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Foreword

The field of graphical models has been growing significantly since the pioneering

studies on probabilistic reasoning in intelligent systems. Beginning from Bayesian

networks and Markov random fields, this book offers a new perspective deriving

from their nice integration, which results in the new framework of hybrid random

fields. While reading the book, one early realizes that there is a unifying approach,

that seems to be motivated by the question on how existing types of probabilistic

graphical models can be properly combined in such a way to obtain model classes

that are rich enough to express a wide variety of conditional independence struc-

tures. The authors provide evidence that this combination exhibits scalable behavior

in parameter and structure learning. This is also supported by massive experimental

results to support the claims on the performance of hybrid random fields in dif-

ferent topics, ranging from bioinformatics to information retrieval. The clean in-

tegration idea behind hybrid random fields gives rise to the distinguishing feature

of the model, namely the dramatic reduction of complexity that opens the doors

to large scale real-world problems. The book not only marks an effective direction

of investigation with significant experimental advances, but it is also—and perhaps

primarily—a guide for the reader through an original trip in the space of probabilis-

tic modeling.

Interestingly, even though the main subject of investigation is quite specific, while

digesting the book, one is enriched with a very open view of the field, with full of

stimulating connections. The reader finds a vivid presentation, well rooted in the

literature, with inspiring historical references. I very much like the philosophical

framework to embed scientific issues given at the end of the book. The authors clear

the ground for a view of AI as a science that investigates cognitive technologies.

While their investigation does not necessarily provide evidence on natural cognition,

they offer indeed a number of intriguing insights. Statistical learning methods are

labeled as cognitive technologies, rather than cognitive models. Machines equipped

with these methods are viewed as tools for extending human cognition to novel

domains, thus offering a nice perspective on the somehow ill-posed question on

whether or not machines are intelligent.



VIII Foreword

I was partially involved in some of the advances on hybrid random fields with the

authors, but I frankly find that the book goes well beyond the systematic treatment

of the subject. Everyone specifically interested in Bayesian networks and Markov

random fields should not miss it.

Siena, January 2011 Marco Gori
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Chapter 1

Introduction

1.1 Manifesto

“Graphical models are a marriage between probability theory and graph theory”

(Michael Jordan, 1999 [154]). The basic idea underlying probabilistic graphical

models is to offer “a mechanism for exploiting structure in complex distributions

to describe them compactly, and in a way that allows them to be constructed and

utilized effectively” (Daphne Koller and Nir Friedman, 2009 [174]). They “have

their origin in several scientific areas”, and “their fundamental and universal appli-

cability is due to a number of factors” (Steffen Lauritzen, 1996 [189]). For example,

the generality of graphical models is due to the fact that they “reveal the interre-

lationships between multiple variables and features of the underlying conditional

independence” (Joe Whittaker, 1990 [315]). Moreover, “[c]omplex computations,

required to perform inference and learning in sophisticated models, can be expressed

in terms of graphical manipulations, in which underlying mathematical expressions

are carried along implicitly” (Christopher Bishop, 2006 [30]).

Bayesian networks (BNs) and Markov random fields (MRFs) are far the most

popular instances of probabilistic graphical models [237, 167]. They have been at-

tracting the attention of researchers for more than two decades now, and they found

a number of applications to a variety of scenarios. Both of them are expression of

that intimate, secret marriage between a graph and a probability distribution which

Michael Jordan emphasized in his enlightening metaphor. At first glance, BNs and

MRFs represent perfect, complementary counterparts of each other. Bayesian net-

works, indeed, are also known as directed graphical models, since they rely on a

directed, acyclic graphical structure. On the other end, Markov random fields are

undirected graphical models, meaning that an undirected graph underlies their defi-

nition. We will see that the very nature of the respective graphs has a deep connec-

tion with the corresponding probabilistic assumptions, namely the capability of the

models to represent specific statistical dependence/independence relationships over

the random variables that these paradigms picture as vertexes of a graph. It will turn

out that the apparent dichotomy between directed and undirected graphical models

is justified only partially. As a matter of fact, a significant overlap exists between the

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 1–14.
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classes of statistical independences that can be modeled via Bayesian networks and

those representable in terms of Markov random fields. In particular, several popular

families of learning machines, like the hidden Markov model [251], can be seen as

special cases of both paradigms. Nevertheless, the structure of Bayesian networks

can ultimately model classes of probability distributions (i.e., families of indepen-

dence structures) that the undirected graphical structures of Markov random fields

cannot fit, and vice-versa. This has been a strong rationale behind a variety of at-

tempts to develop general, unifying frameworks that can cope with the overall class

of probabilistic independences at large. Most of the efforts the scientific community

made along this direction have lead so far to very generic graphical models, capable

of subsuming the classic frameworks, and whose captivating theoretical properties

were thoroughly investigated and handed out. Unfortunately, “a definition that’s too

general is basically vacuous. [. . . ] The engineering challenge is in finding a de-

cent balance between generality and practicality” (Ben Klemens, 2008 [168]). In

the realms of machine learning, artificial intelligence, and pattern recognition, this

warning addresses—in our humble opinion—those families of machines that either

do not have real algorithms (i.e., that are just a mathematical formalism), or whose

algorithms cannot be applied to real-world data (e.g., intractability may prevent their

application to high-dimensional data).

This book is concerned with the detailed presentation and thorough investigation

of a novel probabilistic graphical model, i.e. the hybrid random field. Mathematical

definitions and proofs of theoretical properties are given in complete detail. In par-

ticular, we will see that the new model actually subsumes and extends both Bayesian

networks and Markov random fields. Most especially, hybrid random fields are

specifically meant to be learning machines, i.e. they come with well-defined training

algorithms (both for discrete and continuous-valued domains) which apply to con-

siderable real-world tasks, possibly involving large-scale, high-dimensional data. A

special emphasis is hence put on applications, and the experimental evidence illus-

trated in the book confirms that (i) hybrid random fields can be learned much more

efficiently than traditional graphical models, scaling up well to high-dimensional

datasets, and (ii) they yield results whose accuracy is at least as good as that ob-

tained using more traditional paradigms.

The book is intended for a relatively wide audience. Graduate students are likely

to benefit from the introduction and survey of the traditional models, as well as from

the effort we put into trying to make the overall treatment of the different topics as

self-contained as possible. Of course, knowledge of basic concepts of mathemat-

ics, statistics, and computer science is required, but most of the critical notions

are introduced (informally, at first) throughout the book, or they are reviewed in

the appendices. More experienced researchers and scientists would probably direct

their scrutiny to the definition of the new model, its properties, and its comparative

performance analysis. Practitioners (coping with real-life problems that may fit a

graphical modeling perspective) might be especially interested in considering the

presented algorithms, and the examples of applications. Finally, scholars with inter-

ests rooted in the cognitive sciences will find a cognitive and philosophical reflection
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on probabilistic graphical models and statistical machine learning in the final part

of the book, as well.

The reminder of this chapter offers a qualitative introduction to some preliminary

insights in probability and graph theory behind the idea of a probabilistic graphical

model (Section 1.2), pointing then out its fundamental concepts and its extensions

(Section 1.3). Some of the milestones in the history of the field are summarized in

Section 1.4, while Section 1.5 hands out the book overview.

1.2 Statistics, Graphs, and Beyond

For more than half a century, the concepts of random event and its probability have

been of the utmost relevance to such areas of computer science as pattern recogni-

tion [73], artificial intelligence [269], and machine learning [30]. The data which

are fed into a machine and, in turn, the very reaction of the machine itself, may

not always be uniquely determined and necessarily deterministic. Under several cir-

cumstances, we need to take into account a degree of uncertainty in the phenom-

ena under consideration, and in their digital representation in the first place. For

instance, a uniquely-defined output may not be computed in cases where the in-

put data are noisy, noise being a random value affecting the information. Under a

similar circumstance, the machine is expected to either reject the input (basically,

refusing to misbehave), or to come up with the most likely response. In the latter

case, we need to be aware of the fact that a certain probability of error (i.e., incor-

rect output) is involved. Again, the machine may be required to adapt to changes in

the environment over time, changes that reflect on the hidden laws that govern the

underlying ‘distribution’ of the quantitative features of the data. Adaptation means

that the machine moves from a model of (or, hypothesis on) these laws to a renewed

one. The new model/hypothesis accounts for the changes in nature, in the light of the

observation of some new empirical ‘evidence’ acquired on the field. Also, nondeter-

ministic computational models have been studied by theoretical computer scientists

for decades.

Concerning the aims and scope of the book, the following two examples will be

particularly useful for placing them in the proper context. In probabilistic reasoning

founded on probabilistic logic, a system may be expected to carry out a process of

automatic logical inference on the basis of partial (or noisy) information, according

to a specified set of formal deduction rules [237, 9]. These rules are expected to

contemplate uncertainty, i.e. to support conclusions that have a definite likelihood

which, in turn, is affected by the knowledge (or, belief) of the probability of specific

consequences given the corresponding premises.

The second example concerns decision-making machines. In statistical pattern

recognition the goal is the development of classifiers that observe an object and

assign it to a class (out of a closed number of alternatives), based on a decision

rule. The object is represented as a collection of features (or, attributes), usually the

components of a real-valued vector. These attributes are expected to form a compact,

characteristic description of the very object in a proper feature space. A feature ex-

traction module is applied in order to capture the attributes from any given object.
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The components of the resulting feature vector are thought of as random variables,

whose probability distribution depends on the class the observed object belongs to.

The decision rule relies on (explicit or implicit) models of such class-conditional

distributions. Parametric models [73] assume a known, parametric form for each

class-conditional probability density function (pdf), e.g. via mixtures of Gaussian

components, and learn the parameters of the pdfs from a training data sample (ac-

cording to some parametric estimation approach, e.g. the maximum-likelihood tech-

nique). Aside from the theoretical limitation of making an arbitrary assumption on

the form of the underlying pdf, there are practical problems with this approach. In

fact, diagonal covariance matrices are often adopted in the implementations, in or-

der to reduce the complexity of the resulting machine in terms of: (i) computational

burden; (ii) robustness (the lesser the parameters, the higher the generalization ca-

pability); and (iii) numerical stability (a Gaussian with diagonal covariance matrix

reduces to a product of univariate Gaussian pdfs which, if represented in the log-

arithmic domain, is just a sum of the arguments of the exponentials). We will say

more on Gaussian mixture models and density estimation in Chapter 5. On the other

hand, non-parametric approaches [278], such as the linear discriminant [210] or the

Parzen window [234], do not require the fixed-form parametric assumption. Un-

fortunately, some of these models are way too simple for capturing the nature of

the class-conditional pdfs. For instance, the linear discriminant is mathematically

justified only under very special conditions on the probability distributions [73].

Others (e.g., Parzen windows) are very complex, since they rely on the linear com-

bination of as many kernels as the number of training data. Moreover, the Parzen

kernels (e.g., standard Gaussian kernels with circular radial basis) entail a local in-

dependence assumption over the features. Although the overall combination of such

window functions converges to the correct pdf in the asymptotic case (progressively

capturing the statistical dependencies as the number of training examples increase),

in the limited-sample case the local independence assumption affects the capability

of the machine to result in a reliable model of the dependencies at large. Another

non-parametric family of machines that learn from data, and that are dramatically

popular in the machine learning community, is represented by artificial neural net-

works (ANNs) [29]. Most neural networks realize models of regression, or density

functions, in an implicit manner. The machine is expected to adapt its ‘weights’ (i.e.,

real values associated with its neuron-to-neuron connections) in order to develop an

internal representation of the correlations among the input variables. In general,

though, the ANN is not readily interpretable as an explicit model of the pdfs (or, of

the statistical dependencies among the variables). This is due to three factors: (i) the

network architecture tends to hide the properties of the general laws the ANN has

learned, encapsulating them within internal representations (that are effective, but

hardly readable from an external observer); (ii) the network as a whole does not sat-

isfy, in general, the axioms of probability (unless explicit constraints are imposed);

(iii) the criterion (or objective) function used for training the weights does not focus

on probabilities (in most cases, it is somewhat related to the squared distance be-

tween the actual network output and the ‘target’ output a supervisor passes on to the

machine during the training process). Since certain relevant families of ANNs can
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be seen as particular cases of graphical models, we will go back to the issue later on

in the book, especially in Chapter 3.

These examples should make it clear that it may not be simple—as it might

seem, at first glance—to develop a compact, explicit, and feasible representation

of probability distributions (and of the underlying statistical dependencies among

the random variables) as the number of the variables and the amount of data become

significant. In particular, modeling quantities such as the joint distribution of a given

set of n variables, namely X1, . . . ,Xn, by straightforward application of the chain

rule for joint probabilities, stating that P(X1, . . . ,Xn) = P(X1)P(X2 | X1) . . .P(Xn |
X1, . . . ,Xn−1), grows intractable as n increases. Furthermore, it would require an ex-

plicit model, estimated from the data, for each one of the probabilistic quantities

involved in the product. Now, the question is: can we come up with a truly general

solution to these problems?

Before probabilistic graphical models were introduced, there were no special

reasons why the answer to our last question should arrive from graph theory [67].

Graphs have long been one of the most crucial data structures in computer science

[212]. They are used to represent a variety of relations among individual data. Appli-

cations can be found in physics and chemistry (where graphs can be used effectively

for modeling molecules), in biology and bioinformatics (e.g., metabolic networks

and protein structures), in artificial intelligence (e.g., semantic knowledge and/or

relations between entities in natural language processing, in the form of semantic

networks), in social sciences (e.g., social networks), World Wide Web-related areas,

etc. A number of fundamental algorithms, often NP-complete, have been devel-

oped for solving classic problems on graphs (counting, coloring, spanning, match-

ing, finding cliques, finding paths, etc.) [51].

The idea of studying probabilistic properties of graphs traces back to the sem-

inal work by Gilbert, who introduced the notion of random graph in 1959 [112].

An equivalent model—the ER model—was independently proposed at the time by

Erdös and Rényi in [81]. In these models, the structure of the graph is considered to

be random, meaning that a process is assumed to introduce new edges between pairs

of nodes picked up at random, independently and uniformly. This entails a certain

pattern of connectivity over the nodes. In recent years, the random graph was ex-

tended to the popular construct of random network by Barabási and Albert (among

others), whose paradigm is also known as the scale-free (or BA) model [13, 5]. This

relies on the assumption that the random graph process is ruled by agents who add

new, independent links to the network topology according to a common probability

law (eventually leading to a power-law distribution of the graph edges), so that a

spontaneous ‘preferential attachment’ mechanism emerges.

Only a few decades after Gilbert the statistical machine learning community be-

gan to exploit the idea of developing novel paradigms that combined probabilistic

concepts and graphs in a number of intriguing ways. Since then, several machine

learning approaches involving graphs have been proposed and studied in the litera-

ture. Although an exhaustive categorization is difficult, four broad, major classes of

paradigms can be pointed out:
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1. Probabilistic graphical models [154, 174], where statistical correlations are

jointly modeled by means of graphical structures and conditional probability

distributions involving sets of random variables. This is the family of learning

machines that this book is about;

2. Relational learning, or—more precisely—inductive logic programming (ILP)

[192], where symbolic representations based on first-order logic are derived from

examples and background knowledge;

3. Statistical relational learning [109], which is a research area focusing on sys-

tems that integrate relational formalisms (such as first-order logic) and statistical

models (such as probabilistic graphical models). A brief survey of this research

field will be offered in Chapter 8;

4. Machine learning over structured domains (i.e. over feature spaces that involve

a graphical representation [125], where (roughly speaking) each datum is rep-

resented by a graph, and an automatic learner is expected to compute functions

over graphical inputs. Kernel machines with kernels defined over graphs are an

example [163, 105, 44]. Other instances can be found in the neural networks

community [308]. Ad hoc neural network architectures and training algorithms

were proposed and thoroughly investigated, including recursive neural networks

[285], graph neural networks [116], and other models [309].

In summary, graphical models realize the tight binding between probability and

graph theory by representing random variables as the nodes of a graph, and sta-

tistical (in)dependencies among the variables by means of the graph edges. The

definition is completed introducing suitable models of the conditional probability

distribution of each variable given (a subset of) the others. A graphical model is ex-

pected to yield an overall representation of the joint (or, of a conditional) probability

distribution defined over the whole set of variables. As a distinguishing feature, the

expression ‘graphical model’ implies that the machine itself is a graph.

1.3 Probabilistic Graphical Models

The most straightforward manner of using a graphical structure for representing a

joint probability distribution P(X1, . . . ,Xn) over n random variables would be to use

a complete (i.e. fully connected) graph having n nodes, one for each variable, and

edges between any pairs of vertices representing all possible conditional dependen-

cies among the variables. Models for expressing the conditional distributions would

be attached (as ‘labels’) to the vertices, somehow encapsulating the individual terms

involved in the factorization of the joint density, in the form of a product, according

to the chain rule. Albeit feasible, this perspective would result of limited interest,

both from the conceptual and the computational viewpoints. In fact, it would turn

up to be a mere data structure, not offering any advantages over the raw proba-

bilistic definition of the problem. On the contrary, graphical models are expected

to yield nice properties in terms of expressiveness, and advantages in terms of the
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complexity of computing the joint distribution. First of all, we want them to exhibit

someway a sparse representation of the connectivity between variables, such that an

edge is introduced in the structure only if it captures a relevant, direct statistical cor-

relation. Then, we want the graphical model to rely on a certain principle of locality,

meaning that the overall joint density can be factorized over conditional probabili-

ties that are defined over ‘neighborhoods’ of individual variables. At the same time,

of course, the resulting factorization shall not only be easier and/or faster to com-

pute, but it must be consistent with the real probability distribution. This implies

that either the relevant statistical correlations hold only at the local neighborhoods

level (that is, distant variables are independent of each other) or, in the general case,

that non-neighboring variables can be thought of as affecting each other only as a

side-effect of influencing intermediate, neighboring variables. This requirement can

be seen as an instance of the popular Markov property.

One point we would stress is that, in the perspective taken in the book (which is

rooted in computer science and engineering), graphical models are not (or should

not be) just a powerful formalism with nice theoretical properties. In the first place,

they are useful learning (and reasoning) machines. As we say, this means that, aside

from inference, each instance of a graphical model shall come with effective learn-

ing algorithms. To this end, the meaning of the word ‘learning’ is twofold. On

the one hand, the graphical structure has to be inferred from a collection of ex-

amples (the training data set) collected on the field. Relying on structure learning

techniques, the model is expected to develop a topology which best captures the

(in)dependencies among the variables, such that it fits well the training data accord-

ing to some evaluation criterion which must be mathematically sound. Although the

graph may be a viable representation of prior knowledge on the application domain,

easing the communication of results among scientists, in the general case the statis-

tical relations among the variables are not known (or they are known only partially)

in advance. Structure learning methods are thence sought that can discover the re-

lations automatically. It goes without saying that, since the set of possible graphs

for a fixed number of nodes is countable and finite, in principle the optimal struc-

ture could be discovered by a direct, exhaustive evaluation of all alternatives. As

a matter of fact, it is seen that this would be infeasible, for at least one (obvious)

reason. In fact, in terms of computational complexity, the approach is utterly in-

tractable as the number of variables increases. This problem is clearly taken into

account in the development of suitable methodologies for structure learning. On the

other hand, once a structure is given (either known or learned), algorithms for learn-

ing the local (conditional) probability distributions associated with the variables are

needed. Their task is usually referred to as parameter learning. The expression im-

plicitly depicts the graphical model as a parametric machine, assuming a fixed and

known form for the expression of the probability densities involved in the estima-

tion of the overall joint distribution. Thus, the densities are uniquely determined

by the values of a certain set of parameters (like in the case of a Gaussian density,

which is fully known once we fix specific values for its parameters µ and σ2). Algo-

rithms for parameter learning, similarly to structure learning procedures, need to be



8 1 Introduction

computationally feasible and robust. We will see that, basically, both of them focus

on the same evaluation criterion, stemming out of the maximization of a function

related to the likelihood of the model given the data. All of the families of graphical

models presented in the following chapters will be provided with an account and

analysis of suitable algorithms for structure and parameter learning. The behavior

of the algorithms will be evaluated on the field, as well.

The two most popular families of graphical models are reviewed in detail in

the book, namely Bayesian networks and Markov random fields (Chapter 2 and

Chapter 3, respectively). Since the novel hybrid random field we introduce in the

following chapters builds on these traditional models, their thorough description

and understanding will be necessary. Several extensions to the models were pro-

posed in the literature. Some of the most significant will be reviewed concisely as

well, including dynamic Bayesian networks and hidden Markov models (which ex-

tend the basic BN model to time series), conditional random fields (which are a

discriminative version of Markov random fields, also suitable for sequence mod-

eling), and some families of neural networks (Hopfield networks and Boltzmann

machines, thought of as particular cases of MRFs). Dependency networks [128] and

graphical chain models (also known as chain graphs) [191, 314] are also impor-

tantly related to hybrid random fields. Such relationships are briefly discussed in

Chapter 4.

Other types of graphical models that are not covered in the book are factor graphs

[180], clique trees [155], and ancestral graph Markov models [257]. Factor graphs

are undirected, bipartite graphs, or hyper-graphs, having two types of nodes, namely

the variable nodes and the function (‘factor’) nodes. It is assumed that a function

defined over the whole set of variables (for instance, their joint probability) can be

factorized into the product of the factor functions. Each factor, in turn, is defined

over a subset of the variables. Edges connect each factor vertex with all the variable

nodes that form the definition domain of the corresponding factor function. Factor

graphs can be used for the efficient computation of the marginal distribution of in-

dividual variables given the others, by means of the sum-product algorithm [180].

Thereafter, factor graphs may be viable models for carrying out Bayesian inference

over a set of random variables. Clique trees, also known as junction trees, are the

transformation in the form of trees of generic graphs (roughly speaking, cycles are

removed via the introduction of meta-nodes that group up and replace the original,

cyclic subgraphs). Used along with the tree-junction algorithm [155], clique trees

are an effective way of accomplishing exact marginalization (i.e., Bayesian infer-

ence) over a generic graphical structure. Finally, an ancestral graph Markov model

represents random variables as the nodes of an ancestral graph, that is a structure

composed of a subgraph whose edges are directed (like in a BN), another subgraph

which is undirected (like in a MRF), and a set of bidirected edges that basically con-

nect the two subgraphs. The resulting independence model, which is closed under

marginalization and conditioning, can be shown to contain all independence models

having the form of a directed acyclic graph.
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1.4 A Piece of History

Implicitly, early contributions to the field range from the seminal work by Thomas

Bayes (a Presbyterian minister), published in 1763 [17], which constitutes the basis

for Bayesian statistics and the germinal form of his homonymic theorem (see Ap-

pendix A), through the research conducted in 1906 by Andrey Andreyevich Markov

(a mathematician excommunicated from the Russian Orthodox Church) on stochas-

tic processes and the conditional independence property named after him [207], to

the generalization of Markov chains proposed by Andrey Nikolaevich Kolmogorov

in 1936 [178].

In 1902, in his book Elementary Principles of Statistical Mechanics [111],

J. Willard Gibbs provided the scientific community with a model of interacting

particles, thought of as being located at given sites within a substance and being

in a certain state. The interactions among particles are assumed to be mostly local,

within a certain neighborhood of each particle, and to affect the state of neighboring

particles. The local energy produced by the interactions contributes to the overall

energy of the system. In turn, the probability of the system being in a certain state is

expressed, in terms of the Gibbs distribution, as a function of its energy. A similar

expression is found in Markov random fields, as we will see in Chapter 3, where

MRFs are informally introduced by referring to another example rooted in physics

(and strictly related to Gibbs’ model), namely the Ising model, developed in the

early Twenties [194].

In 1913, John Henry Wigmore (jurist, and expert in ‘law of evidence’) proposed a

graphical method, since then known as the Wigmore chart, which was conceived as

a tool for analyzing the flow of legal evidence in trials [316]. Representation of the

data and principles of inference in Wigmorean analysis can be seen as the vanguards

of modern Bayesian networks.

Path analysis, nowadays widely used in such areas as statistics, World Wide

Web applications, and the social sciences, was originally proposed and investigated

in biological sciences by geneticist Sewall Green Wright, in the early Twenties,

in his famous paper “Correlation and Causation” [318]. Wright developed popu-

lation genetics, relying on a biological model that is basically a rough prototype

of causal Bayesian networks, that contributed establishing the fundamentals of the

modern synthesis between evolution theory and genetics. In Wright’s path analysis

the model can be represented as a directed graph encapsulating inheritance, muta-

tions and genetic drifts in populations of animal species.

As reported in [189], also the work (dated 1935) by Maurice Stevenson Bartlett

on contingency tables interaction [15] has to be considered a milestone in the his-

torical path toward the establishment of probabilistic graphical models, due to its

overlapping with the equivalent notion of interaction in statistical mechanics.

The formalization of the construct of probabilistic graphical model, with its con-

temporary meaning in statistics and machine learning, can be traced back to the year

1974 with John Moussouris’ paper on Markov random systems under the Gibbs dis-

tribution [221]. Markov random fields received their quintessential ratification in

1980, thanks to Ross Kindermann and James Laurie Snell’s work [167]. A lustrum
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later Bayesian networks followed, coined in one paper of Judea Pearl’s, published in

1985 [235]. Their mature systematization was brought about by Pearl in 1988, with

the book Probabilistic Reasoning in Intelligent Systems [237], and Richard Neapoli-

tan in 1990, with the book Probabilistic Reasoning in Expert Systems [225]. Exten-

sions and variants of these classic graphical models (dynamic Bayesian networks,

conditional random fields, etc.) followed them up, as referenced in Section 1.3 and

in the following chapters.

Excellent surveys on the topic can be found in [265, 47, 189, 154, 226, 152]. To

the best of our knowledge, the most comprehensive textbook covering both learning

and reasoning techniques for graphical models is Probabilistic Graphical Models

by Daphne Koller and Nir Friedman, published in 2009 [174]. Of course, this short

list of introductory texts is by no means intended to be exhaustive, given the con-

siderable amount of high-quality presentations that can be found on the subject.

Concerning instead the latest developments in the area of graphical models, some

of the most representative results can be found—just to mention a few papers—in

[6, 171, 115, 323, 241, 326, 200, 277, 182].

1.5 Overview of the Book

In the next two chapters we review in detail the most relevant families of graphical

models, namely Bayesian networks (Chapter 2) and Markov random fields (Chap-

ter 3). Thorough understanding of these paradigms (including the underlying math-

ematical concepts, as well as the algorithms) is necessary, since they can be seen

as the building blocks we are later going to use in the definition and development

of the novel hybrid framework. The subsequent three chapters form the core of the

book. First, they introduce the hybrid random field model (Chapter 4), providing

the reader with its formal definition, its theoretical properties, and its learning al-

gorithms. Second, they extend the paradigm to continuous-valued variables (Chap-

ter 5), outlining a variety of techniques for estimating conditional density functions

defined over real-valued random vectors. Several applications of graphical models

are then presented (Chapter 6), including an evaluation on the field of the proposed

model, which is compared to the traditional paradigms. Finally, a concise philosoph-

ical reflection on graphical models (from a cognitive science standpoint) is given in

Chapter 7. Here’s a complete outline of the book:

• Chapter 2 introduces the idea of Bayesian network (a.k.a. belief network) in a

qualitative manner, through the notions of Bayesian inference and causality. A

formal definition is then given, stressing concepts that will play a major role in

the definition of hybrid random fields: Markov condition, d-separation, Markov

blanket, and their relationship with the factorization of the overall, joint distribu-

tion of the variables represented by the whole network. Algorithms for learning

both the parameters and the structure (i.e., the conditional independences among

the variables) of the model from a training data sample are presented. The naive

Bayes classifier is then discussed, showing that it can be seen (and justified) as a

particular instance of Bayesian network. The chapter is concluded by a summary,
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a survey of generalizations of the basic model (such as dynamic Bayesian net-

works and hidden Markov models), a selected sample of real-world applications

of Bayes nets in several areas of interest, and a list of the main points of strength

and limitations of the paradigm;

• Chapter 3 makes a step-by-step introduction to the major ideas behind the con-

cept of Markov random field (a.k.a. Markov network), starting from stochastic

processes, then moving to the general notion of random ‘field’ (in mathematics,

over topological spaces; and in physics, by referring to the Ising model). The role

of potential energy of local neighborhoods over a lattice (an undirected graph) is

pointed out, along with the motivations behind the choice of modeling the overall

joint density via the Gibbs distribution. To this end, once the formal definition of

the model is given (involving maximal cliques, feature functions, and potential

functions), the Hammersley-Clifford theorem is stated, handing out the theoret-

ical justification for the definition of Markov random field in the light of the

equivalence between the assumption of the Gibbs distribution and the emergence

of the Markov property (at the local and global level). It will be shown that the

computation of the overall likelihood of the model given the data is intractable.

This provides us with the rationale for resorting to a simplified, yet well-behaved

alternative measure, namely Besag’s pseudo-likelihood (relying on Markov blan-

kets). Algorithms aimed at the maximization of the pseudo-likelihood criterion

are then outlined for learning the MRF parameters (that is, the weights of the po-

tential functions, via gradient-based methods) and its structure (via an efficient,

regularized search strategy in the space of possible graphs). The chapter con-

cludes with a concise summary, an overview of significant variants of Markov

networks (e.g., conditional random fields, Hopfield networks, Boltzmann ma-

chines), a synthesis of some representative applications, and a consideration of

advantages and drawbacks of the Markov network model;

• Chapter 4 introduces the hybrid random field model (HRF), in the discrete vari-

ables setup. Motivations for the development of the new paradigm are offered

first, relying on the analysis of the limitation of BNs and MRFs outlined in the

previous chapters, as well as on the crucial point of the computational complex-

ity of learning algorithms for datasets involving a large number of variables (that

is, the problem of scalability). The model—which is expected to yield a suitable

representation of the joint probability distribution of its variables—is then de-

fined, in mathematical terms, as a collection of Bayesian networks over a set of

random variables (one Bayesian network for each one of the variables) that sat-

isfies certain conditions involving the concepts of directed and undirected union

(over graphs). Eventually, the definition can be shown to entail (as a theorem)

that the model turns out to be a well-defined representation of a joint probability

distribution, and that this joint distribution can be recovered (via Gibbs sampling)

from the HRF ‘modules’, namely the conditional distributions of each variable

given its Markov blanket in the corresponding BN. The chapter discusses also the

difference between this definition of HRF and a looser definition of the paradigm

that was presented earlier in the literature (which assumed the modularity prop-

erty as an explicit part of the definition). We then give theorems proving that
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the class of independence structures representable via hybrid random fields is

larger than the corresponding classes modeled via either Bayesian networks or

Markov random fields. More precisely, the former turns out to be the union of the

latter ones. Aside from theoretical properties, our main concern is the scalabil-

ity of (learning techniques for) the model, that is its capability of being applied

effectively to tasks having real-life scale. In this respect, the chapter introduces

techniques for inference (relying on ordered Gibbs sampling), parameter learning

(a straightforward replica of parameter learning in BNs, iterated over the small

modules composing the HRF), and structure learning (relying on a fast, approx-

imate algorithm called ‘Markov Blanket Merging’). Complexity issues are then

discussed, showing that the resulting learning machine is much more efficient

than traditional paradigms. The major differences with respect to other related

approaches (e.g., dependency networks and graphical chain models) are finally

evaluated;

• Chapter 5 generalizes hybrid random fields to domains involving continuous

variables. Although a large part of the literature on graphical models assumes

discrete random variables, several relevant and difficult problems involve real-

valued random vectors. This is the case for most applications of statistical pattern

recognition and machine learning. The chapter gives the reader a perspective on

this scenario by stressing the urgency of dealing with real-valued domains. It then

points out that the definition and the formal properties of HRFs do not change,

in principle, in the continuous framework, provided that proper models and es-

timation techniques are given for modeling the conditional pdfs associated with

the nodes of the graphs. Fundamental concepts underlying parametric estimation

techniques are then reported, leading to the notion of parametric HRF. An em-

phasis is put on Normal distributions and Gaussian mixture models. Maximum-

likelihood estimation of the parameters of (mixtures of) Normal densities is re-

viewed in detail. Semiparametric hybrid random fields are introduced next. They

rely on a mathematical result, known as the ‘change of variables’ theorem, that

allows for the development of a nonparanormal (or nonparametric Normal) tech-

nique for the estimation of joint and conditional pdfs without making any prior

assumption on the form of the modeled density functions. An alternative frame-

work, the nonparametric hybrid random field, is presented eventually, relying on

kernel-based estimation of conditional densities (along the lines of the classic

Parzen window method). Effective application of kernel-based density estima-

tors requires to cope with the problem of bandwidth selection. A viable solution

to this model selection problem is offered in the form of a double-dichotomic

search algorithm, based on the cross-validated log-likelihood (CVLL) criterion.

Since the complexity of computing the CVLL function is quadratic, an efficient

and mathematically sound approximation is introduced via the dual-tree recur-

sion method (based on a Monte Carlo technique). Note that these techniques are

suitable for parameter learning in hybrid random fields and in other graphical

models, as well. Therefore, the reader may usefully regard the presented density

estimation methods also as a complement to the material covered in Chapters 2–

3. Finally, Chapter 5 shifts its focus to structure learning in the continuum setting.
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It will be seen that the Markov Blanket Merging algorithm developed for discrete

HRFs may still be applied, with slight modifications, provided that a viable sta-

tistical test is used for determining the correlation between pairs of variables

(i.e., during the model initialization phase), and that suitably revised heuristic

functions are adopted;

• Chapter 6 puts the new model at work. As we say, we are concerned with learn-

ing machines that effectively learn and prove to be useful in real-world scenar-

ios. This chapter describes some applications of hybrid random fields, with sys-

tematic experimental comparison to more traditional (graphical) models and ap-

proaches. A general feature selection technique, based on the identification of

suitable Markov blankets, is introduced first. Experiments are then carried out on

several datasets, including e.g. the identification of boundaries between introns

and exons in human DNA sequences. Several pattern recognition tasks (over dis-

crete and continuous domains) are then considered, including the discrimination

between positive and negative individuals in a lung cancer diagnosis applica-

tion. A link-prediction application of the utmost relevance to the World Wide

Web is also presented, showing how graphical models can be used for predict-

ing/suggesting references in scientific papers, or for developing recommender

systems over a movie database. These tasks are formalized in terms of a ranking

strategy relying on a probabilistic scoring function realized by graphical models.

Presentation of the experiments includes an analysis of the behavior of HRFs, and

a comparative evaluation of the algorithms for parameter and structure learning

both in terms of prediction accuracy and computational burden. The results bring

empirical evidence in support of the central point of this book, i.e., that hybrid

random fields scale up well to large datasets, displaying a level of accuracy which

is (on average) at least as good as that achieved by traditional graphical models,

along with significant improvements in terms of learning efficiency;

• Chapter 7 offers a philosophical analysis of some issues concerning the relation-

ships between statistical machine learning (and, in particular, research on prob-

abilistic graphical models) and the cognitive sciences [18, 19]. First, a couple

of arguments is put forward in order to correctly locate artificial intelligence—

of which machine learning is regarded as a branch—within the framework of

the cognitive and behavioral sciences [22, 159]. In this respect, we argue that

a correct philosophical interpretation of machine learning and AI should avoid

the misguiding (albeit widespread) conception according to which the ultimate

success of AI research depends on whether natural cognition can be successfully

explained in terms of computational processes. Then, we suggest that a fruitful

shift in the philosophy of AI would consist in moving from a cognitive science

perspective to a cognitive technology perspective, or—in even more philosophi-

cal terms—from a view of machine learning and AI as ‘descriptive’ sciences to

a conception of them as ‘normative’ sciences. A paradigmatic application of this

perspective to a couple of philosophical problems—involving the role of sim-

plicity in theory choice and the traditional class of cognitive ‘virtues’—is finally

offered, with an explicit focus on the statistical machine learning framework un-

derlying this book;
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• Chapter 8 hands out the final remarks and draws the main conclusions, outlining

some intriguing directions for further research within the proposed paradigm;

• Appendix A and Appendix B state the fundamental definitions, results, and

properties in probability and graph theory respectively, which are systematically

exploited and referred to throughout the book. Although such appendices are not

meant to be exhaustive, given the breadth and complexity of the involved fields,

they are instead expected to make the book as self-contained as possible, also to

less experienced readers.



Chapter 2

Bayesian Networks

“Tho’ distant objects may sometimes seem productive of each

other, they are commonly found upon examination to be link’d

by a chain of causes, which are contiguous among themselves,

and to the distant objects; and when in any particular instance

we cannot discover this connexion, we still presume it to exist.”

David Hume, 1739 [147]

2.1 Introduction

For some mysterious reasons, Bayesian networks are often introduced in the lit-

erature with examples concerning weather forecast (e.g., ‘Is it likely to be sunny

on Sunday given the fact that it is raining on Saturday, and that my granny’s back

hurts?’), or gardening issues (e.g., ‘How plausible is it that my courtyard is wet given

the fact that it is raining and that the sprinkler is on?’). This may give the reader the

somewhat embarrassing idea that Bayesian networks are a sort of tool you may be

wishing to buy at the “Lawn & Outdoor” level of the shopping mall at the corner. As

a matter of fact, there are more intriguing, yet useful, domains: for instance, soccer

games1. Suppose you want (anybody wants) to make a prediction on whether your

favorite soccer team will win, lose, or draw tonight International League game. You

can suitably describe the outcome of the match as a random variable Y , possibly

taking any one of the three different values w (win), l (lose), or d (draw), according

to a certain (yet, unknown) probability distribution. As unknown as this distribution

may be, some probabilistic reasoning, and your prior knowledge of the situation,

may help you out predicting the final outcome. First of all, you might rely on your

estimate of a certain prior probability P(Y ) of either w, l, or d (if you do not pos-

sess such a prior, you are definitely not a soccer fan). This estimate may involve

statistical evaluations on expected competitiveness of the two teams, their current

domestic and international rankings, the recent history of their performance, etc. A

reasonable estimate of P(Y ) may lead to a likely prediction of the outcome, yet in-

volving an ineluctable risk (i.e., probability) of committing a prediction error. Now,

suppose you spend your night watching the game on TV, and that the first half is

just over. The outcome of the first period may be treated as a random variable X ,

as well, possibly assuming any one of the same three values that Y may take, with

1 US readers will forgive us for not picking up American football as an internationally pop-

ular sport. Nonetheless, they may appreciate the use of the word ‘soccer’ instead of ‘foot-

ball’, tackling any legitimate misunderstandings.

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 15–41.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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probability distribution P(X). Now, before the game starts over, the knowledge you

acquired at break time may be used as ‘observed evidence’ that influences (i.e., re-

fines) your prediction of the final value of Y . In fact, instead of relying on P(Y ) only,

your prediction can now try to exploit the quantity P(Y | X), namely the posterior

probability of Y given the evidence X . If you repeat the calculation of P(Y | X) in

real-time while continuing watching the second half, i.e. as long as you acquire new

evidence, the prediction becomes more and more likely. By the way, and technically

speaking, after 45 minutes it is no longer a prediction, unless the referee goes for

extra time. The question is: how can we use our prior knowledge, along with the

new evidence, in order to come out with a mathematically sound prediction of the

posterior probability? Answer to the question is yielded by the good, old Bayes’

theorem2 [73], which states that

P(Y | X) =
P(X | Y )P(Y )

P(X)
(2.1)

where the quantity P(X | Y ) is the likelihood of the evidence given Y , expressing

how likely it is that the observation X complies with a specific outcome Y . Bayes’

theorem is a sort of little magic that allows us to transform our prior probabilistic

knowledge of an event into a more robust, posterior knowledge of its probability

(given that new evidence has been observed, which has an influence on the likeli-

hood of the event itself). As a major example, Bayes’ theorem is the heart of statis-

tical pattern recognition, where an object X is assigned to a class Y (out of a set of c

possible, disjoint classes) based on the maximum a posteriori probability of Y given

X (in fact, given a suitable representation of the very object).

The silly, yet effective, example of the soccer game implicitly conveys a gen-

eralization of the reasoning we built upon the bare application of Bayes’ theorem.

Indeed, a train of consequences could be hypothesized along the following line: we

begin, before the match has started, with the prior probability of our team winning,

losing, or drawing the match. Upon observation of evidence X1 (e.g. the last minute

breaking news that our goalie is sick and will be replaced by a 16-year old rookie)

we calculate the new, posterior probability P(Y | X1) of the outcome given the evi-

dence via Bayes’ rule. Later on down the game new evidence X2 is acquired, since

it turns out that a penalty is assigned to the rival team. Let us assume, as in this

instance, that X1 and X2 are independent of each other. Once again, we resort to

Bayes’ rule in order to further refine our prediction of the final outcome of the game

given all the evidence collected so far, namely

P(Y | X1,X2) =
P(X1,X2 | Y )P(Y )

P(X1,X2)

=
P(X2 | Y )P(X1 | Y )P(Y )

P(X2)P(X1)

=
P(X2 | Y )P(Y | X1)

P(X2)

(2.2)

2 Please refer to Appendix A if you are unfamiliar with the fundamentals of Bayesian statistics.
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where the independence between X1 and X2 has been exploited, the quantity P(Y |
X1) was obtained above and it now plays the role of the ‘prior’, and the ratio

P(X2 | Y )/P(X2) expresses the impact that the new evidence X2 has on the final

outcome Y . The scheme can be iterated any time new evidence, say Xt , is observed

at subsequent time t, allowing for a progressive refinement of the prediction. Let us

define our prior confidence in a specific outcome, i.e. our subjective evaluation of

probability P(Y ), as our belief. Then, the process we just described is an instance

of what we can call a belief-propagation dynamics. Technically, it is referred to

as Bayesian inference. Albeit rudimentary, the example above contains the germs

of at least three major ideas: (i) there may be a causal relationship between ran-

dom variables, which expresses an underlying semantic aspect (i.e., knowledge) of

the phenomena under investigation; (ii) conditional probabilities of certain random

variables given others (in particular, Bayes’ posterior probabilities) are a suitable

way of quantifying such causality relations in probabilistic terms; (iii) a belief (i.e.,

probability) can be ‘propagated’, leading to refined evaluations of posterior prob-

abilities of certain variables given the observed value (or, the refined, propagated

posterior probability) of others.

The very idea of a causal, binary relation between random variables implies,

from an algebraic standpoint, the existence of a graph G that represents the relation

itself. The vertexes of G are random variables, whilst edges represent conditional

dependencies between pairs of such variables. A more intriguing (and, someways

more realistic) example may help us developing this idea further. The example is

a simplified version of a probabilistic expert system, suitable for assisting diagnos-

tics or health-care applications. Consider the directed, acyclic graph shown in Fig-

ure 2.1.3 Each vertex represents a particular condition of an individual. Conditions

are thought of as discrete, binary variables having ‘true’ or ‘false’ as possible out-

comes. For instance, ‘Genetic predisposition to diabetes’ means that the individual

has/has not a family history of diabetes. This kind of genetic diathesis has a cer-

tain (prior) probability distribution. The meaning of the other vertices in the graph

should be self-explanatory, accordingly. In real-world applications, priors for the

different random variables may be estimated using frequentist, descriptive statistics

over a representative sample of the population, accomplished via medical screening.

The edges in the graph, say (X ,Y ), have a fundamental, twofold meaning. In an

abstract sense, they denote a causality relationship, meaning that the truth value of

X exercises a certain causal effect on the likely outcome of Y . In a probabilistic

sense, they imply statistical dependence between the variables X and Y , suitably

expressed by means of (posterior) conditional probability distributions in the form

P(Y | X). For instance, the presence of kidney failure affects the likelihood of the

patient undergoing a dialysis treatment, while this treatment is independent of the

presence/absence of asthma. Obesity has not a direct causal effect on dialysis, but it

increases the risk for diabetes mellitus which, in turn, renders renal failure more

probable, eventually increasing the likelihood of a dialysis treatment altogether.

More broadly, the probabilistic properties of a variable Y are affected by those of

3 Please refer to Appendix B for a review of the fundamentals of graph theory.
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Genetic predisposition to diabetes Obesity

Diabetes Asthma

Renal f ailure

Dialysis

Fig. 2.1 An example of causal network concerning some medical conditions

the variables that are parents of X within the graphical structure. The very nature

of this particular inferential mechanism suggests that we are undergoing an implicit

Markov assumption.4

Application of this probabilistic graph to prediction or decision making requires

a complete specification of two distinct elements: (i) the graphical structure, i.e.

the random variables involved, and their mutual relationships of causality (that is,

of statistical dependency). This confers a semantics to the model, and it requires

prior knowledge of the domain provided by human experts in the field; (ii) the

prior and the conditional probability distributions for all possible combinations of

values of the random variables. This type of directed, acyclic graph is known as

a causal network, which is also a first, particularly relevant instance of Bayesian

network.

A sort of mystical aura seems to pervade the idea of Bayesian network, and of

causal network in particular. Not only this is due to the fact that Thomas Bayes,

who formulated a special case of the homonymic theorem in the eighteenth century

[17], was a Presbyterian minister showing a deep, yet accidental interest in prob-

ability. In point of fact, no later than the year 2003 the physicist Stephen Unwin,

in his book The Probability of God [307], uses Bayesian inference (and, implicitly,

a causal network with a simple structure) in order to estimate the probability that

God exists upon ‘observations’ of related evidence. Unwin estimates first the prior

probability of God existing to be 0.5, as if flipping a coin. He then fixes (arbitrary)

values for the likelihood of six different, major types of evidence given the existence

of God. Instances of such evidence are: goodness of human beings, the evil that men

do, intra- and extra-natural miracles, etc. Eventually, Bayesian inference is applied

resulting in a 0.67 estimated probability which, via an additional bias rooted in faith,

4 The Markov property, which is of the utmost importance to this book, will be formally

introduced in Section 2.2.
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adds up to 0.95. In our humble opinion, this underlines simply the pervasive effect

of bias in statistics (providing us with further motivation in the development of the

unbiased non-parametric estimation techniques that will be introduced in Chapter

5). Unwin’s approach makes the adoption of the term ‘belief propagation’ partic-

ularly sound. It is noteworthy that another physicist, Larry Ford, applied the same

causal network, evidence, and inference formulae, but using different estimates for

the prior probabilities and the conditional likelihoods, coming up with a (possibly

even sounder) estimate of the probability of God as large as 10−17 [290]. No doubt

this instance of Bayesian statistics highlights the width of the range of its plausi-

ble applications. Moreover, it shows how the same graphical structure of a certain

causal network may lead to completely different models and conclusions according

to the prior and conditional probability distributions of individual variables.

The examples we made so far, and the very concept of causal network, may be

somewhat misleading to the aim of understanding the general concept of Bayesian

network. Indeed, they convey the ideas that (i) directed edges in the graph imply a

causal relationship, and that (ii) all pairs of variables are dependent of each other

if and only if a directed edge exists between them (in a way or the other). The

general definition of Bayesian network, which will be given in a formal manner

in Section 2.2, does not fulfill these expectations. It turns out that BNs are more

general models, where the focus in on statistical independencies rather than depen-

dencies, without any particular semantic assumption on possible causal relations

among their variables. As a matter of fact, Bayesian networks are a simple, effec-

tive way to represent and calculate joint probabilities over a set of random variables

under a Markov assumption. Exploiting the Markovian property (in order to ob-

tain a viable factorization of the overall, joint distribution) requires the fundamental

concept of d-separation, which relies on the idea of blocked paths within a graph

(Section 2.2.1). Roughly speaking, the point of d-separation is that if all paths in the

graph leading from one random variable (say, X) to another (say, Y ) are blocked by

a certain subset S of different variables, then X and Y are conditionally independent

of each other given S. The basic idea is refined, and finalized, by means of the notion

of Markov blanket (as explained in Section 2.2.2), viz. a subset of the vertices of the

graph that makes the distribution of a certain variable independent of all the others

once its Markov blanket is given. This represents the building block of the desired

factorization of the overall joint distribution.

Once the definition of Bayesian network is given, and the mechanisms of infer-

ence in Bayesian networks are pointed out, we are faced with a major problem:

how can we fix the parameters that describe the conditional probability distributions

associated with the random variables in the network? In the examples we made

throughout this section we simply assumed that estimates of the probability distri-

butions were (somewhat subjectively) known, expressing a sort of arbitrary belief.

In real world scenarios, on the contrary, data are collected on the field, and the

distributions are not known in advance. Section 2.3 covers this topic, taking a fre-

quentist approach to parameter estimation from a given ‘training’ sample. Tricks

for escaping the pitfalls of undersampled co-occurrences of specific outcomes of
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the variables are adopted, in order to skip singularities in the limit case, as well as

to avoid numerical stability problems.

Parameter learning can come out with an accurate estimation of the conditional

probability distributions, but it requires another form of prior knowledge, that is the

graphical structure of the network. In other words, the graph which captures the

(in)dependencies among the variables is expected to be fixed. Also this requirement

is realistic only under specific circumstances, e.g. when the relationships among

the variables do express some higher-level knowledge on the application domain, a

knowledge which confers a meaningful semantics to the very network. Causal net-

works are relevant instances. In the examples above, the (causal) relation between

pairs of variables was always clear, at least in an implicit manner. In the general

case, as for parameter learning, application of Bayesian networks on the field can-

not assume such a structural knowledge. For instance, in predicting the binding

state of a cysteine within a protein it is assumed that the presence (or, absence) of

a disulphide bond is affected by chemical/physical properties of other amino-acids

at certain locations of the primary structure. Biologists do not know which amino-

acids are actually involved, nor do they know what exact chemic-physical properties

are relevant, or to which extent. A learning machine, e.g. a Bayesian network, is

then expected to perform induction on a sample of proteins including examples of

binding/non-binding cysteines, and to discover these relationships, in terms of sta-

tistical dependencies, on its own. Algorithms for learning the structure of Bayesian

networks are presented in Section 2.4. Basically, they can be thought of as search

procedures in the space of all possible graphs, where the search is guided by an opti-

mality criterion expressed in terms of maximum likelihood of the network given the

training sample (Section 2.4.1). The search for the optimal structure is accomplished

according to a specific, statistically sound strategy (Section 2.4.2).

As we saw in Chapter 1, graphical models may become suitable tools for tackling

pattern recognition problems. To this end, Section 2.5 introduces a simple, popular

paradigm for the classification of patterns, namely the naive Bayes classifier, show-

ing that it can be readily described (and mathematically justified) as a particular

case of Bayesian network. This classifier will be used, among others, in order to

obtain comparative experimental baselines in the applications presented later on in

the book.

Finally, Section 2.6 summarizes the main topics of the chapter and draws conclu-

sive remarks. In particular, it deals with extensions of the basic Bayesian network

model, some of its applications, and offers a concise survey of the assets and limi-

tations of Bayesian networks.

Aside from Thomas Bayes’ early discoveries, the history of Bayesian networks

is much more recent. Although some pioneering insights into the theory of BNs can

be traced back to the work of Sewall Wright [318], the first systematic presentation

of such models to the AI community is due to Judea Pearl [237]. While Pearl’s

work was concerned mainly with detailing the theoretical properties of BNs and

developing efficient inference techniques, more recent work has been focusing on

algorithms for learning Bayesian networks from data [50, 129, 286, 101].
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2.2 Representation of Probabilities

Bayesian networks are used to represent joint probability distributions over sets of

random variables. A Bayesian network is made up of two components: a directed

acyclic graph (DAG), and a set of conditional probability tables (CPTs). Each node

in the graph represents a random variable, and for each node there is a probability

table specifying the conditional distribution of the variable given (each possible

combination of) the values of its parents in the graph. A simple Bayesian network

is exemplified in figure 2.2.

X

Y

P(x0) = 0.81, P(x1) = 0.19

P(y0 | x0) = 0.1, P(y1 | x0) = 0.9

P(y0 | x1) = 0.25, P(y1 | x1) = 0.75

Fig. 2.2 A Bayesian network for the binary variables X and Y

In order to derive a joint probability distribution from a Bayesian network, the

directed Markov assumption is made, according to which each variable is indepen-

dent of its non-descendants in the DAG given the values of its parents. Consider

the set X of random variables X1, . . . ,Xn, and an arbitrary state x = x1, . . . ,xn of the

variables in X. If PA(Xi) is the set of parents of Xi, let pa(Xi) denote the state of

PA(Xi), i.e. some specific configuration of the values of the variables in PA(Xi).
Then, the Markov assumption entails the following equality:

P(X = x) =
n

∏
i=1

P(Xi = xi|pa(Xi)) (2.3)

When Xi is a root node, P(Xi = xi | pa(Xi)) refers to the absolute distribution of Xi,

i.e. P(Xi = xi). Since the local distributions P(Xi|pa(Xi)) are provided by the condi-

tional probability tables, Equation 2.3 specifies how to compute a joint probability

distribution from a set of CPTs.

The derivation of Equation 2.3 from the Markov assumption can be carried out

in the following way. Suppose that X1, . . . ,Xn are ordered ancestrally, where an

ancestral ordering is any ordering such that, if node Xi is a parent of X j, then i < j.

Then, we can transform P(x1, . . . ,xn) as follows:
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P(x1, . . . ,xn) =
n

∏
i=1

P(xi | xi−1, . . . ,x1)

=
n

∏
i=1

P(xi | pa(Xi))

(2.4)

where the first step results from applying the chain rule,5 and the second step

exploits the Markov assumption in order to simplify each conditional probability

P(xi | xi−1, . . . ,x1) into P(xi | pa(Xi)).
An advantage of using Bayesian networks is given by the fact that they allow

to estimate joint distributions by only estimating a relatively small number of pa-

rameters. This also entails that Bayesian networks have relatively limited memory

requirements. Suppose we want to represent the joint probability distribution of

n (discrete) random variables in an explicit manner. To this aim, if Di is the do-

main of variable Xi, then we need to specify the probabilities of d different events,

where d = (∏n
i=1 | Di|)−1. Clearly, such a number of parameters grows exponen-

tially with the number of variables. On the other hand, suppose that the probabil-

ity distribution is represented by a Bayesian network. Then, the number of events

for which we need to specify a probability is d = ∑n
i=1(|Di|−1)∏X j∈PA(Xi) | D j|.

In other words, if each variable has at most m different values and each node has

at most k parents, then the worst-case value of d is n ·mk · (m− 1). In this case,

d grows only linearly with the number of variables (assuming that k remains

constant).

2.2.1 d-Separation

We now consider an important result in the theory of Bayesian networks, concerning

the graphical property of d-separation [237, 226, 30]. This result provides a method

for determining whether the graph of a Bayesian network entails any given condi-

tional independence statement, i.e. a statement of the form ‘Xi is independent of X j

given Xk’.

In order to define d-separation, we first need to introduce some terminology. If

a DAG contains two edges (A,B) and (B,C), then we say that the edges (A,B) and

(B,C) meet head-to-tail at node B, or that there is a head-to-tail meeting at node

B between edges (A,B) and (B,C). If a DAG contains two arcs (A,B) and (A,C),
then we say that the arcs (A,B) and (A,C) meet tail-to-tail at node A. If a DAG

contains two arcs (A,B) and (C,B), then we say that the arcs (A,B) and (C,B) meet

head-to-head at node B. We can now introduce the notion of blocked chain:6

Definition 2.1. Given a DAG G = (V,E), if A ∈ V, B ∈ V, and S ⊆ V\ {A,B}, then

a chain C connecting A and B is said to be blocked by S if C contains a node X such

that one of the following conditions holds:

5 See Theorem A.2 in Appendix A for a general statement and justification of the chain rule.
6 See Appendix B.1 for a definition of chain.
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1. X ∈ S and the meeting at X in the considered chain is either head-to-tail or tail-

to-tail;

2. X /∈ S, S does not contain any descendant of X , and the meeting at X in the

considered chain is head-to-head.

d-separation is then defined as follows:

Definition 2.2. Given a DAG G = (V,E) such that {A,B} ⊂ V and S ⊆ V \ {A,B},

the nodes A and B are said to be d-separated by S if all chains connecting A and B

are blocked by S.

The importance of d-separation with respect to Bayesian networks is due to the fol-

lowing fact. If the DAG of a Bayesian network is such that two nodes A and B in

the DAG are d-separated by a set S, then the Markov assumption entails that the

variables A and B are independent given S [226]. That is, d-separation provides a

general criterion for deriving conditional independence statements from Bayesian

networks. A point that needs to be stressed is that d-separation is only a sufficient

(and not a necessary) condition for conditional independence. Therefore, if A and

B are not d-separated by S, we cannot conclude that A and B are not independent

given S: it may be the case that a certain conditional independence holds in the

distribution represented by a Bayesian network while that independence is not iden-

tified by d-separation. The assumption that d-separation is not only a sufficient, but

also a necessary condition for conditional independence is usually referred to in

the literature as faithfulness assumption [226]. In contrast to d-separation, the faith-

fulness property cannot be derived from the Markov condition, and therefore, while

d-separation is a general property of Bayesian networks, faithfulness can only be as-

sumed (if desired) as an additional condition. (The faithfulness assumption is made,

for example, by constraint-based structure learning algorithms [286]).

The central role played by d-separation in the theory and application of Bayesian

networks can be summarized by stating three theorems related to that property:

Theorem 2.1. If a Bayesian network BN has DAG G, then BN entails all and only

those conditional independencies that are identified by d-separation in G (i.e. the

set of conditional independence statements that can be derived from G through the

d-separation criterion).

Proof. See e.g. [226]. ⊓⊔

Before stating the second theorem, we introduce the concept of Markov equivalence:

Definition 2.3. Two Bayesian networks BN1 and BN2 with DAGs G1 = (V,E1) and

G2 = (V,E2) are said to be Markov equivalent if they satisfy the following condition:

for any pair of nodes A and B and any subset S of V, A and B are d-separated by S

in G1 if and only if A and B are d-separated by S in G2.

We can now state the second result:
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Theorem 2.2. Two Bayesian networks BN1 and BN2 with DAGs G1 and G2 entail the

same set of conditional independencies if and only if they are Markov equivalent.

Proof. The result is an immediate corollary of Theorem 2.1. ⊓⊔

Finally, the following theorem (first proved in [238]) provides a practical way of

recognizing whether two Bayesian networks are Markov equivalent:

Theorem 2.3. Two Bayesian networks BN1 and BN2 with DAGs G1 and G2 are

Markov-equivalent if and only if:

1. G1 and G2 contain the same links, i.e. the same arcs regardless of their direction;

2. G1 and G2 contain the same set of uncoupled head-to-head meetings.7

Proof. See e.g. [226]. ⊓⊔

2.2.2 Markov Blankets

First of all, let us define the general (statistical) concept of Markov blanket [237]:

Definition 2.4. Let I(X ,Y | Z) mean that X is independent of Y given Z, i.e.

that P(X | Y,Z) = P(X | Z). Then, if X is a set of random variables X1, . . . ,Xn,

a Markov blanket MB(Xi) for Xi in X is any subset S of X \ {Xi} such that

I(Xi,(X\S)\ {Xi} | S).

In other words, the variables in MB(Xi) are such that P(Xi | X \ {Xi}) = P(Xi |
MB(Xi)). A fundamental property of Bayesian networks is the one stated by the

following theorem:

Theorem 2.4. For any Bayesian network with nodes X1, . . . ,Xn, if PA(X) denotes

the set of parents of X and CH(X) denotes the set of children of X, then, for any node

Xi, the following set is a Markov blanket of Xi in the network: PA(Xi)∪CH(Xi)∪
(
⋃

X j∈CH(Xi) PA(X j)\ {Xi}).

Proof. See [237]. ⊓⊔

That is to say, for each variable Xi, the set containing the parents, the children, and

the parents of the children of Xi is sufficient in order to form a Markov blanket

of Xi within the Bayesian network. An example is provided in Figure 2.3. Based

on Theorem 2.4, every time we refer to the Markov blanket of a node X (as if it

were warranted to be a unique set), we specifically mean the set PA(X)∪CH(X)∪
(
⋃

Y∈CH(X) PA(Y )\ {X}).
Being able to compute the distribution of a variable Xi given the state mb(Xi) of

its Markov blanket is very important when using Bayesian networks. For example,

computing this distribution is a core component of the Markov chain Monte Carlo

inference algorithm, which will be described in Section 4.4. More importantly, it

7 The notion of uncoupled meeting is defined in Appendix B.1.
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X1 X2

X3 X0 X4

X5 X6

X7

Fig. 2.3 The DAG of a Bayesian network representing the variables X0, . . . ,X7. In this net-

work, a Markov blanket for X0 is given by the set MB(X0) = {X2,X3,X5,X6}, denoted by

shaded nodes.

will also play a key role in the use of the hybrid random field model (presented in

Chapters 4–5). For any value xi of Xi, this conditional distribution can be computed

as follows [236]:

P(xi | mb(Xi)) =
P(xi | pa(Xi))∏X j∈CH(Xi) P(x j | pa(X j))

∑xik
∈DXi

P(xik | pa(Xi))∏X j∈CH(Xi) P(x j | pa(X j),xik)
(2.5)

where P(x j | pa(X j),xik ) is the same as P(x j | pa(X j)) except that we force Xi to

assume value xik . Equation 2.5 can be shown to hold true as follows. Let us write:

P(xi | mb(Xi)) =
P(xi,mb(Xi))

P(mb(Xi))
(2.6)

Since the term P(mb(Xi)) does not depend on the particular value xi of Xi, we can

simplify equation 2.6 as follows:

P(xi | mb(Xi)) ∝ P(xi,mb(Xi)) (2.7)

Now, if X is the set of all possible joint states x of X1, . . . ,Xn, let us denote by X∗

the set of those states x such that Xi = xi and MB(Xi) = mb(Xi) in x, where X∗ ⊂X.

Clearly,
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P(xi,mb(Xi)) = ∑
x∈X∗

P(x)

= ∑
x∈X∗

n

∏
j=1

P(x jx | pax(X j))
(2.8)

where the notation xx stands for the value assigned to variable X by state x. Since

P(xi | pa(Xi))∏X j∈CH(Xi) P(x j | pa(X j)) is constant for any x ∈ X∗, it follows that

P(xi,mb(Xi)) =

=

⎛

⎝P(xi | pa(Xi)) ∏
X j∈CH(Xi)

P(x j | pa(X j))

⎞

⎠ ∑
x∈X∗

∏
X j /∈{Xi}∪CH(Xi)

P(x jx | pax(X j))

(2.9)

Clearly, the term ∑x∈X∗ ∏X j /∈{Xi}∪CH(Xi) P(x jx | pax(X j)) remains constant for any

particular value xi of Xi. This means that

P(xi,mb(Xi)) ∝ P(xi | pa(Xi)) ∏
X j∈CH(Xi)

P(x j | pa(X j)) (2.10)

which is exactly what we need in order to justify equation 2.5.

2.3 Parameter Learning

In Bayesian networks, parameter learning is the problem of learning the conditional

probability tables from data, assuming a fixed network structure (i.e. assuming the

DAG is known). To this aim, we compute a set of relative frequencies and then

we use these relative frequencies as estimates of the relevant probabilities. The set

of relevant probabilities/relative frequencies is clearly determined by the network

structure: for each variable, we need to estimate its conditional distribution for each

particular state of its parents in the DAG. (For the DAG roots, we simply estimate

their unconditional probabilities).

More formally, suppose we have a dataset D containing m data points, where

each data point d j is a vector (x1 j
, . . . ,xn j

) of values of the variables X1, . . . ,Xn. The

simpler case in parameter learning is the case of a variable Xi having no parents

in the DAG. In this case, we only need to estimate the (unconditional) distribution

P(Xi). For each value xik of Xi, our estimate will be the following:

P̂
(
Xi = xik

)
=

|{d j : Xi = xik}|
m

(2.11)

where the notation P̂(X = x) refers to our estimate of P(X = x).
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The more general case is the case of learning the conditional distribution of a

node Xi having parents PA(Xi). In this case, we need to estimate a distribution

P(Xi | pa(Xi)) for each possible state pa(Xi) of PA(Xi). For each value xik of Xi, we

will estimate the conditional probabilities as follows:

P̂
(
Xi = xik | pa(Xi)

)
=

|{d j : Xi = xik ∧PA(Xi) = pa(Xi)}|
|{d j : PA(Xi) = pa(Xi)}|

(2.12)

The strategy proposed in equations 2.11–2.12 suffers from the following problem. If

a particular value xik of Xi is never observed in D, or if it is never observed together

with a particular configuration pa(Xi) of PA(Xi), then our estimate of P(Xi = xik )
(or of P(Xi = xik |pa(Xi))) will be zero. This result is not acceptable in all cases

where any event is possible, i.e. where every state of the network can be observed

in principle. A solution for this difficulty appeals to the notion of an equivalent

sample size [217], which we denote by N. The equivalent sample size is the size

of a theoretical sample (the ‘equivalent sample’) which we assume to have been

observed before the actual dataset D. In other words, it is the size of a prior sample.

Within this prior sample, we assume to have observed any particular value xik of Xi

for a number of times equal to p ·N, where p stands for the prior probability that Xi

has value xik .

Going back to equations 2.11–2.12, we revise them as follows:

P̂
(
Xi = xik

)
=

|{d j : Xi = xik}|+ pikN

m+ N
(2.13)

P̂
(
Xi = xik | pa(Xi)

)
=

|{d j : Xi = xik ∧PA(Xi) = pa(Xi)}|+ pikNpai

|{d j : PA(Xi) = pa(Xi)}|+ Npai

(2.14)

where Npai
is a parameter related to N in a way we will explain shortly. An im-

portant question concerning equations 2.13–2.14 is what values we choose for the

parameters pik , N, and Npai
. In typical applications (and throughout the applications

of Bayesian networks presented in Chapter 6), we assign uniform prior probabilities

to the different values of each variable. Therefore, our choice for pik will be the

following:

pik =
1

|Di|
(2.15)

where Di is the domain of variable Xi. The value we assign to N is instead:

N = max
1≤i≤n

|Di| (2.16)

An intuitive justification of Equation 2.16 appeals to two different aims: on the one

hand, we want to keep the equivalent sample size as small as possible, so as to

prevent prior probabilities from biasing learning too heavily; on the other hand, we

want the equivalent sample size to be large enough to contain at least one occurrence
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for all values of each variable. Therefore, the choice made in equation 2.16 seems

to be a reasonable compromise. Given N, we define Npai
as follows:

Npai
=

N

|DPAi
| (2.17)

where DPAi
is the set of all possible states of PA(Xi). As a result of Equation 2.17,

each value xik of a non-root node Xi turns out to have been observed exactly N
|Di |

times within the equivalent sample, where N
|Di| ≥ 1 [226]. To realize why N

|Di | ≥ 1,

we have to keep in mind that xik is observed pik Npai
times for each possible state

pa(Xi) of PA(Xi). In other words, we have that N
|Di | = pik Npai

· |DPAi
|.

2.4 Structure Learning

While parameter learning requires that the DAG of the Bayesian network has been

previously specified, structure learning aims at inferring from a dataset the DAG it-

self (together with the conditional probability tables). A general way of formalizing

this task consists in viewing it as a search problem. In this setting, if we are dealing

with the random variables X1, . . . ,Xn, then the problem space is given by the set of

all possible DAGs with nodes X1, . . . ,Xn, and the task is to find the DAG such that

the corresponding Bayesian network maximizes a given evaluation function. There-

fore, given the search space, what we have to specify is first a suitable evaluation

function, and second a search strategy allowing us to efficiently explore that space.

2.4.1 Evaluation Function

As we saw in section 2.2, given a Bayesian network h, equation 2.3 specifies how

to compute the probability of a pattern (x1, . . . ,xn). In other words, equation 2.3

implicitly specifies the value of the conditional probability P(x1, . . . ,xn|h). If we are

given not just one pattern x, but a set D of patterns {x1, . . . ,xm}, then, by assuming

that the patterns in D are independent given the underlying distribution, we can

write down the joint probability of the dataset given a Bayesian network h in the

following way:

P(D | h) =
m

∏
j=1

P(x j | h)

=
m

∏
j=1

n

∏
i=1

P(Xi = xi j
| pa j(Xi))

(2.18)

where pa j(Xi) stands for the state of the parents of Xi as it is determined by pattern

x j. It is important to realize that the probability P(Xi = xi j
| pa j(Xi)) is conditional
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with respect to h, since the parents of each node Xi cannot be identified without

assuming a particular network structure.

A reasonable choice for the evaluation function is a Bayesian scoring function

[226], aimed at measuring the posterior probability of the Bayesian network given

the data. Since we know how to compute P(D | h), i.e. the likelihood of a Bayesian

network h given the data, the Bayesian score can be computed as follows:

P(h | D) =
P(D | h)P(h)

P(D)
(2.19)

where P(h) is the prior probability of h. This transformation derives from applying

Bayes’ theorem. Since, for a fixed dataset D, P(D) remains constant for any h, we

can drop this term from equation 2.19 for the purposes of ranking different networks

by means of their Bayesian score. Thereby we obtain the following equation:

P(h | D) ∝ P(D | h) ·P(h) (2.20)

The main difficulty with the Bayesian scoring function lies in estimating the prior

probability expressed by P(h). A typical scenario is the one where the priors of

all different networks (for a given set of variables) are unknown, and they are

taken to be uniform. If we assume uniform prior probabilities, then the Bayesian

scoring function given in equation 2.20 collapses into the likelihood function

P(D | h). In this case, our evaluation function will lead to maximum likelihood

hypotheses.

A pure maximum likelihood strategy is not suitable for structure learning, for

two different reasons. First, a practical reason is that maximum likelihood structure

learning leads to overfitting the training data. Overfitting in learning the structure

of Bayesian networks typically takes the form of a bias towards complete DAGs

(i.e. DAGs which are fully connected). In fact, the more edges there are in the DAG,

the more parameters there will be in the resulting Bayesian network, which means

that the Bayesian network will be more expressive. This higher representational

power leads the learning process to adapt the DAG to the noise contained in the

data, since capturing that noise will increase the probability of the data given the

network (i.e. the network likelihood). But networks that overfit the training data will

generalize poorly to test data. Evaluation of the likelihood on a separate validation

set would be required, at the very least.

The second reason against the maximum likelihood scoring function has a more

formal nature [226]. In order to understand the argument, we first need to re-

call that different DAGs can be equivalent with respect to the Markov condition

(as explained in Section 2.2.1). For example, the DAG in Figure 2.2 is Markov-

equivalent to a DAG (with nodes X and Y ) where the edge from X to Y is reversed

(i.e. where Y is parent of X), because both DAGs entail no independencies based on

the Markov assumption. Actually, this equivalence also follows from the simple fact
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that P(X)P(Y |X) = P(X ,Y ) = P(Y )P(X |Y ), i.e. that the joint distribution of X and

Y is factorized equivalently in the two networks. Given this, it follows that when we

search a space of candidate DAGs, we are actually searching a space of equivalence

classes containing Markov-equivalent DAGs. Therefore, if we assign uniform pri-

ors to all possible DAGs (as the maximum likelihood strategy entails), we end up

assigning higher priors to larger equivalence classes. For example, given n nodes,

there is only one DAG entailing the complete set of independencies (i.e. the empty

DAG), while there are n! equivalent DAGs entailing no independencies (i.e. all com-

plete DAGs). This means that a uniform priors assumption would end up assigning

to the latter kind of distribution a prior probability which is n! times higher than

the prior probability assigned to the former kind of distribution. Actually, a prelimi-

nary step for a correct implementation of maximum likelihood structure learning in

BNs should consist in assigning uniform prior probabilities to Markov-equivalence

classes of DAGs, rather than to the DAGs themselves. Clearly, such a preprocess-

ing step would be computationally intractable, due to the difficulty of identifying

all the involved Markov-equivalence classes (so as to compute the prior of each

equivalence class).

The reasons given above enforce the worry that the search for the best scoring

Bayesian network may be heavily biased toward densely connected graphs. One way

to overcome the difficulties of (the maximum likelihood version of) the Bayesian

scoring function is offered by the minimum description length principle ([259]).

According to this principle, we seek the Bayesian network that maximizes the like-

lihood while minimizing the length of the Bayesian network description. The length

of describing a Bayesian network is nothing but the length of its encoding using a

specified language. The version of the MDL principle that we will use for structure

learning takes the form of the heuristic function MDL(h), defined as follows [317]:

MDL(h) = logP(D | h)− DL(h)

2
log |D| (2.21)

where DL(h) is the number of parameters specified in the Bayesian network h.

MDL(h) penalizes the likelihood of h to an extent that is proportional to the network

complexity, where complexity is measured by DL(h). The aim of this heuristic is to

encourage introducing parameters when the parameters really capture regularities

in the data (and hence produce a strong increase of the network likelihood), and to

discourage parameter introduction when this only captures the noise in the data (and

hence increases the likelihood to a relatively small extent). In other words, the idea is

to maximize the likelihood while keeping the DAG as sparse as possible. The MDL

evaluation function is also referred to as Bayesian information criterion approxima-

tion [271]. It can be shown that the MDL/BIC scoring function is asymptotically

correct [271, 226].

It is interesting to note that the score assigned to h by the MDL/BIC score is

tightly related to the posterior probability of h. This remark derives from the follow-

ing argument [217]:
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argmax
h

P(h | D) = argmax
h

P(D | h)P(h)

P(D)

= argmax
h

P(D | h)P(h)

= argmax
h

{log2 P(D | h)+ log2 P(h)}

= argmin
h

{− log2 P(D | h)− log2 P(h)}

(2.22)

As originally shown in [276], the result of derivation 2.22 can be interpreted as stat-

ing that a way of maximizing the posterior probability of h is by minimizing the

sum of the length (in bits) of encoding the data given the information provided by

h and the length (in bits) of encoding h. While the first quantity corresponds to the

likelihood of h, the second quantity corresponds to the prior probability of h, which

means that decreasing the length of the model description increases the prior prob-

ability of the model. Clearly, the number of parameters specified in a network is a

measure of the network description length: therefore, the prior probability of a net-

work is inversely proportional to the number of its parameters. Of course, when we

are not able to assess P(h), we cannot be able to assess log2 P(h) either. For this rea-

son, we use a heuristic based on the MDL principle, since we cannot measure in the

strict sense the description length of models. In other words, the MDL heuristic of-

fers a well-grounded way to approximate the prior probability of different candidate

models when no exact estimate of priors is available.

2.4.2 Search Strategy

We now present two very popular search strategies for learning the structure of

Bayesian networks. Section 2.4.2.1 describes a general hill-climbing approach,

while the so-called K2 algorithm is described in Section 2.4.2.2.

2.4.2.1 Hill-Climbing Search

Once a suitable evaluation function has been defined, we can specify a strategy for

searching the model space. In order to find the model with the highest MDL score,

a relatively efficient method consists in using a hill-climbing algorithm [317]. The

algorithm starts from a given Bayesian network h (typically, from a BN with a DAG

containing no edges), and it generates a set of ‘neighbors’ of h, where a neighbor is

a Bayesian network whose DAG is obtained by operating on h in one of three ways:

(i) adding one arc, (ii) removing one arc, or (iii) reversing one arc. Once a new DAG

has been constructed, a corresponding Bayesian network is obtained by learning

the conditional probability tables for that DAG. While generating new DAGs, we

also need to take care to discard the ones containing cycles. The neighbors of h are

scored, and the highest-scoring neighbor h∗ is compared to h. If h∗ scores better than
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h, the whole cycle is iterated for h∗, and the process continues until no neighbor

of the currently accepted network improves on the score of that network. Since the

search algorithm is greedy, it may be run several times, starting each time from a

different, randomly generated DAG, so as to reduce the risk of getting stuck into

local maxima. In order to speed up the search, a useful trick is to maintain a tabu

list [114], keeping track of the states explored at each iteration, so as to prevent the

algorithm from scoring several times models already encountered during the search.

The pseudocode of Algorithm 2.1 implements the strategy just described.

Algorithm 2.1 HCLearnBN : Hill-climbing structure learning in Bayesian networks

Input: Dataset D; initial Bayesian network h.

Output: Bayesian network h maximizing the heuristic function MDL(h) with respect to D.

HCLearnBN(D,h):
1. do

2. s = MDL(h)
3. H = {hi : hi is a neighbor of h}
4. h∗ = argmax hi∈H MDL(hi)
5. s∗ = MDL(h∗)
6. if(s∗ > s)

7. h = h∗

8. while(s∗ > s)

9. return h

2.4.2.2 The K2 Algorithm

Another greedy search strategy (which is faster than Algorithm 2.1) is proposed in

[50], where the so-called K2 algorithm is developed by evolving a previous method

named Kutató [132]. The K2 training algorithm must be provided with an ordering

over the network nodes (which will be ancestral with respect to the learned DAG)

and with a parameter k, indicating the maximum number of parents allowed for

each node. These two inputs can be either fixed on the basis of prior knowledge

(if available) or tuned by means of cross-validation. Starting from an empty DAG,

each node is assigned as parents the k nodes such that the resulting DAG maximizes

a specified scoring function, where the parents of each node Xi are selected from

the set Xi = {X j : j < i}. However, arcs are not added whenever augmenting the

DAG has the effect of decreasing the network score. This means that, in the learned

network, each node will have at most k parents (but possibly fewer). Pseudocode

for the K2 structure learning method is given by Algorithm 2.2, where the log-

likelihood function is used as scoring metric.

In principle, any suitable evaluation function may be chosen according to the

aims of each application. However, when the ordering over the nodes and the value

of the k parameter are set in a suitable way, the K2 search technique is less prone to

overfitting than the general hill-climbing algorithm described earlier, since it usually
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Algorithm 2.2 K2LearnBN: K2 structure learning in Bayesian networks

Input: Dataset D; Bayesian network h with DAG G = (V,E), where V = {X1, . . . ,Xn} and

E = /0; integer k.

Output: Bayesian network h maximizing the log-likelihood logP(D | h).

K2LearnBN(D,h,k):
1. for(i = 1 to n)

2. PA(Xi) = /0

3. addMoreParents = true

4. while(addMoreParents∧|PA(Xi)| < k)

5. X = {X j : j ≤ i}
6. X j = argmax X j∈X\PA(Xi) log∑

|D|
l=1 P

(
xil | pal(Xi),x jl

)

7. if(log∑
|D|
l=1 P

(
xil | pal(Xi),x jl

)
> log∑

|D|
l=1 P

(
xil | pal(Xi)

)
)

8. PA(Xi) = PA(Xi)∪{X j}
9. else

10. addMoreParents = false

11. for(X j ∈ PA(Xi))
12. E = E∪{(X j,Xi)}
13. return h

prevents the DAG from being augmented beyond necessity. On the other hand, the

K2 algorithm is likely to deliver less accurate results than Algorithm 2.1 when no

prior knowledge is available concerning the application domain, since in this case

it is not at all trivial to determine optimal choices both for the topological ordering

of the nodes and the value of the k parameter. Although the K2 algorithm is usually

much faster than Algorithm 2.1 (at the cost of being less accurate), it may still be

very expensive to run for high-dimensional problems. In fact, it is shown in [50] that

its worst-case computational complexity is O(n4).

2.5 The Naive Bayes Classifier

An interesting kind of directed graphical model is the so-called naive Bayes clas-

sifier [70]. The naive Bayes (NB) model is a particular case of Bayesian network,

especially designed for application to pattern classification. If we deal with a col-

lection of patterns described by features X1, . . . ,Xd and partitioned into classes

c1, . . . ,cn, then a naive Bayes classifier for the considered domain is a Bayesian

network with DAG G = (V,E), where V = {X1, . . . ,Xd ,C}, C is a random variable

ranging over the set {c1, . . . ,cn} (hence denoting the class of a given pattern), and

E = {(C,Xi) : 1 ≤ i ≤ d}. In other words, the naive Bayes model for V assumes that,

for any pair of features Xi and X j, P(Xi | X j,C) = P(Xi | C), i.e. Xi is independent

of X j once the value of C is known. As an example, the graph of a naive Bayes

classifier is illustrated in Figure 2.4, where d = 4.

In order to explain how patterns are classified according to the naive Bayes tech-

nique, we first need to recall a basic principle of the Bayesian decision theory. Given
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C
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Fig. 2.4 The graphical structure of a naive Bayes model for a classification problem with

features X1, . . . ,X4 and class C

a pattern x = (x1, . . . ,xd), the class having the maximum a posteriori (MAP) proba-

bility of containing x is given by

cMAP = argmax
ci∈DC

P(ci | x1, . . . ,xd) (2.23)

where DC is the domain of variable C. If we adhere to the principles of Bayesian

classification, we should endorse cMAP as our decision for any new pattern to be

classified. Using Bayes theorem, Equation 2.23 can be rewritten as follows:

cMAP = argmax
ci∈DC

P(x1, . . . ,xd | ci)P(ci)

P(x1, . . . ,xd)

= argmax
ci∈DC

P(x1, . . . ,xd | ci)P(ci)
(2.24)

Given the structure of the naive Bayes model, it is clear that any ordering over the

features X1, . . . ,Xd is ancestral. Therefore, if we apply first the chain rule and then

the Markov assumption (in the same way we applied them in Equation 2.4), we

come up with the following result:

cMAP = argmax
ci∈DC

P(ci)
d

∏
j=1

P(x j | x j−1, . . . ,x1,ci)

= argmax
ci∈DC

P(ci)
d

∏
j=1

P(x j | ci)

(2.25)

Based on Equation 2.25, in order to train the naive Bayes model for a specified

classification task, we simply need to estimate the parameters of each conditional

distribution P(Xi |C), for 1 ≤ i ≤ d. To this aim, we use the technique described in

Section 2.3.
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If we compare Equation 2.25 to Equation 2.24, we immediately understand the

main advantage of using the naive Bayes classifier. While computing the conditional

distribution P(X1, . . . ,Xd | C) requires us to estimate O(md − 1) parameters, where

m = max1≤i≤d |DXi
|, computing instead the product ∏d

j=1 P(x j | ci) requires us to es-

timate only O(m−1) parameters. Therefore, parameter estimation in a naive Bayes

model will be much more robust as compared to a direct estimate of the conditional

distribution specified in Equation 2.24.

Surprisingly, although the independence assumption involved in the naive Bayes

model may seem to be too strong at first glance, it is shown in [70] that the de-

scribed classification technique can be optimal (with respect to misclassification

rate) even when the independence assumption is violated to a significant extent.

This result explains why the naive Bayes classifier performs unexpectedly well in

several applications where the features are known to display some relevant pattern

of dependencies. Another (theoretical and experimental) analysis of the optimality

properties of naive Bayes classification is performed in [126]. Several efforts have

also been devoted by the research community to the task of weakening the indepen-

dence assumption at issue, without losing the efficiency and robustness properties

of the standard naive Bayes method. Some of these techniques are investigated in

[254, 312].

2.6 Final Remarks

In summary, this chapter reviewed Bayesian networks and their fundamental math-

ematical and algorithmic background. We saw that Bayesian networks are a partic-

ularly relevant instance of the generic graphical model, a perfect starting point for

investigating the idea of using a relational structure between pairs of random vari-

ables which can be represented in the form of a graph, with the understanding that

a directed edge between two variables may exist only if the variables are not sta-

tistically independent of each other. On the other way around, correlation between

the variables does not entail the presence of an edge between them. In fact, the (mu-

tual) statistical dependence may be expressed in terms of the influence that other,

intermediate variables can exercise or undergo. This generic concept, enforced by

the Markov assumption, is formally encapsulated within the notions of d-separation

and, in turn, of Markov blanket. The definitions and properties of these will be of

the utmost relevance in the very idea of hybrid random field, that shall be introduced

in Chapter 4.

We also saw that the probabilistic characterization of the graphical structure in

Bayesian networks is completed by an explicit expression of the conditional prob-

ability distributions associated with each variable in the graph, by means of condi-

tional probability tables. The CPT for a generic variable X lists the probability of all

possible values that X can take, given any values the parents of X (according to the

graphical structure) can take. In the general case, these probabilities are not known

in advance. They shall rather be estimated from a training sample of data collected

on the field. In this respect, a Bayesian network having a given, fixed structure can be



36 2 Bayesian Networks

seen as a particular parametric model, whose parameters are the entries of the CPTs.

Maximum-likelihood parameter estimation, relying on the frequentist approach of

counting co-occurrences of the outcomes of the variables over the training sample,

is a popular, effective technique for parameter learning in Bayesian networks.

In several scenarios the graphical structure of a Bayesian network is expected

to be fixed. In these cases, prior knowledge by a human expert is needed in order

to fix the directed acyclic graph. This is typical of probabilistic expert systems, for

instance. Under such circumstances, the graph expresses some underlying seman-

tics on the application domain. Causal networks are a particular type of Bayesian

networks that fulfills this requirement, where the presence of a directed edge in the

graph states the existence of a causal relationship between two variables. In gen-

eral, unfortunately, this kind of prior, structural knowledge is unavailable. For this

reason, algorithms for learning the graphical structure in a Bayesian network are

needed. We saw how structure learning from a data sample can be readily defined as

a search problem in the space of possible graphs over a given set of variables. The

search strategy relies on a probabilistic criterion function, namely the likelihood of

the model given the data.

Although this chapter introduced Bayesian networks defined over traditional, dis-

crete random variables, extensions to continuous-valued variables can be found in

the literature [136, 189, 52]. We will investigate the issue of real-valued probabil-

ity distributions in depth in Chapter 5, where hybrid random fields for continuous

spaces are introduced.

2.6.1 Extensions of Bayesian Networks

Several extensions to the basic Bayesian network model have been proposed in

the literature. Object oriented Bayesian networks (OOBN) are basically stochas-

tic, functional object oriented languages [175]. In OOBNs classes and objects are

represented in terms of BNs, where each vertex in the graph is an attribute of the

object itself (which, in turn, can be treated as another object) and the edges repre-

sent probabilistic relationships between objects/attributes. An inference algorithm

for OOBNs is proposed in [175], whilst parameter learning for OOBNs is discussed

in [188], as well.

Another extension to Bayesian networks can be pursued in terms of abstraction

and aggregation [213, 214]. Abstraction (also known as ‘state space abstraction’) is

the operation of replacing diverse, possible states of a certain vertex with a single,

unifying meta-state for the node itself [313, 46]. Aggregation (‘structural abstrac-

tion’), in a conceptually similar but technically different framework, replaces several

vertexes in the BN graph with a unique meta-node [313, 287]. Refinement and de-

composition are the natural, opposite operations, i.e. they move one step down the

hierarchy of meta-levels of abstraction. Applications of these operations may ease

the task of representation, interpretation and acquisition of knowledge in Bayesian

networks. Moreover, they may lead to improved performance (in terms of computa-

tional speed) of the inference mechanisms [213, 214].
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In [89] Bayesian networks are extended in order to suitably represent regression

models. As we saw, a Bayesian network is intrinsically a model of a joint distri-

bution over a set of random variables. In regression problems, we are interested in

modeling the conditional distribution of a specific variable (or, of a subset of the

variables) given the others. In so doing, we are allowed to make predictions on the

expected value of certain random quantities as a function of the observed outcomes

of others. For instance, a biologist would like to predict the expected period of time

a given molecule (having specific chemical and physical characteristics) is going to

take before bio-degrading in a specific environment (e.g., in the presence of water).

The approaches presented in [89] are viable BN-based solutions to the regression

problem, allowing also for the combination of discrete- and continuous-valued ran-

dom variables.

Major extensions to Bayesian networks concern the representation and process-

ing of time sequences. Roughly speaking, in sequence modeling each random vari-

able is indexed by a discrete time index, e.g. we write Xt instead of the bare X .

The time index t is expected to range over the interval 0 ≤ t ≤ T , where T + 1 is

the length of the sequence under consideration. According to the nature of the ap-

plication, T may be constant (i.e., all sequences in the problem domain share the

same length) or, more realistically, T is variable and sequence-specific. This general

case is met in popular real-world scenarios, ranging from speech processing (where

a sequence of random vectors of acoustic features is extracted at fixed time inter-

vals, and it represents the characteristics of the speech signal uttered by a speaker

as it evolves over time) to handwriting recognition, video processing, and bioinfor-

matics (where the index t is a positional index which runs over an input sequence

of individual bio-chemical items, e.g. the amino-acids which build up the primary

structure of a protein). Dynamic Bayesian networks (DBN) are a major instance of

Bayesian networks extended to sequences [110]. From a general standpoint, DBNs

are simply BNs where time-indexed variables X0, . . . ,XT are treated (and, repre-

sented within the graphical structure) as separate variables (i.e., as individual ver-

texes in the graph), and the edges—being of causal nature—follow the natural time

order (e.g., a directed edge exists between Xt and Xt+1). The model may also take

into account hidden state variables, referring to an underlying, non-observable ran-

dom process which evolves over time and that is responsible for the dynamics of

the observable state variables (either discrete, or continuous). Although DBNs are a

very general, unifying framework for the probabilistic representation of time series,

some problems arise at the algorithmic level when it comes down to inference and

learning. In fact, probabilistic inference and, in turn, parameter learning, turn out to

be intractable in DBNs [110]. Practical work-arounds are outlined in [110] in terms

of tractable variational approximations aimed at the maximization of a lower-bound

of the overall likelihood criterion. It is a fact of the utmost interest that several,

popular paradigms can be interpreted as particular (yet, simple) instances of DBNs,

namely Kalman filters [158, 264], hidden Markov models [251], and Input-output

hidden Markov models [21]. Due to their theoretical and practical relevance, hidden

Markov models (HMMs) are worth reviewing here, pinpointing the way they can be

seen as BNs.
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A hidden Markov model is a pair of stochastic processes: a hidden Markov chain

and an observable process which is a probabilistic function of the states of the for-

mer. This means that observable events in the real world (e.g., the amino-acids along

a protein primary structure) are modeled with (possibly continuous) probability dis-

tributions, that are the observable part of the model, associated with individual states

of a discrete-time, first-order Markov process. The semantics of the model (concep-

tual correspondence with physical phenomena) is usually encapsulated in the hidden

part. For instance, in automatic speech recognition a hidden Markov model can be

used to model a word in the task-dependent vocabulary, where each state of the

hidden part represents a phoneme (or sub-phonetical unit), whereas the observable

part accounts for the statistical characteristics of the corresponding acoustic events

in a given feature space (e.g. sampled acoustic signal, represented in a proper way).

More precisely, a hidden Markov model is defined by:

1. A set S of Q states, S = {S1, . . . ,SQ}, which are the distinct values that the dis-

crete, hidden stochastic process can take;

2. An initial state probability distribution, i.e. π = {P(Si | t = 0),Si ∈ S}, where t is

a discrete time index;

3. A probability distribution that characterizes the allowed transitions between

states, that is a = {P(S j at time t | Si at time t − 1),Si ∈ S,S j ∈ S} where the

transition probabilities ai j are assumed to be independent of time t;

4. An observation or feature space F , which is a discrete or continuous universe of

all possible observable events (usually a subset of Rd , where d is the dimension-

ality of the observations);

5. A set of probability distributions (referred to as emission or output probabilities)

that describes the statistical properties of the observations for each state of the

model: bx = {bi(x) = P(x | Si),Si ∈ S,x ∈ F}.

Figure 2.5 shows a simple, discrete HMM with three states. HMMs represent a

learning paradigm, in the sense that examples of the event that is to be modeled

can be collected and used in conjunction with a training algorithm in order to

learn proper estimates of π , a and bx. The most popular of such algorithms are

the forward-backward (or Baum-Welch) and the Viterbi algorithms [251]. When-

ever continuous emission probabilities are considered, both of them are based on

the general maximum-likelihood criterion, i.e. they aim at maximizing the proba-

bility of the samples given the model at hand. In particular, the Viterbi algorithm

concentrates only on the most alike path throughout all the possible sequences of

states in the model. These algorithms belong to the class of unsupervised learn-

ing techniques, since they perform unsupervised parameter estimation of the prob-

ability distributions without requiring any prior labeling of individual observations

(within the sequences used for training) as belonging to specific states. Although

HMMs fall in the category of generative models, once training has been accom-

plished the HMM can be used for decoding, or recognition, of sequences having

arbitrary length.
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Fig. 2.5 A left-to-right, discrete hidden Markov model: can it be interpreted as a particular

case of dynamic Bayesian network?

The interpretation of HMMs as dynamic Bayesian networks goes, roughly, as

follows. Nodes are inserted in the graph for each hidden state qt at time t, and

for the emission probabilities associated with these states. Causal, directed edges

are inserted between each pair of adjacent states (meaning that the state at time

t + 1 is independent of all non-descendant states given the state at time t, due to

the Markov assumption), and between each state and the corresponding emission

(the latter being a function of the former, independently from the specific time t as

well as from any other state in the model). The distribution of initial and transition

probabilities, and the emission distributions as well, provide us with the quantities

needed in order to fill the CPTs (depending only on the parents of a given node in

the graph).

There is only one caveat, which can be qualitatively seen if we take a good look

at Figure 2.5 (which, by the way, is representative of the way HMMs are thought of

by practitioners in the real world). In general, the topology of the transitions renders

the graph cyclic. In other words, straightforward interpretation of HMMs in terms

of BNs seems to be somewhat fallacious. Actually, we can simply escape this pitfall

by ‘unfolding’ in time the graphical structure, i.e., by replicating the vertex of each

state variable for as many time steps as the hidden process is going to remain in

that very state. Each pair of such duplicate nodes is then connected with a forward,

directed edge which is a replica of the original, recursive self-transition of the state

onto itself. This approach may remind us of the ‘unfolding in time’ algorithm used

for training recurrent neural networks [127] via backpropagation through time over

sequences [133]. The unfolding is also closely related to the ‘trellis’ structure used

by the forward-backward and Viterbi algorithms for standard HMMs. Only problem

is that, in so doing, sequences of different length will entail graphs of different depth,

that is, different BNs. This renders inference and learning even harder.
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2.6.2 Applications of Bayesian Networks

Bayesian networks found application in a wide range of scenarios. Analysis and

classification of gene expression data via BNs is presented in [102, 131]. In partic-

ular, variations to the standard learning algorithms are investigated in [131] within

the framework of genetic pattern classification. In [231] Bayesian inference is ap-

plied in order to carry out phylogeny reconstruction, developing previous work by

the same authors relying on Bayesian networks. Probabilistic expert systems [53]

are another significant area of application of BNs [190, 225]. Other applications of

causal networks can be found in [286].

Aggregated BN classifiers were applied to a face detection task [244], i.e. the

identification of visual patterns corresponding with the presence of a face within

an image. Other image processing applications of Bayesian networks include ob-

ject recognition in sequences of images [232], image interpretation [184], semantic

image understanding [201].

The recent developments of Web-related applications put an emphasis on docu-

ment analysis and automatic text categorization, as well as on information extrac-

tion. Hierarchical text classification via Bayesian networks is investigated, for in-

stance, in [41]. Text classification via ‘very large Bayesian multinets’ is presented

in [169]. A Bayesian network model for semi-structured document classification is

outlined in [63].

Dynamic Bayesian networks, either in the form of Kalman filters or hidden

Markov models, have been (implicitly or explicitly) applied to broad areas of sig-

nal processing [252], automatic speech recognition and speaker identification [58],

handwritten text recognition [144], and a number of tasks in genomics and pro-

teomics [74, 12].

2.6.3 Strengths and Weaknesses of Bayesian Networks

This variety of successful applications of Bayesian networks—along with the pre-

sentation we gave of the paradigm in the previous sections—points out that Bayesian

networks are an interesting, powerful tool. BNs and their parameter/structure learn-

ing algorithms are sound, yet simple from the conceptual and the implementation

viewpoints. Good results are obtained in even severe, real-world tasks. Most ma-

chine learning paradigms (such as neural networks [127] and support vector ma-

chines [310]) tend to behave like ‘black boxes’. In fact, it is difficult to incorporate

prior knowledge within them, and it is basically impossible to come out with real

explanations/understanding of the possible meaning (if any) their parameters (as

learned from the data) might have. On the contrary, Bayesian networks may be de-

signed according to the knowledge of experts in a natural way (to this end, causal

networks are the brightest instance). Correspondingly, after training they may be

given an interpretation in terms of causal relations among the variables. Nonethe-

less, there are some limitations of BNs that have to be pointed out.
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One major caveat concerns the graphical structure of a BN. If the independencies

among the variables are fixed in advance (by intervention of a human expert) then

the graph underlying the Bayesian network is sound, and no structure learning is

needed. If, on the other end, structure learning is required, then the computational

burden may become prohibitive on large datasets, approximate learning algorithms

are unlike to find close-to-optimal solutions, and an interpretation of the correspond-

ing probabilistic relations by experts may be difficult. Feasibility of the structure

learning algorithm is one of the motivations that will guide us in the development

of a novel, more effective graphical model representation in Chapter 4.

Another intrinsic constraint of BNs (and, broadly speaking, of all conventional

graphical models) is that, in their classic formulation, they only deal with ran-

dom vectors and not with random graphs, i.e. they cannot cope with structured

data patterns which may be variable in size or in structure. For instance, in several

bioinformatics applications the data are in the form of labeled graphs that repre-

sent molecules. Individual molecules have a different number of atoms (i.e., a vari-

able vertex set), and a different chemical structure (i.e., edges in the graph are not

fixed). Beginners’ enthusiasm on plausible application of Bayesian networks to such

scenarios might be smothered once they realize that the graphical nature of the ma-

chine does not entail its capability of dealing with data which are graphs themselves.

Practitioners may well resort, to this end, to the many alternative machine learning

paradigms which are suitable for learning over graphs [149, 285, 124, 298].



Chapter 3

Markov Random Fields

“[W]e avoid the gravest difficulties when, giving up the attempt

to frame hypotheses concerning the constitution of material

bodies, we pursue statistical inquiries as a branch of rational

mechanics.”

J. Willard Gibbs, 1902 [111]

3.1 Introduction

Let’s give Bayesian networks a break, and let us go back to our favorite topic,

namely soccer. Suppose you want to develop a probabilistic model of the ranking of

your team in the domestic soccer league championship at any given time t through-

out the current season. In this setup, it is reasonable to assume that t is a discrete time

index, denoting t-th game in the season and ranging from t = 1 (first match of the

tournament) to t = T (season finale). Assuming the championship is organized as a

round-robin tournament among N teams, then T = 2(N − 1). The ranking of your

team at time t +1 is likely to change with a certain probability distribution which (i)

accounts for the randomness of the results at the end of the corresponding matchday,

and (ii) depends on the ranking at time t. For instance, it is definitely unlikely that

the team moves from the bottom of the table to its top after, say, eighteenth match-

day. We can describe the ranking at time t as the ‘state’ (i.e., outcome) of a random

variable whose distribution changes over time, depending on previous states at time

t = 1, . . . ,t −1. We are familiar with the idea of a time-indexed variable Xt already,

since we introduced it in Section 2.6.1 for presenting dynamic Bayesian networks.

In statistics, this is an instance of what is known as a random (or stochastic) process

[71]. Roughly speaking, we can state that a stochastic process is a set (thought of as

a sequence, or time series) or time indexed random variables, i.e. {Xt | t ∈ T}. The

set T is the time domain, and may be discrete (e.g., T = {1, . . . ,T}, as in the soccer

example) or continuous-valued (e.g., T ⊂ R). The variable Xt may itself be dis-

crete or continuous in nature, too. Let us focus on discrete-time processes. If Xt+1

is independent of Xt for any t ∈ T, then the process is said to be memoryless. In

most, interesting cases there are complex statistical dependencies among the distri-

butions of the variables at different times. If, for a certain integer n > 0, Xt depends

on Xt−n, . . . ,Xt−1, and it is independent of X1, . . . ,Xt−n−1 given Xt−n, . . . ,Xt−1, then

the Markov property holds and the process takes the name of Markov chain. This

clearly reminds us of Bayesian networks in general, and of hidden Markov models

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 43–68.
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in particular. Actually, as we saw, the hidden part of a hidden Markov model is a

Markov chain. A Markov chain model could be reasonable to assume in the soccer

championship ranking example, although it would be likely to lose some relevant

statistical information on the long-term trend of the teams in the tournament (e.g.,

on the final matchday your team could still be on top, one point ahead of the runner-

up, but knowing that it lost the last five games in a row whilst its rival won all of

them would possibly change your mind on the likelihood of the final outcomes of

the season).

We can generalize the notion of stochastic process as follows. Let us assume the

set T of time indexes for the collection of random variables {Xt | t ∈ T} is now a

set of d-dimensional integer or real-valued vectors. For instance, each t ∈ T might

represent a specific location in a 2-dimensional space (like an entry on a grid, whose

value is drawn from the distribution of the random variable X(x1,x2)), or a point in

3-dim space at a given time. If T is a topological space [16] (or, a compact subset

of this space), such as the Euclidean space, then {Xt | t ∈ T} is said to be a random

field [2]. It ends up that stochastic processes are a particular, relevant instance of

random fields.

The following example will be particularly fruitful. Let X(λ ,φ) represent the an-

nual average temperature (measured throughout the last year using, say, the Celsius

scale) at longitude λ and latitude φ on the surface of planet Earth. We can stick to

the discrete setup by rounding the measurements to the closest integer Celsius de-

gree, and by imagining that the coordinates (λ ,φ) run over a countable set of pairs

corresponding with the position of all the towns and villages over the world. When-

ever we sample X(λ ,φ), the random value we obtain depends on several factors, such

as: (i) the specific values of longitude and latitude (note that neighboring locations

are likely to exhibit similar temperatures), e.g. the coordinates fall within a sub-

tropical climate region; (ii) specific geological characteristics at (λ ,φ) (which, in

turn, are possibly shared by cities in the immediate surroundings); (iii) the passage

of fronts of cold/warm air masses (e.g., according to fluid dynamics phenomena

in the troposphere) which, once again, have just transited over one or more neigh-

boring locations. In other words, X(λ ,φ) is highly correlated to the temperature of

locations in the neighborhood of (λ ,φ). On the other way around, as distance from

(λ ,φ) increases, this phenomenon of direct, mutual affection between the corre-

sponding temperatures tends to disappear. In particular, the cold air masses pass-

ing over a city will affect the temperature at a distant location only by passing by

(and, affecting the temperature of) intermediate towns along their journey through

the atmosphere. As a consequence, it is ‘reasonable’ to assume that the probabil-

ity distribution of X(λ ,φ) given the temperature of all other locations on the face

of Earth reduces to the distribution of X(λ ,φ) given the temperature measured over

the neighbors of (λ ,φ). In summary, the Markov property holds, and the random

field {X(λ ,φ) | −180◦ ≤ λ ≤ 180◦,−90◦ ≤ φ ≤ 90◦} is then said to be a Markov

random field (MRF, also referred to as Markov network). In the example given, if

we represent the temperature of each town with a vertex X(λ ,φ) in a graph, and we

insert edges between nodes corresponding to ‘neighboring’ locations (that is, towns

whose climates exercise a direct, mutual influence on each other), we can look at the
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MRF as a graphical model. At this qualitative level of description, it should be easy

to intuit that the statistical relationship among neighboring variables are symmetric,

that is, an undirected graph is now opportune, in contrast with the directed graphical

structure occurring in the definition of Bayesian networks. Also, the graph may re-

sult to be cyclic (weather conditions influence neighboring locations which, in turn,

affect intermediate locations etc., eventually leading to a complete trip around the

world and back to the original place). In this chapter, it will be seen that the ab-

stract concept of ‘neighborhood’ is formalized by means of the (undirected) notion

of adjacency (please refer to Appendix B.1 for a review of these definitions in graph

theory).

The example of toy meteorology is also of interest from the topological point of

view. In fact, it points out that the index universe T occurring in the definition of a

random field may as well be a manifold [135]. The surface of Earth (our planet being

3-dimensional) can indeed be roughly mapped onto a collection (mathematically

speaking, an atlas) of local, 2-dim charts, preserving the topology (including the

notion of neighborhood underlying the definition of Markov networks).

A different way to approach the qualitative idea of Markov random field (and

to introduce other notions, required to arrive at a formalization of MRFs) is rooted

in physics, specifically in statistical mechanics [145, 45]. Actually, most authors

trace the history of MRFs back to the so-called Ising model [194]. This model de-

scribes a substance in terms of a lattice (i.e., a graph) of discrete, interacting units

called spins. Each spin may assume as value either 1 or −1,1 according to an en-

ergy function which accounts for local interactions between a spin and its neighbors

in the graph. The model aims at explaining phase transitions in the corresponding

substance. From a statistical viewpoint, the probability of the value the spins may

assume at a given time is interpreted as a function of the energy. More precisely,

a Boltzmann-Gibbs distribution proportional to exp(−β E) is assumed, where E is

the energy of the system, and β is (proportional to) its inverse temperature.

Each spin in the system affects its neighbors according to the mutual interaction

between the corresponding magnetic fields. Roughly speaking, a field is a function

(e.g., a scalar or vector function) defined over a domain which contains the spatial

coordinates of any locations in the system. This mathematical notion is of the ut-

most relevance to physics, where fields are used to describe physical quantities as

functions of space and time. Examples are the magnetic field and Newton gravita-

tional field, the strength of which is known to vanish with the square of the distance

from the source. This is a general tendency of several fields that have been observed

in physics, and it is representative of the idea of focusing on local interactions in a

neighborhood of the source, in spite of the fact that, from a mathematical point of

view, the field extends all over its universe of definition. We will see that Markov

random fields exploit these ideas. They assume a total, field-like energy (that theo-

retically extends over the system at large, but that can be suitably modeled in terms

of symmetric interactions within local neighborhoods) according to an exponential

probability distribution (being, in turn, a function of local energies).

1 In physics, the alternative values − 1
2 and 1

2 are commonly used.
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Vector fields, such as the gravitational or magnetic fields, are indeed defined for

a specific energy function, known as the Hamiltonian. The overall energy of the

system as a whole is expected to be the value of the Hamiltonian. In mechanics,

at any given location within the system, a certain potential energy is defined. It is

basically the amount of energy needed for moving a point in the field from a given

location to another. For instance, this book you are reading right now has a certain

potential energy under the influence of the gravitational field (just let the book fall to

the ground, if you feel skeptical). The Hamiltonian (total energy) is the integral over

the system of kinetic and potential energies. If a field is defined over a discrete set of

steady locations, or units (i.e., having null kinetics), then the Hamiltonian reduces

to the sum, extended to all locations, of unit-defined potential functions. These are

scalar functions which express the potential energy at a local level. No surprise

Markov random fields do the same, defining local neighborhood-specific potential

functions. In physics a force field is, in fact, the negative gradient of its potential

function2. The reader will be delighted to find out that, in a research conducted at

the University of California at Berkeley, potential functions were actually used for

modeling the flow of play in soccer games [35].

Now, let us assume we wish to calculate the probability of a random field being

in a specific state. For instance, the state of the system could be the set of +1/−1

values associated with the spins in the Ising model (in abstract, the state could be any

assignment of values to the variables in the random field). Some important results

from physics allow us to express this probability in a compact form, relying on the

quantities introduced so far (potential, temperature, energy). In particular, a partition

function Z(β ) (β being proportional to the inverse temperature of the system) may

be used to this end, whenever the system is in thermodynamic equilibrium [145, 45].

It is defined as Z(β ) = ∑σ exp{−β H(σ)}, where the sum is extended to all possible

states of the system and H(σ) is the Hamiltonian, i.e. the overall energy of the

system in state σ . The Hamiltonian can be expressed in terms of potential functions

ϕ(ξ ), evaluated (in state σ ) over all symmetric ‘neighborhoods’ ξ in the system,

as H(σ) = ∑ξ ϕ(ξ ). In so doing, the partition function may be rewritten in the

following form [45]:

Z(β ) = ∑
σ

exp{−β ∑
ξ

ϕ(ξ )} (3.1)

The probability of a specific state σ∗ is now obtained as [145, 45]:

P(σ∗) =
1

Z(β )
exp{−β ∑

ξ

ϕ(ξ )} (3.2)

This is a significant result in statistical mechanics. Moreover, it turns out that MRFs

express the joint probability of a set of random variables on a lattice according to an

equation having similar form.

2 Note that in mathematics a conservative vector field is often defined as the positive gradient

of its potential function.
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The formal definition of Markov random field as a probabilistic graphical model

is given in Section 3.2, which explains how to derive a joint probability distribu-

tion from a MRF. Section 3.2.1 illustrates the statistical assumptions underlying the

use of Markov networks. In particular, the Hammersley-Clifford theorem is stated,

which constitutes the theoretical basis for a proper probabilistic interpretation of the

model and of the joint density it encapsulates. Since the computation of the standard

representation of joint probabilities in MRFs results to be intractable, Section 3.2.2

introduces a more efficient way of computing joint distributions, in the form of a

pseudo-likelihood function. In order to compute the overall pseudo-likelihood, we

need to rely on conditional probabilities of individual nodes given their Markov

blankets. This topic is covered in Section 3.2.3.

Once the definitions underlying the very nature of MRFs are given, and a specific

graphical structure is known, we need techniques for learning the parameters which

characterize the probability distributions. In Section 3.3 we show how to learn the

parameters of a Markov random field from a given dataset. Section 3.3.1 describes

a gradient-based approach for the optimization of the weights that are involved in

the formal definition of the potential functions associated with a MRF. Section 3.3.2

provides an algorithm for finding all maximal cliques in an undirected graph: per-

forming this task is in fact necessary in order to initialize the structure of MRFs (i.e.,

to the end of defining the model parameters).

As we saw in the previous chapter, the graphical structure of Bayesian networks

is often fixed by human experts according to a certain prior knowledge of the appli-

cation domain, expressing a causal relationship between pairs of variables. Nonethe-

less, a structure learning strategy ends up to be necessary in the general case.

Although in several cases the graphical structure of MRFs is just a more or less nat-

ural consequence of the specific application domain (the literature on MRFs mostly

assumes the graph is known, as in the toy examples above), we cannot underestimate

the necessity for suitable techniques that can infer the topology of the graph at large.

The issue is investigated in Section 3.4, where an algorithm for structure learning

from data is discussed. Both parameter learning and structure learning prove to be

much more complex in MRFs then they used to be in BNs.

Finally, Section 3.5 offers concluding remarks, including a concise survey of gen-

eralizations of the basic notion of Markov network, a list of their points of strength

and drawbacks, and a selection of representative applications over a wide range of

scenarios.

Although the history of Markov networks can be traced back to 1925, with the

1-dimensional Ising model, it is likely that the first systematic treatment of what

is known, to date, as a MRF was accomplished in 1980 by Ross Kindermann and

James Laurie Snell [167]. Statistical mechanics approaches (namely, simulated an-

nealing) properly related to MRFs were first proposed in the mid Eighties by Stuart

Geman and Donald Geman [106, 281], who applied the model to the restoration of

images. Application of Gibbs sampling and Markov chain Monte Carlo techniques

were first presented in 1974, thanks to the seminal work by John Moussouris [221],

and systematically discussed in the Nineties by Julian Besag and other authors (see,
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for instance, [26]). More or less recent, comprehensive reviews of MRFs and their

applications can be found, just to mention a few, in [265], [47], and [195].

3.2 Representation of Probabilities

Markov random fields [121, 167, 282] are used to represent joint probability distri-

butions underlying sets of random variables. A Markov random field is composed

of an undirected graph and a set of potential functions. Each node in the graph rep-

resents a random variable, and for each maximal clique3 C in the graph we have a

corresponding potential function ϕC. Each potential function ϕC takes as argument

the state of clique C in the graph and returns as value a non-negative real number.

The state of a clique C in a Markov random field is nothing but a specific realization

of the variables in C, i.e. an event described by a specific configuration of the val-

ues of those variables. Figure 3.1 exemplifies the graphical component of a Markov

random field.

X1

X3 X0 X2

X4

Fig. 3.1 The graphical component of a Markov random field. The node X0 is contained in

four different maximal cliques, i.e. C1 = {X0,X1}, C2 = {X0,X2}, C3 = {X0,X3}, and C4 =
{X0,X4}. Shaded nodes denote the neighborhood of X0 (i.e. the set containing all the nodes

that are directly linked to X0), given by N(X0) =
⋃4

i=1 Ci \{X0} = {X1,X2,X3,X4}.

Consider a set X of random variables X1, . . . ,Xn, a graph G whose nodes are

the variables in X, and the set γ of all maximal cliques in G. Given the potential

functions for the cliques in γ , the joint probability distribution of X is computed as

follows:

P(x) =
1

Z
∏
C∈γ

ϕC(xC) (3.3)

where Z is a normalization factor called ‘partition function’ and xC is the state of

clique C as this state is determined by x. If X is the set of all possible configurations

of the values of the variables in X, the partition function is given by:

3 See Appendix B.1 for the definitions of clique and maximal clique in undirected graphs.
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Z = ∑
x∈X

∏
C∈γ

ϕC(xC) (3.4)

Since the cardinality of X is given by |X|= ∏n
i=1 |Di|, where Di denotes the domain

of variable Xi, it is clear that computing Z requires to sum over a number of states

that grows exponentially with the number of variables in X. Therefore, if we stick

to the probability function specified in Equation 3.3, estimating the likelihood of

a state x for a given Markov random field remains intractable. A solution to this

problem, first suggested in [25], will be detailed in Section 3.2.2.

The potential functions are represented as exponential functions. This choice in-

volves exploiting the notion of feature functions. For each state xC of each maximal

clique C, we introduce a feature function fxC
such that:

fxC
(XC) =

{
1 if XC = xC

0 otherwise
(3.5)

In other words, a feature function returns 1 if the respective clique is in the state

corresponding to that feature function, while it returns 0 if the clique is in any other

state. To each feature function f j we attach a real-valued weight w j . Given the fea-

ture functions and their weights, each potential function ϕC takes the following

form:

ϕC(xC) = exp

(
mC

∑
j=1

w j f j(xC)

)
(3.6)

where mC is the number of features defined for clique C. This leads to the following

representation of the joint probability distribution:

P(x) =
1

Z
∏
C∈γ

exp

(
mC

∑
j=1

w j f j(xC)

)

=
1

Z
exp

(

∑
C∈γ

mC

∑
j=1

w j f j(xC)

) (3.7)

Concerning the weights, they can be learned from data so as to maximize the prob-

ability of the data given the Markov random field. This problem will be addressed

in section 3.3.

3.2.1 The Hammersley-Clifford Theorem

The kind of probability distribution specified in Equation 3.7 is usually referred to

as a Gibbs (or Boltzmann) distribution. At this point, the reader may well wonder

why we should choose to model joint probabilities by means of Gibbs distributions,
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and in particular why we should choose to factorize our Gibbs distribution based on

the maximal cliques of a certain (undirected) graph. The key to understanding the

connection between the Gibbs distribution and the graphical structure of Markov

random fields is provided by the Hammersley-Clifford theorem [24].

Before stating the theorem, let us first define the notion of (undirected)

separation:

Definition 3.1. Consider an undirected graph G = (V,E). If A, B, and S are three

disjoint subsets of V, then S separates A from B if, for any node Xi in A and any

node X j in B, every possible path connecting Xi to X j contains at least a node Xk

such that Xk ∈ S.

Given the concept of separation, the Hammersley-Clifford theorem can be stated as

follows:

Theorem 3.1. Given a random vector X = (X1, . . . ,Xn), if G = (V,E) is an undi-

rected graph such that V = {X1, . . . ,Xn} and P is a probability distribution over

X such that P(x) > 0 for any realization x of X, then the following conditions are

equivalent:

1. P(X) is a Gibbs distribution which factorizes according to the maximal cliques

in G;

2. If N(Xi) is the set of neighbors of Xi in G, then P(Xi|X \ {Xi}) = P(Xi | N(Xi))
(local Markov property);

3. If A, B, and S are three disjoint subsets of X, and S separates A from B, then

P(A | B∪S) = P(A | S) (global Markov property).

Proof. See e.g. [24]. ⊓⊔

In other words, given a certain domain of random variables, the Hammersley-

Clifford theorem entails that assuming either that the domain can be modeled by

a Gibbs distribution or that the domain satisfies the local or the global Markov prop-

erty means assuming one and the same thing. Therefore, using a Markov random

field to model a certain probability distribution is justified exactly when any one of

the three conditions specified in the theorem is satisified by the distribution at hand.

That is to say, when we use Markov random fields we are in fact making any one of

the three assumptions proved to be equivalent by Hammersley and Clifford.

The positivity condition on the probability distribution, i.e. the requirement that

P(x)> 0, is strictly necessary in order for the theorem to hold. This condition played

a singular role in the history of the Hammersley-Clifford theorem.4 The theorem was

first proved by John Hammersley and Peter Clifford in 1971, assuming the positivity

condition. However, the authors of the proof felt that this assumption was an unde-

sired feature of their result. The drawback of the positivity condition is that it does

not allow to apply Markov random fields to any domain featuring forbidden states,

4 The historical information contained in this paragraph are drawn from Hammersley’s re-

marks on [24], contained in an additional section of Besag’s paper featuring a critical

discussion by different authors.
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i.e. to any system such that some constraints prevent it from assuming certain states.

This limitation ruled out the possibility of modeling some problems in statistical me-

chanics through Markov random fields. For this reason, Hammersley and Clifford

postponed the publication of the result, in the hope of proving the theorem without

assuming the positivity condition. In the following years, Julian Besag worked out

a more elegant proof of the theorem than Hammersley and Clifford’s original proof,

which was revealed to be unduly complex, and Besag’s result was published [24].

Of course, the positivity condition was assumed by Besag too in his proof of the

theorem. Finally, the last chapter in the history of the Hammersley-Clifford theo-

rem was written by one of Hammersley’s graduate students at Oxford, namely John

Moussouris, who showed (by means of a counter-example) that the positivity of the

probability distribution was a strictly necessary condition of the theorem [221].

3.2.2 A Pseudo-Likelihood Measure

Now, we have to face an important problem. Unfortunately, computing the partition

function specified in Equation 3.4 requires summing over a number of states which

grows exponentially with the number of variables. This is clearly unfeasible in most

real-world settings. A workaround for this difficulty was proposed by Julian Besag

[25]. Besag’s idea is to replace the likelihood function in Equation 3.3 with the

following pseudo-likelihood measure:

P∗(X = x) =
n

∏
i=1

P(Xi = xi | X\ {Xi} = x \ {xi}) (3.8)

In other words, the idea underlying the pseudo-likelihood approach is to factorize

the joint distribution of the random vector X as the product of the distributions of

each variable Xi given the values of all the variables X j such that j = i. Although

the pseudo-likelihood function does not satisfy the axioms of probability theory,

both theoretical and experimental evidence has been put forward in the relevant

literature for the plausibility of employing pseudo-likelihood as an alternative to a

proper joint probability measure [25, 256, 228, 95]. One convenient property of the

pseudo-likelihood function with respect to graphical models is that, as defined by

Equation 3.8, it reduces to the following function:

P∗(X = x) =
n

∏
i=1

P(Xi = xi | mb(Xi)) (3.9)

where mb(Xi) refers to the state of the Markov blanket of Xi. The general notion

of Markov blanket was defined in Chapter 2 (see Definition 2.4). Now, as a result

of Theorem 3.1, a Markov blanket for Xi is provided by N(Xi), i.e. by the neigh-

borhood of Xi. Since the set N(Xi) is unique, when we refer to the Markov blanket
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MB(Xi) of variable Xi we actually mean N(Xi). The clear advantage of the pseudo-

likelihood function over the standard likelihood measure is that the former dispenses

with the partition function embedded in the latter, and thereby it drops an exponen-

tially growing amount of calculations.

3.2.3 Markov Blankets

In order to compute the pseudo-likelihood of a Markov random field, we must be

able to compute the conditional probability of each node given its Markov blanket,

i.e. given its neighborhood. Before explaining how we compute that probability, we

need to introduce the following notation. If x is a vector of values for the variables in

a given set X, and xi is a specific value of a variable Xi contained in X, then f (x,xi)
denotes the value of the feature function f (x∗), where the vector x∗ is the same as

x except that we force Xi to assume value xi. Given this notation, the conditional

probability distribution of a variable X given that its Markov blanket MB(X) is in

state mb(X) is computed as follows, for any value x of X :

P(x | mb(X)) =
exp

(
∑C∈γX

∑
mC

j=1 w j f j(xC)
)

∑
|DX |
i=1 exp

(
∑C∈γX

∑
mC

j=1 w j f j(xC,xi)
) (3.10)

where γX = {C : C ∈ γ ∧ X ∈ C} and DX is the domain of X . The computation

described in Equation 3.10 is justified as follows. First, we have that

P(x | mb(X)) =
P(x,mb(X))

P(mb(X))
(3.11)

Since P(mb(X)) remains constant for any value of X , we can ignore that term,

obtaining the following equation:

P(x | mb(X)) ∝ P(x,mb(X)) (3.12)

Now, if X is the set of all possible joint states of the variables in G, consider the set

X∗ ⊂ X of those joint states x such that X = x and MB(X) = mb(X). Clearly,

P(x,mb(X)) = ∑
x∈X∗

P(x)

= ∑
x∈X∗

1

Z
∏
C∈γ

ϕC(xC)

=
1

Z
∑

x∈X∗
∏
C∈γ

ϕC(xC)

∝ ∑
x∈X∗

∏
C∈γ

ϕC(xC)

(3.13)
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where the last step is justified by the fact that Z is constant for a given Markov

random field. Since ∏C∈γX
ϕC(xC) is constant for any x in X∗, the last quantity

specified in derivation 3.13 can be rewritten as follows:

∑
x∈X∗

∏
C∈γ

ϕC(xC) = ∏
C∈γX

ϕC(xC) ∑
x∈X∗

∏
C∗ ∈γX

ϕC∗(xC∗) (3.14)

In other words, we have that

P(x | mb(X)) ∝ ∏
C∈γX

ϕC(xC) ∑
x∈X∗

∏
C∗ ∈γX

ϕC∗(xC∗) (3.15)

Given that the cliques that are not in γX do not contain node X , it follows that

∑x∈X∗ ∏C∗ ∈γX
ϕC∗(xC∗) remains constant for any value x of X . Therefore, propor-

tion 3.15 can be rewritten as

P(x | mb(X)) ∝ ∏
C∈γX

ϕC(xC) (3.16)

Now, the value of ∏C∈γX
ϕC(xC) is made explicit by the following equations:

∏
C∈γX

ϕC(xC) = ∏
C∈γX

exp

(
mC

∑
j=1

w j f j(xC)

)

= exp

(

∑
C∈γX

mC

∑
j=1

w j f j(xC)

) (3.17)

Therefore, the result of Equations 3.11–3.17 is the following:

P(x | mb(X)) ∝ exp

(

∑
C∈γX

mC

∑
j=1

w j f j(xC)

)
(3.18)

which completes the proof of Equation 3.10.

3.3 Parameter Learning

Parameter learning in Markov random fields is the problem of learning the weights

of the feature functions from data. Since the pseudo-likelihood of a Markov random

field given some specified data is a function of those weights, a straightforward

way of dealing with this task is a maximum likelihood strategy aimed at finding

the values of the weights that maximize the pseudo-likelihood function given the

data.
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3.3.1 Optimizing the Weights

Suppose we are given a dataset D containing m data points, where each data point

d j is a vector (x1 j
, . . . ,xn j

), and a Markov random field h with weights w1, . . . ,wl .

Pursuing a maximum likelihood strategy, we can then try to minimize the following

objective function:

− logP∗(D | h) = −
m

∑
j=1

logP∗(d j | h)

= −
m

∑
j=1

n

∑
i=1

logP
(
Xi = xi j

| mb j(Xi)
) (3.19)

In other words, we want to minimize the negative logarithm of the pseudo-likelihood.

If we are able to compute the gradient of the objective function, which is in-

deed the case, we can then minimize that function by applying standard gradient-

based optimization techniques [283]. Although several techniques may be used to

this end (such as gradient descent), a convenient choice for the latter task is the

limited-memory BFGS algorithm (L-BFGS), which is a quasi-Newton optimization

method, first proposed in [196]. As compared to standard quasi-Newton methods, L-

BFGS reduces the memory requirements of the optimization process. The algorithm

does not compute explicitly the Hessian matrix, which would be quite expensive for

problems involving a large number of variables. Therefore, the L-BFGS method is

particularly well suited for large-scale optimization tasks.

In the following, we derive the gradient of the objective function through Equa-

tions 3.20–3.32, that show how to compute the partial derivatives of the objective

function with respect to each weight wk, whereas the results of the derivation will

be given by Equations 3.33–3.35.

∂

∂wk

{
−

m

∑
j=1

n

∑
i=1

logP
(
xi j

| mb j(Xi)
)
}

=

= −
m

∑
j=1

n

∑
i=1

∂

∂wk

logP
(
xi j

| mb j(Xi)
)

= −
m

∑
j=1

∑
Xi∈Cwk

∂

∂wk

logP
(
xi j

| mb j(Xi)
)

= −
m

∑
j=1

∑
Xi∈Cwk

1

P
(
xi j

| mb j(Xi)
) · ∂

∂wk

P
(
xi j

| mb j(Xi)
)

(3.20)

where Cwk
denotes the clique corresponding to weight wk. Based on Equation 3.10,

we have:
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∂

∂wk

P
(
xi j

| mb j(Xi)
)

=
∂

∂wk

⎧
⎪⎨

⎪⎩

exp
(

∑wl∈WXi
wl fl(d jCwl

)
)

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

)

⎫
⎪⎬

⎪⎭
(3.21)

where WXi
= {w : Xi ∈ Cw} and d jCwl

is the state assumed by clique Cwl
in data

point d j . We now use the following notation:

α(wk) = exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
)

⎞

⎠ (3.22)

β (wk) =

|DXi
|

∑
i∗=1

exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
,xi∗)

⎞

⎠ (3.23)

Equation 3.21 can then be rewritten as follows:

∂

∂wk

P
(
xi j

| mb j(Xi)
)

=
∂

∂wk

{
α(wk)

β (wk)

}

=
1

β (wk)2
·
(

∂α(wk)

∂wk

·β (wk)−α(wk) ·
∂β (wk)

∂wk

) (3.24)

Going back to Equation 3.20, we write:

−
m

∑
j=1

∑
Xi∈Cwk

1

P
(
xi j

| mb j(Xi)
) · ∂

∂wk

P
(
xi j

| mb j(Xi)
)

=

= −
m

∑
j=1

∑
Xi∈Cwk

β (wk)

α(wk)
· ∂

∂wk

P
(
xi j

| mb j(Xi)
)

= −
m

∑
j=1

∑
Xi∈Cwk

1

α(wk) ·β (wk)
·
(

∂α(wk)

∂wk

·β (wk)−α(wk) ·
∂β (wk)

∂wk

)
(3.25)

We now simplify ∂
∂wk

α(wk). First,

∂

∂wk

α(wk) =
∂

∂wk

exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
)

⎞

⎠

= exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
)

⎞

⎠ · ∑
wl∈WXi

∂wl fl(d jCwl
)

∂wk

(3.26)
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Second,

∑
wl∈WXi

∂wl fl(d jCwl
)

∂wk

= ∑
wl∈WXi

{
∂wl

∂wk

· fl(d jCwl
)+ wl ·

∂ fl(d jCwl
)

∂wk

}

= ∑
wl∈WXi

∂wl

∂wk

· fl(d jCwl
)

= fk(d jCwl
)

(3.27)

Therefore,

∂

∂wk

α(wk) = exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
)

⎞

⎠ · fk(d jCwl
)

= α(wk) · fk(d jCwl
)

(3.28)

Similarly, we simplify ∂
∂wk

β (wk). First,

∂

∂wk

β (wk) =
∂

∂wk

|DXi
|

∑
i∗=1

exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
,xi∗)

⎞

⎠

=

|DXi
|

∑
i∗=1

∂ exp
(

∑wl∈WXi
wl fl(d jCwl

,xi∗)
)

∂wk

=

|DXi
|

∑
i∗=1

exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
,xi∗)

⎞

⎠ · ∑
wl∈WXi

∂wl fl(d jCwl
,xi∗)

∂wk

(3.29)

Now,

∑
wl∈WXi

∂wl fl(d jCwl
,xi∗)

∂wk

= ∑
wl∈WXi

{
∂wl

∂wk

· fl(d jCwl
,xi∗)+ wl ·

∂ fl(d jCwl
,xi∗)

∂wk

}

= ∑
wl∈WXi

∂wl

∂wk

· fl(d jCwl
,xi∗)

= fk(d jCwl
,xi∗)

(3.30)

Therefore,

∂β (wk)

∂wk

=

|DXi
|

∑
i∗=1

exp

⎛

⎝ ∑
wl∈WXi

wl fl(d jCwl
,xi∗)

⎞

⎠ · fk(d jCwl
,xi∗) (3.31)
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Equation 3.25 can then be simplified by using the following equations:

1

α(wk) ·β (wk)
·
(

∂α(wk)

∂wk

·β (wk)−α(wk) ·
∂β (wk)

∂wk

)
=

=
1

α(wk) ·β (wk)
·
(

α(wk) · fk(d jCwl
) ·β (wk)−α(wk) ·

∂β (wk)

∂wk

)

= fk(d jCwl
)− 1

β (wk)
· ∂β (wk)

∂wk

= fk(d jCwl
)−

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

)
· fk(d jCwl

,xi∗)

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

)

(3.32)

Depending on the state represented by feature function fk, the result of deriva-

tion 3.32 can then take one of three possible values:

1. If fk(d jCwl
) = 1, then:

fk(d jCwl
)−

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(djCwl
,xi∗)

)
· fk(d jCwl

,xi∗)

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

) =

= 1−
exp

(
∑wl∈WXi

wl fl(d jCwl
)
)

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

)

= 1−P
(
xi j

| mb j(Xi)
)

(3.33)

2. If fk(d jCwl
) = 0 and fk(d jCwl

,x∗i ) = 1 for some value x∗i of Xi, then:

fk(d jCwl
)−

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

)
· fk(d jCwl

,xi∗)

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

) =

= −
exp

(
∑wl∈WXi

wl fl(d jCwl
,x∗i )

)

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

)

= −P(x∗i | mb j(Xi))

(3.34)

3. If fk(d jCwl
) = 0 and fk(d jCwl

,xi∗) = 0 for any value xi∗ of Xi, then:

fk(d jCwl
)−

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

)
· fk(d jCwl

,xi∗)

∑
|DXi

|
i∗=1 exp

(
∑wl∈WXi

wl fl(d jCwl
,xi∗)

) = 0 (3.35)
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3.3.2 Finding the Maximal Cliques

It should be clear from the previous sections that a crucial component of Markov

random fields is given by the maximal cliques of the graph. In order to enumerate

the feature functions in a Markov random field, all maximal cliques of the graph

must have been found. Unfortunately, the problem of finding all maximal cliques

is NP-hard. In fact, accomplishing this task involves determining whether a graph

contains at least a clique of a specified size s, which is one of the 21 problems that

Richard Karp showed to be NP-complete [162].

A classic algorithm for finding maximal cliques in undirected graphs, developed

by Coen Bron and Joep Kerbosch [37], is illustrated in Appendix B.2. Here, we

present a particularly simple clique-finding strategy (see Algorithm 3.1). The pro-

posed algorithm employs a bottom-up strategy to discover (maximal) cliques in an

undirected graph. Starting from cliques of size 1, the idea is to merge all possible

pairs of cliques of size s, checking whether their union forms a new clique (lines 6–

11). On the other hand, for each s the algorithm discards those cliques of size s−1

that are not maximal (lines 12–15). This algorithm may be a convenient choice when

the ease of implementation is a major requirement. Moreover, empirical evidence

suggests that its computational burden on a variety of graphs is not significantly

higher than other state-of-the-art techniques.

Algorithm 3.1 findMaximalCliques: Finding all maximal cliques in undirected

graphs

Input: Undirected graph G with nodes X1, . . . ,Xn.

Output: Set containing all the maximal cliques of G.

findMaximalCliques(G):
1. for(s = 1 to n)

2. γs = /0

3. for(i = 1 to n)

4. γ1 = γ1 ∪{{Xi}}
5. for(s = 1 to n-1)

6. for(Ci ∈ γs)

7. for(C j ∈ γs \{Ci})
8. C = Ci ∪C j

9. if(C is a clique)

10. γ|C| = γ|C|∪{C}
11. for(Ci ∈ γs)

12. for(C j ∈ γs+1)

13. if(Ci ⊂ C j)

14. γs = γs \{Ci}
15. return

⋃n
s=1 γs
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3.4 Structure Learning

In Markov random fields, structure learning is the task of estimating the structure of

the undirected graph from a given dataset. Since in Markov random fields param-

eter learning is much more complex than in Bayesian networks, heuristic structure

learning of the kind we employ for directed models is computationally even more

challenging in the case of undirected models. In fact, parameter learning involves

optimizing a non-trivial objective function with respect to a possibly large number

of (continuous-valued) parameters, and iterative structure learning clearly involves

parameter learning as a subroutine. Given this, the usual way of fixing the struc-

ture of Markov random fields in their applications is by exploiting domain-specific

knowledge in order to design an undirected graph that best fits the constraints of

the domain at hand. For example, an overview of common strategies for applying

Markov random fields to image processing is provided in [240]. The way we fix

the graph structure for the purposes of our experimental demonstrations will be de-

scribed in Chapter 6 (see Section 6.3.1). Nevertheless, an approximate approach to

structure learning can be clearly defined (and sometimes even applied in practical

situations) for Markov random fields in a similar way as we did in Section 2.4 for

Bayesian networks. We now present an approach to this problem based on heuristic

search in a space of possible graphs, as endorsed for example in [137]. To this aim,

what we need to describe is: (i) the problem space, i.e. the set of graphs explored

during the search; (ii) the heuristic function, i.e. the metric used for scoring different

graphs; (iii) the search strategy, i.e. the method used for traversing the search space.

If we are dealing with a random vector X = (X1, . . . ,Xn), then the search space for

learning the structure of a Markov random field is nothing but the set of all possible

(undirected) graphs wit h vertices X1, . . . ,Xn. Within this set, we search for the graph

that maximizes a specified evaluation function.

A simple choice for the evaluation function is the model pseudo-likelihood given

the dataset, formulated in Equation 3.9. In order to prevent overfitting, we refine the

evaluation function by introducing a regularization term, following the approach

originally proposed by Reimar Hofmann and Volker Tresp for continuous Markov

networks [137]. We then come up with the following measure, which we denote by

MDL∗ (since it is inspired by the same principles leading to the MDL/BIC score, as

discussed in Section 2.4.1):

MDL∗(h) = logP∗(D | h)−λ
DL(h)

2
log |D| (3.36)

where h is a Markov random field to be scored, DL(h) is the model description

length, as measured by the number of edges in h, and λ is a regularization param-

eter (to be tuned by suitable cross-validation trials). A convenient feature of the

suggested scoring function is that it does not require any explicit assessment of the

model prior probability.

In order to search the model space, we employ a greedy hill-climbing tech-

nique, based on tentatively removing edges from an initial, fully connected graph.
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When we remove an edge linking two nodes Xi and X j, both the structure of

MB(Xi) and MB(X j) are affected. Therefore, in order to verify whether the edge

removal improves the model score, we simply need to recompute the values of

∑
|D|
k=1 logP

(
xik | mbk(Xi)

)
and ∑

|D|
k=1 logP

(
x jk | mbk(X j)

)
respectively. Additionally,

if we use the MDL-based metric given in Equation 3.36, we also need to recompute

the regularization term based on the new value of DL(h).
The greedy search proceeds as follows. Given a current Markov network h, we

construct the set H containing all Markov networks resulting from removing exactly

one edge from h. We then compute the score MDL∗(hi) for each hi contained in

H, and denote by h∗ the highest-scoring element of H. If h∗ scores better then h,

we replace h by h∗ and repeat the described cycle, otherwise the algorithm stops

and h is returned as output. Pseudocode for the described technique is provided by

Algorithm 3.2, where the notation Eh refers to the set of edges contained in Markov

random field h. Note that the presented algorithm differs from the one proposed in

[137] in the following respect. Suppose that h∗ is such that Eh∗ = Eh \ {{Xi,X j}}.

Then, the latter algorithm only replaces h by h∗ if both ∑
|D|
k=1 logP

(
xik | mbk(Xi)

)

and ∑
|D|
k=1 logP

(
x jk | mbk(X j)

)
increase after removing the edge {Xi,X j}, which is a

stronger requirement than the one imposed by Algorithm 3.2.

Algorithm 3.2 HCLearnMRF: Hill-climbing structure learning in Markov random

fields
Input: Dataset D; Markov random field h with a fully connected graph.

Output: Markov random field h maximizing the heuristic function MDL∗(h) with respect to

D.

HCLearnMRF(D,h):
1. do

2. s = MDL∗(h)
3. H = {hi : Ehi

⊂ Eh ∧|Ehi
| = |Eh|−1}

4. h∗ = argmax hi∈H MDL∗(hi)
5. s∗ = MDL∗(h∗)
6. if(s∗ > s)

7. h = h∗

8. while(s∗ > s)

9. return h

3.5 Final Remarks

In summary, Markov random fields are graphical models that, analogously to

Bayesian networks, are suitable to represent joint distributions over sets of random

variables. While BNs rely on directed, acyclic graphical structures, the graph under-

lying Markov networks is undirected in nature. Also, while the edges in BNs tend

to express a sort of semantic relationship between pairs of variables (e.g., a causal
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link), in MRFs the relation is symmetric and mostly related to the topological prop-

erties of neighboring variables over a space (that is, the mathematical notion of a

random ‘field’). Cyclic dependencies cannot be captured in BNs, but they actually

can in MRFs. In other words, there are structures of (in)dependencies over a set of

variables that can be represented by means of Markov networks, but that BNs can-

not represent. This observation could lead to the suspect that BNs are just a special

case of MRFs. In the next chapter we will see that this is not the case. This will

provide us with further motivation for developing a novel graphical model which

can suitably represent both the families of independence properties representable

by BNs and MRFs.

We saw that the class of Markov random fields considered in this book express

a joint distribution as a normalized product (extended to the maximal cliques in the

graph) of clique-specific potential functions (‘local energies’), having the form of

exponential functions5. These exponentials are, in turn, defined over linear combi-

nations of the feature functions, acting as boolean indicators of the variables in a

clique being in a specific state. The quantity used for the normalization of the prod-

uct expressing the joint density is the partition function. The reader is reminded of

the qualitative introduction to the concept of MRF we made in Section 3.1, since

these formal definitions are instances of the corresponding notions rooted in statis-

tical mechanics. In particular, as anticipated, Equation 3.7 is a Gibbs distribution

having the same form as Equation 3.2. In going through Section 3.1, the reader

might wonder whether a precise relation holds between the two qualitative exam-

ples we worked out in order to introduce the concept of MRF, i.e. the distribution

of temperatures at different locations on Earth (relying on the assumption of certain

Markovian properties) and the statistical mechanics models (whose probability is

modeled by assuming a Gibbs distribution). We saw that the Hammersley-Clifford

theorem provides us with the mathematical proof of equivalence between the two

perspectives and the corresponding statistical assumptions, once the probability den-

sity function is strictly positive.

We also saw that, in general, computing the partition function (hence, the joint

distribution) is intractable, except for toy situations which are of limited practical

relevance. This problem was tackled after Besag’s guidelines, i.e. resorting to a

much simpler, yet well-behaved pseudo-likelihood measure. The pseudo-likelihood

relies on the calculation of the conditional probability of each variable given its

Markov blanket (a notion we already met in BNs). A parameter learning algorithm

is then needed for MRFs. The parameters to be learnt from the data are the real-

valued weights associated with the feature functions. In this perspective, Markov

networks define a parametric model with parameters w1, . . . ,wl . We then adopted

a maximum-(pseudo-)likelihood optimization criterion, and we applied gradient-

based methods for estimating the ‘optimal’ weights. In particular, we saw that the

limited memory BFGS algorithm may be a reasonable choice (it exhibits limited

memory requirements, allowing also for large-scale applications). To this end, we

5 Note that the factorization of the joint distribution over the cliques is guaranteed by the

specific definition of MRFs we adopted in the book, sometimes referred to as the log-

linear model. In general, not all MRFs can be factorized accordingly.
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outlined explicit calculations for the partial derivatives of the criterion function with

respect to the weights of the model. The results are not limited to L-BFGS; in fact,

they can be applied to any gradient-based optimization scheme. In order to come

up with a proper definition of the potential functions in terms of specific weights

(and, in order to make parameter learning a meaningful task), maximal cliques in

the graph must be known or discovered. Unless prior knowledge of the applica-

tion domain helps pinpointing them, a technique for finding the maximal cliques is

needed. We introduced a very simple, yet effective algorithm for accomplishing this

task.

As in Bayesian networks, structure learning is another critical issue in MRFs. In

the literature, a specific undirected graphical structure is mostly assumed, relying

on prior knowledge. Nonetheless, in the general case a structure learning algorithm

is required. Tho this end, the technique we developed is inherited from the approach

we took in the previous chapter for learning the structure of BNs. The algorithm

realizes a search strategy in a space of undirected graphs. The search should be

guided by the (pseudo-)likelihood heuristic. Unfortunately, from a computational

point of view, the problem is even harder than it used to be in BNs. This is due

to (i) the nature of the potential functions, and (ii) the need for continuous-valued

weights, obtained via gradient-based optimization. For these reasons, we proposed

an approximate algorithm, aimed at maximizing a regularized version of the pseudo-

likelihood scoring metric.

3.5.1 Generalizations and Variations on the Theme

Like in the case of BNs, the vast majority of the (machine learning) literature on

Markov networks is concerned with discrete random variables. Nevertheless, MRFs

can be generalized to continuous-valued variables, without any significant alter-

ations of the overall nature and mathematical properties of the model. We deal with

continuous-valued graphical models in Chapter 5.

A number of generalizations to standard Markov networks have been proposed

in the literature. In the following, we limit our attention to some of the most rep-

resentative variations on the theme of MRFs. Multiscale representation of MRFs is

discussed in [199], where scale-recursive algorithms are introduced that allow for

a unified treatment of higher-dimensional Markov networks in an efficient manner.

Discriminative random fields for pattern classification are introduced in [183]. They

rely on local discriminative models, and they relax the usual assumption of mutual

independence among the data given the class that is typical in the application of

Markov networks to pattern recognition problems. MRFs and support vector ma-

chines are combined within a unifying framework, called ‘M3’ (Maximum margin

Markov network), in [295]. M3 stems from the idea of exploiting the generalization

properties of support vector machines and their discriminative power in classifica-

tion tasks, along with the capability of MRFs of modeling statistical dependencies

among the variables.
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Hidden Markov random fields (HMRF) [185] can be seen as either an exten-

sion of MRFs, or as a generalization of hidden Markov models. Bearing in mind

the definition of HMM we gave in Section 2.6.1, the idea can be easily formulated

as follows. A hidden Markov random field is defined exactly as a hidden Markov

model whose hidden part (the Markov chain) is generalized to be a Markov random

field, i.e. a lattice of undirected statistical dependencies over discrete, latent state

variables. Like in HMMs, each state variable has its own emission probability dis-

tribution (which is independent of the other variables given the state itself). The set

of the emission probabilities forms the observable part of the model. Of course, both

training and decoding algorithms are adapted to the new, extended framework [185].

Model selection criteria for HMRFs, based on mean field-like approximations, are

presented in [91].

Hierarchical extensions of Markov random fields were recently introduced [327,

274]. In particular, dynamic hierarchical Markov random fields allow accounting

for structural uncertainty and modeling the structure and the class-labels according

to a joint distribution. The approach was successfully evaluated in a web-based data

extraction task [327].

Gaussian Markov random fields [24, 55, 27, 266, 7] are MRFs such that the joint

probability distribution of the variables can be modeled explicitly with a multivari-

ate Normal distribution. (Relevance of Normal distributions to continuous-valued

variables in graphical models is dramatic, and the topic will be covered extensively

in Section 5.3.1). The equivalence between a Markov network and a multivariate

Gaussian can be shown to hold true whenever the missing edges in the graph under-

lying the MRF coincide with the zeros of the inverse of the covariance matrix of the

corresponding Normal density.

A particularly intriguing generalization of the Markov random field model is the

conditional random field (CRF), which has become a popular alternative to hidden

Markov models for sequence recognition and labeling (especially in natural lan-

guage processing and bioinformatics applications) [186, 294]. The simplest way to

describe a CRF is by defining it as an extension of a traditional Markov network

where the probability distribution is a conditional density (instead of being a bare

joint density over the nodes of the graph) given the value of ‘external’ random vari-

ables (i.e., observations of the phenomenon under consideration, like the acoustic

observations in a HMM). Each potential function in the conditional random field is,

in turn, defined over the variables of its clique and the external variables. The graph-

ical structure of CRFs may be arbitrary, just like in ordinary MRFs, but in most prac-

tical applications it reflects the sequential nature of the data (a discrete-time random

process), assuming the form of an undirected chain. While individual nodes in the

topology of HMMs do not have, in general, any special meaning (e.g., a state node

in a left-to-right HMM for speech recognition takes responsibility for just a short,

unlabeled portion of a sub-phonetic unit), in CRFs each vertex is usually interpreted

as a well-defined tag, or label. Conditional random fields are discriminative models

[186, 294], while standard HMMs and MRFs are not. This is usually claimed to be

the reason why CRFs are better suited to classification/tagging/labeling tasks over

sequences [186, 294]. By assuming a chain structure of dependencies between pairs
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of adjacent variables, efficient algorithms exist for solving the CRF-equivalent of

the well-known ‘three fundamental problems’ of HMMs, formulated by Rabiner in

1989 [251]: (1) computing the probability of an input observation sequence given

the model (i.e. inference); (2) finding the optimal sequence of hidden variables that

best explains the input sequence (i.e. decoding); (3) estimating the model param-

eters that best fit the observation sequences of the training set, according to the

maximum-likelihood criterion (i.e. learning). Actually, from a theoretical point of

view HMMs can be seen as a particular case of CRFs, while the latter basically ex-

tend the former by allowing for: (i) transition probabilities that are not fixed, since

they can change ‘in time’ (i.e., at different positions along the input sequence); (ii)

potential functions (that replace the emission densities of HMMs) that can take into

account input observations at any depth back in time, and that are not constrained to

satisfy the axioms of probability (since they are not forced to have a straightforward

probabilistic interpretation). In practice, there are limitations to the application of

CRFs in the place of HMMs, in particular when no semantic interpretation of in-

dividual observations can be given (e.g., speech processing, handwriting recogni-

tion), and/or when it is not clear (from the knowledge of the application domain)

how many observations back in time shall the feature functions take into account.

Furthermore, like in MRFs, the learning problem turns out to be complex, and its

approximate, gradient-based solutions may result to be (sometimes, way too) sub-

optimal. Efficient techniques for inducing the features in CRFs are investigated in

[209]. Conditional random fields may be combined with support vector machines

too, taking benefit from the generalization capabilities of the latter (see, e.g., [193]).

Other interesting, implicit (and often overlooked) variations on the theme of

Markov networks can be found in the area of artificial neural networks (ANNs).

A thorough treatment of ANNs is beyond the scope of this book. Nonetheless, it is

worth making a few, major concepts clear. Let us say that an artificial neural net-

work can be described as a graph [258]. According to the specific family of ANNs

we consider, the graphical structure may be either directed (e.g., multilayer percep-

trons [268]) or undirected (e.g., Boltzmann machines [1]), as well as cyclic (e.g.,

recurrent ANNs [239, 79]) or acyclic (e.g., feedforward ANNs [29]). Each vertex

in the graph (called neuron, or unit) represents the state of an input random vari-

able (input units), or a random quantity (similarly to what happens in Bayesian or

Markov networks with latent variables), affected by the states of other units (hidden,

or output neurons). The graph is labeled, meaning that a real-valued label (‘weight’,

or ‘connection strength’) wi j is associated with each edge (‘synaptic connection’)

between j-th and i-th neurons. The weight expresses the amount of ‘correlation’ be-

tween the corresponding units, and whether the correlation is positive or negative.

An activation (or potential) function f (.) is associated with each node in the graph.

The argument xi of fi(.) for the generic i-th unit is, in most cases, a weighted linear

combination of the activation of ‘neighboring’ nodes, namely ∑ j wi j f j(x j), where

the sum is extended to all nodes j in the graph such that ( j, i) is in the set of edges.

The argument of the activation function reminds us of the corresponding argument

of potential functions in MRFs. Although a variety of activation functions have been

proposed in the literature, conferring different nature and properties to the ANNs,
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the most popular potential functions are the sigmoid, i.e. f (x) = 1
1+exp(−x) , and the

Gaussian (i.e., an exponential). From the perspective of this book, it is crucial to

observe that a probabilistic interpretation can be readily given to both of them. In

point of fact, the Gaussian is the probability density function of its input, while the

sigmoid is the cumulative distribution function of the corresponding logistic density
exp(−x)

(1+exp(−x))2 (that is, the sigmoid implicitly entails a specific probability distribution

of its inputs). ANNs are trained from data, meaning that the value of their weights

is learned (usually applying the gradient method) in order to extremize a certain

global energy function (a.k.a. criterion, or error function) which is affected by the

local activations.

ANNs may be used as an (explicit or implicit) model of the probability den-

sity of the data. Major instances are: the probabilistic neural network [284], which

is a connectionist representation of the Parzen window estimate [73]; radial basis

function networks [220], which realize mixtures of Gaussian densities, and that can

be trained over the maximum-likelihood criterion in order to estimate probability

densities [303]; and, multilayer perceptrons having a probabilistic interpretation as

non-parametric models of Bayesian posterior probabilities [255, 31], or of density

functions [302, 297]. In these cases, it is possible to say that ANNs are probabilis-

tic graphical models that can represent joint probability distributions over a set of

random variables (namely, the components of the input vectors). It is noteworthy

that, in general, they do not make any prior independence assumptions on the input

variables. Out of the wide class of graphical models that can be realized via ANNs,

we can spot at least two important families of neural nets which turn out to be

special cases of Markov random fields, namely Hopfield networks, and Boltzmann

machines.

The Hopfield network [141, 84] is a flat lattice of interconnected, deterministic

units. Each unit (acting as an input and an output neuron at a given ‘location’) re-

ceives a single scalar input (namely, a binary value) and returns a −1/+ 1 output,

yielded by the application of a threshold activation function to the weighted sum of

contributions from the other units. The output affects all the other units according

to a symmetric topology of undirected edges, which form a cyclic graph (that is,

the network is recurrent). A Lyapunov (i.e., energy) function is associated with each

possible state of the network, whose probability can be shown to follow the Gibbs

distribution (i.e., the network possesses the Markov properties). When fed with a

new input pattern, the network behaves like a dynamical system and tends to stabi-

lize around an equilibrium point (either a basin of attraction, or a spurious state) of

the energy function. It is an instance of the Ising model we introduced in Section 3.1

and, in turn, an instance of MRF. Training the network from data means developing

connection weights that allow the model to reach minima of the energy function,

so that the machine memorizes the input patterns. A given Hopfield architecture

can memorize a limited amount of different patterns, turning out to have a maxi-

mum memory capacity [133]. An input stimulus that partially matches a memorized

pattern will cause the model to recover the most similar pattern in the memory of

the network. This phenomenon induces an autoassociative memory behavior, which
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can reconstruct complete patterns from partial hints. For this reason, this particular

graphical model has often been referred to as a content addressable memory.

While Hopfield nets have deterministic activation functions, nondeterministic po-

tential functions (whose random behavior is governed by the Boltzmann-Gibbs dis-

tribution) are found in another ANN instance of the MRF, namely the Boltzmann

machine [1, 133]. The graph underlying Boltzmann machines has basically the same

structure and meaning it has in Hopfield networks. The differences arise at the levels

of potential functions and global energy. The state of each unit is actually a random

variable, drawn from the Boltzmann-Gibbs distribution as a function of a certain

temperature of the system. The general idea is that the network behavior is the con-

sequence of a simulated annealing process, where the machine is run first under high

temperature (entailing a strong stochastic behavior), and progressively cooled-down

to a thermal equilibrium. Each unit is not limited to binary values, but can take any

real values. Like the Markov networks we discussed in the previous Sections, train-

ing of Boltzmann machines is aimed at maximizing the (log-)likelihood criterion,

practically exploiting a Gibbs sampling procedure.

3.5.2 Applications of Markov Random Fields

Markov networks found a number of applications. It is easily seen that most of them

concern domains where the topology of the MRF fits a spatial representation of the

data in a natural way. In this respect, the most relevant instances are rooted in image

processing (e.g., [106]), although we should not underestimate the fact that, as we

say, several paradigms suitable for sequence processing (dynamic BNs, HMMs)

can be thought of as special cases of MRFs. They were intensively applied to such

areas as speech recognition [119], natural language processing [156], handwriting

recognition [325], and bioinformatics [12]. In the following we report a few, major

examples.

A tutorial on using MRFs for stochastic image modeling can be found in [240].

In [66], MRFs are applied to range sensing, in order to reconstruct high resolution

range images, having low noise, from the integration of low resolution, noisy range

image captured via ordinary cameras. A MRF is used for image segmentation and

skin detection as part of a system for human emotion recognition from color im-

ages in [204]. An application to image processing of multi-dimensional multivari-

ate Gaussian Markov random fields is presented in [205]. Segmentation of images

relying on Bayesian smoothing modeled by MRFs is discussed in [64]. Recently,

MRFs were applied to an image retrieval task involving also global image features

[198]. Segmentation of brain MR images via Markov networks is investigated in

[130]. Self-validated labeling of Markov random fields is proposed and applied to

image segmentation in [88]. Again, a tree-structured MRF model is developed in

[61], where it is used for Bayesian image segmentation. Application to pixon-based

segmentation of images is treated in [320]. Another segmentation model, this time

based on compound Markov random fields and a boundary model, can be found in

[319].
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A number of applications of MRFs, and of related models, to semi-supervised

learning problems are surveyed in [328]. Furthermore, MRFs were applied to such

exciting areas as sonar signal analysis for the classification of underwater floor

[215], landmine detection in ground penetrating radar data [296], fast damage map-

ping in case of earthquakes [304], and automatic detection of pornographic images

[324].

A generative model for separating illumination and reflectance from images is

proposed in [288], where hidden Gaussian Markov random fields are combined with

a generalized autoregressive process. Integrated Web data extraction via dynamic

hierarchical MRFs is accomplished in [327]. Adaptive Gaussian Markov random

fields are presented and successfully applied to human brain mapping in [34].

3.5.3 Points of Strength and Limitations of Markov Random

Fields

Markov random fields are, along with Bayesian networks, among the most popular

and effective graphical models. Aside from their theoretical properties, the variety of

applications listed in the previous section makes a clear point on their practical rele-

vance to a wide range of real-world challenges. Their application is particularly well

suited, as we say, to domains like image processing, where the overall probability of

the input pattern is defined in terms of local quantities which depend on the location

over a topological space. In most cases, the very nature of the application domain

is reflected in a specific, well-defined choice for the graphical structure. We saw

that Markov networks subsume several instances of BNs and dynamic BNs, as well.

While BNs are limited to acyclic graphs, MRFs can cope with cyclic dependence

relationships in a natural way. Several generalizations to the definition of MRFs are

presented in the literature, which further extend the potential of the model. Several

popular learning machines, including HMMs and some families of neural networks,

can be seen as special cases of MRFs, too. Adoption of Besag’s pseudo-likelihood

metric, along with suitable algorithms for finding maximal cliques and searching

the space of graph structures, confers flexibility to the model, which can be virtually

applied to severe tasks even in the absence of prior knowledge.

Nevertheless, just like in the case of BNs, there are several drawbacks that may

limit the application of Markov networks to some (possibly significant) extent. First

of all, Markov random fields are usually designed (as we did throughout the chapter)

for discrete-valued variables. Extensions to the continuous-valued case (see Chap-

ter 5) do not affect the basic definitions and the main algorithms, but they require

some non-trivial workarounds. In fact, there is no standard way to realize the ex-

tension (especially, as far as the modeling of real-valued probabilistic quantities is

concerned), and the overall complexity of learning turns out to be increased further.

Complexity, indeed, is an issue in MRFs. Its darkest side is the computation of

the partition function. Resorting to the pseudo-likelihood tackles the problem only

partially, and is doomed to lead to approximate, sub-optimal solutions in practice.

Parameter and structure learning are also complex problems, and their algorithmic
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solutions do not scale-up well with the number of variables in the graph. For in-

stance, no general solution to this problem has ever been found for Boltzmann ma-

chines, forcing the community to limit applications to a sub-class of these models,

known as the restricted Boltzmann machine. Information-theoretic limits on MRF

structure learning over high dimensions are derived in [270]. In the next chapter,

scalability of learning to high-dimensional spaces is going to be one of our primary

concerns in designing the hybrid random field model.

Another relevant limitation of MRFs is that, in spite of the fact that several BNs

can be represented within the present framework, there are independence relation-

ships that can be modeled properly via Bayesian networks, but that do not fit the

MRF modeling capabilities. Instances may be a consequence of the undirected na-

ture of the edges of the graph underlying the definition of MRF. Undirected edges

do not allow for a representation of causal relations, limiting the expressiveness of

MRFs (at least from a conceptual point of view), e.g. when an expert’s knowledge

(on causal effects of certain variables on others) shall be encapsulated within an ex-

pert system capable of probabilistic reasoning. In a broader sense, while BNs tend

to capture the semantics underlying the graphical representation of the problem do-

main by means of specific variables and their ‘ordered’ relationships, MRFs tend

to be silent concerning a possible ordering over the relationships. Again, hybrid

random fields will cover all possible independence relations that can be modeled

with BNs or MRFs altogether. It goes without saying that MRFs can model joint

probability distributions over a set of variables only under the Markov assumption,

and in particular (due to the Hammersley-Clifford theorem) only when the involved

distribution is strictly positive.

Finally, Markov random fields are intrinsically non-discriminative, which may

limit their effective application to pattern classification tasks. This is possibly the

utmost rationale behind the recent development of discriminative generalizations of

Markov networks, such as discriminative random fields [183], max-margin Markov

networks [295], and conditional random fields [186], capable of modeling condi-

tional (i.e, posterior) probabilities—instead of bare joint densities—in an explicit

manner.



Chapter 4

Introducing Hybrid Random Fields:
Discrete-Valued Variables

“Es gibt keine tabula rasa. Wie Schiffer sind wir, die ihr Schiff

auf offener See umbauen müssen, ohne es jemals in einem Dock

zerlegen und aus besten Bestandteilen neu errichten zu können.”

Otto Neurath, 1932 [227]

4.1 Introduction

Both Bayesian networks and Markov random fields are widely used tools for statis-

tical data analysis. Applying Markov random fields can be relatively expensive be-

cause of the computational cost of learning the model weights from data. As we saw

in Chapter 3, this task involves optimization over a set of continuous parameters, and

the number of these parameters can become very large (in the order of several thou-

sands and more) when we try to address problems involving several variables. For

example, the link-prediction application we will describe in Section 6.3.4.3, which

involves 1,682 variables, is such that the Markov random field applied to it contains

16,396 feature functions, with the corresponding weights.

Two clear advantages of Bayesian networks over Markov random fields are on

the one hand the relative ease of parameter learning, and on the other hand (based on

the former advantage) the feasibility of learning the model structure using heuristic

algorithms (at least when dealing with datasets of reasonable dimensionality). How-

ever, a major limitation of Bayesian networks is the significant computational cost

of structure learning in high-dimensional domains. In order to gain insight into the

mathematical nature of this problem, it is useful to consider a result in graph theory,

established in [260]. The result states that the total number of DAGs containing n

nodes is given by a recursive function f (n), defined as follows:

f (n) =

{
1 if n = 0

∑n
i=1−1i+1

(
n
i

)
2i(n−i) f (n− i) if n > 0

(4.1)

This means that the size of the search space for the structure learning algorithm de-

scribed in Section 2.4 grows exponentially with the number of nodes in the DAG

[50]. To get an idea of how large that space becomes as n increases, notice for exam-

ple that f (3) = 25, f (5) = 29,000, and f (10) = 4.2 ·1018 [226]. As a consequence,

although Algorithm 2.1 is relatively fast due to the hill-climbing strategy, we cannot

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 69–86.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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expect it to scale well to high-dimensional domains. Such limitation will be apparent

from the experimental analysis provided in Chapter 6.

This scenario provides the main motivation for turning to the hybrid graphical

model we describe in this chapter. That is, the model we are going to present is

aimed at overcoming the limitations of both Bayesian networks and Markov random

fields in terms of the computational cost of estimating the model from data. To this

aim, the basic strategy behind hybrid random field estimation is to exploit on the one

hand the ease of learning Bayesian networks for relatively small domains, and on

the other hand the factorization of joint distributions employed in Markov random

fields in the form of the pseudo-likelihood measure. In particular, hybrid random

fields model the conditional distribution of each variable Xi given its Markov blanket

in X through a local Bayesian network, i.e. a Bayesian network containing only a

suitable subset of variables from X.

The chapter is structured as follows. Section 4.2 presents the mathematical defi-

nition of hybrid random field, after introducing the preliminary concepts of directed

and undirected union over graphs. Then, a fundamental theorem is proved, to the

effect that (i) HRFs provide a well-defined representation of joint probability dis-

tributions, and (ii) the set of conditional independence statements entailed by any

given HRF is graphically identified by a statistical property called ‘modularity con-

dition’. In other words, we show that any HRF can be mapped onto a unique joint

distribution, characterized by an explicit set of conditional independencies underly-

ing the modeled variables, and we explain how the represented distributions can be

derived from the HRF. Section 4.3 offers a mathematical analysis of the main theo-

retical properties satisfied by the (conditional) independence structures modeled by

hybrid random fields. The ultimate contribution of the analysis lies in showing that

hybrid random fields are capable of modeling exactly the union of the classes of

independence structures that can be modeled by Bayesian and Markov networks re-

spectively. This result may be summarized by saying that the modularity condition

is mathematically equivalent to the logical disjunction of the two statistical prop-

erties that we referred to as (i) directed Markov assumption (see Section 2.2) and

(ii) local/global Markov property (see Section 3.2.1). After completing the formal

analysis of the defined graphical model, we proceed to presenting suitable infer-

ence and learning algorithms for hybrid random fields. Concerning inference, we

describe the ordered Gibbs sampling technique (Section 4.4), whose generality al-

lows to apply it to hybrid random fields in exactly the same way it is traditionally

applied to other graphical models, such as Bayesian and Markov networks. Given

the directed-graphical nature of the local modules composing HRFs, we show how

parameter learning can be addressed by simply exploiting the estimation technique

we already presented for Bayesian networks. On the other hand, in order to estimate

the structure of HRFs, Section 4.6 presents a dedicated algorithm, known as Markov

Blanket Merging [95, 94], which is explained to exhibit nice properties in terms of

computational complexity (Section 4.6.4). Section 4.7 briefly discusses—especially

from a machine learning point of view—some analogies and differences between

HRFs and a few other graphical models that have been proposed in the relevant
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literature, such as dependency networks and chain graphs. Finally, while summa-

rizing the main results collected throughout the chapter, Section 4.8 also discusses

some important differences between the formal definition and theoretical analysis

of hybrid random fields offered in Sections 4.2–4.3 and the respective definition and

analysis which can be found in the literature originally introducing the model to the

scientific community [94, 97].

4.2 Representation of Probabilities

Just like Bayesian networks and Markov random fields, hybrid random fields are

aimed at representing joint probability distributions underlying sets of random vari-

ables. In order to define the concept of hybrid random field, we need to introduce

a few preliminary notions concerning directed and undirected graphs. First, let us

define the concept of (directed) union of directed graphs:

Definition 4.1. If G1 = (V1,E1) and G2 = (V2,E2) are directed graphs, then the (di-

rected) union of G1 and G2 (denoted by G1 ∪G2) is the directed graph G = (V,E)
such that V = V1 ∪V2 and E = E1 ∪E2.

Clearly, for a set of directed graphs G1, . . . ,Gn, the directed union G =
⋃n

i=1 Gi simply

results from iterated application of the binary union operator. Similarly, we define

the notion of (undirected) union for undirected graphs:

Definition 4.2. If G1 = (V1,E1) and G2 = (V2,E2) are undirected graphs, then the

(undirected) union of G1 and G2 (denoted by G1 ∪G2) is the undirected graph G =
(V,E) such that V = V1 ∪V2 and E = E1 ∪E2.

Now, if G = (V,E) is a directed graph, then we say that G∗ = (V∗,E∗) is the undi-

rected version of G if V∗ = V and E∗ = {{Xi,X j} : (Xi,X j)∈E}. Thus, we also define

the undirected union for a pair of directed graphs:

Definition 4.3. If G1 = (V1,E1) and G2 = (V2,E2) are directed graphs, then the

undirected union of G1 and G2 (denoted by G1 ⋒ G2) is the (undirected) graph

G∗ = G∗
1 ∪G∗

2 such that G∗
1 and G∗

2 are the undirected versions of G1 and G2 respec-

tively.

Given the concepts introduced above, a hybrid random field can be defined as

follows:

Definition 4.4. Let X be a set of random variables X1, . . . ,Xn. A hybrid random field

for X1, . . . ,Xn is a set of Bayesian networks BN1, . . . ,BNn (with DAGs G1, . . . ,Gn)

such that:

1. Each BNi contains Xi plus a subset R(Xi) of X\ {Xi};

2. If MBi(Xi) denotes the Markov blanket of Xi in BNi (i.e. the set contain-

ing the parents, the children, and the parents of the children of Xi in Gi) and

P(Xi |MBi(Xi)) is the conditional distribution of Xi given MBi(Xi), as derivable

from BNi, then at least one of the following conditions is satisfied:
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a. The directed graph G =
⋃n

i=1 Gi is acyclic and there is a Bayesian network hG

with DAG G such that, for each Xi in X, P(Xi |MBi(Xi)) = P(Xi | MBG(Xi)),
where MBG(Xi) is the Markov blanket of Xi in hG and P(Xi | MBG(Xi)) is

the conditional distribution of Xi given MBG(Xi), as entailed by hG;

b. There is a Markov random field hG∗ with graph G∗ such that G∗ = G1 ⋒ . . .⋒Gn

and, for each Xi in X, P(Xi |MBi(Xi)) = P(Xi |MBG∗(Xi)), where MBG∗(Xi)
is the Markov blanket of Xi in hG∗ and P(Xi | MBG∗(Xi)) is the conditional

distribution of Xi given MBG∗(Xi), as derived from hG∗ .

The elements of R(Xi) are called ‘relatives of Xi’. That is, the relatives of a node Xi

in a hybrid random field are the nodes appearing in graph Gi (except for Xi itself).

An illustration of a hybrid random field is provided in Figure 4.1.

X2 X3

X1 X4

X2

X1

X3

X1

X4

X2

X4

G1: G2: G3: G4:

Fig. 4.1 The graphical components of a hybrid random field for the variables X1, . . . ,X4. Since

each node Xi has its own Bayesian network (where nodes in MBi(Xi) are shaded), there are

four different DAGs. Relatives of Xi that are not in MBi(Xi) are dashed.

The crucial issue concerning Definition 4.4 can be stated by means of two (tightly

correlated) questions:

1. Is it possible to extract a joint probability distribution from a hybrid random field?

2. Is it possible to characterize a set of conditional independence statements entailed

by a hybrid random field?

Both questions are given a positive answer by the following theorem:1

Theorem 4.1. Suppose that h is a hybrid random field for the random vector X =
(X1, . . . ,Xn), and let h be made up by Bayesian networks BN1, . . . ,BNn (with DAGs

G1, . . . ,Gn). Then, if each conditional distribution P(Xi |MBi(Xi)) is strictly positive

(where 1 ≤ i ≤ n), h has the following properties:

1 The theorem exploits the concept of an ordered Gibbs sampler. The reader who is not

familiar with Gibbs sampling techniques will find it helpful to read Section 4.4 first.
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1. An ordered Gibbs sampler applied to h, i.e. an ordered Gibbs sampler which is

applied to the conditional distributions P(X1 | MB1(X1)), . . . ,P(Xn | MBn(Xn)),
defines a joint probability distribution over X via its (unique) stationary distri-

bution P(X);
2. For each variable Xi in X, P(X) is such that P(Xi | X\{Xi}) = P(Xi | MBi(Xi)).

Proof. By the definition of hybrid random field, at least one of the following condi-

tions must hold for any i such that 1 ≤ i ≤ n:

1. P(Xi | MBi(Xi)) = P(Xi | MBG(Xi)), where G is the directed union of G1, . . . ,Gn

and P(Xi | MBG(Xi)) is derived from a Bayesian network hG with DAG G. In

this case, an ordered Gibbs sampler applied to h, i.e. to the conditional distribu-

tions P(X1 |MB1(X1)), . . . ,P(Xn |MBn(Xn)), has a unique stationary distribution

P(X), which is exactly the stationary distribution of an ordered Gibbs sampler ap-

plied to hG [236, 113]. The existence of a unique stationary distribution for the

ordered Gibbs sampler is warranted by the fact that each conditional distribution

P(Xi |MBi(Xi)) is strictly positive. Moreover, since h and hGdefine the same prob-

ability distribution, h entails that P(Xi | X\{Xi}) = P(Xi |MBi(Xi)). This follows

from the fact that P(Xi | X\{Xi}) = P(Xi |MBG(Xi)), as entailed by Theorem 2.4

(see Section 2.2.2);

2. P(Xi | MBi(Xi)) = P(Xi | MBG∗(Xi)), where G∗ is the undirected union of

G1, . . . ,Gn and P(Xi | MBG∗(Xi)) is derived from a Markov random field hG∗

with graph G∗. In this case, an ordered Gibbs sampler applied to h has a unique

stationary distribution P(X), which is exactly the stationary distribution of an

ordered Gibbs sampler applied to hG∗ [106, 113]. The existence of a unique sta-

tionary distribution for the Gibbs sampler is warranted by the positivity of each

conditional distribution P(Xi | MBi(Xi)). Moreover, since h and hG∗ define the

same probability distribution, h entails that P(Xi | X \ {Xi}) = P(Xi | MBi(Xi)).
This follows from the fact that P(Xi | X\ {Xi}) = P(Xi | MBG∗(Xi)), as entailed

by Theorem 3.1 (see Section 3.2.1).

We see that, in both cases, the two conditions specified in the theorem (i.e. existence

of a unique stationary distribution specified by h and identifiability of a set of con-

ditional independencies entailed by that distribution) are satisfied by the considered

hybrid random field. ⊓⊔

We refer to the second condition in Theorem 4.1 as the modularity property (or mod-

ularity condition). Accordingly, we refer to Theorem 4.1 as the modularity theorem.

Based on the modularity property, the set MBi(Xi) is a Markov blanket of Xi in X. If

we look at the way that Bayesian networks and Markov random fields are designed,

we see that the mathematical foundation of the respective likelihood functions lies

in some kind of conditional independence property. While the estimation of joint

probabilities in Bayesian networks is allowed by the directed Markov assumption,

using Markov random fields requires to assume that the statistical conditions de-

tailed in the Hammersley-Clifford theorem are satisfied. Although independence

assumptions may fail to hold in empirical domains, due to the simplifying nature of



74 4 Hybrid Random Fields for Discrete Variables

such assumptions, the resulting models can be quite effective in practice. The con-

ditional independence property one assumes when using hybrid random fields is the

modularity condition.

In order to extract a joint probability distribution from a hybrid random field,

Gibbs sampling techniques need to be used [113]. A simple and general Gibbs sam-

pling algorithm is described in Section 4.4. Unfortunately, Gibbs sampling can be

computationally expensive, which encourages us to look for an alternative way of

measuring joint probabilities. Following the strategy employed in Section 3.2.2 for

Markov random fields, our idea is to use the pseudo-likelihood function:

P∗(X) =
n

∏
i=1

P(Xi | X\ {Xi}) (4.2)

Based on the modularity property, Equation 4.2 can be simplified as follows:

P∗(X) =
n

∏
i=1

P(Xi | MBi(Xi)) (4.3)

Therefore, in order to measure a pseudo-likelihood in a hybrid random field, we

only need to be able to compute the conditional distribution of each node Xi given

the state mbi(Xi) of MBi(Xi). In Section 2.2.2 we saw how this can be done in a

simple and very efficient way.

An important comment to make concerns the possible presence of loops in hybrid

random fields. Clearly, loops cannot arise at the local level, that is at the level of each

Bayesian network, since this is prevented (trivially) by the very use of Bayesian net-

works as representations of the local conditional distributions. On the other hand,

loops can arise at the global level, since it may happen (as shown in Figure 4.1)

that two nodes (such as X1 and X3) point to one another if considered simultane-

ously in different Bayesian networks. This is not a problem at all, because of the

modular nature of hybrid random fields. Global loops do not affect the way that the

pseudo-likelihood is computed, since that function is factorized as a product of local

distributions such that each one of them is computed independently of the remain-

ing ones. Moreover, since the presence of a cycle in the directed union of graphs

G1, . . . ,Gn prevents the hybrid random field from satisfying condition 2.a in Defini-

tion 4.4, this ensures that condition 2.b is instead satisfied, and hence that the hybrid

random field correctly specifies a joint distribution via a suitable Markov random

field (with graph G∗ = G1 ⋒ . . .⋒Gn).

4.3 Formal Properties

We now show that hybrid random fields are a more general formalism than Bayesian

networks and Markov random fields. In particular, the result we are going to es-

tablish is that the class of (conditional) independence structures representable by

means of hybrid random fields is given exactly by the union of the classes con-

taining the (conditional) independence structures that can be specified by Bayesian



4.3 Formal Properties 75

networks and Markov random fields respectively. By conditional independence

structure (or simply independence structure) we mean a set of conditional inde-

pendence statements concerning a specified collection of random variables. Hence,

the conditional independence structure represented by a given graphical model is

nothing but the set of conditional independence statements entailed by (the struc-

ture of) that graphical model. Since it is known that some independence structures

represented by Bayesian networks cannot be represented by Markov random fields

and vice-versa [237], this means that both the class of independence structures cap-

tured by Bayesian networks and the class of independence structures captured by

Markov random fields are strictly included in the class captured by hybrid random

fields.

Before establishing the relevant properties, we need to recall one lemma concern-

ing the relationships between Bayesian networks and Markov random fields:

Lemma 4.1. Let us denote by BN and MRF the set of independence structures

that are representable by Bayesian networks and Markov random fields respectively.

Then, the relationship between BN and MRF is characterized by the following

properties:

BN∩MRF = /0

BN \MRF = /0

MRF \BN = /0

(4.4)

Proof. See e.g. [237]. ⊓⊔

The conditional independence structures that are representable by both Bayesian

networks and Markov random fields (i.e. the elements of BN∩MRF) are usually

referred to as decomposable models [103, 57, 20].

We can now prove the first important lemma concerning the generality properties

of hybrid random fields:

Lemma 4.2. If HRF is the set of independence structures that can be represented

by hybrid random fields, then

BN ⊆ HRF (4.5)

where BN is the set of independence structures that are representable by Bayesian

networks.

Proof. In order to prove the lemma, we show that, for any Bayesian network hG

with DAG G = (V,E), there exists a hybrid random field h representing the same

distribution P(X) represented by hG. In other words, we show that any indepen-

dence structure represented by a Bayesian network can be mapped onto an equiv-

alent independence structure represented by a hybrid random field. Suppose that,

for each Xi in X, MBG(Xi) is the Markov blanket of Xi in G. Then, for each BNi

in h, set the DAG Gi to be given by (Vi,Ei), where Vi = {Xi} ∪MBG(Xi) and

Ei = {(X j,Xk) : {X j,Xk} ⊆ Vi ∧ (X j,Xk) ∈ E}. Moreover, take the conditional prob-

ability tables for the nodes in Vi to be the same as the corresponding tables in hG.
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In this case, we have that, for each Xi in X, P(Xi | MBi(Xi)) = P(Xi | MBG(Xi)),
which means that the stationary distribution of an ordered Gibbs sampler applied to

h will be exactly P(X). ⊓⊔

Second, we prove an analogous lemma regarding the relationship between Markov

and hybrid random fields:

Lemma 4.3. If HRF is the set of independence structures that can be represented

by hybrid random fields, then

MRF ⊆ HRF (4.6)

where MRF is the set of independence structures that are representable by Markov

random fields.

Proof. The lemma is proved by showing that, for any Markov random field hG∗

with graph G∗ = (V∗,E∗), there exists a hybrid random field h representing the same

joint distribution P(X) represented by hG∗ . In other words, we show that any in-

dependence structure represented by a Markov network can be mapped onto an

equivalent independence structure represented by a hybrid random field. Suppose

that, for each Xi in X, MBG∗(Xi) is the Markov blanket of Xi in G∗. Then, for each

BNi in h, set the DAG Gi to be given by (Vi,Ei), where Vi = {Xi} ∪MBG∗(Xi)
and Ei = {(X j,Xi) : X j ∈ MBG∗(Xi)}. Moreover, let the conditional probability

table for node Xi in BNi store the same values specified by hG∗ for the corre-

sponding conditional probabilities. In this case, we have that, for each Xi in X,

P(Xi | MBi(Xi)) = P(Xi | MBG∗(Xi)). This means that the stationary distribution

of an ordered Gibbs sampler applied to h will be exactly P(X). ⊓⊔

Given Lemmas 4.1–4.3, we can finally prove the following theorem:

Theorem 4.2. Let BN, MRF, and HRF denote the sets of conditional indepen-

dence structures that are representable by Bayesian networks, Markov random

fields, and hybrid random fields respectively. Then, HRF can be characterized as

follows:

HRF = BN∪MRF (4.7)

Proof. Lemmas 4.2–4.3 together imply that

BN∪MRF ⊆ HRF (4.8)

On the other hand, it is easily seen that, if P(X) is the probability distribution rep-

resented by a hybrid random field h (with DAGs G1, . . . ,Gn), then P(X) must be

identical to the probability distribution specified by either a Bayesian network hG

(with DAG G =
⋃n

i=1 Gi), or a Markov random field hG∗ (with graph G∗ given by

the undirected union of G1, . . . ,Gn), or both (when P(X) is a decomposable model).

This derives from the fact that the existence and uniqueness of P(X) results from its

being identical to the distribution represented by a Bayesian or Markov network, as

made clear by the proof of Theorem 4.1. We can then state the following equality:
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HRF ⊆ BN∪MRF (4.9)

Therefore, we can conclude that HRF = BN ∪ MRF, as implied by expres-

sions 4.8–4.9 together. ⊓⊔

An intuitive way of rephrasing the result established by Theorem 4.2 is by saying

that the modularity property is mathematically equivalent to the logical disjunction

of (i) the directed Markov property (holding for Bayesian networks) and (ii) the

local/global Markov property (holding for Markov random fields).

It is worth noticing that, as a trivial consequence of Lemmas 4.1–4.3, the follow-

ing inequalities hold:

HRF \BN = /0

HRF \MRF = /0
(4.10)

This means that expressions 4.5–4.6 can be refined as follows:

BN ⊂ HRF

MRF ⊂ HRF
(4.11)

The fact that hybrid random fields generalize both Bayesian and Markov networks

does not mean that hybrid random fields are a ‘better’ probabilistic model in any

absolute sense. In particular, Theorem 4.2 does not provide a general argument for

using the hybrid model in preference to traditional directed or undirected graphical

models. The proper conclusion we can draw from Theorem 4.2 is that by using

hybrid random fields instead of Bayesian networks or Markov random fields we do

not lose any representational power. On the contrary, by using the hybrid model we

retain the capability of representing any kind of conditional independency that can

be represented by either Bayesian or Markov networks. An empirical argument to

the effect that hybrid random fields (as estimated by means of a particular structure

learning technique) are often able to deliver more accurate predictions than Bayesian

networks and Markov random fields in a variety of applications is provided by the

results of the experimental demonstrations reported in Chapter 6.

4.4 Inference

Given a set of random variables X1, . . . ,Xn, probabilistic inference is the task of es-

timating the posterior distribution of a variable Xi given that some other variables

have a known value. The variables whose values are known are called evidence

variables, whereas the query variable is the one for which we want to estimate the

conditional distribution given the evidence. We now present the ordered Gibbs sam-

pling algorithm [269, 113], which is an approximate inference technique for prob-

abilistic graphical models belonging to the family of Markov chain Monte Carlo

(MCMC) methods [113]. We choose to present this version of MCMC-based infer-

ence because it is particularly simple to implement, and it can be applied equally
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well to Bayesian networks, Markov random fields, and hybrid random fields. A

more complex inference technique for graphical models, that has been attracting a

lot of interest in recent years, is generalized belief propagation [322], which extends

to cyclic graphical structures the belief propagation method originally proposed in

[237]. Overviews of other inference methods can be found e.g. in [226] and [30].

The basic idea behind MCMC is to run a stochastic simulation over the graphical

model for a certain number of cycles. During the simulation, the values of the evi-

dence variables are kept fixed, while the values of the other variables are repeatedly

sampled, in turn, according to their conditional distributions given the respective

Markov blankets. Before the simulation begins, the values of non-evidence vari-

ables are initialized randomly. At each cycle, the value assumed by the query vari-

able is recorded, so that once the simulation has finished, the relative frequencies

of the different values assumed by that variable can be used to compute the respec-

tive conditional probabilities. A complete description of ordered Gibbs sampling is

provided by Algorithm 4.1, where DXi
is used to denote the domain of variable Xi

and P(Xi | mb(Xi);h) refers to the conditional distribution of Xi given the state of its

Markov blanket, as derived from graphical model h.

Algorithm 4.1 GSInference: Gibbs sampling-based inference for probabilistic

graphical models

Input: Probabilistic graphical model h with nodes X1, . . . ,Xn; vector e containing the values

e1, . . . ,em of evidence variables E1, . . . ,Em, where {E1, . . . ,Em} ⊂ {X1, . . . ,Xn}; query

variable Xq ∈ {X1, . . . ,Xn}\{E1, . . . ,Em}; number c of cycles to run.

Output: Approximate estimate of each conditional probability P(xqi
| e1, . . . ,em), for

1 ≤ i ≤ |DXq
|.

GSInference(h,e,Xq,c):
1. E = {E1, . . . ,Em}
2. for(i = 1 to n)

3. if(∃ j E j ∈ E∧Xi = E j)

4. Xi = e j

5. else

6. Xi = random value from DXi

7. for(i = 1 to |DXq
|)

8. pi = 0

9. for(i = 1 to c)

10. for(j = 1 to n)

11. if(X j ∈ E)

12. X j = random value x jk sampled from P(X j | mb(X j);h)
13. if(X j = Xq)

14. pk = pk + 1

15. for(i = 1 to |DXq
|)

16. pi = pi/c

17. return (p1, . . . , p|DXq |)
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The main theoretical property of MCMC inference is that, as the number of cycles

increases, the stochastic simulation carried out by the algorithm settles into a kind

of equilibrium such that the (normalized) fraction of cycles that the system spends

in a particular state converges to the posterior probability of that state given the ev-

idence, provided that the conditional distribution of each variable given its Markov

blanket is strictly positive [269, 113]. This means that, as the simulation proceeds,

the estimated distribution of the query variable given the evidence converges to the

true posterior distribution of that variable.

4.5 Parameter Learning

In hybrid random fields, parameter learning is the problem of learning the local

distributions of the model variables given the respective Markov blankets. That is,

for each variable Xi, the task is to learn the parameters of the conditional distribution

P(Xi | mb(Xi)). This requires that the structure of the hybrid random field has been

previously fixed, i.e. that the DAG Gi associated with each variable Xi is known.

In order to estimate the model parameters from a dataset D, we simply learn the

parameters of each Bayesian network BNi from D, using the method described in

Section 2.3.

4.6 Structure Learning

Structure learning in HRFs is the problem of learning, for each variable Xi, what

other variables appear as nodes in BNi, and what edges are contained in the DAG Gi.

Clearly, this means learning the structure of each Markov blanket MBi(Xi) within

the HRF. While parameter learning assumes that the MB of each variable has already

been fixed, the aim of structure learning is to identify each MB and to determine its

graphical structure.

We propose a heuristic structure learning algorithm for HRFs, which we call

Markov Blanket Merging (MBM). MBM works under the hypothesis that all vari-

ables are fully observed within the dataset. That is to say, the data do not con-

tain incomplete patterns. The aim of MBM is to find an assignment of MBs

MB1(X1), . . . ,MBn(Xn) to the nodes X1, . . . ,Xn that maximizes the model pseudo-

likelihood given a dataset D. The basic idea behind MBM is to start from a certain

assignment of relatives to the model variables, to learn the local BNs in the model,

and then to iteratively refine the assignment so as to come up with MBs that increase

the model pseudo-likelihood with respect to the previous assignment. This iterative

procedure stops when no further refinement of the MBs assignment increases the

value of the pseudo-likelihood. In other words, MBM is a local search algorithm

exploring a space of possible MB assignments to the model variables. As such,

MBM only warrants convergence to local optima of the pseudo-likelihood function.

However, the results achieved in our applications show that the optima reached by
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MBM are usually good enough to produce comparatively accurate predictions. The

reason why we choose to maximize the pseudo-likelihood, rather than the likelihood

in the strict sense, is that the former function is much more efficient to compute than

the latter, which requires instead Gibbs sampling.

An important problem to consider is given by the size of the search space. If

we allowed the search space to contain all possible MB assignments, the size of

the space would be intractable: if n is the number of variables, for each variable

there are 2n−1 possible MBs, and therefore the size of the search space is n · 2n−1.

Clearly, exploring such a state space exhaustively is not feasible. For this reason,

MBM reduces the size of the search space by assuming that the cardinality of each

MB within the HRF is bounded by an upper limit k∗ (where the particular value

of the k∗ parameter is tuned in each application by preliminary cross-validation).

While the usefulness of this assumption will be made clear by the formal analysis of

Section 4.6.4, the accuracy of the models learned in various applications (Chapter 6)

shows that the assumption is quite reasonable in practice.

In order to develop the algorithm, we specify three components: (i) a model ini-

tialization strategy, that is a way to produce the initial assignment of Markov blan-

kets to the model variables; (ii) a search operator, that is a way to refine a given

assignment so as to produce an alternative assignment; (iii) an evaluation function,

that is a way to evaluate a given assignment. These three components are described

in Sections 4.6.1–4.6.3.

4.6.1 Model Initialization

The way MBM produces an initial assignment is by choosing an initial size k of

the sets of relatives, and then by assigning as relatives to each variable Xi those k

variables that achieve the highest scores on the χ2 dependence test with respect to

Xi. The intuitive motivation for this choice is that a set of relatives R(Xi) containing

variables that are more strongly correlated to Xi is more likely to capture the MB of

Xi than a set of relatives containing variables that are only weakly correlated to Xi.

Given the sets of relatives R(X1), . . . ,R(Xn), an assignment of MBs to the variables

X1, . . . ,Xn is obtained by learning (both the structure and the parameters of) a BN

BNi for each Xi, where BNi contains Xi together with R(Xi). In order to learn the

structure of the local Bayesian networks, we use Algorithm 2.1. In each application,

the value of k can be tuned by preliminary cross-validation.

4.6.2 Search Operator

Given a current assignment of MBs to the model variables, where the assignment is

given by the MBs MB1(X1), . . . ,MBn(Xn) specified by the networks BN1, . . . ,BNn,

a new assignment is obtained as follows. For each variable Xi (where 1 ≤ i ≤ n),

we construct the set Ui as the union of MBi with the Markov blankets of Xi in

all graphs G j such that Xi appears in G j within the current assignment. Given the
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sets U1, . . . ,Un, we first check whether the cardinality of each Ui does not ex-

ceed a certain threshold k∗, and then we construct a new set of Bayesian net-

works BN∗
1 , . . . ,BN∗

n such that, for each i, if |Ui| ≤ k∗, then BN∗
i is the network

learned by using the set R(Xi) = Ui as the new set of relatives of Xi, whereas, if

|Ui| > k∗, then BN∗
i = BNi. Given BN∗

1 , . . . ,BN∗
n , for each Xi we compare the value

∑
|D|
j=1 logP

(
xi j

|mbi j
(Xi)

)
to the value ∑

|D|
j=1 logP

(
xi j

|mb∗i j
(Xi)

)
. These values are, re-

spectively, the conditional log-likelihoods of Xi given its Markov blanket, as deter-

mined on the one hand by BNi and on the other hand by BN∗
i . If the latter value

is higher than the former, that is if the conditional log-likelihood of Xi given its

MB increases after replacing MBi(Xi) with MB∗
i (Xi), then MB∗

i (Xi) is chosen as

the Markov blanket of Xi in the new assignment, otherwise Xi is assigned again

MBi(Xi). As for the parameter k, a suitable value for k∗ can also be determined by

means of cross-validation.

An important point to note is that, at each iteration of MBM, the MBs of the vari-

ables are replaced by the new ones simultaneously at the end of the cycle, and not

incrementally. This choice makes MBM insensitive to the ordering of the variables,

which is also apparent from Algorithm 4.2.

4.6.3 Evaluation Function

An assignment of MBs to the variables is evaluated by measuring the model pseudo-

log-likelihood. That is, our evaluation function for a model h given dataset D will

be the following:

logP∗(D | h) =
m

∑
j=1

n

∑
i=1

logP
(
Xi = xi j

| mbi j
(Xi)

)
(4.12)

where m = |D|. Actually, by building an alternative assignment from the current one

we implicitly evaluate the new assignment. In fact, the new assignment will differ

from the old one only if there is at least one variable Xi such that the new MB of Xi

increases the conditional log-likelihood of Xi given the MB. Based on the definition

of the pseudo-log-likelihood function and the way the search operator works, an

increase in any one of the n local log-likelihoods of the model ensures an increase

in the global pseudo-log-likelihood. The reason is that the search operator works in

a modular fashion: the way each MBi(Xi) is modified by the operator is such that

the change does not affect any other MB in the model. Therefore, after we build a

new assignment, it is sufficient to compare it to the old one in order to know whether

it increases the model pseudo-likelihood: if the two assignments are different, then

we can endorse the new one as being better, otherwise we keep the old one and stop

the search. A detailed description of MBM is provided by Algorithm 4.2, where

χ2(Xi,X j,D) denotes the value of the χ2 statistic, as computed from dataset D for

variables Xi and X j.
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Algorithm 4.2 MBMLearnHRF: MBM structure learning in hybrid random fields

Input: Dataset D, containing m observations for the random variables X1 , . . . ,Xn; integers k, k∗.

Output: Hybrid random field h (locally) maximizing the heuristic function logP∗(D | h).

MBMLearnHRF(D,k,k∗):
1. X = {X1, . . . ,Xn}
2. for(i = 1 to n)

3. Ri = {X j : X j ∈ X\{Xi}∧ |{Xk : χ2(Xi,Xk,D) > χ2(Xi,X j,D)}| < k}
4. do

5. assignmentWasRe f ined = false

6. for(i = 1 to n)

7. V = {Xi}∪Ri

8. BNi = a Bayesian network with DAG G = (V, /0)
9. BNi = HCLearnBN(D,BNi) //See Algorithm 2.1

10. for(i = 1 to n)

11. Ui =
⋃n

j=1 MB j(Xi)
12. if(|Ui| ≤ k∗)
13. V = {Xi}∪Ui

14. BN∗
i = a Bayesian network with DAG G = (V, /0)

15. BN∗
i = HCLearnBN(D,BN∗

i ) //See Algorithm 2.1

16. MBi = the MB of Xi in BNi

17. MB∗
i = the MB of Xi in BN∗

i

18. if(∑m
j=1 logP

(
xi j

| mb∗i j
(Xi)

)
> ∑m

j=1 logP
(
xi j

| mbi j
(Xi)

)
)

19. Ri = MB∗
i (Xi)

20. assignmentWasRe f ined = true

21. while(assignmentWasRe f ined)

22. return {BN1, . . . ,BNn}

Figure 4.2 illustrates the way MBM iteratively refines the structure of a HRF,

displaying an assignment of MBs at time t, and the assignment obtained at time t +1.

MBM compares the model pseudo-likelihood at time t +1 to the pseudo-likelihood

at time t: if the pseudo-likelihood is higher at t + 1, the new set of BNs is retained

and another iteration of MBM is run, otherwise the algorithm stops searching and

the set of BNs obtained at time t is returned.

4.6.4 Discussion

Given the design of the algorithm, MBM does not warrant the model pseudo-

likelihood to converge to the global optimum of the function. The main reason for

this is given by the choice of the two parameters k and k∗, fixing respectively an ini-

tial value and an upper bound for the size of the sets of relatives to be considered for

each node. However, MBM does warrant that the model pseudo-likelihood will only

increase during the learning process, since any candidate model that decreases the

scoring function will be discarded during the search. This feature of MBM marks



4.6 Structure Learning 83

X2 X3

X1 X4

X2

X1

X3

X1

X4

X2

X4

G∗
1 G∗

2 G∗
3 G∗

4

X1

X3 X4

G1 G2 G3 G4X4

X2

X1

X3

X1

X4

X2

X1

U1 = {X2,X3,X4} U2 = {X1,X4} U3 = {X1} U4 = {X1,X2}

(t)

(t + 1)

Fig. 4.2 An iteration of MBM. Given the assignment at time t, a new assignment is obtained

by merging the (possibly different) Markov blankets of each variable within the different

Bayesian networks, and then by learning a new Bayesian network for each {Xi}∪Ui

an advantage over other efficient algorithms for Markov blanket discovery, such as

the one proposed in [148].

One very important point to consider is the following one. As it should be ap-

parent from the formulation of the MBM algorithm given above, MBM does not

warrant that the returned model is a hybrid random field in the strict sense. In par-

ticular, the output of the algorithm may not satisfy condition 2 in the definition of

HRF (see Definition 4.4 in Section 4.2). However, as the experimental analysis pre-

sented in Chapter 6 will show, this theoretical limitation of MBM does not lead

to serious troubles, as far as we are concerned with the practical behavior of the

learned HRFs, since the models estimated through Markov Blanket Merging dis-

play a comparatively high prediction accuracy in all considered applications. On the

other hand, we also believe that it might be an important research challenge the idea

of developing structure learning algorithms which are able to warrant the estimated

model to be a HRF in the strict sense.



84 4 Hybrid Random Fields for Discrete Variables

Concerning instead complexity issues, by using bounds on the size of the sets

of relatives MBM restricts significantly the size of the search space. In particular,

if we compare structure learning in HRFs to structure learning in BNs, we can see

how MBM achieves an important improvement. Given the upper bound k∗ on the

size of the sets of relatives, if f (n) is the size of the search space for learning the

structure of a BN with n nodes (where f (n) is measured by Equation 4.1), then the

worst-case size of the search space for MBM is given by f ∗(n) = i ·n · f (k∗), where

i is the number of iterations run by MBM until convergence. This result is partic-

ularly useful, because while f (n) grows exponentially with n, f ∗(n) grows only

linearly with n. Although f ∗(n) grows exponentially with k∗, in each application

we are free to choose the value of k∗ that best meets the specific time constraints of

that particular application. Concerning instead the number of iterations required for

convergence, some of the experiments reported in Chapter 6 suggest that i does not

grow significantly with respect to n.

4.7 Related Work

We now consider some work on probabilistic graphical models that is related in im-

portant ways to our work on HRFs. Dependency networks (DNs) are a probabilistic

graphical model which significantly reduces the computational cost of learning with

respect to BNs and MRFs by allowing the graph to assume (possibly) inconsistent

configurations. According to the learning strategy employed by [128], the structure

of DNs is fixed by using a feature selection algorithm to assign each node a set of

neighbors (that is a Markov blanket). Given the chosen Markov blankets, the condi-

tional distribution of each node given its MB is modeled using probabilistic decision

trees [100, 38]. One difference between hybrid random fields and dependency net-

works is that using BNs as models of the local conditional distributions allows us

to develop an iterative structure learning algorithm. In Markov Blanket Merging,

feature selection only initializes the model structure, and the model can then be re-

fined to better fit the data distribution. Given the way that dependency networks are

defined in [128], hybrid random fields may be viewed as a particular class of ‘gen-

eral’ dependency networks,2 designed with the primary aim of allowing for itera-

tive structure learning. In this respect, as the experimental demonstration presented

in Chapter 6 will show, the effects of introducing this kind of structure learning

within the framework defined by DNs are quite encouraging, since it leads to dra-

matic improvements in terms of the prediction accuracy of the learned models. On

the other hand, consistent dependency networks are a less general model than hy-

brid random fields, since the equivalence of (consistent) dependency networks and

Markov random fields implies that the class of conditional independence structures

2 According to the terminology used in [128], general dependency networks are DNs that

are not necessarily ‘consistent’, while consistent dependency networks (i.e. dependency

networks in the strict sense) are defined in such a way that they turn out to be equivalent

to Markov random field models.



4.8 Final Remarks 85

representable by DNs is strictly included in the class of independence structures

representable by HRFs (see Section 4.3).

Graphical chain models [191, 314], or chain graphs, define a mathematical frame-

work for studying the properties of probabilistic graphical models in a mostly gen-

eral way. Bayesian networks and Markov random fields are known to be special

cases of chain graphs. While the basic idea of developing a formalism capable

of subsuming some classes of known probabilistic graphical models is common

to chain graphs and hybrid random fields, our work on the latter models is more

strictly focused on learning and its algorithmic aspects, such as scalability. In practi-

cal applications, chain graphs have been estimated typically in the form of particular

graphical models, such as Bayesian and Markov networks, or combinations thereof

[42]. In this respect, since in experimental evaluations hybrid random fields have

been compared to various kinds of Bayesian networks and Markov random fields

[95, 94, 97], they have been compared thereby to the most representative kinds of

chain graphs for which effective learning algorithms exist [39, 40].

A computationally efficient method for learning MBs is the Max-Min Markov

Blanket (MMMB) algorithm [305]. A crucial difference between the MMMB

method and MBM is that the former method is committed to the faithfulness

assumption with respect to the estimated Bayes nets, whereas Markov Blanket

Merging dispenses with any such assumption. While assuming faithfulness may be

reasonable in some applications, that condition cannot be assumed to hold in general

[226]. Therefore, in this respect MBM is a more general Markov blanket learning

technique than MMMB.

The local-to-global-search algorithm [148] for Markov blanket discovery

achieves computational efficiency without making the faithfulness assumption.

However, this algorithm is not generally warranted to optimize the chosen evalu-

ation function, since the score of the learned network can happen to decrease during

the learning process.

4.8 Final Remarks

Probabilistic graphical models have long been classified, broadly, into directed and

undirected models. This chapter presented to the reader a new kind of graphical

model, namely hybrid random fields, which inherit properties of both directed and

undirected graphical models. Although the formal representation of hybrid random

fields exploits (a collection of) directed acyclic graphs, the hybrid nature of these

models results from their capability to model with equal flexibility both the con-

ditional independence structures representable by means of Bayesian networks and

the independence structures representable by Markov random fields. In particular,

an appealing mathematical property of HRFs is that the class of independence struc-

tures they are able to represent is given by the union of the sets of structures rep-

resentable by Bayesian and Markov networks, respectively. As we saw, the key to

identifying the set of independence statements entailed by any given HRF lies in

the so-called modularity property, which was proved to hold for any hybrid random
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field by means of Theorem 4.1. This theorem is of crucial importance for the math-

ematical framework underlying HRFs, because on the one hand it warrants that the

model provides a well-defined representation of joint probability distributions, and

on the other hand it allows to map any represented distribution onto an explicit set

of conditional independence statements characterizing the relationships between the

modeled random variables.

An interesting point to consider is the following. In their original presentation

[95, 94, 97], hybrid random fields were defined as a probabilistic graphical model

which assumes the modularity condition as a defining feature. This allowed to es-

tablish a couple of (somewhat loose) relationships of the model with Bayesian and

Markov networks, but it did not allow to state an exhaustive characterization of the

conditional independence properties holding for the joint probability distributions

represented by hybrid random fields. On the contrary, this chapter provided a more

restrictive definition of the model, which allows on the one hand to prove (through

Theorem 4.1) that the modularity condition holds for any HRF, and on the other hand

to provide a tighter characterization of the relationships linking the class of indepen-

dence structures representable by HRFs to the classes of structures representable by

BNs and MRFs respectively. In a concise way, we may characterize these relation-

ships by stating that the probabilistic property referred to as modularity condition is

mathematically equivalent to the logical disjunction of the two probabilistic prop-

erties referred to as (i) directed Markov assumption and (ii) local/global Markov

property.

After presenting the hybrid random field model and investigating its theoretical

properties, we presented algorithms for performing (approximate) inference over

HRFs (Section 4.4), and for learning not only their parameters (Section 4.5), but

also their structure from data (Section 4.6). With respect to structure learning, we

need to stress the fact that the provided algorithm (i.e. the Markov Blanket Merging

technique) is not warranted to return a HRF in the strict sense, i.e. the output of

the algorithm may not satisfy the second condition in the definition of HRF (see

Section 4.2). As the experimental investigation presented in Chapter 6 will show,

this limitation of MBM is not so serious as far as we are interested in the practical

effects of using it, since the models estimated through Markov Blanket Merging

display a comparatively high prediction accuracy in all considered applications. On

the other hand, we think it might be an important motivation for future research the

goal of developing structure learning algorithms which may warrant the estimated

model to strictly satisfy the definition of hybrid random field. Finally, we briefly

discussed some other probabilistic graphical models and learning techniques related

to hybrid random fields (Section 4.7), so as to help the reader to correctly locate

the hybrid model within the wide and rich scenario displayed by the literature on

graphical models.



Chapter 5

Extending Hybrid Random Fields:
Continuous-Valued Variables

“Aus dem Paradies, das Cantor uns geschaffen, soll uns

niemand vertreiben können.”

David Hilbert, 1926 [134]

5.1 Introduction

In Section 1.2 we introduced the concept of feature, or attribute. The idea is that,

in order to apply statistics or learning machines to phenomena occurring in the real

world, it is necessary to describe them in a proper feature space, such that each

phenomenon can be thought of as a random variable (if a single attribute is used),

or a random vector (if multiple features are extracted). The feature extraction pro-

cess is crucial for the success of an application, since there is no good model that

can compensate for wrong, or poor, features. Although several types of attributes are

sometimes referred to in the literature (e.g., categorical, nominal, ordinals, etc.), two

main families of features can be pointed out, namely discrete and continuous-valued

(or, simply, continuous). Attributes are discrete when they belong to a domain which

is a countable set, such that each feature can be seen as a symbol from a given alpha-

bet. Examples of discrete features spaces are any subsets of the integer numbers, or

arbitrary collections of alphanumeric characters. Continuous-valued feature spaces

are compact subsets of R—in which case the attribute is thought of as the outcome

of a real-valued random variable—or Rd for a certain integer d > 1—in which case

the d-dimensional feature vector is assumed to be the outcome of a real-valued ran-

dom vector.

The type of the attributes (either discrete or continuous) may depend on the

choices made by the designer of the system, i.e. on the specific feature extraction

process, and/or on the very nature of the phenomena under consideration. For in-

stance, probabilistic models of sequences of amino-acids within the primary struc-

ture of eukaryote proteins are suitably represented via discrete attributes, since each

amino-acid in the protein sequence belongs to a closed set of twenty possible stan-

dard alternatives (that biologists readily represent either with 1-letter or 3-letter

unique codes). Also, boolean (i.e., binary) data are inherently discrete. On the other

hand, most physical measurements are likely to be expressed as continuous values,

e.g. the weight of a person or of a molecule, the distance between two subatomic

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 87–119.
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particles, the energy of a system. Nonetheless, there may be ambiguous situations.

The distance between two cities is, speaking in physical terms, a continuous value

(unless a discrete-space model of the Universe is adopted, which is supported by

several theories in modern physics). But it is reasonable to assume that a rounding

is carried out, turning up disentangling, yet equally useful to all practical effects

(nobody cares that the distance is 147.24 miles rather than 147.31, it is ‘just’ 147

miles). In other words, an implicit discretization of the otherwise naturally contin-

uous values is applied. Notwithstanding the discretization, eventually a real-valued

variable can, once again, turn out to be a better representation of city distances: if a

discrete attribute entails an indeed unbearable number of distinct outcomes for any

possible distance in miles (. . . ,1043,1044,1045, . . .), then it is clearly not viable

in any practical model. Contrariwise, phenomena that are intrinsically continuous-

valued, like a visual scene in front of a camera, may be better represented sometimes

in terms of a dense grid of binary pixels, i.e. as a collection of discrete attributes.

5.1.1 An Abiding Debate: Discrete vs Continuous Variables

The vast majority of the literature on graphical models assumes discrete random

variables—if not in the theoretical analysis, typically in the design and implemen-

tation of the model. Several concepts involved even in the definition of the different

paradigms require a discrete representation of the information. For instance, the

popular definitions of Bayesian networks and Markov random fields we gave in the

previous chapters rely on such notions as conditional probability table or feature

function, respectively (although the corresponding definitions may be modified so

as to cover continuous features, as we will see throughout this chapter). Extension

to continuous-valued attributes is often left implicit, and no unique standards have

emerged so far (different authors proposed alternative approaches). In many cases,

it is simply assumed that discrete features are sufficient, i.e. that (i) a discretiza-

tion of real-valued variables can be systematically accomplished, and (ii) such a

discretization does not compromise the performance of the resulting machine. Al-

though the representation of information in the memory of a digital computer is

intrinsically discrete (at a certain micro-level of granularity), the topic of whether

or not continuous-valued models offer concrete advantages over their discrete coun-

terparts is still a debated issue. For example, the work presented in [321] advocates

the edge of discretized on continuous variables, showing that the former may even

lead to improved performance w.r.t. the latter in a naive Bayes classifier, and giving

a mathematical proof of conditions under which such a discrete classifier yields the

same probability distribution that is obtained from the continuous values directly.

Furthermore, discrete models are usually faster and much simpler, being candidates

for increased generalization capabilities. As a matter of fact, empirical evidence is

reported in [202] which shows that the discretization of continuous data may result

in improved classification performance in some genomics and proteomics tasks,

when the classifier (e.g., support vector machine, naive Bayes) is affected by the

high dimensionality of the feature space.
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On the other hand, neglecting the relevance of information brought in by continu-

ous features would implicitly downgrade most of the classic approaches to machine

learning and statistical pattern recognition (which have been building sophisticated

models on real-valued feature vectors for more than half a century). In so doing,

multinomial probability distributions (relying on histograms, relative frequencies,

and conditional probability tables) would be enough, indeed, for representing any

random quantities. On the contrary, continuous models assume that relevant infor-

mation is conveyed by real-valued data, information which is gone once discretiza-

tion, in any given form, is applied. Actually, a certain information loss is a factual

consequence of the discretization process, not a mere assumption. Moreover, since

a simple rounding of real numbers is often way too brutal and disrespectful of the

nature of the data, discretization requires the application of non-trivial algorithms.

No standards exist in this respect. The community has been developing more and

more effective techniques throughout the years, implicitly pinpointing the fact that

discretization of random variables is not as obvious as it might seem at a first glance.

Sophisticated techniques have been developed for partitioning real-valued domains

into discrete regions (e.g., intervals) that can best capture the information which is

relevant to density estimation, classification, or regression tasks. For a sample of

such approaches and their experimental comparisons see e.g. [43, 85, 267]. Cluster-

ing techniques [73] are applied, as well. Their aim is to partition the feature space

into separate clusters having a high internal concentration of data (as measured on

a sample dataset). The ‘centroid’ of each cluster can then be elected as the proto-

typical representative in charge of all possible continuous values belonging to the

corresponding cluster (eventually, the feature space is made discrete in terms of a fi-

nite collection of such prototypes). We will say more on clustering—in passing—in

Section 5.3.2, where the most popular clustering procedure (the k-means algorithm)

emerges as the consequence of the maximum-likelihood technique applied to the

estimation of the parameters of a Gaussian mixture model under specific assump-

tions. Partitioning the feature space into either regions, intervals, or clusters, has the

unpalatable side-effect of inducing a distortion of the topological nature of the orig-

inal space. At the end of the day, whatever discretization algorithm you choose, it is

going to return a non-uniquely defined solution, entailing a certain information loss,

and which takes time to be run (i.e., there is a trade-off in terms of computational

burden between the simplicity of the probabilistic model and the complexity of the

discretizer).

Empirical evidence of the relevance of continuous variables over discrete at-

tributes has been brought to the attention of the community, as well. For instance,

the study reported in [208] on a vowel discrimination task involving the represen-

tation and modeling of acoustic signals shows that the use of continuous-valued

features allows for the development of a much better predictor than discrete at-

tributes do. Automatic speech recognition systems relying on continuous-density

hidden Markov models are known to perform usually better than recognizers based

on discrete HMMs, too [301].
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5.1.2 Optimal Convergence to the Real Probability Density

Function: The Parzen Window Estimator

Let us work out a significant example, whose meaning to the scope of this chap-

ter is twofold. On the one hand, it should make definitely clear the relevance of

continuous-value modeling. On the other hand, it offers a theoretical and algorith-

mic background to the non-parametric density estimation techniques that are devel-

oped later in the framework of graphical models. The example concerns the popular

Parzen window (PW) method [234]. The fundamentals of the following discussion

are based mostly on the excellent, evergreen treatment of the subject handed out

by Richard Duda and Peter Hart in 1973 [72]. Let us consider a probability density

function (pdf) p(x), defined over a real-valued, d-dimensional feature space. The

probability that (the generic outcome of) a random vector x∗ ∈ Rd , drawn from

p(x), falls in a given region R of the feature space is P =
∫
Rp(x)dx. Let then

T = {x1, . . . ,xn} be a sample of n outcomes, which are independent and identically

distributed (iid) according to p(x). If kn outcomes in T fall within R, an empiri-

cal frequentist estimate of P can be obtained as P ≃ kn/n. If p(x) is a continuous

function, and R is small enough to prevent p(x) from varying its value over R in a

significant manner, we are also allowed to write
∫
Rp(x)dx≃ p(x∗)V , where x∗ ∈R,

and V is the volume of region R. As a consequence of the discussion, we can obtain

an estimated value of the pdf p(x) over the generic vector x∗ as:

p(x∗) ≃ kn/n

Vn

(5.1)

where Vn denotes the volume of region Rn (i.e., the choice of the region width is

explicitly written as a function of n), assuming that smaller regions around x∗ are

considered as the sample size n increases. This is expected to allow Equation 5.1 to

yield improved estimates of p(x), i.e. to converge to the exact value of p(x∗) as n

(hence, also kn) tends to infinity. (A thorough discussion of the asymptotic behavior

of nonparametric models of this kind can be found in [72], and it will be summarized

shortly).

The basic instance of the Parzen window technique assumes that Rn is a hy-

percube having edge hn, such that Vn = hd
n . The edge (or ‘bandwidth’) hn can be

properly defined as a function of n as hn = h1/
√

n, in order to ensure a correct

asymptotic behavior. The value h1 has to be chosen empirically, and it affects the re-

sulting model. The formalization of the idea requires first to define a unit-hypercube

window function ϕ , centered in the origin, in the form

ϕ(y) =

{
1 if |y j| ≤ 1

2 , j = 1, . . . ,d
0 otherwise

(5.2)

such that ϕ( x∗−x
hn

) has value 1 iff x∗ falls within the d-dimensional hyper-cubic

region Rn centered in x and having edge hn. This implies that kn = ∑n
i=1 ϕ( x∗−xi

hn
).

Using this expression, from Equation 5.1 we can write
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p(x∗) ≃ 1

n

n

∑
i=1

1

Vn

ϕ(
x∗−xi

hn

) (5.3)

which is the PW estimate of p(x∗) from the sample T. The model is then refined by

considering smooth window functions, instead of hypercubes, such as the standard

Gaussian kernel with zero mean and unit covariance matrix. This can be shown

(theoretically, as well as empirically) to yield much smoother and more realistic

estimates of the actual pdf. It has to be emphasized that the Parzen window estimates

joint pdfs. The PW approach can also be extended to conditional pdf estimation. In

this case, the PW takes the form of another popular non-parametric model, known as

the Nadaraya-Watson estimator, which is presented and discussed in Section 5.5.1.

As anticipated, all the quantities involved in the calculation of the PW estimate

are indexed with the subscript n, meaning that they are a function of the size of

the available dataset. This is crucial, for at least two reasons. First, it points out

that, as one would reasonably expect, the regions shall adapt according to the data.

In particular, the larger the amount of data and their concentration, the smaller the

regions (and, the higher the precision of the estimate). Second, as discussed in [72],

in so doing the asymptotic behavior of the model can be investigated as n increases.

It can be proved that the three necessary conditions for convergence to the real pdf

(i.e., that Vn → 0, kn → ∞, and kn/n → 0 for n → ∞) are satisfied provided that the

sufficient conditions hn = h1/
√

n, ϕ(y) ≥ 0 (for each y ∈ Rd), and
∫
Rd ϕ(x)dx = 1

hold. Arbitrary, crisp partitions of the feature space into regions as those often used

for discretization do not satisfy the necessary conditions in the general case.

5.1.3 How the Parzen Window Throws Light on the Debate

The hypercubes (Equation 5.2) are conceptually similar to the popular ‘intervals’

(or, crisp regions) that are commonly used for discretizing continuous feature spaces

(by splitting up the space into such regions, and computing the relative frequen-

cies by counting the fraction of the data within each of them). Differences are that,

in the PW approach: (i) the hypercubes are shifted over the definition domain ac-

cording to the location of the actual vectors observed in the data sample; (ii) the

volume they actually cover is a function of the sample, as well; (iii) overlapping

among hypercubes centered at different locations is allowed (in fact, required); (iv)

under-sampled regions (where the pdf has close-to-zero values) are not forced to be

covered by any window functions.

In summary, insight of the PW technique and the conditions for optimal conver-

gence to the real density function contribute to the discussion on discrete versus

continuous variables, showing that:

1. Smooth, continuous-valued models (e.g., Gaussian kernels) yield more realistic

estimates of density functions than crisp models (e.g., hypercubes) do;

2. Crisp partition of the feature space into intervals is a worse fit of the data than

proper, usually overlapping regions are;
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3. A good model of the density function can be obtained only by selecting regions

that reflect the very nature of the data distribution, i.e. regions need to be densely

located wherever the data are more heavily concentrated (again, crisp partition

into whatever intervals is unlikely to fit);

4. In general (unless specific precautions are taken), discretization relying on any

arbitrary partitioning of the continuous space does not satisfy the necessary con-

ditions for convergence to the real pdf.

Consequently, this chapter outsprings from the conviction that continuous features

may often convey relevant information, and the proposed graphical models need to

be developed accordingly. The development of the hybrid random field model for

continuous variables turns out to be rather straightforward, in that its definition and

the corresponding theoretical/algorithmic framework remains mostly unchanged.

The critical point is the selection of an adequate model for representing the con-

ditional density functions of individual variables given their Markov blankets, and

how such a model can be effectively estimated and applied within the HRF algo-

rithms for learning and inference.

5.1.4 Chapter Outline

The issue of conditional density estimation for the continuous-valued extension of

hybrid random fields is discussed in Section 5.2. Like in the traditional density

estimation setup, rooted in statistics and in classic pattern recognition, three com-

plementary philosophies may be followed: parametric, semiparametric, and non-

parametric estimation. We introduced the basic idea behind parametric estimation

in Section 1.2. The topic is reviewed in depth in Section 5.3, where parametric hy-

brid random fields are presented. They rely on the assumption that the conditional

densities associated with the vertices of the graphical model have known form, and

that they are uniquely determined by a vector of parameters (unknown a priori)

which has to be estimated from the data. Due to their relevance to the subject, Nor-

mal distributions (Section 5.3.1) and Gaussian mixture models (Section 5.3.2) are

discussed, along with the maximum-likelihood solutions of the corresponding pa-

rameter estimation problems. It is shown that while an exact solution in closed form

exists for the single Gaussian density case, an iterative gradient-ascent algorithm is

necessary when dealing with mixtures.

Section 5.4 presents a semiparametric conditional density estimation technique.

A fundamental result, namely the ‘change of variables’ theorem, is stated first (Sec-

tion 5.4.1). It is then used in order to derive a general learning scheme which is re-

ferred to as the nonparanormal (or nonparametric normal) approach (Section 5.4.2).

The definition of nonparanormal distribution is given, basically relying on the no-

tion that a proper mapping of the original variables exists such that the transformed

feature vectors are Normally distributed. The estimation of such a mapping, and

the implications on conditional independence statements entailed by the relevant
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precision matrix (that is, the inverse of the covariance matrix) are then investigated.

Finally, it is explained how to use the mapping in order to compute (conditional)

density functions over the original feature space.

The nonparametric approach to the estimation of conditional densities in hybrid

random fields is presented next (Section 5.5). No assumptions on the specific form of

the conditional pdfs are made in this case, and a double-kernel variant of the Parzen

window technique (the Nadaraya-Watson estimator), suitable for conditional pdf

estimation, is proposed. As we have said, the PW requires to define an initial band-

width value h1 for determining the volume of the regions involved in the estimation

algorithm. Although h1 may be fixed empirically (by means of cross-validation), a

viable algorithm for automatic selection of the kernel bandwidths involved in the

Nadaraya-Watson estimator is outlined in Section 5.5.2. The algorithm relies on

an evaluation criterion that guides the selection process, namely the cross-validated

log-likelihood. Since the computation of this criterion is heavy, it is finally explained

how to tackle the complexity issue via the dual-tree recursion method, which is care-

fully reviewed in Section 5.5.3.

Parametric, semiparametric, and nonparametric estimation techniques in continu-

ous hybrid random fields (and in other continuous graphical models) stand in place

of what is otherwise known as ‘parameter learning’ in discrete graphical models.

The issue of structure learning in continuous HRFs is then faced in Section 5.6, de-

composing it into three sub-tasks, namely initialization of the model (Section 5.6.1),

structure learning at a local level (Section 5.6.2), and structure learning at a global

level (Section 5.6.3). Finally, some conclusions are drawn in Section 5.7.

5.2 Conditional Density Estimation

In continuous domains, learning probabilistic graphical models from data is much

more challenging than in discrete domains. While the multinomial distribution is a

generally adequate choice for estimating conditional probabilities in discrete event

spaces, choosing a suitable kind of estimator for (continuous) conditional density

functions requires to make a decision as to whether to assume that the form of the

modeled density is known (e.g. normal), which leads to parametric techniques, or to

relax the parametric assumption, which leads to nonparametric techniques [73]. The

parametric assumption is often limiting, because in real-world applications the true

form of the density function is rarely known a priori. On the other hand, nonpara-

metric techniques only make a much weaker assumption concerning the smoothness

of the density function.

In order to design suitable versions of probabilistic graphical models for con-

tinuous domains, the key challenge is to develop a technique for estimating con-

ditional density functions. In fact, once a method for computing a (continuous)

conditional distribution p(Y | X0, . . . ,Xn) has been defined, a continuous graphical

model simply results from replacing the conditional probability tables (in Bayesian
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networks and hybrid random fields) or the potential function-based models by the

newly defined conditional density models. Hence, the learning task which we re-

ferred to as parameter learning in the case of discrete probability distributions is

now replaced by the analogous (but much more demanding) task of conditional

density estimation.

Conditional density estimation is the problem of estimating a conditional density

function from data [278]. As explained in Appendix A, the conditional density of a

(continuous) random variable X given the random variable Y is defined (similarly to

the discrete case) as follows:

p(X | Y ) =
p(X ,Y )

p(Y )
(5.4)

Of course, the same definition holds for the conditional density of X given a random

vector Y, i.e. p(X | Y) = p(X ,Y)
p(Y) .

Given the way that a conditional density function is defined, any problem in con-

ditional density estimation can be clearly reduced to a pair of unconditional pdf

estimation problems. That is to say, if our goal is to estimate the conditional density

p(X | Y ), we can address this task by estimating first the (unconditional) density

functions p(X ,Y ) and p(Y ), and then by computing their quotient. This approach

(which is called the quotient-shape approach to conditional density estimation) is

the one we adopt in the design of learning techniques for continuous graphical

models. For completeness, we notice that some attempts have been made in the

literature to devise different (and possibly more advantageous) approaches, such as

the quantile-copula approach [83], which are currently an active investigation area

in multivariate statistics. However, our treatment will be restricted to the quotient-

shape approach (which is the oldest and best understood one), since a proper presen-

tation of different conditional density estimation approaches goes beyond the scope

of this book. Hence, the goal of the following sections is to present three different

techniques for parametric, semiparametric, and nonparametric conditional density

estimation respectively, articulated according to the quotient-shape approach.

5.3 Parametric Hybrid Random Fields

We now review two parametric density estimation techniques, which are based on

Gaussian models of the data distributions. The first approach (presented in

Section 5.3.1) simply assumes that the data follow a Gaussian distribution. On the

other hand, in Section 5.3.2 we explain how to model data which are distributed

according to a mixture of Gaussian distributions.

5.3.1 Normal Distributions

A random variable X is said to have a normal (or Gaussian) distribution when its

probability density function is in the following, bell-shaped form:
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p(x) =
1√

2π σ
exp

{
−1

2

(
x− µ

σ

)2
}

(5.5)

where µ is the mean, and σ2 is the variance of the distribution [219, 73]. The fol-

lowing, alternative notation may be used: p(x) = N(x; µ ,σ2). Whenever µ = 0 and

σ = 1 the distribution is said to be standard. The normal pdf is the most popular dis-

tribution in continuous-valued statistics, due to its relative simplicity, as well as to

the fact that it describes random values that are expected to be concentrated mostly

around the peak of the pdf (namely, close to its mean value µ), whilst the likelihood

of observing values away from the mean decreases exponentially along the tails, ac-

cording to the standard deviation σ . Normal distributions are assumed, for instance,

in order to model the observational error in experimental measurements in physics

and chemistry, as well as in both natural and social sciences. Figure 5.1 represents

a few univariate normal pdfs having different means and variances.
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Fig. 5.1 Univariate normal pdfs with different means and variances

In an empirical perspective, if a sample is drawn from a normal distribution

N(x; µ ,σ2), then the data are densely clustered around the mean value µ such that

roughly 95% of the sample falls within the interval |x− µ | < 2σ , and 99% of the

sample is expected to be in |x−µ |< 3σ . From a qualitative standpoint, this implies

that Gaussian distributions are well suited for random variables that have a tendency

to exhibit outcomes that concentrate in a limited interval centered around the mean,

whilst the likelihood of observing outliers decreases exponentially with the squared

distance from the mean (normal pdfs are not heavy-tailed distributions).
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The cumulative distribution function of the standard normal distribution is de-

fined as

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt

=
1

2

[
1 + erf

(
x√
2

)] (5.6)

where erf(·) denotes the so-called (Gauss) error function, given by

erf(x) =
2√
π

∫ x

0
e−t2

dt (5.7)

The Taylor expansion for the error function is provided by Equation 5.8:

erf(x) =
2√
π

∞

∑
n=0

(−1)n x2n+1

n!(2n + 1)
(5.8)

On the other hand, the inverse of the standard normal cdf (i.e. the so-called quantile

function) is given by

Φ−1(x) =
√

2erf−1(2x−1) (5.9)

where 0 < x < 1. The inverse error function erf−1 can be computed (using its Taylor

expansion) as

erf−1(x) =
∞

∑
n=0

cn

2n + 1

(√
π

2
x

)2n+1

(5.10)

where

cn =

{
1 if n = 0

∑n−1
m=0

cmcn−1−m

(m+1)(2m+1) if n > 0
(5.11)

As regards higher-dimensional definition domains, we say that a random vector X is

distributed according to a multivariate normal (or Gaussian) distribution [90, 104]

if its probability density function is in the form:

p(x) =
1

(2π)d/2 det(Σ)1/2
exp

{
−1

2
(x− µµµ)⊺ Σ−1(x− µµµ)

}

= N(x; µµµ ,Σ)

(5.12)

where: x ∈ Rd is a real-valued column vector; µµµ is the d-dimensional mean vec-

tor (in column form, as well); Σ is the d ×d covariance matrix; det(Σ) denotes the

determinant of Σ; Σ−1 represents the inverse of Σ; ⊺ is the matrix transposition oper-

ator; 1

(2π)d/2 det(Σ)1/2 is the normalization term. The quantity (x− µµµ)⊺ Σ−1(x− µµµ) is

known as the (quadratic) Mahalanobis distance between x and µµµ . As a consequence,

regions in the definition domain for which p(x) has a constant value (hyper-elliptical

curves) are the loci of the vectors having constant Mahalanobis distance from the

mean vector µµµ . The axes of these hyper-ellipses coincide with the eigenvectors of
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the matrix Σ. When a sample is collected, having empirical covariance matrix Σ,

then the eigenvectors are sometimes referred to as the principal components of the

sample (or, of the corresponding probability distribution).

It is immediately seen that the following, nice properties hold true for normal

distributions. First of all, E[X] = µµµ , that is, the parameter µµµ of a Gaussian pdf (ei-

ther univariate or multivariate) coincides with the expected value of the correspond-

ing random variable (or random vector). Furthermore, E[(x− µµµ)(x− µµµ)⊺] = Σ. If

x = (x1, . . . ,xd) and µµµ = (µ1, . . . ,µd) then µi = E[xi] and σi j = E[(xi−µi)(x j −µ j)].
Asymptotic cases worth being observed, as well: in the limit case of vanishing vari-

ance the univariate Gaussian tends to a Dirac’s Delta, i.e. limσ→0 p(µ) = +∞ and

limσ→0 p(x) = 0 for all x = µ . On the other hand, when the variance tends to grow to

infinity, the univariate normal pdf tends basically to the uniform distribution. Similar

asymptotic behaviors can be observed in the multivariate case, too.

It is worth noticing that the covariance matrix is always symmetric: σi j = σ j i.

Furthermore, it is seen that the elements of Σ undergo the following properties.

First of all, since the distribution of the random vector X can be seen as a joint

distribution over its individual components, namely the random variables X1, . . . ,Xd ,

then the i-th element σi i along the diagonal of Σ is the (univariate) variance of Xi.

Again, the entry σi j of Σ designates the covariance of Xi and X j, which expresses

the amount of correlation between i-th and j-th components of the random vector

X. In particular, if xi and x j are statistically independent of each other, then σi j = 0.

Consequently, if σi j = 0 for all pairs i, j such that i = j, then Σ reduces to a diagonal

matrix, and its eigenvectors (principal components of the distribution) are parallel

to the Cartesian coordinate axes. In this special case, the overall multivariate normal

distribution reduces to a product of individual, univariate Gaussian pdfs along the

different directions of the vector space, i.e., N(x; µµµ ,Σ) = ∏d
i=1 N(xi; µi,σi i). Due to

its simplicity, this model is often assumed in real-world scenarios. In fact, although it

makes a strong independence assumption which seldom fits the statistical properties

of the phenomena at hand, it turns out to be much less complex and far more stable

form a numerical viewpoint.

In practical circumstances, the mean and the (co-)variance of a normal distri-

bution are not known in advance. They shall rather be inferred in some consistent

mathematical framework from data collected on the field. This is a major instance of

what is known as the density estimation problem in statistics [65]. The problem can

be formalized as follows. Let us assume a random sample D = {x1, . . . ,xn} has been

observed, where the observations (outcomes of a certain random variable, or random

vector) xi ∈ Rd are independent and identically distributed (iid) according to an un-

derlying, generic, and unknown pdf p(x). Parametric estimation techniques make

the further, strong assumption that p(x) is in the parametric form p(x) = p(x | ΞΞΞ),
meaning that the form of the pdf is known (e.g., that it is Gaussian) and the very pdf

is uniquely determined once specific values for the parameters ΞΞΞ ∈ Rp (e.g., µµµ and

Σ) have been assigned [73, 210]. Suitable approaches to the estimation of parameters

ΞΞΞ which ‘optimally’ fit the sample D are sought. The maximum-likelihood param-

eter estimation technique is far the most popular [73, 146], yielding particularly

simple, yet robust solutions in the particular case of normal density functions. In the



98 5 Hybrid Random Fields for Continuous Variables

following we illustrate the calculations required in order to accomplish ML estima-

tion of parameters for a generic density function p(x | ΞΞΞ) having unknown parame-

ters ΞΞΞ , and we will later specialize the solution for Gaussian densities [73, 210].

Our aim is to exploit the information contained in D in order to estimate

ΞΞΞ = (ξ1, . . . ,ξp). Given the sample D = {x1, . . . ,xn}, and because of the iid as-

sumption, we can write

p(D | ΞΞΞ) =
n

∏
k=1

p(xk | ΞΞΞ) (5.13)

This quantity is defined to be the likelihood of the parameters given the data, and it

is a function of ΞΞΞ . As such, it may be assumed as a criterion function that guides us

in the choice of those parameters that result in the maximum possible value of the

likelihood. More formally, the ML estimate Ξ̂ΞΞ is defined to be the parameter vector

that maximizes p(D | Ξ). The search for Ξ̂ΞΞ can be pursued by devising analytical,

necessary conditions that have to be satisfied in correspondence with the maximum

of p(D | ΞΞΞ). This is best accomplished by moving to the logarithmic domain, defin-

ing the log-likelihood:

ℓ(ΞΞΞ) = log p(D | ΞΞΞ)

=
n

∑
k=1

log p(xk | ΞΞΞ)
(5.14)

Application of the logarithm (a monotonically increasing function) does not alter

the locus in the definition domain which coincides with the maximum of the like-

lihood function, but is turns out to be advantageous from several viewpoints. First,

it eases the calculations to a certain extent. Then, it confers numerical stability to

the consequent algorithm, given that dealing with the actual numeric values of the

density function (which are mostly close-to-zero over the whole definition domain)

may be troublesome in practice. Finally, application of the logarithm yields particu-

larly simple solutions in the normal case (whose core has an exponential form). The

necessary conditions we were looking for can be stated as follows:

∇ΞΞΞ ℓ(Ξ̂ΞΞ) = 0 (5.15)

that is a system of p equations, where

∇ΞΞΞ ℓ(ΞΞΞ) =
n

∑
k=1

∇ΞΞΞ log p(xk | ΞΞΞ) (5.16)

is the gradient of the log-likelihood with respect to the parameter vector. In words,

we search for the parameters Ξ̂ΞΞ that result in zeros of the gradient of ℓ(ΞΞΞ). In order

to apply Equation 5.15, calculation of the gradient is required. This strictly depends

on the particular (necessarily differentiable) form of the pdf under consideration, as

well as on the specific parameters ΞΞΞ whose estimation is required. Consequently, a

closed-form, unique ML solution of the equation may or may not exist, according
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to the nature of the pdf itself. At times, several distinct solutions emerge (corre-

sponding with different local maxima of the likelihood function). In other cases,

no closed-form solution at all can be found mathematically, and approximated op-

timization algorithms can be used instead (we will be faced with such a scenario in

Section 5.3.2).

Let us now turn our attention back to normal distributions. We start by con-

sidering the univariate case first, i.e. p(x | ΞΞΞ) = 1√
2π σ

exp
{
− 1

2

(
x−µ

σ

)2
}

, where

ΞΞΞ = (Ξ1,Ξ2) = (µ ,σ2). We have

log p(x | ΞΞΞ) = −1

2
log(2π Ξ2)−

1

2Ξ2
(x−Ξ1)

2

and we can write

∇ΞΞΞ log p(x | ΞΞΞ) =

[ 1
Ξ2

(x−Ξ1)

− 1
2Ξ2

+ (x−Ξ1)2

2Ξ 2
2

]

In order to satisfy ∇ΞΞΞℓ(ΞΞΞ) = 0, and bearing in mind that Ξ1 = µ , Ξ2 = σ2, we

obtain the following ML solutions for the parameters µ̂ and σ̂2:

n

∑
k=1

1

σ̂2
(xk − µ̂) = 0 (5.17)

that yields

µ̂ =
1

n

n

∑
k=1

xk (5.18)

that is simply the sample average, as the intuition would suggest; and

−
n

∑
k=1

1

σ̂2
+

n

∑
k=1

(xk − µ̂)2

σ̂4
= 0 (5.19)

which implies

σ̂2 =
1

n

n

∑
k=1

(xk − µ̂)2 (5.20)

that, in turn, is the empirical variance of the sample with respect to its average.

In the multivariate case, i.e. when p(x | ΞΞΞ) = N(x; µµµ ,Σ) and ΞΞΞ = (µµµ ,Σ), similar

calculations lead to the following, closed-form ML solutions for the mean vector

and the covariance matrix, respectively:

µ̂µµ =
1

n

n

∑
k=1

xk (5.21)

and

Σ̂ =
1

n

n

∑
k=1

(xk − µ̂µµ)(xk − µ̂µµ)⊺ (5.22)
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5.3.2 Gaussian Mixture Models

Normal densities and ML estimation of their parameters are simple and popular, but

they are unlikely to fit several real-world scenarios where the data are distributed

in complex, unknown forms within their definition domain. Mixture models are a

much more flexible and realistic approach, whose treatment benefits from the back-

ground and the calculations developed in the previous section [73, 211]. Let us con-

sider again the sample D = {xk | k = 1, . . . ,n}, where n vectors x1, . . . ,xn are now

supposed to be identically and independently drawn from the finite mixture density

p(x | ΞΞΞ) =
C

∑
i=1

Πi pi(x | ξξξ i) (5.23)

where the parametric form of the component densities pi (for 1 ≤ i ≤ C) is as-

sumed to be known, as well as the mixing parameters Π1, . . . ,ΠC, i.e. the a priori

probabilities of the components (the latter assumption will be relaxed shortly). Let

ΞΞΞ = (ξξξ 1, . . . ,ξξξC) be the vector of all parameters associated with each component

density (from now on, ξξξ i denotes the unknown parameters of i-th component den-

sity). We make two further assumptions: (1) i-th parameter vector ξξξ i is functionally

independent of j-th parameter vector ξξξ j if i = j; (2) the mixture is identifiable, i.e. it

is such that, if ΞΞΞ = ΞΞΞ ∗, then ∃x p(x | ΞΞΞ) = p(x | ΞΞΞ ∗), where x ∈ Rd . In the present

setup, we want to use the data sample to estimate the parameters ΞΞΞ .

Assuming the data are independently drawn from p(x | ΞΞΞ), the likelihood of a

certain choice of parameters ΞΞΞ given the observed data D can be written as:

p(D | ΞΞΞ) =
n

∏
j=1

p(x j | ΞΞΞ). (5.24)

As in the previous section, ML estimation techniques search for the parameters

ΞΞΞ that maximize the value indicated in Equation 5.24 or, equivalently, the log-

likelihood [73, 299]:

ℓ(ΞΞΞ) = log p(D | ΞΞΞ)

=
n

∑
j=1

log p(x j | ΞΞΞ)
(5.25)

Let us now exploit the functional independence assumption. If a certain parameter

vector Ξ̂ΞΞ maximizes ℓ(Ξ̂ΞΞ), then it has to satisfy the following necessary condition:

∇
ξ̂ξξ i

ℓ(Ξ̂ΞΞ) = 0 (5.26)

for 1 ≤ i ≤ C, where the operator ∇
ξ̂ξξ i

denotes the gradient vector computed with

respect to the parameters ξ̂ξξ i, as usual, and 0 is the vector with all components

equal to zero. In other words, we are looking for the zeros of the gradient of the
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log-likelihood, as we did in the previous Section. Substituting Equation 5.23 into

Equation 5.25 and the latter, in turn, into Equation 5.26, we can write:

∇
ξ̂ξξ i

ℓ(Ξ̂ΞΞ) =
n

∑
j=1

∇
ξ̂ξξ i

log p(x j | Ξ̂ΞΞ)

=
n

∑
j=1

∇
ξ̂ξξ i

log
C

∑
i=1

Πi pi(x j | ξ̂ξξ i)

=
n

∑
j=1

1

p(x j | Ξ̂ΞΞ)
∇

ξ̂ξξ i
Πi pi(x j | ξ̂ξξ i)

= 0

(5.27)

Using Bayes’ Theorem we have:

P(i | x j, ξ̂ξξ i) =
Πi pi(x j | ξ̂ξξ i)

p(x j | Ξ̂ΞΞ)
(5.28)

where P(i | x j, ξ̂ξξ i) is the a posteriori probability of i-th component given the obser-

vation x j and the parameters ξ̂ξξ i. Equation 5.27 can thus be rewritten as:

∇
ξ̂ξξ i

ℓ(Ξ̂ΞΞ) =
n

∑
j=1

P(i | x j, ξ̂ξξ i)

Πi pi(x j | ξ̂ξξ i)
∇

ξ̂ξξ i
Πi pi(x j | ξ̂ξξ i)

=
n

∑
j=1

P(i | x j, ξ̂ξξ i)∇ξ̂ξξ i
logΠi pi(x j | ξ̂ξξ i)

= 0

(5.29)

In the following, we will concentrate our attention on the case in which the com-

ponent densities of the mixture are multivariate normal distributions. In this case

the parametric pdf under consideration is called a Gaussian mixture model (GMM).

GMMs are of particular interest since, apart from their relative simplicity, they are

‘universal’ models, in that a GMM exists that can approximate any given, continu-

ous pdf to an arbitrary degree of precision. It goes without saying that this property

does not tell us how many components are needed in order to match the actual den-

sity function underlying a given data sample, neither does it tell us which parameters

shall be assigned to the components in order to reach the optimal fit. Again, the fol-

lowing ML estimation algorithm is not guaranteed to find the parameters that yield

the absolute maximum of the likelihood function.

Formally, a GMM is a mixture density whose components have the following

form:

pi(x j | ξξξ i) = N(x j; µµµ i,Σi) (5.30)
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according to the definition of multivariate normal pdf given by Equation 5.12. The

parameters to be estimated for the i-th component density are its mean vector and

its covariance matrix, that is to say:

ξξξ i = (µµµ i,Σi) (5.31)

Substituting Equation 5.12 into Equation 5.30 and the latter, in turn, into Equa-

tion 5.29, we can write the gradient of the log-likelihood for the case of normal

component densities as:

∇ξξξ i
ℓ(ΞΞΞ) =

=
n

∑
j=1

P(i | x j,ξξξ i)∇ξξξ i

{
logΠi(2π)−

d
2 det(Σi)

− 1
2 − 1

2
(x j − µµµ i)

⊺ Σ−1
i (x j − µµµ i)

}

(5.32)

Suppose first that the only unknown parameters to be estimated are the mean vectors

of the Gaussian distributions, e.g. the covariances are assumed to be known in ad-

vance (also, this assumption will be dropped shortly). There are practical situations,

for example in data clustering [73, 211], in which the estimation of the means is

sufficient, but the extension to the more general case of unknown covariances will

turn out to be simple, as well. By setting ΞΞΞ = (µµµ1, . . . ,µµµC), Equation 5.32 reduces

to:

∇ξξξ i
ℓ(ΞΞΞ) =

n

∑
j=1

{
P(i | x j,µµµ i)∇µµµ i

[
−1

2
(x j − µi)

⊺ Σ−1
i (x j − µµµ i)

]}

=
n

∑
j=1

P(i | x j,µµµ i)Σ−1
i (x j − µµµ i).

(5.33)

Again, we are looking for the parameters Ξ̂ΞΞ = (µ̂µµ1, . . . , µ̂µµC) that maximize the log-

likelihood, i.e., that correspond to a zero of its gradient. From Equation 5.33, setting

∇ξξξ i
ℓ(Ξ̂ΞΞ) = 0 allows us to write:

n

∑
j=1

P(i | x j, µ̂µµ i)x j =
n

∑
j=1

P(i | x j, µ̂µµ i)µ̂µµ i (5.34)

This leads to the following central equation:

µ̂µµ i =
∑n

j=1 P(i | x j, µ̂µµ i)x j

∑n
j=1 P(i | x j, µ̂µµ i)

(5.35)

which shows that the ML estimate for the i-th mean vector is a weighted average

over the sample (i.e., the training data), where each observation x j gives a contri-

bution that is proportional to the estimated probability of i-th component given the

observation itself. Equation 5.35 can not be explicitly solved, but it can be put in
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a quite interesting and practical iterative form by making explicit the dependence

of the current estimate on the number t of iterative steps that have already been

accomplished:

µ̂µµt+1
i =

∑n
j=1 P(i | x j, µ̂µµ t

i)x j

∑n
j=1 P(i | x j, µ̂µµt

i)
(5.36)

where µ̂µµ t
i denotes the estimate obtained at t-th iterative step, and the corresponding

value is actually used to compute the new estimate at (t + 1)-th step.

If also Σ j and Π j are considered to be parameters to be estimated from the data,

similar calculations [73] lead to the following ML re-estimation formulas:

Π̂ j =
1

n

n

∑
k=1

P( j|xk, Ξ̂) (5.37)

and

Σ̂ j =
∑n

k=1 P( j|xk, Ξ̂)(xk − µ̂µµ j)(xk − µ̂µµ j)
⊺

∑n
k=1 P( j|xk, Ξ̂)

(5.38)

which can be applied in an iterative fashion, as we did through Equation 5.36 for

the mean vectors. Note that these iterative ML algorithms require to start up from a

(somewhat arbitrary) initial choice for the parameters under consideration. Random

initialization can be assumed, but a much more meaningful initialization scheme

will be introduced shortly.

In passing, let us consider the fact that P(i | x j, µ̂µµ t
i) is large when the Mahalanobis

distance between x j and µ̂µµ t
i is small. Then, it appears to be reasonable to estimate

an approximation of P(i | x j, µ̂µµ t
i) in the following way [73, 299]:

P(i | x j, µ̂µµt
i) ≈

{
1 if dist(x j, µ̂µµ t

i) = minl=1,...,C dist(x j, µ̂µµ t
l)

0 otherwise
(5.39)

for a given distance measure dist(·, ·). Mahalanobis distance should be used, but

Euclidean distance is usually an effective choice, so that Equation 5.36 reduces to:

µ̂µµ t+1
i =

1

nt
i

nt
i

∑
k=1

xi
k (5.40)

where nt
i is the estimated number of training observations drawn from i-th com-

ponent at step t (i.e. the number of vectors for which P(i | x j, µ̂µµ t
i) = 1 according

to Equation 5.39) and xi
k is the k-th of these observations (for 1 ≤ k ≤ nt

i). Equa-

tion 5.40 is known as the k-means clustering algorithm [73, 151]. The latter can thus

be interpreted as an approximated ML solution to the estimate of mean vectors of a

mixture of Normal densities under the assumptions we made above. Although clus-

tering techniques are beyond the scope of this book, Equation 5.40 is a simple, yet

effective initialization technique for the parameter vectors that have to undergo the

overall, iterative ML re-estimation algorithm, namely Equations 5.36–5.38. These

algorithms, as well as the k-means clustering, are particularly relevant instances of
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the broad expectation-maximization (EM) algorithm [62]. For this reason, they are

sometimes referred to as the EM parameter estimation technique for GMMs.

5.4 Semiparametric Hybrid Random Fields

This section presents a semiparametric method for estimating (conditional) den-

sity functions. This technique (which is referred to as nonparanormal) was intro-

duced in [197] for learning the structure of (sparse) undirected graphs. However,

one of the contributions of this book is to show how the nonparanormal approach

can be further developed so as to come up with a general-purpose density estimation

method. The issue of nonparanormal (conditional) density estimation is addressed in

Section 5.4.2. Before that, Section 5.4.1 reviews an important result in multivariate

statistics, which is needed in order to establish the basic properties of the nonpara-

normal technique.

5.4.1 Change of Variables

We now state an important lemma from multivariate calculus, which is commonly

known as the change of variables theorem [161]:

Lemma 5.1. Consider two random vectors X and Y, with domains X ⊆ Rd and

Y ⊆ Rd respectively. Suppose that f : X → Y is a one-to-one, differentiable function

from X onto Y. Then, if X and Y are distributed according to density functions pX(x)
and pY(y) respectively, it follows that

pY(y) = pX(x)

∣∣∣∣det
∂x

∂y

∣∣∣∣ (5.41)

where f−1 : Y → X is the inverse of f , x = f−1(y), and ∂x
∂y

denotes the Jacobian

matrix of f−1.

Proof. See e.g. [161]. ⊓⊔

5.4.2 The Nonparanormal

The nonparanormal (or nonparametric normal) approach is a recently introduced

technique for estimating the structure of undirected graphs, based on a Gaussian

model, without making any parametric assumption concerning the form of the mod-

eled density [197]. Although the previous statement may seem paradoxical, the idea

underlying the nonparanormal approach is to map a set of data points (which are

not known to be normally distributed) onto a set of data points that can be assumed

to follow a normal distribution. Once the density of the normal sample has been

estimated using a standard Gaussian model, the density of the points in the original

space can then be recovered by applying the change of variables theorem.
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First of all, let us define the concept of nonparanormal density:

Definition 5.1. A random vector X = (X1, . . . ,Xd) with mean µµµ is said to be non-

paranormally distributed if there exists a function f such that:

1. f (X) = ( f1(X1), . . . , fd(Xd)), where fi(Xi) is one-to-one and differentiable (for

1 ≤ i ≤ d);

2. the random vector Y = f (X) is distributed normally with mean µµµ and covariance

matrix Σ.

Given Definition 5.1, we can prove the following theorem:

Theorem 5.1. If the distribution of a random vector X = X1, . . . ,Xd is nonparanor-

mal with mapping f (X) = ( f1(X1), . . . , fd(Xd)), then the density of X is given by

pX(x) =
1

(2π)d/2 det(Σ)1/2
exp

{
−1

2
(y− µµµ)⊺ Σ−1(y− µµµ)

}
d

∏
i=1

∣∣∣∣
d

dxi

fi(xi)

∣∣∣∣ (5.42)

where y = f (x), µµµ is the mean vector of both X and Y, and Σ is the covariance

matrix of Y.

Proof. Let pY denote the (normal) density function of Y. That is,

pY(y) =
1

(2π)d/2 det(Σ)1/2
exp

{
−1

2
(y− µµµ)⊺ Σ−1(y− µµµ)

}
(5.43)

Then, Lemma 5.1 implies that

pX(x) =
1

(2π)d/2 det(Σ)1/2
exp

{
−1

2
(y− µµµ)⊺ Σ−1(y− µµµ)

}∣∣∣∣det
∂y

∂x

∣∣∣∣ (5.44)

Since the value of each fi only depends on xi, the Jacobian matrix
∂y
∂x

is diagonal.

Therefore, the absolute value of the Jacobian determinant is given by

∣∣∣∣det
∂y

∂x

∣∣∣∣=
d

∏
i=1

∣∣∣∣
d

dxi

fi(xi)

∣∣∣∣ (5.45)

⊓⊔

Based on Theorem 5.1, the crucial problem for the nonparanormal approach is how

to estimate the functions f1(X1), . . . , fd(Xd). The technique developed in [197] pre-

scribes to estimate the value of each fi as

f̂i(x) = µ̂i + σ̂iĥi(x) (5.46)

where µ̂i and σ̂i are the sample mean and standard deviation of variable Xi, and ĥi(x)
is defined as follows:

ĥi(x) = Φ−1(F̂i(x)) (5.47)
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In Equation 5.47, Φ−1 is the inverse of the standard normal cdf Φ, whereas F̂i is

the so-called truncated estimator of the empirical cdf of Xi [69], denoted by FE
i .

Let n be the number of data points and δn be a truncation parameter. The truncated

estimator of FE
i is then defined as

F̂i(x) =

⎧
⎨

⎩

δn if FE
i (x) < δn

FE
i (x) if δn ≤ FE

i (x) ≤ 1− δn

1− δn if 1− δn < FE
i (x)

(5.48)

The suggested setting for the truncation parameter is given by

δn =
1

4n1/4
√

π logn
(5.49)

It is reported in [197] that the choice specified in Equation 5.49 results in a gen-

erally satisfying behavior of the nonparanormal estimator, especially in the high-

dimensional setting.

As defined in Equation 5.48, the truncated estimator F̂i(x) is discontinuous. This

prevents us from computing the derivatives contained in Equation 5.42. In other

words, the approach described thus far is not yet suitable as a thorough density

estimation technique. On the other hand, it is sufficient instead for estimating the

structure of the undirected graph underlying the density pY, as this structure is con-

veyed by the precision matrix Ω = Σ−1 [197]. In fact, the matrix Ω is such that, if

Ωi j = 0, then the nodes Xi and X j will not be adjacent in the graph of a Markov

random field representing pY.1 Now, one key result proved in [197] is the following

lemma:

Lemma 5.2. If the distribution of a random vector X = (X1, . . . ,Xd) is nonpara-

normal with mapping Y = f (X), and Ω is the precision matrix of Y, then Xi is

conditionally independent of X j given the set S = {Xk : 1 ≤ k ≤ d ∧ k = i, j} if and

only if Ωi j = 0.

Proof. See [197]. ⊓⊔

In other words, Lemma 5.2 states that, if X is nonparanormal with mapping

Y = f (X), then Xi is independent of X j given a subset SX of {X1, . . . ,Xd} if and

only if Yi is independent of Yj given the set SY = {Yk : Xk ∈ SX}. Hence, the strat-

egy explored in [197] consists in exploiting the results given above for learning the

structure of Markov random fields. To this aim, the guiding idea is that the precision

matrix Ω fixes not only the graph of a Markov network for pY, but also the graph

of a Markov random field for pX, as entailed by Lemma 5.2. However, since our

interest lies in exploiting the nonparanormal approach for the sake of (conditional)

1 In general, the precision matrix Ω of a (normally distributed) random vector X is such that,

if Ωi j = 0, then Xi is independent of X j given the set S = {Xk : 1 ≤ k ≤ d ∧ k = i, j}, that

is p(Xi | X j,S) = p(Xi | S) [189].
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density estimation, we now move beyond the strategy presented above, trying to fit

the approach to our overall goal.

A differentiable approximation F∗
i (x) of FE

i (x) can be obtained by using the sig-

moid function:

F∗
i (x) =

1

n

n

∑
j=1

1

1 + exp
(
− x−x j

h

) (5.50)

where h is a parameter controlling the smoothness of the sigmoid. Given the ap-

proximation of Equation 5.50, we replace ĥi(x) by ĥ∗i (x):

ĥ∗i (x) = Φ−1
(
F∗

i (x)
)

(5.51)

An approximate value of the derivatives referred to in Equation 5.42 can then be

estimated as follows:

d

dx
f̂i(x) =

d

dx

(
µ̂i + σ̂iĥ

∗
i (x)

)

= σ̂i
d

dx
ĥ∗i (x)

= σ̂i
d

dx
Φ−1

(
F∗

i (x)
)

= σ̂i
d

dF∗
i (x)

Φ−1
(
F∗

i (x)
) d

dx
F∗

i (x)

(5.52)

First, we need to derive Φ−1
(
F∗

i (x)
)

with respect to F∗
i (x):

d

dF∗
i (x)

Φ−1(F∗
i (x)) =

1
d

dΦ−1(F∗
i (x))

Φ(Φ−1(F∗
i (x)))

=

√
2π

exp
(
− 1

2

(
Φ−1(F∗

i (x))
)2
)

=

√
2π

exp
(
− 1

2

(√
2erf−1(2F∗

i (x)−1)
)2
)

=

√
2π

exp
(
−erf−1 (2F∗

i (x)−1)2
)

(5.53)
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We now derive F∗
i (x) with respect to x:

d

dx
F∗

i (x) =
d

dx

(
1

n

n

∑
j=1

1

1 + exp
(
− x−x j

h

)

)

=
1

n

n

∑
j=1

d

dx

1

1 + exp
(
− x−x j

h

)

= −1

n

n

∑
j=1

d
dx

exp
(
− x−x j

h

)
(

1 + exp
(
− x−x j

h

))2

=
1

nh

n

∑
j=1

exp
(
− x−x j

h

)
(

1 + exp
(
− x−x j

h

))2

(5.54)

Given Equations 5.53–5.54, we can state the following conclusion:

d

dx
f̂i(x) =

σ̂i

√
2π

nh exp
(
−erf−1

(
2F∗

i (x)−1
)2
)

n

∑
j=1

exp
(
− x−x j

h

)
(

1 + exp
(
− x−x j

h

))2
(5.55)

If the value given in Equation 5.55 is substituted into Equation 5.42, the resulting

model can be straightforwardly used as a conditional density estimator based on the

quotient-shape approach.

5.5 Nonparametric Hybrid Random Fields

In directed and undirected graphical models, nonparametric conditional density esti-

mators (based on Parzen windows [234, 73]) are used for the first time in [136, 137].

With respect to these models, in continuous HRFs we not only exploit double-kernel

estimators (instead of single-kernel Parzen windows), but we also automate the task

of bandwidth selection.

A nonparametric technique for learning the structure of continuous BNs is also

developed in [206]. However, that method is only aimed at inferring the conditional

independencies from data, rather than at learning the overall density function. A

semiparametric technique for learning undirected graphs, leading to nonparanor-

mal Markov random fields, is proposed in [197], as discussed in Section 5.4.2. In

this case, after mapping the original data points onto a set of normally distributed

points, the graph is estimated from the transformed dataset using the graphical lasso

technique [98], which is both computationally efficient and theoretically sound for

Gaussian distributions [253]. The idea of mapping the original dataset into a feature

space where data are assumed to be normally distributed is also exploited in [10].

In Section 5.5.1, we describe a kernel-based conditional density estimator, which

is commonly known as the Nadaraya-Watson estimator. Section 5.5.2 presents in-

stead a method for tuning the so-called ‘bandwidth’ parameters of the kernel-based
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estimator. Finally, in Section 5.5.3 we review the dual-tree recursion approach,

which is a technique for accelerating kernel-based computations, so as to make den-

sity estimation scale better with the size of the training dataset.

5.5.1 Kernel-Based Conditional Density Estimation

In order to estimate the conditional density p(y | x), where y is the value of

a random variable Y and x is the value of a random vector X, we use the

Nadaraya-Watson (NW) estimator [223, 311, 263]. Suppose we are given a dataset

D = {(x1,y1), . . . ,(xn,yn)}. Then, the estimator takes the following form:

p̂(y | x) =
∑n

i=1 Kh1
(y− yi)Kh2

(x−xi)

∑n
i=1 Kh2

(x−xi)
(5.56)

In Equation 5.56, each function Kh is defined as follows:

Kh(u) =
1

hd
K

(‖u‖
h

)
(5.57)

where K is a kernel function, h is the bandwidth (or window width), i.e. a parameter

determinining the width of the kernel function, and d is the dimensionality of u. Our

choice for K is the Epanechnikov kernel [80]:

K(x) =
3

4
(1− x2)1{|x|≤1} (5.58)

where

1{|x|≤1} =

{
1 if |x| ≤ 1

0 otherwise
(5.59)

We use the Epanechnikov kernel not only because it is known to be asymptotically

optimal, but also because it offers a significant computational advantage (at least in

the presence of large datasets) with respect to other optimal functions such as the

Gaussian kernel [278].

5.5.2 Bandwidth Selection

In order for the NW estimator to deliver accurate predictions, it is crucial to choose

suitable values for the bandwidths h1 and h2. Our strategy for dealing with this

task is based on the idea of finding the bandwidth values that maximize the cross-

validated log-likelihood (CVLL) of the estimator given the dataset D [278, 138].

CVLL can be defined as follows:

CV LL(h1,h2) =
1

n

n

∑
i=1

log
(

p̂−i(yi | xi)p̂−i(xi)
)

(5.60)



110 5 Hybrid Random Fields for Continuous Variables

where

p̂−i(yi | xi) =
∑ j =i Kh1

(yi − y j)Kh2
(xi −x j)

∑ j =i Kh2
(xi −x j)

(5.61)

and

p̂−i(xi) =
1

n−1
∑
j =i

Kh2
(xi −x j) (5.62)

Simplifying Equation 5.60, we get:

CVLL(h1,h2) =

(
1

n

n

∑
i=1

log ∑
j =i

Kh1
(yi − y j)Kh2

(xi −x j)

)
− log(n−1) (5.63)

The algorithm that we develop in order to maximize CVLL(h1,h2) performs a dou-

ble dichotomic search in a space of possible bandwidth pairs. Two ranges of values

(0,hmax1
) and (0,hmax2

) are simultaneously explored by evaluating subregions of

the intervals (according to the CVLL metric) and then narrowing down the search

to smaller intervals in an iterative way. An iteration of the algorithm begins by split-

ting each interval (0,hmaxi
) in two (equally large) regions Hi1 and Hi2 . Then, each

pair (H1i
,H2 j

) such that i, j ∈ {1,2} is evaluated by choosing the median of each

region as the value of the corresponding bandwidth. Finally, the pair of regions that

maximizes the CVLL is selected as pair of (narrower) intervals for the following

iteration. The algorithm returns the highest-scoring pair (h1,h2) found during the

search (see Algorithm 5.1).

5.5.3 Dual-Tree Recursion

Clearly, the complexity of computing the CVLL function is quadratic in the number

of data points. This can be a serious limitation when dealing with very large datasets.

However, a promising way of overcoming this issue is proposed in [138, 139] based

on dual-tree recursion [120].

Dual-tree recursion is a technique for exploiting a partitioning of the feature

space, as achieved via a kd-tree [23], in order to speed up kernel-based computa-

tions [120]. The basic idea is the following. Suppose that the feature space X has

been partitioned into a set of regions in such a way that, if D is the dataset at hand,

then for each region there is a corresponding subsample Ri such that Ri ⊆ D. Now,

if we need to evaluate a certain function f (x,y) for each possible pair of points in D,

then it may be the case that, for some particular subsamples Ri and R j, the value of

the function is approximately constant for pairs (x,y) such that x ∈ Ri and y ∈ R j.

In this case, it will not be necessary to compute the value of f (x,y) for any possible

choice of x and y. Instead, the value computed for an arbitrary choice of (x,y) from

Ri ×R j will be assumed to hold (up to a certain error bound) for any pair (x∗,y∗)
such that (x∗,y∗) ∈ Ri ×R j.
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Algorithm 5.1 DDSSelectBandwidths: Bandwidth selection by double di-

chotomic search
Input: Dataset D; limit points hmax1

, hmax2
; number s of iterations.

Output: Bandwidth pair (h1,h2).

DDSSelectBandwidths(D,hmax1
,hmax2

,s):
1. maxScore = −∞
2. for(i = 1 to 2)

3. mini = 0

4. maxi = hmaxi

5. mediani = 1
2 maxi

6. for(i = 1 to s)

7. for(j = 1 to 2)

8. ε j = 1
4 (max j −min j)

9. h j1 = median j − ε j

10. h j2 = median j + ε j

11. (k,k′) = argmax k,k′∈{1,2} CV LL(h1k
,h2k′ )

12. median1 = h1k

13. median2 = h2k′
14. for(j = 1 to 2)

15. min j = median j − ε j

16. max j = median j + ε j

17. if(CV LL(h1k
,h2k′ ) > maxScore)

18. maxScore = CV LL(h1k
,h2k′ )

19. h1 = h1k

20. h2 = h2k′
21. return (h1,h2)

Consider the form of the CVLL function defined in Equation 5.63. If the feature

space is partitioned into m regions R1, . . . ,Rm, then Equation 5.63 can be rewritten

as follows:

CVLL(h1,h2) =

(
1

n

m

∑
k=1

∑
zi∈Rk

log
m

∑
l=1

∑
z j∈R−i

l

K∗(zi,z j)

)
− log(n−1) (5.64)

where zi = (xi,yi), R−i
l = Rl \ {zi}, and K∗(zi,z j) = Kh1

(yi − y j)Kh2
(xi − x j).

Clearly, if the value of K∗(zi,z j) is (approximately) constant for fixed Rk and Rl ,

then we can write:

CVLL(h1,h2) ≈
(

1

n

m

∑
k=1

|Rk| log
m

∑
l=1

∣∣R−i
l

∣∣K∗(zi,z j)

)
− log(n−1) (5.65)

where zi and z j are arbitrary elements of Rk and R−i
l respectively. While the naive

formulation of the CVLL function (as given in Equation 5.60) requires O(n2) calcu-

lations, the complexity of computing the value of Equation 5.65 is instead O(m2).
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Therefore, provided that the feature space is partitioned into a conveniently small

number of regions, dual-tree recursion can offer a significant computational advan-

tage over the naive CVLL-based approach.

Dual-tree recursion can be described as consisting of two steps. First, the data

points are organized into a kd-tree, where each node in the tree corresponds to a

subset R of D. Second, the kd-tree is traversed simultaneously by means of two

loops (with each loop iterating over nodes of the tree). At each iteration of the double

traversal, a node pair (Ri,R j) is evaluated in order to check whether the value of a

specified approximation of Equation 5.64 lies within sufficiently tight error bounds.

If the estimation error is sufficiently small, the estimated value is used for computing

the overall objective function, otherwise the approximation is refined by repeating

the estimate for subsets of Ri and R j. We now present a method for addressing these

two tasks respectively.

We first provide an algorithm for organizing the dataset D into a kd-tree. A kd-tree

is nothing but a binary tree G = (V,E) such that the root node contains all data points

in D, and for each edge (Ri,R j) in E, R j ⊆ Ri. The algorithm works recursively,

by splitting each node Ri (starting from the root) into two children R j and Rk such

that Ri = R j ∪Rk and R j ∩Rk = /0. The criterion for assigning each point in Ri to

either R j or Rk is the following. If each data point z is a vector (z1, . . . ,zd), we take

the dimension along which points in Ri display the maximum spread. That is to say,

we consider the dimension l that maximizes the difference maxz∈Ri
zl −minz∈Ri

zl .

Now, given dimension l, consider the segment S along l whose endpoints are given

by the maximum and minimum values of variable Zl over Ri. If the midpoint of Sl

is denoted by midl , we then assign R j all points z such that zl ≤ midl, while Rk

is assigned all points in Ri \R j. The algorithm stops when all nodes containing at

least two points have been assigned a pair of children, so that each leaf in the tree

contains exactly one data point (see Algorithm 5.2).

Given the kd-tree, we need to specify a technique both for computing a fast ap-

proximation of Equation 5.64 and for estimating the error involved in the approxi-

mation. Let S(zi,R j) be defined as follows:

S(zi,R j) = ∑
zk∈R−i

j

K∗(zi,zk) (5.66)

Moreover, let ∆ f (x) denote the absolute error in our estimate f̂ (x) of a quantity

f (x). That is to say, ∆ f (x) =
∣∣ f̂ (x)− f (x)

∣∣. Our goal is then twofold. First, we

need to compute a scalable estimate Ŝ(zi,R j) of the function S(zi,R j), for any zi

belonging to a given region Rk. Second, we need to verify whether the value of

∆CVLL(h1,h2) lies within a specified error bound ε .

The key to understanding how the mentioned problems are solved using Monte

Carlo sampling is provided by a couple of relevant lemmata. The first lemma spec-

ifies a sufficient condition for meeting the error bound imposed on the CVLL

function:
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Algorithm 5.2 buildKDTree: kd-tree construction for dual-tree recursion

Input: Dataset D = {z1, . . . ,zn}, where zi = (zi1 , . . . ,zid ).
Output: kd-tree G = (V,E).

buildKDTree(D):
1. V = /0

2. E = /0

3. R0 = {zi : 1 ≤ i ≤ n}
4. ρ = {R0}
5. while(ρ = /0)

6. Ri = an arbitrary element of ρ
7. V = V∪{Ri}
8. if(|Ri| > 1)

9. j = 0

10. maxSpread = 0

11. for(k = 1 to d)

12. spread = maxz∈Ri
zk −minz∈Ri

zk

13. if(spread > maxSpread)

14. maxSpread = spread

15. j = k

16. Rk = /0

17. mid = minz∈Ri
z j +

1
2 (maxz∈Ri

z j −minz∈Ri
z j)

18. for(z ∈ Ri)

19. if(z j ≤ mid)

20. Rk = Rk ∪{z}
21. Rl = Ri \Rk

22. V = V∪{Rk,Rl}
23. E = E∪{(Ri,Rk),(Ri,Rl)}
24. ρ = ρ ∪{Rk,Rl}
25. ρ = ρ \{Ri}
26. return (V,E)

Lemma 5.3. Consider some partitioning ρ = {R1, . . . ,Rm} of the dataset D =
{z1, . . . ,zn}, and let ε denote a specified bound on the error ∆CV LL(h1,h2). Then,

if
∆S(zi,R j)

S(zi,R j)
≤ eε −1 for 1 ≤ i ≤ n and 1 ≤ j ≤ m, it follows that ∆CVLL(h1,h2)≤ ε .

Proof. See e.g. [139]. ⊓⊔

Based on Lemma 5.3, our aim is then to devise a method for estimating S(zi,R j)

such that the condition
∆S(zi,R j)

S(zi,R j)
≤ eε − 1 is satisfied. The Monte Carlo approach

to dual-tree recursion proceeds as follows. If we want to estimate the values of

S(zi,R j) for a pair of nodes (Rk,R j), we first construct (via bootstrapping [78]) a

number b of samples S1, . . . ,Sb such that, for 1≤ l ≤ b, Sl ⊆Rk×R j and Sl contains

s pairs of data points (zi,zm) uniformly sampled from Rk ×R j, with i = m. Second,

we estimate the mean µK∗ of K∗(zi,zm) over the samples in terms of the average

value µ̂K∗ , defined as follows:
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µ̂K∗ =
1

bs

b

∑
l=1

∑
(zi,zm)∈Sl

K∗(zi,zm) (5.67)

Third, we compute the standard error σ̂K∗ of µ̂K∗ over the bootstrap resamplings

S1, . . . ,Sb, that is:

σ̂K∗ =

√√√√1

b

b

∑
l=1

{(
1

s
∑

(zi,zm)∈Sl

K∗(zi,zm)

)
− µ̂K∗

}2

(5.68)

Finally, we estimate S(zi,R j) as:

Ŝ(zi,R j) = s µ̂K∗ (5.69)

Then, we can verify (with a certain confidence degree [77, 76]) whether the value

of ∆CVLL(h1,h2) falls below the bound ε by appealing to the following lemma:

Lemma 5.4. Let Cz denote the probability associated with a normal confidence in-

terval for µ̂K∗ of width 2z. Then, the condition that
∆S(zi,R j)

S(zi,R j)
≤ eε − 1 is satisfied

with probability Cz if
z σ̂K∗
µ̂K∗ ≤ eε −1.

Proof. See e.g. [139]. ⊓⊔

A formal statement of the described CVLL estimation technique is provided by

Algorithm 5.3.

Note that the parameters ε , s, b, and z need to be specified by the user. While the

choice for ε presumably depends on the specific nature and aims of the application,

it is reasonable to wonder whether there may be a generally good choice for the

remaining parameters. As a rule of the thumb, the suggestion made in [138, 139] is

to set s = 25, b = 10, and z = 1.5, since these values provide a fairly good tradeoff

between accuracy and speed. An important remark concerns the sample size s. At

first glance, the suggested setting for this parameter may seem to be too small when

dealing with very large datasets. However, one has to bear in mind that at higher

nodes in the kd-tree (i.e. for larger regions of the feature space) the Monte Carlo

estimates are not expected to provide an accurate value of µ̂K∗ , but they are only

expected to indicate whether the standard error of µ̂K∗ is large enough to motivate

additional node splits.

5.6 Structure Learning

Although the original version of Markov Blanket Merging (Section 4.6) is de-

signed for learning discrete hybrid random fields, little modification is sufficient

in order to use it for estiamating the structure of continuous hybrid random fields.

Sections 5.6.1–5.6.3 describe the way we modify MBM in order to adapt it to con-

tinuous domains.
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Algorithm 5.3 MCDualTreeCVLL: Monte Carlo dual-tree recursion for CVLL esti-

mation

Input: Dataset D = {z1, . . . ,zn}, where zi = (xi,yi); bandwidths h1 and h2; error bound ε;

sample size s; number b of bootstrap resamplings; number z of standard errors.

Output: Approximate estimate of CV LL(h1,h2).

MCDualTreeCVLL(D,h1,h2,ε,s,b,z):
1. for(i = 1 to n)

2. Ŝi = 0

3. (V,E) = buildKDTree(D) //See Algorithm 5.2

4. R0 = the root node of G

5. ρ = {(R0,R0)}
6. while(R = /0)

7. (Ri,R j) = an arbitrary element of ρ
8. if(|Ri| · |R j| ≤ s)

9. for(zk ∈ Ri)

10. Ŝk = Ŝk + S(zk,R j) //See Equation 5.66

11. else if(
z σ̂K∗
µ̂K∗ ≤ eε −1) //See Equations 5.67–5.68

12. for(zk ∈ Ri)

13. Ŝk = Ŝk + Ŝ(zk,R j) //See Equation 5.69

14. else

15. R∗
i = {Rk : (Ri,Rk) ∈ E}

16. R∗
j = {Rk : (R j,Rk) ∈ E}

17. ρ = ρ ∪ (R∗
i ×R∗

j)
18. ρ = ρ \{(Ri,R j)}
19. return

(
1
n ∑n

i=1 log Ŝi

)
− log(n−1)

5.6.1 Model Initialization

One part of the algorithm that needs to be modified in a suitable way is the model

initialization technique. In discrete HRFs, MBM produces an initial assignment by

choosing an initial size k of the set of relatives, and then by selecting as relatives of

each Xi the k variables that display the highest statistical correlation with respect to

Xi, where the strength of the correlation is measured by the value of the χ2 statistic.

Since the χ2 statistic naturally applies to discrete variables only, what we need is

a way of measuring correlation for pairs of continuous variables in a direct way

(i.e. without having to discretize the variables before applying the test).

Our choice is to measure the statistical correlation for any pair of continuous vari-

ables by the value of the correlation ratio [164] for that pair. Consider two random

variables Xi and X j that have been observed n times within a dataset D. Moreover,

define µ̂i, µ̂ j, and µ̂ in the following way:

µ̂i =
1

n

n

∑
k=1

xik (5.70)
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µ̂ j =
1

n

n

∑
k=1

x jk (5.71)

µ̂ =
1

2
(µ̂i + µ̂ j) (5.72)

where xik and x jk denote the values of the k-th observation of xi and x j in D, respec-

tively. Then, the correlation ratio statistic η for the pair (Xi,X j) can be computed as

follows:

η(Xi,X j) =

√
n(µ̂i − µ̂)2 + n(µ̂ j − µ̂)2

∑n
k=1

{
(xik − µ̂)2 +(x jk − µ̂)2

} (5.73)

The correlation ratio is such that 0 ≤ η ≤ 1, where lower values correspond to

stronger degrees of correlation, while higher values mean weaker correlation. One

advantage of using the correlation ratio statistic is that it is a fairly general depen-

dence test, capable of detecting not only linear dependencies but also non-linear

ones. On the other hand, most traditional dependence tests (such as Pearson’s corre-

lation coefficient [165]) only capture linear dependencies. Therefore, the correlation

ratio is a suitable choice for the initialization of Markov Blanket Merging, since it

allows to estimate densities without making assumptions on the nature of the mod-

eled dependencies.

5.6.2 Learning the Local Structures

In the Bayesian networks composing continuous hybrid random fields, the condi-

tional density of each node given its parents is modeled by using either paramet-

ric, semiparametric, or nonparametric estimators (as described in Sections 5.3–5.5).

For root nodes, conditional density estimation clearly reduces to standard (uncondi-

tional) pdf estimation. An important issue with Markov Blanket Merging that needs

to be addressed in a different way when dealing with continuous domains is the scor-

ing function used to evaluate the structure of the local Bayes nets. While the original

version of MBM uses a heuristic function based on the minimum description length

principle (see Section 4.6), the evaluation function we suggest for continuous graph-

ical models is the model CVLL with respect to the training dataset D [136, 137, 97].

For a BN with graph G and nodes X1, . . . ,Xd , if D = {x1, . . . ,xn} and each x j is a

vector (x1, . . . ,xd), the structure G is scored as follows:

CVLL(G) =
n

∑
j=1

d

∑
i=1

log p̂− j
(
xi j

| pa j(Xi)
)

(5.74)

where pa j(Xi) is the state of the parents of Xi in x j, and the notation p̂− j means

that only data points in D \ {x j} are used as training sample for estimating the pdf

of point x j. Clearly, a CVLL-based strategy is much less prone to overfitting than

a straight maximum-likelihood approach. The CVLL function is maximized (up to

a local optimum) by heuristic search in the space of d-dimensional BN structures.



5.7 Final Remarks 117

To this aim, we use (as for discrete hybrid random fields) the greedy hill-climbing

algorithm described in Section 2.4.2.1.

5.6.3 Learning the Global Structure

The last correction we need to introduce in the Markov Blanket Merging algorithm

concerns the evaluation function used for scoring the global structure of the hy-

brid random field. Rather than maximizing straightly the pseudo-log-likelihood of

the model given the dataset, we suggest to optimize instead a cross-validated ver-

sion of that function, consistently with the choice we made also for local struc-

ture learning. For a dataset D containing n d-dimensional patterns and a HRF with

graphs G1, . . . ,Gd , the cross-validated pseudo-log-likelihood measure, denoted by

CVLL∗(G1, . . . ,Gd), is defined by the following equation:

CVLL∗(G1, . . . ,Gd) =
n

∑
j=1

d

∑
i=1

log p̂− j(xi j
| mbi j

(Xi)) (5.75)

where mbi j
(Xi) is the state of the MB of Xi in pattern x j.

5.7 Final Remarks

A long-lasting debate has been going on in the scientific community on whether

continuous-valued variables do offer advantages over discrete attributes or not. Al-

though the ultimate solution to the argumentation is way beyond the scope of the

book, we brought in several arguments in order to stress the importance of develop-

ing graphical models for continuous variables. Most of the formal pros stem from

the analysis of optimal convergence of the Parzen window technique for the estima-

tion of a density function. Furthermore, the definition of different versions of hybrid

random fields for continuous features allows for a fair, straightforward experimental

comparison with respect to traditional extensions of Bayesian networks and Markov

random fields to real-valued setups. In fact, a number of datasets and real-world ap-

plication domains are collected and represented in the form of continuous attributes

in quite a natural manner.

Generalization of the graphical paradigm to real-valued random vectors did not

affect the formal definition and the theoretical properties of the hybrid random field.

Adaptation of the discrete model to the new scenario took place at two levels,

namely the adoption of a specific model for the posterior probabilities of continuous

variables given their Markov blankets, and consequent adoption of suitable estima-

tion algorithms for the involved distributions. We investigated three different ap-

proaches to the problem of estimating the conditional probability density functions

associated with the nodes of the graphical model, i.e. parametric, semiparametric,

and nonparametric.
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Parametric estimation relies on the notion of possessing some prior knowledge

on the form of the underlying density function, such that the aim and scope of learn-

ing from data is limited to the estimation of a set of parameters that characterize

uniquely the pdf itself. The treatment we gave benefited from the classic discussion

on Normal and Gaussian mixture models, where the maximum-likelihood technique

emerges as a sound paradigm for finding out an exact (i.e., in closed-form) or itera-

tive solution to the estimation problem. Parametric estimation has its strongest point

in its relative simplicity, which may entail robustness. Once the parameters have

been estimated, the resulting model is also computationally fast. Furthermore, the

GMM is also corroborated by its theoretical ‘universality’, that is its capability of

modeling any continuous pdf to any degree of precision (provided that the correct

parameters and number of components are used). Unfortunately, this property is of

little practical help, since (i) the correct GMM for approximating the pdf underlying

a given dataset is not known, (ii) it may require a huge number of components, and

(iii) iterative ML estimation is unlikely to return the optimal parameters (even in the

lucky event that it is applied to the ideal mixture). Eventually, the main cutoff of

parametric statistics lies in its requirement of a priori knowledge of the form of the

pdf, which turns out to be too strong an assumption.

A semiparametric approach was outlined, too, relying on the change of variables

theorem and the intriguing definition of nonparanormal distribution. Efforts were

concentrated on the computation of suitable mappings of the original feature space,

mappings that entail the interpretation (and the handling) of the data as a population

drawn from an adequate nonparanormal distribution. While parametric models fix

the form of the pdf, semiparametric techniques aim at transforming any probability

distribution into a reference density function whose form is actually known. This

may, or may not, fit specific scenarios well, depending on the specific data. At any

rate, the approach shifts the emphasis (including the fitness of the resulting model,

and a critical mass of the computational burden) from explicit density estimation to

designing the transformation functions that realize the change of variables.

Finally, fully nonparametric models were applied. They relied on the extension of

the Parzen window technique to the conditional density estimation setup. The result-

ing model, known as the Nadaraya-Watson estimator, involves two separate kernels

having (possibly) different bandwidths. In order to ease the (non-trivial) task of se-

lecting proper bandwidth values, an effective model selection algorithm based on the

cross-validated log-likelihood criterion was presented. Due to the typical complexity

issues that may arise in the computation of likelihood-based measures on large-size

datasets, a workaround using dual-tree recursion was described. The selling-points

of nonparametric estimation techniques lie in: (i) their optimal convergence to the

real pdf over large datasets; (ii) the nonoccurrence of prior assumptions on the form

of the unknown pdfs; (iii) the contained amount of parameters that need to undergo

model selection heuristics (basically limited to the kernel bandwidths); (iv) the ab-

sence of a real training stage, since the model is simply memory-based and the

calculations occur only at test time. The last two points hide also the germ of the

severe drawbacks of nonparametric techniques: bandwidth selection is difficult and

time consuming, and the very nature of memory-based paradigms (that are required
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to store the whole training sample in memory, and to compute a linear combination

of as many kernel calculations as the number of training points) may prevent the

resulting machine from scaling up to large-size datasets in a satisfying way.

Once a model of the conditional density functions associated with the vertexes of

the hybrid random field has been chosen, structure learning can be applied. We saw

how the problem of learning the conditional independencies to be modeled by HRFs

for continuous variables is best tackled by subdividing it into three phases, namely

initialization, ‘local’ structure learning, and ‘global’ structure learning. The next

chapter puts real HRFs at work, evaluating their behavior in several applications

involving either discrete or continuous attributes.



Chapter 6

Applications

“[A] dire il vero ho poca inchinazione al filosofare altamente;

ed ho anche stimato che non v’abbisogni una grande sublimità

d’intelletto de’ discorsi che hanno per meta l’intenzione di

scoprire la pura e semplice verità sotto gl’insegnamenti del

senso; e se questi m’ha ingannato, a chi doveva io ricorrere?”

Agostino Scilla, 1670 [272]

6.1 Introduction

As we have said, hybrid random fields are not meant just as a general graphical

model with nice theoretical properties, featuring algorithms for inference and learn-

ing over discrete and continuous variables. Above all, they are expected to reveal

useful. This means that our ultimate goal is to exploit the flexibility of HRFs in

modeling independence structures, as well as the scalability of algorithms for learn-

ing HRFs, in order to tackle real-world problems. Improvements over the traditional

approaches, both in terms of prediction accuracy and computational efficiency, are

sought. This chapter presents and analyzes a variety of applications, confirming the

expectations to a significant extent. Experimental results yielded by HRFs turn out to

be at least as accurate as those obtained via long established paradigms. Moreover,

the computational burden proves to be invariably reduced, even to dramatic extents,

demonstrating that hybrid random fields are a viable tool for designing serious ap-

plications whenever the size of the dataset scales up to severe dimensionality. All

models and algorithms considered in the applications are publicly available through

the implementation provided by the JProGraM software library, which is released at

http://jprogram.sourceforge.net/under an open-source license. Also,

the datasets used in the demonstrations that are not otherwise available on the web

are hosted at http://www.dii.unisi.it/˜freno/datasets.html.

We present a feature selection (or, dimensionality reduction) technique relying

on graphical models first (Section 6.2). The idea is that the feature space used for

representing real-world phenomena may be redundant, or it may have too high a

dimensionality. Under these circumstances, a selection of the most relevant features

may help tackling the ‘curse of dimensionality’ issue [73]. Two requirements need

to be satisfied by the selection procedure, namely that a significant reduction of the

dimensionality is obtained, and that the performance of the resulting (simplified)

machine is not degraded. Section 6.2.1 shows how probabilistic graphical model-

ing may be suitably applied to the task, in the form of a technique called ‘Markov

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 121–150.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

http://jprogram.sourceforge.net/
http://www.dii.unisi.it/~freno/datasets.html
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blanket filter’. Alternative, related work is reviewed in Section 6.2.2. The Markov

blanket filter technique is then used, in conjunction with a few traditional classi-

fiers, over four different classification tasks (including two bioinformatics datasets)

in Section 6.2.3. Results show that the proposed approach yields, on average, a

recognition accuracy which is comparable to (or improved over) established meth-

ods, still marking an even more noticeable dimensionality reduction.

Section 6.3 discusses the application of HRFs to pattern recognition and link pre-

diction problems involving discrete variables. Section 6.3.1 preliminarly describes

the strategies used for setting up the structure (and learning the parameters) of

Markov random fields and dependency networks in the absence of prior knowl-

edge concerning the application domain. Complexity issues are investigated first

(Section 6.3.2), evaluating the computational burden of structure learning as a func-

tion of the growing size of synthetic datasets. It turns out that learning HRFs scales

up (even dramatically) better than learning Bayesian and Markov networks. Sec-

tion 6.3.3 reports on several pattern recognition experiments (including the popu-

lar Lung-Cancer dataset) where the HRF is used as a classifier, and the focus of

the analysis is on the prediction accuracy. Again, HRFs compare favorably with

respect to the other graphical models, and with respect to the naive Bayes clas-

sifier as well. A domain having the utmost relevance to World Wide Web-related

applications lies in the so-called link prediction setup (Section 6.3.4). We point out

how HRFs can be used for link prediction according to a specific ranking strategy

(Section 6.3.4.1), then we apply the model to the task of predicting references in

scientific papers from the well-known CiteSeer and Cora datasets (Section 6.3.4.2).

The results, evaluated in terms of the ‘mean reciprocal rank’ and the ‘success rate

at N’ criteria, highlight the benefits marked by HRFs. Another popular link pre-

diction task, useful in the development of automatic recommender systems for the

World Wide Web, concerns the prediction of users preferences for certain families of

products or services (Section 6.3.4.3). Preferences for movies from the MovieLens

dataset are considered here, and the models are evaluated in terms of two variants

of the ‘degree of agreement’ (DOA) metric, namely the macro-averaged DOA and

the micro-averaged DOA. Again, experimental results prove that HRFs compare

favorably, on average, with the traditional approaches.

Section 6.4 applies HRFs to pattern recognition tasks involving continuous-

valued variables. The algorithms introduced in the previous chapter for estimat-

ing conditional pdfs over real-valued feature vectors are evaluated and compared

on complex datasets generated synthetically. Section 6.4.1 hands out the algorithms

used for creating the datasets, a process which involves three separate steps, namely:

(i) generation of a random DAG, (ii) generation of a random, multivariate pdf

(featuring polynomial dependencies among the variables, plus noise distributed ac-

cording to various beta densities) from a given DAG, and (iii) creation of pattern-

classification datasets from a collection of class-conditional generative graphical

models (relying on Monte Carlo sampling, as applied to the output of the previous

two algorithms). Experiments are reported and analyzed, in terms of both recog-

nition accuracy and average training time, in Section 6.4.2. The results allow us to
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extend to the continuous-valued scenario the positive conclusions we drew for HRFs

in the discrete case. Final remarks are given in Section 6.5.

6.2 Selecting Features by Learning Markov Blankets

Typical supervised classification tasks involve representing the patterns in a dataset

as vectors of features. Algorithms that learn to classify patterns are then applied

to such vectors. In complex domains, the number of features can be very large

[73], and the vector size has an important impact on the performance of the al-

gorithms, for at least two reasons. First, high-dimensional vectors increase both the

amount of space and the time required for learning. Second, when the vectors also

include irrelevant variables, the presence of such variables may degrade the accu-

racy of the learned classification model. Therefore, reducing the dimensionality of

vectors may improve the performance of a learning algorithm in two respects. First,

it can decrease the complexity of the learning process. Second, it can lead the learn-

ing algorithm to induce more reliable models of the domain at hand. One way of

addressing dimensionality reduction in vectors of features is through feature

selection [122].

Feature selection techniques can be classified into two broad families [153, 170]:

filters and wrappers. The distinction between filters and wrappers depends on the

relationship they bear to the classification algorithm. Filters select features based

on criteria which are independent of the particular learning algorithm to be applied

to the data. Hence, the bias guiding feature selection in filters is not related to the

learning bias of the classifier. In wrappers, a learning algorithm is first chosen, and

then the classification accuracy on different subsets of features is used as a heuristic

for selecting the best subset.

Wrapper methods have both a practical shortcoming and a theoretical limita-

tion [176]. On the one hand, they typically incur a high computational cost, since

a classifier is required to be trained several times on the same task, with different

subsets of features. On the other hand, they do not permit to investigate the prob-

lem of dimensionality reduction as such. Since features are selected only insofar as

classification accuracy is increased, wrappers obscure the nature of the interaction

between dimensionality reduction and learning accuracy. While the first limitation

of wrapper techniques can be overcome by devising more efficient algorithms [122],

the second limitation is more general, since it depends on the very nature of these

techniques.

6.2.1 A Feature Selection Technique

We now describe a filter method based on Bayesian networks, referred to as Markov

Blanket Filter (MBF), which was first proposed in [93]. The basic idea consists

in modeling the features, together with the label attached to the vector, as a set
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of (discrete) random variables, and then learning the joint probability distribution

of the variables in the form of a Bayesian network. Once a Bayesian network has

been learned, the Markov blanket of the label within the network specifies a subset

of the features that makes the label independent of all other features. Therefore,

within the framework of Bayesian networks (and, in general, within the framework

of probabilistic graphical models), feature selection can be reduced to the task of

extracting a Markov blanket for the class from the set containing all the original

variables.

Consider the traditional task of supervised learning, where the training data con-

sists of feature vectors X = (X1, . . . ,Xn) such that the label C is known for each

vector. Clearly, each feature X can be regarded as a random variable ranging over

a fixed domain of possible values. The same is true for the label C, which can be

treated as a random variable ranging over the set of possible labels c1, . . . ,cm. If

we take as training data the set of vectors X∗ = (X1, . . . ,Xn,C), we may reduce the

problem of feature selection to the following one: what is the Markov blanket of

C in {X1, . . . ,Xn}? Since a Bayesian network implicitly specifies a Markov blanket

for every variable contained in the DAG, the latter problem can be solved by learn-

ing a Bayesian network for the probability distribution underlying the labeled data.

In practice, any algorithm capable of learning the structure of Bayesian networks

can be used as a feature selection algorithm. The MBF algorithm learns a Bayesian

network for the dataset by running the hill-climbing algorithm described in Sec-

tion 2.4.2.1 (i.e. Algorithm 2.1), and then it picks out the features belonging to the

Markov blanket of the class variable.

6.2.2 Related Work

The idea of applying the notion of Markov blanket to feature selection was first

proposed in [176]. The proposed algorithm requires the user to specify in advance

some important parameters, in particular the number of features that have to be

eliminated. But since in typical applications the most sensible value for that number

is unknown, this limitation either leads to suboptimal results (when the user is not

able to choose a sensible number), or makes it necessary to run the algorithm sev-

eral times (setting that number each time to a different value, until good results are

obtained). On the other hand, MBF does not require the user to set any parameters

at all when it is applied to new data.

In [143], feature selection is also dealt with by means of Bayesian networks.

However, the learning algorithm employed in this case, called ‘K2χ2’, has two se-

rious drawbacks. K2χ2 is based on the K2 algorithm (described in Section 2.4.2.2),

which requires the user to specify two parameters: first, an ancestral ordering over

the network nodes; second, an upper bound on the number of parents allowed for

each node. Concerning the first parameter, K2χ2 orders the variables according to

the strength of the dependence relationship between each one of them and the class

variable, measuring this dependence through the χ2 test. Thus, variables with higher
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χ2 scores precede variables with lower scores. While [143] show that the resulting

ordering works better than a random ordering, no connection is established between

the χ2 test and the semantics of the node ordering in Bayesian networks. This leaves

room for some doubts as to how reliable the resulting ordering will be. Concerning

the second parameter, no method is provided by the authors for specifying it. This

means that the user will have to provide the algorithm with the right parameter

setting each time it is applied to new data, and there seems to be no general criterion

for going about this task. On the other hand, the structure learning algorithm used

by MBF requires neither to specify a variable ordering, nor to fix an upper bound

on the number of parents allowed for each node, and this makes MBF both more

general and more appealing for application to domains where no prior knowledge

can be used to constrain the learning process.

6.2.3 Results

MBF was tested on four different datasets, concerning one synthetic and three real-

world domains, which we describe next:

1. The LED24 dataset [230] is a synthetic one, containing 3200 patterns. Each pat-

tern is characterized by 24 boolean features, and it belongs to one of 10 possible

classes. Only 7 features are relevant for predicting the class, and the class entirely

determines the value of each relevant feature (except for a 0.1 probability that the

value of the feature will be chosen randomly, introducing a certain noise). The

values of the other 17 features are random.

2. The Mushroom dataset [230] contains 8124 patterns. Each pattern describes a

mushroom through 22 features. All features are nominally valued, and range over

domains containing up to 12 possible values. The class variable has two possible

values: either ‘edible’ or ‘poisonous’.

3. The Splice-junction dataset [230] consists of 3190 patterns. The patterns are

characterized by 60 four-valued attributes, where each attribute stands for a po-

sition on a DNA sequence. The task is to recognize whether the pattern is an

exon/intron boundary, an intron/exon boundary, or neither.

4. The HS3D dataset has been extracted from the Homo Sapiens Splice Sites

database [245]. The dataset was prepared by merging the Exon-Intron true splice

sites data from that database with the first 1500 items of the Exon-Intron false

splice sites data. In this way, we obtain a dataset containing 4296 patterns, be-

longing to two possible classes: either true or false exon/intron splice site. Each

pattern is a vector of 140 features, describing a DNA sequence; as for the pre-

ceding Splice-junction dataset, each feature is a four-valued variable, standing

for the nucleotide occupying the specific position in the sequence.

The strategy used to test MBF on each dataset is the following: (1) train some clas-

sifiers on the dataset, and record their classification accuracy; (2) run MBF on the

data; (3) train the classifiers used in step 1 on the dataset obtained by eliminating
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from the original data the features discarded in step 2, and compare their classifi-

cation accuracy to the accuracy recorded in step 1. Classification accuracy is mea-

sured using ten-fold cross-validation. The employed classification algorithms are

the following (as supplied by the WEKA machine learning workbench [317]): naive

Bayes; J4.8, which is WEKA’s implementation of the C4.5 algorithm [249]; IB1 [3].

These specific algorithms are chosen so as to make it possible to evaluate the im-

pact of MBF across a variety of classification techniques (i.e. Bayesian classifiers,

tree classifiers, and nearest-neighbor classifiers, respectively). The results of MBF

are compared to the results of the CFS algorithm [123], which is a well-known and

efficient feature selection method (also supplied by WEKA) and hence provides an

interesting baseline for evaluating MBF.

The results are summarized in Tables 6.1–6.2. Table 6.1 compares, for each

dataset, the number of features selected by MBF to the number of features selected

by CFS. Table 6.2 shows the classification accuracy of the three classifiers for each

dataset, comparing their accuracy on the original datasets to the accuracy on the

datasets filtered by MBF and by CFS respectively. Concerning the number of fea-

tures selected by the two algorithms, MBF seems to perform better: summing over

all four cases, CFS ends up selecting 5 features more than MBF. A strong differ-

ence emerges from the LED24 dataset, which is the only synthetical domain. Since

we know in advance which features are relevant, this dataset provides a prelimi-

nary benchmark for MBF. The result is particularly encouraging, since the selected

features for MBF are exactly the relevant ones, whereas CFS selects 8 irrelevant

features in addition to the relevant ones. MBF almost always improves the clas-

sification accuracy, regardless of the chosen classifier: in only 1 out of 12 cases

(i.e. Naive Bayes on the LED24 data) the accuracy decreases after filtering, and the

decrease is quite small (0.06%). The accuracy after using CFS decreases instead in

3 cases (ranging from a 0.99% to a 6.11% decrease). In 9 cases, the classification

accuracy achieved after filtering the data with MBF is higher than the one achieved

by CFS; in 1 case the resulting accuracy is the same (J4.8 on the Splice-junction

dataset); in the remaining 2 cases CFS performs better than MBF. The maximum

increase in accuracy produced by filtering the data with MBF is 15.22%, while

for CFS this value amounts to 12.19% (both values are recorded on LED24 with

IB1).

Table 6.1 An overview of the datasets, with the last two columns reporting the number of

features selected by MBF and CFS respectively

Dataset Features Labels Patterns MBF Features CFS Features

LED24 24 10 3200 7 15

Mushroom 22 2 8124 10 4

Splice 60 3 3190 21 24

HS3D 140 2 4296 21 21
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Table 6.2 Average recognition accuracy of the naive Bayes, J4.8, and IB1 classifiers on the

original data and on the data filtered by MBF and CFS respectively

Average Recognition Accuracy (10-fold cross-validation)

Naive Bayes J4.8 IB1

Dataset � MBF CFS � MBF CFS � MBF CFS

LED24 75.43% 75.37% 75.87% 73.46% 75.56% 74.46% 49.31% 64.53% 61.50%

Mushroom 95.82% 98.05% 98.52% 100% 100% 99.01% 100% 100% 93.89%

Splice 95.29% 96.20% 96.08% 94.38% 94.48% 94.48% 75.92% 81.94% 80.37%

HS3D 83.44% 91.55% 90.17% 91.38% 91.55% 91.03% 76.65% 81.40% 80.60%

6.3 Application to Discrete Domains

This section offers both an illustration of the way that HRFs (and graphical models

in general) can be applied to pattern recognition and link prediction tasks, and an

experimental investigation of the models behavior in terms of prediction accuracy

and computational burden of structure learning. Before presenting the applications,

Section 6.3.1 explains how Markov random fields and dependency networks are set

up for the considered tasks. We then proceed to an empirical evaluation of the scal-

ability properties of MBM and its capability to accurately learn pseudo-likelihood

distributions. Section 6.3.2 is aimed at measuring the computational burden of learn-

ing HRFs from data, using a number of synthetic benchmarks. In Section 6.3.3 hy-

brid random fields are applied to pattern classification, comparing their accuracy to

Bayesian networks, Markov random fields, dependency networks, and to the naive

Bayes classifier. Section 6.3.4 describes instead the application of graphical models

to a number of link prediction tasks, drawn from the widely used CiteSeer, Cora,

and MovieLens databases. These datasets display both a rich relational structure

and a growing domain dimensionality (in terms of the number of random variables

involved in the data). Therefore, the link prediction applications offer an interesting

way to evaluate both the learning capabilities of hybrid random fields when dealing

with structured domains, and the scalability properties of MBM as the size of the

dataset increases.

6.3.1 Setting Up the Markov Random Field and Dependency

Network Models

In Markov networks, joint distributions are estimated using the pseudo-likelihood

approximation (for the sake of computational efficiency). The model weights are

learned by means of a maximum (pseudo-)likelihood strategy. In particular, the

model pseudo-likelihood is optimized using the L-BFGS algorithm [196], already

mentioned in Section 3.3.1. In order to construct the graph in Markov random fields,

we adopt the following strategy. First, for each variable Xi in the domain, we run a
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χ2 test between Xi and each other variable X j, in order to measure the strength of

the correlation existing between Xi and X j. Then, for each Xi, we select the k vari-

ables that achieve the highest scores on the χ2 test, and we add these k variables as

relatives to Xi. In each application, a suitable value for k is determined by prelimi-

nary cross-validation. Clearly, the way we construct the graph in Markov networks

is very similar to the model initialization step in hybrid random fields.

Concerning Dependency networks, a set of k neighbors is assigned to each node

based on the results of the χ2 test, where k is tuned by cross-validation. The local

distributions are then learned using the typical techniques suggested in the relevant

literature [128, 100], based on probabilistic decision trees. In all the experiments

described below, the parameter k will refer to the number of neighbors (or rela-

tives) initially assigned to each node based on the results of the χ2 test, both in

the case of Markov random fields, dependency networks, and hybrid random fields.

On the other hand, the parameter k∗ will denote the upper bound on the size of the

set of relatives considered when learning hybrid random fields by Markov Blanket

Merging.

6.3.2 Computational Burden of Structure Learning

In order to compare the computational cost of learning hybrid random fields to the

cost of learning Bayesian networks, Markov random fields, and dependency net-

works, we measure the time needed to learn the respective models from a number of

datasets of growing dimensionality. Each dataset used in the tests contains 1000 n-

dimensional patterns, drawn from a single distribution (that is from only one class).

All features are binary. The datasets are generated using a rule-based random data

generator which is available in the WEKA software package [317].

Given each dataset, we measure the time needed for learning (1) Bayesian net-

works using Algorithm 2.1, (2) Bayesian networks using the K2 algorithm, (3) de-

pendency networks, (4) hybrid random fields, and (5) Markov random fields using

the respective algorithms we described previously. The reason why (for BNs) we

compare MBM not only to Algorithm 2.1, but also to K2, is that the computational

cost of Algorithm 2.1 prevents us from applying it successfully to the link-prediction

experiments, where the domain dimensionality forces us to train the BN models us-

ing K2, which is less expensive to run. Clearly, while we are going to learn the

structure (and not only the parameters) of BNs and HRFs, for DNs and MRFs the

main effort is devoted to parameter estimation, since for the latter models structure

learning is limited to the initialization of the neighborhoods. This means that the

task is more demanding in the case of Bayesian networks and hybrid random fields.

For Markov networks the value of k is set to 6, for DNs it is set to 8, while for HRFs

the values of k and k∗ are set to 8 and 10 respectively. In the K2 algorithm, likeli-

hood is used as evaluation function and the maximum number of parents allowed

for each node is set to 3. We choose these specific parameter values because they are

the largest ones we ever considered in our applications, while tuning the parameters

in preliminary cross-validation runs of the experiments. Time is measured on a PC

equipped with a 2.34 GHz processor. The results are illustrated in Figures 6.1–6.4,
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where learning time (in seconds) for the different models is plotted against the in-

creasing dimensionality of the data, i.e. for a growing number of variables in the

models. The reason why, for these experiments, we do not extend the measurement

to datasets involving more than 75 variables is that the chosen interval is sufficient

in order to display the differences between the compared curves. That is to say,

we do not aim at measuring learning time for large domains as such, but we aim

instead at measuring the growth of learning time with respect to a growing num-

ber of variables. Moreover, consider that the section describing the link-prediction

experiments also reports learning time for all the considered models, providing an

indication of how expensive it is to learn the models from domains involving several

hundreds of variables.
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Fig. 6.1 Time required for learning Bayesian networks (using Algorithm 2.1) and hybrid

random fields (k = 8, k∗ = 10) as the problem size increases. For each n such that 26≤ n≤ 75,

the time (in seconds) is measured with respect to a training set containing 1000 patterns,

where each pattern is a vector of n binary variables.

The comparison displays a clear advantage of hybrid random fields over Bayesian

networks and Markov random fields. In particular, the improvement of HRFs over

BNs (trained with Algorithm 2.1) is dramatic, while the difference between HRFs

and MRFs is less consistent. Concerning the K2 algorithm for BNs, training time

grows much more quickly than the corresponding time for HRFs. Although K2

is relatively fast for low-dimensional datasets, the time measurements reported

in the figures show that as the number of variables increases, learning HRFs (or even
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Fig. 6.2 Time required for learning Bayesian networks (using the K2 algorithm) and hybrid

random fields (k = 8, k∗ = 10) as the problem size increases. For each n such that 26≤ n≤ 75,

the time (in seconds) is measured with respect to a training set containing 1000 patterns,

where each pattern is a vector of n binary variables.

MRFs) becomes more and more convenient with respect to learning BNs. The sig-

nificance of the gap between MBM and K2 will become even more apparent as we

will refer (in Section 6.3.4) to time results for the link-prediction experiments, where

we deal with datasets involving more than a thousand variables. On the other hand,

learning DNs is more efficient than learning HRFs, but in this respect we should

note once again that MBM is a full-fledged structure learning algorithm, while for

DNs (as for MRFs) only the parameters are learned. Moreover, the increase in the

amount of time needed to learn HRFs with respect to learning DNs is quite small if

compared to the amount of time needed to learn BNs or MRFs.

Concerning instead the possible growth of the number of iterations required by

MBM for convergence, Figure 6.5 also plots the values of that number against the

increasing dimensionality of the data.

6.3.3 Pattern Classification

The experiments described in this section, originally reported in [96], are aimed at

evaluating the accuracy of hybrid random fields in pattern recognition. In particular,

HRFs are compared not only to Bayesian networks, Markov random fields, and

dependency networks, but also to the naive Bayes classifier. Since NB is among
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Fig. 6.3 Time required for learning dependency networks (k = 8) and hybrid random fields

(k = 8, k∗ = 10) as the problem size increases. For each n such that 26 ≤ n ≤ 75, the time

(in seconds) is measured with respect to a training set containing 1000 patterns, where each

pattern is a vector of n binary variables.

the most widely used probabilistic methods in pattern recognition, its classification

accuracy in the considered tasks will be a useful benchmark, due to the following

fact. Given that the naive Bayes model can be regarded as a suboptimal Bayesian

network (i.e. as a BN modeling the conditional independencies among features in

a simplified way), BNs should perform better than NB in classification tasks where

the features are correlated in important ways. Now, HRFs are aimed at modeling

the same kind of complex distributions that are accurately modeled by BNs, rather

than the systems of features where NB is capable of achieving a relatively high clas-

sification accuracy. Therefore, the experimental question we are going to explore

through the pattern recognition tasks is how accurate HRFs are in pattern classifica-

tion whenever the features are embedded in sufficiently rich networks of conditional

independencies.

We now describe the way that BNs, MRFs, DNs, and HRFs are applied to pattern

recognition tasks. Suppose c1, . . . ,cn are the classes in the problem at hand. We

partition the training data D into n subsets D1, . . . ,Dn, such that all patterns in Di

belong to class ci. For each probabilistic graphical model, we then learn n class-

specific versions, training each version on the respective subset of the training data.

Given the model versions h1, . . . ,hn, in order to classify patterns in the test set we

proceed as follows. For each class ci, we first compute the posterior probability

P(ci|x) that a pattern x belongs to class ci:
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Fig. 6.4 Time required for learning Markov random fields (k = 6) and hybrid random fields

(k = 8, k∗ = 10) as the problem size increases. For each n such that 26 ≤ n ≤ 75, the time

(in seconds) is measured with respect to a training set containing 1000 patterns, where each

pattern is a vector of n binary variables.

P(ci | x) =
P(x | ci)P(ci)

P(x)
(6.1)

where P(x | ci) is computed as the likelihood (or the pseudo-likelihood) of model

hi given x (i.e. as the probability assigned to x by model hi), and P(ci) is the prior

probability of class ci, estimated as
|Di|
|D| . Given the posterior probability of each

class, we attach to x the label with the highest posterior probability, based on a

maximum a posteriori strategy. Clearly, since P(x) is constant for a fixed x, for

the purposes of classification it is sufficient to compute P(x | ci)P(ci), ignoring the

normalization factor 1
P(x) .

The dataset for the first task, which we call ‘Synthesis’, is a synthetic one, cre-

ated using WEKA’s rule-based random data generator. The dataset contains 3,000

patterns. Each pattern is characterized by 20 boolean features, and there are two

possible classes. The data was generated setting the minimum rule size to 4 (rather

than 1, which is the default value), and the maximum rule size to 5, where the size

of a rule is the number of variables appearing in the rule formulation. Increasing the

minimum rule size makes the task increasingly difficult, because it introduces more

complex kinds of dependencies among the variables. This kind of complexity is ex-

actly what we require from the data in order to address our experimental question.

Results for the Synthesis dataset are reported in Table 6.3.
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Fig. 6.5 Number of iterations required for Markov Blanket Merging to converge as the prob-
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Table 6.3 Recognition accuracy values measured (by 3-fold cross-validation) on the Synthe-

sis dataset for BN, DN (k = 3), HRF (k = k∗ = 8), MRF (k = 3), and NB

Recognition Accuracy

Average Standard Deviation

BN 73.20% 1.55

DN 63.83% 0.74

HRF 73.96% 1.20

MRF 67.03% 0.40

NB 65.36% 0.95

The highest accuracy on the Synthesis data is achieved by HRFs. While the accu-

racy of BNs is not far from the accuracy of HRFs, the accuracy displayed by MRFs

is 6.93 points lower than the value obtained with HRFs. On the other hand, DNs

are less accurate than all other models. The fact that NB performs (significantly)

worse than BNs confirms the significance of the dataset for testing the reliability of

HRFs with respect to domains displaying relatively complex networks of correla-

tions among features.

The second experiment concerns the Lung-Cancer dataset, drawn from the UCI

machine learning repository [230]. The dataset is a real-world one, and it was used

first by [140] as a particularly illustrative example of an ill-posed pattern recogni-

tion setting, where the domain dimensionality overwhelms the number of examples
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available for training. The number of features is 56, each feature ranges over 4 pos-

sible values, each pattern belongs to one of 3 possible classes, and the total number

of patterns is just 32. Since the original dataset also displays missing values in some

of the examples, patterns with missing values are removed from the data in our ex-

periment, so as to keep the comparison of the different models as simple as possible.

Clearly, this choice has also the effect of making the task even more difficult: given

that the original data contains 5 corrupted items, the number of available patterns in

our dataset is reduced by 15.6%. For these reasons, the dataset is particularly inter-

esting for evaluating the behavior of HRFs in a relatively challenging domain. The

results of the experiment are shown in Table 6.4.

Table 6.4 Recognition accuracy values measured (by 3-fold cross-validation) on the Lung-

Cancer dataset for BN, DN (k = 3), HRF (k = k∗ = 4), MRFs (k = 3), and NB

Recognition Accuracy

Average Standard Deviation

BN 59.25% 05.23

DN 48.14% 05.23

HRF 62.95% 10.47

MRF 55.55% 09.07

NB 48.14% 05.23

An important detail concerning the experiment is the following. Since the number

of training patterns is very small, we reduce the complexity penalty employed in the

MDL heuristic for learning the structure of BNs from
par(h)

2
log |D| to

par(h)
4

log |D|.
The reason is that the relative weight of the penalty becomes more and more im-

portant as the number of data items decreases, which means that, for particularly

small datasets, the structure learning algorithm may deliver too sparsely connected

networks. In fact, the described correction to the MDL heuristic worked well for the

Lung-Cancer experiment, improving the behavior of both BNs and HRFs.

The best result on the Lung-Cancer dataset is achieved again by HRFs, followed

by BNs, MRFs, DNs, and NB. The outcome of this experiment lends itself to the

same interpretation as the previous experiment. One interesting point to note con-

cerning the Lung-Cancer application is that for HRFs, the standard deviation is

higher than for BNs. The reason for this is the following. Given the 3-fold cross-

validation strategy, HRFs and BNs produce exactly the same decisions in two test

sessions, whereas in the third test session HRFs classify correctly one more pattern

than BNs. Due to the small size of the dataset, this improvement in prediction ac-

curacy increases significantly the related standard deviation. Given the results col-

lected both in a synthetic and in a real-world domain, the evidence supports the

hypothesis that hybrid random fields, as compared to other probabilistic graphical

models, are a reliable pattern classification technique.
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6.3.4 Link Prediction

This section describes a way of applying probabilistic graphical models to link

prediction tasks. Section 6.3.4.1 formalizes the way we use probabilistic graphical

models for learning to predict links. Two applications to the task of predicting ref-

erences in scientific papers are described in Section 6.3.4.2, while in Section 6.3.4.3

we use the models as recommender systems for a movie database.

6.3.4.1 Ranking Strategy

In general terms, our link-prediction system has to deal with a set of users of a

database and a set of items contained in the database, where the items can be papers,

movies, or virtually anything else. For each user, information is available concerning

which items in the database have already been chosen by that user. Formally, the aim

of the system is to compute, for each user, a scoring function measuring the expected

interest of the user for each item in the database. The goal is to measure the interest

in items that the user has not yet considered, so that they can be ranked according

to their relevance for the next choice the user will make.

We denote the set of database users as U = {u1, . . . ,um}, and the set of database

items as O = {o1, . . . ,on}. For each user ui, we have a set Oi ⊂ O of items such that

Oi contains the items already chosen by ui. The aim of the link-prediction system

is to provide, for each user ui, a scoring function si(o j), defined for each item o j in

the database, such that, if si(o j) > si(ok) for j = k, then the predicted interest of ui

in o j is higher than the predicted interest of ui in ok. Therefore, the scoring function

si(o j) allows to rank objects in the database according to their expected interest

to ui.

In order to predict the interest a user ui will have in object o j, the kind of infor-

mation we try to exploit is the conditional probability of choosing (i.e linking to) o j

given the set Oi of objects that ui is known to have already chosen. If we define a

way to estimate that conditional probability using each model, then we can simply

use the value of that probability as the score assigned by each model to the object

being ranked. In other words, if o j is the object we want to rank for ui once we know

the elements of Oi, then for each model we need to specify a way to compute the

value of the function si(o j), defined as follows:

si(o j) = P
(
Li(o j) = 1 |

∧

k = j

Li(ok)
)

(6.2)

where Li(o j) is a boolean function such that

Li(o j) =

{
1 if ui links to o j

0 otherwise
(6.3)

First, let us explain how the NB classifier can be applied to link prediction and

collaborative recommendation. If o j is the object we need to rank for user ui, then
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P
(
Li(o j) = 1 |

∧

k = j

Li(ok)
)

=
P
(
Li(o j) = 1

)
P
(∧

k = j Li(ok) | Li(o j) = 1
)

P
(∧

k = j Li(ok)
) (6.4)

where the stated equality is just an instance of Bayes’ theorem. If we assume (based

on the structure of the naive Bayes model) that Li(o j) makes the value of each Li(ok)
independent of any Li(ok∗) such that k = k∗ = j, then Equation 6.4 can be further

simplified:

P
(
Li(o j) = 1 |

∧

k = j

Li(ok)
)

=
P
(
Li(o j) = 1

)
∏k = j P

(
Li(ok) | Li(o j) = 1

)

P
(∧

k = j Li(ok)
) (6.5)

Following the standard usage of NB for collaborative filtering, as endorsed e.g. in

[218, 261], we drop the denominator from Equation 6.5. Therefore, if o j is the object

we want to rank for user ui, we compute the following scoring function:

si(o j) = log
(

P
(
Li(o j) = 1

)
∏
k = j

P
(
Li(ok) | Li(o j) = 1

))

= logP
(
Li(o j) = 1

)
+ ∑

k = j

logP
(
Li(ok) | Li(o j) = 1

) (6.6)

In order to estimate the probabilities referred to in Equation 6.6, our dataset is for-

malized as a set of patterns {d1, . . . ,dm}, such that each di is a boolean vector(
Li(o1), . . . ,Li(on)

)
specifying which objects were chosen by ui. In other words,

for each user we construct a corresponding pattern whose dimension is the total

number of objects contained in the database. Therefore, the resulting dataset will

contain a number of patterns which is equal to the number of database users. Given

such a dataset, absolute and conditional probabilities are estimated by computing

relative frequencies and exploiting them in the way described in Section 2.3. This

formalization of the data is also exploited for applying the other graphical models.

On the other hand, the way that Bayesian networks, dependency networks,

Markov random fields, and hybrid random fields are applied to ranking is the fol-

lowing. Given the formalization of the dataset described above, we first learn a

model containing n (boolean) random variables X1, . . . ,Xn, where n is the number

of objects contained in the database and each X j corresponds to object o j. Once the

model has been learned, the notion of MB provides a conceptually straightforward

(and computationally very efficient) way of computing the value specified in Equa-

tion 6.2:

si(o j) = P
(

Li(o j) = 1 |
∧

k = j

Li(ok)
)

= P
(
X j = 1 | x1i

, . . . ,x j−1i
,x j+1i

, . . . ,xni

)

= P
(
X j = 1 | mbi(X j)

)
(6.7)
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where each xki
is the value of Li(ok), and mbi(X j) is the state of the Markov blanket

of X j in the graphical model, as that state is determined by pattern di.

6.3.4.2 Predicting References in Scientific Papers

The task we deal with in this section is the prediction of references in research

papers. In particular, given a paper containing a specific set of references, the task

is to rank all remaining papers in a certain database, based on their relevance as

additional references to be included in the paper at hand.

We test the ranking algorithms on two different datasets, CiteSeer and Cora.

We exploit a preliminary preprocessing of the data which is publicly avail-

able at http://www.cs.umd.edu/projects/linqs/projects/lbc/

index.html. From each dataset we extract the citation graph of the paper corpus.

We then check the number of references contained in each paper, and we remove pa-

pers that do not contain at least 3 references. After this preprocessing, we formalize

each dataset as a list containing m vectors of n boolean features, where each vector

is a paper and each feature stands for the presence or absence of a certain reference

within the paper. For the CiteSeer dataset we have that m = 547 and n = 1,067,

while for Cora we have that m = 956 and n = 1,229. In other words, based on the

formalism described in Section 6.3.4.1, m corresponds to the number of database

users, while n corresponds to the number of database objects.

Each dataset is partitioned into training and test sets according to a 5-fold cross-

validation procedure. After training, the test consists in the following task. We re-

move one reference from each paper in the test set, and we require the tested model

to rank that reference given the remaining references contained in the paper at hand.

The idea behind this query is that the removed reference should receive the highest

possible rank from a good ranking algorithm, since that reference is probably among

the most relevant ones for the paper at hand.

The results of ranking are evaluated using the mean reciprocal rank (MRR) and

success rate (SR) at N metrics, which are widely employed accuracy measures in

information retrieval research. If j is the index of a certain example (i.e. of a given

query) within the test set, o j is the object (i.e. the reference) that should receive the

highest rank for that query, and rank(o j) is the rank assigned to o j by the algorithm

at hand, then MRR is defined as follows:

MRR =
1

m

m

∑
j=1

1

rank(o j)
(6.8)

where m is the size of the test set. SR is defined instead with respect to a parameter

N, so as to measure the capability of an algorithm to rank the target object o j within

the top N candidates. Given the Heaviside function Θ(x), such that Θ(x) = 1 if x≥ 0

and Θ(x) = 0 otherwise, SR at N is defined in the following way:
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SR(N) =
1

m

m

∑
j=1

Θ(N − rank(o j)) (6.9)

The results of the application to the CiteSeer dataset are shown in Table 6.5 and

Figure 6.6, while Table 6.6 and Figure 6.7 provide results for the Cora dataset. All

values are measured based on a 5-fold cross-validation procedure.

An important remark concerns the way we train the standard BN model in the

CiteSeer and Cora experiments. The dimensionality of these tasks prevents us from

applying Algorithm 2.1 successfully, because of computational limitations. On the

CiteSeer dataset (that is for a problem involving 1,067 network nodes), 72 hours

do not suffice for a 1.83 GHz CPU to return the output of Algorithm 2.1. There-

fore, we train the BN model using the K2 structure learning algorithm, where the

maximum number of parents allowed for each node is set to 2. Although the K2

algorithm is much faster than Algorithm 2.1 (at the cost of being less accurate), it

is still very expensive to run for high-dimensional problems. In fact, its worst-case

computational complexity is O(n4), as shown by [50]. On the CiteSeer dataset, K2

requires about 20 hours computation (on the same 1.83 GHz PC architecture), while

for Cora (that is for 1,229 network nodes) it requires about 40 hours. Of course, all

time measurements concern training for one fold only, and not the whole execution

of 5-fold cross-validation. On the other hand, HRFs do not suffer at all from com-

putational problems. The difference between running MBM on the CiteSeer dataset

and running it on Cora is relatively small (in the order of a few minutes), and in both

cases training time does not exceed 1 hour. Training time for NB is also not signifi-

cant (about half an hour on Cora), whereas MRFs require about 6 hours training for

CiteSeer and 8 hours for Cora. Finally, learning DNs only takes between 10 and 20

minutes.

Table 6.5 MRR measured (by 5-fold cross-validation) on the CiteSeer dataset for BN, DN

(k = 8), HRF (k = 8, k∗ = 10), MRF (k = 3), and NB

Mean Reciprocal Rank

Average Standard Deviation

BN 0.2823 0.0470

DN 0.0130 0.0010

HRF 0.2865 0.0251

MRF 0.1771 0.0306

NB 0.0537 0.0108

The results of the experiments are quite encouraging for hybrid random fields.

Both HRFs and BNs significantly outperform NB, DNs, and MRFs. While HRFs

achieve better average results than BNs on CiteSeer, especially with respect to the

SR(N) metric, on the Cora dataset BNs are more accurate than HRFs with respect

to the MRR metric, although the two models are nearly equivalent in that case with

respect to SR. Furthermore, in both tasks the standard deviation of MRR values is
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Fig. 6.6 Average SR at N measured on the CiteSeer dataset for BN, DN (k = 8), HRF (k = 8,

k∗ = 10), MRF (k = 3), and NB. Values are measured by 5-fold cross-validation

Table 6.6 Average MRR measured (by 5-fold cross-validation) on the Cora dataset for BN,

DN (k = 8), MRF (k = 3), HRF (k = 8, k∗ = 10), and NB

Mean Reciprocal Rank

Average Standard Deviation

BN 0.2916 0.0228

DN 0.0417 0.0034

MRF 0.0704 0.0096

HRF 0.2647 0.0168

NB 0.1519 0.0131

lower for HRFs than it is for BNs. In general, the behavior of HRFs and BNs is much

more reliable across the two tasks than the latter models, for the following reason.

While MRFs outperform NB on the CiteSeer dataset, NB outperforms instead MRFs

the Cora dataset. Given this result, the kind of probability distribution underlying the

former domain must be significantly different from the distribution displayed by the

second one. Now, since both HRFs and BNs behave stably well across the two tasks,

the experiments show these two models to be more robust than the competing ones,

at least in the considered range of applications.

Note that, in our experimental setting, the ranking algorithms do not take into

account the publication year of the papers they are trained/tested on. Therefore,

citations are sometimes recommended (during the test sessions) that cannot possibly
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Fig. 6.7 Average SR at N measured (by 5-fold cross-validation) on the Cora dataset for BN,

DN (k = 8), HRF (k = 8, k∗ = 10), MRF (k = 3), and NB

lead to correct predictions because of chronological impossibility. Since ignoring

the publication year of papers (when recommending citations) lowers the measured

accuracy for all compared algorithms, this feature of the experiment does not affect

the significance of the comparison.

6.3.4.3 Predicting Preferences for Movies

The task we deal with in this section involves the MovieLens database. The

dataset used in the experiment contains data concerning 1,682 movies. The num-

ber of database users is 943. The MovieLens dataset is publicly available at

http://www.grouplens.org/. We formalize the MovieLens link-prediction

task according to an implicit-voting-with-binary-preferences strategy [33]. ‘Implicit

voting’ means that we only exploit information concerning whether a user rated a

certain item or not, without taking into account the specific rating. Therefore, user

choices are modeled as ‘binary preferences’. Given such a formalization, applying

the ranking strategy described in Section 6.3.4.1 is straightforward.

Results on the MovieLens link-prediction task are evaluated using two versions

of the degree of agreement (DOA) metric, which we describe next. The DOA metric

is aimed at measuring how accurate a ranking of database items is for a user ui. Let

us denote by L a given training set and by T the corresponding test set. Moreover,

let Li denote the set of movies such that each one of these movies is rated by ui in L,

and Ti the set of movies rated by ui in T. Finally, let Ni denote the set of movies that

are never rated by ui, so that Ni = O\(Li∪Ti). The first step in specifying the DOA

http://www.grouplens.org/
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for a ranking algorithm R is to define, for each user ui and for any pair of movies o j

and ok, a function orderi(o j,ok) such that

orderi(o j,ok) =

{
1 if Ri(o j) > Ri(ok)
0 otherwise

(6.10)

where Ri(o) is the rank assigned by R to movie o for user ui. Given this function,

we define the DOA for each user ui in the following way:

DOAi =
∑o j∈Ti∧ok∈Ni

orderi(o j,ok)

|Ti| · |Ni|
(6.11)

For each user ui, DOAi measures the percentage of movie pairs in Ti ×Ni ranked

in the correct order by the algorithm at hand. Once defined the DOA with respect

to each user ui, we specify macro-averaged and micro-averaged DOA. The macro-

averaged DOA is defined as

macro-DOA =
∑Ti = /0 DOAi

|{T j : T j = /0}| (6.12)

On the other hand, the micro-averaged DOA is given by

micro-DOA =
∑Ti = /0 ∑o j∈Ti∧ok∈Ni

orderi(o j,ok)

∑Tl = /0 |Tl| · |Nl|
(6.13)

Clearly, the micro-DOA assigns a higher weight to users with a larger number of

ratings in the test set, whereas the macro-DOA assigns the same weight to all users,

no matter how many ratings are present in the test set for each one of them.

Macro-averaged and micro-averaged DOA values are measured by 5-fold cross-

validation. The test employs a publicly available partitioning of the dataset, which

allows to easily compare different results to be found in the literature. Training the

MRF model requires about 12 hours on average for each fold (on the same PC

architecture used for the previous measurements). The number of feature functions

contained in each MRF (averaged over the five models learned for the different

folds) is equal to 16,396. This means that, in order to learn the weights of each

MRF, we need to optimize a function of 16,396 parameters (on average). On the

other hand, learning HRFs by MBM takes about one hour and a half for each fold,

while training DNs requires less than one hour.

For this application, the prediction accuracy of graphical models is also compared

to the accuracy achieved by the ItemRank (IR) recommender system [117], which

is known to perform pretty well on the MovieLens database with respect to the used

evaluation metric. IR is a biased version of the PageRank algorithm [36], modified

in order to be applied to recommender systems. The first step in IR is to construct

a correlation matrix C such that each element Ci, j is the number of users who rated
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both object oi and object o j. The columns in C are then normalized so as to obtain

a stochastic matrix. The second step is to construct and normalize, for each user

ui, a vector ri of size |O| such that each element ri
j of ri is the (normalized) rating

expressed by ui for object o j. Given the matrix C and the vector ri, a ranking for the

movies in the database is represented as a vector IRi such that each vector element

IRi
j is the score assigned by IR to movie m j for user ui. In order to compute the

values of IRi, the following system of equations has to be run recursively until

convergence:

IRi(t) =

{ 1
|O| ·1|O| if t = 0

α ·C · IRi(t −1)+ (1−α) · ri if t > 0
(6.14)

where 1|O| denotes a vector of size |O| such that each vector element is 1, and α is

a constant (typically set to 0.85). Clearly, the vector ri serves the purpose of biasing

the computation so as to reflect the preferences of ui.

Tables 6.7 and 6.8 collect the results of the experiment, as measured by the

macro-averaged and micro-averaged DOA respectively. Bayesian networks are not

included in the comparison because the K2 algorithm does not finish running in 72

hours.

Table 6.7 Macro-DOA measured (by 5-fold cross-validation) on the MovieLens dataset for

DN (k = 8), HRF (k = 8, k∗ = 10), IR, MRF (k = 3), and NB

Macro-averaged DOA

Average Standard Deviation

DN 0.8051 0.0123

HRF 0.8983 0.0052

IR 0.8776 0.0027

MRF 0.8947 0.0044

NB 0.8887 0.0022

Table 6.8 Micro-DOA measured (by 5-fold cross-validation) on the MovieLens dataset for

DN (k = 8), HRF (k = 8, k∗ = 10), IR, MRF (k = 3), and NB

Micro-averaged DOA

Average Standard Deviation

DN 0.8133 0.0043

HRF 0.8807 0.0059

IR 0.8706 0.0010

MRF 0.8809 0.0050

NB 0.8666 0.0030
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Hybrid random fields achieve the highest accuracy with respect to the macro-

averaged DOA, while its performance is nearly equivalent to the best one (achieved

by Markov networks) with respect to the micro-averaged DOA. Both MRFs and

HRFs are more accurate than NB and IR, according to both evaluation metrics. On

the other hand, the accuracy displayed by DNs is significantly lower with respect to

all other models.

6.4 Pattern Classification in Continuous Domains

The aim of this section is to evaluate the accuracy of nonparametric HRFs at model-

ing (multivariate) densities featuring nonlinear dependencies between the variables

plus random noise (distributed in heterogeneous ways). To this aim, we sample a

number of datasets from synthetic distributions, where the distributions are ran-

domly generated in such a way as to make it unlikely that any particular parametric

assumption may be satisfied. We then exploit the produced data for pattern classifi-

cation, comparing the performance of our model to other probabilistic techniques.

The data generation process is described in Section 6.4.1, while Section 6.4.2 illus-

trates the results of the experiments.

6.4.1 Random Data Generation

In order to generate datasets featuring nonlinear correlations between the variables,

we exploit the idea of defining a random distribution based on a (randomly gen-

erated) DAG, where each node corresponds to a random variable and each arc

corresponds to a dependence of the child on the parent. Therefore, the data gen-

eration process is made up of three stages: first, we generate a random DAG with

a specified number of nodes; second, we generate a random distribution from a

specified DAG; third, we generate a random dataset from a specified (DAG-shaped)

distribution.

6.4.1.1 Directed Acyclic Graph Generation

Given a number d of nodes and a parameter pmax specifying the maximum number

of parents allowed for each node, we generate a random DAG using Algorithm 6.1.

We start by assuming a random ordering of the nodes from X1 to Xn. Then, for

each Xi, we randomly select p nodes from the set {X j : j < i}, where p is a random

integer in the interval [0,min{i−1, p∗}], and for each selected node X j we introduce

an edge from X j to Xi. The resulting pair (V,E), where V is the set of vertices and E

is the set of edges, is returned as output.
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Algorithm 6.1 generateRandomDAG: Random DAG generation

Input: Integers d, p∗.

Output: DAG G = (V,E).

generateRandomDAG(d, pmax):
1. V = {X1, . . . ,Xd}
2. E = /0

3. for(i = 1 to d)

4. p = random integer in [0,min{i−1, p∗}]
5. P = /0

6. while(|P| < p)

7. j = random integer in [1, i−1]
8. P = P∪{(X j,Xi)}
9. E = E∪P

10. return (V,E)

6.4.1.2 Distribution Generation

Algorithm 6.2 generates a random distribution from a DAG G = (V,E). The idea is

that each edge (Xi,X j) in the DAG represents a dependence of X j on Xi, where the

dependence is determined by a polynomial function of third degree f ji(·), defined

as

f ji(x) = a
ji
1 x3 + a

ji
2 x2 + a

ji
3 x + a

ji
4 (6.15)

The coefficients a1, . . . ,a4 of each polynomial are selected randomly in the inter-

val [−a∗,a∗]. Moreover, each node Xi is assigned a beta density function betai(·),
defined as follows (for a < x < b and αi,βi > 0):

betai(x) =
Γ(αi + βi)

Γ(αi)Γ(βi)(b−a)αi+βi−1
(x−a)αi−1 (b− x)βi−1 (6.16)

where

Γ(x) =
∫ ∞

0
tx−1e−t dt (6.17)

The idea is that the values observed for variable Xi are subject to random noise,

where the noise is distributed over the interval (a,b) according to a beta density with

parameters αi and βi. For each betai, the parameters αi and βi are randomly chosen

in the intervals (0,α∗] and (0,β ∗] respectively, whereas a and b remain constant.

Given the polynomials and the beta densities, the value of each Xi results from a lin-

ear combination of the related polynomial functions plus (beta-distributed) random

noise. The output of Algorithm 6.2 is a pair (FV,FE) such that FV = {betai : Xi ∈V}
and FE = { fi j

: (X j,Xi) ∈ E}.
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Algorithm 6.2 PDBNGenerateRandomDistribution: Generating a random dis-

tribution with DAG-shaped polynomial dependencies and beta-distributed noise

Input: DAG G = (V,E); positive real numbers α∗, β ∗, a∗; real numbers a, b such that

a < b.

Output: DAG-shaped distribution pG = (FV,FE).

PDBNGenerateRandomDistribution(G,α∗,β ∗,a∗,a,b):
1. FV = /0

2. for(i = 1 to |V|)
3. αi = random real in (0,α∗]
4. βi = random real in (0,β ∗]
5. betai(·) = beta(·;αi,βi,a,b) //See Equation 6.16

6. FV = FV ∪{betai}
7. FE = /0

8. for((Xi,X j) ∈ E)

9. for(k = 1 to 4)

10. a
ji
k

= random real in [−a∗,a∗]

11. f ji(·) = f (·;a
ji
1 , . . . ,a

ji
4 ) //See Equation 6.15

12. FE = FE ∪{ f ji}
13. return (FV,FE)

6.4.1.3 Dataset Generation

Given a distribution pG = (FV,FE) organized according to DAG G = (V,E), Al-

gorithm 6.3 generates patterns that are independent and identically distributed ac-

cording to pG. In order to produce a pattern x1, . . . ,xd , the algorithm determines the

value of each variable Xi by first computing ∑ fi j(x)
∈FE

fi j
(x j), and then by adding

to that sum a random value sampled from the density betai(x), so as to introduce

some noise. The ancestral ordering of the nodes X1, . . . ,Xd in V is followed so as

to ensure that the argument of each function fi j
(x j) has already been determined

before computing the value of node Xi.

If one needs to generate data that are partitioned into several classes ω1, . . . ,ωc

(e.g. for the purposes of pattern classification), the algorithm generates data for each

ωi such that i > 1 by deriving first a corresponding distribution pG
i from pG

i−1 in the

following way. For each polynomial f jk (x) in FEi−1, the coefficients a
jk
1 , . . . ,a

jk
4 are

changed with probability P, where the change consists in multiplying each a
jk
l by a

randomly selected real number in the interval [−r∗,r∗]. The resulting polynomial is

used to replace f jk (x) in FEi. Finally, the integers n1, . . . ,nc specify the number of

patterns to be generated for each class.
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Algorithm 6.3 PDBNGenerateRandomData: Generating random data from a

DAG-shaped distribution

Input: DAG-shaped distribution pG = (FV,FE); number c of classes; set of integers

n = {n1, . . . ,nc}; real numbers P, r∗ such that 0 < P ≤ 1, r∗ > 0.

Output: Datasets D1, . . . ,Dc.

PDBNGenerateRandomData(pG,c,n,P,r∗):
1. D = {D1, . . . ,Dc}
2. for(i = 1 to c)

3. Di = /0

4. if(i > 1)

5. distributionIsUnchanged = true

6. while(distributionIsUnchanged)

7. for( f jk(x) ∈ FE)

8. p = random real in [0,1)
9. if(p < P)

10. for(l = 1 to 4)

11. r = random real in [−r∗,r∗]
12. a

jk
l

= r a
jk
l

13. f jk (·) = f (·;a
jk
1 , . . . ,a

jk
4 ) //See Equation 6.15

14. distributionIsUnchanged = false

15. for(j = 1 to ni)

16. for(k = 1 to d)

17. xk j
= random real sampled from betak

18. xk j
= xk j

+∑ fkl (x)
∈FE

fkl
(xl j

)

19. Di = Di ∪{(x1 j
, . . . ,xd j

)}
20. return D

6.4.2 Results

In order to test the accuracy of kernel-based HRFs (KHRFs) at modeling joint densi-

ties (as learned by MBM), we apply them to a number of pattern classification tasks,

where the datasets are generated using Algorithms 6.1–6.3. We consider eleven

tasks, where each task is based on a different dataset D containing 500 patterns,

and the patterns are equally divided in two classes ω1 and ω2. The data for each task

are generated using each time a different (random) DAG. In particular, we choose a

different number d of nodes for each DAG, where 10 ≤ d ≤ 20. Then, we use the

generated DAG as input for Algorithm 6.2. Here, we set a∗ = 2 for the polynomial

functions, while the beta densities are generated over the interval [−2,2], setting

α∗ = β ∗ = 2. In a preliminary phase of the experiments, we found these parameters

to be large enough to generate a suitably wide range of distributions. We use c = 2

and n1 = n2 = 250 as input values for Algorithm 6.3. Moreover, when changing the

distribution from ω1 to ω2, we set r∗ = 2 and P = 0.1. Our experience with prelimi-

nary results indicated that if the values of r∗ and P (especially the latter) are too large

(e.g. if P � 0.2), the resulting classification tasks tend to be too easy to be dealt with,



6.4 Pattern Classification in Continuous Domains 147

because patterns belonging to different classes are then distributed farther apart in

the feature space. Before exploiting the datasets, we normalize the values of each

feature Xi by transforming each xi j
into

xi j
−mink xik

maxk xik
−mink xik

, where 1 ≤ k ≤ |D|.
In order to give a concrete idea of the kind of distributions generated using the

method and parameter settings described above, some examples are plotted in Fig-

ure 6.8, where the involved distributions are organized in a DAG G = (V,E) such

that V = {X1,X2} and E = {(X1,X2)}. For each plot, the x-axis corresponds to the X1

node of the DAG, while the y-axis corresponds to the X2 variable. Notice how the

random choice of the parameter values (both for the dependence relationship and

the noise function) is flexible enough to generate a relatively wide range of cases.

For instance, the beta2 function (i.e. the density function associated with variable

X2) produces nearly uniform density (over the support of the distribution) for Fig-

ure 6.8a, while it generates noise which is peaked toward the lower/higher extreme

in Figure 6.8b/6.8c, or toward both extremes in Figure 6.8d. On the other hand, the

parameters of the polynomial function are able to determine nearly-quadratic de-

pendences (Figures 6.8a, 6.8b), cubic dependences (Figure 6.8c), and nearly-linear

dependences (class 2 in Figures 6.8d–6.8f). Generally, the employed data generation

technique is capable of producing a relatively wide variety of pattern classification

problems: ‘easy’ problems, where the classes are linearly separable (such as in Fig-

ure 6.8f); moderately difficult tasks, where the classes may overlap to a significant

extent but a linear separation might be settled for with relatively good results (such

as in Figure 6.8a); fairly hard problems, where patterns drawn from different classes

are neither linearly separable nor belonging to neatly separated regions of the feature

space (such as in Figures 6.8b–6.8e).

We compare the performance of KHRFs to kernel-based BNs (KBNs), kernel-

based MRFs (KMRFs), nonparanormal Markov random fields (NPMRFs), and

Gaussian MRFs (GMRFs). In kernel-based BNs and MRFs we estimate conditional

densities in the same way as in KHRFs, while the model structure is learned using

the algorithms proposed in [136] and [137] respectively. For the purposes of band-

width selection, we always perform two iterations of Algorithm 5.1, whereas the

limit points hmax1
and hmax2

are set differently for BNs, MRFs, and HRFs, based

on preliminary validation on separate datasets. In particular, the used values are

hmax1
= 2 and hmax2

= 1 for KBNs, hmax1
= 1 and hmax2

= 2 for KMRFs, and

hmax1
= 0.05 and hmax2

= 0.5 for KHRFs. Structure learning in GMRFs and NPM-

RFs is performed as described in [98] and [197], using the graphical lasso tech-

nique, and conditional densities are then estimated within the resulting structures

using Gaussian and nonparanormal conditional density models respectively. To the

best of our knowledge, the learning algorithms considered for KBNs, KMRFs, and

NPMRFs are the state of the art in the literature on (continuous) nonparametric

and semiparametric graphical models. On the other hand, GMRFs provide an au-

thoritative term of comparison for evaluating the effect of relaxing the parametric

assumption in density estimation.

In order to exploit the models for pattern classification, we use the maximum a

posteriori strategy (based on Bayesian decision theory) described in Section 6.3.3.
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Fig. 6.8 Randomly generated bivariate distributions for pattern classification tasks
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The results of the experiments are reported in Tables 6.9–6.10, where all values are

measured by 5-fold cross-validation. For each model, we report both recognition

accuracy and training time (per class), where time was measured (in seconds) on a

2.34 GHz CPU.

Tables 6.9–6.10 lend themselves to the following interpretation. First, KHRFs

are more accurate overall than the other models in terms of recognition rate. At the

same time, learning KHRFs is much less expensive than learning kernel-based BNs

and MRFs. Second, although GMRFs and NPMRFs are the most efficient mod-

els from the computational point of view, their advantage over KHRFs against the

Table 6.9 Recognition accuracy (average ± standard deviation) measured by 5-fold cross-

validation on synthetic datasets of growing dimensionality. For each dataset, d is the number

of variables composing the data vectors

Recognition Accuracy (%)

d KBN GMRF NPMRF KMRF KHRF

10 59.4 ± 4.4 61.2 ± 2.0 61.4 ± 03.8 59.6 ± 4.5 62.6 ± 7.6

11 48.8 ± 4.6 51.6 ± 2.0 54.8 ± 04.5 49.2 ± 5.2 62.4 ± 4.8

12 80.8 ± 2.8 70.6 ± 4.2 87.2 ± 03.1 79.0 ± 2.6 82.2 ± 2.3

13 56.2 ± 3.9 53.2 ± 2.4 56.4 ± 33.6 56.4 ± 4.6 65.0 ± 4.5

14 83.8 ± 4.7 87.2 ± 2.3 75.6 ± 07.7 85.0 ± 5.0 88.4 ± 2.9

15 68.0 ± 2.6 58.8 ± 3.4 30.0 ± 24.4 68.4 ± 4.8 73.8 ± 3.7

16 55.0 ± 6.3 76.0 ± 4.6 66.4 ± 07.3 63.2 ± 4.5 81.4 ± 1.7

17 52.2 ± 2.1 50.6 ± 1.3 63.4 ± 01.8 55.8 ± 3.9 56.4 ± 2.4

18 58.2 ± 7.3 53.6 ± 2.7 64.0 ± 03.2 62.2 ± 5.9 75.2 ± 2.7

19 97.8 ± 0.7 97.6 ± 1.8 91.0 ± 01.7 98.4 ± 0.8 98.8 ± 0.7

20 96.6 ± 2.5 98.4 ± 1.0 78.8 ± 03.5 96.6 ± 1.4 97.4 ± 1.2

Table 6.10 Average training time (per class) measured by 5-fold cross-validation on synthetic

datasets of growing dimensionality. For each dataset, d is the number of variables composing

the data vectors.

Training Time (s)

d KBN GMRF NPMRF KMRF KHRF

10 031.5 0.2 0.2 025.7 3.0

11 033.8 0.2 0.2 031.9 4.7

12 057.6 0.2 0.2 027.1 4.7

13 063.9 0.2 0.2 060.3 3.1

14 093.0 0.2 0.3 069.2 6.1

15 090.4 0.2 0.3 093.7 5.0

16 146.7 0.2 0.3 082.8 3.0

17 141.3 0.2 0.3 102.8 3.4

18 152.1 0.3 0.3 136.7 3.9

19 196.2 0.3 0.3 167.2 4.3

20 270.0 0.3 0.3 212.4 6.0
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growth of the number of variables is not as significant as the advantage of GMRFs,

NPMRFs, and KHRFs over KBNs and KMRFs. Third, the relatively low accuracy

of GMRFs as compared to KHRFs, together with the fact that the improvement of

NPMRFs over GMRFs is not as stable as one may wish, confirms that the distribu-

tions generating the datasets violate the parametric and semiparametric assumptions

to a significant extent. Therefore, the considered experimental setting provides evi-

dence not only that kernel-based HRFs are a very reasonable choice when no prior

knowledge is available concerning the form of the distribution to be estimated, but

also that KHRFs are the most promising option within the kernel-based family, both

in terms of computational efficiency and prediction accuracy.

6.5 Final Remarks

We finally put hybrid random fields at work, with very promising results. This chap-

ter gave a demonstration of how probabilistic graphical models can be used for

feature selection—exploiting their structural capability of capturing dependencies

among variables that are actually relevant to pattern recognition tasks—in order to

reduce the dimensionality of the feature vectors to be passed on to a traditional

classifier. We also pointed out how the graphical models, intrinsically encapsulat-

ing a joint probability distribution, can be effectively applied to classification tasks

(which, indeed, require modeling posterior class probabilities). Experiments on a

number of classification and link prediction datasets, over discrete and continuous

variables, provided us with significant empirical evidence of (i) the quality of the

probability/density estimation capabilities offered by HRFs, which compares favor-

ably with the established models, (ii) the viability of HRFs as solutions to clas-

sification and prediction tasks, and (iii) the scalability of the proposed learning

algorithms, whose computational burden proves to be pretty much tractable even

for a significantly growing dimensionality of the datasets. So far, throughout the last

three chapters, we stated the formal definitions of the new paradigm, we established

its formal properties, we presented suitable algorithms for inference and learning

(over both discrete and continuous variables), and we accomplished the empirical

evaluation. Now, we can finally turn our attention to some broader questions and try

to get ‘the big picture’ by putting the developed models (and the general method-

ology employed for the overall research) into the proper philosophical frame. The

next chapter pictures probabilistic graphical models and statistical machine learning

from a cognitive-science point of view.



Chapter 7

Probabilistic Graphical Models:
Cognitive Science or Cognitive Technology?

“We believe that performing experiments with different

discovery methods will provide useful information about the

intrinsic difficulty of discovery, as well as about the power of

particular search heuristics.”

Pat Langley, Herbert A. Simon, Gary L. Bradshaw,

and Jan M. Zytkow, 1987 [187]

7.1 Introduction

This chapter is an attempt to make explicit the philosophical and cognitive perspec-

tive that the scientific work presented in Chapters 2–6 should be viewed from. This

does not mean that the scientific material collected in this work needs a philosoph-

ical foundation in order to make sense or to be really interesting. The only aim

of embedding scientific results within a philosophical framework is “to understand

how things in the broadest possible sense of the term hang together in the broad-

est possible sense of the term” [275], which is what Wilfrid Sellars regarded as the

general aim of philosophy. In other words, while proposing a philosophical reflec-

tion on the meaning of the technical results collected in the previous chapters, we

do not think that the value of those results depends in any important way on their

philosophical meaning. Our standpoint is rather that, if we ask how those results in

AI “hang together” with other results in the cognitive sciences and with particular

views advocated in the philosophy of mind, then the philosophical remarks con-

tained in this chapter are the answer we give to that question. But the reader should

keep in mind that our ‘philosophical’ reflections are more properly meant as a scien-

tific contribution to philosophy, rather than a philosophical contribution to science,

where the guiding idea is that science can take care of itself.

In Section 7.2, we try to get rid of a misleading (and somewhat dangerous) psy-

chologistic conception of the role of AI within the cognitive sciences. To that aim,

we relate that misconception of AI to a simplistic and untenable interpretation of

Turing’s seminal reflection on machine intelligence. Section 7.3 replaces the view

of AI as one of the cognitive sciences with a view of AI as cognitive technology,

i.e. as a formal and experimental investigation of computational techniques for ad-

vancing natural cognition. AI is not committed at all to viewing natural cognition

as a computational process, but it designs and investigates artificial computational

processes for aiding, complementing, and extending natural cognition. Finally, Sec-

tion 7.4 will point at the capability of machine learning research to offer new

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 151–162.
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perspectives and insights on traditional issues in the theory of knowledge: while the

philosophical views advocated in this chapter are somewhat deflationary concerning

the relevance of AI to the philosophy of mind, they stress instead the relevance of

machine learning to some problems in epistemology [179, 291, 292].

7.2 A Philosophical View of Artificial Intelligence

The general view of artificial intelligence we are going to argue for in this section

may be referred to as an ‘eliminative philosophy’ of AI. While the name of the views

advocated in this section is clearly borrowed from Paul Churchland’s views in the

philosophy of mind [48], the reader should not assume in advance any kind of simi-

larity between eliminativism in the philosophy of AI and eliminative materialism as

a theory of mind. By eliminativism in the philosophy of AI, we mean the view that

the set of concepts, methods, and principles employed in current AI research does

not bear any necessary relationship to the set of concepts, methods, and principles

underlying the study of natural minds (as carried out e.g. by cognitive psychology

or by cognitive neuroscience). In other words, our view maintains that the principles

of natural cognition, as they are uncovered by the different cognitive sciences, do

not—and should not—impose any constraint on the way that intelligent machines

are built and investigated by artificial intelligence researchers. Of course, the phi-

losophy of AI we are introducing is not meant to deny either that knowledge of

how natural minds work can contribute in important ways to the progress of AI, or

that AI achievements can contribute to the understanding of natural cognition. The

point of eliminativism is simply to deny that any connection between AI and the

study of natural intelligence is a necessary connection, i.e. a ‘constitutive property’

of AI as a scientific discipline. In order to justify such a view of the relationship be-

tween AI and the other cognitive sciences, we put forward two different arguments:

the first argument is presented in Section 7.2.1, while the second one is offered in

Section 7.2.2.

7.2.1 The Argument from Authority

The first argument for eliminativism in the philosophy of AI, which we call ‘the

argument from authority’, is mainly based on some of Alan Turing’s views, as ex-

pressed in the seminal paper “Computing Machinery and Intelligence” [306]. The

reason for the argument’s name will become clear as we will go through its details.

It is worth quoting entirely the first paragraph of Turing’s paper on machine

intelligence:

I propose to consider the question, ‘Can machines think?’ This should begin with def-

initions of the meaning of the terms ‘machines’ and ‘think’. The definitions might be

framed so as to reflect so far as possible the normal use of the words, but this attitude

is dangerous. If the meaning of the words ‘machine’ and ‘think’ are to be found by

examining how they are commonly used it is difficult to escape the conclusion that the

meaning and the answer to the question, ‘Can machines think?’ is to be sought in a
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statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such

a definition I shall replace the question by another, which is closely related to it and is

expressed in relatively unambiguous words. [306, p. 433]

Before commenting on this quote, let us briefly summarize how Turing replaces the

initial, ambiguous question by a more precise one. The alternative question used

by Turing in place of ‘Can machines think?’ is related to the outcome of an imita-

tion game, which nowadays is widely known (although in a simplified version) as

Turing’s test. It is worth noting that the imitation game is not, in itself, the main

concern of the argument from authority, i.e. the plausibility of the argument does

not depend on the actual interest or usefulness of Turing’s test. For the purposes

of the argument, it suffices to understand that the imitation game provides a means

of measuring, in a statistically consistent way, how closely a machine can match

human performance in a specified ‘intelligent’ task.

The imitation game is played by three people: a man (M), a woman (W ), and an

interrogator (P). P is kept apart from M and W , and the goal of P in the game is to

identify who is the man (and who is the woman) by communicating with M and W

only in written. P can ask M and W any questions. However, M’s task in the game

is to cause P to make the wrong identification, while W ’s task is to help P to make

the correct identification. Therefore, M will probably lie most of the time. Suppose

we play the imitation game n times, and c ≤ n is the number of times that P makes

the correct identification at the end of each game. Then, Turing’s idea is to focus on

the following questions:

‘What will happen when a machine takes the part of [M] in this game?’ Will the in-

terrogator decide wrongly as often when the game is played like this as he does when

the game is played between a man and a woman? These questions replace our original,

‘Can machines think?’ [306, p. 434]

In other words, our new question concerns whether and how the value of c changes

when a machine replaces M within the game. Now that we have in mind what the

imitation game amounts to, let us reflect on the precise meaning of the first one of the

two quotes. Turing’s initial concern is whether it is possible for a machine to think.

In particular, this question is a conceivability question, asking whether we can imag-

ine conditions under which we would be willing to ascribe thought to a machine.

However, in order to answer conceivability questions it is first necessary to agree

on the meaning of the words framing such questions. The kind of strategy often

adopted by philosophers to answer conceivability questions, known as ‘philosophi-

cal analysis’ (or ‘conceptual analysis’) in the strict sense [262, 293], is what Turing

refers to ironically as a sort of Gallup poll.1 Now, the idea that philosophical anal-

ysis is what we need in order to know whether a machine can think is immediately

1 Although we entirely agree with Alan Turing that philosophical analysis seems to be

(sometimes) nothing but an obscure kind of statistical survey concerning linguistic usages,

this critical view of conceptual analysis is not a necessary requirement of the argument we

are developing. In particular, we are aware of the fact that some philosophers would judge

such a view of analysis to be unfair.
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discarded by Turing as absurd. At this point, it may seem that Turing’s rejection of

the philosophical analysis approach to the problem of machine intelligence is ques-

tionable, since it is not supported by an explicit argument. In particular, it seems

difficult to deny that philosophical analysis (or statistical surveys of linguistic us-

age) is a reasonable way of addressing conceivability questions. However, Turing

is very clear in motivating the resort to the imitation game. He does not propose to

use that game (rather than a statistical survey) to answer the question about thinking

machines, but he proposes instead to replace the question about thinking machines

by a different question, “which is closely related to it and is expressed in relatively

unambiguous words”. In other words, what Turing discards as absurd is the idea of

approaching the study of machine intelligence by means of conceivability questions

(hence philosophical analysis), and he proposes instead to frame that study in terms

of operational questions, such as those related to the imitation game. While it is

not really important to agree on the exact significance and impact of the imitation

game, it is instead fundamental, in the economy of Turing’s argument, to realize the

importance he attaches to an operational approach to questions concerning machine

intelligence [243, pp. 15–17].

Now, what does an operational approach to the study of machine intelligence

amount to? If we accept Turing’s imitation game as a paradigm (in the Kuhnian

sense [181]) of a research strategy in artificial intelligence, then one important lesson

we can draw from it is that AI research, as originating from Turing’s pioneering

work, is inherently behavioristic. That is to say, the notion of intelligence underlying

the science of intelligent machines is framed in terms of what we commonly regard

as intelligent behavior, not in terms of what we know (or suppose) to implement

intelligent behavior in (cognitively evolved) natural organisms.

This behavioristic view of AI has not gone without criticisms, in the last decades,

within the philosophy of AI. While an exhaustive treatment of such criticisms goes

beyond the scope of the book, it is worth spending just a few words on one influ-

ent criticism, the Chinese room argument, developed by John Searle [273]. Searle’s

original aim is to show, by means of a thought experiment known as ‘Chinese room’

(i.e. by means of philosophical analysis), that no computational notion can be an ad-

equate notion of intelligence, and (indirectly) that Turing’s test cannot be adequate

as an intelligence test. However, the Chinese room argument can be read more gen-

erally as aimed at showing that no behavioristic notion of intelligence can be ad-

equate. The reason for this is that the argument relies on the idea that a certain

system can be behaviorally identical to another system, where the former lacks in-

telligence and the latter is instead truly intelligent. Therefore, the mere behavior of

a certain system is not sufficient (in Searle’s view) as evidence that the system is

intelligent. Although several objections could be (and have been) raised against var-

ious assumptions underlying the Chinese room argument [243, p. 19], the very aim

of this argument seems to be seriously misguided. As we saw above, the main idea

in Turing’s paper is to replace questions about machine intelligence by operational

questions, framed in behavioristic terms, and not to answer the former questions in

behavioristic terms. In other words, the behavioristic view of AI does not rely on

a behavioristic analysis of the psychological notion of intelligence, but it consists
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instead in a paradigm shift, switching from a folk-psychological notion of intel-

ligence to a rigorously operational, behavioristic notion. As in genuine paradigm

shifts, it does not come to answering old questions in new ways, but it comes instead

to establishing new questions as the proper objects of scientific inquiry. Therefore,

one major flaw of Searle’s argument is to address Turing’s test from the point of

view of philosophical analysis, which is exactly the perspective that Turing takes

care to eliminate from the investigation of machine intelligence.

Of course, one may claim that Turing’s rejection of philosophical analysis is un-

justified, or at least questionable, and that such rejection undermines the philosophi-

cal interest or plausibility of Turing’s reflection. We will not argue at all against such

a move. Instead, we will just dismiss it, appealing to a sort of principle of authority

(hence the name of the argument presented in this section). If it comes to choos-

ing between Turing’s ‘unphilosophical analysis’ of machine intelligence, which has

been inspiring decades of real scientific research, and Searle’s philosophical anal-

ysis (of his own intuitions, rather than of real AI results), we definitely opt for the

first choice. Significantly, the textbook which is most widely employed today in

academic AI courses, whose authors are Stuart Russell and Peter Norvig, adopts a

characterization of AI as the investigation of artificial systems that behave rationally

[269, Section 1.1], where the notion of behavior is explicitly contrasted to thought

and other psychologically characterized processes, and rationality is carefully dis-

tinguished from its particular implementation in humans. Even more significantly, a

philosophical book such as Tim Crane’s The Mechanical Mind [54] adopts instead

a characterization of AI as “the view that computers can think” [54, p. 117], while

it interprets Turing’s test as assuming that, if a machine is able to play successfully

the imitation game, “then we can say that the machine is thinking” [54, p. 117]. But

as we should have understood at this point, all we can say if we stick to Turing’s

argument—hence, if we reason from the perspective of real AI research—is that, if

a machine is able to play successfully the imitation game, then a machine is able to

behave intelligently.

An important objection against the eliminative philosophy of AI we are advocat-

ing could be that the very history of AI contradicts our central thesis. In this respect,

an illustrative example is the influential work by Herbert Simon (and some of his

colleagues) on reasoning and problem-solving, starting from the late Fifties, which

was of great importance to the progress not only of AI, but also of cognitive psy-

chology [229]. In fact, Simon believed that AI techniques provide plausible models

of human cognition, since the latter consists (in his view) of symbolic computations.

However, in order to understand that these remarks do not affect eliminativism, we

only need to keep in mind that the eliminative philosophy of AI does not deny the

possibility—or even the reality, since it is a historical fact—of a fruitful interaction

and cross-fertilization of AI and cognitive psychology (or cognitive neuroscience),

but it only denies the methodological necessity of such an interaction. By the way,

looking back at the history of AI, Russell and Norvig themselves remark that, while

a failure to distinguish between AI techniques and human cognition was typical

of the early days of AI, as AI was not yet an established science, in more recent
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times “this distinction has allowed both AI and cognitive science to develop more

rapidly”[269, p. 4].

7.2.2 The Argument from Scientific Practice

The second argument for the eliminativist philosophy of AI, which we call ‘the ar-

gument from scientific practice’, is a more lengthy and complex one. In fact, it is

given by the bulk of Chapters 2–6, which are nothing but a piece of contemporary

machine learning/AI research. The concepts, methods, and principles presented in

those chapters are fairly representative of current mainstream AI, since probabilis-

tic graphical models and related issues in statistical learning are today a thriving

research area in the field. As the reader went through the material collected in the

previous chapters, it should have been apparent how both theoretical foundations

and experimental results in statistical learning and probabilistic graphical models

do not depend or rely in any significant way on what we know (or suppose to know)

about natural minds. Therefore, the basic strategy behind the argument from sci-

entific practice is just to exhibit a piece of scientific research as evidence for what

scientific research really is, notwithstanding any armchair conception of science.

Actually, given the general philosophy of AI outlined in Section 7.2.1, the in-

vestigations presented in chapters 2–6 can be viewed as a particular, contemporary

application of the paradigm provided by Turing’s use of the imitation game, in the

following sense. Just as Turing replaces the question ‘Can machines think?’ by the

imitation game, similarly there are a number of philosophical questions that can

be fruitfully operationalized as research questions in machine learning. In particu-

lar, while Turing’s inspiring question is a major issue in the philosophy of mind,

we believe that machine learning research provides a natural and powerful way of

operationalizing epistemological questions. These questions will be addressed in

Section 7.4.

7.3 From Cognitive Science to Cognitive Technology

From the arguments proposed thus far, it may seem that the view of AI we are ad-

vocating is mainly limitative. On the one hand, that view is somewhat deflationary

concerning the relationship between AI and the study of human cognition; on the

other hand, the eliminative philosophy of AI strongly discourages any attempt to

look at theories and results in AI through the lenses of folk-psychological (or psy-

chological) concepts. However, the positive implications of the perspective adopted

in this work lie in clearing the ground for a view of AI as a science investigat-

ing and developing cognitive technologies. While AI techniques do not necessarily

teach anything about natural cognition, they contribute indeed to extend and deepen

natural cognition in many significant ways. We now provide two illustrations of this

thesis, the first relating to the particular contribution offered in this work, the second

relating to some achievements and research directions to be found in the history of

AI (and related areas of computer science).
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The main problem considered in the book is the problem of learning (large and

complex) joint probability distributions from data. The general framework used to

deal with this problem is the framework of probabilistic graphical models. This kind

of learning task would be tremendously difficult to be accomplished in practice by

a human unaided by a suitable machine. In particular, it would be prohibitively

expensive for a human to perform this task in a manner that is warranted to be

consistent with a specified set of statistical axioms and aims, as it is instead the case

with the algorithms employed to learn probabilistic graphical models. Given this,

the real power and interest of statistical learning methods in AI is that they allow

humans, if aided by suitable machines, to tackle problems they would not be able

to tackle (in a statistically consistent way) without those machines. In other words,

statistical learning methods such as the ones considered in the book are properly

cognitive technologies (rather than cognitive models), i.e. tools for extending human

cognition to novel domains. The view of AI techniques accompanying the results

presented in this work is that it does not make sense to ask, about those techniques,

‘Are they intelligent?’. The question which is really worth asking about AI is instead

‘What can humans accomplish, once AI delivers such and such techniques?’.

The second illustration of the view of AI as cognitive technology derives from

two examples of the way that AI can contribute to extend human cognition in dif-

ferent domains. The first example is given by theorem provers and their use in

mathematics:

Theorem provers have come up with novel mathematical results. The SAM [. . . ] pro-

gram was the first, proving a lemma in lattice theory [. . . ]. The AURA program has

also answered open questions in several areas of mathematics [. . . ]. The Boyer-Moore

theorem prover [. . . ] was used by Natarajan Shankar to give the first fully rigorous for-

mal proof of Gödel’s Incompleteness Theorem [. . . ]. The OTTER program is one of

the strongest theorem provers; it has been used to solve several open questions in com-

binatorial logic. The most famous of these concerns Robbins algebra. In 1933, Herbert

Robbins proposed a simple set of axioms that appeared to define Boolean algebra, but

no proof of this could be found (despite serious work by several mathematicians in-

cluding Alfred Tarski himself). On October 10, 1996, after eight days of computation,

EQP (a version of OTTER) found a proof [. . . ]. [269, p. 309]

The number and worth of the results achieved by means of theorem-proving pro-

grams gives much more substance to the view of AI techniques as tools for extend-

ing human cognition, than it gives to the view of those techniques as models of

human cognition. In fact, while those results are now an important part of human

mathematical knowledge, it is not at all clear whether the way they were achieved

entails anything about how the human mind goes about proving theorems. More im-

portantly, the capability of theorem-proving programs to achieve those results does

not depend at all, as far as we know, on their being or not being similar to human

strategies for proving theorems.

A second example of the influence of AI (and related areas of computer

science) on the growth of human knowledge is given by the young, interdisciplinary
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research field of bioinformatics [49]. In this domain, a number of reasons—such as

the high dimensionality of the data to be dealt with, its huge amount, or the fact

that these data are generally incomplete and noisy—make it necessary to resort to

sophisticated machine learning techniques and statistical methods in order to aid

the human attempt to analyze and explain the collected data, and to predict new

phenomena based on previously observed ones. Concerning the capability of com-

putational techniques to lead to (otherwise unattainable) discoveries in molecular

biology, it is sufficient to note just that, for example, a prominent journal in the field

such as Bioinformatics devotes a special section of each issue, called ‘Discovery

Notes’, to discoveries achieved by means of computational methods.

7.4 Statistical Machine Learning and the Philosophy of Science

One major question in the philosophy of science is whether there can be a norma-

tive theory of scientific discovery, as opposed to a normative theory of justifica-

tion. In the twentieth century, two representative stands on this subject have been

taken for example by Karl Popper [246] on the one hand, who denied the possi-

bility of a logic of scientific discovery, and on the other hand by Herbert Simon

[279, 187], who strenuously advocated the plausibility of such a research program,

based on preliminary results achieved in artificial intelligence. Although Simon re-

garded computational models of discovery as plausible models of human discovery

[229], the significance he attaches to artificial implementations of discovery strate-

gies is not dependent on Simon’s views concerning human psychology. While the

possibility of a logic of scientific discovery has been the subject of much debate

among philosophers, it is highly instructive to consider how the basic insights of a

normative theory of discovery have been turned into a thriving research program by

computer scientists, namely into the research field which is now known as machine

learning.

Probabilistic graphical models are among the most flexible machine learning

methods developed in the last decades. While these models allow for an efficient rep-

resentation of joint probability distributions and automated inference over stochastic

domains, one of their main limitations lies in the high computational cost of learn-

ing them from data, which makes it infeasible to learn them in domains involving

relatively large numbers of variables.

In Section 7.4.1, we wish to stress those features of probabilistic graphical models

(and of machine learning formalisms in general) that make them plausible as com-

putational counterparts of scientific ‘theories’. To this aim, after noticing how these

models allow for the main kinds of inference that have traditionally been regarded

as a trademark of scientific theories (namely induction, deduction, and abduction),

we focus on the idea of learning statistical models from data. The analysis will show

how machine learning is casting new light on traditional problems in the philosophy

of science. In particular, Section 7.4.2 explores the implications of some results in

statistical learning with respect to the role of simplicity in theory choice, while in

Section 7.4.3 we argue that one philosophical lesson we can draw from machine
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learning research is that scalability (as a formal property of learning methods) can

play a fundamental role in making scientific discovery effective.

7.4.1 Machine Learning as a Logic of Scientific Discovery

First of all, let us state what we mean by ‘logic of scientific discovery’. Based on

Herbert Simon’s usage of that phrase, the logic of scientific discovery is meant as

a normative investigation of the inference processes leading to the introduction of

(novel) scientific theories. Concerning this notion, it is very important not to confuse

the logic of scientific discovery with the psychology of scientific discovery. While

Simon believed that AI techniques provide plausible models of human cognition,

the viability of the project of a normative theory of discovery does not depend at all

on a psychologistic view of AI.

Of course, one may wonder whether such a normative investigation of scientific

discovery is possible at all. A possible strategy for answering this question might

be to provide a philosophical argument aimed at showing that the project at issue

is indeed theoretically sound (and practically viable). However, this will not be our

strategy. Rather than using philosophical arguments in order to advocate the plausi-

bility of a logic of scientific discovery, we simply suggest how machine learning can

be interpreted broadly as a project in the logic of scientific discovery. The reason for

taking this stance is that, from the philosophical perspective we are assuming, the

logic of scientific discovery is not merely a philosophical project, but it is in fact a

mature (and thriving) scientific discipline.

Machine learning is the theoretical and experimental study of computational sys-

tems whose performance at specific tasks improves with experience [217]. ‘Com-

putational systems’ means (more or less complex) combinations of algorithms, typ-

ically implemented in real computer programs. Performance is usually measured by

evaluation metrics that depend on the considered tasks, such as classification ac-

curacy for pattern recognition. Experience is given by a collection of data items.

Such data points can take the form of vectors of features (i.e. variables), sequences,

graphs, or other suitably formalized objects. In intuitive terms, the aim of a machine

learning system is to acquire the capability of solving a certain class of problems by

being trained on a set of solved problems (belonging to that class).

In a sense, machine learning algorithms deliver models of the data they are trained

on. But how should we regard those models, from the point of view of the phi-

losophy of science? Our claim is that such models are nothing but computational

counterparts of what we commonly regard as scientific theories. ‘Theory’ is a much

debated term in the philosophy of science, and several different views of its meaning

have been advocated thus far [28]. Philosophical notions of theory range, for exam-

ple, from the logical-empiricist conception of a formal system [224], i.e. a set of

sentences expressed in first-order logic, to the structuralist idea that a theory should

be identified with the set of its models [289], in the strict (model-theoretic) sense of

semantic structures [56]. Now, let us reflect on the following passage, drawn from

Ian Witten and Eibe Frank’s introduction to data mining:
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What is learned by a machine learning method is a kind of “theory” of the domain

from which the examples are drawn, a theory that is predictive in that it is capable of

generating new facts about the domain—in other words, the class of unseen instances.

Theory is a rather grandiose term: we are using it here only in the sense of a predictive

model. Thus theories might comprise decision trees or sets of rules—they don’t have

to be any more “theoretical” than that. [317, pp. 179–180]

The remarks just quoted contain a simple yet fruitful insight. In our view, a possible

reason why no general consensus has been reached by philosophers in analyzing

the notion of theory lies in the fact that the philosophical aim has generally been

to explain what a theory is, rather than what a theory is useful for. Strictly speak-

ing, the latter question does not even have a precise meaning until we answer the

former. Nevertheless, while the former question has in fact no universally accepted

answer as yet, it would be hard to deny that inference (hence explanation and pre-

diction) is the main purpose of scientific theories. In fact, it is clear that any notion

of theory should be consistent at least with the following fact: theories are tools

for performing (different kinds of) inference. Although a loose notion of theory as

an inferential device (or a ‘predictive model’, as Witten and Frank put it) may fall

short of the expectations of philosophers of science, that notion has the important

effect of encouraging us to turn our interest from the reflection on the notion of

theory to the identification of rational strategies for developing (extending, revising,

etc.) scientific theories.

Viewing theories broadly as inferential devices allows us to realize how machine

learning methods are nothing but methods for automating the construction of scien-

tific theories, since any machine learning method is aimed at supporting some kind

of inference. We think that the success of machine learning (and of AI in general)

in opening new perspectives for the application of computational methods to chal-

lenging scientific problems—such as theorem-proving and bioinformatics—makes

a fairly strong case for the plausibility of viewing machine learning as a logic of

scientific discovery.

7.4.2 Simplicity Reconsidered

A common view in the philosophy of science maintains that, other things being

equal, simpler theories should be preferred over more complex ones [11, 14]. The

puzzle concerning this view is that no account of simplicity has ever been able to

reach universal consensus among philosophers. Indeed, several notions of simplic-

ity should be kept distinct from one another, such as syntactic simplicity, relating

to the form of scientific theories, and ontological simplicity, relating to the objects

postulated by theories. In this section, we propose to reflect on the syntactic no-

tion of simplicity, based on the theory presented in the previous sections. However,

our aim is not to establish a philosophical account of simplicity. Our strategy will

be instead to focus on a notion of simplicity grounded in the theory of statistical

learning, and to stress the importance of the role played by simplicity in making

learning (i.e. induction) effective. While this may not answer many open questions



7.4 Statistical Machine Learning and the Philosophy of Science 161

in the philosophical debate about simplicity, it should nevertheless help to under-

stand what part of the philosophical puzzle can be saved as a meaningful problem in

the methodology of science. The theory related to the MDL principle (discussed in

Section 2.4.1) is of fundamental importance to the problem we are going to address.

In particular, the present philosophical reading of that theory is nothing but a way

of reformulating it in less technical terms, which does not add anything new to what

is regarded as ‘received wisdom’ in the field of statistical learning. This means that,

if the philosophical reader feels that something is wrong with the ideas expressed

in this section, the proper way of refuting them would be by refuting the content of

Section 2.4.1.

The reason for using the MDL heuristic function is that, when learning a

Bayesian network, in order to avoid overfitting the data we need to introduce, in our

evaluation function, a careful tradeoff between the likelihood and the complexity of

the evaluated models (where complexity is measured by the number of parameters

contained in a given model). In other words, such a tradeoff within the scoring func-

tion is necessary for the learned model to generalize well to new data. Now, since

the models being evaluated are hypotheses concerning some specified domain, and

since the number of model parameters is nothing but a measure of the syntactic sim-

plicity of those hypotheses, one general implication of the theory of Section 2.4.1 is

that an appropriate weighting of the simplicity of hypotheses is necessary in order

to find hypotheses that generalize well to future data. That is to say, when formu-

lating hypotheses, taking into account (syntactic) simplicity plays a precise role in

making induction effective. An interesting question to ask (and which was already

answered in Section 2.4.1) is then: why is simplicity so effective? The simple moral

to be drawn from derivation 2.22 is that minimizing the description length of a hy-

pothesis h, i.e. maximizing its ‘simplicity’, means nothing but maximizing the prior

probability of h. That is to say, the intimate mathematical connection between sim-

plicity (i.e. description length) and prior probability explains the contribution given

by simplicity to the success of induction (i.e. learning): other things being equal,

a simpler hypothesis will have a higher posterior probability than a more complex

one. The same philosophical point is also made in [92] by discussing Akaike’s sta-

tistical results [4], which are very similar in their spirit to the meaning of the MDL

principle.

7.4.3 Scalability as an Epistemic Virtue

From the perspective of the philosophy of science, one interesting point emerging

from the research presented in this book is the following. As we saw, the key ad-

vantage of some learning methods over different ones may be given by the stronger

scalability properties of the former, which makes it easier to learn a statistical model

in high-dimensional domains. The philosophical reader should not take this advan-

tage to be a merely practical (and relatively unphilosophical) one. In fact, in many

important cases (e.g. in bioinformatics or Web mining) higher scalability means ca-

pability of allowing for induction, where less scalable techniques may defuse any

attempt to induce a model from data. In other words, improving scalability means
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extending our attempt of inducing novel scientific theories to domains where induc-

tion was not even conceivable before. In this sense, one philosophical lesson we

can draw from the effort of designing machine learning models that are suitable

for application to high-dimensional tasks is that scalability should be regarded as

an epistemic virtue in its own right, i.e. as one of the basic parameters we ought

to consider when evaluating scientific theories, on a par with other virtues such as

simplicity or consistency (and, of course, besides explanatory and predictive power)

[247, 248].

7.5 Final Remarks

This chapter was meant to offer a philosophical reflection on some issues concerning

the relationships between statistical machine learning (and, in particular, research on

probabilistic graphical models) and the cognitive sciences. First, two arguments—

i.e. the argument ‘from authority’ and the argument ‘from scientific practice’—have

been put forward in order to locate machine learning—and AI in general—within

the framework of the cognitive sciences in a sensible way. We believe that the two

arguments make a fairly strong case against all those who maintain that the ultimate

success of AI research depends on whether natural cognition can be successfully ex-

plained in terms of computational processes. On the other hand, the pars construens

of our proposal for the philosophy of AI consists in shifting from a cognitive science

perspective to a cognitive technology perspective, i.e. in viewing machine learning

and AI as normative—rather than descriptive—sciences. In this respect, we argued

that machine learning is establishing itself as a full-fledged implementation of the

philosophical project that Herbert Simon called ‘logic of scientific discovery’. In

particular, such a realization of Simon’s project is not only consistent and theoreti-

cally sound, as shown by the theory of statistical learning, but it is also practically

effective, as the technological impact of machine learning research (and AI in gen-

eral) is no longer a mere promise, but it is an extremely important part of the world

we are living in today. A paradigmatic application of this perspective to a couple of

philosophical problems—involving the role of simplicity in theory choice and the

traditional class of epistemic virtues—has been finally offered, by explicitly deploy-

ing the statistical machine learning framework underlying this book. In particular,

we showed how an elegant and mathematically robust solution for the philosophical

puzzle of simplicity can be drawn from statistical learning theory, in particular from

an analysis of the MDL principle and its role in learning algorithms for probabilistic

graphical models. Also, we claimed that scalability, as a formal property of induc-

tion techniques for scientific theories, should be recognized to play a very important

role in making induction effective, and hence in allowing science to develop more

rapidly.



Chapter 8

Conclusions

8.1 Hybrid Random Fields: Where Are We Now?

The time has come to summarize the main contributions we have attempted to make

throughout the book. To this aim, let us look back at each one of the main chapters,

in turn:

• Chapters 2–3 presented the main theoretical concepts and engineering techniques

related to the representation and estimation of joint probability distributions in

Bayesian networks and Markov random fields. After reading them, the reader

should have acquired some of the basic competences needed on the one hand

to implement and use directed and undirected graphical models in application

domains involving discrete variables only, and on the other hand to read more

advanced literature dealing with learning techniques for (discrete) probabilistic

graphical models;

• Chapter 4 introduced the hybrid random field model, exploring its mathematical

properties and explaining how it can be used for representing joint probabilities

(via Gibbs sampling) and pseudo-likelihood functions (via simple factorization

into local conditional distributions), for estimating pseudo-likelihood distribu-

tions in large-scale domains involving discrete variables (via suitable parameter

and structure learning algorithms), and for accomplishing arbitrarily shaped in-

ference tasks (again, via Gibbs sampling). After reading this chapter, readers

should be able to exploit hybrid random fields as an alternative for virtually any

learning and reasoning application addressed through the techniques drawn from

Chapters 2–3;

• Chapter 5 explained how directed, undirected, and (more explicitly) hybrid

graphical models can be applied to domains involving continuous-valued vari-

ables. To this aim, three different families of (conditional) density estimation

techniques were presented, i.e. parametric techniques (based on Gaussian mod-

els), semiparametric techniques (based on the nonparanormal model), and non-

parametric techniques (based on kernel methods). On the other hand, the issue

of structure learning in hybrid random fields was tackled from the perspective

of continuous application domains, which required to suitably adapt the Markov

A. Freno and E. Trentin: Hybrid Random Fields, ISRL 15, pp. 163–167.
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Blanket Merging algorithm developed in Chapter 4. This chapter should have

provided the reader with some tools needed for extending probabilistic graphical

modeling to various kinds of densities underlying high-dimensional, continuous

random vectors;

• Chapter 6 presented a number of applications of probabilistic graphical mod-

els to feature selection, pattern classification, and link prediction tasks, featur-

ing both synthetic and real-world benchmarks involving discrete and continuous

variables. The considered applications allowed to evaluate the behavior of hy-

brid random fields from the points of view of prediction accuracy and learning

scalability as well, with very promising results. After considering this chapter,

readers should have gained insight into a few representative kinds of applications

allowing for learning and inference through probabilistic graphical models, and

especially into the practical advantages of hybrid random fields as an alternative

to more traditional graphical models;

• Finally, Chapter 7 investigated the relationships existing between the theoretical

and application-oriented framework inspiring the research presented in this book

and some epistemological questions traditionally dealt with in the philosophy of

cognitive science. After delving into the arguments put forward in this chapter,

the philosophically-minded reader should have realized the relevance of even the

most overly technical sections of the book for a number of interesting issues in

epistemology and cognitive science.

8.2 Future Research: Where Do We Go from Here?

Now that the big picture has finally emerged concerning the theoretical results and

practical tools presented in this book, let us sketch just a couple of directions for fur-

ther research in probabilistic graphical models, with special emphasis on the frame-

work provided by hybrid random fields. Section 8.2.1 outlines some open problems

in statistical relational learning, whereas some final thoughts on future perspectives

for work in (nonparametric) density estimation are offered in Section 8.2.2.

8.2.1 Statistical Relational Learning: Some Open Questions

Statistical relational learning (SRL) is a young research field in machine learning

and knowledge representation, which is motivated by the attempt to bring statis-

tical learning methods to bear on problems that involve not only uncertainty, but

also relational structure [108, 68, 60, 109]. The motivation for the attempt arises

from observing that the structure of many real-world problems provides information

that is both uncertain and relational. Notable examples are given by social network

analysis, web mining, and image understanding. In recent years, an approach to

SRL that has attracted important research efforts consists in complementing (graph-

based) statistical techniques with formalisms derived from (or interpretable in terms

of) first-order logic (FOL), or fragments thereof [32]. Such a research direction

has lead to a number of different models, like the ones proposed for example in
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[99, 166, 107, 222]. Unfortunately, at least one difficulty associated with the usage

of these models has prevented thus far their wide adoption in real-world applica-

tions, namely the higher formal complexity of the employed mathematical tools,

as compared to the formalisms employed in standard probabilistic graphical mod-

els. More importantly, the computational complexity of estimating the structure

(i.e. the graph) of these models from data is one of their major limitations. For

example, learning the structure of probabilistic relational models [99] is at least as

hard as learning (the structure of) standard Bayesian networks, which is known to be

NP-hard.

An interesting attempt in SRL research is made in [256], where the Markov logic

network (MLN) model is proposed, aimed at satisfying two desiderata. On the one

hand, the theory of MLNs is meant to subsume both FOL and statistical learning,

hence preserving the aims and scope of previous SRL models. On the other hand,

MLNs explicitly attempt to be simpler to understand and apply than other com-

peting models of the same family. The basic idea behind MLNs is to start from a

knowledge-base expressed in FOL, and then to learn a set of weights for the clauses

in the knowledge-base. Such weights are learned by optimizing the parameters of

a Markov random field such that the feature functions in the MRF correspond to

groundings of the clauses in the knowledge base. Given the learned weights, prob-

abilistic inference can then be performed in the modeled domain with respect to

queries expressed in first-order logic. In MLNs, FOL provides the user interface,

while MRFs are used to implement statistical learning and inference. Since an ini-

tial (non-weighted) knowledge-base is needed in order to learn and apply the model,

this feature of MLNs is responsible both for one of their major selling-points, and

for one of their major limitations. When domain knowledge is available in logical

form, MLNs are very easy to deploy, and they offer an elegant way to refine that

knowledge in a statistically sound way. But when we have no logical prior knowl-

edge concerning the application domain, constructing a knowledge-base (even an

incomplete one) can be very challenging, and the task inherits all the difficulties of

traditional inductive logic programming (ILP). When no prior knowledge is avail-

able, a typical way of addressing the construction of the knowledge-base in MLNs,

pursued for example in [256], is by employing an off-the-shelf ILP technique, such

as the CLAUDIEN system [59]. The ILP approach raises two problems. First, learn-

ing in ILP systems can be very slow when dealing with high-dimensional domains,

due to its computational cost. Second, such systems can be pretty difficult to deploy

for the user, due to a large number of parameters that must be tuned manually by

the user. More dedicated algorithms for learning the structure of MLNs, either from

scratch or from an initial knowledge-base, are developed in [172, 216, 173]. Al-

though such algorithms lead to improvements with respect to systems like CLAU-

DIEN or FOIL [250], the computational burden imposed for learning a model on

domains of reasonable dimensionality can be extremely high.

In sum, two important challenges that have not been met yet by logic-based ap-

proaches to SRL concern first the computational efficiency of the learning meth-

ods, and second the capability of such methods to work well even in the limit case

where no prior knowledge is available (or at least easily representable in logical
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form) concerning the application domain. On the other hand, a mathematical is-

sue that deserves serious investigation concerns the implications of some restrictive

assumptions that SRL models usually make with respect to the used fragment of

FOL. For example, MLNs (at least in their standard usage [256]) assume that the

quantification domain of the logical variables has finite cardinality. While some re-

search has tried to address the possibility of relaxing the finite domain assumption

[150, 242, 280], finite model theory [75, 118] (i.e. the restriction of model theory

[56] to finite structures) has established itself as an independent and burgeoning

research field in mathematical logic. We believe that exploring the implications of

finite model theory research for SRL methods making the finite domain assumption

might provide fruitful insights for future developments in SRL.

Besides the issue of learning scalability, an interesting question to ask concerning

any given SRL framework is the capability of the proposed framework to deal effec-

tively with continuous variables (i.e. with quantities ranging over uncountable sets

of values). This issue is an open challenge in SRL, since virtually any SRL model

inherits the intrinsic difficulties associated with the usage of classic (probabilistic)

graphical models. While the issue of scalability has gained increasing attention in re-

cent years [228], the problem of dealing with continuous variables efficiently while

avoiding to make restrictive (and sometimes unjustified) assumptions on the nature

of the modeled phenomena (such as Gaussianity of the underlying distribution) has

been tackled only sporadically in the graphical models community [137, 197, 97].

This state of affairs in probabilistic graphical models research is astonishing if we

look at it from the perspective of established statistical machine learning and pattern

recognition [73], where continuous quantities have traditionally been the focus of

most research efforts. Therefore, we believe that progress in this direction would of-

fer to the developed framework a dramatic advantage over existing SRL approaches,

which are mainly limited to discrete application domains.

Based on the analysis sketched above, two desiderata that a novel SRL approach

should be expected to satisfy are on the one hand the scalability of learning and rea-

soning, and on the other hand the capability of dealing with continuous domains. As

described throughout this book, the presented methods for learning hybrid random

fields are able to outperform standard learning techniques for Bayesian networks

and Markov random fields in terms of scalability properties, while preserving (and

often even improving) the predictive accuracy of the alternative models. Moreover,

all benchmarks considered thus far for hybrid random fields did not offer any prior

knowledge for aiding the model selection process. Since HRFs have not been ex-

tended thus far to SRL tasks, this kind of graphical models seems to be a fairly

promising starting point for further research in SRL. The reason is that, while in the

non-relational setting HRFs satisfy both the requirements of learning scalability and

of robustness to missing prior knowledge, in the relational setting they offer a novel

foundation (just as Markov random fields offered a foundation for Markov logic)

for building an alternative SRL paradigm which may be more promising than the

existing ones.

Concerning instead the treatment of continuous variables, Chapter 5 shows how

hybrid random fields (and graphical models in general) can be used to model
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(continuous) density functions while avoiding parametric assumptions. Scalability

is an even more challenging requirement for continuous (rather than for discrete)

graphical models, and hence the perspectives for improvement are extremely open

on this front. Given the potential advantages that effective learning techniques for

continuous graphical models would offer (besides discrete models) as a basis for

relational real-world applications, we believe that the scalable framework for con-

tinuous pseudo-likelihood estimation presented in Chapter 5 provides an interesting

starting point for research in SRL over continuous domains.

8.2.2 Nonparametric Density Estimation: Beyond Kernel

Machines

Another issue that seems to be pretty open to further research developments is the

general problem of nonparametric density estimation. While the main nonparamet-

ric approach explored thus far in the literature exploits kernel-based methods, as

reviewed in Section 5.5, addressing this task by means of different mathematical

tools would be an intriguing research challenge. In fact, one major limitation of

kernel-based estimators is that they are relatively inefficient at prediction time, due

to their memory-based nature. And, as we saw throughout this book, scalability is to

be regarded not just as a nice practical advantage of some estimation methods over

alternative ones, but rather as a crucial requirement of any learning and inference

technique aiming at real-world applicability.

In recent years, one nonparametric approach trying to overcome the limitations of

standard kernel-based methods has been deploying artificial neural networks, where

learning relies either on empirical estimates of cumulative distribution functions

[203], or on an ‘unbiased’ training supervision offered by suitably exploited Parzen

window and kn-nearest neighbor estimators [297, 300]. Both strategies—i.e. the edf-

based technique and the unbiased labeling-based one—have been tested only on

univariate benchmarks. While the latter technique may reveal to be effective even

for multivariate distributions, it is not at all clear whether and how the approach

based on empirical distribution functions may be extended to multivariate data. On

the other hand, the methods based on the unbiased labeling drawn from Parzen

window or kn-nearest neighbor estimators are relatively slow during the training

phase, and their computational advantages only show up at test time. While this is

already an important improvement over traditional kernel-based density estimators,

it may not be enough if we look at the constraints imposed by several large-scale,

real-world applications. Given the crucial role played by (conditional) density esti-

mation within hybrid random fields (and probabilistic graphical models in general),

we believe that progress along this direction could make a fundamental contribution

to the research presented in this book.



Appendix A

Probability Theory

A.1 Random Variables

One fundamental notion in probability theory is the notion of a sample space [233,

8]. Given a ‘random experiment’ E , the sample space Ω associated with E is the

set of all possible outcomes e1, . . . ,en of the experiment. Intuitively, one may think

of a random experiment as the operation of picking out an element from a set and

determining the value of a specified attribute for that element. For example, we

may pick a person from a population and check whether that person is European or

not; or, we may measure the weight of that person, where the value of the weight

(as expressed e.g. in kilograms) lies in the interval (0,∞). In the first case, we are

dealing with a discrete sample space Ω = {e1,e2}, such that e1 corresponds to being

European and e2 corresponds to not being European; the sample space for the second

experiment is instead a continuous set Ω = {x : 0 < x < ∞}. An experiment in the

considered sense is not well-defined until its sample space has been identified. Given

a sample space Ω, an event is any set E such that E ⊆ Ω. An event E is said to be

elementary if |E| = 1. Moreover, two events E1 and E2 are said to be mutually

exclusive (or, simply, disjoint) if E1 ∩E2 = /0.

Another basic concept is the concept of random variable:

Definition A.1. Given a sample space Ω, a random variable X is a function X : Ω →
X, where X is called the space of X . If X is countable (i.e. either finite or enumerable

[142]), then we say that X is discrete, otherwise (i.e. if X is uncountable) we refer

to X as a continuous random variable.

In cases where no ambiguity may arise, the space of a random variable is some-

times referred to (improperly) as the domain of that variable. When working with

a random variable X , we use the notation X = x to refer to the set of all events in

the sample space such that X associates value x to anyone of those events. That is to

say, X = x denotes the set {ei : X(ei) = x}. Notice that random variables are denoted

by capital letters, while values of those variables are denoted by small letters. The

phrase ‘random vector’ refers to a vector of random variables. Hence, if X1, . . . ,Xn

are random variables, the object X = (X1, . . . ,Xn) is a random vector. It is common

to refer to any given value x of a random vector X as a state of the random vector.
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A.2 Discrete Probability Distributions

We now define the notion of probability function:

Definition A.2. Consider a sample space Ω = {e1, . . . ,en}. If P(x) denotes the

powerset of x, i.e. the set {y : y ⊆ x}, then a function P : P(Ω) → R is a proba-

bility function if it satisfies the following conditions:

1. For 1 ≤ i ≤ n, 0 ≤ P({ei}) ≤ 1;

2. ∑n
i=1 P({ei}) = 1;

3. For any event E , P(E) = ∑ei∈E P({ei}).

The ordered pair (Ω,P) is called a probability space. For brevity, it is common to

say that P is a probability function on the sample space Ω, rather than saying (more

properly) that P is a probability function on P(Ω). Given Definition A.2, we can

easily prove an important theorem:

Theorem A.1. If (Ω,P) is a probability space (where Ω = {e1, . . . ,en}), then (Ω,P)
satisfies the following conditions:

1. P(Ω) = 1;

2. For any E such that E ⊆ Ω, 0 ≤ P(E) ≤ 1;

3. For any pair of mutually exclusive events E1 and E2, P(E1∪E2)= P(E1)+P(E2).

Proof. Let us prove the three conditions stated above in their order:

1. By the third condition in Definition A.2, P(Ω) = ∑n
i=1 P({ei}). Since the second

condition in Definition A.2 states that ∑n
i=1 P({ei}) = 1, it follows that P(Ω) = 1;

2. We prove that (a) P(E) ≥ 0 and (b) P(E) ≤ 1, respectively:

a. Since P(E) = ∑ei∈E P({ei}) and P({ei}) ≥ 0 for any i such that ei ∈ E , we

have that P(E) ≥ 0;

b. Since E ⊆ Ω, we have that, by the third condition in Definition A.2, P(E) ≤
P(Ω), where P(Ω) = 1. Therefore, P(E) ≤ 1.

3. First, we have that P(E1∪E2) = ∑ei∈E1∪E2
P({ei}). Since E1 and E2 are mutually

exclusive, it follows that

∑
ei∈E1∪E2

P({ei}) = ∑
ei∈E1

P({ei})+ ∑
ei∈E2

P({ei}) (A.1)

where ∑ei∈E1
P({ei}) = P(E1) and ∑ei∈E2

P({ei}) = P(E2). Therefore, P(E1 ∪
E2) = P(E1)+ P(E2).

⊓⊔

The classical axiomatization of probability theory is due to Andrey Kolmogorov

[177], who used the conditions detailed in Theorem A.1 as axioms of the theory.

Given a random variable X , the notation P(X = x) refers to the quantity P({ei :

X(ei) = x}). In particular, we say that P(X = x) denotes the probability that random

variable X assumes value x. While the notation P(x) is just a shorthand for P(X = x),
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the set {(x,P(x)) : x ∈ X} (where X is the space of X) is denoted by P(X), and it is

referred to as the probability distribution (or simply distribution) of X .

When dealing with a set of random variables X1, . . . ,Xn (defined on the same

sample space Ω), the notation X1 = x1, . . . ,Xn = xn (or X1 = x1∧ . . .∧Xn = xn) refers

to the set {ei : X1(ei) = x1}∩ . . .∩{ei : Xn(ei) = xn}. Thus, P(X1 = x1, . . . ,Xn = xn),
or P(X1 = x1 ∧ . . .∧Xn = xn), denotes the quantity P({ei : X1(ei) = x1}∩ . . .∩{ei :

Xn(ei) = xn}). For brevity, P(X1 = x1, . . . ,Xn = xn) is often written as P(x1, . . . ,xn),
and it represents the probability that random variables X1, . . . ,Xn assume the values

x1, . . . ,xn respectively. Let us use X to denote the random vector (X1, . . . ,Xn), and

x to denote (x1, . . . ,xn). As for the case of a single random variable, we use P(X)
to denote the set {(x,P(x)) : x ∈ X1 × . . .×Xn}, where Xi denotes the space of

random variable Xi (for 1≤ i≤ n). The set P(X) is referred to as the joint probability

distribution of X (sometimes abbreviated as joint distribution, or just distribution).

We now define the concept of conditional probability:

Definition A.3. Given two random variables X and Y , the conditional probability

that X assumes value x given that Y has value y, denoted by P(X = x | Y = y) or by

P(x | y), is defined as

P(x | y) =
P(x,y)

P(y)
(A.2)

provided that P(y) = 0.

Clearly, Equation A.2 implies that

P(x,y) = P(x | y)P(y) (A.3)

which holds even if P(y) = 0. A very useful rule for calculating joint probabilites by

means of conditional probabilities is the chain rule, which is stated by the following

theorem:

Theorem A.2. Given a set of random variables X0, . . . ,Xn, for any combination of

values x0, . . . ,xn of the given variables, the following equality holds:

P(x0, . . . ,xn) = P(x0)
n

∏
i=1

P(xi | x0, . . . ,xi−1) (A.4)

Proof. The validity of Equation A.4 can be proved by induction on the number

of variables. First, consider that, if n = 1, then the chain rule reduces to an in-

stance of Equation A.3, i.e. to P(x0,x1) = P(x1 | x0)P(x0), which we know to

be true. Second, suppose that the chain rule is valid for a particular value of n,

i.e. that P(x0, . . . ,xn) = P(x0) ∏n
i=1 P(xi | x0, . . . ,xi−1), and let us show that the rule

also holds for n + 1. Clearly, P(x0, . . . ,xn+1) = P(xn+1 | x0, . . . ,xn) P(x0, . . . ,xn).
This fact, together with the induction hypothesis, implies that P(x0, . . . ,xn+1) =
P(x0) ∏n+1

i=1 P(xi | x0, . . . ,xi−1). Therefore, Equation A.4 is valid for any value

of n. ⊓⊔
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An important concept (which is tightly related to the notion of conditional probabil-

ity) is the concept of statistical independence:

Definition A.4. Two random variables X and Y are said to be statistically indepen-

dent (or simply independent) if, for any value x of X and any value y of Y ,

P(x,y) = P(x)P(y) (A.5)

The relationship between statistical independence and conditional probability is ex-

pressed by the fact that, if two variables X and Y are independent, then

P(x | y) = P(x) (A.6)

which immediately follows from Definitions A.3, A.4.

Using Equations A.2–A.3, together with the (trivial) fact that P(x,y) = P(y,x),
we can prove a useful equality, which is traditionally referred to as Bayes’ theorem

[17]:

P(x | y) =
P(x,y)

P(y)
=

P(y,x)

P(y)
=

P(y | x)P(x)

P(y)
(A.7)

Another important rule for computing probabilities is given by the law of total prob-

ability, which is stated by the following theorem:

Theorem A.3. Suppose that the sample space Ω is partitioned into n (mutually ex-

clusive and disjoint) events E1, . . . ,En. Then, for any event E such that E ⊆ Ω,

P(E) =
n

∑
i=1

P(E ∩Ei) (A.8)

Proof. We first note that the following equality holds, based on elementary set-

theoretic principles:

E = E ∩Ω = E ∩
n⋃

i=1

Ei =
n⋃

i=1

(E ∩Ei) (A.9)

Now, the third condition in Theorem A.1 implies that

P
( n⋃

i=1

(E ∩Ei)
)

=
n

∑
i=1

P(E ∩Ei) (A.10)

Therefore, P(E) = ∑n
i=1 P(E ∩Ei). ⊓⊔

An interesting implication of the law of total probability is that the distribution of

a random variable can be derived by summing over all values of the remaining

variables. Suppose we are dealing with the random variables X ,Y1, . . . ,Yn. Moreover,

if Y = (Y1, . . . ,Yn), we use Y to denote the domain of the random vector Y. Then,

for any value x of X , the law of total probability implies the following equality:
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P(x) = ∑
y∈Y

P(x,y) (A.11)

When computed through the relevant values of the joint distribution P(X ,Y), the

distribution P(X) is usually referred to as marginal (probability) distribution of X .

Clearly, the marginal probability of x can also be computed as

P(x) = ∑
y∈Y

P(x | y)P(y) (A.12)

A.3 Continuous Probability Distributions

We first define the concept of probability density function (pdf) [233, 82]:

Definition A.5. Given a continuous random variable X : Ω → X, a function p de-

fined on X is a probability density function if it satisfies the following conditions:

1. For any x such that x ∈ X, p(x) ≥ 0;

2.
∫
Xp(x)dx = 1;

3. For any closed set S such that S ⊆ X, P(x ∈ S) =
∫
Sp(x)dx, where P(x ∈ S) is

used as shorthand for P({e : X(e) ∈ S}).

A pdf defined on a single random variable is called a univariate density function,

whereas a pdf is said to be multivariate when it involves random vectors. As for uni-

variate density functions, also multivariate densities are such that, if X is a random

vector with space X, then:

1. For any x such that x ∈ X, p(x) ≥ 0;

2.
∫
Xp(x)dx = 1;

3. For any closed set S such that S ⊆ X, P(x ∈ S) =
∫
Sp(x)dx.

We also define the notion of cumulative distribution function, or cdf [233, 82]:

Definition A.6. Given a continuous random variable X : Ω → X, the cumulative

distribution function of X is the function F defined as F(x) = P(X ≤ x), where

P(X ≤ x) is a shorthand for P({e : X(e) ≤ x}).

The cumulative distribution function is monotonically increasing and right-

continuous. Moreover, we have that

lim
x→−∞

F(x) = F(−∞) = 0 (A.13)

and that

lim
x→∞

F(x) = F(∞) = 1 (A.14)

The mathematical relationship between pdf and cdf is characterized by the following

property:

F(x) =

∫ x

−∞
p(t)dt (A.15)
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Conversely, we have that

p(x) =
d

dx
F(x) (A.16)

An important notion—which is tightly related to the cumulative distribution

function—is the notion of empirical (cumulative) distribution function (edf), de-

fined as

FE(x) =
1

n

n

∑
i=1

Θ(x− xi) (A.17)

where n is the number of training points and Θ is the Heaviside step function, such

that Θ(x) = 0 if x < 0 and Θ(x) = 1 otherwise. As defined in Equation A.17, the

function FE is discontinuous. If desired, a differentiable, parameterized approxima-

tion F∗(x;σ) of FE(x) can be easily formulated using the sigmoid function:

F∗(x;σ) =
1

n

n

∑
i=1

1

1 + exp
(
− x−xi

σ

) (A.18)

where σ determines the smoothness of the approximating function. The approxima-

tion is justified by the following fact:

Θ(x) = lim
σ→0

1

1 + exp
(
− x

σ

) (A.19)

Equation A.17 is commonly known as the Kaplan-Meier estimate of the empirical

distribution function [160]. A slightly modified definition of FE(x) is the mean-rank

estimate [82], given by

FE(x) =
1

n + 1

n

∑
i=1

Θ(x− xi) (A.20)

For continuous random variables, the notions of conditional pdf and statistical in-

dependence are defined in the same way as for discrete variables, by simply substi-

tuting the density function p for the probability function P in Equations A.2, A.5

[86, 87]. In other words, we have that, for any pair of continuous variables X and Y ,

p(X = x | Y = y) =
p(X = x,Y = y)

p(Y = y)
(A.21)

provided that p(Y = y) > 0, and that X and Y are said to be independent if, for any

values x and y,

p(X = x,Y = y) = p(X = x) p(Y = y) (A.22)

Similarly, the marginal density of x given the value of a random vector Y is given

by

p(x) =

∫

Y
p(x,y)dy =

∫

Y
p(x | y) p(y)dy (A.23)

where Y is the space of Y.
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One very important notion related to density functions is the notion of expected

value (or expectation) of a function f , denoted by E[ f ]:

Definition A.7. Given a continuous random variable X : Ω→X (distributed accord-

ing to p(X)) and a function f : X → R, the expected value of f is the function

E[ f ] =

∫

X
f (x) p(x)dx (A.24)

If we deal with a finite sample D = {x1, . . . ,xn}, where each instance xi of X (for

1 ≤ i ≤ n) is drawn from the density p(X), then the expected value of f can be

estimated as

Ê[ f ] =
1

n

n

∑
i=1

f (xi) (A.25)

The estimate specified in Equation A.25 converges to E[ f ] in the limit n → ∞. If we

have a random vector X = (X1, . . . ,Xd) (with d-dimensional space X), together with

a d-variate function f and a d-variate density p, then E[ f ] is the multiple integral∫
X f (x) p(x)dx. The definition of expected value easily extends to the case of a

conditional density p(X | y), yielding the conditional expectation E[ f | y]:

E[ f | y] =

∫

X
f (x) p(x | y)dx (A.26)

Another central quantity, defined in terms of expected values, is the variance of f ,

denoted by σ [ f ]:
σ2[ f ] = E

[
( f −E[ f ])2

]
(A.27)

where ( f −E[ f ])2 denotes the function ( f (x)−E[ f ])2. As the very name suggests,

the variance of a function f indicates how much variability there is in the value

of that function around E[ f ]. Of special interest is the variance σ2[X ] of a random

variable itself, i.e. the value assumed by σ2[ f ] when we take f = X :

σ2[X ] = E
[
(X −E[X ])2

]
(A.28)

where (X −E[X ])2 refers to the function (x−E[X ])2. The quantity E[X ] is usually

referred to as the mean of random variable X , and denoted by µ [X ]. We also define

the covariance σ2[X ,Y ] of two random variables X and Y :

σ2[X ,Y ] = E
[
(X −E[X ])(Y −E[Y ])

]

= E[X Y ]− (E[X ]E[Y ])
(A.29)

where the values of X −E[X ], Y −E[Y ], and X Y are given by x−E[X ], y−E[Y ],
and xy respectively. Intuitively, the covariance of X and Y measures the extent to

which the two variables vary together, i.e. their degree of correlation. Consequently,

the covariance vanishes when the variables are independent. If we deal with two

random vectors X = (X1, . . . ,Xd) and Y = (Y1, . . . ,Yd), then the covariance matrix

Σ[X,Y] is a d × d matrix Σ, such that each entry in Σ is given by Σi j = σ2[Xi,Yi]
(where 1 ≤ i, j ≤ d).
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Graph Theory

This appendix reviews some basic notions and a couple of algorithms developed in

graph theory. Section B.1 collects the definitions of the graph-theoretical concepts

used throughout the book, whereas algorithms for sorting nodes in directed acyclic

graphs (while verifying whether the graph is actually acyclic) and finding maximal

cliques in undirected graphs are presented in Section B.2.

B.1 Definitions

First of all, we define the notion of graph. Graphs can be either undirected or

directed:

Definition B.1. An undirected graph G is an (ordered) pair (V,E) such that V is a

finite set of so-called nodes (or vertices) and E is a set of unordered pairs of nodes.

That is, if e ∈ E, then e = {Xi,X j} and {Xi,X j} ⊆ V. The elements of E are called

arcs (or edges).

Definition B.2. A directed graph G is an (ordered) pair (V,E) such that V is a finite

set of nodes and E is a set of ordered pairs of nodes. That is, if e∈E, then e = (Xi,X j)
and {Xi,X j} ⊆ V.

Both for directed and undirected graphs, we can define the concept of adjacency

(with respect to a pair of nodes):

Definition B.3. If a graph G = (V,E) is undirected, then two nodes Xi and X j in V

are said to be adjacent if {Xi,X j} ∈ E. If G is instead directed, then Xi and X j are

said to be adjacent if {(Xi,X j),(X j,Xi)}∩E = /0.

In undirected graphs, of particular importance are the sets of nodes responding to

the definition of clique:

Definition B.4. Given an undirected graph G = (V,E), a clique C in G is any subset

of V such that, for any couple of elements Xi and X j in C (where i = j), {Xi,X j} ∈ E.

Furthermore, the clique C is said to be maximal if it satisfies the following condition:

∀i Xi ∈ V\C⇒ (∃ j X j ∈ C∧{Xi,X j} /∈ E).
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On the other hand, useful notions for characterizing the structure of directed graphs

are the notions of parent, child, and root:

Definition B.5. If G = (V,E) is a directed graph, then a node Xi is a parent of node

X j if (Xi,X j) ∈ E. Moreover, if Xi is parent of X j, then X j is said to be child of Xi.

Definition B.6. If G = (V,E) is a directed graph, then a node Xi is a root of G if there

does not exist any node X j such that (X j,Xi) ∈ E (i.e. if Xi has no parents in G).

Another useful concept is the concept of path. First, we define paths for directed

graphs:

Definition B.7. If G = (V,E) is a directed graph, then a path P from Xi to X j (where

{Xi,X j} ⊆ V) is a subset of E satisfying the following conditions:

1. ∃k (Xi,Xk) ∈ P;

2. ∃k (Xk,X j) ∈ P;

3. Any edge (Xk,Xl) in P displays the following properties:

a. If k = i, then ∃m (Xm,Xk) ∈ P;

b. If l = j, then ∃m (Xl ,Xm) ∈ P.

Given the definition of path, we can define the notions of ancestor and descendant:

Definition B.8. Given a directed graph G = (V,E), if P is a path from Xi to X j

(where {Xi,X j} ⊆V), then we say that Xi is an ancestor of X j and X j is a descendant

of Xi.

On the other hand, we define paths for undirected graphs:

Definition B.9. If G = (V,E) is an undirected graph, then a path P from Xi to X j

(where {Xi,X j} ⊆ V) is a subset of E satisfying the following conditions:

1. ∃k {Xi,Xk} ∈ P;

2. ∃k {X j,Xk} ∈ P;

3. Any edge {Xk,Xl} in P displays the following properties:

a. If k /∈ {i, j}, then ∃m {Xk,Xm} ∈ P;

b. If l /∈ {i, j}, then ∃m {Xl,Xm} ∈ P.

More sophisticated notions can be defined for directed graphs. First, we introduce

chains:

Definition B.10. If G = (V,E) is a directed graph, then a chain C from Xi to X j

(where {Xi,X j} ⊆ V) is a subset of E satisfying the following conditions:

1. ∃k (Xi,Xk) ∈ C∨ (Xk,Xi) ∈ C;

2. ∃k (X j,Xk) ∈ C∨ (Xk,X j) ∈ C;

3. Any edge (Xk,Xl) in C displays the following properties:

a. If k /∈ {i, j}, then ∃m (Xk,Xm) ∈ C∨ (Xm,Xk) ∈ C;

b. If l /∈ {i, j}, then ∃m (Xl ,Xm) ∈ C∨ (Xm,Xl) ∈ C.
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If a set S of pairs {X1,X2}, . . . ,{Xn−1,Xn} is such that Xi ∈ {X1,X2}, X j ∈
{Xn−1,Xn}, and (for 2 ≤ i ≤ |V|) {Xi−1,Xi} ∈ S ⇔ ((Xi−1,Xi) ∈ C∨ (Xi,Xi−1) ∈ C),
then C is denoted equivalently by [X1, . . . ,Xn] and [Xn, . . . ,X1].

Informally, we often say that a chain C contains a node X to mean that C contains

an edge (Y,Z) such that X = Y or X = Z.

Second, we characterize uncoupled meetings:

Definition B.11. An uncoupled meeting is a chain [Xi,X j,Xk] such that Xi and Xk are

not adjacent.

Third, we define directed and undirected cycles respectively:

Definition B.12. If G is a directed graph, then an undirected cycle in G is a chain

from a node to itself.

Definition B.13. If G is a directed graph, then a directed cycle in G is a path from a

node to itself.

We now define a directed acyclic graph (DAG):

Definition B.14. A directed graph G is acyclic if G does not contain any directed

cycle.

Finally, we specify the concept of topological (or ancestral) ordering for directed

acyclic graphs:

Definition B.15. If G = (V,E) is a DAG containing n nodes, then a topological

(or ancestral) ordering (X1, . . . ,Xn) of the nodes in V is any ordering such that,

if (Xi,X j) ∈ E, then i < j.

B.2 Algorithms

Two important problems usually encountered while working with directed graphs

are given on the one hand by the need to verify whether the graph is acyclic, on

the other hand by the task of sorting the nodes in a topological ordering. We now

describe an algorithm (first introduced by Arthur Kahn [157]) which is suitable for

solving both problems at the same time. The algorithm takes as input a directed

graph G. Two lists are defined, S and U, containing sorted and unsorted nodes re-

spectively. U is initialized as the list of the roots (if any) of G. While U is not empty,

one node Xi is removed from it and appended to S. Then, for each child X j of Xi,

we perform the following two steps. First, (Xi,X j) is removed from E. Second, if E

does not contain any other edge (Xk,X j), then X j is added to U. Once the while loop

terminates, the following condition is checked in order to return the proper output.

If E is empty, then the graph is acyclic and the elements of S are sorted according to

a topological ordering, otherwise the graph contains at least one (directed) cycle and

no topological ordering is possible over V. Pseudocode for the described technique

is provided by Algorithm B.1.
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Algorithm B.1 Kahn: Topological sorting of nodes in directed acyclic graphs

Input: Directed graph G = (V,E).
Output: Ordered set S: if S = /0, then G is not acyclic, otherwise S provides a topological

ordering over V.

Kahn(G):
1. S = (S1, . . . ,S|V|)
2. U = {Xi : Xi ∈ V∧∄ j (X j,Xi) ∈ E}
3. E∗ = E

4. i = 1

5. while(U = /0)

6. X j = an arbitrary element of U

7. U = U\{X j}
8. Si = X j

9. i = i + 1

10. for(Xk ∈ {Xl : (X j,Xl) ∈ E})
11. E∗ = E∗ \{(X j,Xk)}
12. if(∄l (Xl ,Xk) ∈ E∗})
13. U = U∪{Xk}
14. if(E∗ = /0)

15. S = /0

16. return S

When working with an undirected graph G, it may be necessary to find all max-

imal cliques contained in G. Algorithm B.2 provides pseudocode for the Bron-

Kerbosch method, first introduced in [37], which is known to be one of the most

efficient methods for finding all maximal cliques in undirected graphs. Actually,

Algorithm B.2 presents a variant of the Bron-Kerbosch method using the so-called

pivoting technique. Pivoting consists in using node Xi at line 3 as a ‘pivot’ for re-

stricting the recursive call of line 6 to those nodes in V∗ that are not adjacent to

Xi. On the other hand, the version of the Bron-Kerbosch algorithm that does not

use pivoting would iterate the instructions at lines 6–8 for all elements of V∗. This

strategy turns out to be much less efficient than the variant with pivoting for graphs

containing a large number of non-maximal cliques. A theoretical and experimental

analysis of the Bron-Kerbosch algorithm is offered in [37].
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Algorithm B.2 BronKerbosch: Finding all maximal cliques in undirected graphs

Input: Undirected graph G = (V,E); sets C = /0, V∗ = V, X = /0, γ = /0.

Output: Set γ containing all maximal cliques of G.

BronKerbosch(G,C,V∗,X,γ):
1. if(V∗∪X = /0)

2. γ = γ ∪{C}
3. Xi = an arbitrary element of V∗∪X

4. N = {X j : {Xi,X j} ∈ E}
5. for(X j ∈ V∗ \N)

6. γ = BronKerbosch(G,C∪{X j},V∗∩N,X∩N,γ))
7. V∗ = V∗ \{X j}
8. X = X∪{X j}
9. return γ



Afterword

Aside from the tutorial parts of this volume, where we tried to render the text as

plain and self-contained as possible, this is mostly a research book. In this perspec-

tive, our attempt has been to provide the reader with fresh and up-to-date contents,

including new ideas and recent developments of an on-going investigation field we

are constantly involved in. Nonetheless, some portions of the book were previously,

yet partially released in the form of journal articles or contributions to conference

proceedings. This has been made clear explicitly throughout the text by proper refer-

ences to the earlier bibliographic sources. Episodic reproductions of published con-

tents strictly comply with the original Publishers’ copyright policies we subscribed

to. In particular, some material drawn from papers published by either ACM1 [94],

Elsevier2 [94], or IOS3 [97] partially appears within the following sections of the

book: 4.6, 5.5.1–5.5.2, 5.6, 6.3–6.4.

Siena, Antonino Freno

January 2011 Edmondo Trentin
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118. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y.,

Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg (2007)

119. Gravier, G., Sigelle, M., Chollet, G.: A markov random field model for automatic

speech recognition. In: Proceedings of the International Conference on Pattern Recog-

nition, pp. 3258–3261 (2000)

120. Gray, A.G., Moore, A.W.: ‘N-Body’ Problems in Statistical Learning. In: Advances in

Neural Information Processing Systems, pp. 521–527 (2000)

121. Griffeath, D.: Introduction to Random Fields. In: Kemeny, J.G., Snell, J.L., Knapp,

A.W. (eds.) Denumerable Markov Chains, 2nd edn., ch. 12. Springer, New York (1976)

122. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of

Machine Learning Research 3, 1157–1182 (2003)

123. Hall, M.A.: Correlation-based Feature Selection for Discrete and Numeric Class Ma-

chine Learning. In: Proceedings of the Seventeenth International Conference on Ma-

chine Learning (ICML 2000), pp. 359–366. Morgan Kaufmann, San Francisco (2000)

124. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing network

models. Neural Networks 17, 1061–1085 (2004)

125. Hammer, B., Saunders, C., Sperduti, A.: Special issue on neural networks and kernel

methods for structured domains. Neural Networks 18(8), 1015–1018 (2005)

126. Hand, D.J., Yu, K.: Idiot’s Bayes—Not So Stupid After All? International Statistical

Review 69, 385–398 (2001)



References 191

127. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice Hall,

New York (1999)
128. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.M.: Depen-

dency Networks for Inference, Collaborative Filtering, and Data Visualization. Journal

of Machine Learning Research 1, 49–75 (2000)
129. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks: The Com-

bination of Knowledge and Statistical Data. Machine Learning 20, 197–243 (1995)
130. Held, K., Kops, E.R., Krause, B.J., Wells, W.M.I., Kikinis, R., Müller-Gärtner, H.W.:
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