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Foreword

When I began working for Peter Kirstein’s group at the University College London

(UCL) in 1980 the department had already been part of the embryo Internet for

seven years. The first ‘‘local area networks’’ were being deployed, and it was

becoming clear that the future would consist of many networks, using a variety of

technologies, all of which would need to interwork. Accordingly the Internet

community adopted an architecture (designed by Robert Kahn and Vint Cerf) in

which all networks must implement a common ‘‘internet protocol’’ (IP) to carry

packets of data across and between networks. Networks were connected to their

neighbours by computers termed ‘‘gateways’’ (we now call them ‘‘routers’’). IP did

not attempt to correct any errors that might arise; that was left to the ‘‘hosts’’—the

computers attached to the networks that were the sources and sinks of data. Hosts

implemented a protocol called the ‘‘transmission control protocol’’ (TCP), which

arranged for the re-transmission of any packets that did not arrive intact.

Back in 1980 routers were based on refrigerator-sized ‘‘mini-computers’’ which

cost tens of thousands of pounds (hundreds of thousands of euros in today’s terms).

Connecting a computer to a LAN cost more than £1,000. However, by the time

Antonio Liotta joined us at UCL in 1995 things were very different; costs had

plummeted, personal computers were widespread and the Internet now comprised

thousands of networks and millions of hosts. The applications that generated the

bulk of the traffic though—file transfer, email and the burgeoning world wide

web—still matched the requirements that had inspired the development of the TCP

all those years before. Underlying TCP is the assumption of a client–server model;

the server computer has something the client wants and the TCP delivers it

complete and error free with high probability. TCP achieves this by trading

timeliness for reliability. That is fine for applications like email—no one cares

much if an email message is delayed for a few seconds provided it arrives intact.

However, it was clear to Antonio and others researching in the late 1990s that new

applications were on the horizon, many of which would not fit the TCP client–

server model at all well. Some, such as streaming audio and video, would not

tolerate TCP-induced delays. Others were abandoning the asymmetric client–

server model in favour of a more egalitarian ‘‘peer-to-peer’’ approach typified by
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file-sharing applications such as Napster. Yet another development, exemplified by

Antonio’s own research, turned the client–server model on its head by moving the

servers (‘‘agents’’) around the network in order to complete a task in the most

efficient way.

Today those anticipated developments have arrived with a vengeance. Tradi-

tional TCP-based applications now form just a small minority of Internet traffic,

perhaps no more than 15%, and most of that is world wide web. Streaming

applications comprise around 10% and much of the rest is peer-to-peer file shar-

ing—mostly of videos. (Things change so rapidly that in 12 months time these

estimates will all likely be wrong!) Just as the applications have changed, so have

the devices on which they run. The number of mobile phones in the world already

vastly exceeds the number of networked computers and, increasingly, these phones

themselves are on the Internet. Not only will there be hundreds of millions of them

but they will move about! Mobility brings its own set of problems: wireless

connections are subject to rapid changes in transmission speeds and error rates; an

IP address is no longer a reliable clue as to where in the world a host is located.

Plainly the Internet has already adapted somewhat to support today’s applica-

tions and host mobility. However, the adaptations have often been piece-meal, and

stresses and strains sometimes appear. Researchers today must not only look at

how better to adapt the Internet to today’s applications but must also anticipate the

huge changes that are, inevitably, around the corner. The authors of this book have,

between them, accumulated many years researching novel techniques for opti-

mising novel technologies within the Internet. They are well placed to understand

the problems that must be solved and what solutions might be feasible. They begin

by describing the key features of the Internet as it has evolved and the problems

that must be addressed if it is to become flexible enough to support today’s

applications and mobility. They then look at what further adaptations may be

needed within the Internet of the future. They do not make the mistake of claiming

to know precisely what will be needed. Rather, they have used their knowledge to

identify, as their subtitle makes clear, Six ways to upgrade the Internet. They

explain these upgrades with the aid of carefully chosen examples and illustrations.

The result is a book that will be of great benefit to students who wish to progress

from an understanding of what the Internet is now towards an understanding of the

motivations and techniques that will drive its future.

London, January 2011 Graham Knight

Department of Computer Science

University College London
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Preface

Through the eyes of billions of Internet users, we have learned how the ease of

communication can ignite phenomenal innovation. It is fascinating to witness the

new habits and social phenomena created by the Web. However, what happens

behind the scenes of our digital ecosystem? It is the network that moves our data

around, handles the peak-hour traffic and strives to smoothly deliver the audio-

video streams. Networks play a vital role in sustaining the unrelenting evolution of

the most demanding Web systems.

Networks have to keep up with unprecedented data volumes while adapt-ing to

new communication patterns or, rather, new kinds of traffic. Most applications are

now pervasive. We expect them to be accessible everywhere, without compromise.

We expect the same ‘‘look and feel,’’ and the same quality and functionality,

irrespective of any other technological constraints. Hence, many fear that the

emerging breed of pervasive applications will soon render the Internet obsolete.

As a matter of fact, a worldwide effort to reinvent the Internet is well underway by

the ‘‘Future Internet’’ research community.

Through our active involvement in the investigation and teaching of network

protocols, we have come to realize how difficult it is to grasp networking concepts

that exceed the horizon of TCP/IP (i.e., the Internet protocol). When it comes to

advanced network protocols, specialist literature abounds with creative proposals.

Yet, very few protocols manage to step out of the laboratory and into the com-

mercial world.

Perhaps our most ambitious task in writing this book was to extract a selection

of remarkable ideas from the scientific literature and make them accessible to the

non-specialist reader. Our book does not have the objective of embracing the

Future Internet, though it does introduce a series of network mechanisms that will

certainly find a place in the next-generation network. We propose six ways to up-

grade the Internet and make it more ubiquitous, reactive, proactive, information-

driven, distribution-efficient and searchable. In the final chapter, we offer some

considerations about the Future Internet, though we have resisted the temptation to

give any specific technical solutions.

ix



This book is self-contained and is meant for anybody with an interest in the

post-Internet era. We use the book to teach ad hoc networks and P2P networks in

our Communicating Systems course at the Technical University Eindhoven

(The Netherlands). You do not need to have a background in computer networks

because all necessary concepts are summarized in the first two chapters. We have

had to face the challenge of teaching networking to students who are not keen

mathematicians: our efforts are reflected in this book which does not contain

equations or mathematical formulations, but is enriched by examples and

illustrations.

Yet, this is not another book for ‘‘dummies.’’ Whoever has taken a classic

course in computer networks will find our book to be a useful tool for gaining a

deeper understanding of more advanced network mechanisms.

We hope that scholars in the field will find inspirational ideas within these

pages for their research.

January 2011 Antonio Liotta

George Exarchakos
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Chapter 1

On the Way to the Pervasive Web

Abstract Web applications bring about extraordinary breakthroughs regarding

our digital ecosystem. Pretty much anything with a chip and a radio interface can

connect to the Web. However, many advocate a complete overhaul of the Internet

as the only means to sustain innovation and productivity. Nobody knows what the

next-generation of the Internet will look like; though important clues are visible as

years of research have already generated phenomenal ideas. Together, we’ll bring

a range of network mechanisms ‘‘out of the lab’’ that can make the Net more

proactive, reactive, robust and, ultimately, more pervasive than it is today. Our

journey starts by scrutinizing the inexorable transformation of Web Applications

in order to unveil the intrinsic limitations of the Internet.

The value of a network is proportional to the square of the

number of communicating devices

Robert Metcalfe (inventor of the Ethernet)—1980

1.1 The Net, a Tool for Everyone

Just as in many other prominent technologies, networks exert a phenomenal

impact on people. We don’t need to look far to see how the Internet influences our

daily routine. The Net’s best incarnation, the World Wide Web, has become the

number-one instrument we can’t do without. Would you embark on a new trip

without consulting ‘‘mother’’ Internet for weather and traffic information? Can you

resist the temptation to seek a better fare online? Wouldn’t you feel ‘‘naked’’ if you

had to go through that important business meeting without the support of a
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Net-enabled laptop? Wiki fans, Twitters, and Facebook enthusiasts trust the Net

with their personal life. Let us not forget the realm of entertainment, gaming, and

video conferencing.

‘‘Always-on’’ networks make marvelous things possible. Web dictionaries,

e-encyclopedia, e-journals, e-books and all sorts of knowledge sources are

readily and ubiquitously accessible. Thus, a ‘‘stable’’ data connection can make

the life of a commuter less frenetic and even boost his productivity. As a matter

of fact, this book would have never materialized if it weren’t for dongles, hot-

spots, Skype, WiFi-enabled trains and … delayed trains—this is a commuter-

generated book!

Indeed, the Net is not the first life-changing invention. Electricity, the radio, and

the aircraft, for example, have made our lives brighter, more informed, and more

mobile. However, the Net is by far a more stimulating instrument: in the hands of

any ordinary user, it becomes ‘‘generative’’ [1]. The Net is a general-purpose

‘‘connectivity’’ machine. Its design doesn’t constrain the user in any way. On the

contrary, the variety of web applications that we see today has actually been

facilitated by the Net’s mechanisms.

Similar to other inventions, the Net hasn’t changed much after its original

conception. Although, the Net has a distinguishing feature: what we do with it (the

applications) has changed enormously. Even more strikingly, the Internet architects

never foresaw that video, audio and synthetic signals were all going to travel

through a global data network.

At its infancy, the Net was not meant to be used by the general public. The

growth rate of the last decade was unimaginable. A huge diversity has erupted in

terms of applications, terminals and mobility patterns. The data that currently

traverses local, metropolitan and wide-area networks is not of the same fabric as it

was just 10 years ago. Networks are no longer just for email and browsing. They

bear the load of file-sharing applications, Internet TV channels, video conferencing

tools and gaming platforms.

The latest Web applications stress the Net in a new way [2, 3]. It’s not merely

the sheer volume of data: their anatomy is radically new. In former times when the

only Net-killer was the email, data packets had a fairly relaxed life. Their delivery

deadlines were in the order of seconds. Today’s deadlines are in the area of

milliseconds! We are dealing with the same network architecture, though with

radically new usages trends. Yet, the Net is still functional, even several decades

after its first deployment.

This book is about network mechanisms. An exploration of some remarkable

research ideas reveals concepts that will make the Net more responsive, pervasive,

and even more ‘‘generative’’ than it is today. Yet, before we can embark on this

fascinating journey, we must meet two protagonists who are orchestrating the

destiny of the Net: The Web developers, who add unprecedented innovation to the

Net; and the Web users, with their escalating expectations that keep catalyzing

inventions.
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1.2 The Inexorable Transformation of Internet Applications

By its original conception, the Internet Protocol (IP) provides a simple yet

universal mechanism for data packets (or datagrams) to find their way between

terminals, even when those terminals are not directly attached to each other.

However, IP networks can only offer a best-effort packet delivery service or, in

other words, they don’t have any effective means to [4]:

1. secure upper bounds on packet delivery times;

2. ensure that all packets (within the same session flow) follow the same path

(from source to destination);

3. ensure that packets reach their destination in the same order they were sent;

4. guarantee that all packets are actually delivered.

Figure 1.1, in fact, shows a scenario in which a sequence of packets is sent from a

server (A) to a user’s terminal (B). IP networks divert traffic through alternative

paths in order to avoid congested spots. This approach has proven to work extremely

well for asynchronous or loosely-coupled applications where it’s not crucial to keep

source and destination in sync. Email and browsing are perfect examples of such a

category. As we all know, there is much more to this in the Internet realm.

Figure 1.2 gives a qualitative view of the evolution of Internet applications,

looking at four different dimensions. The first axis depicts the progression from

‘‘loosely-coupled’’ to ‘‘time-constrained’’ applications. The best-effort nature of the

Internet is a perfect match to email and browsing applications. As for the year 2010,

Internet packets take (on average) 1–200 ms to reach their destination, and get lost

with an approximate 8% rate (internettrafficreport.com). We can safely assume that

the retransmission of lost packets incurs a further fraction of a second. All in all, an

email might take, say, up to half of a second to be transported, i.e., an order of

magnitude greater than the theoretical minimum. Congested email servers typically

add precious seconds to the whole process. This means that the Net really is not

always the bottleneck. Furthermore, who would complain about (or even notice) a

1-s email-delivery time? The same line of thought can be applied to online browsing.

1234 12

3

4

34 3412

Server A

Client B

Fig. 1.1 A simple IP network
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Thus, our best-effort Net is perfectly geared to asynchronous applications that

operate on timescales of the order of seconds. Streaming music and video stresses

the Net with greater data volumes which have to be sustained for longer periods.

The mere process of adding bandwidth to the core network can only help to a

limited extent. The best-effort nature of the Net means that we still have packet

loss and retransmission delays. On the other hand, a satisfactory quality of

experience (by the watcher) demands a smooth video and audio delivery [5].

Application designers had to face a riddle: how to realize time-constrained

applications on top of a network that doesn’t acknowledge deadlines.

The Net behaves more like a lazy messenger than an Olympic athlete. Packets

get delivered ‘‘just on time’’ and ‘‘most of the time.’’ However, today we expect

much more than email delivery—we expect record breaking packet delivery. The

generative power of the Net has sparked a range of quick ‘‘fixes’’ (in jargon,

‘‘software patches’’) that make time-constrained applications tolerant to the Net’s

inefficiency. In fact, all those expedients have one important aspect in common:

they operate on the terminals at the edge of the network. No modifications to the

network core are allowed.

Perhaps the simplest and least ingenious trick is ‘‘edge buffering.’’ Instead of

playing-back packets as soon as they reach the receiver, we first reorder and buffer

them on the user terminal. It is only when the size of the buffer gets longer than the

typical network dynamics that we start the rendering process. Considering typical

Soft RT 

constraints

email

Browsing

CS streaming

Mobile TV

P2P VoIP

P2P gaming

P2P TV

Predictable traffic 

patterns

Unpredictable 

traffic patterns
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Applications
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Fig. 1.2 The evolution of applications towards pervasiveness
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landline network conditions, buffering a few seconds worth of video will be suf-

ficient to obtain a smooth video delivery.

Client–server (CS) streaming applications impose ‘‘soft’’ real-time constraints.

Notoriously, edge buffering and various other media-encoding tricks help to

absorb Net-related anomalies only up to a certain point. Lost packets will have

to be recovered within specific deadlines to prevent Quality of Experience (QoE)

degradation. Trade-offs are possible in order to tackle congestion, e.g., to

increase buffer size. However, not everybody is prepared to accept lengthy

buffering times.

Following the sparkling success of video streaming services, the next challenge

was to deploy telephony over the Net—in jargon, Voice over IP (VoIP). In VoIP,

we can still use edge buffering, but delivery-time constraints become much harder.

Normally (and unless one is being patronized by a tenacious speaker), a phone

conversation is a bidirectional communication process that becomes ineffective if

the end-to-end delay becomes greater than, say, half of a second. Thus, we have a

rigid upper bound on buffering time. Even worse, audio is less tolerant to packet

loss and jitter than video.

Once it was established that the Net could sustain both TV and telephony, the

step towards IP video telephony was short. Then, the challenge became keeping

audio and video in perfect synch, which resulted in further tightening of packet

delivery deadlines.

As new applications come to light, it’s clear that the trend is for harder and

harder real-time constraints. For instance, online games involve virtually unlimited

folks acting on the same scene, which has to be rendered consistently across the

board. However, different application components might have distinct require-

ments. Social networking platforms come with the ability to embed a myriad of

applications, ranging from loosely to tightly-coupled components. A ‘‘Tweet’’

(in Twitter.com) and a ‘‘Wall Message’’ (in Facebook.com) are less time-con-

strained than a ‘‘textual chat.’’ This is less critical than playing a video clip.

However, as we enter the realms of multi-party video conferencing or augmented-

reality games, we begin to push the Net beyond its limits.

1.3 The Application’s Mutiny

In the IP world, we can say that loosely-coupled applications are the good guys, as

they conform to the ‘‘best-effort’’ service concept. From another angle, we can also

say that the Net has actually been designed to multiplex the traffic of best-effort

applications. Thus, email and browsing are in the category of ‘‘network-friendly’’

applications (Fig. 1.2, 2nd axis).

When client–server streaming applications became popular, the issue of

‘‘network-fairness’’ arose. As more people trigger time-constrained packets, there

is a risk that a few voluminous flows will take over the Net. Protocols such as TCP

(Transmission Control Protocol) offer some (rather limited) means to encourage a

1.2 The Inexorable Transformation of Internet Applications 5



fair sharing of network capacity. However, theNet is not designed to police fairness

and, today, ‘‘bandwidth-hungry’’ applications have become commonplace.

If we observe what has been happening in the last few years alone, there is a

clear divergence between application requirements and what the network can

actually sustain. In fact, there is a clear trend towards ‘‘network-agnostic’’ appli-

cations. These operate under the assumption that the Net is always able to

(somehow) provide a ‘‘bit-pipe’’ from any point to any other point. Hence, the

application developer has set himself free from the need to make compromises

with the Net, focusing on the fabrication of new interaction paradigms.

The step from ‘‘network-friendly’’ to ‘‘network-agnostic’’ applications repre-

sents the apogee of the Net’s generative power. It has led to outstanding devel-

opments, even original forms of communication paradigms—new ways in which

people interact. The phenomenal impact of social networking, user-generated

content sharing and virtual-collaboration tools is well known. Today, the multitude

of free online tools exerts an unprecedented social influence. People announce

their wedding on Facebook and, then, share their best honeymoon moments online.

Thanks to recommendation platforms such as TripAdvisor, sloppy hotel managers

are publically ‘‘named and shamed’’ by frustrated customers. Ordinary people sell

virtual objects in Second Life, giving new breath to their business creativity.

The ‘‘social network’’ revolution has also brought inconceivable distress to

some incautious people. A teacher can lose her job for simply publishing a single

‘‘unorthodox’’ photograph online. Successful companies can be put out of business

by unscrupulous competitors who can play dirty with the eBay reputation system.

Let us set aside the marvels and nightmares of the Web phenomenon in order to

return to the Net. Let’s pick a prominent example of a network-agnostic appli-

cation and examine its impact on the Net. Peer-to-peer TV (P2P TV) adopts a

clever trick to distribute TV content over the Net on a massive scale [6]. Instead of

using individual channel servers which have limited capacity, P2P TV platforms

use the viewer’s computers to relay the stream to other viewers.

Figure 1.3 gives a first impression of a typical P2P TV system [7–10]. In this

particular scenario, we assume that the stream originates from the server of a

broadcasting company (Fig. 1.3a). Other systems actually allow user-generated

content, though are not substantially different. Once the stream has reached a

number of user terminals, these keep a copy of the stream in store and form a

distribution network (Fig. 1.3b, c). Those terminals can both ‘‘stream in’’ and

‘‘stream out,’’ and are thereby termed peers.

What are the benefits of this approach? Thanks to the collaboration among

peers, P2P TV avoids the concentration of load around the TV broadcasting

server. The P2P distribution mechanism is considerably more scalable than its

client–server counterpart. From the user’s perspective, P2P TV is certainly a

good invention.

Let’s change our approach: what do Internet Service Providers (ISPs) and

Network Operators (NOs) have to say about P2P traffic? Does P2P TV make an

economic use of the Net? Scientific rigor would involve an extensive scrutiny—

new P2P TV platforms come out like ‘‘mushrooms in September.’’ Nevertheless,
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for the sake of simple argumentation, let’s catch a glimpse of Joost

(www.joost.com).

Figure 1.4a gives a snapshot of the distribution of traffic sources and destinations

recorded for 1 h in 2009 [11]. The test was carried out in a laboratory located at

Colchester University, United Kingdom. Thus, one would imagine that most of the

traffic would hang around the southeast of the UK. By contrast, the test revealed that

only 21% of traffic originated within the UK boundary, with a good portion coming

all the way from Canada (15%) and South Africa (10%). This is not good news for

ISPs, as the cost to transport bits across continents is considerably high.

The bad news doesn’t end here. The P2P paradigm involves more than just

‘‘getting’’ content. It’s also about ‘‘contributing’’ content. Our test-site gathers

content from some computers and, at the same time, relays stream chunks to other

TV viewers. Imagine a child watching ‘‘Felix the Cat’’ in Essex, UK. According to

Fig. 1.4a, b, there is a good chance that the stream comes in from Canada

(15% probability) and is relayed out to the computer of another child who is sitting

in Australia (23% probability).

Intuition suggests that it would be better to keep the stream within the UK

border. Yet, like many other P2P platforms, Joost strives for ‘‘scalability’’ more

Broadcasting
Server

(a)

(c)

peer A

12

34

peer B

(b)

peer A
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2

peer C
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peer Bpeer A
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56 3

peer C

1

3

12

2

34

peer D

2

1

Broadcasting
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Fig. 1.3 Peer-to-peer television over a wireline IP network. a Peer A has buffered chunks 1 and
2 of the video stream. b Peers B and C obtain the first two chunks from peer A, rather than
resorting to the broadcasting server. c Peers B and C get subsequent chunks from peer A. Peer D
gets chunks 1 and 2 in parallel from peer C and peer B, respectively
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than it pursues network efficiency. If the platform put restrictions on the choice of

inter-communicating peers, we would end up with localized clusters of peers,

whereas the maximum scalability in P2P is achieved on a global scale.

Achieving a sustained quality of the TV stream is not straightforward when the

network is ‘‘best-effort’’ and the peers are ‘‘volatile.’’ If the child is streaming

‘‘Felix the Cat’’ from a Peer sitting in Canada, what happens if, halfway through

the program, the source computer is switched off? An effective strategy is to get

the stream from multiple peers. Therefore, if one source disconnects, we don’t lose

the channel.

We can’t predict when peers disconnect, though we can play a statistical game.

We keep the set of peers as large as possible; we always stream from multiple

peers; and we keep changing the sources. For this approach to work smoothly, we

must distribute the traffic as much as possible [12].

This simple P2P TV example underlines the increasing divide between those

who design Web application and the companies that operate the Net. Here is some

food for thought thus far:

1. Emergent applications are evolving into the realm of new interaction paradigms

that are not always ‘‘network friendly.’’

2. The other perspective is that networks don’t offer ‘‘native’’ support to new

communication paradigms.

3. History tells us that after the IP network revolution, networks have followed an

‘‘evolutionary’’ path, whereas applications continue to experience ‘‘revolu-

tionary’’ steps.

Thanks to the ‘‘generative’’ feature of the Net, Web developers may soon come

up with even more revolutionary applications. Yet, the best-effort Net might not be

able to sustain them. Our best guess for the future is that the next-generation of

Web applications will ‘‘blend’’ with the Net. Perhaps the next paradigm shift will

surpass the hurdles of the current ‘‘network-agnostic’’ Web.
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11%
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Italy
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Germany

5%
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Fig. 1.4 Network agnosticism in a popular P2P TV platform. Geographic distribution of a traffic
sources and b destinations (Source [11])
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1.4 Everything on the Move

Thus far, we have examined the emergent Web applications and how these tend to

diverge from the existing capabilities of the Net. Web users are the other important

protagonists. Our expectations from the Net keep rising [13]. We want to embrace

the power of the Web when we are in the office, at home and while we move from

one place to the other. However, the Net was not geared for mobility.

The original IP world was absolutely stationary. In the 1990s, one would have

to obtain a unique IP address and machine name before joining the Net. The IP

address was bound to a specific network access point. Thus, if you wanted to move

a computer from one building to the next, you had to obtain a new IP address.

Stationary IP networks are topologically more static. Hence, it’s much easier to

stabilize them.

Wireless and cellular networks make the Net substantially more dynamic and

transient. Mobile networks extend the early IP without changing its design. They

‘‘patch’’ the Net with edge mobility without improving the core architecture.

This ‘‘evolutionary’’ (patching) approach seems to work satisfactorily for loosely

coupled applications. Relaxed delivery deadlines allow sufficient time for the Net

to keep track of mobile terminals.

On the other hand, time-constrained applications and the P2P interaction par-

adigm strain the mobile Net to the utmost. Figure 1.5 depicts a ‘‘mobile’’ CS

streaming scenario to exemplify the issue. In snapshot Fig. 1.5a, a streaming

session is well underway. After the terminal handovers to a new access point, the

network takes some time to re-compute the new destination. A plain IP Net would

take anywhere from minutes to hours to detect that Client B has a new IP address.

This would leave Client B with no other choice but restarting the streaming session

from scratch. More hints on ‘‘patches’’ that can accelerate handover will be given

in Chap. 2. However, due to intrinsic design limitation, a plain IP network won’t

be able to perform instantaneous handovers. Thus, packets will always be lost in

the process, as sketched in Fig. 1.5b.

With the P2P interaction paradigm, mobility becomes even more problematic.

By contrast to the CS scenario (where at least the servers stay put), with P2P,

everything can potentially move (both the ‘‘data source’’ peer and the ‘‘data sink’’

peer). Keeping track of mobile peers is a nightmare; it’s practically impossible

with current technologies.

As of 2010, network technology is just not able to combine mobility with the

P2P paradigm (genuine mobile P2P TV is a futuristic concept). The same is valid

regarding time-constrained web applications. Thus, today we have already reached

a severe limiting factor that might delay the invention of new Web paradigms.

On the other hand, the digital ecosystem of the ‘‘always-connected’’ society

demands for ever-increasing degrees of mobility (third axis of Fig. 1.2). As of

today, we have gone past the era when people were constrained to landline access.

High-speed cellular networks provide a fairly stable connection in the most

inhabited areas—provided that we do not travel too fast. Cellular networks are
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getting better, although ubiquitous access is still a chimera. Yet, even if 1 day we

reach the goal of ‘‘always-on-everywhere’’ connectivity, the structural limitations

of the IP mentioned above will still have to be overcome.

Eminent technologists, researchers and policy makers are now facing a

daunting dilemma: is the Internet going to sustain the combined strain of mobility

and real-time applications? In other words: will the ‘‘Internet patching’’ Internet

patching approach suffice or do we urgently need to re-think the Internet?

1.5 New Interaction Paradigms Emerge

The 4th axis of Fig. 1.2 identifies another issue that has to do with the dynamics of

traffic patterns in the Net [14]. In the original IP design, the Net merely ships one

packet after the other, from source to destination. The main concern is to keep the

network core as simple as possible. Thus, the Net is dumb machinery that treats

packets as one would treat hot potatoes: the priority is to get them out of your

hands.

In the scenario of Fig. 1.6a, the Net is unaware that two users, Clients B and C,

are getting the same sequence of packets (in jargon, ‘‘data flows’’). The Net has no

Server A

Client B

(a)

(b)

4

Server A

Client B

4

1

Fig. 1.5 Handover between different networks. a Client B has established a streaming session
with the server. b The client’s handover causes a session break up. Packets 2 and 3 which were on
their way to the previous access point are deemed to be lost
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means to detect the unnecessary duplication of packets. In fact, a much more

efficient distribution mechanism would be that of Fig. 1.6b, where packets are

duplicated only when strictly required. Yet, to the eyes of the Net, a packet is just a

collection of bits. It’s not possible to detect transmission patterns that would help

to optimize the entire process.

Further along in the book, we’ll see several networking tricks to improve the

efficiency of data distribution. In essence, if we can determine the relative location

of clients and servers, we can also build optimal distribution paths such as the one

of Fig. 1.6b.

For now, let’s get back to the issues of the emergent applications. The ability to

engineer network mechanisms that can take advantage of usage patterns such as

that of Fig. 1.6 is considerably diminished by user mobility. The data distribution

path will have to be recomputed every time Client B or C moves. Obviously, the

better the network can track (or even predict) the location of clients, the easier it

will be to optimize the stream-distribution tree.

As applications become more network-agnostic applications, their traffic pat-

terns become even subtler. Recall what was found about Joost and its statistical

handover: traffic sources are continuously forced to change in order to spread the

load among peers. This leaves the Net with a genuine disability: a network that

can’t recognize its own usage patterns will have a very limited ability to cope with
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Fig. 1.6 Stream distribution mechanisms in an ordinary wireline IP network. a Multiple unicast
transmission; b Multicasting transmission
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P2P applications. The trend is for very dynamic traffic and usage patterns: bad

news for the IP architects.

1.6 The Scent of Pervasive Applications

The word ‘‘pervasive’’ is central to this book; so what’s a pervasive application?

Let’s borrow a couple of definitions from the dictionary to seek a first sense of

inspiration. ‘‘Pervasive: spreading widely through something’’ (Oxford Dictionary)

and ‘‘having the quality or tendency to pervade or permeate’’ (Dictionary.com).

Web applications reflect these definitions—they spread through the Net. Thus, by

the rigor of logic, we must conclude that an application can truly manifest its

‘‘pervasiveness’’ only if the Net itself (the vehicle that brings the application to its

user) is ‘‘pervasive.’’

This is still vague and abstract. We need a more pragmatic proposition. Within

the more specialist literature, we find ‘‘pervasive computing,’’ ‘‘pervasive net-

works’’ and ‘‘pervasive services;’’ but the scientific community has yet to agree

about a common definition. Is this perhaps a sign that we are at the fringe of a

technological revolution?

When scientists have a feel for something that is looming, they work around

themes, properties and keywords. The most frequent ones found in specialist

articles include: ‘‘seamless,’’ ‘‘ubiquitous,’’ ‘‘adaptive’’ and ‘‘context-aware.’’

Currently, Web applications are ‘‘network-neutral’’, they work on top of any

network, be it a fixed, wireless, cellular or satellite Net. As for the ‘‘network

agnosticism’’ of P2P TV and other similar applications, these work ‘‘on top of’’ the

Net, not ‘‘within’’ the Net. They exert a phenomenal impact on the Net, which is

far from being ‘‘seamless.’’ Pervasive applications should work in tandem with the

Net instead of contrasting its operation. Thus, looking at the status quo of Web

applications, there is significant scope for improvement. One day pervasive

applications will ‘‘seamlessly’’ blend with the network. The two will be in such a

harmony that they might even become indistinguishable.

The second property we picked was ‘‘ubiquitous.’’ According to the dictionary,

this is a synonym of ‘‘everywhere.’’ Web applications meet this definition if we are

content with the level of reach ability of the Internet. Today, provided that we have a

decent computer and Internet connection, we can reach a server ‘‘most’’ of the time.

Streaming quality is ‘‘mostly’’ acceptable if we agree to downgrade our expectations

now and then. If the quality is not good enough, we just try again later. The whole

infrastructure offers best-effort services so we can’t get a truly ubiquitous experience.

Pervasive applications must be available all the time, everywhere, without

compromise. Users must get the same ‘‘look and feel’’ regardless of which ter-

minal or network access point they are using. The network will provide ‘‘adaptive’’

real-time constraints in the sense that it will understand the overall user’s context

(context awareness) and assist the application in delivering a uniform quality of

experience (QoE).
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If ubiquitous accessibility is an important property, then we also have to live

with the idea that the traffic patterns of pervasive applications will be erratic.

Today’s networks are simply not able to make sense of what happens at the

application level and don’t have the means to offer a ubiquitous quality of service

(QoS) when traffic sources and sinks are unpredictable.

In the journey towards pervasiveness, the destinies of applications and networks

are intertwined. The four dimensions of Fig. 1.2 are spiraling towards unpredict-

able heights. Perhaps, completely new kinds of applications might appear if the

next-generation network is to be intrinsically pervasive. Therefore, when we think

about future networks, we shouldn’t merely look at present applications [1]. In

fact, policy makers and scientists across the world are now working on the

assumption that current networks are limiting the ability to generate new appli-

cations and, with it, new business opportunities.

1.7 The Billion Dollar Question

If we had the ability to re-invent the Internet and replace it overnight, what would

the next-generation network look like? The European Seventh Framework

Research Program alone has allocated over €0.5 billion to find an answer to this

question [15]. Forty-six research projects (for a total of €200 M) have started

during the first quarter of 2008. Similar initiatives are well underway across the

world (i.e., FIND and GINI in the US).

The next decade promises to deliver multiple, creative and (why not) con-

flicting answers to this fundamental question. Though, we’ll have to wait a bit

longer for the new recipe, the new Internet and the new catalyzers. Until then (and

it might be a long wait), we thought it would be more constructive to reflect on

some remarkable research ideas, bringing them out of the lab. In this book, we

make a selection of noteworthy network mechanisms which have the potential to

play a role in future networks. The aim is to familiarize the reader with methods

that go beyond the plain IP world.

At the time of writing, there was a frantic attempt to forecast what the Future

internet will look like, what it will and will not do. Company evangelists talk and

write about our prospects, how the future Net will manage to support the needs of

the ubiquitous user. Nobody holds ‘‘the’’ answer yet. Though fortunately, years of

research in communication and networks have generated phenomenal ideas. Vital

clues are already around us. Together, we’ll unveil some of those clues, revisiting

concepts and network mechanisms that will probably make it to the future. We’ll

see how to build networks that don’t need any infrastructure; how networks can

become more proactive, more reactive and more robust.

Our journey towards the ‘‘Pervasive Web’’ starts from the Internet. Chapter 2

catches a glimpse of the fundamental mechanisms that govern the Net, bringing

relentless progress to our digital ecosystem. We’ll revisit the mechanisms of the

Net with a critical eye in order to better understand its intrinsic limits. Only then,
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will we be ready to explore mechanisms that can further enhance the pervasive

nature of the Net.
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Chapter 2

The Network, As We Know It

Abstract If you aren’t a network guru and have no interest whatsoever in

becoming one, though still wonder how the ‘Net’ works, this chapter will provide

you with a number of precious answers. Together, we’ll revisit the hectic journey

of a data packet from the time it’s conceived by an Internet server, until its destiny

is accomplished in your computer. As with messengers, packets carry valuable

information. Their purpose in life is simple: to find the best path to their addressee.

However, in a network entangled with billions of links, how does your packet find

its way through? How can streams of packets be delivered on time? You will

appreciate the mechanisms that keep the network connected and stable. To those

who are not network specialists, this chapter will provide all the elements required

to tackle the more advanced networking concepts introduced in the rest of book.

You will read about routers, packet switching, data buffering, message forwarding,

the wonders of Dijkstra’s algorithm and the tricks used to keep mobile terminals

connected.

What happens depends on our way of observing it or on the fact

that we observe it

W. Heisenberg, theoretical physicist (1901–1976)

2.1 The Multiple Facets of Networks

Networks and applications are complex systems where numerous actions and

responses take place. Digital objects, components and alarms communicate, interact

and interfere in the virtual world. Remote events are often interlaced: for instance,

a web application, a mobile browser, and an IPTV client all rely on servers and

become unresponsive when those servers are unreachable or overloaded.

A. Liotta and G. Exarchakos, Networks for Pervasive Services,
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However, we have all experienced how the communication patterns and, with

them, the complexity of the latest web applications are changing. A mixture of

synchronous, asynchronous and virtual interaction paradigms characterizes the

emerging social networks. Different people use Facebook (facebook.com)

or Second Life (secondlife.com) in entirely different ways. The same applies to

P2P file- or stream-sharing systems such as BitTorrent (bittorrent.com) or Joost

(joost.com). New web applications relentlessly emerge every day. New collabo-

ration and interaction paradigms will materialize. The strain on the network is

inevitably becoming unbearable.

With these premises, it’s no surprise that the Internet, the Web and their

applications have grown into one of the most complex engineering beasts. Before

we can think about the future of the Internet, what we would envision it to look

like (Chap. 3) and how we might get there (from Chap. 4 onwards), we should

revisit the current scenario.

Internet systems are complex; they involve network operators, service pro-

viders, broadcasting enterprises, application developers. They require varied and

specialist skills to develop system components including hardware, software,

middleware and underware (the latter not to be confused with French lingerie).

Bookshops are inundated with relevant literature for professionals, consultants,

programmers and ordinary people. Is it, nevertheless, possible to understand the

essential features, mechanisms and deficiencies of the everyday Internetworked

systems? Chapter 2 takes on this challenge.

We can’t follow the classic engineering textbook approach [1–3], which would

certainly require an encyclopedic tour de force. Let’s try a new method based on

perspectives and granularities. Networks are multifaceted. Depending on who is

looking at them, a diversity of features arises. Ordinary users don’t (and wouldn’t

want to) see the internals of network protocols. Mostly, they care about gaining

access to their web applications and experiencing a high-quality service. A smooth

quality of experience (QoE) is the result of multiple factors belonging to separate

technical domains, ranging from physics (the communication channel) to control

(channel sharing policies), but also management (network path and topology),

programming (application design), electronics (capability of the user’s terminal)

and usage patterns (what people actually do on the Net) [4]. In this chapter, we

revisit some of these facets and thereby identify three fundamental principles that

govern current networks. Towards the end, you will wonder whether those prin-

ciples are now starting to crack under the increasing pressure generated by the

latest Internet applications.

2.2 Networks from the Eyes of an Ordinary User

The beauty of the Internet is that any ordinary user is able to use it productively.

It isn’t necessary for people to understand its internals. There is no need to know

that the information travels across in the form of data packets (collection of bits
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and bytes); one must not realize how those packets find their way from a server to

your computer and the other way around. The browser and a few search engines

connect you with the right server, application and data.

Depending on the type of web application they wish to employ, Internet users

will see the Net as schematized in Fig. 2.1a or b. respectively. In the case of

Client–Server (CS) applications [5], the interaction is mostly between human and

machine, the web browser and one or more servers (a). To buy books online,

Antonio fills up the basket of an e-commerce site. This will, in turn, redirect him to

the secure transactional payment server of his bank. Being an ordinary user,

Antonio won’t need to know precisely how his credit card details are encrypted

and routed to the bank’s server and, then, relayed to the e-commerce site. If

Antonio is in a phase of his life where he still trusts banks, all he cares about is a

confirmation email which includes the transaction details.

The time of mere human-to-machine communication is over. Millions of people

use the Net in more inventive ways. People communicate directly with little or no

mediation via servers. Lisandro is again on the move between Brazil and Ecuador;

Antonio is visiting his colleagues in Enschede, on the border between the

Netherlands and Germany; George is back in Greece for a family reunion. How are

Other server

Antonio

(a)

(b)

E-commerce server Bank server

Login

servers

Antonio

Lisandro George

Fig. 2.1 A network seen from the eyes of an ordinary user. a In the Client–Server mode of
operation, people have the impression that they are directly connected to any of the public
Internet servers. b Using P2P programs, people have the impression of a full-mesh connection
with anything on the Net
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they going to continue writing their book? Not a problem! There is broadband and

a few P2P programs. They can directly communicate, for instance, via the video

conferencing program Skype (www.skype.com). Following an authentication

procedure (login servers), audio and video communication is server-less

(Fig. 2.1b). Windows Live Synch (sync.live.com) supports shared document

editing; several other programs will provide an online whiteboard plus incremental

backups.

Antonio, Lisandro and George can make a productive usage of this fully

meshed network. From their viewpoint, everything is connected to everything else.

However, can you imagine a network connecting billions of people via dedicated,

direct links? It is certainly not a viable proposition.

2.3 Invite a Programmer to Understand What’s in the Cloud

Just like telephone networks, computer networks rely on switching devices to

enable communication between terminals that are not directly connected

(Fig. 2.2a). The billions of computers attached to the Internet are just a few hops

away from each other thanks to a core switching and forwarding network. George

connects to a remote IPTV service in order to watch the Sunday football high-

lights: a video stream is packetized on the server. Then, each packet has to find its

way to George’s terminal (Fig. 2.2b) where the stream will be reconstructed and

rendered on screen.

However, George is not alone in this world; chances are that many more people

will require those switches to forward other packets. Switches have finite capacity;

links have finite bandwidth. Thus, there is a concrete possibility that at some point,

as more users share portions of the network, resource contention will become an

issue. While George is still busy watching football, Lisandro initiates a Skype

video session with Antonio (Fig. 2.3a). George streams at high definition (packets

1–3), filling up the capacity of the Sb–Sc link. Hence, Lisandro’s packets (4–6)

have no other option than queuing up on the buffer of Sb (Fig. 2.3b), with detri-

mental consequences for his chat with Antonio.

Packet switching, buffering and forwarding from source (e.g., server) to des-

tination (e.g., user terminal) are the fundamental mechanisms that keep people

connected on the Internet. The applications that run on our computers can’t ignore

the fact that, because network links and switches are ‘‘shared’’ resources, sooner or

later, contention will affect the packet delivery process.

Contention at switch Sb will cause packets 4–6 to be held in the switch’s buffer.

Buffering tries to keep all active connections alive; though, it causes other troubles.

End-to-end communication latency increases. When packet delivery takes more

than a few dozen milliseconds, Lisandro’s video frames will be cluttered with

pixelation. If the contention doesn’t quickly subside, Sb will soon run out of buffer

space and be forced to discard packets. Now, entire frames will have to be skipped;

the video loses its smoothness and eventually goes out-of-sync with the audio.
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Further delay and packet loss will finally affect the audio quality and lead to a

communication breakdown.

Application developers must design Internet applications that are resilient to

communication latency (end-to-end delay), latency variations (jitter), packet loss,

and out-of-order packet delivery [6]. Special protocols such as the Transmission

Control Protocol (TCP) operate on the network edge (i.e., run on the terminal) to

keep senders and recipients in synch, re-order packets and demand the retrans-

mission of dropped packets [1]. However, all these operations increase transmis-

sion latency from one end to the other. Also, when packets are dropped due to

excessive congestion, retransmitting them is not always the best thing to do.

Depending on the type of application, tolerance to communication impairments

may only be achieved to a limited extent. IPTV and video-on-demand (VoD)

services are handled more easily [7]. First, a good chunk of the video stream is

buffered onto the computer. Then, playback is realized locally. These applications

have found a way around network contention problems, though they are promi-

nently bandwidth-hungry.

Applications such as video conferencing are more problematic [8]. In this case,

it’s imperative to meet precise packet delivery deadlines. This is getting increas-

ingly difficult because the Internet is a best-effort network. There are no
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George

4
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Fig. 2.2 Switching of data packets
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mechanisms to enforce specific packet delivery deadlines. There aren’t even

guarantees that all packets are actually delivered. All in all, this approach has been

working fine until now because the Net has been designed with redundancy in

mind—any two points are reached via multiple paths. However, are things getting

worse? At the time when this book went to press, the typical end-to-end trans-

mission time was in the range of 120–140 ms; the typical packet loss rate was in

the order of 8–10% (internettrafficreport.com). As new services push multimedia

streams through this best-effort infrastructure, the situation is bound to deteriorate.

Application programmers can no longer avoid working in tandem with network

designers and multimedia specialists to overcome the challenges posed by the

emerging bandwidth-hungry services.

2.4 A Network Engineer to Turn a Switch into a Router

What is inside a switch and how can this remarkable device help to distribute

packets more evenly across the network? As with ordinary light switches, network

switches need a trigger to change their status. Each and every Internet data packet
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carries its own destination address. The trick is to match this information against the

network load in order to determine how to switch the packet at each intermediate

node. Ideally, every packet should be routed in such a way as to avoid the situation

of Fig. 2.3, where some links get congested whilst others are underutilized.

One must first replace the simple switching devices with proper Internet routers

which are able to perform more than just simple switching functions [9]. They

have the ability to automatically control the switching process, adapting it to the

dynamics of the whole network. Routers connect terminals to networks; though

their primary task is to interconnect networks with other networks (Fig. 2.4). In

this way, routers provide the fundamental vehicle to transfer data beyond the

boundary of individual networks.

Before we can understand how a packet is delivered from end to end, let’s

follow its maneuvers inside the router (Fig. 2.5). Once a packet reaches the input

port of a router, its destiny is to sit in the local memory buffer while the existing

population of packets is being digested. Then, the router extracts the packet’s

network destination address and matches this information against its own routing

table. We are now looking into router Rb; it’s the turn of one of George’s IPTV

packets. The network destination address is N3. The routing table tells us that the

packet must be forwarded via output port Out3 (Fig. 2.6a). We also get an esti-

mation of the distance to George’s terminal; though this information is not utilized

at this point. The router now ejects the packet via Out3 and is ready to pick another

packet from the input buffer.

Likewise, the scenario of Fig. 2.3, a video call between Lisandro and Antonio,

hits the router. In this case, the destination network is N2. However, the corre-

sponding next-hop address entry in the routing table (Out3) puts the stream right

onto the same output line as George’s. Looking at Fig. 2.7a, we can see that the

link between Rb and Rc has become the bottleneck. At the same time, there is an

alternative path between Lisandro and Antonio (Rb ? Re ? Rc ? Rh) that would

bypass the bottleneck. If only we could manipulate Rb’s table, changing the second

row as in Fig. 2.6b, we would achieve a nicely load-balanced network (Fig. 2.7b).
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The routing tables steer packets throughout the network. Simple manipulations

of those tables help to reduce resource contention. Nevertheless, who is in charge

of the tables? It is certainly not human operators. The Internet is far too big and

dynamic. Each router has full control of its own table. Based on information

gathered from other routers (the signaling lines of Fig. 2.5), a router periodically

self-optimizes its table, striving for an even distribution of network traffic. We

must borrow the skills of a computer scientist to understand how this is realized.

2.5 The Computer Science of a Router

Route computation takes place in the background and in parallel to the store–

match–switch–forward process. There are different ways to go about it. Let’s start

with the Distance Vector (DV) routing protocol (DV is just another name for the

routing table) [1]. When a router starts-up, its table is empty. Through the network

interfaces, the router can sense its neighbors. Every router periodically sends its

DV to the neighbors, which provides information about the neighbors’ neighbors.

In this way, after a few table exchanges, every router receives information about

every other network.

Let’s follow the table creation process for the network of Fig. 2.8a. There are

four sub-networks (labeled N1–N4) and nine routers (labeled A–F). At start-up
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time, each router only knows about its own network (Fig. 2.9). The tables of

routers A, B, C, D and E are empty because they are not directly attached to any

network. At every table exchange, routers receive tables from their neighbors

(Fig. 2.8b) and use this information to learn about networks that sit beyond their

immediate horizon. The table update process takes place continuously and

involves very large tables. Thus, this process must be computationally simple.
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Figure 2.10 illustrates how router B gets to learn about the existence of network N1

after just one table exchange. The tables received from A, C and E are empty at

this stage. Thus, B can’t acquire any new information from those routers right

now. Luckily, G has some useful information: it knows about network N1. The

distance between G and N1 is zero, indicating that the network is directly attached

to router G. However, G is one hop away from B and, thus, the distance between B

and N1 will be equal to 1 hop if packets are forwarded via G. In computational

terms, this is a very quick algorithm, requiring an incremental function and a

comparison between integers (the distance field in the old table and the new one).

Figure 2.11 shows the tables after the first table exchange-update. At this point,

not all networks have been discovered (many table entries are still empty).

However, the process continues indefinitely. After further iterations, the tables will

look as in Fig. 2.12; then, Fig. 2.13; and finally, Fig. 2.14 (full convergence).

Our network is now stable and operational, and will forward packets between

networks N4 and N3, and (in parallel) between N1 and N2, as shown in Fig. 2.15.

Compare these new paths with those depicted in Fig. 2.7. Which configuration is

more efficient? The two streams now travel through much shorter paths. The

‘‘N4-to-N3’’ stream now visits four (rather than five) routers and at least 20%

of time is saved. The ‘‘N1-to-N2’’ stream traverses three (rather than four) routers:

a minimum of 25% of time is saved. Remarkably, these new paths are totally

disjoint, reducing the probability of contention and packet loss at router B.

Real networks are vulnerable to hardware failure and congestion. DV routing is

simple and efficient. Yet, how robust is a DV network? Two examples will help to

identify the strength and weaknesses of DV. First, let’s break the link between E

and D. The causes for this failure may be varied. Perhaps E has a hardware fault or

requires re-booting. It might be that heavy traffic is hitting the link, causing

congestion. One way or another, router E detects that its neighbor, D, has become
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unreachable. For instance, the DV table from D fails to arrive. Router E takes

immediate action. It can’t afford to forward packets to D, knowing that these will

be dropped. Luckily, both B and C have a valid path to N3. Router C can do better

(2-hop distance); therefore, the table update will take place as shown in Fig. 2.16,

bringing the system back to stability.

A second example will now show that, unfortunately, DV is not able to recover

from various failures. Suppose that the link B ? G breaks. The subsequence of

events is depicted in Fig. 2.17. Before the failure, router B has an entry indicating

that N1 is reachable via G in one hop. However, on the first table exchange that

follows the failure, B doesn’t hear anything from G (since the link is broken). The

distance to G is thus set to infinity (?). Router C learns that E has a 2-hop route to

N1 and updates accordingly. At the same time, E learns that C has a 2-hop route to

N1 and updates appropriately.

On the second table exchange, this misunderstanding continues. B thinks that

the 3-hop route offered by C is valid and incorporates it. C has a 3-hop path relying

on E. Therefore, when router E sends the new table showing that its own distance

to network 1 has increased, router C has to raise its distance parameter too. The

same applies to C. After three exchanges, all distance parameters go up to five.

This degenerative process is inexorable and retains the network in an endless loop.
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This situation is known as the ‘‘count-to-infinity’’ problem. In fact, all routes to N1

are invalid but individual routers don’t know it. They just keep counting.

DV is a protocol that addresses a global problem (building routes from any

network to any other one) with an eminent strategy. Each router plays a part in

solving the riddle by carrying out elementary actions (counting and matching).

However, DV is the victim of its own simplicity. When networks become large

and dynamic, DV is not up to the job. Apart from the count-to-infinity syndrome,

can you imagine what happens to those tables as new networks join the global

Net? Huge tables will have to be periodically exchanged and reprocessed, with

detrimental consequences for both the Net and the routers. This is why the global

Net has eventually given up DV for a more controllable approach.

2.6 Simple Math to Stabilize the Net

In the 50s, Dutch mathematician Edsger W. Dijkstra was looking for the best way

to travel between different computer circuitries. In those days, computers were far

bigger and hotter. Dijkstra’s shortest-path algorithm offered a way to convey

electricity to all essential components in the most economical fashion. Ironically,
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Dijkstra’s algorithm has laid the foundations of modern computer networks.

We now explore a new technique that overcomes the limitations of DV routing and

helps to stabilize dynamic networks.

A big problem in DV is that network-status information propagates slowly

and inefficiently. Each router periodically sends its own table to the neighbors.

So when something changes around a router (e.g., congestion or failure), only

the immediate neighbors are quickly informed. It takes a number of periodic

updates before the other routers adapt their tables. In the meantime, the network

operates sub-optimally. Also, let’s not forget about the count-to-infinity

problem.

In Link State routing (LS for brevity), each node talks to all other nodes,

ensuring a much faster response [1]. Every router probes the health of its own

connections and creates an ‘‘update’’ packet, the Link State Packet (LSP). The LSP

contains a list of directly connected neighbors and their distance (or cost). Unlike

DV, LS routing broadcasts LSPs, which ensures that any localized network change

reaches all other sections immediately. Another advantage is that LSPs are much

smaller than DV packets. LSPs only have one entry per network interface. For

instance, in Fig. 2.18a, the LSP of router A will have three entries, the LSP of

router B will have four entries and so forth.
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Once a given router has a copy of the LSP from every other router, it is able to

compute the best route to each destination thanks to the algorithm that Dijkstra

invented in 1956. In his dissertation, he describes the procedure in graph-theoretic

terms. If you are not a mathematician, Fig. 2.18 might come in handy. We start off

with a simple network (a). It is worth noting that although the topology is the same

as in the other examples within this chapter, here, links have a ‘‘cost’’ label. This

reflects the distance between adjacent nodes. Though also, it indirectly reveals the

level of congestion of the link. As traffic increases on the links, so does the cost.

The higher the cost, the more urgently we need to find diversions.
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Every router runs the same algorithm. Let’s just follow the subsequence of

events in router F. The program maintains two separate lists: the list of ‘‘tentative’’

paths and the list of ‘‘confirmed’’ paths. The entries of those lists are formed as

{destination, next-hop, cost}.
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• Status just before Step (b) At the very beginning, the confirmed list contains

only the entry {N4,–,0}: network N4 is directly attached to router F. The ten-

tative list is empty. Now, it’s time to start exploring the shortest path available

until a better alternative is found.
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• Step (b) There is only one path to router A (cost 2); therefore, entry {A,–,2} is

added to the confirmed list.

• Step (c) Two alternatives appear; we follow the shortest path. Entry {E,A,4} is

added to confirmed list (no better alternatives can ever be found); entry {B,A,7}

is added to the tentative list (it might be that a better path will be discovered via

router E, but we simply can’t be sure at this point).

• Step (d) Path {B,A,6} (via router E) is added to the permanent list. Consistently,

entry {B,A,7} (via router A) is removed from the tentative list. {C,A,6} and

{D,A,8} are added to the tentative list.

• Step (e) {G,A,8} is added to tentative list. {C,A,11} (via B) is longer than {C,A,6}

(via E). Thus, {C,A,6} is moved from tentative to permanent.

• Step (f) We now proceed from C (currently the shortest path). {H,A,7} is per-

manent (no better alternatives can ever be found). The shortest path to N2 has

now been discovered, {N2,A,7}. {D,A,7} (via C) is added to permanent list,

removing {D,A,8} (via E) from the tentative list.

• Step (g) We now proceed from D (currently the shortest path). {I,A,8} and

{N3,A,8} are made permanent.

• Step (h) Having explored all shorter paths, we go back to router G. Entry

{G,A,8} is moved from tentative to permanent. {N1,A,8} is discovered (added

to permanent list).

All these steps are there to signify that we are able to inexpensively build a

packet distribution tree, starting simply from the LSP packets. Haven’t we reached

the same point as with DV? At the end of the whole process, we still get routing

tables with {destination, next-hop, cost} entries as in DV. The answer is a

straightforward ‘‘no.’’

LS routing has many nice properties. With DV, tables can’t catch up with high

network dynamics. It builds paths based on information that easily becomes stale.

By contrast, thanks to Dijkstra’s proofs, we are guaranteed that LS always finds the

shortest paths. We have much smaller signaling overheads because the size of

LSPs is proportionate to the router connectivity (number of network interfaces per

router). Moreover, the router’s interfaces don’t increase when the size of the

network grows.

Furthermore, this isn’t the end of the story. DV gives us only next-hop

addresses. LS provides every router with a complete topological map of the net-

work. Also, LS has been proven to stabilize quickly and not to suffer from the

count-to-infinity problem. It’s not in the style of this book to bombard the reader

with formulas, theorems or proofs. Nevertheless, here is a little scenario that will

hopefully convince you.

Figure 2.19a again proposes the same topology. Though now, we pump packets

into the network. A number of users sitting in networks N1, N2 andN3 start streaming

videos from N4. The optimal distribution tree calculated before (Fig. 2.18h) pushes

all streams through A ? E. This is bottleneck! E ? C is another one!

If you are wondering whether Dijkstra actually did a good job, think again.

He did a fantastic one! His distribution tree was perfect, considering the network
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utilization status captured at the time when router F made its calculations. Though

now, the network load is changing. Chances are that we need new diversions. The

beauty of LS is that it will actually be able to equalize the network. As soon as

traffic piles up in those two bottlenecks, routers A, E and C will immediately sense

higher latencies in their local links. The costs associated with links A ? E and

E ? C will go up. Dijkstra will kick in again with new paths. Assuming that the

link cost of our bottlenecks goes up from two to four, we end up with the new

traffic distribution tree depicted in Fig. 2.19b. Again, we have a well-balanced

network.

2.7 Life of a Commuter

So far, we have seen how fixed networks remain stable, despite failures and traffic

dynamics. How does the network cope with travelers? Most networks and hotspots

use automatic configuration methods to help connecting new terminals. An

example is the Dynamic Host Configuration Protocol (DHCP) that assigns a

unique address to your laptop when you are sitting in the airport lounge. Your IP

address includes the address of the network you are physically attached to and

makes you reachable from any router.

For example, you decide to take a walk and get a coffee somewhere in the

airport in order to better digest your full email inbox. By doing so, you lose

connectivity but, nicely enough, another Internet provider covers the café.

Different provider; different network identifier; different IP address. You gain a

new identity in the Net and can resume your email gymnastics.

Let’s rewind the scenario. You’ve been promoted from ‘‘workaholic’’ to ‘‘TV

addict.’’ After authenticating yourself with an IPTV provider, filling in all your

personal details and making a transaction with your precious credit card, you have

started watching your preferred series. However, you are still desperate for a

coffee. This time though, you find that, following the network handover, the

session is broken. You’ll have to start the authentication process all over again!

What’s different now is that the IPTV session includes authentication,
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Fig. 2.19 Traffic equalization: a network status; b distribution tree of router F
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authorization and status information that is tightly linked with the IP address.

Thus, when you handover, you lose it all.

New technologies are emerging to keep sessions alive during roaming. For

instance, cellular networks have their own specific approach. Unfortunately, that

would bring us far beyond the horizon of this book. We are looking for a more

universal (non-technology-specific) solution, allowing terminals to retain their IP

address, regardless of their network access point [10].

A possible stratagem is depicted in Fig. 2.20. In the first sketch (Fig. 2.20a), a

stream of packets goes from the corresponding node to the mobile terminal. Notice

that the edge router of the mobile terminal is re-named as ‘‘home agent.’’ This is

like an ordinary router with just the extra ability to act as a proxy agent for the

mobile terminal. In Fig. 2.20b, we see the counterpart of the home agent, the

‘‘foreign agent.’’ As soon as the terminal regains connectivity, it lets his home

agent know about the new foreign agent address. The home agent now knows how

to reach the terminal and can relay the stream (Fig. 2.20c). The reverse path

doesn’t have to follow this procedure. The terminal can reach the corresponding

node directly. We notice here a routing anomaly, referred to as the ‘‘triangle

routing.’’ But it’s relatively easy to resolve this sub-optimal condition. The ter-

minal knows the address of the corresponding node and can let it know about the

foreign agent (Fig. 2.20d). The corresponding node can create its own tunnel to the

foreign agent, avoiding the detour.
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Fig. 2.20 Routing with mobile terminals
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You’ve just learnt the essence of Mobile IP [10, 11], an ongoing effort to try

and add mobility to the Internet without modifying the core routers. In practice,

minor modifications are required only on the edge routers in order to realize the

‘‘agent’’ functionality. With Mobile IP, the routing tables of the core routers need

not be modified after you change the attachment network.

2.8 The Three Fundamental Principles

As complex as it might seem, the Internet performs its task of keeping billions of

terminals connected thanks to just a few elementary operations: routing, buffering

and forwarding. The Internet architects managed to create a ‘‘generative’’

framework, an open network imposing very little constraints to the application

developer. The outcomes of this approach are clearly visible: the Web continues to

generate innovation and has now become the very backbone of our social and

business lives.

Network technologies evolve relentlessly in speed, mobility and automation.

Thanks to the unifying power of the Internet Protocol (IP), all sorts of networks

have formed an intricate web of connections. Packets are transported across

diverse chunks made of copper, fibers and radio waves. However, the Internet is

not the only and not necessarily the best way to keep billions of things con-

nected. Many scientists have started to question the ability of the Internet to

sustain its current growth rate. Terminals are becoming far more volatile than

they were just a couple of years ago. Not only cellular phones, but also, sensors,

security cameras, televisions and all sorts of appliances are all joining the Net.

Yet, this unrelenting revolution is confined to the edge of the network. Except

for incremental bandwidth upgrades, the network core hasn’t changed for

decades.

Engineers have a motto: ‘‘if it works, don’t fix it!’’ Unfortunately, the Net is

cracking under the weight of the ‘‘ubiquitous’’ user, file sharing, IPTV and the

who-knows-what’s-coming-next pervasive application. Because of this, more

often than ever, the buzzword ‘‘Future Internet’’ appears higher up on the agendas

of politicians, national funding bodies and academic circles. After all, following

the edge-network revolution, we might soon witness the core-network revolution.

Though, until somebody comes up with a bright new idea (a fundamental para-

digm shift), we should attempt to make the most out of what has already been

researched.

To pursue this intention, in the following chapters, we’ll revisit some clever

networking mechanisms that researchers worldwide have been studying for a

number of years. We are not interested in all the technicalities of the myriad of

proposed protocols. It’s rather more constructive to pull out the key concepts and

ideas that lay behind them.

Before we start looking for new networks, it’s instructive to reason just a bit

more. Thus, we start this journey of ‘‘concept extraction’’ from the Internet itself.
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What are the lessons learned from the Internet phenomenon? The Net won the

natural selection battle against many other proprietary networks that were far

better engineered. The Internet resulted from an extreme process of simplification.

Yet, it has become an indispensable tool. Hence, by observing the Net, we have the

unique opportunity to discover the very essential elements of networking—the

fabric that makes any network. We believe that the intriguing digital ecosystem

that we see today is based merely on three fundamental principles:

1. Connect

2. Discover

3. Stay connected

Before you can enjoy the wonders of the Net, what’s the very first thing you

ought to do? Plug-in your network cable or get attached to a wireless hotspot. In

either case, there is some sort of authentication procedure through which the

network checks your credentials. Only then are you assigned an IP address; you

now have a Net identity; you can reach and can be reached by the digital mass; you

are connected!

The process by which one obtains a unique IP address was cumbersome up to

just a few years ago. Thanks to a bunch of discovery protocols, auto-configuration,

DHCP, Mobile IP and other acronyms most people can survive without, the

‘‘connect’’ bit of internetworking has become totally seamless. Do I really need to

appreciate the difference between plugging in my power adaptor and plugging into

the Net? From a person’s viewpoint, both are just plugging exercises. We harness

energy through the power plug and information through the Net plug. What

happens beyond the plug is not of everybody’s concern.

In the not-so-far future, we may witness a sophistication of the ‘‘connect’’

step. Security and privacy requirements and regulations are gaining importance;

people and organizations are increasingly wary of identity theft, spam, spyware,

viruses, phishing and the lot. We all want to gain access to the digital infor-

mation society. Though, increasingly, not all of us want to do it at ‘‘any’’ cost.

We want to know what we are connecting to; whether it can be trusted with our

credit card details; how far it regards our privacy. The Internet can’t do any of

this because it’s just a packet-forwarding machine. It’s not aware of who is doing

what. Further along in this book, there will be ample opportunity to explore

better ‘‘connect’’ mechanisms and to get inspiration from the milestones

achieved by the P2P community.

Let’s now explore the second principle of networking: ‘‘discover.’’ You joined

the Net for a reason; to do something. You’ll need to find the necessary resources

before you can carry out any task. You’ve read earlier in this chapter how paths

from one point to another are discovered via the forwarding tables maintained by

the routers. The routing algorithms currently in use are as simple as they can get.

So far, they have done their job; but the future doesn’t look too bright.

It’s again that mixture of time-constrained and data-intensive applications that

rows against the tide. IP doesn’t differentiate among the different flavors of data

flows. It finds ‘‘shortest’’ paths that are totally data agnostic. Packets carrying an
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email flow travel in the same ‘‘class’’ as their fellows who are in charge of a video

call. Equality is a nice notion, though only if we are all pulling the same weight. If

a few email-packets get delayed by one second, nobody is affected. But if the same

happens to our audio-packets, the application will inexorably break. The cost

metric must be differentiated if we want to make the most of our limited resources.

In many situations, it might be more efficient to treat flows in different ways, but

the Internet only adopts one set of tables for all packets. The Net copes with

increasingly tight time-constraints only in one way: over-provisioning of network

resources. For how long shall we be able to afford this luxury? Once more, the Net

sacrifices efficiency in the name of simplicity.

Now, let’s return to the three principles. We are connected and are able to find

meaningful paths. This is still not enough! The network is dynamic; it’s alive; it

suffers failures; it gets congested; it’s vulnerable to external strain. Nevertheless,

the Net is able to ‘‘absorb’’ a good extent of variability in order to keep us

connected. However, if your Skype session has just dropped unexpectedly, this is

because the network has failed to adjust. Remember, applications are tolerant to

network impairment only to a limited extent. Some applications are better than

others, but they all need to chew packets within specific deadlines.

Given these premises, where are we heading to? The Internet was conceived

with some key requirements that still hold today:

• simplicity keep complexity to the minimum;

• general-purpose fabric purposely not optimized for any specific application to

give space to creativity;

• scalability thanks to its distributed architecture, it can be easily upgraded to

cater for more users;

• resilience no single-point of failure; and multiple paths make it robust against

localized attacks;

• self-control no need for any centralized management platform.

Unfortunately, not all the original design assumptions are still valid. Something

very fundamental has changed which makes it more and more difficult to keep

people connected. Entirely new dimensions have come into the picture:

• extreme mobility with all sort of wireless and cellular technologies at the net-

work edge;

• disruptive applications with sharing of files and streams at an unprecedented

rate;

• content producers anybody, not only the media companies, can generate mul-

timedia content and inject it into the Net.

In the following chapters, we are going to see other kinds of networks

empowered by more sophisticated mechanisms than IP. Yet, the three principles

will stay the same. Together, we’ll explore ideas that can make the Internet even

more pervasive and generative than it is today.

2.8 The Three Fundamental Principles 37



References

1. Peterson LL, Davie BS (2007) Computer networks: a systems approach, 4th edn. Morgan
Kaufmann, San Francisco

2. Stallings W (2010) Data and computer communications. Prentice Hall, Upper Saddle River
3. Tanenbaum AS (2002) Computer networks. Prentice Hall, Upper Saddle River
4. Agboma F, Liotta A (2009) QoE in pervasive telecommunication systems. Pervasive

computing innovations in intelligent multimedia and applications. Springer, London,
pp 365–382

5. Dollimore J, Kindberg T, Coulouris G (2005) Distributed systems: concepts and design.
Addison Wesley, Reading

6. Tutsch D (2010) Performance analysis of network architectures. Springer, Berlin
7. Zink M (2005) Scalable video on demand: adaptive internet-based distribution. Wiley,

Chichester
8. Firestone S, Ramalingam T, Fry S (2007) Voice and video conferencing fundamentals. Cisco

Press, Indianapolis
9. Halabi S (2000) Internet routing architectures. Cisco Press, Indianapolis
10. Soliman H (2004) Mobile IPv6: mobility in a wireless Internet. Addison-Wesley

Professional, Boston
11. Loshin P (2003) IPv6: theory, protocol, and practice, 2nd edn. Morgan Kaufmann, San

Francisco

38 2 The Network, As We Know It



Chapter 3

Six Problems for the Service Provider

Abstract The Internet is far from being perfect, and thus we are bound to see

many remarkable changes in the near future. In examining what the Net can and

cannot do today, what are the top six reasons to upgrade it? The Net is not

sufficiently ubiquitous, reactive, proactive, information-driven, distribution-effi-

cient and searchable. This chapter introduces these widely recognized issues,

paving the way for the solutions presented in Chap. 4 and thereafter.

The Internet only just works
Mark Handley, Professor at UCL, UK

3.1 The Net has Ossified

There are an infinite number of reasons to advocate a complete overhaul of the

Internet, though only one is undisputable: the Net has ossified. The general-

purpose connectivity machine conceived in the 1970s has now become too vast to

afford any significant alteration. Today, almost two billion people use the Net.

Each terminal practically has a distinct configuration if we consider the variety of

terminals available off-the-shelf. This uniqueness is further defined by the range of

software running on each terminal, including operating systems, firewalls, anti-

virus and personal applications. We all enjoy customizing computers and phones,

though many end up misconfiguring and destabilizing their own systems. And

then, there are several varieties of viruses, Trojan horses, spyware and the lot. All

sorts of stable as well as unstable machines are attached to the Net.

Thus, one would expect the Net to be periodically upgraded to cater for new

terminals, usage patterns and threats. Yet, all the attempts made in the last 15 years

to modify fundamental network mechanisms have failed. In principle, the Net

A. Liotta and G. Exarchakos, Networks for Pervasive Services,
Lecture Notes in Electrical Engineering, 92, DOI: 10.1007/978-94-007-1473-1_3,
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could easily be modified. IP is an extensible protocol. It allows optional instruc-

tions to be embedded with packets for special treatment. On the other hand,

processing extra instructions considerably slows down the router. Furthermore,

many routers actually filter out anything but the simplest IP packets in order to

prevent denial-of-service attacks. Thus, the use of protocol extension mechanisms

has been lost over the years. IPv6, the latest Internet routing protocol, has been

trying to resuscitate IP-option fields; but even the simple transition from IPv4 has

been hampered by endless difficulties.

Before getting ossified, the Net was indeed able to upgrade. In 1980, Distance

Vector routing was replaced by the more dynamic Link State routing approach.

In 1982, the Domain Name System (DNS) introduced a distributed mechanism

to uniquely and dynamically name Internet systems. This step became essential

as soon as it was clear that the Internet started growing exponentially. Just a year later,

another architectural change took place: the mechanics of ‘‘reliable transport’’

(the Transmission Control Protocol or TCP) was separated from the actual ‘‘packet

delivery’’ protocol (IP) [1].

Initially, TCP allowed for the identification of missing packets and triggered

re-transmission. It was not able to handle network congestion. Hence, in 1988,

TCP was extended with mechanisms that could control the rate of transmission of

packet flows. Other improvements followed, that is, until 1993, when the Internet

reached over two million hosts. At that point, the routing tables were becoming far

too large; routers were struggling due to limited computational and memory

capacity. Thus, Classless Inter-Domain Routing (CIDR) was introduced, revolu-

tionizing the Internet addressing architecture [2].

The year 1993 is an important turning point for the Net. Mosaic, the very first

Internet Browser was released, giving birth to the World Wide Web [3]. However,

this is also the last time we would see any significant upgrade into the ‘‘core’’

network. After CIDR, all other attempts to modify the Net failed. The Net was too

big and too complex. Any further innovation started happening at its edge, rather

than in the core. The ossification process had started, inexorably.

Despite several attempts to accelerate its engine, the Net still works on a single

gear: it moves packets ‘‘just about’’ fast enough. However, different applications

(video, voice, gaming, etc.) operate over different time constraints; thus, new gears

are needed. Researchers have put remarkable effort into trying to find practical

ways to migrate away from the ‘‘best-effort’’ nature of the Internet. The Integrated

Services (IntServ) framework was the first to design a new gearbox for the Net [4].

IntServ was even standardized in 1994, though following the hype, it became clear

that a fine-grained approach operating on each individual data-flow would not

work on a large scale.

The Differentiated Services (DiffServ) architecture followed another path [4].

To pursue scalability, it standardized a coarse-grained mechanism to differentiate

among different classes of traffic. DiffServ was also standardized (in 1998), but

after a dozen years, it is hardly ubiquitous. Only some ISPs adopt DiffServ and

there doesn’t seem to be a sufficient amount of pressure to cause global-scale

deployment.
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Other attempts to add new dimensions to the Net were made in the 1990s. Given

the prominent trend to distribute audio and video in packetized forms rather than over

the more conventional radio and television signals, the Net was missing an essential

mechanism: ‘‘broadcasting.’’ The Net is good at transmitting packets from any point

to another. This is good enough for server-to-client transmission or person-to-person

communication. However, to deliver the same stream to a large number of people

simultaneously, the Net can only rely on ‘‘multiple unicast’’ (Fig. 3.1a). This is a

fairly rudimental distribution mechanism, unsuited to applications such as IPTV.

Imagine one thousand people connected on the same channel. One thousand copies of

exactly the same stream are generated by the server and injected into the Net.

It isn’t necessary to go to great lengths to find a better distribution mechanism.

In the early 1990s, researchers came up with a wealth of mechanisms under the

banner of ‘‘multicast.’’ In essence, when more people want to get the same stream,

they register with a special ‘‘multicast’’ address. The Net then builds a multicast

distribution tree, as exemplified in Fig. 3.1b. In this way, the Net can make sure

that no link ever carries duplicate packets. Native network support to ‘‘multicast

transmission’’ was the great promise of the 1990s. Unfortunately, ‘‘multicast’’ was

never able to make it to the global Internet.
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Fig. 3.1 Stream distribution mechanisms in an ordinary wireline IP network. a Multiple unicast
transmission; b multicasting transmission
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‘‘Quality of Service’’ and ‘‘Multicast Distribution’’ are just two of the many

examples in which the Net failed to upgrade, pushing the problem towards its

edges. Mobility support is another unsolved issue. Today, the majority of terminals

are ‘‘mobile;’’ though the Net’s routing protocols are not geared for mobility. Even

Mobile IP, described in Chap. 2, went successfully from ‘‘research’’ to ‘‘standard,’’

but is still struggling with deployment issues [5].

The Net’s stagnation is evident in many other sectors: security, privacy and

congestion control. Being totally unaware of what the application is doing, the Net

is exposed to great risks [6]. In 2009, 81% of emails were spam, accounting for

about 73 trillion emails; yet, the Net is disarmed against spam. Denial of service

attacks can bring a large corporation to a halt; however, protection against such

attacks relies largely on human intervention.

The Internet was never meant to be 100% reliable, efficient, and effective.

Its greatest strengths were ‘‘malleability’’ (to adapt easily to new requirements)

and ‘‘generativity’’ (to spark new technological advances). For one reason or

another, both of these features have gradually been delegated to the periphery of

the network. It is clear that the most extraordinary innovation has taken place since

1993. Ironically, the new generation of network mechanisms has found more

fertile grounds outside of the network core. A new breed of applications, the

‘‘virtual networks,’’ [7] allows the realization of new network mechanisms on top

of the physical network.1 Paradoxically, it is easier to test and deploy new net-

works in this way, leaving the ossified network unchanged.

However, virtual networks can only carry ‘‘virtual’’ packets. The real load

eventually ends up being transported by the underlying ‘‘physical’’ network. The

ultimate Net must be able to incorporate and natively support the innovative

mechanisms that are currently operating on virtual networks. That is why, from the

next chapter onwards, we shall revisit network mechanisms that have matured

beyond the Internet core, with the view that these might form the basis for the

next-generation Internet.

Before embarking on this task, it’s worth spending a few more pages simply

reflecting on more reasons to upgrade the Net because today, the Internet only just

works [8].

3.2 Problem 1: Not Truly Ubiquitous

How ‘‘ubiquitous’’ is the Internet? One could get a first insight by looking at the

statistics of Internet penetration expressed as a percentage of population. As of

January 1, 2010, an average 26.6% of the global population had Internet access

(source: internetworldstats.com). North America leads with a 76.2% penetration,

while in Africa, only 8.7% of the population is in the Net.

1 Virtual Networks will be explored in greater details in Chap. 7.
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However, the Internet penetration stats only provide a fairly restricted view.

They account for the number of people who have some form of subscription with

an ISP, for example, cable, DSL, Fiber and so forth. However, ISPs concentrate

their infrastructure within the more densely populated areas. A truly ubiquitous

network should give connectivity everywhere, or, at least, in any place that is

reachable by a human being. On the contrary, the greatest portion of the globe is

not on the Net. We can only connect where a physical infrastructure has been put

into place.

While the Internet penetration keeps increasing, will the Net ever become

‘‘truly’’ ubiquitous? Will it ever be possible to extend the reach of the Internet

beyond the confines of ISPs and Network Operators?

Economic considerations suggest that, in its current form, the Internet cannot

ramify ubiquitously. Despite its apparent simplicity, the Internet has grown into an

entanglement of complex hardware and software entities. Widespread coverage

requires investments to deploy and manage network equipment. Backbone net-

works are essential in order to keep cities and countries connected; however, do we

really need dedicated network devices to increase the capillarity of the Net?

Ironically, network access is often needed where there is no infrastructure.

A communication network might help coordinate the efforts of a team of engineers

whose task is to actually build a network. Communication is also vital for disaster

management, i.e., when a catastrophic earthquake takes place. Yet, in this situa-

tion, the infrastructure if often affected by power or hardware failures.

The Internet relies on too many devices and services for its operation. Com-

munication lines, optical fibers, repeaters, transmitters, switches and routers have

to be powered up. Protocol stacks must be coherent among each other. Name and

address-resolution servers have to be reachable. Then, inside the home, wireless

modems and computers have to be consistently configured. Despite all of this

complexity, we are still far from a geographically ubiquitous Net.

Going back to the very essence of the Internet, that is, to its original simplicity,

it is evident that we don’t actually need a sophisticated infrastructure to build a

network. Researchers have devised simple techniques which allow individual

computers to cluster together and form networks. The ‘‘one laptop per child’’

program developed an inexpensive computer which allowed pupils to connect with

each other in places where no other Internet infrastructure was available.

Capillary networks, spontaneous connectivity and on-demand networks can be

achieved beyond the strict boundaries of the Internet. Most of today’s Internet

terminals, including mobile phones, have the capability to perform the same

functions of routers. Thus, nowadays, as more and more people carry Internet-

enabled devices, it is possible that these form networks which can relay packets

just as any ordinary infrastructure-based network would do. Such networks, known

as Mobile Ad Hoc Networks (MANETs) [9], hold the magical ingredients of

‘‘ubiquity.’’ The next-generation Net will have to incorporate mechanisms to

enhance its reach even where no infrastructure has been put in place. To better

understand the enchanting world of infrastructure-less networks, we shall further

explore MANETs in Chap. 4.
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3.3 Problem 2: The Unresponsive Net

The Internet routing protocols were designed at a time when networks were neither

mobile (wireless) nor fast (optical). Networks were static, that is, their topology

didn’t change frequently. User terminals were static—they were pre-configured to

operate on specific network access points. As the Net started growing, it became

clear that even static networks required periodic route re-computation. In fact,

Link State routing replaced Distance Vector routing in 1980.

Since then, anything but the very core network has turned into ‘‘mobility’’

mode. There are now more mobile terminals than desktops. People travel and

commute more than ever before. Files and streams appear and disappear from

various locations in peer-to-peer systems. People Tweet, Skype, email and chat

from their mobile phone.

Despite all, the Net can still handlemobility to a certain extent thanks to a plethora

of ‘‘patches,’’ i.e., stratagems that insulate the core network from the peripheral

mobility. However, the trend is for even greater degrees of mobility. It is not only

peoplewho access the Internet on-the-move.Networksmove aswell. Cars, trains and

plains are ‘‘moving’’ networks. MANETs are formed by mobile terminals which

compute routing tables and relay packets on behalf of other terminals. These, too, are

mobile networks characterized by an extremely dynamic topology.

The Net is formed by a relatively slow-changing backbone topology, though even

the backbone experiences the side effects of mobility. The traffic going through it is

increasingly dynamic. As congestion afflicts a certain network segment, traffic will

have to be re-routed via alternative avenues in order to prevent data loss.

High levels of mobility and traffic dynamics require a continuous and prompt

recalculation of routes. However, the control engine of the Net is not sufficiently

‘‘reactive’’ for this challenge. The Net tries to maintain routes for everybody in the

same way, regardless of whether one moves or remains static. The overall result is

that routes exist and are recalculated even when they lead to idle terminals. This

‘‘brute-force’’ approach drains resources from the Net unnecessarily, disadvan-

taging those nodes that are more dynamic and would require greater attention.

This is yet another symptom of the Net’s ossification process, making it difficult

to implement diversified mechanisms. How should routing evolve in order to

become more reactive? What are better strategies for the Net to keep up with the

myriad of mobile ‘‘things’’ that inject and receive packets? In Chap. 5, we shall

revisit some tricks that can make routing more reactive and responsive.

3.4 Problem 3: Too Much, Too Stale Signaling

In large systems, it is crucial to make sure that the different subsystems stay in

synch in order to operate harmonically. To maintain network paths, each element

informs the others by sending signaling control packets. For instance, recall from
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Chap. 2 that routers based on the Link State (LS) protocol broadcast LS Packets to

inform everybody about the status of the local links. Then, the Dijkstra algorithm

reconstructs the topology and builds the optimal routes.

As networks grow, so does the overall signaling traffic. The control packets

become larger, travel longer distances and take more time to reach the furthest

network elements and be processed. High dynamics make things worse by

triggering new signaling packets as soon as something changes. Thus, mere

‘‘reactivity’’ does not always meet the needs of dynamic systems and is, in fact,

often the actual source of ‘‘instability.’’

The Internet is not able to adapt its signaling intensity to the network topo-

logical characteristics. Highly dense networks require completely different control

actions than sparse networks. Mobile nodes demand different trade-offs than static

ones. Thus, by using just one calibration strategy, the Internet fails to tailor its

control action to the variety of situations that the Net is meant to sustain. Those

very same control signals which carry vital ‘‘network status’’ data often over-

whelm the Net itself with outdated information.

In principle, routing protocols could be adjusted to the network dynamics. For

instance, the frequency of the control packets could be increased or decreased to

cater to more or less dynamic conditions, respectively. Different parameters can be

used to account for congestion such as hop-count, point-to-point latency or packet

loss. However, in practice, these features are only setup at installation time.

A more effective approach would be to ‘‘proactively’’ tune the signaling protocols

in order to minimize its intrusiveness and maximize its efficacy. Yet, in the name

of simplicity, this avenue is not pursued.

The Net is not ‘‘proactive.’’ It makes no attempt to anticipate congestion. It

cannot recognize bad trends which rapidly escalate into severe congestion. It does

not know how to identify typical or repetitive communication patterns. It does not

correlate even the simplest events. It cannot learn from the past; nor can it predict,

prevent or cure.

The Net can only react (slowly) ‘‘after’’ the effects of congestion become

evident. A primary notion in science, engineering and medicine is that ‘‘preventing

is better than curing.’’ Furthermore, trying to ‘‘cure’’ the root cause of a repetitive

problem is certainly better than merely ‘‘patching’’ each and every instance of

the same problem. By not treasuring the ‘‘prevent or cure rather than patch’’

principle, the Net is doomed to suboptimality. Its responsiveness is intrinsically

circumscribed.

In Chap. 6, we shall see some mechanisms that can reduce unnecessary

signaling overheads and, at the same time, exhibit ‘‘proactivity’’ in very dynamic

networks. The examples presented therein serve the purpose of demonstrating the

potential of ‘‘proactive’’ networks. As the time-scales demanded by the latest

real-time services get smaller and smaller, new proactive mechanisms will be

required. Reactive and proactive behaviors will have to be harmonized to the

extent necessary in order to provide the highest levels of responsiveness and

stability.
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3.5 Problem 4: Lack of Parallelism

The Net is meant to transport data from point A to B, for instance, from a server A

to a Client B. If the path between A and B gets congested, the Net must come up

with an alternative path. We have already discussed how this process of discov-

ering new paths and switching over data flows creates problems when the system

dynamics increases. Is there anything that can be done to tackle congestion from a

different angle? [10].

The Net tries to maintain the shortest path between A and B. Thus, if the

distance between A and B computed on the active path tends to increase, the Net

assumes that there is congestion. So if any of the links belonging to the A-to-B

path becomes a bottleneck, the whole path has to be replaced with a better one.

There is a fundamental flaw with this approach: link congestion is not the only

reason why B might not be receiving packets on time. There are many occasions

when there is something wrong with the transmitting node (A) such as:

1. Node A might have started moving fast, incurring a higher degree of packet

loss;

2. Node A might have received an increased number of requests, reducing its

ability to respond promptly;

3. Node A might be subject to a denial-of-service attack which impedes any

response at all.

When the transmitting node becomes unfit for this purpose, all efforts made by

the Net to discover better paths are misplaced. The Net tries to keep A and B

connected (Fig. 3.2a), but it is missing an important point: the key goal is to make

sure that B ‘‘receives’’ A’s data, not that the data is necessarily coming ‘‘from’’

A [11]. Hence, a better strategy would be to look for a new sender C (Fig. 3.2b),

rather than trying to fix the A-to-B path [12].

The Net lacks the necessary mechanisms to realize this level of parallelism. It is

designed to multiplex multiple, point-to-point communications. However, it is not

able to support parallel transmissions. In the Internet of today, it is common to find

that the same information is duplicated in multiple servers. With P2P applications,

the same information is actually duplicated on multiple users’ terminals [13].

Thus, ideally, we would want the Net to be able to identify a number of trans-

mitters that can simultaneously contribute different ‘‘chunks’’ of the stream

(or file) to B in order to minimize the overall transmission time (Fig. 3.3) [14].

To better understand how the future Net could support parallel data transport,

Chap. 7 explores concepts and mechanisms developed in the context of P2P net-

working [7]. The way in which those ideas might 1 day be realized into the core

network rather than via P2P applications is still the subject of controversial research.
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Fig. 3.2 a The Net tries to keep nodes A and B connected: lost packets are retransmitted. b A
better strategy would be to find a different transmitter (node C) that gives a better transmission
path
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3.6 Problem 5: Data Agnosticism

Lack of parallelism is quite compatible, so to speak, with another problem: the Net

treats packets merely as ‘‘raw’’ entities, that is, a collection of bits sharing their

destiny of going from A to B. For the sake of ‘‘simplicity’’ and ‘‘fairness,’’ routers

ignore the fact that each packet has its own ‘‘purpose’’ which makes the packet

‘‘more’’ or ‘‘less’’ critical. A packet may be part of a video frame. However, not all

frames are of equal importance. For instance, in certain video encoding schemes,

some frames (the Predicted frames or P-frames) are built upon others (the Intra-

coded frames or I-frames). Thus, if P-frames become corrupted (due to packet

loss), the overall effect on the perceived quality is relatively minor. How-

ever, when I-frames get corrupted, this affects several P-frames, causing a more

dramatic quality degradation.

Routers do not want to know whether a packet belongs to an I-frame, a P-frame,

an audio sequence or a web-browsing session. In fact, when traffic gets too heavy,

routers discard packets somewhat randomly. This causes some transmissions to

stall, even under a fairly low packet loss ratio.

The Net is ‘‘data agnostic.’’ It does not recognize that packets belong to data-

flows and that these are part of a specific user’s data sessions. Because of that, we

miss the opportunity to deploy more efficient routing algorithms.

One way to make the Net more ‘‘data-aware’’ is by realizing ‘‘per-flow’’ (rather

than ‘‘per-packet’’) routing [15]. In ordinary per-packet routing, each and every

incoming packet must be processed as described in Chap. 2. A processor in the

router extracts the packet’s destination address and queries the routing table to

determine the next-hop address. Another processor (the switching fabric) puts the

packet into a suitable output transmission queue. These two processors consume

80% of the power and space in the router.

On the other hand, with per-flow routing, we must only identify and process the

first packet of any new data flow. The next-hop address is then stored in a hash

table (coupled with the flow identifier), that is, a data structure that allows for a

much faster lookup time than the routing table. Any subsequent packet of the flow

is thus ‘‘switched’’ directly to the output buffer rather than having to be ‘‘routed.’’

In fact, when this book was going to press, prototype per-flow routers had already

shown to consume one-fifth of the power of a comparable per-packet router and to

occupy a tenth of its space.

A further benefit of per-flow routing is that, thanks to its greater data awareness,

it allows for more sensible congestion-control algorithms. For instance, the router

can try to ‘‘detect’’ and ‘‘protect’’ the more sensitive ‘‘stream-based’’ flows.

New routing architectures such as the one behind per-flow routing imply huge

deployment costs, as all existing routers (not just their software) would need to be

replaced. Thus, network operators will embark on this kind of radical overhaul

project only if they can see substantial economic benefits.

In the meantime, new paradigms keep emerging, providing further incentives in

favor of innovation. Chapter 8 explores mechanisms through which we can publish
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data directly onto the network in order to pursue the dream of ‘‘data-aware’’

networks. Currently, the Net only understands about sources, destinations and

distances. Routing tables are dumb; they cannot take into account the location

and redundancy of data. By contrast, if the same file is stored in multiple servers

and user’s terminals, the Net should be able to choose the best source, with the

goal to maximize network utilization. The challenge of data-aware networks is to

route ‘‘information’’ rather than raw bits.

3.7 Problem 6: Inadequate Net-Search Engine

Thus far, we have established that the Net is a dumb, bit-crunching machine,

incapable of making parallel transmissions. Is this really a problem? Is there any

alarming sign suggesting that we need to imminently re-think the Net’s protocols

and its fundamental architecture?

There is an inexorable trend that should not escape our attention. Data sources

are no longer confined within the boundaries of dedicated server machines.

People have stopped being mere ‘‘consumers’’ of content; they ‘‘produce’’ and

‘‘broadcast’’ multimedia materials. PCs and cell phones ‘‘buffer’’ and ‘‘relay’’

data at an increasing pace. Thus, our information sources can reside virtually

anywhere in the Net.

In today’s digital society, the information has reached a ‘‘ubiquitous’’ status.

Thanks to P2P IPTV frameworks, one can stream down directly from somebody

else’s PC, rather than connecting to the originating channel server (as discussed

in Fig. 1.3). The same applies to music files, books and any other digital

materials.

Currently, virtually anybody can ‘‘publish’’ information via the Net. However,

the Net is oblivious to data. Before, we mentioned the benefits of making the Net

more aware of the ‘‘data’’ dimension. The proliferation of P2P applications

demonstrates that this transition is already underway. On the other hand, the

proliferation and circulation of information cannot serve any purpose unless we

can easily ‘‘discover’’ what is ‘‘relevant’’ to us.

Search engines play a pivotal role in this direction, but they can only capture the

more ‘‘stable’’ data such as the files and streams that reside on servers. Conven-

tional Internet search engines become ineffective when the information is ‘‘tran-

sient’’ and ‘‘volatile’’ (such as in P2P applications), or when it resides within the

more ‘‘private’’ margins of our PCs and phones.

This new search dimension is explored in Chap. 9. We visit a futuristic scenario

in which the data ‘‘plane’’ (the information) blends in with the network ‘‘plane.’’

This is just another way of saying that the Net becomes data-aware. Our aim is to

present mechanisms for Net-searching, i.e., methods for performing ‘‘deep’’ data

discovery (beyond the servers and reaching into the user’s terminal) via data-aware

networks.
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3.8 Concluding Remarks

The Net is far from being perfect; in fact, one can think of many ways in which

it can be improved. Some observers think that the current incremental (evolu-

tionary) approach—whereby technical limitations are addressed via ‘‘patches’’—

can still work for many years to come. By contrast, the ‘‘Future Internet’’

advocates believe that a complete architectural overhaul is urgently needed. The

authors of this book have taken a more detached position: no matter how the Net

will change (and it will undoubtedly change considerably), some new mecha-

nisms will have to be realized. We have chosen six out of the many more

possible ways in which the Net needs to be upgraded. These are not the only

issues with the Net. Our choice was driven by two factors: urgency and avail-

ability of consolidated solutions.
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Chapter 4

Spontaneous Networks

Abstract How can we increase the capillarity of the Net without facing the

daunting issues that come with large-scale infrastructures? Can we embed all

necessary protocols into our terminals and then use the terminals themselves to

relay packets? This chapter develops the vision of ubiquitous connectivity, pin-

pointing foundations and problems. Networks made without any dedicated hard-

ware are possible, but require new protocols. Here, we discover how to build

spontaneous, ad hoc networks starting from extremely simple mechanisms.

There are three kinds of death in this world. There’s heart

death, there’s brain death, and there’s being off the network

Dr. Guy Almes, Leader at Texas A&M University

4.1 The Gift of Ubiquity

At some point, ubiquitous connectivity will enable communications everywhere.

Can this be achieved through a conventional infrastructure-based network? Even if

we could prove that existing technologies would be able to work at such large

scales, economical and business considerations suggest a negative answer. The

investment required to deploy a capillary network is beyond imagination. Oper-

ational and maintenance costs would be astronomical.

A more promising approach is to use infrastructure-based networks to form the

communication backbone, though adopting a different approach to increase the

network capillarity. The basic idea is to extend the reach of existing networks by

complementing them with so-called ‘‘infrastructure-less’’ networks. This does not

mean that the infrastructure is eliminated; it is, in fact, embedded into the user’s

terminal.

A. Liotta and G. Exarchakos, Networks for Pervasive Services,
Lecture Notes in Electrical Engineering, 92, DOI: 10.1007/978-94-007-1473-1_4,
� Springer Science+Business Media B.V. 2011
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The Internet-enabled terminals of today are already powerful enough to carry

out all three fundamental communications functions (connect, path discovery and

stay connected). They can perform routing tasks just like ordinary routers,

relaying packets on behalf of the other terminals. Thus, portable terminals can

actually interconnect with each other and form autonomous network clusters

(Fig. 4.1). In this way, a network can be formed ‘‘spontaneously’’ wherever the

user goes. In addition, when at least one of the terminals has full Internet

connectivity (via an infrastructure network), all terminals end up in the global

Net (Fig. 4.2) [1].

Beyond extending the reach of infrastructure-based networks, ad hoc networks

(this is just another term used to refer to infrastructure-less networks) [2] find

numerous application domains [3]. They are invaluable in any situation that

requires setting up a network ‘‘on the fly’’ or ‘‘on demand.’’ For instance, an

emergency-response team requires a reliable communication platform to better

coordinate its intervention in a disaster area. A communication infrastructure may

not exist or might have been damaged by the disaster. Thus, the ability to form a

spontaneous network automatically has crucial importance.

Similarly, ad hoc networks are useful to create connectivity in remote areas. For

instance, Residential Broadband Mesh Networks represent a much more eco-

nomical alternative to conventional infrastructure networks. Hostile environments,

such as military warzone areas, are yet another example.

Fig. 4.1 An example of an autonomous network cluster
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Because of these attractive applications, ad hoc networks are gaining significant

attention in the scientific community [4, 5]. However, and as it will become

apparent in the course of this chapter, these networks have rather peculiar

requirements which call for new routing protocols [2]. Before we look at the issues

relating to the construction of routing paths, we must direct our attention to how

neighboring ad hoc terminals ‘‘connect’’ to each other.

4.2 Spontaneous Connectivity

Before we can build the network, including routes and paths, we need to organize

the communication within the individual links. In infrastructure networks, this

aspect is transparent to the end user terminal. It is the routers who handle the

contention problem which arises when more transmissions hit the same link.

By contrast, in an ad hoc network, each terminal must sense who his immediate

neighbors are and learn how to ‘‘connect’’ to them. A simple bootstrapping pro-

tocol is depicted in Fig. 4.3.

We need to solve yet another problem. A, B and C are sharing the ether (the

transmission channel); so if they use the same frequency and transmit at the same

time, they might generate interference with detrimental consequences for the

Internet
Gateway

Fig. 4.2 The ad hoc network cluster gains internet connectivity via one of the terminals
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packets (packet collision problem) [6]. We now consider two typical collision

problems and then introduce a suitable media access control protocol.

4.3 The Hidden-Terminal Problem

Suppose that A and C want to communicate with B (Fig. 4.4). A and C are out of

transmission range so they have no way of coordinating their actions. If A

transmits a frame (fa) while C transmits a frame (fc), B might not be able to receive

anything (fa and fc collide). What is worse, neither A nor C have any way to detect

the problem [3, 6, 7].

We could improve the protocol slightly by including acknowledgements. Any

transmitter expects the recipient to send back an Ack signal as confirmation that the

packet has been received. The transmitter will expect the Ack within a given time

or, otherwise, assume that something has gone wrong with the original packet. In

that case, it will just re-transmit the packet.

D

A C

Hello

A B C

Echo Echo

Connected Connected

(a)

(c)

(b)

D

A B C D

B

Fig. 4.3 Connectivity bootstrapping at terminal B: a terminal B broadcasts a Hello packet,
b terminals A and C are within the transmission range of B, sense its advert and respond with an
Echo packet, c B has now learned about A and C, and can connect to them
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The Ack signals alone do not necessarily eliminate collision. Suppose A and C

transmit simultaneously at time t0 and, then, fail to receive their Ack within a time

span Dt: At time ðt0 þ DtÞ; A and C retransmit, thus again generating collision. We

can fix this glitch easily. Each transmitter waits for a further time ot which is

determined by a random generator. By adding a stochastic delay, we reduce the

probability that transmitters remain in sync.

Yet, how efficient is this transmission protocol? Whenever a collision takes

place, we are adding a delay of ðt0 þ DtþotÞ: As the packet transmission rate

increases, so does the probability of collision. As the transmitter’s density (the

number of transmitters lying within the same transmission range) increases, so

does the probability of collision. A significant portion of bandwidth goes wasted

because we are not doing anything to prevent collision. Let us examine a second

scenario before discovering the advantages of ‘‘collision avoidance’’ protocols.

4.4 The Exposed-Terminal Problem

Suppose B wants to communicate with A, and C with D (Fig. 4.5). Let us assume

that B transmits first. Because C is within B’s transmission range, it will be able to

detect that B is transmitting (by sensing its carrier). Hence, in an attempt to prevent

collision, C will defer its own transmission. However, this is the wrong decision:

A and D are out of range so even if B and C were to transmit simultaneously, their

frames fb and fc would not interfere at the receivers A and D, respectively. In this

case, the fact that B and C are exposed to each other delays the transmission

unnecessarily [3, 6, 7].

4.5 Preventive Measures to Avoid Collision

The media access protocols described so far in this chapter belong to the category

of ‘‘random access’’ schemes—nodes are allowed to transmit pretty much at any

time. These can offer relatively low throughput as they put minimal effort into

A B C

Time

A and C send 
a frame to B

t0

fa fc

fa and fb

collide

t1

A and C don’t
know about 
the problem

t2

Fig. 4.4 The hidden-terminal problem
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trying to prevent collision (they merely act after the collision has taken place).

Also, we have seen with the examples of Figs. 4.4 and 4.5 that ‘‘carrier sensing’’

alone can achieve very little in a wireless environment since collisions can still

occur at the receiving nodes.

A better performance is achieved with protocols that involve some form of

dynamic channel reservation prior to transmission. Figure 4.6 illustrates how

multiple access with collision avoidance (MACA) [3, 8] can address the hidden-

terminal problem. The key idea is that terminals must go through an approval

procedure before they are allowed to transmit data.

MACA employs two small signaling packets, the request-to-send (RTS) and the

clear-to-send (CTS). Let us follow the sequence of events in Fig. 4.6. Terminals A

and C intend to transmit data to B. Suppose that A takes the initiative first, sending

the RTS. With the exception of the intended recipient B, any other node that

overhears the RTS must refrain from transmitting packets for a sufficient time as to

prevent the collision of signaling packets.

Having received the RTS, B replies by broadcasting a CTS. With the exception

of the original transmitter A, any other node hearing a CTS must refrain from

transmitting for the duration of A’s transmission. At time t2, node C hears the CTS

and thereby remains silent until A finishes. Then, it initiates its own RTS/CTS

procedure.

MACA can significantly improve the network throughput—the RTS/CTS

sequence reduces the probability of data packets collisions. MACA, however, does

not fully eliminate the hidden-terminal issue since it is still possible that the

signaling packets collide. An example of such event is depicted in Fig. 4.7,

whereby A and C happen to initiate the RTS/CTS sequence simultaneously.

It should be noted that the collision of signaling packets is far less problematic

than that of data packets. Firstly, signaling packets are much smaller than data

packets, so they are transmitted faster. In turn, the probability of collision is

reduced. Furthermore, when signaling packets do collide, the impact on the

Time

C senses fb

and holds on 

t2

A and D don’t

know about 

the problem

t3A B C D

B sends

fb to A

t0

fb
fc

C wants to

send fc to D

t1

fb

Fig. 4.5 The exposed-terminal problem
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network performance is negligible since the capacity wasted to re-transmit them is

considerably smaller than the traffic incurred by data packets.

Let us now see how MACA addresses the exposed-terminal problem (Fig. 4.8).

Terminals B and C want to transmit to A and D, respectively, which are out of

each other’s transmission range. Recall from Fig. 4.5 that C will sense B’s carriers

Time

A B C

RTS (Request to send)

CTS (Clear to send)

A sends RTS

C holds
t2

C sends RTSt6

A & C send RTSt0

RTSs collidet1

A transmitst4

B sends CTS

t5

fa fc

t3

Fig. 4.7 MACA does not completely solve the hidden-terminal problem, though it improves it
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fa fc

t3

Fig. 4.6 Multiple access with collision avoidance (MACA) in a hidden-terminal scenario
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and unnecessarily defer its transmission to prevent interference. By contrast, with

MACA at time t1, C receives the B’s RTS signal and continues to defer trans-

mission, expecting to hear a CTS by time t2. Yet, because C does not receive the

CTS at t2, it will correctly infer that the intended receiver (i.e., A) is out of range.

Thus, C’s transmission cannot interfere with the ongoing transmission by B.

Consequently, C initiates its own channel reservation procedure at t2, i.e., much

earlier that it could do on a simpler ‘‘carrier sensing’’ scheme.

MACA is effective because signaling packets are significantly smaller and

transit considerably faster than data packets. Hence, collisions tend to be less

frequent and less expensive. However, scientists are still dedicating great attention

to the many ways in which MACA could be further improved, particularly in the

context of ad hoc networks. We conclude with another scenario illustrating a data

packet collision (Fig. 4.9).

4.6 Path Discovery in a Volatile Networks

We have now explored how the first of the three fundamental communication

principles applies to ad hoc networks. Let us assume that terminals are able to find

their neighbors and ‘‘connect’’ to them. We still need to ‘‘discover’’ end-to-end

paths and ‘‘stay connected’’ while those terminals move freely.

Can we just adopt ordinary routing protocols such as those of Chap. 2? We did

state before that Link State is a general-purpose protocol; but ad hoc networks are

incredibly more volatile than typical IP networks. In the Net, the routing function

is performed by dedicated hardware (the routers) that is not moving. Routing paths

do have to be computed dynamically, but this is needed mainly to cater for the

changeable nature of traffic in intensity, origination and destination. In the Net,
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A and D

B sends RTS
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A sends CTS

C waits for CTS
t1
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fcfb
RTS (Request to send)

CTS (Clear to send)

Fig. 4.8 MACA in an exposed-terminal scenario
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the data transport topology varies for the purpose of load balancing. However, the

physical topology does not change much.

In contrast, in ad hoc networks the routing network is made of ‘‘mobile’’ nodes,

the user’s terminals. Hence, in addition to the transport topology, the physical

topology continuously changes as people move around. Figure 4.10 illustrates how

even the slightest terminal movements may result in a radically new topology.

Thanks to a broad range of scientific studies, the reasons why conventional

routing schemes do not perform well on ad hoc networks are well known. In short,

these are

• Higher dynamics (physical-as well as transport-level dynamics).

• Higher packet loss (media access protocols incur high error rates).

• Routing nodes have considerable constraints in terms of energy (battery-

operated) and computational power and memory).

• The increased signaling rates that would be required to stabilize the network

cannot be sustained by network (traffic overheads) and terminals (processing

overheads).

Let us now initiate the journey towards ad hoc routing by starting off with a

simple approach.

4.7 The KISS Approach

As network dynamics increase, the task of maintaining efficient routes becomes

overly intrusive. At some point, the amount of signaling required to keep up with

topological changes overwhelms the network. When this occurs, data broadcasting

may represent a competitive alternative to the more conventional routing schemes.

Instead of spending network and computational resources to build up the routing
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fa fd
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that A transmits
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B sends CTS

D sends RTS

t1

D resends RTSt3
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data by A
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RTS (Request to send)

CTS (Clear to send)

Fig. 4.9 MACA reduces the probability and the cost of collisions but cannot always eliminate
the problem
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Fig. 4.10 a Network topology before node movement, b two terminals move slightly, causing a
radical change of the topology
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tables, we can directly broadcast the packets, one at time, from the source. Thus,

when a node receives a new packet, it will simply react as depicted in Fig. 4.11,

very much in line with the KISS (keep it simple & stupid) design principle.

Figure 4.12 depicts the overall process, assuming that node A is the source and

node B is the destination. The network nodes do not have any routing table, though

they can keep track of the packets that transit through them (each packet has a

unique ID) in order to contain the broadcasting process. This approach comes with

many benefits:

New packet 
{packet_ID; dest_ID}

yes

Cache of 
node_ID

Current node 
{node_ID}

no

Store 

packet_ID

dest_ID = 
node_ID?

packet_ID is 
in cache?

don’t 

re-broadcast 

no

yes

re-broadcast

packet

Fig. 4.11 Behavior of each
of the nodes in a broadcast-
based transport network
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• No signaling overheads.

• Utmost simplicity.

• Minimal processing (essential in battery-operated terminals).

• High reliability (thanks to redundant transmission).

On the other hand, broadcast-based transport incurs substantial data-transmission

overheads since each existing path between source and destination delivers dupli-

cate packets. In addition, the transmission process does not usually stop when the

packet reaches its intended destination. This can be observed, for instance, in

Fig. 4.12: step (e) is unnecessary since the packet has already reached destination B.

As the number or nodes increases, so do the overheads. By comparing the two

topologies of Figs. 4.12 and 4.13, we can see that the addition of just a single node

brings the number of overhead packets from 12 up to 17.

With broadcast-based transport, too many nodes receive and relay packets. Thus,

when the scale and density of the system increases, we must return to the routing

strategies. Before any data packet is injected into the network, control packets are

used to discover the routes. The following chapters will offer plenty of opportunities

to find out how to overcome the limitations of ordinary routing protocols.
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Chapter 5

Reactive Networks

Abstract Networks strive to keep ‘‘all’’ of their nodes connected. However, is this

really necessary? Do we actually need to ‘‘continuously’’ maintain routes from and

to ‘‘any’’ possible destination? This chapter looks at networks that can discern

between active and non-active paths. The idea is to care for the nodes that are

actively intercommunicating, leaving the rest of the network in standby mode. In

this chapter, we will explore on-demand routing, one of the key ingredients that

can make networks more reactive on a larger scale.

Doing nothing is better than being busy doing nothing

Lao Tzu, Philosopher (founder of Taoism)

5.1 Why Networks on Demand?

The Net is a massive system that spends enormous amounts of energy on trying

to remain connected. The routing protocols revised in Chap. 2, distance vector

(DV) and Link State (LS), strive to maintain routes from any point to any

other point. Any path is equal, regardless of whether or not it is in use. Routes

exist and are re-calculated even when they lead to idle terminals. The same

amount of signaling is dedicated to every node, not considering whether they are

static or mobile.

To better appreciate why this ‘‘brute-force’’ approach leads to a slow-adapting

Net, consider the simple network of Fig. 5.1. Recall from Chap. 2 that every router

will have its own routing table; each table will have a number of entries equal to

the number of visible terminals (or networks); and that to achieve a fully opera-

tional network, all those tables must be kept up to date. Thus, the simple nine-node

topology of Fig. 5.1 will generate nine tables, containing nine entries each. A total

A. Liotta and G. Exarchakos, Networks for Pervasive Services,
Lecture Notes in Electrical Engineering, 92, DOI: 10.1007/978-94-007-1473-1_5,
� Springer Science+Business Media B.V. 2011

65

http://dx.doi.org/10.1007/978-94-007-1473-1_2
http://dx.doi.org/10.1007/978-94-007-1473-1_2


of 9 9 9 = 81 entries must be continuously maintained even when nobody is

transmitting any data.

Real networks are far bigger than our sample nine-node topology. Furthermore,

if every terminal can perform routing functions (as in ad hoc networks), the

number of table entries will further increase. Add to this the possibility that

terminals can move freely and the picture is complete: routes become obsolete

even before the network can update them.

In the sections that follow, we shall see that networks can function even in

the absence of any pre-computed paths [1]. By keeping the routing tables to a bare

minimum and introducing mechanisms in order to build paths ‘‘on demand,’’ the

resulting network will become far more ‘‘reactive.’’ The key idea is to identify

the paths that are more active and then prioritize their maintenance.

5.2 A Traffic-Free Network

If nobody is injecting any traffic in the network, we do not need to build any paths.

However, we still need to keep the network ready for any ‘‘path discovery’’ request

[2]. The very first task is to ‘‘bootstrap’’ the network, making sure that every node

is aware of its actual neighbors. Every node must continuously perform a

‘‘neighbor discovery’’ process in order to maintain connectivity with its immediate

neighbors. Until a node has discovered the neighbors, its routing table remains

empty. In Fig. 5.2, we can follow the neighbor discovery process of node A.

Eventually, the table of node A is populated with two entries (one per neighbor),

while nodes B and D have only one entry (neighbor) each.

If nobody transmits, the network can remain in ‘‘standby’’ mode. The only

activity is ‘‘neighbor discovery,’’ which merely aims to keep nodes connected to

their immediate neighbors. The routing tables are now only populated with

neighbor-node entries; so they are much smaller than the tables of a conventional

routing protocol and do not grow with the number of nodes. For instance, in our

‘‘standby’’ network, we only need to maintain 24 table entries (Fig. 5.3), while a

comparable DV routing network would operate on 81 (Fig. 5.1).

Thus, neighbor discovery is merely a background process that incurs minimal

signaling overheads. However, we still need to build complete paths; though not

until some node decides to transmit data.

5.3 Our First Path

We now want to inject traffic into the traffic-free network of Fig. 5.3 Assume we

want to transmit between nodes A and B. Node A does not have any entry for

destination B, so it triggers the ‘‘direct path’’ discovery process depicted in Fig. 5.4

Node A broadcasts a Route Request (RREQ) packet, indicating B as the intended

destination. While the RREQ starts flooding the network, the nodes that receive it

66 5 Reactive Networks



Fig. 5.1 Routing tables in a conventional DV network
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start building a reverse path, leading back to the transmitter, A. From the node’s

point of view, a reverse path is structurally identical to a direct path. Each link of the

path corresponds to a specific table entry. For instance, the reverse path D ? A

depicted in Fig. 5.4c corresponds to entry {A; A; 1} in the routing table of node D.

The RREQ flooding process continues until node B receives the RREQ (step

(d)). At this point, node B sends a Route Reply (RREP) packet back to A,

following the existing reverse path (step (e)). As the RREP visits the nodes

between B and A, the direct path is gradually built (steps (f) and (g)).

In the meantime, the original RREQ continue to propagate via H and I until all

nodes have been visited (step (e)). This protocol is not sufficiently sophisticated

(a) (b)

(c) (d)

Dest. Next-hop Distance

Dest. Next-hop Distance

Dest. Next-hop Distance

Fig. 5.2 Network bootstrapping from the point of view of node A; a while it is broadcasting a
Hello packet, node A enters the transmission range of B and D, b as soon as they sense the Hello
packet, nodes B and D respond with Echo packets, c node A can now add two new entries to
its table, d after nodes B and D go through a similar hello-response process, their tables are
populated with a single entry
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enough to interrupt the RREQ broadcasting process as soon as the intended des-

tination has been discovered. However, nodes can recognize duplicate or looping

RREQs.

Figure 5.4h shows two valid paths. Note that reverse paths are built only to

support the direct path construction and expire soon after step (g). If node B

intends to communicate back to A, it will be necessary to initiate a new path

discovery process. The final routing tables of nodes A and B are shown in (i) and

(j), respectively.

5.4 Path Management

When paths are built on demand, we also need mechanisms to keep them up to

date. It is not uncommon that an existing path becomes suboptimal or invalid due

to node mobility. Moreover, better paths may appear at any time. We also need to

implement a ‘‘garbage collection’’ scheme to ensure that all unutilized paths are

pruned timely. Because of that, paths are created with an expiration time and the

routing tables must contain some new fields:

Fig. 5.3 In a traffic-free network, the nodes keep track of only their immediate neighbors
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• Sequence counter of the destination node: used to handle out-of-order signals,

ensuring the creation of loop-free routes.

• List of active neighbors involved in the route table entry: used to rapidly tear

down a path that has become invalid for some reason.

• Expiration time of the route table entry: this is reset up to maximum_timeout

whenever the route entry is used to transmit data.

Likewise, any other routing protocol, the routing tables are orchestrated by

the signaling packets. It is easier to understand the table management process if we

follow a simple path discovery example, as shown in Fig. 5.5. Step (a) depicts

the initial status. Node A has already discovered neighbors B and D, but now it

wants to communicate with C. Path discovery starts with the creation of an RREQ

packet that carries the following information:

(a) (b) (c)

(f)(e)(d)

(g) (h)

(j)(i)

Fig. 5.4 On-demand path construction
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• Source address The initiator of the path discovery process.

• Source sequence counter Establishes the freshness of the information coming from

the source. Its value is incremented when the source relays any signaling packet.

• Broadcast identifier A counter incremented each time the source issues a new

RREQ.

• Destination address The end point of the path to be discovered.

• Destination sequence counter Used to maintain freshness information about the

path (a higher sequence counter identifies a fresher route). Its value is incre-

mented whenever the destination relays a signaling packet.

(a) (b)

(c) (d)

Fig. 5.5 Signaling packets RREQ and RREP are used to manage the routing tables

5.4 Path Management 71



• Lifespan A timer (or counter) determining the length at which the signaling

packet is kept alive before being purged from the network. As soon as the

packet reaches a node, the lifespan value is decremented. If the resulting

value is zero, the packet is pruned. This simple stratagem is used to contain

the signaling incurred by the broadcast process and to eliminate looping

packets. In fact, the Hello packets used in ‘‘neighbor discovery’’ are set with a

lifespan equal to one because they are meant to only reach their immediate

neighbors.

• Hop count Keeps track of the number of nodes visited by the signaling packet

before reaching the destination. This value is used to set the distance field of the

routing tables.

Figure 5.5b shows the snapshot when nodes B and D receive the RREQ from A.

Assume that neither B nor D have a route entry for destination C. They set up a

reverse path (pointing to A) and reprocess the RREQ. They decrement the lifespan

counter and increment the hop count. Since the lifespan is still greater than zero,

the RREQ is allowed to be rebroadcast. No new routes have been discovered at

this stage, so the routing table of node A remains almost unchanged. The time-out

values of each table entry are decremented, but are still above zero; thus, no entries

need to be pruned.

To avoid excessive overheads, this rebroadcasting process stops as soon as the

lifespan reaches a zero value. In fact, if we set the initial value of the lifespan too

small in comparison to the network size, there is the risk that the path discovery

process is interrupted before the destination can be reached by the RREQ. By

contrast, if lifespan is too high, we end up injecting too many signaling packets.

A possible solution is to start the discovery process with a relatively low lifespan.

If the initiator does not receive any reply within a period of about twice the

lifespan, it will restart the process using a higher lifespan value.

In Fig. 5.5c we capture the moment in which the intended destination, node C,

receives the RREQ. Node C builds a reverse path to B and creates an RREP packet

for A. The RREP contains the current destination sequence counter of node C and

the hop count value received by the RREQ. As for any new signaling packet, the

lifespan counter is reset. The RREP is then sent back to A via the reverse path. The

routing table of node A still remains unchanged, that is, except for the time-out

values that continue to decrease.

In our scenario, the RREP visits node B before reaching node A. At node B, the

RREP triggers the generation of a new route entry {C; C; 1; 80; ==; 10} (not

shown in Fig. 5.5). In the meantime, the routing table of node A further decre-

ments their time-out values (down to 7). Then, the RREP is sent to A after its

lifespan is also decremented (down to nine).

Finally, node A receives the RREP, acquiring all of the information needed to

build a route entry for C. In Fig. 5.5d, we see the network status after the whole

discovery process is complete. The reverse path is only needed to carry RREP

packets, so it is set to expire more quickly than the direct path. The latter will be

pruned after 10 s unless data packets transit through it.
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5.5 Our Second Path

Building all paths from scratch would not be efficient. In fact, RREQ and RREP

signals can do much more than just building paths on demand: they can also

‘‘expand’’ paths on demand, as exemplified in Fig. 5.6. Assume that the path

A ? B ? C is still active when node D decides to transmit to C (step (a)). At this

point, D has no clues as to how to reach C; therefore, it initiates a new path

discovery procedure. The destination sequence counter of the RREQ is set to zero

to signify that D has never received any information about this destination.

Upon receiving the RREQ, node A sets a reverse path (A ? D) and realizes

that its routing table already has an entry for destination C (step (b)). Conse-

quently, node A interrupts the RREQ broadcast and sends an RREP back to A,

including the path information. Node D can then create a new routing entry to

destination C.

5.6 Global Synchronization

Thus far, we have analyzed scenarios only involving one transmitter at a time.

When more nodes concurrently initiate transmission, different RREQs and RREPs

might bring inconsistent information onto the same node. To resolve conflicts, we

need some form of global synchronization to establish the freshness of the status

(a) (b)

Fig. 5.6 Path discovery is quicker when part of the path already exists
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information carried by the signalling packets. To achieve this purpose, each node

maintains two counters, the node sequence counter and the broadcast ID number.

Both of these are used to time-stamp the signalling packets.

Let us observe the mechanics of time-stamping through the example of Fig. 5.7.

We have two transmitters, D and A, which initiate path discovery at time T0 and

T8, respectively. For simplicity, let us assume that the signaling packets take 2 s to

travel between two adjacent nodes. The RREQ transmitted by D (RREQ(D, C))

reaches its destination, C at time T8, while A is broadcasting its own RREQ(A, C).

Node C now creates RREP(D, C, 8)—whereby the third parameter is the sequence

counter of node C—and sends it back to D.

To make things more realistic, suppose that node C is moving and that at time

T10, it hands over from C to B. Upon this topological change, the RREP(D, C, 8)

becomes obsolete. Yet, there is no way to prevent this outdated information from

propagating through the D ? C reverse path (i.e., F, E, A, D).

Nevertheless, the network is actually capable of detecting this inconsistency

and building the correct path. At time T14, RREP(D, C, 8) reaches node A, gen-

erating an obsolete entry for destination C. However, the fresher RREP(A, C, 9) is

already on its way to put things right: at time T16, it reaches node A, generating an

up-to-date entry for destination C.

This simple example shows that we can keep nodes in synch even in the

absence of a global clock. Through time-stamps, we keep track of the relative time

Fig. 5.7 Dynamic path updating
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between subsequent signals. For instance, RREP(A, C, 9) is fresher than RREP

(D, C, 8); therefore, the path A ? B ? C will override path A ? E ? C.

5.7 Error Management

The task of maintaining a globally consistent network is hindered by the transport

latency of the signalling packets. The more dynamic the network, the higher the

probability that RREQs and RREPs carry outdated information, leading to incorrect

paths. Incorrect paths represent a real problem since they lead to performance

degradation. However, engineering an ‘‘error-free’’ network is excessively difficult

due to the many independent variables that influence its operation. Any node can

start transmitting, receiving and relaying packets at any time. It may move unpre-

dictably, causing dramatic topological changes, loops and dead ends.

A more effective alternative is to incorporate an error management system,

capable of ‘‘catching’’ and ‘‘handling’’ errors. Simple error messages can help to

address a number of problems, as exemplified in Fig. 5.8. Suppose we are still

observing the scenario depicted in Fig. 5.7, intercepting it at time T13. Node F

issues one of its periodic Hello messages and then expects an Echo response within

four time slots (twice the time for a signaling packet to travel between two

adjacent nodes). Obviously, there will not be any Echo packet because node C is

no longer within the transmission range of F. Thus, at time T17, node F becomes

aware that the table entry with destination C is incorrect and creates a route error

message (RERR(C—A, D, E)) to inform all the active nodes (A, D and E), i.e.,

those nodes who relied on F to reach C.

To make things more entangled, suppose that node E starts transmitting data to

C at time T18, while the RERR is still traveling in the link F ? E. Considering its

routing table, node E relays the data via node F, unaware that F is now a dead end.

At time T19, our RERR reaches E and deletes the erroneous route to C (Fig. 5.8b).

Unfortunately this is too late to catch the data packets that have already left node

E; but the RERR puts things right for any data transiting via E after time T19.

In fact, the RERR fixes tables of A and D at times T21 and T23, respectively.

This error message belongs to the category of ‘‘garbage collection’’ mecha-

nisms, whose task is to delete paths that have become obsolete. Thanks to the

simple scenario of Fig. 5.8, we can now appreciate that ‘‘garbage collection’’

addresses only part of the problem. Our DATA(E, C) is still travelling unneces-

sarily and, what is worse, node E is not aware of the problem.

We need a second kind of error message that can ‘‘catch’’ stray data, ‘‘inform’’

the originator and ‘‘rebuild’’ the outdated paths. To understand how to achieve this,

let us follow the sequence of events from time T21. As soon as DATA(E, C) reaches

F, the node realizes that the sender (E) must have an incorrect path. Node F gen-

erates an RERR(C–E) which instructs E to initiate a new path discovery process.

In fact, E issues a RREQ(E, C) as soon as it receives the RERR (at time T23).
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Fig. 5.8 a Error messages to manage erroneous paths, b error messages to manage erroneous
paths
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The two route error messages considered in this example work in perfect

harmony. By time T23, the first RERR manages to completely clear the network

of all outdated paths to C. On the other hand, the second RERR takes care of

re-building the path E ? C to cater for the active transmitter E.

5.8 Remarks on Reactive Networks

A ‘‘reactive’’ network can promptly adjust to any external force, be it an application,

the mobility of a node, or the migration of a cluster of nodes [3–6]. ‘‘Reactivity’’

represents the foundation ofmodern networkswhich are required to operate under an

incredible variety of stimuli. To underline the importance of reactive networks, this

chapter has explored the extreme case of a network that can function even in the

absence of any pre-computed paths. This is a network that can operate only if it is able

to react to stimuli. Such a network finds its roots in the context of the Ad hoc

on-demand distance vector (AODV) routing protocol which was proposed by

Perkings et al. in 2003 [7–11], which we have adopted in this chapter.

Networks that are merely reactive such as the AODV network teach us how to

minimize overheads. When the network is in standby mode (no data traffic), the

tables are virtually empty and the signaling messages only perform neighbor

discovery.

However, the extreme reduction of overheads does not come without surprises.

Since its conception, AODV has been the subject of intensive studies which have

unveiled the limitations of a ‘‘purely reactive’’ approach [12]. Ironically, if the

paths can only be built on demand, the network acquires an intrinsic latency: it is

not able to respond before the completion of ‘‘path discovery’’ (obviously, this

latency increases with the network diameter). Also, when the routes are used

intermittently, the paths may expire in-between intermittent transmissions and will

have to be re-built unnecessarily.

Therefore, on-demand networking should be regarded as just one of the

ingredients of a reactive network. Another important element is pro-activity which

is the subject of the next chapter.
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Chapter 6

Proactive Networks

Abstract What is the secret of a fast-responding network? The ideal network will

anticipate the communication needs of all nodes, building the necessary paths

proactively. Unfortunately, this level of intelligence is not possible today. A brute-

force approach, whereby the network continuously maintains all possible paths

among all nodes, is also not a viable proposition because networks are far too vast

and dynamic. This chapter explores strategies to reduce the impact of signaling in

proactive routing. Through this exercise, we find that a fast network is one that can

adaptively switch between ‘‘proactive’’ and ‘‘reactive’’ modes.

The more precisely the position is determined, the less precisely

the momentum is known in this instant, and vice versa

W. Heisenberg, Uncertainty Paper, 1927

6.1 From Reactive to Responsive

What is the secret of a fast-responding network? In Chap. 5, we assessed one of the

dimensions: the ability to build paths ‘‘when’’ and ‘‘where’’ they are most needed.

On-demand protocols such as AODV [1, 2] show us how to implement a network

that has two modes of operation: a ‘‘standby’’ mode, which consumes minimum

energy; and a ‘‘path construction’’ mode, which creates the necessary communi-

cation channels. In this case, most of the resources are dedicated to ‘‘adapting’’ to

the user’s demand.

However, a network that is able to respond to external stimuli is not necessarily

a fast-responding network. Another essential feature is ‘‘proactiveness,’’ that is, the

ability to anticipate the communication needs while providing readily available

paths.
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Ideally, one would want a network whereby every node knows the path to every

other one. Unfortunately, the networks of today (and even more so regarding

future networks) are by far too vast, dynamic and dense for any protocol to be able

to capture their global status. For instance, let us consider the Link State (LS)

protocol (Chap. 2) which strives to keep every node informed about the whole

network topology. It does so by continuously broadcasting LS packets. However,

the LS flooding process itself alters the very same topological status that it is trying

to capture—LS packets incur extra traffic and delay. Also, the information carried

by the LS packets may become obsolete while it is propagating through the

network.

In this chapter, we address the question of ‘‘how to build a fast-responding

network’’ in two steps. First, we explore proactive protocols that can work on

highly dynamic networks. The key challenge is to reduce the impact of signaling

without downgrading route accuracy.

Through this exercise, we find that, just like for ‘‘mere reactiveness,’’ mere

‘‘proactiveness’’ does not always lead to fast responses. In the second part, we

show how hybrid protocols, which strike a good balance between reactive and

proactive mechanisms, bring about the best features of the two.

6.2 Keep the Network Ready

A good network is a ‘‘ready’’ network; however, keeping the network in ‘‘ready’’

mode generates signaling costs. As the network grows and becomes more dense

and dynamic, we must find ways to reduce the size and the number of the signaling

packets. A fine example of how this can be achieved is offered by OLSR, the

optimized link state routing protocol [3, 4]. In OLSR, only a subset of the nodes is

allowed to declare and relay the topology control (TC) messages. Such nodes are

termed multipoint relays (MPR). The other nodes can receive and process TC

packets, though do not retransmit them.

In practical terms, this means that we contain the signaling packets within a

subset of the network. For maximum efficiency, this control network (the one

carrying the TC messages) should remain small even when the number of nodes

increases. In this way, we only need to flood a subset of the network that we are

trying to control.

It is equally important that the size of the TC messages remains small. If TC

packets carry status information about all neighbors, the packet size grows with the

network density. To address this issue, OLSR makes a clever selection of a subset

of neighbors whose link status can be advertized by TC messages.

Over the past few years, researchers have studied the properties of OLSR, using

this protocol as the basis for more elaborate solutions [5–7]. OLSR is appealing

because it brings the stability properties of Link State routing into the mobile

scenery. Thus, it is essential to examine how OLSR constructs the control sub-

network [8, 9].
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6.3 How Do I Find My Multipoint Relay?

Each node will periodically broadcast a tiny Hello packet which advertizes the

node’s neighbors. Thus, when a node captures a Hello packet, it actually discovers

the neighbor plus the neighbor’s neighbors. Take, for instance, the simple topology

of Fig. 6.1, assuming that, initially, (time T = T0) nobody knows about any other

nodes. Hence, the list of 1-hop and of 2-hop neighbors (N1 and N2 respectively)

will be empty; thus, the first set of Hello messages will carry no information.

At time T1, node A learns about its neighbors B, C and D; so it can compile the

1-hop neighbor list, N1(A) : {[B, –] [C, –] [D, –]}. The MPR flag indicates

whether or not some other node has chosen node A as its own multipoint relay

node (this information is unknown at this stage).

However, at this stage, node A does not have sufficient information to fill in its

2-hop neighbor list, i.e., N2(A). At the following exchange of Hello packets, node

A learns about E, F, G and H via the Hello packets received from B, C and D.

There is now sufficient information to compile N2(A), as depicted in Fig. 6.2.

We still need to compute the MPR nodes of node A, that is, the minimum set of

1-hop neighbors through which A can reach all its 2-hop neighbors. At this point,

node A has all the information required to complete such a task. We first establish

whether a single 1-hop node can serve the purpose. We can easily see that B, C,

nor D can individually reach E, F, G and H. Thus, we consider all possible

combinations of pairs. The pair {B; C} cannot reach H. The pair {C; D} cannot

reach E. However, {B; D} can reach all 2-hop nodes. Thus, B and D are elected as

MPR nodes for node A, and the corresponding flags in N1(A) are set to ‘‘yes’’

accordingly (Fig. 6.3). The MPR nodes computed by each of the nodes are

depicted in Fig. 6.4.

Fig. 6.1 Neighbor’s discovery: periodic Hello messages
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6.4 Life of an OLSR Node

Each node of an ad hoc network is a routing entity. Thus, every node must

contribute to the tasks of route computation and packet forwarding. For this

purpose, the nodes must execute different processes simultaneously, as delineated

in Fig. 6.5. We have already discussed thread (a), i.e., the MPR selection. This

process runs continuously because the node dynamics can lead to new configu-

rations and, possibly, to new MPRs.

Fig. 6.3 Computation of
MPR(A), the minimal set of
1-hop neighbors that allows
node A to reach all of its
2-hop neighbors

Fig. 6.2 Neighbor’s discovery: the 2-hop neighbor list of node A, N2(A)
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To limit the flooding process, only the MPR nodes are allowed to generate TC

packets (Fig. 6.5b). However, how does a node learn whether or not it is the MPR

for some other node? This information propagates thanks to the Hello messages

(incorporated in the MPR flag field). For instance, node B (which is MPR of A)

will periodically broadcast TC messages. Figure 6.6a shows how the various Hello

Fig. 6.4 The MPR nodes in our sample network

(a) (b) (c)

Fig. 6.5 The main threads of an OLSR node: aMPR selection, b TC packet generation and c TC
packet relay
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messages received by B lead to the formation of its MPR selector set and, sub-

sequently, to the construction and broadcasting of the TC packet. The other TC

packets of this simple network are visible in Fig. 6.6b. Nodes E, F, G and H are not

selected as MPR by any node. Therefore, they do not generate any TC message.

In addition to the processing of Hello packets and to the generation of its own

TC packets, MPR nodes must also support the propagation of the other TC

messages (Fig. 6.5c). The non-MPR nodes will simply drop the TC messages.

6.5 The Node’s Information Repository

Thanks to the continuous exchange of Hello messages and TC packets, each node

gradually builds up its own information repository. This includes the 1-hop

neighbor list, the 2-hop neighbor list, and the MPR selector list. As new TC

packets come in, the node will also start building the topology information base

(TIB) that lays the foundations of the routing table. The construction of the TIB is

sketched in Fig. 6.7a. As an example, Fig. 6.7b includes the complete information

repository of node A.

6.6 Shortest Path over the MPR Sub-topology

At this point, each node has all the data necessary to compute the shortest paths.

Let us continue to follow the process from the point of view of node A captured in

Fig. 6.8. The first three entries of the routing table are directly derived from the

1-hop neighbor list, N1(A). Nodes B, C and D are neighbors, so they are directly

visible by A (next-hop addresses are B, C and D respectively) and their distance

from A is equal to one.

To compute the other entries, we can just apply the Dijkstra’s shortest-path

algorithm (see Chap. 2) on the MPR sub-topology of our network. Figure 6.8b

Fig. 6.6 a The MPR selector set of node B and its TC packet; b the other TC packets
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depicts the calculation of the routing entry for destination E. We visit the TIB table

to find out that one neighbor of node E is node B. Then, we continue the same

process recursively until we find a destination entry whose last-hop node is node

A. In this simple case, the algorithm converges in only two steps.

A slightly more complex case is depicted in Fig. 6.8c. We are now looking for

the path A ? F of which there are two alternatives. We follow either B or C.

However, if we look at the list of MPR, we find that node C is not included. Thus,

the only acceptable path (i.e., via an MPR node) is the one via node B. After a

second look up of the TIB (looking for the last-hop for B), the algorithm converges

and we have found the routing entry {F; B; 2}.

The computational process performed to obtain routes for destinations G and H

follows exactly the same steps as above, and eventually leads to the shortest-path

distribution tree of Fig. 6.9.

6.7 A Complete Example

Figure 6.10 presents a complete OLSR network example, including the main

intermediate steps through which node X builds its path to B. The first task is to

identify the leaf nodes within two hops of the source node (X) and find the set of 1-

(a) (b)

Fig. 6.7 a Computation of the topology information base (TIB) of node A. For every TC
message received, its entries are copied in the first column of the TIB. The originator ID is copied
onto the second column. In this way, the TIB records pairs of node IDs together with their
respective 1-hop neighbors; b the complete information repository of node A
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hop nodes that covers those leaves (a). Node Y is the only leaf and is covered by

node S which is thus elected as the first MPR (b). Since we now have an MPR, let

us see which 2-hop nodes it is covering (c). Usually, the process would continue

until a minimum set of MPR that covers all 2-hop nodes is established. However,

in our case, node S covers all 2-hop nodes. Thus, we can already draw the initial

part of the distribution trees rooted at X (d).

The subsequent part of the tree is built by the MPRs. In Fig. 6.10e, we see the

resulting distribution tree routed at node S, i.e., the MPR of node X, now operating

in the role of source node. In (f), we see how the path between X and B starts

taking form once the routing tree of node X is merged with that of node S

(a)

(b)

(c)

Fig. 6.8 Shortest-path
calculation in OLSR. a The
first entries of the routing
table are derived directly
from the 1-hop neighbor list;
b routing entry for destination
node E; c routing entry for
destination node F

86 6 Proactive Networks



(for simplicity, we only show the paths leading towards B). In (g), we can observe

a portion of the routing tree of node M (i.e., MPR node of S and now acting as a

source node). Finally, the complete path is shown in (h). Furthermore, the com-

plete distribution tree routed at node X is depicted in Fig. 6.11b The new versions

of OLSR allow a more efficient distribution of control information, based on the

Fisheye routing algorithm [10].

6.8 How Proactive Can You Be?

Proactive protocols such as OLSR strive to keep the network ready at whole times,

furnishing it with routing tables. However, proactiveness is effective only when the

tables reflect the actual status of the network. At the same time, this table-driven

approach comes with signaling overheads that affect the very same network (and

tables) they are trying to control. Thus, when the control traffic starts occupying a

significant portion of the available network capacity, the costs incurred to build the

tables outweighs the benefits of proactive routings.

OLSR offers a strategy to reduce the control traffic by containing it within the

MPR sub-topology. This is effective in ‘‘dense’’ networks because, in this case,

each MPR node serves many neighbors and the sub-topology stays considerably

smaller than the whole network. Thus, a great portion of the nodes and links is not

affected by the signals. On the other hand, if the nodes are sparsely distributed, the

benefits of OLSR in comparison to the ordinary link state protocol quickly vanish.

The level of network dynamics is one of the factors that determine whether or

not a proactive approach is better than a reactive one. Clearly, if the nodes move

Fig. 6.9 Shortest-path
calculation distribution tree
rooted at node A and built
over the MPR sub-topology
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(a) (b)

(c) (d)

Fig. 6.10 a–h Shortest-path calculation between nodes X and B
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too fast, the control packets carry outdated information; thus, the routing tables are

permanently out of sync with the network status. In this case, the whole exercise of

maintaining tables becomes useless, which sheds a positive light on reactive

routing. Together with node mobility, link failure tends to increase network

dynamics. Thus, failure-prone networks demand a good degree of reactiveness.

Another important factor is the typology of the data traffic. If the traffic sources

and destinations only involve a small subset of nodes, reactive routing represents a

more efficient strategy: all the control power is diverted towards the active paths

Fig. 6.10 (Continued)

Fig. 6.11 OLSR distribution tree. a Initial network topology; b distribution tree routed at node X
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and no energy is dispersed in the calculation of the other unutilized ones. On the

same end of the scale, we have the self-similar traffic: there is a repetitive pattern

among the inter-communicating points. Therefore, the reactive routes are auto-

matically kept alive by the traffic. On the other end, when the traffic is unpre-

dictable and hits a larger fraction of the network, proactive protocols win.

Application patterns and network dynamics are relative, rather than absolute,

metrics. In fact, the overall level of dynamics of the system depends on how the

traffic dynamics compare with the network dynamics. Figure 6.12 projects a

qualitative view on the relationship between the system dynamics and the choice

of routing protocols. We can see that there is a big gap between proactive and

reactive protocols. There is a broad range of conditions for which neither

approach functions at its best. This is where hybrid solutions find their role in

networking.

6.9 The Power of Hybrid Protocols

It is not uncommon that different portions of the network exhibit different levels of

dynamics. Sometimes, we observe that most of the traffic moves within clusters,

with occasional communications in between clusters. Also, different groups of

nodes may have different mobility patterns. Thus, it makes sense to deploy both

reactive and proactive mechanisms on the same network, and then switch between

them depending on the localized network conditions. Hybrid protocols incorporate

this mixture of capabilities and aim to combine the merits of reactive and proactive

protocols. For instance, in the presence of traffic clustering, it makes sense to use

proactive algorithms for the computation of local routes and the reactive approach

to build longer paths on demand.

Hybrid routing is exemplified by the zone routing protocol (ZRP) [11]. Each

node N can define the hop-radius r of its own routing zone. It will then adopt a

neighbor discovery protocol (NDP) to find all the nodes residing within its

Fig. 6.12 System dynamics
and the role of proactive,
reactive and hybrid protocols
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catching area. Nodes may join or leave the zone, but the node N will adopt a

proactive routing protocol (such as OLSR) to maintain its in-zone distribution tree.

This operation is sufficient as far as N sends data within its own zone. On the

other hand, as soon as one of the destination nodes falls outside of the zone,

N triggers a reactive protocol (such as AODV) to build the missing part of the path

from the border onwards.

Let us see which routes are computed proactively and which ones are build on-

demand, considering the example of Fig. 6.13a. Let us start from node A and find

out how it will eventually communicate with node U. Just like any other node,

node A maintains its in-zone routes proactively. Thus, node A can only reach as

far as its border nodes (B, D, E, F, J and H) (Fig. 6.13b).

Because node U does not reside within the zone, node A has to initiate a reactive

search through its boarder nodes. This process is known as ‘‘bordercast’’ (not to be

Fig. 6.13 a–f Discovery the of path from node A to node U according to the hybrid protocol ZRP
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confused with ‘‘broadcast’’) because the route discovery request is received and

processed only by the border nodes. Let us follow how this request is executed via

node H—the other border nodes will follow a similar procedure but will fail to

discover node U. Suppose we are adopting the reactive AODV protocol (Chap. 5) to

discover the paths in between zones. Node H builds a reverse path (H ? I ? A)

that will eventually be used by node U to send route reply (RREP) packets back to A

(Fig. 6.13c). Node H has its own zone as well; therefore, it can immediately provide

proactive paths to its boarder nodes (M, N and F). Since destination node U is,

again, not found, node H issues a reactive bordercast request.

Let us follow how this request is executed via node N. The process is the same

as the one followed by node H. Node N builds the reverse path (N ? L ? H) and

provides another bit of the path leading to the boarder (Fig. 6.13d). It will then

boardercast a route discovery request via nodes R and S.

We are now getting closer to our destination; in fact, both R and S have a valid

path to node U. Suppose that node S is the first who responds: it builds the reverse

path (S ? Q ? N), but this time there is no need to invoke AODV since node S

already holds a proactive path to node U (Fig. 6.13e). Finally, node S sends the

RREP back to A via the reverse path and the direct path is set up (Fig. 6.13f).

In ZRP, each node can adjust its own radius depending on the level of dynamics

experienced within the zone. When the node’s mobility is low, the routes tend to

be more stable. The node can thus increase the radius of the zone with little or no

effects on the accuracy of the routes. On the other hand, as the mobility increases,

the routes break more frequently and the cost of maintaining proactive paths

quickly becomes prohibitive. Hence, as the zone dynamics increases, it is more

convenient to decrease the radius.

Hybrid protocols offer extra means to increase the network’s ability to adapt to

the application. We can say that protocols such as ZRP come with two gears (the

Fig. 6.13 (Continued)
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‘‘proactive’’ and the ‘‘reactive’’ modes). However, networks with multiple gears

involve a more complex orchestration of the system’s parameters. Each node must

be able to self-regulate its own radius, but also dynamically adjust all the

parameters of both its intrazone routing protocol (IARP), e.g., OLSR—and

interzone routing protocol (IERP), e.g., AODV. Thus, self-adaptability comes with

an additional challenge: to furnish the nodes with the ability to gather their con-

text, reason about it and adjust the various network parameters coherently. The

ultimate self-adjustable network will pursue maximum efficiency whilst simulta-

neously avoiding deadlocks, loops, local sub-optimality and instability.

We came to explore the meanders of ad hoc networks, seeking inspiration for the

quest of the future Internet. Ad hoc networks represent a unique experimental

ground for the study of proactive, reactive and adaptive protocols. In fact, as

networks become increasingly dynamic, transient, volatile and error-prone, we

must equip them with effective self-healing and self-optimization mechanisms [12].

In this sense, the scientific framework developed in the context of ad hoc networks

has generated ideas and protocols that will definitely play a role in the future.

On the other hand, the recent advances on ‘‘virtual networks’’ pursue a com-

pletely different perspective. Starting from the next chapter, we shall explore how to

build a new breed of networks on top of a general-purpose communication system.
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Chapter 7

Content-Aware Networks

Abstract Packet switching networks provide rudimentary means to move units of

‘‘raw’’ data around. The Net can ‘‘transport,’’ though it is unable to ‘‘manipulate’’

high-level content, video or audio sessions. Imagine what we could achieve with a

network that is redesigned around what is the most precious thing in today’s digital

ecosystem: the content. This chapter introduces content-aware networks, ones that

can re-route packets based on the content ‘‘usage patterns’’ and ‘‘requirements.’’ We

look at peer-to-peer networks as a practical example in order to better understand

how to build content-aware networks on top of ordinary packet switching networks.

With virtue you can’t be entirely poor; without virtue you can’t

really be rich

Chinese proverb

7.1 Routers Should Read the Content

Packet switching networks deliver content quantized in blocks between any two

addresses. This point-to-point delivery is simple and efficient, but is only a small

subset of the transport services a network should provide. For instance, how could a

node push content to other interested nodes without building a separate delivery

session for each one of them? One-to-many and many-to-many distribution

schemes are not fully supported by IP networks. These are purposely kept ignorant

about the data plane (including the content features and distribution patterns) as

well as the physical context where the information is delivered (including the

physical network, the users’ terminals and their location). Because of their isolation

from the rest of the system, routers perform their tasks sub-optimally. They relay

raw bytes and are not concerned with information and communication patterns.
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Imagine what we could achieve if routers were able to identify and understand

the content, become aware of which nodes are interested in it and, then, create

replicas accordingly. Not one of these steps is possible unless the network takes up

tasks that are currently in the application domain.

In this chapter, we start a journey in the realm of content-aware networks, ones

that can optimize content transfers based on the content usage patterns. Content-

aware networks are made of ‘‘virtual’’ routing nodes in the sense that the routing

functions are performed by software entities rather than by specialized (dedicated)

hardware. These virtual nodes can physically intercommunicate via a general-

purpose physical network; but they are also interconnected by ‘‘virtual’’ links that

play a key role in content-aware routing.

To understand the mechanics of content-aware routing we look at protocols and

mechanisms developed in the context of P2P networks [1–4]. In this case, the

user’s terminals, termed ‘‘peers,’’ take up the ‘‘virtual routing’’ function and the

overall routing protocol is implemented in the form of an application (the P2P

program). P2P networks are optimized for specific tasks such as file-sharing, video

on demand, IPTV or video conferencing. In consideration of their characteristics,

P2P networks belong to the category of ‘‘virtual networks.’’ These can deploy their

own routing strategies without having to change any protocol on the IP network.

7.2 A Network on Top of the Physical Network

There is complementarity between the P2P routing algorithm (which is content

driven) and the underlying packet switching routing (which is content-agnostic). In

the example of Fig. 7.1, the two colleagues might receive George’s messages (msg)

via Antonio’s computer—from a peer’s perspective, messages travel in between

peers over the virtual links. However, the actual delivery medium must always be a

physical network—the packets are transported by the switched network.

Virtual networks aim to compensate the lack of flexibility and limited efficiency

of the underlying network. Thus, the virtual links do not always map directly onto

the physical links. For instance, the same physical link may sustain multiple virtual

links (Fig. 7.2). Also, the various packets of the same message may follow diff-

erent paths (Fig. 7.3). In fact, as the network conditions vary (e.g., due to con-

gestion), the routing protocol can create diversions.

Virtual networks go far beyond this dichotomy between virtual messages and

physical packets. They generate an entirely new network on top of the physical

network (Fig. 7.4). The peer nodes of the virtual network are chosen among those

that have some form of intercommunication patterns. Each peer has a syntactic

(sometime even a semantic) understanding of the message; therefore, it can more

easily optimize the distribution of the message to the other peers. In fact, peers can

advertize their content, discover the adverts of other peers and use this information

to construct the virtual network. Thus, the virtual paths only exist as far as there is

shared content among the nodes. This is very different from the infrastructure-
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based networks which strive to keep everything connected. On the other hand,

there are similarities with the reactive routing protocols (Chap. 5) which are also

maintaining paths on the bases of packet transfers. However, in the ad hoc reactive

networks, the network is still content-agnostic.

The nodes of virtual P2P networks can send, receive and relay information, thus

acting in the roles of client, server and router. At its essence, a P2P network needs

to offer mechanisms for nodes to join in, obtain a globally valid identifier (ID) and

maintain a neighbor list. A peer will promote any of the other nodes to the status of

‘‘neighbor’’ when it recognizes some affinity in terms of shared content.

Fig. 7.1 Virtual links between peers at the edges of a packet switching network

Fig. 7.2 Virtual links consist of a succession of routers and physical links
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Hence, from a more practical point of view, a P2P network can be depicted as a

distributed list of {ID, IP} pairs with redundancy. Each node maintains a portion of

the neighbor list in order to keep relevant nodes in direct contact (Fig. 7.5). For the

purpose of efficiency, we need to maintain the neighbor list small; so there is no

point in maintaining direct links between nodes who share nothing in common.

Fig. 7.4 Virtual network built with peers at the edges of a packet switching network

Fig. 7.3 Every virtual link (e.g., George–Antonio) may consist of multiple parallel paths

Fig. 7.5 Application-specific virtual networks build graphs of distributed neighbor lists
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7.3 Centralized Assignment of Node Identifiers

How does a P2P network bootstrap? Nodes will join the network one after the

other. The first thing a new node should do is acquiring a unique identity (ID)

within the virtual network [5]. Next, the node must find an entry point, i.e., any

other node who is already into the network or knows how to get in. The joining

process then continues with the population of the neighbor list. Each node aug-

ments its neighbor list with multiple entries and advertises its own resources.

The ID assignment is an important step of the bootstrapping process [6–8].

As with IP addresses in packet switching networks, node IDs in virtual networks

may be static or dynamic. A static ID identifies a node throughout its online or

offline lifetime; whereas a dynamic one may be different each time the node joins

the same network. Static IDs are useful to nodes with a fixed set of neighbors—any

node re-joining the network expects to virtually connect to the same static

neighborhood. For instance, a Skype [9] account has a list of contacts with which

the client tries to connect each time it goes online. On the other hand, a node with a

dynamic ID does not have a predefined fixed neighborhood and requires a less

complex management mechanism.

What if two nodes within a network have the same ID? Messages targeted to

one node may end up with the wrong one, causing serious coordination or even

security problems. A typical solution is to use another monitoring entity—the

bootstrapping server—that has a global view of the network [10, 11]. The server

issues unique IDs to the new nodes and keeps track of those who are online

(Fig. 7.6). In case of static neighborhoods, the server makes sure that no two nodes

are assigned to the same ID, regardless of whether they are online or offline

(Fig. 7.6a). Note the sequence of events. We have two nodes, Antonio and George.

At time T = (t-2), Antonio registers his IP address, obtaining the identifier A. He

will then abandon the network at time T = (t-1). When Antonio rejoins the

network, he gets a new IP address from the physical network. Yet, within the

virtual network, he is still associated with the same identifier A. This causes some

inconsistency at time T = t because this new pair {A; 238.19.7.81} is temporarily

out of sync with the node G (G still thinks that identifier A is coupled with IP

address 224.5.45.8).

Figure 7.6b depicts the case of dynamic ID assignment. Now, we can only

ensure unique IDs among the pool of nodes who are online. Thus, the IDs of the

offline nodes are recycled as new nodes come online.

7.4 Centralized Entry Point Discovery

Getting an ID is only the first step of a node’s bootstrapping process. The new

node needs to populate its neighbor list with the support of some other online node.

Thus, the second bootstrapping step is the identification of an entry point, a node
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that will act as a gateway into the virtual network. For this purpose, many overlay

networks commission an external entity, i.e., the bootstrap server [10]. This is in

charge of monitoring the status of the virtual nodes to maintain two lists: the online

and the offline nodes.

How does the server know about the status of the virtual nodes, considering that

these may join in and out of the network in any moment? A simple approach is

based on periodic heartbeat initiated by the nodes. When a node retrieves its ID

from the server, it also finds out about the monitoring protocol in use and registers

its presence with the server.

Even after registering with the server, a node cannot do much until it has

discovered an entry point. This is a node which is already part of the virtual

Fig. 7.6 Node ID issued from a well-known centralized entity having a global view of the
system. a Nodes preserve the same ID either online or offline. b Nodes may get different IDs each
time they rejoin

100 7 Content-Aware Networks



network and will support the new comer in different ways. Continuing from the

example of Fig. 7.6, let us see how node G will discover its entry point. In case of

a fixed neighbor list (Fig. 7.7a), node G requests the {ID; IP} pair of a specific

node—in our case, this is node A. From this point onwards, nodes A and G create a

virtual link and can support each other.

In case of dynamic neighbor lists, as a new node gets online, it seeks the support

of any entry point (not merely the entry points discovered previously). In fact,

George will find out that Antonio now maps onto {T; 238.19.7.81} and sets this

pair as the entry point (Fig. 7.7b).

Fig. 7.7 Node G discovers its entry point via the bootstrap server. a If node G has fixed
neighbors, it tries to retrieve their current IP addresses; b otherwise, it requests for any currently
online {ID; IP} pair. Then, it connects and communicates with the retrieved entry point
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7.5 Multiple Bootstrap Servers

We have seen how the bootstrap server stays aware of the actual network and

nodes status and fully controls the ID assignment/verification process. Boot-

strapping is a vital service; therefore, if we rely on a single server, we are intro-

ducing a bottleneck and a single point of failure. To counter these limitations,

many virtual networks use a farm of dedicated servers for a more robust boot-

strapping process.

Examples of P2P systems that employ multiple servers are Skype, Yahoo,

Windows Live messengers, Joost and eMule. In these cases, the peers come with a

pre-configured list of possible bootstrapping servers. In some cases, the manager

of these dedicated servers is also the owner of the virtual network.

The use of multiple servers allows balancing of the workload incurred by the

joining nodes. Depending on the particular implementation, each server may either

handle a subset of the nodes or hold a complete replica of the index. However, the

use of servers implies that there is a management system behind the scenes of the

virtual network. The servers’ administrator has the capability to trace the users and

may be held responsible for their actions, e.g., copyright infringement. In fact, this

is how the music industry managed to shut down the file-sharing network Napster

in 2001.

To avoid these vulnerabilities, some systems decouple the bootstrapping servers

from the virtual network and decentralize their management [12, 13]. Let us

assume that there are multiple such servers with no direct communication between

them. Each server only has a partial view of the network; it only registers a subset

of nodes. Figure 7.8 illustrates the process as node T joins the network and obtains

the entry point via one of the servers.

As the virtual network increases in size and dynamics, more bootstrap servers

may be added to decongest the existing servers. However, to further scale up the

Fig. 7.8 Multiple independent bootstrap servers for one network. a Node T randomly picks one
server among its preconfigured list of servers. b We suppose bootstrap server BS1 is selected.
c BS1 returns entry point A. d Finally, the virtual link T to A is created
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system, at some point it is necessary to increase the level of redundancy and

parallelism beyond the capability of a single server-based architecture. Figure 7.9

illustrates a scenario in which the actual peers participate to the bootstrapping

process, propagating server availability information.

Following this approach, both the servers and the nodes help to keep the

servers’ list up to date. This scheme can take up substantial loads, thought it is still

vulnerable because the virtual network still relies on the servers. Ideally, one

would want the virtual network to function independently from any external entity

in order to prevent issues on the servers from affecting the network. Even with

multiple servers (instead of a single bootstrapping server), we still have scalability

issues as these would still not be able to handle flash crowds, which are rather

typical in P2P applications.

Fig. 7.9 Bootstrapping with the help of multiple independent servers. a Server BS1 is online;
node T starts joining process. b Upon registering, node T receives entry point A as well as the list
of other bootstrap servers (BS2 and BS6). c Both BS1 and node A go offline. d BS1 stays offline;
node A comes online again but cannot re-register via BS1; node A registers via BS2 and at the
same time propagates its own knowledge about the existence of BS6 to BS2. e Through the
registration process, node T finds out about BS3 and BS5
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7.6 Decentralized Assignment of Node Identifiers

The bootstrapping process can also be performed in a fully decentralized fashion,

i.e., no server involvement. Any node can initiate the generation of their own ID.

They will use a hash function in combination with some local data to generate

a unique ID. The local data may be the node’s IP address, a local binary file or

even a large random number. This is a probabilistic approach that cannot ensure

the absence of ID duplicates; yet the probability that duplicates occur can be

reduced by hashing onto a broad range of numbers.

While the centralized bootstrapping process has the benefit of increasing the

sense of trust with respect to the network, the decentralized approach makes the

process more robust and scalable. A third category of ID generation mechanisms

tries to combine these two methods [6, 14, 15]. A new joining node produces

only part of his ID, whilst some other nodes help completing the process. Fol-

lowing the example of Fig. 7.10, the new node T produces a random key which

is then passed on to another randomly chosen node—in our example of

Fig. 7.10a, this happens to be node A. In turn, node A combines the received key

with another random locally generated number (the seed) and pushes the

resulting value onto yet another randomly selected node. The same process

continues, hopping from node to node, until the counter hops-to-live (HTL) has

been decremented down to zero (Fig. 7.10b–d). Finally, the resulting ID is

announced to the nodes that contributed to its generation by traveling backwards

on the same path (Fig. 7.10e–g).

7.7 Entry Point Discovery via Underlying Links

In order to go through a decentralized bootstrapping process, a virtual node must

be able to discover other nodes without any server support. Any new-coming node

is initially isolated from the other virtual nodes. Its only door into the virtual

network goes through the underlying physical network.

The new node has no prior knowledge. It has an IP address so it can only start

by scanning the underlying IP network. On the other hand, the existing virtual

nodes will be operating within the virtual network, but will also be listening on

their IP address (on a specific port) for any incoming join requests. Thus, if a node

hears a join request, it will respond (just as a bootstrap server would have done),

becoming the entry point for the new node.

An example is depicted in Fig. 7.11. The incoming node, George, has obtained

an IP address and it can start off by scanning its domain. Under these conditions,

the scan is performed randomly. George generates a random IP (first within its

domain). Eventually, if the IP address of virtual node Emily is selected, Emily will

respond, becoming George’s entry point. Otherwise, nodes from other domains

might serve the same purpose.
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This approach is merely a random probabilistic search over a unicast network.

Its efficiency depends upon the ratio between virtual and physical nodes. Thus, the

bigger the virtual network, the easier it will be for new nodes to join it. However,

network scanning can be bandwidth consuming and does not give any guaranties

as to the convergence time and success.

The entry point discovery process becomes more efficient if we can rely on

additional support from the underlying network. For instance, if the network

supports multicasting [16–18], we could map the virtual network onto a particular

multicast group, i.e., onto a single multicast address. Thus, all virtual nodes would

have the same network address. Each online node advertises its membership by

registering the group address with the closest router (Fig. 7.12). In this way, the

ordinary routing table updates have the effect to propagate the nodes’ membership.

For example, at some point, routers F, A and B become aware of Emily’s mem-

bership; G, B and A register Antonio’s presence. Thus, routers A and B enlist both

Emily and Antonio as ‘‘reachable’’ on the same IP address, though via different

paths.

It is up to the routers to forward the query to group members. For instance,

George initially sends to router F a query with destination IP ‘‘230.70.70.70’’

Fig. 7.10 Collaborative ID generation: a–d each node in a random path of HTL length generates
a seed, combines it with the key received from the previous node and produces a new key to be
passed onto the next. f The generated ID, T, travels all the way back to the new node. g Node T
now has a unique identity within the network
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including the individual address for replies. Based on its routing table, F forwards

the query via link F3. Then, Emily responds back to George’s individual address

(Fig. 7.13a). In that way, the new node discovers its entry point and, at the same

time, joins the multicast group.

Multicast is a networking protocol designed to reach every group member via a

single query. For instance, when George issues a join, the query not only reaches

Emily, but also propagates through routers F and A (Fig. 7.13a). Thus, when the

discovery process relies on multicast, there is a chance to incur substantial traffic

onto the IP network. One way to contain the group query propagation is by setting

Fig. 7.12 Entry point discovery in a multicast network. Emily and Antonio advertize their
membership to multicast group 230.70.70.70

Fig. 7.11 Entry point discovery in a unicast network. George probes random IP addresses to
discover a terminal hosting an online node
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a maximum time-to-live (TTL) parameter. For instance, a join from George set

with TTL = 2 would only reach Emily, expiring as soon as it reaches router A.

Obviously, if Emily was not sitting on F3, the query would fail. Therefore, George

would have no other options than re-issue the join with a higher TTL value.

The latest version of the IP protocol, IPv6, supports yet another network

mechanism known as anycast [16–18]. With anycast, the router can choose the

closest member by itself, which helps optimizing bandwidth and response time.

In fact, in most cases, the node join requires just a single entry point whilst

multicast would reach all the terminals within the TTL horizon.

Another benefit of anycasting is that it considerably reduces the response time

as the first router provides a response with no need to propagate the query through

the groups. However, anycasting does not have any reporting mechanism; so

when a discovery request is lost, the whole join fails and has to be restarted upon

timing up.

Thus, while multicasting generates substantial traffic, anycasting may increase

failure rates. A way to deal with these situations is use multicast sub-groups. An

example is depicted in Fig. 7.14 whereby Emily has setup subgroup 230.70.70.71

while Antonio operates on 230.70.70.70. In order to join, George will have to

multicast (or anycast) a request on one of the two multicast addresses. Thus his

messages will traverse a smaller portion of the network.

7.8 Content is an Asset at the Edges

The concept of ‘‘virtual network’’ is a very powerful one and has indeed practical

applicability. Virtual networks allow us to ‘‘reinvent’’ the network without having

to modify the physical transport medium. In this chapter, we have explored one of

the possible dimensions of virtual networks, that is, ‘‘content-awareness.’’ We

experience the power of content-aware networks any time we connect to a P2P

Fig. 7.13 George sends join requests to multiple members or a multicast group
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systems. File-sharing applications eMule and Skype are just a tiny representation

of content-aware networks, that is, ones that have redesigned the world of com-

munications around what is most precious in today’s digital ecosystem: the

content.

The content is an asset that is produced and consumed at the edges of the Net

(Fig. 7.15). Today, the Net has been relegated to a dumb bit-pipe; it moves raw

data whose ultimate destiny is unknown. By contrast, P2P networks are specifi-

cally designed to boost up content consumption.

Thus far, we have seen how a virtual P2P network is born; how the ultimate

beneficiaries, the peers, can join in. However, we have not yet discussed how the

content is published on a virtual network, which will be the subject of the next

chapter.
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Chapter 8

Distribution–Efficient Networks

Abstract Publishing resources on a virtual network is a way to realize efficient

data-distribution mechanisms. To this extent, each node needs to discover the other

nodes, create neighborhoods and advertize its own resources. This chapter presents

different techniques for making resources ‘‘discoverable,’’ considering two

approaches dubbed as unstructured networks and structured networks. We discuss

properties of different protocols in terms of signaling overheads and distribution

efficiency.

All truths are easy to understand once they are discovered; the

point is to discover them

Galileo Galilei, Philosopher, Astronomer and Mathematician

8.1 Publishing Goes Beyond Bootstrapping

Identifying an entry point of a P2P Network is only the beginning of the fusion

with other peers. After this initial step, the new peer has to improve its own

visibility to the remaining network. This happens during the joining procedure

which makes sure that peers and resources are published into the virtual network,

becoming visible to the other peers.

Gaining visibility is a threefold objective of the ‘‘joining & publishing’’

phase. First, the new peer needs to gain fast and reliable access to other online

nodes. Then, the online nodes must be able to discover the new peer. Finally,

A. Liotta and G. Exarchakos, Networks for Pervasive Services,
Lecture Notes in Electrical Engineering, 92, DOI: 10.1007/978-94-007-1473-1_8,
� Springer Science+Business Media B.V. 2011
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any new resources introduced with the new peer must become discoverable too.

In this chapter, we give an overview of various ‘‘join & publish’’ mechanisms,

showing how different solutions impact the network in different ways. We shall

see distinctive techniques in which the peers augment their neighbor lists,

announce their presence with the network and publish their resources. Pub-

lishing resources on a virtual network is a way to realize efficient data-distri-

bution mechanisms.

8.2 The Two Flavors of Virtual Networking

Different joining mechanisms impact the network structure in different ways.

During the joining phase, a node populates the neighbor list, attaching more

virtual links to other online nodes. Symmetrically, the new node attracts links

throughout its lifetime. As links are added, removed or rewired, networks evolve

and change properties, affecting the efficiency of publish and discovery.

While the individual nodes populate and update their neighbor lists, the network

changes form.

Any modification to a neighbor list is executed in one of the following two

ways: random or meticulous [1–4]. While the former helps a peer to link to a

random subset of online nodes, the latter creates links to very specific targets.

Networks that grow randomly lack a deterministic structure and are therefore

named unstructured networks. On the other hand, we distinguish the structured

networks which evolve in a more controlled fashion.

The location of the actual resources within the network drives the organization

of nodes and links, i.e., the network topology. If a resource exists in one or more

replicas hosted by random nodes, a node does not have enough knowledge to build

a guaranteed successful neighbor list. On the other hand, if the resources are

located on deterministically chosen peer IDs, then the neighbor lists can direct

definite messages to hosts.

The number of virtual links per node (i.e., node degree) plays an important role

regarding the characterization of a network topology. For practical reasons, the

size of a neighbor list (i.e. the outgoing degree) in structured or unstructured

topologies is usually upper-bounded. Apart from the outgoing links, each node is

reached by a number of virtual links created by the other nodes (i.e., the incoming

degree). Incoming and outgoing links are two types of links that differ in roles.

Nodes with a high outgoing degree may reach other nodes and resources fast and

reliably. That is, a neighbor list pointing to several regions of a network brings the

node closer to resources and reduces the probability of disconnection. On the other

hand, a high incoming degree makes sure that a node is directly accessible from

other online nodes. Thus, resources hosted in that node are also easily discoverable

from multiple regions of the network.
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8.3 Creating Unstructured Neighborhoods

Unstructured networks, in principle, consist of nodes that host and index their own

local resources in addition to some other remote resources. Upon joining the

network, new nodes try to collect a set of random online neighbors. Nodes do not

delegate the hosting or indexing of their resources to other hosts. Therefore, a new

node may only blindly select some neighbors or, in turn, be included in other

neighbor lists.

Assuming that, after bootstrapping, a node has only found one neighbor, it

will be necessary to trigger a neighbor discovery process to compile a mean-

ingful neighbor list. If the nodes are building up a flat unstructured network

having no prior knowledge, the new-coming nodes have no reason to give

preference to any specific network element or to preclude certain IDs from their

neighbor lists.

There are various ways in which nodes can build up their neighbor list. Let us

take a closer look at the Ping–Pong method used in Gnutella [5]. Any new node

(a ping node) sends out a ping message. On the other end, any node that receives

the ping (a pong node) replies with a pong message to announce its presence.

To avoid infinite loops and network flooding, ping messages expire after travelling

through a given number of hops. To this purpose, the ping originator sets this

threshold onto the Hops-to-Live (HTL) header field of the message. As the mes-

sage travels from hop to hop, the hosting nodes progressively decrement the HTL

value or drop the packet if HTL has reached zero. Ping messages are also dropped

if the hosting node detects that they are repeated replicas that have previously been

processed (the IDs of the ping messages are cached in the nodes for this purpose).

Figure 8.1 illustrates the ping propagation process starting from node T. For

simplicity, the pong replies are hidden in this illustration.

Besides relaying ping messages, every node replies with a pong. Pong mes-

sages travel backwards through the propagation path previously created by their

ping counterparts. This process is illustrated through an example in Fig. 8.2,

where some ping messages are hidden for simplicity (refer to Fig. 8.1). Pong

messages provide information about the way the ping node can open a con-

nection and transfer data. For instance, the IP address and port number to which

the pong node can accept connections are the two main fields carried by a pong.

Besides connection details, some nodes may inject extra information about their

status (underloaded or overloaded), bandwidth, number and type of shared

resources, etc.

Without the pong mechanism, the ping node would remain agnostic of any

online nodes. Though pong messages are destined to the ping node, interme-

diate nodes of their path may benefit from the information they carry. For

instance, intermediate nodes may replace broken virtual links in their neighbor

lists.

To contain flooding during the pong process, pong messages are also set with an

HTL threshold. At their inception, pong messages are set with an HTL equal to the
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hop-distance from their corresponding ping nodes. The example of Fig. 8.3

assumes that the neighbor list contains at least eight entries (i.e., eight virtual

links). Thus, node T can accommodate all pong originator IDs. There is also a

mechanism to handle the situation in which a ping node receives more pongs than

it can accommodate. Possible link-replacement schemes are ‘‘First-In-First-Out’’

and ‘‘Least-Recently-Used,’’ though other strategies are also possible.

The Ping–Pong mechanism is able to detect any active node that is located

within the HTL horizon of the ping originator. The main difficulty of Ping–

Pong is choosing an ‘‘appropriate’’ value for HTL. Ideally, a node would like to

discover a number of neighbors which is of the same magnitude of its neighbor

list size. Discovering a number of neighbors that is greater than the neighbor

list would simply waste resources (more ping and pong messages than neces-

sary are incurred). On the other hand, if a node can only discover a very small

number of neighbors, this will limit the level of parallelism of the virtual

network.

The discovery horizon of a node is delimited by HTL. However, the relation

between HTL horizon and the number of discovered nodes is not obvious. Clearly,

the nodes that sit beyond the horizon cannot be reached through the ping process

(i.e., pings are dropped at the horizon boundary). However, we cannot ensure that

Fig. 8.1 Ping message propagation at maximum five hops. New node T starts a ping towards its
entry point C. HTL decreases from five to four and node C relays it to neighbor A. Node T is
excluded from this relaying step as the ping originator. Nodes A, H, B and E repeat the process.
Node G receives the message with HTL bigger than zero. However, due to the lack of extra
neighbors, it stops any further propagation. Nodes B and E exchange and mutually reject ping
messages as already processed. HTL gets exhausted on nodes J and L which are also the leaf
nodes of the propagation tree. As ping messages fork to more and more nodes at every iteration,
and since loops are pruned as soon as they are detected, the propagation paths expand into tree-
like structures
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Fig. 8.3 Pong messages keep travelling even after the ping propagation has stopped. The last
pong messages may reach the ping originator T even after 2*HTL steps from the first ping
transmission

Fig. 8.2 The pong delivery process that sends a response back to the ping originator. This takes
place in parallel to the ping propagation process of Fig. 8.1 (not shown here for simplicity). Upon
receiving a ping message, node C replies with a pong (while the original ping has got HTL = 4).
The originator (node T) enlists C into its neighbor list. On the next timeslot (HTL = 3), node A
replies with a pongwhich travels backwards through the ping path (T ? C ? A). Similarly, pong
messages from nodes G and H travel to ping node C via intermediate nodes A and C. Note that only
some of the pong messages manage to reach their destination T before the pings have expired
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all nodes within the horizon are discovered. Also, the node failure rate has a

negative impact on the discovery rate.

A variation of Ping–Pong is Cached Ping–Pong [6], a proactive approach that

strives to reduce the number of unnecessary pongs and aims for faster node

detection. All nodes send pings having HTL = 1 in order to ensure that these are

not further relayed beyond the 1-hop neighbors. Pongs also have HTL = 1. Pongs

carry the list of node IDs cached in the pong node. Upon receiving a pong, a node

incorporates the new node IDs into its own cache. In this way, iteration after

iteration, the catching area of each pong increases and all neighbors are gradually

discovered. The periodic 1-hop ping is also an effective way to promptly discover

link or node failures and propagate this knowledge in the subsequent iterations. An

example is depicted in Fig. 8.4, whereas Table 8.1 shows the progression of

knowledge propagation throughout the network.

8.4 Making Yourself Known in Unstructured Neighborhoods

Ping–Pong and Cached Ping–Pong are designed to help nodes collect online IDs.

Once the ping node has created a bi-directional link to the pong node, requests can be

relayed from and to both sides. However, this approach is not effective in networks

that merely support unidirectional links. In this case, the joining node must ‘‘push’’ its

advert more explicitly. The announcement path method [7] depicted in Fig. 8.5 uses

hello messages instead of pings and does not require pongs.

The announcement path mechanism does not comprise a complete solution to

the node joining procedure. It has to be coupled with another mechanism that

populates a node’s neighbor list. Otherwise, the new node may still achieve a low

refresh rate of its neighbor list by participating in announcement paths. As soon as

a node joins the network, the only known neighbor is its entry point. Through that

Fig. 8.4 Cached Ping–Pong iterations. All nodes send pings having HTL = 1 in order to ensure
that these are not further relayed beyond the 1-hop neighbors. Pongs also have HTL = 1. Pongs
carry the list of node IDs cached in the pong node. Upon receiving a pong, a node incorporates
the new node IDs into its own cache
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entry point, the node may receive announcements of other newly joined nodes and

link to them. Thus, in that case, the joining procedure highly depends on the join

rate of new nodes.

8.5 Unstructured Resource Publishing

Without any control over the ownership of resources, unstructured networks

cannot relocate newly joined content closer to requestors. On the other hand,

owners usually do not outsource resources, but shorten the distance from the

requestors by spreading ‘‘adverts’’ on the network. Resource indexing on a single

server (such as in Napster [8]) is a form of advertisement on a central place,

namely, the blackboard. Every new node sends an index of its resources to that

board so that the requestors can easily extract useful content.

The placement of adverts into multiple hosts across the whole network can

address the robustness and scalability limitations of a central server. The closer a

resource advert is to a requestor, the less the latency and signaling are. Replication

of the same advert in many places can satisfy even quite distant requestors.

Figure 8.6 illustrates a simple example of how adverts may improve the discovery

performance.

However, advert replication strategies involve a number of risks. Although the

discovery performance increases with the number of adverts dispersed across the

network, the process of updating multiple adverts would generate massive bursts

Table 8.1 Cached Ping–Pong messaging relating to Fig. 8.4

 

From 

IDs carried on pongs at certain timeslots 

t=1 k+1 2k+1 3k+1 4k+1 5k+1 

A A A,C,G,H A,B,C,E,G,H,T A,B,C,E,G,H,J,L,T -all- -all- 

B B B,E,H,L A,B,E,H,J,L A,B,C,E,G,H,J,L -all- -all- 

C C A,C,T A,C,G,H,T A,B,C,E,G,H,T A,B,C,E,G,H,J,L,T -all- 

E E B,E,H,J A,B,E,H,J,L A,B,C,E,G,H,J,L A,B,C,E,G,H,J,L,T -all- 

G G A,G A,C,G,H A,B,C,E,G,H,T A,B,C,E,G,H,J,L,T -all- 

H H A,B,E,H A,B,C,E,G,H,J,L A,B,C,E,G,H,J,L,T A,B,C,E,G,H,J,L,T -all- 

J J E,J,L B,E,H,J,L A,B,E,H,J,L A,B,C,E,G,H,J,L -all- 

L L B,J,L B,E,H,J,L A,B,E,H,J,L A,B,C,E,G,H,J,L -all- 

T T C,T A,C,T A,C,G,H,T A,B,C,E,G,H,T -all- 

Pongs are sent one timeslot after their corresponding pings, e.g., at timeslot t = 0, all nodes send a
ping; at t = 1, they receive a pong. Assuming no prior exchange of pongs, at t = 1, nodes can
only pong their own IDs; this is an important step as nodes can detect broken links. At the
following exchanges, pong messages carry an increasing load of neighbor’s neighbors. Our sample
network has a 5-hop diameter, and thus all nodes are discovered in five iterations. For example, the
colored cells of the table illustrate the path of ID = ‘‘J’’ hopping from node J to the new node T
via nodes E, H, A and C
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Fig. 8.5 Announcement path method. a Newly joined node T randomly selects one of his entry
points (these have been discovered as part of the joining process) to announce itself with a hello
message (in this case, there is only one choice, i.e., node C). b Node C adds T to its neighbor list,
decrements the hello’s HTL and relays the hello to yet another randomly chosen neighbor
(suppose HTL is still greater than zero at this point). c–e The same process continues at nodes A,
H and B. f–h Node E happens to choose H, but now the process changes because H has already
been visited. To avoid loops, H notifies its predecessor, node E, of this anomaly. Node E
randomly picks another neighbor (J in this example) and resumes the path construction process.
However, at J, the process stops when HTL reaches zero. Eventually, all the nodes included in the
visited path have a direct virtual link to node T

Fig. 8.6 Resource advertisements dispersed throughout the network may shorten the discovery
paths. a Node J requests for ‘‘holidays.jpg,’’ which is hosted in node T. Resource discovery
induces a number of messages and long latencies. b An advert in node H relays the incoming
requests directly to the host, reducing the signaling latency. c Advert locations play an important
role in discovery performance
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of traffic. To increase the adverts accuracy, both the resource and the advert hosts

need to deploy frequent updates, causing serious scalability issues. Hence, the

adverts should be as many as necessary and carefully placed in the network so that

they reduce the overall discovery cost. Advert producers need to have some initial

knowledge of their network size to optimize these parameters. However, in large-

scale networks, this is nearly impossible.

To facilitate these decisions, both resource providers and requestors may use

advert boards, that is, ‘‘rendezvous’’ points. Providers may choose one or more of

these points to advertise resources. Unlike a Napster server, the ‘‘rendezvous’’

nodes (i.e., supernodes) index resources only hosted by a subset of nodes

(the leaves). Besides normal activity and advert indexing, these supernodes may

even take over extra roles such as bootstrapping. Upon receiving a request, they

check their resource index to identify leaf hosts that could satisfy the request,

returning a set of node IP addresses.

Peer-to-peer networks that introduce multiple centralization entities having

only a partial view of the global knowledge are known as Hybrid Networks [9–11].

The two factors that affect the network topology are the connectivity between

leaves and the connectivity between supernodes, as shown in Fig. 8.7.

Resource providers only need to know a small subset of supernodes which are

also known to requestors. Though supernodes introduce a certain level of cen-

tralization, the network does not suffer from a single point of failure. There is a

Fig. 8.7 The topology of Hybrid Networks changes based on the presence of links between
supernodes and between leaves. a Supernode-to-supernode or leaf-to-leaf links are not allowed;
the system is a set of Napster-like networks. Communication between supernodes is only
indirectly possible via their common leaves. b Adding connections between supernodes allows
indirect communication among all leaves via the supernode overlay. c Direct leaf-to-leaf
connections make the system robust to supernode failures as mechanisms deployed in flat
organizations could substitute the indexing services of supernode overlay. d If both types of
connections are allowed, both robustness and efficient discovery issues are addressed
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plethora of such nodes with redundant information as leaves publish their adverts

to more than one point. Symmetrically, leaves do not rely on a single supernode as

they maintain a list of them to access either in parallel or sequentially. Hybrid

networks address the issue of cost–effective and fast resource discovery by

enhancing the role of a subset of nodes with indexing capabilities. However, in

large-scale networks of intermittent nodes, it is difficult to ensure the optimal

number of supernodes without an expensive monitoring system.

Instead of advertisements, Freenet goes one step further by replicating newly

joined resources along a single path of nodes with IDs similar to resource keys. An

insert (replication) request travels from the new node on the path of hosts picked to

have the closest IDs to the replicated resource key. Practically, an insertion

message propagates in the same way as the Freenet announcement path analyzed

before. If a node has already processed the same request, it notifies its predecessor

in the path to pick the next closest neighbor. Figure 8.8 gives a step-by-step

example of this mechanisms.

The replication of the file itself, instead of an advert, decouples resource

availability from the presence and robustness of its original provider. The repli-

cation path construction mechanism prioritizes neighbors based on a node ID to

resource key closeness scheme. It tries to place resources not to random hosts, but

to those that the requestors can guess. Though neighbor lists remain random, the

resource location starts getting a more structured form.

Fig. 8.8 Replication path of newly joined resources. New node T starts an insert request with
HTL = 4. a The path starts from the joining node via its entry point, C. b Node C has no other
neighbor; thus, the insert request is relayed to node A. c Considering the two neighbors of A, G
and H, the letter ‘‘H’’ is alphabetically closer to the key ‘‘holidays.jpg.’’ The file is replicated to
node H. d The file ‘‘holidays.jpg’’ is also copied to node E and not B for similar reasons
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8.6 Secure a Role in Structure Worlds

Unlike the ‘‘unstructured’’ networks, their ‘‘structured’’ counterparts deploy a

distributed mechanism that maps resources to node IDs [12]. This mechanism is

usually a hash function, which produces a key for each resource in the network.

These keys are values picked, as uniformly as possible, from a predefined space.

Each node is responsible for a portion of the keys space (subspace). Thus, a node

manages all the resources whose keys are mapped onto its subspace.

After obtaining a unique ID from the key space (bootstrapping phase), choosing

an ID that is not yet in use, a node has to take over the management of the key

subspace related to his ID. Symmetrically, this new node has to delegate the

management of its local resources to the nodes that hold the relevant resource

keys. Figure 8.9 illustrates a simple resource-to-node mapping algorithm that

can be used to form a structured virtual network. The deterministic way,

which distributes the resources over the network, makes it possible to know the

host ID of a requested resource even before the discovery mechanism is triggered.

The ‘‘structure’’ of the network is such that a search message can be directed to the

resource-hosting node in a finite number of steps.

In general, each new node uses a hash function to map one of its ‘‘physical’’ IDs

(e.g., its IP address or public PKI key) onto a node ID pulled from the key space.

For instance, the scenario of Fig. 8.9 adopts the letters of the Latin alphabet as key

space (Fig. 8.10). If some node IDs are missing, the existing ones take charge of

the ‘‘orphan’’ resources, as illustrated in Fig. 8.11a. As new nodes join in, the key

space is reorganized to spread the load more evenly, as illustrated in Fig. 8.11b.

Due to its circular lined structure, this very first example of a structured virtual

network is also dubbed the ‘‘Alphabelt.’’

Fig. 8.9 Sample ‘‘structured’’ network built based on three rules: (1) every new node creates one
link to the alphabetically next online ID; (2) the first letter of a resource name is the same as its host
ID; (3) if such an ID is not available, the alphabetically next online node becomes the resource’s
host. Accordingly, files named ‘‘tue.avi’’ and ‘‘tue.mpg’’ should be hosted by T and file
‘‘holidays.jpg’’ by H. a Before node T joins the network, files ‘‘tue.avi’’ and ‘‘tue.mpg’’ are
mapped onto the next online ID, i.e., node A. b After node T joins (connecting to its successor A)
and node L relinks to T, the three files can be placed in the appropriate nodes, H and T, respectively
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Once all key space slots are occupied by online nodes, no more nodes can join

the network. To address this problem, structured networks commission much

bigger key spaces than the number of nodes they anticipate. The key space should

be big enough so that the probability that a node tries to acquire an occupied ID is

negligible.

There is a variety of different key spaces in terms of size and type. The one

presented above is a one-dimensional space, but extending it to multiple dimen-

sions is a straightforward task [4].

8.7 Build Strict Formations

Once a node has generated its own ID, two more actions are required to complete

the joining process. Based on its ID, the new node has to (1) find the appropriate

location within the key space and (2) create virtual links with the nodes which

Fig. 8.11 The Latin alphabet key space is split into subspaces assigned to the nodes of Fig. 8.9.
a The ID of a node (letters in bold) is the last key of the subspace it handles. As there is no node
within the subspace [M,…, Z], the smallest online ID, i.e., node A, becomes the host of resources
[M, …, Z]. b Node T joins in and the subspace [M, …, A] is further split into [M, …, T] and
[U, …, A]

Fig. 8.10 Linear key space based on the Latin uppercase alphabet with 26 keys. There can only
be a maximum of 26 nodes based on this key space. All resources are mapped to one of these 26
nodes based on the first letter of their name
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manage neighboring subspaces. Practically, the first action consists of discovering

the current host of the new ID and transferring the right portion of the subspace to

the new node. At the end of this phase, the new node tries to fill in its neighbor list

with more virtual links.

The exact procedures to execute these phases vary among different structured

networks. In the case of the Alphabelt network, we sequentially map the nodes

onto the linear key-space, forming a ring (Fig. 8.12). Eventually, every node has

one neighbor, i.e., its successor.

Following a similar pattern from previous examples, at the bootstrapping phase,

any new node needs to hash its address to produce a virtual ID and discover an

entry point. If the entry point does not manage the new ID, it will function as a

discovery proxy to locate another host who will handle the new virtual ID.

Figure 8.13 provides analytic examples of the steps followed in order to join a

ring-based structured network, that is:

• Step 1—Discovery of successor: the first node with ID bigger than or equal to

the new ID

• Step 2—Connection to the successor

• Step 3—Retrieval of the predecessor

• Step 4—Notification to predecessor for re-linking to the new node.

The joining procedure described in the example above makes sure that there is

exactly one path connecting any two nodes. Each node has just one entry in its

neighbor list. These restrictions may seriously affect the robustness and discovery

efficiency of the network. As shown in Fig. 8.14, a node failure would make it

impossible to deliver messages between any of E’s predecessors to any of E’s

successors. To address this problem, more virtual links per node are necessary.

The next challenge is to decide how many extra links are required and how to

establish them.

Starting from the extreme case of connecting all to all, the network results in a

full mesh. If our online nodes are N in total, then all neighbor lists will have N - 1

Fig. 8.12 This linear alphabet-based key space is mapped to a ring-connected set of nodes, each
managing a subspace. Messages can only travel in a clockwise direction from one node to the
next
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entries. Requests can reach their destination node with just a single hop. However,

the problems start when the nodes leave the network. For every failed node, N - 1

others need to detect their broken virtual links and update their neighbor lists.

These networks need to deploy expensive maintenance mechanisms to keep their

lists as accurate as possible. Due to this cost, full-mesh networks are not scalable,

especially if they experience high churn rates (i.e., high frequency of node joins

and departures) [13].

Structured networks try to find a compromise to this problem by applying a

variety of approaches which strive to ensure finite-length paths between any

two nodes. That is, nodes enlist neighbors in such a way that any request can

Fig. 8.14 A clockwise circular single-linked network suffers from node failures. Even one
failure is enough to break the communication between two nodes. a Nodes have only one
neighbor, i.e., the immediate higher ID. b Node E fails and the link E ? G disappears. c Node C
has a broken virtual link and any message originated from a node before E targeting a node after
E cannot be delivered

Fig. 8.13 Joining procedure of a new node in a ring-based structured network adopting a linear
alphabet-based key space. The new node T bootstraps by hashing its IP address, generating
virtual ID = ‘‘T’’ and then discovering node H as an entry point. Node H will seek for the current
manager of ‘‘T,’’ which is successor node A. Node T connects to A and asks for A’s predecessor,
which is node L. Then, node T notifies L that there is now a new successor. Node L breaks the
L ? A link and connects to new node T. Accordingly, the key space [M, …, A] is split in two,
i.e., [M, …, T] and [U, …, Z, A]
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reach its destination via an upper-bounded number of hops. The general prin-

ciple is to construct a path which guarantees a progressive approach to the

destination node. We must guarantee that at each hop, the message gets closer

to its destination. Figure 8.15 illustrates a case in which these guarantees are

not provided.

Although there are a variety of network structures, in their very essence, they

have a common feature: there is a path starting and ending at the same node that

traverses all the others exactly once [14]. This kind of path is known as the

Hamiltonian cycle. In the case of Fig. 8.15b, the connectivity among the nodes

breaks the Hamiltonian cycle, violating the precondition for structured networks.

This explains why the structured virtual network has to form a cyclic linked list.

Adding more links, we can shorten the path, as messages can bypass a number of

nodes and come closer to their target node. For instance, every node of our

structured cyclic network could create a link to the node that holds an ID bigger by

a quarter of key-space, as shown in Fig. 8.16.

Fig. 8.15 Guarantees promised by a structured network may be broken if nodes have random
neighbor lists. For clarity, only a part of the Alphabelt is visualized. a In the worst case scenario,
a path from node A to L has to hop through 11 nodes in a densely populated key space.
b Messages can get trapped in infinite loops. For instance, a request from node E looking for G in
a clockwise Alphabelt with random neighborhoods would reach node I via F, overpassing target
node G. The request would generate the infinite loop B ? C? D ? B

Fig. 8.16 Alphabelt with extra links between nodes in at least a quarter of key space distance.
a A simple cyclic structured network. b Apart from links to immediate successors, nodes add one
extra link to an ID at least 6.5 letters higher, e.g., A ? H, B ? J, C ? J, etc. c This ‘‘boosted’’
connectivity helps to shorten the distance (hop-count) between two nodes, e.g., A ? L is now
four hops shorter than in case (a)
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8.8 Place Links and Resources into a Structured Ring

In addition to the Alphabelt, there are many more ways to realize structured

networks. A widely used technique known as Distributed hash table (DHT) [1–4]

creates an index of every resource and then keeps the index distributed across all

online nodes. SkipList-based networks follow the approach to create multiple

sorted and doubly-linked lists of different subsets of nodes grouped into levels

[15–18]. Another possibility is to organize the nodes in tree-like structures [19] to

maintain sorted resource indexes. We do not aim to provide a comprehensive

analysis of all these types of networks. We wish to emphasize the potential of

‘‘structures’’ that place the resources into the right ‘‘bucket.’’ It is interesting to see

how distributed indexing works. For this purpose, we have chosen a well-known

DHT-based system named ‘‘Chord’’ [2, 4, 20].

Like Alphabelt, Chord organizes nodes in a ring sorted clockwise on their ID.

One could say that Chord is a more realistic and enhanced version of Alphabelt.

Instead of Latin letters, Chord can accommodate M nodes with IDs spanning from

0 to M - 1. Node IDs are the output of a hash function on their corresponding IP

addresses. If m is the number of bits of a node ID (expressed in binary form), then

M = 2m. Let us follow the example of Fig. 8.17 to illustrate Chord. Suppose we

have N nodes (1 B N B 2m). Thus, the lowest and highest possible IDs are 0 and

2
m
-1, respectively. A resource gets its key k via the same hash function, and

hence from the same key space. The host of this resource is the node with

IDhost = k or the first node with IDhost C k.

The joining procedure of a new node (see Fig. 8.17) consists of two phases. The

first is the discovery of a successor and predecessor. It is identical to the Alphabelt

example with the exception of the look-up mechanism which varies. The second

phase is the construction of the new node’s neighbor list—in Chord, the neighbor

list is actually named as the finger table. Nodes in Alphabelt had only one

neighbor, the immediate successor; thus, this second phase was covered by the

Fig. 8.17 A chord network of maximum M = 128 nodes, i.e., m = 7. It initially has N = 8
nodes, but after node 95 has joined (N = 9), we further split the key-space [0–127]. New node
nnew = 95 uses its entry point en = e95 = 37 and the look-up function of the network to locate
the host of key 95. This is the first node in the ring with ID bigger or equal to 95, i.e., node 0.
Then, node 95 creates a virtual link with nsuccessor(56) = 0 and sends a message for exchanging
keys and asking for the predecessor npredecessor(0). Thus, nnew = 95 triggers npredecessor(0) = 56 to
rewire to the new successor nsuccessor(56) = 95
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first. However, nodes in Chord have to construct their finger with multiple virtual

links.

The size of the nodes finger tables is equal to m. The ith (0 B i B m - 1) finger

is an {ID, IP} pair of the (nnew ? 2i)mod(2m) node, i.e., fi(nnew) = (nnew ? 2i)-

mod(2m). If this function does not give an online node ID, the first successive

online node is enlisted in the table instead. Every node calculates the theoretical

fingers and then uses the look-up function to discover the online ones. The Chord

discovery mechanism will always return a node with the requested ID or the first

successive online one. Figure 8.18 illustrates a snapshot of the finger table of a

new node.

A careful look at the finger table of Fig. 8.18 reveals the properties of the node 95

neighbor list. In general, the top entry of a Chord finger table is always the imme-

diate successor; the last entry points to a node sitting M/2 keys away. Figure 8.18

illustrates the final status of all finger tables and the network structure with all virtual

links connecting their node pairs. Chord is, in essence, a clockwise circular

singly-linked list of nodes ordered on their ID—practically a directed graph.

However, for graphical purposes, the Chord ring of Fig. 8.18 only shows undirected

links—the actual directions appear in the finger tables given on the side.

Node 95 does not seem to be in the best position. There are N - 1 = 8 links

from other nodes pointing at 95. Most likely, it is a hot destination node as it serves

the key subspace [57, 95] (i.e., more than 30% of the whole key space). Moreover,

node 0 appears in four finger tables, 5 in one, 9 in two, etc. By checking the size of

their respective key space, we identify similarities with the number of their

incoming links (incoming degree), as shown in Fig. 8.19. In general, we may

assume that the bigger the key space a node handles, the more incoming links it

will have.

Fig. 8.18 Chord finger table of new node 95. Since the new node has ID = 95, the size of the
key space cannot be less than 96 (0–95). Given that the key space must be M = 2m and
1 B N B 2m, then m = 7 and M = 128 (if m = 6, 2m\ 95). Thus, the finger table must enlist
seven fingers. Once that node 95 has bootstrapped and is aware of its successor, it calculates
the theoretical fingers in its table. For each one of them, it triggers a look-up function to locate the
node that hosts those theoretical keys. For example, the fifth position of the finger table is
the theoretical: f5(95) = (95 ? 25)mod(27) = 127mod(128) = 127 hosted by node 0 as node 127
does not exist
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Figure 8.20 clarifies the effect that a hash function can have on the ring’s

stability, balance and efficiency. If the IDs are not uniformly distributed over the

key space, some nodes might relatively host many more resources than others. The

load of a node depends on the ‘‘popularity’’ and not necessarily on the ‘‘number’’

of resources it hosts. Even if a node handles a big portion of the global key space,

the resources assigned to the node may be few or infamous.

In large Chord networks, discovery paths will be very long, affecting the

latency and overall performance of the network. One way to address this issue is

by realizing hybrid Chord networks [21, 22]. Extending the concept of ‘‘resources

in the right bucket’’ to ‘‘resources and nodes in the right buckets,’’ we end up with

a two-layered structured network. Based on this idea, each node has a neighbor list

pointing to the other leaf nodes of the ring and one link to a supernode. Each

Fig. 8.20 Comparison of node degree against the key-space that is handled by the node. For
instance, node 0 handles a key subspace 33 keys long and has 5 incoming links. The graph shows
the percentage of incoming links and key subspace size per node over the total links and key
space size, respectively

Fig. 8.19 Sample Chord network with the computed finger tables and links

128 8 Distribution–Efficient Networks



supernode indexes a subset of Chord nodes (leaves) and their key-subspace.

Supernodes are also interconnected either via another Chord ring or mesh, or other

types of topologies.

The global key-space is divided among supernodes which, instead of hosting

resources, maintain the first and last node of the space they handle. Any new nodes,

upon joining to the Chord, have to follow the same procedure as described above,

but must also register with the supernode that manages their space. In this way,

requests can traverse the whole Chord ring with only a few hops on the overlay of

supernodes. The motivating factor is to reduce the search space by finding a

quick way to limit the Chord look-up function within a supernode subspace.

Thus, requestors can send requests to the supernode overlay. The supernode overlay

submits each request to the first node of the appropriate subspace to execute the

Chord look-up function on only a fraction of the global Chord ring.

Although the unstructured networks come short of discovery efficiency due to the

randomness of their structure, they win in flexibility in case of fast network changes.

Their joining process is much simpler and inexpensive as they do not trigger

resources re-location upon the arrival of a new node. A limiting factor for structured

networks is the key space that is statically set at the beginning of their lifetime.

8.9 Data-Awareness via Protocol-Agnosticism

New applications bring new types of heterogeneity in the network, trigger different

user’s behaviors, and introduce a plethora of new requirements. In reality, the

connection between any two nodes is realized via physical (rather than virtual)

links. These are tied to a wide range of network equipment installed worldwide

which cannot be easily upgraded as soon as new application appears. This limi-

tation is, in fact, addresses by virtual networks, whose functionality and protocols

can be amended via software upgrades.

Thus far, the application developers have been trying to fill the mismatches

between the emerging breed of software systems and the rigid networks that

support their communication needs by re-implementing new communication

protocols within the application itself (such as in P2P applications). These pro-

tocols are aware of the data they transmit, but are also specific to the applications

they serve. Although these application-specific protocols are ‘‘data-aware’’ and

help two nodes to understand each other, the underlying network delivers packets

between any two points ignoring the kind of data being transferred. Being ‘‘data-

agnostic,’’ the underlying network cannot offer some of the essential network

services that recent and future applications require. For instance, services like

discovery or filtering of multiple resources based on some complex criteria or even

smart bandwidth utilization based on the data transferred are not allowed.

All resource providers need to join and make the network aware, first, of their

presence and, second, of their resources. It is only in this case that requestors can

search resources without prior knowledge of their exact location. The techniques
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presented in this chapter are already applied to situations where content requestors

completely ignore providers. There are protocols that satisfy the basic needs of any

resource that has to become available: the resource is traceable and its host is

discoverable.

Any new node aims at a robust connection with the network and publishing of

local resources. These are aims that the node executes in three steps:

• expand the connectivity via populating its neighbor list,

• advertise, index or replicate its resources in the network, and

• let the network know about its presence.

There is a variety of mechanisms that implement these actions, all with their

pros and cons. A network that tries to accommodate and optimally react on any

data type and to satisfy any user requirement needs to stay agnostic of these

mechanisms, i.e. it has to provide a generic enough framework able to assimilate

any mechanism in place.

Every node has to populate its neighbor list with a number of other nodes that

will make sure that their requests can travel deeper to other nodes within the

network. There are two main ways to build these lists: (a) with random nodes or

(b) with carefully selected ones. The first choice makes the network more robust

to abrupt changes of nodes’ stability as they can leave and join with very low

impact to the network. However, building neighbor lists with purposely chosen

nodes is a way to guarantee certain discovery performance. A new node has to

contact, via its entry point, a number of other online nodes to fill up its list.

To make sure that it is also accessible, it has to gossip its presence to random or

deterministically chosen nodes, respectively. Unstructured node formations

require resource publishing to ensure that one’s resources are visible to

requestors. Structured Networks can accurately define the location of the

resources and deterministically drive requests to them; hence, there is no need

for resource advertisement.
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Chapter 9

Discovering Virtual Resources

Abstract Virtual resources are considerably more numerous than the physical

devices which host them. There are many more files than servers; more videos than

people. Thus, the task of discovering relevant resources is certainly a daunting one.

The search engines help to retrieve data from servers. Yet, discovering resources

stored in a virtual environment requires ‘‘deep’’ searching techniques which must

be able to explore not only the multitude of web servers, but also the ordinary

computers and terminals. This chapter introduces different discovery techniques

used in ‘‘structured’’ and ‘‘unstructured’’ P2P systems.

You affect the world by what you browse

Prof. Tim Berners-Lee, inventor of the World Wide Web

9.1 Four Ways to Reach a Resource

The Web contains a vast amount of information which is only useful if we can find

it easily. Search engines such as Google or Yahoo do a great job of organizing the

data stored in the myriad of the web server. Yet, how can we discover the plethora

of files that are published and shared via virtual networks?

In Chap. 8, we discussed two ways to publish resources on a virtual network,

the structured and unstructured P2P architectures. Similarly, we have two main

classes of discovery algorithms, structured and unstructured, with a wealth of

variations. Here, we explore a range of discovery mechanisms that fall under four

different categories: blind discovery; informed discovery; loosely structured dis-

covery; and deterministic discovery [1–5].

A. Liotta and G. Exarchakos, Networks for Pervasive Services,
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9.2 Assessment of Discovery Mechanisms

Each discovery mechanism has its strengths and weaknesses. Each protocol incurs

signaling overheads. However, given the distributed nature of ‘‘deep’’ searching, it

is hard to know how far into the virtual network we have to reach, how long it will

take to get a response, or whether we will actually get any response at all.

Thus, the performance metrics of ‘‘discovery’’ are rather peculiar. The dis-

covery efficiency, namely, the success rate, is the portion of requests for which the

discovery process manages to return at least one response. The discovery accu-

racy, that is, the recall, is the fraction of resource replicas that is actually dis-

covered. Thus, if a file is replicated into 1,000 different nodes and the discovery

process finds 100 replicas, the recall is 10%.

Increasing efficiency and accuracy comes with a cost in terms of signaling

overheads and response time. These can be measured through the number of

signaling messages generated and relayed, and via the hop count, that is, the

number of hops separating the requestor from the nearest resource instance.

9.3 Containing the Proliferation of Discovery Messages

The number of ‘‘deep’’ search messages can easily proliferate, loop and get out of

control. In general, there are three simple ways to contain the discovery process

known as HTL, TTL and caching. The first approach is to set an upper limit on the

number of nodes that the messages can visit before being purged. For this purpose,

the request originator sets the Hop-to-Live (HTL) message field with an integer

value which is decremented by each visited node. It is hard to determine a suitable

value for HTL, unless we know the size of the network. Thus, some systems start

off with a tentative HTL value which is subsequently increased until the required

success rate and recall are achieved.

For the same purpose, other search algorithms use the Time-to-Live (TTL)

instead of HTL. The TTL represents the maximum time that a requesting node is

willing to wait for a response. Each visited node compares the TTL value of the

message with the current time and decrements TTL by the amount of delay

incurred on the last hop before relaying the message. Obviously, if the resulting

TTL is zero, the message is purged instead of being relayed.

In principle, TTL is more accurate that HTL as it accounts for the variability of

delays across different links. However, the implementation of TTL is more

complex as it requires that all nodes synchronize their clocks. Thus, in practice, the

TTL is often used in the same way as the HTL, accounting for the number of

visited hops instead of the actual travel time of the messages.

Neither HTL nor TTL can prevent the messages from looping. During the

propagation of the request, some messages may reach the same node twice. This

leads to a waste in bandwidth and CPU cycles, with overall performance degra-

dation. To prevent loops, the nodes cache the header of each message on the first
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visit. In this way, any revisit is immediately detected and dropped. Clearly, not all

messages can be cached forever. Thus, each cache entry has a limited lifetime.

9.4 Blind Discovery for Unstructured Networks

When the resources are stored over an unstructured network, the discovery process

cannot rely on prior knowledge. The search messages hop from node to node,

following different variations of what is, in essence, a ‘‘random’’ process. Depend-

ing on the number of neighbors involved in relaying the discovery messages at each

step and on the particular ways that the requests are copied in between neighbors (e.g.,

in parallel or sequentially), we distinguish a variety of ‘‘blind’’ discovery mecha-

nisms [3, 5]. Hereafter, we describe five among the most popular ones, including

Breadth-first search (BFS), Modified breadth-first search (mBFS), Depth-first

search (DFS), Iterative deepening search (IDS) and Random walks (RW).

The Breadth-first search (that is, flooding) [6] explores every node within the

HTL horizon. A requestor sends the same request in parallel to every immediate

neighbor. Upon receiving a request, each neighbor reduces the HTL by one and

forwards replicas to all its own neighbors. Hence, parallel propagation paths start

from the request originator and fork at every hop. The request originator and the

latest predecessor of a path are excluded from propagation.

We have already seen this algorithm in action in Chap. 8 when we discussed the

Ping–Pong mechanism. ‘‘Ping’’ messages travel on a BFS propagation tree looking

for online nodes instead of resources. As every visited node replies with a ‘‘Pong’’

message, the success rate of the Ping–Pong mechanism is 100%. Therefore, the

recall is given by the ratio between the number of nodes contained within the HTL

horizon and the size of the network. BFS is exemplified in Fig. 9.1.

BFS is a search mechanism that guarantees the discovery of any resource

instance located within the HTL horizon. Hence, the success rate for popular

resources can be quite high, as the probability to find one instance within the

requestor’s vicinity is also high. On the contrary, BFS has poor performance on

rare resources which may actually lie outside of the HTL horizon. For similar

reasons, the recall of the BFS mechanism is better on popular than on rare

resources. Another problem is that, due to its tree-like exploration, BFS messages

visit (or even revisit multiple times) all the nodes within the HTL horizon. Thus,

the number of messages grows considerably with HTL.

In an attempt to reduce the message costs of the BFS, the modified Breadth-

First Search (mBFS) [7] protocol limits the forwarding scope choosing, at each

iteration, a random subset of the immediate neighbors. The size of this subset

(W) is predefined by the network designer and is kept constant across the network.

mBFS aims at visiting most of the nodes within the HTL horizon while at the same

time trying to reduce loops. In this way, the messaging is reduced in comparison to

BFS, without having to compromise the success rate and recall. However, the

average number of hops traversed before a resource is discovered may increase.

Also, as HTL grows, mBFS tends to perform just like BFS since more requests get
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into cycles. An example showing the different behavior of the mBFS and BFS is

depicted in Fig. 9.2.

BFS and mBFS perform well in terms of recall and hop count, but incur heavy

messaging. To reduce traffic, Depth-first search (DFS) [8] explores the network

sequentially rather than in parallel, as exemplified in Fig. 9.3. The order in which

the successor neighbors are selected may be random or, in other cases, it could

respond to some kind of prioritization algorithm set at design time. Each

Fig. 9.1 Breadth-First Search (a.k.a. flooding). a Node J is looking for file ‘‘tue.mpg.’’
b Initially, the hop-to-live is set to HTL = 4. c Nodes E and L decrement the HTL. d The process
continues with a further HTL decrement. Two messages are wasted: node B forwards the request
to H and L even though these have previously processed the request. This is because B is not
aware of the link H ? E and H is not aware of the link B ? E. Even though node B receives two
requests on the same timeslot (HTL = 3), the requests are practically buffered and processed on a
first-come-first-serve basis. Assuming that the request from E is queued before the one from L,
node B will prepare two replicas to forward to L and H. As soon as a request from L arrives, node
B will reject it as already processed. e Out of B, H, L and A, only node A continues the process.
Finally, the request reaches node G. f Complete message sequence

Fig. 9.2 Message propagation trees in a BFS and b mBFS. BFS generates many more messages
than mBFS, which only selects a subset of the available neighbors during the flooding-based
discovery process (W = 2 in this example)
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exploration path is HTL deep and the process stops as soon as a node is found to

contain the requested resource.

In the worst-case scenario, that is, one in which the resource is not present

within the given HTL horizon, DFS may end up exploring the same space as BFS.

In general, however, the DFS recall tends to be lower than in BFS and the hop

count is normally higher. In fact, there is a chance that DFS explores a whole

subtree and discovers a resource which is located further away, missing the nearby

resources located on a separate subtree. While DFS stops upon the first hit, BFS

keeps expanding until HTL expires.

One way to combine the benefits of BFS with those of DFS is through the

Iterative deepening search (IDS) [9] protocol, as exemplified in Fig. 9.4. The

originator launches a sequence of BFS processes with increasing HTL values until

a resource is found. After a request times out unsuccessfully (i.e., no resource is

found within the HTL horizon), the requestor increases HTL and launches in this

way a ‘‘deeper’’ BFS ‘‘wave.’’ The main issue of this approach is that all the nodes

visited on a certain wave are revisited during all the successive ones. To avoid

useless messages and prevent response duplicates, resource providers reply only

on the first wave that discovered them; any request from a subsequent wave is

simply further relayed.

The tree-exploration algorithms described so far are strong in terms of success

rate and recall, but incur high discovery costs which exponentially increase with

Fig. 9.3 The sequential network exploration with DFS and caching to contain the revisits. a The
request travels over a single path until HTL expires. b Then, we backtrack on the last visited node
(H in this case) and explore another alternative (node B). c After all descendents of H have been
unsuccessfully explored, we further backtrack (node E), which leads again to negative outcomes.
d The request backtracks up to the source (node J) and restarts in a new direction (node L and
then A). e Node A has already processed the request and backtracks to L even if it was close to
the resource provider G. Node L redirects the request to B. If caching were not activated, node A
would explore B and G, or just G and would terminate. f The latest attempt hits a resource and the
whole process stops
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HTL. There is a way to achieve discovery costs that only grow linearly with HTL.

The request initiator picks a maximum of k neighbors. However, at every fol-

lowing iteration, only one randomly-selected neighbor continues the process.

Therefore, instead of exploring on tree-like structures, we only visit a subset of

random walks [10], as exemplified in Fig. 9.5.

Although they manage to reduce messaging, random walks tend to lead to

high hop counts for the first response hit. Due to the randomness of their

propagation, walks might need to visit many nodes until they randomly select a

provider node. Also, if the chosen HTL threshold is small, success rate and

recall may fluctuate considerably. Caching may severely affect the success rate

of random walks since once a node is revisited, the walk (one out of the very

few k) is purged.

9.5 Informed Discovery in Unstructured Networks

All blind search algorithms described above, apart from BFS, need to randomly

select one or more neighbors almost at every point of a request propagation path.

Instead of this random neighbor selection, Informed search techniques such as

Intelligent search (IS) and Adaptive probabilistic search (APS) give priority to the

most promising neighbors. These two mechanisms try to direct the request towards

the resource based on the knowledge accumulated on previous requests.

Fig. 9.5 Two random walks initiated with HTL = 5. a This random walk hits a resource in node
B and terminates. b On the other hand, this walk continues until the HTL is exhausted, but fails to
discover the resource

Fig. 9.4 Iterative deepening search on two subsequent waves. a First wave has HTL (i.e., depth)
equal to two. The resource stored in node G cannot yet be discovered. b The second wave is
increased to a depth of four and the resource ‘‘tue.mpg’’ is discovered
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Intelligent search [7] is based on mBFS, but introduces certain neighbor

selection heuristics. Each node profiles its neighbors, keeping track of the most

recent requests as well as the successful discoveries (the hits). Thus, upon

receiving a discovery request, a node can build a ranking table for each of its

neighbors and forward the request to the highest-ranked neighbors (i.e., those who

have previously processed similar requests and have drawn the most responses).

Two ranking factors, similarity and the number of hits, are connected with a

relevance ranking function which gives the actual neighbor ranking. Figure 9.6

shows IS in action through a simple example.

Intelligent search tends to direct the queries towards those neighbors that have

previously provided responses (and thus rank high). This accelerates the discovery

process, but concentrates the requests among a few nodes rather than distributing

the load. To address this trap, IS still selects a fraction of neighbors in a random

fashion, providing that the number of random selections is smaller than the

parameter W of mBFS.

Adaptive probabilistic search [11] tries to lower the message cost of IS and

introduces an ‘‘unlearning’’ mechanism to help prevent looping requests. Every

node maintains a performance index for each neighbor, including all the requests

processed by the neighbor. Upon receiving a request, a node accesses the relevant

performance index entry and derives the neighbor selection probabilities. APS is

based on the random walks scheme. Nodes do not randomly relay requests, but

next neighbors are picked based on the calculated selection probabilities.

The performance indexes are always updated based on the outcomes of the

requests. In particular, APS employs two schemes for updating the neighbor

performance indexes: optimistic and pessimistic. In the optimistic scheme,

the request-specific performance index of the visited neighbors increases ‘‘pro-

actively,’’ while the request propagates and decreases ‘‘reactively’’ upon failure.

The opposite operations are performed in the pessimistic case. The increasing and

decreasing rates are distinct configuration parameters which do not necessarily

have to be equal. In general, the selection probability of a node is derived from the

ratio between the node’s index and the sum of the indexes of all other neighbors.

Figure 9.7 presents an example of how APS works.

Both IS and APS extend the fundamental principles of blind search with a

learning module which helps improving success rate and recall by trying to learn

where the resources actually reside. This approach works well if the network is not

fast-changing (e.g., little node mobility). By contrast, under more dynamic net-

work conditions, the process of learning becomes less precise and may even

become counter-productive as it involves ‘‘unlearning’’ the incorrect conditions

before the new status can be ‘‘learned.’’

9.6 Discovery in Loosely-Structured Networks

The main problem with the unstructured discovery protocols is that they have to

deal with resources that may be located anywhere in the network. On the other
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hand, structured networks correlate the search terms with the node identifiers. Let

us consider Freenet (http://freenetproject.org/) [8], which exemplifies a system

based on a loosely-coupled relation between resource names and host identifier.

Recall from Chaps. 7 and 8 that in Freenet, the node identifiers are generated

through the collaboration among adjacent nodes and that neighboring nodes tend

to have correlated identifiers. Furthermore, each node knows a priori:

• the key with which a resource has been published into the network;

• that those nodes having an identifier ‘‘closer’’ to the resource key have higher

probability to host the resource.

The Freenet discovery algorithm adopts DFS, but the neighbor is chosen based

on the similarity between the request key and the neighbor ID (in contrast to the

random choice of neighbors made by pure DFS). Thus, the search process is more

efficient than in random DFS, as can be seen in the example of Fig. 9.8. However,

Fig. 9.6 Intelligent search based on mBFS, with W = 2 and HTL = 3, looking for ‘‘tue.mpg.’’
a The request initiator ranks the neighbors and picks the best two. b Node T can only pick one
neighbor and node E can pick both neighbors as W = 2. Node H has provided four hits for two
different but similar requests and, hence, is ranked first among neighbors of E. c Subsequent
nodes do the same upon receiving the request. d The response travels back through the path
which has led to the discovery, updating the profiles of each intermediate node
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an issue is that as the network becomes more dynamic, the loose structuring

method of Freenet tends to break the neighborhood of correlated node identifiers.

Studies have shown that under highly dynamic conditions, the performance of

Freenet is not much better than Random DFS.

Fig. 9.7 Node J starts Optimistic APS based on 2-Random Walks, with HTL = 5 targeting a
resource stored in node G. At each hop, walker nodes increase the index of the selected neighbors
by ten degrees. a The request initiator picks the two neighbors having the highest index (nodes L
& T) for the specific request with probability 40/(30 ? 40 ? 50) = 33% and 50/
(30 ? 40 ? 50) = 42%, respectively. b Node T has no other option but C. Due to probabilistic
selection, node L picks A despite the lower probability. c–e Similar selection procedures for the
two walkers. f HTL expires and a failure propagates backwards, reducing the index of nodes in
the path by 20�. g The resulting optimistic APS index tables of the nodes selected by the walkers
after the walkers and after the updates. h The resulting pessimistic APS index tables
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9.7 Deterministic Discovery in Structured Networks

While the search algorithms of unstructured networks target the resources, the

discovery mechanisms on structured systems seek specific node identifiers. This is

because resources are indexed or hosted by specific IDs. Any request initiator has

Fig. 9.8 Freenet depth-first search of key ‘‘tue.mpg’’ on a network with alphabetically
correlated IDs of neighboring nodes. a A random DFS may spend many messages until it
detects the resource. b In Freenet, the search process is directed towards the nodes whose
identifiers are ‘‘closer’’ to the file name. Nodes ‘‘L’’ and ‘‘T’’ are more similar to ‘‘tue.mpg’’
than ‘‘H’’ and ‘‘G’’

Fig. 9.9 A Chord look-up triggered by node 10, looking for resource keys 23 and 40. a The forth
finger (i = 3, node 21) of the request initiator is the first from the bottom to be located between the
current node (10) and target node (23), i.e., 21 2 (10,23]. b Node 21 has no finger located between
21 and 23; thus, the immediate successor hosts the resource. c, d The request initiator picks the fifth
finger as node 38 2 (10,40]; node 38 forwards the request to its immediate successor
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enough knowledge to calculate the host ID of the requested resource before the

request is forwarded. In structured networks, the discovery mechanisms only build

a single propagation path, without setting any stopping criterion other than a hit on

the appropriate node.

Structured networks, for example, the P2P systems based on distributed hash

tables (see Chap. 8 for Chord), order the nodes in increasing ID [3–5]. The request

has to be forwarded from the initiator to the target node in such a way that it will

not overpass the target. In DHTs, a requesting node generates the hash value to be

used as the search term—the resource key. The key is essentially produced by the

same function that generates node IDs in the network; thus, the hash value is taken

from the index space of node identifiers. The key is also the node identifier that

most likely hosts the resource.

Let us consider, for example, the discovery process in Chord [12, 13].

Figures 9.9 and 9.10 include the three cases in which node 10 is looking for

resources 23, 40 and 0, respectively. Nodes are sorted on a list, based on their

identifier (each node holds a portion of the list). A request initiator sends the

request as closely as possible to the target node, but without overshooting. A node

which is either initiating or simply relaying a request picks the largest possible

neighbor ID (but no larger than the target node ID). The node checks its finger

table from the bottom upwards and selects the first finger that has an ID larger than

the current node, but smaller or equal to the target node ID. If no such finger can be

found in the node’s finger table, then the immediate on-hop successor is actually

the host of the requested key.

Fig. 9.10 A Chord look-up triggered by node 10, looking for the resource key 0. a Node 42 is in
the part of the ring between keys 10 and 0, clockwise. b Node 51 is between 42 and 0. c Node 54
is located between 51 and 0. d Node 54 is the predecessor of the target node 1
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The Chord look-up algorithm belongs to a family of mechanisms that guar-

antee discovery, provided that the resource exists in the network. Moreover, the

recall is also 100% as all the resources that satisfy the request term (hash key

value) are hosted or indexed by the same node. In terms of average hop-count,

Chord can ensure an upper bound of dlog Ne, whereby N is the size of the

network. As the forwarding scheme is 1-walker, the message cost of Chord

coincides with the worst case hop-count. The main limitation of structured

protocols such as Chord is that they may lead to extensive discovery paths and,

therefore, large response times.
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Chapter 10

A Peek at the Future Internet

Abstract The Internet ‘‘connectivity machine’’ is the generative engine of our

modern digital society. It has been the launching pad of the Web (now the Web

2.0), truly the largest and most versatile information system ever built. While the

Web phenomenon relentlessly continues, scientists worldwide are now living the

dream of yet a more generative next-generation network. This chapter explores

some prominent research directions, discussing the Internet of Things, context-

aware networks, small world networks, scale-free networks, autonomic networks,

dependable networks, the privacy vs. security dichotomy and the two facets of

energy-efficient networks.

The best way to predict the future is to invent it

Alan Key, computer scientist

10.1 The Fourth Networking Principle: Beyond

Mere Connectivity

In Chap. 2, we introduced the three fundamental principles of networking: connect,

discover and stay connected. It is now time to argue that the next-generation

networks should go beyond mere connectivity.

Networks are currently engineered in layers, going from the lower physical layer

up to the application (the seventh) layer. Each layer has specific responsibilities (for

instance, layer three, the network layer, is in charge of route computation) and

dedicated interfaces with the adjacent layers. This ‘‘insulation’’ between layers

makes networks more manageable and facilitates the appearance of new applica-

tions. Layers make it easy to focus on specific functionalities without having to
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worry about the whole system. In fact, the marvelous Internet applications that we

use today are probably the direct consequence of the layering model: the program-

mers could focus on the application logic without having to master the lower layers.

However, inter-layer insulation comes with a downside: it limits our ability to

introduce new optimization mechanisms. If we keep the network layer isolated, the

routing and transport functions cannot promptly take into account the requirements

arising from the physical network. What is worse, packet routing does not adapt to

the applications or to the user’s context. For instance, we cannot implement

content-based routing on the IP layer.

The advances made at the network edges, such as P2P networking, have revealed

the potential of context-aware networking. At the same time, the realization of

context-aware networks at the application level (as in P2P) is not ideal. The damage

that P2P applications cause to the network is now well documented. On the other

hand, IP networks are not always capable of meeting the delivery deadlines of the

real-time P2P systems (such as P2P IPTV). In fact, we can now observe a trend

whereby cloud services such as YouTube are becoming more prominent.

Imagine what we could achieve if the network itself could take into account

requirements and constraints arriving from the other layers. We could route

packets based on the type of content, the user’s context or the recipient’s prefer-

ences. The network would be able to spot communication patterns and allocate

resources accordingly. Routing algorithms would be based on a probabilistic

approach rather than on the current deterministic approaches that do not work

under dynamic conditions.

Context-awareness is the extra gear that is missing in the Internet and a crucial

mechanism for the realization of the next-generation Net. The upcoming networks

will not be completely autonomic,1 but will certainly have to be more adaptive

regarding a variety of perturbations.

10.2 Internet of Things: Sense and Influence

Your Environment

The time when the Internet was for the sole use of computers is over. Our tech-

nology roadmap is going towards the Internet of Things (IoT) [1, 2], a digital

infrastructure where anything having any kind of network interface will be part of

the Net. The convergence between the conventional stationary Internet and the

cellular network has given tremendous impulse to the digital society [3]. Even

greater breakthroughs will come from the interconnection of everyday objects,

sensors and actuators.

1 Autonomic networks are envisioned to be able to self-configure, self-heal, self-optimize and
self-protect with minimal human intervention, according to the autonomic computing principles.
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The realization of the IoT poses ambitious scientific hurdles, though it certainly

has enormous potential. With virtually anything on the Net, from the domestic

appliances to clothing and biometric sensors, the network will suddenly assume a

‘‘massive’’ scale.

Yet the biggest challenge will probably come from the huge functional diversity

among the devices. RFIDs2 can do very little in terms of networking, but give a

cheap way to locate a myriad of objects. Multiple sensors may collaborate to

provide environmental monitoring information, but will have substantial compu-

tational and energy constraints. Intelligent camera systems may solve complex

surveillance problems, though they will incur severe traffic onto the network.

The size and diversity of the IoT cannot be handled by the current IP protocol

[4]. On the other hand, the IoT will be able to rely on a wealth of contextual

information that will enable greater routing intelligence. The IoT will not only

propagate contextual information ‘‘where’’ and ‘‘when’’ it is needed, but it will

also make use of the context to better operate the network itself.

Once we make the move to attaching anything to the Net, the network will

become the largest control system ever built. The network’s ‘‘things’’ will provide

sensory, but also transducing and actuation capabilities. Actuators, for example,

motors, pneumatics and hydraulics, can move objects and pump fluids. Electrical

relays can switch on the heating system or turn off the lights.

The transducers will further enhance the network’s self-sufficiency. Researchers

are making progress in the area of energy-harvesting transducers that can capture

small but usable amounts of energy from the environment. This energy can be used

to run sensors and network interfaces.

The next-generation network will be able to grasp and simultaneously influence

its environment. Scientists are investigating the paradigm shift required to make

the most of these new capabilities.

10.3 Small, Large Networks

There is no doubt that the Net is getting bigger, more complex and increasingly

dynamic. At the same time, the perturbations created by emerging applications are

more and more intense and erratic. The Net is a complex system that is constantly

changing and expanding. The routing protocols must keep everything connected;

they must discover short paths across such a massive network.

One way to keep large networks ‘‘small’’ is to increase the number of links,

making the network denser. This is easier said than done. Adding new capacity on

2 Radio-frequency identification (RFID) is a technology that uses communication via radio
waves to exchange data between a reader and an electronic tag attached to an object for the
purpose of identification and tracking.
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the physical network is costly. In fact, the current Net is relatively sparse; it has a

number of links roughly of the same order of magnitude as the number of nodes.

Things get more complicated if we try scaling up the network while at the same

time ensuring ‘‘stability.’’ Suppose we can add new links. How do we know which

node pairs would benefit the most from the extra capacity? Where do we add

capacity in a constantly changing network? How can we make this choice

automatically?

Ironically, while the computer networks community has created a marvelous yet

complex digital ecosystem, fundamental breakthroughs have also been achieved

beyond the technologists’ circle. Physicists, biologists, mathematicians and soci-

ologists have been studying biological [5] and neural networks [6] that are far

more complex than the present Internet [7, 8]. Thus, understanding the properties

of the ‘‘natural’’ networks should be the starting point for those who are rethinking

the Internet [9–11].

Perhaps one of the most remarkable discoveries is the small-world phenom-

enon, which is present in most complex networks [7]. Apparently, the networks

resulting from a natural evolution process are able to build short paths, irre-

spective of the number of nodes. A fascinating yet not fully proved theory is that

in natural networks, any node is, on average, six hops away from any other

node—this is known as the ‘‘six degrees of separation’’ property or ‘‘small-

worldness’’.

Another outstanding property of natural networks is known as scale-freeness

[7]. Scale-free networks exhibit the same interconnectivity distribution, no matter

how big the network grows. While small-worldness is key to scalability, scale-

freeness is crucial for robustness and stability.

The mechanics of small-world and scale-free networks is not fully understood.

However, scientists have already unveiled several mysteries. We have enough

knowledge to start designing routing protocols that can make a large network

‘‘small.’’3 We know that a well-designed network must have short paths. This can

be achieved if the network has the ‘‘right’’ mixture of low- and high-degree nodes

and of weak and strong links [12].4

Scientists have discovered a number of counter-intuitive properties that have

significant potential for the re-design of routing protocols. For instance, weak links

play a crucial role in reducing the network diameter as they build long-distance

bridges between nodes that would otherwise be poorly connected. Because of their

nature, weak links tend to be transient. It seems to defy logic, but scientists have

discovered that it is precisely this volatility that makes weak links so crucial in

kicking the network out of sub-optimal configurations. Weak links make it pos-

sible to propagate signaling information more rapidly and towards areas that would

3 Recent literature describing the properties and mechanisms of small-world and scale-free
networks is included in our ‘‘References’’ section.
4 A link is ‘‘weak’’ when its addition or removal does not significantly change the mean value of
a target measure (P. Csermely, ‘‘Weak Links’’, Springer 2009).
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otherwise not be reached. Weak links hold the secret of stability. However, weak

links cannot exist without the strong ones. In fact, the natural networks have a

continuous spectrum of link strengths.

Extensive studies of complex networks have unveiled how difficult it is to

pursue multiple performance goals. Network speed and stability are often con-

flicting targets. It is a myth that networks’ diameter can be merely reduced by

increasing the average node degree. Nodes with a large number of neighbors are

called hubs. Hubs multiplex traffic; so they are important. However, hubs come

with a problematic side effect. They make the network vulnerable. Hubs have huge

responsibilities; so if they are attacked, large portions of the network are affected.

Hubs not only propagate genuine data, but also speed up the spreading of computer

viruses or any other destabilizing agent.

Ironically, hubs and strong links help to improve transmission speed, but do not

play a positive role when it comes to stability and robustness. Another counter-

intuitive finding is that in addition to weak links, bottlenecks can also help make

networks more robust. Bottlenecks limit the network throughout, but often gen-

erate new weak links. Bottlenecks force networks to re-distribute the load and

trigger a rewiring process that is crucial in protecting networks against cascading

failures. Scientists such as Motter have proved that a selective removal of network

elements makes the network more robust.5

One of the problems of the current routing protocols is that they strive for a

‘‘uniform’’ network. They pursue routing efficiency but neglect other essential

properties. Looking at the most complex natural networks, we see that they are not

only transmission-efficient, but also tolerant to incredible amounts of failures,

errors, noise and dynamics. Small-world, scale-free networks have a mix of ran-

domness, nestedness,6 disuniformity, volatility and unpredictability. They have a

variety of nodes (hubs,7 rich clubs,8 VIP clubs,9 leaves and bottlenecks) and links

(bridges, weak and strong links). As part of their evolution, the natural networks

have learned how to orchestrate this variety of elements and respond to new forms

of perturbations.

5 A.E. Motter, Cascade control and defense in complex networks. Phys Rev Lett 93, 098701.
6 Nestedness indicates the hierarchical structure of networks. Each element of the top network
usually consists of an entire network of elements at the lower level. Nestedness helps us to
explain the complexity of networks.
7 Hubs are connection-rich network elements.
8 In hierarchical networks, the inner core becomes a rich club if it is formed by the hubs of the
network. For example, in the Internet, the routers form rich clubs.
9 In VIP clubs, the most influential members have low number of connections. However, many
of these connections lead to hubs.
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10.4 Manage the Autonomics

Networks are becoming increasingly complex and heterogeneous. Networks are

nested within networks, virtualized, overlaid, sub-netted. Some sections of the

Internet are ‘‘managed,’’ e.g., by network operators or ISPs. However, there is a

steep increase in ‘‘unmanaged’’ networks (e.g., wireless home networks), ‘‘spon-

taneous’’ networks (e.g., ad hoc networks) and ‘‘content-driven’’ networks

(e.g., P2P networks). Several researchers are investigating how to bring the power

of the natural evolutionary networks into the Net [5, 6, 13]. By mimicking bio-

logical mechanisms, the ‘‘bio-inspired’’ computer networks promise efficiency,

robustness, scalability, but also ‘‘adaptivity’’ and ‘‘evolvability.’’

In the future, big chunks of the Net will be ‘‘autonomic’’ [3, 14]. Networks will

be able to learn how to respond to new kinds of perturbations. They will be able to

absorb and disperse the bad signals whilst transmitting the good ones. They will be

resilient to viruses, failure or catastrophic events.

Many networks will be self-managed [2, 15], though human intervention will

still be needed. It will be necessary to incorporate higher-level management

mechanisms to manage the complex entangle of autonomic elements. There is a

possibility that the introduction of sophisticated automatisms will generate new

problems in terms of signaling, stability, security and trust. The multiplicity of

autonomic systems will interact, influencing each other. How can we ensure that

such interactions do not degenerate or create interferences or instabilities?

Just as in the evolutionary networks within nature, the different sub-systems of

the future Internet will morph over time. However, computer networks are influ-

enced by multiple factors that we have not yet learnt how to master. The evolution

of the Net is affected in different ways by technology, but also by economic,

political, legal and social elements. Until we find out how to realize a self-sustained

digital ecosystem, we shall continue to need human intervention for purposes such

as global optimization, regulatory obligations, law enforcement, business and

provision of quality levels [16, 17]. Thus, for many years to come, it will still be

necessary to monitor the autonomics and possess a means to influence it positively.

10.5 Dependable Networks

As the Net is used more and more for time-constrained applications, we are left to

deal with a critical question: how reliable is the Net? We mentioned earlier that

the typical packet-loss rate is in the order of 8–10% (internettrafficreport.com).

However, even though so many packets are dropped, we can still run a variety of

applications [18]. This has been made possible by innovating the applications

rather than trying to introduce better network mechanisms. The innovation has

taken place on the network’s edges through techniques such as caching, adaptive

coding, scalable coding or P2P transmission (to mention just a few) [19–24].
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Yet, the transition from the current best-effort network to a more dependable

Net will be unavoidable if the unrelenting trend towards extreme ubiquity and

mobility continues. At present, networks put little effort into delivering packets on

time. When a packet is dropped, the IP layer has the tendency to forget about it and

move on with normal life. This means that not much is done in the core network,

apart from buffering the packets during congestion periods. However, buffering is

not the ultimate solution. It is just a temporary patch that has the ability to deal

with transient problems. The very heart of the network, the all-optical trunks, is not

even able to perform any buffering.10 Also, by buffering a packet, we shield it from

congestion while, at the same time, incurring extra latency.

The existing network mechanisms concerned with congestion and packet loss are

rudimentary. Packets are dropped unpredictably. When a loss is detected at the

application layer (e.g., through TCP or within the application), we can try to recover

the packet by requesting a retransmission. Yet, just like buffering, retransmission

affects the communication latency. What is worse, there is no way to determine

whether the retransmitted data can in fact meet its delivery deadline. Obviously, a

‘‘failed’’ retransmitted packet (one that reaches the application too late and is unus-

able) incurs unnecessary traffic. Also, if a packet is dropped due to congestion,

chances are that the retransmitted packet will suffer the same destiny. Thus, packet

retransmission, as such, does not provide a solid answer to ‘‘reliable’’ transmission

and is potentially a counter-productive measure (retransmissions worsen congestion).

The key reason why the Net does not offer robust transmission is lack of par-

allelism. If a path is congested, the Net tries to find a diversion, and it does so pretty

slowly. The lesson learned from P2P applications is that a much better approach is

to seek alternative sources. There is huge data redundancy in the Net; therefore, it

does not make sense to only transmit via point-to-point channels. Exemplar

transmission mechanisms are chunk-based transport, multi-layered transport,

redundant-data transport and location-depended transport such as in cloud services.

The foundations of dependable networks lie on intelligent routing and transport

mechanisms that incorporate parallelism, context-awareness and content-aware-

ness. Significant research efforts are currently directed towards such a cross-layer

routing approach [25].

10.6 The Fine Line Between Freedom, Security and Privacy

Many people today trust the Net with their most private data. To make a trans-

action, we post our credit card details and other personal data. While we browse

through an e-shop, we actually leave traces of our preferences. Blogging and

twitting are vehicles for people to express opinions, which, in some countries, may

10 Optical buffering is currently one of the major hurdles in the realization of all-optical
networks, which would lead to a substantial increase in network capacity.
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lead to persecution or prosecution. On the other hand, monitoring, tracing and

logging over the Net are required for the purposes of law enforcement and

cybercrime prevention [26].

Thus, a most controversial issue is how to balance freedom, security and pri-

vacy [27]. A number of technical as well as legal tools have been developed for the

purpose of (and in the name of) security. For instance, telecom providers must be

able to supply so called legal intercepts in response to a court order. Similarly,

ISPs are required to disclose to the judge the personal whereabouts of alleged

cybercriminals.

However, within the Net, there is only a very fine line between security, crime

and prosecution: the very same security tools may be misused by cybercriminals or

by totalitarian regimes [28].

The Net is not well equipped to protect our privacy. Thus, a number of techniques

are being developed to tackle the issue in a radical way, for example, through

anonymity-support services [29, 30]. Clearly, if the identity of a blogger is hidden to

the ISP, he can voice his opinion online without fear of being persecuted. Yet again,

anonymity works against security because it allows cybercriminals to hide.

Looking at the present technology, there is no apparent solution to the ‘‘free-

dom-privacy-security’’ clash. This is possibly because the Net, that is, the primary

handler of sensitive data, is totally oblivious to the problem. The IP is geared for

‘‘sharing’’ more than it is for ‘‘securing’’ data. It comes with some raw mechanisms

for encrypting packets, but is oblivious to the issues of freedom, privacy, and

security. Unlike any other complex network (e.g., the biological networks), the Net

has no self-defense mechanisms. The result is that a predominant fraction of the

Internet traffic today relates to viruses, spam, polluted content, and malicious

software. The Net does not know how to identify and slow down the propagation

of ‘‘bad’’ data whilst accelerating the distribution of the ‘‘good’’ one.

The consequences are dramatic. An estimated 80% of emails are spam, which

costs businesses in the range of $20.5 billion annually, a figure that will soon rise

to $200 billion (spamlaws.com). Identity theft hits around $10 million Americans a

year and costs businesses about $200 billion a year. Similarly astonishing figures

relate to viruses and the other plagues of the Net.

Despite the significant attention by the policy-makers, the critical issues sur-

rounding freedom, privacy and security are still partly in the hands of the cyber-

criminals. This complex issue must be tackled at a global scale and in every

element of the digital society. The next-generation network can no longer remain

out of the problem.

10.7 Energy-Efficient Networks

Harvard scientists estimate that today ‘‘the whole ICT sector produces as much

greenhouse gases as all airline companies together’’ [31]. An increasing fraction of

energy is consumed by the large data centers—1000 Google searches burn about
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as much energy as driving 1 km with a car. The network itself takes a large toll.

A 2007 study by Telecom Italia unveiled that its network absorbed over 2TWh,

representing 1% of the total national demand, which ranked the company as the

second largest energy consumer (after the National Railways).11

As much as they have become crucial to the global economy, today’s networks

are not at all eco-friendly. They are always ON and burn energy even when they

are on standby. The energy consumption of an Internet connection is dominated by

the access network, particularly the broadband access lines. The deployment of

fiber-to-the-home (FTTH) will lead to substantial improvements (optical trans-

mission is more efficient than electrical). Substantial effort is in fact directed

towards all-optical networks, but many fundamental issues still remain open: how

can we build all-optical routers if we do not know how to construct suitable optical

buffers?

In parallel to the research efforts on the ‘‘physics’’ of networks, significant

breakthroughs are required on the ‘‘soft’’ aspects. Improving the routing archi-

tectures along the lines indicated earlier in this chapter (context-awareness, small-

worldness, autonomicity, parallelism etc.) will be a priority.

Another dimension of energy-efficiency [32] is created by the convergence

between the conventional networks and the emerging variety of wireless networks.

These span beyond the confines of WiFi, WiMax and the cellular networks.

Spontaneous, opportunistic connectivity along the concepts of ad hoc networks

and IoT will surely gain importance. In this context, energy-efficiency is required

at a different level, not just to save the planet. The emerging edge-network will

comprise a range of battery-operated terminals that will participate in the complex

routing game. Terminals will source, filter, clean, store, relay and terminate data.

The terminals will play a key role in differentiating between ‘‘good’’ and ‘‘bad’’

data, filtering spam, eradicating viruses, aggregating data and help to propagate it

reliably. In this way, the ‘‘edge’’ networks will help to keep the traffic local; they

will have the ability to spot communication patterns, self-regulate and minimize

their energy consumption. This vision of cognitive networking is debated pas-

sionately at the present, although we do not yet know how to realize autonomic

networks that are also controllable, stable and reliable.

10.8 No Matter What, the Network will Remain Generative

We started this book writing about the ‘‘generative’’ power of the Internet [33].

On its conception, the Internet had not been designed in view of the phenomenal

applications it is still sparking. Today, the search giant Google is valued at $200

11 C. Bianco, F. Cucchietti, and G. Gri, ‘‘Energy consumption trends in the next generation
access network—a telco perspective,’’ International Telecommunications Energy Conference,
INTELEC, Sep. 30–Oct. 4, Rome, Italy, 2007.
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billion and the social network Facebook is worth $50 billion.12 Yet neither

application was in the minds of the Internet architects, Robert Kahn and Vint Cerf.

Along with creativity, comes the urge to protect it from spam, viruses, computer

hackers and the lot. Many attempts to protect our digital assets have resulted in

measures that have, at times, restrained the ‘‘generativity’’ of the Net. For instance,

we have seen a periodic alternation between those who support an ‘‘open’’ net-

worked environment (one that gives wide freedom to individuals to manipulate

their terminals, as in Linux) and those who are prepared to sacrifice this freedom in

exchange for a greater sense of security (as in the video game consoles which do

not allow any customization by the customer).

Nevertheless, even this emerging form of an ‘‘appliancized’’ network has not

actually stopped the generativity of the Net. The iPhone/iPad phenomenon has

proved that device tethering does not always confine our inventiveness. The apple

store had 50,000 applications available in 2009 and 330,000 in January 2011, with a

rate of 600 new applications submitted every day.13 In comparison with other open

platforms such as Google Android, we observe a counter-intuitive phenomenon:

the sense of security instilled by a tethered network does occasionally surpass the

sense of freedom instilled by an open network.14

Despite the unexpected developments of the last decade, the Internet ‘‘con-

nectivity machine’’ has not seen many changes since its conception. Yet, it has

continued to be the ‘‘generative’’ engine of our digital society. Scientists world-

wide are now living the dream of yet a more generative next-generation network.
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