trans. Inf. Syst. 21(1), 64–93 (2003)

36. Rada, R., Mili, H., Bicknell, E., Blettnet, M.: Development and application of a
metric on semantic nets. IEEE Trans. Syst., Man, and Cybern. 19(1), 17–30 (1989)

37. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. J. Artif. Intell.
Res. 11(4), 95–130 (1999)

38. Plas, D., Verheijen, M., Zwaal, H., Hutschemaekers, M.: Manipulating context
information with SWRL. Report of A-MUSE project (2006)

39. Kawamura, T., de Blasio, J.A., Hasegawa, T., Paolucci, M., Sycara, K.P.: Public
deployment of semantic service matchmaker with UDDI business registry. In: McIl-
raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 752–766. Springer, Heidelberg (2004)

40. Pazos-Arias, J., López-Nores, M., Garćıa-Duque, J., Dı́az-Redondo, R., Blanco-
Fernández, Y., Ramos-Cabrer, M., Gil-Solla, A., Fernández-Vilas, A.: Provision of
distance learning services over Interactive Digital TV with MHP. Computers &
Education 50(3), 927–949 (2008)

306 M. López-Nores, Y. Blanco-Fernández, and J.J. Pazos-Arias

41. Ghaneh, M.: System model for t-learning application based on home servers (PDR).
Broadcast Technol. 19 (2004),
http://www.nhk.or.jp/strl/publica/bt/en/rep0019.pdf

List of Acronyms

DTV : Digital Television.
OWL : Ontology Web Language.

OWL-S : Ontology Web Language – Services.
WSDL : Web Services Description Language.

RSS : Really Simple Syndication.
HTML : HyperText Markup Language.
HTTP : HyperText Transfer Protocol.

HTTPS : HyperText Transfer Protocol – Secure.
API : Applications Programming Interface.

VoIP : Voice over Internet Protocol.
MHP : Multimedia Home Platform.

MPEG : Moving Pictures Experts Group.
DOI : Degree of Interest.

SOAP : Simple Object Access Protocol.
LCA : Lowest Common Ancestor.

SWRL : Semantic Web Rules Language.
DL : Description Logic.

UDDI : Universal Description, Discovery and Integration.

About the Authors

Dr. Mart́ın López-Nores was born in Pontevedra, Spain in 1980. He received
the Telecommunications Engineering Degree from the University of Vigo in 2003,
and the Ph.D. degree in Computer Science from the same University in 2006.
Nowadays, he is an associate professor in the Department of Telematics Engi-
neering, teaching in courses related to computer networks, operating systems
and information services. Starting from works on applied formal specification
techniques, his research interest have evolved to embrace (i) the design and de-
velopment of interactive services for a range of consumer electronics devices, (ii)
the design and evaluation of communication protocols and innovative applica-
tions for mobile ad-hoc networks, and (iii) the management of health-related
data in semantics-based recommender systems and pervasive computing envi-
ronments.

http://www.nhk.or.jp/strl/publica/bt/en/rep0019.pdf

Automatic Engineering of Interactive E-commerce Applications 307

Dr. Yolanda Blanco-Fernández was born in Orense, Spain in 1980. She re-
ceived the Telecommunications Engineering Degree from the University of Vigo
in 2003, and the Ph.D. degree in Computer Science from the same University in
2007. Nowadays, she is an assistant professor in the Department of Telematics
Engineering, teaching in courses related to network management systems, multi-
media services and operating systems. Her main research activity involves devel-
opment of personalization services for Interactive Digital TV and e-commerce,
by exploiting technological foundations borrowed from the Semantic Web, Web
2.0 and cloud computing.

Prof. José J. Pazos-Arias was born in Baiona, Spain in 1964. He is Full
Professor at Department of Telematics Engineering at the University of Vigo.
He received his degree in Telecommunications Engineering from the Technical
University of Madrid (UPM) in 1987, and his Ph.D. degree in Computer Sci-
ence from the Department of Telematic Systems Engineering of the same Uni-
versity in 1995. He is the director of the Interactive Digital TV Laboratory
(http://idtv.det.uvigo.es), which is currently involved with national and inter-
national projects, receiving funds from both public institutions and industry.
With the aim of combining the power of semantic reasoning technologies and
the participation phenomena arising in the knowledge society, his research is
now focused on the use of social-semantic technologies to assist the users when
it comes to facing complex decision takings in the cloud. In this regard, he is
highly interested in gaining deeper knowledge in social network analysis and
emergent semantics.

Chapter 12

Wireless Sensor Network Anomalies: Diagnosis
and Detection Strategies

Raja Jurdak, X. Rosalind Wang, Oliver Obst, and Philip Valencia

CSIRO ICT Centre, Australia
{raja.jurdak,rosalind.wang,oliver.obst,philip.valencia}@csiro.au

Abstract. Wireless Sensor Networks (WSNs) can experience problems
(anomalies) during deployment, due to dynamic environmental factors or
node hardware and software failures. These anomalies demand reliable
detection strategies for supporting long term and/or large scale WSN de-
ployments. Several strategies have been proposed for detecting specific
subsets of WSN anomalies, yet there is still a need for more compre-
hensive anomaly detection strategies that jointly address network, node,
and data level anomalies. This chapter examines WSN anomalies from
an intelligent-based system perspective, covering anomalies that arise at
the network, node and data levels. It generalizes a simple process for di-
agnosing anomalies in WSNs for detection, localization, and root cause
determination. A survey of existing anomaly detection strategies also re-
veals their major design choices, including architecture and user support,
and yields guidelines for tailoring new anomaly detection strategies to
specific WSN application requirements.

1 Introduction

Wireless Sensor Networks (WSNs) represent an emerging system paradigm that
tightly couples the network with its deployment environment [1]. Relying on
resource-constrained embedded devices for communication, processing, and sens-
ing, WSNs can experience unexpected problems during deployment, due to hard-
ware, software, or environmental anomalies. The volatility of WSNs is always in
tension with ambitious application goals, including long term deployments of
several years, large scale networks of thousands of nodes, and highly reliable
data delivery. As the WSN field matures, strategies for detecting (and possibly
correcting) the anomalies that are inherent to their physically coupled low-end
system design will only grow in importance. In fact, providing appropriate tools
that can effectively detect and respond to anomalies can greatly increase uptake
of the technology by stakeholders.

While significant work on conventional network management tools exists [2],
WSN counterparts have been slow to gain traction within the community. One
of the main challenges for WSN anomaly detection is determining where to
embed the intelligence for detecting and localizing anomalies. While central-
ized approaches rely on more comprehensive network state information avail-
able at the back-end and are thus simpler to implement, distributed approaches

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 309–325.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

310 R. Jurdak et al.

provide more scalable and responsive anomaly detection, as nodes can detect
network problems in their vicinity immediately. A challenge for distributed
anomaly detection is its implementation complexity and the limited state
information available at resource-constrained sensor nodes.

Another key requirement for any anomaly detection strategy is catering to
the needs and to the feedback of the human operator. A user-friendly detection
strategy should provide several modes of notification, such as email and SMS
alerts, and adapt its frequency of alerts to user feedback, in order to avoid “crying
wolf” too many times and risking user apathy to more significant alerts. An
effective anomaly detection strategy should also provide the versatility to cater
to diverse user requirements, supporting both network managers who require
detailed diagnostic information, and end users who are only interested in data
quality.

A recent review article on anomaly detection in WSNs [3] focuses on data
anomalies, mainly due to security attacks, and the statistical approaches for
detecting them. Because of their tight coupling to often harsh physical envi-
ronments, WSNs and other networks used in extreme conditions (like, e.g. in
space [4]) are more likely than conventional networks to experience anomalies
related to connectivity or hardware failures. Recent work also focuses on devis-
ing detection strategies that target network level [5,6], data level [7,8], or node
and data level [9,10] anomalies.

One shortfall of existing strategies is that none of them comprehensively
addresses network, node and data level anomalies in WSNs. A common rea-
son for this are application-specific design choices in sensor networks that tend
to tailor anomalies detection strategies to a family of applications with a given
set of constraints and assumptions. The lack of comprehensive anomaly detec-
tion strategies for WSNs contributes to slower adoption and more frustration in
deploying and maintaining these networks.

From a WSN user or operator perspective, it is crucial that a network manage-
ment tool embeds the required intelligence to detect all possible anomaly types,
as the network is perceived holistically as an intelligent data delivery system.
To design such system-level tools demands a comprehensive understanding of
all types of WSN anomalies, their likely causes, and their potential solutions.
This chapter examines WSN anomalies from a systems perspective, covering
anomalies that arise at the network, node and data levels. It introduces a simple
process for diagnosing anomalies in WSNs for detection, localization, and root
cause determination. A survey of existing anomaly detection strategies also re-
veals their major design choices, including architecture and user support, and
yields guidelines for tailoring new anomaly detection strategies to specific WSN
application requirements.

2 Types of WSN Anomalies

We begin by defining the scope of the term anomalies in this chapter. Anomalies
can range from faults, such as complete hardware failures, to unexpected system

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 311

performance, such as gradual degradation. Note that certain outliers in spatial
or temporal sensor data can signify events of interest in the monitored area, and
should not be reported as anomalies to the network operator unless explicitly
specified. Otherwise, separate data analysis tools can handle these outliers.

Observe
Symptons

Determine
Scope

Check
Detection

Metric

Check
Localization

Metric

Observe
Outputs

Determine
Root Cause

Likely
anomaly

How
widespread it

is

Definite
anomaly

Who's
responsible

Anomaly
details

Fig. 1. Anomaly diagnosis process

The conditions that signal an anomaly relate to user policy for a particular
application. For instance, an operator sets the frequency and timeout period
for data delivery by the sensor nodes. These determine thresholds for detecting
and reporting anomalies to operators. Whenever data from a sensor node is not
received according to the expected schedule, the operator can be notified. The
frequency, urgency and level of detail within the the notification can also be
user-defined.

Anomaly diagnosis is established in conventional network management
tools [2]; however, we revisit it here from a WSN perspective to expose how
it can apply to the different types of WSN anomalies. The main goal of WSN
anomaly diagnosis is mapping the symptoms to possible root causes, in order
to possibly suggest remedial actions [9]. The process for characterizing a sensor
network fault or anomaly is very similar to diagnosing an illness, as Figure 1
illustrates. The symptoms must first be examined, followed by a specification of
the scope of the affected region. The process then involves some testing on the
affected region (detection), where the operator must localize the anomaly caus-
ing node and expect some diagnostic information on the nature of the problem.
This feedback yields a hypothesis on the most likely root cause of the problem.

Based on the above process, we now examine how to detect common WSN
anomalies, which fall into three broad categories: (1) network anomalies; (2) node
anomalies; (3) data anomalies. Figure 2 illustrates the scope of each of the three
anomaly types, and Table 1 summarizes the most common WSN anomalies that
fall into these three categories. The remainder of this section visits each anomaly
type individually.

312 R. Jurdak et al.

T
a
b
le

1
.
W

S
N

a
n
o
m

a
li
es

T
y
p
e

S
y
m

p
t
o
m

S
c
o
p
e

D
e
t
e
c
t
io

n
M

e
t
r
ic

L
o
c
a
li
z
a
t
io

n
M

e
t
r
ic

D
ia

g
n
o
s
t
ic

O
u
t
p
u
t
s

NetworkAnomalies

L
o
ss

o
f

m
a
n
y
/
a
ll

p
a
ck

et
d
el

iv
er

y
ra

te
=

0
p
a
ck

et
o
ri
g
in

a
d
d
re

ss
p
a
ck

et
d
el

iv
er

y
co

n
n
ec

ti
v
it
y

ra
te

h
ig

h
d
el

iv
er

y
p
a
ck

et
o
ri
g
in

a
d
d
re

ss
p
a
ck

et
d
el

iv
er

y
In

te
rm

it
te

n
t

m
a
n
y
/
a
ll

ra
te

va
ri
a
b
il
it
y

ra
te

co
n
n
ec

ti
v
it
y

li
n
k

q
u
a
li
ty

tx
/
rx

li
n
k

q
u
a
li
ty

li
n
k

en
d
p
o
in

ts
ch

a
n
g
es

R
o
u
ti

n
g

lo
o
p

m
a
n
y

o
ri
g
in

a
d
d
re

ss
p
a
th

n
o
d
e

a
d
d
re

ss
es

ro
u
ti

n
g

lo
o
p

co
u
n
t,

=
fo

rw
a
rd

er
a
d
d
re

ss
n
o
d
e

ID
s

B
ro

a
d
ca

st
st

o
rm

m
a
n
y
/
a
ll

h
ig

h
b
ro

a
d
ca

st
n
et

w
o
rk

-w
id

e
n
o
d
e

ID
s,

p
a
ck

et
fr

eq
u
en

cy
st

o
rm

d
u
ra

ti
o
n
,

d
u
p
li
ca

te
p
a
ck

et
co

u
n
t

NodeAnomaliesS
o
la

r
ch

a
rg

in
g

d
eg

ra
d
a
ti

o
n

o
n
e

su
st

a
in

ed
re

d
u
ct

io
n

p
a
ck

et
o
ri
g
in

a
d
d
re

ss
so

la
r

cu
rr

en
t

in
so

la
r

cu
rr

en
t

d
eg

ra
d
a
ti
o
n

ra
te

B
a
tt

er
y

d
eg

ra
d
a
ti

o
n

o
n
e

b
a
tt

er
y

v
o
lt

a
g
e

d
ec

re
a
se

ra
te

p
a
ck

et
o
ri
g
in

a
d
d
re

ss
b
a
tt

er
y

cu
rr

en
t

d
eg

ra
d
a
ti
o
n

ra
te

N
o
d
e

fa
il
u
re

s
o
n
e

la
ck

o
f
in

te
ra

ct
io

n
n
o
d
e

id
w

it
h

st
a
le

ti
m

e
la

st
h
ea

rd
w

it
h

n
ei

g
h
b
o
rs

en
tr

ie
s

in
n
ei

g
h
b
o
r

ta
b
le

s
N

o
d
e

re
se

ts
o
n
e

p
a
ck

et
co

u
n
te

r
=

0
p
a
ck

et
o
ri
g
in

a
d
d
re

ss
ti

m
es

ta
m

p
la

st
se

q
u
en

ce
n
u
m

b
er

DataAnomalies

T
em

p
o
ra

l
o
n
e

se
n
so

r
va

lu
e

p
a
ck

et
o
ri
g
in

a
d
d
re

ss
d
u
ra

ti
o
n
/
ra

te
o
f
ch

a
n
g
e

a
n
o
m

a
li
es

ti
m

e
se

ri
es

in
lo

ca
l
se

n
so

r
va

lu
es

S
p
a
ti

a
l

m
a
n
y

lo
ca

l/
n
ei

g
h
b
o
rh

o
o
d

se
n
so

r
p
a
ck

et
o
ri
g
in

a
d
d
re

ss
d
eg

re
e

o
f
sk

ew
a
n
o
m

a
li
es

re
a
d
in

g
va

ri
a
ti

o
n

fr
o
m

n
ei

g
h
b
o
ri
n
g

n
o
d
es

S
p
a
ti

o
te

m
p
o
ra

l
m

a
n
y

lo
ca

l
ti

m
e

se
ri
es

p
a
ck

et
o
ri
g
in

a
d
d
re

ss
es

d
eg

re
e

o
f
lo

ca
l
a
n
d

a
n
o
m

a
li
es

a
n
d

lo
ca

l/
n
ei

g
h
b
o
rh

o
o
d

se
n
so

r
ID

s
n
ei

g
h
b
o
rh

o
o
d

va
ri

a
ti
o
n
s

co
m

p
a
ri
so

n

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 313

Fig. 2. Scope of each anomaly type

2.1 Network Anomalies

Network anomalies are communication-related problems that arise in WSNs.
Their typical symptoms are an unexpected increase or decrease in amount of
packets traversing the network.

Loss of Connectivity. The simplest type of network anomaly to detect is loss
of connectivity. The interruption of incoming packets from two or more nodes
indicates loss of connectivity with these nodes. Loss of connectivity can occur at
a group of nodes, or indeed at all network nodes. Detection of connectivity losses
follows a simple process: any network entity can keep track of incoming packets
from other nodes. The lack of reception of packets from a group of nodes for a
certain duration, defined by the timeout period set in the operator policy, signals
partial or full loss of connectivity with these nodes. Alternatively, operators can
set a threshold for the number of missed packets to signal loss of connectivity.
The process for localizing this anomaly relies simply on extracting the node
IDs of missing packets. The extraction of node IDs with missing packets can be
done either at a central database or locally at a sensor node, depending on the
detection architecture (see section 3.1 for more details). The anomaly’s scope
helps narrow down the possible root causes behind the loss of connectivity. If a
group of nodes with a common routing parent has disappeared, the likely cause
of the problem is a hardware or software failure at the parent node. Alternatively,
if nodes lose connectivity in different parts of the network topology, the likely
cause is less evident, and could be related to link degradation issues at these
nodes.

Intermittent Connectivity. A related network anomaly is intermittent con-
nectivity. Intermittent connectivity occurs when the frequency of data reception
from certain nodes is highly variable relative to an operator-set link stability
threshold. This anomaly also varies in scope and can cover few or all nodes.
Detection of this anomaly involves setting a certain threshold on packet delivery

314 R. Jurdak et al.

rate or link quality variability. Most collection protocols in WSN’s, such as
CTP [11], include unique sequence numbers for each packet, so a simple check of
sequence number gaps can identify missing packets for each node in the network.
The diagnostic parameter for further characterizing intermittent connectivity is
the variability of connectivity, indicated by the packet delivery rate variance
for affected nodes. The root cause of intermittent connectivity in most cases is
highly time-variant link qualities and Received Signal Strength Indicator (RSSI)
values, and it is heavily dependent on the anomaly’s scope. Intermittent connec-
tivity at a spatially clustered group of nodes in a single region of the network
indicates high noise, multi-path, or interference affecting that region. To localize
intermittent link qualities at disjoint links simply requires examination of the
link’s end points. The operator should be provided with a measure of how drastic
a change has occurred for the link’s quality to further diagnose this anomaly.
Likely causes of sudden and transient changes in link throughput include envi-
ronmental changes, such as storms or fires, or movement of animals, people, or
objects in the deployment area, all of which can cause sharp variations in link
qualities of low power radios. If the throughput of links in different regions of
the network exhibit prolonged variations, this could indicate low receiver sensi-
tivity or high inter-node distances relative to the radio transmission range of the
nodes.

Routing Loops. Routing loops are yet another network anomaly whose detec-
tion is difficult at the back-end. Routing loops occur when a packet is relayed
across several nodes and arrives back at the originating node. Because such pack-
ets may never make it to the base node, detecting this anomaly requires either:
(1) injection of diagnostic packets by the base into the network to determine
that the routing loops exist and the software problem that is causing them; (2)
maintenance of the full network topology at the base node; or (3) use of source
routing protocols to allow nodes to detect their own ID in the path to the desti-
nation, and to generate problem reports. Since routing loops inherently involve
several nodes, all of the above methods involve large communication overhead
to maintain node IDs in packets or to generate global topology information at
the base, so they do not scale well with network size. Detection and resolution
of routing loops within the energy constraints of WSN’s remains an open issue,
even in the latest IETF Routing Over Low Power Lossy Links (ROLL) draft
standard [12].

Broadcast Storms. A final type of network anomaly for WSN’s is broadcast
storms, which typically affect many or all nodes in the network. Nodes that lose
connectivity with their routing parents may decide to continuously broadcast
packets to discover alternate paths to the base station. This behavior is due to
Trickle [13] timers that drive the beacon period in collection protocols. Trickle
timers are used for maintaining consistent state within WSN’s. As long as there
are no changes to the local state, a node doubles its Trickle timer, effectively
doubling the beaconing period. However, when a node detects a change in its
local state, it resets its Trickle timer to the lowest possible value (commonly

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 315

in the range of milliseconds). When multiple nodes simultaneously follow this
behavior, the local channel becomes heavily congested. To make things worse,
neighboring nodes may forward broadcast packets to nodes further away, which
causes heavy congestion and eventually saturation on the wireless channel in
the wider network. Fortunately, detecting broadcast storms is relatively simple:
if a certain number of duplicate broadcast packets arrive from more than one
node, then a broadcast storm has started. Network operators can set thresholds
on the number of packet duplicates that indicate a broadcast storm, the mini-
mum number of nodes involved, and the frequency of running this query. The
anomaly detection system should provide operators with a list of nodes involved
in the storm, the number of packet duplicates, and the duration of this storm.
A common root cause of broadcast storms is loss of routing connectivity, which
causes nodes to probe neighbors in hope of regaining connectivity.

2.2 Node Anomalies

Node level anomalies are rooted at hardware or software problems at a single
node and are not related to communications with neighboring nodes. Because
they arise in single nodes, distributed detection of node anomalies can be highly
effective.

A common node-level symptom is when a node stops transmitting data. The
most likely cause of this node anomaly is the failure/degradation of solar panels,
which leads to on-board power drops.

Solar Panel Issues. There are four main possibilities for solar panel failures:
(1) not enough sunlight during the day, (2) blocked solar panel, (3) shifted solar
panel, and (4) solar panel degradation. During cloudy or rainy days, the solar
charging current of several nodes is affected instead of just one. This exempli-
fies multiple node anomalies arising simultaneously, and it can be detected by
observing the drop in solar current of the multiple nodes. This is in contrast
to a network-related problem at the same group of nodes, which would exhibit
connectivity losses that are not correlated to solar current changes.

Based on our deployment experience in many long term environmental moni-
toring sensor networks in forests, lakes, farms, and deserts around Australia [21],
we have observed numerous unexpected obstructions to solar panels in the field.
Blocked solar panels involve cases such as bird droppings, cob webs, or fallen
leaves on the solar panel. Moving animals in the deployment region or strong
winds can also shift solar panels away from the favourable direction for maxi-
mum solar harvesting. Both shifted or blocked solar panels result in dramatic
and sustained drops in solar current. Finally, long term degradation of the panel
can also cause node power drops. This anomaly requires long term observation
of solar current trends to detect decreases in solar output over time.

Battery Issues. Another cause for power drops is battery failure or depletion.
There are two possibilities when a battery does not provide enough power: (1)
insufficient battery charging, and (2) hardware failure of the battery. Insufficient

316 R. Jurdak et al.

battery charging can be diagnosed, locally or centrally, through examination
of the solar current of the previous day, potentially combined with relevant
weather data for indicating cloud cover during that period. Battery failure can
be diagnosed when a node fails to send data during the night. If a node that
has enough harvested solar energy to remain active all night ceases to send data
before sunrise, then it is highly likely that the node’s battery has reached the
limit for its recharge cycles and needs replacement.

Node Failure. The node memory, CPU, or radio may also enter a locked state
or fail during a deployment. This situation may arise due to poor or defective
hardware components, or poor software integration of the components. Detecting
this anomaly is challenging, as the problem with a specific component may not
exhibit any detectable symptoms by neighbors or at the base node. In this case,
only proactive checking of node integrity can detect the problem’s existence.

Node anomalies that cause the node to stop operating are more easily de-
tectable. If a node stops interacting with any other node for a pre-specified
period of time, the node is deemed to have failed. In beaconing based routing
protocols, this entails the examination of neighboring nodes’ routing state tables
and identifying any stale entries. Each node must compare the stale entries in
its own table with stale entries of neighboring nodes, so that a consensus can be
reached on the node’s failure. Any remote designation of a node failure remains
speculative without a global cross-check of neighbor table entries. Mobility of
nodes complicates the detection of node failures, since the lack of packets from
a node may indicate that it has moved away rather than failed.

Node Resets. The final node anomaly we examine is node resets. The operator
can set a grenade timer to reset the node periodically for operational reasons,
which causes the node’s packet counter to reset to zero at the same interval.
Alternatively, the packet counter may be unexpectedly reset by the node. Since
user-specified resets are predictable and periodic, they can be ignored as anoma-
lies. All other resets are classified as node anomalies that indicate a software bug
and potential race conditions in the code.

Note that malicious entities may attempt to gain control of sensor nodes and
alter their operation. This is an increasingly viable possibility with the advent
of the 6LoWPan standard, which implements IPv6 on sensor nodes. Detecting
such security attacks remains an open issue as the malicious entity may be able
to emulate normal operation of the node. If the attack specifically alters data
readings, this may be detectable by statistical methods, which are discussed in
the next section.

2.3 Data Anomalies

Data anomaly detection depends on statistical irregularities in the data. These
irregularities may be caused by miscalibrated or faulty sensor hardware or envi-
ronmental variations. Sensor hardware problems are data anomalies rather than

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 317

node anomalies because they manifest themselves in erroneous data values rather
than the failure or degraded performance of the node. Faulty sensors typically
report extreme or unrealistic values that are easily distinguishable. In contrast,
environmental variation causes sensor data values to change rapidly, but the sen-
sor readings remain within reasonable ranges. Furthermore, one can distinguish
data anomalies by spatial or temporal comparison from several sensors since
it is unlikely that many sensors will exhibit a calibration skew or failure at the
same time. Security breaches can also lead to anomalous data values from sensor
nodes.

There are three broad categories of data anomalies: temporal anomaly at a
single node location due to changes in data values over time; spatial anomaly
at a single node location due to comparison with neighboring nodes; and spa-

tiotemporal anomaly detected through a number of node location due to changes
in data value over time and space.

Temporal Anomalies. Temporal anomalies exhibit one of several symptoms:
high variability in subsequent sensor readings; lack of change in sensor readings;
gradual reading skews; and out-of-bound readings. High variability in subsequent
sensor readings at the same node could signify major changes or events in the
sensed environment, or they could arise from sensor voltage fluctuations. In
some instances, sensor samples may remain the same over long periods of time,
which may indicate a locked state or that the sensor has failed to obtain new
samples. Gradual yet sustained skews in sensor readings could indicate a need
for sensor recalibration. Finally, out-of-bound readings represent sensor values
that are physically not possible, which points towards a major malfunction of
the sensor. Detection of temporal data anomalies can take place locally at each
node, which requires the node to store historical data, or at a central point. For
a detailed review of temporal data anomaly detection methods, see [3].

Spatial Anomalies. Spatial data anomalies can be detected by comparing
the values with the surrounding sensors. For example, if the measurement for
air temperature on one node differs from measurements of all the surrounding
nodes, then it is highly likely that the data is spatially anomalous, and is due
to a calibration error in the sensor. This applies to some types of data, such as
temperature and humidity, which typically have low spatial variation, but not
to data such as audio and video, which differ dramatically at neighboring nodes,
depending on the angle and location of signal capture.

Spatiotemporal Anomalies. Spatiotemporal data anomalies combine both
spatial and temporal variations, inherently involving more than one node. For
example, changes of chemical content in a waterway [14] represent a spatiotem-
poral anomaly. This will affect nodes along the waterway at different times.
Diagnosing this anomaly should account for data throughout the network over
a certain period of time. Temporal anomalies can be detected locally at each
node, while spatial and spatiotemporal anomalies require more involved inter-
node interaction to establish the existence of the anomaly.

318 R. Jurdak et al.

2.4 Other Anomalies

Anomalies that do not fit any of the above types are classified as other anomalies.
These can be related to back-end software issues, which may cause loss of data or
connectivity, without the anomaly residing within the sensor network. Another
class of node software-related anomalies may not be explicitly detectable since
it does not degrade performance in the short term but causes logical errors
in the long-term, for instance due to timer rollovers. Addressing these types
of anomalies is currently done offline, by disconnecting the network, fixing the
problem, then reactivating the network. Online solutions for these anomalies
remain an active research area.

3 Anomaly Detection Strategies

Having examined the main anomaly types in the previous section, we now focus
on the strategies for WSN anomaly detection and their design choices. Table 2
shows a set of current representative approaches to anomaly detection. We now
briefly survey these approaches to extract the relevant design features and strate-
gies for anomaly detection.

Current approaches vary in their level of development, with some available
as fully functional tools and others that are algorithmic. The available tools
typically adopt a centralized approach, where a process at the back-end monitors
incoming traffic for detecting anomalies. For example, Sympathy [6] is a tool
for anomaly detection and debugging in sensor networks. It embeds network-
related metrics in packets from all nodes. The sink node observes packets and
hypothesizes on the presence and locale of anomalies. Another tool that also
uses back-end processing of data appears in [9]. This tool relies on rules at node
and data level, such as whether the node is broken or has a bad sensors. It maps
these rules to possible root causes of anomalies and provides potential remedial
actions to fix the anomaly. Octopus [15] is a sensor network monitoring and
visualization tool that provides live topology and link state information on the
nodes and enables users to issue simple preset commands to the nodes.

Table 2. Existing Tools

Strategy Concept Status Type Architecture Usability

Octopus [15] topology/state tool Network centralized visualization

Momento [5] variance-based modules Network distributed target FP rate

Sympathy [6] metrics collection tool Network centralized specify epoch

Wang et al. [16] Bayesian algorithm Data centralized n/a

Rajasegarar et al. [17] cluster-based algorithm Data hybrid n/a

Walchli and Braud [7] prototypes algorithm Data hybrid n/a

Ramanathan et al. [9] rules-based tool Data/Node centralized n/a

Chen et al. [10] majority voting algorithm Data/Node distributed unattended

Krishnamachari Bayesian algorithm Data distributed n/a
and Iyengar [8]

Chang et al. [18] Recurrent NN algorithm Data centralized n/a

Obst [19,20] Recurrent NN algorithm Data distributed n/a

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 319

A separate class of approaches distributes the anomaly detection logic at the
nodes. In contrast with tools, these approaches are algorithmic in nature. Mo-
mento [5] is a network health monitoring system for sensor networks that relies
on a variance-based detector. Its main concept is that the presence of significant
changes in node states can indicate the presence of anomalies. It relies on node
collaboration on the basis of periodic heartbeats in order to detect deviations
from expected behavior. Rajasegarar et al. [17] devise a cluster-based algorithm
for detection of data anomalies. Their algorithm distributes the computation
of the detection algorithm over all nodes for scalability. However, decisions on
whether anomalies have occurred are left for the central sink node, where the
results of computations from all nodes converge. A similar computation model is
proposed in [7], where sensor nodes classify incoming signals according to learned
prototypes, prior to sending the classification to a fusion center for system-wide
access patterns.

Distributing the decision process even further, Krishnamachari and Iyengar [8]
propose two Bayesian algorithms that run on each node to distinguish between
node/data faults and unusual events in the environment. A similar distributed
approach that relies on majority voting in a local neighborhood to establish likely
ground truths data measurements is proposed in [10]. Decentralized approaches
based on recurrent neural networks are presented in [19], which uses only local
communication with a few neighbor nodes, and learn a model of sensor values
dependent on time series data from their neighbors. It uses online learning by
gradually acquiring an improved model of sensors over time.

This brief survey of the existing anomaly detection approaches highlights a
set of relevant design choices, including: architecture and target anomaly types.
The remainder of section visits these design choices, in addition to examining
the usability features of the existing strategies. The degree of distribution has,
at least indirectly, ramifications for the usability of the approach. For instance,
centralized anomaly detection approaches are easier to handle for a centralized
user interface, whereas decentralized approaches can signal faults more easily
and more quickly at the local node, using e.g. status LEDs.

26 24

33

26

24

25

24

25

27

database
Anomaly

Detection

Sensor

nodes

(a) Centralized anomaly de-
tection

Anomaly

detected locally

t=33
t=25

t=26

t=24

t=25

t=26

(b) Distributed anomaly de-
tection

Fig. 3. Architectural choices for anomaly detection

320 R. Jurdak et al.

3.1 Architecture

Architecture of an anomaly detection strategy refers to the design of the proce-
dure that actually checks for anomalous behavior in the network. There are three
options for the architecture of an anomaly detection strategy: (1) centralized;
(2) distributed; or (3) hybrid.

Centralized. Figure 3(a) illustrates a simple example of centralized anomaly
detection. In this example, each node samples its temperature sensor periodically
and sends the temperature data in a packet over its radio towards the central
base node, which has a connection to a back-end database. The number on
each node represents its current temperature reading. The node in bold reports
an anomalous temperature reading which differs significantly relative to all its
neighboring nodes. In this centralized approach, detection of this anomalous data
reading occurs at a process that monitors the back-end database where all the
data converges. This process then localizes the anomaly through the sender ID of
the anomalous data packet (in this case node 33), and proceeds to diagnose the
anomaly to determine possible root causes, which include miscalibrated sensors
or interesting yet highly localized environmental events.

In general, centralized anomaly detection (such as [6,9,16]) relies on analysis
of information that converges at the base station or back-end database, as in
the example above. Detecting anomalies at the central sensor node itself has
the advantage of containing the anomaly detection logic within the network.
This avoids any additional interaction between the base station and the back-
end system. However, this approach restricts the complexity of queries that can
run to detect anomalies, given the limited processing power and storage space
at the base station relative to full blown PCs. For instance, most sensor nodes
currently have 8- or 16-bit micro-controllers, with typical clock speeds of 16Mhz,
8-10KB of RAM, and up to 1MB of external flash. Storing diagnostic and data
packets from tens of nodes over several days can cause the external flash to fill
up quickly at the base node. In addition, running multiple queries at this node
while forwarding all node packets to the back-end can strain the micro-controller.
Recent work towards sensor nodes with 32-bit processors and more RAM may
alleviate these issues to some extent.

Alternatively, central anomaly detection can use information at the back-end
database, as in Figure 3(a). This design enables far more powerful queries for
detecting more involved anomalies, as the database resides on a PC-class machine
with relatively high memory and processing resources. Composite queries that
examine data packet arrivals over several hours or days become possible. For
example, to detect a broadcast storm requires a check of the following:

– A node has attempted to deliver a broadcast data packet, which can result
in network flooding

– Multiple retransmissions of this packet have occurred (same sequence num-
ber and originator ID), due to lost or delayed acknowledgements

– This behavior is replicated at multiple nodes

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 321

The set of queries required to identify these conditions can easily run every few
minutes at the database. The same task is not possible at the base station node,
mainly because of processing limitations.

Distributed. In distributed anomaly detection [8,10,19], it is up to the sensor
nodes themselves to monitor their respective conditions and detect anomalous
behavior by themselves or their neighbors. Distributed anomaly detection trades
off the resources of centralized detection for quicker and more localized detection.
It also exploits spatial correlation of environmental events to distinguish unusual
(anomalous) events from faults.

Figure 3(b) illustrates the use of spatial data for distributed anomaly detec-
tion. As in the example above, all nodes sample their temperature sensors and
send their data periodically. Nodes can snoop on their neighbors’ packets and
compare them with their own temperature reading. The node in the middle of
Figure 3(b) has a local temperature reading of 33oC, while all its neighbors have
readings between 24-26oC. As a result, the node in the middle can detect its
anomalous data and possibly diagnose this anomaly locally.

Hybrid. Hybrid anomaly detection strategies [5,7,17] try to combine the best of
both worlds: the availability of network state information at the back-end of the
centralized approach and the responsiveness and low communication overhead
of the distributed approach. A hybrid approach uses a centralized strategy for
anomalies whose detection metric can be readily examined at the database,
such as connectivity anomalies, broadcast storms, and node resets, and complex
data anomalies. For any anomaly that can be detected locally at nodes, such
as routing loops, link quality changes, variations in solar or battery currents,
and threshold-based data anomalies, hybrid approaches place the detection and
localization responsibility on the nodes themselves.

3.2 Usability

The usability of a WSN anomaly detection refers to the interaction with human
users. Figure 4 provides an overview of user interaction with WSN anomaly
detection. Regardless of the detection architecture, an anomaly is reported to a
notifier/scheduler process at the base station. This process schedules and sends
alerts to users through a service provider network (cellular or Internet) in the
form of SMS, email, or web notifications. As explained in the following section,
the communication strategy between individual nodes may depend on the way
notifications are triggered. A further aspect of usability is the feedback the user
provides to the notifier/scheduler process to change how, when, and how often
anomaly notifications are sent.

Notifications. We mentioned above the ramifications of the architecture for a
user-friendly design of the system. Stand-alone applications are useful for provid-
ing an overview of the system status or to report problems on demand. Normally,

322 R. Jurdak et al.

Anomaly
Detection
Notifier/

Scheduler

SMS alert

SMS feedback

Email/
Web alert

Email/Web
feedback

database

WSN
Base

station
User

Service

provider

network

Fig. 4. User interaction with WSN anomaly detection

however, users will want to be automatically notified of exceptional events, and
otherwise assume the WSN is working as expected. Thus, the two main meth-
ods of remotely notifying users are either by email or by Short Message Service
(SMS) on mobile telephones. Specific widgets or applications for smart phones
can represent an interesting compromise between the two.

Dependent on the architecture of the anomaly detection approach, sending
notifications to users in real time has an impact on the communication strategy
of the system. In a centralized architecture, the relevant information is readily
available at the base station. In this case, no additional communication between
individual nodes is required to notify users. On the other hand, distributed
architectures may be able to detect anomalies locally. However, local detection
requires nodes to report events to the base station. An alternative design choice
is to report events only when queried by the network operator for on-demand
operation.

The notification modality is highly related to the length of the message and the
speed at which users receive it. SMS notifications are limited to 160 characters,
which limits them to short high level descriptions of the anomaly. In contrast,
an email notification can be as long as necessary, thus is able to include detailed
information about the anomaly, for instance, specific node IDs and diagnosis
details. The tradeoff is that people tend to carry their mobile phones all the
time, so SMS alerts provide a more timely mode of notification. A final modality
for user notification is through a secure website, where interactive maps can
provide richer context information for anomalies.

Scheduling. Scheduling involves deciding when and how often to send notifica-
tions. This aspect is important because users need to know about faults in the
network, however, if a problem persists when it is not fixed straight away, con-
stant notifications of the same problem will eventually cause human operators

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 323

to ignore the messages. The simplest solution is to keep a flag or timer in the
diagnostic logic to track if and when a message has been sent to a user about a
particular anomaly, and to suppress further notifications. Alternatively, the user
should be able to configure a set of parameters that indicate how long and how
often he/she should receive alerts after an anomaly appears.

Another issue of scheduling is how urgently to send notifications. In other
words, if a fault was detected in the network, when should the users be notified?
The answer is user-specific, and depends on whether they would want instant
notification or after a problem has persisted for a while. Related to this is the
scheduling of the diagnostic tool, i.e how often should it check for anomalies in
the network? In general, the tool should run at a time interval in the same order
as the nodes’ data reporting periods. In distributed implementations that run
on resource-limited nodes, anomaly check frequency can be reduced accordingly.

User Feedback. The last aspect of usability is user feedback, which involves
changing various user-specified parameters, temporary suspension of alerts, and
adding new features to notifications. User feedback should be received and pro-
cessed automatically through emails, SMS or the web interface, allowing for
scalability and responsiveness.

The simplest user feedback is the “out of office” reply sent by most email
programs when a user is away. During that time, a user might not wish to
receive notifications of anomalies in the network. Therefore, the diagnostic tool
should stop sending notifications until the user sends another email to resume
the notifications. A related feature is for a user to simply send an email or SMS
to start/stop receiving notifications. Other feedback mechanisms to the system
is changing the various user specified parameters, such as notification scheduling,
alert types, and deployments of interest.

In centralized strategies, user feedback simply feeds into the back-end sys-
tem and adjusts its configuration. In distributed or hybrid architectures, user
feedback must propagate to the nodes to alter their frequency of detection or
their thresholds for various anomalies. While user feedback can still use the same
modalities (email, SMS, web), the back-end can then relay the new settings to in-
dividual nodes through Tiny RPC messages. Individual nodes can then respond
to such RPC requests by adjusting their local configuration accordingly.

4 Design Guidelines and Conclusions

This section summarizes the guidelines for design of anomaly detection strate-
gies, on the basis of the discussion in previous sections. The first set of guidelines
relates to architectural choices for anomaly types.

For network anomalies, centralized detection is useful when diagnostic net-
work data can be piggybacked in packets, providing the centralized anomaly
detector with a comprehensive view of network state. More complex network
anomalies, such as routing loops, are best detected with distributed or hybrid
detection, where nodes can snoop on packets that they forward to detect a loop,

324 R. Jurdak et al.

or link quality changes, where a node is in the best position to determine the
quality of its own links.

For node anomalies, centralized, hybrid and distributed approaches are all
suitable for detection and localization using the source node id. However, finding
the root cause of the node anomaly is more challenging in centralized detection,
as the strategy can only hypothesize on the cause on the basis of the data at
the back-end. A distributed approach provides more responsive node anomaly
detection.

For data anomalies, centralized detection is slow relative to distributed detec-
tion, which can rely on threshold, spatial, or temporal comparisons run locally at
each node. For computationally challenging anomalies, a hybrid approach that
locally detects problems then triggers more involved analysis centrally is most
suitable.

Usability is another major factor in promoting uptake of WSN anomaly de-
tection tools. Thus, usable tools should provide several modes of notification,
including email, SMS, and html, and tailor notification formats to each mode’s
constraints. Tools should also enable users to flexibly schedule notifications by
deciding when, how often, and how urgently notifications are received. Alongside
the scheduling feature, several modes of user feedback should be supported to
maintain user control of the type and frequency of notifications they receive.

This set of guidelines will hopefully serve as an enabler for further research
into the design of more effective and comprehensive anomaly detection strategies.

Acronyms

WSN Wireless Sensor Networks
SMS Short Message Service
tx transmit
rx receive
CTP Collection Tree Protocol
RSSI Received Signal Strength Indicator
ROLL Routing over Low Power Lossy Links
CPU Central Processing Unit
6LoWPAN IPv6 Compression for low power networks
FP False Positive
LED Light Emitting Diode
RPC Remote Procedure Call

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)

2. Subramanian, M.: Network Management: An Introduction to Principles and Prac-
tice. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

3. Rajasegarar, S., Leckie, C., Palaniswami, M.: Anomaly detection in wireless sensor
networks. Wireless Communications, 34–40 (August 2008)

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies 325

4. Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D.C., Poulton, G.T.:
On connectivity of reconfigurable impact networks in ageless aerospace vehicles.
Journal of Robotics and Autonomous Systems 53(1), 36–58 (2005)

5. Rost, S., Balakrishnan, H.: Memento: A Health Monitoring System for Wireless
Sensor Networks. In: SECON 2006, Reston, VA, pp. 575–584 (September 2006)

6. Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sympa-
thy for the sensor network debugger. In: SenSys 2005, pp. 255–267. ACM Press,
New York (2005)

7. Wälchli, M., Braun, T.: Efficient signal processing and anomaly detection in wire-
less sensor networks. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro,
G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.)
EvoWorkshops 2009. LNCS, vol. 5484, pp. 81–86. Springer, Heidelberg (2009)

8. Krishnamachari, B., Iyengar, S.: Distributed Bayesian algorithms for fault-tolerant
event region detection in wireless sensor networks. IEEE T. on Computers 53, 241–
250 (2004)

9. Ramanathan, N., Balzano, L., et al.: Rapid deployment with confidence: Calibra-
tion and fault detection in environmental sensor networks. UCLA CENS, Tech.
Rep. (January 2006)

10. Chen, J., Kher, S., Somani, A.: Distributed fault detection of wireless sensor net-
works. In: DIWANS 2006, pp. 65–72. ACM, New York (2006)

11. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: The collection tree
protocol. In: Sensys, pp. 1–14. ACM, New York (2009)

12. Thubert, P.: Draft ietf roll standard (February 2010), http://tools.ietf.org/

wg/roll/draft-ietf-roll-of0/

13. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm
for code propagation and maintenance in wireless sensor networks. In: NSDI 2004:
Proceedings of the 1st conference on Symposium on Networked Systems Design
and Implementation, pp. 2–2. USENIX Association, Berkeley (2004)

14. Dunbabin, M., Udy, J., Grinham, A., Bruenig, M.: Continuous monitoring of reser-
voir water quality: The wivenhoe project. Journal of the Australian Water Associ-
ation 36, 74–77 (2009)

15. Jurdak, R., Ruzzelli, A., Baribirato, A., Boivineau, S.: Octopus: monitoring, vi-
sualization, and control of sensor networks. Wireless Communication and Mobile
Computing, 1–21 (2009)

16. Wang, X.R., Lizier, J.T., Obst, O., Prokopenko, M., Wang, P.: Spatiotemporal
anomaly detection in gas monitoring sensor networks. In: Verdone, R. (ed.) EWSN
2008. LNCS, vol. 4913, pp. 90–105. Springer, Heidelberg (2008)

17. Rajasegarar, S., Leckie, C., Palaniswami, M., Bezdek, J.C.: Distributed anomaly
detection in wireless sensor networks. In: ICCS 2006, pp. 1–5 (October 2006)

18. Chang, M., Terzis, A., Bonnet, P.: Mote-based online anomaly detection using echo
state networks. Distributed Computing in Sensor Systems, 72–86 (2009)

19. Obst, O.: Construction and training of a recurrent neural network. Australian
Provisional Patent Application 2009902733 (June 2009)

20. Obst, O.: Distributed backpropagation-decorrelation learning. In: NIPS Workshop:
Large-Scale Machine Learning: Parallelism and Massive Datasets (2009)

21. Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., Moore, D.: Environmental
Wireless Sensor Networks. Proceedings of the IEEE 98(11), 1903–1917 (2010)

http://tools.ietf.org/wg/roll/draft-ietf-roll-of0/
http://tools.ietf.org/wg/roll/draft-ietf-roll-of0/

A. Tolk and L.C. Jain (Eds.): Intelligence-Based Systems Engineering, ISRL 10, pp. 327–342.

springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 13

Enterprise Ontologies – Better Models of Business

Ian Bailey

Model Futures Limited

London, United Kingdom

When I first came here, this was all swamp. Everyone said I

was daft to build a castle on a swamp, but I built it all the same,

just to show them. It sank into the swamp. So I built a second

one. That sank into the swamp. So I built a third. That burned

down, fell over, then sank into the swamp. But the fourth one

stayed up. And that's what you're going to get, Lad, the strongest

castle in all of England.

Monty Python and the Holy Grail

Actually, Major Major had been promoted by an I.B.M

Machine with a sense of humor almost as keen as his father's.

Catch 22, Joseph Heller

1 Introduction – Intelligence-Led Systems Engineering

The title of this book is “Intelligence-Based Systems Engineering”. This presents

something of a challenge to systems engineers – it implies that there is a practice of

systems engineering that isn’t intelligence-based. Gulp! What should we call this

practice? Stupidity-based systems engineering? Suck-it-and-see systems engineering?

Guesswork-based systems engineering? Do-it-like-we-did-it-last-time systems

engineering?

Despite the well documented benefits(1) of a systems engineering approach, many

projects that use the approach fail, and often fail spectacularly. Symptoms are usually

one or more of:

• Cost overruns

• Failure to deliver in time

• Failure to meet requirements

• Failure to deliver something useful, even if it does meet requirements

In fact, if you asked someone to think of ten major engineering projects that have failed

from the last 30 years, chances are most of them would have used a systems engineering

approach. Does this mean that the discipline of systems engineering is flawed, or is it that

each of those projects that failed were not following the approach properly? If you ask

the customers for each of those failed projects, they would probably all answer that the

engineers didn’t properly understand their business requirement. If you ask the engineers,

they will nearly all answer that the customer failed to describe their requirements

328 I. Bailey

adequately, or that the requirements changed mid-way through the project. One of the

main tenets of systems engineering is to avoid this sort of conflict through sensible

management of requirements. How did it go so badly wrong for all those major projects?

There are any number of causes, and it would require more than one book chapter to go

into all of them. There are some causes that this chapter will focus on though:

• It is not uncommon to blame the “information revolution” for the rise in the

complexity of systems, and the accompanying escalation in systems

development costs. The explosion in computing technology has meant that

the interface management between sub-systems has become orders of

magnitude more complex than when the discipline of systems engineering

first came along. Does this mean that systems engineering isn’t fit for

purpose in the information age? There is clearly some excellent thinking in

systems engineering and in general systems theory – common sense tells us

that the approaches espoused by systems engineers are good. It’s just that

information management is a very different discipline to engineering and

requires a different set of strategies to achieve success. Information systems

development projects tend to focus on the systems, and make the information

itself a secondary concern – engineers retreating into their comfort zone and

focussing on functional rather than information requirements.

• User (and often systems) requirements are used as a contract between

customer and supplier. The customer issues a contract for some requirements

to be satisfied, usually for a fixed price. This works quite well on projects

that deliver within a short time-frame (e.g. less than a year). For projects that

are going to take many years to deliver, changing circumstances mean that

requirements will change. If it’s an information management system, the

requirements can change on a weekly basis. Because systems engineering

drives towards a solution of minimum complexity, it can also drive towards a

solution of minimum flexibility(2). Customers can’t understand how a

seemingly minor (to them) change in requirements can cause such wailing

and gnashing of teeth amongst the engineers. In a rigidly inflexible system,

built to meet the requirements at minimum cost, even the smallest change to

those requirements can have a catastrophic impact. It’s easy to argue that we

should never build systems like this, but when requirements form a contract,

and the cheapest solution wins, the cheapest solution will nearly always be

inflexible. If you bid with a more flexible (assumed to be more expensive)

solution, you won’t be selected. Furthermore, the customer is unlikely to

build flexibility into their requirement specification out of fear of increased

cost and the possibility of not getting what they wanted.

• If used unwisely, a systems engineering approach can, and often does, result

in project stove-piping. When a systems engineer budgets out requirements,

weight, cost, etc. to various sub-systems, the teams responsible for the

delivery of those systems are often only able to innovate within their own

sub-system boundary. The allocation of budget also means there is little-or-

no financial motivation for pan-system innovation. The result of this is often

that no-one is designing and innovating at the system level. The consequence

is often that there is rarely a system-wide approach to information.

 Enterprise Ontologies – Better Models of Business 329

Information is managed by each system and exchanged on an ad-hoc basis

across systems interfaces. It is very rare to find a project which has an overall

information model that all sub-systems work from. A project can have

superb interface management procedures, but will still fail if there is no

overall design for the information

Information management is a key aspect of each of the above points. It is the

contention of this chapter that a systems engineering approach simply does not work

well for systems where information management is a key feature. When the systems

engineering approach was first proposed, information was much less of a factor in the

systems that were being built. The principles of good engineering – designing-out

complexity, working to a clear set of fixed requirements, budgeting problems out into

sub-systems – simply don’t work for information management problems.

1.1 Introduction - Business Ontologies

Having dealt with the title of the book, it’s only fair to deal with the title of this

chapter. If the term “ontology” is used in an information technology context, it is

usually either a reference to data structures defined using semantic web standards, or

to data structures used in artificial intelligence projects for purposes of reasoning and

inference(3). There is however another use of ontology in IT which is now often

overlooked. Several experienced data modellers and business analysts have (often

independently) come to the conclusion that the way we currently build information

systems is broken(4). To find a better way, they have started to de-construct the

current methods, and some have even begun to take a look at what is new in the fields

of logic and philosophy(5). They are developing the next generation of information

models based on the principles of formal ontology.

1.2 Information System Requirements Gathering

Before looking at business ontologies in detail, it is worth examining how information

systems are currently built. The process will vary depending on the scale of the

project and the methodology the chief architect was educated in. There are usually

some common threads though:

Define User

Requirements

Model Business

Processes &

Info Flows

Develop

Conceptual

Data Model

Develop Logical

Data Model

Develop

Physical Data

Model

Implement

business analyst data modeller developer

Fig. 1. Typical Development Process for Information Systems

The roles and responsibilities vary from project to project, and there may be more

than one person involved at each stage, depending on the size of the project, but this

is pretty much the development cycle for the information side of most systems. It

seems a fairly sensible approach – separating relatively orthogonal concerns.

Someone who understands the business (the business analyst) works with the

330 I. Bailey

stakeholders to formalise their functional and non-functional requirements. The

functional requirements are (if you’re lucky) formalised as a process model, and the

non-functional (in part) as a conceptual model. The conceptual model will be built

from user terminology, and the information flows between processes. The conceptual

model is then used as the basis for a logical model, which is then used as the basis for

an implementation model, which is then implemented.

This looks eminently sensible at first glance, but if it’s such a good method why do

so many large-scale information systems projects fail, often spectacularly? Let’s take

a closer look at each of the stages and the people involved.

First of all, there is the business analysis. Does the business analyst really

understand the business? Chances are the BA is a consultant and has come from an

IT background rather than an operational one. Do process models capture an accurate

picture of the business? In most cases, the answer is a resounding no. They are usually

developed by people who have scant knowledge of the business they are modelling,

and they are either based on observation or user interview. Either approach is flawed.

If you observe a business, its behaviour will change, simply because it is being

observed. Also, you have no idea if the processes you observe are typical, or unique

to the time you observe them. If you interview users, they’ll emphasise what is on

their mind at the time you interview them (the crocodiles closest to the boat) which

may not be important at all next week, or in general for the business as a whole.

OK, so we’ve got off to a bad start. It seems our business models aren’t all they’re

supposed to be, but surely our data modeller will save the day. Data modellers have

all kinds of tricks up their sleeve, surely? The reality is that data modellers are not

well understood – to the rest of the development team, they seem to practice the dark

arts. Business analysts don’t understand what data modellers do, and neither do the

implementers. The data modeller is usually just left to get on with their job with no

scrutiny from the business or developer community. There is an industry joke that if

you give the same requirements spec or process model to ten different data modellers,

you’ll get eleven different data models. The route from requirement to data model is

not governed by a repeatable, scientific method, it is driven by opinion, experience

and shallow pattern recognition.

All is not lost at this stage though. Surely those bright young things in development

can paper over the cracks with some clever coding? There definitely are some very

bright coders out there, but what gets them excited isn’t generally anything to do with

keeping the customer happy. They like to use cool new technology. They measure

success by who can write the most parsimonious code. They treat logical and set-

theoretic constructs such as subtyping as implementation hacks to ensure the right

properties and methods are inherited conveniently, rather than as any interpretation of

business facts and rules.

All this process amounts to is an elaborate and expensive game of Chinese

whispers (the British name for a game where a message is whispered along a chain of

people to see how distorted the message becomes - other names for the game include

“telephone” and “whisper down the lane”). At each stage in the process, the

deliverable becomes further and further removed from the business requirement. The

sheer insanity of this approach is obvious when discussed in this way, but yet it is still

the overwhelming choice of method for developing large scale information systems.

Let’s not forget, it is always the large scale information systems that seem to fail most

 Enterprise Ontologies – Better Models of Business 331

often. The problem is never fixed, because each actor in the process blames the one

next to them – and in large scale systems development projects there are always

different actors. The data modeller scoffs at the business analyst for his lack of

philosophical thought. The business analyst blames implementation when the

software fails user acceptance testing. Everyone involved thinks the data modellers

are unnecessary, egotistical and not team players. Nobody takes a step back and

blames the process. Furthermore, in many projects, the business analysts and data

modellers (often consultants or contractors) are long gone by the time the problems

are found. The result is that development gets the blame, and a great deal of effort has

been put into improving development methods, when in fact the problem lies

elsewhere.

1.3 Driving-Out Complexity

In general, a systems engineer will strive for the least complex system that can satisfy

the user requirements. There will always be some level of complexity in systems

development – the system often needs to be as complex as the problem it is trying to

solve – but generally it is considered a good thing to drive-out complexity. The less

complex the system is, the easier it is to predict and control. This means it will

generally be safer (or at least simpler to produce its safety case and risk assessment)

and more reliable.

When it comes to information, the opposite is true. Information systems are

required to store and manipulate information that can be immensely complex.

Attempts to simplify the information models used in the system will usually result in

a reduction in functionality. It is important to make a distinction between

complication and complexity. A complex information model is usually characterised

by having a large number of interconnected elements that can be put together in

different ways for different purposes. A complicated model generally shares the size

characteristic, but usually doesn’t offer the possibility for re-use of the same elements

for different purposes. Complicated models are easier to understand than complex

ones, in that they offer one and only one way to structure information, but their size

and the number of attributes and relationships required to make them work means that

changes to the requirement have expensive consequences. There are plenty of

complicated information models around. In fact cynics would argue that most data

modellers cook up the most complicated structures possible as some sort of display of

intellectual prowess.

The problem gets worse when the data model goes to implementation. Developers

will often fail to recognise the importance of certain design characteristics in the

information model and implement the model in a simpler fashion in the mistaken

belief that their solution is more elegant or efficient. If an information system is to

usefully support real world processes, it must have in-built flexibility, and a degree of

extensibility and self-reference(6).

1.4 Stovepipes

We’ve already joked about ten data modellers producing eleven different data models,

but what if they’re all working on the same project? On a large project, it’s not

332 I. Bailey

uncommon for each of the subsystems to have its own data storage capability. Good

systems engineering practice should ensure clear interface specifications between the

subsystems, but it does not push towards a common information approach across all

the sub-systems. In fact, the approach of budgeting out requirements to sub-systems

tends to have a negative effect on information coherence.

Often, the same data analysis team will work across the various sub-systems. Even

with this approach, it is not uncommon to end up with incoherent data models across

the systems. This can be due to a number of issues:

• By far the most common cause is epistemic – when viewing things from

different perspectives (e.g. different projects, sub-systems, etc.) information

architects fail to recognise when two things are in fact the same. The classic

example is customer and supplier. In reality, these are different roles that a

person or organisation can play in respect to another person or organisation.

However, it is not uncommon (especially in multi-purpose systems such as

ERP systems) to see two separate data tables for each of these. When you go

and examine the data in them, you will often find the same organisations in

both. Elsewhere in the ERP system you may also find a table for

organisations, but this will contain another set of organisations – e.g. the

departments of the company, regulatory bodies, etc. – as well as some of the

organisations in the customer and supplier tables.

• Information modelling is one of the first things to get cut when budgets get

tight. Modellers might be asked to do the job as quickly as possible, which

prevents any opportunity for reaching consensus across sub-systems. Even

worse, the modellers might be cut out of the loop altogether in favour of

letting the sub-systems developers do their own data modelling.

• The tendency to develop data models from process models, as outlined in our

section on information system requirements gathering, means that the scope

for the information model is defined by the scope of the processes relevant to

the given sub-system – i.e. there is no requirement to look beyond the sub-

system boundary.

The resulting information incoherence just causes problems for the interface

managers. Data conversion is required at each interface, and uncertainty about

whether each system treats a particular term the same as another causes delays and

frustration. Many of the issues around semantic mismatch are not actually found until

the systems have been running for some time.

2 What Is Needed for Better Information Systems?

The current approach is clearly broken. Recent history is littered with embarrassing

failures of large-scale information systems, and for each one of those failures there

are ten that have been declared successful even though they weren’t, or simply

brushed under the carpet. Very few information systems of an enterprise scale ever

deliver on expectations. Read that again. Everyone in the IT industry knows this is

true. CIOs know it, and spend most of their working days defending the results rather

than working on information strategy. Most CEOs even know it, and regard it as a

 Enterprise Ontologies – Better Models of Business 333

necessary evil. The problem is recognised, but not the cause. All attempts to fix the

problem have centred around software development methods and architectures (e.g.

Agile, SOA, etc.) rather than attempting to fix what is really wrong – the inability of

the systems to meet the information requirements. If you buy the arguments in the

previous sections of this chapter, then it seems what’s needed most is:

1. An accurate, repeatable and defensible way to ascertain the business

information requirements

2. A way to build flexibility into our information models without making them

over-complicated

3. A way to ensure that the same concept is treated the same way by different

analysts so that when systems are integrated there is less need for triage at

the interfaces.

2.1 Better Analysis – Getting Your Hands Dirty

The key to achieving point 1) is a reduction in the number of “Chinese whispers” that

take place in the analysis stage. Also, the dependence on process analysis needs to be

minimised as it is far too open to interpretation. Contrary to popular belief, there are

other ways to find out what the business does, but they involve getting your hands

dirty. Dirty data is the scourge of IT, and data quality problems are blamed for

everything from cost overruns through system crashes to failures in day to day

business. This dirty data is an absolute goldmine for the canny information analyst. If

analysed intelligently, the data can reveal much more about what the business actually

does than any process model. The majority of data quality issues are down to simple

data-entry errors. However, from experience it is well known – although not often

documented – that a lot of what are called data quality problems are actually

workarounds instituted by users who needed somewhere to store crucial business

information. These are not failings in data, they are symptoms of a failure to develop

an information system that meets the user requirements. Examining this sort of data,

with the appropriate analysis techniques, can result in a much better information

model than one arrived at through process analysis.

If we can also cut the layers of information / data model from three (conceptual,

logical, physical) to one, we stand a much better chance of ensuring that what gets

implemented genuinely meets the business requirement. To facilitate this, we need to

look at why there ever were three (or sometimes two) layers of data model. In a

nutshell, the reason is that database technologies don’t store information in the same

way that humans tend to think about things in the real world. Hence conceptual

models are used to capture concepts and their relations as a first step. The relations

can then be rationalised, and attributes added in order to ensure that there is a

logically consistent model. Finally, the logical model is bashed and bent to fit

whatever underlying storage technology is going to be used. This was a hot topic of

research in the 1960s and 70s. Bill Kent (4) highlights the problem: “For some time

now my work has concerned the representation of information in computers. The

work has involved such things as file organizations, indexes, hierarchical structures,

network structures, relational models, and so on. After a while it dawned on me that

these are all just maps, being poor artificial approximations of some real underlying

334 I. Bailey

terrain.” Griethuysen’s approach (17) is one of the early ‘ostriches’, suggesting that

there is a simple direct link between the data structures and reality.

What if the underlying storage technology worked the same way as the logical and

conceptual models? Then we could have just one model. That, combined with a more

rational and defensible analysis technique (based on forensics, not witchcraft), should

help ensure we implement something that aligns much more closely with the business.

That last paragraph has left a big question open – data storage technology. Let’s

return to that point once we’ve had a look at 2) and 3).

2.2 Flexibility – Using the Full Range of Logic

The key to achieving a more flexible information management system is in

understanding which relationships in the information model constrain its use, and

which give it more axes of movement. This is the essential difference between

complexity and complication. Characteristics of a flexible model are:

• Subtypes – i.e. the hierarchy of specialisation of concepts. Flexible models

often have the characteristic of extensive subtyping, usually from one top-

most class. This allows the frequently used model “infrastructure” to be

moved up the specialisation tree and simply inherited by more specialised

concepts below. This leads to re-use of implementation patterns resulting in

significant savings in code production and maintenance. The problem with

this is that if the subtyping isn’t based on defensible criteria, the inheritance

doesn’t work. A new analysis method is required to ensure inheritance works

well and accurately mirrors the real world concepts being represented. The

classic example discussed by datamodellers is the Circle – Ellipse

problem(7). Which is a sub-type of which depends on the definition of

inheritance.

• Higher Order – flexible models tend to be able to handle their own

classifications. As an example, instead of committing a set of common

equipment types as classes (e.g. “pump”, “valve”, “engine”, etc.), a flexible

model will allow the users to introduce a class called equipment, and a

related class called “equipment type” – though the model may give the users

a ‘starter pack’. This allows the user to manage the types of equipment at run

time as opposed to being fixed in implementation. It sounds obvious for

things like equipment, but the requirement for this is less obvious for other

data elements such as transactions, and the opportunity to build in flexibility

is often missed.

• Names – most systems commit the users to work with only one set of names

for things. More often than not, developers will commit this to code by using

these names as primary keys in databases. What happens then is that when

other communities are offered the chance to use the system, they don’t,

because the system doesn’t use their terminology. The system has effectively

stovepiped itself within one business vertical. One could imagine a more

flexible system that could cope with multiple communities and multiple

names, and occasionally (usually in very specialised situations), these

systems do turn up.

 Enterprise Ontologies – Better Models of Business 335

These tenets of flexibility run counter to traditional systems engineering and software

development. Software developers use subtyping as a convenient way to inherit

properties and methods, and pay little or no regard as to the real-world relevance of

their assumptions. Higher order systems are rare, and tend only to be used in very

specialised circumstances. Systems that can cope with unbounded multiple names are

rarer still. Systems that can achieve all three aspects of flexibility are all but

impossible to find.

Again, this leaves a dangling question about data storage technology and

performance – most developers would shy away from these approaches in the belief

that performance and user interfaces would be detrimentally affected. Let’s come

back to that.

2.3 Consistency – Sophisticated, Repeatable Analysis

Point 3) is the holy grail of information analysis. The goal is that no matter who the

analyst is, given the same real world concepts, we will always get the same

information model. In practice though, the model is always tainted by the user’s view

of the world, the analyst’s view of the world and the methodology used. What if we

had a methodology that allowed us to cut through opinion and only deal with fact?

Even if such a methodology could get us to the point where 80% of concepts are dealt

with in the same way, it would offer enormous potential to businesses.

2.4 Implementation – New Ways of Storing

Now let’s get back to implementation – particularly the thorny issue of storage. The

relational database rules the roost at the moment, and has done for over 20 years. Its

dominance is similar to that of the internal combustion engine – a lot of people think

there are probably better technologies out there, but so much has been invested into

making the incumbent technology perform that the bar to market entry is very high

indeed. In recent years, the relational database has become part of the infrastructure –

developers only ever care about physical data models these days if transactional

performance is paramount or the queries to be used are complex (e.g. in data

warehouses and BI/MI systems). Object-relational projections are now taken for

granted in IT. There is no reason why the ideas about accuracy, flexibility and cross-

community support outlined above can’t also be dealt with in currently available

database systems. In fact, in the case of flexibility, a lot of work has already been

done. The adaptive object model approach (8)(9) has gone some significant way

towards achieving this, but what is often overlooked is the work that went on in Shell

in the early nineties on developing flexible data storage systems. This work has now

been realised as a successful commercial product – Kalido
TM

 (10).

Furthermore, the No SQL movement is producing large numbers of novel data

storage approaches, each of which is usually suited to specific types of application.

There is great potential for using these technologies to store next generation

information structures.

336 I. Bailey

3 A New Approach to Information Systems Development

It’s all been bad news up to this point. If this chapter has done what it was intended to

do, you will have either thrown the book on the fire in disgust (if you’re a systems

engineer), or be in floods of tears (if you’re a customer). The real question is whether

you agree with the points made. Few people would argue that there is something

wrong in information systems development, but do you agree that the problems lay in

the analysis approach? The other argument you need to buy is that to fix the problem

we need the three points outlined before:

1. An accurate, repeatable and defensible way to ascertain the business

information requirements

2. A way to build flexibility into our information models without making them

over-complicated

3. A way to ensure that the same concept is treated the same way by different

analysts so that when systems are integrated there is less need for triage at

the interfaces.

3.1 Introducing the BORO Method

If not, then it’s probably best you don’t read on. If you agree with some or all of the

points, then there’s a different approach to analysis that you might like to consider.

The BORO Method(5) is a forensic approach to re-engineering information systems.

It relies on there being legacy data. The older, dirtier and more convoluted this data is,

the better. Even so-called green-field IT projects are replacing some form of

information system, even if it’s paper-based. At the start of any information systems

delivery project, there will be some legacy data. Traditional approaches tend to ignore

this in favour of process modelling – the argument being that the new system has to

reflect the new processes. To a certain extent, this is true. The behaviour of the

system certainly does have to reflect this, but the information is unlikely to have

changed much from before.

The premise of BORO is that dirty data is a symptom of an information system that

doesn’t properly support its users. If you look at the data (not the data model) then

you will find out what is really needed to support the business. The challenge is how

to get from this data to a specification for a new information system. This is where

BORO delivers on point 3). The methodology is designed to be simple, precise and

repeatable. Hence, if done properly, two different BORO analyses of the same data

(even conducted by different people) should result in broadly similar (sometimes even

identical) information models.

The BORO method results in what are called extensional ontologies(10). This

means that the elements specified in the ontology are not primarily identified by their

names, they are identified by their extents. [Technically, the ontologies have

extensional criteria of identity. Often data models have no criteria for identity, so no

mechanism for consistently generating agreement about what is being modelled.

 Enterprise Ontologies – Better Models of Business 337

Clearly criteria of identity are useful – what is more difficult is devising suitable

criteria. For those interested in criteria of identity, an extensional criteria approach

is one of the few that meets the requirement.] For individuals, this means their spatio-

temporal extent – two things are the same if they occupy the same space for the same

time. For types of things (classes), two classes are the same if they have the same

members. Although this looks very simplistic, it is reliable and repeatable. It ensures

that the same thing doesn’t end up in the ontology twice, and that different things

don’t get mistaken as the same simply because they have the same or similar names.

It’s also extremely counter-intuitive (especially for computer scientists, it seems), but

once you’ve used the approach long enough, everything else looks primitive, woolly

and imprecise.

Once you’ve identified the things you’re dealing with, it is of course useful (and

often necessary) to give them a name. The BORO approach separates “name-space”

and “object-space”. There are things, and there are the names of things. Each name

has a context, so there could be a set of names used by one community and another

set used by a different community. For a given thing (in object-space) each

community might use different names, and BORO allows this. Although the use of

multiple names runs counter to the systems engineer’s drive for simplicity, it does

what the users want. Those communities have probably developed their own

terminology for good reason – let them carry on using it. The IT should not dictate

terminology to the business.

The ontologies BORO produces allow new classes to be added. This flexibility,

combined with the precision of the analysis technique allows applications to be

created that are both semantically precise and flexible.

3.2 Managing Time

As well as the benefits outlined above, BORO also gives the analyst a new way to

model time. The handling of temporal information in data models is at best

inconsistent and often frankly incoherent. BORO offers a better alternative.

The requirement that BORO places on the analyst to think in terms of extension

has a number of interesting consequences. First of all, if you have to consider identity

of individual things (buildings, countries, people, etc.) in terms of their physical

extent, you are forced to also consider their temporal extent. Two different things may

occupy the same space at different times, so the criteria for identity also has to

consider the temporal dimension. Philosophers call this “four-dimensionalism”. It has

its origins in physics, mathematics(11) and philosophy(12) from the early twentieth

century, with mainstream philosophy catching up about 90 years later(10)(13)(14).

Theoretical and philosophical subjects tend to be ignored by engineers (the author of

this chapter included). However it turns out that for information systems, the 4D

approach makes life very simple indeed. Data models usually end up having to deal

with time in different ways – the time things happen, the duration of things, the time

between occurrences, times of the day, days of the week, etc. The 4D approach

338 I. Bailey

provides a single, consistent approach to time that covers all the bases a data modeller

would ever need – compare this with relatively byzantine structure of, for example,

(19). It also provides a very sophisticated way to model how things change over time.

A whole book could be devoted to the things you can do with a 4D approach – see

Partridge(5) and Hawley(14) to get you started – but it’s worth spending a bit of time

on it here.

If you use a 4D approach, the first thing you have to get used to is that other

dimension. Let’s get the criticism out of the way first. By now, a few readers are

going to be thinking this is all theoretical nonsense and of no practical use. Terms like

“extensional ontology” and “four-dimensionalism” are hard to get past the CIO, and

will probably send the CTO scuttling back to his cave to read Dr Dobb’s journal. The

ideas behind it are sound, practical and useable, however. In terms of time, the first

thing to get used to is using whole-part relationships – technically called “mereology”

(15) – in a temporal setting. We are all familiar with the concept of composition – one

thing being part of another. In a 4D ontology though, the individual also has a

temporal extent. This allows us to express quite complex situations in a very simple

way. If we want to take about cars coming and going in a car park, or in a particular

parking place, all we need to do is work out the composition. The example below is a

“space-time map”; three dimensions (x,y and z) are compressed and shown on the

vertical axis, with time on the horizontal:

Car Park

Parking Space no 12

time

space

(xyz)

Fig. 2. Space-time map for car parking

Although these diagrams don’t allow us to be precise about space, they do help

enormously in visualising how things change over time. In the simple example above,

we can see immediately that cars A and B come pull into the car-park, park in space

number 12 and then leave. In 4D, a (temporal) part of the car (shown by the dotted

line) is part of the parking space. The parking space is part of the car park. If we want

to be more specific:

 Enterprise Ontologies – Better Models of Business 339

Car Park

Parking Space no 12

time

space

(xyz)

Thursday

2010-12-08

2010-12-08

12:00 to

14:00 GMT

2010-12-08

15:00 to

17:00 GMT

Fig. 3. Space-time map with periods overlaid

In this case, we are stating that the temporal part of Car A while it was in space 12

is part of the period of time 12:00-14:00. Again, all that has been used here is

mereology. Although this is a little counter-intuitive, it is consistent. Traditional data

models might be able to express what is shown above more concisely – e.g. it might

store a set of key pairs for the parking space and the car registration, along with the

begin and end times:

Space Car In Out

12 A123ABC 2010-12-08-12:00 2010-12-08-14:00

12 B234XYZ 2010-12-08-15:00 2010-12-08-17:00

12 etc.

Fig. 4. Flat-earth data modelling

The problem with this is that it is data about the car and car park. The data model

for this is not an ontology, because it doesn’t model the real world, it models some

specific data about the real world. The opportunity for re-use of this data is minimal at

best, and the opportunity for re-use of the data model is probably zero. A system built

around a model like this can do one thing and one thing only – track parking times. A

system built around the more sophisticated 4D ontology understands about cars, car

parks, days, times and parking spaces. Furthermore, the simple mereological patterns

used to deal with this are also equally applicable to the car-key store in the attendant’s

hut, the car-park ventilation equipment tag numbers, and the clothes the attendant

wears. This, in a nutshell, is why it’s worth going to the trouble of doing the analysis

properly using precise, repeatable method like BORO.

340 I. Bailey

4 Addressing Arguments against Ontology

The counter-argument to formal ontology is usually that it is complex, hard to

implement and will never perform. Let’s look at those points one by one.

Firstly, yes a formal ontology is not simple. It is complex, and that is a good thing.

However, an ontology need not be complicated. There are some horrendously

complicated relational data models (ER) out in the wild. They are rarely flexible or

extensible, simply because they are complicated. They are hard to maintain, and very

costly to change once up and running. Ontologies suffer from none of these problems

and only seem complex to people who are not familiar with formal logic and set

theory. That said, something strange starts to happen when these approaches are

adopted. Code starts to shrink. This has been the experience of a number of projects

now. People who have used formal patterns such as those defined by the Gang of

Four(16) or Martin Fowler(8) have experienced improvements in code acreage. Those

that have gone a step further and started to use formal semantics and ontologies are

seeing even further gains. Most of these seem to stem from the establishment of even

more general patterns – for example the re-use of whole-part composition for

temporal matters covered in the previous section.

In terms of being hard to implement, this is an education issue. For a systems

engineer who is steeped in the traditional analysis and development methods then yes,

ontology is going to be difficult. For organisations that are entrenched(17)(18) in

these traditional methods, then it’s going to be impossible other than by acquisition of

smaller, more agile companies. If you don’t carry all that baggage with you, or you’re

prepared to un-learn what you know then it’s actually not that bad. Ontology has been

used a lot by the artificial intelligence community, and this has tended to add to its

reputation for complexity and opacity. Ontology has utility outside of AI, and

implementations (even in relational databases) can be relatively straightforward.

Where it can get difficult though is in the user interface. When the underlying data

model can change without recourse to software re-builds, the user interface needs to

be adaptive enough to cope with these changes. This either means building data-

driven interfaces, using a service-oriented approach with fine-grain presentation

services, or being prepared to change the UI code regularly...none of which are show-

stoppers. The same goes for middleware in n-tier implementations.

Performance is another old chestnut. One of the major users of ontologies over the

last couple of decades has been the artificial intelligence community. Reasoners and

inference engines gained a reputation for poor performance and this seems to have

stuck. Although there has been some good work in AI, some of the reasoners can

spend days churning through data, only to present an answer that shows all the

deductive skills of a Labrador puppy. They may well have achieved a great logical

feat, but to most IT professionals it is apparent that the same answer could have been

arrived at with a couple of queries in a couple of seconds. Ontology doesn’t have to

be an academic pursuit though. Ontology storage systems can perform well and scale

massively. Even triple stores are starting to perform well – a company called Garlik

has developed a system called 5Store that they use to manage vast quantities of data

with transaction rates of 700,000 triples per second.

 Enterprise Ontologies – Better Models of Business 341

5 Conclusion

The theme of this chapter is that traditional analysis techniques rarely go beneath the

surface appearance of process models and information flows to find out what is

actually going on. This means that the systems that are developed are often not

sophisticated enough to cope the problem they were supposed to solve, and are rarely

able to extend their functionality or adapt to changing business environments without

huge disruption and cost.

If the analysis method used is more rigorous, defensible and repeatable, the

information models produced will be more robust. If the models produced are

flexible, extensible and closely follow the real world (instead of data about the real

world) then the systems produced are more agile. An ontology approach (such as that

provided by the BORO method) has the potential to provide the flexibility and the

accurate real-world modelling.

5.1 Literature Search

As you’ve probably noticed by now, this chapter contains a lot opinion and

observation from a practitioner’s point of view. It is the result of two decades of

dealing with systems engineers who think interoperability is simply a case of having a

network. In many cases, the references have been retro-fitted in order to justify some

of the more controversial points. But, I would hope that most of the points are

painfully familiar to anyone who has worked on a large-scale systems.

The process of going through these references was a revelation though. To my

horror, I discovered that the problems described in this chapter have been around

since the 60s (20), and the 4D ontology approach that seems to solve so many

problems in information modelling has its roots in early twentieth century

mathematics (12) and philosophy (13). None of this is new.

Acknowledgements

Thanks go to Chris Partridge for helping with some of the references – especially the

Mealy one (20) – and reviewing the chapter (even though he described my writing

style as “shock jock”), and to Dr Graham Bleakley of IBM for reviewing and sanity-

checking.

References

1. Honour, E.C.: Understanding the Value of Systems Engineering. INCOSE, Pensacola

(2004)

2. Bar-Yam, Y.: When Systems Engineering Fails — Toward Complex Systems

Engineering. IEEE, Cambridge (2003)

3. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2),

199–220 (1993)

4. Kent, W.: Data And Reality: Basic Assumptions in Data Processing Reconsidered (1978)

342 I. Bailey

5. Partridge, C.: Business Objects: Re-Engineering for Re-Use, 2nd edn. BORO Centre,

London (2005) ISBN 0-9550603-0-3

6. Barwise, J.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena.

Cambridge University Press, Cambridge (1996) 978-1575860084

7. Henney, K.: From Mechanism to Method: Total Ellipse. Dr Dobbs, s.l. (2001)

8. Fowler, M.: Analysis Patterns, Reusable Object Models. Addison-Wesley, s.l. (1997)

ISBN 978-0201895421

9. Yoder, J.W., Balaguer, F., Johnson, R.: Architecture and Design of Adaptive Object

Models. In: OOPSLA 2001 (2001)

10. Heller, M.: The Ontology of Physical Objects. Press Syndicate of the University of

Cambridge, Cambridge (1990) 0-521-38544

11. Minkowski, H.: Raum & Zeit (Space & Time). In: Einstein, A., Minkowski, H., Lorentz,

H.A. (eds.) Das Relativitätsprinzip. Eine. Teubner-Verlag, Leipzig (1915)

12. McTaggart, J.M.E.: The Unreality of Time. Mind 17, 457–474 (1908)

13. Sider, T.: Four-Dimensionalism: An Ontology of Persistence and Time. Clarendon Press,

s.l. (2003) 978-0199263523

14. Hawley, K.: How Things Persist. Clarendon Press, s.l. (2004) 978-0199275434

15. Simons, P.: Parts: A Study in Ontology. Clarendon Press, s.l. (2000) 978-0199241460

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable

object-oriented software. Addison Wesley, s.l. (1994) 978-0201633610

17. Wimsatt, W.: Generative Entrenchment and the scaffolding of individual development and

social institutions. In: International Society for History, Philosophy, and Social Studies of

Biology, ISHPSSB (2005)

18. Wimsatt, W.: Re-Engineering Philosophy for Limited Beings. Harvard University Press,

s.l.; 978-0674015456. 978-0674015456

19. Griethuysen, J.v.: ISO/TC97/SC5/WG3-N695 - Concepts and Terminology for the

Conceptual Schema and the Information Base. ANSI, New York (1982)

20. Date, C.J., Darwen, H., Lorentzos, N.: Temporal Data & the Relational Model. Morgan

Kaufmann, s.l. (2002)

21. Mealy, G.H.: Another Look at Data. In: Proceedings of the Fall Joint Computer

Conference, Anaheim, CA, November 14-16, p. 565 (1967)

Author Index

Adams, Kevin MacG. 1
Al-Zoubi, Khaldoon 129

Bailey, Ian 327
Bandar, Zuhair 201
Blanco-Fernández, Yolanda 285

Crockett, Keeley 201

Diallo, Saikou Y. 49, 259

Fumarola, Michele 107

Hunt, C. Anthony 233

Jannach, Dietmar 75
Jurdak, Raja 309

Keating, Charles B. 1

López-Nores, Mart́ın 285

Mittal, Saurabh 159

Nagy, Miklos 75

Obst, Oliver 309
O’Shea, James 201

Padilla, Jose J. 259
Pazos-Arias, José J. 285

Rosalind Wang, X. 309

Seck, Mamadou D. 107
Sousa-Poza, Andres A. 259
Sowa, John F. 23, 49
Szabo, Claudia 49

Tolk, Andreas 1

Valencia, Philip 309
Vargas-Vera, Maria 75
Verbraeck, Alexander 107

Wainer, Gabriel 129

Yilmaz, Levent 233

	Towards Intelligence-Based Systems Engineering and System of Systems Engineering
	Introduction
	Intelligence-Based Systems
	Characteristics of Intelligence-Based Systems
	How to Capture Intelligence

	Systems Engineering
	Traditional Systems Engineering
	System of Systems
	System of Systems Engineering
	System of Systems Engineering Methodology
	Intelligence-Based Systems Engineering

	Contributions to These Topics within This Volume
	References

	Future Directions for Semantic Systems
	The Knowledge Acquisition Bottleneck
	Natural Language Processing
	Reasoning and Problem Solving
	Semantic Web
	Language Analysis and Reasoning
	Integrating Semantic Systems
	References

	Defining and Validating Semantic Machine to Machine Interoperability
	Introduction
	State of the Art in Interoperability
	Semantics of Data for a Machine
	Formal Representation of Data for a Machine
	Semantic Machine to Machine Interoperability

	Formal Validation of Interoperable Federations
	Knowledge Representation
	Formal Validation of Model Execution
	Reference Model
	Formal Validation Process

	Summary and Recommendations
	References

	An Approach to Knowledge Integration Applied to a Configuration Problem
	Introduction
	Related Work
	Expert Systems - Knowledge Bases
	Ontologies View
	Databases
	Knowledge Management

	Scenario
	Constraint Satisfaction Problem (CSP)
	Case Study: Computer Configuration Problem
	Constraint Graph

	Mapping Process
	Knowledge Integration Framework
	Algorithms for Detecting and Correcting Overlappings

	Evaluation
	Mapping Quality
	Configuration Quality

	Conclusions
	References

	Simulation-Based Systems Design in Multi-actor Environments
	Introduction
	Outline of the Chapter

	Designing Systems
	Systems Approaches
	Systems Simulation in Design
	Soft Systems Methodology

	Designing a Multimethodological Approach
	Component Based Modeling
	Different Levels of Abstraction
	Structing Alternatives
	Participatory Design

	Conclusion
	References

	Distributed Simulation Using RESTful Interoperability Simulation Environment (RISE) Middleware
	Introduction
	Background on Distributed Simulation
	RISE Middleware API
	RISE-based Distributed CD++ Simulation Algorithms
	Distributed CD++ (DCD++) Architecture
	DCD++ Simulation Synchronization Algorithms

	Distributed Simulation Interoperability Standards
	References

	Agile Net-Centric Systems Using DEVS Unified Process
	Introduction
	Related Technologies
	DEVS Unified Process with DEVS/SOA
	Discrete Event Systems Specification
	Web Services and Interoperability Using XML
	An Abstract DEVS Service Agent
	DEVS/SOA Framework for Net-Centric Modeling and Simulation
	DEVS Unified Process a.k.a DUNIP

	Multi-layered Agent-Based Test Instrumentation System Using GIG/SOA
	Deploying Test Agents over the GIG/SOA
	Implementation of Test Federations

	Abstract DEVS Service Wrapper
	Workflow Composition and DoDAF-Based Mission Threads
	Web Service Work Flow Formalism
	Mapping of DEVS, BPEL and DoDAF Artifacts with WSWF Formalism

	Case Study
	DEVS Wrapper Agent
	Workflow Design, Analysis and Execution

	Agility in DEVS Unified Process
	Conclusions and Future Work
	Acronyms
	References

	Systems Engineering and Conversational Agents
	Introduction
	The Scope of CAs
	Spoken Dialogue Systems
	Chatterbots
	Natural Language Processing Based Dialogue Management Systems
	Goal-Oriented CAs
	Embodied CAs

	Practical Applications of CAs
	CAs for Selling
	A GO-CA Student Debt Advisor

	Design Methodology for GO-CAs
	Knowledge Engineering
	Implementation
	Scripting Language
	Evaluation
	Maintenance

	Novel Algorithms – Short Text Semantic Similarity
	The STASIS Algorithm
	Latent Semantic Analysis

	Research Opportunities
	Conclusions
	References

	Advanced Concepts and Generative Simulation Formalisms for Creative Discovery Systems Engineering
	Introduction
	Motivation
	Scientific Problem Solving with Computational Models

	Models and Principles of Creative Problem Solving
	Background
	Models of Creative Cognition

	Generative Parallax Simulation: Basic Concepts
	An Abstract Model of Creative Cognition
	Abstract Specification of the Structure and Dynamics of GPS
	Implications of the Ecological Perspective

	Meta-simulation of GPS
	Conceptual Model for GPS Simulator
	Meta-simulation Parameters
	Qualitative Analysis of Results and Discussion

	Discussion and Future Work
	Improving Autonomy in Schema Evolution and Diffusion
	Toward Adaptive Growth of Analogue Ensembles for Creative Discovery Systems
	Strategic and Context Sensitive Exploration

	Conclusions
	References

	Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge
	Introduction
	Systems Engineering and Its Challenges
	Theory and Theory Creation
	Building Theory through M&S
	Existing M&S Methodologies/Methods for Theory Building
	A Methodology for Theory Building Using M&S
	Selecting the Modeling Paradigm

	Test Case: Building a Theory of Understanding Using Agents
	Brief on ABM and Its Relevance on Theory Building
	Importance of Understanding to Problem Situations
	Implementing the Methodology for Theory Building Using M&S

	Final Remarks and Conclusion
	List of Acronyms
	References

	“The User Around the Marketplace”: Automatic Engineering of Interactive E-commerce Applications
	Introduction
	Background
	Elements to Engineer Personalized Interactive Applications
	The Personalization Procedures
	Reasoning-Driven Recommendation of Items
	Composition of Interactive Commercial Applications
	Feedback

	Our Proposal in DTV Advertising
	A Simple Example
	Experimental Evaluation

	Conclusion
	References

	Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies
	Introduction
	Types of WSN Anomalies
	Network Anomalies
	Node Anomalies
	Data Anomalies
	Other Anomalies

	Anomaly Detection Strategies
	Architecture
	Usability

	Design Guidelines and Conclusions
	References

	Enterprise Ontologies – Better Models of Business
	Introduction – Intelligence-Led Systems Engineering
	Introduction - Business Ontologies
	Information System Requirements Gathering
	Driving-Out Complexity
	Stovepipes

	What Is Needed for Better Information Systems?
	Better Analysis – Getting Your Hands Dirty
	Flexibility – Using the Full Range of Logic
	Consistency – Sophisticated, Repeatable Analysis
	Implementation – New Ways of Storing

	A New Approach to Information Systems Development
	Introducing the BORO Method
	Managing Time

	Addressing Arguments against Ontology
	Conclusion
	Literature Search

	References

	Cover
	Front Matter
	Towards Intelligence-Based Systems Engineering and System of Systems Engineering
	Introduction
	Intelligence-Based Systems
	Characteristics of Intelligence-Based Systems
	How to Capture Intelligence

	Systems Engineering
	Traditional Systems Engineering
	System of Systems
	System of Systems Engineering
	System of Systems Engineering Methodology
	Intelligence-Based Systems Engineering

	Contributions to These Topics within This Volume
	References

	Future Directions for Semantic Systems
	The Knowledge Acquisition Bottleneck
	Natural Language Processing
	Reasoning and Problem Solving
	Semantic Web
	Language Analysis and Reasoning
	Integrating Semantic Systems
	References

	Defining and Validating Semantic Machine to Machine Interoperability
	Introduction
	State of the Art in Interoperability
	Semantics of Data for a Machine
	Formal Representation of Data for a Machine
	Semantic Machine to Machine Interoperability

	Formal Validation of Interoperable Federations
	Knowledge Representation
	Formal Validation of Model Execution
	Reference Model
	Formal Validation Process

	Summary and Recommendations
	References

	An Approach to Knowledge Integration Applied to a Configuration Problem
	Introduction
	Related Work
	Expert Systems - Knowledge Bases
	Ontologies View
	Databases
	Knowledge Management

	Scenario
	Constraint Satisfaction Problem (CSP)
	Case Study: Computer Configuration Problem

	Mapping Process
	Constraint Graph

	Knowledge Integration Framework
	Algorithms for Detecting and Correcting Overlappings

	Evaluation
	Mapping Quality
	Configuration Quality

	Conclusions
	References

	Simulation-Based Systems Design in Multi-actor Environments
	Introduction
	Designing Systems
	Outline of the Chapter

	Systems Approaches
	Systems Simulation in Design
	Soft Systems Methodology

	Designing a Multimethodological Approach
	Component Based Modeling
	Different Levels of Abstraction
	Structing Alternatives

	Conclusion
	Participatory Design

	References

	Distributed Simulation Using RESTful Interoperability Simulation Environment (RISE) Middleware
	Introduction
	Background on Distributed Simulation
	RISE Middleware API
	RISE-based Distributed CD++ Simulation Algorithms
	Distributed CD++ (DCD++) Architecture
	DCD++ Simulation Synchronization Algorithms

	Distributed Simulation Interoperability Standards
	References

	Agile Net-Centric Systems Using DEVS Unified Process
	Introduction
	Related Technologies
	DEVS Unified Process with DEVS/SOA
	Discrete Event Systems Specification
	Web Services and Interoperability Using XML
	DEVS/SOA Framework for Net-Centric Modeling and Simulation
	An Abstract DEVS Service Agent
	DEVS Unified Process a.k.a DUNIP

	Multi-layered Agent-Based Test Instrumentation System Using GIG/SOA
	Deploying Test Agents over the GIG/SOA
	Implementation of Test Federations

	Abstract DEVS Service Wrapper
	Workflow Composition and DoDAF-Based Mission Threads
	Web Service Work Flow Formalism
	Mapping of DEVS, BPEL and DoDAF Artifacts with WSWF Formalism

	Case Study
	DEVS Wrapper Agent
	Workflow Design, Analysis and Execution

	Agility in DEVS Unified Process
	Conclusions and Future Work
	Acronyms
	References

	Systems Engineering and Conversational Agents
	Introduction
	The Scope of CAs
	Spoken Dialogue Systems
	Chatterbots
	Natural Language Processing Based Dialogue Management Systems
	Goal-Oriented CAs
	Embodied CAs

	Practical Applications of CAs
	CAs for Selling
	A GO-CA Student Debt Advisor

	Design Methodology for GO-CAs
	Knowledge Engineering
	Implementation
	Scripting Language
	Evaluation
	Maintenance

	Novel Algorithms – Short Text Semantic Similarity
	The STASIS Algorithm
	Latent Semantic Analysis

	Research Opportunities
	Conclusions
	References

	Advanced Concepts and Generative Simulation Formalisms for Creative Discovery Systems Engineering
	Introduction
	Motivation
	Scientific Problem Solving with Computational Models

	Models and Principles of Creative Problem Solving
	Background
	Models of Creative Cognition

	Generative Parallax Simulation: Basic Concepts
	An Abstract Model of Creative Cognition
	Abstract Specification of the Structure and Dynamics of GPS

	Meta-simulation of GPS
	Implications of the Ecological Perspective
	Conceptual Model for GPS Simulator
	Qualitative Analysis of Results and Discussion
	Meta-simulation Parameters

	Discussion and Future Work
	Improving Autonomy in Schema Evolution and Diffusion
	Toward Adaptive Growth of Analogue Ensembles for Creative Discovery Systems
	Strategic and Context Sensitive Exploration

	Conclusions
	References

	Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge
	Introduction
	Systems Engineering and Its Challenges
	Theory and Theory Creation
	Building Theory through M&S
	Existing M&S Methodologies/Methods for Theory Building
	A Methodology for Theory Building Using M&S
	Selecting the Modeling Paradigm

	Test Case: Building a Theory of Understanding Using Agents
	Brief on ABM and Its Relevance on Theory Building
	Implementing the Methodology for Theory Building Using M&S
	Importance of Understanding to Problem Situations

	Final Remarks and Conclusion
	References
	List of Acronyms

	“The User Around the Marketplace”: Automatic Engineering of Interactive E-commerce Applications
	Introduction
	Background
	Elements to Engineer Personalized Interactive Applications
	The Personalization Procedures
	Reasoning-Driven Recommendation of Items
	Composition of Interactive Commercial Applications
	Feedback

	Our Proposal in DTV Advertising
	A Simple Example
	Experimental Evaluation

	Conclusion
	References

	Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies
	Introduction
	Types of WSN Anomalies
	Network Anomalies
	Node Anomalies
	Data Anomalies

	Anomaly Detection Strategies
	Other Anomalies
	Architecture
	Usability

	Design Guidelines and Conclusions
	References

	Enterprise Ontologies – Better Models of Business
	Introduction – Intelligence-Led Systems Engineering
	Introduction - Business Ontologies
	Information System Requirements Gathering
	Driving-Out Complexity
	Stovepipes

	What Is Needed for Better Information Systems?
	Better Analysis – Getting Your Hands Dirty
	Flexibility – Using the Full Range of Logic
	Consistency – Sophisticated, Repeatable Analysis
	Implementation – New Ways of Storing

	A New Approach to Information Systems Development
	Introducing the BORO Method
	Managing Time

	Addressing Arguments against Ontology
	Conclusion
	References
	Literature Search

	Back Matter

