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Preface

In contemporary globally competitive markets, the development of new products

is considered a critical success factor for organizations. Significant efforts have

been invested in the development of methods and tools for improving the man-

agement of design processes, being a key element in development processes,

especially those related to new products development (NPD). Product lifecycle

management (PLM) is a collection of practices, methods, and tools that help

organizations cope with the increased complexity of today’s engineering chal-

lenges. Like most existing methods and tools they have an underlying assumption

that enough product-related knowledge is known a-priori, thus planning the

development process and its design processes can be done in advance, and then be

followed through careful management. However, the large number of failures in

introducing new products to markets suggests the opposite. Top-down and bottom-

up managerial strategies applied to the planning and management of NPD fail

many times, as existing tools and methods are incapable of supporting the process

management challenges of NPD processes.

The managerial issues include the planning of unexpectedly changing and

iterative processes and their modeling for implementation, execution, monitoring,

and simulation. Current commercially available tools (e.g., workflow tools within

PLM) typically support predefined processes, whose structure is fixed; existing

planning methods typically support predefined process knowledge; and many

modeling methods address only non-iterative processes. The result in practice is

that planning and monitoring of NPD processes are typically done manually. This

creates a gap that is difficult to manage between the roles of product and project

managers. While product managers are responsible for the delivery of a product

that meet customer and market demands, i.e., the content of the product, project

management are responsible for the execution of a product development process so

that the product is delivered on time, within budget and risk constraints. However,

whereas evolving product information and process information could be managed

by their respective established tools, the integration of updated product data into

process management is not established. Consequently, project managers base their

decisions on past, partially obsolete product information, instead of newly
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generated information of the product developed. The obvious result is that project

and process plans are inferior to what is possible with updated information and a

plausible result is that resources are wasted, leading potentially to project failures.

This book focuses on a framework, entitled Dynamic new-Product Design

Process (DnPDP) for the management of NPD processes (iterative processes with

process schemes that changes according to the evolving product knowledge). The

framework incorporates a model of a closed-loop meta-process management

system that controls the dynamically evolving workflow process.

The novel integrated approach of the presented framework merges product-

based planning, process modeling, process execution, probabilistic simulations,

and simulation based decision-making. The conceptual framework was imple-

mented through the choice of specific methods as building blocks of the meta-

process, into a working system. It is important to notice that the specific choice of

building block concepts used for implementation is only one among other potential

implementations.

The system that implements the framework is capable of process modeling and

execution according to plans that change based on evolving product knowledge.

Therefore, it can manage iterative processes with dynamic changes of the process

structure. Simulations of potential process changes are analyzed using statistical

analysis, and analysis results are used for decision-making during the process.

As such, the system can be used as a decision-making aid.

The system incorporates two established methods: the Design Structure Matrix

(DSM) and Petri nets. The DSM is a method for modeling some aspects of product

knowledge, and then using reordering algorithms for planning the design processes

based on that knowledge. This method, originally used for pre-defined product

knowledge, was extended to deal with evolving product knowledge (typical of

NPD). Petri net formalization concepts were used for formally proving process

structure properties that result from DSM-based plans.

The interpretation of the DSM-based plan to a process scheme is not unique and

its translation to a process workflow may lead to implementation problems.

Workflow (WF) nets, being a subclass of Petri nets, provide formal tools for

verifying process properties, and establishing the soundness correctness criteria.

WRI-WF-nets are a subclass of WF-nets that can be hierarchically built and are

sound by construction (i.e., keeping correctness criterion). Therefore, they enable

an automated process build approach based on the changing product knowledge

that is required for NPD simulations. However, WRI-WF-nets that are capable of

modeling the typical DSM-based processes do not support the modeling of special

logic cases.

Business rules that were defined in this work are used for addressing more

general logic cases and define the specific implementation logic. The business

rules address the logic layer of the process conversion to DSM nets. DSM nets

(developed in this work) are used for process modeling, using (dynamically

modifiable) logic activities. The DSM nets are generated according to the DSM

reordering by several translation stages. The resulting process scheme plan can be

simulated, executed, and formally verified. The formalization methods were
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utilized to prove that DSM nets are equivalent to WRI-WF-nets in typical DSM-

based process models; therefore, the proposed translation can be automated and is

inherently sound. The system was applied to a case study of designing a simplified

product. Various settings of product knowledge changes, causing various changes

of the design process structure were checked, while analyzing various simulation

parameters. The main findings of the case study analysis are that simulations could

help in decision-making. Yet, the simulation results need statistical analysis in

order to distinguish between significant results and insignificant ones; otherwise,

conclusions might be inadequate. Additionally, the complex cases represented by

evolving iterative process were highly sensitive to the specific simulation

parameters. Therefore, general rules of thumb are inapplicable in such complex

cases. The results demonstrated the need for case specific aiding tools in NPD

processes. The presented implementation of the conceptual framework demon-

strates the feasibility of the suggested framework and its capabilities. The exten-

sion and merger of DSM concepts and Petri net concepts presented, enabled an

integration of planning, modeling, and implementation that can be automated and

support dynamic modifications of the process scheme. The presented integration

bridges between DSM and Petri nets, as the reordered and extended DSM are

capable of generating WRI-WF-nets.

The main conclusion is that NPD processes can be managed by dynamic

workflow tools, though additional knowledge needs to be captured as part of the

on-going process. Such knowledge updates can be captured and managed by

existing Product Lifecycle Management (PLM) tools. Enhancing PLM capabilities

to match the process complexity by the use of the integrated approach (product-

based planning, process modeling, execution, and simulation) could help in better

management of NPD processes. Once this is accomplished, project managers

would be able to carry out their work based on updated product information. It is

argued that the integration of dynamic process-scheme management capabilities to

existing tools would make the use of computer aided management tools or PLM

tools more effective and consequently, prevalent. Altogether, the presented

approach creates a consistent base of information for products and processes

constituting a new PLM paradigm. This paradigm complements other PLM efforts

by focusing on the neglected link between product and process addressed in this

research.

This book is geared toward graduate students in, and researchers of engineering

design, product development, and development processes. The first three chapters

provide solid background to others interested in product development and its

management. Bridging the two areas of product development and process man-

agement, the book provides each area a window into the other area that could be

extended for the benefit of each field. We call PLM tool developers to implement

the conceptual enhancements described.

Tel Aviv, May 2011 Arie Karniel

Yoram Reich
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Chapter 2

Managing Development Processes

Reaching the goal of automating the planning and execution of a DnPDP, as well

as simulating the process under diverse conditions and decision options is quite

complex. It requires the integration of several approaches. The following chapter

describes the methods and approaches used, enhanced, and integrated within the

suggested DnPDP framework.

In the following chapter, the literature on process management is surveyed.

Then, two major methods are described: the DSM, which is used for planning and

simulation; and the Workflow (Petri) nets concepts that are used for process

modeling and verification. The use of DSM-based process plan is discussed in

relation to the process-logic being applied and the simulation parameters used for

scheduling. The implications of the concepts used for process-logic modeling are

described followed by a detailed comparative analysis of DSM-based simulation

approaches (Karniel and Reich 2009). The use of DSM-based processes for sim-

ulation is further discussed in the context of the activity scheduling literature,

surveying simulation parameters, and objective targets.

The definitions within and between the integrated fields are inconsistent;

therefore, the first section is devoted to explicitly defining the terminology used in

this book.

2.1 Development Processes

Product Development Processes (PDPs), and primarily New-Product Development

(NPD) processes are highly complex, dynamic, iterative, and unique. They are

complex because they involve multiple disciplines (Simon 1981; Subrahmanian

et al. 1997; Reich et al. 1999) contributing to the development of complex multi-

disciplinary products (e.g., mechatronics), that have limited resources, shortened

development time, and increased quality and regulatory demands (Ulrich and

Eppinger 2000; Kusiak 2002; Shane and Ulrich 2004). They are dynamic because

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_2,
� Springer-Verlag London Limited 2011
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they evolve continually due to various reasons including market, technology, and

organizational changes (Fricke et al. 2000; Otto and Wood 2001). They are

inherently iterative due to the interdependencies between the design activities

(Yassine and Braha 2003). They are unique, though they may share common

features or elements (Smith and Morrow 1999).

A PDP is a collection of related activities targeted to convert a new idea,

concept, or market opportunity, into a marketed product. Within PDP, the cyclic

Design Process (DP) includes synthesis, analysis, and decision-making stages for

migrating from marketing requirements to artifact specification. The DP reflects

the specific design requirements, objectives, and constraints applicable to the

current product.

The interdependence between design activities in the DP makes that process

fundamentally iterative as changes in the design of one component may result in

changing the design of other components. While a-priori planned iterations such as

testing are an inherent and necessary part of design processes (Lévárdy and

Browning 2005), feedbacks due to unplanned changes cause additional iterative

rework that cannot be predicted (Westfechtel 1999). Iteration s are considered a

major source of increased product development lead-time and cost (Eppinger et al.

1994; Carrascosa et al. 1998; Browning and Eppinger 2002; Whitfield et al. 2005).

Therefore, performing project activities in an appropriate sequence is critical in

minimizing rework due to information interdependencies (Meier et al. 2007).

Planning and predicting the consequences of changes in a product are essential for

modifying existing products, especially safety critical products (Eckert et al.

2006).

The need to align the DP with the product’s specific characteristics differenti-

ates its planning from other processes, where the relations between activities and

the order of activities can be guided by heuristics or just by planner’s common

sense.

Among all DPs, those related to NPD processes present additional planning

complexities as the knowledge required for planning the process is only partially

known initially (Reich 2008; Smith and Morrow 1999), and is changing during the

development process (Ulrich and Eppinger 2000). Figure 2.1 depicts the product

knowledge and design freedom as a function of time (Reich 2008; Ullman 2003). It

also shows the quality determined and cost incurred as a function of time. From the

quality determined graph, it is clear that the most important time is the beginning of

the project where knowledge is scarce. This paradoxical situation (Reich 2008)

inevitably leads to changes in the product and the process. Consequently, we cannot

hope to define the scope of work needed for a new product, nor we could plan how to

manage it a-priori (Westfechtel 1999). Hence, the planning should be repeatedly

updated during the process, incorporating the additional product knowledge (new

activities, or new relations) that is gained (Karniel and Reich 2007a). Moreover, due

to diminishing design degrees of freedom, the design process will involve iterations

to redo previously accomplished design activities.

In order to coordinate a complex design process effectively, a workflow model

needs to define iterations or coupled dependencies in design processes. However,
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few attempts have been made to develop a systematic framework that considers

these complex features based on existing workflow models (Lee and Suh 2006).

If basic needs of NPD processes, such as the above, are not met with proper

tools or methods, failures ensue. NPD processes fail in various ways (Bobrow and

Shafer 1987; McMath and Forbes 1998; Goldenberg et al. 2001). During the past

years, there have been many studies and reviews on the factors that influence the

fate of new products (Brown and Eisenhardt 1995; Calantone et al. 1996; Cooper
and Kleinschmidt 1995; Di Benedetto 1999; Goldenberg et al. 2001; Griffin and

Page 1996; Griffin 1997; Montoya-Weiss and Calantone 1994; Shenhar 1998;

Verhaeghe and Kfir 2002; Worren et al. 2002).
Famous failures were analyzed by Bahill and Henderson (2005), categorizing

them to requirements, verification, and validation issues. Thomas (2007) analyzed

failures of space systems due to inadequate system engineering processes. The

engineering process deficiencies were categorized to project planning, project

assessment, information management, requirements analysis, architecture design,

implementation, verification, and transition process (the capability to provide the

service in operational environment). Several cases from both sources related to

design processes issues are described in Table 2.1. Since there is an overlap of

several case descriptions, they were merged.

The examples demonstrate the importance of proper design process. It is

important to state that the implementation of management tools could not resolve

all potential issues, e.g., design bugs or decisions not to perform testing. Yet, using

the proposed method and management tools could help in better communication

(reducing unreported issues as in the GE case, or design misalignment in the Mars

orbiter), and could help in mapping required design changes of some system

components, due to changes of other components or changes in requirements

(Ariane 5, Lewis).

In Fig. 2.2, project management practices are detailed along the dimensions of

technological uncertainty and systems’ scope. As the system scope or the tech-

nological uncertainty increase (or both), the impact of the corresponding practices

Time into product life-cycle
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20
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Quality determined
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Fig. 2.1 Product knowledge,

and design freedom vs. time

(Reich 2008, modified from

Ullman 2003)
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becomes more important (e.g., testing in a case of technological uncertainity, as in

the Hubble case).

Hauser (2001) has identified about eighty factors affecting project success in

empirical models. The outputs of the empirical studies were either correlations

between independent variables (e.g., marketing proficiency and R&D skill) and

dependent variables (e.g., project success), or best practices of successful orga-

nizations (e.g., top third of organizations). Unfortunately, these scientific findings

are not used by practitioners (Hauser 2001, p. 135): ‘‘Many (managers in industry)

are aware of the scientific literature that studies the antecedents and consequences

of metrics in multi-firm studies. But to fine-tune the culture of their firm, these

managers need a method that adjusts priorities based on measures of their firm.’’

Hauser (2001) takes an adaptive control viewpoint. It treats the executions of

actions and decisions as a black box, forcing decision-makers to rely on the

mathematical model without understanding the deeper interactions between the

project parameters.

A different approach introduces more detailed product information and favors

executing simulations and using them to make decision regarding the NPD

business and engineering processes. Simulations could provide explanatory power

that is lacking from empirical models. Reich and Paz (2008) developed a method

that makes use of detailed design information and provides insight about project

risk and potential product quality. A similar approach is utilized in this research,

using product knowledge for simulating the process as an aid to process

management decision-making. Referring back to Fig. 2.1, such simulations that

consider evolving product information that are exercised at the initial stages of

design, even if they require some resources, would generate valuable knowledge

that is so sought for leading to better design decisions.

While many approaches provide modeling methods for improving the design

process, they do not provide a systematic guideline for applying the design

strategies to the design process operational-level (Lee and Suh 2006). Further-

more, many approaches of process planning assume that the planning is done once.

Process execution and monitoring tools are based on a pre-defined process scheme,

which was implemented once. Simulation tools used for decision-making are

Planning, control
Subcontracting

Bureaucracy
Documentation

System engineering

System integration
Configuration
management
Risk Management

Development and testing
Late design freeze
Technical skills

Flexibility
Communication

Technological
uncertainty

System

scope

Fig. 2.2 Project-

management practices along

uncertainty and scope

dimensions (adapted from

Shenhar 1998)
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based on pre-defined static schemes. However, such one-time static process plan

assumptions are inadequate for NPD processes due to the partial knowledge at the

beginning and knowledge evolution during the process.

2.2 Administrative Approaches for Managing NPD Processes

Organizations use top-down and bottom-up approaches to cope with NPD process

management. The top-down approach applies common process management

practices by creating high-level, fixed, and structured model of the development

process, and using traditional Workflow Management Systems (WfMS). The

bottom-up approach manages each activity as it arises, by assigning it to a resource

and managing it in a global repository (e.g., WfMS), while ignoring the interde-

pendencies between activities. Both approaches do not support the dynamics of

NPD process planning.

NPD processes cannot be reduced to a fixed structure. A-priori breaking the

design hierarchically does not address the problem; it simply defers it and the

dynamics are concealed inside the model constructs.

Various companies have distinct development processes. The simple linearized

process development model depicted in Fig. 2.3 includes typical process stages.

A similar process, based on ISO/IEC 15288 (2002) system life-cycle processes,

is described in (Thomas 2007). It includes the stages: concept, development,

production, utilization, support, and retirement. Comprehensive comparisons of

the development processes in ten industrial companies’ case studies are described

in (Unger 2003).

Generic models of development processes that are widely acknowledged are

Waterfall and Stage-Gate (Cooper 2001; Otto and Wood 2001). Other generic

process models that were primarily adopted by the software industry include the

Spiral model (Boehm 1986), Evolutionary prototyping (McConnell 1996), and

eXtreme Programming (XP) (Beck 2000). The Spiral model includes planned

cycles over several development stages; thus, it takes into account the iterative

nature of the process. The Evolutionary model identifies the need to refine the

prototype until it is acceptable, without predefining specific process activities. In

extreme programming, the activities are generally set and specific design activities

are planned on a weekly basis.

Focusing on the stages fromConcept to Production in Fig. 2.3, and utilizing amore

practical modeling approach might yield, for example, the process model depicted in

Fig. 2.4. This high-level process includes parallel activities, decision points (e.g.,

Stage-Gate model; Cooper 2001), and iterations. Being a high-level process, its

scheme is typically constant, yet might have ad-hoc sub-process changes.
The Specification activity starts in parallel to the Conceptual Design. Decisions

regarding iterations of activities can be made in the Preliminary Design Review

(PDR) or the Critical Design Review (CDR). The decision taken may be

continuing the project, iterating, or project cancellation. The process described
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specifically indicates Begin and End activities that are required for process

implementation (Karniel and Reich 2007b).

At the high-level process definition, the process model might be considered

relatively invariable and may apply to many products. We shall refer to such

pre-defined process model as Process Skeleton, as its actual activity content is

defined according to the product. Typically, industrial development organizations

have different high-level development process skeletons, which represent the

organization best practices.

It is typically assumed that lessons learned in one development process could be

applied to improving other design processes in similar contexts (Wynn 2007).

While such assumption could be appropriate for implementing process plans at a

high-level, it is not adequate for the detailed planning of the NPD processes that

dynamically evolve based on the particular product requirements. Concluding the

implementation of a process modeling tool (Signposting) in several projects, Wynn

(2007) indicated the need for synthesizing product-specific information with the

process knowledge and simulating the process uncertainties due to iterations.

A distinction should be made between process modeling and the process

Capability Maturity Model (CMM). For example, the CMMI (SEI 2002) contains

25 required and expected process areas (such as Requirements Management and

Risk Management), and about 185 practices. However, the CMMI does not fully

define the interactions, or flow between the practices, and it does not cover the

specifics of engineering design for particular products. Thus, CMM may take into

account the kinds of activities to include in a process model, but not how to string

them together at the level of execution. A CMM is a model of a process’s capa-

bility and maturity, not a model of the process itself (Browning et al. 2006).

2.3 Process Dynamics Classification

A process case (i.e., the development of a certain product) is dynamically evolving

at run-time according to the process scheme. In the current research, we define the

following classification of dynamic process change types:
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Fig. 2.3 Development process model (linearized)

End

Design
Conceptual

Design

Begin
Specification

PDR CDR

Production

Cancel 

Project
Iteration Iteration

Fig. 2.4 High-level process

model

2.2 Administrative Approaches for Managing NPD Processes 25



Class I—Constant process scheme dynamics: The dynamics will include the actual

decisions being made at run-time and resource allocation. In iterative design

processes, the activity content may change in each iteration leading to different

types of activity outcome at each iteration (O’Donovan et al. 2003).

Class II—(a) Exception Handling: In a case of an exception (i.e., specific pre-

defined situation), a special pre-defined subprocess is added to the main process

scheme. It is actually a sub category of class I, since the process is actually pre-

defined to a detailed level. Yet, from the user perspective, the process scheme

details are elaborated and changed at run-time; thus, each process instance

follows a distinct process scheme (Klein and Dellarocas 2000; Russell et al.

2006). A survey of commercial and academic exception handling tools can be

found in (Adams et al. 2010). (b) Hierarchy expansion of replacing an activity

by a pre-defined subprocess can also be regarded as a sub class of exception

handling. A complex behavior can be achieved if the replacement of the

activity is done during run-time with one of several optional subprocesses,

where the actual subprocess is chosen according to process parameters and

according to pre-defined logic. (c) In (Adams et al. 2010) the replacing sub-

process can be defined (by an administrator) during the execution of the main

process and made available to the main process in case of exception. Such

approach could be regarded equivalent to the ad-hoc changes type.

Class III—Ad-hoc changes (excluding product knowledge changes): manually

changing the process scheme in unpredicted manner (typically uncontrolled)

(Dustdar et al. 2005); the user takes the responsibility for making a correct

change. The user is expected to use validations tools for checking the cor-

rectness of the changes (van der Aalst and ter Hofstede 2005).

Class IV—Dynamic change of the process scheme due to changes in the product

knowledge: (a) adding or deleting activities at each iteration (Rinderle et al.

2004b): changes of the activity order at different iterations based on changes in

knowledge (Clarkson et al. 2000; Lévárdy and Browning 2005), where the

changes are not pre-defined; (b) changes of whole process blocks in a workflow

environment is described in (Reichert et al. 2010) (c) hierarchical expansion of

activity, where the activity being expanded was not pre-defined (defined only

during run-time), or the sub-process content was not pre-defined, or both

(Karniel and Reich 2007a).

Class V—Dynamic change of the Process Scheme due to decision-making chan-

ges, e.g., changes in the logic interpretations (defined by BR).

According to the above, the High-level processes, as well as most commercial

WfMS tools are classified as having Class I dynamics, i.e., the process scheme is

constant. The distinctions between class IV and V are the user perspective and the

abstraction level. While product knowledge changes can be considered as design

process outcomes (uncontrolled), the changes of the BRs are due to managerial

decision-making. Additionally, a BR will typically not add activities, but will

change links and activities aggregation to design blocks. A schematic description

of the class differences is depicted in Fig. 2.5.
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The definitions of change classes IV and V are new (class IV was not fully

defined in the literature) and constitute the motivation of the current research. The

change classes can be further categorized to dynamic levels indicating a suggested

ranking of dynamics. Starting from dynamics of the process within a fixed process

scheme, next, the scheme itself is changing according to specified rule, and finally,

the rules defining the scheme changes are changing dynamically (and change the

process scheme). The implications of this classification are further discussed in

Chap. 1.

2.3.1 Adaptive Processes

In administrative processes, a case (or process instant) runs through the (pre-

defined) process scheme model. A change of administrative processes scheme

should typically apply to all the process cases, which may be in different process

stages (Rinderle et al. 2004a). A survey of adaptive workflow changes for

administrative processes appeared in (Klein and Dellarocas 2000).

Sadiq et al. (2001) made the following classification of methods for dealing

with process scheme change: Flush—current process instances complete according

to old process model. Abort—current instances are aborted and restart according to

the new model. Flush and Abort are the most common solutions in commercial

workflow systems. Migrate—new process segments are integrated into the process

in parallel to replaced process segments. Instance actions are flushed through the

replaced segment. Adapt—the process is altered individually for each instance

according to its state. Build—the whole process is built at run-time corresponding

to the particular situation.

Fig. 2.5 Dynamic process

classes
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A combined approach for managing multiple process cases was described in

Reichert et al. (2005). Process Migration was performed for most process cases. If

the changes could not be implemented, the cases were flushed through the changed

process segments; Ad-hoc changes followed process Adaptation, i.e., each case

had its individual process instance segments that differed from the general process.

However, in design processes, and particularly NPD processes, the product-

related knowledge is partial at the beginning, and is evolving during the process.

Since process scheme changes (activities and their links) are anticipated, a cycle of

process planning, modeling, verification, execution, and simulation should be

repeated. Such Process Management Cycle approach is required for every process

that is both iterative and changing due to evolving knowledge (Rinderle et al.

2004a; Lévárdy and Browning 2005). Any constant scheme approach, which can

be successfully employed under other conditions, fails to support the requirements

of NPD processes (and other less challenging design processes). Rinderle et al.

(2004a) indicated that ‘‘current adaptive WfMS do not allow propagating WF type

(process scheme) changes to individually modified WF instances,’’ which is

important for the adequate support of long-running workflows, or in NPD case, for

unique processes.

Since in design processes, the changes are local to one case only, a Build
approach is required: building the process at run-time in correspondence to its

particular situation and knowledge. This approach is used in this study.

2.4 Process-Models Classification

For the purpose of our study, it is convenient to make the following process-

model classification: pre-defined processes (P-process), current plan processes

(C-process), and run-time process (RT-process) (Karniel and Reich 2007b). Each

process type has its own characteristics. As previously defined in the ontology,

the design activities are considered as subprocesses, i.e., there is no notation of an

atomic task. Such concept is easily adapted to building hierarchical processes,

where each activity may have a more detailed content. A similar concept of

three-tier approach including planning layer, scheme layer and instance layer was

presented in (Narendra 2004).

2.4.1 Pre-Defined Processes (P-process)

Two types of P-processes are the high-level, best-practice processes, and admin-
istrative processes. A high-level process is the initial skeleton of the design pro-

cess (c.f., Fig. 2.4). At such high-level, the detailed design stage is completely

modeled by one activity (as the actual process details are set according to the

product). Using the hierarchical approach, this activity becomes a subprocess, once
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there is some additional knowledge about its structure. Using a hierarchical

exception handling approach, this activity could be replaced by a pre-defined

subprocess (according to a pre-defined set of options). Administrative processes

are relevant to many design activities and can occur within any design activity.

A common design activity subprocess is the Engineering Change Order (ECO),

used for changing the design of a component once the component was released

(Loch and Terwiesch 1999). Another example could be the assignment of a part

number to a new component; typically, such activity requires cooperation of an

engineer with purchasing and logistics employees. Current workflow systems

perfectly fit the management of these (sub) processes.

Both process types are typically well-established, with relatively low rate of

changes. Changes can be implemented as ad-hoc changes; otherwise, flush or abort

methods are used.

2.4.2 Current Processes (C-process)

The current process is the process scheme plan, which should be followed at run-

time. For fixed process schemes (Class I), the pre-defined process is the current

process. In exception handling, the optional process schemes are not presented to

the user; thus, the user observes the current process sections that are applicable to

the current case. In (Reichert et al. 2005), local deviations of each case from the

pre-defined scheme are allowed; thus, a deviation of the current model is kept for

each case running through the process.

According to our approach, since design processes are considered unique, each

design process has its own current process scheme. Since the process plan is

expected to change, the current process scheme may change in time. In different

points in time, there might be different current process schemes.

2.4.3 Run-Time Process (RT-process)

The run-time process follows the current process scheme plan. For a constant DAG

process (no iterations), the RT-process is identical to its C-process. Once we have

iterations we need to manage the actual path of the process, i.e., manage history

and the number of times the process has passed through a planned activity. A

simple example is depicted in Fig. 2.6 showing some optional RT-processes

(Fig. 2.6b) derived from the fixed C-process scheme (Fig. 2.6a).

Iteration s within a fix process scheme could be modeled and monitored. Colors

can be used for visually indicating which activities are currently active, which

were already visited, and which were not. A history list can be used for indicating

the number of times an activity was executed. However, when trying to manage an

iterative process over a changing scheme, a path between two activities could
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change between the iterations; therefore, the current process scheme can no longer

be used for recording the run-time process, and an additional process model is

required. The RT-process will actually follow partial sections of the changing

C-process (examples in Chap. 1).

The different function each process type has, derived different characteristics.

For example, C-process (and P-process) should model the optional feedback links.

RT-process model has no feedback links; it progresses forward (with time) from

one activity to the next. In case of self-iteration, it actually progresses from the first

occurrence of an activity to its second occurrence.

2.4.4 WfMS Tools

WfMS tools are nowadays typically embedded in broader context such as

Enterpise Resource Planning (ERP), Product Lifecycle Management (PLM), and

Business Process Management (BPM) solutions. Nevertheless, in spite of their

proliferation they support only a small fraction of the change types from Fig. 2.5.

Available WfMS tools support pre-defined processes (Class I), where the process

model is fixed before execution. The tools vary in the types of process logic

(workflow patterns) that can be implemented by them. A comparison of com-

mercial tools by their expressiveness (ability to define various logic types) is

presented in (van der Aalst et al. 2003a), while an academic tools comparison

appears in (van der Aalst and ter Hofstede 2005).

Some workflow tools do support ad-hoc changes (Class III) of the process

scheme for acyclic (no iterations) processes (Reichert et al. 2005), or more elab-

orated pre-defined subprocesses being added at run-time, i.e., Exception Handling

(Class II). However, they do not support general changes in process scheme

(Heller and Westfechtel 2003; Weske et al. 2004); and support neither activity

decomposition, nor recursive activity execution (Madhusudan 2005). Furthermore,

they do not support the planning of process dynamics, or process verification

(Verbeek and van der Aalst 2004). Rinderle et al. (2004a) indicated that

commercial WfMS do not actually support process scheme changes during run-

time. Either they allow changes in scheme level without taking into account the

Fig. 2.6 RT-process of iterative C-process. a C-Process. b RT-Process
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workflow instances (e.g., MQ Series Workflow, Vitria Business Ware) or they

propagate changes without consistency checks (Staffware).

Managing the product-specific activities’ details, at sub-process level, based on

product knowledge (e.g., modeled by the DSM method), is beyond the capabilities

of current tools. Due to practices and WfMS limitations, NPD processes dynamics

are not managed (as well as other less complex PDP processes).

2.5 A Model of Managing Fixed Scheme Processes

A general view of the overall management of fixed scheme processes is depicted in

Fig. 2.7 (Karniel and Reich 2007c). The management process has three main

stages: Business Process Analysis (BPA), Workflow, and Business Activity

Monitoring (BAM), each having sub stages. This model (a contribution of the

current research) aligns the terms and models of commercial tool providers.1 The

BPA includes process planning, process modeling, and business process simula-

tions (BPS) for verification of the plan. The Workflow part is augmented with

business rules and Enterprise Application Integration (EAI) to additional appli-

cation. It includes the process scheme implementation at a workflow engine, and

the execution and monitoring of process cases. Finally, the BAM includes per-

formance analysis, optimization, and improvement of the process scheme (Savitha

et al. 2005). The activity monitoring is at the overall process scheme level and not

the monitoring of a specific process case (included in the workflow stage). Closely

related terms are the Business Intelligence (BI), and Business Performance

Fig. 2.7 Management of

fixed scheme processes

1 There is no single model applied by all providers. See Commercial tools web sites.
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Management (another BPM). Simulation tools that are used for business correct-

ness verification can be used for analyzing performance check as well.

In a survey of BPM tools (van der Aalst et al. 2003b) the management model

has four stages: process design, system configuration, process enactment, and

diagnosis. In the design stage manual planning is assumed, then process modeling

and verification are done. The system configuration can be mapped to EAI and

implementation. Enactment is related to execution and monitoring of the cases;

and diagnosis to analysis and optimization using tools such as CPN (Jensen et al.
2007).2

Commercial products that are mapped to the first stage are ARIS, Pallas

Athena-Protos (Jansen-Vullers and Netjes 2006). The stage regarding process

implementation and execution (Workflow) includes many providers (offering

modeling and simulation capabilities as well) that typically define themselves as

BPM providers [e.g., Oracle, IBM, IBM (Filenet), SAP, Fujitsu, Ultimus, Tibco

(was Staffware), Pallas Athena (Flower)], or PLM providers [e.g., Dassault Sys-

tems, Siemens (was UGS), PTC, Oracle (was Agile)]. The latter group focuses on

management of engineering process integrated with computer-aided tools (CAX,

where X = D for design, X = M for Manufacturing, etc.). BAM providers include

Tibco, IBM (was Cognos), Oracle (was Hyperion), and SAP (was Business

Objects).

PLM solutions are of special interest to our study since they emerged from

PDM solutions that were focused on managing product-related knowledge

(e.g., CAD files, BOM, and meta data). In recent years, most PLM tools have

integrated GANTT like capabilities for process planning (including import/export

to MS-project). To date, most PLM solution enhanced the process management

capabilities and they typically include ad-hoc changes (Class III). Yet, PLM

systems are not exploiting the existing managed product knowledge or the capa-

bilities to manage relations data for planning design processes, i.e., there is no

integration between the product knowledge and the project planning tools such as

GANTT. Moreover, the current GANTT-based plans are not integrated with the

embedded WfMS tools.

Advantages and disadvantages of tools used in industry for process improve-

ment are described in (Wynn 2007), indicating that the reviewed tools do not suit

the needs of planning design processes. The case study presented (Rolls-Royce)

indicated the business need for planning and re-planning design process activities

at the component level for improving the process progress, monitoring, and

control.

Despite the availability of tools, their use in the NPD context seems to be poor.

Swink (2002) has surveyed 132 NPD projects, querying the impact of 18 tactics

and tools, which are typically suggested for accelerating the development phase.

The survey results indicated improvement of time-based performance when using

2 CPN is a Colored Petri Net based process simulator, a free tool by the University of Aarhus,

Denmark.
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computerized project-scheduling tools (e.g., GANTT based tools like MS-project).

The project lateness ((actual time—planned)/planed*100%) was 10% for exten-

sive users of such tools versus 45% for projects that did not utilize computerized

tools. However, project-scheduling tools were used only in 40% of the NPD

projects.

It can be claimed (and can be tested by a future survey) that the meager

capabilities of existing tools (in the context of NPD process requirements) exac-

erbate the relatively poor usage of computer-aided tools for process management

of NPD processes.
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Chapter 3

Design Process Planning Using DSM

Complex product development processes can be managed by mapping them

through various kinds of project flowcharts and diagrams. The commonly used

GANTT and PERT charts are inadequate for planning design processes, as they do

not effectively model the design activities interdependencies and process iterations

(feedback loops) (Lévárdy et al. 2004; Yassine 2007). A comprehensive survey of

methods used for modeling design processes is given in (Browning et al. 2006).
The use of multiple views of the different representations for different stakeholders

is presented in (Clarkson and Hamilton 2000; Flanagan et al. 2006; Keller et al.
2006; Wynn 2007).

The Design Structure Matrix (DSM) was introduced by Steward (1981a) and

extended by Eppinger et al. (1994). It facilitates mapping of interdependencies

between elements, and is utilized to capture the required product knowledge. The

DSM representation can be used for various applications (Abdelsalam and Bao

2006); it provides the means to identify serial, parallel, and iterative design flows;

and model and manipulate iterations and multidirectional information flows

(Eppinger et al. 1997); therefore DSM can be used for establishing a plan based on

product information (Dong and Whitney 2001).

The (initial) DSM is matrix representation of a system graph, Fig. 3.1a. In such

graph, a node represents a system element; an edge (further referred to as link)

joining two nodes represents the relationship between two system elements. Arrow

direction represents the influence from one element to another. The resultant graph

is called a directed or digraph.
The equivalent DSM that represents the same directed links is depicted in

Fig. 3.1b. For example, the directed edge from element b to element e is marked

by 1 in column b row e. This DSM is an initial ordering used for DSM-based

algorithms discussed in the following sections.

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_3,
� Springer-Verlag London Limited 2011
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3.1 DSM Definition

DSM is a square matrix, which uses off-diagonal entries to signify the dependency

of one element on another. In modeling design processes (Activity-based or

Parameter-based), the lower diagonal (subdiagonal) portion represents a precedent

activity relationship (downstream activities); i.e., a marking in cell {j, k} (row j,
column k, j[ k) indicates that activity k should follow activity j. For each activity,

its row shows its inputs and its column shows its outputs. Process representation by

the subdiagonal is similar to PERT/CPM techniques. However, an entry in the

upper diagonal portion of the DSM matrix denotes an iterative process (a link to an

upstream activity). The outcome of a particular activity can directly affect a pre-

viously performed activity, which should be performed again, i.e., rework.1

Serial activities (synonyms: sequential, dependent, precedence) are linked by a

forward link, and indicate a serial process, Fig. 3.2a. Parallel activities (synonyms:

concurrent, independent) have no relation links, Fig. 3.2b. Coupled activities

(synonyms: interdependent, mutually dependent) have forward and feedback links,

Fig. 3.2c. The initial DSM in Fig. 3.1b was reordered to have minimum feedback
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Fig. 3.2 Activity relations

types in DSM, and

corresponding process

schemes (Adapted from

Eppinger et al. 1994)

1 Few articles use the opposite convention; upper diagonal expresses forward links (e.g.,

Browning 2001; Lévárdy et al. 2004). When graphically adding the activity duration, such

representation resembles GANTT. The common approach (subdiagonal indicates forward links)

is used in this research.
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links. The activity relation types are demonstrated in the resultant DSM, Fig. 3.3.

A similar example is presented in (Yassine and Braha 2003).

Activities (graph elements) f and b are parallel, and both serial to g. Activities
(d,a,h) and (e,c,i,k) are coupled. Note that j and l are in parallel, and also l and
m could be in parallel, but m is serial to j.

Additional relation type, overlap activities, can be considered as a parallel

relation (Yassine and Braha 2003; Whitfield et al. 2005). Cho and Eppinger (2001,

2005) modeled two overlapping activities as parallel activities with additional

lead-time, and a constraint preventing the latter activity from completing before

the former activity. Nevertheless, it was indicated that this model does not scale to

multiple activities having multiple iteration paths. Maheswari and Varghese

(2005) considered communication time between two activities and defined over-

lapping as the time when a former activity can release information to the latter

activity prior to its completion, or the latter activity needs the information at a

certain point after its beginning.

Coupled activities form an activity loop (cycle), which may have many forms in

the DSM representation. Few examples of activity loops containing three activities

are depicted in Fig. 3.4. An activity loop may have an internal coupling loop,

Fig. 3.4d and e. The activities order ascribes different interpretations of the depen-

dency links. The processes described byFig. 3.4b and c have the same set of links, but

the link from Z to Y has a different interpretation (feedback in (b), and forward in (c));
therefore it represents different types of process logic. Concurrent process interpre-

tations are depicted in Fig. 3.4f–j, as detailed in the following sections.

3.2 DSM Type Classifications

DSM types can be classified according to their marking type and according to their

utilization category. DSM provides the means to identify serial, parallel, and

iterative design flows; and models iterations and multidirectional information

flows (Eppinger et al. 1994).
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All marking types are used in DSM based algorithms (see next section), and at

the various categories. Steward (1981a) used tick-marks (‘x’) to represent prece-

dence relations, later, referred to as Binary DSM (Eppinger et al. 1994). These
marks concern the existence of a link, as in the above examples.

The DSM marking was extended to Numeric DSM, i.e., having numbers

(typically integers) instead of ticks. The numbers can represent a measure of the

degree of relation or its importance in ranking. Level numbers were proposed for a

manual Tearing algorithm by (Steward 1981b), and used in a similar manner in

(Choo et al. 2004); numeric values were used to indicate the number of iterations

in (Abdelsalam and Bao 2006). Dependency strength or Importance ranking of

dependency degree can be used for sequencing optimization algorithms. Further

refinement to Probability DSM was presented in (Smith and Eppinger 1997a). In

this case, the numbers are normalized (in the range [0,1]). They can represent the

probability of performing activities (Browning and Eppinger 2002; Sered and

Reich 2006); or risk assessment (product of normalized likelihood and impact

factors) (Eckert et al. 2006).

The traditional classification of DSM studies lists four main categories

(Browning 2001): Component-based or Architecture DSM; People-based (Team-

based) or Organization DSM; Activity-based or Schedule DSM; and Parameter-

based DSM. The first two are considered static, representing existing elements.

The latter two are defined as time-based, as their ordering implies flow. A different

classification (Fig. 3.5) is based on the type of relations between the the DSM

items, whether they are non-directional or directional. This classification addresses

additional DSM types involving more product or project aspects than the previous

four such as functions, resources, and requirements DSMs. More importantly,
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some of the product information types are represented by both directional and non-

directional influences (Karniel et al. 2005). This classification is instrumental in

defining the kind of algorithms that are suitable for DSM-based planning as pre-

sented in the next section.

Eppinger and Salminen (2001) presented the interactions between different

aspects (people, activities, and components) using additional (non-square) linkage

matrices. For example, when used to model design processes, one additional

matrix presents the dependencies between multiple components and multiple

process activities.

The Multiple Domain Matrix (MDM) is an extension of the basic DSM

structure (Maurer 2007). A MDM includes several DSMs (ordered as block-

diagonal matrices) that represent the relations between elements of the same

domain; and corresponding Domain Mapping Matrices (DMM) that represent

relations between elements of different domains. The four complexity domains

addressed are market, product complexity (diversification and modularization),

process, and organization.

3.3 DSM-Based Algorithms

There are three main types of DSM-related planning algorithms: Partitioning,
Clustering and Sequencing (includes Tearing). Partitioning is done by reordering

the DSM rows and columns such that the new DSM arrangement does not contain

feedback marks (iterative behavior), or those marks are moved as close as possible

to the diagonal. Such reorganization yields decomposition of the process activities

into clusters of interdependent activities. Partitioning is the commonly used

algorithm for reordering DSM activities and achieving minimum iterations.

Minimum iteration marks are expected to yield optimal processes (Steward 1981a;

Kusiak et al. 1995; Smith and Eppinger 1997b). Partitioning results are in a lower

part of the matrix, or block-diagonal matrix in the case of coupled activities.

Partitioning methods include the Path Searching method (Sargent and West-

erberg 1964; Steward 1965; Gebala and Eppinger 1991); the Reachability Matrix

method (Warfield 1973); the Triangulation algorithm (Kusiak et al. 1994); and the

Design Structure Matrix (DSM)

Directional DSM Non Directional DSM

Component based

people (Team) DSM

Requirements DSM

Functional DSM

Parametric DSM

Resources DSM

Activities DSM

Fig. 3.5 DSM categories
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powers of the Adjacency Matrix method (Norman 1965; Ledet and Himmelblau

1970, in Abdelsalam and Bao 2006). An example of partitioning result is depicted

in Fig. 3.6.

Ideal partitioning with no feedback marks is unlikely to exist (Yassine et al.

2000). Therefore, coupled activities that form an activity loop require additional

reordering algorithms. Tearing (Steward 1965; Steward 1981b) is a process

of removing feedback marks (or assignment of lower priority). Tearing of a

Component-based DSM may imply modularization or standardization of compo-

nents (Sered and Reich 2006). In a parametric-based DSM, tearing may imply

confidence in the initial estimation of the parameter value (Lévárdy et al. 2004).

The tearing process is typically done manually based on additional knowledge

required to establish the meaning of removing the feedback marks. A process-

based tearing is done in (Choo et al. 2004) to the feedback links with low-

significant values in order to reduce coupling in the process plan.

Clustering algorithms are typically used for identifying groups of highly con-

nected components (clusters) in the context of Component-based DSM, or Team-

based DSM (Browning 2001). In Activity-based DSM context, several clustering

algorithms were presented to improve work teams formation (Fernandez 1998;

Whitfield et al. 2002; Sharman andYassine 2007). Clusteringwas used in (Danilovic

and Browning 2007), for analyzing cross-domain relations (e.g., product compo-

nents and process activities). A simple clustering case is depicted in Fig. 3.7.

Sequencing (by optimization) algorithms can be defined as algorithms that are

used for both minimizing feedbacks (Partitioning), and ordering the coupled

activities within a loop (in a manner similar to Tearing), trying to have the

feedback links close to the diagonal.

In Fig. 3.8, all the activities are linked with forward and feedback links. A

partitioning algorithm would not change the order. Using (manual) tearing we can

Partitioning

A B C D E F G A D F G C B E

A A

B 1 1 1 D 1

C 1 1 F 1 1

D 1 G 1 1 1

E 1 1 C 1 1

F 1 1 B 1 1 1

G 1 1 1 E 1 1

Fig. 3.6 Partitioning
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Fig. 3.7 Clustering
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remove the links from activity C to activity E, and the link from G to A; then use

partitioning and get a block-diagonal DSM. A sequencing algorithm may have an

equivalent result. Subclusters are defined according to the optimization objective

function. Optimization methods are further discussed in Sect. 3.3.2. An optimi-

zation algorithm (used in this example) that combines sequencing and clustering

(Karniel et al. 2005) is detailed in Sect. 4.2.

For the same initial DSM as in the example above, a clustering algorithm using

team-based clustering (e.g., Yassine and Braha 2003), or component-based clus-

tering (e.g., Whitfield et al. 2002) reorders the DSM as in Fig. 3.9. Activity A is

interpreted as an integration team activity or a binding component.

A comprehensive survey of matrix-based and graph-based algorithms used for

analysis of relations between elements is detailed in (Maurer 2007). The survey

presents examples, definitions, and the potential use of the algorithms for system

structure analysis.

3.3.1 DSM Reordering: Partitioning Procedure

The reordering of the DSM to a block-diagonal matrix (Partitioning/Sequencing)

can be done using the following procedure (Gebala and Eppinger 1991). Only off-

diagonal links are considered. A binary DSM is assumed; if the DSM has other

values, any non-zero value is replaced by ‘1’. The following procedure is explicitly

elaborated since its details are used for the formal definition of DSM properties in

Sect. 9.4. Step 3 is an improvement of the procedure proposed in (Steward 1965).

Partitioning procedure:

1. Go through the elements list.

A B C D E F G A F E C G B D

A 1 1 1 A 1 1 1

B 1 1 F 1

C 1 E 1 1

D 1 1 C 1

E 1 1 G 1 1 1

F 1 B 1 1

G 1 1 1 D 1 1

Tearing &
Partitioning

Sequencing

X X

Fig. 3.8 Sequencing
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A 1 1 1 F 1
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Clustering

Fig. 3.9 Clustering
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2. If an element without input from other elements, (empty row) is identified, then:

Place the element (row, column) in top of the DSM; remove the element from the

elements list; and disregard this element in the matrix (row, column). Go to 1.

3. If an element without output to other elements, (empty column) is identified,

then: Place it at the bottom of the DSM; remove from the elements list; and

disregard this element in the matrix. Go to 1.

4. If no elements remain, go to 6 (the matrix is partitioned; otherwise, the

remaining elements contain circuits.)

5. Determine circuit (e.g., using Path search procedure); and collapse the circuit to

one element (e.g., using Collapse procedure). Go to 1.

6. Expand the collapsed circuits, if there were such.

Path search procedure:

1. Starting from an element, follow the dependencies until the element is reached

again. Stop.

2. The circuit is the list of elements from the first appearance to the second (not

included) appearance of the same element.

Note: minimal path is not guaranteed.

Collapse procedure:

1. Sum all columns and all the rows of the elements within the circuit to a

representative element (any element in the circuit).

2. Delete all rows and columns of the other circuit elements.

3. Turn to 1 each number that is greater than 1.

4. Replace the number on the diagonal with zero.

3.3.2 Optimization Methods in DSM-Based Algorithms

Meier et al. (2007) presented a detailed comparison of objective functions for

optimization algorithms performing Partitioning and Sequencing. The purpose of

such objective functions is minimizing feedback marks; seeking feedback marks

that are close to the DSM diagonal as possible, yielding short iteration cycles;

pushing marks to the lower-left corner of the DSM to increase concurrency;

minimizing iteration; or maximizing concurrency. The optimization methods uti-

lized in that study were based on Genetic Algorithms (GA).

Genetic algorithms maintain large population of candidate solutions. The

population is evolved by random generation of new candidates and selection of

candidates from the old and new candidates. The selection gives priority to those

that best fit a fitness criterion.

Generating a new candidate is done using Crossover (choosing two parents and

taking some characteristic from one and the rest from the other) and Mutation
(random change of a characteristic). A scheme of encoding, decoding, and eval-

uating candidates is required (Davis 1991).
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An optimization algorithm that combines Sequencing (i.e., Tearing and Parti-

tioning) and Clustering was developed by Karniel et al. (2005). This algorithm was

used in the context of reordering computation tasks within a constrained reverse

engineering process. The computation tasks required solving geometry constraints

between surfaces. Tasks rearrangement was utilized for improving the overall

computation. The optimization algorithm was used to find an optimal (or near global

optima, in case of multiple solution) reordering of the tasks. The optimization relies

on Simulated Annealing (SA) search method. In SA, an artificial ‘‘temperature’’ is

introduced for determining the probability of accepting a non-minimum result; thus,

allowing the solution to be pulled out from local minima. The ‘‘temperature’’ is

gradually lowered and, at the end, the system is hopefully inside the basin of

attraction of the global minimum (or in one of the global minima, if more than one

exists). Implementation involves the following ingredients (Kirkpatrick et al. 1983):

1. Concise description of the system configuration

2. Random generation of rearrangement ‘‘moves’’

3. Quantitative objective function

4. Annealing schedule of the temperatures and length of time at each step for the

system to evolve

The description requirement is equivalent to the encoding and decoding

requirement of GA, the moves generation is equivalent to candidate generation,

and objective function to the fitness function. The main difference is that SA tries

to avoid local minima by accepting non-minimum results, while GA assumes that

the large population and operators would avoid local minima. However, the latter

assumption is criticized as the selection process after several generations is biased

due to the influence of crossover, and its computation behavior is impossible to

predict. Changes in the parameters of mutation rate and crossover rate may yield

different behavior of the GA process.

In Classical Simulated Annealing, the global minimum is achieved if and only

if the temperature is decreased logarithmically (Lester 1996). However, Lester

describes a variant called Adaptive Simulated Annealing (ASA) where the

annealing schedules for the temperatures Tk decrease exponentially in annealing-

time k, for particular problems. The algorithm developed in this research, used the

ASA version (further discussed in Sect. 4.2).

It is important to note that the required calculation for planning of a design process

is complex. Braha and Maimon (1998) modeled the design process as an automaton,

and proved that computational complexity of the planning problem is NP-Hard.

Meier et al. (2007) proved that DSM sequencing is NP-Hard by formulating it as a

QuadraticAssignment Problem (QAP),which is a knowncombinatorial optimization

problem. The problem is further entangled when considering resource scheduling.
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3.4 Using DSM for Planning: The Data Collection Process

DSM data collection can be done through questionnaires and interviews of the

design process participants (Eppinger et al. 1994; Whitfield et al. 2002; Browning

and Eppinger 2002). However, it was found that different participants may have

different perspectives regarding the design activity interactions and dependencies

(also differences whether information is provided or not); therefore, group

discussions seem to be better procedure for DSM data collection (Danilovic 1999;

Danilovic and Browning 2007).

Yet, data acquisition through questionnaires and interviews is resource inten-

sive. A report of documenting relations of 140 elements in a matrix form indicated

duration of several months (Alexander 1964; in Maurer 2007).

Binary dependency data is relatively easy to define (or assumed to be so despite

opinion differences between team members). Estimation of numeric values is

harder, typically a scale of dependencies (high, medium, low) is used with addi-

tional no dependency value (zero). A direct estimation of probabilities was found

hard to accomplish for developing useful models (Ford and Sterman 1998; Yassine

2007). Using the dependency scale, the estimations are converted to ordinal

influence strength (e.g., {1, 2, 3} in (Pimmler and Eppinger 1994) or {3, 2, 1} in

(Danilovic 1999)).

Direct conversion of influence estimations to probability figures was done in

(Smith and Eppinger 1997b) using {0.5, 0.25, 0.05}, respectively; the figures

{0.15, 0.1, 0.05} were used in (Huberman and Wilkinson 2005); and

{0.3, 0.2, 0.1} in (Yassine et al. 2003). In all these cases, there was no indication of

the probability estimation source.

Sered and Reich (2006) used a staged process. A ranking scheme was used to

estimate the influence of specification changes. The ranking values {9, 6, 3, 1} are

representing {high, medium–high, medium–low, and negligible} influence,

respectively. Zero indicated no influence. A normalization method (Rogers and

Bloebaum 1994) was used to normalize the probabilities to the range [0.05, 0.95].

Using Markov-chain simulation enforces the sum of probabilities in each row to be

less than one. Additional linear scaling was performed to ensure that the maximal

sum of the rows is less than 1.

Yassine (2007) used the following procedure for assessing rework probabilities.

First, interdependencies were marked. Then, for each mark the Information

Variability (likelihood to changes, ranking 1 to 3 (low to high)), and the Task

Sensitivity (to information change) were defined. Finally, Information Variability

and the Task Sensitivity were multiplied, thus getting the ranking values {1, 2, 4,

6, and 9}. A review of design processes, and a calibration process identified that

the maximal feedback probability was about 52%, assigned to rank {9}. Additional

results indicated that a linear scaling of the ranks was the most appropriate.

PLM tools have the required functionality to capture dependency data.

Geometrical dependencies can be automatically extracted from CAD data using

the CAD relations. However, this might lead to very large DSM that is too large to
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cope with or to understand. Additionally, other relation types would not be

captured.

A manual option is to use the relations management capabilities in PLM for

adding relation values that can be further used for creating and updating the DSM.

Such approach is more appealing since it can address all relation types during the

design process. Yet, engineers should be willing to make the additional effort of

data entry.

In the current work, we assumed that the required data is available. In most

DSM-related articles the data was collected by the researcher. Tools for data entry

by users were reported in Wynn (2007).

The conversion of influence or dependency values into probability values

(calculated probability figures) has an underlying assumption that greater depen-

dency is reflected in greater chance of design activity repetition; hence, component

redesign. The linearized conversion suggested by Yassine (2007) is therefore an

appealing concept used in the DnPDP framework (Karniel and Reich 2007) as

detailed in Sect. 4.1.
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Chapter 4

DSM Enhancements

4.1 DSM Data

The following section presents the proposed process for gathering DSM data

(Karniel and Reich 2007b). As in other DSM-based process planning methods,

the product data is deriving the process plan. A key issue in the current work is the

utilization of data changes throughout the design process. The detailing level is not

pre-defined and is changing and adapting to the applicable product knowledge.

Collecting the data throughout the design process requires a tool. An existing

applicable tool could be a PLM product, where other product relation links (e.g.,

father-son) are managed. A specific tool for collecting the data may also apply but

would be less effective. The process of collecting the DSM data as part of the

overall DnPDP is fully described in Sect. 8.5. The following example reflects the

initial knowledge at the conceptual design stage.

The following four substages were identified and enhanced in the research.

1. Identify product related design activities (at the required detail level).

A simplified model is the assignment of one design activity to each product

component. This simplification is useful for automating the transferring process, and

is used in the following examples. However, complex relations may apply between

the product structure and the assigned activities (Eppinger and Salminen 2001).

Danilovic and Browning (2007) used Domain Mapping Matrix (DMM) for com-

paring and analyzing the relations in different domains. Maurer (2007) presented

Multiple Domain Matrix (MDM) that combines DSMs and DMMs into one multi

layered matrix, which has DSM like properties (i.e., same rows and columns). Since

the definition of product components by the designer is not limited to physical

entities, this simplification is not restrictive. The translation of the more compre-

hensive relations could be automated as well by using the MDM structure.

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_4,
� Springer-Verlag London Limited 2011
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2. Identify the dependencies and assign their value.

In the context of the current research, dependencies between activities are

defined as relations between the activities that influence the ordering of the

activities in planning the process. The dependencies might be induced, e.g.,

dependencies between product components through design parameters (assuming a

design activity per component, as in the following example), or direct precedence

relations between activities (e.g., the separation of design and testing activities,

and assignment of a sequential link between the two). The latter case, assignment

of direct logic relation can be done at this stage of product data gathering or at a

later stage.

In the first case, for each design parameter, the influence value should be

estimated and the influence direction assigned. The optimization method devel-

oped in this research allows for assigning non-directed dependency links, i.e., links

that keep forward direction in any DSM reordering. Such link indicates influence

without a specific direction. Current DSM methods use only directed links. The

ranking scheme suggested is using the concepts of (low, medium, and high)

influence according to the ordinal scale in Table 4.1. Though the scale is actually

ordinal, its values are set as if it was a ratio scale in order to allow summation of

the influence values over parametric links between activities. Therefore, the

ordinal terms (low, medium, and high) are interpreted as the numbers 1, 3, and 9.1

The resulting ranking values are aligned with previous studies (Sered and Reich

2006; Yassine 2007).

Using the above values, the summation of influence values of a change in

component A which causes a change in B can be interpreted as follows: nine

design parameters with low influence (of a design change in B due to design

change in A) have an equivalent effect to one design parameter whose influence is

complete re-design. The influence values in (Yassine 2007) were calculated as

multiplications of the likelihood of change values range {1–3} with sensitivity to

change {1–3}. Sered and Reich (2006) used the values {1, 3, 6, 9}. The additional

ranking values, e.g., {6} in (Sered and Reich 2006), and {2, 4, 6} in (Yassine

2007), can be interpreted as summation of several influence entities.

An illustration of a system2 is depicted in Fig. 4.1. It is part of a laser direct

imaging plate/image-setter for the prepress market industry. The following

Table 4.1 Dependency

influence ranking
Influence value per parameter Value

No Influence 0

Limited influence (potentially some changes) 1

Medium influence (some change are required) 3

Major influence (re-design) 9

1 Similar values are used in other product development related tools such as Quality Function

Deployment (QFD).
2 The same system is used for the example in Sect. 12.2, with extended data.
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components were identified: X (drum), Y (laser writing head), W (frame), and Z

(control system). The influence values for the example are described in Table 4.2.

The product knowledge is represented in Fig. 4.2. The matrix rows and col-

umns are the product components (sub systems). In each cell, there is a list of

parameters and figures. The figures indicate the influence of a change of one

component (column) on another component (row) due to the specified parameter,

according to Table 2.1. The influence figures are directed, i.e., the influence is

asymmetric.

Slow axis

Fast axis

Writing 
Laser Head

Plate /Film

Drum

Fig. 4.1 Product illustration

Table 4.2 Influence values of dependencies between parameter links

From To Parameter

description

Influence Value

X W Weight Med 3

X Z Acceleration Med 3

X Z Rotation resolution Low 1

Y W Weight Low 1

Y W Size Low 1

Y W Location Low 1

W X Gripping force Med 3

W X Beam pressure Med 3

Z Y Processing time Med 3

W X Y Z

W (frame) Weight 3 Weight 1

Size 1

Location 1 

X (drum) Grip 3

Pressure 3

Y (laser) Processing Time 3

Z (control) Acceleration 3

Resolution 1

Fig. 4.2 Product knowledge
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3. Summing the influence values (in each cell) to create a numeric DSM.

Summing was used in (Sered and Reich 2006), and it suits the linear conversion

to probability values in step (4). Summing the figures in each cell for the above

example yields a Numeric DSM shown in Fig. 4.3a. Even when starting with the

proposed limited set of values, the summation process yields a larger variety of

influence values, as the number of parameters considered is unlimited.

4. Assigning scaled probability values for creating a probability DSM.

Assignment of probabilities is required for simulation purposes. Direct assess-

ment of probabilities was indicated to be problematic (Browning et al. 2006).

In some DSM-based simulation articles, the probabilities (or probabilities and

relative impact) are assumed as known by the users (Cho and Eppinger 2001;

Browning and Eppinger 2002; Eckert et al. 2006), or some values are assumed to

represent the influence value (Huberman and Wilkinson 2005; Smith and Eppinger

1997b).

The justification of setting probability values that correspond to influence values

is logically appealing but is not fully determined in the literature. Some estimation

approaches used the influence values to calculate the probability. Sered and Reich

(2006) used a scaling process suggested in (Rogers and Bloebaum 1994). Yassine

(2007) used a direct scaling based on maximal probability assigned to maximal

influence value.

The logic of scaling also varies. Sered and Reich (2006) scaled the values in a way

such that the maximal sum of values in a column is 0.95, i.e., the conversion does not

address a specificmaximal value.Yassine (2007) has found that probability p = 0.52

has suited the actual project data for maximal influence value used {9}.

In the current work, we choose to follow the linear scaling, and use the value

p = 0.5 as corresponding to maximal influence value. The choice of this maximal

value is arbitrary, since this figure is the only one that has been validated for some

real case. Further research is required to validate actual probability figures and

their relation to the assessment of influence (impact or risk). It can be anticipated

that different engineering fields and different product types will tend to have

different actual iteration probabilities.

The use of linear conversion can be justified. It keeps the DSM values with the

same relations; thus, the next step of DSM reordering could either be done using

the numeric values or the probability values with no change in ordering results

W X Y Z

W 3 3

X 6

Y 3

Z 4

W X Y Z

W 0.25 0.25

X 0.5

Y 0.25

Z 0.33

(b)(a)

Fig. 4.3 DSM scaling to

probabilities a Numeric

DSM, b Probability DSM
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(when using the algorithm in (Karniel et al. 2005)). Therefore, the consequence of

changing the numeric values can be easily tracked (while using the transformation

by (Rogers and Bloebaum 1994; Sered and Reich 2006) is more complex to track).

Furthermore, the linear scaling of the probability values was demonstrated to

appropriately represent measured iteration probability results (Yassine 2007).

Using the previous example, the DSM is linearly converted to Probability

DSM; and the maximal value 6 was converted to maximal probability 0.50,

Fig. 4.3b.

4.2 DSM Optimization

The optimization problem defined in (Karniel et al. 2005) utilized a modified DSM

that included directed links (e.g., design activity B gets information from design

activity A) and undirected links (i.e., information passed between activities but it

does not matter which activity is done first). This modification implied that after

reordering, directed links might become feedback links (if they are part of an

activity loop), while undirected links can ‘‘change direction’’ and always be for-

ward links. Recalling the definition in Sect. 3.1, link ljk is a directed forward link if

k[ j. If the link is undirected then the link can become lkj. In an activity loop,

if one link can change its direction, then the loop ‘‘breaks’’ and the activities of

that loop could be ordered with no feedback links.

The sequencing algorithm has the following steps:

1. Matrix partitioning for initial arrangement and finding activity loops. Parti-

tioning is done using DSM Reachability matrix method adopted from the DSM

site at MIT (DSM 2009).3

2. For each activity loop, checking if it includes a non-directed link. If it does,

change the temporary direction (to break the loop) and go to step 1. The

remaining activity loops become initial clusters or Partition clusters for the

optimization step.

3. Use the optimization algorithm for further decomposing large initial clusters to

sub-clusters (tearing); merging small cluster or activities with non-directed

links; and reordering the matrix. The outcomes of this step are Optimal clusters.

The term cluster indicates a group of activities that are closely related, and

therefore are planned to be executed in parallel as a Design block. Activity loop

may indicate that the activities in the loop should be performed together, since

they depend on each other. Therefore, the loops identified as results of step 2 are

candidates for clustering.

3 This algorithm, presented in Sect. 4.2 is further used as part of the formal definitions in

Sect. 6.7.
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The algorithm in step 3 searches for better clustering results by minimizing the

cost function in (Karniel et al. 2005). The results may differ if another cost

function is used.

In describing the cost function in Eq. 4.1, themore general termmatrix element Aij

is used instead of the term link, and this term is hereby replacing the term link. The

matrix elements indicate influence values (Numeric DSM), but since the objective

cost function has linear expressions of the matrix values, the use of linear conversion

from numeric values to probability values keeps the same reordering results. Thus,

reordering by using influence values or probability values are equivalent.

X

c

Nc F
X

ic [ jc

Aic; jc þ C
X

ic \ jc

Aic; jc

 !" #

þ F
X

id [ jd

Aid; jdD
q
id; jd

þ C
X

id \ jd

Aid; jdD
q
id; jd þ

X

id

Aid; idD
q
id ð4:1Þ

The four expressions of the cost function are summed over the entire DSM with

the following rules:

1. Expression one: If elements i and j are in the same cluster, we indicate them as

ic and jc, respectively. The priority value assigned to the link Aic; jc is multiplied

by constant factors For C and by the cluster size NC, where F[ 0 is Forward

constant (applicable when Aij [ 0, i[ j); and C[ 0 is the Closed Loop con-

stant (applicable when Aij [ 0, i\ j).

2. Expressions two and three: If elements i and j are in distinct clusters, we

indicate them as id and jd, respectively. In addition to multiplying by constants

F or C, the numeric value Aid; jd is multiplied by Dq
id; jd, which is the penalty of a

link for not being part of a cluster. The function Did; jd corresponds to a distance

measure between elements i and element j, Did; jd ¼ abs(i� jÞ þ 1. The power

q is a parameter derived from the required minimal cluster size (set by the user).

3. Expression four: The partitioning algorithm (step 1) may end with elements that

belong to several clusters. If an element id has entries in several clusters, its

self-value Aid; id is multiplied by Dq
id, where Did is the sum of all cluster sizes

between the first and last appearance of the element. Did ¼
P

k Nk, where k runs
from the first cluster (to which the element id belongs) to the last cluster and Nk

are the cluster sizes.

The optimization algorithm searches for a better clustering, by reordering the

matrix elements and by generating different clusters (i.e., different grouping).

A clustering candidate is generated using the following modification actions

(adapted from the hierarchical clustering program ECOBWEB (Reich and Fenves

1992):

1. Move an element from one cluster to another;

2. Remove an element from a cluster and make it a new cluster;

3. Join two clusters;
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4. Split a cluster into two clusters;

5. Change the order between 2 elements in a cluster; and

6. Change the order of clusters.

The number of clusters and their size are not predefined. The initial guess is the

result of partitioning (i.e., close loop groups of activities). The selection of clusters

and elements (on which an action is performed) is random using a uniform

distribution.

According to simulated annealing, a better result is always accepted. However,

with a given probability (‘‘temperature’’), a worse result may also be accepted. The

probability of accepting a worse result is lowered according to the simulated

‘‘temperature’’. A search step with a given probability (‘‘temperature’’) is done a

predefined number of times. Then, the probability is lowered for the next set of

trials. An exponential temperature decrease was used following Lester (1996).

Using the Adaptive Simulated Annealing (ASA) search assures convergence to a

near global minimum (given enough time). Enough time, according to our expe-

rience (Karniel et al. 2005) was set to N3, where N is the number of design

activities in an activity loop.

Implementation notes:

1. The size of the problem search space is N! � 2N�1, where N is the number of

activities in an activity loop. N! is the number of permutations, since a different

order is a different solution, and 2N�1 is the number of possible allocations to

clusters of a specific order. Obviously, no algorithm exists for finding the global

optimum for an arbitrary problem.

2. The last term in Eq. 4.1 is required in order to reduce (or eliminate) multiple

entries of the same object in several different clusters (as might be the result of

partitioning).

3. The self-iteration probability value does not affect the ordering (i.e., the index

of the activity).

4. The power q[ 1 is derived from a required cluster size. In this work, q was

arbitrarily set to q ¼ log2 5 ¼ 2:32. This value emerged from the analysis of a

link chain, with no internal loops (i.e., A is linked to B, which is linked to C and

so forth). If NC\2q, where NC is the cluster size, the elements are always

clustered. Otherwise, the elements might not be clustered (each being a cluster

of its own) according to the other parameters, see following example.

5. The closed loop constant, C, is always set to be bigger than the forward con-

stant, i.e., C[F.
6. We can choose F, C, and q values in order to control the optimization behavior.

The following example presents a closed loop with N elements, each element

is linked to the next one, and the last one linked to the first. Let us assume that

all link values are equal (= X) except for one (0\ Y\X). Since F\C, a

minimum feedback links optimization (resulting in one feedback link) will order

the objects such that the link with priority Y is in a ‘‘feedback position’’ as shown

in Fig. 4.4.
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A one-cluster solution cost (i.e., a design block with all elements in the same

cluster) according to Eq. 4.1 is:

N½FðN � 1ÞX þ CY � (Only the first term is applicable).

The cost of a non-clustered solution (each element is a separate cluster) is:

FðN � 1ÞX2q þ CYNq (Terms two and three, respectively).

A non-clustered solution is preferred to the one-cluster solution when

FðN � 1ÞX2q þ CYNq
\N½FðN � 1ÞX þ CY �

By reordering, we get a non-clustered solution only when the following

inequality holds, Eq. 4.2.

Y

X
\

F

C
�
ðN � 2qÞðN � 1Þ

ðNq � NÞ
forN[ 2q ð4:2Þ

For large N, the right hand term is approximately F= C � Nq�2ð Þ. If we set q[ 2

this function is decreasing as N grows.4 Hence, if Y is small enough (minimum

zero) the optimization will not cluster the activities to a design block but rather

keep them separated (and serialized).

A one cluster solution is always preferred (for every Y) if N � 2q,

(e.g., q ¼ 2:32, N� 5) since the left side of Eq. 4.2 has negative value. Therefore,

small cycles (small being defined by selection of q) will always tend to cluster to a

design block.

Overall, by assigning F, C, and q, we can control the size of the required cluster

for a given ratio Y=X.
The usage of clustering the activities into designs block is intended to find

substructure within larger cycles. Partitioning algorithms stop at the stage of

identifying loops. Optimization sequencing is required to identify the subprocesses

within the loop. The above optimization procedure performs clustering and

sequencing (including tearing); thus, can separate the activities further into closely

interconnect activity groups, which become design blocks.

Design block can be typically implemented as parallel activities with aligned

start and end (Smith and Eppinger (1997a); Huberman and Wilkinson 2005;

Yassine et al. 2003); yet, additional process-logic implementation options may

0 Y

X 0

X 0

X …

… 0

X 0

Fig. 4.4 Optimal clustering

4 See a detailed analysis of the function Fðq;NÞ ¼ ðN � 2qÞ � ðN � 1Þ=ðNq � NÞ in Sect. 14.3,
Annex C.
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apply as further discussed in Chap. 10. Some results of applying the optimization

criterion to the example in Fig. 4.3 are depicted in Table 4.3. The parameters

values are: F = 3, C = 64, and q = 2.32.

The first line is the initial ordering without clustering. The second line keeps the

same order but with clustering (all activities in one DB). The third line is the case

of clustering to one DB but with different internal order, which is the optimal

result. As long as q[ 2, and F\C, changes of parameters do not change the

order of cost results (i.e., cost([wxzy])\ cost([wxyz])\ cost(w-x-y-z)) and

the optimal solution in this case is always one DB.

A case of activity cycle with six activities is presented in Chap. 5. There, the

optimal result is separation of the cycle into two DBs. If the optimization is used

for reordering only (without clustering), the optimal results do not follow the

minimum feedback rule, but try to get the feedback marks as close as possible to

the diagonal (see Sect. 14.4).

While tearing can reduce planning complexity, the option of using undirected

links (Karniel et al. 2005) seems to be even more powerful. For example, the case of

a loop is depicted in Fig. 4.4. If any of the links is undirected (i.e., it does not matter

which component is designed first), changing the link place (i.e., Y changing its

place to be a forward link) will ‘‘break’’ the loop, allowing uncoupled ordering.

In Karniel and Reich (2011), it was proved that a simple loop can always be

reordered to have one feedback link; hence, if there is an undirected link the loop

can be ‘‘broken’’ (see Sect. 9.4).

4.3 DSM Self-Iterations

Self-iterations are not discussed in the DSM literature; however, their definition is

important for simulation purposes. Self-iteration of a design activity could always

be separated to design, check, and decide activities. Such distinction might be

justified if different resources perform the distinct activities, but it is a redundant

overhead if done by a single resource. Self-iterations represent practical processes,

e.g., a design of a part that did not conform to some work standard and should be

re-done. Utilizing self-iterations in simulation enhances the simulation options, but

complicates the simulation execution as iteration occurrences need to be addresses

Table 4.3 Optimal ordering and clustering

# Configuration Cost function Cost

1 w-x-y-z F(0.5 9 2^q ? 0.33 9 3^q) ? C 9 0.25 9

(2 9 2^q ? 3^q)
384.60

2 [wxyz] 4(F(0.5 ? 0.33) ? C(3 9 0.25)) 201.96

3 [wxzy] 4(F(0.5 ? 0.25 ? 0.33) ? C(0.25 ? 0.25)) 140.96
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(see Sect. 10.7). The representation of self-iteration in DSM is straight forward,

using the typically unused diagonal values, as depicted in Fig. 4.5a.

Additional source of using self-iteration is derived from the definition of DBs.

The interrelation probabilities assigned to activities within a DB are used for

calculating the probability of the whole DB, using the following calculation

model5:

Pd ¼ 1�
Y

1� Pið Þ ð4:3Þ

where Pd is the combined merged probability of a DB, and Pi are the probability

values of the cells being merged. The probabilities of cells, which are on forward

direction (sub diagonal) to design activities within the DB are merged to the

probability of forward link to the merged DB. The probabilities within the DB

(including diagonal self-iteration probabilities) are all considered as feedback links

and are merged to the self-iteration merged probability of the DB. In Fig. 4.5b, the

calculations were applied to the probability DSM in Fig. 4.3, where W and

X activities are merged to a single DB, and activities Y and Z are merged to a

second DB. The probabilities 0.5 and 0.25 are merged to the self-probability 0.625.

The other probabilities are merged in the same manner (but in this simple case

keep the same value).

The probability calculation model is based on the combined probability of

independent events (OR option). For the case of two probabilities Pa and Pb, the
resulting probability of Eq. 4.3 reduces to Pd = Pa ? Pb – Pa 9 Pb. The inter-

pretation of linkswithin theDB as feedback links indicates that any of the links (even

the forward links) may actually cause iteration (as the activities are parallel).

Equation 4.3 is computationally appealing since it keeps the commutative,

associative, and distributive properties. Yet, this calculation needs to be validated

by measurements. Alternatively, only feedback probabilities and self-probabilities

could have been considered for calculations of merged feedback probability and

self-probability, and only forward link for merger of forward links probability.

In such case, cummutativity, associativity, and distributivity are not kept for the

calculations of the merged forward links.

Additionally, the calculation should refer to the cases where iteration of a

design activity is required while the design activity did not complete by applying

either (a) increasing the duration of the activity, or (b) initiating a new execution.

Such cases of applying self-iterations in conjunction with BRs are demonstrated in

Sect. 10.7.1.

X

X P

WX YZ

WX 0.625 0.25

YZ 0.33 0.25

(a) (b)

Fig. 4.5 Representing self-

iterations in DSM a Single

activity self-iteration, b Self-

iteration of Merged Design-

blocks

5 It is generalization of P(A[B) = P(A) ? P(B) – P(A) 9 P(B), for independent events.
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Applying a validated calculation model based on experimental results is left for

future research. Using self- iterations probabilities (Karniel and Reich 2007a) is

unique to the current framework.
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Chapter 5

Simulations

The expectation of minimum iteration marks to yield optimal processes in terms of

total time and robustness to activity duration (Steward 1981; Kusiak et al. 1995;

Smith and Eppinger 1997a) is an appealing general planning heuristic. However,

the counter example simulation results presented in (Browning and Eppinger 2002;

Abdelsalam and Bao 2006) contradicted the basic assumption, by demonstrating

that shortest process time required more iterations than minimal.

In (Browning and Eppinger 2002) process duration and process cost were

estimated using iterations with overlap. Increasing the concurrency of the activities

increased the number of iteration marks, and the number of iterations. Thus, cost

has increased, but due to overlapping only part of the activity had to be executed

again, and the overall duration decreased. The example in (Abdelsalam and Bao

2006) demonstrated a case where more feedback links yielded a shorter process.

The marking indicates the number of repetitions; thus, a reordering with more

feedback marks, where the span of iterated activities was smaller, has created an

overall shorter process time.

A simplified example that demonstrates the approach of (Abdelsalam and Bao

2006) is depicted in Fig. 5.1. In (a), there is one marking that indicates two

iterations of the whole process, i.e., each activity is executed three times.

Assuming equal activities duration X for all activities we get a total process time of

T = 12*X. A reordering of the process is presented in (b). The first activity

D executes, then C, then due to iteration D and C are executed again, then

B executes, iteration of B and C, then A, and finally iteration of B and A. Overall,
D and A have executed twice; B and C have executed three times; and the total

process time is T = 10*X.
It should be noted that the minimum iteration marks concept was developed for

a binary DSM, where all marks are equal, while the markings in the above

examples have values (iteration probability values in the former case, and number

of iterations in the latter case).

Simulating iteration decisions is a simplification of real life situations where

such decisions are done according to the status of the design. In the above

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_5,
� Springer-Verlag London Limited 2011
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examples and in the current research the design itself is not modeled, only the

decision to iterate is modeled. The main conclusion drawn from such examples is

needed for simulations to guide the planning for process specific conditions, where

rules of thumb are inapplicable.

5.1 Using DSM for Simulation

Though DSM-based modeling helps in identifying iterative loops and guides

process planning; the reordering algorithms that use only the DSM structure are

criticized as inadequate for process optimization (Browning and Eppinger 2002;

Abdelsalam and Bao 2006).

The actual use of DSM values for simulation purposes has no broad agreement;

different interpretations are used. Furthermore, the DSM information and the DSM

structure (after the use of a reordering algorithm) could be interpreted to process

logic in several ways. Following are descriptions of various interpretations of

DSM for simulation. A detailed comparison (Karniel and Reich 2009a) is pre-

sented in Sects. 7.4, 7.5.

Abdelsalam and Bao (2006) used explicit assignment of the required number of

iterations. The main assumption was that all activities within an activity loop are

affected by the iteration and all should be reworked, i.e., there is an implicit

forward link between any two consecutive activities. Forward link values are not

used in the simulation. The process is deterministic and serial. Its progress is

according to the DSM structure, and the assigned number of iterations of the

feedback links. The repeating iterations duration is summed to get the final process

duration as criterion for reordering. Since the duration time is stochastic, the

process time varies between different run time simulations.

Several studies (Smith and Eppinger 1997a; Huberman and Wilkinson 2005;

Yassine et al. 2003) referred to a case of a clique (fully parallel activities). In this

case, all activities are coupled; they belong to the same activity loop; and are

performed in parallel due to mutual interdependencies, without preceding rela-

tions. Since activities iterations are performed in parallel until the whole process

completes, the process structure can be defined as deterministic. Yassine et al.

(2003) mentioned subprocesses that may have internal order. Huberman and

Wilkinson (2005) indicated that the analysis done might apply to each subprocess

Fig. 5.1 The impact of

minimum iterations marking

a minimum iterations

b minimum time
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with coupled activities. In all those cases, diagonal elements are used, with dif-

ferent interpretations; yet, they do not affect the process progress. Simulations are

performed to study the implication of information transfer delays (Yassine et al.

2003) or fluctuations in the interaction values (Huberman and Wilkinson 2005). In

the latter case, diagonal elements are used to indicate the autonomous completion

rate of the activity.

Choo et al. (2004) presented a combination of DSM-based planning with

resource planning, which adds resource constraints. The results of the DSM,

calculated by the Analytical Design Planning Technique (ADePT), is a combi-

nation of partitioning and tearing. Feedback links with low value are disregarded;

thus, large coupled activity blocks are divided into sub-blocks. Sub-blocks are

serialized, i.e., activities in the sub-block need to wait for previous (sub) blocks to

be completed, and the activities within the sub-block are parallel (they can start in

parallel or must end together).

Smith and Eppinger (1997b) described a serialization of coupled activities.

A reward Markov chain process is suggested by which the process could progress

one activity at a time. The process can either iterate to a previous activity or

continue to the next activity. The probability DSM values are used to calculate the

Markov chain choice probabilities. Feedback probabilities are taken directly from

the probability DSM, but forward probabilities are evaluated in steps according to

the process progress.

Sered and Reich (2006) used a parametric-based approach for simulating design

modularization and standardization. A sensitivity rate is defined for expressing the

sensitivity of a change in the design of one component on the design of another

component due to a specific parameter. A cell in the Coupling Index (CI) matrix is

the sum of sensitivities. A heuristic procedure (Rogers and Bloebaum 1994) is

used to convert the CI matrix values to probability values; and a normalization step

is performed to ensure that the maximal sum of out links probabilities is less than

one (0.95). The final step is essential due to using serialized Markov chain––

random walk simulation. After each activity, the next one might be any linked

activity, either forward or feedback, according to direct use of the assigned

probabilities (unlike in (Smith and Eppinger 1997b), where an activity can be

activated only if its previous one has completed).

Melo and Clarkson (2001) added a Markov chain simulation to the Signposting

system. The simulation is used to establish the best task-order in terms of cost and

risk to reach the design goal. At each step, any potential task (according to

required input status), can be performed. Hence, though the process chooses one-

step at a time, parallel activities are being considered. The state of the development

process is assessed according to confidence of parameters value.1

In (Lévárdy and Browning 2005), activities (including activity iterations) were

selected one at a time (as in (Melo and Clarkson 2001)); however, the selection is

limited to the most applicable activity according to the target function.

1 An example of activity states inputs and outputs is given in Sect. 6.6.2, Fig. 6.16.
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The presented example progresses one activity at a time, but in general, multiple

activities may be performed in parallel. Activity iterations were defined by pre-

conditions on the required value and their confidence, in a similar manner to

Signposting. The initial state, the optional activities, and the activity relations are

stochastically selected (Monte Carlo). At each process step, all potential activities

are checked, and an adaptive selection process is used to choose the best activity to

follow, or iterate, according to process state. The process state is evaluated at each

decision point after each activity according to cost and duration estimations. The

number of iterations is not predefined. The process progress is deterministic once

the process data is set. Since the process data used for decisions are probabilis-

tically set at the initialization stage, the process is similar to a Markov chain.

Furthermore, the process data could be stochastically changed during the process.

Unlike the process in Signposting, making a certain choice may invalidate other

potential options; consequently, the process simulation is not equivalent to a

parallel process simulation.

Coates et al. (2003) described real time coordination and scheduling system,

optimizing resource utilization. The resources perform computational analysis

tasks, agent communication, resource management, tasks management, and opti-

mization, in an integrated approach. The analysis tasks have triangular precedence

interdependencies (i.e., subdiagonal DSM); however, the optimization task is

depended on completing active tasks and it iterates if it is expected to result in

better ordering solution.

Browning and Eppinger (2002) defined the feedback probabilities (upper

diagonal) logic as first-order iteration, the forward probabilities (subdiagonal) are

defined as second-order iterations. After the first execution of the activity its

forward links are considered to have a probability value of one; in subsequent

iterations, the actual probability values are utilized. No restrictions were made

regarding sum of probability values. The same simulation is used by Yassine

(2007) for estimating the probability figures assigned to numeric values for vali-

dating the transformation between numeric and probability DSM.

Cho and Eppinger (2001, 2005) introduced an integrated project management

framework. A DSM-based analysis of the project is used for activities sequencing

with minimum number of feedbacks. The process model with additional information

regarding activities, overlap (percentage and impact), rework (probability and

impact), duration variability (leaning curve, stochastic influences), and resources

constraints, are used for process simulation and improving the process plan.

Criticism of DSM-based planning relates to the minimum iteration assertion.

Browning and Eppinger (2002) demonstrated a case with coupled activities, which

suggested that minimum iterations do not provide the optimal process ordering.

(Whitfield et al. 2005) suggested increased parallelism, i.e., minimal number of

process stages, as additional trade-off criterion to iterations minimization. In

general, the relation between the objective function proposed (i.e., minimum

feedback links) and the actual goals of decreasing the process’ overall duration,

cost, and risk are not well established (Meier et al. 2007). Abdelsalam and Bao

(2006) utilized an optimization criterion based on duration and presented a case in
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which the optimal sequence with minimum time had more iteration (twelve), than

a solution with minimal iterations sequence (eight).

A survey of simulation methods that were used in the context of design pro-

cesses is presented in (Wynn 2007). The survey demonstrates, by detailed

examples, the process modeling methods used for defining the simulations. The

modeling methods were classified into Task networks, Queuing models, Multi-

agent models, and System dynamics models. Task networks are further classified

into Task precedence, Task dependency, and Dynamic task models. Petri nets,

which are further analyzed in the current study, were classified as task precedence

nets. DSM-based modeling methods were classified as task dependency models,

where dependencies between tasks do not directly imply precedence. Signposting

(Clarkson and Hamilton 2000), Extended Signposting (O’Donovan et al. 2004;

Flanagan et al. 2006), and Adaptive Test Process (Lévárdy et al. 2004) were

classified as System dynamics models, where dependencies are not directly

represented.

The scheduling literature addresses the need to satisfy desired project quality

requirements such as minimum time, resources, or other objective functions

(Brucker et al. 1999). The activity relations regarded may include traditional

precedence constraints (finish-start) (Brucker et al. 1999), or Generalized Prece-

dence Relations (GPR) (Elmaghraby 1995).

The main problems addressed in the scheduling literature are Resource-con-

strained Project Scheduling Problem (RCPSP), and uncertainty in activities

duration (with or without resource constraints) (Brucker et al. 1999; Elmaghraby

1995; Kolisch and Padman 2001; Herroelen and Leus 2005). Proactive scheduling

that accounts for statistical knowledge of uncertainty focuses on the schedule

robustness to changes, (e.g., by buffers). Reactive scheduling involves revising the

schedule when unexpected events occur, typically resources and time variations,

but also adding a new activity (Herroelen and Leus 2004; Vonder et al. 2007).

However, the scheduling of iterative activities is typically not considered

(Herroelen and Leus 2005).

Consequently, on top of process planning, simulation techniques are required

for analyzing process objectives, while handling additional process data such as:

time, cost, rework effort (Browning and Eppinger 2002); risk propagation (Eckert

et al. 2006); communication time (Maheswari and Varghese 2005); or handling

process data variations such as uncertainty and learning (Cho and Eppinger 2005).

The basic DSM model used for process planning typically does not include the

activity duration, duration changes due to iteration (learning), and the impact of

iterations or rework. Therefore, the information presented in DSM is partial and

was criticized as insufficient for process plan evaluation.

Most DSM-based simulations address duration issues using Monte Carlo

sampling for the stochastic activities duration. Resources issues were addressed in

(O’Donovan et al. 2003). Resource scheduling, based on DSM plan was applied to

assignment of computer resources in real time calculations (Coates et al. 2003);

and to a weekly assignment of project resources in (Choo et al. 2004),
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5.2 DSM-Based Simulation Parameters

The DSM-based simulations were used for several purposes including DSM

reordering (not based on minimal number of feedback links), and calculations of

processes variables (e.g., duration). The following comparison is focused on DSM

reordering; therefore, some of the articles discussed earlier are not part of the

following comparison.

The two articles by (Smith and Eppinger 1997a, b) do not describe actual

simulations, but process computations. Choo et al. (2004) utilized minimum

feedback links for DSM ordering. Yassine et al. (2003) used deterministic DSM

with local finished work, system tasks, hidden completed system work, and five

types of work transformation matrices to calculate the process open issues.

The typical DSM-based planning algorithms do not utilize the diagonal.

However, if there is only one simulation parameter involved per each activity, then

the diagonal cells could be used to present it. Such presentation was used in (Sered

and Reich 2006) for presenting the design effort of an activity. A summary of

simulation parameters used in DSM-based simulations appears in Table 5.1.

Simulation parameters might address activities properties, marked by (A); or

relations between activities that are presented by additional matrices (M).

The various optimization objectives yield broad and diverse range of simulation

parameters. Moreover, the range expands with the type of parameter changes.

Some studies have stochastic parameters within a frame of a deterministic process

(Abdelsalam and Bao 2006; Huberman and Wilkinson 2005; Coates et al. 2003).

Other studies have deterministic parameters within a changing process, where the

process route is probabilistically selected (Melo and Clarkson 2001; Sered and

Reich 2006); and some studies use both sources of process parameters change.

5.3 Learning Curve

In two of the studies indicated in Table 5.1, a learning curve Learning curve is

assumed, i.e., assuming that the activity duration decreases with iterations. Three

typical models of the activity duration are depicted in Fig. 5.2 (Andersson 2001).

In (Browning and Eppinger 2002), it was assumed that the first execution takes

100% of the duration and in all the following iterations, the duration is reduce

(a step function) to a given percentage of the initial one. Each activity is given a

different improvement curve (IC) percentage. In (Cho and Eppinger 2005), the

learning curve is defined such that the duration is reduced at each iteration to a

percentage of the former execution until it reaches a minimum duration (it is a

multi steps function, which could approximate the third option in Fig. 5.2). The

former case could be expressed as defining the duration at second execution as

minimum duration.

68 5 Simulations



T
a
b
le

5
.1

D
S
M
-b
as
ed

si
m
u
la
ti
o
n
s
p
ar
am

et
er
s
m
ap
p
in
g

S
o
u
rc
e

O
p
ti
m
iz
at
io
n
o
b
je
ct
iv
e

S
im

u
la
ti
o
n
p
ar
am

et
er
s

P
ar
am

et
er

ty
p
e

A
b
d
el
sa
la
m

an
d
B
ao

( 2
0
0
6
)

M
in
im

u
m

d
u
ra
ti
o
n

D
u
ra
ti
o
n
(A

)
S
to
ch
as
ti
c
d
u
ra
ti
o
n

H
u
b
er
m
an

an
d

W
il
k
in
so
n
( 2
0
0
5
)

M
in
im

u
m

in
st
ab
il
it
y
d
u
e
to

fl
u
ct
u
at
io
n
s

W
o
rk

tr
an
sf
o
rm

at
io
n
fl
u
ct
u
at
io
n
s

S
to
ch
as
ti
c
fl
u
ct
u
at
io
n
s

S
er
ed

an
d
R
ei
ch

(2
0
0
6
)

M
in
im

u
m

d
es
ig
n
ef
fo
rt

E
ff
o
rt
(A

)
L
in
k
v
al
u
es

as
si
g
n
ed

p
er

d
ec
is
io
n
(s
ta
n
d
ar
d
iz
at
io
n
/

m
o
d
u
la
ri
za
ti
o
n
)

D
S
M

li
n
k
s
v
al
u
es

(M
)

P
ro
b
ab
il
is
ti
c
p
at
h
ch
o
ic
e

M
el
o
an
d
C
la
rk
so
n

( 2
0
0
1
)

M
in
im

u
m

co
st
/r
is
k

P
at
h
ch
o
ic
e

P
ro
b
ab
il
is
ti
c
p
at
h
ch
o
ic
e

C
o
at
es

et
al
.
( 2
0
0
3
)

M
ax
im

u
m

R
es
o
u
rc
e
u
ti
li
za
ti
o
n

A
ct
u
al

D
u
ra
ti
o
n
(A

);
R
es
o
u
rc
e

av
ai
la
b
il
it
y

S
to
ch
as
ti
c
d
u
ra
ti
o
n

L
év
ár
d
y
an
d
B
ro
w
n
in
g

(2
0
0
5
)

M
in
im

u
m

p
ro
je
ct

ri
sk

D
u
ra
ti
o
n
(A

)
A
ll
p
ar
am

et
er
s
ar
e
st
o
ch
as
ti
ca
ll
y
g
en
er
at
ed

C
o
st
(A

)

T
ec
h
n
ic
al

p
er
fo
rm

an
ce

(A
)

B
ro
w
n
in
g
an
d
E
p
p
in
g
er

(2
0
0
2
)

M
in
im

u
m

ri
sk

fa
ct
o
r
o
f

d
u
ra
ti
o
n
an
d
co
st

D
u
ra
ti
o
n
(A

)
S
to
ch
as
ti
c:

T
ri
an
g
u
la
r
d
is
tr
ib
u
ti
o
n
o
f
D
u
ra
ti
o
n
an
d
C
o
st

(m
in
,
ex
p
ec
te
d
,
m
ax
)

C
o
st
(A

)

L
ea
rn
in
g
C
u
rv
e(
A
)

R
ew

o
rk

p
ro
b
ab
il
it
y
(M

)
R
ew

o
rk

im
p
ac
t
(M

)

Y
as
si
n
e
( 2
0
0
7
)

M
in
im

u
m

d
u
ra
ti
o
n
/c
o
st

v
ar
ia
b
il
it
y

D
u
ra
ti
o
n
(A

)
S
to
ch
as
ti
c:

T
ri
an
g
u
la
r
d
is
tr
ib
u
ti
o
n
o
f
D
u
ra
ti
o
n
(m

in
,

ex
p
ec
te
d
,
m
ax
)

C
o
st
(A

)

T
as
k
V
o
la
ti
li
ty

(i
n
fl
u
en
ce
)
(M

)

C
h
o
an
d
E
p
p
in
g
er

(2
0
0
1
,

2
0
0
5
)

M
in
im

u
m

m
ea
n
an
d
v
ar
ia
n
ce

o
f

ti
m
e

D
u
ra
ti
o
n
(A

)
S
to
ch
as
ti
c:

T
ri
an
g
u
la
r
d
is
tr
ib
u
ti
o
n
o
f
D
u
ra
ti
o
n
(m

in
,

ex
p
ec
te
d
,
m
ax
)

L
ea
rn
in
g
cu
rv
e
(A

)

O
v
er
la
p
am

o
u
n
t
(M

)
L
ea
rn
in
g
cu
rv
e
(i
n
it
ia
l,
%

re
d
u
ct
io
n
,
m
in
im

u
m
)

O
v
er
la
p
im

p
ac
t
(M

)

R
ew

o
rk

p
ro
b
ab
il
it
y
(M

)
R
ew

o
rk

im
p
ac
t
(M

)

5.3 Learning Curve 69



An interesting approach was described in (O’Donovan et al. 2003), extending

the Signposting system (Melo and Clarkson 2001) to include resources and

learning (additional knowledge regarding the problem) in the activity states.

Learning has impact on the probability to reach different states of the design

activity, rather than duration change; and learning status is changing in different

activity states (that describe iterations). An example is depicted in Fig. 5.3, where

the input state 1 with zero knowledge (along with other parameters of duration and

cost) has 50% probability to yield a success of the design activity (i.e., output state

A, create lift mechanism geometry); while a state where such knowledge exists

(input state 2) has 90%. However, if on the first iteration the design activity did not

succeed (output state B), then knowledge it gained toward the next iteration.

It should be noted that adding details to the states requires coherent definition of

more activity states (that indicate iterations). If the number of potential activity

states does not increase according to the additional parameters (e.g., still being kept

as four states) the additional parameters do not really provide more process options.

In the current work, two models were checked: a constant duration (i.e., no

learning), and decreasing the activity duration (resembling Cho and Eppinger

2005). However, no minimum duration was set. Thus, when activity duration

reaches a threshold any further iterations have zero time and are not executed

(a way of limiting the number of iterations). The Learning Ratio (LR) is assumed

to be known (this assumption is used in the current study), and its estimation is not

discussed in the DSM literature.

5.4 Objective Function

The objective function of the simulations varies. Two of the studies in Table 5.1

are using a DSM-based plan with minimum iteration criterion. Once the plan is set,

it is assumed that there are no feedback links, and a scheduling problem is solved.

Fig. 5.3 Activity states due

to knowledge (adapted from

O’Donovan et al. 2003)

Fig. 5.2 Activity duration

changes (reproduced from

Andersson 2001)
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Coates et al. (2003) maximized resource utilization (and minimized time) by

resource scheduling according to the actual duration of tasks, given the predefined

DSM-based plan. In (Choo et al. 2004), the duration and resource availability

parameters are used for implementation of activity weekly schedule according to

the plan (considering the information needs, and resources availability). In both

cases, simulation parameters are not used for further process plan optimization.

Browning and Eppinger (2002) suggested calculating the risk factors for

duration and cost, which are the integral of the impact of unwanted result, mul-

tiplied by the probability of such result (based on simulation). The impact is

calculated as a square of the difference between unwanted outcome and required

outcome when overrunning the scheduled due date, or the budget, respectively.

Lévárdy and Browning (2005) used a weighted project risk that includes

duration, cost, and technical performance risks. The risk is evaluated in each

process step and guides choosing the best task to be performed next.

The simulated parameters in (Sered and Reich 2006) are the DSM links

according to decision regarding modularization or standardization of a product

component. Simulation results are used to calculate the best process plans, and the

overall results are then used for choosing the components that should be stan-

dardized or modularized.

Minimum process duration is used in (Cho and Eppinger 2005; Abdelsalam and

Bao 2006). The variance of the process duration is additionally considered in (Cho

and Eppinger 2005) and is the objective function in (Yassine 2007).

5.5 Statistical Analysis for Decision-Making

Using Monte Carlo simulation (Metropolis and Ulam 1949), the simulated pro-

cesses proceed by generating random numbers from probability density functions

f(x). Parameters of the resulting process may not have a formal distribution, but

such distribution can be generated by multiple repetitions of the simulation.

Asmussen and Glynn (2007)2 indicated that according to the Law of Large

Numbers (LLN), and the Central Limit Theorem (CLT), the distribution generated

by the simulation converges to the actual distribution (that might be unknown, or

cannot be expressed by a formula).

Discrete probability mass distribution of the process time can be generated for

evaluating mean and standard deviation. In (Cho and Eppinger 2005), probability

mass distribution was used for comparing various model assumptions; in

(Abdelsalam and Bao 2006) for comparing various DSM rearrangement cases; and

in (Huberman and Wilkinson 2005) for comparison of fluctuations strength.

Browning and Eppinger (2002) generated the distributions of cost and duration,

and then used them to calculate the risk of overrun.

2 Statistical definitions and equations are described in Annex B, Sect. 14.2.
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One of the issues that needs to be addressed is the number of simulations

required for the result to converge. In many cases, a large number (assumed to be

large enough) is taken: 800 in (Abdelsalam and Bao 2006), 1000 in (Cho and

Eppinger 2005), and 10,000 in (Huberman and Wilkinson 2005). Asmussen and

Glynn (2007) describe a typical approach of estimating the required number by a

small size batch of simulations. Browning and Eppinger (2002) defined criteria for

estimating convergence of the distribution by running batches until the relative

mean and deviation of the additional batch is below a threshold. However, such

relative threshold has no statistical meaning.

Given the simulation results, a decision-making procedure should take place,

typically by choosing the best results according to the criterion. Since the results

are distributed, statistical measures should be taken to support the decisions, i.e., to

check if the results are statistically significant. However, the DSM-based studies

reviewed do not address that requirement, and typically just compare mean and

standard deviations without checking their significance. The importance of eval-

uating the validity of advice derived from process simulation was emphasized by

Wynn (2007).

The expected value of a large number of simulation results have properties of a

normal distribution . If we split the simulation runs to K sections of size M, the
expected values taken from these sections have a t-test distribution. Furthermore,

a function over the expected value of simulation parameters has a normal distri-

bution; and function estimations over expected values taken from several sections

have a t-test distribution. These properties are used for estimation of variance and

confidence interval of the function (Asmussen and Glynn 2007); see the statistical

Annex B, Sect. 14.2.

In (Karniel and Reich 2009b), the properties of multiple simulation repetitions

are used for supporting the decision-making by statistically evaluating hypothesis

regarding differences between the results of applying different business rules.

More details appear in Sect. 11.7.1, and examples are found in Sect. 12.7.
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Chapter 6

Process Modeling Using Workflow-Nets

6.1 Process Modeling

Once a project plan is set, various methods can be used for its implementation. The

previously reviewed DSM based simulations do not use a formal method for

implementing the process model. Such methods include proprietary workflow

models, Graphical Evaluation and Review Technique (GERT), Task nets, pi-cal-

culus, and Petri nets (discussed in the next section).

For its implementation, the process is defined by the Process scheme model

representing the precedence relations in addition to process logic. Generalized

precedence relations (GPR) (Elmaghraby 1995) include the typical end–start

relations, start–start, end–end, and iterations (cycles). The overlap relation was

defined in Cho and Eppinger (2001), as a start–start relation with delay. The

relations are implemented by defining the Input Logic (IL) of an activity (pre-

conditions) and the Output Logic (OL) (post-conditions).

The GERT method (Taylor and Moore 1980; Neumann 1990; Barjis and Dietz

2000; Zanddizari 2006) addresses probabilistic routing and feedback loops; and

can be used for process duration calculations or simulations. The GERT technique

includes the modeling of systems in a network form, and analysis through simu-

lation of stochastic networks having logical nodes and directed branches. GERT

uses activity on arc (AOA); nodes are considered as systems states, and arcs

represent transitions leading from one state to the other. Graphical symbols are

used to define activity relations and the process logic. An extended set of symbols

was presented in Barjis and Dietz (2000), implementing probabilistic and deter-

ministic exits from a node, and multiple initial and final nodes. Like in other

modeling methods, the sequence of tasks is assumed fixed (Cho and Eppinger

2005).

Task nets are directed graphs that represent the input and output relationships

among the various tasks in the process. Tasks (activities) are represented by nodes

(i.e., activity on node, AON), and arcs are linking between the tasks. Output of a

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_6,
� Springer-Verlag London Limited 2011
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source task is the input of the target task through the link. An arc may represent a

parameter generated by the source task and needed by the target task (Braha 2002),

control flow, or iteration flow (Heller andWestfechtel 2003). Task nets were used to

represent dynamic evolution of design processes in Heimann et al. (1996), and were
enhanced in Westfechtel (1999) by including control flow links, data flow links, and

feedback links. Formally, a task net is based on a graph rewriting system that enables

adding and hierarchically modifying the net during process execution. The work of

Heimann et al. (1996) was criticized by Reichert and Dadam (1998), indicating that

tasks to be added needed to be pre-defined in the scheme; deleting and changing the

tasks sequence were not available; and correctness issues were not addressed. The

representation of off-diagonal links in DSM and the arcs in task net are very similar

(Braha 2002). This similarity is used in defining the DSM net in Sect. 9.4.

The pi-calculus (Milner 1999) process algebra is a textual annotation of a process

model that provided the formalism for modeling of changing, interacting processes.

The pi-calculus process expressions define the process state, and the relations

between the process components [which are defined as (sub) processes or agents].

The process state can evolve to other states through state transitions. Pi-calculus

describes communication (input and output prefixing, and the data); concurrency

construct (parallel execution); new name assignment (e.g., new link creation); and

process replications. The pi-calculus extends the Calculus of Communication Sys-

tems (CCS) (Milner 1980), by adding mobility [e.g., the ability to define a new link

(channel) between processes through an existing link; and agent ability to divide or

‘‘die’’]. Processes can be described in a compact manner, utilizing the recursive

structure of the process expression; however, the interpretation of the system is

complex and requires the use of transition rules that describe all the potential

transitions to next process states in order to calculate the process transitions. The

pi-calculus syntax and semantics are described in Annex A, Sect. 14.1.

Petri net (Reising and Rozenberg 1998) are established graphical formal lan-

guage for process model specification. Petri nets can be used as diagrammatic tool

for modeling and analyzing distributed system behavior including sequential,

conditional, parallel, and iterative routing (van der Aalst and van Hee 2002). Petri

nets formal proofs (detailed in the following sections) were utilized in the current

research for establishing formal proofs of DSM nets properties. Choosing Petri nets

for formalization was based on their relative user-friendliness, being more close to

the simple Task nets used for implementation. The use of pi-calculus as a formal

vehicle should be further investigated. Comparison examples of pi-calculus and

Petri nets were developed in this work and are described in Annex A, Sect. 14.1.

6.2 Process Correctness

Process correctness can be defined as ensuring certain process behavioral

characteristics (e.g., reaching a steady state or reaching a termination state).

Process behavior may be verified using numerous simulations, yet verification of
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process characteristics according to the process structure is more fundamental and

illuminating. Process correctness verification is profoundly discussed in the

workflow literature (van der Aalst 2001; Rinderle et al. 2004; Sadiq et al. 2004,

Farrell et al. 2007), but seldom mentioned in the DSM literature. This omission,

coupled with the lack of clear translation from DSM representation to a process

scheme, might lead to generating processes that may fail (Karniel and Reich

2009). Consequently, any proposed process scheme should be verified. Moreover,

in NDP processes, the product knowledge changes, and the DSM-based plans

should be updated (Karniel and Reich 2007a). Consequently, automation of the

DSM translation is required. Thus, it becomes essential to guarantee that the

resulting process models are correct and executable. Such automation might also

be very useful for large-scale processes.

Correctness criteria are therefore defined to ensure the required behavioral

characteristics. For directed acyclic graphs (DAG) the correctness criteria are

described in Sadiq and Orlowska (1999). van der Aalst (1998) defined the

Soundness criteria for WF-nets, later evolved to compositional soundness criteria

(van Hee et al. 2003; Ping et al. 2004). Karniel and Reich (2007b) defined cor-

rectness criteria for dynamic scheme processes in the context of design processes.

If a process is sound, then it has the required characteristics. Checking

soundness can be done using diagnostic tools (e.g., ‘‘Woflan’’ system, Verbeek

et al. 2001). Ping et al. (2004) defined WRI-WF-nets (Well-handled with Regular

Iterations) that are inherently sound, and proposed a verification approach, where

processes can be hierarchically built as sound processes. This approach was used

in the current research.

The following section describes Petri nets, then the more specialized workflow

WF-nets, and WRI-WF-nets; and finally their formal definitions that are later used

for defining the DSM conversion to a process scheme (Sect. 9.4).

6.3 General: Petri Nets

A Petri Net in is a bipartite directed graph with two node types called places and
transitions that are connected by directed edges (arcs). Place can contain tokens. A
transition may ‘fire’, i.e., consume tokens from its input places and add tokens to

its output places according to ‘firing rules’. Process activities are modeled by

transitions; while places correspond to conditions. Marking, representing the

process state, is the distribution of tokens over the places. In Fig. 6.1, the transition

t1 has one input place p1 and one output place p2. The transition is ready to fire

p
2 

p
1 t

1
p

2 
p

1 t1

(a) (b)Fig. 6.1 Petri net basics
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since p1 has a token. The process state, i.e., marking has changed fromM0 = (1, 0)

at (a) to M1 = (0,1) after firing (b).

Process logic can be modeled by combinations of transitions and places as

depicted in Fig. 6.2. The yet another workflow language (YAWL) provides a more

convenient graphical representation of the distinct logic patterns (van der Aalst

and Hofstede 2005).

The edge capacity defines the number of tokens consumed by the transition

from each input place, or the number of tokens produced to each output place. In

this work, we assume that all edges have capacity = 1. A transition can fire when

all its input places have enough tokens to be consumed (according to our

assumption, each input place should have at least one token). In Fig. 6.2d, the

transition may fire only when its two input places have a token. There is no

conservation of the number of tokens. In Fig. 6.2c, transition t1 has consumed one

token in its input place and produced two tokens, one in each output place. In (d),

two tokens are consumed and one is produced.

Being enabled (i.e., having all required token in input places) does not indicate

immediate activation (i.e., firing). It is assumed that firings of the transitions are

not simultaneous. The consumption of input tokens is assumed immediate on

firing, and all required tokens are consumed simultaneously. When produced, all

tokens are produced simultaneously.

There are several options for the timing of producing the tokens. The option

typically used in Petri net literature is an immediate production of the output
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tokens, i.e., the system spend time only in states, transition between states in

instantaneous.

Another option is that the transition (activity) has duration. Actually, the latter

option can be presented by the former one if we define an initial transition (the

activity started) and a final transition (the activity completed). Thus, an activity is

defined by a set of transition-place-transition nodes. We find it more intuitive (with

less graphic symbols) to use the second representation option, though it has a full

equivalence by the first one.

Furthermore, there is no predefined order of firing. Thus, in a Split-Xor (e), both

transitions are enabled; at a certain time, one of them may fire (not both simul-

taneously), and at that time, the other transition will (immediately) be disabled (as

there are no input tokens).

Split-Or (g) and Join-Or (h) are frequently represented the same way as Split-Xor

(e) and Join-Xor (f), respectively; creating inconsistency (Dehnert and van der Aalst

2004). However, the complexity of the explicit correct representation is combina-

torial, i.e., representing the possibilities of three options would require six

transitions. This may explain the general implicit use of (e) and (f) to represent the

Split-Or and Join-Or functions. Additionally, in many cases the terms Split-OR and

Join-Or are used to indicate Figs. (e) and (f), respectively, which are actually

Split-Xor and Join-Xor logic. Such misuse happens in some of the following

examples as well.

A proper representation of iteration Fig. 6.2b is using two transitions, one

representing the design activity, and one representing the decision to iterate (send

feedback), or otherwise continue; each transition having its own properties

(activity duration, and probability to send feedback). Such representation is

described in Andersson (2001), and is using a Split-Xor logic (e).

Other iteration-logic options, described in following section, require definitions

that are more complex. Implementation of additional constructs such as overlap-

ping and alternative routing was suggested in Jun et al. (2006), using a DSM net

and an extended probability DSM. A comprehensive study of construct definitions

(workflow patterns) was elaborated in (van der Aalst et al. 2003a, b).

6.4 WF-Nets

WF-nets (workflow nets) (van der Aalst 1998) are a class of Petri nets used for

specifying the control aspect of workflow processes. The soundness criteria for

WF-nets were defined in van der Aalst (1998), later defined as 1-soundness, and
enhanced in van Hee et al. (2003) for net compositions that keep the generalized
soundness properties. van Hee et al. (2004) proved that for any WF-net, it could be

decided if the generalized soundness criteria are met or not.

Ping et al. (2004) defined WRI-WF-nets (Well-handled with Regular Iterations)

that are constructively sound; they are restricted to regular iterations; therefore,

activities within the iterated part do not activate some other objects outside that
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process section during iteration. The WRI-WF-nets recursive definition supports

hierarchical modeling. The following section formally describes the WF-net

properties.

6.5 Correctness Criteria

Correctness criteria are used to describe the proper behavioral characteristics of

the process. Their definitions are context oriented depending on the required

process, e.g., a project oriented process, such as the design process, the process

should have defined start and end, and a typical requirement would be to reach the

process end.

Typically, the goal is to define the existence of required characteristics

according to the structure of the process, the process scheme. While the analysis of

a fixed process scheme can assure the required properties of a given process,

a dynamic process scheme, which changes during the process require an inherent

build approach that can assure the required properties while changing the process
scheme Ping et al. (2004).

For DAG processes, the following criteria were described in Sadiq and Orlowska

(2000). The processes should be free of Deadlocks and free of Lack of Synchroni-

zation. The first criterion reflects a case of joining exclusive Split-Or (choice) paths

with a Join-And (synchronize), which results in a deadlock conflict. The second

requirement reflects a case of joining Split-And (fork) concurrent paths with a Join-

Or (multi merge), which introduces lack of synchronization conflict. Lack of syn-

chronization manifests as unintentional multiple activation of an activity.

Gruhn and Laue (2006) defined the nesting properness criterion that describes the

process structure nesting in an event-driven process chain (EPC), which has activ-

ities and logic controls. Each subprocess between a pair of logic controls (e.g., Split-

And and Join-And) is additional level in the process nesting. A properly nested

process has no ‘‘jumps’’ (i.e., no links that are targeted ‘‘outside’’ of the subprocess).

This property is the process equivalent to using structured loops versus ‘‘goto’’

spaghetti code. This criterion applies to DAG as well as iterative processes.

The process examples in Fig. 6.3a and b were presented in Sadiq and Orlowska

(1999). In the net diagram, a circle indicates Join-Or (input), or Split-Or1 (output)

logic; a rectangle indicates an activity with Join-And (input), or Split-And (output)

logic.

In Fig. 6.3a, a Split-Or logic is used thus only one of the following activities

can perform. The marked activity waits for inputs from both activities, but since

only one of them could have been activated, we have a deadlock. Same description

applies to Fig. 6.3c using Petri net symbolic (transitions and places). Only one of

the transitions can consume the initial token, and produce a token in its output;

1 This is an example of typical terms misuse: the actual logic indicated is Split-Xor as in Fig. 6.2 e.
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thus, the marked transition will never fire, as it requires having at least one token in

each input place.

In Fig. 6.3b, the initial activity has a Split-And logic (i.e., two routes are

activated in parallel). The marked Join-Or will get a signal from the left path and

additional signal from one of the other paths (that have a Split-Or logic), causing

lack of synchronization. A Petri net case of lack of synchronization is depicted in

Fig. 6.3d. The marked place will get two tokens and the following transition will

be activated twice.

In both cases, we have two parallel paths starting (by split) with one type of

logic and completing (join) with another type. In the deadlock case, we split with

Split-Or and join with Join-And. In the lack of synchronization case, we split with

Split-And and join with Join-Or. van der Aalst (2000) presented the ‘well-han-

dled‘condition, which is the interpretation of both requirements, in terms of a Petri

net. A well-handled Petri net has no fully separated parallel paths between dif-

ferent types of nodes (a formal definition is presented in Sect. 6.7).

As indicated by Gruhn and Laue (2006), the proper nesting criterion for EPC

can also be described in terms of the well-handled condition by converting an EPC

to a Petri net as described in van der Aalst (1999).

AWF-net proper process, defined according to the soundness (1-soundness) criteria
(van der Aalst 1998) has the following properties (formally defined in Sect. 6.7):

1) From every process state, which is reachable from the initial state, a firing

sequence leads to the termination state. The process should terminate eventually.

2) Once the terminal state was reached, there are no open issues; formally: there

are no tokens in places other than the termination state.

p2 
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t1 p2 

p1 t1

p3 t2

p4 t3

p3 

t2

t3

p4 t4
p5
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(c) (d)

Fig. 6.3 Deadlock and Lack

of Synchronization a Dead

lock—net diagram b Lack of

synchronization—net

diagram c Dead lock—Petri

net d Lack of

synchronization—Petri net
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3) There are no ‘‘dead’’ activities (i.e., no activities that could not execute due to

unmet pre-conditions).

The Petri net in Fig. 6.4a represents a process that is not well-handled. The

process in this case is not sound since if transition (activity) B fires, then C could

never fire and the process completes with a token left in p2.
The process in Fig. 6.4b is sound. After the execution (firing) of A, the process

splits to parallel paths, in one path either C or D execute, and in the other E.
Activity B waits for both paths to complete. There are two paths from A to p5
(through C and through D, respectively), but since both paths include p3 they are

not fully separated and the process is well- handled.

The Soundness criteria correspond to the absence of basic errors in a workflow

model (Farrell et al. 2007). The concepts of correctness criteria, and specifically

soundness, are utilized in the current work to interpret the DSM planning (reor-

dering results) into a process scheme. Such implementation bridges a gap in the

literature, between the DSM planning phase and process definition and imple-

mentation phase.

It should be noted that process characteristics that are considered unacceptable

in the context of administrative processes (typically addressed in Workflow lit-

erature), are very common in the Design Process context (Smith and Morrow

1999). Examples are iterations and lack of synchronization. Iterations solve the

‘Dynamic change bug’ (van der Aalst 2001), i.e., changes in previous stages of the

process, and as indicated are typical to design processes.

Lack of synchronization in terms of administrative process tasks means that a

task gets a starting signal and then additional unsynchronized input that require

restarting. Yet, in the context of design activities, such occurrences are expected

and accepted. Correctness criteria for processes with dynamic process scheme in

the context of design activities were defined in Karniel and Reich (2007b), and are

detailed in Sect. 9.19.2.

6.5.1 Well-Handled Processes and Soundness of Iterative

Processes

Defining soundness for iterative processes requires the assumption of a ‘‘fair

process’’ i.e., there is an equal probability of firing and no specific order of firing

(van der Aalst and van Hee 2002). For example, in Fig. 6.2b, if transition t3 always
fires before t2, then the cycle can repeat forever. The fairness assumption is
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applicable in other cases as well, and a sound ‘‘fair’’ process will eventually

complete.

The well-handled condition is very powerful in the case of acyclic (DAG)

processes. An acyclic process that is not well-handled will not be sound. A process

with a deadlock, Fig. 6.3c, does not meet requirement (1) of soundness. Lack of

synchronization, Fig. 6.3d, as well as the example in Fig. 6.4a may yield remnant

tokens; thus, violating requirement (2) of soundness.

However, the well-handled criterion is less powerful in the case of cyclic processes.

A cyclicprocess canbe soundwithout beingwell-handled aspresented in the following

examples (a contribution of the current research). The cyclic process presented in

Fig. 6.5a was created by adding an iteration path to the process in Fig. 6.4a. The

problems of the previous process are now aggravated as multiple tokens can accu-

mulate in p2 (each time B fires). The new iterative process is not sound.

In Fig. 6.5b, a link was added between p2 and E. The process now represents

the option either to execute activity C (E is disabled) or if B executed (fired) then

E (iteration) would follow. Eventually C will execute completing the process

without excess tokens. This iterative process is sound; however, it is not well-

handled. In addition to the distinct paths from A to p3, there are also distinct paths

from p2 to E, i.e., the additional link did not change the process into a well-handled
process. The latter example demonstrates the capability to utilize iterations for

overcoming problems of acyclic processes.

The soundness problem was solved in Fig. 6.5b, only for the case of p3 being
the final place. However, if the process can continue, as demonstrated in Fig. 6.6a,
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then activity D could follow B, and a token would be left in p2, i.e., in this case the

process is not sound.

In this case, adding the place p5 in Fig. 6.6b makes the system sound. After

the execution of A, if B executes, then E can follow (D is not enabled); and once

C executes (E is disabled), only D can follow. Yet, this process logic can be

equivalently described by the sound and well-handled process scheme in Fig. 6.6c.

Another type of process deadlock in a cyclic net is depicted in Fig. 6.7a. The

cycle is (BDCEB). Transitions (activities) B and C are waiting to tokens at the

output of E and D, respectively, while D waits to B, and E waits to C. This process
is well-handled but is not sound.

In Fig. 6.7b, a link was added from transition A to the marked place, and then a

link to F. In this process, there is no deadlock, and the activities are actually

serialized in the order (ABDCEF). The process is sound. The process is not well-

handled having two separated paths from A to the marked place.

In Fig. 6.8a, the activities (BD) start in parallel with activities (CE). By the

completion of D, activities (CE) start again through G, and by the completion of E,
activities (BD) start again through H. The cycle is endless (a ‘‘live lock’’). The

token accumulated in p6 and p7 cause activity F to execute repeatedly. Since the

process never completes, it is not sound. The process is not well-handled, e.g.,

there are two separated paths from A to p2 (and from A to p3).
The process in Fig. 6.8b is not well-handled (as the previous process), but it is

sound. Like any cyclic process it may perform endlessly under certain circum-

stances, for example, assuming that activity G always executes before F (even if

F was enabled). Yet, if the process was ‘‘fair’’, it would complete eventually.

This process demonstrates a proper process scheme implementation of an

activity cycle. Transitions G and H are considered as logic activities. Transitions

A and F could either represent design activities or logic activities.

Unlike previous examples that did not describe parallel processes

(Figs. 6.6b, 6.7b), the process in Fig. 6.8b does not have a well-handled

equivalent.
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6.6 Process Scheme Modifications

One of the major problems addressed in the workflow related literature is the mod-

ification of the process scheme. Process modifications of a fixed scheme process

might be a managerial requirement because of the analysis and improvement in the

BAM stage (Fig. 2.7). Changing the process scheme is an intricate issue since the

process planner intentions may lead to improper process. The following examples

present some potential problems in modeling process changes.

A proper process with two parallel paths of activities (BD) and (CE) is depicted
in Fig. 6.9a.2 We want to make a change such that activity E waits for the com-

pletion of B. An implementation as in Fig. 6.9b will lead to a deadlock (two paths

from the marked place to activity F. Either D can execute or E, same as in

Fig. 6.3). While such case is easy to detect in this simple example, in a more

complicated one such mistake may happen (Sadiq et al. 2004).

The implementation in (c) yields a lack of synchronization (two paths between

activity A, and the marked place, i.e. Activity E will be initiated twice), and does

not fulfill the requirement of E waiting for the completion of B. The proper change
is depicted in (d).

On next iteration of the process planning, we want to add the option of

repeating activities (BD). A ‘‘straight forward’’ implementation of a cycle (by

adding activity G and a place) may lead to a deadlock, Fig. 6.10a. Transition

B will endlessly wait for a token from the output place of G. Such cyclic deadlocks
can be solved by a proper siphon. A siphon3 is defined as a set of places in the

Petri net such that their input transitions (activities) are subset of their output

transitions. A proper siphon is a non-empty siphon (van Hee et al. 2004). The

siphon S is marked in Fig. 6.10b, where S = {p2, p3, p4}, the input transitions are
{B, D, G}, and the output transitions are {B, D, G, F}. There is an initial marking

of a token at place p4.
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2 Using instantaneous transitions (with immediate production of output tokens), this process

represented two parallel activities, each with start and end transactions, while other transitions are

used for representing logic.
3 Formally (see additional definitions in Sect. 6.7), S is a siphon if •S( S•, where •S are the set

of input transitions of the places that belong to S, and S• are the output transitions of these places.
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This solution in turn will cause a non-sound improper process since repetitions

of (BDG) may cause accumulation of tokens in the place p1 (marked).
In Fig. 6.11a, we get a sound solution by adding a link from place p1 to activity

G. In this case, (BDG) can repeat while E did not execute. Another sound solution

without using a siphon is presented in Fig. 6.11b. In both cases, the processes are

not well-handled.4

The above examples (Figs. 6.10, 6.11) demonstrate the options of using siphon

or not using siphon for handling cyclic (iterative) processes. In the following

sections, siphons are not used.

6.6.1 Process Expansion

In some cases, the required change is expansion of the process scheme, i.e.,

combining processes, or detailing sub processes. An example of transition

refinement of a (van Hee et al. 2003) is depicted in Fig. 6.12.

In the general case, such expansion may cause process correctness issues. For a

DAG process it was proposed (Mangan and Sadiq 2003) to restrict the process

structure types to sequential and pairs of Split-And (fork) and Join-And (syn-

chronize) that can be used during run-time for building the process.

In van der Aalst and van Hee (2002), expansions of a DAG process are defined

such that the subprocesses are well-handled; e.g., a place can be extended by a
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Split-or and Join-Or; a transition can be extended by Split-And and Join-And; and

both can be extended by a sequential path. For example, the transition A in

Fig. 6.13a is expanded by Split-And and Join-And pair to the process in (b). The

place p3 is then expanded by Split-Or and Join-And pair; and the place p4 is

expanded by a sequential path to the process in (c).

The same idea could be used in the other direction, i.e., reduction rules.

Reduction rules were used in Sadiq and Orlowska (1999), to check process cor-

rectness. If a given acyclic scheme could be reduced to a sequence then the

original process scheme has no deadlocks or lack of synchronization.

A more general approach applicable for processes with cycles was presented in

van Hee et al. (2003). For ensuring a sound process any subprocess should have

generalized soundness process, i.e., it should be K-sound for any natural number

K. K-soundness indicates that if the process starts with K tokens at the initial place

it will complete with K tokens at the final place. A sound process (van der Aalst

1998) is therefore 1-sound.
An example of a 3-sound process that is not 1-sound and not 2-sound was

presented in Ping et al.(2004), Fig. 6.14. If the subprocess presented in Fig. 6.14 is

the expansion of another process, and that other process would not provide three

tokens to the input place, then the whole process would not be sound. The process

in Fig. 6.14, as can be easily noticed, is not well-handled.
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Ping et al. (2004) defined acyclic well-handled subprocesses, and well-handled

subprocesses with regular iteration. The latter is a WF-net with an acyclic well-

handled process between the first and the final placed plus a transition from the

final place to the initial place as illustrated in Fig. 6.15.

The simplest subprocess with regular iteration is a simple iteration, Fig. 6.2b.

WRI-WF-nets were defined as processes that are built by using an expansion

method. Starting with an acyclic well-handled process it can be expanded by

acyclic well-handled subprocesses or by well-handled with regular iteration sub-

processes. The parallel process in Fig. 6.9a could easily be obtained using that

method. However, the example in Fig. 6.9d could not. Though the scope of WRI-

WF-nets processes is limited, it is useful for presenting certain types of processes

resulting from DSM based plans, as presented in Sect. 9.5.

6.6.2 Dynamic Process Changes

A well-known change addressed in the workflow literature is the dynamic conver-

sion from a serial to parallel process and vice versa. A solution of the first problem

was defined in Ellis et al. (1995) using ‘‘jumpers’’ (a jumper is marked by a red cycle,

Fig. 6.16) from a state (place) in the serial process to the parallel process. However,

there is no DAGmapping from the parallel process to the serial one, which covers all

the potential cases (specifically, a token before B and a token after C).
Trying to make the latter change (from parallel to serial) would create the

‘‘dynamic change bug’’. When no transition is available, the solution proposed is

either not implementing the change, or wait until the process reaches a section

where a transition is applicable (Rinderle et al. 2004; Reichert et al. 2005).

The dynamic process change examples using net diagram were addressed in

Reichert et al. (2005). Petri net implementations are depicted in Fig. 6.17. The

initial process has a parallel execution (using Split-And and Join-And logic). The

required process change, adding activityG is depicted in (b). Fig. 6.17c represents a

case where the change requirement was assigned after the process has passed the

zone of change (i.e., could not be implemented). Such change type was referred in

Rinderle et al. (2004) as changing the history. In an acyclic process without iter-

ations such change cannot be implemented, and therefore in Reichert et al. (2005) it

Fig. 6.16 From serial to

parallel process (reproduced

from Rinderle et al. 2004)
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is reported as not compliant to the required change. In (d), the process has an ad-hoc

change (H), such that implementing the required process modification would create

a deadlock cycle, and therefore the case is reported as non compliant due to

structural conflict. Note: the non-compliance conclusion of the article actually

depends on the implementation of the process scheme; a sound implementation of

such cycle (contribution of the current research) was presented in Fig. 6.8b.

Other dynamic process change types identified in (Rinderle et al. 2004) were

loop tolerance (adding a new activity during a loop), Fig. 6.18a; and marking

issues, Fig. 6.18b. In a Petri net, adding a parallel path after the process has passed

the split required adding tokens to the process marking (before Y).
Therefore, the properties of a valid transformation are required. An algorithm

for finding valid transformation (if such exist) was proposed with order of com-

plexity being O(n4(n!)2), where n is the number of workflow nodes (van der Aalst

2001).

6.7 Formal Process Definitions

Most of the following formal definitions of the WF-nets, if not otherwise stated,

were adapted with minor modifications from (van der Aalst and van Hee 2002).

Readers who are less interested in the formal definition can skip this section.
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Fig. 6.18 Dynamic process changes a Loop tolerance b Marking issues
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Fig. 6.17 Change in a parallel process a Initial Process b Required process modification

c Change of history d Structural conflict

6.6 Process Scheme Modifications 89



Definition 1 (Petri net) A Petri net is a triple PN = (P, T, F).

(1) P and T are finite disjoin sets of places and transitions, respectively (P \
T = /).

(2) F is a set of arcs (flow relations), F ( (P 9 T) [ (T 9 P).
(3) A place p is called an input place of a transition t [ T, if and only if (iff) a

directed arc from p to t exists. The set of input places to t is marked

•t = {p [ P | (p, t) [ F}. The output places set of transition t, t• = {p [ P |

(t, p) [ F}. The notations •p and p• are correspondingly the pre-set and post-
set of transitions.

(4) A pair (PN, M) of a Petri net PN, and a start marking M is called a net

system. M is the state, or marking of the Petri net, i.e., the distribution of

tokens over places. M(p) is the number of tokens in place p.
(5) For two markings: M1 and M2, M1 B M2 iff Vp [ P, M1(p) B M2(p).
(6) A marking M changes by firing a transition t, which may fire only if it is

enabled.

(7) A transition t is enabled in marking M, (written M !
t
), iff every input place

of t contains the required number of tokens.

(8) If a transition t is enabled in marking M, it may fire. On firing, tokens are

consumed (removed) from every input place and tokens are produced

(added) to every output place.5 The number of tokens consumed or pro-

duced is defined by the edge capacity (arc weight).

In the current research we address the case of edges having capacity = 1 for

all edges, so each input place should have at least one token. 8p 2 �tf g;
M pð Þ� 1. According to our assumption, one token is removed from each

input place and one token added to each output place. Given a Petri net and

a marking M, we have the following notations:

(9) M1 !t M2: transition t is enabled in M1; its firing in M1 results in M2.

(10) M1 !r Mn: the firing sequence r ¼ t1 t2 t3 . . .tn�1ð Þ leads from marking M1

to marking Mn, through markings M2;M3; . . .;Mn�1:
(11) A marking Mn is reachable from M1 iff a firing sequence r exists.

(12) The empty sequence e is enabled by any marking M.

Definition 2 (Path in PN, Elementary path)

(1) In the Petri net PN, a path C from a node (place or transition) x0 to a node xm is

a non-empty sequence (x1, …, xm) such that (xi, xi+1) [ F for 1 B i B m - 1.

(2) C is an elementary path iff Vxi, xj i = j ) xi = xj, (i.e., nodes do not repeat).

(3) Alphabet operator a is defined by a Cð Þ ¼ x1; . . .; xmf g, where C ¼ x1; . . .; xmð Þ
(Ping et al. 2004).

5 The use of weighted arcs (i.e., arcs which transfer more then one token), is not addressed in this

research, and is not required for the following proofs.
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Definition 3 (Strongly connected) A Petri net PN is strongly connected iff for

every pair of nodes x and y, there is a path C leading from x to y.

Definition 4 (State machine) A Petri net PN is a state machine iff each transition

has exactly one input place and one output place. Vt [ T |t•| = 1 and |•t| = 1.

There should be only one token at the initial state (and therefore at all times);

thus, the process state is equivalent to the marking by that token.

Definition 5 (Well-handled) A Petri net PN is well-handled, iff for any pair of

nodes x, y such that one node is a place and the other is a transition, and for any

pair of elementary paths C1 and C2 leading from x to y. a C1ð Þ \ a C2ð Þ ¼ x; yf g )
C1 ¼ C2:

Rephrasing the definition, if there are two paths between distinct type nodes,

there should be an additional node (other than x or y) that belong to both paths,

thus the process is well-handled.

Definition 6 (WF-net) A Petri net PN is a WF-net, iff:

i. PN has two special places i (the starting place, or source), and o (the ter-

mination place, or sink). Place i [ P satisfies •i = [; and place o [ P satisfies

o• = [; and

ii. every node x [ P[T is on a path from start place i to termination place o.

This definition implies a project-like structure with defined start and comple-

tion. The requirement that transitions (activities) should be on a path from start to

end implies process completeness, no loose ends.

Definition 7 (extended WF-net) Given a WF-net PN, the extended Petri net of PN,
PN* = (P*, T*, F*), is defined by adding a transition t* 62 T that connects place

o with place i as follows: PN* = (P, T [{t*}, F [ {(o, t*), (t*, i)}).

Proposition 1 (WF-net properties) If PN is a WF-net with starting place i, and
termination place o, then:

(1) i is the only starting place. For any place Vp [ P: •p = [ or p = i;
(2) o is the only termination place. For any place Vp [ P: p• = [ or p = o;
(3) the extended Petri net PN* is strongly connected; and
(4) if Petri net PN has starting place i and termination place o, and its extended

Petri net PN* is strongly connected, then every node x [ P[T is on a path
from start place i to termination place o in PN; and PN is a WF-net. Proof: in
van der Aalst (1998).

Definition 8 (Special states) Two special states (markings) are defined for a Petri

net PN: starting state S (with tokens only at place i) is a special initial state. The

End state E (with tokens only at place o), is a special termination state.

(1) SK is the starting state of PN with k[ 0 tokens iff Vp [ P, p = i, SK(p) = 0 ^
SK(i) = k.

(2) EK is the end state of PN with k[ 0 tokens iff Vp [ P, p = o, EK(p) = 0 ^
EK(o) = k.
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For convenience, the default marking used is S = S1 and E = E1 (indicating

one token) in van Hee et al. (2004).

Definition 9 (1-Soundness) A procedure modeled by a WF-net PN is sound iff:

i. For every state M reachable from starting state S, by a firing sequence rSM,

there is a firing sequence rME leading from state M to state E.

8MðS!
rSM

MÞ ) ðM !rME
EÞ

ii. State E (termination) is the only state reachable from S with a token in

place o

8MðS!
rSM

M ^M�EÞ ) ðM ¼ EÞ
iii. There are no dead transitions in (PN; S). For every transition t there is at least

one state M, reachable from the starting state, by sequence rSM, which

enables this transition; and firing transition t in M results in M*:

8t2T9M ;M�ðS!rSM M!t M�Þ

Identifying design activitieswith transitions in the context of design processes, and

based on the soundness criteria, the extended process properties requirements are:

(1) The first requirement indicates that the process can reach its completion.

An assumption is made (van der Aalst 1998) that the process should terminate

eventually.

(2) Once the terminal state was reached, there are no activities with unmet pre-

conditions (there are no tokens in places other than the termination place).

(3) There are no ‘dead’ activities i.e., activities that could not be performed.

Additionally, there are no activities that did not perform.

Definition 10 (well-structured) A WF-net is well-structured iff PN* (the short-

circuited net) is well-handled.

Hierarchical Composition of WF-nets

The following definitions were adapted from (Ping et al. 2004), based on the work

in (van Hee et al. 2003).

Definition 11 (K-sound ) A WF-net PN is K-sound for a natural number k iff:

i. 8MðSK �!rSM MÞ ) ðM�!rME
EKÞ

ii. 8MðSK �!rSM MKM�EKÞ ) ðM ¼ EKÞ
iii. 8t 2 T 9M; M� SK �!rSM M�!t M�

This is an expansion of the soundness criteria in Definition 9 (1-sound). It also
aligns the definition proposed in van Hee et al. (2003), with Definition 9.
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Definition 12 (G-sound: General soundness) A WF-net PN is G-sound iff it is

K-sound for every natural number k[ 0. The term G-sound in Definition 12

replaces the term Sound used in (van Hee et al. 2003); and the term 1-sound
replaces the term Sound used in van der Aalst and van Hee (2002), for Definition 9.

Definition 13 (WF-net composition) Activity refinement (transition refinement in

van Hee et al. 2003) is the hierarchical concept of replacing an activity by a sub-

process. Let PN1 = (P1, T1, F1), PN2 = (P2, T2, F2) be two WF-nets such that the

start and termination places in PN2 are i2 and o2 respectively; T1 \ T2 = [, P1 \
P2 = [, t1 [ T1 and ta, tb 62 (T1[ T2). PN3 = (P3, T3, F3) is theWF-net composition

obtained by replacing t1 in PN1 by PN2. PN3 ¼ PN1 �t1 PN2 is defined as follows:

i. P3 ¼ P1 [ P2

ii. T3 ¼ ðT1n t1f gÞ [ T2 [ ta; tbf g
iii. F3 ¼ ðx; yÞjðx; yÞ 2 F1 ^ x 6¼ t1 ^ y 6¼ t1f g [ ðx; yÞjðx; yÞ 2 F2f g

[ ðx; taÞjðx; t1Þ 2 F1f g [ tb; yÞjðt1; yÞ 2 F1f g [ ðta; i2Þf g [ o2; tbÞf g

Proposition 2 (G-soundness of WF-net composition) Let both PN1 and PN2 be G-
sound WF-nets and t1[T1 be a transition of PN1, WF-net PN3 ¼ PN1 �t1 PN2 is
also G-sound. Proof: in (van Hee et al. 2003).

Proposition 3 (K-soundness of WF-net composition) Let PN1 be K-sound and
PN2 be G-sound WF-nets and t1 [ T1 be a transition of PN1, WF-net PN3 ¼
PN1 �t1 PN2 is also K-sound. Proof: in Ping et al. (2004).

Definition 14 (WA-WF-net: Well-handled and Acyclic) A WF-net is a WA-WF-

net iff it is well-handled and acyclic.

Definition 15 (WRI-WF-net: Well-handled with Regular iterations)
(1) Any WA-WF-net is a WRI-WF-net.

(2) Let PN1 = (P1, T1, F1), PN2 = (P2, T2, F2) be two WRI-WF-nets and t1 [ T1,
then PN3 ¼ PN1 �t1 PN2 is a WRI-WF-net.

(3) LetPN1 = (P1, T1, F1),PN2 = (P2, T2, F2) be twoWRI-WF-nets and t1 [ T1, then
PN3 ¼ PN1 �t1 PN

�
2 is a WRI-WF-net (where PN2

* is the extended Petri net).

(4) WRI-WF-nets can only be obtained either by (1), (2), or (3).

Theorem 1 WRI-WF-nets are 1-sound. Proof: in Ping et al. (2004)

Corollary 1 A WRI-WF-net is G-sound. Proof: in Ping et al. (2004)
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Chapter 7

Logic Issues of DSM-Based Processes

In this section, we present a comparative review of DSM-based process schemes in

DSM literature (Karniel and Reich 2009). The survey proposed a classification

model that segregated the different DSM-based approaches, and is further used to

analyze the verification consequences of the logic implementation practiced in

each case. Two aspects of process logic verification are discussed: (a) Presentation

and modeling of process logic, and (b) Verification of process logic.

No previous DSM-based related work has comprehensively discussed logic

verification issues; thus, the formulation and examples developed for this com-

parison are contribution of the current research to the analysis of the DSM-based

literature. The definitions and analysis tools were further used in the development

of the DnPDP framework (Karniel and Reich 2007) presented in Chap. 8.

7.1 Presenting Process Logic in DSM

Presentation of process logic within the DSM is described in (Clarkson and

Hamilton 2000; Browning 2001). In both cases, different symbols are used to

indicate AND/OR logic. The presented DSM models had no distinction between

output logic and input logic. The following example (Karniel and Reich 2009)

demonstrates the inability of a single DSM to represent both input logic and output

logic at the same time. Furthermore, Clarkson and Hamilton (2000) indicated that

such marking created confusion when trying to reorder the matrix. In both cases,

this line of research was not continued.

Assuming four activities, W, X, Y, and Z, with DSM markings labeled ‘a’ to ‘d’,

as depicted in Fig. 7.1a. The Output Logic of activitiesW and X is defined as Split-

And (to both Y and Z). The Input logic for Y is Join-And (from W and X) and the

input logic of Z is Join-Or (from W and X).

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_7,
� Springer-Verlag London Limited 2011
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When defining the symbols: Split ()); Join ((); And (•); and Or (+); the above

logic descriptions are formulated by symbolic representation shown in Fig. 7.1b.

Actually, there is no marking scheme that can convey such logic in one matrix.

SinceW and X have the same output logic, the markings in their columns should be

the same, a = c and b = d. The input markings (in the row) of Y should be

equivalent to the column of W (i.e., a = a, b = c) and the column of X (similarly,

a = d), thus we get a = b = c = d. On the other hand, they should differ

from those in Z, i.e., a = b or c = d. Overall, the requirements result in a

contradiction.

As further detailed in Sect. 7.3, Input Logic and Output Logic are typically

different; therefore trying to express the output logic of A and the input logic of B

on the link from A to B is bound to lead to definition problems. Separating the

logic presentation to two matrices, Input Logic and Output Logic will overcome

the above problem. The different logic matrices proposed in (Lee and Suh 2006),

can present the logic, however their integration into one matrix can lead to a

problem as in the above example.

Furthermore, if the logic is defined prior to rearrangement of the matrix,

improper process may result after arrangement. For example, assigning a Join-And

input logic of forward links to Y (links from X and Z in Fig. 3.4c). A DSM rear-

rangement might cause this logic to become a Join-And of a forward link and a

feedback link (Fig. 3.4b). In such case, the resulting process is not sound, as

activity (Y) may become a dead activity (Z may send a signal to End without

sending a feedback signal), see Fig. 3.4g.

7.2 DSM Limitations

Current DSM algorithms do not address some requirements regarding process

logic, which are applicable to design process planning. The logic requirement

described in (Abdelsalam and Bao 2006), is to avoid reordering of activities within

activity loop if the internal ordering has a specific meaning (e.g., testing should not

precede design).

Coates et al. (2003) described complex logic conditions. The process described

had design tasks and optimization scheduling activity. Assume that design task B,
has a precedent design task A, Fig. 7.2a. The decision whether to perform the

scheduling activity S depends on process data, e.g., would the anticipated time

reduction due to optimization worth performing that activity. The following logic

W X Y Z

W

X

Y a c

Z b d

W ⇒ Y •Z

X  ⇒ Y •Z

Y ⇐ W•X

Z ⇐ W+X

(a) (b)

Fig. 7.1 Marking of input

logic and output logic
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applies: If scheduling optimization activity S is performed after the completion of

task A, according to condition Co, then task B should wait for completion of S;

otherwise, task B may start once task A has completed. Definitely, such logic

cannot be expressed in a DSM. To do so there is a need to switch between two

DSM configurations depicted in Fig. 7.2a and b respectively. Actually, the

scheduling activity S might be inserted between any two successive design tasks.

7.3 Process Verification Issues

There are several issues related to assigning logic to a process: first, the definition

of the process logic; then, the presentation and modeling of process logic; and

finally, the verification of the process logic to ensure process correctness. The

importance of verifying the process logic manifests in examples where the DSM

planning is converted to a logically correct process for specific DSM data; but

changes in the DSM data might yield undetermined process scheme. Notwith-

standing the importance of process logic verification, it is disregarded in the DSM-

based simulation literature.

As illustrated in the following examples (Karniel and Reich 2009a), iterative

processes are inherently subject to logic problems. Thus, the process logic should

be strictly defined. The examples present logic definition problems that manifest in

the process scheme interpretation of the DSM data.

Coupled activities in a Binary DSM , using Join-And logic, represent a dead-

lock (cf., Fig. 3.2c). Activity X waits for an input and a completion signal from

activity Y. Activity Y waits for an input and a completion signal from X.
Some sort of separation between forward links logic from feedback links logic

is therefore required. Typically, this case is solved by using Join-Or logic, or Join-

Xor logic; i.e., wait for forward link signal or feedback link signal. Such input

logic definition is sufficient if the process is serialized, i.e., there are no other

options. In a serialized process, the result of using Join-Xor is equivalent to using

Join-Or.

If the process is progressing in parallel paths, there are multiple input forward

links and multiple feedback links, and the required logic is more complicated.

Besides the separation between forward and feedback links, the logic of the

multiple forward links and feedback links should be defined. For example, Join-

And logic may apply for multiple forward links, which implies waiting for all

previous activities to complete. In Fig. 3.4c (process in Fig. 3.4h), activity Y should

wait for X and for Z to complete. Join-Or logic may apply to multiple feedback

A B

A

B 1

Co A S B

Co

A

S 1 1

B 1 1

(a) (b)

Fig. 7.2 Changing the

design process plan at Run

Time. a S does not activate.

b S does activate
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links. In Fig. 3.4e, Join-Or logic indicated that Y should iterate if X or Z have sent

feedback signal. Using Join-And logic in the latter case would mean that Y iterates

only if both have sent feedback signals. Such process scheme definition may

violate the second condition of Soundness; e.g., Z sends feedback signal to Y, and
X sends forward signal to End (Fig. 3.4j).

The Output logic, which defines a decision algorithm, may have many variants:

Split-Xor (Exclusive-or) when using a serialized simulation; Split-And of the

forward links when using parallel simulation; and Split-Or on the second iteration

of a parallel simulation allowing to chose one or more of the linked activities as

defined in (Browning and Eppinger 2002).

As discussed, distinction is typically made in the Output logic between forward

links and feedback links (e.g., using Split-Xor). Using Split-Or or Split-And logic

for that purpose will yield additional interesting requirement options. For example,

in the case of three coupled activities in Fig. 3.4d (process in Fig. 3.4i), using Split-

Or or Split-And as the Output logic, once Y has completed, may result in additional

iteration from both X and Z. Since Y Input logic should be Join-Or (being a parallel

process), and the duration of X and Z are different in the general case, Y might be

requested to iterate again (e.g., signal from X) before completing prior iteration

(e.g., due to a signal from Z).
Such case was previously defined as Lack of Synchronization problem, but is

acceptable or considered more effective (Terwiesch and Loch 1999) in the context

of design processes; therefore, this case should be addressed. One option is to

increase the duration of the current Y activity iteration. For example, Cho and

Eppinger (2001, 2005) described an algorithm for recalculating activity duration in

the case of overlapping activities. Another option might be waiting for the current

iteration to complete and performing an additional iteration of Y. While the latter

option increases the overall process duration in this case, waiting might be ben-

eficial in more complex cases.

The requirement of having Starting state and End state, is implicitly supported

by assuming they are the states before the first activity and after the final activity,

respectively. An explicit definition of such logic requirement was described in

(Abdelsalam and Bao 2006; Brucker et al. 1999). While assuming Begin and End

logic activities is obvious for serial processes, their definition is critical in parallel

processes for indicating the initiation and termination of parallel activities. The

problem of initiating parallel activities is addressed once all potential activities that

can start are checked. Yet, termination of parallel activities is not explicitly defined.

For specific DSM data, the problem may not occur. However, having different DSM

data, or changing the DSM data may result in an undetermined process.

The requirement to perform each activity at least once is necessary for design

processes. This property is assured for serial simulations in which, if feedback

iteration did not occur, the next activity according to DSM order becomes available

once its previous activity has completed at least once (Smith and Eppinger 1997b),

or the next activity according to DSM is enforced (Abdelsalam and Bao 2006).

A potential logic problem of undetermined process scheme arises in the

Signposting system (Clarkson et al. 2000). A parameter value is the outcome of
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design activity. Activity iterations are defined according to the level of confidence

in the value assigned to the parameter. Given a required confidence level of a

parameter, a confidence map defines the confidence level of its input parameters.

Each activity iteration (increasing the confidence level of the outcome parameter)

is modeled by a task. The precedence links between required confidence levels

define the precedence of tasks. The process serialization in that system has two

underlying assumptions: 1) the links between tasks (activity iterations) create at

least one continuous route from the first to the last activity; and 2) Each activity

has at least one task, which is on some route from begin to end. Since Confidence

maps definitions do not ensure these properties, an analysis is required to check the

above assumptions before any simulation.

An example of the above considerations is depicted in Fig. 7.3. Four coupled

activities (activity loop) are presented; two of them, X and Y, are parallel. In the

three cases presented, the activities have similar links, but with different proba-

bility values. Figure 7.3a presents the case of equal probabilities. Recalling that

minimum iterations expected to yield optimal processes; the arrangement in (a)

represents the minimal feedback ordering (same order as for a Binary DSM).

Equivalent result applies if X and Y are replaced. Setting different probability

values can yield the other two combinations as minimum, e.g., using the optimi-

zation procedure by Karniel et al. (2005) (Detailed in Sect. 4.2). In (b), the values

of links from W to both X and Y were set to p = 0.1.

Setting both links from X and Y to Z as p = 0.1 would result in the DSM

structure in (c).1 In the first case (a), the activities are connected to the first activity

and the last activity; the other two cases introduce parallel initiation (b) and

parallel termination (c).

Multi parallel initiation and termination of multiple paths could be handled by

the following algorithm: The first step adds Begin and End logic activities,

Fig. 7.3 Activity loops defined by DSM coupled activities

1 Other results may occur by setting different values for the feedback and forward coefficients in

(Karniel et al. 2005).
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which are first and last respectively. The second step connects the Begin activity to

all parallel activities that do not have forward link input; and connects all activities

with no forward link output to the End activity. Additionally the Output logic of

the Begin activity should be Split-And (otherwise parallel processes would not

start); and the Input logic of the End activity should be Join-And (otherwise the

process may reach a termination state while not all activities have completed,

see Fig. 3.4g and j). This algorithm implements requirements that are equivalent to

the first part of the Soundness criteria. The results of applying the procedure to the

three cases are depicted in Fig. 7.3d–f, respectively; and used for interpreting

the process schemes in Fig. 3.4f–j. This procedure is further implemented in

constructing the DSM net.

An important distinction, not being emphasized in the literature, relates to the

actual use of DSM. Two modes of work are established in the copious DSM

literature: (a) modeling an existing process by DSM; then using DSM algorithms

to improve the process; finally translating the DSM back to a process; and (b)

using DSM to model activity interaction (e.g., based on parametric relations),

manipulating the DSM, and then translating the results to a process. There is a

major distinction between the two cases. In the first case, there will typically be a

path from Begin activity to the End activity through all activities, though it is not

systematically assured. In the latter case, typically there will not be such path; thus,

using verification means is essential (Karniel and Reich 2007).

7.4 Classification of DSM-Based Simulations

Different interpretations of the DSM values for simulation were used in the lit-

erature. The current section classifies the approaches, and the next section com-

pares the actual logic interpretation of the approached described in Sect. 5.1. Three

main differentiating parameters can be addressed: The information used, i.e., DSM

type; the simulation approach: parallel or serialized; and the procedure of choosing

the next step: Simulation progress type.

All DSM types were used: Binary DSM2; Probability DSM, where probability

figures are used for simulation; and direct use of Numeric DSM with explicit

number of iterations. The Work Transformation Matrix (WTM), first proposed by

Smith and Eppinger (1997a), is used to calculate the remaining work to be done.

Combination of Numeric and Probability DSM were used in (Cho and Eppinger

2001, 2005).

Using Probability DSM for estimating iteration probabilities has two main

challenges: (a) Estimating the probability values; and (b) Interpreting the figures at

simulation time. The use of Probability DSM varies. Sered and Reich (2006) used

2 The Binary DSM itself cannot be directly used as a probability DSM since feedback iterative

links with probability p = 1, would yield infinite loops; in general, feedback probabilities should

always be less than one.
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the values directly, indicating the probability to proceed from activity to another

(either forward or feedback). Smith and Eppinger (1997b) used the feedback

probabilities directly and have a more complex derivation of forward probabilities

due to process serialization. Browning and Eppinger (2002) used the feedback

probabilities directly and the forward probabilities were used directly only at

subsequent iteration steps.

Three main simulation progress methods (i.e., choice of next activity or

activities) were utilized: Deterministic, Markov chain, and Stochastic (Monte-

Carlo) simulations. The deterministic simulation approach indicates that the pro-

cess progress is fully defined by its DSM structure. Markov-chain processes are

based on probabilistic progress from one activity to the other, where the selection

of the next state depends only on the current state. The choice might be done

within parallel (multi path) or serial activities. Monte-Carlo process is stochasti-

cally choosing one or many activities (in parallel) of all the applicable activities.

Unlike the Markov-chain, the choice might depend on previous history.

A distinction should be made between the choice of the process-progress

simulation method and stochastic (Monte Carlo) choice of other simulation

parameters. Additional parameters that contribute to the process variability

include: activity duration (fixed, changing according to learning curve, or sto-

chastic), and changes in interdependency values (binary, adding or removing

interdependencies, or changes in magnitude). The impact of such parameters is

added to the effect of the changes in the process structure. The inclusion of such

changes further complicates the system behavior because their effect is highly

process scheme dependent (Huberman and Wilkinson 2005).

Table 7.1 summarizes the classification of surveyed DSM-based simulation

tools according to the above parameters. The selected articles fully describe the

implementation of the process logic for the given DSM structure. Additional

publications describe simulation results but do not describe the process logic

implementation.

Two articles (Smith and Eppinger 1997a, b) do not describe simulations but do

describe the process logic to be implemented. In addition, the logic defined in (Smith

and Eppinger 1997b), is repeated in (Huberman and Wilkinson 2005; Yassine et al.
2003), and used in (Cronemyr et al. 2001), for simulating process improvements.

Since the following simulation-type classification refers only to the process

progress parameter, it may differ from the classification of the simulation pro-

cesses as described by the authors.

7.5 Logic Comparison of DSM-Based Simulations

In many of the articles, the underlying simulation rules are not explicit. The

simulation processes, which were described in Table 7.1, utilize different type of

logic constructs. The differences are summarized in Table 7.2. The indications

include references to potential simulation obstacles.
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Since process progress logic is the only issue being compared, the comparison

is conducted subject to assuming deterministic activity duration. It is also assumed

that the DSM was already reordered according to the applicable algorithm.

The simulation logic of the presented approaches is compared according to the

following logic issues presented in Sect. 7.3. Parallel Start (PS) indicating the

initiation of parallel activities; Parallel End (PE) indicating the logic required for

completing parallel activities (e.g., Fig. 7.3c); Input Logic in case of Multiple

Forward links (IL MF); Input Logic in case of Multiple Iteration3 (feedback) links

(IL MI); The separation of Forward links from Iteration (feedback) links at Input

Logic (IL F/I) required for preventing deadlocks (cf. Sect. 6.5); Output Logic in

case of Multiple Forward links (OL MF); Output Logic in case of Multiple Iter-

ation (feedback) links (OL MI); and Output Logic separation of Forward and

Iteration (Feedback) links (OL F/I).

Table 7.1 DSM based simulations mapping

Source Simulation

progress method

Process type DSM type

Abdelsalam and Bao

(2006)

Deterministic Serialized Numeric

Smith and Eppinger

(1997b)

Deterministic Fully parallel (Coupled

activities)

Numeric (to WTM)

Huberman and

Wilkinson (2005)

Deterministic Fully parallel (Coupled

activities)

Numeric (to WTM)

Yassine et al. (2003) Deterministic Fully parallel (Coupled

activities)

Numeric (to WTM)

Choo et al. (2004) Deterministic Serialized blocks; Parallel

activities within block

Numeric

Smith and Eppinger

(1997a)

Markov chain Serialized Probability

Sered and Reich

(2006)

Markov chain

random walk

Serialized (Coupled activities) Numeric to

probability

Melo and Clarkson

(2001)

Markov chain Serial choice (Parallel) Binary, Triangular

Coates et al. (2003) Monte Carlo

equivalence

Parallel Binary, Triangular

+Logic

Lévárdy and

Browning (2005)

Similar to markov

chain

Serial choice (Parallel) Numeric (Symbols)

Browning and

Eppinger (2002)

Monte Carlo Parallel Probability

Yassine (2007) Monte Carlo Parallel Numeric to

probability

Cho and Eppinger

(2001, 2005)

Monte Carlo

equivalence

Parallel Probability

(+ Numeric

overlap)

3 The term Iteration link temporarily replaces the term Feedback link, for distinguishing the

initials from Forward link.
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Once the logic parameters are defined, a symbolic formulation of the logic can

be generated, and is expressed by the following symbols:

Logic indication: Split ()) for Output logic; Join (() for Input logic.

Logic operations: ? (OR); • (AND); � (XOR, Exclusive-Or);

Short form of multi-variable logic operations, where Ai represents a link signal,

which can be a forward link Fi or Iteration (feedback) link Ii:
Multiple Or:

P

ðAiÞ ¼ A1 þ A2þ � � � þ An;

Multiple And:
Q

ðAiÞ ¼ A1 � A2 � � � � � An; and

Multiple Xor: �ðAiÞ ¼ A1 � A2 � � � � � An.

The Input logic formulation expresses the pre-conditions of the activity, and has

three distinct parts: logic of forward links to the activity from upstream activities,

logic of iteration (feedback) links from downstream activities, and the logic, which

might differentiate between these types.

Notations (for Table 4.2):

Imp: Implicit; J-A: Join-And; J-O: Join-Or; J-X: Join-Xor; S-A: Split-And; S-O: Split-Or;

S-X: Split-Xor; N/A: Not Applicable;

Logic formulation:

Fi: forward links; Ii: iteration (feedback) links; Split ()); Join (();

? (OR); (AND); � (XOR);
P

ðAiÞ ¼A1 þ A2 þ � � � þ An;
Q

ðAiÞ ¼ A1 � A2 � � � � � An�ðAiÞ ¼ A1 � A2 � � � � � An

Notes

a Parallel activities are implicitly started in parallel using a serialized check.

b Parallel completion is undefined; but could be implicitly assumed. Problem could be avoided

by linking parallel activities to the last activity.

c No iteration links. In Choo et al. (2004), either tearing or making the activities parallel, but

without run time iterations.

d Next activity only (other potential activities with forward links are disregarded).

e Forward links are available at stages (e.g., Fig. 1.2e); X can advance from Y only after Z is

complete.

f The case of multiple iterations is not strictly defined; consequently, the simulation might be

undetermined in such cases.

g The process may proceed only to the next activity (Fnext).

h The process may proceed to the ready activity (Fready) (see e); or any activity that has been

completed once, or it may iterate.

For example, IL (
Q

ðFiÞð Þ �
P

ðIiÞð Þ(Browning and Eppinger 2002; Lévárdy
and Browning 2005) indicates that either the activity waits for all previous

activities to complete (Join-And), or (exclusive) starts once any of the downstream

activities has completed and sent iteration signal; however, it does not accept both.

In (Browning and Eppinger 2002), it is indicated that if a downstream activity B is

active while and upstream activity A (which is linked to B) has started to iterate,

the downstream activity B stops; i.e., the upstream activity A will not get an

additional iteration (feedback) signal from B while it operates.
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In Cho and Eppinger (2005), an activity can get signals both from upstream or

downstream activities. A second forward link signal to B may follow an iteration

of A. IL ( Q ðFiÞð Þ þ P ðIiÞð Þ
The output logic indicates a decision process, i.e., sending a signal that the

current activity has completed. For example, OL ) P ðIiÞð Þ� Q

ðFiÞð Þ in

(Browning and Eppinger 2002; Cho and Eppinger 2005), implies that a signal is

either sent through an iteration link (or links) or (exclusive) signals are sent to all

forward links. Being a decision procedure, the order of checks might be signifi-

cant. The order is significant for parallel activities, and is not significant for

probabilistic choice of serial processes (where the sum of probabilities must be

one).

The examples in Table 7.2 are roughly ordered in an increasing potential of run

time (RT) process variety. The process logic circumscribes the diversity of process

scheme under the assumption of stochastic activity duration, i.e., how many dif-

ferent RT processes could be created for a given DSM by using the defined logic.

The following sections demonstrate the implementation of the different logic

options.

Figure 7.4 demonstrates some implementation differences. A DSM structure

depicted in Fig. 7.4a is represented by the process scheme in Fig. 7.4b.

(1) The deterministic definition in (Abdelsalam and Bao 2006) would always

yield the same RT process scheme (same order of activities) for a given DSM.

Using integer feedback values d3 = d6 = 1 (indicating one iteration), we get

the RT process in Fig. 7.4c.

Fig. 7.4 Run time examples

of logic implementation
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(2) Implementing parallel execution of all coupled activities according to the logic in

(Smith and Eppinger 1997a; Huberman andWilkinson 2005; Yassine et al. 2003),

referred to as design block (DB) in (Karniel and Reich 2007), yields a RT process

with potential multiple iterations of all the activities. Execution of all activities

and the first iteration are presented in Fig. 7.4d.

(3) The serialized logic of (Smith and Eppinger 1997b) may result in many

potential RT processes; three examples are depicted in Fig. 7.4f. However,

any of the process examples in Fig. 7.4e could not be a result of the process

logic due to the progress limitation of forwarding only one activity at a time

(see Table 7.2, note e).

(4) If we set d1 = d3 = 3 and all others values di = 1 in Fig. 7.4a, then

according to the logic in (Choo et al. 2004), the feedback link d6 would be

torn; and the resulting DSM would include a sub-block of the coupled

activities W and X. In the RT process (Fig. 7.4g), these parallel activities do

not iterate. The dashed link indicates the option of parallel completion (before

Y could begin). However, if all di = 1 as in example (2), all activities are

coupled, and the resulting RT would be the same as in Fig. 7.4d.

(5) Using the DSM entries in (4), but with parallel process implementation (e.g.,

Lévárdy and Browning 2005; Coates et al. 2003; Melo and Clarkson 2001),

can yield the RT process in Fig. 7.5a, and iterations of the process following

the feedback link from Z activity.

A more interesting case is execution of the feedback link from activity X in

Fig. 7.4b. The RT process (Fig. 7.5b) is the result of such iteration by the logic

implemented by (Browning and Eppinger 2002; Cho and Eppinger 2005; Yassine

2007). The logic defined in (Cho and Eppinger 2005) would yield many different

RT process schemes depending on the actual duration of the activities, due to the

concurrent execution paths and the impact of logic input, which may accept signals

from both feedback and forward activities. For example, it could result in

increasing the time of activity Y due to additional input from W in Fig. 7.5c.

However, the order of presentation in the table does not indicate any preference

of one logic definition over another. The different logic definitions may represent

different business cases. The case of applying parallel-logic for coupled activities

(Smith and Eppinger 1997a; Huberman and Wilkinson 2005; Yassine et al. 2003)

Fig. 7.5 Run time

implementation of parallel

process logic
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implies that all activities start together and the process completes once all have

completed. Such logic is unacceptable once there is defined serialization of the

coupled activities, e.g., in the case of testing activity (Lévárdy and Browning

2005), or specific serialization requirement (Abdelsalam and Bao 2006). Another

example is the use of Join-And, which is the typical input logic used for forward

links (from upstream activities) in case of multiple process paths. However,

if coupled activities are to be processed in parallel, such logic is inapplicable; and

Join-Or logic must be used.
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Chapter 8

Dynamic New-Product Design Process

This chapter describes the concepts, methods, and enhancements that compose this

research. Due to the variety of subjects, simple examples are added to each issue,

as well as simple integrated examples. The implementation of a fully integrated

example is presented in Chap. 1.

Section 8.1 presents the main DnPDP framework concepts required for man-

aging dynamic process changes of NPD processes. The proposed integrated

framework (Karniel and Reich 2007b) is presented as a closed-loop process

(Sect. 8.2), extended to a decision-making process by additional control loop

(Sect 8.3). The computational view of the framework separates it into process steps

forming the controller Meta-process (Sect. 8.4). The controller accepts product

data as feedback of the design process. The (changing) product data is converted to

a process scheme. The main conversion steps go from product data to Probability

DSM, DSM then to Design Process Matrix (DPM), and then to process scheme.

These steps, defined as the planning cycle, are overviewed in Sect. 8.5.

The evolving process models are discussed in Sect. 8.6.

8.1 Model Description

Clearly, the product structure is not completely defined at the early design stage of

NPD processes; it is evolving as the development process progresses. Conse-

quently, the DSM is not static. As the DSM changes according to the product

knowledge, the process scheme based on the DSM should also change. Hence, a

procedure for DSM translation, reflecting one cycle from planning to implemen-

tation, should be performed each time a change in product knowledge occurs.

The following sections describe the integrated approach for iterative planning,

modeling, and executing processes with dynamic process scheme (Karniel and

Reich 2007b). When integrating process planning (via DSM) and execution
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(through workflow engine tools), the limitations of both are exacerbated. In the

first step of process planning, DSM representations of product data give rise to

many process interpretations (Karniel and Reich 2009, see Sect. 7.5). The dif-

ference between business model descriptions (e.g., DSM) and the unambiguous

workflow specification required for their implementation and execution was

emphasized by (Dehnert and van der Aalst 2004). When these interpretations,

defined as Business Rules, are formulated and organized, they drive the interpre-

tation of a DSM-based plan to a concurrent process plan model, the Process
Scheme. Formalizing the BRs, including the case of self-iterations, allows

constructive verification of the process scheme based on Work-Flow (WF) nets

(van der Aalst 1998), and additional requirements specific to design processes. The

DnPDP approach presented in this section consolidates process planning and

re-planning at run time due to evolving product knowledge; dynamic process

implementation; and process execution and simulation.

8.2 Closed-Loop Process Framework

The process in Fig. 8.1 describes the framework’s closed-loop controlling process.

The control process controls the dynamically changing design process together

with its dynamic process scheme changes. This process has two types of entries:

external entries, which are not aligned with process propagation and might change

at any time; and internal entries, which are dependent on the actual progress of the

process. This description is defined as the framework operational view.
The framework includes three main blocks: the integrated -process generator

(1)1 that generates the dynamic process schemes, a process engine (9) that exe-

cutes the run time process according to the (updated) process scheme, and a

product-based process scheme generator (11) that generates the required process

scheme according to the gained product knowledge.

The integrated-process generator (1) merges external entries of required

changes, with internal feedback entries, and generates the process scheme for the

next time step accordingly. The external entries are skeleton processes (predefined

best practices) and their changes (2); any ad-hoc change (3); product requirements

(4); and resource constraints (5). The internal feedback entries are the process

status (assumed to be defined within the system) (7), and the DSM-based process

plan (6) that is generated according to current product knowledge. That plan (6) is

generated by the product-based process scheme generator (11), using the DSM-

based procedure and the planning algorithm. The specific algorithm used could be

replaced (e.g., for checking differences between planning algorithms). The input to

the latter generator (11) is the product knowledge (10), which is entered by

1 The numbers in parentheses indicate index reference in Fig. 8.1.
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developers during the design process, and is the sources of DSM-based

calculations.

The process engine (9) is assumed to have equivalent capabilities to current

workflow engines, with resources optimization capabilities (not addressed in this

research); yet, it is following a changing process scheme and therefore (unlike

current engines) has the capability to record the actual Run Time (RT-process).

The importance of this capability for modeling a dynamic process scheme is

demonstrated in Sect. 11.4.

8.3 Decision-Making View

The same system is also used for simulation, where simulation results can aid the

managers to make decisions regarding the process. One type of decisions may be

the choice of applicable business rules for interpreting the DSM-based plan. This

additional aspect is depicted in Fig. 8.2.

The system appears twice, once used for the actual monitoring of the process,

and additionally used as a simulation tool. The actual process inputs and actual

process output (process status and product knowledge) are the input to the simu-

lator that is stochastically generating multiple scenarios and can supply results,

which are then used for decision-making. Decisions might be manual (as graph-

ically represented) or can be the output of a decision algorithm. This description of

the process is regarded the decision-making view.
An additional view describing the repeated calculations of the framework is

given by the following meta-process.
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8.4 Meta-Process Description

The closed-loop iterative meta-process is depicted in Fig. 8.3. The diagram pre-

sents the meta-process activities (procedures or processes) followed by results

(information or a model), and entries of information (e.g., product knowledge and

business rules). This description is defined as the framework computational view.
Current input information at time t is utilized for planning the process for the

next time step t ? 1. The information created at the next time step t ? 1 becomes

the information used for the next meta-process calculation. Steps (I) to (III) are

done within the ‘‘product-based process scheme generator’’, Steps (IV) and (V) are

done as part of the ‘‘integrated process generator’’, and step (VI) is executed by the

‘‘process engine’’.

In the first step (I), the product knowledge is converted into a DSM. Product

knowledge includes the product structure translated to design activities at the

required detail level (typically, the work of one resource, e.g., designer, applied to

a product component, e.g., subassembly is considered as one activity); and the

influence of changes in the design created by one activity on design work per-

formed by other activities. Then, the DSM is reordered to create a process plan

assuming the process is starting now. The one-time plan assumption is typically

used in DSM-based simulations; however, in the current framework, the plan is

updated in every time step according to current project knowledge.
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Methods of acquiring the DSM information are described in (Sered and Reich

2006; Yassine 2007). It is assumed that such information can be captured and

managed by Product Data Management (PDM)/Product Life cycle Management

(PLM) systems. This step is further detailed in the next section.

The second step (II) is interpreting the ordered DSM into a DPM, making use of

BRs that define the process logic (not described by the DSM). These BRs might be

set manually or changed during the process; thus, the rules defined at time t apply
to the planning of process scheme for time t ? 1.

In step three (III), the DPM is translated into the planned process scheme. The
translation is considered technical, founded on WF-nets (Petri nets) proofs.

In step four (IV), updating the process scheme requires integration of the

planned process scheme based on the current product knowledge (the process plan

as if the process starts from scratch); and any ad-hoc changes to the process (e.g.,

changes to the skeleton process, or adding a new activity such as prototyping to

reduce development risk). This integration yields the required process scheme,
which is still an abstraction detached from the actual process status.

In step five (V), the process synthesizer (within the integrated-process gener-

ator) utilizes the required process (planned for t ? 1), the current process scheme
C-Process(t) and the actual status of the run time process RT-process(t); and

calculates the current process scheme for the next time-step C-Process(t ? 1).

Step six (VI) is the actual execution of the design process. It is not part of the

calculations, but it provides the data for the next step. This step is simulated in the

simulation mode.

Legend

Process or 
procedure

Information 
or Model

Manual entry

Next update

Fig. 8.3 Meta process model

8.4 Meta-Process Description 117



8.5 From Product Knowledge to Planned Process Scheme

The procedure of translating from DSM to planned Process Scheme, steps (I) to

(III) in the meta-model (Fig. 8.3), is defined as the process planning cycle. The

process-planning cycle is mainly focused on step (I), and has the following sub-

stages, depicted in Fig. 8.4 (Karniel and Reich 2007d).

In the following sections, the planning cycle stages in Fig. 8.4 are elaborated,

and are mapped to the meta-process steps of Fig. 8.3, in order to align both views.

Stages (A) to (E) are aligned with previous work in the literature, and are quite

similar to several other publications; yet, some enhancements are unique to the

current work and are distinguished as sub-stages. Stage (F) is relating to steps (II)

and (III); it is significantly different from any previous work, and is a main con-

tribution of the current work.

Step (I) stages:

(A) Defining design activities according to the identification of product com-

ponents and assigning design activities to these components.

(B) For each design activity, defining the parameters that influence other design

activities based on parametric links between components.

(a) Define product components

(b)  Define component 

parametric links

(c) DSM DSM 

representation 

(e)  Rearranging

(d)  Probability DSM

(f)  Planned 

process

Fig. 8.4 Process-planning cycle
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(B1) For each parameter, assigning its influence value (the influence it may

have on design changes) and setting the influence direction.

(C) Summing the influence values for each DSM cell (in order to get the Impact

DSM representation).

(D) Assigning probability values (preliminary probability DSM) and scaling

them; thus, creating a Probability DSM.

(D1) Adding self-iteration probabilities (Karniel and Reich 2007a).

(E) Rearranging the Probability DSM. The DSM can be reordered using an

optimal Sequencing and Clustering algorithm (Karniel et al. 2005); or by

using other reordering algorithms (see the DSM review in Sect. 3.3.1).

(E1) Merging activities into Design-blocks (grouped activities), then cal-

culating the merged probabilities. This step is the main source for the

requirement to add the definition of self-probability activities in the

DSM (Karniel and Reich 2007a).

Step II stages:

(F) Translating the DSM into a process scheme.

(F1) Interpreting the DSM to a Design Process Matrix (DPM) by explicitly

adding logic activities (e.g., process Begin, and End activities; Input

logic and Output logic per each design activity; or Design-block Begin

and End activities). Adding logic is done according to BRs that are set

according to business requirements.

(F2) Assigning deterministic links (p = 1). This assignment can be done

only after the rearranging the DSM, as otherwise rearrangement may

yield a feedback link with p = 1 that will cause an infinite loop.

Deterministic links describe a ‘‘must follow’’ logic that is used for

connecting logic activities to design activities (Karniel and Reich

2007c). Such links may also be used for indicating specific order, i.e.,

testing should always follow a design activity (Lévárdy and Browning

2005).

Step III stages:

(F3) Converting the DPM into an equivalent Current process scheme

(C-Process).

Transition step from product knowledge to reordered DSM, using similar

approach to sub-steps (A) to (E) (excluding sub-steps B1, D1, and E1) were

previously described and detailed in many articles, (Rogers and Bloebaum 1994;

Eppinger et al. 1994; Eppinger et al. 1997; Rogers et al. 1999; Browning and

Eppinger 2002; Sered and Reich 2006). Sub-step (B1), (D1) and (E1) are unique to

the current research (Karniel 2009). Sub-steps (B1) and (D1) were demonstrated in

Sect. 4.1. In step (E), almost any reordering procedure could be used as long as it
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keeps the property that a feedback link is necessarily representing an activity

cycle. This property is guaranteed for Partitioning (Karniel and Reich 2011), and

actually for any minimum feedback procedure (otherwise a better DSM reordering

could be found, i.e., which minimizes the number of feedback links).

Adding self-iteration probabilities do not influence the rearrangement procedure

(as diagonal values are typically ignored).

The transformation to process scheme logic for simulating the results is not

unique and is typically done in an informal way, as previously discussed in

Sect. 5.1. The formal approach for interpreting steps (II) and (III) (stages F1, F2,

and F3 respectively) is detailed in Chap. 1.

8.6 Building and Modeling an Evolving Process

In the current framework, design activities are considered as subprocesses, i.e.,

there is no notation of an atomic task. Such concept is easily adapted in building

hierarchical processes, where each activity may have a more detailed content.

Applying the concept requires a definition of the required granularity. Yet, the

level of granularity is not predefined, and the approach used enables detailing or

grouping (e.g., merging to DBs). Hence, another flexible dynamic dimension is

added to the process model.

Process modeling according to the presented approach is iterative (it repeats

every time there is a change of process knowledge), and has many stages,

involving the integration of several process models. The different process model

types are predefined processes (P-process), current processes scheme plan (C-

process), and run time process (RT-process) (see Sect. 2.4).

A high-level, best-practice predefined process is the initial skeleton of the

development process (c.f. Fig. 2.4). At that level, the complete design stage is

modeled by one activity. Using the hierarchical approach, this activity becomes a

subprocess (with actual process details set according to the product) once there is

some additional knowledge about the product structure. Using a hierarchical

Exception Handling approach, this activity could be replaced by a predefined

subprocess (according to a predefined set of options) (Klein and Dellarocas 2000).

The C-process is calculated each time when there are new product knowledge

inputs that may change the plan. There is only one current process at a given time,

which is followed by the run time process. However, there are many C-processes

over the process progress; there are many interim stages of creating the current

process; and furthermore, there might be several optional C-processes to choose

from at a certain time. All these process options are managed in parallel.

The RT-process follows the C-process that applies for the next period. Using

the hierarchical updating approach, the design activity is elaborated according to

the currently available and desired subprocess level. In turn, each of the design

activities could be further detailed to a subprocess. These subprocesses may be

more detailed design activities or predefined administrative processes.
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Administrative processes that are relevant to many design activities can occur

within any design activity. Some examples are an Engineering Change Order

(ECO), used for changing the design of a component once the component was

released. Another example could be the assignment of a part number to a new

component; typically, such task requires cooperation of an engineer with pur-

chasing and logistics employees. All current workflow systems can manage these

administrative (sub) processes, but not the changing design activities. A useful

approach that should be further investigated is the use of distributed workflows for

the administrative subprocesses that are controlled by the main process, as

described in (Reichert et al. 2010).

References

Browning TR, Eppinger SD (2002) Modeling impacts of process architecture on cost and

schedule risk in product development. IEEE Trans Eng Manag 49(4):428–442

Dehnert J, van der Aalst WMP (2004) Bridging the gap between business models and workflow

specifications. Int J Cooperative Inf Sys 13(3):289–332

Eppinger SD, Whitney DE, Smith R, Gebala D (1994) A model based method for organizing

tasks in product development. Res Eng Des 6(1):1–13

Eppinger SD, Nukala MV, Whitney DE (1997) Generalized models of design iterations using

signal flow graph. Res Eng Des 9:112–123

Karniel A (2009) Managing the dynamics of product development processes for new product

development. Dissertation, Tel Aviv University, Israel

Karniel A, Reich Y (2007a) Simulating design processes with self-iteration activities based on

DSM planning. IEEE proceedings of the international conference on symposium Engineering

and modeling - ICSEM’07, 33–41, Haifa, March

Karniel A, Reich Y (2007b) Managing dynamic new product development processes.

Proceedings of the 17th annual international symposium of the international council on

system engineering INCOSE’07, San Diego, California, June

Karniel A, Reich Y (2007c) A coherent interpretation of DSM plan for PDP simulation. In

proceedings of the international conference on engineering design, ICED 07, Paris, August

Karniel A, Reich Y (2007d) From planning to executing NPD processes. In the 4th annual israeli

national conference on system engineering-INCOSE_IL’07, Herzliya

Karniel A, Reich Y (2009) From DSM based planning to design process simulation: A review of

process scheme logic verification issues. IEEE Trans Eng Manag 56(4):636–649

Karniel A, Reich Y (2011) Formalizing the implementation of DSM-based process planning for

NPD. IEEE Tran on Sys Man & Cybernetics, Part A 41(3):476–491

Karniel A, Belsky Y, Reich Y (2005) Decomposing the problem of constrained surface fitting in

reverse engineering. Comput Aided Des 37:399–417

Klein M, Dellarocas CA (2000) Knowledge based approach to handling exceptions in workflow

systems. J Comput Supported Collaborative Work 9(3/4):399–412

Lévárdy V, Browning TR (2005) Adaptive test process—designing a project plan that adapts to

the state of a project. 15th Annual international symposium of the international council on

system engineering (INCOSE), July 2007

Reichert M, Bauer T, Dadam P (2010) Flexibility for distributed workflows. In: Wang M, Sun Z

(eds) Handbook of research on complex dynamic process management: Techniques for

adaptability in turbulent environments. IGI Global, Hershey, PA, pp 137–171

Rogers JL, Bloebaum CL (1994) Ordering design tasks based on coupling strengths. AIAA, paper

no. 94-4326

8.6 Building and Modeling an Evolving Process 121



Rogers JL, McCulley CM, Bloebaum CL (1999) Optimizing the process flow for complex design

projects, design optiization. Int J Prod Process Improvement 1:281–292

Sered Y, Reich Y (2006) Standardization and modularization driven by minimizing overall

process effort. Comput Aided Des 38(5):405–416

van der Aalst WMP (1998) The application of petri nets to workflow management. J Circ Sys

Comput 8(1):21–66

Yassine A (2007) Investigating product development process reliability and robustness using

simulation. J Eng Des 18(6):545–561

122 8 Dynamic New-Product Design Process



Chapter 9

From DSM to DSM Net

9.1 Introduction: DSM Translation Concepts

The following sections describe the integration of the DSM planning model with

process modeling approaches of Petri nets. First, the process correctness criteria

for the Dynamic new-Product Design Process (DnPDP) are presented in Sect. 9.2.

Most requirements are adapted from WF-net correctness criteria.

Additional requirements, which are more specific to the iterative nature of the PDP

processes, are added. Next, Sect. 9.3 presents the translation stages with a simple

example. In Sect. 9.4, the DSM representation and translation steps to DSM net are

formally defined. Petri net based results (Chap. 1) are used to prove that the process

model resulting from the translation of DSM to process scheme is correct. Readers

who are less interested in the formal definition can skip Sects. 9.5, 9.6, and 9.7.

9.2 DnPDP Correctness Criteria

Karniel and Reich (2007c) defined the following correctness criteria for a

dynamically changing process scheme (DnPDP):

1. The PDP has project characteristics; it should have a defined start and a defined

end (termination state).

2. From the currently given state, the process should be able to reach the termi-

nation state of the current process scheme.

3. Reaching the termination state (outcome of executing the End activity) should

imply:

(a) All the design activities (and all their iterations) have completed and

(b) Each design activity has been performed at least once.

4. The process should be traceable.
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5. Despite the iterative nature of the process, which enables infinite loops, the

process should be enforced to complete in a finite time.

Requirements 1, 2, and 3(a), echo the WF-net requirements. Requirement 1 was

demonstrated and discussed in Sect. 7.3. Requirement 2 in the WF-net literature

applies to the static process scheme; while in the current work, it applies for

dynamic changes of the process scheme. This requirement indicates that a change

of the process scheme at a current process state should be such that it allows the

process to terminate. The implication of the requirement is: (a) the process analysis

should apply to the current state (not for every possible state) and (b) the analysis

can be done for each of the process schemes that are applicable to the current state

using momentarily static process scheme.

Requirement 3(b) implies the completeness of the design process, assuming

that in the DSM are required. This assumption implies a relation of what
should be done (assign design activity to product component), rather than

specific design operations (i.e., how should the design be done). If the process

planning was accounting for specific operational tasks with multiple parallel

options to choose between (i.e., many ways of performing the design), then

requirement 3(b) should be modified. Using the concept of required activity

without specifying definite operations and applying 3(b) has a major benefit,

which is the ability to set a strict simulation termination criterion that is easily

checked. Otherwise, checking the process correctness would have been more

complex; i.e., requirement 3(b) should be modified to checking that at least one

of the potential options of performing the activity was executed. Requirement 4

establishes the need of process records and may have regulatory implications

(e.g., Sarbanes and Oxley 2002). The operational aspect of this requirement is

keeping the records due to following a changing scheme and for allowing

rollback. The last requirement is practical: it is required for simulation, and it

follows practical behavior. In practice, no project has unlimited duration

(unlimited resources); thus, at some point the process will be enforced to

complete or be cancelled.

9.3 Translating an Ordered DSM into a Process Scheme

Translating an ordered DSM into a process scheme has the following main steps

(cf. Fig. 9.1):

1. Translating the DSM into a Design Process Matrix (DPM), adding logic

activities and defining the logic assigned to the logic activities according to

BRs.

2. Converting the DPM into an equivalent DSM net. The DSM net becomes the

current process scheme (C-Process).

3. Using the C-Process for simulating the run time process scheme (RT-process).
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The following example relates to conversion of two parallel independent

activities from DSM to DPM, then to C-process scheme, and finally some potential

RT-process examples are presented.

The Logic activities added in Step 1 consist of Process Begin and End activi-

ties, and Input and Output Logic activities according to Implementation Rules,

Fig. 9.1b.

The interpretation from DPM to the C-Process is structurally straightforward,

Fig. 9.1c, since the process logic is neither detailed in the DPM nor in the resulting

process scheme (DSM net). Unlike Petri nets, the logic is an additional layer. The

benefit of such separation is the ability to change the logic during run time

according to the process status (e.g., number of iterations performed).

Iteration of a design activity is presented as a new activity in the RT-process

(i.e., may have different properties than a previous execution). Due to the iterative

nature of the activities, many RT-processes could be derived from a single

C-process scheme, Fig. 9.1d.

9.4 Formal Definition of DSM Conversion to a Process Scheme

The DSM represents serial activities (sequential) by forward links; parallel

activities (concurrent, independent) have no relation links; and coupled activities

(mutually dependent) form a close loop of forward and feedback links.

By establishing relations of the DSM-based process scheme to the specialized

WRI-WF-nets (subtype of Petri nets), we can use proven Petri net results for a

constructive build approach of the process scheme. We first define the DSM and

DSM reordering by partitioning; then, conversion to design process matrix (DPM)

including a step of adding logic activities; and conversion to a DSM net graph. We

prove the conversion of the DSM net to a Petri net, and finally the conversion to

WF-net. We prove that certain implementations of the DSM-based plan to a DSM

net can always be constructed as WRI-WF-net, i.e., in a hierarchical way. A

resembling approach is used in Robidoux et al. (2010) for converting reliability

block diagrams to colored Petri nets.

The DSM reordering by a partitioning algorithm (or an algorithm where

feedback link implies an activity cycle in the DSM e.g., Karniel et al. 2005)
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is important since it provides the basic mechanism to establish a process plan that

can be converted to a WRI-WF-net (Karniel and Reich 2011). The main outcome

is the conversion of block-diagonal DSM to WRI-WF-nets, which includes the

conversion of the fully parallel and the serialized processes as special cases. This

conversion establishes the further use of design blocks. Additional proof relates to

the implementation of DSM-based plan resulting from optimal sequencing algo-

rithm (where activity cycles are further decomposed to subcycles). It is proved that

the implementation is WRI-WF-net.

9.5 DSM Definitions and Properties

The definitions, corollaries, lemmas, theorems, and propositions are numbered in

sequence to the numbering in Sect. 6.7 (Karniel and Reich 2011). They are

referred by their initial letter and number. The links between the items are dia-

grammatically sketched in Sect. 14.5.

Definition 16 (DSM index, DSM reordering)

(1) DSM = (As, L) is a square matrix. Activities ai [ As, 1 B i B N are the

ordered labels of rows and columns, where As is the activity set. L is the set of

links, and l [ L indicates direct link between activities (a matrix marking).

(2) In(ai) = i is the mapping of an activity to its order index (having same row

and column index) in the DSM.

(3) Ro(DSMa) = DSMb is a permutation function (reordering) of DSM activities.

Ro is reversible. Ro = I (the identity reordering) iff Vxi, In(xi [ DSMa) =

In(xi [ DSMb).

Definition 17 (DSM Directed link, Source, and Target mapping) DSM directed

link is a marking, such that the column is the link source and the row is the link

target.

1. So(l) = aj is a mapping of a link to its source activity aj (column).

2. Ta(l) = ai is a mapping of a link to its target activity ai (row).
3. A link is the Output link of activity aj when its source is aj (i.e., the column

of aj).
4. A link is the Input link of activity ai when its target is ai (i.e., the row of ai).

Two indexing options are used: Single index lk = (aj, ai) or two indices

lij = (aj, ai), where i is the DSM row (target) and j is the link column (source). For

any specific DSM ordering, there is a one-to-one mapping between these options.

The index k is counted along the row from top to bottom (rows from left to right).

The single indexing is also used for indicating unspecified links lk = (xj, xi) (i.e.,
no specific location).

Definition 18 (Forward link, Feedback link, Self-iteration)
(1) A forward link In(So(l))\ In(Ta(l)) (column\ row, below diagonal).
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(2) Feedback link In(So(l))[ In(Ta(l)) (above diagonal).

(3) Self-iteration link is a link where In(So(l)) = In(Ta(l)) (on the diagonal).

Choosing the subdiagonal to represent forward links is a common practice in

DSM literature. Self-iterations are a subtype of feedback links. They are distinctly

referred since they are unique to this research; typically, this link type is not used

in the DSM literature (Karniel and Reich 2007a).

Definition 19 (Link Sets) The following sets of links can be defined for activity ai:

LFI(ai) = {l = (ak, ai)| k\ i} forward input links;

LII(ai) = {l = (ak, ai)| k[ i} iteration (feedback) input links;

LFO(ai) = {l = (ai, ak)| i\ k} forward output links;

LIO(ai) = {l = (ai, ak)| i[ k} iteration (feedback) output links; and

LSI(ai) = {l = (ai, ai)} self-iteration link.

Definition 20 (Regular DSM) A DSM is regular iff Vai, LSIðaiÞ ¼ [ (only off

diagonal links, no self-iterations).

Definition 21 (Acyclic DSM) A regular DSM (D5) is an acyclic DSM iff

8ai; LIOðaiÞ [ LIIðaiÞ ¼ [ (i.e., all the links are forward links).

Such DSM models a DAG process (as GANTT or PERT; see Fig. 9.9).

Note Acyclic DSM is not defined by not having cycles (despite the name), but

as having forward links (input and output) only; not having cycles is a property

proved later.

Definition 22 (DSM Path, Elementary)

(1) A DSM path C ¼ ðx1; . . .; xmÞ is a non-empty sequence from an activity x1 to
another activity xm, through directed links li 2 L li ¼ ðxi; xiþ1Þ; 1� i�m� 1.

The path length m is the number of activities in the sequence.

(2) C is an elementary path iff 8xi; xj i 6¼ j� ) xi 6¼ xj (i.e., nodes do not repeat).
(3) An alphabet operator a is defined by a(C) = {x1,…,xm}.
(4) The operator b is defined by b(C) = {l1,…,lm-1}.
(5) C , DSM iff 1ð Þ8xi 2 aðCÞ ^ 8li 2b ðCÞ ) xi 2 As ^ li 2 L:
(6) CI is a non-unique path index mapping of activity ai indicating its position in

path C;CIðaiÞ ¼ jkf g; 1� jk �m; where k is the number of applicable indices.

Elementary path and Alphabet operator definitions are equivalent to Definition 2.

Definition 23 (Forward Path) A path C ¼ ðx1; . . .; xmÞ is a forward path

iff 8xi; xiþ1; 1� i�m� 1 the link li ¼ ðxi; xiþ1Þ is forward link (D18).

Corollary 2 A path C is a forward path iff 8xi; xj i\j ) InðxiÞ\InðxjÞ.
Corollary 3

(1) If C is a forward path, then C is an elementary path (D22) (i.e., activities do
not repeat).

(2) In an acyclic DSM (D21), any path C is a forward path.

9.5 DSM Definitions and Properties 127



Definition 24 (Activity cycle, Simple activity cycle, Self-cycle)

(1) Path C = (x1,…,xm) is an activity cycle iff In(x1) = In(xm) (i.e., first and last

activities in the path are the same).

(2) An activity cycle C is a simple activity cycle iff 8i; j 62 1; mf g ) InðxiÞ 6¼
InðxjÞ (or equivalently 8i 62 1; mf gCIðxiÞ is unique); otherwise, if 9i; j i\j; i;
j 62 1; mf g ^ InðxiÞ ¼ InðxjÞ there are subcycles.

(3) Self-cycle C ¼ ðx1; x2Þ; Inðx1Þ ¼ Inðx2Þ (shortest activity cycle and a simple

cycle).

Corollary 4 (Cycle simplification) If C is an activity cycle with subcycles, a

simple activity cycle C* can be obtained from C by replacing any simple subcycle

in C, with its first activity, or replacing self-subcycle by its first activity.

Note Any cycle can be simplified, but the resulting simplified cycle might not

include all the activities that were included in the original cycle. Example in

Fig. 9.2b, from the cycle (BABDCDCB) we can obtain (BAB) by replacing

(BDCDCB) with B; or obtain (BDCB) by first replacing (BAB) with B and then

replacing (CDC) with C (equivalently replacing (DCD) with D).

Corollary 5 (Reordering a cycle) If a path C = (x1, …, xm) , DSMa is an
activity cycle, then, VRo, DSMb = Ro(DSMa),

C = (x1, …, xm) , DSMb is an activity cycle (only the order indexes (D16) of
the activities will change).

Proposition 4 (No cycles in an acyclic DSM) If DSM is acyclic (D21) then it has
no activity cycles (D24).1

Proof In an acyclic DSM, every path is a forward path since there are only

forward links, 8xi; xj; i 6¼ j; InðxiÞ\ InðxjÞ; therefore, there is no link that can

connect to the initial activity in the path (to form a cycle).

Note Though it seems obvious by name, acyclic DSM (D21) was defined by not

having feedback links. Not having cycles is a property. A general DSM with no

cycles that was not reordered by partitioning may have feedback links (i.e., is not

acyclic). Such DSM can be reordered by a partitioning algorithm to an acyclic

DSM as further proved. h

A B C D

A 1

B 1 1

C 1

D 1 1

B A D C

B 1 1

A 1

D 1 1

C 1

D C B A

D 1

C 1

B 1 1

A 1

B A D C

B 1 1

A 1 1

D 1 1

C 1

B D A C

B 1 1

D 1 1

A 1 1

C 1

(a) (b) (c) (d) (e)

Fig. 9.2 DSM types a DSM with cycles b Cyclic DSM c Block-diagonal DSM d Cyclic DSM

Modified e Nominal Cyclic DSM

1 Despite the name acyclic DSM was not defined as not having cycles, therefore the property

should be proved.
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Lemma 1 (Partitioning procedure for activities with forward links) In a reordered
DSM, if an activity is placed in different order according to steps (2) and (3) of the
Partitioning procedure (Sect. 3.3.1), then LIIðaiÞ ¼ [ and LIOðaiÞ ¼ [ (D4). It
has neither feedback input nor feedback output links.

Proof We keep two indices, Current-first and Current-last, initiated to 1 and

N (number of activities), respectively. According to step 2, each activity xi that
does not have input from other activities (being currently checked) is moved such

that In(xi) = Current-first; the index is increased and the activity is no longer

checked. Respectively (step 3), each activity xi without output link to other

activities (being currently checked) is moved such that In(xi) = Current-last, the
index is decreased and the activity is no longer checked.

An activity xi ordered by step (2) has no input link from other activities xj
being checked (current-first B j B current-last), and not from activities, which

were ordered by step (3) (that does not have output links). Therefore, there

are no input links from any other activity xj where In(xi)\ In(xj), (i.e., no

feedback input links) LIIðxiÞ ¼ [: It may have input links from other activities

already ordered by step (2), but these will be only forward input links. Fur-

thermore, since the activities xj previously ordered by step (2), InðxiÞ[ InðxjÞ;
have no feedback input links, the current activity xi cannot have feedback

output link to these activities, i.e., LIO(xi) = [. Overall, it cannot have feed-

back links.

Similar reasoning is applied to activity xk being ordered by step (3). We con-

clude that activity xk cannot have output links to any activity xj where

InðxkÞ[ InðxjÞ, i.e., no feedback output links) LIOðxkÞ ¼ [ and cannot have input

links from activities xj already ordered by step (3) where In ðxkÞ\InðxjÞ (i.e., no
feedback input links) LIOðxkÞ ¼ [:

Note A formal proof of these properties was not found in the DSM’’

literature. h

Proposition 5 (Partitioning a DSM without cycles) When applying the Parti-
tioning procedure to a DSM without cycles, the procedure will terminate by
applying step (2) only.

Proof We find an activity with no input links and make it first. Since there are no

cycles, such activity must exist. Applying step (2) again, the second activity might

have only links from the first, but since the first is no longer considered, it does not

have input links from any other activity, and so forth. h

Proposition 6 (Indices of an acyclic DSM) If two different reordering
DSMa = Roa(DSM) and DSMb = Rob(DSM) exist (D16), and both are acyclic
DSM (D21), then, Vx1, x2 ^ l = (x1, x2) [ L, if In(x1)\ In(x2) at DSMa, then
In(x1)\ In(x2) at DSMb.

Proof l = (x1, x2) is a forward link in DSMa, and since DSMb is also acyclic

the link must be a forward link; thus, the index order of the linked activities is

kept. h
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Proposition 7 (Reordering does not eliminate cycles) If DSMb = Ro(DSMa), and
DSMb is acyclic (D21), then DSMa has no cycles.

Proof (by contradiction): If DSMa had a cycle, reordering of a cycle still keeps it

as a cycle (C5); therefore, DSMb cannot be acyclic (P4). h

Theorem 2 (Partitioning a regular DSM without cycles) The Partitioning pro-
cedure applied to a regular (D20) DSMa will terminate after utilizing only steps
(2) and (3) iff ARo, DSMb = Ro(DSMa) and DSMb is acyclic (i.e., the DSM can be
reordered to an acyclic DSM).

Proof If the procedure has completed after performing only steps (2) and (3) and

there are no additional activities left to be reordered, then by Lemma 1, all the

activities that were handled have no feedback links. Consequently, the resulting

DSM is acyclic (D21); and the final places of the activities represent the permu-

tation function, i.e., such function exists.

Conversely, if DSMb is acyclic, then, there are no cycles in DSMa (P7).

Therefore, DSMa can be partitioned by applying only partitioning step (2)

(P5). h

Corollary 6 If ARo, DSMb = Ro(DSMa) and DSMb is acyclic, then applying the
Partitioning procedure to any reordering of DSMa will yield an acyclic DSM as a
result.

Theorem 2 (T2) and corollary 6 (C6) indicate that a DSM whose structure can

be represented as a DAG could be reordered to have only forward links.

Theorem 3 (Ordered DSM properties) A DSM reordered by a partitioning
algorithm: AC (activity cycle exists), iff Al such that l is a feedback link or a self-
iteration link.

Proof (1) If an activity self-cycle exists, then by definition the link l = (x1, x1) is
self-iteration link; otherwise,

(2) Considering a simple activity cycle (D24) C ¼ ðx1; . . .; xm�1; xmÞ: If any of

the links prior to the last is a feedback link, then, we are done. Otherwise, we need

to prove that the last link must be a feedback link. If all previous links are forward

links In(So(l))\ In(Ta(l)), then In(x1)\ In(x2)\ � � �\ In(xm-1), therefore, the

last link l ¼ ðxm�1; xmÞ is a feedback link, as Inðxm�1Þ[ Inðx1Þ and

Inðx1Þ ¼ InðxmÞ. An activity cycle that is not simple has a simple subcycle.

Conversely, (3) if there is a self-iteration link, we have an activity cycle by

definition.

(4) If there is a feedback link l, we want to prove that an activity path con-

taining l must be an activity cycle. On the contrary, assuming there is a path

containing l that is not a cycle.

According to (P5) the partitioning procedure of DSM with no cycles will

terminate by applying step (2). From Lemma 1, activities ordered by step (2) or

step (3) of the Partitioning procedure have no feedback links, so we get a

contradiction.
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Theorem 3 (T3) indicates that if a DSM was reordered by the partitioning

algorithm and as a result there is a feedback link, then, the DSM must contain a

cycle, i.e., it cannot be represented by a DAG. h

Proposition 8 (Feedback link in a simple cycle) If l is a feedback link (D18) in a
DSM reordered by partitioning, then, there exists a simple cycle C (D24) in which
l is the last link.

Proof If a feedback link l = (x1, x2) exists, then it is a part of an activity cycle

(T3). We define the cycle C = (x2,. . .x1, x2) and turn it to a simple cycle (C3).

h

Proposition 9 (Simple cycle reordering) If A C = (x1,…, xm-1 x1) is a simple
cycle (D24), and l = (xi-1,xi) [ b(C), then ARo, DSMb = Ro(DSMa), and
A C*_ , DSMb is simple cycle, such that l [ b(C*) is the last link and the only
feedback link in C*.

Proof C* exists by (P8), and the DSM is reordered as follows. If

min(In(xj)) = k where xj [ a(C) (the minimal order-index of activities in C), then
place xi such that In(xi) = k in DSMb. Then, for u = i ? 1 to m-1 in C, place the
activities in DSMb with In(xu) = k ? (u-i), next place x1. Then, for v = 2 to i-1

in C, place the activities in DSMb such that In(xv) = k ? (m-1-i) ? v. Therefore
we get the cycle C* = (xi,…,xm-1, x1, x2…, xi-1, xi).

In this simple cycle, all links (except the last) are forward links and the final one

is l, a feedback link by construction. We will refer to such reordering as reordering

the DSM by C*, i.e., such that the cycle has one feedback link.

Note The partitioning algorithm completes once all cycles were identified. The

additional DSM reordering defined by P9 is required for changing a simple cycle

(D24) to have only one feedback link, which is the last link. h

Definition 25 (Nominal Activity Cycle) A simple activity cycle C (D24) with

length m[ 2 is a Nominal Activity Cycle iff the last link is feedback link lm�1 ¼
ðxm�1; xmÞ; Inðxm�1Þ[ InðxmÞ and all others are forward links.

NoteSelf-activity cycle has lengthm = 2 andhas a self-iteration link. It resembles a

nominal activity cycle, but is a distinct cycle type (e.g., there are no other links).

Definition 26 (NominalDSMCycle) ANominal activity cycleC (D25) is aNominal

DSM Cycle iff In(xm) = In(x1) = 1 (i.e., it starts from the first activity in the DSM).

Definition 27 (Cyclic DSM) A DSM with N activities is a cyclic DSM iff

8i; 1� i�N; ai 2 aðCkÞ; where Ck is some Nominal DSM Cycle with index k.
Examples of cyclic DSM are depicted in Fig. 9.2b and d.

Proposition 10 (Cyclic DSM) If AC , DSM is a simple cycle, and
8i; 1� i�N; ai 2 aðCÞ (i.e., all the DSM activities belong to the same simple
cycle), then, the DSM can be reordered to a cyclic DSM (D27).
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Proof If all activities belong to the same simple cycle we can define another cycle

C*, and set its starting to activity a1, then reorder the DSM according to C* (by

P9) and get a Nominal DSM Cycle (D26); thus, the resulting DSM is cyclic. h

Definition 28 (Nominal Cyclic DSM) A Cyclic DSM (D27) with N activities is a

Nominal Cyclic DSM iff 8C ¼ ðx1; . . .; xm�1; xmÞ that is a simple cycle starting at

the first activity In(xm) = In(x1) = 1, C is a Nominal DSM Cycle (D26) (i.e., all

simple cycles from the first activity have only one feedback link).

Definition 29 (Block-diagonal DSM) A DSM is a block-diagonal DSM iff there is

at least one activity cycle, and there is no single cycle C that include all activities,

8C; 9x1; x2; x1 2 aðCÞð Þ ) x2 62 aðCÞð Þ:
Corollary 7 (Block-diagonal DSM) If a DSM is a block-diagonal DSM, then, it is
neither acyclic DSM nor cyclic DSM.

The various definitions are demonstrated in Fig.9.2a–e. Example of a regular

(D20) cyclic (D27) DSM is depicted in Fig. 9.2b. The cycles (BAB) and (BDCB)

are simple cycles with one feedback link, hence, nominal activity cycles. Both start

from (B), thus are both Nominal DSM cycles. Since all activities belong to these

cycles, then, this DSM is a Cyclic DSM. Since no other simple cycles start at (B),

then the DSM is also Nominal Cyclic DSM.

The DSM in (b) is a reordering of the DSM in (a). The DSM in (a) has cycles

(and may become cyclic), but it is not a cyclic DSM. The cycle (ABA) is a

Nominal DSM Cycle. However, (ABDCBA) is an activity cycle, but not a Nominal

Activity Cycle (has more than one feedback link), therefore it is not a Nominal

DSM Cycle. Thus, activities {C, D} do not belong to any Nominal DSM Cycle.

If either the link (B, D) or (C, B) were missing in (a), the DSM could not

become a cyclic DSM by any reordering. The result of the partitioning-procedure

after removing the link (B, D) in (b) is a block-diagonal DSM demonstrated in (c).

If we add the feedback link (D, A) to the DSM in (b), the result is the DSM in

(d). This DSM is cyclic, but no longer Nominal Cyclic DSM, since (BDAB) cycle

is not a Nominal Cycle (two feedback links). Reordering the DSM in (d) yields the

DSM in (e), which is Nominal Cyclic DSM. This reordering was done according to

(P9) by choosing the last link (A, B) in the cycle to be the only feedback link in

this cycle.

Lemma 2 (DSM simple activity cycles to Nominal Cyclic DSM) If
8ai 1� i�N; 9Ck; ai 2 ðCkÞ;where Ckis simple cycle (D24) with index k starting
at a1 (first activity), then, 9Ro, DSMb = Ro(DSM) such that DSMb is a Nominal
Cyclic DSM (D28).

Proof We need to prove that there is always a reordering such that all the simple

cycles Ck starting at the first activity a1 are Nominal Activity Cycles (D25) (and

therefore Nominal DSM Cycles (D26)). h

By (P9), for any simple activity cycle Ck we can reorder the DSM such that

only the last link is a feedback link (i.e., Nominal Activity Cycle). We will reorder

the DSM according to all the Ck cycles.
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Let CS be the minimal set of the longest simple cycles such that each of the

activities is included in at least one of the cycles in CS. Such set exists according to
the assumption, but may not be unique. Then, we generate an ordered activity list

and reorder the DSM according to that list. The following three cases define a

reordering algorithm: (a) If all activities belong to the same cycle, then the ordered

list includes the activities in their order in that cycle (removing the last activity a1).
(b) Case of no activity order conflicts between the simple cycles. No conflicts are

defined by V ai, aj, i, j[ 1 if CI(ai)\CI(aj) in Cu, then CI(ai)\CI(aj) in Cv

where u, v are cycle indices. In this case, we generate a merged list of activities,

such that all ordering constraints are kept. (c) The case of ordering conflicts, i.e.,

for an activity pair ai, aj (other than a1), CI(ai)\CI(aj) in one cycle Cu, and in

another cycle Cv CI(ai)[CI(aj). In such case, ordering the DSM according to Cu

yields a forward path between ai to aj (the only feedback link is back to a1), and
respectively there would be a forward path from aj to ai in ordering according to

Cv.. Therefore, a subcycle that includes both activities exists.

An ‘‘input path’’is a path from a1 to an activity within that subcycle such that the
path does not include any other activity, which belongs to the subcycle. Respec-

tively, an ‘‘output path’’ is a path from an activity within the subcycle to a1, which
does not include other activities of the subcycle. Furthermore, this subcycle must

have at least two distinct forward ‘‘input paths’’ and two distinct ‘‘output paths’’;

otherwise, there could not be two contradicting simple cycles (the two subcycle

sections included in Cu and Cv should have at least two intersection points).

In case (c), the following algorithm steps apply:

(1) Identify the minimal set of longest subcycles that include the activities with

conflicts, where each subcycle has two ‘‘input paths’’ and two ‘‘output paths’’.

(2) For each identified subcycle: Identify the activities that are in ‘‘input paths’’

and add them to the input path list (IPL). Identify the activities that are in

‘‘output paths’’ and add them to the output path list (OPL). Choose a path of

the activities in the subcycle such that it begins with an activity in the IPL,

ends with an activity in the OPL, and includes all the activities in the cycle.

There might be multiple options for such choice. If an activity belongs to both

the IPL and OPL, then, choose the path option in which the activity is the

latest in that path.

(3) Alignment of multiple subcycles and multiple options: choose a set of options

that have no conflicts. If there are unresolved conflicts between the subcycles,

then there are subsubcycles, and the procedure is applied recursively.

(4) Now, there are the aligned forward paths of the subcycles, input paths of each

subcycle, and output paths of each subcycle. These paths have no conflicts so

they can be merged. Continue as in case (b). Wrapping up, we have a reordering

by which any simple cycle starting from a1 is a Nominal Activity Cycle (D25).

An implementation example of case (b) refers to Fig. 9.2d. The list of cycles is

{BAB, BDAB, BDCB}. CS is {BDAB, BDCB}, there are no conflicts and the

merged list is (BDAC) (or it could be BDCA). The resulting reordering is depicted

in (e).
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An example of case (c) in L2 is depicted in Fig. 9.3. In Fig. 9.3a, we can

identify many cycles such that activities belong to some simple cycles that

start from activity A. A choice of minimal set of longest cycles can be

{(AJFEKGCDBHIA), (ACFEKGLA)}. There are other options.

The conflicts in this set are between a subpath (FEKG) and C within the cycles,

the paths ((FEKG)C) in the first cycle, and (C(FEKG)) in the latter. We can

identify the following subcycles (CDGC) and (CFEKGC).

For the subcycle (CDGC), the input paths are (AC), (AJFD), and (AJFEKG);

thus, the input list is IPL = {C,D,G}. The output paths are (DBHIA), (GLA)

(DA), and the output list is OPL = {D,G}. The optional paths of this cycle are

(CDG) and (GCD).

For the subcycle (CFEKGC), the input paths are (AC) and (AJF); thus,

IPL = {C,F}. The output paths are (CDBHIA), (FDBHIA), and (GLA); thus,

OPL = {C,F,G}. The optional paths are (CFEKG) and (FEKGC).

There are two options choosing aligned subcycle paths (CDG and CFEKG) or

(GCD and FEKGC). The merger to an ordered activity list is done by merging the

cycles, choosing an input path, and choosing an output path. In the first case, the

merger should include C in the beginning, G at the end, and D in any position before,

within, or after FEK. The optional mergers are: (CDFEKG), (CFDEKG),

(CFEDKG), and (CFEKDG). A general way to write these options might be

(C[EFK||D]G), where ‘||’ indicates parallel paths. The output paths have no conflicts

and no links; therefore, can be assigned in parallel [BHI||L], i.e., (LBHI), (BLHI),

(BHLI), and (BHIL). Summing up, for the first option themerger can be described by

(AC[EFK||D]G[BHI||L]), multiple parallel ordering options. All the ordering options

described by the compressed parallel form are describing the same DSM net.

For the second choice, the path (GC) is a constraint, and we get (FEKGCD) as

the only merger option. The multiple ordering options can be described by

A B C D E F G H I J K L

A A 1 1

B B 1

C 1 C 1

D 1 D 1

E E 1

F 1 F 1

G 1 G 1

H 1 H

I 1 I

J 1 J

K 1 K

L 1 L

A J F E K G C D B H I L

A A 1 1

J 1 J

F 1 F 1

E 1 E

K 1 K

G 1 G 1

C 1 1 C

D 1 1 D

B 1 B

H 1 H

I 1 I

L 1 L

(a) (b)

Fig. 9.3 Reorderinga cyclicDSMtoaNominal cyclicDSMaAcyclicDSMbNominalCyclicDSM
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(AJFEKG[CDBHI||L]), where L is parallel to (CDBHI). Ordering according to the

second merger choice, and choosing the output paths merger option

(AJFEKGCDBHIL), yields the reordering in Fig. 9.3b.

Notes

1. In the case of all activities belonging to the same cycle, the resulting reordered

DSM is Nominal Cyclic DSM and a cyclic DSM by (P10).

2. The condition part of L2 is equivalent to checking if every activity belongs to a

simple cycle containing a1, such that the cycle could be set to have a1 as the

first activity in the cycle.

3. An example where the conditions do not hold is presented in Fig. 9.4. No

activity is linked to all other activities by a simple cycle and therefore the DSM

cannot be reordered to Nominal Cyclic DSM.

Theorem 4 (DSM partitioning) Using the Partitioning procedure in Sect. 3.3.1.

Any DSM will be reordered to one of the following potential results, using the
following procedure type:

(1) An acyclic DSM (D21), using only procedure steps (2) and (3)

(2) A cyclic DSM (D27) having all its activities belonging to the same activity
cycle (the procedure will just identify the cycle and will not do any ordering.
Ordering of this case is done in L2).

(3) A block-diagonal DSM (D29), including the following types:
(a) Parallel distinct cycles, VaiACk (Ckis a simple cycle), for which

j 6¼ k ) ai 2 aðCkÞ ^ ai 62 aðCjÞ; and if ai 2 aðCkÞ aj 2 aðCgÞ i 6¼ j k 6¼
g ) ðai; ajÞ 2 ;. Every activity is part of only one simple cycle; if activity
belongs to one cycle it has no links to activity in other cycles.

(b) Sequenced cycles, Vaiif ai 2 ðCkÞ ) ai 62 aðCjÞ j 6¼ k. In this case, there
might be activities that are not in any cycle, but they link between cycles; or
there might be links between activities in different cycles, e.g., Fig. 9.2c
link (C, B).

(c) Shared cycles, activities may belong to several cycles.

Proof Case (1), ‘no feedback links after reordering,’ is proved by (T2).

In case (2), since all activities belong to a cycle, each has an input and an output

links; thus, steps (2) and (3) of the procedure are not performed. All activities are

collapsed and then expanded back with no change of order. We get a cyclic DSM

according to (L2).

Fig. 9.4 Not a nominal

cyclic DSM
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In case (3a), all cycles are collapsed (step (5) of the procedure); since no

collapsed cycle has input links, they are just ordered one by one and expanded

back. As a result, we get blocks along the diagonal.

In case (3b), cycles are collapsed and the remaining activities and the collapsed

cycles are reordered. The reordering of remaining activities and collapsed cycles is

to an acyclic DSM by steps (2) and (3) (otherwise, we would have additional

cycles). Once the cycles are expanded, we get block along the diagonal linked by

forward links between them or forward links to activities.

Case (3c): All the cycles that share activities will collapse into one. If an

activity belongs to two cycles, the first cycle will collapse then the collapsed cycle

will still be part of a cycle (the second one) and would collapse. After all col-

lapsing steps, the temporal DSM might be either like case (2), the whole DSM is

one block; like (3a) distinct blocks or (3b). h

Proposition 11 (Creating Nominal Cyclic DSM) If a DSM D with N activities has
the following properties

(1) 8i; 2� i�N � 1; LFIðaiÞ 6¼ U ^ LFOðaiÞ 6¼ U (forward input and output
links);

(2) i ¼ 1; 9LFOða1Þ 6¼ U;

(3) i ¼ N; 9LFIðaiÞ 6¼ U; and
(4) there is a feedback link l = (aN, a1), then D is a Nominal Cyclic DSM (D28).

Proof Since each activity has input forward links it must be linked to a former

activity (i.e., smaller index), and therefore must be linked to activity a1 through a

forward path. Using similar logic each activity must be linked to activity aN
through a forward path. Hence, every activity is on a path from a1 to aN.. Every
activity is part of a Nominal DSM Cycle (D26), which includes the forward path

from a1 to the activity, the forward part from the activity to aN, and the feedback

link (aN, a1); and D is a Nominal Cyclic DSM. h

9.6 Converting DSM to Design Process Matrix

The planned activities may have all types of links. For converting the results of a

DSM planning to a process, some additional basic structural definitions are

required to assure certain process features. The following requirements were

defined in Sect. 9.2 (Karniel and Reich 2007c):

(1) The design process should have Start and End activities being defined;

(2) From any given process state, the process should be able to reach the process

End;

(3) When the process terminates (End activity executes), this should imply:

a. all the design activities (and all their iterations) have completed and

b. each design activity has been performed at least once.
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The following algorithm was suggested in Karniel and Reich (2007b), for

converting a DSM plan to a Design Process Matrix, the DPM:

(1) Add Begin and End activities, before and after the design activities,

respectively.

(2) Connect Begin activity to all parallel activities that do not have forward link

input.

(3) Connect all activities with no forward link output to the End activity.

Many implementations of DSM-based plans (either the initial DSM or the

reordered DSM) do not fulfill these requirements; for example, implementing a

straightforward direct conversion of a DSM to a process scheme (WF-net). In such

conversion, an activity is translated to a transition; and each link is translated to a

triad (edge, place, edge): an edge from the source transition (activity); a place; and

an edge to the target transition (activity). In order to create a valid WF-net we also

need to add starting and termination places (Definition 6).

Definition 30 (Logic activity) An activity is a Logic activity if it is connected to

design activities or other logic activities, does not have self-iteration links, and its

duration is zero.

Note in a Petri net, such activity must ‘‘fire’’ once its preconditions are met.

Definition 31 (DPM) The DSM is a DPM iff

(1) There is a Begin logic activity that is linked to and does not have input forward

links (from other design activities).

(2) There is an End logic activity linked to, which have no output forward link to

other design activities.

Corollary 8 The DPM is a DSM (i.e., all definitions apply).

Corollary 9

(1) In DPM, every activity belongs to a forward path from Begin to End.
(2) In DPM, every forward link belongs to a forward path from Begin to End.

Proposition 12 (DPM Links) Every link in a DPM belongs to a path from Begin
to End.

Proof
(1) Self-iteration link lii = (ai, ai). Since every activity ai is on a forward path

(C9), then adding a subcycle (ai, ai) to that path will make the self-iteration

link lii a part of the path from Begin to End.

(2) Feedback link lij = (aj, ai) is part of a cycle C = (ai,…,aj, ai,). All other links
in this cycle are forward links; thus, are part of a forward path from being to

end. Therefore, adding the cycle to the forward path will make lij part of a
required path. h
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Proposition 13 (DPM to a Nominal Cyclic DSM) After a DPM was created (by

D31), if we add a feedback link from the End activity to the Begin activity, then,
the resulting DPM is a Nominal Cyclic DSM (D28).

Proof (by P11):

(1) Every design activity has either forward links from other design activities or a

forward link from the Begin activity. Respectively, it is either linked to other

activities by forward link or linked to the End activity.

(2) In DSM, the first activity has no prior forward link, so it was linked from

Begin activity.

(3) In DSM, the last activity has no output forward link, so it was linked to the

End activity.

(4) A feedback link from End to Begin was added to the DPM.

Fig. 9.5a depicts a Nominal Cyclic DSM (the two Nominal DSM Cycles are

(ABCA) and (ADA); the cycle (BCB) is a subcycle. In this example, activity C has

no forward out link; thus, it demonstrates that P11 is a sufficient but not a nec-

essary condition. When reordering the DSM to Fig. 9.5b, the resulting DSM is not

a Cyclic DSM since (ABCA) is not a nominal activity cycle (two feedback links).

Applying the proposed algorithm according to P13, we get the DPM in

Fig. 9.5c and d, respectively. In Fig. 9.5c, forward link from Begin (Be) was added

to activity A only defiand forward links were added from C and D activities to End

(En). In Fig. 9.5d, forward links were added from Begin (Be) to A and C activities

(meaning they start in parallel), and forward links from B and D activities to End

(En) were added. Finally, the (End, Begin) feedback link (bold italic font) was

added. In both cases, the DPM is a Nominal Cyclic DSM. h

9.7 The DSM Net

TheDSMnet is an activity net task net inWestfechtel (1999), that can include design

activities and logic activities (e.g., Begin and End). The logic activities implement

the process logic. Input Logic (IL) defines the preconditions of a design activity.

Output Logic (OL) defines the decision procedure of sending process control signals
(e.g., continue to next activity or make iteration to previous activity).

The motivation for defining logic activities is inherent to the implementation of

iterations, as demonstrated in the following simple example.

A B C D

A 1 1

B 1 1

C 1

D 1

A C B D

A 1 1

C 1

B 1 1

D 1

Be A B C D En

Be 1

A 1 1 1

B 1 1

C 1

D 1

En 1 1

Be A C B D En

Be 1

A 1 1 1

C 1 1

B 1 1

D 1

En 1 1

(a) (b) (c) (d)

Fig. 9.5 From DSM

activities to design process

matrix (DPM) a Nominal

Cyclic DSM b DSM with

Cycles c DPM from DSM (a)

d DPM from DSM (b)
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A DSM with activity cycle is depicted in Fig. 9.6a. Its direct conversion to a

Petri net is depicted in Fig. 9.6b, resulting in a deadlock. In Fig. 9.6c, a sound

process implementation of the cycle is presented, which is a WRI-WF-net.

The process in Fig. 9.6c can be constructed as follows. A serial net PN1 is

depicted in Fig. 9.7a, described by (i, A*, o), where places i and o are the start

and termination places and A* is an activity. Another serial net PN2 is described

by (p1, A, p2, B, p3), its extended net PN2* is depicted in Fig. 9.7b. The start and

termination places of PN2 are p1 and p3, respectively, and the extended Petri net

PN2* is defined by adding transition f between p3 and p1. PN2 is serial and well-

handled net; thus PN2* is well-handled with regular iteration (WRI-WF-net).

Refining A* in PN1 by PN2*, according to Definition 13, and renaming ta and tb
to Be and En, respectively, we get the net in Fig. 9.6c, which is a WRI-WF-net

by (D15).

By definition (D15), any transition can be refined by a serial net; thus, the net in

Fig. 9.8a can be generated from the net in Fig. 9.6c, as follows. Activity Be in

Fig. 9.6c is refined to (Be, place, a1); Activity A is refined to (a3, place, A, place,
a4); Activity B is refined to (b1, place, B, place, b2); Activity En is refined to (b3,
place, En); and finally f is refined to (b4, place, a2).

Then, subnets are allocated to logic activities. The subnet consisting of {a1, a2,
a3, and p1} is defined as ILa, the input logic of A; a4 is defined as OLa, the output
logic. Using similar allocations for B, b1 is defined as ILb, and the subnet {b2, b3,
b4, and p3} is allocated to OLb. The result is the Petri net depided in Fig. 9.8b.

In Fig. 9.8c, each sequence of (edge, place, edge) was replaced by a DSM net

edge; and the start and termination places were removed to obtain the DSM net.

This DSM net can be represented by the extended DPM in Fig. 9.8d. Alternatively,

the DSM net is the direct conversion of the extended DPM to a net.

A DSM net can be directly converted to a Petri net (D36). An inverse con-

version exists in certain cases (D38 and P14), e.g., from Fig. 9.8b, c. Yet, these

BA BABe

f

En
p1 p3p2i o

A

A

B

B 1

1

(a) (b) (c)

Fig. 9.6 DSM and potential

implementations a DSM

b Direct implementation;Petri

net (deadlock) c A sound

implementation; WRI-WF-

net

BA

f

p2

i o
A*

(a) (b)

Fig. 9.7 Building the DSM

net a Initial serial net PN1

b A well-handled net with

regular iteration (WRI-WF-

net) PN2
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representations are not the same since the logic activities may represent a complex

subnet. The complex logic that addresses the requirement of iterations is ‘hidden’

in the pairs of IL and OL logic activities.

The overhead of logic activities (e.g., comparing Fig. 9.8c to Fig. 9.6c) is

justified when self-iterations are considered, and it simplifies the construction of a

process with multiple links.

It is proved that the DSM nets of an acyclic DSM (P16), DSM with self-

iterations (P18), and strict block-diagonal DSM (P20), with simple logic (Join-

And, Split-And) are equivalent to WRI-WF-nets. Therefore, soundness properties

are kept in hierarchical building of the process, i.e., an automated process build

approach is possible.

Definition 32 (DSM net) DSM net is a tuple DN = (As, L, In, So, Ta), where
a [ As are the net nodes, representing design activities and logic activities;

l [ L are the net directed edges representing the links between activities. The

mappings In, So, Ta are the node (activity) index mapping (to DPM), edge (link)

source, and edge (link) target, respectively.

The DSM net DN and the DPM matrix are equivalent representations. The

DSM net can be directly derived from the DPM matrix, and vice versa. Being

equivalent representations one can choose either representation form. However,

the transformation from DSM via DPM to DSM net is not unique. The DSM

matrix may have many orderings that are equivalent to the same DSM net DN. As
previously described, it is possible to find a permutation function that will reorder

the DSM such that each feedback link is the only feedback link in a simple cycle.

BABe

b4

En

a2

a1 a4 b1 b2 b3a3

BABe EnILa OLa ILb OLb

p2p1i op3

p2i o

BABe EnILa OLa ILb OLb

(a)

(b)

(c)

(d)

Fig. 9.8 From a WRI-WF-net to DSM net to extended DPM a WRI-WF-net expansion b Logic

activities (Petri net) c DSM net (Serial implementation) d Extended DPM
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From a process perspective the choice between equivalent DSM orderings is

unimportant; yet, differences between reordering that yield different DSM nets are

important. We can further assume that the DSM was reordered to an acyclic DSM,

a block-diagonal DSM, or a Nominal Cyclic DSM, prior to its conversion to DPM,

and to DSM net.

DSM of five activities and five links is presented in Fig. 9.9a. Matrix reordering

may yield the DSM in Fig. 9.9b. Both are equivalent to the DSM net in Fig. 9.9c.

From a user perspective, the graph positioning may alter; while being the same

graph and the DSM net is presented by two equivalent graphical options. Using the

descriptive notation used in L2, we can describe the different options by

(A[B||C][D||E]).

Note The indices of the activities, and therefore the link location indices, are

different between the DSM matrices, e.g., link from the activity labeled ‘B’ to the

activity labeled ‘E’ has the location (2, 5) in Fig. 9.9a and (3, 4) in Fig. 9.9b.

Optimal reordering of the DSM according to Karniel et al. (2005) could result

in any of those solutions as minimum (and few others) with the same cost function

value. Since the algorithm steps are probabilistic, the resulting solution should not

be dependent on the initial guess, unless stuck in local minima.

Corollary 10 A DSM net is equivalent to a directed graph with nodes (transitions,
i.e., activities) and directed edges (links). In this graph, there is at most one
directed edge (at each direction) between any two nodes. V {ai, aj} [ As,
(ai, aj) = [ or (ai, aj) = lji [ L.

A DSM net can be generated from any DSM; yet, in the current research, we
focused on DSM nets that represent DPM, and are based on partitioning ordered
DSM, where feedback links indicate activity cycle.

Definition 33 (Path in DSM net, Elementary)

(1) Path C = (x1,…,xm), xi [ As is a non-empty sequence from a node (activity) x1
to a node xm, such that the directed edge (link) (xi, xi?1) = li [ L for

1 B i B m - 1.

(2) C is elementary path iff Vxi, xj i = j ) xi = xj (i.e., nodes do not repeat).

(3) The operator a is defined by a(C) = {x1,…,xm}.
(4) Operator b is b(C) = {l1,…,lm-1}.
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(a) (b) (c)

Fig. 9.9 DSM and its corresponding DSM net a DSM b Reordered DSM c Equivalent

DSM net
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Elementary path and the operator a definitions are equivalent to (D2).

Definition 34 (Regular DSM net) DSM net DN is regular iff Vl [ L,
So(l) = Ta(l).

Definition 35 (Acyclic DSM net) Acyclic DSM net is a DSM net DN of an

ordered DSM iff Vl [ L, In(So(l))\ In(Ta(l)).
Conversion of DSM (DSM net) to a Petri net can be easily done in the case of

acyclic DSM (DSM net). Converting to a WF-net requires additional links and

nodes as subsequently discussed.

Definition 36 (Converting DSM net to Petri net) Conversion mapping DnP = (T,
P) is defined from DSM net to Petri net, iff

TðAÞ ! T is a mapping of DSM activity ai to Petri Net transition ti;

p lkð Þ ! fik; pk; fkj
� �

is a mapping of DSM linkage (with some index k) to a

triple: Petri net place node pk, an edge fik = (ti, pk), and an edge fkj = (pk, tj);
where tj ¼ T So lkð Þð Þis the linkage source and tj ¼ T TaðlkÞð Þis the linkage target.

Definition 37 (Converting DSM to WF-net) A DSM is converted to WF-net, iff

(1) The DSM is reordered by the partitioning procedure and converted to a DPM

(2) The DPM is converted to a DSM net

(3) The DSM net is converted to a Petri net (D36)

(4) A starting place and a termination place are added before Begin and after End

activities, respectively.

Definition 38 (Converting Petri net to DSM net, Inverse conversion) A conver-

sion from Petri net to DSM net exists, iff after the removal of the special places i

(starting place) and its corresponding arc, and the place o (termination place) and

its corresponding arc the following mappings exist:

(1) T�1ðTÞ ! A is the mapping of Petri net transitions to DSM activities.

(2) Vpk [ P, p�1ðfik; pk; fkjÞ ! ðlkÞ is the mapping of tuple (edge, place, edge) to a

link in a DSM net.

Proposition 14 (Inverse conversion) A conversion from Petri net to DSM net
(D38) exists iff Vp [ P, |•p| = |p•| = 1.

Proof Conversion of transition to activity and v.v. is one to one; therefore, we

need only to consider places. If each p has only one previous transition and one

post transition then the mapping P-1 exists, since each place is part of a unique

triple that can be converted to a DSM link. Conversely, if the mapping exists, each

place is linked only to one previous transition and one post transition. h

Corollary 11 If a Petri net was defined by conversion of a DSM net, then, it has
an inverse conversion to DSM net.

Proposition 15 (Acyclic DSM to WF-net conversion) If an acyclic DSM is
converted according to (D37), then
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1. The result is a WF-net (D6);
2. The WF-net has no cycles; and
3. The WF-net has only Split-And and Join-And logic.

Proof

1. Following (D6), there are start and termination places by construction.

According to (C9) and (P12) all activities and links of the DPM are on a path

from Begin to End. Activities are converted to transitions and links to places

(and edges). Therefore, every node is on a path from the starting place to the

termination place.

2. Since the DSM is acyclic then by (P7), the reordered DSM is also acyclic, and

the DPM is acyclic (C8). By (D35) the DSM net is acyclic, and therefore DSM

net cannot have cycles (otherwise, the DPM would have feedback links or self-

iteration links). The conversion of a link to two edges and a place cannot add

cycles, and the resulting WF-net has no cycles.

3. According to the conversion process (D36), Vp [ P, |•p| = |p•| = 1; therefore,

by the ‘firing rules‘of the Petri net, a transition waits for all its input places to

have a token (Join-And), and once it fires all the output places get a token

(Split-And). h

Proposition 16 (Acyclic DSM to WRI-WF-net) If an acyclic DSM (D6) is con-
verted to a WF-net (D6), then the result is a WRI-WF-net (D15).

Proof the WF-net is acyclic (P15). Since Vp [ P, |•p| = |p•| = 1, any path from a

transition to a place p must be through •p, and a path from a place to a transition

must be through p•; thus, the net is well handled. By (D14), the net is WA-AF net,

and by (D15(1)), it is a WRI-WF-net. h

Definition 39 (Extended DPM) A DPM is an Extended DPM iff

(1) Vai design activity, AILi OLi, (input logic and output logic activities,

respectively).

(2) The DSM links to ai are linked to ILi (from OLi, OL of other activities or from

the Begin activity);

(3) DSM links from ai are linked from OLi (to ILi, other activities IL, or to the End
activity);

(4) There is a forward link from OLi to ai; and
(5) There is a forward link from ai to OLi.

Proposition 17 (Extended DPM is regular) Extended DPM (D39) is a regular
DSM (D20).

Proof Any self-iteration link of a DSM activity becomes a feedback link from the

OLi to ILi (D39), and logic activities have no self-iterations (D30). h

Corollary 12 The DSM net defined by the extended DPM (D39) is a regular net
(D34).
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Proposition 18 (DSM with self-iterations and no feedback links to WRI-WF-

net) A DSM with self-iterations and no feedback link can be converted to a WRI-
WF-net (D15).

Proof Since DPM of an acyclic DSM is WRI-WF-net (P16), then, by (D15(3)), an

activity (transition) can be replaced by a short-circuited WRI-WF-net, and the

result is WRI-WF-net. Therefore, we identify the design activity ai as t1; ILi and
OLi as ta and tb, respectively, in (D13); and the self-iteration link becomes the link

which makes ILi, ai and OLi a shortcircuited net. h

Definition 40 (Strict block-diagonal DSM) A partitioned block-diagonal DSM

(D29) is a strict block-diagonal DSM iff VC, where C is a cycle, then, C is a simple

cycle (D9).

Definition 41 (Enforced cycle simplification) In a DSM that was reordered by a

partitioning procedure, C* is an enforced simple activity cycle obtained from

activity cycle C = (a1,…,am), iff

1. 8ai 2 aðCÞ ) ai 2 aðC�Þ (all the activities in C are included in C*);
2. 8k k 62 1; mf g; j 6¼ k ) InðajÞ 6¼ InðakÞ (except In(a1) = In(am), the first

activity which is also the last activity in C*, all other activities are included

only once in C*); and
3. Links are added, Vk k = m-1, lk = (ak,ak-1) is a forward link, and lm-1 the

last link is a feedback link.

The enforced simplified cycle emerges from the partitioning procedure. The

internal structure of the cycle (the original links) is ignored. This simplification is

different from the simplification according to (C4), where subcycles are replaced

by the first activity, and the resulting simplified cycle may not include all the

activities, which belong to subcycles. For example, in Fig. 9.4, the cycle (AB-
CDCBA) will be simplified by (C4) to (ABA), and by (D41) to (ABCDA). Addi-
tionally, the last link (D, A) does not exist in the original cycle.

Proposition 19 (Forming a strict block-diagonal DSM) Any partitioned block-
diagonal DSM (D29) can be converted to a strict block-diagonal DSM (D40), with
one feedback link per cycle.

Proof By (T4), partitioning may result in a block-diagonal DSM. After all cycles

have collapsed, any collapsed cycle in this DSM can be replaced by an enforced

simple cycle (D41). By (P9), the activities in the simple cycle can be ordered such

that there is only one feedback link. h

Proposition 20 (A strict block-diagonal DSM to WRI-WF-net) If a DSM is strict
block-diagonal (D40), then, it can be converted to a WRI-WF-net (D15).

Proof After the collapse of all cycles according to partitioning procedure, the

resulting reduced DSM is an acyclic DSM. By (P16), this reduced DSM can be

converted to a WRI-WF-net. Replacing each collapsed node by an enforced simple

cycle according to (P19) results in a WRI-WF-net by (D15 (3)). h

144 9 From DSM to DSM Net



9.8 Conversion Process and Logic Activities

The types of formally proved process logic can describe many practical process

plans being discussed in the DSM research literature. The parallel implementation

of the formal proofs for a process with two coupled design activities is presented in

the following section. The implementation of a simple activity cycle may be done

in various ways. Two standard ways are a linearized cycle and a fully parallel

cycle.

In the linearized cycle, one activity follows the other, and the last one has an

iteration link to the first, as presented in the previous section. In the fully parallel

implementation of a cycle all activities start in parallel, and once all are complete,

an iteration link may cause all activities to repeat. The latter option was defined in

the current work as design block (DB).

The construction of the serialized DB process as a WRI-WF-net for a design

activities cycle with two activities is presented in Figs. 9.7, 9.8. The fully parallel

implementation of the same DB was built in a similar manner. The starting process

is depicted in Fig. 9.10a, which is the same as Fig. 9.7a.

The serial process in Fig. 9.7b is replaced by a parallel version in Fig. 9.10b,

where the DB has IL andOL, and the activities within the DB are linked between the

IL and the OL. The process (starting at p1 and terminating at p6) is well handled.
The process is extended by adding the logic activity f (regular iteration), which

keeps the process as a WRI-WF-net.

Refining A* in PN1 by PN2 according to D13 generates the process in

Fig. 9.11a. Transitions ta and tb in Definition 13 are replaced by Be and En,
respectively. The WRI-WF-net represents the parallel implementation of an

activity cycle (i.e., DB). If we refine each design activity by a subnet of parallel

activities, we can get a structure of parallel implementation of DBs. Such case

represents DBs that are in a cycle (actually an activity cycle separated to

subcycles).

By expanding the transitions with serial processes (which are WRI-WF-nets),

the process in Fig. 9.11b is generated.

The logic activities of the DB (marked by dash lines in Fig. 9.11b) are iden-

tified as ILdb and OLdb, respectively, and replaced yielding the Petri net in

Fig. 9.11c. This Petri net has Split-And and Join-And logic of the transitions.
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Fig. 9.10 Parallel

implementation of activity

cycle a Initial serial net PN1

b A well-handled parallel net

with regular iteration (WRI-

WF-net) PN2
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If the logic activities were only transitions, then this process would have rep-

resented a deadlock of (ILdb). However, the logic activities contain the logic

required to avoid deadlocks, as is depicted in Fig. 9.11b.

The logic of ILdb activity of the DB describes the case of a single forward and a

single feedback input links (like the logic of ILa in Fig. 9.8a). Replacing each

(edge, place, and edge) in the Petri net with a DSM net edge, we get the DSM net

in Fig. 9.11d, which is the equivalent of the DPM in Fig. 9.11e.

The more general case of IL activity logic can be described by
QðFiÞð Þ þ

P ðliÞð Þ; when using the symbolic formulation Symbolic formulation of Table 7.2

in Sect. 7.5. This logic is schematically depicted in Fig. 9.12a, where FIri (index
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Fig. 9.11 From a parallel WRI-WF-net to DSM net to extended DPM a Sound parallel

implementation of an activity cycle b WRI-WF-net expansion c Logic activities (Petri net)

d DSM net (Serial implementation) e Extended DPM
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ri = {1…r}) are the transitions accepting forward input links and F1 is the

implementation of Join-And logic. The transitions IImi (with index mi = {1…m})
are the transitions accepting iteration input links from other OL activities. Tran-

sition SI is the self-iteration input side of the self-iteration link. Any of the iteration
input transitions, or the self-iteration transition, or the join of forward input

transitions (F1) can activate F2 through the place p1. From transition F2 there is a

split to the parallel activities within the design block. An explicit implementation

of Split-And logic is depicted in Fig. 9.12b, where a link to F3 is added and the

split is done from F3 to DOni (index ni = {1…n}) transitions, which are linked to

the design activities. By adding F3 and the explicit split, the logic can be

encapsulated into two parts: the IL and the OL of the DB input logic (DBIL) as
illustrated in Fig. 9.12c.

The design block output logic (DBOL) has a similar structure (which is a mirror

of the DBIL), depicted in Fig. 9.12c. It can be represented by DBOL-IL the Join-

And of the parallel design activities within the block and the DBOL-OL. Again, the
separation to F4 and F5 transition is not necessary but is convenient for separating

the logic segments.

The output logic part (DBOL-OL) implementation is described by
P

Iið Þð Þ�
Q

Fið Þð Þ; either the self-iteration transition, or any of the iteration output transi-

tions is activated, or all forward output transitions are enabled through F6. As
further described, this logic is implemented through a probability-based decision

procedure.
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Fig. 9.12 Design block input logic and output logic a Input Logic (IL) subnet b Design block

input logic (DBIL) explicit output c The IL and OL of DBIL d Design Block output logic (DBOL)
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By assigning the complex logic to IL and OL, as done in the Extended DPM,

we make a separation layer between the DSM structure and the applicable logic

(undefined in the DSM structure). Such separation has two main benefits:

(a) As indicated in Sect. 7.1. The DSM structure is limited in presenting complex

logic.

(b) The separation allows a dynamic assignment of the logic to the IL and OL
logic activities during the process. The importance of this extended dynamic

capability of logic changes is further discussed in Sect. 11.11

The partitioning procedure yields serial, fully parallel, and block-diagonal

process cases, which are addressed by the DSM literature. The formal proofs of

previous sections can be easily applied to the above case where coupled activities

within a cycle (fully parallel or blocks in a block-diagonal process) are imple-

mented using serialization or parallelization. In addition, the case of parallel

design blocks that is the outcome of an optimal sequencing algorithm (e.g.,

Sect. 4.2) is also addressed. The implementation of the latter additional case to a

process scheme is not addressed in the DSM literature and is a contribution of the

current work.

The formal proofs provide the means for implementing all the DSM-based

plans into sound process schemes. Yet, as previously discussed, the implementa-

tion of logic is not unique. Therefore, these logic options do not fully express all

the complex process-plan options that are described in the following sections.

9.9 WRI-WF-Nets Competencies and Limitations

The constructive recursive definition of WRI-WF-nets supports hierarchical

modeling of the process. Thus, it allows the dynamics expansion of the process

scheme as demonstrated in Sect. 12.3.1. Using WRI-WF-net process construction

(that includes regular iterations only) is limited, but it addresses the results of the

partitioning algorithm and the sequencing algorithm. Therefore, it is suitable for

DSM-based process plans.

An implementation of a WRI-WF-net of a parallel process with iteration is

depicted in Fig. 9.13a. Each subprocess (BDG, CEH) is a closed loop, being a

regular iteration of well-handled acyclic process (e.g., p2-B-p4-D-p6). The process
represents the option of each parallel path to iterate. If both paths complete the

process may continue to F or any of the paths can iterate again. This process is

actually an implementation of the reordered DSM in Fig. 9.13b, and is a WRI-WF-

net.

A comparable process is defined by the DSM in Fig. 9.14a, where the iterations

definitions are different, and instead of two simple cycles, there is a more complex

cycle including {B, D, C, E}.
The DSM in Fig. 9.14a was converted such that each link in the DSM is

replaced by an edge from the transition to a place, and then an edge from the place
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to the next transition. An initial place connected to activity A, and final places

connected from activity F were added. In this case, A and F could be considered as

design activities or as the Begin and End activities, respectively, being added to

basic activity cycle. The resulting process in Fig. 9.14b is a copy of the process in

Fig. 34a, i.e., the DSM represents a deadlock.

We assume that A and F are activities. Using the partitioning algorithm would

not change the DSM, which is block-diagonal. With a straightforward imple-

mentation, the DSM was transformed to a DPM, Fig. 9.15a. Applying the strict

block-diagonal option created the block-diagonal DSM in Fig. 9.15b.

In the strict block-diagonal DSM, the activity cycle of activities (BCDE) was
converted to a simple cycle (BCDEB); a feedback link (E, B) was added. The

internal links are ignored. Multiple external links that refer to the inner structure of

the block are also disregarded.

The resulting DSM-based process can be built as a WRI-WF-net. First, the

diagonal blocks were modeled (where DB1 represented the cycle) in Fig. 9.16a.

The net is sequential and therefore a well-handled WRI-WF-net.

Then, the DB1 transition was expanded into a subnet. The subnet is an

expansion of iteration net with multiple parallel activities (as in Fig. 9.11a). The

resulting process is depicted in Fig. 9.16b. This parallel implementation of the
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simple cycle could be replaced by an iterative serial implementation, which is also

a WRI-WF-net.

By using additional logic, the process in Fig. 9.17 represents the internal links

of the DSM in Fig. 9.15a. This process (a copy of Fig. 6.8b) is sound. However, it

is not a WRI-WF-net, and it could not be created by an expansion of a WRI-WF-

net since the iteration edges link different subprocesses.

Additional logic options are presented in Fig. 9.18. The process in Fig. 9.18a is

sound: the parallel paths are synchronized and may repeat once both have com-

pleted, or the process can continue to activity F. In Fig. 9.18b, a more complex

logic is demonstrated. Once both paths (B, D) and (C, E) have completed, the

following options apply: (1) the path (B, D) may iterate (through H); (2) the path

(C, E) may iterate (through G); or (3) the process may continue to F.
The above examples demonstrate the usefulness of WRI-WF-nets, as well as

their limitations for modeling DSM-based processes. The process examples in

Figs. 9.17, 9.18 specify logic options that are not modeled by WRI-WF-nets, but

do represent applicable sound process schemes. These processes are G-Sound
(D12), therefore by P2, when using such construction as subprocesses the resulting
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net is G-sound. Such logic options are represented in the following sections by

implementation rules and business rules. While being G-sound can be easily

checked for the above examples, a more comprehensive definition of such pro-

cesses and a way to generate them is required. Further research is required in order

to extend the scope of the proofs in the current research to include such logic

options as presented in this section.
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Chapter 10

Interpretation Using Implementation

Rules and Business Rules

10.1 Single Design Activity

A design activity X has a duration property and it may iterate. The activity

duration, duration (X), is not described by the DSM matrix. The self-iteration

probability is p = Px, on the DSM diagonal. Translating a single activity DSM to

a DPM implies adding the logic activities: Begin, End, Input logic (IL), and Output
logic (OL).

The following Implementation Rules (IR) apply:
(IR 1) Logic activity duration is zero and by definition, it does not have self-

iterations.

(IR 2) Design activity has one forward input link (from IL) and one forward

output link (to OL).
(IR 3) Logic activities may have multiple input links or multiple output links,

but at least one forward input link and one forward output link; with two

exceptions: Begin has no input links, and End has no output links.

The case of one design activity is depicted in Fig. 10.1. The DSM (a) is

translated to a DPM (b). Logic activities are added: Begin (B), End (E), Input
Logic (IL), and Output Logic (OL). A marking 1 in the DPM represents either a

link with probability p = 1 or a logic link (for link from/to design activity to/from

logic activity). The self-iteration feedback probability p = P indicates the iteration

of X and is set between the Output logic activity and the Input logic activity. The

logic applied in the Input logic activity (IL) is Join-Or, i.e., signal from Begin or a

feedback signal from the Output logic activity. Respectively, the logic applied to

the Output logic activity (decision procedure) is Split-Xor; either sending a

feedback signal or a signal to the End activity.

The resulting Current process, in Fig. 10.1c, is directly inferred from the DPM.

Each off-diagonal element becomes a link. Input logic (i) and Output logic (o) are

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_10,
� Springer-Verlag London Limited 2011
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explicitly indicated (they will be implicitly assumed in the following figures). Due

to the possible iterations, the Run Time (RT) process in Fig. 10.1d has potentially

infinite number of configurations, according to the number of repetitions. Having

at least one input forward link and one output forward link (IR3) satisfies

requirement 2 (of the correctness criteria, Sect. 9.2), i.e., the process can always

complete.

Rule (IR3) implies that all activities are on a route from Begin to End; con-

sequently (after iterations), the process will terminate. The number of iterations is

practically limited by a threshold on the feedback probability. Setting Pmin as

threshold derives the maximal number of iterations, Nmax ¼ ceil( logðPminÞ=
logðPÞÞ where ceil is the nearest greater integer. These limitations satisfy

requirement 5.

10.2 Parallel Independent Activities

Two activities may be parallel independent, serial, or coupled. Parallel indepen-

dent activities process (Fig. 10.2a) has many similarities to one activity process.

The X and Y activities can iterate repeatedly according to the Current process,

Fig. 10.2c. Results of having one iteration (i.e., two activity executions) at most

are presented in Fig. 10.2d.

The parallel independent case requires clear definition of the logic assigned to

Begin and End activities. The following Implementation Rules were introduced as

a procedure that handles multiple parallel initiation and parallel termination of

multiple paths simulation (Karniel and Reich 2009).

(IR 4) The logic of Begin activity is Split-And.

(IR 5) The logic of End activity is Join-And.

(IR 6) If an activity has no previous source (in link), it should be linked from the

Begin activity.

(IR 7) If an activity has no target (out link), it should be linked to the End

activity.

Both activities (X and Y) accept links from the Begin activity (to IL); with Split-

And logic, they start in parallel. Both activities are linked to the End activity (from

OL); with Join-And logic, the End activity will be enabled once both activities

have completed their iterations.

B IL X OL E

B 0

IL 1 0 P

X 1 0

OL 1 0

E 1 0

(a) (b) (c) (d)

B X E

B E

oi

X oiX oiX

X P

Fig. 10.1 Single design activity. a DSM. b DPM. c C-Process. d RT-process

154 10 Interpretation Using Implementation Rules and Business Rules

http://dx.doi.org/10.1007/978-0-85729-570-5_9


For formulating the logic activities, we use the symbolic formulation defined in

Chap. 1:

Logic indication: Join ð(Þ for Input logic; Split ð)Þ for Output logic.
Logic operations: ? (OR); • (AND); � (XOR, Exclusive-Or).

The Join operation implies waiting for signals through the input links and is

equivalent to Boolean logic equation. Split operation implies a decision procedure,

indicating the activities to which signals should be sent. Split-Xor is an ordered

choice procedure, e.g., A ) B � C, means first check sending signal to B, if
signal was not sent to B, then send signal to C. Join-Xor is not used in the current

work, since the required behaviour is always Join-Or.

The short form of multi-variable logic operations: Multiple-Or
P

ðAiÞ ¼ A1þ
A2 þ � � � þ An; Multiple-And PðAiÞ ¼ A1 � A2 � � � � � An; and Multiple-Xor

�ðAiÞ ¼ A1 � A2 � � � � � An, where Ai represents a link signal, which can be a

forward link Fi, or Iteration (feedback) link Ii. Using the above symbols, the

following formulation is presented for the implementation of Begin and End:

Begin )
Y

ðFiÞ ð10:1Þ

End (
Y

ðFiÞ ð10:2Þ

Forward links and feedback (iteration) links may have distinct logic operands;

the following basic Implementation Rules are defined for both IL and OL.
(IR 8) Forward links to design activities (lower part of the matrix) have AND

logic, on first iteration.

(IR 9) Forward link to the End activity, has XOR (Exclusive-OR) logic with

the other links.

(IR 10) Feedback (iteration) links have OR logic.

In simple cases, the Input logic defines accepting signal from all forward links

(Join-And), i.e., the activity starts once all its precedent activities have completed;

or a signal from any of the feedback links is available; or both (cf. Eq. 10.3). The

Out-logic procedure may sends signals to any feedback link, or (exclusively) send

signals to all forward links, but not both (cf. Eq. 10.4).

X XB EX

Y

B E

Y

X XB E

Y X

XB E

Y X

(a) (b) (c) (d) (e)

Fig. 10.2 Parallel independent activities (copy of Fig. 9.1 for convenience). a DSM. b DPM.

c C-Process. d RT-process
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IL (
Y

ðFiÞ
� �

þ
X

ðIiÞ
� �

ð10:3Þ

OL )
X

ðIiÞ
� �

�
Y

ðFiÞ
� �

ð10:4Þ

10.3 Serial Activities

Serial activities in a design process might be the result of standardization (Sered

and Reich 2006), e.g., while the design of a standard part A may influence the

design of B, changes in the design of B will not affect the design of A (otherwise A

is not standard). Figure 10.3 describes an example of translation stages of a serial

process from DSM to RT-process. The link from activity X to activity Y has

probability Pxy in Fig. 10.3a. It is translated to a link from Output Logic activity

(OL) of X to Input Logic activity (IL) of Y in Fig. 10.3b.

The DnPDP correctness requirement 3b (Sect. 9.2), indicating at least one

activity execution, imposes different logic requirements on the first execution of

the design activity versus further iterations. For example, on its first execution, the

activity cannot send forward signal to End activity; sending a forward signal to the

next serial activity is required, otherwise the next activity will not be performed.

Sending signals to both (next activity and End activity) hinders IR 9 and can cause

incorrect processes (see example in Sect. 10.7.2, Fig. 10.10e).

The interpretation of the forward link with probability Pxy in case of iterations

is not unique. The issue to be considered is: If X iterates, can Y start in parallel, or

should it wait until X completes all its iterations. The interpretation may be one of

the following Business Rule options

(IR 11): Output logic options: sending completion signal(s) to following serial

design activities may follow one of the BRs:

(BR 11.1) Sending only once the activity has completed all its iterations.

(BR 11.2) Sending once the activity has completed its first execution (i.e., early

start of next activity); yet, sending a signal to End activity can be

done only once all iterations have completed (i.e., IR 9).

The first case (business rule BR 11.1) is a serial process with self-iterations,

depicted in Fig. 10.3c. Since activity Y may start only after the completion of all

iterations of activity X, and iterations are serial, the whole process is serial,

Fig. 10.3d. In this case, the probability p = Pxy has no simulative meaning. It only

indicates a forward process link; thus, it could be translated to probability p = 1.

This rule is the default rule and it complies with the basic Out-logic rule presented

in Eq. 10.4. Typically, the logic of Eq. 10.4 is the default implementation of serial

activities with self-iteration in a WF-net.
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10.4 Serial Activities with Parallel Execution

In the latter case (BR 11.2), there might be iterations of the previous activity X that

are executed in parallel to activity Y. The implementation of this case requires

additional rules, which are useful for other parallel cases as well. Such possibility

is not studied in existing literature.

(IR 12): Output logic: signal to End Activity. Second (or subsequent) execution

of an activity (e.g., X) may send signal to End Activity, while the following serial

activities (e.g., Y) have started execution (or have completed):

(BR 12.1) On the second (or subsequent) execution, the activity must be

followed by its next serial activities.

(BR 12.2) On the second (or subsequent) execution of the activity, the next

activities may follow or the End activity may follow (not both,

subject to IR 9).

Four BR combinations change the Output logic and are manifested in the DPM

structure. The first was the case of BR 11.1 and BR 12.1, already described by

Eq. 10.4. The combination BR 11.1 and BR 12.2 is formulated in Eq. 10.5; BR

11.2 and BR 12.1 in Eq. 10.6; and BR 11.2 with BR 12.1 in Eq. 10.7 (see BR Map

in Sect. 10.6).

OL )
X

Iið Þ�
X

Fið Þ
� �

� End ð10:5Þ

OL )
X

ðIiÞ þ
Y

ðFiÞ
� �

� End ð10:6Þ

OL )
X

Iið Þ þ
X

Fið Þ
� �

� End ð10:7Þ

Allowing early start option (BR 11.2) is deriving Run Time options (IR 13),

which are not described by the DPM model. These options can be addressed only

in the RT-process scheme.

(IR 13): Iterations of the same activity cannot occur in parallel:

X Y

X Px 0

Y Pxy Py

B IL X OL IL Y OL E

B 0

IL 1 0 Px

X 1 0

OL 1 0
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Y 1 0
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Fig. 10.3 Serial activities process: from DSM to RT-process. a DSM. b DPM. c C-Process.

d RT-process
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(BR 13.1): While the activity is executing, input link signals are directed to this

activity (i.e., to its input Logic activity).

(BR 13.2): While the activity is executing, input link signals are directed to the

next iteration of the activity (next iteration cannot start until current

iteration has completed).

Business Rule (IR 13) has correctness implications, avoiding activities prolif-

eration in simulation. In general, it is assumed that the same resource is doing

additional iterations of the same design activity (this assumption can be used to

decrease the duration of iterative activities, due to learning). If two resources

perform the design of the same component (e.g., developing several concepts in

parallel), then these activities should be defined distinctly (i.e., not iterations of the

same activity). In the context of administrative processes, the options described

above were defined as Lack of Synchronization conflict (Sadiq and Orlowska

1999); i.e., multiple requests for the same activity. The first option (BR 13.1)

entails defining the consequences of the additional iteration rework. Typically, the

activity duration will just increase.

Recalculating the activity duration is similar to overlapping (Cho and Eppinger

2005) and can be addressed by the same approaches: defining how much of the

work has been completed, what is the impact of the change, and how much work

remains to be done.

The implications of applying the rules are dependent on the activities relative

duration. The case where duration (X)[ duration (Y) yields similar Run Time

processes for both BRs, Fig. 10.4c and d, respectively. The more interesting case

where duration (X)\ 0.5* duration (Y) is depicted in Fig. 10.4a and b. The rel-

ative length of the activity box graphically presents the relative duration. This

presentation is imprecise since Logic activities duration is zero. Yet, the Run Time

process is presented as if it were sketched over the time axis. The exhibited

difference in Run Time process, for self-iterations, due to differences in activities

Fig. 10.4 Serial activities RT-process BR 11.2 ? BR 12.1. a RT: BR 13.1 dðxÞ\0:5 � dðyÞ.
b RT: BR 13.2, dðxÞ\0:5 � dðyÞ. c RT: BR 13.1, dðxÞ[ dðyÞ. d RT: BR 13.2, dðxÞ[ dðyÞ
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duration, is a new result, not mentioned in the literature. Self-iterations are

common in NDP processes, thus modeling, simulating, and understanding their

implications is important.

The DPM structure and the Current process scheme, after adding the link to the

End activity (at second execution or later), are depicted in Fig. 10.5a and b,

respectively. The main structural difference compared to Fig. 10.3 is the additional

link from OL (Out-Logic) activity following X to the End activity (applicable only

to the second iteration of X activity). The dashed line in the C-process indicates,

respectively, that the logic is applicable in the second execution (or subsequent).

The process cannot end after the first execution of X without performing activity

Y (correctness criterion 3(b)). This option is always economic in terms of time; yet,

quality may degrade since the implications of the change (in X design activity on

Y design activity) are not re-checked. This option is more general than the previous

one as all the RT-processes generated in the previous case (BR 11.2 and BR 12.1)

could be generated by this case, but not vice versa. An example of a different Run

Time process is depicted in Fig. 10.5c.

10.5 Coupled Activities

The coupled activities case may have serialization requirements (e.g., testing

activity should serially follow design activities).

(IR 14): Coupled activity execution starts:

(BR 14.1) (serialization) Coupled activity may start after its previous activity

(according to DSM) has completed at least once.

(BR 14.2) (parallel) coupled activity may start in parallel to all the other

activities in the same activity loop.

Serialization (BR 14.1) logic is described by the four logic-combination cases

previously discussed in Sect. 10.4 (see BR Map at Sect. 10.6). The link Pyx is

assigned from the OL of Y activity to the IL of X activity in the DPM, Fig. 10.6b.

Serialization is defined by setting Pxy = 1, i.e., Y must follow X. The case of

applying BR 12.2 (ability to send signal to End after second execution or to next

activities) is depicted in Fig. 10.6b and c. Starting coupled activities concurrently

B IL X OL IL Y OL E

B 0

IL 1 0 Px

X 1 0

OL 1 0

IL Pxy 0 Py

Y 1 0

OL 1 0

E 1 1 0

(a) (b) (c)

Fig. 10.5 Serial activities BR 11.2 ? BR 12.2. a DSM. b DPM BR 14.1. c C-Process BR 12.2
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(BR 14.2) results in processes whose Output logic is similar to the case of BR 11.2

(parallelization of the iterations of serial activities), but with different Input logic.

The Input logic for BR 14.2 is formulated in Eq. 10.8 (replacing Eq. 10.3).

IL ( Beginþ
X

ðIiÞ þ
X

ðFiÞ in loop þ
Y

ðother forward linksÞ ð10:8Þ

The difference is implemented by setting a link with probability p = 1 from

Begin, Fig. 10.7a. The options described in IR 12 are respectively replaced by the

options of IR 15.

IR 15: Sending signal on second (or later) completion of a coupled design

activity is done according to one of the following BRs:

(BR 15.1) A coupled design activity should link to the next activity on its

completion.

(BR 15.2) A coupled design activity may link to the End activity on its

completion.

The DPM in Fig. 10.7a was assigned with rule BR 15.2, i.e., there is a link from

OL of X to End (after second execution), and the resulting C-process is depicted in

b. Using BR 15.1, the latter link (to End activity) would not be included and the

resulting C-process would be as in c.

The parallel implementation according to IR 14 assumed either serialized of a

fully parallel execution of the coupled activities, i.e., DB. Both options were

formally proved to fulfill the soundness criterion, by conversion to WRI-WF-net

(Proposition 18 and Proposition 20, respectively).

Additional implementation of coupled activities (which is more straightfor-

ward, but requires a proof) allows for serial and parallel execution, where feedback

X Y

X Px Pyx

Y Pxy Py

B IL X OL IL Y OL E

B 0

IL 1 0 Px Pyx

X 1 0

OL 1 0

IL Pxy 0 Py

Y 1 0

OL 1 0

E 1 1 0

(a) (b) (c)

Fig. 10.6 Serialized Coupled activities, BR 14.1. a DSM. b DPM BR 14.1. c C-Process BR 12.2

B X

EY

i o

i o

(a) (b) (c)

B IL X OL IL Y OL E

B 0

IL 1 0 Px Pyx

X 1 0

OL 1 0

IL 1 Pxy 0 Py

Y 1 0

OL 1 0

E 1 1 0

Fig. 10.7 Parallel Coupled activities, BR 14.2. a DPM BR 14.2 ? BR 15.2. b C-Process BR

15.2. c C-Process BR 15.1
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links are applied directly as indicated (using probability matrix). In such case, IR

11 should be modified, to reflect late start (BR 11.1) or early start (BR 11.2). The

OL of the completed activities and the IL of proceeding activities should be

aligned; such alignment is inherent if the activities are serial.

IR 16: OL and IL options for early or late start of proceeding activity may

follow one of the BRs:

(BR 16.1) (late start) OL—Sending forward signal only once the activity has

completed all its iterations. IL—Starting the activity

execution once all iterations of preceding activities have

completed.

(BR 16.2) (early start) OL—Sending forward signal once the activity has

completed its first execution; yet, sending a signal to End

activity can be done only once all iterations have

completed (i.e., IR 9). IL—Starting execution once all

the preceding activities have completed at least one

execution (each).

The implementation of BR 16.2 is simple when using a decision algorithm, and

complex when using a WF-net due to the OL Split-Or logic and the need to

identify iterations of activities that are not directly linked to the End activity.

Implementing BR 16.1 is easy to implement by using the default logic of a

WF-net, but is complex to implement as a decision algorithm for the IL due to the

need to evaluate iterations. Self-iterations are easy to follow, but iteration of an

activity due to iteration of its preceding activities is more complex. Starting

according to an accepted forward link requires checking that all the activities

(before its direct preceding activity) did not iterate; otherwise, the direct preceding

activity will iterate. Yet, it is still possible that some previous activity will iterate

after the decision to start has been made and the activity had started its execution.

The implementation of the process aware logic (i.e., that takes into account the

process status) is more complex than the logic expressions, as the decision is no

longer local, but requires knowledge of the whole model (identifying previous

activities and their relations) and process status. The process performance is

derived from the combinations of the business rules (e.g., early or late start with

serialized or parallel activities). Simple examples are demonstrated in Sect. 11.7

and integrated examples in Chap. 1.

10.6 Business Rules Map

The relations between Implementation Rules, Business Rules, Input Logic, and

Output Logic equations are shown in Fig. 10.8. Input logic is described by Eq. 10.3

(for serial or serialized activities) and Eq. 10.8 (for coupled activities), respectively.

The Output logic of the various cases is formulated in Eqs. 10.4–10.7.
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Round nodes indicate ‘‘Join-And’’, i.e., in the case that both BR11.1 and

BR12.1 are applied then the logic is according to Eq. 10.4.

10.7 Business Rules Logic Examples

A formal validation of the presented Implementation Rules and Business Rules is

left for future research; yet, the following examples demonstrate the implications

of the rules by counter examples. Additional implications of rules implementation

while utilizing self-iterations are presented in the next section, extending the

justification of the above rules.

10.7.1 Self-Iterations

The implication of utilizing the above rules in the case of self-iterations (Karniel

and Reich 2007) was fully investigated for the case study of two design activities.

The example provides additional insight into iterative process modeling. This

analysis elucidates the behavioral richness and the complexity of implementing

self-iterations.

First, an enumeration approach was used to generate potential processes, and

then the cases were filtered according to the DnPDP correctness criteria (Sect. 9.2).

Then, examples of process logic problem are depicted, justifying the definition of

some of the criteria.

Applying one iteration at most (maximum two executions) resulted in 74 dis-

tinct logically-correct Run time processes, which exhibited some non-trivial

Fig. 10.8 Relations between implementation and business rules
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behavioral aspects. The logic verification analysis was done using the imple-

mentation rules applied to all the 128 potential process combinations.

10.7.2 Run Time Cases Enumeration

For maximal number of iterations Nmax = 0, we have exactly one execution of

each design activity (as enforced by correctness criterion 3(b)). The number of

activities in this case is exactly four (Begin, X, Y, End). Process generation options

for building a Run Time process with two design activities are summarized in

Fig. 10.9.

There are two options for starting the process, link from B to X (BX) or split to

both design activities (Bs); two options to link X after its completion: link to

E (XE) or link to Y (XY); and similar options for Y (YE, YX). The options

presented for X and Y are the only applicable options of the final iteration of an

activity (i.e., it cannot iterate to itself in this case as Nmax = 0). Some options are

applicable only for specific BR and specific equations, as indicated.

There are eight potential RT-processes, utilizing the three choices of ‘‘process

locations’’: Begin (2 options), X (2 options), Y (2 options). However, correctness

requirements filter out some of them. The examples are depicted in Fig. 10.10. For

easier display, we assume the Input and Output logic are embedded in the activity

(short RT-process description).

The option (BX ? XE), Fig. 10.10a, is wrong since Y activity is not executed.

Using ‘*’ as ‘do not care’ symbol, we can define the choices as {BX, XE, ‘*’}, i.e.,

the process is equivalent for both choices of the Y option (YX or YE), and in both

cases is wrong. In general, any serial process combination, which includes only

iterations of activity X, is incorrect (violating correctness criterion 3b).

The serial case {BX, XY, YE} is depicted in Fig. 10.10b. The combination of

choices {BX, XY, YX} and {Bs, XY, YX} depicted in Fig. 10.10c always yields a

wrong process, since the process does not reach the End activity, violating

Link 

Option

Process 

scheme

Description Applicable rules/ Eq.

BX B-

-

X Default link to first activity from B IR 6 + BR 14.1 / Eq. 10.3

Bs Split: from Begin to multiple 

activities in parallel

IR 6 + BR 14.2 / Eq. 10.8 

XY X–Y Final iteration of an activity links to 

next activity

BR 12.1 or BR 15.1 / 

Eqs. 10.4, 10.6 

XE X-E Final iteration of an activity can link 

directly to E

BR 12.2 or BR 15.2 / 

Eqs. 10.5, 10.7 

YX Y–X Final iteration of an activity which 

can feedback to other activity in loop

BR 14.2 / Eqs. 10.6, 10.7, 10.8

YE Y-E Final iteration of an activity without 

target should link to E

IR 7 / Eqs. 10.4, 10.5, 10.6, 10.7 

B X

Y

Fig. 10.9 Optional run time links
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correctness criterion (1). This combination occurs for the two options of process

start {‘*’, XY, YX} (where ‘*’ indicates either BX or Bs) and is further referred to

as (XY ? YX).

Correct parallel options are depicted in Fig. 10.10d ({Bs,XE,YE}) and (f)

({Bs,XY,YE} or {Bs,XE,YX}). In the latter case, there should be a difference in

the activities duration (e.g., duration (X)\ duration (Y)), for applying rule BR

13.1 (rule BR 13.2 cannot apply since there are no additional iterations). If both

activities have exactly the same duration, the options in Fig. 10.10f are reduced to

the case in Fig. 10.10d. The eight RT-process cases described above: four correct

cases (in Fig. 10.10 b, d, and f) and four wrong cases (two in Fig. 10.10a and c) are

all the potential cases that can be derived from the options in Fig. 10.9.

An additional RT-process is depicted in Fig. 10.10e. Such process cannot be

generated from the options presented in Fig. 10.9; X cannot link to both Y and End.

Using BR interpretation, proceeding to End activity cannot be done in parallel to

proceeding or feedback to other activities (Xor logic). Proceeding to End should

mean completion, while feedback or continuing to other activities has a con-

tradicting intent. Note: Such option is allowed only after second execution of the

activity (IR 12), which is not applicable in the current case.

10.7.3 Run Time (RT) with Self-Iterations

Allowing one iteration of each activity, Nmax = 1, either self-iteration or iteration

due to the other activity, yields maximum six activities: Begin, first X iteration,

first Y iteration, last iterations of X and Y, and End. In addition to the link options

described in Fig. 10.9, the interim iterations (i.e., first activity execution) have four

options detailed in Fig. 10.11.

There are five choices to make based on the linkage options detailed above (five

‘‘process locations’’): Begin activity (two options), first activity iteration X, and
first activity iteration Y (four options each, combining Figs. 10.9 and 10.11), and

final activity iteration X and Y (two options each). The combinations yield 128

Fig. 10.10 Run Time

process without iterations:

Correct and wrong options.

a Wrong: No Y activity.

b Correct: Serial. c Wrong:

(X - Y) ? (Y - X), no End.

d Correct: Coupled. e Wrong:

(X - Y) ? (X - E).
f Correct: Coupled, BR 13.1
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potential basic process structures, which include many incorrect processes. The

cases where both iterations of an activity are applicable have additional linking

options that increase the number of RT-process schemes.

Many potential RT-processes are wrong due to the combination (XY ? YX).

Such choices, indicated by {‘*’, ‘*’, ‘*’ XY, YX}, appear in quarter of the cases.

However, the process may end (as a correct process), before reaching these choices

(e.g. {Bs, XE, YE, ‘*’, ‘*’}), or might become wrong even before reaching these

choices. Therefore, the actual number of incorrect processes due to such choice is

16. Further 16 wrong cases are described by the process path B-X-E, using the

selection {BX, XE, ‘*’, ‘*’, ‘*’}. The latter 16 cases include four cases of the type

(XY ? YX), which are counted as part of the B-X-E combination, since the

process does not reach the choices (XY ? YX). Eight inadequate options, with

three executions of X (only two allowed), are included in the process path B-X-X-
E: {BX, XX, ‘*’, XE, ‘*’}.

Additional four cases are depicted in Fig. 10.12. Two of the cases refer to the

selection {BX, XX, XY, YX, ‘*’}, in Fig. 10.12a. These two cases are equivalent

and yield an inadequate process due to three X activity occurrences. The other two

cases refer to the selection {BX, XX, XY, Ys, ‘*’}, Fig. 10.12b. In both, after

X has already iterated, links from Y are connected to both X and Y; thus, a third

iteration of X is required. The case {BX, XX, XY, Ys, YE} is inadequate since

only two executions of X are allowed (and Ys includes a third one); the case {BX,

XX, XY, Ys, YX} is a wrong process case (XY ? YX) as discussed above.

Besides wrong or inadequate options, there are distinct options, which result in

the same RT-process; hence, further reducing the count of distinct correct RT-

processes. For example, the selection {BX, XY, YE, ‘*’, ‘*’}, representing four

options, is actually equivalent to only one correct process depicted in Fig. 10.10b.

Selecting the four options of {Bs, XE, YE, ‘*’, ‘*’} produces the basic parallel

case of the process in Fig. 10.10d. Reminder the latter two ‘‘process locations’’

have two options each.

Fig. 10.12 Inadequate: 3rd

X iteration. a Inadequate YX

choice. b Inadequate Ys

choice

Link 

Option

Process 

scheme

Description Applicable 

rules/equations 10.x

XX X-X Self-iteration Eqs. 10.4, 10.5, 10.6, 10.7 

YY Y–Y Self-iteration Eqs. 10.4, 10.5, 10.6, 10.7

Xs Split: Iteration and forward link, using the 

applicable BR

BR 11.2 or BR 14.2

Eqs. 10.4, 10.6 

Ys Split: Choosing multiple iterations 

(feedback links have OR logic)

Eqs. 10.4, 10.5, 10.6, 10.7

Y

XX

Y X

Y

Fig. 10.11 Additional linkage options for iteration
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Applying BR 13.1 or BR 13.2 may add distinct Run Time results. For example,

if both iterations of Y exist, then the link XY may result in X - Y (1) or X - Y (2),

where Y(i) indicates the iteration number.

Summary, we have started with 128 potential RT-process structures, minus

(16 ? 16 ? 8 ? 4) wrong or inadequate options, yielding 84 correct structure

cases. Of these, 28 cases are repeated (i.e., equivalent to others). The application of

business BR 13.1 or BR 13.2 adds 18 distinct RT cases (assuming different dura-

tions of X and Y activities). In total, by applying the different combinations of BRs

to a DSM with two design activities and a maximum of two executions for each

activity, we got 56 distinct RT-process structures (i.e., combinations of activities),

and total 74 different RT-processes, due to additional combinations of links.

No way was found to enumerateEnumeration the correct cases automatically,

due to the complexity of the combinations. In order to do so, there is a need to

develop a testing tool that would do so. The approach taken in this work was to

embed the rules in the creation process such that only correct processes can be

generated.

10.8 Logic Verification Issues

The DSM (and DPM) structure does not fully define the process logic and cannot

represent both input logic and output logic in the general case (Karniel and Reich

2009; see Sect. 7.1). Setting logic as additional information, by using additional

matrices, using rules, or using logic formulation, is non-trivial. Not every set of

rules may apply. The latter assertion is demonstrated by the following examples

that provide more insight into iterative process simulation logic and

implementation.

A short version of the DPM is used: Begin logic activity (B) and End activity

(E) are explicitly represented; IL and OL are implicitly assumed before and after

the design activities, respectively.

Parallel activities example is depicted in Fig. 10.13a. The option of using Split-

Or logic for Begin and Join-Or logic for End (B ) X ? Y and E ( X ? Y)

respectively, is legitimate in a general process. However, in the context of design

processes it is incorrect since we assume that every activity must be performed at

least once. The logic B ) X � Y will always cause one of the activities not to

start. In general, the output logic of forward links, being performed first time,

should always be Split-And (to ensure that next activities execute at least once).

When activities may have self-iterations, we must separate the logic applied to

links to other activities from the logic applied to the link to the End activity. The

logic of the separation must be Split-Xor (e.g.,
P

ðIiÞð Þ �
Q

ðFiÞð Þ in Cho and

Eppinger 2005, Table 7.2). Otherwise, the process might terminate before all

design activity iterations have completed.

A serial case without self-iterations is depicted in Fig. 10.13b. The link from

Begin to Y is not required according to the DPM generation rules and is added to
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demonstrate the input logic of Y. The input logic must be Join-And of all forward

links (i.e., Y should wait to all previous activities to complete), as it is serial.

The case of adding self-iterations is depicted in (c); X and Y activities have self-

iteration links. According to Eq. 4.3, the Input logic of X is IL ( B ? X, i.e.,
signal from Begin or iteration (from Out-logic activity). In a similar manner, the

input logic of Y is IL ( X ? Y. The Output logic of Y is Split-Xor between

iteration and the link to End activity (Implementation Rules IR 9); other options

are incorrect. The output logic of X has two options: either all X iterations should

complete before continuing to Y (BR 11.1) ðX ) X � YÞ or Y might start in

parallel to an iteration of X (BR 11.2).1

Since all iterations should terminate, the End activity should wait for all X iter-

ations to complete, though there is no indication of a link from X to End. Without

such logic the process may end once Y completes, while X is still iterating (and may

cause additional iterations of Y). The analysis is quite similar to the examples given

in van der Aalst and van Hee (2002). Yet, waiting for activity iteration with no

indication of link to End activity is regarded a flawed situation in a simple Petri net.2

The case of coupled activities with parallel start and early termination is

depicted in (d). The input logic of X is (typically) defined as Join-Or of forward

case DPM Correct Logic Incorrect Logic examples

(a) B X Y E

B 0

X 1 0.1

Y 1 0.1

E 1 1 0

B ⇒X•Y ; 

E ⇐X•Y ;

X ⇒X⊕E ;

Y ⇒Y⊕E ;

B ⇒X+Y ; B ⇒X⊕Y; 

E ⇐X+Y ; 

X ⇒X+E ; X ⇒X•E ;

Y ⇒Y+E ; Y ⇒Y•E ;

(b) B X Y E

B 0

X 1 0.0

Y 1 1 0.0

E 1 0

B ⇒X•Y; 

Y ⇐B•X;

Y ⇐B+X; 

(c) B X Y E

B 0

X 1 0.1

Y 1 1 0.1

E 1 0

X ⇐X+B;

X ⇒X⊕Y; 

X ⇒X+Y;

Y ⇒Y⊕E;

(E ⇐X•Y)

Y ⇒Y+E;

Y ⇒Y•E;

(d) B X Y E

B 0

X 1 0.1 0.1

Y 1 1 0.1

E 1 1 0

X ⇐B+Y ; 

X ⇒X⊕Y ; 

X2⇒X⊕Y⊕E ;

X2⇒(X+Y) ⊕E;

Y ⇐B+X+Y ; 

Y ⇒(X+Y)⊕E ; 

X ⇐B•Y ;

X2 ⇒(X⊕Y)+E ; 

X2 ⇒X+Y+E ; 

X ⇒Y•E ;

Y ⇒X+Y+E ; 

Y ⇒X•Y•E ; andmore

Fig. 10.13 Process logic examples

1 Note: the case X)X•Y is a suboption, i.e., Y must start with every iteration of X.
2 This can be solved in high-level Petri net by adding a data link.
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and feedback links. In this case, Xor and And logic options are also applicable

since Y starts in parallel (otherwise, Join-And would cause a deadlock). Similarly,

the input logic of Y is Join-Or (having multiple activities, the forward links would

have Join-And logic, Eq. 10.8). The output logic of X does not allow link to End at

first execution, but only after iterations (i.e., from second execution X2).
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Chapter 11

Dynamic Changes

11.1 Dynamic Change Levels

The presented framework engaged three levels of dynamics: the process level

(process dynamics within a predefined scheme), the process scheme level (run

time changes of the process scheme), and the BR level (decision-making model,

i.e., changing the way that process scheme changes are implemented). Using the

dynamic process changes classification definitions, in Sect. 2.3, the implementa-

tion of the following dynamic levels (Fig. 2.5) is further elaborated (Fig. 11.1):

1. The process level dynamics indicates the dynamics at run time (Class I), i.e.,

following the process scheme and making choices between process branches

(e.g., continue or iterate). Exception handling (Class II) implementation is done

once the pre-defined branch is required, and is not presented to the user as part

of the process scheme unless needed. Pre-defined Hierarchical expansion

(replacing an activity in the process by a pre-defined subprocess according to

process parameters) can also be regarded as process level dynamics since the

scheme might not have been presented to the user but was pre-defined.

2. The process scheme level dynamics includes Ad-hoc changes (Class III),

hierarchy expansion (not pre-defined) (Class IV), and process content changes.

Ad-hoc changes may be used to implement ‘‘best practice’’ scheme changes

resulting from changes in the business process, which are relatively rare

(typically, such change is postponed to next project) or utilized for unforeseen

process options. A dynamic hierarchical process expansion is an expansion of

an emerging activity (not predefined) by a pre-defined subprocess, or an

expansion of a pre-defined activity by an emerging subprocess, or both not

predefined.

3. Business Rules dynamics refers to changes in the interpretation rules of a DSM

to process scheme, i.e., changes in the way the process scheme changes are

made. For example, initially, interpreting a DB as a set of serial, iterative

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_11,
� Springer-Verlag London Limited 2011
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activities (due to insufficient resource) in part of the simulation; and subse-

quently during run time, change the amount of resources and interpret an

iteration of the DB as parallel activities.

The first dynamic level is well understood, though Class II changes are complex

to implement (Russell et al. 2006). Changes of BR (level 3) would cause changes

of the interpretation of the planned process (even if the DSM did not change); thus,

adding more process variations. The BRs are controlled by the planner; providing

control over process parameters, and are considered part of the decision-making

process (Fig. 8.2).

A complex issue is the integration of planned process scheme changes (level 2

dynamics) into the current process scheme (see Fig. 8.3), where the planned

processes are either the result of DSM interpretation, or are the required processes

(if ad-hoc changes were applied). BRs dynamics directly affect the DB content,

and indirectly change the process scheme dynamics. The dynamic types are

depicted in Fig. 11.1, which is an extension of Fig. 2.5.

Implementation of a process scheme change is dependent on the required

change type and the process status.

11.2 Scheme Change Types

In order to keep the process scheme correctness (DnPDP correctness criteria,

Sect. 9.2), the implementation of changes should be done carefully. Ad-hoc

changes do not necessarily follow any pattern. Their implementation is left to the

user. Various tools (e.g., ‘‘Woflan’’ system, Verbeek et al. 2001) may help to check

Fig. 11.1 Dynamic scheme

change types
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the proposed change. A change that cannot be implemented (violating correctness

requirements) should be notified to the user. We would further assume that ad-hoc

changes are the type of adding activity or link and not their removal, and have no

special issues.

This work focuses on the more structured changes resulting from product

knowledge changes via DSM interpretation. The discussion that follows focuses

on the DSM structure after reordering (i.e., design activities and links). It should be

noted that in the extension of the DSM to DPM, additional logic activities are

added with associated links to the design activities, and the DSM links between

design activities become links between input and output logic activities (IL and

OL, respectively).
Scheme change types can be classified as follows (Fig. 11.1):

1. Add activity Any added activity should have input forward link and output

forward link to other activities. This satisfies requirement (2), by Corollary 9.8.

2. Adding forward links may reduce parallelism (if activities were previously not

linked). Such addition can immediately be implemented based on a BR, as there

are no special process logic issues involved.

3. Adding/removing feedback links may have implications to the definition of

DBs. If the addition is within a defined DB, there will be no out of block

process impact. There might be issues related to the internal planning of the

block when it is considered as a process.

4. Removing forward link (from OL of the design activity to IL of another design

activity) requires special treatment. If both the source activity and the target

activity have additional outgoing/incoming forward link, respectively, the link

could be removed immediately. If it is the only outgoing forward link, it should

be replaced with forward link to the End activity. If it is the only incoming

forward link, it should be replaced by a link from Begin activity.

5. Removing activity. Removal of activity is a complex task, as the removal

should not impair the process correctness. Process status check is required

according to the implemented process logic. Removal of an activity would

mean in general removal of its links. The removal of activity A, in Fig. 11.2

can be done by replacing it with a dummy activity (zero duration,

Fig. 11.2 Design task removal
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i.e., short-circuiting the IL and OL of A). In the case of one incoming forward

link to the IL of A (e.g., from OL of activity B), the replacement by dummy

operation is equivalent to replacing all the links from OL of A by links from

the OL of B, see Fig. 11.2a. The same logic may apply if there is only one

outgoing forward link from OL of A to IL of activity C, Fig. 11.2b. However,
the major problem is when there are multiple incoming forward links and

outgoing forward links. In this case, replacement by dummy is the only

possibility, Fig. 11.2c. Therefore, replacement by dummy is the option being

always implemented.1

11.3 Process Status Considerations

The implementation of changes is dependent on the process status. If the required

change has no immediate effect at run time on the process, it could be imple-

mented immediately; otherwise, it might be postponed. Typically, adding process

activities and forward links have no restrictions.

Considering the scheme changes types:

1. An activity that can be activated (having its information prerequisites fulfilled)

can immediately start (and might cause iterations of other activities). Appli-

cation of rules BR 11.1 or BR 11.2 would have different impact.

According to BR 11.2, the additional design activity may start if any of its

previous activities had completed at least one execution (though it might be

executing now), while BR 11.2 will postpone the activation.

2. When a forward link to an already active activity is added, the change impact

depends on the applicable business rule (e.g., BR 13.1 will merge to current

execution, and BR 13.2 will start next iteration). If the target activity accepts

such input, it would affect the activity duration; otherwise, the information

(through the link) would contribute to the initiation of the next iteration.

3. Addition or removal of feedback links (after reordering) may define changes

in DBs. The implementation of such changes can be done immediately if

the block is inactive (i.e., no activity in the DB is active). If the DB is active,

the implementation depends on additional BRs (following).

4. Removal of a forward link depends on the status of its source activity. If the

source activity (or an iteration of the activity) is active, the link might be

removed only after the completion of the activity, and activation of next

activity according to that link. It should be noted that the operation time of a

link is zero; therefore, the order of performing process updates is important.

First, the source activity should complete; then the target activity should get the

signal; finally, the link could be removed.

1 If there is a self-iteration link (OL to IL of A), it should be removed (avoiding infinite loops of

process with zero duration that consume computing resources).
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5. Removal of a link when the source is inactive requires confirming with IR 2 and

IR 3, i.e., a single link from the design activity to the OL logic activity or from

the IL logic activity to the design activity cannot be removed. A link from the

OL logic activity to another IL logic activity can be removed if it is not a single

forward link. If it is a single forward link, it must be replaced. If it is a single

forward input link to the IL activity, it should be replaced by a link from the

Begin activity (IR 6). If it is a single out link from the OL activity, it should be

replaced by link to the End activity (IR 7).

6. Removal of an activity that has never performed could be done immediately.

Removal of a design activity that is currently performing is postponed until the

activity is completed. However, as completion depends on activity duration, the

duration may change. In a similar manner to duration increase, BRs should

define whether duration should decrease; thus, the activity terminates imme-

diately (on t ? 1), or the activity should complete to get some meaningful

results, and then removed.

The following implementation rule indicated the options of defining the dura-

tion of a removed design activity.

(IR 17): Duration of removed design activity:

(BR 17.1) (As soon as possible): Activity duration is reduced to be its current

duration

(BR 17.2) (Minimal duration value): Activity duration is set to be the maximum

of either minimal duration or current duration

11.4 Dynamic Scheme Changes May Cause Iterations

The implementation of scheme changes may cause activity iterations even if the

planning does not indicate so: for example, the DSM in Fig. 11.3a, whose process

Fig. 11.3 Scheme changes lead to iterations. a Initial knowledge. b Initial plan (C-Process).

c Updated knowledge. d Updated plan (C-Process). e RT-process. f RT-process
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plan is in b. At a certain time it was realized that activity C needs input from B and

activity D needs input from C, see DSM and process plan in Fig. 11.3c and d,

respectively. If this additional knowledge is obtained before executing C and D,

then there is a direct shift from the plan in (b), to the plan in (d). However, if

activity A has a long duration (e.g., D(A)[D(B) ? D(D)), depicted in Fig. 11.3e

such that the rectangle length indicates relative time, then activity D should start

early after B and iterate as shown in Fig. 11.3f.

It should be noted that activity E needs to wait until the second execution of

activity D (indicated as D2). However according to the process plan it should just

wait for the completion of C and D. Actually, the presented (parallel) run time

process could be described as if the order of activities was (ABDCE); hence, the
additional link was equivalent to a feedback link. In a similar manner, if

D(B)[D(A) ? D(C), then an iteration of C would be required, since C would

have completed before B.
The above simple example demonstrates the importance of the distinction made

between the C-process, and the RT-process. In the case of a fixed process scheme,

the separation of current process plan (C-process) from run time (RT-process) is

merely a visual representation of the process progress. However, this separation is

essential for modeling the process dynamics. The RT-process model keeps the

interim process information that is required for the implementation-logic of

dynamic changes.

11.5 Design Block Changes

Link changes either addition/deletion or change in value in the DSM may cause

different ordering and different allocation to DBs. Implementation of changes in

DB content is subject to BRs. A business rule should indicate if the change

should be done as soon as possible (immediately), or the DB has to complete at

least one design cycle (resembles the minimum duration option), or wait until

the DB completes the current cycle. The latter option is less agile and less

responsive to changes, but more robust and may decrease the overall number of

iterations.

(IR 18): Changes in design block content:

(BR 18.1) (As soon as possible): Change parallel completion constraints

immediately

(BR 18.2) (One cycle completion): All design activities in design block should

have completed at least once

(BR 18.3) (Current cycle completion): All parallel activities in design block

should complete the current cycle

Example of a change in the DB content, and its implementation is presented in

the next Chapter (Sect. 12.7). The implementation of ‘as soon as possible’ rule
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(BR 18.1) depends on the execution status of the activity, the DB to which it is

added, and the DB from which it is removed (see examples in Sect. 12.7.2). Since

as default every design activity is part of a DB (even if it is the only activity in that

block), then every assignment to a DB or removal from a DB, changes the DB

content. DBs are defined by their content; hence, a change that empties a DB from

any activity causes the DB to be removed. The DB ID cannot be reused in order to

avoid mistakes.

11.6 Change of Process Scheme by Business Rules

Generating business cases can follow distinct rules. The following rule options

were considered:

• Implementation of learning curve with learning ratio of LR = 0.5 (the ratio of

Duration of activity execution i ? 1 to the duration of execution i) versus no

learning (LR = 1);

• Early (BR 16.2) or Late (BR 16.1) start of activity or DB.

• Merger to executing activity (BR 13.1), or starting a new iteration (BR 13.2)

• Exit option (jumping to the end activity) on second iteration (BR 12.2 or BR

15.2), or not (BR 12.1 or BR 15.1, respectively).2

• DB change implementation: ASAP (BR 18.1), at least one execution (BR 18.2),

or by the end of current DB iteration (BR 18.3).

Out of the 48 potential combinations of the above rules, (see following analysis

in Sect. 11.8), two extreme cases can be defined:

• The ‘‘short’’ option—applying learning curve LR = 0.5; Early start; Merger

in case of executing activity; Exit option to End activity; and immediate

implementation of DB change.

• The ‘‘long’’ option—no learning LR = 1; Late start; Start new iteration in case

of executing activity; no Exit option; and implementation of DB change by the

end of the current iteration.

The ‘‘short’’ option implies maximal RT-process parallelism, minimal impact

of multiple iterations, and more options to keep the process time minimal (due to

exit and merger) options, and quick response to changes in terms of reorganizing

the process.

The ‘‘long’’ option indicated higher impact of multiple iterations, i.e., indicates

that more iterations might lead to much longer time, having more serial quality

checks, and slower communication and reorganization.

2 Reminder, the business rules of IR 15 apply to coupled activities, while IR 12 applies to serial

activities.

11.5 Design Block Changes 175

http://dx.doi.org/10.1007/978-0-85729-570-5_12


11.7 Simulating a Dynamic Scheme Process

11.7.1 Simulation-Based Statistics for Decision-Making

Statistical analysis of simulation results is used for Decision-making. Based on the

property of large number R of simulation results, the LLN and CLT determine that

a function over the expected values of a simulation is normally distributed

(Asmussen and Glynn 2007).3 A simulation run was defined as running the process

twice using two sets of process parameters (e.g., different business rules). The

function used is the difference between the estimated parameters (e.g., the total

process times) of the runs.

We can use the default assumption (null hypothesis) of no difference between the

mean values of the estimated difference parameter between the cases. Under such

assumption, the expected value of the difference function is zero. Due to the distri-

bution of simulation results, evenwhen the same set of process parameters is executed

twice, the difference between the total process time of the two cases is not zero.

We calculate the Confidence interval Ia with confidence level 1-a using

Eq. 14.6, Sect. 14.2. The decision-making hypothesis (no difference) is accepted if

the result is within the interval, and rejected otherwise. Since the check is two

tailed, if the null assumption is rejected, we accept one of the sides accordingly,

with a statistically significant difference.

In order to make such analysis, it is required to have a large enough number of

simulations R. The error decreases with square root of R, and is linear to the

standard deviation (Eq. 14.6). We can calculate the required number of simulations

R[ 1.962 9 s2/0.05, for a = 5%, where s2 is the calculated variance estimator

(Eq. 14.5). R is estimated according to a small batch of runs (e.g., 50).

Other potential procedures are using the t-test comparison of two simulation

types (sets of parameters), or an ANOVA test for comparing multiple simulation

sets. In either case, the normal distribution of the expected value is used. For a

different variance t-test, one can perform R = MK simulations for each simulation

set, whereM is number of sections (or groups) of simulation, each with K runs, and

K should be large enough. For each of the M sections we calculate the mean

(expected value, being normally distributed) and the standard deviation.

11.7.2 Probabilities Interpretation at Run Time

Probabilities are used for DSM reordering. On implementation, we convert the

DSM to DPM (adding Begin, End, and the applicable links). The probability value

of a forward link that defines serial progress is ignored. The probability values are

3 See Sect. 5.5
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considered for progress decisions only for: feedback links, self-iteration links, and

in the special case of forward links within serialized coupled activities (on second

execution of the activity).

When DB logic is applied (parallel coupled activities), all ‘‘internal’’ forward

and feedback probabilities are replaced by the self-iteration merged probability of

the DB, and ‘‘external’’ links (to other DBs or other activities) are replaced by the

integrated probability, according to Eq. 4.3.

Progress decisions are made in output logic implemented in OL activities.

According to Eqs. 10.4–10.7, feedback links are considered first (including self-

iterations), then forward links, and finally links to End (if applicable). The latter

links have no probability assignment as the links always indicate serial progress to

End (same logic applies to links from Begin).

In the decision procedure, a number Q is randomly selected. If Q\ p, where
p is the applicable probability, the link is activated. Feedback links were defined to

be in a Split-OR mode, i.e., any combination of feedback links may apply.

The probability of a forward link within serialized coupled activities is con-

sidered on second (or later) execution of the activity, using the same Split-Or logic

iterations (according to Eq. 10.8). Other probability figures are not considered, i.e.,

treated as having a binary value.

11.8 Business Rules Combinations at Run Time

The implication of a BR on the process performance (duration and required

resources) is dependent on the actual duration of the activities. The following

simple examples demonstrate the various possibilities, having two activities

with a serial link from A to B with self-iterations of A. Activity A executes

twice, activity B executes twice at most. The DSM of the process is depicted in

Fig. 11.4a.

The run time processes are illustrated in Fig. 11.4. The process total duration T,
the required resources R, and reference to process figure are indicated in

Fig. 11.4 RT-processes of various Business Rules. a DSM. b Late start. c Early start. d Merge.

e Exit
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Table 11.1. The cases represent shortest path options, subject to iteration of A. The
durations are represented in some time units, and the assumed resources

consumption is one resource per activity per time unit. The shortest path

(A–B) without iterations has duration and resources of 40 units.

The combinations of the following rules are demonstrated for two activity

duration settings: first D(A1) = 30, D(B1) = 10; and second D(A1) = 10,

D(B1) = 30:

• Implementation of learning curve with learning ratio of LR = 0.5 (the ratio of

Duration of activity execution i ? 1 to the duration of execution i) versus no

learning (LR = 1);

• Early start (BR 16.1) versus Late start (BR 16.2);

• Merger to executing activity (BR 13.1) versus initiating a New iteration

(BR 13.2); and

• Exit option of second iteration (12.2) versus continuing by enforcing iteration of

the next serial activity (12.1).

Notes The options Merger/New iteration are inapplicable (N/A) for the case

D(A) = 3�D(B), and for Late start (i.e., such decision does not occur). The Exit/

Continue options are inapplicable in the case of Late start. Furthermore, there

might be either Merger or Exit, but not both. Therefore, out of the 32 potential

combinations there are actually only 14 cases, described in Table 11.1.

Including a learning process decreases the impact of iterations on the overall

process performance. Yet, the performance is more affected by the other rules and

the relative duration of the activities.

Late start serializes the execution of iterations (for this simple case); thus,

makes total process duration equivalent to the resource, i.e., there is one active

resource at a time. Cases that are more complex are presented in Chap. 1.

Table 11.1 Duration and Business Rules at run time

Case D(A1) D(B1) D(A2) D(B2) LR Early/

late

Merge/

new

Exit/

cont.

T R Ref

RT

1 30 10 30 1 Late N/A N/A 70 70 (b)

2 30 10 30 10 1 Early N/A Cont. 70 80 (c)

3 30 10 30 1 Early N/A Exit 60 70 (e)

4 30 10 15 0.5 Late N/A N/A 55 55 (b)

5 30 10 15 5 0.5 Early N/A Cont. 50 60 (c)

6 30 10 15 0.5 Early N/A Exit 45 55 (e)

7 10 30 10 1 Late N/A N/A 50 50 (b)

8 10 30 10 30 1 Early New Cont. 70 80 (c)

9 10 30 10 1 Early Merge N/A 40 50 (d)

10 10 30 10 1 Early N/A Exit 40 50 (e)

11 10 30 5 0.5 Late N/A N/A 45 45 (b)

12 10 30 5 15 0.5 Early New Cont. 55 60 (c)

13 10 30 5 0.5 Early Merge N/A 40 45 (d)

14 10 30 5 0.5 Early N/A Exit 40 45 (e)
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The implications of using Early start are dependent on the other rules used. It

can contribute to shortening the process when early termination options such as

Exit or Merge are applicable. Enforcement of continuing with iteration of next

serial activity always result with additional resources (in comparison to late start),

and might result with larger process duration (cases 8 and 12 in Table 11.1).

Yet, enforcing serial activities might be required for quality (e.g., if the B was a

testing activity).

The Merge and the Exit options were both applicable only with Early start since

there were no feedback links. These options can contribute to shortening the

process time. In this simple example, they yielded the same results.

The implications of utilizing these BRs in the case of iterations due to loop of

activities are demonstrated in Chap. 1.

11.9 Applying Design Blocks at Run Time

Business Rules indicate different business cases, and may indicate different

strategies. Choosing the appropriate strategy might be done by using rules of

thumb; e.g., if there are enough resources make the activities as much as parallel to

reduce overall time. However, in the case of iterative processes, the ‘‘best’’

strategy may not be very clear. The following simple example of the implication of

applying different BRs was presented in (Karniel and Reich 2007).

Two business cases are studied, depicted in Fig. 11.5. The first case is a serial

performance of coupled activities (i.e., one activity at a time), applying BR 14.1,

Fig. 11.5a; the second example is performing the activities as a DB (in parallel),

applying BR 14.2. The DB has a self-iteration merged probability p = 0.36,
according to Eq. 4.3 (Sect. 4.2.3).

The duration of the DB is defined as the maximal duration of its activities.

The duration assigned to activity X is defined as D(X). The activity durations

are: D(A) = 1; D(B) = 2; D(C) = 3; and D(D) = 4. The duration of the DB

D(BC) = max(D(B), D(C)) = 3.

In this example, there are no parallel initial or parallel completion issues, Begin

links to activity A, and End links from activity D. BR 12.1 and BR 15.1 (no direct

A B C D A BC D

A A

B 0.3 0.2 BC 0.3 0.36

C 0.2 D 0.1

D 0.1

(a) (b)

Fig. 11.5 Serialized and Parallel process execution. a Serialized process. b Design block

(Parallel)
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‘‘jump’’ to End) are implemented, respectively in the serial and parallel examples.

BR 13.2 was used, i.e., initiating a new iteration (and not extending activity

duration).

The distribution of the overall process duration (for 100 runs) is depicted in

Fig. 11.6 indicating duration results of the serialized process (P1) and process with
DB (P2). The X axis is the overall process duration; the Y axis is the number

(and %) of runs with the indicated duration. The distribution has discrete values

and a decreasing shape (due to decreasing probability of iterations). It is apparent

that the distribution is right (positive) skewed, and not a normal distribution.

In order to analyze the results, several decision statistic parameters were

compared: average duration (Cho and Eppinger 2005), median (not mentioned in

literature), and pairwise comparison (Reich and Paz 2008).

The results for average and standard deviation of averages, and average and

standard deviation of medians are depicted in Table 11.2. Results are presented for

the following parameters: probability of iteration of the coupled activities (both

getting the values: 0.2, 0.4, 0.6), and differences of duration between the activities

D(B) and D(C). The parameters of the process with DB are derived using Eq. 4.3

for the combined DB self-iteration merged probability P(BC); and the max

duration for the DB duration D(BC).
The results are averaged from 10,000 run time simulations. The average,

median, and their respective standard deviations were calculated from 100 aver-

ages (medians) of 100 runs, for each set of parameters.

For the range of parameters checked, the decisions based on simple comparison

of the different statistical parameters (average, median, differences) resembled, but

were not similar. The differences of average and median were not statistically

significant. The decisions, according to each of the statistical measures are marked

by colors: green (gray) indicates that process P1 was preferred, and pink (light gray)

Fig. 11.6 Processes duration distribution
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indicates preference of the DB P2 process. Having enough samples should finally

create a normal curve of the averages, allowing comparison of averages with

statistical significance.

Pairwise comparison (Reich and Paz 2008) results are depicted in Table 11.3.

Pairwise comparison is a count of how many times the duration of process P1
(serialized) was longer than the duration of process P2 (with DB), D(P1)[D(P2).
Such result is a compound simulation result that includes running the process

twice, once with serialized parameters and once with DB parameters and com-

paring the duration results.

The direct counting of pairwise comparison of simulation results is presented in

the ‘‘paired’’ column of Table 11.3. The first process is the preferred when its

duration is longer in less than 50% of the cases. This measure had self-similarity in

various ranges, i.e., it had relatively the same results for 1,000 cases and 10,000

cases. A decision-making criterion based on these results indicates that when the

percentage of D(P1)[D(P2) is less than 50%, then P1 (serial) is preferred,

Table 11.3 Decision-making based on difference

# Paired Difference R=1000  Interval (5%) Difference R=10000  Interval (5%) 

 

% T(P1) 

>T(P2) Avg Std 

Confidence 

Interval  Decision Avg Std 

Confidence 

Interval  Decision 

1 35.08 -5.04 12.52 0.76 T(P1 < T(P2) -5.02 12.48 0.24 T(P1)< T(P2) 

2 32.63 

-

15.79 30.03 1.87 T(P1)< T(P2) -15.86 29.99 0.59 T(P1)< T(P2) 

3 41.62 -8.47 32.76 2.02 T(P1)< T(P2) -8.42 32.72 0.64 T(P1)< T(P2) 

4 49.43 -0.55 5.43 0.36 T(P1)< T(P2) -0.56 5.41 0.11 T(P1)< T(P2) 

5 48,95 -3.91 12.91 0.80 T(P1)< T(P2) -3.96 12.85 0.25 T(P1)< T(P2) 

6 54.13 0.98 14.97 1.01 T(P1)~ T(P2) 0.98 14.89 0.32 T(P1)> T(P2) 

7 68.79 0.62 2.54 0.15 T(P1)> T(P2) 0.61 2.54 0.05 T(P1)> T(P2) 

8 69.33 -0.26 5.79 0.36 T(P1)~ T(P2) -0.26 5.76 0.11 T(P1)< T(P2) 

9 70.72 3.43 6.72 0.41 T(P1)> T(P2) 3.44 6.68 0.13 T(P1)> T(P2) 

Table 11.2 Business Rules comparison

 

Serial 

Design 

Block Serial (avg) Db (avg) Serial (med) Db(med) 

# 

P 

(B-C) 

P 

(C-B) D(B) D(C ) 

Self 

P 

(BC) 

D 

(BC) 

Avg-

avg 

(P1) 

Std – 

avg 

(P1) 

Avg – 

avg 

(P2) 

Std- 

avg 

(P2) 

Avg-

med 

(P1) 

Std –

med 

(P1) 

Avg-

med 

(P2) 

Std –

med 

(P2) 

1 0.6 0.6 1 2 0.84 2 12.39 0.55 17.40 0.97 10.91 0.56 14.10 1.09 

2 0.6 0.6 1 5 0.84 5 20.10 1.14 35.36 2.83 16.82 1.11 27.70 3.21 

3 0.6 0.6 4 5 0.84 5 27.49 1.82 35.91 2.81 22.68 1.95 27.60 3.31 

4 0.4 0.4 1 2 0.64 2 9.99 0.31 10.56 0.44 8.10 0.53 9.07 0.32 

5 0.4 0.4 1 5 0.64 5 14.96 0.61 18.93 1.21 11.12 0.84 15.32 1.16 

6 0.4 0.4 4 5 0.64 5 20.05 0.89 19.06 1.05 14.05 0.45 15.12 0.74 

7 0.2 0.2 1 2 0.36 2 8.74 0.16 8.12 0.18 8.0 0.0 7.0 0.0 

8 0.2 0.2 1 5 0.36 5 12.52 0.31 12.79 0.45 11.0 0.0 10.0 0.0 

9 0.2 0.2 4 5 0.19 5 16.15 0.51 12.71 0.45 14.0 0.0 10.0 0.0 
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otherwise P2 is preferred. Using the simulation results (of pairwise comparison for

decision-making) give similar results to the other two previous methods.

Using the decision-making method described in Sect. 11.7.1, we compute the

difference function distribution. In order to estimate the required number of

simulation runs we made 100 runs for each set of parameters. For the serial

process (case A), the estimates variance is sA
2
= 9.17, thus for a = 5%,

KA[ sA
2
9 1.96/0.05 = 704.7. In the same manner we get for the DB (case B),

sB
2
= 20.09, KB[ 1,543.6. Using the results of 10,000 simulations is more than

enough.

The difference function distribution for the example in Fig. 11.6 is depicted in

Fig. 11.7. As expected, the difference of the basic process (i.e., no iterations) is the

most common outcome (10 - 8 = 2).

The results of performing difference calculation statistics (Dif = T(P1) -
T(P2)) for 1,000 runs and 10,000 runs are presented in Table 11.3. The calcula-

tions were made for a = 5%. Under the assumption of no difference, the interval is

�Z1�a=2 � s=
ffiffiffi

R
p

Z1�a=2 � s=
ffiffiffi

R
p� �

, where s is the standard deviation calculated

using Eq. 14.5, and Z1�a=2 is the normal distribution percentile (Z = 1.96 for

a = 5%). If the average result is out of the interval, we can decide that the total

time of the serial process (P1) is significantly larger (smaller) than the parallel

process (P2). Since the interval is symmetric, only the upper bound of the con-

fidence interval is presented.

Comparing the results in Table 11.3 with the results of Table 11.2, it was found

that the decisions based on large sample (R = 10,000) were the same as the

decisions based on averages. The difference function distribution converges to the

distribution of the averages. Therefore, in the case of very large sample, such

alignment of the results is expected.

A smaller sample (R = 1,000) was less decisive and the decision-making result

indicated insignificant difference (within the confidence interval) between different

process parameters, i.e., a ‘‘don’t care’’ decision. These ‘‘don’t care’’ cases (#6 and #8)

were aligned with the cases where using average, median, and paired results yielded

different decisions. Having an indifferent zone is an important feature of using con-

fidence interval, and more than enough (i.e., too many simulation) seems to be too

much (Karniel and Reich 2009).

Fig. 11.7 Difference function distribution
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Adding simulation runs neither change much of the average, nor the deviation

of results; but only the calculated confidence interval. This interesting result

should be further investigated.

11.10 Logic Implementation

The implementation of logic is complex. Two main issues should be addressed:

(1) ensuring the completion of the process according to the correctness criteria

requirements (Sect. 9.2), and

(2) avoiding multiple occurrences of the same activity in parallel (same activity is

not done multiple times at the same time).

The first issue includes five requirements. The first two (project characteristic,

and reaching a termination state) are assured by using the conversion to DPM.

Item (4)—traceability is fulfilled by using the RT-process model. Item (5)—finite

time, is typically applicable by the use of probability; it can be enforced by

limiting the total number of activities, or could be implemented by limiting the

number of iterations of a link.

To ensure items (3a) and (3b), the logic of the End activity is set not to allow

completion until all activities have completed at least once, and all iterations have

completed.

The second issue is not inherent to a process with parallel activities while

enabling iterations (Cho and Eppinger 2005) and self-iterations (as depicted in

Sect. 4.3); therefore, it should be enforced. The condition represents a common

practice, in which one activity is done by a resource (or several resources) at a

time, i.e., it can execute multiple times but not at the same time.

Due to dynamic changes (next section) each activity is part of a DB (a DB may

have one activity). To ensure conformance with ‘‘one execution at a time’’

property, the following logic is defined for a DB:

• Condition A: for each activity in the DB, all previous iterations of the activity

have completed (or not started).

• Condition B: the DB may start if all its pre-conditions have been completed (i.e.,

all activities that precede the activities in the DB have completed at least once,

including the Begin activity).

• Condition C: The DB has completed once and got a feedback link signal (either

from another DB or by self-iteration).

The DB may start if (A) and (B or C).

Additional conditions reflect the BR applied, e.g., early start of activity (once

the preceding activities have completed once), or late start (after completion of all

iterations). Typically, in a case of early start, re-activation is expected that may

occur during the activity execution. If the activity (or DB) is already active, a

re-activation may do the following:
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(1) the activity time is expanded, or

(2) a new iteration is added (waiting for the current execution to complete).

11.11 Implementation of Design Block Changes

Since the DB content can change during run time, the implementation of all

processes is done using DBs. Accordingly; a DB might contain only one activity.

While there is an overhead of managing the DB data and logic for a single activity,

it is easier to manage the overall process logic by not using special logic for a

single activity and different logic for activities coupled in a DB. Moreover, the DB

structure provides the required logic for self-iteration.

DB implementation includes Input Logic activity and Output logic activity,

where each has (internal) IL and OL, see Fig. 11.8.

The DBIL-IL activity of the DBIL may receive links from other DB’s, either

forward or feedback; self-iteration link (dashed red line), and link from Begin

activity. It is linked to an DBIL-OL logic activity which has Split-And logic to all

activities in the DB (parallel start). The activities are linked to an DBOL-IL logic

activity with Join-And (parallel completion). The latter is linked to the DB logic

activity DBOL-OL that may have self-iteration link, feedback link, and forward

link to other DBs, or a link to End activity.

The DB identity is defined according to its design activities content; once the

content is altered, the DB gets a new ID. Examples of the relations of the DB input

logic and output logic to Petri nets and WRI-WF-nets were presented for the case

coupled activities in 9.7 (serialization) and 9.8 (parallel), respectively.
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Chapter 12

Implementation Example

The main applications presented in the following example are the monitoring of a

dynamically changing process scheme; the implication of the simulation of

dynamic planning capabilities; and the potential use of the simulation results for

process-related decision-making.

The example represents an NPD environment, where process activities are

derived from the product structure and the relations between product components,

which are subject to changes during the design as new knowledge becomes

available.

First, the contribution and the value of the example are discussed in Sect. 12.1.

The product used in the example is described in Sect. 12.2. The initialization and

progress of the dynamic design process through the predefined high-level process

scheme is presented in Sect. 12.3. Dynamic planning and implementation of a

relatively simple case, the planning of the conceptual design phase, is presented in

Sect. 12.4. The section includes detailed examples of the impact of various process

parameters. Section 12.5 is devoted to planning of the design phase, presenting the

full implementation of the DnPDP framework and the implications of dynamic

process changes. It includes detailed examples of all the process-planning stages

from DSM data collection through the conversions, the use of DB, and business

rules. The process continues in Sect. 12.6, and in Sect. 12.7 modifications are made

and implemented through design block changes. The value of (early) changes in

product knowledge (as a source of process plan changes) is examined.

The example is summarized in Sect. 12.8.

12.1 The Value of Simulations for Model Verification

Smith and Morrow (1999) surveyed process-modeling techniques used for PDP.

The goal of a modeling was defined to be the creation of predictive model that

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_12,
� Springer-Verlag London Limited 2011
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improved managerial decision-making. The following judging criteria were

defined for such model to have useful predictive value: The model addresses an

important managerial issue; the decision-making is based on information that is

available and accurate; the assumptions and simplifications of the model are

reasonable.

Four model validation levels were defined: face validity; applying the model to

realistic data sets; model utilization to guide decision-making in an experimental

environment; and guiding decision-making in the ‘real’ world.

1. Face validity implies that the modeling topic, data, assumptions, and tracta-

bility seem reasonable to those who are familiar to the field of product

development management.

2. Applying the model to retrospective data sets gathered from industry. The

models are used to show that they could have guided decision-making.

3. Model utilization to guide decision-making in a well-controlled and repeatable

environment; thus, demonstrating decision-making improvements. Yet, the

types of problem likely to be encountered in experimental settings are often

very simple.

4. Guidance of decision-making for actual cases was defined as the ultimate

validation goal. However, there is no objective comparison between the

changed and the unchanged situation.

It was indicated that the models reviewed were validated to level two at most.

The usefulness of the DSM method, the need for process implementation and

execution, and the benefits of simulation were discussed and proved in the vast

literature of any of these issues. However, the transformation from a DSM-based

plan to a process scheme, and the interpretation of the logic based on the BRs that

are the main issue of the current research do need verification and validation.

12.1.1 Study Cases

A good way to validate the overall concept and its details would be to test it in

industry in multiple study cases. An applicable test case for performing such check

is often a large project (as done in most DSM-related test cases). However, several

issues made such testing difficult to perform in the current research:

• Knowledge evolution requires the implementation of a tool to collect the

changing design information (required for building the DSM). It is assumed that

the information could be collected using existing PLM tools (or even ERP

tools). Technically, such implementation requires only the addition of few data

objects, and integration to the current tool. However, implementing such

changes and integration requires an organization that utilizes PLM, and that is

willing to invest the resources for performing both the integration and the

experiment.
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• Current workflow tools do not have the required separation between process

scheme and actual scheme, which is necessary for the implementation of iter-

ative processes. Therefore, in order to allow testing by users, there is a need to

develop an acceptable Graphic User Interface (GUI).

Consequently, implementing such tool and performing a real case study,

or even a controlled experiment was beyond the scope (and resources) of the

current work.

The next good option might be a comparison to standard example cases,

or using data gathered from industry. However, no cases of implementing changed

product data into a changing process scheme were found in the literature. The

current management practices do not support documentation of the required data;

therefore, such data was not available.

Therefore, the last option remaining was face validity, using simulation results

of an example, as described in the current chapter.

12.1.2 Formal Verification

Petri net formulation is an accepted method for process implementation. The

soundness correctness criteria defined for WF-nets is a proved useful tool for

verification of process schemes. If a process is sound, then it has some required

characteristics. WRI-WF-nets are formally defined to be sound by build; thus,

allow to hierarchically build processes that conform to the (general) soundness

criteria (see Definition 12).

A formal method was used (in Sect. 9.4) for developing a formal proof of the

translation of the reordered DSM (using partitioning) to DSM net (being the

current process scheme). The resulting DSM nets were proved to be equivalent to

WF-WR-nets, and conform to the soundness criteria for typical DSM-based pro-

cess cases. The cases include serial, fully parallel, and block diagonal DSM-based

processes. In addition, the case of activity cycle with sub-cycles, using the

enhanced reordering algorithm, is also proved to have implementation translations

to DSM nets that are equivalent to WRI-WF-nets.

12.1.3 Logic Verification

While the structural conversion of DSM can be formally verified for the specified

cases, the logic of the equivalent WRI-WF-net is limited. The resulting logic can

be applied only to a limited set of DSM logic interpretations, out of all the

potential logic interpretations that could be applied according to the BRs

(described in Chap. 1), that is implemented through the logic activities. The

rationale for the BR was demonstrated by counter examples. A thorough
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investigation of all the potential combinations was conducted for the simple case

of two activities with two executions at most. This limited check supports the

concept, but due to the iterative nature of the process, checking all the business

rule options for all cases is a combinatorial task; and a formal proof is left for

future work.

12.1.4 Simulation

The concepts were tested using the system as a simulation tool. The example

presented describes a potential dynamic NPD process for a simplified industrial

case study. The whole framework is presented through the case study, which

demonstrates the planning, conversions to model, model execution, and simulation

results analysis as an aid for decision-making. The process progress of the design

activities was done stochastically, i.e., process changes and occurrence of itera-

tions are probabilistically chosen. The choices were recorded to allow replaying

the process progress (bug tracking or conceptual problem tracking). Executing

many trials, through which the new concepts (e.g., BR) were applied, suggest a

strong evidence (though not a full verification) of the correctness of resulting

processes according to the correctness criteria.

12.2 The Example Product

The following example illustrates the application of the various DnPDP frame-

work stages to a case study, demonstrating dynamic process planning for the

design process of a laser direct imaging (LDI) plate/image-setter for the prepress

market industry. The example demonstrates: (1) the framework stages of process

propagation (according to Fig. 8.1); (2) the conversion of product knowledge to

required process plan (Figs. 8.3, and 8.4); (3) the transient process that arises due
to the different process states at the time that new product knowledge is generated

and incorporated into the process plan; and finally, (4) the simulation-based

decision-making process used for controlling the process (Fig. 8.2).

The data input for the design of laser direct imaging (LDI) plate/image-setter in

this case study was given by a leading engineering organization that took an active

part in the design and development of prepress imaging systems for market-brand

names such as Creo-Scitex Inc. (now HP Israel). The same product example was

described in Sered and Reich (2006) for the analysis of modularization and

standardization of component in a product family.

This imaging system is based on external drum technology applying direct

exposure of high-laser power on plate panels and films, to convert digital input into

finished panels ready to be used in standard press-printing process. A metal drum

cylinder revolves about its axis allowing a fast motion-imaging axis. A laser
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exposure head, allows a slow-motion imaging axis. It is adjacent to the drum

perimeter, driven by a smooth and precise mechanism, parallel to the drum axis,

see product scheme in Fig. 12.1 (copy of Fig. 4.1). The flexible plate/film is held

around the drum by a registration system using edge clamps and device for

punching edge holes. Load/unload system draws a plate from an automatic cassette

unit or a manual tray. After the imaging terminates, it unloads the plate to a special

fitting in the back of the machine. A computerized control system manages the

process.

Various future products were planned ranging from a plotter designated for

small printing shops to a product that meets the large high-quality press houses.

The plotter changes from a small plate size to twice the size in future markets. The

imaging quality and accuracy evolves from 1,600 dpi in current market to 4,000

dpi in future products; this is done mainly by changing the writing head from

visible red-laser diode 650 to 830 nm thermal-imaging diode. These enhancements

are enablers of using high-quality and high-durability plates. Another change

increases the productivity from 10 to 25 full format plates per hour in future

markets; this is also achieved by going from semiautomatic setting to fully

automated machine. The above changes affect the system’s components and may

require their redesign.

The data presented was not collected during the development process, yet it is

utilized in the example as if it was collected during such process. The product

knowledge revealed in each process stage is limited; thus, simulating the knowl-

edge evolution during a new product development process.

12.3 Development Process Setting

Initially, the development process (and the simulation) started with a pre-defined

(best practice) process scheme that can potentially be retrieved from a process

repository. The high-level process in Fig. 2.4 was used. In this process, Specifi-

cation and Conceptual design stages were done in parallel.

Slow axis

Fast axis

Laser
writing head

Plate /Film

Drum

Fig. 12.1 External drum

LDI plate/image-setter

technology
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The actual implementation1 used the following steps: first a general process was

defined, including start, a logic activity Begin, a general activity (being dynami-

cally replaced by subprocesses), and finally, End activity(C-process, Fig. 12.2a).

The content of the subprocess (activity #2 in (a)—the general process) was ini-

tiated as null (shortcut of input to output), see Fig. 12.2b.

Fig. 12.2 Setting up high-level process model. a General process. b Initial content of

subprocess. c RT-process following. d Change to C subprocess content. e New subprocess

content: High-level development process

1 The implementation of a dynamic process scheme was done using Matlab (by Mathworks).

The process presentation employs Simulink (within Matlab). Simulink could not be used for

simulation since the Simulink engine (like most workflow engines) cannot stop the process,

change its scheme, and continue.
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The RT-process followed the current process plan (C-process). As it reached

the general activity, Fig. 12.2c, a predefined activity assignment was performed:

choosing a high-level process. The choice might be manual (by the user from a

process repository), or for simulation purposes, setting a specific choice. The

content of the general subprocess changed in the C-process accordingly,

Fig. 12.2d, to the required high-level process Fig. 12.2e.

Notes:

• The upper level iterations of PDR and CDR were not implemented in this

example; their implementation is straightforward by adding logic activities and

feedback links

• The upper level process in (a) and (d) looks the same, but the subprocess has a

different content. The subprocess of activity 2 in (a) has only one link (b) versus

the full subprocess in (e), being updated at run time.

• Each subprocess is a process, therefore has its own Begin and End logic

activities.

• The implementation of logic (e.g., parallel execution of activities), Fig. 12.2e,

requires additional logic activities (before and after the parallel activities

Specification and Conceptual Design).

The example above represents the mode of dynamically expanding the process by

replacing the content of an activity by a subprocess. This mode is further used as the

process is further elaborated. This expansion allows refining the process hierarchically

to any required granularity. This option also allows adding predefined administrative

subprocesses within any design activity (e.g., opening a new part number). The latter

option was not demonstrated, as its implementation is straightforward.

According to Definition 15, expanding a WRI-WF-net by another WRI-WF-net

generates a WRI-WF-net. Yet, since such property is not inherent to a predefined

process, it should be either checked or enforced. Typically, predefined processes

are acyclic and are WRI-WF-nets, so we shall assume it was enforced.

12.3.1 Following High-Level Process to Conceptual Design

Once the RT-process reached the conceptual design activity (or during that

activity), new product knowledge has been generated. The product data collection

within the conceptual design activity is assumed relatively simple, yet it follows

the main steps described in Sect. 8.5.

For the purpose of demonstration, the following data was assumed (representing a

limited product knowledge state).2 The product is decomposed into four main com-

ponents:W- frame, X- drum, Y- laser subsystem, and Z- control system. It is assumed

that relations at that stage were identified as binary values; the relative impact figures

were not yet determined. This initial product knowledge is depicted in Fig. 12.3.

2 The illustrative data at this state do not represent the data given by the company.
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Process planning according to the above DSM is used as refinement (through

hierarchy enhancement) of the Conceptual Design activity. This process detailing

is a dynamic expansion (Class IV, Sect. 2.3) of the process, as the product

knowledge was not available when the project started.

12.4 Conceptual Design Process Planning

The next step of planning the conceptual design subprocess according to the

knowledge gained was to transform the DSM to a probability DSM (Sect. 8.5).

Since all the influence values are equivalent, the resulting probability DSM was

obtained by replacing the ‘1’ marks with probability p, see Fig. 12.4a.

Optimal DSM ordering result was a single DB Fig. 12.4b, (with an internal

order of the activities being XWYZ). The DB implementation requires four

resources, working in parallel. The feedback probability P is calculated according

to Eq. 4.3, P = 1-(1-p)6.
A serialized implementation of the process is depicted in Fig. 12.4c. The for-

ward probability links are removed, and replaced by the ‘1’ markings.

The variable p is the maximal expected probability of iterations and should be

estimated. Additional simulation parameters are not represented by the DSM, and

should be estimated. These may include the duration of each activity D(ai), i being
activity index, D(DBj)–Duration of forming and managing the DB, i.e., cost of

communications (meetings, power point presentations, etc.); where in this case, the

index j = 1, as there is only one DB. If resources were considered, additional

simulation data were required.

For comparison, we evaluated both time and resources. It was assumed that all

resources are the same and their cost is proportional to the activity duration.

Furthermore, resources are assumed to be available as needed and a resource

which is not required has other things to do (i.e., does not spend time and cost for

waiting). The relaxation of these assumptions can be easily implemented,

but comparison for various setting is more complex to obtain.

Fig. 12.4 Planning the

Conceptual Design phase

(cont.). a Probability DSM.

b Design Block. c Serialized

DSM

Fig. 12.3 Planning the

Conceptual Design phase
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12.4.1 Conceptual Design Planning: Implementation

Implementation of the process can be done using various logic options. Three logic

options were compared (according to Table 7.2); serialized process (e.g., having

one resource) in Smith and Eppinger (1997a); parallel process using the logic in

Browning and Eppinger (2002); Yassine (2007); and the coupled activities logic

(one DB) described in Smith and Eppinger (1997b); Huberman and Wilkinson

(2005); Yassine et al. (2003).

Reducing the number of options, e.g., by setting a constraint of maximum two

iterations (i.e., activity W may be performed three times at most), and restricting

activity Z to have late start (i.e., completion of all iterations of precedent activities,

BR 16.1) the RT-process cases could be fully analyzed and calculated.

Subject to the above restrictions, there were 37 logically correct RT-process

paths for parallel implementation; seven paths for serialized implementation; and

three paths for the DB logic.

A correct path means that

1. each activity is performed at least once; and

2. for parallel implementation, activity Z can be executed only if activities X and

Y have been executed at least once (this requirement is always true for seri-

alized implementation).

The distinct paths of parallel logic and their relative probabilities (for p = 0.2)

are depicted in Table 14.3 (annex C, Sects. 14.5 and 14.6). The serialized

paths included similar cases to the parallel implementation (cases {1, 10, 25, 37}

in Table 14.3, Sects. 14.5 and 14.6), and some unique paths {WXWXYZ,

WXWXWXYZ, and WXWXYZWXYZ). The DB implementation included only

the cases {1, 10, and 37} in Table 14.3.

The probabilities were calculated using probability tree. The initial part of the

tree for the parallel logic case is depicted in Fig. 12.5.

After the first execution of W, both X and Y activities start in parallel (common

to all paths). The order of checking the process options influences the process

probabilities. After the first execution of X and Y, activity X may have feedback (to

activity W with probability p). If activity X did not send feedback [with probability

(1-p)], activity Z may have feedback to activity W with probability p. The

probability to complete the path without any feedback (path #1 in Fig. 12.5, and in

Table 14.3) is (1-p) * (1-p) = 0.64, for p = 0.2.

In a similar manner, on iterations of W, the process can continue by executing

only X, or only Y or both (default). Since checking the ‘‘only X’’ option is done

first, the branches probabilities are: forward by X only with probability p, forward
by Y only with probability (1-p) * p, or the default decision to perform both with

probability (1-p) * (1-p). The three options presented are actually aggregation of

two decisions, and could be presented by two decision steps.

The probability of performing two feedbacks from X to W, where after

W iteration only X iterates (case #5) is p * p * p * p = 0.0016. Making one
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feedback on Z, and proceeding by Y only (case #9) has the probability ((1-p) * p)
* ((1-p) * p) * ((1-p) * (1-p)) = 0.021504.

The transformation of the DSM to DPM and then to a process scheme model is

demonstrated for the parallel case in Fig. 12.6a. The DPM of the DB is depicted in

Fig. 12.6b (note: the activities order within the DB is according to the optimal

solution; yet, it has no practical meaning in the simulation). The DPM of the

serialized implementation is very similar to the parallel; except that the parallel

probability marks are removed, and instead, the ‘1’ marks are added (from OLw to

ILx, OLx to ILy, and OLy to ILz).
In the DB implementation, the actual optimal order is XWYZ, Fig. 12.6b. Since

the order of the activities (XWYZ or WXYZ) has no impact on the implementation,

or the simulation results, the simulation can be implemented as if the order was

WXYZ.
The process scheme (C-process) of the single design-block process model is

depicted in Fig. 12.7a. All activities started together, performed in parallel, and

completed together. The design-block self-iteration merged probability is assigned

according to Eq. 4.3. In a case of no self-iterations, the links exist in the model but

the probability to use the link is set to p = 0. Each activity is implemented as part

of a DB (having two logic activities prior to the design activity and two after it),

with one activity.

The implementation of DBs requires additional extension of the DPM for

DB logic activities DBIL and BDOL (respectively, IL and OL of a DB, each

with internal IL and OL, Sect. 11.11). These are depicted in Fig. 12.7a, by the

two logic activities before and the two activities after the DB activities

(WXYZ). The first IL of the DBIL is used to implement the logic of incoming

links to the DB. The OL in DBIL is merely Split-And to all the activities in the

DB.

Fig. 12.5 Probabilities tree
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The IL of the DBOL is a Join-And of all the activities. The OL of the DBOL is

used for implementing the out logic of the DB, and is linked by a self-iteration link

to the IL of the DBIL.
The diagrams of the serialized and parallel implementation cases become more

complex since each activity is implemented as a DB. In order to simplify their

representation (Fig. 12.7b and c, respectively), the DB logic activities, self-itera-

tion links were eliminated and a clear distinction between forward and feedback

links was made by dashed lines

The RT-process examples of the single DB serialized process are presented in

Fig. 7.4d and f, respectively. The parallel process example depicted in Fig. 7.5a

represents process path #1 in Table 14.3 (Sects. 14.5 and 14.6 ); both Fig. 7.5b and

c represent path #3. The differences may indicate different duration of activity Y (if

D(Y)\D(X) ? D(W) then the process in (b) is applicable, and the process in (c) is

not); or different BR logic [BR 13.2 in (b), and BR 13.1 in (c)].

Some additional non-trivial RT-process examples are depicted in Fig. 12.8 and

Fig. 12.9, indicating the option of performing only activity X, or Y on the second

execution (Z requires at least one execution of its precedent activities).

Fig. 12.6 DPM of Conceptual Design implementation options. a DPM of a parallel process.

b DPM of a design block
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Path #2 in Table 14.3, is depicted in Fig. 12.8a. Activity X sends a feedback link

signal (Z cannot start, as X may have additional iterations), but on the second exe-

cution of Y activity Zmay start since X has completed once (and there are no further

expected iterations of X). If Z had early start (BR 11.2), it could start once X and

Y have completed their first execution (in parallel to W). In such case, the second

completion of activity Y could reinitiate Z (depending on the relative duration of the

activities and the applied logic). Such process options (not being part of Table 14.3)

are depicted in Fig. 12.8b and c. Figure 12.8 b shows the case when Z completes

before the second execution of Y, or if BR 13.2 was applied (start next execution);

and Fig. 12.8c shows the case when Z did not complete and BR 13.1 was applied.

Path #6 in Table 14.3 (Sects. 14.5 and 14.6 ) is depicted in Fig. 12.9. In this case,

Z starts on completion ofX andY. Iteration toW is done onlywhenZ completes (i.e., it

is not in parallel), therefore the other options described for path #2 are not applicable

in this case. Path #7 is similar to #6, only replacing the second execution of X by Y.

W ZX

Y

Begin End

W ZX

Y

Begin End

(a)

(b)

(c)

Fig. 12.7 Conceptual Design C-process
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12.4.2 Conceptual Design Planning: Logic Considerations

The coupled activities in the implementation of the DSM (in Fig. 12.4a) are not

interpreted as serialized or as a DB, but as a general process of parallel activities with

iterations. The implementation of that logic is interesting and provides rich process

phenomena as presented in the previous examples. Applying self-iterations would

have enabled more variants of RT-process options (as demonstrated in Sect. 10.7.3).

Fig. 12.8 Conceptual Design RT-process examples—case #2

Fig. 12.9 Conceptual Design RT-process—path #6
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The logic used was: OL)(R(Ii))�(P(Fi)) as in (Cho and Eppinger 2005) and

IL((R(Ii)) ? (R(Fi)) (not implemented in the surveyed articles). Such logic

combination of OL and IL was defined in Sadiq and Orlowska (2000), as leading

to lack of synchronization; or equivalently, not satisfying the ‘well-handled’

conditions (van der Aalst 2000). In the context of administrative processes, lack of

synchronization is unacceptable since the activity needs to start over again.

However, it is acceptable in the case of the iterative NPD process. The merger rule

or the ‘‘start new iteration’’ rule (BR 13.1 and BR 13.2, respectively) explicitly

specifies the logic types applicable in such BR case.

Formal proofs for the serialized process (Proposition 18) and DB case (Prop-

osition 20) were presented in Karniel and Reich (2011); yet a formal proof of the

applicability of parallel logic is still an open issue. It is expected that the current

foundation of the basic proofs in Sect. 9.4, with extensions using the Petri net

definitions of Siphons and Traps might provide the required basis for proving the

additional cases in future research.

12.4.3 Simulation Results

The simulation parameters are the activities duration D(ai), where ai [ {W,X,Y,Z},
and the probability p is as depicted in Fig. 12.4. For the coupled activities (DB),

the duration is D(DB) = max(D(ai)), and the self-iteration merged probability is

P(DB) = 1-(1-p)6 (i.e., all probabilities of coupled activities are contributing to

the probability of self-iteration of the DB (Karniel and Reich 2007b).

The measured results were the total process time T and the required resources

R. For simplicity, one resource per activity time unit was assumed; thus, the

required resources of serial and parallel process implementations were equivalent

to the duration of the serialized process. For the coupled activities, it was assumed

that the resources are the sum of activity durations (i.e., no cost of waiting).

Activity duration was not reduced with iterations, i.e., no learning occurs.

Results are presented in Table 12.1. The table has three sections: simulation

parameters, statistics, and examples of practical performance questions. The process

time and resources due to iterations have skewed distributions (like the distributions

in Fig. 11.6). The statistics presented includes minimal process time and its proba-

bility, maximal time and its probability, average time and standard deviation (which

is relatively large), and the average and standard deviation of resources.

The performance questions presented were the probability to complete the

project in the given limited time (deadline); or the given resources (Williams

2003). The probabilities are calculated for two limitations: process time, T\ 20,

and process resources, R\ 32. Four cases of simulation parameters are described,

three cases with different iteration probabilities, p [ {0.01, 0.1, 0.2}, and an

additional case with different activity durations.

The results were sensitive to the parameters, and especially the performance

results were highly sensitive to the choice of limits. In general, a parallel process
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has shorter time than the serial process, and according to the above assumption use

similar resources; hence, could be considered as better practice. Comparison of a

parallel process to the coupled activities process is dependent on the case-specific

details. The average time of the parallel process was better than the coupled

activities process in cases {2, 3} and worse in cases {1, 4}. Fewer average

resources were required for the parallel (and serial) process in all cases.

The presented results (Karniel and Reich 2009) demonstrate the sensitivity of

process performance indicators to the specific simulation parameters. Therefore,

there are no general rules of thumb for decision-making. Decisions should be made

according to the specific case parameters, and preferably use statistical analysis, as

discussed in Sect. 11.9, and presented in the next sections.

12.5 Planning the Detailed Design Stage

By the end of the conceptual design stage, it is expected to gain more knowledge

regarding the product. This product knowledge can be used for planning the design

stage (the predefined detailed design activity in Fig. 12.2e). The high-level predefined

design activity has no predefined content. The actual content depends on the product

knowledge. Another simplified model of the example product (Fig. 12.1), being

extended (from four) to eight main subsystems (components) of the LDI plotter

system was considered. The simplified assumption of 1:1 linkage between product

components and process activities (Sect. 8.5, Step (I) sub stage (A)] is used again.

12.5.1 DSM Data Collection

Mapping the evolution of the product data knowledge between the development

stages is described in Table 12.2, indicating more elaborated decomposition.

Additional knowledge regarding the links between components, (i.e., the

influence parameters) provided estimation of the influence ‘‘magnitude’’ {high,

medium, low}. An example of the knowledge gained is represented in Table 12.3,

using component names defined in the previous table. The ranking values used

were suggested in Sect. 4.1.

Table 12.2 Evolving

Product Knowledge -

Components

Initial product decomposition Current decomposition

X (drum) B (drum body)

C (drum rotation system)

Y (Laser) D (Laser writing head)

E (Laser driving system)

W (Frame) A (Chassis and Cover)

F (Load/Unload unit)

G (Registration & punch unit)

Z (Control system) H (Control system)
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Table 12.3 Evolving Product Knowledge—Links

From To Parameter Description Influence Value

B A Weight Med 3

B A Size High 9

B C Weight Low 1

B C Moment High 9

B G Size—Number/force of

clumps

Med 3

B G Size—Number of holes Med 3

C A Weight Low 1

C A Size Med 3

C A Max velocity Low 1

C B Inertia moment Low 1

C H Rotation accuracy Low 1

C H Resolution Low 1

C H Acceleration Med 3

D C Power Low 1

D C Exposure time Low 1

D E Weight Low 1

D E Size—surface area (near

drum)

Med 3

D E Size—distance Med 3

D E Exposure time Med 3

D H Diodes type Low 1

D H Exposure time Low 1

E A Weight Low 1

E D Moving Speed Low 1

E D Size of moving mechanism Med 3

E H Resolution Med 3

F A Weight Low 1

F A Size Med 3

F G Plate load speed Low 1

F H Load/unload rate Low 1

F H Load/unload time Low 1

G B Weight Low 1

G B Punch force Low 1

G B Beam pressure Low 1

G C Gripper force—radial Med 3

G C Gripper force—contact area Med 3

G C Beam pressure Med 3

G H System type Med 3

H D Processing time Low 1

H E Processing time—location Med 3

H E Processing time—velocity Low 1

H E Processing time—acceleration Low 1
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The values were summarized in a matrix form in Fig. 12.10. As previously

discussed, when using a summation method, it does not matter if summation is

done over aggregated parameters (which may have internal structure) or over

distinct parameters.

The parameters values in the above example are aligned with the values in

Sered and Reich (2006); indicating that values other than {1, 3, 9} could be

interpreted as sum of influences of a more detailed consideration. For example, the

link H to E is the summation of processing time of location, velocity, and

acceleration (from Table 12.3); thus, the aggregated influence value of the

parameter process time is 5.

Since the overall influence figure is dependent on the number of parameters

being considered, links with better knowledge might be overestimated (due to

assessment of more parameters); therefore in addition to the bottom-up approach, a

top-own approach should be used to balance the overall results. Further research is

required in order to define better methods for assigning influence figures in

complex cases.

Setting the parameters and the influence values is an engineering knowledge-

core process [Sect. 8.5, stage (B)]. Once the assignment is done, the next stage (C)

is technical. The influence values in each cell were summed, creating the Impact

DSM, with numeric values, depicted in Fig. 12.11a.

An additional impact figure on the diagonal was assigned to activity F. Indi-
cating self-iteration influence may imply the confidence (or actually the uncer-

tainty) assigned to the design of a component, e.g., component that was never

designed before, or which incorporates new technology. This assignment will be

later translated to self-iteration probability, and could be assigned either at the

current stage or directly at the next stage.
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204 12 Implementation Example

http://dx.doi.org/10.1007/978-0-85729-570-5_8


In the next step, the impact (or influence) DSM was converted to probability

DSM using linear conversion, where the highest probability is assigned to the

highest influence value. As previously discussed, the assessment of the maximal

probability value requires more research. In the following example, the maximum

probability was set to pmax = 0.52 (Yassine 2007); resulting in the probability

DSM in Fig. 12.11b.

Self-iteration probabilities (or influence assessment if done in the previous

influence assessment stage) do not change the ordering (in next section), but

influence the simulation. Self-iterations could be interpreted as an implicit duration

expansion of an executed activity. If such could be done in parallel to other

activities, it could be interpreted as a simulation of overlapping activities. Yet, the

explicit definition of self-iterations allows for a better distinction of the cases; it

allows the explicit implementation of learning curve; and allows the definition of

the aggregated DB self-iteration merged probability, demonstrated previously.

In the current example, the self-iteration probability assigned to activity F fol-

lowed the same linear conversion rules (of the assessment in previous stage), or

could have been directly set based on direct assessment of the probability to have

the iterations of the activity. Such probability might also be influenced by the

choice of resources, e.g., an inexperienced engineer is assumed to require more

design iterations than an experienced engineer does.

12.5.2 DSM Reordering

The reordering result of the example according to the cost function (Eq. 4.1) is

depicted in Fig. 12.12. Using a one-to-one correspondence of components and

design activities, the DSM structure indicated that design activity of component

F (Load/Unload unit) was not affected by changes of any other subsystem;

therefore, it becomes the first activity (by partitioning). Design activity for sub-

system A (cover) was influenced by other activities, but was not influencing other

activities; therefore, it should wait until the other activities completed. All other

activities were coupled, forming an activity loop (BGCDHE).

Fig. 12.11 Impact DSM and Probability DSM. a Impact DSM. b Probability DSM

12.5 Planning the Detailed Design Stage 205

http://dx.doi.org/10.1007/978-0-85729-570-5_4


The activity loop was decomposed into two DBs (BGC) and (DHE) with a

feedback link. The decomposition is an optimization between the cost of large

groups and the cost of separation. Using Eq. 4.1 the calculation results for F = 3

(forward constant), C = 64 (closed-loop constant), and q = 2.32, are demonstrated

in Table 12.4. Parametric analysis shows that for F = 3 the separation into two DBs

will occur with q = 2.32, and any C[ 3.012; or q = 3.19534 and any C[ 3. The

latter result is very close to the value of q in the simple cycle case, in Sect. 4.2.

Design Block Internal Ordering

It could be assumed that the internal ordering of a DB is inherently derived from

minimization of its feedback link, i.e., minimizing the first component in Eq. 4.1.

A specific case would be the complementary links (D, E) and (E, D). In the latter

case, it could be assumed that the link with lower probability would be the

feedback link, such that the sum of link values will be reduced.

A modification of the above DSM is presented in Fig. 12.13a, where the value

of link (D, E) was replaced by the probability value P(D, E) = 0.17, and (E, D) by
P(E, D) = 0.43, while all other link values remain the same. Two DSM config-

urations are presented; in Fig. 12.13a, it is the same configuration as in Fig. 12.12

(i.e., DHE). An optimal reordering of the DSM yields the DSM in Fig. 12.13b,

where the internal order of the second DB has changed. In the current example,

F B G C D H E A

F 0.22

B 0.00 0.13 0.04

G 0.04 0.30 0.00 0.00

C 0.17 0.39 0.00 0.09

D 0.00 0.04 0.17

H 0.09 0.13 0.22 0.09 0.00 0.13

E 0.43 0.22 0.00

A 0.17 0.52 0.22 0.04 0.00

Fig. 12.12 DSM optimal

reordering

Table 12.4 Design block calculations

One design block (BGCDHE) 6*(F*(0.3 ? 0.17 ? 0.39 ? 0.13 ? 0.22

? 0.09 ? 0.43 ? 0.22) ? C*(0.13
? 0.04 ? 0.09 ? 0.04 ? 0.17 ? 0.13))

? F*(0.04*3^q ? 0.09*6^q
? 0.17*8^q ? 0.52*7^q ? 0.22*5^q +0.04*2^q)

518.47

Two design blocks (BGC)
(DHE)

3*(F*(0.3 ? 0.17 ? 0.39) ? C*(0.13 ? 0.04))

? 3*(F*(0.09 ? 0.43 ? 0.22) ? C*(0.04 ? 0.17

? 0.13)) ? F*(.04*3^q ? 0.09*6^q ? 0.13*4^q

? 0.22*3^q ? 0.17*8^q +0.52*7^q ? 0.22*5^q
? 0.04*2^q) ? C*0.09*2^q

412.22
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there is no ordering by which all the pairs of complement links are ordered such

that P(ai, aj)[ P(aj, ai), where i[ j (i.e., forward link value larger than feedback

link). The value P(D, H) = 0.09 in Fig. 12.13b, is higher than the value P(H,
D) = 0.04. Any other reordering will make some pair of links to have the higher

value in the feedback position.

Using the expressions in Table 12.4, and comparing the cost functions (using

Eq. 4.1) we can calculate that the optimal ordering would have been (HED) for
closed-loop constant C\ 29.0025 in Fig. 12.13b. Ignoring the fixed parts of the

DSM that are the same, we need to calculate the contribution of the links within

the block and the links to and from other blocks. The calculations of both cases are

presented in Table 12.5, where F = 3 and q = 2.32.
Using similar calculation in the ‘‘main’’ example (Fig. 12.12) the order (HED)

would have been preferred over (DHE) for C\ 15.6394. In that example, the

order (DHE) was preferred since the value used wasC = 64

As previously indicted, the internal order of a DB has no influence on the

simulation when using parallel logic, where all activities within the DB start and

complete together. However, changes in DB content, do affect the simulation.

12.5.3 Probability DSM of Design Blocks

Using DB implementation, the block is treated as a compound activity with self-

iteration probability and duration (Karniel and Reich 2007a). The self-probability

F B G C D H E A

F 0.22

B 0.00 0.13 0.04

G 0.04 0.30 0.00 0.00

C 0.17 0.39 0.00 0.09

D 0.00 0.04 0.17

H 0.09 0.13 0.22 0.09 0.00 0.13

E 0.43 0.22 0.00

A 0.17 0.52 0.22 0.04 0.00

F B G C H E D A

F 0.22

B 0.00 0.13 0.04

G 0.04 0.30 0.00 0.00

C 0.17 0.39 0.00 0.09

H 0.09 0.13 0.22 0.00 0.13 0.09

E 0.22 0.00 0.43

D 0.04 0.17 0.00

A 0.17 0.52 0.22 0.04 0.00

(a) (b)

Fig. 12.13 Design block reordering a Design block (DHE) b Design block (HED)

Table 12.5 Design block calculations—internal order

(DHE) [F*[0.09 ? 0.17 ? 0.22] ? C*(0.04 ? 0.43 ? 0.13)]

? F*(0.09*6^q ? 0.13*4^q ? 0.22*3^q +0.04*2^q)
+C*(0.09*2^q)
= C*1.0494 +37.451

(HED) [F*[0.22 ? 0.04 ? 0.43] ? C*(0.13 ? 0.09 ? 0.17)]

? F*(0.09*5^q ? 0.13*3^q ? 0.22*2^q +0.04*3^q)
+C*(0.09*4^q)
= C*1.54123 +23.18654
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was calculated according to Eq. 4.3. For the current example, the DSM with DBs

(represented as one activity each) is depicted in Fig. 12.14.

As previously indicated, a DB may have one activity. Activity F being

implemented as a DB has self-iteration like any other DB; thus, its management is

not unique. Activity A being a DB has a feedback link that is implemented as part

of the process scheme model, and its probability at run time is zero (other zero

values in the DSM are not modeled in the process scheme). Begin and END logic

activities have no self-iteration links.

DBs (BGC) and (DHE) formed coupled activities loop; therefore, the imple-

mentation rules and the business rule options applied to coupled activities

(Sect. 10.5) were applicable in this case as well.

12.5.4 DSM Conversion to Process Scheme

The DSMwas converted to a DPM. The conversion was done in the same manner as

previously presented for the WXYZ process example (depicted in Fig. 12.6).

A parallel implementation of the DBs is depicted in Fig. 12.15a. Activities F and

A were also implemented using the DB logic mechanism, since in general, the

content of a DBmay change during the process, as demonstrated in the next section.

A simplified C-process implementation is presented in Fig. 12.15b, where solid lines

indicate forward links, and dashed lines indicate feedback links between DBs. Such

simplified diagrams will be used to further present C-processes and RT- processes.

12.5.5 RT-Process Using Design Blocks

In order to check the implication of simulation parameters, the process was sim-

ulated in batches of 1,000 runs each. An example of run time process is depicted in

Fig. 12.16. The process is described using a non-scaled time line (representing

relative activity duration). In this example, DBs (BGC) and (DHE) started in

parallel, applying BR 14.2 for the parallel DBs. DB (BGC) had a self-iteration, and
the second execution was in parallel to (DHE).

When DB (DHE) completed, a feedback link was activated causing another

execution of (BGC). This third execution could not be in parallel to the second

Fig. 12.14 Probability DSM

of design blocks
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execution of (BGC). Note: the duration of H in this example was D(H) = 10, and

the duration of DB (BGC) was D(BGC) = 4; thus, DB (BGC) completed two

executions before the completion of (DHE). Applying BR 13.2 would have caused

a similar result even if D(H)\ 8. However, in the case of BR 13.2, if D(H)\ 4,

then the second execution of (BGC) would have been the result of the feedback

link from (DHE) and not a self-iteration. Using BR 13.1 the executions can merge.

When (BGC) completed its third execution (= second iteration) a feedback link

to (DHE) and a self-iteration link were assigned, causing iteration of (DHE) and
additional iteration of (BGC). Both are considered feedback links since they are

within coupled activities.

Activity A had a late start (BR 16.1), i.e., after all its precedent activities have

completed. When (BGC) had completed its second execution, it linked to A,

Begin EndF

D

H

A
B

G

C

E

(a)

(b)

Fig. 12.15 Coupled Design blocks. a Parallel design blocks. b Parallel design blocks simplified

Fig. 12.16 RT process of

Coupled Design blocks
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according to BR 16.1. Since there were additional iterations of (BGC) due to a

feedback link of (DHE), the link to A was removed and replaced by a link to the

next iteration (third execution) of (BGC); such link is marked by a thin (red) line,

indicating it is not an actual self-iteration link. Using that link indicates that the

next iteration waits for the completion of the previous one.

For demonstrating the implication of relative duration, the duration of activity

H was changed D(H) = {1 to 10}. The duration of the other activities were set as

follows: D(B) = D(G) = D(C) = 4; D(D) = D(E) = 2; and D(A) = D(F) = 1.

The duration time units are not specified (e.g., days).

For each duration value of D(H), 1,000 simulation runs were performed. The

process durations T, of 1,000 runs, for D(H) = 1, are presented in Fig. 12.17a.

Note: the fixed duration of high-level activities (Fig. 12.2), was subtracted from the

total, i.e., the presented figure indicates only the duration of the design subprocess.

The minimum process duration was 6 (time units). Resources calculations

assumed one resource unit per one time unit of an activity. It also assumed that

resources within a DB, which are not active, are not kept idle. With these

assumptions, the minimal resources required were 19. The maximal process

duration for D(H) = 1 was 43, and the maximal resources utilization was 157. The

minimal duration remained 6 until D(H) = 4 (i.e., until both DBs had the same

duration); then, it linearly increased with D(H) as activity H became part of the

critical path. Several sample results are presented in Table 12.6.

The process duration distribution is presented in Fig. 12.17b. The distribution

shape is right skewed (positive skew) with skewness measure c = 0.77.3 It has

Fig. 12.17 Coupled Design blocks process duration D(H) = 1. a RT-process duration.

b RT-process duration distribution

3 Skewness measure is given by c ¼
ffiffiffiffiffiffiffiffiffiffiffi

nðn�1Þ
p

n�2

ffiffiffi

n
p P

n

i¼1

ðxi � �xÞ3
�

ð
P

n

i¼1

ðxi � �xÞ2Þ3=2(Whitley 1994).
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high-standard deviations. As D(H) increased, the standard deviation increased

(Table 12.6) and the distribution becomes closer to the case of one DB in Fig. 11.6.

Graphs of the average time and average resources as functions of D(H) are depicted
in Fig. 12.18.

The average time increased and so did the difference between the average time

and the minimal duration. The minimal duration (no iterations) increased linearly

with D(H), from D(H) = 4, once its duration becomes part of the critical path.

There was a slight increase of average process time due to iterations, but the basic

result remained the same until D(H) = 4. From D(H) = 4 to D(H) = 10 as the

minimal duration increased linearly, the average process duration increased in a

linear manner as well. The results in this case, indicated that the minimal duration

had a major influence on the overall process duration.

There was a slight increase of the average resource utilization. The deviation

was high and the fluctuations seemed to be greater than the average increase. The

average resource utilization increased, but given the high variation, there is no

statistical difference between the results. If resources were idle during DB per-

formance (waiting to other activities in the DB to complete), then the increase in

resource utilization was aligned with the increase of the average process time as

D(H) increases.

12.5.6 Business Rules Modifications

Using the same example with an early start of activity A (BR 13.2) would

result in multiple executions of A, depicted in Fig. 12.19. The total time of the

process (with the same feedback and self-iteration decision) is similar to the

RT-process of the former example, but requires more resources, as A executes

more times.

Table 12.6 Run time results of parallel design blocks

Simulation parameter Process duration Resources

D(H) Min Max Avg., std Min Max Avg., std

1 6 43 13.85, 6.30 19 157 51.21, 22.52

4 6 50 14.32, 6.46 22 193 53.41, 24.63

10 12 60 21.05, 7.31 28 202 57.60, 25.43

21 3 54 6 87 109 D(H )

60

50

40

30

10

20

70

0

Avg Time

Avg Res

Fig. 12.18 Coupled Design

blocks process duration
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In this example, D(A) = 1. Activity A completes each time before its next

iteration and links to the End logic activity. Once activity A has another iteration,

the link to End should be removed (End always waits for all iterations to com-

plete); and replaced by a link to next activity iteration (thin red line), as in the

previous example.

In terms of process performance, the process duration was the same as the

previous process; however, more resources were required. Hence, for this example

the conclusion was that early start did not contribute. However, if in addition to

using BR 16.2 (early start), BR 12.2 is also used (i.e., on second or later iteration

the activity can link to the END activity and not necessarily to the next serial

activity), then activity A may execute only once. In such case, resources are not

increased, and process duration may decrease.

12.5.7 Additional DSM Implementation Options

The DBs in the example are part of an activity cycle. Besides the parallel

implementation of activities within the DBs, the DBs can be serialized. The DB

(DHE) has to wait for the completion of (BGC) and can iterate to (BGC) through
the feedback link. Serial implementation of the DBs is depicted in Fig. 12.20.

Solid lines indicate forward links, and dashed lines indicate feedback links.

The performance of serialized DBs implementation was inferior to parallel DBs

in terms of duration. Following the conclusions of previous section, a late start

logic was applied, with a merging rule (BR 13.1, i.e., iterations of (BGC) do not

necessarily cause iterations of (DHE) for large D(H) values, D(H)[ 4). The

results of DB serialization had small (statistically insignificant) reduction of

resource utilization. Early start logic was not beneficial since in the serialized

process, the second DB (DHE) always followed (BGC).
Finally, DSM-based plan can be implemented without DBs. Such implemen-

tation has the following structure, Fig. 12.21. Activities F, B, and D, which have

no other preceding activities, start in parallel from the Begin activity. The other

activities get forward/feedback links accordingly, the actual order is as if the order

was (F,B,D,G,C,H,E,A), Fig. 12.21a. The C-process is depicted in Fig. 12.21b,

feedback links are dashed (red) lines.

The comparison to the case of no DBs implementation, Table 12.7, is more

interesting. The process has more serial structure; thus, as expected the duration is

Fig. 12.19 Early start RT
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longer. It should be indicated that while minimum duration was significantly

longer, the simulated maximum duration was shorter. Additionally, the deviation

was much smaller, since it is not in blocks. If consistency of process time is

valuable, this fact may be significant (e.g., for manufacturing processes).

Resource utilization was decreased, since it only required resources that are

utilized, unlike DB implementation, where all activities iterate.

12.5.8 Learning

So far the simulations were done assuming that activity (or DB) iterations have the

same duration. Learning implies reduction of the activity duration, as only parts of

F

D

H A

B

G C EBegin End

F B D G C H E A

F 0.22

B 0.00 0.13 0.04

D 0.00 0.04 0.17

G 0.04 0.30 0.00 0.00

C 0.17 0.09 0.39 0.00

H 0.09 0.09 0.13 0.22 0.00 0.13

E 0.43 0.22 0.00

A 0.17 0.52 0.22 0.04 0.00

(a) (b)

Fig. 12.21 No design blocks. a DSM no design blocks. b C-Process no design blocks

Table 12.7 Run time results—no design blocks

Simulation parameter Process Duration Resources

D(H) Min Max Avg., std Min Max Avg., std

1 16 39 21.42, 3.02 19 57 26.85, 3.85

4 19 46 22.37, 3.06 22 62 30.82, 4.24

10 25 49 29.92, 3.10 28 64 36.97, 4.88

Fig. 12.20 Serializing

Coupled Design blocks
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the activity have to be re-executed, or due to the experience gained, the execution

of activities is shorter. The learning model applied assumed work reduction by a

constant factor LR (learning ratio); such that the duration is reduces by that factor

on each iteration compared to the previous execution.

D ai; kð Þ ¼ D aið Þ � LRk; ð12:1Þ

where ai is the activity, D(ai) is its initial duration, LR is the learning ratio, and k is
the number of iterations of that activity.

The activity duration was re-scaled such that each time unit (as used in

Table 12.6), became 100 time units in order to get meaningful results, since the

simulation progresses with integer time units.

A case of no learning (LR = 1) simulation results using 100 time units were similar

to those in Table 12.6, with close (scaled) results of average and standard deviation.

The results of applying learning model, with LR = 0.5 are presented in

Table 12.8.

Comparison with Table 12.6 (with the appropriate scaling) yields that applying

a learning model reduced the maximal time, the average time, and the deviation.

With learning, the additional iterations have less impact on the average duration

since their added time is reduced, respectively, the impact of the minimal duration

becomes more significant. The total time factor of infinite iterations of an activity

is an infinite sum. In the case of LR = 0.5 it is 1 ? 1/2 ? 1/4 ? … ? …, which

converges to 2 (i.e., the total time would be twice the initial duration). In general,

this sum converges to 1/(1 - LR).
Another type of learning model involves reduction of the probability for next

iteration occurrence (that could be combined with duration reduction). Such model

would have similar effect to duration reduction because it reduces the occurrence

of multiple iterations.

12.6 Simulation Continues

The high-level process status at this point is described (in a non-formal way) in

Fig. 12.22. The Conceptual Design and Specification activities were completed

(marked by thick, green outline), and during the Conceptual Design, the plan for

Design activity was set. During the Conceptual Design, it was also decided to

Table 12.8 Run time results—learning impact

Simulation parameter Process duration Resources

D(H) Min Max Avg., std Min Max Avg., std

1 600 1,926 867, 261 1,900 9,362 3,175, 832

4 600 2,441 932, 327 2,200 10,731 3,471, 930

10 1,200 3,812 1,628, 438 2,800 11,472 4,160, 1,024
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add a Prototype activity in order to check the implementation of the new laser

diode technology. This was planned to start once the Conceptual Design and

Specification activities have completed. The implementation of such change

(which is not derived from the product structure), was done by ad-hoc change of

the process.

The process change implementation depends on the process planners/managers

decision regarding when the activity should start and which activity should wait

for its completion. For example, it was decided to perform it in parallel to the PDR

and Design activity, and it should be completed before the CDR (other options

include immediate implementation in parallel to Conceptual design or completion

before the PDR activity). The implementation of the first option is depicted in

Fig. 12.23. Adding the Prototype activity required addition of logic activities

(marked in grey/blue) that implement Split-And and Join-And, respectively. Note:

immediate implementation of a prototype activity can be done by linking it to the

Begin activity (having Split-And logic).

12.7 Dynamic Design Block Changes

Dynamic changes of the product structure imply dynamic changes of the process

activities. Adding or deleting activities would yield process changes as described

in Sect. 11.2. The implementation of changes in the process scheme, e.g., due to

End

Design
Conceptual

Design

Begin
Specification

PDR CDR

Production

Cancel 

Project
Iteration Iteration

Fig. 12.22 High-level process status view

Fig. 12.23 Adding Prototype activity by ad-hoc change
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additional links may add iterations, and is dependent on the process status, as it

was demonstrated in Fig. 11.3. In a similar manner, the implementation of DB

content changes is dependent on process status and the BR used.

An example of a change in the DB content (presented in Sect. 11.5) is

depicted in Fig. 12.24. The probability DSM (a) and reordered DSM (b) are

copies of Fig. 12.11b and Fig. 12.12, respectively. In (c), a small modification

of the DSM was done: the value of the link H to E changed from 0.22 to 0.04;

and a link with value 0.13 was added from H to G. The reordering result

Fig. 12.24d defined modifications of the DB content, being (DE) and (BCGH)
instead of (BCG) and (DHE). This change is later referred as product knowl-

edge change.

Changes of DB content (without adding or removing activities from the

process) may create interesting completion patterns of the DB depending on the

process status. Assuming parallel implementation of the DBs, the C-process of

the new plan is depicted in Fig. 12.25. However, it is important to note that this

Fig. 12.24 Design blocks changes. a Probability DSM—case I. b Reordered DSM—case I.

c Probability DSM—case II. d Reordered DSM—case II

Fig. 12.25 C-process of new

plan
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would have been the implementation of a new process if we were to start the

process from scratch.

In this plan (DE) starts in parallel to F, and both DBs have feedback links to

each other (marked as red dash lines). The structure of two parallel cyclic DBs

echoes the example in Sect. 9.9. The implementation of this process plan is not a

WRI-WF-net. Implementation by WRI-WF-net would be a united design block

containing two parallel elements that are the two DBs (DE) and (BGCH) in a

similar manner to Fig. 12.15.

12.7.1 Change of Design Blocks at Run Time

An informal illustration of a process change, due to changes of product knowledge

during prototype is depicted in Fig. 12.26. The prototype started in parallel to the

PDR continued in parallel to the design activity, and the information gained could

alter the planning of the design activity subprocess. The subprocess started

according to the first plan [e.g., DBs (BGC) and (DHE), Fig. 12.15b], and con-

tinued with a new plan [DBs (DE), and (BGCH)].
If only activity F has completed, when the change of plan occurred, the change

could have been implemented immediately since the change is applied to a process

sectionwhich is sequentially linked (not performed yet) and is not a part of a cycle (no

iterations specified). Therefore, no special considerations might postpone imple-

menting the change. Yet, the resulting process is not similar to the new plan. The DB

(DE) cannot have started in parallel to activity F (which has already completed).

Defining the more complex options (demonstrated in the following examples),

requires to identify the IL andOL of the DB. Changes of DB content cause the DB to

change its identity; thus, a design activitymight start as part of oneDB, and complete

in another DB. Accordingly, at run time, an identified DB may start, but not end;

ormight endwithout having an indication of starting. The importance of utilizingDB

input logic and output logic is demonstrated, as they keep the DB’s identity.

End

Conceptual
Design

Specification

PDR CDR

Production

Cancel 
Project

Iteration Iteration

Prototype
F D E B G C H A

F 0.22

D 0.00 0.17 0.04

E 0.43 0.00 0.04

B 0.00 0.13 0.04

G 0.04 0.30 0.00 0.13

C 0.09 0.17 0.39 0.00

H 0.09 0.09 0.13 0.13 0.22 0.00

A 0.17 0.04 0.52 0.22 0.00

Begin

Fig. 12.26 Prototype—change in product knowledge
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Given the activity durations (Sect. 12.5.5) including D(H)[ 2. If the knowl-

edge change would have been applied at process time T = 3, i.e., activities D, E
completed and activities B,G,C did not; then according to the new C-process

scheme, block (DE) could complete immediately, and activity H could join the

other activities and complete as part of the DB (BGCH). An example of the

resulting RT-process is depicted in Fig. 12.27. In this case, activity F iterated; yet,

if there were only one execution of F the process would have been similar.

Activities B, G, and C, started as part of Db1 (BGC), and completed as part of Db3
(BGCH). Activities D, and E, started as part of Db2 (DHE), and completed as part

of Db4 (DE); H started as part of Db2 and completed as part of Db3.
If D(H) = 2, and there were no iterations of F, then Db2 (DHE) had completed

at T = 3 (when the change occurred), as depicted in Fig. 12.28a. Adding activity

H to Db3 (BGCH) requires iteration of H, marked as H2, in (b). The input logic of
Db1 is replaced by the input logic of Db3 (marked as IL 1/3), since it links to the

iteration of H, and the output logic is OL3 (of Db3).
The calculation of the DB duration becomes more complex. It should take into

account the start time of the DB, the ‘‘internal time’’ Ti(H) in which activity H has

joined the DB, and the duration of H.
The duration is D(Db3) = max({D(ai)}, {Ti(bi) ? D(bi)}); where ai are the

activities that initially started as part of the DB, Ti(ai) = 0; and bi are the activities
being added during its execution. Ti(bi) are the internal time (time from the start of

the DB) at which these activities were added. Ti(H2) = 3-1 (time of change

minus the time when the DB started); D(Db3) = max(D(B), D(G), D(C),
{Ti(H2) ? D(H2)}) = max (4, 4, 4, 2 ? 2) = 4.

Fig. 12.27 RT-process,

change at T = 3

Fig. 12.28 RT-process, change at T = 3 with H iteration. a RT-process until T = 3. b Process

completion
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For a change at T = 6, 6\D(H)\ 8 there was another process change type,4

depicted in Fig. 12.29. In this case, DB (BCG) has completed; H was still exe-

cuting; thus, iteration of activities (B, C, G) was required. Since (BCG) has

completed, it had a link to A. Once (BCG) repeated due to the iteration enforced,

the link was canceled, and replaced by a link to the new DB (dashed, red line).

Activity A had late start logic; therefore, it could start only after the completion of

the second execution of (BGC). In this example, an additional iteration of (DE)
was done according to the new definition.

The time line in this figure is totally out of scale due to the logic activities

(duration zero); and deviations of activity box size on the second execution (longer

box due to longer title).

12.7.2 Process Reaction Types to a Change of Design Block

Content

For the simple case of one change, moving an activity from ‘‘source’’ DB to a

‘‘target’’ DB, there are four types of ‘‘process reactions‘‘to this DB content

change:

a. Immediate implementation, if the DBs did not start (e.g., while activity F is

iterating), or if both DBs are currently inactive.

b. Change while the activity is executing and the new ‘‘target’’ DB is still exe-

cuting. The activity starts as part of one DB and completes in the other,

Fig. 12.27.

c. Change after completion of the activity, while the new ‘‘target’’ DB is still

executing. The activity being added to the executing DB iterates, Fig. 12.28.

d. Change while the activity is executing, and after completion of the new ‘‘tar-

get’’ DB. The design activities in that DB iterate, Fig. 12.29.

Fig. 12.29 RT-process, change at T = 6 with BGC iteration

4 In the current example D(H) = 7. When using different time scale (as done for simulating

learning in Sect. 5.4.8), then the inequality becomes 600\D(H)\ 800.
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Additional subcases are adding a new activity to a DB, removing activity from

a DB to a new DB with no other content, or completely removing the activity from

the process. These cases are included in the above types.

The difference of the C-process model from the RT-process model becomes

significant as the RT-process may follow interim process structures that partially

relate to different C-processes; consequently, the resulting RT-process does not

resemble any of the C-processes (in a C-process an activity starts and completes in

the same DB).

12.7.3 The Logic of Changing the Design Blocks: Internal Change

The above example demonstrated a change at some fixed process time. Such

change represents an external source of knowledge change, e.g., new customer

requirement. The change is considered external since its timing is not aligned with

the process progress or the knowledge gained through the design. Another

knowledge change type is an internal change due to the product knowledge gained

during the process, e.g., assigning the change to the second completion of

activity H.
The completion time of the first execution of activity H is dependent on its

durations [D(H)], and the number of iterations of F activity (given fixed duration).

The second completion of activity H (if H iterates) is influenced by the number of

iterations of F, iteration of (DHE), feedback from (BGC), and the relative duration

of H.
The following results used only runs with a second execution of H; other cases

were filtered out.

Assuming a learning process with LR = 0.5, and given the activity duration in

Sect. 12.5.5, a scaled timing was used (i.e., the minimal duration of the first

execution of H is D(H1) = 100). Assuming a self-iteration of (DHE), the process

for D(H1)\ 266 [i.e., D(H1) ? D(H2)\ 400], is depicted in Fig. 12.30. The

minimal total process duration was T = 600, and the minimal required resources

were (activities in brackets):

Fig. 12.30 RT-process, change at 2nd execution of H

220 12 Implementation Example



R = 100{F} ? 1,200{BGC} ? 400{D1E1} ? 100{H1} ? 200 (D2E2} ? 50{H2} ?
100{A} = 2,150. In such cases where H completed the second time while (BGC)
was executing, the process had a type ‘‘(b)’’ process reaction (start in one DB and

complete in another). If the only iteration was of (DHE) and D(H)[ 266, then the

process reaction would have been of type ‘‘(d)’’ (iteration of activities in the target

DB).

12.7.4 The Value of Early Knowledge

So far, the use of the system for monitoring the evolving process was presented

and the simulation capabilities were demonstrated by presenting the impact of

various cases on the process progress. In the following example, we present the

system utilization as a decision-making aid (during the process) to managers, by

utilizing the simulation capabilities of the system.

Four decision criteria are presented: averages comparison, performance indica-

tors, pairwise comparison and finally, a decision based on a difference function using

confidence interval (described in Sect. 11.7.1). The competences and limitations of

the decision-making procedures are discussed in the context of the NPD process.

Different timing of gaining knowledge was demonstrated to have different

process reaction types. The following simple case study is related to the decision:

how many resources to invest in order to expedite gaining the product knowledge

(assuming that the required resources could be estimated). The typical convention

is that the sooner the knowledge is gained the better.

The example demonstrates the impact of gaining the new product knowledge at

time T = 3 versus gaining it at time T = 6 for D(H) = 5. The BRs used were:

no learning, late start, no exit option, but unlike the ‘‘long’’ option (Sect. 11.6) with

merger and immediate implementation of DB change. Study of the impact of each

BR and their combinations, and the application of DBs was presented in

Sects. 11.8 and 11.9, respectively.

This example had the following process reaction type (Sect. 12.7.2) options:

If the knowledge is gained at T = 3 and F activity iterates and executes three

times, the new process is directly implemented (type a), otherwise, type (b) is

applicable.

For gaining the knowledge at T = 6, if activity F executes once, and there are no

iteration of (DHE) and (BGC), type (a) is applicable.

For T = 6, if activity F executes once, and there are no iteration of (DHE) and
(BGC) iterates, type (c) is applicable.

For T = 6, if activity F iterates, or (DHE) iterates, and (BGC) does not iterate,

type (d) is applicable.

For T = 6, if activity F iterates, or (DHE) iterates, and (BGC) iterates, type (b) is

applicable.

The simulation results are presented in Table 12.9. The average duration of the

first case was shorter, requiring fewer resources in average. Using the average
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results of duration, and the resources results it is easy to conclude that early

knowledge provides better performance. Using such comparison for decision-

making is the most common practice in DSM literature; however, it has no sta-

tistical significance.

The performance indicators (T\ 18, R\ 60) were less decisive: better time

performance for the first case; but, better resource performance (probability to

complete the design with limited resources) on the latter case.

In order to understand the performance indicators results, a more detailed

investigation was required, and histograms of the process were drawn, Fig. 12.31.

The resulting distribution looks periodic, but was not consistent. Analysis of the

results indicated that the choice of the threshold values (for duration and resources)

Table 12.9 Gaining the knowledge early

Simulation parameter Process duration Resources Performance (% runs

satisfying condition)

Change at Min Max Avg., std Min Max Avg., std T\ 18 R\ 60

T = 3 7 22 12.52, 4.15 23 67 42.86, 14.89 95.8 76.9

T = 6 9 21 13.42, 2.74 25 67 49.22, 9.41 87.8 81.3

Fig. 12.31 Results Distribution D(H) = 5, no learning. a Process time—change at T = 3.

b Process time—change at T = 6. c Process resource—change at T = 3. d Process resource—

change at T = 6
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had a major impact on the results comparison; therefore, such decision-making

method might be too sensitive to the choice of the threshold.

For example, choosing a time threshold of T\ 16.5 would yield for (T = 3)

67.6% and for (T = 6) 82.8%, i.e., for this threshold the latter case has better

duration performance. On the other hand for R\ 57 and (T = 3) we got 67.7%,

and for (T = 6) 67.5%, i.e., the first case has better resource performance.

A pairwise comparison is depicted in Table 12.10. Each couple of runs is

compared counting the number of cases where (Time/Resources) of the first case

type (getting the knowledge at T = 3 and making the change decision at that time)

is better than the changing at T = 6. The results indicated that the total process

time was better in the first case (50.7%), and fewer resources were required (60.8%

of the runs) (for 1,000 runs).

The results of using the statistical analysis of the difference function distribu-

tion (described in Sect. 11.7.1) are also depicted in Table 12.10. The run was done

using a scale of 100 time steps per time unit, and scaled back (i.e., the simulation

progresses with time steps of 0.01 time units).

Results of the average, standard deviation of the difference-function distribution,

the confidence interval, and the decision are presented. The average time difference is

-0.906 (i.e., the average time of the first case is shorter), and is out of the confidence

interval (which is [-0.3033 to 0.3033]). Therefore, the difference is statistically

significant, and we can reject the null hypothesis that both cases are equivalent.

The average resources difference is -6.36, and is out of the confidence interval,

which is [-1.071, 1.071]. Again, the results are statistically significant.

The results indicate that with a confidence level of 5% we can decide that the

first case has better performance than the second case. Decision based on early

knowledge has better process performance.

Using the statistical analysiswe can bemore convinced that the first option is better,

i.e., making changes earlier in this case is more beneficial. Furthermore, a parametric

search helps estimating that the addition of up to 0.60 time units, or up to about 5

resource units to the first process, would still make that process more beneficial.

12.7.5 Change of Knowledge Without Change

of Process Scheme

The next example demonstrates a ‘what if’ scenario. The system is utilized for

checking what would be the impact of a change in knowledge, if it were not

Table 12.10 Gaining the knowledge early

Pairwise comparison Difference function—time

decision: T(T = 3)\T(T = 6)

Difference function—resources

decision: R(T = 3)\R(T = 6)

T(T = 3)\

T(T = 6)

R(T = 3)\

R(T = 6)

Avg., std Confidence

Interval (5%)

Avg., std Confidence

Interval (5%)

50.7% 60.8% -0.906, 4.894 0.3033 -6.36, -17.28 1.071
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followed by a change of the process scheme. The probabilities were calculated

according to the updated knowledge, Fig. 12.24d, but the process continued

according to the ‘‘old’’ plan, Fig. 12.20. In this case, the time and resources

were scaled such that each simulation step represents 0.01 time/resource units.

In Table 12.11, results for the ‘‘short’’ case5 of DBs with D(H) = 1,000 are

presented; 1,000 simulations were performed.

There is a difference in the average of duration and resource utilization between

the two cases. Both duration and resource utilization are better in the case of

implementing the knowledge changes, when the information is available. In this

example, both process indicators are better in the case of implementing the scheme

change.

Comparison of the pairwise results, in Table 12.12, yields that shorter duration

of the process with scheme changes were obtained in 59.7% of the cases, and

fewer resources were required in 58.3%. Statistical analysis of the difference-

function distribution results are aligned with the comparison results. Both differ-

ence averages are out of the confidence interval, thus the difference is statistically

significant.

The results indicate that updating the process plan according to updates in the

product knowledge can improve process performance.

Changing the process scheme has cost (the time and resources required for

forming new groups). If there are estimations of such additional costs, a decision

can be made (or implemented into the simulation) whether to implement such

change or not.

Table 12.11 Decision-making—changing the process or ignoring new knowledge

Simulation

parameter

Process Duration Resources Performance

Min Max Avg., std Min Max Avg., std T\ 2,000 R\ 4,800

Scheme

Change

16.00 33.27 17.57, 1.57 35.00 52.29 43.29, 3.46 89.2% 92.1%

No change of

scheme

16.00 37.41 18.78, 2.29 35.00 53.93 44.87, 3.87 71.7% 83.8%

Table 12.12 Decision-making—pairwise and statistical analysis

Pairwise comparison Difference function—time Difference function—resources

T(change)

\T(No)

R(change)

\R(No)

Avg., std Confidence

interval

(5%)

Decision Avg.,

std

Confidence

interval

Decision

59.7% 58.3% -1.32;

2.77

0.172 T(Change)

\T(No)

-1.60;

5.30

0.329 R(Change)

\R(No)

5 Maximal parallelism, minimal impact of multiple iterations, and minimal process time,

see sect. 11.6
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According to parametric analysis of the difference function,we can add about 1.15

time units and 1.27 resource units and still have better time and resource perfor-

mance. Therefore, any additional duration and resources for performing the process

change that are less than the above justifies performing the change.

12.8 Example Outline

To recap, the detailed example demonstrated the dynamic evolution of a devel-

opment process. Starting with the most general process having one process activity

(within a frame of logic activities Begin and End), the process was hierarchically

expanded to a best practice high-level process being the updated C-process.

RT-process model, which keeps the process history and the current process status,

followed the C-process.

Once initial knowledge regarding the product was gained, the stages of con-

verting that knowledge into a process plan and then to a process scheme model

were followed. These stages were applied to planning the conceptual design

activity (one activity in the high-level skeleton). After reordering the DSM, var-

ious business rules (the options of serialized, design block, and general parallel

options) were applied for the transformation from the DSM structure to the process

scheme. Using the simulation capabilities for decision-making, the results of

applying the BRs were compared.

Using ad-hoc changes, the C-process can be modified to (unexpected) local

needs. In the presented example, it was used for adding a prototype stage that

enhances the product knowledge (detailing the product structure and evaluating the

links more carefully, i.e., giving values instead of binary estimation); hence,

modifying the design process scheme.

The additional product data was used for the creation of probability DSM. Its

reordering and its conversion to Design blocks were demonstrated, followed by

conversion stages to the process model. The implementation of the various process

structures at run time were presented, while checking the implications of various

process parameters and different business rules. Again, simulation was used for

aiding decision-making by comparing the potential implementations. A compari-

son of potential decision schemes was presented that manifested the properties of

using statistical analysis method.

Finally, dynamic changes of the scheme were presented, discussing the various

change types and using the simulation for addressing process management issues

such as quantifying the value of early knowledge; or quantifying the cost of

performing a process change versus not changing the process.
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Chapter 13

Summary

13.1 Overview

To date, the automated monitoring of static fixed-scheme processes is managed by

workflow tools; yet, a corresponding engine for management and simulation of

iterative dynamic and complex processes such as NPD is lacking. The presented

research therefore responds to an existing business need. Studying and evaluating

the implications of dynamic changes in a process plan should be academically

interesting; however, such studies are scarce. The framework proposed in this

research provides methods and tools for further studying dynamic process-related

aspects that were not fully addressed. These issues are discussed in the following

sections.

The main contribution of this research was the composition of the DnPDP

framework model that enabled supporting the requirements of NPD-like processes,

including process management (planning, converting to model, model imple-

mentation, and execution), and process decisions aid tools (through simulations

and statistical analysis). The framework incorporates product knowledge evolu-

tions, and is used for process planning updates that are repeatedly converted to

process model and implemented in a changing process scheme. The process is

proceeding through the hierarchically evolving scheme from an initial pre-defined

best-practice process model to the actual iterative ‘‘on the fly’’ defined process.

The evolving changes required formal specification to ensure the properties of the

resulting process. Such formulation using WF-nets is established for static scheme

processes. The concepts adapted from WF-nets are utilized for the dynamic

case by requiring that each of the process schemes implemented incorporates the

current process state (i.e., keeping continuity) and that state in the current

(changing) process scheme is able to reach the terminal state of the updated

process scheme. A process engine was developed that implements the execution

of dynamically evolving process scheme (during the process). The same engine

is used for simulation of potential process evolution during the process.

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_13,
� Springer-Verlag London Limited 2011
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These simulations are analyzed and the analysis results can support decision-

making during the process progress.

A test case of developing a simplified product demonstrated the capabilities of

the framework to implement and analyze a dynamically evolving development

process. Even for the simplified product model presented, the process is too

complex to be evaluated without simulation. The decision-making is highly

dependent on process parameters in a nonlinear complex manner.

The implementation of the framework in a real setting and its validation by

hands-on experience are still to be accomplished. The main challenge is collecting

the ‘‘on line’’ information that is required for the repeated DSM calculations.

Existing PLM tools can provide support for data collection during the design

process, therefore integration to such tools is required. Technically, such inte-

gration is feasible; but commercial and organizational obstacles are to be resolved

in order to achieve it.

The research contributions include enhancements and extensions of existing

concepts and models, and the development of new concepts. Existing methods

were typically developed under assumptions that do not comply with NPD process

requirements (e.g., having static process or assuming a validated manual plan).

The main enhancements are summarized in Sect. 13.2 that follows.

13.2 DnPDP Framework

Solution constituents were identified and integrated into a framework—the

DnPDP. Each of the identified resolution components may have different imple-

mentation options (methods); thus, the framework implementation presented in

this study is only one of many potential implementation solutions of that frame-

work. The choice of the specific method used was instrumental in seeking for a

sufficient solution; but was not optimized (i.e., looking for an effective solution

and not necessarily an efficient one). Furthermore, choosing between the various

options of each component and choosing combinations would require hands-on

experience with implemented solutions (that are not available currently).

A summary of the existing methods integrated into the framework, their current

state of the art, and the modifications done in the current work is depicted in

Table 13.1 (Karniel 2009).

13.2.1 Contribution to DSM Concepts

Several extensions and contributions to the DSM methods were proposed in the

research. The novel self-iteration concept was defined and demonstrated. The self-

iteration concept provides the foundation for the Design block concept, which is

augmented with a proposal for calculating the self-iteration merged probability.

228 13 Summary



T
a
b
le

1
3
.1

F
ra
m
ew

o
rk

co
m
p
o
n
en
ts

(m
et
h
o
d
s)

C
o
m
p
o
n
en
t

E
x
is
ti
n
g
m
et
h
o
d
u
se
d

O
th
er

p
o
te
n
ti
al

m
et
h
o
d
s

M
ai
n
en
h
an
ce
m
en
ts

an
d
m
o
d
ifi
ca
ti
o
n
s

P
ro
ce
ss

p
la
n
n
in
g

D
S
M

T
em

p
o
ra
l
d
es
ig
n
b
lo
ck
s

S
el
f-
it
er
at
io
n
s

D
S
M

re
o
rd
er
in
g
al
g
o
ri
th
m

fo
r
th
e
su
b
cy
cl
e
ca
se

O
p
ti
m
iz
at
io
n
al
g
o
ri
th
m

A
u
to
m
at
ed

co
n
v
er
si
o
n
to

p
ro
ce
ss

m
o
d
el
(p
ro
ce
ss

g
en
er
at
o
r)

M
an
u
al

A
u
to
m
at
ed

co
n
v
er
si
o
n
p
ro
ce
ss

fr
o
m

D
S
M
-b
as
ed

p
la
n
to

an
ex
ec
u
ta
b
le

p
ro
ce
ss

m
o
d
el

P
ro
ce
ss

m
o
d
el

o
f
d
y
n
am

ic
sc
h
em

e
p
ro
ce
ss

T
as
k
n
et

P
i-
ca
lc
u
lu
s

D
S
M

n
et

w
it
h
L
o
g
ic

ac
ti
v
it
ie
s
h
av
in
g

m
o
d
ifi
ab
le

lo
g
ic

as
si
g
n
ed

at
ru
n
ti
m
e

P
ro
ce
ss

v
er
ifi
ca
ti
o
n

P
et
ri
n
et
s

P
i-
ca
lc
u
lu
s

C
o
rr
ec
tn
es
s
cr
it
er
ia

o
f
d
y
n
am

ic
al
ly

ch
an
g
in
g

sc
h
em

e

P
ro
o
fs

fo
r
D
S
M

n
et

P
ro
ce
ss

ex
ec
u
ti
o
n
(p
ro
ce
ss

en
g
in
e)

E
n
h
an
ce
d
T
as
k
n
et

G
E
R
T

E
x
ec
u
ti
o
n
o
f
p
ro
ce
ss
es

w
it
h
d
y
n
am

ic
p
ro
ce
ss

sc
h
em

e

D
is
ti
n
ct
io
n
b
et
w
ee
n
C
-p
ro
ce
ss

an
d
R
T
-p
ro
ce
ss

P
et
ri
n
et
s

P
i-
ca
lc
u
lu
s

S
im

u
la
ti
o
n

E
n
h
an
ce
d
ta
sk

n
et

D
S
M
-b
as
ed

si
m
u
la
ti
o
n
s

(+
ex
ec
u
ta
b
le
s)

U
si
n
g
th
e
sa
m
e
ex
ec
u
ta
b
le

p
ro
ce
ss

(p
ro
ce
ss

en
g
in
e)

to
si
m
u
la
te

b
u
si
n
es
s
ru
le
s

D
ec
is
io
n
-m

ak
in
g

S
im

u
la
ti
o
n
st
at
is
ti
cs

S
ta
ti
st
ic
s

13.2 DnPDP Framework 229



Methodological contributions of this study include (a) the assertion indicating

that definition of both input and output process logic cannot be done by marking of

a single DSM in the case of parallel execution of activities. (b) The assertion

indicating that minimum feedback optimization methods are applicable for

Boolean DSM, but may not suit DSM with variable figures (numeric or probability

DSM) to determine optimal process results. The latter assertion (being previously

demonstrated in the literature, but with no explanation of its rationale) emphasizes

the need for simulation as a guiding tool for process evaluation. These assertions

should guide further DSM-related research.

13.2.2 Partitioning and Optimized Sequencing Algorithms

The existing partitioning algorithm completes once the DSM activities are

reordered to activity cycles. An enhancement was developed that continues the

reordering such that the activities within a cycle are further reordered to a

simplified cycle with one feedback link.

An optimization algorithm was developed for sequencing (performing an

equivalent of partitioning, tearing, and clustering) and reordering the activities to

sub cycles that are defined as DBs.

13.2.3 DSM Conversion to Process

A new analysis method was proposed for analyzing the various logic options used

in the literature for converting the DSM structure to the process logic. The analysis

provides a common ground for comparing logic options. Yet, the method is limited

and cannot cope with all the logic options; specifically, it cannot compare process-

status-based logic that is defined during run time.

The conversion correctness was identified as a key element for automating the

conversion process, where conversion automation is required for repeatedly

updating the dynamic changes of the DSM data. The gap between the DSM

literature and other process implementation methods such as Petri nets was indi-

cated. New correctness criteria were defined, along with definition of the special

type of DSM nets.

Using Petri nets results (specifically WRI-WF-nets), it was proved that DSM

nets are equivalent to WRI-WF-nets for some specified cases. DSM nets can be

used in a hierarchical and extending manner, thus providing the foundation for

dynamic changes.

Defining dynamic changes required the definition of business rules (defining

applicable logic implementation) that adds an abstraction layer to the DSM data.

New logic operators were defined enabling the implementation of dynamic changes

to the process logic (and simplifying the DSM net structure under changes).
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13.3 Future Development

Several issues discussed within the DnPDP framework require further develop-

ment. These issues are grouped by the main related topics.

13.3.1 DSM-Related Issues

The DSM data is assumed available (e.g., collected by PDM/PLM tools), yet

setting the actual figures on which the further calculations are established is not

sufficiently addressed by DSM-related literature, and should be further examined.

1. DSM reordering according to the optimization cost function in Eq. 4.1 enforces

feedback values to be less or equal to forward values in a simple activity loop

(note: this may not be the case in a loop with sub loops). This assertion indi-

cated that the accurate value of the link (i.e., the assigned influence) has no

importance on the activities reordering algorithm; only its relations to other

values is important.

Top-down approach using only three values could be enough for reordering

purposes. Yet, bottom-up approach that has more granularity and larger variety

of values may have benefit once tearing (to DBs) is considered.

2. Probabilities calculations (forward, feedback, and self-iteration) using Eq. 4.3

for merged activities in a DB are based on calculating probability occurrence of

independent events. This calculation approach is appealing since it allows

creating DB probability estimations bottom-up; and is computationally

appealing since it keeps commutativity and associativity. However, it needs to

be validated by measurements. Another option that could be applied is using

only forward links for the computation of forward link merger, and calculating

only feedback and self-iteration links probabilities for merged links. Yet,

commutativity and associativity are not kept for the merged forward link being

calculated.

3. It is assumed that the accuracy of probability values may not be important for

using the proposed framework as a decision-making aid (by comparison of

options) and that the relative probability values are good enough. Yet, this

assumption requires further testing and validation.

4. The algorithm for reordering sub cycles (Lemma 2) might be useful in

reducing the search space of the optimal reordering algorithm. The inte-

gration of both should be further studied. Limiting the search space is

appealing from a computational aspect; however, the sub cycle reordering is

typically addressing minimum iterations, which might not be the optimiza-

tion target.
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13.3.2 Converting DSM-Based Plan to a Process Model

1. The formal definitions in Sect. 9.4 provide the foundation for proving cor-

rectness of various process types, which are represented by WRI-WF-nets. The

processes include serial processes, fully parallel processes, block diagonal

processes, and parallel blocks (cycles with sub cycles), where activity cycles

(or sub cycles) are defined as DBs, and are implemented as serialized or parallel

activities within the DB. Further work is required for defining the properties of

process structures, which result from applying the business rules. Process

examples were presented by demonstrating processes that are structurally

correct, but cannot be extracted from WRI-WF-nets.

It is required to prove that such processes can be built with inherent correctness

using DSM net (or some other logic representation). Such process schemes were

defined without using the Siphon concept (van der Aalst and van Hee 2002).

2. Research is required for automation of process planning where relations

between different domains are used (instead of the simplified one-to-one rela-

tion between product and process); e.g., using the Domain Mapping Matrix

(DMM) (Danilovic and Browning 2007), or the extended MDM (Maurer 2007).

Such automation could be used for implementing the applicable changes during

the process.

13.3.3 Process Scheme Verification

The structural conversion of DSM to a DSM net was verified for specific process

cases (serial, fully parallel, block diagonal DBs, and parallel (subcycles) DBs); yet

not all the potential logic interpretations that could be applied according to the BRs

and their combinations (described in Chap. 10) were formally proved. Few

example cases demonstrated the existence of additional subprocess structures that

are applicable for implementing logic options, which are not WRI-WF-nets.

Checking all the business rule options for all cases seem to be a combinatorial

task; unless there is some way to prove building block cases and prove that their

combinations apply as well. Such work is left for future research.

13.3.4 Estimating Simulation Parameters

On top of estimating the DSM data there are other process variables that should be

set and be estimated for simulation purposes.

1. The duration and cost parameters are typically estimated for any project

planning; their estimation is therefore well established.
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2. The conversion to probabilities figure (being previously discussed) or direct esti-

mation of such figures should be accurate if the simulation results of duration

(resources) are to be used for actual scheduling (not only for choosing between

options). More research is required to validate that duration results based on

probability estimations, yielding from the calculations, are giving meaningful

values. The article by Yassine (2007) addressed the estimation of probability fig-

ures, but validation of simulation results was not reported in the DSM literature.

3. The measurement and estimates of the Learning Ratio (LR) for design activities

might be somewhat tricky since the content of the activity may differ in each

iteration. Thus, a naïve direct measure of two (or even multiple) occurrences of

the iterated activity may not provide a good estimation. There is a need for a

model that estimates the content of the activity in each iteration, then used for

normalizing the activity duration for estimating the actual LR. Browning and

Eppinger (2002) used a model that included learning curve, rework, and rework

impact for simulation. However, it was used with assumed values, and not for

estimating the values, given actual measures.

13.3.5 Resources Scheduling

Resources issues such as scheduling subject to resource constraints were not

addressed in the current research. This issue is intensely discussed for static

process scheme (and typically for acyclic processes), but is rarely discussed in the

context of dynamic processes such as NPD.

13.3.6 Models Comparison

In Chap. 12, we demonstrated the utilization of the DnPDP framework for com-

paring business rules, while implementing a DSM-based process plan. This line of

research can be further expanded to check additional cases. Moreover, the

framework can be utilized for comparing different methods of planning (e.g., using

different objective functions for DSM reordering) by replacing the product-based
process scheme generator in Fig. 8.1. To date there is no common ground for

performing such comparison.

13.3.7 Decision-Making

This research presented a statistical hypothesis method for aiding decision-makers,

giving results for decisions between two optional business rules. This can be
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extended to multiple options statistical analysis. Yet, other decision algorithms

might emerge and be tested using concepts of control theory. The system in

Fig. 8.2 is presented as a closed-loop process with the decision-making block as a

controller. Such research might be interesting for the control community, as the

system represented has a varying structure with varying parameters.

13.3.8 Practical Implementation

As previously indicated the main obstacle in implementing the proposed frame-

work in practice is the collection and estimation of the required data. Such

collection is a burden over process resources, and probably will not be done in

an industrial setting until the method benefits are proved in some combined

academic-industry settings.

Academic research can utilize the presented approach and the simulation tools

for studying the development process in a monitored context. The preferred setting

might be the development of the same new concept or new product done

(in parallel) by several groups of students in some project-based learning setting

(Reich et al. 2006). In such setting, if the number of groups is sufficiently large, the

actual values could be evaluated statistically (e.g., actual learning curve ratio, and

actual iteration probabilities in comparison to estimated values). Additionally,

the various process conditions could be checked and compared. Comparison is

typically not applicable in an industrial case study as any NPD is unique.

13.3.9 Commercial Implementation in PLM

Over the years, the complexity of PLM tools increased, when integrating modules

supporting different aspects of the life cycle of products systems. New tools or

their new versions are released continuously with new features to account for new

emerging business and engineering needs and new technologies. In spite of these

integrations or extensions efforts, the fundamental issues presented and discussed

require fundamental rethinking of PLM principles.

Product data management of PLM systems could be improved by incorporating

capabilities to model dependencies between information items and a capability to

use them to drive development process planning (e.g., by using DSM-based

planning methods). The integration between product and process management is

based on the assumption that existing knowledge is available in a timely manner.

Enhancements to PLM tools are expected to support the collection and manage-

ment of the required information. Workflow engines could be enhanced to cope

with evolving product information by incorporating capabilities to implement

process changes during run time (e.g., by using DSM nets). On top of such

workflow capabilities, a service for simulating plausible product-related
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information changes could be developed as presented in this book. Exploiting the

full benefit of the new PLM paradigm requires implementing all these capabilities.

13.4 Epilogue

The integration of a product-based planning method (the DSM), and process

modeling concepts bridges a gap between two PLM roles: the product manage-

ment and process management roles. The implementation of WF-net concepts

through DSM net for the interpretation of DSM-based plan is beneficial in the

context of simulating product design processes; but is essential in the NPD case of

dynamically changing process schemes.

The dynamic process scheme requirement being enforced as part of the DnPDP

framework enables implementation of hierarchically evolving process, starting

from a high-level predefined best-practice design process and further refining it as

the product knowledge evolves. This reflects the way that development processes

evolve manually in actual practice.

One of the main results of the current study was the conclusion that no business

rule is better than another is; different rules are better suited for different cases. In

iterative and continuously changing process, general rules of thumb can no longer

support decision-making, and therefore simulation-based tools are required for

supporting the decision-makers. Simulation of various parameters revealed that

different process setting yielded different preferences (in regard to choosing most

applicable business rules). Consequently, the necessity for simulating the specific

case context was emphasized. This has to be translated into PLM service to be

available to engineers. By implementing the connection between product data and

process planning but without such simulation service, process planning would

be overwhelmed with consistent complex information without a way to use it

effectively to drive correct decisions.

We argue that the improvement in the foundation of PLM systems in the way

described in this book is critical for supporting NPD projects; thus, making sure that

the major investment in PLM systems is fully exploited to drive product innovation.
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Chapter 14

Annexes

14.1 Annex A: pi-calculus Comparison to Petri Net

The pi-calculus was reviewed in the current research as a formal foundation for

modeling the Dynamic new-Product Design Process (DnPDP). While the dynamic

modeling properties of the pi-calculus are appealing, its complex semantics

interpretation was estimated as a high overhead, and the simpler Task net was

utilized for process modeling.

The pi-calculus has two main entities: names and agents, where agents are (sub)
processes defined by process expressions, and names indicate links (communica-

tion channels), variables, prefixes, or restrictions. Restrictions localize the scope of

a name, while input-prefix is a name-binding operation utilized as a placeholder

for a name that might be received as input.

The syntax is summarized in Table 14.1 (adapted from Milner 1999).

Structural congruence of two processes P � Q implies that they are identical up

to structure, i.e., one can be obtained from the other by replacing names.

The structural congruence allows identifying all the agents that represent the same

system. The definition of structural congruence enables us to obtain finite state

representation for classes of agents.

Transition, or reduction relation, P ? P0, indicates that a process after

performing a transition (activity) has changed from state P to state P0.
It was proved that if P � P0 and P0 ! Q0, where Q0 � Q; then also P ! Q. This

rule states that processes that are structurally congruent have the same reductions.

In a Labeled Transition Systems (LTS) of sequential processes, defined by the

summation P ¼
P

i2I ai � Pi, for each j [ I (I finite indexing set), we get P�!aj Pj.

The latter definition will be used for describing a scheduler and demonstrating

pi-calculus definition versus Petri net definition. The Petri net example was

developed in the current research using a java-based Petri net simulator

(Esser 1998).

A. Karniel and Y. Reich, Managing the Dynamics of New Product
Development Processes, DOI: 10.1007/978-0-85729-570-5_14,
� Springer-Verlag London Limited 2011
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The scheduler problem was defined (Milner 1999) as setting agents to perform

certain task repeatedly. Each agent Pi wishes to perform repeatedly, and the

scheduler is required to initiate the agents in cyclic order and ensure that a task can

be repeated only after finishing its cycle. The labeled transition system of the

scheduler is given by

Scheduler ¼def Sched1;/

Schedi;X ¼def
P

j2X
bj � Schedi;X�j i 2 X

P

j2X
bj � Schedi;X�j þ ai � Schediþ1;X[j i 62 X

8

>

<

>

:

9

>

=

>

;

where X = {started agents}; X [ fig ¼ X [ i; X � fig ¼ X � i; i ? 1 is modulo

N iþ 1½ �N .
The transitions (activities) are ai (start the agent task) and bi (complete the

task).

A Petri net solution (developed for three agents) is depicted in Fig. 14.1.

In each full cycle, any agent performs once. Each agent has two transitions: ai—
start the action; bi—complete the action. All agents may perform their task in

parallel, but agent i ? 1 (cyclic) can start only after agent i has started and after he

(agent i ? 1) has finished its former task.

The process state described in 125 implies that agent 1 is performing his task;

agent 2 has completed its task; and agent 3 is performing its task. Once agent 1

will complete its task (transition b1) it will be able to start again (transition a1).

Immediately afterwards, agent 2 (that has already completed) will start again.

Understanding the process is quite intuitive when using the Petri net repre-

sentation (and even easier with the help of the simulation). The process states map

is depicted in Figure 14.2. Process states are explicitly defined by the process

Table 14.1 pi-calculus syntax

Operation Syntax Meaning

Concurrency P1 | P2 P1 and P2 are acting in parallel

Sequence prefix a � P Activity a is followed by process state P

Communication

input-prefix

x(y) � P The process is waiting for message through channel x and

binds the name received to y

Communication

output-prefix

�xy � P Output the name y through output channel x and behave as

P. The output-prefix is synchronized with the input-prefix

of the same channel

Silent prefix s � P Performing silent action (i.e., synchronization), then process

P

The nil process 0 Deadlock, the process stops

New name (mx)P Assignment of fresh names to distinguish between free names

Match [x = y] P P is enabled if names x and y coincide

Summation P1 ? P2 The process behaves like one or the other

Defining equation

of agent

A(x1,…,xn) Parametric equation of the free names of the agent
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equations of pi-calculus and are implicitly represented by the Petri net tokens.

The process equations are very compact and efficient (same set is applicable for

every number of agents), yet understanding the process is quite complicated.
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a3
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b1
Fig. 14.1 Petri net of a

scheduler with three agents
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The states indicate the agent that can start now according to the upper cycle and

the list of currently active agents. For example, on the upper left side, agent 1 is

waiting to start, and no agents are active (empty list {}); once transition a1 exe-

cutes then agent 2 can start and agent 1 is active. If b1 happens next (before a2),

then activity 2 is waiting to start and no agent is active.

In both representations, there might be states that are unreachable due to per-

formance (e.g., relative duration), and the system will never get there. It should be

further investigated if the explicit mapping of the process might reveal such cases

analytically in the case of pi-calculus. An example of such case is a case where

agent 1 is slower (or has a larger job) than agent 2 (i.e., b2 is always executed

before b1); and both are executing before b3. In such case, not all the process

states are applicable.

The resulting process states map is presented in Fig. 14.3. States that can never

be reached have no links (marked in red).

Another example relates to changing the number of agents during the process.

Such change does not require changes in the pi-calculus model, but does require

changes of the Petri net. Assuming that at certain point in time, agent 3 is no longer

required and is removed from the cycle; nevertheless, if the decision to remove it

is made while the agent is executing, it may still finish the task (transition b3).
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The modulo function of the pi-calculus equation inherently replaces the link from

A2 to A3 by a link from A2 to A1; and the state map is reduced as described in

Fig. 14.4. A Petri net in such case is required to perform a complex change while

checking if the agent has completed or not.

Once the decision is made the links state where agent 3 should start to become

unreachable (indicated as red, with dashed a2 input links). The new a2 links
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between states are marked by thick green lines. Yet, while b3 did not execute

(indicating completion of agent 3 task), there are temporal stages with agent 3 still

in the list (applicable states are marked in purple).

14.2 Annex B: Statistics of Stochastic Simulated Process

The following section describes the statistical formulation in (Asmussen and

Glynn 2007), for analyzing stochastic simulation results.

Distribution Definitions: Probability cumulative distribution P of a probability

density function f(x) is defined by Pðx\XÞ ¼
R X
�1 f ðxÞ dx.

In the discrete case, we define the discrete distribution P of a probability mass

function p(x) by Pðx\XÞ ¼Pxi\X pðxiÞ.

Process Definitions:

1. A Markov Chain is a process {Xn} with finite or countable state space, where

the next state depends only on the previous state. Examples: a process defined

by the transition probabilities pij ¼ PðXnþ1 ¼ j jXn ¼ iÞ, i.e., pij is the proba-

bility to move from state i to state j; as the serial process in (Sered and Reich

2006), using probability DSM. Autoregressive process Xnþ1 ¼ aXn þ en; with
en being an independent identically distributed variable, is another example.

The Markov chain is time independent (Gilks et al. 1996).

2. A Markov process is time dependent, with finite or countable state space. For

example, the time of making the transition is exponential with an intensity

matrix K ¼ kij and the process holding time at state i is exponential with rate

T ¼ exp(�kijÞ, and the next state j is chosen with probability kij=kii.

The main property of simulation process is the ability to generate large number

of examples (i.e., as large as required given processing availability). This ability is

used according to the Law of Large Numbers (LLN).

For a stochastic random variable Wn and the function f(Wn); if for n ? ? the

steady state W
?
\? (i.e., W

?
is a random variable with a limited distribution),

then we can calculate the expected value of the function for N ??, using Eq. B.1.

We get an asymptotic convergence to the expected value E[f(W
?
)] for the random

variable W
?
.

1

N

X

N�1

n¼0

f ðWnÞ ! E½f ðW1Þ�; N ! 1 ðB:1Þ

The expected value z = E[Z], where z is not available analytically, but Z can be

simulated. Using the Monte–Carlo method, we simulate R replicas Z1,…,ZR of

Z and estimate the expected value z by the statistic zR

zR ¼ 1

R

X

R

r¼1

Zr ðB:2Þ
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Assuming the variance r2 = Var[Z]\?, the Central Limit Theorem (CLT)

states that the distribution converges to normal distribution, as R ? ?.

ffiffiffi

R
p

ðzR � zÞ�!D Nð0; r2Þ; R ! 1 ðB:3Þ

where �!D indicates distribution convergence.

The result can be interpreted as

zR �
D

zþ rV
ffiffiffi

R
p ðB:4Þ

where �D is interpreted as ‘‘has the same distribution as’’, and V has a standard

normal distribution V * N(0,1); i.e., zR is distributed as z plus an error. The error

for large R is approximately normally distributed, and the approximation has a

slow convergence rate
ffiffiffi

R
p

.

In practice, r2 is unknown and should be estimated. The estimate is the sample

variance s2 defined by

s2 ¼def 1

R� 1

X

R

r¼1

ðZr � zRÞ2 ¼
1

R� 1

X

R

r¼1

Z2
r � R z2R ðB:5Þ

The use of (R - 1) follows the standard statistical tradition for making this

estimate unbiased, though for large R the difference is minor.

Using the CLT we can define the confidence interval Ia for z. Using the normal

distribution cumulative function UðZaÞ ¼ PðZ \ ZaÞ ¼ a

Ia ¼ zR � Z1�a=2 s
ffiffiffi

R
p ðB:6Þ

i.e., z [ Ia with confidence level 1 – a. For the typical choice a = 5%, the cor-

responding interval is zR � 1:96 s=
ffiffiffi

R
p

.

For setting a required accuracy, we can make a two-stage procedure. First stage

will be a small simulation (e.g., R = 50) for estimating the variance s2 and esti-

mating R accordingly, then simulating R occurrences.

When z is a vector with dimension d of random variables z ¼ ðz1 z2. . . zdÞ,
where each is the expected value variable zi ¼ E ZðiÞ½ � of a random variable Z(i),
we want to compute an explicitly known and smooth function f(z). As previously
defined Zr ¼ Zr 1ð Þ. . .Zr dð Þð Þ are simulated replicates of Z, and zR ¼ ðZ1þ Z2þ
� � � þ ZRÞ=R: The estimate is f(zR), and if f(z) is continues then consistency is

guaranteed.

The confidence interval and the convergence rate can be assessed using CLT

and deriving the Taylor expansion. The f(zR) is a biased estimate, with bias that

converges as o(1/R).
Another example, the probability distribution z ¼ PðWn [ xÞ can be computed

by the sample of the proportion ofWrn that are greater than x, using the estimator zR
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zR ¼ 1

R

X

R

r¼1

1ðWrn [ xÞ ðB:7Þ

where 1 () is the indication function (i.e., equals 1 if the condition holds). The LLN

guarantees that the algorithm converges as the number of replicas R tends to ?.

In general, the estimator for computing a quantity u(F), where F is the

distribution of an underlying random variable Z and u is a real value function on

the probability distribution. For example, estimating z = E[Z] is the case of

uðFÞ ¼
R

x FðdxÞ. By drawing R replicates of Z from F, the estimator of u(F) is

u(FR), where FR distribution is defined by

FðdxÞ ¼ 1

R

X

R

r¼1

dZrðdxÞ ðB:8Þ

where dZrð�Þ is a unit point mass distribution at Z.
For Z 2 P the cumulative distribution is

FRðxÞ ¼
1

R

X

R

r¼1

1ðZR 	 xÞ ðB:9Þ

For R ? ?, and assuming that all functions are defined and differentiable, then

the function u(F) ? u(FR), and according to CLT, we get a distribution

convergence.

ffiffiffi

R
p

ðuðFRÞ � uðFÞÞ�!D Nð0; r2Þ ðB:10Þ
The function u(FR) is distributed as u(F) with an error Y, which has a

converging normal distribution, where r2 depends on the derivative du(F) at F.

uðFRÞ�
D

uðFÞ þ Y; Y
Nð0; r=
ffiffiffi

R
p

Þ ðB:11Þ

Sectioning is division of the R repetitions to M sections of length K, i.e.,
R = MK. Calculating the estimate Fm, K, m = 1,...,M, for each section we get

Fm;KðxÞ ¼
1

K

X

mK

r¼ðm�1ÞKþ1

1ðZR 	 xÞ ðB:12Þ

The estimator u(Fm, K) is constructed from section m, and we get for large K

uðFm;KÞ�
D
uðFÞ þ r=

ffiffiffiffi

K
p

Ym; Ym 
Nð0; 1Þ ðB:13Þ

From which, using Taylor expansion we get that the difference of the estimate

from the average estimated converges to zero for R ? ?.

ffiffiffi

R
p

uðFRÞ �
1

M

X

M

m¼1

uðFm;KÞ
 !

�!P 0 ðB:14Þ
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Following the above, we get for fixed M

ffiffiffiffiffi

M
p

uðFRÞ � uðFÞð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M�1

P

M

m¼1

uðFm;KÞ � uðFRÞ
� �2

s �!D
P

M

m¼1

Ym
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M�1

P

M

m¼1

Ym � 1
M

P

J

j¼1

Yj

 !2
v

u

u

t

ðB:15Þ

The right-hand side is free of the estimation of r2 and has the t-test (Student’s
test) standard deviation, with M-1 degrees of freedom. M is typically small (as for

M[ 30 the t-test distribution converges to normal distribution).

The confidence interval Ia is

Ia ¼ uðFRÞ � ta=2
r
_

ffiffiffiffiffi

M
p ; r

_2 ¼ 1

M � 1

X

M

m¼1

uðFm;KÞ � uðFRÞ
� �2 ðB:16Þ

where ta/2 is the t-test percentile for confidence level a (the distribution is

symmetric).

The t-test distribution of function distribution estimation by sections can be

used in building hypothesis check for decision-making.

14.3 Annex C: Parametric Study of Function F(q, N)

The right-hand side of Eq. 4.2, in Sect. 4.2, is defined by the function F q;Nð Þ ¼
ðN � 2qÞ � ðN � 1Þ=ðNq � NÞ: Following is a parametric study of the function.

F(q, N) is a bounded function for each q[ 2 and is decreasing toward zero for large

N. The function is depicted in Fig. 14.5a, for q = 2.4. The maximal value is reached

at N = 20, F(2.4, 20) = 0.2142. For other values of qwe get other maximal values,

each at different N. The table in Fig. 14.5b describes some q values, the respective

Nmax (where the maximum of the function F(q, N) is reached), and the value of the

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80

N  (matrix size)

F(q,N))= (N-2q)(N-1)/(Nq-N) for  q=2.4

F(q,N(

Fig. 14.5 Parametric study of Eq. 4.2 a F(N) graph for q = 2.4 b Max F(N) table for q values

14.2 Annex B: Statistics of Stochastic Simulated Process 245

http://dx.doi.org/10.1007/978-0-85729-570-5_4
http://dx.doi.org/10.1007/978-0-85729-570-5_4
http://dx.doi.org/10.1007/978-0-85729-570-5_4


function at that point. As q increases the maximal value of F(q, N) decreases. For
q = 2 the maximal function value is reached at infinity F(2,?) = 1.

14.4 Annex D: DSM Optimization Without Clustering

The optimization criterion in Sect. 4.2 has interesting results when not used for

clustering (i.e., no DBs, the first element in Eq. 4.1 is not used). The two cases in

Fig. 14.6 can be analyzed in a similar manner to the analysis made in Sect. 2, in

Fig. 4.4 all probability markings are the same.

The cost for the first case is cost að Þ ¼ ððN � 1Þ � F � 2q þ C � NqÞÞ � X and

respectively cost bð Þ ¼ ðF � Nq þ C � ðN � 1Þ � 2qÞ � X.
If we want cost(a)\ cost(b), then after some reordering we get ððn� 1Þ�

2q � NqÞ:� F\ððn� 1Þ � 2q � NqÞ � C. Since F\C, this implies ((n–1) 9 2q

– Nq)[ 0 or q\ lgN=2ðN � 1Þ, for N[ 2. As N increases q decreases toward 1.

Otherwise, option (b) in Fig. 14.6 (i.e., multiple feedback marks, close to the

diagonal) will be the optimal results.

When the criterion is used for ordering without clustering, it does not create

minimum feedback marks results, depending on the values of F, C, and q, as
depicted in Table 14.2. The cost of six configurations according to clustering (first

three without clustering), and order (depicted in Fig. 14.7), using the probabilities

0 X

X 0

X 0

X

0

X 0

0 X

0 X

0 X

0 X

X 0

(a) (b)

Fig. 14.6 Equation 4.2—

ordering without clustering

a Minimum feedback marks

b feedback marks close to

diagonal

Table 14.2 Optimal ordering and clustering

Non Clustered solutions Clustered solutions

# F, C, q w-x-y-z z-x-w-y w-x-z-y [wxyz] [zxwy] [wxzy]

1 3, 64, 2.32 384.60 367.58 495.00 201.96 282.48 140.96

2 3, 64, 1.8 239.40 252.40 261.00 201.96 282.48 140.96

3 3, 64, 1.1 128.7 153.22 114.75 201.96 282.48 140.96

4 3,  7,  2.32 60.01 60.19 68.55 30.96 36.24 26.96

5 3,   5, 1.1 16.07 16.63 15.37 24.96 27.6 22.96

W X Y Z
W 0.25 0.25
X 0.5
Y 0.25
Z 0.33

Z X W Y
Z 0.33
X 0.5
W 0.25 0.25
Y 0.25

W X Z Y
W 0.25 0.25
X 0.5
Z 0.33
Y 0.25

(a) (b) (c)

Fig. 14.7 Ordering

configurations (a) (b) (c)
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are presented in Fig. 4.3. The optimal configuration in each case is marked in

green. The best non-clustered solution is marked in yellow (as applicable).

The non-clustered configuration (z-x-w-y) in line #1 is the optimal solution for a

wide range of parameters for q[ 2. Changing q or C changes the optimal solution

(e.g., in cases #2 and #4). For q = 2.32 the non-clustered solution (z-x-w-y) is

preferred for C = 8.

• Once q is ‘‘small enough’’, the non-clustered solution is always preferred. When

all probabilities are similar, for N = 4, we get q = log2 3 = 1.585. Using the

example probabilities (Fig. 4.3), the thresholds were: q = 1.2793 (for F = 3,

C = 64) and q = 1.511 (for F = 3, C = 5).
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Fig. 14.8 Links between

proof items
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D33
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P11 P13

D15
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D17 D35

D36

D1

D37
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P14
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P15
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P16
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Fig. 14.9 Links of proof

items diagram—continued
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• When a non-clustered solution is preferred, it has minimum feedback marks.

Clustered solutions are preferred when q is ‘‘high’’. Some notes regarding

clustered solutions:

• The criterion value for a clustered solution is not affected by the choice of q.
• For a clustered solution, minimum feedback marks are always preferred.

Table 14.3 Parallel paths probabilities

# Process path x-feedbacks z-feedbacks Prob.

1 WXYZ 0 0 0.64

2 WXYWXZ 1 0 0.0256

3 WXYWYZ 1 0 0.02688

4 WXYWXYZ 1 0 0.08192

5 WXYWXWXZ 2 0 0.0016

6 WXYWXWYZ 2 0 0.00128

7 WXYWXWXYZ 2 0 0.00512

8 WXYZWXZ 0 1 0.02048

9 WXYZWYZ 0 1 0.021504

10 WXYZWXYZ 0 1 0.065536

11 WXYWXZWXZ 1 1 0.00128

12 WXYWXZWYZ 1 1 0.001024

13 WXYWXZWXYZ 1 1 0.004096

14 WXYWYZWXZ 1 1 0.001024

15 WXYWYZWYZ 1 1 0.000819

16 WXYWYZWXYZ 1 1 0.003277

17 WXYWXYWXZ 1 1 0.00512

18 WXYWXYWYZ 1 1 0.004096

19 WXYWXYWXYZ 1 1 0.016384

20 WXYWXYZWXZ 1 1 0.004096

21 WXYWXYZWYZ 1 1 0.003277

22 WXYWXYZWXYZ 1 1 0.013107

23 WXYZWXWXZ 1 1 0.00128

24 WXYZWXWYZ 1 1 0.001024

25 WXYZWXWXYZ 1 1 0.004096

26 WXYZWXYWXZ 1 1 0.004096

27 WXYZWXYWYZ 1 1 0.003277

28 WXYZWXYWXYZ 1 1 0.013107

29 WXYZWXZWXZ 0 2 0.001024

30 WXYZWXZWYZ 0 2 0.000819

31 WXYZWXZWXYZ 0 2 0.003277

32 WXYZWYZWXZ 0 2 0.000819

33 WXYZWYZWYZ 0 2 0.000655

34 WXYZWYZWXYZ 0 2 0.002621

35 WXYZWXYZWXZ 0 2 0.003277

36 WXYZWXYZWYZ 0 2 0.002621

37 WXYZWXYZWXYZ 0 2 0.010486

248 14 Annexes



14.5 Annex E: Proofs Linkages

The relations between proofs items in Sect. 9.4 are presented in the following

diagrams. The diagrams include all the definitions, proposition, lemmas, theorems,

and corollaries that are contribution of the current study, and the applicable ones

from the Petri net literature (Sect. 6.7).

The proof links of Sect. 9.5 are presented in Fig. 14.8, using the initial letter

and number of the item. The links are elbow type and are in general from left to

right, except the links between definitions in the first column. In order to clarify

link splits, a split or a join of links are marked by small black circles. Lines that

cross each other with no circle indicate that there is no connection.

A dashed frame indicates a reference item; either items from the literature,

repeated items (to reduce lines), or items from Fig. 14.8 that repeat in Fig. 14.9.

In Fig. 14.9 are the links of the items in Sects. 9.7 and 9.8.

14.6 Annex F: Probabilities of Parallel Paths

The following Table 14.3 presents the probabilities of the parallel path

(Sect. 12.4.1); for the conceptual design planning in Fig. 12.3a, using P = 0.2.
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initial state, 66, 81, 91

starting state, 91, 100

termination state, 76, 81, 102, 123, 183

State machine, 91

Statistical analysis, 6, 72, 175, 223
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Supply chain management (SCM), 4

Symbolic formulation, 106, 146, 155

T

Task net, 9, 11, 67, 75, 138, 237

Tearing, 5, 12, 40, 42, 55, 231

Time

annealing-time, 45

finite time, 124, 183

internal time, 218

one-time, 24, 116

real time, 66–67

time factor, 214

time line, 208, 219

time step, 114, 116–117, 223

time unit, 177, 200, 210, 223

total process time, 63, 176, 200, 211, 223

Titanic, 22

Tokens, 77, 87, 90, 240

Transition, 77, 90, 142

enabled transition, 78–79, 90

labeled transition systems (LTS), 237

transition refinement, 86, 93

Trap, 200, 232

t test, 72, 176, 245

U

Uncertainty, 204

duration uncertainty, 67

technological uncertainty, 21

V

Validation, 21, 162, 228, 233

face validity, 188

validation levels, 188

Verification

formal verification, 189

model verification, 5, 188

W

Well-handled, 81–83, 87, 91, 93

Well-handled with regular iterations worflow

nets 1-2 see WRI-WF-nets

Well-structured, 92

WF-nets, 2, 77, 79, 89, 123, 189, 227

extended WF-net, 91

WF-net composition, 93

Work transformation matrix (WTM), 102

Workflow (WF), 19, 77, 82

Workflow patterns, 10, 30

Workflow management systems (WfMS), 3, 6,

24, 26, 28, 30

WRI-WF-nets, 2, 77, 79, 88, 93, 125, 140, 145,

148, 184, 189, 230

Y

Yet another workflow language

(YAWL), 10, 78

Index 257


	Managing the Dynamics of New Product Development Processes
	Preface
	Acknowledgments
	Contents
	Abbreviations and Symbols

	Part I Current State of the Art and Enhancements of Existing Methods
	2 Managing Development Processes
	2.1…Development Processes
	2.2…Administrative Approaches for Managing NPD Processes
	2.3…Process Dynamics Classification
	2.3.1 Adaptive Processes

	2.4…Process-Models Classification
	2.4.1 Pre-Defined Processes (P-process)
	2.4.2 Current Processes (C-processC-process)
	2.4.3 Run-Time Process (RT-process)
	2.4.4 WfMS Tools

	2.5…A Model of Managing Fixed Scheme Processes
	References

	3 Design Process Planning Using DSM
	3.1…DSM Definition
	3.2…DSM Type Classifications
	3.3…DSM-Based Algorithms
	3.3.1 DSM Reordering: Partitioning Procedure
	3.3.2 Optimization Methods in DSM-Based Algorithms

	3.4…Using DSM for Planning: The Data Collection Process
	References

	4 DSM Enhancements
	4.1…DSM Data
	4.2…DSM Optimization
	4.3…DSM Self-Iterations
	References

	5 Simulations
	5.1…Using DSM for Simulation
	5.2…DSM-Based Simulation Parameters
	5.3…Learning Curve
	5.4…Objective Function
	5.5…Statistical Analysis for Decision-Making
	References

	6 Process Modeling Using Workflow-Nets
	6.1…Process Modeling
	6.2…Process Correctness
	6.3…General: Petri Nets
	6.4…WF-Nets
	6.5…Correctness Criteria
	6.5.1 Well-Handled Processes and Soundness of Iterative Processes

	6.6…Process Scheme Modifications
	6.6.1 Process Expansion6.6…Process Scheme Modifications
	6.6.2 Dynamic Process Changes

	6.7…Formal Process Definitions
	References

	7 Logic Issues of DSM-Based Processes
	7.1…Presenting Process Logic in DSM
	7.2…DSM Limitations
	7.3…Process Verification Issues
	7.4…Classification of DSM-Based Simulations
	7.5…Logic Comparison of DSM-Based Simulations
	References

	Part II The Integrated Model Dynamic New-Product Developmment Process
	8 Dynamic New-Product Design Process
	8.1…Model Description
	8.2…Closed-Loop Process Framework
	8.3…Decision-Making View
	8.4…Meta-Process Description
	8.5…From Product Knowledge to Planned Process Scheme
	8.6…Building and Modeling an Evolving Process
	References

	9 From DSM to DSM Net
	9.1…Introduction: DSM Translation Concepts
	9.2…DnPDP Correctness Criteria
	9.3…Translating an Ordered DSM into a Process Scheme
	9.4…Formal Definition of DSM Conversion to a Process Scheme
	9.5…DSM Definitions and Properties
	9.6…Converting DSM to Design Process Matrix
	9.7…The DSM Net
	9.8…Conversion Process and Logic Activities
	9.9…WRI-WF-Nets Competencies and Limitations
	References

	10 Interpretation Using Implementation Rules and Business Rules
	10.1…Single Design Activity
	10.2…Parallel Independent Activities
	10.3…Serial Activities
	10.4…Serial Activities with Parallel Execution
	10.5…Coupled Activities
	10.6…Business Rules Map
	10.7…Business Rules Logic Examples
	10.7.1 Self-Iterations
	10.7.2 Run Time Cases Enumeration
	10.7.3 Run Time (RT) with Self-Iterations

	10.8…Logic Verification Issues
	References

	11 Dynamic Changes
	11.1…Dynamic Change Levels
	11.2…Scheme Change Types
	11.3…Process Status Considerations
	11.4…Dynamic Scheme Changes May Cause Iterations
	11.5…Design Block Changes
	11.6…Change of Process Scheme by Business Rules
	11.7…Simulating a Dynamic Scheme Process
	11.7.1 Simulation-Based Statistics for Decision-Making
	11.7.2 Probabilities Interpretation at Run Time

	11.8…Business Rules Combinations at Run Time
	11.9…Applying Design Blocks at Run Time
	11.10…Logic Implementation
	11.11…Implementation of Design Block Changes
	References

	12 Implementation Example
	12.1…The Value of Simulations for Model Verification
	12.1.1 Study Cases
	12.1.2 Formal Verification
	12.1.3 Logic Verification
	12.1.4 Simulation

	12.2…The Example Product
	12.3…Development Process Setting
	12.3.1 Following High-Level Process to Conceptual Design

	12.4…Conceptual Design Process Planning
	12.4.1 Conceptual Design Planning: Implementation
	12.4.2 Conceptual Design Planning: Logic Considerations
	12.4.3 Simulation Results

	12.5…Planning the Detailed Design Stage
	12.5.1 DSM Data Collection
	12.5.2 DSM Reordering
	Design Block Internal Ordering

	12.5.3 Probability DSM of Design Blocks
	12.5.4 DSM Conversion to Process Scheme
	12.5.5 RT-Process Using Design Blocks
	12.5.6 Business Rules Modifications
	12.5.7 Additional DSM Implementation Options
	12.5.8 Learning

	12.6…Simulation Continues
	12.7…Dynamic Design Block Changes
	12.7.1 Change of Design Blocks at Run Time
	12.7.2 Process Reaction Types to a Change of Design Block Content
	12.7.3 The Logic of Changing the Design Blocks: Internal Change
	12.7.4 The Value of Early Knowledge
	12.7.5 Change of Knowledge Without Change of Process Scheme

	12.8…Example Outline
	References

	13 Summary
	13.1…Overview
	13.2…DnPDP Framework
	13.2.1 Contribution to DSM Concepts
	13.2.2 Partitioning and Optimized Sequencing Algorithms
	13.2.3 DSM Conversion to Process

	13.3…Future Development
	13.3.1 DSM-Related Issues
	13.3.2 Converting DSM-Based Plan to a Process Model
	13.3.3 Process Scheme Verification
	13.3.4 Estimating Simulation Parameters
	13.3.5 Resources Scheduling
	13.3.6 Models Comparison
	13.3.7 Decision-Making
	13.3.8 Practical Implementation
	13.3.9 Commercial Implementation in PLM

	13.4…Epilogue
	References

	14 Annexes
	14.1…Annex A: pi-calculus Comparison to Petri Net
	14.2…Annex B: Statistics of Stochastic Simulated Process
	14.3…Annex C: Parametric Study of Function F(q, N)
	14.4…Annex D: DSM Optimization Without Clustering
	14.5…Annex E: Proofs Linkages
	14.6…Annex F: Probabilities of Parallel Paths
	References

	Commercial Web Sites
	Index
	Managing the Dynamics of New Product Development Processes
	Preface
	Acknowledgments
	Contents
	Abbreviations and Symbols

	Part I Current State of the Art and Enhancements of Existing Methods
	2 Managing Development Processes
	2.1…Development Processes
	2.2…Administrative Approaches for Managing NPD Processes
	2.3…Process Dynamics Classification
	2.3.1 Adaptive Processes

	2.4…Process-Models Classification
	2.4.1 Pre-Defined Processes (P-process)
	2.4.3 Run-Time Process (RT-process)
	2.4.2 Current Processes (C-processC-process)
	2.4.4 WfMS Tools

	2.5…A Model of Managing Fixed Scheme Processes
	References

	3 Design Process Planning Using DSM
	3.1…DSM Definition
	3.2…DSM Type Classifications
	3.3…DSM-Based Algorithms
	3.3.1 DSM Reordering: Partitioning Procedure
	3.3.2 Optimization Methods in DSM-Based Algorithms

	3.4…Using DSM for Planning: The Data Collection Process
	References

	4 DSM Enhancements
	4.1…DSM Data
	4.2…DSM Optimization
	4.3…DSM Self-Iterations
	References

	5 Simulations
	5.1…Using DSM for Simulation
	5.2…DSM-Based Simulation Parameters
	5.3…Learning Curve
	5.4…Objective Function
	5.5…Statistical Analysis for Decision-Making
	References

	6 Process Modeling Using Workflow-Nets
	6.1…Process Modeling
	6.2…Process Correctness
	6.3…General: Petri Nets
	6.4…WF-Nets
	6.5…Correctness Criteria
	6.5.1 Well-Handled Processes and Soundness of Iterative Processes

	6.6…Process Scheme Modifications
	6.6.1 Process Expansion6.6…Process Scheme Modifications
	6.6.2 Dynamic Process Changes

	6.7…Formal Process Definitions
	References

	7 Logic Issues of DSM-Based Processes
	7.1…Presenting Process Logic in DSM
	7.2…DSM Limitations
	7.3…Process Verification Issues
	7.4…Classification of DSM-Based Simulations
	7.5…Logic Comparison of DSM-Based Simulations
	References


	Part II The Integrated Model Dynamic New-Product Developmment Process
	8 Dynamic New-Product Design Process
	8.1…Model Description
	8.2…Closed-Loop Process Framework
	8.3…Decision-Making View
	8.4…Meta-Process Description
	8.5…From Product Knowledge to Planned Process Scheme
	8.6…Building and Modeling an Evolving Process
	References

	9 From DSM to DSM Net
	9.2…DnPDP Correctness Criteria
	9.1…Introduction: DSM Translation Concepts
	9.3…Translating an Ordered DSM into a Process Scheme
	9.4…Formal Definition of DSM Conversion to a Process Scheme
	9.5…DSM Definitions and Properties
	9.6…Converting DSM to Design Process Matrix
	9.7…The DSM Net
	9.8…Conversion Process and Logic Activities
	9.9…WRI-WF-Nets Competencies and Limitations
	References

	10 Interpretation Using Implementation Rules and Business Rules
	10.1…Single Design Activity
	10.2…Parallel Independent Activities
	10.3…Serial Activities
	10.4…Serial Activities with Parallel Execution
	10.5…Coupled Activities
	10.6…Business Rules Map
	10.7…Business Rules Logic Examples
	10.7.1 Self-Iterations
	10.7.2 Run Time Cases Enumeration
	10.7.3 Run Time (RT) with Self-Iterations

	10.8…Logic Verification Issues
	References

	11 Dynamic Changes
	11.1…Dynamic Change Levels
	11.2…Scheme Change Types
	11.3…Process Status Considerations
	11.4…Dynamic Scheme Changes May Cause Iterations
	11.5…Design Block Changes
	11.6…Change of Process Scheme by Business Rules
	11.7…Simulating a Dynamic Scheme Process
	11.7.1 Simulation-Based Statistics for Decision-Making
	11.7.2 Probabilities Interpretation at Run Time

	11.8…Business Rules Combinations at Run Time
	11.9…Applying Design Blocks at Run Time
	11.10…Logic Implementation
	References
	11.11…Implementation of Design Block Changes

	12 Implementation Example
	12.1…The Value of Simulations for Model Verification
	12.1.1 Study Cases
	12.1.3 Logic Verification
	12.1.2 Formal Verification

	12.2…The Example Product
	12.1.4 Simulation

	12.3…Development Process Setting
	12.3.1 Following High-Level Process to Conceptual Design

	12.4…Conceptual Design Process Planning
	12.4.1 Conceptual Design Planning: Implementation
	12.4.2 Conceptual Design Planning: Logic Considerations
	12.4.3 Simulation Results

	12.5…Planning the Detailed Design Stage
	12.5.1 DSM Data Collection
	12.5.2 DSM Reordering
	Design Block Internal Ordering

	12.5.3 Probability DSM of Design Blocks
	12.5.5 RT-Process Using Design Blocks
	12.5.4 DSM Conversion to Process Scheme
	12.5.6 Business Rules Modifications
	12.5.7 Additional DSM Implementation Options
	12.5.8 Learning

	12.6…Simulation Continues
	12.7…Dynamic Design Block Changes
	12.7.1 Change of Design Blocks at Run Time
	12.7.2 Process Reaction Types to a Change of Design Block Content
	12.7.3 The Logic of Changing the Design Blocks: Internal Change
	12.7.4 The Value of Early Knowledge
	12.7.5 Change of Knowledge Without Change of Process Scheme

	12.8…Example Outline
	References

	13 Summary
	13.1…Overview
	13.2…DnPDP Framework
	13.2.1 Contribution to DSM Concepts
	13.2.3 DSM Conversion to Process
	13.2.2 Partitioning and Optimized Sequencing Algorithms

	13.3…Future Development
	13.3.1 DSM-Related Issues
	13.3.2 Converting DSM-Based Plan to a Process Model
	13.3.4 Estimating Simulation Parameters
	13.3.3 Process Scheme Verification
	13.3.6 Models Comparison
	13.3.7 Decision-Making
	13.3.5 Resources Scheduling
	13.3.9 Commercial Implementation in PLM
	13.3.8 Practical Implementation

	13.4…Epilogue
	References

	14 Annexes
	14.1…Annex A: pi-calculus Comparison to Petri Net
	14.2…Annex B: Statistics of Stochastic Simulated Process
	14.3…Annex C: Parametric Study of Function F(q, N)
	14.4…Annex D: DSM Optimization Without Clustering
	14.6…Annex F: Probabilities of Parallel Paths
	References
	14.5…Annex E: Proofs Linkages


	Commercial Web Sites
	Index

