

Athena Vakali and Lakhmi C. Jain (Eds.)

New Directions in Web Data Management 1

Studies in Computational Intelligence,Volume 331

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our

homepage: springer.com

Vol. 310. Dipti Srinivasan and Lakhmi C. Jain (Eds.)

Innovations in Multi-Agent Systems and
Applications – 1, 2010

ISBN 978-3-642-14434-9

Vol. 311. Juan D.Velásquez and Lakhmi C. Jain (Eds.)

Advanced Techniques in Web Intelligence, 2010

ISBN 978-3-642-14460-8

Vol. 312. Patricia Melin, Janusz Kacprzyk, and

Witold Pedrycz (Eds.)

Soft Computing for Recognition based on Biometrics, 2010

ISBN 978-3-642-15110-1

Vol. 313. Imre J. Rudas, János Fodor, and

Janusz Kacprzyk (Eds.)

Computational Intelligence in Engineering, 2010

ISBN 978-3-642-15219-1

Vol. 314. Lorenzo Magnani,Walter Carnielli, and

Claudio Pizzi (Eds.)

Model-Based Reasoning in Science and Technology, 2010

ISBN 978-3-642-15222-1

Vol. 315. Mohammad Essaaidi, Michele Malgeri, and

Costin Badica (Eds.)

Intelligent Distributed Computing IV, 2010

ISBN 978-3-642-15210-8

Vol. 316. Philipp Wolfrum

Information Routing, Correspondence Finding,and Object

Recognition in the Brain, 2010

ISBN 978-3-642-15253-5

Vol. 317. Roger Lee (Ed.)

Computer and Information Science 2010
ISBN 978-3-642-15404-1

Vol. 318. Oscar Castillo, Janusz Kacprzyk,

and Witold Pedrycz (Eds.)

Soft Computing for Intelligent Control
and Mobile Robotics, 2010

ISBN 978-3-642-15533-8

Vol. 319. Takayuki Ito, Minjie Zhang,Valentin Robu,

Shaheen Fatima, Tokuro Matsuo,

and Hirofumi Yamaki (Eds.)

Innovations in Agent-Based Complex
Automated Negotiations, 2010

ISBN 978-3-642-15611-3

Vol. 320. xxx

Vol. 321. Dimitri Plemenos and Georgios Miaoulis (Eds.)

Intelligent Computer Graphics 2010
ISBN 978-3-642-15689-2

Vol. 322. Bruno Baruque and Emilio Corchado (Eds.)

Fusion Methods for Unsupervised Learning Ensembles, 2010

ISBN 978-3-642-16204-6

Vol. 323.Yingxu Wang, Du Zhang, and Witold Kinsner (Eds.)

Advances in Cognitive Informatics, 2010

ISBN 978-3-642-16082-0

Vol. 324.Alessandro Soro,Vargiu Eloisa, Giuliano Armano,

and Gavino Paddeu (Eds.)

Information Retrieval and Mining in Distributed

Environments, 2010

ISBN 978-3-642-16088-2

Vol. 325. Quan Bai and Naoki Fukuta (Eds.)

Advances in Practical Multi-Agent Systems, 2010

ISBN 978-3-642-16097-4

Vol. 326. Sheryl Brahnam and Lakhmi C. Jain (Eds.)

Advanced Computational Intelligence Paradigms in

Healthcare 5, 2010

ISBN 978-3-642-16094-3

Vol. 327. Slawomir Wiak and

Ewa Napieralska-Juszczak (Eds.)

Computational Methods for the Innovative Design of
Electrical Devices, 2010

ISBN 978-3-642-16224-4

Vol. 328. Raoul Huys and Viktor K. Jirsa (Eds.)

Nonlinear Dynamics in Human Behavior, 2010

ISBN 978-3-642-16261-9

Vol. 329. Santi Caballé, Fatos Xhafa, and Ajith Abraham (Eds.)

Intelligent Networking, Collaborative Systems and

Applications, 2010

ISBN 978-3-642-16792-8

Vol. 330. Steffen Rendle

Context-Aware Ranking with Factorization Models, 2010

ISBN 978-3-642-16897-0

Vol. 331.Athena Vakali and Lakhmi C. Jain (Eds.)

New Directions in Web Data Management 1, 2011

ISBN 978-3-642-17550-3

Athena Vakali and Lakhmi C. Jain (Eds.)

New Directions in Web Data
Management 1

123

Prof.Athena Vakali

Department of Informatics

Aristotle University

54124 Thessaloniki

Greece

E-mail: avakali@csd.auth.gr

Prof. Lakhmi C. Jain

School of Electrical and Information Engineering

University of South Australia

Adelaide

Mawson Lakes Campus

South Australia SA 5095

Australia

E-mail: Lakhmi.jain@unisa.edu.au

ISBN 978-3-642-17550-3 e-ISBN 978-3-642-17551-0

DOI 10.1007/978-3-642-17551-0

Studies in Computational Intelligence ISSN 1860-949X

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

In the past few years we have all witnessed tremendous changes and innovations

in the way we deal with data on the Web. The major shift from navigating to

content regulating has posed new challenges in a way data is circulated, dissemi-

nated and publicized. New technologies have emerged under the Web 2.0 um-

brella and we’re already progressing on a Web 3.0 reality. It certainly is a rather

active and emerging period for Web data management and it is important to un-

derstand and clarify current practices and methodologies towards moving to a

more effective and productive Web future.

This book addresses the major issues in the Web data management in order to

highlight issues dealing with technologies and infrastructures, methodologies and

techniques as well as applications and implementations. Emphasis is placed on

Web engineering and technologies, on Web graph managing, on searching and

querying. The importance of social Web is also acknowledged with inclusion of

both social and semantic aspects.

The editors express their gratitude to all the authors of this book for their in-

sights and excellent contributions to the book. Moreover, the editors acknowledge

the help of all involved in the collation and review process, without their support

this project could not have been satisfactorily completed. Certainly special thanks

are due to the Springer-Verlag for their assistance during the preparation of the

manuscript. Finally, we thank our families for their love and support throughout

this project.

We hope that the readers will this research book informative and enlightening.

Comments from readers will be greatly appreciated. Please contact us at Athena

Vakali <avakali@csd.auth.gr> and Lakhmi Jain <Lakhmi.Jain@unisa.edu.au>.

Athena Vakali

Greece

Lakhmi C. Jain

Australia

Editors

Athena Vakali is an associate professor at the Depart-

ment of Informatics, Aristotle University of Thessalo-

niki, Greece. She is the head of the Operating Systems

Web/INternet Data Storage and management research

group and her research activities focus on topics of Web

information systems such as Web data management

(clustering techniques), content delivery on the Web,

Web data clustering, Web caching, text mining and mul-

timedia data management. Her publication record is now

at more than 100 research publications which have ap-

peared in several journals, book chapters and in scien-

tific conferences and she is also co-editor of the book

"Web Data Management Practices: Emerging Techniques and Technologies" pub-

lished by Idea Group Publishing. She is a member of the editorial board of the

Computers and Electrical Engineering Journal (Elsevier) and since March 2007,

she is the coordinator of the IEEE TCSC technical area of Content Management

and Delivery Networks and she has scientifically leaded more than 15 European

and national research projects.

Professor Lakhmi C. Jain is a Director/Founder of the

Knowledge-Based Intelligent Engineering Systems (KES)

Centre, located in the University of South Australia. He is

a fellow of the Institution of Engineers Australia.

His interests focus on the artificial intelligence paradigms

and their applications in complex systems, art-science

fusion, e-education, e-healthcare, unmanned air vehicles and

intelligent agents.

Contents

Chapter 1

Innovations and Trends in Web Data Management 1
Athena Vakali

1 Communities and Open Problems in the Web 2.0
Environment . 1

2 Capturing Groups of Data over the Web Graph 4
3 Discovery of User Groups and Communities in Social

Networks . 8
4 Motivation for Community Identification and Indicative

Application Areas . 11
5 The Aims of This Book . 13
References . 14

Chapter 2

Massive Graph Management for the Web and Web 2.0 19
Maria Giatsoglou, Symeon Papadopoulos, Athena Vakali

1 Introduction . 19
2 Handling Massive Graphs on the Web . 21
3 Transactional Graph Databases . 24

3.1 RDBMS-Based Frameworks . 24
3.2 Object Database-Based Frameworks 25
3.3 Native Graph Stores . 27
3.4 Custom . 29
3.5 Distributed Transactional Databases 30

4 Data Mining-Oriented Solutions . 31
4.1 Compression-Based Databases . 31
4.2 Streaming Solutions . 36
4.3 Distributed Data Mining-Oriented Solutions 38

5 A Case for Web 2.0 Graph Stores: Social Tagging
Systems . 39
5.1 Introduction to Social Tagging Systems 39
5.2 Social Tagging Systems: Analysis Tasks 40
5.3 Application Setting . 42

X Contents

6 STS Data Management Framework Benchmark 44
6.1 Participating Framework Description 44
6.2 Benchmark Tests Description . 46
6.3 Benchmark Results . 47

7 Conclusions and Outlook . 53
References . 54

Chapter 3

Web Engineering and Metrics . 59
Emilia Mendes

1 Introduction . 59
2 Measurement Scales . 64

2.1 Nominal Scale Type . 64
2.2 Ordinal Scale Type . 64
2.3 Interval Scale Type . 65
2.4 Ratio Scale Type . 65
2.5 Absolute Scale Type . 66
2.6 Summary of Scale Types . 67

3 Overview of Empirical Investigations . 68
4 Issues to Consider When Conducting Empirical Studies 71
5 Detailing Formal Experiments . 74

5.1 Typical Design 1 . 75
5.2 Typical Design 1: One Factor and One Confounding

Factor . 76
5.3 Typical Design 2 . 76
5.4 Typical Design 3 . 77
5.5 Typical Design 4 . 78

5.6 Summary of Typical Designs . 79
6 Detailing Case Studies . 79
7 Detailing Surveys . 80
8 Conclusions . 80
References . 81

Chapter 4

Modern Web Technologies . 83
Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis

1 Introduction . 83
2 The Client-Server Model . 85
3 The Peer-To-Peer (P2P) Model . 86
4 Hypertext . 87
5 Hypertext Transfer . 87
6 Hypertext Markup . 88
7 XML . 89

7.1 RSS Feeds . 89

Contents XI

8 Scripting . 90
9 Asynchronous Transfers and AJAX . 91
10 Application Deployment . 94

10.1 Database Servers . 94
10.2 Hypertext Preprocessor - PHP . 95
10.3 Active Server Pages - ASP/ASP.NET 96
10.4 Java Server Pages - JSP . 97

11 SOAP. 97
12 Distributed Applications . 99
13 Cloud Computing . 99
14 The Mobile Web . 101
15 Web 2.0 Applications . 102

15.1 Web Communities . 103
15.2 Social Networks . 103
15.3 Office Suites . 104
15.4 File and Media Sharing Services 105
15.5 Real-Time Web . 105

16 Discussion . 106
References . 106

Chapter 5

Federated Data Management and Query Optimization for

Linked Open Data . 109
Olaf Görlitz, Steffen Staab

1 Introduction . 109
2 Example . 111
3 Linked Open Data Search . 112

3.1 Requirements . 113
3.2 Architecture Variations . 113
3.3 Federation Challenges . 114

4 Related Work . 115
5 Federation Infrastructure for Linked Open Data 116

5.1 Federator . 119
5.2 Data Catalog . 122
5.3 Data Statistics . 122

6 Query Optimization . 126
6.1 Data Source Mappings . 126
6.2 Query Execution Plans . 127
6.3 Optimization Fundamentals . 128
6.4 Optimization Strategies . 129
6.5 Dynamic Programming . 130

7 Improvements for Federation . 131
7.1 Streaming Results . 132
7.2 Result Ranking . 132
7.3 Views . 132

XII Contents

8 Performance Evaluation . 133
8.1 Real World Datasets . 133
8.2 Artificial Datasets . 133
8.3 Data Partitioning . 134

9 Summary . 134
References . 134

Chapter 6

Queries over Web Services . 139
Efthymia Tsamoura, Anastasios Gounaris, Yannis Manolopoulos

1 Introduction . 139
1.1 Optimization Problems of Queries over WSs 141
1.2 Chapter Contributions and Structure 142

2 Different Aspects of the Problem of Optimizing WS
Queries . 142
2.1 Execution Environment . 142
2.2 Input Queries . 144
2.3 Input Operators . 145
2.4 Optimization Criteria . 146

3 Optimization Approaches . 147
3.1 Operator Ordering Problems in a Static

Environment . 147
3.2 Operator Ordering Problems in Dynamic

Environments . 159
3.3 Tuple Routing and Scheduling Problems 160
3.4 Data Transfer Planning Problems 162
3.5 Other Problems Related to Queries over WSs 163
3.6 Discussion and Open Issues . 164

4 Conclusion . 166
References . 167

Chapter 7

Towards Adaptively Approximated Search in Distributed

Architectures . 171
Barbara Catania, Giovanna Guerrini

1 Introduction . 172
2 Examples . 174
3 Query Approximation . 177

3.1 An Introduction to Query Approximation 177
3.2 Query Rewriting . 180
3.3 Preference-Based Methods . 181
3.4 Recommendation Systems . 185
3.5 Approximate Query Processing . 185

Contents XIII

4 Adaptive Query Processing . 187
4.1 An Introduction to Adaptive Query Processing 187
4.2 Styles of Adaptation . 188
4.3 Adaptive Approaches for Local Query Processing 191
4.4 Adaptive Approaches for Distributed Query

Processing . 192
4.5 Adaptive Approaches for Query Processing on

Streaming Data . 193
5 Requirements for ASAP Systems . 194

5.1 Application Contexts . 195
5.2 User Participation . 196
5.3 Frequency of Adaptation . 197
5.4 Properties Monitored . 198
5.5 Re-optimization . 198
5.6 Correctness . 201
5.7 Reusability . 202

6 Related Work . 203
7 Concluding Remarks . 204
References . 205

Chapter 8

Online Social Networks: Status and Trends 213
George Pallis, Demetrios Zeinalipour-Yazti, Marios D. Dikaiakos

1 Introduction . 213
2 Architecture of OSNs . 216
3 Taxonomy of OSNs . 218
4 Case Studies . 220

4.1 Facebook . 221
4.2 MySpace . 222
4.3 Hi5 . 223
4.4 Flickr . 223
4.5 LinkedIn . 224
4.6 Twitter . 224
4.7 YouTube . 225

5 Future Research Challenges . 227
5.1 Overlay Networking . 227
5.2 Privacy and Trust . 228
5.3 Knowledge Discovery and Search 228
5.4 Business and Social Impact . 230

6 Conclusion . 231
References . 232

XIV Contents

Chapter 9

Enhancing Computer Vision Using the Collective

Intelligence of Social Media . 235
Elisavet Chatzilari, Spiros Nikolopoulos, Ioannis Patras,

Ioannis Kompatsiaris

1 Introduction . 236
2 Learning and Web 2.0 Multimedia . 237

2.1 Learning in Computer Vision . 237
2.2 Social Tagging Systems and Web 2.0 Multimedia 239

3 Multimedia Analysis and Management 240
3.1 The Need for Semantics . 240
3.2 Visual Features Extraction and Regions

Identification . 241
3.3 Learning Mechanisms . 242
3.4 Annotation Cost for Learning . 245

4 Leveraging Social Media for Training Object Detectors 247
4.1 Problem Formulation . 248
4.2 Framework Description . 250
4.3 Implementing the Framework . 253
4.4 Experimental Study . 258

5 Related Methods . 263
6 Conclusions . 266
References . 267

Chapter 10

From Extensional Data to Intensional Data: AXML

for XML . 273
Viet Binh Phan, Eric Pardede, J. Wenny Rahayu

1 Introduction . 273
2 eXtensible Markup Language (XML) . 274

2.1 Why XML?. 275
2.2 Basic Concepts of XML . 276
2.3 XPath and XQuery . 281

3 Intensional XML Data . 285
4 Active XML Solution . 290

4.1 AXML Basic Concepts . 291
4.2 AXML Projects . 294
4.3 ARAXA Project . 299
4.4 AXML for J2ME Platform . 302
4.5 Summary AXML Projects . 304

5 Alternative Solutions to Intensional XML Data 306
6 Conclusion . 309
References . 309

Contents XV

Chapter 11

Migrating Legacy Assets through SOA to Realize Network

Enabled Capability . 311
David Webster, Lu Liu, Duncan Russell, Colin Venters,

Zongyang Luo, Jie Xu

1 Introduction . 312
2 Service Oriented Architectures in NEC 314

2.1 Service Oriented Architectures . 314
2.2 Web Services . 315
2.3 NEC Requirements and Realizing NEC through an

SOA . 317
2.4 SOA and Workflows to Realize NEC 318
2.5 An SOA Integration Model for Realizing NEC 319

3 Incremental Service Delivery within the NEC System of
Systems . 321
3.1 Introduction to Constraints of Developing Service

Systems for NEC . 321
3.2 Existing Approaches to Reuse Legacy Systems as

(Web) Services . 322
3.3 Abstract Decision Process Model for Wrapping

Legacy Components . 325
4 NECTISE SOA Demonstration and Critical Evaluation 327

4.1 Makeup of the Demonstrator Implementation 328
4.2 Life-Cycle Aspects of the Demonstrator 331
4.3 Exposing a Legacy Sensor Application to an SOA

Network . 334
5 Conclusions of Legacy System Migration towards SOA 337

5.1 Challenges in Legacy System Migration towards
SOA for NEC . 337

5.2 Maintenance Life-Cycle of Wrappers 339
6 Conclusion and Opportunities for Future Work 340
References . 342

Author Index . 347

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 1–18.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 1

Innovations and Trends in Web Data Management

Athena Vakali

Department of Informatics
Aristotle University

54124 Thessaloniki, Greece
avakali@csd.auth.gr

The growing influence and resulting importance of the Web 2.0 applica-
tions has changed the daily practices in the areas of research, education, fi-
nance, entertainment and an even wider range of applications in work and
personal life. Such a development in the roles of users such as navigators,
content creators and regulators has had a major impact. This impacts on the
amount and type of data and the sources that are now circulated and dis-
seminated over the Web. It has posed new and interesting research ques-
tions and problems in Web data management.

1 Communities and Open Problems in the Web 2.0

Environment

Considerable interest has developed both in the analysis and description of Web
user activities. Such applications, allow users to create their own content and to
form communities having these interests. Graph structures which can use these
techniques have been widely used to model users problems and their relationships.
The amount of data generated by today's Web systems produces very large and
complex graphs that are difficult both to analyze and to interpret. Consequently,
several methods for community detection and graph compression have been de-
veloped. These can identify groups of users which are based on the topology and
the properties of graphs that contain them as nodes.

In Web usage the term community is used to describe a group of pages that can
depict common interests and are able to share many hyperlinks (Kumar, Ragha-
van, Rajagopalan, and Tomkins, 1999). The community has been defined as a set
of Web objects both users and pages similar with their own logical and semantic
structures. This is done in order to facilitate Information Retrieval and Data Man-
agement (Zhang, Xu Yu, and Hou, 2006). In the context of Web 2.0, communities
and often a community are defined with reference to certain sets of users and re-
sources. These may involve factors such as articles, images, videos and tags.
Combinations (Cattuto and others, 2008) would also be included.

Considering the structure of the graphs, a community has been defined as a set
of nodes having common properties and playing similar roles within the graph.
For example, groups of websites having similar topics such as Fortunato and

2 A. Vakali

Castellano, 2008. In order to model the concept of communities and to identify
communities using algorithmic methods, it is necessary to utilize concepts of
graph theory. These include areas such as clique, cycle, k-clique (Palla, Derényi,
Farkas, & Vicsek, 2005), N-clique (Alba, 1973), k-core (Batagelj & Zaveršnik,
2002) and k-plex (Seidman & Foster, 1978). These correspond to coherent sub-
graph structures and have also been used. In the development of techniques to
model the concept of a community based on these structures, and concepts which
include (i) density, which indicates the coherence of the subgraph, (ii) Degree

Centrality, which refers to the number of edges connecting a given node to other
nodes, (iii) Betweenness Centrality, which has high values for nodes that are in-
cluded in many the determination of the shortest paths between nodes, and (iv) the
edge “betweenness”, which refers to the number of shortest paths between the
different pairs of nodes containing an edge, are all of particular significance.
These concepts are used to describe the significance of a node or an edge in a
graph. They have been used in various techniques used to detect communities in
networks.

Web 2.0 applications and social networks allow users to create virtual personali-
ties that are represented by the users’ profiles, and to create social connections. The
user profiles include information about: Their characteristics and interests (e.g.
Facebook

1), Sites that interest them (e.g. Delicious
2), or about any other type of

information that is described in a given Web 2.0 application and reflects their pref-
erences. The social connections can be represented either by explicit friendship
links or they can be inferred through the analysis of the users’ activity. This may be
comments in a blog service or references to a research repository. The analysis of
the above types of links contributes to the identification of communities in a net-
work. This is important for analyzing the features of individual communities, and
for understanding the structure and properties of the overall network (Milo &
Itzkovitz, 2002) (Vázquez, Dobrin , Sergi, Eckmann, Oltvai, and Barabási, 2004).

The problem of community identification, despite having been investigated for
many years, requires finding effective methods for graph partitioning which can
be applied to complex and large-scale networks. Some open questions still requir-
ing further investigation are the following:

• Data Collection problems which can occur and are related to the

common reference of data: Users can interact with existing Web 2.0 ap-
plications such as Wikis, Blogs, Social Tagging Systems, and Social Net-
works. This can provide information about participants interests, dependant
on the particular activity or the data in question. A problem which is as yet
unsolved is the collection and integration of data from different data
sources. This is necessary for the uniform reporting and analysis of data.
The solution of this particular problem can lead to radical conclusions con-
cerning the interests of users as well as to provide a more complete image
of their data profile. It is possible to identify any multiple relationships that
may exist between two or more users. These may be friends or associates.

1
 http://www.facebook.com/

2
 http://delicious.com/

Innovations and Trends in Web Data Management 3

• Size and heterogeneity of the data: Different types of data collected from
existing Web 2.0 applications and their huge volume require the definition
of new representations and indexing structures that will assemble as much
information as possible about the data described and contribute to the de-
velopment of efficient and scalable methods of analysis. Due to the huge
volume of data, new data representation approaches are required. These
should contemplate the use of an external memory (Chiang, Goodrich,
Grove, Tamassia, Vengroff, and Vitter, 1988). In addition, distributed envi-
ronments may be used (Panconesi & Rizzi, 2001). Problems may be con-
sidered as data streams (Zelke, 2009). Another important factor which
should be considered is the nature of the data. This varies depending on the
application for which they are acquired. For example, in blogs users tend to
generate mostly text data. In the case of social tagging systems multimedia
data such as images, videos, for example will dominate.

• Assessing the relationships between users: In most networks, the com-
munities that are identified will have overlaps between their members
due to the many different kinds of relationships that often connect the
community members (Palla, Derényi, Farkas, and Vicsek, 2005). For ex-
ample, users can belong to different groups depending on their: Level of
Education, Working Environment, Hobbies and Family. Consequently,
the overlap between the communities constitutes an important factor in
the design of methods for community identification. A particular chal-
lenge is the definition of dynamic models that can reflect the features of
community members in time, as well as their evolution time.

• Requirement for metrics that will incorporate semantic features

related to the content. This is in addition to the behavior and the psy-

chology of the users. Most methods of finding the communities in social
networks are based on the study and exploitation of the properties of the
graphs that illustrate the relationships among the members of a social
network. The features that are often exploited are the power and the type
of relationships between users, their profile, and the interaction between
them. That is the comments to one another. That is the exchange of data
for example. The data that are used in the network and their content. That
is bookmarks, tags, reviews, pictures, video, for example can also contain
important information which may contribute to the discovery of commu-
nities. Specifically, the semantic analysis of the data provides important
information about, the users, their profiles, interests and preferences.
Also it contains information about the respective social networks and
their structure (Mika, 2005). Such analysis is done on different types of
content such as tags, text, images. Therefore the derived multi-
dimensional results can be utilized in the definition of metrics which will
contribute to the discovery of unexpected groups of users with common
interests and behaviors.

4 A. Vakali

• Effective clustering methods for the detection of communities: The
nature and vast sizes of data available from Web 2.0 applications necessi-
tate the existence of more effective and scalable methods that can
highlight the capacity and special characteristics of communities. For ex-
ample the temporal and social trends that appear in these communities,
and the relationships between the community members. Special attention
should be given to the development of universal methods able to be ap-
plied to different types of networks. These may differ either on how the
users access the data. That is whether it is fixed or mobile networks, or in
the nature of the social or the Web 2.0 network. Dependant on whether it
is a blog or a social recommendation system for example.

2 Capturing Groups of Data over the Web Graph

Recently there has been rising research interest in complex data networks obtained
from various scientific fields which include biology, sociology and information
technology and are primarily obtained from the Web. The networks derived from
real-world data for example the Web, generally present a non-random organiza-
tion. For example, the degree of the nodes in real-world networks often follows
the power law distribution. This is according to whether there are many nodes
which have large connectivity or a few nodes with little connectivity or degree.
The uneven distribution of nodes is observed at the global level, but also locally
(Fortunato & Castellano, 2008). There are groups of densely connected nodes cre-
ating groups or communities of data.

The existence of typical densely connected structures in many modern data
networks has contributed to the emergence and evolution of a new research field.
This is dedicated to the identification and capturing groups of data in complex
networks. We will now give a summary of some of the most important method-
ologies that have so far been proposed or implemented. Given the large number of
relevant methods in literature, only a selection of some of the most important
methods will be included. These may be considered as indicative of some of the
general categories. Typically, the approach is followed by finding groups of data
and communities in complex networks. The implementation of the algorithms
traditionally used in similar problems is considered. The algorithms used for graph
partitioning and the algorithms used for node clustering are now considered:

Review of graph partitioning and node clustering methods

i. Graph partitioning

The first types of methods used for finding communities in complex networks
were those which were related to the problem of graph partitioning. This re-
quired the segmentation of a graph into a number of subgraphs. This enabled the
number of edges connecting nodes of different subgraphs to be mini-
mized. Some of the important methods for graph partitioning are: the method
used in the Kernighan-Li algorithm (Kernighan and Lin, 1970). The spectral

Innovations and Trends in Web Data Management 5

partitioning method (Barnes, 1982) (Pothen, Simon, and Liou, 1990), and meth-
ods that do partitioning in levels. These are applied for example to the Multi-
level Recursive-Bisection family of algorithms METIS (Karypis and Kumar,
1999). Other methods used to partition the graph are based on the minimization
of measures such as conductance (Bollobás, 1998) (Šíma and Schaeffer, 2006)
and cut ratio (Chan, Schlag, and Zien, 1993) (Wei and Cheng, 1989).

In general, graph partitioning methods require the prior definition of the
number of subgraphs that occur after the graph is partitioned. In some cases
even to define the size. Techniques that are applied to do graph bisection are
recursively repeated for each resulting partition. These characteristics, com-
bined with the lack of an appropriate metric to assess the quality of the final
partitioning, render these methods inadequate for the identification of commu-
nities in complex networks (Newman, 2004).

ii. Clustering

Another early approach used to identify communities in networks adopted clus-
tering techniques from the field of data mining. Namely, these are hierarchical

clustering techniques were used for networks where the nodes appear to be
organized hierarchically into groups (Hopcroft, Khan, Kulis, & Selman, 2004)
(Jain & Dubes, 1988) (Scott, 2000). In addition as partitional clustering algo-
rithms, with k-means (MacQueen, 1967) these are the most prominent algo-
rithms representatives of this category. In hierarchical clustering algorithms, a
node similarity metric is defined. This is used to compute the similarity for
every pair of graph nodes to create a similarity matrix. Divisive clustering algo-
rithms require the definition of a parameter k in advance, map each node to a
point of a metric space and define a distance measure between points, =and
then, the graph nodes are assigned to k groups so that a cost function based on
the given metric distance is optimized. Despite the fact that the identification
of groups of “similar” nodes is accomplished by either merging or divisive
techniques, there are often cases when some nodes are not assigned to any
group and they end up as isolated individuals.

More recent approaches to the problem of community identification have been
based on the observation of the algorithms on these categories. Because of the
types of restrictions they impose based on the prior definition of the number of
groups, cannot usually be practically and efficiently applied to find communities
from the complex networks. This observation highlights the need for algorithms
designed exclusively to solve the problem of community identification in complex
networks. Various approaches have been developed to solve this problem. For
most of the categories a large number of representative algorithms have been de-
veloped. The most significant methodologies based on the classifications listed
above are summarized in the following table. Some representative algorithmic
approaches are also included.

6 A. Vakali

Methodology Emphasis/Main idea
Representative

approaches
Characteristics

Divisive

algorithms

Divisive algorithms follow

the approach of repetitively

removing edges that are

considered to connect nodes

belonging to the different

communities, on the basis of

some metric. Using this

technique communities are

gradually separated, while a

community hierarchy is

created.

Girvan & Newman,

2002

Girvan & Newman,

2004

‚ Edge removal based on the edge

betweenness metric ‚ Selection of the best partitioning

from the derived hierarchy based on

the modularity metric ‚ High computational complexity

Tyler, Wilkinson, &

Huberman, 2003
‚ Extension to (Girvan and Newman,

2002) ‚ Reduction of computational

complexity

Pinney and

Westhead, 2006

Gregory, 2007

‚ Extension to (Girvan & Newman,

2002) ‚ Support for overlapping

communities

Radicchi, Castellano,

Cecconi, Loreto, and

Parisi, 2004

‚ Edge removal based on the edge

clustering coefficient metric

Fortunato, Latora,

and Marchiori, 2004
‚ Edge removal based on the

information centrality metric

‒odularity-

based methods

The methods of this category

use the modularity metric as

a community evaluation

function and attempt to

optimize it.

Newman, 2004a ‚ Agglomerative hierarchical

algorithm ‚ Greedy technique

Clauset, Newman, &

Moore, 2004
‚ Extension to (Newman, 2004a) ‚ Complexity reduction

Blondel, Guillaume,

Lambiotte, and

Lefebvre, 2008

‚ Greedy technique ‚ Low computational complexity

Newman, 2006a ‚ Modularity optimization via spectral

bisection ‚ Not very accurate for networks with

more than two communities

White and Smith,

2005
‚ Approach the community

identification task as a spectral

relaxation problem ‚ Fast algorithm for large sparse

graphs

Massen and Doye,

2005
‚ Modularity optimization via

simulated annealing ‚ Requirement for initial

parameterization ‚ Slow method applied to small graphs

Duch and Arenas,

2005
‚ Uses the heuristic search technique

extremal optimization ‚ Relatively fast and accurate method

Tasgin, Herdagdelen,

and Bingol, 2007
‚ Modularity optimization using

genetic algorithms

Innovations and Trends in Web Data Management 7

Spectral

algorithms

Spectral algorithms exploit

the algebraic properties of the

matrices that can be derived

from a graph, such as the

Laplacian and Adjacency

matrices,. Theaim is to

cluster the nodes based on the

similarity of the matrices’

eigenvectors.

Donetti and Muñoz,

2004
‚ Exploitation of the eigenvectors of

the Laplacian matrix ‚ Mapping of the nodes to a metric

space using the eigenvector

components as coordinates ‚ Calculation of similarity via the

Euclidean or angle distance

Capocci, Servedio,

Caldarelli, and

Colaiori, 2004

‚ Similarity calculation via the

Pearson correlation coefficient of

the eigenvectors of the right

stochastic matrix

Zarei and Samani,

2009
‚ Identification of “anti-community”

structures in the complement graph

(Its edges are the edges that the

initial graph lacks in order to be

complete) ‚ Application of a spectral algorithm

in the Laplacian matrix of the

network ‚ Ability to find small communities in

small networks

Methods based

on statistical

inference

In general, Statistical

Inference (Mackay, 2003)

uses statistics and model

hypothesis to infer the

properties of a given

population. That is the

topology of a given graph.

This approach to graph

clustering is based on the

assumption that the nodes are

clustered in communities

which can be identified by

the graph linkage structure.

Hastings, 2006 ‚ Techniques based on Bayesian

inference, where the model is

adjusted based on the maximization

of a likelihood

Newman & Leicht,

2007

Hofman & Wiggins,

2008

Reichardt & White,

2007
‚ Techniques based on blockmodeling

Rosvall &

Bergstrom, 2008
‚ Techniques based on model selection

Ziv, Middendorf, &

Wiggins, 2005
‚ Techniques based on information

theory

Dynamic

algorithms

Algorithms based on spin

models

Reichardt and

Bornholdt, 2004
‚ Usage of the q-states Potts model

(Wu, 1982) which describes a

system of spins that can be in one

out of q different states ‚ Definition of a spin state for each

node and the study of the

interactions among the spins of

neighboring nodes ‚ Evolution of the system via

simulating annealing and the

identification of communities of

nodes characterized by similar spin

states ‚ Ability of identifying overlapping

communities ‚ Fast method, as most calculations

require local information

Son, Jeong, and Noh,

2006

‚ Uses the Ferromagnetic Random

Field Ising (FRFI) model

8 A. Vakali

Algorithms based on random

walks (Hughes, 1995). They

utilize the fact that a random

walker will be for longer time

inside a community, as

communities are

characterized by dense

structure of high

connectivity.

Zhou, 2003

‚ Utilizes random walks to define a

distance between pairs of nodes,

and later a measure of dissimilarity

Pons & Latapy, 2005

‚ Calculates the distance between

nodes based on the possibility of

moving from one node to the other

within a predetermined number of

steps

van Dongen, 2000 ‚ The Markov Cluster Algorithm

(MCL) algorithm is used in many

applications due to its simplicity ‚ It applies expansion and inflation

techniques at the graph’s right

stochastic matrix

Algorithms based on the

synchronization phenomenon

which appears in every

system with interactions

(Pikovsky, Rosenblum, &

Kurths, 2001) and is

characterized by similar

states of the system’s

members

Arenas, Díaz-

Guilera, & Peréz-

Vicente, 2006

‚ The existence of an oscillator with

random phase at each node is

assumed.,The synchronization of the

oscillators of nodes belonging to the

same community is expected to

happen before full synchronization is

observed

Boccaletti,

Ivanchenko, Latora,

Pluchino, &

Rapisarda, 2007

3 Discovery of User Groups and Communities in Social

Networks

The discovery of groups of users from Web 2.0 social networks has emerged as a
particularly interesting field of application for community identification methods.
These groups consist mainly of users who have common interests or goals, ac-
cording to similar behavior patterns. They may be linked together by bonds of
friendship. That is, if when supported by the requisite social network. The behav-
ioral patterns of users refer to the way in which they participate in a Web 2.0 so-
cial network. This includes:

• creating new content

• commenting on existing content

• appending to content metadata (tags) so as to provide a description,

• creating bonds of friendship and providing cooperation with other
users,

• Discussions between users,

• creating and / or participating in teams or groups that relate to
specific topics.

Data that can be derived from a Web 2.0 social network to share the information
between users, provide the relational information that indicates the way in which
users connect to the content, and the interactions between users. It soon becomes

Innovations and Trends in Web Data Management 9

apparent if this information can be utilized for discovery by other user communi-
ties. The resulting communities can prove particularly useful in applications such
as recommender systems. Changing the composition of the recommendations
according to the thematic group to which each user belongs in order to improve
the accuracy. An important motivation for user community identification is the
large number of users who choose to participate in social Web 2.0 applications.
For example, according to statistical data, Facebook, a popular social network, has
more than 400 million active registered users. Of these half connect to the network
on any given day. The average Facebook user has 130 friends in the network.
More than 25 billion pieces of information, such as web links, news stories, blog
posts, notes, photo albums, for example, are shared between users monthly3.

In the following paragraphs, a short review of the research that deals with the
issue of finding communities in which users by means of on-line social networks
share information.

One of the first published research works (Ohsawa, Soma, Matsuo, Matsumura,
and Usui, 2002) dealt with the analysis of data from message boards. It depicts the
relationships between users and between users and subjects as a graph structure
using text co-occurrences. The topological structure of graph was then studied in
relation to three factors: (i) how centralized is the graph’s structure. Data on
dominant users or topics and links, (ii) A measure of the coherence of the commu-
nication context, (iii) the orientation towards the formation of creative decisions.
The defining of the respective metrics. The values of these metrics were associ-
ated with a classification of 'communities' using the following categories:

• topic-based,
• problem solving,
• focused on product / service evaluation,
• mutual supporting forums for the use of users,
• focus on the establishment of friendly relations between the

participants,
• interested in taking part in discussions,

These have a degree of specific characteristics. The term “community” was used to
represent the graph resulting from a discussion group. The existence of groups hav-
ing a different orientation within a “community” was also considered. Special ref-
erence was made to user roles. This distinguished some of the users as “leaders”
who can propose new ideas, drive discussion within a group, or circulate ideas of
interest between the different groups. This research work is important from a theo-
retical standpoint. It does not suggest that an algorithm for the automatic extraction
of groups has a different orientation from that of the “community’.

A subsequent research paper (Zhou, Manavoglu, Li, Giles, and Zha, 2006) aims
at discovering user communities in social networks using an analysis of semanti-
cally rich text documents. This can include e-mails, instant messaging and message

3 Facebook Statistics:
http://www.facebook.com/press/info.php?statistics.
Last-access date: 19/05/2010

10 A. Vakali

boards. This method creates a Bayes network in order to model the formation of
such documents in a social network. It uses the author or the recipient of the docu-
ment and the topic as variables. The community is a latent variable. It should be
noted that this method requires setting the number of communities and topics in
advance. One of the proposed approaches leads to a polynomial distribution of user
communities. There is also the possibility of finding a polynomial distribution of
topics in the communities. The advantage of this method is that a semantic descrip-
tion is obtained for each community, through topic tags that define the topics. The
proposed method was tested in the data/set that consists of the e-mails of the Enron
company4 and it produced results similar to those obtained by applying an algo-
rithm based on Modularity Optimization (Clauset, Newman, and Moore, 2004).

Another research topic that relates to the problem of finding communities of
users is the identification of users who have played the most active role in a com-
munity. The work of Zhang, Ackerman, and Adamic (Zhang, Ackerman, and Ad-
amic, 2007) focused on systems for finding experts (expertise finders). This is
used to find the users who have the necessary expertise on a topic. The on-line
Java Forum community served as application field for this research work. The
users pose and answer questions about the Java programming language. Applying
appropriate ranking algorithms to the graph of the corresponding social network.
Examples are ExpertiseRank,which is based on PageRank (Page, Brin, Motwani,
& Winograd, 1999). A variant of HITS (Kleinberg, 1999), was used on simple
metrics. It was proved that the graph structure can be used to evaluate the users of
an on-line network of experts. The emergence of more experienced users can be
observed. In addition, according to this study, the choice of an appropriate algo-
rithm will result in a more accurate ranking also depends on the network structure.

A research paper dealing with a similar issue (Shin, Xu, and Kim, 2008) uses
the term POWER USERS to characterize users of on-line communities. These are
very popular and have a good reputation regarding their activities. It aims to de-
sign a method for identifying them. Several statistical features have been defined
based on the comments and mail of the users. It also provides information on the
features based on the relationships existing between users. After experimenting
with the proposed features, Cross Reference (CR) emerges as the feature that pro-
vides the greatest precision in the identification of power users. This is provided
that an appropriate threshold value has been defined. This feature is based on the
number of comments exchanged between a given user and the other members. The
research results were utilized in the development of a search engine for users. It
was based on the cross reference feature.

Recent research (Kammergruber, Viermetz, and Ziegler, 2009) focuses on the
problem of finding communities of users in Social Tagging Systems. The proposed
method creates a vector for each user with the tags that He / She has used as com-
ponents. Then, the Cosine Similarity Metric is used to express the similarity be-
tween the pairs of vectors. Thus the similarity of the behavior or interests of the
respective users is noted. The program then applies the algorithm DBSCAN (Es-
ter, Kriegel, Sander, and Xu, 1996) for the clustering of similar vectors which is
then applied to the corresponding users. The resulting communities consist of

4
 http://www.cs.cmu.edu/~enron/

Innovations and Trends in Web Data Management 11

users who share common interests and the interests of the community of users are
then represented by a group of tags. The authors propose the utilization of the
resulting communities in the development of: friendship ties between the members
of the community, the content of joint interest, relevant tags, and the development
of a social tagging system of users.

This overview concludes with the use of current trends relating to the problem of
identifying user communities in social networks. It is observed that there is a lim-
ited number of research works in this area. There are some studies about the utiliza-
tion of user relationships in social networks. They model networks using graphs
and focus on problems such as: The Analysis of the Structure and Characteristics of
Small-Sized Social Networks (e.g. Ohsawa, Soma, Matsuo, Matsumura, and Usui,
2002). The recognition of the most active users in a network through the use of
appropriate metrics (Zhang, Ackerman, and Adamic, 2007) (Shin, Xu, & Kim,
2008). The problem of user community identification considered in some research
works. These focus and experiment using specific types of networks. They include
the network that results from: (i) the modeling of all the e-mail messages ex-
changed during a time period between the members of a company (Zhou, Manavo-
glu, Li, Giles, & Zha, 2006), and (ii) a social tagging system (Kammergruber,
Viermetz, and Ziegler, 2009). It is evident that there is a need to develop a method-
ology that can globally solve, with appropriate automatic adjustment, the problem
of finding communities of users in social networks of most types.

Most research works link two users in the graph model of the given network.
When their relationships are not clearly defined (e.g. through friendship links), on
the basis of Text Analysis and Word / Expression co-occurrence, The use of
Traditional Similarity Measures, such as the cosine similarity and also used. An
important issue that is not fully addressed in the literature is the possibility of ex-
tracting an automatic semantic description for the communities and their evalua-
tion. Based on this, it is evident that there is a need to develop additional user
similarity and community evaluation measures. These will take into account fea-
tures of the behavior of the users. Examples are the content such as Text, Image,
for example. In addition the relevance and cohesion of the communities, must re-
spectively be assessed. It is important to include the simple application of tradi-
tional techniques when identifying communities in graphs. It is also important to
develop a methodology that will take into account the special characteristics con-
cerning the behavior of users in social networks. This would include the execution
time required for a given activity, the emotional state, the special roles of users,
and the degree of privacy necessary. This is to name but a few of the possible
variables.

4 Motivation for Community Identification and Indicative

Application Areas

The analysis of data concerning the users of social networks and the Web 2.0
applications can be utilized by various applications in order to provide new
opportunities for ; promotion, recommendation and projection of content. Other
factors are the improvement and the quality of the services and thereby increase

12 A. Vakali

user satisfaction. Some indicative application types follow in which social net-
work analysis methods, and more specifically methods for finding communities,
which can be integrated and used. Investigation must be made as to whether there
are any imminent relevant applications, including related examples.

• Personalization: The Social Web represents a new philosophy in which
the users themselves are the main producers of the content (User Con-
tributed Content). The users create, manage and spread the content and
the information (Coppola, Lomuscio, Mizzaro, and Nazzi, 2008). This is
done by the use of Wikies, Blogs, Social Tagging and multimedia shar-
ing systems. For example YouTube, flickr, Twitter, Jaiku5, Social
Networking Applications such as Facebook are used. Semantic Web
technologies provide the opportunity of developing better personalized
applications and services. These may provide new capabilities, which al-
low users to describe aspects such as social networks, environment data
in a standardized way (Heath and Motta, 2006). Semantic tools such as
the RDF model, the SPARQL language, ontologies, the OWL language,
and the microformat approach, allow the analysis and representation of
social networks. The resulting data is presented in a structured and con-
sistent manner. Consequently, it is possible to combine data from differ-
ent sources and facilitate the utilization of “social” data (Ereteo, Buffa,
Gandon, Grohan, Leitzelman, and Sander, 2008).

• Content Recommendation: There has been an explosive like growth of
information in social networking applications in the last few years. The
role of content recommendation applications has consequently become
very important (Adomavicius and Tuzhilin, 2005). Existing content rec-
ommendation programs are mainly based on the content required by us-
ers (content-based) (Pazzani & Billsus, 2007). The relationships between
the users is through their common requirements. See Collaborative Filter-
ing (Herlocker, 2004). Hybrid techniques of content recommendation
have also been developed (Burke, 2002). In the context of Web 2.0 appli-
cations to new problems related to content recommendation have ap-
peared., Examples are recommendations for tags (Sigurbjörnsson and
Zwol, 2008). The detection of user communities has had a direct impact
on the recommendation techniques. The information retrieval model for a
user varies depending on the community in which they belong (Almeida
and Almeida, 2004). Despite the growing importance of content recom-
mendation engines arising from web applications (such as Amazon6 and
Digg7), the existing mechanisms have not benefited from community
detection technologies.

5 http://www.jaiku.com/
6 Amazon.com. Recommendations Item-to-Item Collaborative Filtering

 http://www.win.tue.nl/~laroyo/2L340/resources/

Amazon-Recommendations.pdf
7 Digg's new recommendation system relies on the wisdom of crowds
 http://www.technologyreview.com/Infotech/21045/page1/

Innovations and Trends in Web Data Management 13

• Trend Identification: An analysis of the communities can contribute to
the recognition of recent activity which uncovers emerging trends within
a social tagging system. In (Sun and others, 2008) a statistical method
used to identify interesting topics from a dataset from Delicious. In
(Hotho and others, 2006) a trend identification measure is proposed that
“catches” trends related to a subject based on a variant of the PageRank
algorithm. Finally, in (Wetzker and others, 2008) a statistical model that
identifies topics and indicates trends in a dataset of Delicious is shown
and apply a smoothing process that leads to a better calibration of the
model.

5 The Aims of This Book

This book has assembled major topics which embed new trends and practices in
terms of Web Data Management with a focus on modern technologies and Web
2.0 reality. More specifically, the book is organized into three major sections
which include 10 chapters in a step-by-step manner. It starts with structures, pro-
ceeds to technologies and searching and concludes with an emphasis on the social
media of the Web 2.0. More specifically, the major themes of this book are as
follows:

• Structures and Metrics

 Massive Graph Management for the Web and Web 2.0
 Web Engineering and Metrics
 Modern Web Technologies

• Management of Searching and Querying

 Federated Data Management and Query
 Optimization for Linked Open Data
 Queries over Web Services
 Towards an Adaptively Approximated Search in Distributed Architectures

• Social Media and Semantics

 Online Social Networks: Status and Trends
 Enhancing Computer Vision using the Collective Intelligence of Social

Media
 From XML to AXML
 Migrating Legacy Assets through SOA to Realize Network Enabled

Capability

The editors hope that this book will be easy to follow and be of interest to engi-
neers and computer scientists who already have a basic background on topics such
as data mining, databases and Web technologies. The book will be useful to the
researchers as well as graduate students or (advanced) undergraduate students in
engineering or computer science academic programs.

14 A. Vakali

References

[1] Adomavicius, G., Tuzhilin, A.: Towards the Next Generation of Recommender Sys-
tems: A Survey of the State of the Art and Possible Extensions (2005)

[2] Alba, R.D.: A Graph-Theoretic Definition of a Sociometric Clique. J. Math. Soc. 3,
113–126 (1973)

[3] Almeida, R.B., Almeida, V.A.: A community-aware search engine. In: Proceedings of
the 13th international Conference on World Wide Web, WWW 2004, May 17 - 20,
pp. 413–421. ACM, New York (2004)

[4] Arenas, A., Díaz-Guilera, A., Peréz-Vicente, C.: Synchronization reveals topological
scales in complex networks. Physical Review Letter 96, 114102 (2006)

[5] Barnes, E.R.: An algorithm for partitioning the nodes of a graph. SIAM J. Algebraic
Discrete Methods 3(4), 541–550 (1982)

[6] Batagelj, V., Zaveršnik, M.: Generalized cores. Eprint arXiv:cs/0202039 (2002),
http://www.arxiv.org

[7] Baumes, J., Goldberg, M.K., Magdon-Ismail, M.: Efficient Identification of Overlap-
ping Communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y.,
Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Hei-
delberg (2005)

[8] Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting
complex network modularity by dynamical clustering. Phys. Rev. E 75(4), 45102
(2007)

[9] Bollobás, B.: Modern Graph Theory. Springer, New York (1998)
[10] Burke, R.: Hybrid Recommender Systems: Survey and Experiments (2002)
[11] Capocci, A., Servedio, V., Caldarelli, G., Colaiori, F.: Detecting communities in large

networks. Physica A 352, 669–676 (2004)
[12] Cattuto, C., Baldassarri, A., Servedio, V.D.P., Loreto, V.: Emergent Community

Structure in Social Tagging Systems. Advances in Complex Systems 11(4), 597–608
(2008)

[13] Chan, P.K., Schlag, M.D., Zien, J.Y.: Spectral K-way ratio-cut partitioning and clus-
tering. In: Proceedings of the 30th International Conference on Design Automation,
pp. 749–754. ACM Press, Dallas (1993)

[14] Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.:
External Memory Graph Algorithms. In: Proceedings of the 6th Annual ACM-SIAM
Symposium on Discrete Algorithms San Francisco, California, United States, Sympo-
sium on Discrete Algorithms, January 22 - 24, pp. 139–149. Society for Industrial and
Applied Mathematics, Philadelphia (1995)

[15] Clauset, A.: Finding local community structure in networks. Physical Review E 72
(2005)

[16] Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Physical Review E 70, 66111 (2004)

[17] Coppola, P., Lomuscio, R., Mizzaro, S., Nazzi, E.: m-Dvara 2.0: Mobile & Web 2.0
Services Integration for Cultural Heritage, Social Web and Knowledge Management.
In: Social Web 2008 Workshop at the 17th World Wide Web Conference
(WWW 2008), Beijing, China, April 22 (2008)

[18] Donetti, L., Muñoz, M.A.: Detecting network communities: a new systematic and ef-
ficient algorithm. Journal of Statistical Mechanics: Theory, P10012 (2004)

Innovations and Trends in Web Data Management 15

[19] Duch, J., Arenas, A.: Community detection in complex networks using Extremal Op-
timization. Phys. Rev. E 72(2), 27104 (2005)

[20] Ereteo, G., Buffa, M., Gandon, F., Grohan, P., Leitzelman, M., Sander, P.: A state of
the Art on Social Network Analysis and its Applications on a Semantic Web. In: Pro-
ceedings of the ISWC 2008 Workshop on Social Data on the Web (SDoW 2008),
Karlsruhe, Germany, October 27 (2009)

[21] Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In: Proceedings of the 2nd In-
ternational Conference on Knowledge Discovery and Data Mining (KDD 1996), pp.
226–231 (1996)

[22] Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proceedings
of the National Academy of Sciences USA 104(1), 36–41 (2007)

[23] Fortunato, S., Castellano, C.: Community structure in graphs. In: Encyclopedia of
Complexity and System Science. Springer, Heidelberg (2008)

[24] Fortunato, S., Latora, V., Marchiori, M.: A method to find community structures
based on information centrality. Physical Review E 70, 56104 (2004)

[25] Giannakidou, E., Kompatsiaris, I., Vakali, A.: SEMSOC: Semantics Mining on Mul-
timedia Social Data Sources. In: Proceedings of the 2nd IEEE International Confer-
ence on Semantic Computing, Santa Clara, CA, USA (2008a)

[26] Girvan, M., Newman, M.E.: Community structure in social and biological net-
works 99, 7821–7826 (2002)

[27] Gregory, S.: An Algorithm to Find Overlapping Community Structure in Networks.
In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skow-
ron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91–102. Springer, Heidel-
berg (2007)

[28] Hastings, M.B.: Community Detection as an Inference Problem. Phys. Rev. E 74(3),
35102 (2006)

[29] Heath, T., Motta, E.: Personalizing Relevance on the Semantic Web through Trusted
Recommendations from a Social Network. In: International Workshop on Semantic
Web Personalization, Montenegro, June 12 (2006)

[30] Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative fil-
tering recommender systems (2004)

[31] Hofman, J., Wiggins, C.: A Bayesian approach to network modularity. Physical Re-
view Letters 100, 258701 (2008)

[32] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking Evolving Communities in
Large Linked Networks. Proceedings of the National Academy of Sciences 101,
5249–5253 (2004)

[33] Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Trend Detection in Folksonomies.
In: Proceedings of SAMT, pp. 56–70 (2006)

[34] Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Upper Saddle
River, NJ (1988)

[35] Kammergruber, W., Viermetz, M., Ziegler, C.: Discovering Communities of Interest
in a Tagged On-Line Environment. In: CASON 2009: Proceedings of the 2009 Inter-
national Conference on Computational Aspects of Social Networks, pp. 143–148.
IEEE Computer Society, Washington (2009)

[36] Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning ir-
regular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1999)

[37] Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal 49, 291–307 (1970)

16 A. Vakali

[38] Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),
604–632 (1999), DOI= http://doi.acm.org/10.1145/324133.324140

[39] Koutsonikola, V., Vakali, A., Giannakidou, E., Kompatsiaris, I.: Clustering of Social
Tagging System Users: A Topic and Time Based Approach. In: Vossen, G., Long,
D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS, vol. 5802, pp. 75–86. Springer, Heidel-
berg (2009)

[40] Koutsonikola, V.A., Petridou, S.G., Vakali, A.I., Hacid, H., Benatallah, B.: Correlat-
ing Time-related Data Sources with Co-clustering. In: Bailey, J., Maier, D., Schewe,
K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 264–279.
Springer, Heidelberg (2008)

[41] Li, X., Snoek, C.G.M., Worring, M.: Learning Social Tag Relevance by Neighbor
Voting. IEEE Transactions on Multimedia 11(7), 1310–1322 (2009)

[42] MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp.
281–297. University of California Press, Berkeley (1967)

[43] Massen, C.P., Doye, J.P.: Identifying “communities” within energy landscapes. Phys.
Rev. E 71(4), 46101 (2005)

[44] Mika, P., Flink, J.: Semantic Web technology for the extraction and analysis of social
networks. Web Semantics 3(2), 211–223 (2005)

[45] Milo, R., Itzkovitz, S.: Network motifs: Simple building blocks of complex networks.
Science 298, 824–827 (2002)

[46] Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept
of bridgeness in complex networks. Phys. Rev. E 77(1), 16107 (2008)

[47] Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70(5), 56131 (2004)
[48] Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys.

Rev. E 69, 66133 (2004a)
[49] Newman, M.E.J.: Finding community structure in networks using the eigenvectors of

matrices. Physical Review E 74 (2006)
[50] Newman, M.E.J.: Modularity and community structure in networks. Proceedings of

the National Academy of Sciences of USA 103, 8577–8582 (2006a)
[51] Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks.

Phys. Rev. E 69(2), 26113 (2004)
[52] Newman, M.E., Leicht, E.A.: Mixture models and exploratory analysis in networks.

Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007)
[53] Ohsawa, Y., Soma, H., Matsuo, Y., Matsumura, N., Usui, M.: Featuring web commu-

nities based on word co-occurrence structure of communications: 736. In: WWW
2002: Proceedings of the 11th international conference on World Wide Web, p. 742.
ACM, New York (2002)

[54] Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report. Stanford InfoLab (1998)

[55] Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814–818 (2005)

[56] Panconesi, A., Rizzi, R.: Some Simple Distributed Algorithms for Sparse Networks.
Distributed Computing 14(2), 97–100 (2001),
DOI= http://dx.doi.org/10.1007/PL00008932

[57] Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems (2007)

Innovations and Trends in Web Data Management 17

[58] Pinney, J., Westhead, D.: Betweenness-based decomposition methods for social and
biological networks. In: Barber, P.B.S., Barber, S., Baxter, P., Mardia, K., Walls, R.
(eds.) Interdisciplinary Statistics and Bioinformatics: Proceedings. Leeds University
Press, Leeds (2006)

[59] Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random
Walks. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS,
vol. 3733, pp. 284–293. Springer, Heidelberg (2005)

[60] Pothen, A., Simon, H., Liou, K.P.: Partitioning sparse matrices with eigenvectors of
graphs. SIAM journal of Matrix Analysis and Application 11, 430–452 (1990)

[61] Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from
community photo collections. In: Proceedings of the 2008 international Conference on
Content-Based Image and Video Retrieval, Niagara Falls, Canada (2008)

[62] Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identify-
ing communities in networks. Proceedings of the National Academy of Science of the
United States of America 101, 2658–2663 (2004)

[63] Reichardt, J., Bornholdt, S.: Detecting Fuzzy Community Structures in Complex
Networks with a q-state Potts Model. Phys. Rev. Lett. 93, 218701 (2004)

[64] Reichardt, J., White, D.: Role Models for Complex Networks. European Physical
Journal B 60, 217–224 (2007)

[65] Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences of USA 105,
1118 (2008)

[66] Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27–64 (2007)
[67] Scott, J.: Social Network Analysis, a handboook. SAGE publications, London (2000)
[68] Seidman, S.B., Foster, B.L.: A graph theoretic generalization of the clique concept.

Journal of Mathematical Sociology 6, 139–154 (1978)
[69] Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in

social tagging systems using hierarchical clustering. In: RecSys 2008: Proceedings of
the 2008 ACM conference on Recommender systems, pp. 259–266. ACM, New York
(2008)

[70] Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

[71] Shin, H., Xu, Z., Kim, E.: Discovering and Browsing of Power Users by Social Rela-
tionship Analysis in Large-Scale Online Communities. In: WI-IAT 2008: Proceedings
of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intel-
ligent Agent Technology, pp. 105–111. IEEE Computer Society, Washington (2008)

[72] Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective
knowledge. In: Proceeding of the 17th international Conference on World Wide Web,
WWW 2008, Beijing, China, April 21 - 25, pp. 327–336. ACM, New York (2008)

[73] Šíma, J., Schaeffer, S.E.: On the NP-Completeness of Some Graph Cluster Measures.
In: Thirty-second International Conference on Current Trends in Theory and Practice
of Computer Science (Sofsem 2006), pp. 530–537. Springer, Berlin (2006)

[74] Son, S.-W., Jeong, H., Noh, J.-D.: Random field Ising model and community structure
in complex networks. Eur. Phys. J. B 50(431) (2006)

[75] Tang, L., Liu, H.: Graph Mining Applications to Social Network Analysis. In: Manag-
ing and Mining Graph Data. Springer, Heidelberg (2009) (in press)

[76] Tasgin, M., Herdagdelen, A., Bingol, H.: Community Detection in Complex Net-
works Using Genetic Algorithms (2007) (preprint)

18 A. Vakali

[77] Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as spectroscopy: automated dis-
covery of community structure within organizations. In: Communities and technolo-
gies, pp. 81–96. Kluwer, B.V, Deventer, The Netherlands (2003)

[78] van Dongen, S.: Graph Clustering by Flow Simulation, Ph.D. thesis. Ph.D. thesis,
Dutch National Research Institute for Mathematics and Computer Science, University
of Utrecht, Netherlands (2000)

[79] Vakali, A., Kompatsiaris, Y.: Detecting and Understanding Web communities. In:
Proceedings of the WebSci 2009: Society On-Line, Athens, Greece, March 18-20
(2009)

[80] Vázquez, A., Dobrin, R., Sergi, S., Eckmann, J.–P., Oltvai, Z.N., Barabási, A.–L.: The
topological relationship between the large-scale attributes and local interaction pat-
terns of complex networks. Proceedings of the National Academy of Sciences of
USA 101(52), 17940–17945 (2004)

[81] Wetzker, R., Plumbaum, T., Korth, A., Bauckhage, C., Alpcan, T., Metze, F.: Detect-
ing Trends in Social Bookmarking Systems using a Probabilistic Generative Model
and Smoothing. In: Proceedings of the International Conference on Pattern Recogni-
tion (ICPR). IEEE, Los Alamitos (2008)

[82] Wetzker, R., Zimmermann, C., Bauckhage, C.: Analyzing social bookmarking Sys-
tems: A del.icio.us cookbook. In: Proceedings of ECAI 2008 Workshop on Mining
Social Data (MSoDa), Patras, Greece, July 2008, p. 2630 (2008)

[83] White, S., Smith, P.: A Spectral Clustering Approach to Finding Communities in
Graphs. In: Proceedings of the SIAM Data Mining Conference (SDM), Newport
Beach, California, pp. 76–84 (2005)

[84] Zanardi, V., Capra, L.: Social Ranking: Uncovering Relevant Content Using Tag-
based Recommender Systems. In: RecSys 2008: Proceedings of the 2008 ACM con-
ference on Recommender systems, pp. 51–58. ACM, New York (2008)

[85] Zarei, M., Samani, K.A.: Eigenvectors of network complement reveal community
structure more accurately. Physica A: Statistical Mechanics and its Applica-
tions 388(8), 1721–1730 (2009)

[86] Zelke, M.: Algorithms for Streaming Graphs: Approaching Graph Problems with
Limited Memory and without Random. Suedwestdeutscher Verlag fuer Hochschul-
schriften (2009)

[87] Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
structure and algorithms. In: WWW 2007: Proceedings of the 16th international Con-
ference on World Wide Web, Banff, Alberta, Canada, pp. 221–230. ACM, New York
(2007)

[88] Zhang, Y., Xu Yu, J., Hou, J.: Web Communities: Analysis and Construction.
Springer, Heidelberg (2006)

[89] Zhou, D., Manavoglu, E., Li, J., Giles, C.L., Zha, H.: Probabilistic models for discov-
ering e-communities. In: WWW 2006: Proceedings of the 15th international confer-
ence on World Wide Web, pp. 173–182. ACM, Edinburgh (2006)

[90] Zhou, H.: Network landscape from a Brownian particle’s perspective. Phys. Rev.
E 67, 41908 (2003)

[91] Ziv, E., Middendorf, M., Wiggins, C.H.: Information-theoretic approach to network
modularity. Phys. Rev. E 71(4), 46117 (2005)

Chapter 2

Massive Graph Management for the Web and Web 2.0

Maria Giatsoglou1, Symeon Papadopoulos1,2, and Athena Vakali1

1 Aristotle University, 54124, Thessaloniki, Greece

mgiatsog@csd.auth.gr,

avakali@csd.auth.gr
2 Informatics and Telematics Institute, CERTH, 57001, Thermi, Greece

papadop@iti.gr

Abstract. The problem of efficiently managing massive datasets has gained

increasing attention due to the availability of a plethora of data from various

sources, such as the Web. Moreover, Web 2.0 applications seem to be one

of the most fruitful sources of information as they have attracted the inter-

est of a large number of users that are eager to contribute to the creation of

new data, available online. Several Web 2.0 applications incorporate Social

Tagging features, allowing users to upload and tag sets of online resources.

This activity produces massive amounts of data on a daily basis, which can be

represented by a tripartite graph structure that connects users, resources and

tags. The analysis of Social Tagging Systems (STS) emerges as a promising

research field, enabling the identification of common patterns in the behavior

of users, or the identification of communities of semantically related tags and

resources, and much more. The massive size of STS datasets dictates the ne-

cessity for a robust underlying infrastructure to be used for their storage and

access.

This chapter contains a survey of existing solutions to the problem of

storing and managing massive graph data focusing particularly on the im-

plications that the underlying technologies of such frameworks have on the

support/operation of Web 2.0 applications using them as back-end storage so-

lutions, as well as on the efficient execution of web mining tasks. Considering

the category of STS as an example of Web 2.0 applications, the requirements

that are posed for the management of STS data are thoroughly discussed.

On the basis of these requirements three frameworks have been developed,

using state-of-the-art technologies as backbones. The results of benchmarks

conducted on the developed frameworks are presented and discussed.

1 Introduction

The widespread adoption of Web 2.0 tools and technologies that took place dur-

ing the last years has fundamentally changed the way information is published on

the Web. A plethora of Web 2.0 applications, including Social Tagging Systems,

Wikis, and Blogs, have emerged, amongst which there are some that recently gained

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 19–58.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

20 M. Giatsoglou, S. Papadopoulos, and A. Vakali

profound success. Some of the most well-known examples of successful Web 2.0

applications are: Facebook1, a social networking website counting hundreds of mil-

lions of users, Flickr2, a photo management and sharing application that allows

users to tag pictures and form communities, and delicious3, a social bookmarking

web service where users can store, share and retrieve bookmarks. What is common

between all Web 2.0 applications is that the activity of users results in data that are

interconnected through associations, thus forming a network.

The breakthrough of Web 2.0 applications was accompanied by the eagerness of

a large proportion of people to join them and to actively contribute to the generation

and publishing of Web content. This type of user activity produces massive amounts

of data on a daily basis, regarding the uploaded content itself, as well as the relations

formed between (a) users, (b) users and shared/uploaded content, and (c) content and

metadata (such as tags) associated to it by users. A rough idea of the amount of these

data can be drawn taking Facebook as an example, where each week more than 3.5

billion pieces of content (such as web links, news stories, blog posts, notes, photos)

are shared [67]. The data magnitude, the need to model their relation structure, as

well as to efficiently store and retrieve them, have created new challenges in the field

of data management. Classic data management solutions, such as data warehouses,

seem to be inadequate to store efficiently massive sets of relational data. Moreover,

emphasis has been moved from traditional entry-based data access, e.g. customer

records, to navigational access that allows reaching e.g., the references of an article,

the friends of a user via friendship links, etc. The design and implementation of a

robust data management framework that manages to maintain a stable performance

as the size of data increases, and support navigational queries in a optimal way is

still a challenging task for web-scale retrieval systems.

The existence of such massive amounts of data containing complex and emerging

structures has also given new impetus to the field of data mining. The information

of how users or online resources relate to each other, as well as how users react

to resources has captured the interest of researchers, as it was soon realized that

it could be exploited to deduce interesting conclusions about how groups of people

characterize resources and interpret content, or even what pieces of information tend

to be more popular among them. The analysis of Web 2.0 data is further motivated

by the notion that the collaboration and contribution of many individuals results in

the “formation” of a shared or group intelligence, characterized as collective intel-

ligence. Collective intelligence is a new source of information that can be utilized

in a variety of applications, as it is produced by the contribution of multiple peo-

ple representing different views and ideas. For example, it can be exploited in order

to uncover groups of either users that share common interests, resources that seem

to belong to the same thematic region, or tags (usually referred to as communities

of users, resources, or tags, respectively). The discovery of such meaningful com-

munities can be utilized in applications such as recommender systems, in order to

1 http://www.facebook.com/
2 http://www.flickr.com/
3 http://delicious.com/

Massive Graph Management for the Web and Web 2.0 21

increase their efficiency. For example, tag communities can be used in a system that

recommends tags to users that they would possibly find relevant to a given resource.

The analysis of relational data produced by Web 2.0 applications, however, re-

quires the use of special methods and poses a question on the data structure that

should be used for storing and accessing them. A natural way to model Web 2.0

data seems to be the network or graph model where nodes represent entities/objects

and edges represent the relations that exist between them. In order to enable the

progress of research on such relational datasets continuously increasing in size, a

prerequisite is the availability of a robust framework, appropriate for storing and

accessing graph-based data. Some of the most challenging issues that should be

carefully taken into consideration are: the storage of large graphs (e.g. of 109 nodes

and 1010 edges) in a form that will be as compact as possible, the support for rea-

sonably fast graph traversals and updates, and the design of a framework that will

be easy to use and adaptable to the specifications of individual applications.

This chapter provides a review of several solutions and infrastructures used for

the storage and analysis of very large graphs, and also discusses and compares their

individual characteristics and limitations. Moreover, the special case of using a So-

cial Tagging Systems (STS) as a source of data that can be modeled as a tripartite

graph is thoroughly discussed, as an interesting application area. After considering

and summarizing the requirements for the storage and analysis of data from STS,

we present the results of a set of benchmark experiments that have been designed to

compare the performance of three STS data management frameworks built upon dif-

ferent graph persistence technologies, with respect to the storage and management

of graph-based data derived from social tagging applications.

The rest of the report is structured as follows. Section 2 discusses the challenges

presented by the analysis of massive graphs and includes a categorization of the

different available solutions for the management of graph-structured data. Section 3

and Section 4 provide an overview of some of the most recent graph management

solutions that belong to the category of transaction graph databases and data mining-

oriented solutions, respectively. Section 5 presents STS as an application setting,

describing some of the state-of-the-art data mining tasks that are currently being

applied in the area, and also summarizes the requirements that these tasks impose

on the underlying framework used. Section 6 describes the architecture of three

frameworks that have been developed for the management of STS data, presents a

set of benchmarks experiments designed to test and compare their performance, and

discusses the benchmark results. Finally, Section 7 concludes the chapter.

2 Handling Massive Graphs on the Web

The study of the Web has recently emerged as a new research field. Researchers

started to model the Web as a network consisting of nodes representing web pages

and edges representing the hyperlinks that connect them, forming the so-called Web

Graph. The edges in such a model can be: directed (e.g. a hyperlink leading from

web page x to web page y), or undirected (e.g. a hyperlink leading from web page x

22 M. Giatsoglou, S. Papadopoulos, and A. Vakali

to web page y and vice versa). One of the earliest application domains that exploited

the graph model of the Web to extract knowledge was the domain of the Web search

engines [10,37]. However, as the Web gained more and more popularity, the num-

ber of web pages made available for analysis, acquired usually with the help of web

crawlers, was rapidly increasing. While the Web started to reach the size of billions

of web pages with ten or hundred times more edges, technological advances made it

possible to collect for analysis datasets of sizes proportional to the aforementioned

numbers. The availability of such large datasets posed new questions on what tech-

niques and algorithms should be employed to analyze the data.

The obvious problem is that as sizes are getting bigger, the main memory of an

average personal computer does not suffice anymore in order to load and manipulate

all of the data at once. This has created the need for the development and employ-

ment of alternative storage and analysis techniques (Figure 1). Some of the most

straightforward approaches are:

• to compress the data so as to reach a size small enough in order to fit in an

average computer’s RAM and then analyze them,

• to store the data in an external memory repository, and fetch them in batches

when required by the analysis algorithm, combining possibly a caching schema

to increase performance,

• to use a cluster or a grid of computer nodes in order to distribute the data so as

to fit into each node’s RAM for faster analysis, and then aggregate the result.

A prerequisite for efficient access to Web and Web 2.0 data within information re-

trieval scenarios or during the execution of demanding analysis operations is the

existence of a robust underlying graph management framework. Frameworks for

large graphs’ management are usually disk-based, enabling the persistent storage of

the large amounts of graph data. There are numerous approaches as to how to store

and provide access to such data, that make use of existing infrastructures. Figure 2

depicts a categorization of existing persistent graph frameworks. Existing solutions

can be distinguished in two generic categories depending on the reason why the

Fig. 1. Techniques to store and analyze graph data depending on graph scale

Massive Graph Management for the Web and Web 2.0 23

Fig. 2. Categories of graph management frameworks

storage and availability of the data is required: (a) transactional graph databases,

and (b) data-mining oriented solutions.

Transactional graph databases can be used for the management of graphs where

data (modeled as graph nodes or edges) can be inserted, deleted or updated on

demand. This type of frameworks support ACID transactions to ensure reliable

processing of database operations. The underlying infrastructures are disk-based

enabling the persistent storage of large graphs. The infrastructures that can be used

in a transactional graph database can be classified as follows:

• Frameworks based on Relational Database Management Systems (RDBMS),

• Frameworks based on Object Databases,

• Native graph stores, characterized as either: (i) generic, or (ii) special-purpose,

• Custom solutions.

In addition, as mentioned above, there is a requirement for frameworks to store

and allow access to web graphs for data mining purposes. The most usual case in

graph data mining (or graph mining) is to examine static datasets, and analyze data

with algorithms that involve random navigational access to graph nodes and edges.

Graph mining operations therefore pose different requirements to the respective data

management framework, e.g. there is no need for graph updates, and also the graph

accessing mechanisms should be as fast as possible in order for the algorithms to

execute in a reasonable time. In general, data mining-oriented solutions can be dis-

tinguished in two subcategories:

• Streaming,

• Compression-based.

The categorizarion of graph frameworks depicted in Figure 2 is based on their suit-

ability for a particular application setting. However, frameworks belonging to these

categories may address the problem of scalability of the graph data in a different

way. In particular, when the size of data is very large, persistent graph frameworks

based on distributed computing infrastructures can be used in order to exploit the

24 M. Giatsoglou, S. Papadopoulos, and A. Vakali

storage capacity of multiple computer nodes. In Sections 3 and 4 the categories of:

(i) transactional graph databases and (ii) data mining-oriented graph management

solutions, respectively, are thoroughly discussed. Each section presents represen-

tative examples of frameworks and methods belonging to the respective category,

including examples of the special case of distributed graph management solutions.

3 Transactional Graph Databases

Transactional graph databases are disk-based dynamic graph management solutions

that operate on the basis of transactions. The following subsections intend to pro-

vide a thorough insight in the different types of back-end infrastructures that can be

used in a transactional graph database.

3.1 RDBMS-Based Frameworks

One early approach for storing networks has been the use of RDBMS, such as

MySQL. The obvious reason is that RDBMS have been established as the dominant

choice for storing data due to their simplicity, robustness, and flexibility as a generic

data storage and manipulation mechanism, compared to their alternatives. Moreover,

they provide native support for integrity constraint checking, removing this burden

from the application side. However, nowadays relational databases receive criticism

based on the argument that they are not efficient for managing relational data.

Critics claim that the RDBMS structure is too rigid for storing networks of data,

considering that they store both data and their relationships in the form of tables. In

particular, the use of tables makes it difficult to fit new kind of data, as their structure

should be strictly defined from the beginning and cannot be altered later. Moreover,

their most serious limitation is that relational databases are not scalable enough for

graph access operations, especially when the size of data is continuously increasing.

However, some people support the use of traditional RDBMS for storing and

analyzing graphs. For example, one recent approach [57] proposes:

• the storage of the graph nodes in an SQL table, using an integer identifier for

each node as the primary key of the respective record, and also

• the storage of the graph edges in a separate table, using the source and destina-

tion nodes for each edge as foreign keys to the nodes table.

Requirements such as the uniqueness of an edge or the prevention of self-loops are

ensured with the use of SQL CHECK constraints. The graph can then be traversed

by either SQL querying, SQL standards Common Table Expressions (CTEs) that

enable recursions though the nodes, or by using temporary tables [28]. In addition,

the construction of the graph’s transitive closure4 with the use of CTEs is proposed.

A graph’s closure can be used to answer queries related to social networks, such as

the degree of separation or the possible paths between two nodes. Nevertheless, the

4 The transitive closure of a graph is a graph which contains an edge (u,v) whenever there is

a directed path from u to v.

Massive Graph Management for the Web and Web 2.0 25

proposed methods might be too slow depending on the size of the graph and the ap-

plication performance requirements, so there may be a need for employing caching

schemes on top of such a framework. In the following paragraphs two RDBMS are

presented, namely (i) H2 and (ii) Oracle DB, which are considered as a suitable

basis for graph management frameworks.

H2 database. Using a fast database engine can partially mitigate the performance

shortcomings of RDBMS-based graph frameworks. The H2 database engine [69] is

a native Java RDBMS that appears a promising choice. Benchmark results show that

not only the memory usage of H2 database is smaller, but also its query optimizer

results in query times shorter than the times achieved by most competing RDBMS.

Moreover, H2 is considered to be scalable as it creates both in-memory and disk-

based tables, using hash table and tree indexing or B-tree indexing, respectively.

Another important asset is that with H2 there is no limit on the size of the result set

of a query, as it buffers the results to disk after a certain size of data is exceeded.

Oracle Database. This database supports modeling networks of data as graphs and

analyzing them (since the 10g version). These functionalities are included in Ora-

cle’s Network Data Model (NDM)5 [49]. NDM enables the storage of the network

nodes, links (directed or undirected), as well as ordered lists of links that contain

no repeating links or nodes, and are referred to as paths. Graphs are represented

in object-relational form in the database, using separate tables, whereas queries and

updates are performed via PL/SQL. NDM allows posing certain network constraints

such as minimum bounding rectangle, path cost, and path depth, and also supports

graph operations including shortest path between nodes, minimum cost spanning

tree, k-nearest neighbors, k-shortest paths, as well as node and link buffering.

NDM analyzes networks after loading them entirely in memory, thus posing

boundaries on the size of network that it can support. Its network analysis capa-

bilities were enhanced in the 11g version of Oracle, with the introduction of the

load-on demand (LOD) approach that made the analysis of larger networks possi-

ble [62]. With LOD, the network is not loaded in memory from the beginning, but

is partitioned and after that, only the partitions that are required for analysis are

loaded in memory automatically. Moreover, partition loading can be accelerated by

generating and using BLOB representations.

3.2 Object Database-Based Frameworks

Object or Object-oriented (OO) databases constitute an alternative solution to

RDBMS, combining object-oriented programming language capabilities with tra-

ditional persistent data storage and management features. Their use enables devel-

opers to model and store complex data as objects, without the need of defining and

abiding to a specific relational schema, and simplifies the modification process that

is required in case the data model changes. Another argument in favor of object

databases with respect to RDBMS is their support for an object schema for data

representation both within the application as well as for persistent storage, without

5 Part of the Oracle Spatial component.

26 M. Giatsoglou, S. Papadopoulos, and A. Vakali

the need for an Object-Relational mapping [60], which is usually a rather cum-

bersome task. However, the use of object instead of relational databases results in

bigger files for the same data, as they do not separate the structure from the data

themselves. Regarding relationships between data, relational and object databases

follow two different approaches; (i) relational relationships are usually based on set

theory idioms, while (ii) object relationships are mainly based on idioms adopted

from graph theory, such as trees, thus depending on the approach, information is ac-

cessed in different ways [74]. Moreover, object databases are in general considered

to be faster than relational databases for specific access patterns such as navigational

access, whereas this is not the case for direct queries to objects.

Object databases can be readily used for storing graph data, mapping the graph

structure on an object schema. With such a mapping, e.g. each graph node can be

represented by an object of the class node with the edges being represented as rela-

tionships between the appropriate node objects. This constitutes a simpler and more

natural way of storing graph data than using a relational database, and is expected to

be a faster solution due to the navigational nature of the graph access patterns. One

shortcoming of using object databases is the bigger size of the database files.

Although not so widely used as RDBMS, there is a variety of object databases

available. In the following paragraphs three popular open-source object databases

are presented: (i) Oracle Berkeley DB, (ii) db4o, and (iii) Neodatis ODB.

Oracle Berkeley DB or Berkeley DB is an open-source object database, that can

be embedded in applications developed in various programming languages, such

as Java, C++, Perl, and Python. The use of the Berkeley DB library allows de-

velopers to freely decide how data will be stored in a record, without enforcing

any constraints on the data. The database comes in three different editions that

are also configurable to fit any application’s special requirements, with some edi-

tions/configurations supporting traditional database features such as ACID transac-

tions, locking, concurrency management, and replication [75].

Berkeley DB stores data as key/data pairs and supports B-tree, hash table, record

and queue access methods. It does not support SQL queries, whereas queries can

be performed with the use of indexes to each record. According to its developers,

Berkeley DB is very scalable, supporting small databases that fit entirely in memory,

as well as extremely large disk-resident databases of sizes up to 256 terabytes of

data. In order to speed up access to data that are frequently accessed, Berkeley DB

offers an in-memory cache [68].

db4o is another open-source object database library, that can be embedded in Java

and .NET applications. Similar to Berkeley DB, db4o combines traditional database

features, such as robustness, reliability, replication, concurrency support, with sim-

plification of the data storage procedure. An interesting feature is that db4o not

only creates automatically the data model that is required to store data objects dur-

ing a transaction, but also updates the models on-demand [66]. db4o supports Native

Queries (NQ) instead of string-based APIs, such as SQL, in order to enable database

access using the programming language that has been used for the development of

the application. Moreover, it supports the Query by Example (QbE) API to enable

Massive Graph Management for the Web and Web 2.0 27

easy searching for matching objects, as well as the LINQ extensions for .NET. db4o

uses B-trees for indexing, supports caching for efficient access to objects, and also

provides an in-memory mode. As far as scalability is concerned, db4o can create

database files of up to 254 GB.

After conducting the Poleposition database benchmark 6, between db4o and other

relational databases, such as MySQL, JavaBD and SQLite, combined with object-

relational mappers (JDBC or Hibernate), db4o was found to perform better than its

competitors for read, write, query, and delete operations, when they involve access-

ing complex object structures or deep hierarchies. Moreover, its performance was

acceptable, although worse than one competitor, for simple flat objects [65].

NeoDatis ODB is also an open-source object database library, embeddable in Java

and .NET applications, that supports ACID transactions and can be used in a multi-

threaded environment. In ODB every entity (class or object) is characterized by an

Object Identifier (OID), which is associated with the respective physical position

of the entity in the database file. OIDs are used by pointers in the database for

accessing directly a specific object, or for storing relations between objects. They

are grouped in blocks that contains the OIDs of the objects that are instances of

a given class, in order to enable quick access to them. ODB has also a caching

mechanism for mappings from OIDs to objects and reversely, and supports B-tree

indexing. ODB provides the following query possibilities for data retrieval: (i) all

objects of a specific class, (ii) a subset of objects of a specific class via CriteriaQuery,

(iii) a subset of objects of a specific class via NativeQuery, (iv) direct id-based object

retrieval, or (v) specific object value retrieval [70].

Based on the results on the Poleposition benchmark, it appears that ODB per-

forms on average better than db4o on most circuits, although there are also some

results that indicate that db4o is slightly faster than ODB for some circuits [77].

3.3 Native Graph Stores

A natural way to store large graph-shaped datasets seems to be through the use of a

persistence engine that directly encodes the graph structure. This type of graph store

can be characterized as native and should in general support the representation and

storage of both nodes including node-related properties, as well as attributed links

connecting pairs of data nodes. In the following sections some examples of existing

native graph stores will be given, including stores that are generic, i.e. designed

to enable the storage of various types of graphs, or are intended for the storage of

special graph types, e.g. RDF or XML.

Generic graph stores: Graph databases have been recently presented as an efficient

way to handle networks of data. Unlike RDBMS, graph databases are designed with

inner support for entities that represent nodes and relationships (or edges), thus

making it possible to store and access data in a more efficient and simple way.

They aim to provide a complete environment that will make the storage, indexing

and quick retrieval of graph data easy, and at the same time retaining traditional

6 http://www.polepos.org/

28 M. Giatsoglou, S. Papadopoulos, and A. Vakali

database properties such as: transactions, durable persistence, concurrency control,

and transaction recovery. Graph databases have also been designed taking seriously

into consideration the matter of scalability.

One of the first and more complete efforts towards the direction of a generic

native graph store has been the development of Neo4j [73] and its release as an

open-source graph database. Neo4j is an embedded, disk-based, transactional graph

persistence engine that stores data in the form of graphs. Apart from the capabilities

of storing nodes and edges and also properties related to them (they are collectively

referred to as primitives), Neo4j has an easy-to-use, rather straightforward API and

provides a variety of extra graph manipulation facilities, such as checks for possible

inconsistencies and support for both directed and undirected edges. Moreover, it

requires constant time for adding, removing, or accessing a property and creating,

deleting, or accessing a node or relationship, whereas it requires linear time for

accessing the relationships that involve a given node. However, although in general

Neo4j can be considered as fast when concurrent reads take place, it is slower with

concurrent updates. This requires careful consideration of the number of operations

that will be packed in a Neo4j transaction, which is also affected by the available

size of RAM. Moreover, transactions may be useful for ensuring data integrity, but

sometimes they can seriously decrease the speed of operations.

It is claimed that Neo4j can scale up to billions of nodes, relationships and prop-

erties, but this is a maximum capability relevant only for servers with more than

16 GB of RAM. In general, the scalability of Neo4j is greatly affected by the hard-

ware specifications of the computer station hosting it. For example, it is claimed

that an average laptop with 1-2 GB RAM handles tens of millions of primitives,

whereas a standard server of 4-8 GB RAM handles hundreds of millions of primi-

tives. However, our experiments with Neo4j (see Section 6) did not give proof for

such scalability.

Although Neo4j does not provide a native indexing mechanism yet, it supports

indexing facilities by use of the Apache Lucene text indexing library. This utility

allows indexing nodes with key-value pairs, just like properties, so that they can be

queried and retrieved using a given key. The querying process can be accelerated

via a LRU cache that holds the most recently accessed results. A limitation of this

indexing scheme, however, is that it does not allows indexing relationships.

Another example of native graph store is grDB [30], In grDB graph data are

stored grouped in blocks, with the block being the smallest amount of information

inserted or extracted from the database. The information that grDB stores for a graph

is structured in the form of adjacency lists for each node using an integer identifier

per node. A grDB instance consists of the storage component, that stores the blocks

containing parts of the adjacency lists of one or more nodes, and the block cache

component, that caches some storage blocks in order to improve performance. It

also supports multiple levels of storage files.

Special-purpose graph stores: Data encoded in the XML format exhibit an in-

nate tree-like structure that could be used for modeling certain relations that exist

in web graphs. More specifically, since a tree is by definition a connected graph

Massive Graph Management for the Web and Web 2.0 29

that does not contain any cycles, XML could be possibly used for modeling data

nodes with relations that conform to these limitations, or at least can be normal-

ized in more than one trees. For the efficient storage and management of XML data,

special databases have been developed. Although the design and functionality of

these special-purpose graph stores have been optimized for the storage and retrieval

of XML data, they could provide a framework for the storage of graph data (with

the aforementioned limitations). Native XML databases, such as Apache Xindice

and Tamino XML Server [79], constitute an interesting alternative to RDBMS, as

they do not require the definition of a schema (schema-free), thus allowing storing

records (XML documents) including semi-structured data that do not necessarily

follow a strict predetermined structure. In such databases the storage and retrieval

of XML documents takes place according to a (logical) model, such as the XPath

model, whereas data retrieval is usually performed by means of the XQuery lan-

guage. On most occasions, indexing is used to accelerate the querying process [61].

XML databases have, however, received criticism about not being very scalable,

as in general XML queries and other mechanisms result in very slow retrievals

across large document repositories [58,59]. It also should be mentioned that XML

databases are not required to have any particular underlying physical storage model,

as they can be built on top or other data storage infrastructures.

Apart from XML databases, structured data can also be stored in RDF7 or OWL8

repositories. In general, RDF is a semantically richer way to represent graph-based

data, in the form of RDF statements, i.e.subject-predicate-object expressions, known

as triples, that connect with a specific relationship the subject to the object of the

statement. OWL is an extension of RDF that exhibits more expressive power than

RDF and enables efficient reasoning. RDF repositories are frameworks dedicated to

the management of RDF data in general, that could also be used for the manage-

ment of web graph data. OWL repositories could also be used for the same purpose,

however they are considered to be more specialized than RDF repositories, with

the expressive power of OWL being rather needless for the modeling of simple web

graph data. Some of the most efficient repositories that support the storage of graph-

shaped data either in RDF, OWL, or both, as well as SPARQL queries are Jena [71],

Sesame [78], AllegroGraph [64], Virtuoso [80] and OWLIM [76].

3.4 Custom

Apart from the previous infrastructures, custom disk-based solutions that do not

belong to a specific category can be employed for the management of web graph

data. For instance, the use of a framework based on Lucene is proposed. Lucene

is text search engine library, that can be easily incorporated in any application that

requires text indexing and searching. Indexing with Lucene offers high scalability,

cross-platform support, rather small memory requirements, and also fielded search

capabilities. Apart from indexing and searching data from other sources, Lucene

7 http://www.w3.org/RDF/
8 http://www.w3.org/TR/owl-features/

30 M. Giatsoglou, S. Papadopoulos, and A. Vakali

also provides the possibility of storing the data in their original form. In general,

data are indexed in Lucene as documents that contain fields of text.

The generic nature of Lucene in combination with its scalability renders it a

promising candidate back-end infrastructure for a graph storage framework. A pos-

sible implementation would index and store nodes and edges with Lucene, creating

a separate document for each entity, and using terms to store the properties of each

entity. Depending on the application and type of data, for each document, the terms

that store the properties that are intended to be used as keywords for querying, will

be indexed. In Section 6.1, an implementation of a framework for managing STS

data based on Lucene is described in more detail.

3.5 Distributed Transactional Databases

Distributed graph management frameworks are recent solutions that try to solve the

problem of limited memory, by distributing the graph in more than one computer

nodes that form a cluster. In order to achieve this and for the resulting framework

to be efficient, distributed frameworks should employ an appropriate graph parti-

tioning policy and also a query mechanism that will seek and retrieve data from the

appropriate computer nodes, minimizing needless queries to irrelevant nodes.

An early research work in distributed transactional graph management, namely

MSSG [30] presents a middleware framework for storing, accessing and analyz-

ing massive-scale semantic graphs with update capabilities. The development of

MSSG aims to support the storage and analysis of very large graphs reaching tril-

lions of vertices and edges. In order to handle such massive datasets, MSSG has

been designed as a distributed database, that supports a large cluster architecture of

computer nodes for storing data. Moreover, the framework utilizes the grDB graph

database (described in subsection 3.3). The framework, combined with a new par-

allel external memory breadth-first search algorithm enables fast query responses

to the database. The way that MSSG functions is described in brief in the follow-

ing paragraphs, however it should be stressed that little information has been made

available as to how MSSG partitions the graph in order to enable distributed storage.

MSSG was designed using DataCutter [5], a development and deployment

framework for establishing “filter” services that operate on data “streams” between

storage systems and user applications, as a base infrastructure, with the Ingestion

Service, the Query Service, and the GraphDB Service modules having been added

as integrated components and interfaces. In brief:

• the Ingestion Service is used for entering graph data that are stored to the back-

end storage nodes after having been clustered,

• the Query Service allows the analysis of the stored graph,

• the GraphDB Service provides an interface for the available methods imple-

mented for storing and accessing graph data.

The adjacency list of a node can be stored in either a single computer of the clus-

ter, or it can be distributed in more than one computers. Experimental results indi-

cate that the MSSG framework can handle large graph datasets, managing to store

Massive Graph Management for the Web and Web 2.0 31

and query a graph of 100,000,000 nodes and 1,999,999,640 directed edges, even

though a query with length 5 between the source and destination node is answered in

about 12 minutes, which is relatively slow. Experiments also showed that grDB out-

performs BerkeleyDB and MySQL in storage and retrieval, considering the tested

graphs. Moreover, the performance of grDB on a search query is relatively close to

the performance of the implemented in-memory methods under test.

4 Data Mining-Oriented Solutions

In situations where the storage and analysis of static graphs is required, database

transactions can be omitted for the sake of performance, and alternative solutions are

usually employed. The most efficient solution seems to be to manage to fit the graph

structure in main memory by means of graph compression techniques. Another more

scalable possibility is to encode the graph’s structure in human-readable text files

stored in the computer’s filesystem and stream the data into memory for analysis.

However, this approach requires the adaptation of data mining algorithms to the

streaming or semi-streaming model.

In the following subsections both compression-based as well as streaming solu-

tions for the analysis of graph data will be discussed. Moreover, some recent dis-

tributed solutions for the management of massive graphs will be discussed.

4.1 Compression-Based Databases

When the available main memory does not suffice to load the whole graph dataset,

but fast access to data is required, an efficient graph data compression method is nec-

essary. In the following paragraphs we will present some examples of compression-

based graph databases.

WebGraph. One of the earliest and more successful efforts in the compression of

web data has been the WebGraph framework [6], a suite of codes, algorithms and

tools for storing and manipulating large web graphs. The algorithms of WebGraph

were based on the Link Database [33], an earlier work employing compression tech-

niques to store web graphs that can fit in main memory. Both Link and WebGraph

perform well in compressing large graphs, combining a number of techniques, such

as referentiation and intervalization. However, WebGraph outperformed its prede-

cessor achieving compression rates of e.g. 3.08 bits per link for a graph consisting

of 118 million nodes and 1 billion links.

The success of the WebGraph compression approach is justified considering that

the properties of locality, similarity and consecutivity that are typical on the Web

were seriously taken into consideration during its development. The property of

locality describes the fact that pages belonging to the same host often point to each

other via navigational links. Therefore, if we consider a lexicographical ordering

of URLs, the source and destination URLs of a link are “close”. The property of

similarity expresses the observation that pages whose URLs are lexicographically

“close”, tend to have links to common destination pages (successors). Consecutivity

32 M. Giatsoglou, S. Papadopoulos, and A. Vakali

means that the successors of a web page also tend to be lexicographically “close”,

as they usually belong to the same level of site hierarchy. In order to exploit the

aforementioned properties of the Web, WebGraph applies the following technique.

• Given a set of URLs and the information that some of them are linked, URLs

are sorted lexicographically and assigned integer identifiers.

• The successor lists of each node are created and sorted by the node identifier.

• The successor list of a node x is expressed with respect to the successor list of

a node y with smaller identifier via a reference list comprising (a) the copy list,

i.e. a list of the two nodes’ common successors and (b) the list of extra nodes,

i.e. the set of the successors of x not present in the successor list of y.

• Applying the technique of differential compression with encoding methods such

as γ coding to the copy list, WebGraph manages to code a link in less that one

bit. The list of extra nodes is also compressed using integer intervalization and

gap encoding.

After the compressed graph has been created, WebGraph provides methods for ac-

cessing the graph either randomly (selecting to access random nodes) or sequentially

(iterating over all nodes defining the sequence by increasing number identifier). The

provided access algorithms are very efficient as they employ lazy techniques to ac-

cess the compressed graph, thus delaying decompression until it is actually needed.

Moreover, WebGraph offers a number of parameterization options in order to al-

low a trade-off between the compression ratio and the time needed to compress the

graph, as well as between the decompression speed and the size of the offset array.

The compressed graph can either be loaded to RAM, or accessed offline.

The developers of WebGraph also investigated and experimented with different

codes to encode the gaps that exist between nodes belonging to an ordered successor

list [7], after proving empirically that they follow a power-law distribution. They in-

troduced a new set of flat codes for integers, the ζ codes, and proved experimentally

that on most cases they are superior to traditional coding methods such as, Elias γ ,

Elias δ and variable-length nibbling, when they are applied to integers that follow

a power-law distribution similar to the distribution of the successor list gaps.

Extensions of WebGraph. A recent work [8], focuses on determining whether

WebGraph could be used for efficiently compressing graphs created by data from

sources other than web graphs, such as a Social Tagging System. Based on the no-

tion that the compression rate achieved when compressing a web graph depends

greatly on the ordering of the nodes, several ordering methods either: extrinsic (us-

ing information other than that conveyed in the graph itself), or intrinsic (using only

the information conveyed by the graph structure), have been investigated to deter-

mine their effect on the compression rate. As the efficiency of an extrinsic method,

such as URL ordering, is doubtful for the case of a network other than a web graph,

finding an intrinsic ordering that yields good compression rates is generally consid-

ered a challenging problem. In [8], the proposed method is to:

Massive Graph Management for the Web and Web 2.0 33

1. order the nodes of the graph randomly,

2. create the adjacency matrix considering each row as a sequence of bits, with 0

denoting the absence, and 1 the existence of a link between two nodes,

3. permute the rows and columns of the matrix so that in the resulting matrix two

rows are similar only if they appear consecutively, or almost consecutively.

The two methods that were applied were to either find a permutation that sorts the

rows of the adjacency matrix based on the lexicographic ordering, or find a per-

mutation based on the Gray ordering of the row bit vectors. Moreover, two mixed

methods combining extrinsic as well as intrinsic characteristics were tested. Both

methods use the Gray ordering but limit its application based on the information

of the distribution of the nodes within hosts. Experiments with the aforementioned

methods using URL ordering showed that (a) the efficiency of each method depends

on the structure of the graph itself, (b) intrinsic methods perform very well for the in-

verse graph, and (c) mixed methods yield better performance on every tested graph.

A recent study [17] focuses on determining whether social networks can be ef-

ficiently compressed. This work was motivated by the approach followed in Web-

Graph considering the properties of locality and similarity that exist for web graphs

in order to improve compression ratios. The question posed in this study is whether

social networks in general can be effectively compressed by a method similar to the

one followed in WebGraph. An easy observation is that the URL lexicographic or-

dering of the nodes that is a part of the WebGraph compression technique and also

a reason for its success cannot be applied to generic social networks. Thus, a new

node ordering technique is proposed that uses a simple heuristic based on shingles.

If we consider two sets A and B, and σ as a random permutation of the elements

in A∪B, then Mσ (A) = σ−1(mina∈A{σ(a)}) is the smallest element in A according

to σ , and is called a shingle. The probability that the shingles of set A and set B

are identical equals to the Jaccard coefficient of the two sets, which is a measure

of their similarity. The proposed method regards the out-neighbors of each graph

node as separate sets, computes their shingles for an appropriate permutation and

then orders the graph nodes according to their corresponding shingles. As a result,

nodes with many out-neighbors in common will end up to be close to each other.

An alternative technique, double shingle ordering, has also been proposed that uses

a second shingle for breaking ties produced by the first one.

After the nodes have been ordered, their adjacency lists are compressed using a

technique similar to the one employed in WebGraph. Apart from referential and gap

encoding, the technique introduces an alternative method for encoding the links that

are reciprocal, that is the links that are undirected. In particular, this method encodes

the reciprocal links in the adjacency list of the node with the smallest integer iden-

tifier, and also adds a bit flag for each neighbor encoded in the adjacency list, that

declares whether the link is reciprocal or not. With this approach, reciprocal links

are encoded only once, thus improving the compression ratio, but this also causes

slower queries in the compressed graph.

Experimental results on various datasets indicate that the proposed compression

method yields better compression ratios than WebGraph when applied to social net-

works that are highly reciprocal in structure. Moreover, after experimenting with

34 M. Giatsoglou, S. Papadopoulos, and A. Vakali

various ordering techniques such as, Gray, natural, and random orderings, the dou-

ble shingle ordering managed to achieve the best compression performance. The

success of shingle ordering with respect to the other methods is attributed to: (a) the

reduction of the lengths of the gaps that exist between the neighbors of the adjacency

lists, and (b) the exploitation of the properties of locality and similarity. Finally, ex-

perimental results indicated that social networks appear to be less compressible than

web networks, mainly due to the presence of nodes with low degree.

Taking the above into consideration, WebGraph seems to be a very effective so-

lution as it manages to store a graph in limited disk space and also fetches the

neighbors of a node when requested in little time. However, one drawback of the

WebGraph framework is that it represents each node with a number without giving

the possibility of compressing more information related to a given node. Moreover,

it does not provide edge indexing capabilities.

Re-Pair. Several researchers, motivated by the WebGraph compression approach

and using the WebGraph framework as a basis for comparisons, tried to find meth-

ods with improved performance in terms of compression rates or graph access speed.

One such effort [18] proposed a method based on the Re-Pair compression tech-

nique [36] in order to store a representation of a given graph. Re-Pair is a phrase-

based compressor that receives as an input a sequence of symbols, finds the most

frequent pair of symbols in it and replaces it with a new symbol, storing the corre-

sponding mapping in a dictionary. This procedure is repeated until every pair in the

sequence is unique. Although it is a rather fast (linear-time) technique, it requires

a large amount of memory, especially when the initial sequence is long. Therefore,

an approximate technique is proposed [18] that can be applied in external mem-

ory. In any case, an in-memory hash-table is required to hold the unique pairs of

symbols occurring in the sequence (represented by their position in it) along with

their frequency. After the hash-table is filled up to a load threshold, no new pairs

are inserted, although the traversal is completed so as to calculate the frequencies of

the pairs that have already been inserted. Afterwards, the k most frequent pairs are

selected and replaced in the sequence with new symbols with a new traversal. The

process is repeated traversing the sequence from the position where the insertion of

new pairs in the hash-table had previously stopped. When the sequence of symbols

resides on secondary memory, the hash-table can store more pairs of symbols as it

can occupy all the main memory that is available and also special techniques have

been employed so as to avoid unnecessary random access to disk.

In order to apply the Re-Pair technique on a graph representation, the graph is

modeled as a sequence of integers representing the graph nodes, each one followed

by its adjacency list. However, each node maps to two different distinct integers;

one that is used when the integer is placed in the sequence before its adjacency list

and one that is used when it is included in the adjacency list of other nodes, thus

preventing the integers that mark the start of an adjacency list from being replaced.

These alternative representations are removed from the sequence after Re-Pair has

been applied, and they are stored in main memory along with pointers to the begin-

ning of their adjacency list. In general, the proposed method takes advantage of the

Massive Graph Management for the Web and Web 2.0 35

similarity of the adjacency lists. Moreover, in order to achieve better compression

rates, differential compression can also be applied to the lists.

Experiments showed that the proposed method yields compression rates compa-

rable to WebGraph providing faster graph navigation. For example, a graph with

22,744,080 nodes and 639,999,458 edges was compressed into 420 MB (a plain

representation would require around 2.4 GB of RAM), achieving two times faster

navigation to the compressed graph than when using the WebGraph compression.

When differential compression is also applied, slightly better compression rates are

achieved, but graph navigation is somewhat delayed.

Virtual Node Miner. Another approach, the Virtual Node Miner [14], provides a

solution for web graphs that need to be updated after having been compressed,

and that also performs well without requiring URL sorting, which is a relatively

time-consuming process. The main innovation is that it employs a pattern mining

approach in order to compress a web graph, using an effective itemset mining al-

gorithm that finds directed bipartite cliques. Moreover, the fact that this method is

not based on URL encoding, indicates that it may possibly be used in application

domains other than web graphs, such as social networks. The proposed algorithm

considers the outlinks (or inlinks) of each graph node as an itemset and aims to iden-

tify frequent subsets that in fact represent common links between the graph nodes.

The algorithmic steps are described roughly below:

• The graph nodes are clustered on basis of the similarity of their adjacency lists.

This step uses k min-wise independent hash functions to sample the adjacency

lists of each node and then sort the rows of the resulting adjacency matrix lexi-

cographically, in order to bring closer similar adjacency lists and form clusters.

• For every cluster, the algorithm searches for frequent recurring patterns of

neighbors, which are actually directed bipartite cliques.

• Every pattern is replaced by a new node, called a Virtual Node, that has outlinks

to the nodes that formed each specific pattern. After that, the nodes that demon-

strated the pattern in their adjacency lists, replace all the outlinks to the nodes

that belong to the pattern with just a single outlink to the Virtual Node.

• The process is repeated allowing Virtual Nodes to be reused as actual graph

nodes.

• The remaining edges are compressed with an appropriate compression method,

such as: ζ or Huffman coding.

The resulting graph has a number of extra nodes, the Virtual Nodes, but significantly

less links, therefore it is considered to be compressed. Experiments indicated that the

Virtual Nodes added are about 20% of the original number of nodes, and therefore a

moderate overhead to the offset array. Moreover, when compared with WebGraph,

experiments showed that the above methods are comparable regarding the compres-

sion they achieve. The proposed method has been proven to be rather scalable, as it

manages to compress a graph with 3 billions of edges on a computer with 16 GB

of RAM in about 2.5 hours. The time required for compression also scales linearly

with the graph’s size. It is also of interest that if the available memory does not

36 M. Giatsoglou, S. Papadopoulos, and A. Vakali

suffice, Virtual Node Miner can run in batches, thus enabling incremental updating

of the compressed graph.

Research with the Virtual Node Miner continued with an effort that used this

compression technique to adjust several web graph algorithms so that they could

run directly on the compressed graphs and thus demonstrate reduced time complex-

ity [32]. The basis for these algorithms was the invention of a method operating on

the compressed graph, that speeds up the multiplication of a graph’s adjacency ma-

trix. This multiplication routine was used for computing random walk distributions,

finding top singular vectors, estimating the size of neighborhoods, and others, and

the resulting methods were used to speed up the implementation of well-known link

analysis algorithms such as PageRank [10,37], SALSA [38] and HITS [35]. Ex-

periments showed that the performance of the proposed algorithms was better than

the traditional implementations, increasing speed almost up to a ratio close to the

respective compression ratios.

4.2 Streaming Solutions

Probably the most intuitive way to encode a graph in a human readable file is either

in the form of adjacency lists 9, or in the form of an edge list (e.g. in its simpler form

an edge can be expressed as a pair of nodes that are related). The existence of disk-

resident files satisfies the persistence requirement for the storage of the graph data,

with their sizes being limited only in terms of the available size of external memory.

However in order to perform graph analysis tasks, data should be loaded in main

memory in an efficient way. In the streaming model graph data are streamed from

the disk into memory as a sequence of edges. However, the streaming model poses

some constraints on the graph mining algorithms, which should be designed so that

they can process the edges of a graph in an arbitrary order given only a limited RAM

space and desirably making only one pass over them [24]. In order to achieve this,

algorithms should be able to make space-efficient data summaries in RAM as data

are streamed. This is a considerable challenge, since in general the streaming model

poses the constraint of using O{polylogN} space and per-item processing time for

a given graph with N nodes [41].

There have been some efforts in trying to solve simple graph problems in the

stream model, such as the problem of counting triangles in a graph [15].The triangle

counting problem in the streaming model is defined as finding the ε-approximation

of the number of triangles in a graph with probability at least 1-δ , making one

pass over the data stream. The method proposed in [15] assumes that the set of

the graph’s nodes is known in advance and the graph’s edges appear as a stream. It

manages to calculate approximately the number of triangles via a technique that uses

reservoir sampling, requiring O(1
ε2 × log 1

δ × (1+ |T1|+|T2|
|T3|)) memory cells, where Ti

stands for the number of triples of nodes in the graph which have i edges between

them. In [13] authors try to provide lower bounds for the more complex problem of

finding pairs of vertices that share c neighboring nodes. They give proof that any

9 The adjacency list of a node is a sequence of its neighboring nodes.

Massive Graph Management for the Web and Web 2.0 37

one-pass, randomized data-stream algorithm that determines if a pair of nodes in a

directed graph with N nodes shares more than c neighbors requires O(
√

c×n
3
2) bits

of space. The large memory bound of the aforementioned method indicates that the

application of the streaming model for general graph problems seems to be difficult

due to the strict space constraint it imposes [23].

A more relaxed model is the semi-streaming model that was initially suggested

in [41], as a solution for graph problems where the available main memory suffices

for the storage of the graph’s nodes, but not for the storage of the graph’s edges. This

model bounds the storage space for an algorithm that operates on a graph stream by

O(N × polylogN). In [23] the semi-streaming model was further elaborated, allow-

ing also a small number of sequential passes over the graph data. Authors in [23] dealt

with various graph problems in the semi-stream model such as the computation of the

shortest-path distances between the graph’s nodes, as well as the diameter and girth

of a graph. They showed that these problems can be approximately solved even with

one-pass over the data, via an approximation technique that uses graph spanners10 to

calculate shortest distances. In addition to the aforementioned problems, algorithms

for the problem of graph matching in the semi-streaming model were also presented

in the same research paper. Feigenbaum et al. [24] later improved their method for

constructing graph spanners decreasing the processing time per edge from O(N) to

O(polylogN). Moreover, they proved that the computation of Breadth-First-Search

(BFS) trees is not efficiently executed in the semi-streaming model.

Another recent work [2], studies the problem of graph sparsification in the one-

pass semi-streaming model. Graph sparsification involves the construction of a com-

pact representation of a given graph through which the size of any cut can be

estimated. This problem is therefore connected to the problem of finding an ap-

proximate min-cut in a graph. The method proposed in [2] constructs and stores

a summary of the graph in main memory, that is updated based on the newly-

arrived edges. The original algorithm for finding the sparsification of a graph in-

volves the calculation of the connectivity of every new edge which is impossible

unless all the graph’s edges are available. However, the proposed method calcu-

lates the connectivity of each new edge on the current sparsification, achieving an

1± ε approximation of the cut values of a graph with N nodes and M edges, while

requiring O(N(logN + logM)× log M
N
× (1 + ε)2/ε2) edges in main memory.The

semi-streaming model has also been applied to the problem of local triangle

counting in graphs [4] (i.e. given a node u, count the number of triangles that are

incident to node u). In this research work, apart from the space constraint of the

semi-streaming model, algorithms are allowed to O(logN) passes over the data that

reside in the external memory. Two algorithms are proposed: one that requires the

storage of some intermediate counters in external memory and another that main-

tains all information in main memory. Given a newly-arrived edge (u, v), both algo-

rithms are based on the approximate calculation of the Jackard coefficient between

the two sets of nodes that are adjacent to nodes u and v, respectively.

10 A subgraph G′(V,E ′) is a t-spanner of graph G(V,E) if the distance between any pair of

nodes in G′ is at most t times the distance in G.

38 M. Giatsoglou, S. Papadopoulos, and A. Vakali

A similar graph access approach that is mentioned here, but not presented in

detail, is the semi-external model [1]. This model allows for enough main memory

to store the graph nodes, but not the graph’s edges as well. On the contrary, the

graph’s edges are stored in external memory, with the model allowing random access

to them. However, random access to the disk-residing edges can make the whole

process seriously slow.

4.3 Distributed Data Mining-Oriented Solutions

The requirement to perform data mining on massive graphs in a relatively short time

has also motivated research in the field of distributed data mining-oriented solutions.

Bader and Madduri have recently presented a study including combinatorial tech-

niques for the analysis of large-scale dynamic networks [39]. Their innovation is

that they have designed and implemented efficient graph data structures and kernels

for modeling temporal graphs of massive sizes that are processed on parallel sys-

tems. Temporal information related to e.g. the update or insertion of a node or an

edge, are handled by assigning time-stamps to the respective nodes or edges. After

experimenting with a number of structures, they proposed a hybrid data structure

combining dynamic resizable adjacency arrays for low-degree vertices, with simple

self-balancing binary trees, referred to as “treaps” [46], for high-degree vertices.

This structure was found to achieve good performance for both insertions as well

as deletions, that may be batched or streaming. The data models as well as the al-

gorithms have been designed for multithreaded servers, with multiple cores and a

significant amount of both shared cache and main memory. These architectures have

been proven to perform much faster in graph analysis algorithms than optimized ex-

ternal memory based architectures [3].

In order to solve or avoid conflicts when e.g. multiple threads try to add data to

the adjacency list of the same node, various methods are proposed, such as: follow-

ing the simple lock-based approach, or allowing each processor to have access to

the adjacency lists of only a subset of the graph nodes. In addition, several algo-

rithms have been designed and implemented to execute efficiently graph operations

such as: connectivity, path-related and centrality queries. Experiments show that

the proposed algorithms scale well on parallel architectures, with e.g. an algorithm

based on an implementation of the link-cut tree being able to process queries in time

proportional to the diameter of the network. It is also important that the proposed

implementation can answer queries related to the evolution of the graph during time.

MapReduce: MapReduce [20] is a programming model with an associated imple-

mentation for processing large data sets that may be stored in a distributed filesystem

or database. The proposed model, introduced by Google, is applicable for computa-

tional problems that can be formed as a set of key-value pairs, e.g. web page index-

ing based on keywords. The computational process is in general divided into two

steps: map and reduce. Programmers are responsible for creating an application-

specific map function that processes the input key/value pair to generate a set of

intermediate key/value pairs, and also implement a reduce function that merges

all intermediate values associated with the same intermediate key. Each operation

Massive Graph Management for the Web and Web 2.0 39

initializes with the splitting of the input files and continues with the assignment of

different map and reduce tasks to worker nodes by a special master node. The mas-

ter node is also responsible for the final aggregation of all results and the production

of the output to the original computational problem.

This model has proven to be very efficient for problems that involve accessing

large sets of data, however it is disputable whether it can be applied for graph re-

lated problems. Some graph related problems can be successfully solved by use of

MapReduce. For instance, the computation of PageRank over the Web can be im-

plemented as a chained MapReduce application. However, the main difficulty with

solving graph-related problems with MapReduce is that it is is very inefficient for

graph traversals, as map workers have access to only a part of the graph. A recent

research work [19] investigates the possibility of decomposing graph operations,

such as graph simplification, triangle and rectangle enumeration, finding trusses and

components, and performing Barycentric clustering, into a sequence of MapReduce

processes. In order to overcome the problem that exists with graph traversals, tech-

niques such as the use of multiple map and reduce iterations, or the use of custom

optimized graph representations, such as sparse adjacency matrices are proposed.

5 A Case for Web 2.0 Graph Stores: Social Tagging Systems

In this section we focus on a recently evolved research area: the analysis of Social

Tagging Systems. An introduction to Social Tagging Systems is provided, along with

a short review of the most current progress made in several related analysis tasks,

and we discuss their special characteristics. Social Tagging Systems are presented

as an application setting for massive graph data management frameworks, due to the

special requirements that their analysis imposes on the underlying infrastructure.

5.1 Introduction to Social Tagging Systems

An important functionality that has been embraced by many on-line applications is

Social Tagging. Social Tagging Systems (STS) enable their users to upload content,

and to annotate it by means of freely chosen keywords, called tags. By relating re-

sources with tags, users enrich them with a semantic meaning that can be of use to

other people that come across it. Moreover, the information from STS can be ex-

ploited by use of data mining in order to provide enhanced services to users, e.g.

recommendations, sophisticated content navigation (e.g. by means of a concept hi-

erarchy representing a resource collection). The study of STS has led to the formal-

ization of folksonomies, i.e. lightweight knowledge structures that emerge from the

use of a shared vocabulary to characterize resources (emergent semantics) [31,40].

The folksonomy model has been established as the most widely-used means to rep-

resent and analyze STS-related information, thus its definition is given below.

Definition 1. A folksonomy is defined as the tuple F = (U,T,R,Y), where U , R

and T are the disjoint sets of users, resources and tags, respectively, and Y ⊆ U ×
R×T is a triadic relation between them, representing the annotation of a resource

40 M. Giatsoglou, S. Papadopoulos, and A. Vakali

with a tag by a user. Another way to represent the folksonomy is as an undirected

hypergraph G = {V,E} consisting of a set of nodes V =U∪T ∪R that are connected

by hyperedges that formulate the set E = {{u,r, t}|(u,r,t) ∈ Y}.

Rather than working on a hypergraph, on many occasions and depending on the

corresponding analysis task, a simplified bipartite graph is produced representing

the associations between either: (a) users and resources, (b) users and tags, or (c)

resources and tags.

This technique makes the graph analysis easier, as it transforms the hyperedges of

the tripartite hypergraph into simple edges. The resulting edges are usually weighted,

e.g. in the user-tag bipartite graph, an edge exists between a user and a tag if the user

has used this tag to annotate at least one resource, and is weighted by the number

of resources that have been annotated with this tag. This graph can be symbolized

as: UT = {U ×T,Eut},Eut = {(u,t)|∃u ∈U : (u,r, t) ∈ E},w : Eut → N,∀e : (u, t)∈
Eut ,w(e) := |{r : (u,r,t) ∈ E}| [31]. Relevant expressions can be formulated for the

bipartite graph between resources and tags (RT), as well as for the graph between

users and resources (UR). A bipartite graph can be represented with a model, such

as an adjacency matrix, with each row relating to a member of the first entity type

and each column to a member of the other, whereas the value of a cell stores the

number of co-occurrences of the respective entity members.

A further simplification can take place, resulting in a graph that represents the

co-occurrences between members of the same entity type only. For example, con-

sidering the user-tag bipartite graph, two graphs can be produced; one that comprises

tags as vertices and edges that represent the annotation of some resource with two

tags by a common user, and another that comprises users as vertices and edges that

represent the annotation of some resource with a common tag by two users.

If required, a tripartite graph can be also produced, combining the three bipar-

tite graphs, where all the resource-tag, resource-user, tag-user co-occurrences are

represented with simple weighted edges. However, the use of bipartite graphs is

more often than the use of tripartite, as most algorithms focus on the correlation

between the members of two or one entities. For example, the associations between

resources and tags is of most interest for a tag recommendation system, whereas the

information about which user tagged a resource is not that interesting in this sce-

nario. However, the associations between resources and users would be useful for

an application e.g. that recommends resources that may interest users.

5.2 Social Tagging Systems: Analysis Tasks

Ontology extraction: One of the first expectations of researchers was to take ad-

vantage of the emerging folksonomies in order to construct ontologies for the Se-

mantic Web [40]. However, early works indicated that the derivation of ontologies

from folksonomies presented some serious difficulties, especially because tagging

is not necessarily hierarchical such as the ontology structure, meaning that unless

it is otherwise stated, an assignment of tags to a resource signifies that the latter is

equally characterized by all tags, but it does not imply a hierarchical relationship

between the tags. Moreover, there is the widely-discussed problem of tag ambiguity

Massive Graph Management for the Web and Web 2.0 41

and polysemy, i.e. tags that have ambiguous meaning and are used by users to an-

notate resources that are not relevant to each other. Another issue is the existence of

synonyms, that should be identified as tags with a common meaning [26].

Tag meaning disambiguation: Tag ambiguity poses serious challenges to applica-

tions that analyze the information included in the STS structure. The annotation of

two resources that belong to semantically different categories with common polesy-

mous tags creates a relation between them that is not intended. Therefore, recent

research has attempted to address the problem of ambiguous tags. An early effort

tried to discover the different dimensions of knowledge in a folksonomy, and after

calculating the conditional probabilities of tags in different conceptual dimensions,

ambiguous tags were found to have high probabilities on more than one dimen-

sions [52]. In [53], a clustering technique based on the community identification

algorithm of Girvan and Newman [42] was employed to find clusters of tags that

indicate the different meanings of ambiguous tags in a folksonomy. This work was

continued in [55] where the different contexts in which a tag can be used were again

on focus, and therefore analysis was conducted for every tag on the associated subset

of the folksonomy. Several kinds of network representation were tested and experi-

mental results indicated that tag co-occurrence networks that explicitly incorporate

the user-tag associations provide better results in identifying the different contexts

a tag can appear in. The results of the proposed automatic tag clustering technique

were successfully applied to classify documents retrieved by Web searches.

Study of usage dynamics: Research was also directed towards unveiling the dy-

namics that characterize the evolution of an STS. Research on the users’ behavior in

delicious showed that users tag collections are growing and evolving over time, due

to new interests [26]. However, it was discovered that the set of tags that were used

for annotating most of the bookmarks (the resources in delicious) tended to stabilize

after a while, exhibiting a stable pattern with fixed frequencies for each tag. This in-

dicates the existence of shared knowledge amongst users, as well as imitation. In

addition, the tags that were used to annotate a bookmark by larger numbers of users

(the most popular) and also the ones that were used earlier were found to be more

representative of the larger category the resource belongs in, therefore have great

significance for further analysis. In [29] it was proven, based again on data from de-

licious, that the distribution of tags is indeed stabilized after some time, following a

power law distribution. Moreover, it appeared that after stabilization, analysis of the

high-frequency tags of an STS can reveal the collective categorization scheme. Sim-

ilar results have also been found in [51], where it is stated that tags used to annotate

a specific resource are relatively strongly semantically related.

Statistics analysis: It is also interesting to find out the distribution of the user partic-

ipation in an STS. Earlier research results in social networks in general indicated that

user participation follows a power law [50], however subsequent works showed that

there were more users contributing content in social networks than those expected

from a power law distribution [34]. A recent work [27] showed that the distribution

of different users participation follows the stretched exponential distribution, which

means that top users are distributed much flatter than those in power law networks.

42 M. Giatsoglou, S. Papadopoulos, and A. Vakali

However, this distribution depends also on the type of content; for example, the dis-

tribution of user contribution on content that is more “difficult” to create is more

skewed towards a few core users. It should be noted though that the results from this

last work have not been based on results from STS.

Clustering: Another direction that has won vivid research interest is clustering,

either in users, resources or tags of an STS. The discovery of clusters within a

STS has been mainly approached as a community identification problem in a graph-

structured network. There are different approaches, however, that use either: (a) a

bipartite or tripartite graph representation [21], or (b) a simplified tag-tag, user-user,

or resource-resource co-occurrence graph. On the first case, the resulting communi-

ties are strongly-knit connected components that exist in the graph and are formed

by two (or three) kinds of entities, whereas on the second case communities com-

prise of members of just one type of entity (e.g. tags). Due to their complexity, there

have been few methods that have applied clustering for community identification to

the induced tripartite hypergraph [9,11].

Tag clustering is a research subject with numerous interesting applications. E.g.,

the tag clusters resulting from a tag-tag network can be used in a system that rec-

ommends to users tags for annotating resources, as they comprise of tags that are

semantically “close”. Similarly, resource clusters can be used to group objects be-

longing to the same category, whereas user clusters group people that have exhibited

similar behavior patterns in an STS. A tag clustering approach is based on the appli-

cation of classical community identification methods in the implied graph featuring

tag relationships, such as in [16] where a spectral community identification method

is employed, in [48] which identifies communities based on graph modularity [42]

and in [44,45] where a seed-based community expansion method has been applied.

Moreover, some efforts dealt with the problem of tag clustering, using vector-based

agglomerative hierarchical clustering methods rather than the structural properties

of the STS graph [12,47]; however they are very slow for large sets of tags. Apart

from clustering methods, tags have also been used for the classification of web re-

sources, using optimization techniques that use tag annotations as a feature space for

resources and also exploit the link relationships between resources and tags [56].

5.3 Application Setting

All the analysis and mining tasks that are applied to STS and have been discussed in

the previous subsection, require a robust graph management infrastructure providing

a number of features, dictated by the special characteristics of these systems. The

sizes of the graphs formed in the context of STS render them an excellent application

setting and motivation for massive graph storage and access frameworks. In the

following, the most characteristic STS properties are summarized in order to derive

the requirements for a framework developed for their analysis and storage.

• STS users are increasing in numbers and also tend to contribute more in ei-

ther providing new or annotating existing content. This results in the gradual

development of massive folksonomies from STS data that can be available for

Massive Graph Management for the Web and Web 2.0 43

analysis. Folksonomy data are encoded in graph structures of hundreds of mil-

lions of nodes and ten times or even more edges. delicious, for example, was

estimated in 2008 to have 462,168,833 bookmarks and 1,632,204 monthly visi-

tors [43]. These numbers combined with the number of tags used for annotation

in delicious is indicative of the massive size of tripartite graphs induce from

STS (where both resources, users and tags are considered as nodes).

• STS entities follow power law or skewed distributions. This means that the in-

duced graph exhibits scale free characteristics, i.e there are few nodes that have

high frequency and many nodes that are infrequent, thus the network is on its

larger proportion rather sparse.

• Information in an STS is updated on a daily basis. However, the number of tags

that have been used for annotating a resource is not constantly increasing. On

the contrary, after some time the tag distribution stabilizes and each tag used to

annotate a resource is characterized by a stable frequency [29,26]. This implies

that users often follow common tagging patterns [26].

• STS graphs are often used as an application area for various mining tasks, such

as community identification. During graph analysis, algorithms need to access

random nodes, extract information that is related to them (e.g. the name of a

resource), and also find the edges that are attached to them along with their

destination nodes. Taking into consideration the size of the graphs and also the

frequency of node and edge accesses that are required in mining algorithms, it

is evident that these operations should happen as fast as possible.

• When the induced tripartite hypergraph is simplified in a simple e.g. tag-tag

co-occurrence network, some information is lost and cannot be recreated. This

information, however, may be useful or necessary for some applications. For

example, it is possible that community identification in a bipartite graph will

result in more semantically “correct” communities than when using its projec-

tion in a simplified entity-entity graph [44]. There is also evidence that explicit

information about e.g. user contribution [55] helps dealing with the problem of

tag ambiguity.

• Depending on the STS analysis application, the graph representation may in-

clude directed on undirected edges. For example, maybe an edge with a resource

node as source and a tag node as destination is desirable but the reverse edge

does not need to be stored, because it is not useful for the application.

• The STS related data include a number of parameters that may differ, e.g. re-

sources in Flickr may have different attributes than resources in delicious (Flickr

resources are images that may have attributes like dimensions, file type, and file

size, apart form their URL, whereas delicious resources are bookmarks that may

have less attributes such as a title).

On the basis of the above characteristics, the requirements of the framework for the

analysis and storage of STS graphs are formulated below.

Graph access methods. The basic graph access operations should be supported,

namely node and edge lookup, insertion/update and deletion. Since the stored graphs

represent an STS, specializations of the above access operations depending on node

44 M. Giatsoglou, S. Papadopoulos, and A. Vakali

and edge types (U/R/T and UR/UT/RT respectively) should be exposed. In addition,

specializations of neighbourhood access operations should be available (i.e. get all

neighbour tags for a given user). Finally, the framework should provide graph nodes

and edges iterators (predicated with the type of node/edge). In addition, node and

edge properties (e.g. frequency values) should be possible to store and access along

with the corresponding nodes/edges.

Memory constraints. The framework should support storage and analysis of graphs

that do not fit in the main memory of a typical workstation. Partial graph load,

external node and edge indices, as well as caching schemes are desired attributes for

the foreseen framework.

Support for graph analysis. Since most graph mining techniques require fast ac-

cess to the graph’s structure, it is necessary to hold in memory the largest possible

portion of the graph’s structure in order to support fast random node and edge ac-

cess. Such information takes precedence over additional node/edge property values

which can be stored in external memory.

6 STS Data Management Framework Benchmark

In order to test the performance of different infrastructures when used as underly-

ing technologies for the management of STS data, we implemented three STS data

management frameworks. The design of the frameworks was based to some extent

on the requirements stated in the previous section. The developed frameworks, that

can be characterized as transactional graph databases, are based on H2, Lucene, and

Neo4j, representing the categories of RDBMS, custom, and native graph stores, re-

spectively. The rest of the section is structured as follows. Subsection 6.1 describes

the three implemented frameworks in details, subsection 6.2 presents the benchmark

tests that have been designed in order to evaluate the frameworks’ performance, and

subsection 6.3 presents and discusses and results of the benchmarking procedure.

6.1 Participating Frameworks Description

In general, the interesting information that can be drawn from an STS can be ex-

pressed as statements, with a given statement representing the assignment of an

online resource with a tag by a given user. We made the assumption that the STS-

related information (statements) is provided to the data management frameworks

in the format of triplets consisting of labels. The first label of each triplet refers to

the username of the user that characterized a resource, the second refers to the hash

value of the URI of the resource, whereas the third refers to the tag that was assigned

by the specific user to the resource. Triplets of STS data can be provided as input to

the frameworks either separately (one at a time) or in batches.

Graph Model Description. All frameworks support the management of a graph

consisting of user (U), resource (R) and tag (T) nodes. Each node entity includes:

(i) a string value (label) denoting a username, the hash value of a URI or a key-

word if the node represents a user, a resource or a tag respectively, and also (ii) an

Massive Graph Management for the Web and Web 2.0 45

arithmetic value that denotes the node’s frequency of appearance in the STS dataset.

For example, if a certain user has made 10 tag assignments to resources then the

respective node’s frequency would be equal to 10.

The nodes of the graph are interconnected via three types of directed edges: (a)

User-to-resource edges (UR), (b) User-to-tag edges (UT), and (c) Resource-to-tag

edges (RT). Each edge entity also includes an arithmetic value denoting its fre-

quency, e.g. if an edge starting from a resource R and ending to a tag T has frequency

10, this means that tag T has been assigned 10 times to resource R.

Supported Functionality. The developed frameworks support node-, edge-, and

graph-based operations. The main operations are lookup, insert/update and delete.

More specifically:

• Node lookup, insertion/update and deletion. A node can be of any of the three

supported types (U/R/T). A node insertion entails a node lookup (in case of

existence, instead of node insertion, a node frequency update is performed). A

node deletion entails the deletion of the node’s inlinks and outlinks.

• Node neighborhood iteration.

• Edge lookup, insertion/update and deletion. An edge can be of any of the three

supported types (UR/UT/RT). An edge insertion entails an edge lookup (in case

of existence, instead of edge insertion, an edge frequency update is performed.

• Graph node/edge iteration.

• Graph statistics (number of nodes/edges per type of node/edge.

H2-based Framework. This RDBMS-based framework uses three SQL tables for

the storage of the graph’s nodes: the USER, RESOURCE and TAG tables. Each

table includes three fields: (a) an integer identifier, (b) a string label, and (c) an

integer frequency value. All tables storing nodes support the ON DELETE CAS-

CADE SQL feature, so that in case a node is deleted, its outlinks and/or inlinks are

also automatically deleted. Moreover, three tables are dedicated to the storage of the

graph’s edges: the USER-RESOURCE, USER-TAG and RESOURCE-TAG tables.

Each table includes three fields: (a) the integer identifier of the source node, (b) the

integer identifier of the destination node and (c) an integer frequency value.

Apart from the functionalities mentioned in the previous paragraph, the frame-

work supports also the retrieval of the integer identifier of a node for a given la-

bel. Integer identifiers are used in general in order to follow the classical relational

database model, and most of all, to reduce the required amount of space for the stor-

age of the graph data. Each communication with the database, whether it is a read,

write or delete operation is handled as a separate SQL transaction.

Lucene-based Framework. The Lucene framework uses three separate indexes for

indexing and storing the U/R/T nodes and also three indexes for indexing and storing

the three types of directed edges. Each entity (either node of edge) is represented in

Lucene as a document that contains a number of fields. In our implementation each

node document contains a key field that stores the node’s label and is indexed so that

it can be used for retrieving the document when needed. Moreover, each document

contains a frequency field to store the number of node’s occurrences.

46 M. Giatsoglou, S. Papadopoulos, and A. Vakali

The structure of an edge document includes: (i) a key field created by combining the

labels of the source and destination nodes, (ii) a field storing the label of the source

node (iii) a field storing the label of the destination node, and (iv) a field storing the

edge’s frequency. The key field is indexed to enable efficient queries for determining

whether a specific edge exists. However, the fields storing the labels of the source

and destination nodes are also indexed in order for the implementation to support

the retrieval of the outlinks and inlinks of a given node. Writes are committed to

the indexes in batch, in order to limit the time consuming disk accesses. During

subsequent commits the intermediate writes are stored in a cache memory.

Neo4j-based Framework. The Neo4j-based Framework stores all the graph nodes

and edges in a common database. However, it allows the definition of a number of re-

lationships types that in our implementation allow distinguishing the category of the

graph entities. In total, six relationship types are defined for characterizing UR, UT,

and RT edges, and also defining that a node is a user, resource, or tag11. Each node

includes two properties: the node’s label and frequency. Each edge is represented

with a relationship that also includes a property storing the edge’s frequency. Nodes

are indexed using the Lucene-based index implementation provided by Neo4j, so as

to allow retrieving a node with its label. Moreover, in order to increase performance

the most frequently queried nodes are cached, and also multiple database operations

(reads, writes, updates, deletes) are grouped in a database transaction.

6.2 Benchmark Tests Description

The frameworks described in the previous subsection participate in a number of

benchmark tests. These tests have been designed to provide an indication of the

frameworks’ performance with respect to various operations. In particular, the pro-

posed benchmark suite includes the following measurements:

• graph load time (from a triples file)

• disk space usage

• node/edge insertion time (for batches of 1,000 insertions)

• node/edge deletion time (in case of nodes, their in-/out-links are also deleted)

• batch random node query execution times

• batch random edge query execution times (for existing and non-existing edges)

• graph node/edge iteration times

• neighborhood fetch and iteration for a number of randomly selected nodes.

The tests described above are conducted on graphs that contain: (i) real data from

a well known STS (Flickr), or (ii) synthetic random data generated by the Erdős-

Rényi model [22]. For the synthetic random graph a string generator is used that

allows the generation of strings of up to 10 characters. The main difference between

the synthetic and real graph data is that the nodes of the synthetic graph are con-

nected with a fixed probability value, whereas the edges of a real STS graph follow

11 User nodes are connected via the user relationship type to a special root node. Similar

connections are created for the resource and tag nodes.

Massive Graph Management for the Web and Web 2.0 47

the power law distribution. Apart from the type of data there are also some other

differences between the loading and insertion tests on real and synthetic graphs. In

particular, when the tests are executed on synthetic graphs, a given node or edge is

supplied as input only once (along with a frequency value), therefore no updates take

place during the testing procedure, and thus there is no need for checking whether

the input node or edge exists. Therefore, the nodes and edges are simply added to

the graph with the specified frequency parameter as soon as they appear as input.

The experiments described above are summarized in Table 1, which also presents

the notation that will be used for each type of experiment throughout the rest of the

chapter. For example, the notation for a node iteration experiment that runs on a

synthetic graph with 1 million edges would be IN-S-1M.

Table 1. Benchmark test notation

Symbol Position Meaning Comments

L 1 Load graph Load a graph into the graph store.

DN 1 Delete graph nodes Deletes 10,000 nodes (and their associated edges) from the

graph.

DN 1 Delete graph edges Deletes 10,000 edges from the graph.

QN 1 Query nodes Executes 10,000 random node queries on the graph.

QEx 1 Query edges 1 Executes 10,000 random edge queries for existing edges on the

graph.

QEn 1 Query edges 2 Executes 10,000 random edge queries for non-existing edges on

the graph.

DS 1 Disk space Reports the disk space usage by the graph under test.

IN 1 Node iteration Iterates over all nodes of the graph.

IE 1 Edge iteration Iterates over all edges of the graph.

INN 1 Node neighborhood iter-

ation

Iterates over 10,000 random node neighborhoods of the graph.

R 2 Real A graph created from real-world data is used.

S 2 Synthetic A graph generated based on the E-R model is used.

K 3 Thousands Quantifies the size of the graph under test.

M 3 Millions Quantifies the size of the graph under test.

6.3 Benchmark Results

In the following paragraphs the performance of the developed frameworks based on

the results of the benchmark tests will be discussed. Tables 2, 3, 4 and 5 present

the experimental results for the disk usage, load, delete, and query experiments,

respectively, whereas Figures 3, 4, 5, and 6 illustrate in a a diagrammatic way the

results for the node and edge insertion experiments.

The disk usage test results (Table 2) indicate that the H2-based framework has the

lowest disk usage for all sizes of real as well as synthetic graphs. This however was

somewhat expected as an edge entity stored in the H2-based framework includes the

integer identifiers of the source and destination nodes rather than their string labels

that naturally occupy more disk space. Between the other two frameworks, the one

based on Neo4j seems to be more compact for real graph data. However, when

synthetic data are used the disk space usage remains the same for the Neo4j-based

framework, whereas it is reduced for the Lucene-based framework. One difference

between the synthetic and real graph data is that the label’s length for the synthetic

48 M. Giatsoglou, S. Papadopoulos, and A. Vakali

graph nodes is limited to 10 characters the most, whereas the labels of the real

graph nodes can contain more characters. For example, the URI hash values that are

used as labels for the R nodes have a high possibility of containing more than 10

characters. From the above, it can be concluded that the disk space required for the

storage of the documents of the Lucene-based framework has a stronger dependency

on the labels’ length in relation to the space required for the storage of the entities

of the Neo4j-based framework.

Table 2. Disk space usage results

disk space usage (in Mbytes)

Disk space test nodes H2 LUCENE NEO4J

DS-R-100K 28,388 6,9 14,5 13,2

DS-R-500K 125,942 36,3 72 61,8

DS-R-1M 235,984 72,8 143,1 119,6

DS-R-5M 1,032,947 379,3 712 559,9

DS-R-10M 1,983,803 766,7 1433,6 1126,4

DS-S-100K 28,388 5,1 8,1 12,8

DS-S-500K 125,942 28 38,9 60

DS-S-1M 235,984 56,2 78,4 116,1

DS-S-5M 1,032,947 283 391,5 542,9

DS-S-10M 1,983,803 570,9 782,4 1126,4

Table 3 presents the total time required to build a graph given either a set of

triples of U/R/T labels (real graph), or a set of synthetically generated U/R/T nodes

with the respective edges (synthetic graph). According to the benchmark results,

the Lucene-based framework is the fastest, whereas the Neo4j-based framework is

the slowest of the three, with the Lucene-based framework loading: (i) the largest

real graph (10 million edges) 6 times quicker than the Neo4j-based one, and (ii) the

largest synthetic graph 4.5 times quicker. In general, synthetic graphs are built in

less time than real graphs of the same size which is explained by the differences in

the experimental procedure (as it has been stated in subsection 6.2), when loading a

synthetic graph there is no need to check whether a node or edge has already been

added to the graph). Another observation is that the H2-based framework seems

to perform relatively well, with the time required to build a graph being almost

proportional to the graph size on most occasions.

Table 3. Load test results

Load test nodes H2 LUCENE NEO4J

L-R-100K 28,388 24,277sec 2,166sec 1,44min

L-R-500K 125,942 2,19min 42,326sec 9,19min

L-R-1M 235,984 5,2min 2,1min 19,13min

L-R-5M 1,032,947 28,49min 17,37min 1,55hr

L-R-10M 1,983,803 1,1hr 43,34min 4,25hr

L-S-100K 28,388 7,670sec 874,700ms 21,816sec

L-S-500K 125,942 37,869sec 9,601sec 2,27min

L-S-1M 235,984 1,15min 35,807sec 5,4min

L-S-5M 1,032,947 7,9min 5,5min 30,6min

L-S-10M 1,983,803 15,10min 14,6min 1,5hr

Massive Graph Management for the Web and Web 2.0 49

The results of the node and edge insertion experiments for the real graph data

are presented as diagrams in Figures 3 and 5, respectively, whereas the respective

results for the synthetic graph data are presented in Figures 4, and 6. Each figure

includes three diagrams (one for each framework) that plot the average time for the

insertion of a new node or edge calculated for every 1,000 insertions. The diagrams

also illustrate the dispersion of the values around the average, with use of the stan-

dard deviation values that have also been calculated for every 1,000 insertions. The

results of the node insertion benchmark for both real and synthetic graph data indi-

cate that the H2-based framework is the most effective for node insertion requiring

on average less than 20msec for the insertion of a node, and managing to maintain

a rather stable performance as the size of the graph increases. The slowest solution

is the Neo4j-based framework, which also exhibits the highest values of standard

deviation. The Lucene-based framework, on the other hand, has the lowest values

of standard deviation, thus proving to be very stable. As it can be observed from the

diagrams, the average node insertion time for the Lucene-based framework seems

to be rising until a number of insertions is reached, and then rapidly fall. This rapid

fall indicates that at this point the framework cache is full so the Lucene writer com-

mits the changes that have been cached so far to the disk. Afterwards, the cache is

emptied to enable the storage of the new insertions (and possible updates), so the

performance of the framework improves. The results for the edge insertion tests

(Figures 5, and 6) yield similar findings. Both the H2-based and Lucene-based

frameworks are much faster than the Neo4j-based framework. It is noticable that

the average times per edge insertion for the latter framework reach very large values

as the size of the graph increases. This serious delay of the Neo4j-based framework

did not allow us to complete the edge insertion experiment. Between the H2-based

and Lucene-based frameworks, although their performance is comparable, the H2-

based framework seems to maintain a more stable performance regardless of the

graph size. The Neo4j-based framework had an even worse performance for the

edge insertion test on synthetic graph data. Apart from the average times calculated

for the first 2,000 insertions of edges, the successive results for the first next thou-

sands of insertions were approximately 10 times larger than the respective results for

the H2-based and Lucene-based frameworks, however they soon began to increase

exponentially. In order to present the comparative results for the three frameworks,

Figure 6 has been included using a logarithmic scale for the time axis.

Table 4 presents the results for the node and edge deletion experiments. The av-

erage times for node deletion indicate that the H2-based framework performs better

than the other two frameworks, whereas the slowest framework for every test has

proved to be the one based on Lucene. The Neo4j-based framework maintained the

same performance for every graph size. In general, the deletion of a node causes

the deletion of all edges that are adjacent to it. Therefore, the time measured for a

node deletion includes an extra delay required for fetching and deleting the node’s

neighbors. The deletion of the neighbors of a node seems to be a serious overhead

for the Lucene-based framework, whereas it is automatically executed in the H2-

based framework due to the SQL ON DELETE CASCADE constraint. However, it

can be observed that the times measured for the Lucene-based framework have the

50 M. Giatsoglou, S. Papadopoulos, and A. Vakali

Fig. 3. Diagram of mean time per node insertion in a real graph (per 1,000 insertions)

Fig. 4. Diagram of mean time per node insertion in a synthetic graph (per 1,000 insertions)

Fig. 5. Diagram of mean time per edge insertion in a real graph (per 1,000 insertions)

Massive Graph Management for the Web and Web 2.0 51

Fig. 6. Diagram of mean time per edge insertion in a synthetic graph (per 1,000 insertions).

The time axis is plotted in a logarithmic scale as the time values for the Neo4j-based frame-

work are much higher than the corresponding times for the other two frameworks.

Table 4. Delete test results

mean time standard deviation

Delete test H2 LUCENE NEO4J H2 LUCENE NEO4J

DN-R-100K 357,947us 567,391ms 3,349ms 5,287ms 0ns 30,187ms

DN-R-500K 1,427ms 1,768sec 3,574ms 13,500ms 0ns 30,162ms

DN-R-1M 1,502ms 3,290sec 3,481ms 7,164ms 0ns 30,171ms

DN-S-100K 182,778us 82,178ms 2,407ms 4,846ms 0ns 30,277ms

DN-S-500K 717,940us 102,943ms 1,766ms 26,585ms 0ns 26,614ms

DN-S-1M 1,102ms 119,799ms 2,602ms 30,351ms 0ns 30,259ms

DE-R-100K 140,674us 1,778us 484,522us 959,511us 9,493us 8,697ms

DE-R-500K 214,985us 2,313us 405,613us 1,735ms 17,285us 8,244ms

DE-R-1M 87,791us 1,808us 348,789us 704,322us 5,711us 7,416ms

DE-S-100K 109,413us 1,624us 704,770us 989,403us 4,371us 8,969ms

DE-S-500K 165,929us 1,638us 465,800us 1,219ms 4,338us 7,418ms

DE-S-1M 62,773us 1,564us 455,313us 17,778us 4,7us 8,47ms

lowest values of standard deviation among all frameworks, something that has been

observed in the results of the previous test as well.

The results for the edge deletion experiments clearly show the superiority of the

Lucene-based framework. The results of these experiments in combination with the

results for the node deletion experiments indicate that this framework is particularly

efficient in deleting an edge (and probably a node as they are indexed in a similar

way), however it is not very efficient in retrieving the neighbors of a node. Moreover,

the average time for an edge deletion does not seem to change linearly with the graph

size, but it is affected by the randomness of the edge selection.

The results for the query experiments are presented in Table 5. The experimental

results of the tests that involve querying random nodes of real graphs show that the

Lucene-based framework has the best performance between all frameworks. Com-

paring the performance of the other two frameworks, it can be observed that the

Neo4j-based framework scales better than the one based on H2 for large graphs. In

52 M. Giatsoglou, S. Papadopoulos, and A. Vakali

addition, the results concerning the H2-based framework show a particularly high

value of standard deviation for the graph of 1 million edges. However, the same

experiments on the synthetic graph generated results that show that the H2-based

framework conducts queries faster than the other two frameworks, whereas Neo4j

has the worse performance.

Table 5. Query test results

mean time standard deviation

Query test H2 LUCENE NEO4J H2 LUCENE NEO4J

QN-R-100K 162,16us 94,74us 271,48us 991,29us 562,32us 1,48ms

QN-R-500K 352,649us 132,264us 374,78us 1,504ms 615,906us 1,155ms

QN-R-1M 1,281ms 182,273us 476,680us 3,247ms 1,151ms 1,966ms

QN-S-100K 28,620us 63,881us 203,272us 179,664us 205,149us 691,344us

QN-S-500K 60,307us 93,835us 226,427us 599,284us 370,230us 528,356us

QN-S-1M 99,469us 115,996us 253,828us 1,103ms 642,891us 942,900us

QEx-R-100K 126,499us 170,284us 96,998us 14,933us 686,622us 70,622us

QEx-R-500K 280,310us 259,337us 211,398us 1,361ms 1,161ms 277,977us

QEx-R-1M 4,483ms 397,403us 233,614us 8,536ms 2,739ms 119,956us

QEx-S-100K 181,804us 222,825us 7,200ms 489,827us 3,99ms 5,95ms

QEx-S-500K 302,62us 180,291us 30,204ms 1,375ms 685,576us 3,178ms

QEx-S-1M 2,329ms 288,105us 55,556ms 7,214ms 1,391ms 0ns

QEn-R-100K 72,585us 4,576us 30,95us 445,929us 1,416us 56,208us

QEn-R-500K 70,521us 6,160us 21,57us 171,65us 1,677us 53,164us

QEn-R-1M 73,515us 7,225us 21,774us 149,983us 2,164us 54,961us

QEn-S-100K 61,904us 7,147us 12,530us 39,135us 6,77us 49,602us

QEn-S-500K 52,799us 6,391us 16,113us 30,711us 28,855us 167,289us

QEn-S-1M 53,358us 3,675us 21,633us 64,305us 1,721us 709,977us

IN-R-100K 44,425us 9,131us 7,848us 48,857us 147,153us 41,66us

IN-R-500K 30,842us 1,599us 4,926us 0ns 29,726us 85,871us

IN-R-1M 30,859us 1,387us 4,789us 0ns 24,403us 155,118us

IN-S-100K 5,181us 1,901us 6,668us 19,959us 74,364us 45,639us

IN-S-500K 4,408us 1,544us 5,947us 28,378us 41,969us 86,139us

IN-S-1M 3,824us 1,362us 6,53us 15,509us 34,185us 125,898us

IE-R-100K 6,174us 2,587us 2,740us 17,906us 78,859us 5,81us

IE-R-500K 7,77us 2,466us 3,862us 13,814us 58,637us 964,668us

IE-R-1M 7,611us 2,592us 2,849us 11,598us 107,551us 13,986us

IE-S-100K 6,129us 1,390us 2,638us 16,993us 2,432us 86,702us

IE-S-500K 4,452us 1,468us 2,434us 14,588us 65,639us 128,164us

IE-S-1M 3,110us 1,410us 3,160us 12,598us 45,841us 696,530us

INN-R-100K 124,460us 329,298us 166,693us 528,406us 593,44us 412,642us

INN-R-500K 171,186us 445,346us 270,393us 831,722us 1,49ms 124,973us

INN-R-1M 194,627us 522,203us 281,274us 939,848us 1,884ms 241,676us

INN-S-100K 100,471us 280,704us 171,670us 314,960us 726,270us 351,630us

INN-S-500K 145,330us 384,964s 195,835us 823,617us 2,335ms 386,801us

INN-S-1M 276,626us 422,135us 226,636us 1,192ms 1,649ms 1,521ms

The results of the tests involving the query of existing edges from real graphs

indicate that the Neo4j-based framework has the best performance, as it conducts

queries faster than its competitors and also has the lowest value of standard devi-

ation. The H2-based framework, on the contrary, was proven to be very slow for

larger graphs, having also a high value of standard deviation. However, the same ex-

periment on synthetic graphs generated completely different results for the Neo4j-

based framework, as it was the slowest, with the measured average times being much

larger than the times measured for the real graph tests. The framework that had the

best performance in these experiments for the larger graphs is the Lucene-based one.

Massive Graph Management for the Web and Web 2.0 53

The Lucene-based framework was proved to be the fastest when querying non-

existing edges for both real and synthetic graphs, as well as the most stable as it

had the lowest standard deviation values. The slowest framework for both types of

tests was the one based on H2. Another observation is that the standard deviation for

the Neo4j-based framework was much larger for the synthetic graph tests, whereas

quite the opposite is true for the H2-based framework.

In all iteration tests (including both node as well as edge iteration) the Lucene-

based framework had the best performance. For the node iteration tests it is worth

noticing that this framework generated the same average times for all real and syn-

thetic graphs, on the exception of the smallest real graph for which it generated a

larger average time. Between the other two frameworks the Neo4j-based proved to

be faster for real graphs, whereas their performance was comparable for synthetic

graph tests. In general, both the Neo4j-based and H2-based frameworks were faster

when querying nodes of synthetic rather than real graphs. However, the Neo4j-based

framework was observed to have a very high value of standard deviation for the

larger graphs. The Neo4j-based framework performed relatively well in edge itera-

tion tests, with the calculated average times for the real graph tests being compara-

ble to the respective average times for the Lucene-based framework. An observation

about the edge iteration results for the Lucene-based framework is that it performed

two times faster for the synthetic graph tests in relation to real graph tests.

Finally, the tests that involved querying the neighbors of random nodes, indicate

that the H2-based framework is the most efficient for such type of queries for most

of the tests, whereas the Lucene-based framework has the worst performance. The

single test for which the H2-based framework was outperformed by the Neo4j-based

framework is the test conducted on the largest synthetic graph (1,000,000 edges). An

observation that gives proof of the poor performance of the Lucene-based frame-

work in relation to the other frameworks is that its performance, when the test was

conducted on the largest real graph, was 2.5 times worse than the best performance

for the same test, whereas it was approximately 2 times worse than than best per-

formance when the test was conducted on the largest synthetic graph. This again

indicates that the Lucene-based framework is particularly slow when retrieving the

neighbors of a node.

7 Conclusions and Outlook

The abundance of Web data has created the need for more efficient scalable graph

data management structures. With this problem in mind, we presented various solu-

tions for the management of massive web graphs. We considered the special case of

STS as an application setting and we defined the requirements that STS data impose

on the underlying management framework. Moreover, we developed three different

STS data management frameworks and presented their structure and functionality.

The developed frameworks were benchmarked in terms of the disk space required

for data storage, as well as in terms of how fast they perform data insertion, update,

and deletion operations. The experimental results showed that both frameworks have

54 M. Giatsoglou, S. Papadopoulos, and A. Vakali

their pros and cons, and that the choice of a suitable framework for the manage-

ment of STS data (or web graph data in general) depends on the type of operations

that are expected to be performed more often. In general, the custom Lucene-based

framework seems to be an efficient solution for the majority of operations, except

for those that involve accessing the neighbors of a node, where the H2-based and

Neo4j-based frameworks proved to be better solutions. Moreover, although the pro-

posed frameworks have been designed for the case of the STS, they can be easily

adjusted so that they are applicable for other types of Web and Web 2.0 graph data.

The possibility of testing the performance of frameworks that use other technolo-

gies as underlying infrastructures (such as object databases, presented in subsection

3.2, or data mining-based solutions, presented in Section 4) is also worthwhile to

be explored as future work.

From the above, it appears that there are different requirements for the manage-

ment of Web and Web 2.0 graph data, depending on the reasons why their storage,

and management in general, is desirable. A Web graph management framework

should consequently either be centered on a specific application, or be adaptable

to suit many application requirements. An interesting vision would be to combine

the characteristics of data mining-based solutions, such as the compression-based

databases, with the update functionalities of transactional databases, in a frame-

work able to support applications both for static graph analysis and for managing

time-varying graphs. In general, graph data management frameworks should be de-

veloped to maximally exploit the available main memory. Approaches towards this

direction would be to e.g. store part of the graph structure in main memory and the

rest of the data in external memory, or use a computer cluster to increase the size

of available main memory to fit the entire graph structure. An alternative approach

would be to differentiate between the way the adjacency lists of high-degree and

low-degree nodes are stored, so that e.g. the adjacency lists of high-degree nodes

are stored in main memory to decrease the time required for their access.

The possibility of developing a framework for handling temporal graphs that

would maintain information about the graph’s state in different time steps consti-

tutes another interesting future work area. Such functionality could be included in

a graph management framework e.g. information about when a node or edge was

added to (or deleted from) the graph is stored as an extra attribute of the node or

edge. Managing temporal graph data with such a framework would enable querying

about e.g. when an edge was added to the graph, which nodes were adjacent to a

node at a given time, etc.

References

1. Abello, J., Buchsbaum, A.L., Westbrook, J.: A Functional Approach to External Graph

Algorithms. Algorithmica 32(3), 437–458 (1998)

2. Ahn, K.J., Guha, S.: Graph Sparsification in the Semi-streaming Model. In: ICALP(2),

pp. 328–338 (2009)

3. Bader, D., Madduri, K.: Designing multithreaded algorithms for breadth-first search and

st-connectivity on the Cray MTA-2. In: Proceedings of the ICPP 2006. IEEE Computer

Society, Los Alamitos (2006)

Massive Graph Management for the Web and Web 2.0 55

4. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for

local triangle counting in massive graphs. In: Proceeding of the KDD 2008, pp. 16–24.

ACM Press, New York (2008)

5. Beynon, M.D., Kurc, T., Catalyurek, U., Chang, C., Sussman, A., Saltz, J.: Distributed

processing of very large datasets with DataCutter. Parallel Comput. 27(11), 1457–1478

(2001)

6. Boldi, P., Vigna, S.: The WebGraph Framework I: Compression Techniques. In: Proceed-

ings of the WWW 2004, pp. 595–602. ACM, New York (2004)

7. Boldi, P., Vigna, S.: The WebGraph Framework II: Codes For The World-Wide Web. In:

Proceedings of the DCC 2004, vol. 528. IEEE Computer Society, Los Alamitos (2004)

8. Boldi, P., Santini, M., Vigna, S.: Permuting Web Graphs. In: Avrachenkov, K., Donato,

D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 116–126. Springer, Heidelberg

(2009)

9. Bothorel, C., Bouklit, M.: An algorithm for detecting communities in folksonomy hyper-

graphs. Appeared in I2CS 2008, Schoelcher, Martinique, Sponsored by IEEE (2008)

10. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.

Netw. ISDN Syst. 30(1-7), 107–117 (1998)

11. Brinkmeier, M., Werner, J., Recknagel, S.: Communities in graphs and hypergraphs. In:

Proceedings of CIKM 2007, Lisbon, Portugal, pp. 869–872. ACM, New York (2007)

12. Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging

and hierarchical clustering. In: Proceedings of the WWW 2006, pp. 625–632. ACM,

New York (2006)

13. Buchsbaum, A.L., Giancarlo, R., Racz, B.: New results for finding common neigh-

borhoods in massive graphs in the data stream model. Theor. Comput. Sci. 407(1-3),

302–309 (2008)

14. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compres-

sion with communities. In: Proceedings of the WSDM 2008. ACM, New York (2008)

15. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting

triangles in data streams. Proceedings of the PODS 2006, pp. 253–262. ACM, New York

(2006)

16. Cattuto, C., Baldassarri, A., Servedio, D.P.V., Loreto, V.: Emergent Community Structure

In Social Tagging Systems. Advances in Complex Systems (ACS) 11(4), 597–608 (2008)

17. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Raghavan, P.:

On compressing social networks. In: Proceedings of the KDD 2009, pp. 219–228. ACM,

New York (2009)

18. Claude, F., Navarro, G.: A Fast and Compact Web Graph Representation. In: Ziviani, N.,

Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 105–116. Springer, Heidelberg

(2007)

19. Cohen, J.: Graph Twiddling in a MapReduce World. Computing in Science & Engineer-

ing 11(4), 29–41 (2009)

20. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-

mun. ACM 51(1), 107–113 (2008)

21. Du, N., Wang, B., Wu, B., Wang, Y.: Overlapping Community Detection in Bipartite

Networks. In: Proceedings of the WI-IAT 2008, pp. 176–179. IEEE Computer Society,

Los Alamitos (2008)

22. Erdős, P., Rényi, A.: On Random Graphs I. Publicationes Mathematicae 6, 290–297

(1959)

23. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a

semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)

56 M. Giatsoglou, S. Papadopoulos, and A. Vakali

24. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the

streaming model. SIAM J. Comput. 38(5), 1709–1727 (2008)

25. Furtado, P.: Evolving Application Domains of Data Warehousing and Mining: Trends

and Solutions. IGI Publishing (2009)

26. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf.

Sci. 32(2), 198–208 (2006)

27. Guo, L., Tan, E., Chen, S., Zhang, X., Zhao, Y.: Analyzing patterns of user content gen-

eration in online social networks. In: Proceedings of the KDD 2009, pp. 369–378. ACM,

New York (2009)

28. Guozhu, D., Leonid, L., Jianwen, S., Limsoon, W.: Maintaining Transitive Closure of

Graphs in SQL. Int. J. Information Technology 5 (1999)

29. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In:

Proceedings of the WWW 2007. ACM, New York (2007)

30. Hartley, T.D.R., Çatalyürek, Ü.V., Özgüner, F., Yoo, A., Kohn, S., Henderson, K.W.:

MSSG: A Framework for Massive-Scale Semantic Graphs. In: Proceedings of the 2006

IEEE International Conference on Cluster Computing, pp. 1–10. IEEE, Los Alamitos

(2006)

31. Hotho, A., Robert, J., Christoph, S., Gerd, S.: Emergent Semantics in BibSonomy. GI

Jahrestagung P-94, 305–312 (2006)

32. Karande, C., Chellapilla, K., Andersen, R.: Speeding up algorithms on compressed web

graphs. In: Proceedings of the WSDM 2009, pp. 272–281. ACM, New York (2009)

33. Keith, H.R., Raymie, S., Janet, L.W., Rajiv, G.W.: The Link Database: Fast Access to

Graphs of the Web. In: Data Compression Conference, vol. 0, p. 122. IEEE Computer

Society, Los Alamitos (2002)

34. Kittur, A., Chi, E., Pendleton, B.A., Suh, B., Mytkowicz, T.: Power of the Few vs. Wis-

dom of the Crowd: Wikipedia and the Rise of the Bourgeoisie. World Wide Web 1, 2,19

(2007)

35. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),

604–632 (1999)

36. Larsson, N.J., Moffat, A.: Offline Dictionary-Based Compression. In: Data Compression

Conference, vol. 0, p. 296. IEEE Computer Society, Los Alamitos (1999)

37. Lawrence, P., Sergey, B., Motwani, R., Winograd, T.: The PageRank Citation Ranking:

Bringing Order to the Web. Technical Report. Stanford University (1998)

38. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and

the TKC effect. Comput. Netw. 33(1-6), 387–401 (2000)

39. Madduri, K., Bader, D.A.: Compact graph representations and parallel connectivity al-

gorithms for massive dynamic network analysis. In: Proceedings of the IPDPS 2009,

pp. 1–11. IEEE Computer Society, Los Alamitos (2009)

40. Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In:

International Semantic Web Conference, pp. 522–536 (2005)

41. Muthukrishnan, S.: Data streams: algorithms and applications. In: Proceedings of the

SODA 2003, pp. 413–413 (2003)

42. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.

Physical Review E 69(2), 26113+ (2004)

43. Papadopoulos, S., Menemenis, F., Vakali, A., Kompatsiaris, Y.: Analysis of Content

Popularity in Social Bookmarking Systems. In: Evolving Application Domains of Data

Warehousing and Mining: Trends and Solutions. IGI Publishing (2009)

44. Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: Leveraging Collective Intelligence

through Community Detection in Tag Networks. In: Proceedings of the CKCaR 2009

(2009)

Massive Graph Management for the Web and Web 2.0 57

45. Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: A Graph-based Clustering Scheme for

Identifying Related Tags in Folksonomies. In: Proceedings of the DaWaK 2010 (2010)

46. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16, 464–497 (1996)

47. Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in

social tagging systems using hierarchical clustering. In: Proceedings of the RecSys 2008,

pp. 259–266. ACM, New York (2008)

48. Simpson, E.: Clustering Tags in Enterprise and Web Folksonomies. Technical Report.

HP Labs (2008)

49. Stephens, S., Rung, J., Lopez, X.: Graph Data Representation in Oracle Database 10g:

Case Studies in Life Sciences. IEEE Data Eng. Bull. 27(4), 61–66 (2004)

50. Voss, J.: Measuring Wikipedia. In: The 10th International Conference of the International

Society for Scientometrics and Informetrics (2005)

51. Wu, C., Zhou, B.: Analysis of tag within online social networks. In: Proceedings of the

GROUP 2009, pp. 21–30. ACM, New York (2009)

52. Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Pro-

ceedings of the WWW 2006, pp. 417–426. ACM, New York (2006)

53. Yeung, C.A., Gibbins, N., Shadbolt, N.: Tag Meaning Disambiguation through Analysis

of Tripartite Structure of Folksonomies. In: Proceedings of the WI-IATW 2007, pp. 3–6.

IEEE Computer Society, Los Alamitos (2007)

54. Yeung, C.A., Gibbins, N., Shadbolt, N.: Collective User Behaviour and Tag Contex-

tualisation in Folksonomies. In: Proceedings of the WI-IAT 2008, pp. 659–662. IEEE

Computer Society, Los Alamitos (2008)

55. Yeung, C.A., Gibbins, N., Shadbolt, N.: Contextualising tags in collaborative tagging

systems. In: Proceedings of the HT 2009, pp. 251–260. ACM, New York (2009)

56. Yin, Z., Li, R., Mei, Q., Han, J.: Exploring social tagging graph for web object classifi-

cation. In: Proceedings of the KDD 2009, pp. 957–966. ACM, New York (2009)

57. Alberton, L.: Graphs in the database: SQL meets social networks (2009),

http://techportal.ibuildings.com/2009/09/07/

graphs-in-the-database-sql-meets-social-networks

58. Bergman, M.K.: Scalability of the Semantic Web (2006),

http://www.mkbergman.com/227/scalability

-of-the-semantic-web

59. Bergman, M.K.: Enterprise Semantic Webs Demand New Database Paradigms (2006),

http://www.mkbergman.com/185/enterprise-semantic-webs

-esw-demand-new-database-paradigms

60. Obasanjo, D.: An Exploration of Object Oriented Database Management Systems

(2001),

http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html

61. Staken, K.: Introduction to Native XML Databases (2001),

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

62. Wang, J.C., Huiling, G., Betsy, G.: Oracle White Paper? A Load-On-Demand Approach

to Handling Large Networks in the Oracle Spatial Network Data Model (2009),

http://www.oracle.com/technology/products/spatial/pdf/

11gr2 collateral/ ndmlod11gr2 wp 1009.pdf

63. Apache Xindice, http://xml.apache.org/xindice

64. AllegroGraph RDF store, http://www.franz.com/agraph/allegrograph

65. Benchmarks: Performance advantages to store complex object structures,

http://www.db4o.com/about/productinformation/benchmarks

66. db4o, http://www.db4o.com/about/productinformation/db4o

http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://www.mkbergman.com/227/scalability-of-the-semantic-web/
http://www.mkbergman.com/227/scalability-of-the-semantic-web/
http://www.mkbergman.com/185/enterprise-semantic-webs-esw-demand-new-database-paradigms/
http://www.mkbergman.com/185/enterprise-semantic-webs-esw-demand-new-database-paradigms/
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.oracle.com/technology/products/spatial/pdf/11gr2_collateral/_ndmlod11gr2_wp_1009.pdf
http://www.oracle.com/technology/products/spatial/pdf/11gr2_collateral/_ndmlod11gr2_wp_1009.pdf
http://xml.apache.org/xindice
http://www.franz.com/agraph/allegrograph
http://www.db4o.com/about/productinformation/benchmarks
http://www.db4o.com/about/productinformation/db4o

58 M. Giatsoglou, S. Papadopoulos, and A. Vakali

67. Facebook Statistics (2010),

http://www.facebook.com/press/info.php?statistics

68. Getting Started with Berkeley DB for Java - Release 4.8,

http://www.oracle.com/technology/documentation/berkeley-db/

db/gsg/ JAVA/BerkeleyDB-Core-JAVA-GSG.pdf

69. H2 database, http://www.h2database.com

70. How ODB Works, http://wiki.neodatis.org/how-odb-works

71. Jena Semantic Web Framework, http://jena.sourceforge.net

72. JUNG Graph Framework, http://jung.sourceforge.net

73. Neo4j graph database, http://neo4j.org

74. Object-relational impedance mismatch, http://en.wikipedia.org/wiki/

Object-relational impedance mismatch

75. Oracle Berkeley DB,

http://www.oracle.com/technology/

products/berkeley-db/index.html

76. OWLIM Repository, http://www.ontotext.com/owlim

77. PolePosition Benchmark NeoDatis1.9,

http://switch.dl.sourceforge.net/project/neodatis-odb/

NeoDatis%20ODB%20Performance/NeoDatis%201.9/

PolePosition NeoDatis-1.9.pdf

78. Sesame Framework, http://www.openrdf.org

79. Tamino XML Server,

http://www.softwareag.com/corporate/products/wm/tamino

80. Virtuoso Server platform, http://www.openlinksw.com/virtuoso

http://www.facebook.com/press/info.php?statistics
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/_JAVA/BerkeleyDB-Core-JAVA-GSG.pdf/
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/_JAVA/BerkeleyDB-Core-JAVA-GSG.pdf/
http://www.h2database.com
http://wiki.neodatis.org/how-odb-works
http://jena.sourceforge.net
http://jung.sourceforge.net
http://neo4j.org
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch/
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch/
http://www.oracle.com/technology/products/berkeley-db/index.html/
http://www.oracle.com/technology/products/berkeley-db/index.html/
http://www.ontotext.com/owlim
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://www.openrdf.org
http://www.softwareag.com/corporate/products/wm/tamino
http://www.openlinksw.com/virtuoso

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 59–82.

springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 3

Web Engineering and Metrics

Emilia Mendes

The University of Auckland, Computer Science Department,

Private Bag 92019, Auckland, New Zealand

emilia@cs.auckland.ac.nz

http://www.cs.auckland.ac.nz/~emilia

Abstract. The objective of this chapter is three-fold. First, it provides an in-

troduction to Web Engineering, and discusses the need for empirical inves-

tigations in this area. Second, it defines concepts such as metrics and meas-

urement, and details the types of quantitative metrics that can be gathered

when carrying out empirical investigations in Web Engineering. Third, it

presents the three main types of empirical investigations – surveys, case

studies, and formal experiments.

1 Introduction

Despite being originally conceived back in 1989 as an environment to allow for

the sharing of information amongst geographically dispersed individuals (e.g. re-

search reports, databases, user manuals), the World Wide Web (Web) has been

transformed into an environment where numerous applications of varying types

are delivered. These applications, named Web applications, range from small-

scale information-dissemination-like applications, typically developed by writers

and artists, to large-scale commercial,1 enterprise-planning and scheduling, col-

laborative-work applications. The latter are developed by multidisciplinary teams

of people with diverse skills and backgrounds using cutting-edge, diverse tech-

nologies [5][7] [18]. A large number of the Web applications that are presently

developed are fully functional systems that provide business-to-customer and

business-to-business e-commerce, and numerous services to numerous users [18].

Web applications are employed by numerous industries (e.g. travel and hospi-

tality, manufacturing, banking, education, and government) to improve and

increase their operations [7]. In addition, the client-server nature of the Web facili-

tates the development of corporate intranet Web applications, for use within the

1 The increase in the use of the Web to provide commercial applications has been motivated

by several factors, such as the possible increase of an organisation’s competitive position,

and the opportunity for small organisations to project their corporate presence in the same

way as that of larger organisations.

60 E. Mendes

boundaries of a single organisation [10]. In addition, the use of Web applications

in areas such as communication and commerce makes it one of the leading and

most important branches of the information and communication technologies in-

dustry [18].

Unfortunately, the development of industrial Web applications has been to date

reported as generally ad hoc, resulting in poor-quality applications difficult to

maintain [16]. The main reasons for such problems are unawareness of suitable

design and development processes, and poor project management practices [6].

However, as the reliance on larger and more complex Web applications increases

so does the need for using methodologies/standards/best practice guidelines that

enable such applications to be delivered on time, within budget, and with quality

[13][22][23]. The goal of Web engineering is therefore to provide Web develop-

ment teams with the means to develop such applications by supplying sound

methodologies, systematic techniques, quality assurance, rigorous, disciplined and

repeatable processes, better tools, and baselines [7].

Web engineering is defined as [16]:

“the use of scientific, engineering, and management principles and sys-

tematic approaches with the aim of successfully developing, deploying and

maintaining high quality Web-based systems and applications”.

Engineering is widely taken as a disciplined application of scientific knowledge

for the solution of practical problems:

“Engineering is the application of science to the needs of humanity.

This is accomplished through knowledge, mathematics, and practical ex-

perience applied to the design of useful objects or processes.” [24]

“Engineering is the application of scientific principles to practical

ends, as the design, manufacture, and operation of structures and ma-

chines.” [10]

 “The profession of applying scientific principles to the design, con-

struction, and maintenance of engines, cars, machines, etc. (mechanical

engineering), buildings, bridges, roads, etc. (civil engineering), electrical

machines and communication systems (electrical engineering), chemical

plant and machinery (chemical engineering), or aircraft (aeronautical

engineering).” [9]

In addition, Engineering purports the need for applying scientific principles,

which are the result of applying a scientific process [8]. A process in this context

means that our current understanding, i.e. our theory (hypothesis), of how best to

develop, deploy, and maintain high-quality Web applications, may be modified or

replaced as new evidence is found through the accumulation of data and knowl-

edge. This process is illustrated in Fig. 1 and described below [8][15]:

Web Engineering and Metrics 61

• Observation: To observe or read about a phenomenon or set of facts. In most

cases the motivation for such observation is to identify cause & effect relation-

ships between observed items, since these entail predictable results. For exam-

ple, we can observe that an increase in the development of new Web pages

seems to also increase the corresponding development effort.

• Hypothesis: The formulation of a hypothesis represents an attempt to explain an

Observation. It is a tentative theory or assumption that is believed to explain

the behaviour under investigation [3]. The items that participate in the Observa-

tion are represented by variables (e.g. number of new Web pages, development

effort) and the hypothesis indicates what is expected to happen to these vari-

ables (e.g. there is a linear relationship between number of Web pages and de-

velopment effort, showing that as the number of new Web pages increases so

does the effort to develop these pages). However, these variables first need to

be measured and to do so we need an underlying Measurement Theory.

• Prediction: To predict means to forecast results that are to be found if the ra-

tionale used in the hypothesis formulation is correct (e.g. Web applications with

a larger number of new Web pages will use a larger development effort).

• Validation: To validate requires experimentation to provide evidence either to

support or refute the initial hypothesis. If the evidence refutes the hypothesis then

the hypothesis should be revised or replaced. If the evidence is in support of the

hypothesis, then many more replications of the experiment need to be carried out

in order to build a better understanding of how variables relate to each other and

their cause and effect relationships. Validating a hypothesis represents the gather-

ing of data from measuring the variables abovementioned. Such data gathering

occurs by means of an empirical investigation (empirical study).

Fig. 1. The Scientific Process (Mendes, 2007)

No

Yes

Observation

Hypothesis

Prediction

Validation

Valid?

Theory

62 E. Mendes

In summary, the scientific process supports knowledge building, which in turn

involves the use of empirical studies to test hypotheses previously proposed, and

to assess if the current understanding of the discipline is correct. Therefore ex-

perimentation in Web engineering is essential [1][2].

The application by organisations of scientific principles to developing and

maintaining Web applications is likely to vary depending on their level of matur-

ity. Maturity reflects an organisation’s use of sound development processes and

practices [3], where more mature organisations generally tend to apply scientific

principles to a larger extent than less mature organisations. In addition, some or-

ganisations have clearly defined processes that remain unchanged regardless of the

people who work on their projects. For such organisations, success is dictated by

following a well-defined process, where feedback is constantly obtained using

product, process and resource measures. Other organisations have processes that

are not so clearly defined (ad hoc) and therefore the success of a project is often

determined by the expertise of the development team. In such case, product, proc-

ess, and resource measures are rarely used and each project represents a potential

risk that may lead an organisation, if it gets it wrong, to bankruptcy [21].

The variables used in the formulation of hypotheses represent the attributes of

real-world entities that we observe. An entity represents a process, product, or re-

source. A process is defined as a software-related activity, where examples in-

clude Web development, Web maintenance, Web design, Web testing, and Web

project management. A product is defined as an artefact, deliverable, or document

that results from a process activity. Examples of products are Web application, de-

sign document, testing scripts, and fault reports. Finally, a resource represents an

entity required by a process activity. Examples of resources are Web developers,

development tools, and programming languages [3].

In addition, for each attribute that is to be measured, it is also useful to identify

if it is internal or external. Internal attributes can be measured by examining the

product, process, or resource on its own, separate from its behaviour. Conversely,

external attributes can only be measured with respect to how the product, process,

or resource relates to its environment [3]. For example, usability is in general an

external attribute since its measurement often depends upon the interaction be-

tween user and application. An example classifying entities is presented in Table 1

[15].

The measurement of attributes generates quantitative descriptions of key proc-

esses, products, and resources, enabling us to understand behaviour and result.

This understanding in turn lets us select better techniques and tools to control and

improve our processes, products, and resources [19].

Web Engineering and Metrics 63

Table 1. Classification of process, product, and resources for the Tukutuku2 dataset

ENTITY ATTRIBUTE DESCRIPTION

PROCESS ENTITIES

PROJECT

 TYPEPROJ Type of project (new or enhancement).

 LANGS Implementation languages used.

 DOCPROC If project followed defined and documented

 process.

 PROIMPR If project team involved in a process improvement

programme.

 METRICS If project team part of a software metrics

 programme.

 DEVTEAM Size of project’s development team.

WEB DEVELOPMENT

 TOTEFF Actual total effort used to develop the Web

 application.

 ESTEFF Estimated total effort necessary to develop the

 Web application.

 ACCURACY Procedure used to record effort data.

PRODUCT ENTITY

WEB APPLICATION

 TYPEAPP Type of Web application developed.

 TOTWP Total number of Web pages (new and reused).

 NEWWP Total number of new Web pages.

 TOTIMG Total number of images (new and reused).

 NEWIMG Total number of new images your company

 created.

 HEFFDEV Minimum number of hours to develop a single

function/feature by one experienced developer that

is considered high (above average).

 HEFFADPT Minimum number of hours to adapt a single

function/feature by one experienced developer that

is considered high (above average).

 HFOTS Number of reused high-effort features/functions

without adaptation.

 HFOTSA Number of adapted high-effort features/functions.

 HNEW Number of new high-effort features/functions.

 FOTS Number of low-effort features off the shelf.

 FOTSA Number of low-effort features off the shelf adapted.

 NEW Number of new low-effort features/functions.

RESOURCE ENTITY

DEVELOPMENT

TEAM

 TEAMEXP Average team experience with the development

language(s) employed.

The measurement theory that has been adopted in this chapter is the Represen-

tational Theory of Measurement [3], which drives the definition of measurement

scales presented in the next Section.

2 The Tukutuku project collects data on industrial Web projects, for the development of ef-

fort estimation models and to benchmark productivity across and within Web companies.

See http://www.cs.auckland.ac.nz/tukutuku.

64 E. Mendes

2 Measurement Scales

When we gather data associated with the attributes that characterise the Entities

we wish to measure, they can be collected using a different measurement scale.

The characteristics of each scale type determine the choice of methods and statis-

tics that can be used to analyse the data that was measured using that scale type,

and how to interpret their corresponding measures. In this Section we describe the

five main scale types [3] [15]:

• Nominal

• Ordinal

• Interval

• Ratio

• Absolute

2.1 Nominal Scale Type

The Nominal scale type represents the most primitive form of measurement. It

identifies classes or categories where each category groups a set of Entities based

on their attribute’s value. Within this context, Entities can only be organised into

classes or categories, without any notion of ranking between classes. In addition,

classes can be represented as either symbols or numbers; however, if within this

context numbers do not have any numerical meaning.

Examples using a Nominal scale are given in Table 2.

Table 2. Examples of Nominal Scale Measures

Entity Attribute Categories

Web application type e-Commerce, Academic, Corporate, Entertainment

Programming language type ASP (VBScript, .Net), Coldfusion, J2EE (JSP,

Servlet, EJB), PHP

Web Project type New, Enhancement, Re-development

Web company service

type

1, 4, 5, 7, 9, 34, 502, 8

2.2 Ordinal Scale Type

The Ordinal scale supplements the Nominal scale with information about the rank-

ing of classes or categories. As with the Nominal scale, it also identifies classes or

categories where each category groups a set of Entities based on their attribute’s

value. The difference between an Ordinal scale and a Nominal scale is that an Or-

dinal scale assumes that there is some sort of ranking between classes. The same

way as with the Nominal scale, classes can be represented as symbols or numbers,

however if we use numbers they do not have any numerical meaning and represent

ranking only. This means that addition, subtraction and other arithmetic operations

cannot be applied to classes.

Web Engineering and Metrics 65

Examples of attributes measured using Ordinal scales are given in Table 3.

Table 3. Examples of Ordinal Scale Measures

Entity Attribute Categories

Web application complexity Very low, Low, Average, High, Very high

Web page design quality Very poor, Poor, Average, Good, Very good

Web Project priority 1,2,3,4,5,6,7

2.3 Interval Scale Type

The Interval scale supplements the Ordinal scale with information about the size

of the intervals that separate the classes or categories. As with the Nominal and

Ordinal scales, it also identifies classes or categories, where each category groups

a set of Entities based on their attribute’s value. As with the Ordinal scale, there

are ranks between classes or categories. The difference between an Interval scale

and an Ordinal scale is that here there is the notion that the size of intervals be-

tween classes or categories remains constant. Although the Interval scale is a nu-

merical scale and numbers have a numerical meaning, the class zero does not

mean the complete absence of the attribute being measured. To illustrate that, let’s

look at temperatures measured using the Celsius scale. The difference between

1°C and 2°C is the same as the difference between 6°C and 7°C: exactly 1°. There

is a ranking between two classes, thus 1°C has a lower rank than 2°C, and so on.

Finally, the temperature 0°C does not represent the complete absence of tempera-

ture, where molecular motion stops. In this example, 0°C was arbitrarily chosen to

represent the freezing point of water. This means that operations such as addition

and subtraction between two categories is permitted (e.g. 50°C - 20°C = 70°C -

40°C; 5°C + 25°C = 20°C + 10°C), however calculating the ratio of two categories

(e.g. 40°C/20°C) is not meaningful (40°C is not twice as hot as 20°C) so multipli-

cation and division cannot be calculated directly from categories. If ratios are to be

calculated, they need to be based on the differences between categories (e.g. 50°C

- 20°C is twice 25°C - 10°C).

Examples using an Interval scale are given in Table 4.

Table 4. Examples of Interval Scale Measures

Entity Attribute Categories

Web project Number of days relative to the starting point of a project 0,1,2,3,4,5,...

Human body Temperature (Celsius or Fahrenheit) Decimal

 numbers

2.4 Ratio Scale Type

The Ratio scale supplements the Interval scale with the existence of a zero ele-

ment, representing total absence of the attribute being measured. As with the

Interval scale, it also provides information about the size of the intervals that sepa-

rate the classes or categories. As with the Interval and Ordinal scales, there are

66 E. Mendes

ranks between classes or categories. As with the Interval, Ordinal and Nominal

scales, it also identifies classes or categories, where each category groups a set of

Entities based on their attribute’s value. The difference between a Ratio scale and

an Interval scale is the existence of an absolute zero. The Ratio scale is also a nu-

merical scale and numbers have a numerical meaning. This means that any arith-

metic operations between two categories are permitted.

Examples using a Ratio scale are given in Table 5.

Table 5. Examples of Ratio Scale Measures

Entity Attribute Categories

Web project Effort Decimal numbers

Web application Size Integer numbers

Human body Temperature in Kelvin Decimal numbers

2.5 Absolute Scale Type

The Absolute scale supplements the Ratio scale with restricting the classes or

categories to a specific unit of measurement. As with the Ratio scale, it also has a

zero element, representing total absence of the attribute being measured. As with

the Ratio and Interval scales, it also provides information about the size of the in-

tervals that separate the classes or categories. As with the Interval and Ordinal

scales, there are ranks between classes or categories. As with the Ratio, Interval,

Ordinal and Nominal scales, it also identifies classes or categories, where each

category groups a set of Entities based on their attribute’s value.

The difference between the Absolute and the Ratio scales is the existence in the

Absolute scale of a fixed unit of measurement associated with the attribute being

measured. For example, using a Ratio scale, if we were to measure the attribute ef-

fort of a Web project we could obtain an effort value that could represent effort in

number of hours, or effort in number of days, and so on. In case we want all effort

measures to be kept using number of hours we can convert effort in number of

days to effort in number of hours, or effort in number of weeks to effort in number

of hours. Thus, an attribute measured using a given unit of measurement (e.g.

number of weeks) can have its class converted into another using a different unit

of measurement, but keeping the meaning of the obtained data unchanged. There-

fore, assuming a single developer, a Web project’s effort of 40 hours is equivalent

to a Web project effort’s of a week. Thus, the unit of measurement changes how-

ever the data that has been gathered remains unaffected. If we were to measure the

attribute effort of a Web project using an Absolute scale we would need to deter-

mine in advance the unit of measurement to be used. Therefore, once this unit of

measurement is determined, it is the one used when effort data is being gathered.

Using our example on Web project’s effort, had the unit of measurement associ-

ated with the attribute effort chosen to be number of hours then all the effort data

gathered would represent effort in number of hours only.

Finally, as with the Ratio scale, operations between two categories, such as ad-

dition, subtraction, multiplication and division, are also permitted.

Web Engineering and Metrics 67

Examples using an Absolute scale are given in Table 6.

Table 6. Examples of Absolute Scale Measures

Entity Attribute Categories

Web project Effort, in number of hours Decimal numbers

Web application Size, in number of html files Integer numbers

Web developer Experience developing Web

 applications, in number of years

Integer numbers

2.6 Summary of Scale Types

Table 7 presents one of the summaries we are providing regarding Scale types. It

has been adapted from [14]. It is also important to note that the Nominal and Or-

dinal scales do not provide classes or categories that have numerical meaning, and

for this reason their attributes are called Categorical or Qualitative. Conversely,

given that the Interval, Ratio and Absolute scales provide classes or categories that

have numerical meaning, their attributes are called Numerical or Quantitative [14].

Table 7. Summary of Scale Type Definitions

Scale type
Is ranking meaningful?

Are distances

 between classes the

 same?

Does the class include

an absolute zero?

Nominal No No No

Ordinal Yes No No

Interval Yes Yes No

Ratio Yes Yes Yes

Absolute Yes Yes Yes

In relation to the statistics relevant to each measurement scale type, Table 8

presents a summary adapted from [3].

Table 8. Summary of Scale Type Definitions

Scale type

Examples of suitable

 statistics

Suitable statistical tests

Nominal Mode

Frequency

Non-parametric

Ordinal Median

Percentile

Non-parametric

Interval Mean

Standard deviation

Non-parametric and parametric

Ratio Mean

Geometric mean

Standard deviation

Non-parametric and parametric

Absolute Mean

Geometric mean

Standard deviation

Non-parametric and parametric

68 E. Mendes

3 Overview of Empirical Investigations

Validating a hypothesis or research question encompasses experimentation, which

is carried out using an empirical investigation (empirical study). This Section de-

tails the three different types of empirical investigations that are most often carried

out, which are: survey, case study or formal experiment [3][15].

• Survey: a retrospective investigation of an activity in order to confirm rela-

tionships and outcomes [3]. It is also known as “research-in-the-large” as it often

samples over large groups of projects. A survey should always be carried out after

the activity under focus has occurred [11]. When performing a survey, a researcher

has no control over the situation at hand, i.e. the situation can be documented,

compared to other similar situations, but none of the variables being investigated

can be manipulated. Within the scope of Web engineering, surveys are often used

to validate the response of organisations and developers to a new development

method, tool, or technique, or to reveal trends or relationships between relevant

variables. For example, a survey can be used to measure the success of changing

from Sun’s J2EE to Microsoft’s ASP.NET throughout an organisation, because it

can gather data from numerous projects. The downside of surveys is time. Gather-

ing data can take many months or even years, and the outcome may only be avail-

able after several projects have been completed [11].

• Case study: an investigation that examines the trends and relationships us-

ing as its basis a typical project within an organisation. It is also known as “re-

search-in-the-typical” [11]. Although a case study can be used to investigate a

retrospective event, this is not the usual trend. This type of study is the investiga-

tion of choice when wishing to examine an event that has not yet occurred and for

which there is little or no control over the variables. For example, if an organisa-

tion wants to investigate the effect of a programming framework on the quality of

the resulting Web application however cannot develop the same project using nu-

merous frameworks simultaneously, the investigative choice is to use a case study.

If the quality of the resulting Web application is higher than the organisation’s

quality baseline, it may be due to many different reasons (e.g. chance, or perhaps

bias from enthusiastic developers). Even if the programming framework had a le-

gitimate effect on quality, no conclusions outside the boundaries of the case study

can be drawn, i.e. the results of a case study cannot be generalised to every possi-

ble situation. Had the same application been developed several times, each time

using a different programming framework
3
 (as in a formal experiment, described

later) then it would be possible to have better understanding of the relationship be-

tween framework and quality, given that these variables were controlled. A case

study samples from the variables, rather than over them. This means that, in

3 The values for all other attributes should remain the same (e.g. developers, programming

experience, development tools, computing power, and type of application).

Web Engineering and Metrics 69

relation to the variable programming framework, a value that represents the frame-

work usually used on most projects will be the one chosen (e.g. J2EE). A case

study is easier to plan than a formal experiment, but its results are harder to ex-

plain and in addition, as previously mentioned, cannot be generalised outside the

scope of the study [11].

• Formal experiment: rigorous and controlled investigation of an event where

important variables are identified and manipulated such that their effect on the out-

come can be validated [3]. It is also known as “research-in-the-small” since it is

very difficult to carry out formal experiments in Web engineering using numerous

projects and resources. A formal experiment samples over the variable that is being

manipulated, such that all possible values that variable may have are validated, i.e.

there is a single case representing each possible situation. If we apply the same ex-

ample used when explaining case studies above, this means that several projects

would be developed, each using a different object-oriented programming language.

If one aims to obtain results that are largely applicable across various types of pro-

jects and processes, the choice of investigation is a formal experiment. However,

despite the control that needs to be exerted when planning and running a formal

experiment, its results cannot be generalised outside the experimental conditions.

For example, if an experiment demonstrates that J2EE improves the quality of

e-commerce Web applications, one cannot guarantee that J2EE will also improve

the quality of educational Web applications [11]. This type of investigation is most

suited to the Web engineering research community as it enables the building of

theories to be applied when engineering Web applications.

There are other concrete issues related to using a formal experiment or a case

study that may impact the choice of study. It may be feasible to control the vari-

ables, but at the expense of a very high cost or high degree of risk. If replicating a

study is possible however at a prohibitive cost, a case study should then be the

type of study used [3]. A summary of the characteristics of each type of empirical

investigation is given in Table 9.

Table 9. Summary Characteristics of the Three Types of Empirical Investigations

Characteristic Survey Case study Formal experiment

Scale Research-in-

 the-large

Research-in-the-

 typical

Research-in-the-small

Control No control Low level of

 control

High level of control

Replication No Low High

Generalisation Results

representative

of sampled

population

Only applicable

to other projects

of similar type

and size

Can be generalised within

the experimental

conditions

70 E. Mendes

There are a set of steps broadly common to all three types of investigations,

which are described below:

Define the Goal(s) of Your Investigation and Its Context

Goals are crucial for the success of all activities part of an empirical investiga-

tion. Thus, it is important to allow enough time to fully understand and set the

goals so that each one is clear and measurable. Goals represent the research ques-

tions, which may also correspond to a number of hypotheses. By setting the re-

search questions or hypotheses it becomes easier to identify the dependent and

independent variables that are to be measured as part of the investigation [3]. A

dependent variable is a variable whose behaviour we want to predict or explain,

and an independent variable is a variable believed to have a causal relationship

with, or have influence upon, the dependent variable [25]. For example, if we wish

to estimate the effort needed to develop a Web application and we believe that

Web application’s size and the number of Web developers influence development

effort, then we have development effort as our single dependent variable, and Web

application size and number of developers as the two independent variables.

Goals also help determine what the investigation will do, and what data is to be

collected. Finally, by understanding the goals we can also confirm if the type of

investigation chosen is the most suitable type to employ [3].

Each of the hypotheses being validated by means of an empirical investigation

will later be either supported or rejected. When stating the hypothesis/es being

validated it is customary to present them in two different forms – null and alterna-

tive hypotheses [25], as below:

H0 Using J2EE produces the same quality of Web applications as using

ASP.NET.

H1 Using J2EE produces a different quality of Web applications than using

ASP.NET.

H0 is called the null hypothesis, and assumes the quality of Web applications

developed using J2EE is similar to that of Web applications developed using

ASP.NET. In other words, it assumes that data samples for both groups of applica-

tions come from the same population. In this instance, we have two samples, one

representing quality values for Web applications developed using J2EE, and the

other, quality values for Web applications developed using ASP.NET. Here, qual-

ity is our dependent variable, and the choice of programming framework (e.g.

J2EE or ASP.NET), the independent variable.

H1 is called the alternative or research hypothesis, and represents what is be-

lieved to be true if the null hypothesis is false. The alternative hypothesis assumes

that samples do not come from the same sample population. Sometimes the direc-

tion of the relationship between dependent and independent variables is also pre-

sented as part of an alternative hypothesis. If H1 also suggested a direction for the

relationship, it could be described as:

H1 Using J2EE produces a better quality of Web applications than using

ASP.NET.

Web Engineering and Metrics 71

To support H1 it is first necessary to reject the null hypothesis and, second,

show that quality values for Web applications developed using J2EE are signifi-

cantly higher than quality values for Web applications developed using ASP.NET.

We have presented both null and alternative hypotheses since they are both

equally important when presenting the results of an empirical investigation, and,

as such, both should be documented.

To see if the data justify rejecting H0 we need to perform a statistical analysis.

Before carrying out a statistical analysis it is important to decide the level of con-

fidence we have that the data sample we gathered truly represents our population

of interest. If we have 95% confidence that the data sample we are using truly

represents the general population there still remains a 5% chance that H0 will be

rejected when in fact it truly represents the current situation. Rejecting H0 incor-

rectly is called the Type I error, and the probability of this occurring is called the

Significance level (α). Every statistical analysis test uses α when testing if H0

should be rejected or not.

4 Issues to Consider When Conducting Empirical Studies

In addition to defining the goals of an investigation, it is also important to docu-

ment the context of the investigation [12]. One suggested way to achieve this is to

provide a table, similar to Table 1, describing the entities, attributes, and measures

that are the focus of the investigation.

Prepare the Investigation

It is important to prepare an investigation carefully to obtain results from which

one can draw valid conclusions, even if these conclusions cannot be scaled up. For

case studies and formal experiments it is important to define the variables that can

influence the results, and once defined, decide how much control one can have

over them [3].

Consider the following case study which would represent a poorly prepared

investigation.

The case study aims to investigate, within a given organisation, the effect of us-

ing the programming framework J2EE on the quality of the resulting Web applica-

tion. Most Web projects in this organisation are developed using ASP.NET, and

consequently all the development team has experience with this language. The

type of application representative of the majority of applications this organisation

undertakes is in electronic commerce (e-commerce), and a typical development

team has two developers. Therefore, as part of the case study, an e-commerce ap-

plication is to be developed by two developers using J2EE. Because we have

stated this is a poorly executed case study, we will assume that no other variables

have been considered, or measured (e.g. developers’ experience, development

environment).

The e-commerce application is developed, and the results of the case study

show that the quality of the delivered application, measured as the number of

faults per Web page, is worse than that for the other similar Web applications

72 E. Mendes

developed using ASP.NET. When questioned as to why these were the results ob-

tained, the investigator seemed puzzled, and without a clear explanation.

What is missing?

The investigator should have anticipated that other variables can also have an

effect on the results of an investigation, and should therefore also be taken into ac-

count. One such variable is developers’ programming experience. Without meas-

uring experience prior to the case study, it is impossible to discern if the lower

quality is due to J2EE or to the effects of learning J2EE as the investigation pro-

ceeds. It is possible that one or both developers did not have experience with

J2EE, and lack of experience has interfered with the benefits of its use.

Variables such as developers’ experience should have been anticipated and if

possible controlled, or risk obtaining results that will be incorrect.

To control a variable is to determine a subset of values for use within the con-

text of the investigation from the complete set of possible values for that variable.

For example, using the same case study presented above, if the investigator had

measured developers’ experience with J2EE (e.g. low, medium, high), and was

able to control this variable, then (s)he could have determined that two developers

experienced with J2EE should participate in the case study. If there were no de-

velopers with experience in J2EE, two would be selected and trained.

If, when conducting a case study, it is not possible to control certain variables,

they should still be measured, and the results documented.

If, however, all variables are controllable, then the type of investigation to use

is a formal experiment.

Another important issue is to identify the population being studied and the

sampling technique used. For example, if a survey was designed to investigate the

extent to which project managers use automatic project management tools, then a

data sample of software programmers is not going to be representative of the

population that has been initially specified.

With formal experiments, it is important to describe the process by which ex-

perimental subjects and objects are selected and assigned to treatments [12], where

a treatment represents the new tool, programming language, or methodology you

want to evaluate. The experimental object, also known as experimental unit, repre-

sents the object to which the treatment is to be applied (e.g. development project,

Web application, code). The control object does not use or is not affected by the

treatment [3]. In Web engineering it is difficult to have a control in the same way

as in, say, formal medical experiments. For example, if you are investigating the

effect of a programming framework on quality, and your treatment is J2EE, you

cannot have a control that is “no programming framework” [12]. Therefore, many

formal experiments use as their control a baseline representing what is typical in

an organisation. Using the example given previously, our control would be

ASP.NET since it represents the typical programming framework used in the or-

ganisation. The experimental subject is the “who” applying the treatment [3].

As part of the preparation of an investigation we also include the preparation

and validation of data collection instruments. Examples are questionnaires, auto-

matic measurement tools, timing sheets, etc. Each has to be prepared carefully

such that it clearly and unambiguously identifies what is to be measured. For each

Web Engineering and Metrics 73

variable it is also important to identify its measurement scale and measurement

unit. So, if you are measuring effort, then you should also document its measure-

ment unit (e.g. person hours, person months) or else obtain incorrect and conflict-

ing data. It is also important to document at which stage during the investigation

the data collection takes place. If an investigation gathers data on developers’ pro-

gramming experience (before they develop a Web application), size and effort

used to design the application, and size and effort used to implement the applica-

tion, then a diagram, such as the one in Fig. 2, may be provided to all participants

to help clarify what instrument(s) to use and when to use them.

Functional
Requirements

Data and
Navigation

Design Implementation

Testing

Evaluation

1
st
 data collection point

questionnaire 1
2

nd
data collection point

questionnaire 2
3

rd
data collection point

questionnaire 3

Fig. 2. Plan Detailing When to Apply Each Project [15]

It is usual for instruments to be validated using pilot studies. A pilot study uses

similar conditions to those planned for the real investigation, such that any possi-

ble problems can be anticipated. It is highly recommended that those conducting

any empirical investigations use pilot studies as they can provide very useful feed-

back and reduce or remove any problems not previously anticipated.

Finally, it is also important to document the methods used to reduce any bias.

Analysing the Data and Reporting the Results

The main aspect of this final step is to understand the data collected and to apply

statistical techniques that are suitable for the research questions or hypotheses of

the investigation. For example, if the data was measured using a nominal or ordi-

nal scale then statistical techniques that use the mean cannot be applied as this

would violate the principles of the representational theory of measurement. If the

data is not normally distributed then it is possible to use non-parametric or robust

techniques, or transform the data to conform to the normal distribution [3]. Further

details on data analysis are presented later in this Chapter.

When interpreting and reporting the results of an empirical study it is also im-

portant to consider and discuss the validity of the results obtained. There are three

types of threats to the validity of empirical investigations [11][20]: construct va-

lidity, internal validity and external validity. Each is described below.

74 E. Mendes

Construct validity: represents the extent to which the measures you are using in

your investigation really measure the attributes of Entities being investigated. For

example, if you are measuring the size of a Web application using IFPUG function

points, can you say that the use of IFPUG function points is really measuring the

size of a Web application? How valid will the results of your investigation be if

you use IFPUG function points to measure a Web application’s size? Another ex-

ample, if you want to measure the experience of Web developers developing Web

applications and you use as a measure the number of years they worked for their

current employer, it is unlikely that you are using an appropriate measure since

your measure does not take into account as well their previous experience devel-

oping Web applications.

Internal validity: represents the extent to which external factors not controlled

by the researcher can affect the dependent variable. Suppose that, as part of an in-

vestigation, we observe that larger Web applications are related to more produc-

tive teams, compared to smaller Web applications. We must make sure that team

productivity is not being affected by using, for example, highly experienced de-

velopers to develop larger applications and less experienced developers to develop

smaller applications. If the researcher is unaware of developers’ experience it is

impossible to discern whether the results are due to developers’ experience or due

to legitimate economies of scale. Typical factors that can affect the internal valid-

ity of investigations are variations in human performance, learning effects where

participants’ skills improve as the investigation progresses, and differences in

treatments, data collection forms used or other experimental materials.

External validity: represents the extent to which we can generalise the results

of our investigation to our population of interest. In most empirical investigations

in Web engineering the population of interest often represents industrial practice.

Suppose you carried out a formal experiment with postgraduate students to com-

pare J2EE to ASP.NET, using as experimental object a small Web application. If

this application is not representative of industrial practice you cannot generalise

the results of your investigation beyond the context in which it took place. An-

other possible problem with this investigation might be the use of students as sub-

ject population. If you have not used Web development professionals, it will also

be difficult to generalise the results to industrial practice. Within the context of

this example, even if you had used Web development professionals in your inves-

tigation, if they did not represent a random sample of your population of interest

you would also be unable to generalise the results to your entire population of

interest.

5 Detailing Formal Experiments

A formal experiment is considered the most difficult type of investigation to carry

out since it has to be planned very carefully such that all the important factors are

controlled and documented, enabling its further replication. Due to the amount of

Web Engineering and Metrics 75

control that formal experiments use they can be further replicated and, when repli-

cated under identical conditions, if results are repeatable, they provide better basis

for building theories that explain our current understanding of a phenomenon of

interest. Another important point related to formal experiments is that the effects

of uncontrolled variables upon the results must be minimised. The way to mini-

mise such effect is to use randomisation. Randomisation represents the random as-

signment of treatments and experimental objects to experimental subjects.

The following sub-Sections discuss the typical experimental designs used with

formal experiments [26][15]; for each typical design, the types of statistical analy-

sis tests that can be used to examine the data gathered from such experiments are

also introduced.

5.1 Typical Design 1

There is one independent variable (factor) with two values and one dependent

variable. Suppose you are comparing the productivity between Web applications

developed using J2EE (treatment) and Web applications developed using

ASP.NET (control). 50 subjects are participating in the experiment and the ex-

perimental object is the same for both groups. Assuming other variables are con-

stant, subjects are randomly assigned to J2EE or ASP .NET (see Fig. 3).

Fig. 3. Example of One-Factor Design

Once productivity data is gathered for both groups the next step is to compare

the productivity data to check if productivity values for both development frame-

works come from the same population (H0) or from different populations (H1). If

the subjects in this experiment represent a large random sample or the productivity

data for each group is normally distributed you can use the independent samples t-

test statistical technique to compare the productivity between both groups. This is

a parametric test and as such it assumed that the data is normally distributed or the

sample is large and random. Otherwise, the statistical technique to use would be

the independent samples Mann-Whitney test, a non-parametric equivalent to the t-

test. Non-parametric tests make no assumptions related to the distribution of the

data and that is why they are used if you cannot guarantee that your data is nor-

mally distributed or represent a large random sample.

J2EE Group

(25)
ASP.NET Group

(25)

50 subjects

76 E. Mendes

5.2 Typical Design 1: One Factor and One Confounding Factor

There is one independent variable (factor) with two values and one dependent

variable. Suppose you are comparing the productivity between Web applications

developed using J2EE (treatment) and Web applications developed using

ASP.NET (control). 50 subjects are participating in the experiment and the ex-

perimental object is the same for both groups. A second factor (confounding fac-

tor) – gender, is believed to have an effect on productivity however you are only

interested in comparing different development frameworks and their effect on

productivity, not the interaction between gender and framework type on produc-

tivity. The solution is to create two blocks (see Fig. 4), one with all the female

subjects, and another with all the male subjects, and then, within each block, ran-

domly assign a similar number subjects to J2EE or ASP .NET (balancing).

Fig. 4. Example of Blocking and Balancing with One-Factor Design

Once productivity data is gathered for both groups the next step is to compare

the productivity data to check if productivity values for both groups come from

the same population (H0) or come from different populations (H1). The mechanism

used to analyse the data would be the same one presented previously. Two sets of

productivity values are compared, one containing productivity values for the 10

females and the 15 males who used J2EE, and the other containing productivity

values for the 10 females and the 15 males who used ASP.NET. If the subjects in

this experiment represent a large random sample or the productivity data for each

group is normally distributed you can use the independent samples t-test statistical

technique to compare the productivity between both groups. Otherwise, the statis-

tical technique to use would be the independent samples Mann-Whitney test, a

non-parametric equivalent to the t-test.

5.3 Typical Design 2

There is one independent variable (factor) with two values and one dependent variable.

Suppose you are comparing the productivity between Web applications developed us-

ing J2EE (treatment) and Web applications developed using ASP.NET (control). 50

subjects are participating in the experiment using the experimental object. You also

J2EE Group

(10)

50 people

ASP.NET

Group

(10)

J2EE Group
(15)

ASP.NET

Group

(15)

Females Males (30)

Web Engineering and Metrics 77

want every subject to be assigned to both the control and the treatment. Assuming

other variables are constant, subjects are randomly assigned to the control or the treat-

ment, and then swapped around (see Fig. 5).

Fig. 5. Example of Typical Design 2

Once productivity data is gathered for both groups the next step is to compare

the productivity data to check if productivity values for both groups come from

the same population (H0) or come from different populations (H1). Two sets of

productivity values are compared: the first contains productivity values for 50 sub-

jects when using J2EE; the second contains productivity values for the same 50

subjects, when using ASP.NET. Given that each subject was exposed to both con-

trol and treatment you need to use a paired test. If the subjects in this experiment

represent a large random sample or the productivity data for each group is nor-

mally distributed you can use the paired samples t-test statistical technique to

compare the productivity between both groups. Otherwise, the statistical technique

to use would be the two related samples Wilcoxon test, a non-parametric equiva-

lent to the paired samples t-test.

5.4 Typical Design 3

There is one independent variable (factor) with more than two values and one depend-

ent variable. Suppose you are comparing the productivity amongst Web applications

designed using Methods A, B and C. 60 subjects are participating in the experiment

and the experimental object is the same for all groups. Assuming other variables are

constant, subjects are randomly assigned to one of the three groups (see Fig. 6).

Fig. 6. Example of Typical Design 3

Method A
(20)

Method B
(20)

Method C
(20)

60 people

50 people

J2EE Group
(25)

ASP.NET
Group
(25)

J2EE Group
(25)

ASP.NET
Group
(25)

78 E. Mendes

Once productivity data is gathered for all the three groups the next step is to

compare the productivity data to check if productivity values for all groups come

from the same population (H0) or come from different populations (H1). Three sets

of productivity values are compared: the first contains productivity values for 20

subjects when using Method A; the second contains productivity values for an-

other 20 subjects when using Method B; the third contains productivity values for

another 20 subjects when using Method C. Given that each subject was exposed to

only a single method you need to use an independent samples test. If the subjects

in this experiment represent a large random sample or the productivity data for

each group is normally distributed you can use the One-Way ANOVA statistical

technique to compare the productivity among groups. Otherwise, the statistical

technique to use would be the Kruskal-Wallis H test, a non-parametric equivalent

to the One-Way ANOVA.

5.5 Typical Design 4

There are at least two independent variables (factors) and one dependent variable.

Suppose you are comparing the productivity between Web applications developed

using J2EE (treatment) and Web applications developed using ASP.NET (con-

trol). 60 subjects are participating in the experiment and the experimental object is

the same for both groups. A second factor – gender, is believed to have an effect

on productivity and you are interested in assessing the interaction between gender

and framework type on productivity. The solution is to create four blocks (see

Table 10) representing the total number of possible combinations. In this example

each factor has two values therefore the total number of combinations would be

given by multiplying the number of values in the first factor by the number of val-

ues in the second factor (2 multiplied by 2), which is equal to 4. Then, assuming

that all subjects have similar experience using both frameworks, within each gen-

der block, subjects are randomly assigned to J2EE or ASP .NET (balancing). In

this scenario each block will provide 15 productivity values.

Once productivity data is gathered for all the four blocks the next step is to

compare the productivity data to check if productivity values for males come from

the same population (H0) or come from different populations (H1), and the same

has to be done for females. Here productivity values for blocks 2 and 4 are

Table 10. Example of Typical Design 4

 Gender

 Female Male

J2EE
Female, J2EE (15)

Block 1

Male, J2EE (15)

Block 2

F
ra

m
ew

o
rk

ASP.NET
Female, ASP.NET (15)

Block 3

Male, ASP.NET (15)

Block 4

Web Engineering and Metrics 79

compared; and productivity values for blocks 1 and 3 are compared. If the subjects

in this experiment represent a large random sample or the productivity data for

each group is normally distributed you can use the independent samples t-test sta-

tistical technique to compare the productivity between groups. Otherwise, the sta-

tistical technique to use would be the Mann-Whitney test, a non-parametric

equivalent to the independent samples t-test.

5.6 Summary of Typical Designs

Table 11 summarises the statistical tests to be used with each of the typical de-

signs previously introduced. Each of these tests is explained in detail in statistical

books, such as [25].

Table 11. Examples of Statistical Tests for Typical Designs

Typical Design Parametric test Non-parametric test

Design 1 no explicit

confounding factor

Independent samples t-test Independent samples

Mann-Whitney test

Design 1 explicit

 confounding factor

Independent samples t-test Independent samples

Mann-Whitney test

Design 2 paired samples t-test Two-related samples

Wilcoxon test

Design 3 One-Way ANOVA Kruskal-Wallis H test

Design 4 independent samples t-test Mann-Whitney test

6 Detailing Case Studies

It is often the case that case studies are used in industrial settings to compare two

different technologies, tools or development methodologies. One of the technolo-

gies, tools or development methodologies represents what is currently used by the

company, and the other technology, tool or development methodology represents

what is being compared to the company’s current situation. Three mechanisms are

suggested to organise such comparisons to reduce bias and enforce internal

validity [26]:

• To compare the results of using the new technology, tool or development

methodology to a company’s baseline. A baseline generally represents an average

over a set of finished projects. For example, a company may have established a

productivity baseline against which to compare projects. This means that produc-

tivity data has been gathered from past finished projects and used to obtain an

average productivity (productivity baseline). If this is the case then the productiv-

ity related to the project that used the new technology, tool or development meth-

odology is compared against the existing productivity baseline, to assess if there

was productivity improvement or decline. In addition to productivity other base-

lines may also be used by a company, e.g. usability baseline, defect rate baseline.

80 E. Mendes

• To compare the results of using the new technology, tool or development

methodology to a company’s sister project, which is used as a baseline. This

means that two similar and comparable projects will be carried out, one using the

company’s current technology, tool or development methodology, and another us-

ing the new technology, tool or development methodology. Once both projects are

finished measures such as productivity, usability and actual effort can be used to

compare the results.

• Whenever the technology, tool or development methodology applies to in-

dividual application components, it is possible to apply at random the new technol-

ogy, tool or development methodology to some components and not to others. Later

measures such as productivity and actual effort can be used to compare the results.

7 Detailing Surveys

There are three important points to stress here. The first is that, similarly to formal

experiments and case studies, it is very important to define beforehand what is it

that we wish to investigate (hypotheses) and what is the population of interest. For

example, if you plan to conduct a survey to understand how Web applications are

currently developed the best population to use would be the one of Web project

managers as they have the complete understanding of the development process

used. Interviewing Web developers may lead to misleading results as it is often the

case that they do not see the forest for the trees.

The second point is related to piloting the survey. It is important to ask different

users, preferably representative of the population of interest, to read the instru-

ment(s) to be used for data collection to make sure questions are clear and no im-

portant questions are missing. It is also important to ask these users to actually an-

swer the questions in order to have a feel for how long it will take them to provide

the data being asked for. This should be a similar procedure if you are using

interviews.

Finally, the third point relates to the preparation of survey instruments. It is

generally the case that instruments will be either questionnaires or interviews. In

both cases instruments should be prepared with care and avoid misleading ques-

tions that can bias the results. If you use ordinary mail to post questionnaires to

users make sure you also include a pre-paid envelope addressed to yourself, to be

used to return the questionnaires. You can also alternatively have the same ques-

tionnaire available on the Web. Unfortunately the use of electronic mails as means

to broadcast a request to participate in a survey has been impaired by the advent of

spam emails. Many of us nowadays use filters to stop the receipt of unsolicited

junk emails and therefore many survey invitation requests may end up being

filtered and deleted.

8 Conclusions

This chapter discussed the need for empirical investigations in Web engineering,

and introduced the three main types of empirical investigation – surveys, case

studies, and formal experiments. Surveys are typically used when we wish to

Web Engineering and Metrics 81

gather data from events that have already occurred, and over a large sample that if

random can be used to generalise the results, to some extent, to the wider popula-

tion. This type of investigation is also known as research in the large. Case studies

represents studies conducted a typical context, and within the context of Web en-

gineering, this context would normally represent a Web company. The data gath-

ered from a case study is obtained as the case study is carried out, and the results

can only be generalised to other companies similar to the one where the case study

was carried out, or to similar projects to the one that was investigated. This type of

investigation is often referred to as research in the typical. Finally, formal experi-

ments aim to gather data that was gathered under a controlled setting, where the

variables being investigated can be manipulated. This control helps and is para-

mount to understand the phenomenon being investigated and to be used as input to

building a theory that details the phenomenon. Formal experiments are very diffi-

cult to carry out in industrial environments due to the amount of control they need,

so it is often the case that they are carried out using students as surrogates of more

junior Web developers. This type of investigation is known as research in the

small.

References

[1] Basili, V.R.: The role of experimentation in software engineering: past, current, and fu-

ture. In: Proceedings of the 18th International Conference on Software Engineering,

March 25-30, pp. 442–449 (1996)

[2] Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of experi-

ments. IEEE Transactions on Software Engineering 25(4), 456–473 (1999)

[3] Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach, 2nd

edn. PWS Publishing Company (1997)

[4] Gellersen, H., Wicke, R., Gaedke, M.: WebComposition: an object-oriented support

system for the Web engineering lifecycle. Journal of Computer Networks and ISDN

Systems 29(8-13), 865–1553 (1997); Proceedings of the Sixth International World

Wide Web Conference, pp. 429–1437 (1996)

[5] Gellersen, H.-W., Gaedke, M.: Object-oriented Web application development. IEEE

Internet Computing, 3(1), 60–68 (1999)

[6] Ginige, A.: Workshop on web engineering: Web engineering: managing the complex-

ity of Web systems development. In: Proceedings of the 14th International Conference

on Software Engineering and Knowledge Engineering, July 2002, pp. 72–729 (2002)

[7] Ginige, A., Murugesan, S.: Web engineering: an introduction. IEEE Multimedia 8(1),

14–18 (2001)

[8] Goldstein, M., Goldstein, I.F.: How we know: an exploration of the scientific process.

Plenum Press, New York (1978)

[9] Collins English Dictionary. Harper Collins Publishers (2000)

[10] The American Heritage Concise Dictionary, 3rd edn. Houghton Mifflin Company,

Boston (1994)

[11] Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool

evaluation. IEEE Software 12(4), 52–62 (1995)

82 E. Mendes

[12] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El

Emam, K., Rosenberg, J.: Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering 28(8), 721–734 (2002)

[13] Lee, S.C., Shirani, A.I.: A component based methodology for Web application devel-

opment. J. of Systems and Software 71(1-2), 177–187 (2004)

[14] Maxwell, K.: What you need to know about statistics. In: Mendes, E., Mosley, N.

(eds.) Web Engineering, pp. 365–407. Springer, Heidelberg (2005)

[15] Mendes, E.: Cost Estimation Techniques for Web Projects, 424 pages. IGI Global Pub-

lishers (2007); ISBN: 978-1-59904-135-3

[16] Murugesan, S., Desphande, Y.: Web Engineering, Managing Diversity and Complexity

of Web Application Development LNCS, vol. 2016. Springer, Heidelberg (2001)

[17] Murugesan, S., Deshpande, Y.: Meeting the challenges of web application develop-

ment: the web engineering approach. In: Proceedings of the 24th International Confer-

ence on Software Engineering, May 2002, pp. 687–688 (2002)

[18] Offutt, J.: Quality attributes of Web software applications. IEEE Software 19(2),

25–32 (2002)

[19] Pfleeger, S.L., Jeffery, R., Curtis, B., Kitchenham, B.: Status report on software meas-

urement. IEEE Software 14(2), 33–43 (1997)

[20] Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G.: An experiment to assess the cost-

benefits of code inspections in large scale software development. TSE 23(6), 329–346

(1997)

[21] Pressman, R.S.: Can Internet-based applications be engineered? IEEE Software 15(5),

104–110 (1998)

[22] Ricca, F., Tonella, P.: Analysis and testing of Web applications. In: Proceedings of the

23rd International Conference on Software Engineering, pp. 25–34 (2001)

[23] Taylor, M.J., McWilliam, J., Forsyth, H., Wade, S.: Methodologies and website devel-

opment: a survey of practice. Information and Software Technology 44(6), 381–391

(2002)

[24] Wikipedia, http://en.wikipedia.org/wiki/Main_Page (accessed on October 25, 2004)

[25] Wild, C., Seber, G.: Chance Encounters: a First Course in Data Analysis and Inference.

John Wiley & Sons, New York (2000)

[26] Wohlin, C., Host, M., Henningsson, K.: Empirical Research Methods in Web and Soft-

ware Engineering. In: Mendes, E., Mosley, N. (eds.) Web engineering, pp. 409–430.

Springer, Heidelberg (2005)

Chapter 4

Modern Web Technologies

Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis

Department of Computer & Communication Engineering,
University of Thessaly, Volos, Greece

Abstract. Nowadays, World Wide Web is one of the most signifi-
cant tools that people employ to seek information, locate new sources
of knowledge, communicate, share ideas and experiences or even pur-
chase products and make online bookings. The technologies adopted
by the modern Web applications are being discussed in this book
chapter. We summarize the most fundamental principles employed
by the Web such as the client-server model and the http protocol
and then we continue by presenting the current trends such as asyn-
chronous communications, distributed applications, cloud computing
and mobile Web applications. Finally, we conduct a short discussion
regarding the future of the Web and the technologies that are going
to play key roles in the deployment of novel applications.

1 Introduction

During the past few years we have witnessed a massive evolution in the
applications hosted on the World Wide Web. The obsolete, static Web sites
havebeen replacedby innumerable,novel services that changeddramatically
the manner that users navigate, purchase, communicate, think and make
decisions. New types of dynamic applications have been developed by using
the modern technologies and their participatory features have made them
extremely popular, since hundreds of millions of people use them on adaily
basis. Blogs, social networks, forums, search engines, wikis, mediasharing
services and office suites are only asmall subset of these applications, which
are collectively known as Web2.0.

Therefore,understandingthe technologies thatsupport the continuousex-
pansion of the Web is of significant importance. Since the field of Web tech-
nology constantly changes and evolves, researchersand developers are facing
the challenge of being early informed in order to investigate and propose
novel solutions tonewly posed problems. Note that some of the techniques
characterizingthe Web since its birth still exist and development must al-
ways obey tothe traditional rules set by them. One representative example
of these technologies is the HTTP protocol which, essentially, has been left
unchanged since 1995.

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 83–107.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

84 L. Akritidis, D. Katsaros, and P. Bozanis

However, the majority of the technologies have either been evolved, or
completely replaced by novel ones. In this chapter we present the state-of-
the-art technologies that are now vital in modern Web computing. Robust
design and efficient development of systems and applications deployed on the
Web is a topic of critical importance, since it determines the acceptance of a
system by the users and affects the commercial success of the product. Here
we discuss such topics along with some of the tools and issues involved in
this development.

At first, in Sections 2 and 3 we describe the basic networking models
adopted by the developers when building Web applications. The Client-Server
model is a basic computer networking architecture, which was established
before the Web explosion and it sets two types of devices; clients and servers.
On the other hand, the Peer-To-Peer model was developed later in order to
interconnect users and every device in such a network is treated equally.

Next, we present some of the basic characteristics of hypertext, the most
popular manner of publishing and distributing information across the entire
Internet. At first we provide some definitions and then we discuss how hy-
pertext is transferred and formatted by using HTTP (Section 5) and HTML
(Section 6), respectively.

The description of the basic principles of the XML language follows in Sec-
tion 7. XML is a tool gaining rapid acceptance by both users and developers
and it is mainly employed in order to transfer information in a fast and effec-
tive manner across different platforms. It is definitely becoming the method
of choice for the most modern Web applications such as news portals, blogs,
forums and even electronic stores publishing their product lists.

Javascript is one of the most popular scripting languages encountered on
the Web and millions of Web sites and applications use it for various pur-
poses. In Section 8 we present the basic characteristics of the scripting lan-
guages and especially Javascript. A family of modern technologies, AJAX, is
later described in Section 9. Nowadays, AJAX is a quickly expanding tool,
since it offers important solutions to the stateless nature of the HTTP and
the traditional Client-Server model. By submitting requests to a Web server
asynchronously, the AJAX-enabled Web pages can modify their content with-
out requiring to refresh their display. This family of technologies which is one
of the most important Web2.0 features, employs Javascript for scripting and
XML for transferring data between the client and the server. AJAX is cur-
rently being used by numerous Web services, such as email managers, global
and planetary mapping services, instant messengers, Web search engines and
others.

Finally, we discuss how Web applications are constructed and deployed.
In Section 10 we present some of the most popular programming and storage
tools and in the sequel, we describe some characteristic applications of the
Web, such as social networks, Web communities, office suites, and mobile
software.

Modern Web Technologies 85

Since the number of people using the Web constantly increases, one of the
main trends encountered today is the utilization of large clusters of computers
in order to handle the tremendous workloads. The first category of these
applications, discussed in Section 12, includes software which is distributed
across the computers of the users themselves and exploit their free resources
in order to solve complex scientific problems. In the second category, we
mainly encounter the popular cloud computing solutions (Section 13), which
employ thousands of interconnected servers usually hosted in one or more
data centers with the aim of addressing the huge traffic that millions of users
produce.

Concluding in Section 16, we provide a brief discussion regarding the pre-
sented technologies and the future of the Web.

2 The Client-Server Model

The Client-Server model is one of the most popular architectures for computer
networking. It utilizes two types of devices to address the communication
requirements of the terminals of a network; Clients and Servers. The model
can be used on the Internet as well as local area networks. Examples of
client-server systems on the Internet include email services, Web browsers,
Web servers and FTP clients and servers. It was originally developed to allow
multiple users to share access to database applications and offers improved
scalability because connections can be made as needed, rather than being
fixed.

Client

Client

Client

Server

Request

Request

Response

Response

Generic Applications

Authentication−Authorization

SOAP Services

FTP Server

SMTP Services

PHP Parser

Database Server

CGI Modules

Fig. 1. Typical Architecture of the Client-Server Model

86 L. Akritidis, D. Katsaros, and P. Bozanis

A Client is a device, typically a personal computer or a mobile device with
network software applications installed that request and receive information
over the network. On the other hand, a Server typically hosts applications
(including other servers), or stores files and databases. Server devices often
feature higher-powered equipment, greater processing performance and larger
storage capabilities than clients.

Figure 1 illustrates a typical communication of several remote machines ac-
cording to the Client-Server model. Network clients submit requests to a server
machine by transmitting messages. On the other side, servers respond to their
clients by processing each request and by sending the appropriate response
messages. In a typical Client-Server environment one server is utilized to sup-
port the traffic originated by multiple clients, whereas numerous servers can
be linked together in order to handle and address increased processing load.

The Client-Server model is employed by some of the most widespread
applications on the Internet. Such applications include FTP, email and Web
services and in each of these, the clients employ software of special type (an
Internet Browser, an email management program or an FTP client), allowing
them to connect and receive data from the corresponding servers.

3 The Peer-To-Peer (P2P) Model

Peer-To-Peer networks, often abbreviated to P2P, is a network architecture
alternative to the Client-Server model. However, instead of requiring central
coordination by a machine or software such as a server, all the devices (peers)
are treated equally. In such an architecture, every peer makes a portion of
its resources directly available to other peers, hence each network participant
is both a supplier and consumer. The resources that the peers may share
include network bandwidth, processing power and disk storage.

Fig. 2. Typical Architecture of a Peer-To-Peer network

Modern Web Technologies 87

This network architecture became really popular when file sharing ser-
vices (such as Napster, kazaa eMule and others) appeared on the Internet.
Their distributed architecture and the fact that no server is required, pro-
vides improved scalability, since computers may dynamically enter or leave
the network without significant impact.

Depending on how the connections among the peers are established, Peer-
To-Peer networks are divided into two categories: The structured and the
unstructured networks. The first category includes topologies where the con-
nections are fixed, whereas in the second category we encounter architec-
tures that do not provide any algorithm for organizing or optimizing these
connections.

The most popular application employing Peer-To-Peer technologies is the
file sharing services, where millions of users join a community in order to
request or provide media files, documents and software. There are also other
important types of applications such as instant messaging, online chat and
voice over IP where this network architecture finds remarkable utilization.

4 Hypertext

Currently, the information on the Web is mainly provided through documents
of special type, which provide inter-linking capabilities. Consequently, every
Web document (also known as Web page) may contain references to other
documents and resources and the user is able to immediately access these
resources by simply following the corresponding links.

All this functionality is provided through hypertext, a term coined by Ted
Nelson around 1965. Hypertext is a specific form of text containing dynamic
references to other resources. Although it is an old invention, it still remains
the main way of information propagation within the Web. Apart from running
simple text and links, hypertext may also contain headings, lists, tables,
images and other presentational devices.

Other means of interaction could also be present, such as a form to com-
plete and submit.

5 Hypertext Transfer

The requirement for retrieving inter-linked resources containing hypertext,
led to the establishment of HTTP (HyperText Transfer Protocol). The uti-
lization of HTTP imposed a set of rules and specifications allowing hypertext
documents to be transmitted and received. It is a generic, stateless protocol
which can be applied on many tasks beyond its use for hypertext, such as
name servers and distributed object management systems.

The specifications of the protocol obey the request-response standard,
which is typical in client-server computing. The client is usually an

88 L. Akritidis, D. Katsaros, and P. Bozanis

application (i.e. the user’s browsing software) running on the machine of an
end user, whereas the server is a computer program executed by the machine
hosting the Web site or service. The communication is conducted through
HTTP requests submitted by the client and HTTP responses returned by
the server. The responses are accompanied by specific code numbers which
indicate the status of the corresponding response. In other words, response
codes reveal whether the request has been served successfully, or whether an
error has occurred (including the type of the error).

HTTP is usually implemented on top of the TCP/IP protocol which con-
trols the reliable data transfers. However, this is not a constraint, since HTTP
can operate by using any other protocol which guarantees reliable transports.

Nowadays, there are two major versions of the protocol, HTTP/1.0 and
HTTP/1.1. According to [13] the latter improves the former by providing a
more efficient caching mechanism, and more effective bandwidth usage (the
introduced range requests allow a client to request portions of a resource).
Furthermore, while HTTP/1.0 included some support for compression, it did
not provide adequate mechanisms for negotiating its use, an issue addressed
by the newer version.

6 Hypertext Markup

The requirement for building Web documents of unique and personalized
style, layout and formatting, led to the introduction of a special markup lan-
guage which can be used by Web developers to construct their pages accord-
ing to their personal preferences. Moreover, the requirement for publishing
information that can be globally distributed, made the need for a universally
understood language imperative.

HTML, which stands for HyperText Markup Language, is now the pre-
dominant markup language for Web pages. It provides a set of command
(HTML tags) to create structured documents by denoting structural seman-
tics for text. Such semantics include tables, paragraphs, headings, lists, links
and numerous others. The need for interaction between a Web application
and the user is mainly satisfied by the introduction and usage of forms. These
forms are now used for conducting transactions with remote services, making
reservations, ordering products, etc

Finally, HTML allows the integration of scripts which are usually executed
by a Web client (browser) and Cascading Style Sheets (CSS) which is a
standard of parallel commands for explicit presentational markup.

There are several releases of HTML, but the most popular among them is
HTML 4.01 [1] also recommended by the W3C. In addition to the text, mul-
timedia, and hyperlink features of the previous versions, this version supports
more multimedia options (i.e. embedded videos), scripting languages, style
sheets, more printing facilities, improved support for right to left and mixed
direction text, frames and enhancements to forms, offering improved accessi-
bility for people with disabilities. HTML 4.01 is also more oriented towards

Modern Web Technologies 89

the internationalization of the Web documents since they can be written in
every language and be transported easily around the world.

7 XML

As we aforementioned in Subsection 6, HTML was designed to display Web
pages with focus on the manner that the data is presented to the user. The
need for a language that would focus on transportation and storage of data
led to the introduction of Extensible Markup Language or XML. Note that
XML is not a replacement for HTML, since the latter is mainly designed
for displaying information, whereas XML was created to structure, store,
and transport information. The precise design goals of the XML as set by
the World Wide Web Consortium [2] emphasize on the wide, fast and easy
usability that the standard must provide.

XML is a simple, very flexible text format derived from SGML (Stan-
dard Generalized Markup Language). It was originally designed in order to
provide convenient, uniform and platform-independent publishing of infor-
mation. Nowadays it is also playing an increasingly important role in the
exchange of a wide variety of data on the Web and elsewhere.

The documents of this type are composed of markup and content and
have both a logical and a physical structure. There are six kinds of markup
that may occur in an XML document: elements, entity references, comments,
processing instructions, marked sections, and document type declarations.
An entity may refer to other entities to cause their inclusion in the document
and furthermore, the logical and physical structures must nest properly.

To obtain the data contained in an XML document, we usually employ
especially designed applications known as XML parsers which are capable of
translating the structure of the document and generating data nodes. There
are many types of XML parsers with various capabilities. One of their most
remarkable feature is their ability to examine whether the document is well
formed. In general, XML parsers are more strict than HTML renderers and
the most sophisticated among them perform validation of the XML structure
and syntax. Hence, a document which does not conform to the XML grammar
or does not contain a proper document type declaration, is not considered
valid and cannot be parsed.

7.1 RSS Feeds

Really Simple Syndication (or RSS) is one of the most common applications of
the XML language. It is a family of feed formats mainly employed by authors
to publish frequently updated information. Such information includes news
headlines, multimedia content, blog posts, product catalogs (accompanied by
the corresponding availability data and prices), airline tickets and numerous
others. The RSS documents are built by using standard XML syntax and
their popularity increased rapidly after 2005.

90 L. Akritidis, D. Katsaros, and P. Bozanis

An RSS document (which is called a feed) includes text and meta-data such
as publishing dates, authorship and others. The generation and delivery of
information by using such feeds is beneficial for both publishers and readers.
More specifically, publishers are allowed to syndicate content automatically,
whereas readers are able to subscribe to temporal updates from preferred
sites, or to aggregate different RSS feeds originating from multiple sources.

A reader can access and extract the information stored in RSS feeds by
using specific software called an RSS reader or aggregator. Most modern Web
browsers include built-in RSS readers, whereas some new mobile devices have
their own reading software available. A standardized XML format allows the
information to be published once and viewed by many different programs.
The user subscribes to a feed by informing the corresponding reading soft-
ware about the desired feed. In turn, the reader checks the subscribed feeds
regularly for new publications and updates and informs the user accordingly.

8 Scripting

HTML is a powerful markup language offering the Web developers various
tools in order to format the Web pages that they build. However, it lacks pro-
gramming capabilities such as setting variables, computing values, handling
files etc. To cover this drawback, HTML provides the option of composing
external scripts that is, fragments of code written by programmers in order
to solve specific problems.

Scripts can be separated into two main categories: server-side and client-
side. The first category includes programs executed by the server and only the
result of the programm processing is returned to the end user. Furthermore,
this type of scripts may, or may not require compilation before they can be
executed. For example, PHP scripts do not require compilation, but there is
a dedicated parser running as a server module that handles runtime or syntax
errors. Therefore, in this case, no executable file is created, but the opposite
holds for server-side programs written in other programming languages (i.e.
ASP.NET).

In the second category we encounter scripts executed by the client (that
is, the user’s browser) and the code is integrated within the Web page itself.
All client-side scripts do not require compilation or parsing. This has the
cost of harder and slower debugging, since when an error is triggered, no
informative messages are generated and the execution is being terminated
silently. Therefore, the programmer has to examine and debug the entire
code in order to detect the specific portion causing the problem.

Nowadays, the most popular language on the Web offering client-side
scripting is Javascript. Javascript is used in millions of Web pages to add
functionality, validate form data, build visual effects, open pop-up windows
and there are many other applications. Another significant field, where it finds
application, is the development of enhanced user interfaces and dynamic Web
sites.

Modern Web Technologies 91

Furthermore, it offers event-driven programming that is, it allows the pro-
grammer to write code which is executed before or after a specific event is
triggered. Hence, a Web page may be modified without having to send any
data to the server and receive its response. For this reason, Javascript is ideal
for building robust Web applications with modern user interfaces, and it is
one of the main characteristics that the services of the next generation of
Web include.

9 Asynchronous Transfers and AJAX

The usage of the traditional request/response methods that the classic client-
server model imposed, prevented Web sites and browsers from providing a
fast and responsive user experience. For example, filling and submitting an
online form was inconvenient and time consuming, since all the requested
information had to be entered and then submitted to the machine hosting
the service (Web server). Then the server performed a validation of the form
data and if problems were detected, the user was obliged to refill and resubmit
the same form. The flow of information and the resulting experience was
inconstant and disconnected, reflecting the stateless nature of HTTP.

The introduction of Java applets offered a different route: this route in-
cluded asynchronous loading of content and allowed client-side code to load
data asynchronously from the Web server after a web page was fetched.
Moreover, the IFrame component of the HTML language and some intro-
duced ActiveX controls also enabled this to be achieved. More specifically,
these ActiveX controls included a special object, namely XMLHttpRequest1,
which was designed in order to submit requests to a server asynchronously.

AJAX (shorthand for Asynchronous JavaScript and XML) is a modern
Web technology introduced by the World Wide Web Consortium (W3C) in
20062. It is a group of interrelated web development techniques used on the
client-side to create interactive web applications. The applications employ-
ing AJAX technologies are capable of retrieving data from the server asyn-
chronously in the background, without having to interfere with the display
and behavior of the currently loaded page.

In Figure 3 we illustrate how the usage of AJAX technologies in modern
Web applications offers uninterrupted user experience. The left diagram of
this Figure depicts how the user and the remote server communicate accord-
ing to the traditional client-server model. Note the idle times in the side of the
client; these are the times required to transfer the desired data between the
client and the server and also concern the time the server consumes to process
this data and return a response to the end user. In the AJAX environment,
the user experiences no idle times, since the asynchronous communications
between the browser and the server offer continuous work flow.

1 http://www.w3.org/TR/XMLHttpRequest/
2 http://www.w3.org/standards/webdesign/script

92 L. Akritidis, D. Katsaros, and P. Bozanis

Job in Progress Job in Progress

CLIENT

data transferdata transfer

Idle Time Idle Time

Idle Time

Job in Progress

SERVER

BROWSER USER INTERFACE

AJAX

User Activity

AJAX Processing
input display

displayinput

SERVER

Idle Time Idle Time Idle Time

Server
Processing

Fig. 3. AJAX asynchronous data transfer model (right) vs traditional client server
workflow model (left)

In the sequel, let us provide some of the main benefits deriving from the
usage of AJAX techniques. At first, in many cases, some pages on a Web site
include content that is common among them. The usage of traditional meth-
ods required that this content would have to be reloaded on every request.
However, by employing AJAX an application can request only the content
that needs to be updated. Therefore, we manage to drastically reduce both
the usage of valuable bandwidth usage and load time.

In addition, the utilization of asynchronous requests allows the interface of
the client’s browser to be more interactive and to respond quickly to inputs.
Several portions of pages can be reloaded individually and the users may per-
ceive the application to be faster or more responsive, even if the application
has not changed on the server side.

Finally, with AJAX we can minimize connections to the Web server, since
external files such as scripts and style sheets only have to be requested once.
Programmatically, this means that the local variables will retain their values,
because the main container page need not be reloaded.

For all these reasons, the usage of these techniques has led to a signif-
icant increase to the applications providing interactive and dynamic user
interfaces[2][3]. Some of the most common services employing AJAX
techniques are:

– Mailbox management applications, where the entire user interface is de-
signed to allow composition, reading and deletion of messages without
refreshing the display. Moreover when a new message arrives it is added
to the in-box automatically without requiring the user to refresh the page.

Modern Web Technologies 93

– The new technology allowed the introduction of modern Web instant
messengers. These services are constructed in such a way that allow their
users to exchange their messages instantly. Their main characteristic is
that each time a message is sent or received, only its content is loaded by
the client and the entire interface remains unchanged.

– Global Maps Services employ the asynchronous features of AJAX to allow
their users navigate through the surface of the planet. They also provide
magnification potentials by directly accepting data from satellites.

– The novel translation services now operating on the Web offer their users
new functionality. They are capable of accepting words or even sentences
and paragraphs written in a specific language and, as the user types, they
translate the content into another language.

– A huge amount of other smaller services is now built by using asyn-
chronous technologies. Such services include result retrieval in the major
commercial search engines, spelling correction, auto-complete features (as
the user types his/her query, current search engines fetch similar entries
from their query logs and present them on the fly below the text box),

Nevertheless, the remarkable new features and functionality introduced by
the AJAX technologies do not come without costs. The main drawback is that
the interfaces constructed by using AJAX are substantially more difficult to
develop than static pages. Pages dynamically created using successive AJAX
requests do not automatically register themselves with the browser’s history
engine and this may raise problems regarding the user’s navigation on the
Web. For example, it is possible that when a user clicks the “Back” button
of the Web browser, he/she will not return to an earlier state of the AJAX-
enabled page, but may instead return them to the last full page visited before
it. Dynamic web page updates also make it difficult for a user to bookmark
a particular state of the application.

Web crawlers are computer programs developed by the search engines in
order to browse the Web in a methodical, automated manner. However, since
the majority of the Web crawlers do not execute Javascript code, applications
indexed by search engines should provide means for accessing the content ac-
tually retrieved with AJAX. Note that any user whose browser does not
support Javascript or XMLHttpRequest, or simply has this functionality dis-
abled, will not be able to properly display and use pages which depend on
AJAX. Similarly, devices such as mobile devices and screen readers may not
have support for the required technologies.

Finally, like other web technologies, AJAX has its own set of vulnerabilities
that developers must address. Developers familiar with other web technolo-
gies may have to learn new testing and coding methods to write secure AJAX
applications.

94 L. Akritidis, D. Katsaros, and P. Bozanis

10 Application Deployment

In this subsection we present some of the main tools and technologies em-
ployed by the modern Web applications.

10.1 Database Servers

Currently, XML is the dominant technology to publish and distribute semi-
structured information on the Web. However, there are types of applications
that require their data to be organized in a more robust and structured
manner. Such applications include electronic stores, social networks, forums,
search engines and others which usually have to deal with massive amounts
of data.

Database Management Systems (or DBMS) is a tool developed to offer
efficient organization, storage, management and retrieval of an application’s
data. These systems usually reside in dedicated machines and offer database
services to other computers and applications. Instead of having to write com-
puter programs to store and extract information, user can ask simple ques-
tions in a supported query language. Thus, many DBMS packages provide a
structured query language (SQL) and other application development features.

Within a typical DBMS, data is organized into records which is a col-
lection of data regarding a physical entity (i.e. an employee, a book, or a
product). Each record consists of numerous user-defined fields, that are able
to store information of different types (text, binary data, integers and floats,
time stamps, dates and several others which vary across different DBMSs).
Records of the same type are again grouped within tables. Databases provide
an efficient manner of separating the application logic from the data logic,
therefore, different applications can cooperate with the same database.

One of the most important characteristics offered by Database Manage-
ment Systems is the indexing feature. An index is an auxiliary data structure
usually implemented in a form of a tree such as B-Tree, to allow fast and
efficient data access and retrieval. The indexes also allow effective sorting of
the returned records and offer fast organization (i.e. grouping of records).

Other features commonly offered by database management systems
include:

– Restricted access to resources and attributes. Each user of the system is
assigned privileges which determine whether he or she has read or write
access to several resources and attributes of the database. These privileges
are assigned by individuals, or groups of individuals maintaining elevated
authority across the entire system.

– Data safety and integrity are of critical importance for every informa-
tional system, hence copies of attributes are required to made regularly
in case of equipment failure. DBMS usually provide utilities to facilitate
the process of extracting and disseminating attribute sets.

Modern Web Technologies 95

– Data retrieval by submitting queries. Instead of composing special soft-
ware to obtain and format the data stored within a database, most mod-
ern systems accept structured queries which usually follow the simple
syntax of a structured query language. By submitting queries we request
attribute information from various perspectives and combinations of fac-
tors (i.e. who are the male clients that purchased a specific product?).
Queries can also be submitted to the database in order to insert, update
or delete data, according to the privileges each user is granted.

The introduction of World Wide Web in 1995 imposed new challenges for
database systems. Researchers realized that the traditional database man-
agement techniques were becoming too complex and there was a need for
automated configuration and management. For example, online transactions
have become extremely popular with the evolution of the e-business world.
Consumers and businesses are able to purchase products and make payments
securely on corporal Web sites.

In addition, Web search engines have even been remarkably influenced by
database management. Using technologies similar to the ones employed by
current database systems, these services are able to accept user queries and
locate data across the entire the Web.

10.2 Hypertext Preprocessor - PHP

PHP is one of the most widespread scripting languages used to deploy Web
applications. The rich features it offers combined with the natural easiness
and the open source characteristics, have made it the second most popular
scripting language encountered on the Web [4]. Although there is a general
intuition that PHP is mainly preferred for constructing small or medium
sized applications, several large-scale Web sites serving hundreds of millions
of users worldwide, such as Facebook, Wikipedia and Wordpress have been
developed with it. Currently, PHP is installed on over 20 million sites and 1
million Web servers [3].

It was originally designed for the development of Web applications, in order
to produce dynamic pages. PHP scripts can be embedded into HTML and
they generally run on a Web server (server-side scripting), which needs to be
configured properly to execute PHP code. It can be deployed on most Web
servers and on almost every operating system and platform.

PHP scripts are phrased by following a C-style coding syntax and all the
allocated resources are released after the script execution by an automatic
garbage collection mechanism. Since its fifth version, it also supports the
object-oriented programming style by adopting principles such as abstract
data types and information hiding, inheritance and polymorphism. Moreover,
it includes features such as variables, arrays and associative arrays setting
and manipulation, conditional statements, loops, function setting and file
handling. Apart from these classic characteristics, PHP allows programming

96 L. Akritidis, D. Katsaros, and P. Bozanis

of the HTTP protocol by providing access to HTTP sessions and cookies and,
furthermore, by implementing secure file uploads.

One of the most robust features of PHP is its native support to MySQL,
SQLite and PostgresSQL database systems. Through built-in functions and
classes, PHP scripts can easily connect to database servers, submit queries
and retrieve data. The combination of PHP and MySQL is one of the most
common techniques currently employed by the developers when building Web
applications.

10.3 Active Server Pages - ASP/ASP.NET

Another popular server-side scripting technology that is competent to PHP
is Active Server Pages. It has been introduced by Microsoft and provides to
the developers robust tools in order to create dynamic and interactive Web
applications. Similarly to the PHP documents, an ASP page is a standard
HTML document which contains server-side scripts. The scripts are processed
by a properly configured Web server which sends the processing output to
the user’s browser.

In contrast to PHP, ASP is not a scripting language, but rather a technol-
ogy used to produce dynamic pages when a browser requests ASP files from a
Web server. The default scripting language employed for scripts composition
is VBScript, although alternative languages like JScript (Microsoft’s version
of Javascript) can also be used. When an ASP script is called, the server
processes the requested file from top to bottom and executes the commands
it contains. It the sequel, it generates and formats a standard Web page and
sends it to the browser.

During 2002, Microsoft released a large set of coded solutions to com-
mon programming problems. This library, known as the .NET Framework,
includes solutions regarding user interface design, data access and process-
ing, database connectivity and development of dynamic Web applications,
whereas the programmers are able combine its classes with their own work.

In addition, the library includes a virtual engine able to execute the soft-
ware written specifically for the framework. The applications developed with
the .NET Framework are deployed in a special environment which manages
their runtime requirements. This runtime environment, which is known as the
Common Language Runtime (CLR), allows the programmers to work without
considering the capabilities or the specifications of the specific machine that
will execute their program. The CLR also provides other important services
such as security, memory management, and exception handling.

Along with the release of the .NET Framework, Microsoft also introduced
ASP.NET, an enhanced version of ASP used to produce dynamic Web sites,
applications and services. The new development framework is built upon the

Modern Web Technologies 97

CLR and allows programmers to compose software by employing any of the
supported languages such as the VB.NET (Visual Basic .NET), C#, J# and
others. Moreover it offers the ability to construct applications by using an
event-driven user interface model, in contrast to the conventional scripting
environments such as ASP and PHP.

10.4 Java Server Pages - JSP

Java Server Pages or simply JSP, is another technology used to deploy dy-
namic Web applications, by allowing Java code to be embedded into the
content of a regular static page. The code is not pre-compiled, but it is ac-
tually being compiled on the server at each page request similarly to PHP.
The Web pages that are created by using JSP are loaded in the server and
handled by a special Java server packet, called the J2EE Web Application.

JSP Input

Program
Java

Servlet
Class

Java

Client Server

Read

Generate

Execute

Request JSP File

Response

Fig. 4. JSP page translation and processing phases

The processing of the a JSP page is performed in two phases. At first, we
employ a typical JSP compiler which converts the input file into a servlet,
that is, a particular Java class that responds to HTTP requests. In the sequel,
the servlet can be either compiled by a Java compiler and generate a standard
Java program, or be converted to a directly executable byte code. Figure 4
illustrates the procedure of translating and processing JSP pages.

JSP is currently an alternative method to PHP and ASP, allowing develop-
ers to construct dynamic Web sites and services by writing their code in Java.
Although it provides rich features and offers almost equivalent possibilities,
it is not as popular as the other two aforementioned technologies.

11 SOAP

A protocol which gained attention during the past few years is the Simple
Object Access Protocol, or simply SOAP. It is a simple XML-based protocol

98 L. Akritidis, D. Katsaros, and P. Bozanis

which allows the applications to exchange structured or semi-structured in-
formation over HTTP. Its messages follow the standard XML syntax, whereas
the trasmission/receive procedure is handled by other application protocols,
such as the HTTP. SOAP specifies exactly how to encode an HTTP header
and an XML file, so that a program in one terminal can call a program in
another terminal and transmit information to it. It also specifies how the
called software can return a response.

In details, SOAP messages consist of three parts:

– An envelope which describes the content of the message and instructions
about how this content should be processed,

– a set of rules containing the data types defined within the application
and

– a convention which represents procedure calls and responses

Some of the applications operating on the Web require the transmission and
processing of attached binary files (i.e. images or documents). But since all
the parts of a SOAP message must conform to the strict XML standards,
binary data cannot be included directly into the message (they contain char-
acters and sequences not allowed by the official XML rules). Furthermore, the
inclusion of binary data within the message itself, would render the majority
of the parsers inefficient; some of them initially read and process the entire
SOAP message before deciding what to do with the contents. This operation
requires large amounts of memory and processing power. For all these rea-
sons it was decided that SOAP requires some mechanism for carrying large
payloads and binary data as an attachment rather than inside the SOAP
message envelope.

To cover such issues, third parties released a set of specifications which
determine how binary pfiles should be attached to a SOAP message. The most
common set of specifications is the the JSR-67 (Java Specification Request)
which included the SAAJ (SOAP with Attachments API for Java) standard.

The main advantage of SOAP is the integrated simplicity and extensi-
bility. The protocol allows easier and more robust communication between
proxy servers and firewall applications along with the language and plat-
form independence. In addition, using HTTP is not obligatory, since SOAP
also supports the usage of different transfer protocols, such as SMTP. The
transmitted packets not only include the content of the message, but also
sufficient information describing how this content should be processed by the
receiver. However, the verbose XML format that SOAP employs can render
it relatively slower than other solutions.

Since one of the most common purposes of Web services is to exchange
XML data, SOAP is rapidly becoming the generally accepted protocol for
XML-based systems communication. For example, Web search engines APIs
make wide use of SOAP. In addition, numerous stock quote services, weather
services or news portals, employ it in order to transmit and receive data
formatted in the XML language.

Modern Web Technologies 99

12 Distributed Applications

Distributed computing is one of the most discussed and hot topics in com-
puter science. It refers to partitioning a large or complex problem into several
smaller parts and assigning each of these parts to a machine that belongs to a
wider cluster of processing nodes (also called workers). When each of the pro-
cessing nodes finishes its computations, the distributed solutions are merged
to form the final solution of the problem. In such a distributed environment,
a central coordinator is usually employed in order to synchronize and send
messages to the processing nodes.

Of course, distributed computing is not a pure Web technology. However,
there are some projects which utilize the machines of the Web users in order
to solve large scientific problems. These projects exploit the free (or idle) re-
sources (mainly the processing power) of thousands or even millions machines
of Web users in order to compute the solution of a small fraction of a huge
problem.

Folding@home is one of the world’s largest distributed computing projects
developed with the official goal of “understanding protein folding and related
diseases”. It does not rely on powerful supercomputers for processing the
available data; instead, the primary contributors to the project are many
hundreds of thousands of personal computer users who have installed a client
program. The client runs in the background, utilizing the unused resources,
whereas it periodically connects to a server in order to retrieve new data and
continue the calculations, or send back the produced results.

Seti@Home is a similar project which exploits the computers of Web users
with the aim of performing Search for Extraterrestrial Intelligence (SETI)
by analyzing radio signals. Similarly to the Folding@Home project, the users
download and install a client software which is capable of processing data
generated by radio telescopes. The client exploits the unused resources of
the machine it is installed on and proves the viability and practicality of the
distributed grid computing concept.

13 Cloud Computing

Cloud computing is a recent trend in Computer Science that moves comput-
ing and data away from desktop and portable PCs into large data centers. It
refers to applications delivered as services over the Internet, as well as to the
actual cloud infrastructure. Currently, the main technical characteristics of
cloud computing services include virtualization, grid computing technologies,
service-oriented software management of large facilities and power efficiency.

Within a cloud computing environment, applications and services are pro-
vided in the following three forms:

– Platform-as-a-Service (PaaS) The term PaaS denotes the allotment of a
large computing platform over the Web. The service enables the develop-
ers to create Web applications rapidly, without concerning the cost and

100 L. Akritidis, D. Katsaros, and P. Bozanis

complexity of buying and managing the underlying software and hard-
ware, since servers, databases, security software and several frameworks
are provided by the service itself. The applications developed and deliv-
ered under a PaaS environment are referred as On-Demand or as Software
as a Service (SaaS) Applications.

– Software-as-a-Service (SaaS) SaaS is a another form of cloud computing
services and through it, companies, organizations and users can access
software and large amounts of computing power without having to pur-
chase it. Instead, SaaS adopts a business model according to which a
client of a cloud computing service pays only the processing power it
consumes. The applications are hosted by another hosting company in
a large computing cluster, hence the maintenance and setup operations
along with the security issues are of no concern for the users. GMail is
a representative example of an application designed to operate according
to the SaaS model.

– Infrastructure-as-a-Service (IaaS) This model has its origins in thin com-
puting techniques that have been evolving since the previous decade. In
general, the term refers to the principle that instead of having a network
infrastructure on its own installation, a company can rent space from a
service provider and use it across the internet. With IaaS, customers are
provided with the ability to choose the hardware and some basic software
servers for their part of the cloud and then transfer their applications and
data on these machines. Virtualisation enables IaaS providers to offer al-
most unlimited instances of servers to customers and make cost-effective
use of the hosting hardware.

Zoho

Amazon

IBM

Salesforce
Yahoo!

Microsoft

Google

Rackspace

Mosso

The Cloud

Server

Server

PC

PC

PC

Notebook

Netbook

Mobile
Devices

Database

Fig. 5. The Cloud

Modern Web Technologies 101

We can distinguish two different architectural models for the clouds: the first
one is designed to scale out by providing additional computing instances
on demand. Clouds can use these instances to supply services in the form
of SaaS and PaaS. The second architectural model is designed to provide
data and compute-intensive applications via scaling capacity. In most cases
clouds provide on-demand computing instances by adopting a “pay-as-you-
go” economic model.

Regarding service provisioning, the providers supply cloud services by sign-
ing service-level agreements (SLAs) with consumers and end-users. These
agreements concern the amount of the processing power and bandwidth the
user’s applications consume at any given time through a specific period (day
or month). The estimation of the resource provisioning is a task of critical im-
portance since a possible underestimation would lead to broken SLAs, service
interruption and other penalties. On the other hand, overestimating the pro-
vision of resources would lead to resource underutilization and, consequently,
a decrease in the revenue for the provider.

Deploying an autonomous system to efficiently provision services in a
cloud infrastructure is a challenging problem due to the unpredictability
of consumer demand, software and hardware failures, heterogenity services,
power mangement and conflicting signed SLAs between consumers and ser-
vice providers.

In terms of cloud economics, the provider should offer resource-economic
services. Novel, power efficient schemes for caching, query processing and
thermal management are mandatory due to the increasing amount of waste
heat that data centers dissipate for Internet-based application services. More-
over, new pricing models based on the pay-as-you-go policy are necessary to
address the highly variable demand for cloud resources.

Cloud computing is a disruptive technology with profound implications
not only for Internet services but also for the entire IT field. Its emergence
promises to streamline the on-demand provisioning of software, hardware and
data as a service, achieving economies of scale in IT solutions’ deployment
and operation.

Still, several outstanding issues exist, particularly related to service-level
agreements (SLAs), security and privacy, and power efficiency. Other open is-
sues include ownership, data transfer bottlenecks, performance unpredictabil-
ity, reliability and software licensing issues. Several companies have already
built Internet consumer services such as search, social networking, Web email,
and online commerce that use cloud computing infrastructure.

14 The Mobile Web

During the past few years, the mobile devices have played a key role in
the market of telecommunications. By offering significant features such as
small sizes, light weights, efficient power consumption, ability for direct user-
to-user communication, affordable prices and remarkable processing power,

102 L. Akritidis, D. Katsaros, and P. Bozanis

they have attracted hundreds of millions of consumers. The market of mobile
devices is expected to experience an impressive growth over the following few
years [5] and recently, numerous manufacturers have included Web browsing
capabilities to their products.

According to the inventor of the Web Tim Berners-Lee, “the Mobile Web
initiative goal is to make browsing the Web from mobile devices a real-
ity”. By employing browsers particularly designed for mobile devices (mobile
browsers), mobile Web access is becoming increasingly popular. Since a large
desktop system is not required any more to access the Web, users are provided
with the ability to work online at all times in all situations. Curren mobile
Web browsers retain the main functionality offered by the respective desktop
applications, such as basic browsing, form completion and submission and
generic transactions.

However, there are still some problems that need to be confronted and
interoperability is the most significant among them. It derives from the the
existence of many different platforms with various operating systems and
browsers. In addition, the limited size of these devices and the small display
sizes raise important usability issues.

Within the Mobile Web, the information is published and delivered via
lightweight pages written in XHTML or WML (Wireless Markup Language).
The new versions of the mobile browsers raise these limitation by supporting a
wider range of Web formats, including variants of HTML commonly found on
the desktop Web. In addition, W3C have published a set of recommendations
[6] to Web site creators and developers who desire their applications to be
fully accessible from mobile devices.

15 Web 2.0 Applications

Web 2.0 is a widespread term which reveals the evolution we have witnessed
in the World Wide Web and the applications hosted on it. The definition of
Web 2.0 [10] does not refer to an update to the technical specifications char-
acterizing the Web, but rather to fundamental changes in the manner that
application developers and users exploit it. Therefore, the Web is currently
treated as a platform, where new applications are built upon it, similarly to
how applications are developed and deployed upon the desktop platform.

The new version of the Web is usually connected with web applications
that offer participatory and sharing features. More generally, the main char-
acteristic that a Web 2.0 application has, is its user-centered design. That
is, the information is not simply provided to the users, but the users con-
tribute to it by expressing and publishing their own knowledge, experiences
and opinion. In such an environment, the users are not limited in a traditional
passive role, but they dynamically determine the content of a Web site.

This design has led to the introduction of numerous novel services such
as Web communities, social networks, media sharing services, wikis, blogs,
forums, online auctions and numerous others. In this Section we provide brief

Modern Web Technologies 103

descriptions of the most popular Web 2.0 sites, applications and services.
Of course, we do not intend to provide a complete directory of the most
significant Web 2.0 applications, but we rather exhibit some of their major
features which made them extremely popular during the past few years.

15.1 Web Communities

One of the major benefits which derived from the introduction of Web 2.0,
was the participatory features that were integrated within the traditional
Web sites. These features lead to the deployment of novel services with in-
teractive characteristics and generated new architecture models by providing
additional possibilities to the Web users. One of these introduced models al-
lowed the users to communicate in environments that are currently known as
social networks. Social networks function like online communities, where their
members share common interests in hobbies, religion, or politics. Examples
of Web communities include social networking sites, forums and community
blogs.

Blogs are locations on the Web where individuals (the bloggers) express
opinions or experiences about a subject. Such entries are called blog posts
and may contain text, images, embedded videos or sounds and hyperlinks to
other blog posts and Web pages. On the other hand, the readers are provided
with the ability to submit their own comments in order to express their
agreement or disagreement to the ideas or opinions contained in the blog
post. The comments are usually placed below the post, displayed in reverse
chronological order. The virtual universe that contains all blogs is known as
the Blogosphere and accommodates two types of blogs: a) individual blogs,
maintained and updated by one blogger (the blog owner), and b) community
blogs, or multi-authored blogs, where several bloggers may start discussions
about a product or event.

In a physical community, people use to consult others about a variety of
issues such as which restaurant to choose, which medication to buy, which
place to visit or which movie to watch. Similarly, the Blogosphere is a virtual
world where bloggers buy, travel and make decisions after they listen to the
opinions, knowledge, suggestions and experience of other bloggers.

There is a significant reasearch towards identifying the influential members
of the major online communities such as blogs [11,12] and Twitter [14,15].
The problem of identifying the influentials is of remarkable importance, be-
cause such members act as direct or indirect advertisers of products, events,
companies, brands or even travel locations.

15.2 Social Networks

A social network is a group of individuals sharing common experiences, knowl-
edge and ideas. These individuals are usually grouped within social structures
such as communities or neighborhoods. The introduction of Web 2.0 along

104 L. Akritidis, D. Katsaros, and P. Bozanis

with the participatory features of the applications it established have led to
the creation of numerous social networking Web sites which function as online
communities for their members.

Many of these online community members share common interests, beliefs,
knowledge, hobbies, religion, or politics. The users who are granted access
to a social network are free to construct their profile by filling information
regarding their name, email, education and geographic location or describe
their habits and personal interests. File uploading is also one of the provided
features and these files usually include online games, documents and personal
photographes. Furthermore, the members of such a community are free to
read the profile pages of other members and contact them.

According to sources published in Wikipedia [7] there are typically sev-
eral hundreds of such social Web sites. The most popular among them is
MySpace3 and Facebook4 which accommodate about 471 and 350 millions of
registered users respectively. A large fraction of these users connect to their
favorite social networking service on a daily basis.

15.3 Office Suites

The vast majority of computer users are somehow familiar to an office suite.
Almost everybody have used at least once, a word processor to create a
textual document or a spreadsheet software to create documents comprised
of enriched and dynamic data.

One vision of the 21st century computing is that a large portion of the
applications that now operate offline, will be transferred on the Internet and
their users will be able to create, store and distribute information online.
By using cloud computing techniques, the dominating Web companies are
redesigning their applications in order to provide such functionality. The most
ambitious of the existing projects, is the creation of an operating system
capable of operating entirely on the Web, within a browsing software.

Another project which has already been released, is the online office suites
offered by Web sites in the form of software-as-a-service. Such suites basically
include a word processor and a spreadsheet, whereas some of them also offer
drawing utilities, graphics editors, presentation applications and even media
players.

Nowadays, there are numerous services offering office productivity. The
most popular among them is Ajax135, Google Docs and Spreadsheets6,
Thinkfree Office Online7 and Zoho Office Suite8. Each of them has its own
strong points but generally online office suites offer satisfying capabilities

3 http://www.myspace.com
4 http://www.facebook.com
5 http://us.ajax13.com/en/
6 http://docs.google.com/
7 http://www.thinkfree.com
8 http://www.zoho.com

Modern Web Technologies 105

at low (or no) cost, whereas they do not require to download and install
any software. Moreover, the users can access their documents from almost
any computer with a connection to the Internet, regardless of which oper-
ating system they use. Finally, in 2009 Google introduced Google Wave9, a
web-based communication and collaboration tool using richly formatted text,
photos, videos, maps, and the like—currently (Jan, 2010), this application is
available only after one gets invited.

Nevertheless, there are still some significant disadvantages which indicate
that such tools are only at their infant stages. For instance, there are acces-
sibility issues arising from the fact that in case the remote server or network
is unavailable, the content will also be unavailable. Moreover, such applica-
tions usually require high bandwidth Internet connections, otherwise speed
is limited dramatically. Even in that case, an online office application cannot
compete an offline opponent in terms of response speed. Finally, although
basic functionality is provided, current online office suites do not provide the
more advanced features available on their offline counterparts.

15.4 File and Media Sharing Services

The large communities that have been created on the Web have led to the
generation of specific services allowing their register users to share files of any
type. The most popular forms of file sharing include applications, electronic
forms of books, documents, audio files and videos.

YouTube10 is currently one of the most popular locations on the Web
where users can publish, watch, share and comment videos. The users of
the service are divided into two categories: The unregistered users who can
just watch videos and the registered ones, who are permitted to upload an
unlimited number of files. The latter are also provided with the ability to
publish comments about the presented material and judge the quality of the
content by voting.

Although each registered user can upload an unlimited number of videos,
he/she is not free to publish those which contain defamation, pornography,
copyright violations, and material encouraging criminal conduct. These re-
strictions are all described in the terms of use of the service and videos
violating these terms are immediately erased from the database of the site.

15.5 Real-Time Web

The advent of Twitter11 in 2007, introducing the micro-blogging concept,
i.e., the posting and delivering of short messages up to 140 characters long
to author’s “followers”, emphasized the need for the real-time web. That is,
new technologies for rapid dissemination of information as soon as it gets

9 http://wave.google.com
10 http://www.youtube.com
11 http://twitter.com

106 L. Akritidis, D. Katsaros, and P. Bozanis

published by its author on the web. Examples of real-time web are friend-
feed12 and notifixious13, while the Extensible Messaging and Presence Pro-
tocol (XMPP) and the Simple Update Protocol (SUP) are two protocols for
developing instant-messaging-like applications [8,9]. Many believe that this
instant-messaging perspective is the next big thing of web.

16 Discussion

In this chapter we have briefly described the core technologies employed by
the modern applications of the Web. Knowledge of the modern Web tech-
nologies is a key issue for both developers and researchers. The former need
to be informed in order to apply the most robust tools when they build their
applications, whereas the latter are expected to deeply examine the key issues
regarding these technologies in order to provide efficient solutions to newly
posed problems.

From one perspective, Web is a society which constantly evolves. At the
time these lines are written, novel services are being released and fresh soft-
ware is composed. Cloud computing services promise to solve current issues
and elevate computing. According to the most optimistic judges, the moment
at which computers will not require an operating system to work and every
transaction will be accomplished through a Web browser is very close.

References

1. http://www.w3.org/TR/html4/

2. http://www.w3.org/TR/REC-xml/

3. http://www.php.net/usage.php

4. http://www.cio.com/article/446829/

5. http://www.abiresearch.com/products/service/

6. http://www.w3.org/TR/mobile-bp/

7. http://en.wikipedia.org/wiki/List_of_social_networking_websites

8. http://xmpp.org/about/

9. http://code.google.com/p/simpleupdateprotocol/

10. O’Reilly, T.: What Is Web 2.0. O’Reilly Network (September- 30 - 2009)
(Augut- 06 -2006)

11. Agarwal, N., Liu, H.: Blogosphere: Research issues, tools and applications. ACM
SIGKDD Explorations 10(1), 18–31 (2008)

12. Akritidis, L., Katsaros, D., Bozanis, P.: Identifying Influential Bloggers: Time
Does Matter. In: Proceedings of the IEEE / WIC / ACM International Con-
ference on Web Intelligence (WI), pp. 76–83 (2009)

13. Krishnamurthy, B., Mogul, J.C., Kristol, D.M.: Key Differences between
HTTP/1.0 and HTTP/1.1. Computer Networks-the International Journal of
Computer and Telecommunications Networkin 31, 1737 (1999)

12 http://friendfeed.com
13 http://notifixio.us

http://www.w3.org/TR/html4/
http://www.w3.org/TR/REC-xml/
http://www.php.net/usage.php
http://www.cio.com/article/446829/
http://www.abiresearch.com/products/service/
http://www.w3.org/TR/mobile-bp/
http://en.wikipedia.org/wiki/List_of_social_networking_websites
http://xmpp.org/about/
http://code.google.com/p/simpleupdateprotocol/

Modern Web Technologies 107

14. Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: Finding Topic-Sensitive
Influential Twitterers. In: Proceedings of the third ACM International Confer-
ence on Web Search and Data Mining, pp. 261–270 (2010)

15. Mathioudakis, M., Koudas, N.: Efficient Identification of Starters and followers
in Social Media. In: Proceedings of the 12th International Conference on Ex-
tending Database Technology: Advances in Database Technology, pp. 708–719
(2009)

Chapter 5

Federated Data Management and Query

Optimization for Linked Open Data

Olaf Görlitz and Steffen Staab

Institute for Web Science and Technologies,

University of Koblenz-Landau, Germany

{goerlitz,staab}@uni-koblenz.de

Abstract. Linked Open Data provides data on the web in a machine readable

way with typed links between related entities. Means of accessing Linked

Open Data include crawling, searching, and querying. Search in Linked Open

Data allows for more than just keyword-based, document-oriented data re-

trieval. Only complex queries across different data source can leverage the

full potential of Linked Open Data. In this sense Linked Open Data is more

similar to distributed/federated databases, but with less cooperation between

the data sources, which are maintained independently and may update their

data without notice. Since Linked Open Data is based on standards like the

RDF format and the SPARQL query language, it is possible to implement a

federation infrastructure without the need for specific data wrappers. How-

ever, some design issues of the current SPARQL standard limit the efficiency

and applicability of query execution strategies. In this chapter we consider

some details and implications of these limitations and presents an improved

query optimization approach based on dynamic programming.

1 Introduction

The automatic processing of information from the World Wide Web requires that

data is available in a structured and machine readable format. The Linking Open

Data initiative1 actively promotes and supports the publication and interlinking of

so called Linked Open Data from various sources and domains. Its main objective

is to open up data silos and to publish the contents in a semi-structured format with

typed links between related data entities. As a result a growing number of Linked

Open Data sources are made available which can be freely browsed and searched to

find and extract useful information.

The network of Linked Open Data (or simply Linked Data) is very similar to

the World Wide Web’s structure of web pages connected by hyperlinks. Linked

Data entities are identified by URIs. A relationship between two data entities is

commonly expressed with the Resource Description Framework (RDF) [37] as a

triple consisting of subject, predicate, and object, where the predicate denotes the

type of the relation between subject and object. Linking a data entity from one data

1 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 109–137.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

110 O. Görlitz and S. Staab

source to a data entity in a different data source is very simple. It only requires a new

RDF triple to be placed in one data source with the URI of the referenced data entity

in the triple’s object position. Additionally, the linked data principles [5] require

that the referenced URI is resolvable, i.e. a common HTTP GET request on the URI

returns useful information about the referenced data entity. A good overview about

the foundations of Linked Open Data and current research directions is given in [8].

A Linked Open Data infrastructure can have different characteristics, namely

central or distributed data storage, central or distributed data indexing, and inde-

pendent or cooperative data sources, which influence how query processing can be

implemented on top of it. Not all of the eight potential combinations are reasonable,

in fact, three main paradigms can be identified (c.f. Fig. 1).

Central Repository. RDF data can be obtained from data sources, either by crawl-

ing them or by using data dumps, and put into a single RDF store. A centralized

solution has the advantage that query evaluation can be implemented more effi-

ciently due to optimized index structures. The original data sources are not involved

in the query evaluation. Hence, it is irrelevant if they are cooperative or not. Note

also that the combination of a central data storage with a distributed index does not

make sense at all.

Federation. The integration of distributed data sources via a central mediator im-

plies a federation infrastructure. The mediator maintains a global index with sta-

tistical information which are used for mapping queries to data sources and also

for query optimization. Cooperation between data sources allows for reducing the

query processing overhead at the mediator, as certain query evaluation steps can be

moved to the data sources. Otherwise, the whole query execution, including join

computations, has to be done at the mediator.

Peer-to-peer Data Management. RDF data and index data can both be maintained

in a distributed fashion if all data sources are cooperative. The result is a peer-to-

peer network where all data sources share the responsibility for managing parts of

the RDF data and the index data. Hence, no central mediator is necessary and the data

storage and processing load can be better balanced across all involved data sources.

Without cooperation among the data sources it is not possible to realized a distributed

index. Peer-to-peer RDF Management is not further discussed in this chapter.

Central Data Storage Distributed Data Storage

Independent

Data Sources

Cooperative

Data Sources

n/a

n/a

n/a
Central

Repository
Federation

P2P Data

Management

Central Index Distr. IndexDistr. Index

Fig. 1. Combinations of characteristics which yield different infrastructure paradigms

Federated Data Management and Query Optimization for Linked Open Data 111

This chapter focuses on a federation infrastructure for Linked Open Data and the

optimization of federated SPARQL queries. Section 2 illustrates our running ex-

ample. Section 3 motivates why a federation infrastructure is necessary for Linked

Open Data and presents some basic requirements. The related work is presented in

Sect. 4 before the detailed architecture of our federation infrastructure is discussed

in Sect. 5. The elaboration of optimization strategies follows in Sect. 6. Further im-

provements for federating Linked Open Data are shortly mentioned in Sect. 7. Fi-

nally, Sect. 8 discusses the evaluation of federation infrastructures for Linked Open

Data and Sect. 9 concludes the chapter.

2 Example

A common albeit tedious task is to get a general overview of an arbitrary research

area exploring the most important research questions and the current state-of-the-

art. It requires (i) finding important publications and good scientific overviews of

the research area, (ii) identifying the most relevant conferences and journals, (iii)

finding influential researchers based on number of publications or activity in confer-

ence committees etc., (iv) taking social aspects into account like personal relations

and joint work on research projects, and (v) filtering and ranking all the informa-

tion based on individual criteria, like recent activities and hot topics. Especially,

students often struggle with this task due to the vast amount of information which

can be found on the World Wide Web that has to be collected and connected to

form the big picture. Ideally, an easy to use tool takes the description of a research

topic and appropriate constraints as input and automatically gathers and merges all

relevant information from the different data sources. The results are also valuable

when looking for a new job or just to rank the impact or activity of researchers from

different institutions/countries.

For the area of computer science, much of this information is already publicly

available on the web, in semi-structured and machine readable formats. General

information about research areas can be obtained from Wikipedia and, in a semi-

structured format, from DBpedia [4]. Over 1.3 million publications can be found in

the DBLP Computer Science Bibliography2, including information about authors,

conferences, and journals. Additionally, some conference web sites also provide

semi-structured data about their conference program, like accepted papers, speak-

ers, and members of the program committee. Other information like the acquisition

of projects by research institutions and the amount of funding can be retrieved from

funding agencies, e.g. from the EU and the Community Research and Development

Service (CORDIS), or national funding programs. Last but not least, individual re-

searchers offer information about their affiliation, research interests, and social re-

lations in so called friend-of-a-friend (FOAF) profiles [12]. The CS AKTive Space3

project, for example, already integrates some of this information for the UK Com-

puter Science research domain.

2 http://dblp.uni-trier.de/
3 http://www.aktors.org/technologies/csaktivespace/

http://dblp.uni-trier.de/
http://www.aktors.org/technologies/csaktivespace/

112 O. Görlitz and S. Staab

The example in Fig. 2 illustrates three Linked Open Data sources, i.e. DBLP, DB-

Pedia, and Freebase, which contain RDF data about the mathematician Paul Erdős.

The DBLP data describes a publication written by Paul Erdős and a coauthor. DB-

pedia and Freebase contain information about his nationality. The similarity of data

entities is expressed via owl:sameAs relations.

DBLP DBpedia Freebase

dblp:Erdos96

foaf:Document

”d-complete sequences of integers”

dblp:Paul Erdosdblp:Mordechai Levin

foaf:Person

”Paul Erdős””Mordechai Levin”

rdf:type

dc:title

dc:creator
dc:creator

rdfs:labelrdfs:label

rdf:type
rdf:type

dbpedia:Paul Erdős

dbpedia:Hungary

dbpedia:Budapest

”Paul Erdős”

dbpp:name
dbpp:nationality

dbpp:birthPlace

fbase:guid.9202a8c04...

fbase:hungary

”Erdős Pál”

fbase:value

fbase:nationality
owl:sameAs

owl:sameAs

owl:sameAs

Fig. 2. Example RDF data located at three different Linked Open Data sources, namely DBLP,

DBpedia, and Freebase (namespaces are omitted for readability)

3 Linked Open Data Search

Browsing is a natural way of exploring Linked Open Data. Starting with an initial

URI that identifies a data entity outgoing links can be followed in any direction, to

any data source, to discover new information and further links. However, there is

no guarantee that the desired information can be found within a certain number of

steps and that all relevant data is reached along the browsing path. Moreover, since

links are directed the usefulness of results found by browsing depends heavily on

the choice of a good starting point and the followed path.

In contrast, search based on complex queries provides a high flexibility in terms

of expressing the desired properties and relations of RDF data entities to be re-

trieved. However, query evaluation is based on finding exact matches. Hence the

user has to have good knowledge about the structure of the data sources and the

used vocabularies. Obviously, this is not feasible for a large number of diverse linked

data sets. Instead, queries can be formulated based on some standard vocabulary and

the query processor applies query relaxation, approximate search, inferencing, and

other techniques to improve the quality and quantity of search results. In the ideal

case one benefits from higher expressiveness of queries and an abstraction from the

actual data sources, i.e. a query does not need to specify which linked data sources

to ask for collecting the results.

Federated Data Management and Query Optimization for Linked Open Data 113

3.1 Requirements

A federation infrastructure for Linked Open Data needs basic components and

functionalities:

A declarative query language is required for concise formulation of complex

queries. Constraints on data entities and relations between them need to be express-

ible in a flexible way. For RDF there is SPARQL [48], a query language similar to

SQL, based on graph pattern matching.

A data catalog is required in order to map query expressions to Linked Open Data

sources which contain data that satisfies the query. Moreover, mappings are also

needed between vocabularies in order to extend queries with similar terms.

A query optimizer is required, like in (distributed) databases, to optimize the query

execution in order to minimize processing cost and the communication cost involved

when retrieving data from the different Linked Data sources.

A data protocol is required to define how queries and results are exchanged be-

tween all involved Linked Data sources. SPARQL already defines such a protocol

[15] including result formats.

Result ranking should be used for Linked Open Data search but is not directly

applicable on RDF data since query evaluation is based on exact match. Additional

information has to be taken in to account to rank search results.

Provenance information should be integrated, especially for ranking results. With

a growing number of data sources it becomes more important to trace the origin of

result items and establish trust in different data sources.

3.2 Architecture Variations

The query-based search on Linked Open Data can be implemented in different ways,

all of which have certain advantages and disadvantages.

Centralized repositories are the common approach for querying RDF triples. All

available datasets are retrieved (e.g. crawled) and stored in a central repository. This

approach has the advantage that optimized index structures can be created locally

for efficient query answering. However, the local copies and the index data need to

be updated whenever something changes in the original data source. Otherwise, old

and inconsistent results may be returned.

Explorative query processing is based on the browsing principle. A query is first

evaluated on an initial data set to find matching data entities and also interesting

links pointing to other data sets which may contain more data entities satisfying the

query. In an iterative manner, the links are resolved and newly discovered data is fed

as a stream into the query evaluation chain. Results are also returned in a streamed

fashion as soon as they are available. The search terminates when there are no more

links with potential results to follow. This approach evaluates the queries directly

114 O. Görlitz and S. Staab

on the linked data and does not require any data copies or additional index struc-

tures. However, this also implies an increased communication effort to process all

interesting links pointing to other data sources. Moreover, the choice of the starting

point can significantly influence the completeness of the result.

Data source federation combines the advantages of both approaches mentioned

above, namely the evaluation of queries directly on the original data source and us-

ing data indices and statistics for efficient query execution and returning complete

results. A federated Linked Open Data infrastructure only maintains the meta in-

formation about available data sources, delegates queries to data sources which can

answer at least parts of them, and aggregates the results. Storing the data statistics

requires less space than keeping data copies. Moreover, changes in the original data

have less influence on the metadata since the structure of the data source, i.e. the

used vocabulary and the interlinks between them, does not change much. Thus, data

changes are more likely to affect the statistics about data entities which influences

mostly the quality of the query optimization than the correctness or completeness of

the result.

Table 1. Comparison of the three architecture variations for querying Linked Open Data with

respect to the most relevant characteristics

central repository link exploration data source federation

data location local copies at data sources at data sources

meta data data statistics none data statistics

query processing local local+remote local+remote

requires updates yes (data) no yes (index)

complete results yes no yes

up-to-date results maybe yes yes

3.3 Federation Challenges

A federation infrastructure offers a great flexibility and scalability for querying

Linked Data. However, there are some major differences to federated and distributed

databases. Linked Data sources are loosely coupled and typically controlled by in-

dependent third party providers which means that data schemata usually differ and

the raw data may not be directly accessible. Hence, the base requirement for the

federation infrastructure is that all data sources offer a standard (SPARQL) query

interface to retrieve the desired data in RDF format. Additionally, we assume that

each Linked Data source also provides some data statistics, like the number of oc-

currences of a term within the dataset, which are used to (i) identify suitable data

sources for a given query and (ii) to optimize the query execution. Hence, the re-

sponsibility of the federation infrastructure is to maintain the data statistics in a

federation index and to coordinate the interaction with the Linked Data sources.

Federated Data Management and Query Optimization for Linked Open Data 115

Scalability is without doubt the most important aspect of the infrastructure due

to the large and growing number of Linked Data sources. That implies two main

challenges – an efficient statistics management and an effective query optimization

and execution.

3.3.1 Statistics Management

Data statistics are collected from all known Linked Data sources and stored in a

combined index structure.

Accuracy vs. index size. The best query optimization results can be achieved with

detailed data statistics. However, the more statistics are collected the larger the re-

quired size for storing the index structure. Hence, the challenge is to find the right

tradeoff between rich statistical data and low resource consumption.

Updating statistics. Linked Data sources will change over time. Hence, the stored

statistical information needs to be updated. However, such changes may not be de-

tected easily if not announced. Sophisticated solutions may perform updates on the

fly based on statistical data extracted from query results.

3.3.2 Query Optimization and Execution

The execution order of query operators significantly influences the overall query

evaluation cost. Besides the important query execution time there are also other

aspects in the federated scenario which are relevant for the query optimization:

Minimizing communication cost. The number of contacted data sources directly

influences the performance of the query execution due to the communication over-

head. However, reducing the number of involved data source trades off against com-

pleteness of results.

Optimizing execution localization. The standard query interfaces of linked data

sources are generally only capable of answering queries on their provided data. The

join of results obtained from different sources needs to be done at the query issuer.

If possible at all, a better strategy will move parts of the result merging operations

to the data sources, especially if they can be executed in parallel.

Streaming results. Retrieving a complete result when evaluating a query on a large

dataset may take a while even with a well optimized execution strategy. Thus one

can return results as soon as they become available, which can be optimized by

trying to return relevant results first.

4 Related Work

The federation of heterogeneous data sources has been a popular topic in database

research for a long time. A large variety of optimizations strategies has been pro-

posed for federated and distributed databases [33,55,30,32]. In fact, the challenges

for federated databases are very similar to the ones in the federated Linked Data

scenario. But there are also significant differences. Distributed databases typically

use wrappers to abstract from diverse schema used in different database instances.

116 O. Görlitz and S. Staab

Such wrappers are not required for Linked Data as Linked Data sources provide a

SPARQL endpoint which returns the results in one data format, i.e. RDF. However,

database wrappers are typically involved in the estimation of result cardinalities and

processing cost. Without them, the estimation has to be handled differently. Opti-

mization strategies used in federated and distributed databases rely on the cooper-

ation of the individual database instances, e.g. parts of the query execution can be

delegated to specific instances in order to make use of data locality or to improve

load balancing. Query evaluation in Linked Data sources can not be optimized in

the same way since the SPARQL protocol only defines how a query and the results

are exchanged with the endpoints. It does not allow for cooperation between them.

Semantic web search engines like Sindice [45], Watson [16], SWSE [26], and

Falcons [14] allow for document-oriented, keyword-based search. Like typical web

search engines, RDF data is crawled from the web and indexed in a central index

structure. Frequent re-crawling is necessary to keep the index up-to-date. Support

for complex queries is limited or not available at all.

Some general investigations on the complexity of SPARQL query optimization,

i.e. identifying the most complex elements and proposing specific rewriting rules,

have been done by [53,46]. A recent trend is the development of highly scalable

RDF repositories. Implementations like RDF3X [41], Hexastore [60], and BitMa-

trix [3] focus on optimal index structures and efficient join ordering which allows

answering queries directly from the indexed data. Other systems, e.g. YARS2 [28],

4Store [24], and Virtuoso [17] use clustering techniques or federation in order to

achieve high scalability, but in an environment with full control over the data stor-

age. Federation of distributed RDF data source has been investigated in systems

like DARQ [49] and SemWIQ [35]. Details of these and likewise approaches are

presented in Sect. 5.

5 Federation Infrastructure for Linked Open Data

The architecture of a federation infrastructure for Linked Data differs not much

from the architecture of a federation system for relational data sources, like Garlic

or Disco [23,57]. In fact, it is simplified due to the use of SPARQL as common

query protocol. First, customized data source wrappers that provide a common data

format are not needed. Second, the increasing reuse of ontologies, such as FOAF

[12], SIOC [11], and SKOS [38], lessens the need for conceptual mappings (c.f.

[51] for ways of integrating conceptual mappings ex post). Figure 3 depicts the

main components of a generic federation infrastructure for Linked Open Data.

All data sources are accessible via a SPARQL endpoint, i.e. a web interface sup-

porting the SPARQL protocol. The actual data does not necessarily need to be stored

in a native RDF repository. The data source may also use a relational database with

a RDF wrapper like the D2R-Server [7].

The Resource Description Framework (RDF) is a widely accepted standard in the

Semantic Web for semi-structured data representation. RDF defines a graph struc-

ture where data entities are represented as nodes and relations between them as

edges.

Federated Data Management and Query Optimization for Linked Open Data 117

 !"#$% !"#$% !"#$%

$&'()*+,'-&./(

01.1
234',

$&'()
56.7879'(

$&'()*23.'(:1-'*; !"#$%<

$&'()*!1(='(******01.1*>7'?=

@'
4'
(1.
/(

Fig. 3. Architecture of the federation infrastructure

Definition 1 (RDF Graph4). Let U , L, B be the pairwise disjoint sets of URIs,

Literals, and Blank Nodes. Let T = U ∪ L∪B be the set of RDF terms. A triple

S = (s, p,o) ∈ T ×U × T is called a statement, where s is the subject, p is the

property, and o is the object of the statement.

The example in Fig. 4 depicts a set of RDF triples describing a publication with the

title ”d-complete sequences of integers” written by Paul Erdős and Mordechai Levin

(c.f. Fig. 2 for the graph representation). The prefix definitions in line 1-4 simplify

the URI notation of the RDF triples in lines 6-13 and improve the readability.

1 @prefix dc : <http://purl.org/dc/elements/1.1/> .
2 @prefix r d f : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 @prefix dblp : <http://dblp.l3s.de/d2r/resource/>

4 @prefix f o a f : <http://xmlns.com/foaf/0.1/>

5

6 dblp : ErdosL96 r d f : type f o a f : Document .
7 dblp : ErdosL96 dc : t i t l e ” d−complete sequences of i n tege rs ” .
8 dblp : ErdosL96 dc : c rea to r dblp : Paul Erdos .
9 dblp : ErdosL96 dc : c rea to r dblp : Mordechai Levin .

10 dblp : Paul Erdos r d f : type f o a f : Person .
11 dblp : Paul Erdos f o a f : name ” Paul Erdos ” .
12 dblp : Mordechai Levin f o a f : name ” Mordechai Levin ” .
13 dblp : Mordechai Levin r d f : type f o a f : Person .

Fig. 4. Example RDF data from DBLP in Turtle notation

4 This definition slightly differs from the original W3C Recommendation [37] but is in line

with the SPARQL query protocol [48] in allowing literals in subject position.

118 O. Görlitz and S. Staab

The SPARQL query language [48] defines graph patterns which are matched

against an RDF graph such that the variables from the graph patterns are bound

to concrete RDF terms.

Definition 2 (SPARQL Query). A query Q : {A} is a set of query expressions. Let

V be the set of query variables which is disjoint from T and let P ∈ (T ∪V)× (U ∪
V)× (T ∪V) be a triple pattern. A triple pattern P is a query expression. If A and

B are query expressions, then the compositions

(i) A . B (ii) A UNION B (iii) A OPTIONAL B (iv) A FILTER (exp)

are query expressions, too. The dot operator in (i) denotes a join in SPARQL.

A function, such as (a = b), (a < b), or (a > b), with a and b being variables

or constants, is a filter expression. If e1 and e2 are filter expressions, then following

expressions are filter expressions, too.

(i) e1 || e2 (ii) e1 && e2 (iii) !e

The SPARQL example in Fig. 5 selects German co-authors of Paul Erdős. The graph

pattern, which needs to be matched, is defined in the WHERE clause in lines two

to twelve and also depicted as a graph on the right side. Co-authorship is defined

via the creator relation between people and articles. The German nationality is a

property of a person. Line 13 defines an order on the results and line 14 restricts

the number of results to 10. The first line specifies the final projection of variables.

Namespaces are omitted for readability.

1 SELECT ?name ?workplace
2 WHERE {
3 ?author f o a f : name ” Paul Erdos ” .
4 ? a r t i c l e dc : c rea to r ?author .
5 ? a r t i c l e dc : c rea to r ?coauthor .
6 ? a r t i c l e r d f : type f o a f : Document .
7 ?coauthor f o a f : name ?name .
8 ?coauthor dbpprop : n a t i o n a l i t y dbpedia : German .
9 OPTIONAL {
10 ?coauthor dbpprop : workplaces ?workplace .
11 }
12 }
13 ORDER BY ?name
14 LIMIT 10

?article

?author

?coauthor

?name

?workplace

”Paul Erdos”

dbpedia:German

foaf:Document

rdf:type

dc:creator

dc:creator

foaf:name

foaf:name

dbprop:nationality dbprop:workplaces

Fig. 5. SPARQL example: Find 10 German co-authors of Paul Erdős

Some common elements of SQL, like insert, aggregates, sub-queries, and group-

ing, are not part of the original SPARQL standard but only supported in version 1.1

[25].

Federated Data Management and Query Optimization for Linked Open Data 119

5.1 Federator

The main component of the infrastructure is the federator. It is responsible for main-

taining meta data about known data sources and for managing the whole query

evaluation process. The federator offers an interface to the user which allows for

keyword-based search and for submitting SPARQL queries. The keyword-based

search is ideal for users without a good knowledge about the federated data sets.

Although keyword-based search is usually entity centric, it can also be used to de-

rive complex SPARQL queries, as shown in Hermes [59].

The actual query processing includes query parsing, query adaptation, query

mapping, query optimization, and query execution. Query adaptation, which will

not be further discussed here, is about modifying and extending a query, e.g. by in-

cluding similar or broader terms and relations from other vocabularies, in order to

broaden the search space and to obtain more results. The query mapping is about

selecting data sources which can return results for the expressions contained in a

query. During query optimization different join strategies for combining results are

evaluated. Finally, the query execution implements the communication with the data

sources and the processing of the optimized query execution plans.

5.1.1 Data Source Selection

Queries may describe complex data relations across different domains. Hence, it

is very likely that a single data source may only be able to return results for parts

of the query, as it is the case in the example query in Fig. 5. The first part about

the co-authorship can be answered by DBLP, the second part about the nationality

only by DBpedia. Thus, the respective query fragments have to be send to different

data sources and the individual results have to be merged. The SemaPlorer [50], an

application for location-based search on top of Linked Open Data, employs explicit

data source mappings. This works well for the application’s specific scenario but is

not flexible enough for a general federation of Linked Open Data.

There have been discussions on how to implement federation in SPARQL, but it

has not been included (yet) in the SPARQL standard. The proposed solution [47] is

an extension of the SPARQL syntax with the SERVICE keyword, which should be

used for specifying the designated data source. But an explicit definition of query

endpoints requires that the user knows where the data is located. Hence, that so-

lution is impractical for a flexible Linked Data infrastructure. Instead, the query

federation should remain transparent, i.e. the federator should determine which

data sources to contact based on a data source catalog. Such a catalog is an in-

dex which maps RDF terms or even sub-graph structures of a query to matching

data sources. The catalog information is tightly coupled with the maintained data

statistics (c.f. Sect. 5.3).

120 O. Görlitz and S. Staab

1 SELECT ?name ?workplace
2 WHERE {
3 SERVICE <http://dblp.uni-trier.de> {
4 ?author f o a f : name ” Paul Erdos ” .
5 ? a r t i c l e dc : c rea to r ?author .
6 ? a r t i c l e dc : c rea to r ?coauthor .
7 a r t i c l e r d f : type f o a f : Document .
8 ?coauthor f o a f : name ?name .
9 }

10 SERVICE <http://dbpedia.org> {
11 ?coauthor dbpprop : n a t i o n a l i t y dbpedia : German .
12 OPTIONAL {
13 ?coauthor dbpprop : workplaces ?workplace .
14 }
15 }
16 }
17 ORDER BY ?name
18 LIMIT 10

Fig. 6. Example SPARQL query with explicit service endpoints

5.1.2 Join Strategies

In a federated system, the main cost factor is the communication overhead for con-

tacting data sources and transferring data over the network. Not only the execution

order of join operators, as discussed is Sect. 6, influences the processing cost, but

also the execution strategy for transferring the query and the result data. In the fol-

lowing the different approaches an their limitations are discussed in more detail.

Remote Join. Executing joins directly at the data sources is the most efficient way

as the processing overhead for the federator is minimized and the communication

costs are reduced because of smaller intermediate result sets. However, remote joins

are only applicable if all parts of the join can be satisfied by the data source. A

problem arises when one data source can satisfy more parts of a join expression

than another data source. In that case, the data source which satisfies less join parts

may be able to generate results when joining with partial results from the first data

source. Hence, even if the first data source evaluates a join completely, it also has to

return the results for its intermediate join parts.

Mediator Join. Executing the join in the federator (or mediator) after receiving

the intermediate results from the data sources is a common approach in existing

RDF federation systems [49,56,35]. The join is typically realized as nested-loop-

join or hash join. Since the SPARQL protocol allows for streaming result sets, i.e.

by reading the HTTP response stream, it is possible to start joining a result set

just after the smaller result set has been received completely. Other join variants

like merge-join can only be used when the intermediate results are ordered, which

is usually not the case. However, the mediator join can significantly increase the

communication cost and also the processing cost at the federator if a data source

returns a large intermediate result set which is part of a highly selective join.

Semi Join. The communication cost and the processing cost of the federator can be

significantly reduced with semi-joins [6]. First, the federator retrieves the smaller

Federated Data Management and Query Optimization for Linked Open Data 121

intermediate result set of the two joins parts. Then a projection of the join variables

is done and the extracted variable bindings are attached to the query fragment which

is sent to the second data source. The intermediate results of the second data source

are filtered with the transmitted bindings and only the reduced result set is returned

to the federator. Thus, the federator has to join smaller intermediate results and also

less data has to be transmitted over the network. Essentially, a semi-join realizes a

pipelined execution, in contrast to the centralized join where each join part can be

executed in parallel.

Unfortunately, the current SPARQL standard does not support the inclusion of

variable bindings in a query. The SPARQL federation draft [47] proposes a solution

by extending the syntax with the BINDINGS keywords. Since this extension is not

yet accepted or supported by current SPARQL endpoints the only alternative is to

include variable bindings as filter expressions in a query. Both variants are shown in

Fig. 7. Although the second approach can be realized with standard SPARQL it is not

optimal as the query can be blown up for a large number of bindings, thus increasing

the communication cost. DARQ [49] realizes bind joins by sending a query multiple

times with all the different bindings. However, this increases the communication

overhead as for each binding a separate query and result message has to be sent.

Finally, the proposed SERVICE keyword for referencing other datasets may be

used within a query fragment to define a bind join. When resolved by a SPARQL

endpoint the intermediate result could be directly transferred between the data source

without involving the federator. But if multiple data sources include the same sub

query it will be sent multiple times to the remote data source and the intermediate

results will also be generated more than once if no caching is applied.

1 SELECT ? a r t i c l e ?author ?coauthor
2 WHERE {
3 ? a r t i c l e dc : c rea to r ?author .
4 ? a r t i c l e dc : c rea to r ?coauthor .
5 }
6 BINDINGS ?author ?coauthor {
7 (” Paul Erdos ” ” Andreas Blass ”)
8 (” Paul Erdos ” ” Wal ter Deuber ”)
9

10 }

1 SELECT ? a r t i c l e ?author ?coauthor
2 WHERE {
3 ? a r t i c l e dc : c rea to r ?author .
4 ? a r t i c l e dc : c rea to r ?coauthor .
5 FILTER (
6 (?author = ” Paul Erdos ” &&
7 ?coauthor = ” Andreas Blass ”) | |
8 (?author = ” Paul Erdos ” &&
9 ?coauthor = ” Walter Deuber ”))

10 }

Fig. 7. Variable bindings in SPARQL: via BINDINGS syntax extension or as FILTER

expression

Bind Join. The bind-join [23] is an improvement of the semi-join. It is executed as a

nested loop join that passes bindings from the intermediate results of the outer part to

the inner part, i.e. to the other data source, which uses them to filter its results. This is

comparable to a prepared query where variable bindings are provided after the query

template has already been optimized. However, SPARQL is also missing a suitable

mechanism for defining prepared queries and does not support the streaming of

bindings. A common SPARQL endpoint will only start evaluating a query after all

query data has been transmitted as the query can only be optimized when all query

information is available.

122 O. Görlitz and S. Staab

Filter Chain. A completely different approach is implemented in [29]. The pre-

sented query engine operates in a pipelined fashion by resolving linked data ref-

erences on-the-fly. Thus, it follows the exploration scheme of linked data. Specific

optimizations for speeding up the retrieval are implemented, namely cascaded iter-

ators which operate on the data stream and return results as soon as they become

available.

5.2 Data Catalog

The data catalog stores two different kinds of data mappings. The first mapping cap-

tures relations between RDF terms, like similarity defined with the owl:sameAs

and rdfs:seeAlso predicate. Such information can be used to adapt a query to

different data schemata, or simply to broaden the search space. The second mapping

associates RDF terms or even complex graph structures with data sources. During

the data source selection phase this information is used to identify all relevant data

sources which can provide results for query fragments.

The data catalog may be combined with the data statistics described below. Addi-

tional statistical information is indeed quite useful for ranking data sources and map-

pings between RDF terms. Popular predicates, like rdf:type and rdfs:label,

occur in almost every data source. Thus, a ranking helps to avoid querying too many

less relevant data sources.

The most common constants in query patterns are predicates. The number of

different predicates in a data set is usually limited since predicates are part of the

data schema. In contrast, the number of data entities, i.e. RDF terms occurring in

a RDF triple’s subject or object position, can be quite large. However, they may

have just one occurrence. Hence, there is a trade-off between storing many item

counts for detailed mappings and minimizing the catalog size. It should also be

noted that literals are best stored in a full text index. They will usually occur only a

few times in a data set. Moreover, this also allows for searching the data based on

string matching.

5.3 Data Statistics

Statistical information is used by the query optimizer to estimate the size of inter-

mediate result sets. The cost of join operations and the amount of data which needs

to be transmitted over the network is estimated based on these statistics. Very ac-

curate and fine grained data statistics allow for better query optimization results but

also require much more space for storing them. Therefore, the main objective is to

find the optimal trade-off between accuracy of the statistics and the required space

for storing them. However, precise requirements will depend on the application

scenario.

Item counts. The finest granularity level with the most exact statistical informa-

tion is implemented by counting data items. In RDF, such counts typically com-

prise the overall number of triples as well as the number of individual instances of

subject, predicate, and object. Counts for combinations of subject, predicate, and

Federated Data Management and Query Optimization for Linked Open Data 123

object are useful statistics, too. State-of-the-art triple store implementations like

RDF3X[41,42], Hexastore[60], and BitMatrix [3] employ full triple indexing, i.e.

all triple variations (S, P, O, SP, PO, SO) are indexed, which allows for generating

query answers directly from the index.

Full text indexing. The RDF graph of a data source can also be seen as a document

which can be indexed with techniques known from information retrieval, like stop

word removal and stemming. As a result, data entities may be searched efficiently

via keyword-based search. The difference is that typically only literals, as objects

in RDF triples, are really suitable for indexing. If URIs should be indexed as well

building a prefix-tree is usually a good choice.

Schema level indexing. Instead of maintaining statistics for individual data in-

stances one may also restrict the index to the data schema, i.e. the type of instances

and relations. This can reduce the overall index size but it also has disadvantages.

Certain types and properties, like foaf:Person and rdfs:label, are widely

used in RDF data sets and can be a bad choice for discrimination. Moreover, queries

must contain the indexed types. Otherwise, all data sources have to be contacted.

Flesca et al.[18] built equivalence classes for RDF terms using a similarity mea-

sure based on types and properties. Counts and references to data sources with

equivalent entities are attached to the equivalence classes. This approach can re-

solve identical data instances across data sources. However, there is no information

about the scalability of this approach.

Structural indexing. Join statistics contain information about the combination of

certain triple patterns. They are much better for estimation the join cardinality since

the existence of results for two individual triple pattern in a data source does not

automatically imply that there are also results for the joined pattern. However, since

there is an exponentially large number of join combinations, not all of them can be

stored in an index.

Therefore, as RDF data represents a graph and SPARQL queries describe graph

patterns, it makes sense to identify and index only the most common graph struc-

tures found in the Linked Data sets. An early proposal for federating SPARQL [56]

was based on indexing path structures extracted from data graphs. However, since

star-shaped queries are very common for SPARQL queries the path-based approach

is not optimal. Instead, generic or frequent sub graph indexing [36,58] can be used

but requires sophisticated algorithms for efficiently identifying sub graphs patterns.

A major limitation of structural indexing is its restriction to a single data source.

Query federation would benefit significantly from the identification of graph struc-

tures across data sources, as certain combinations of data sources could be excluded

from the query execution. Moreover, structural indexing is costly and a typical of-

fline pre-processing step. Hence it is not easily applicable for life Linked Data.

5.3.1 Index Size Reduction

Ideally, all required index data should fit into main memory to avoid frequent disk

access. Hence, for a large data sets it is necessary to reduce the size of the index data.

124 O. Görlitz and S. Staab

Histograms are commonly used for restricting index data to a fixed size while still

retaining a high accuracy. Similar data items are put into so called buckets which

count the number of items they contain. Space reduction is achieved through a fixed

number of buckets. The typically used histogram type (in the database world) is the

equi-depth histogram [40], since it provides a good balance of items per bucket –

even for skewed data distributions. QTrees, which are a combination of histograms

and R-Trees, are used in [27] with three dimensions representing the three compo-

nents of an RDF triple. Buckets are used as leave nodes to store item counts and the

list of respective data sources which fall into the region covered by the bucket.

Alternatively, Bloom Filters [10] are also suitable for reducing index data to a

fixed size. Items are hashed to a bit vector which represents an item set. Membership

of items in the set can be efficiently checked with low error rate. However, Bloom

filters are not keeping track of the number of items in the represented set. If such

information is needed extensions as presented in [44] are necessary.

If a high accuracy of statistics is necessary, large index structures and disk access

are not avoidable. An optimal index layout and common data compression tech-

niques, e.g. as applied in RDF3X [41], can be employed to reduce the required disk

space and the frequency of disk access.

5.3.2 Obtaining and Maintaining Data Source Statistics

In order to build a federation index with detailed statistics about all involved data

sources it is necessary to first pull the statistical details from the data sources. But

not all data sources are capable or willing to disclose the desired information. Hence,

additional effort may be necessary to acquire and maintain the data source statistics.

Data Dump Analysis. Several popular Linked Open Data Sources provide RDF

dumps of their data. Analyzing the dumps is the easiest way to extract data statistics

and if a new version of the dataset becomes available the analysis on the new data

dump is simply redone. However, new data versions are not always advertised and

only a few large datasets provide dumps. In the future it will probably be more com-

mon to have many small frequently changing datasets, e.g. on product information.

Source Descriptions. A Linked Data Source may publish additionally some infor-

mation about the data it contains. For the federator it is necessary to obtain at least

some basic statistics like the overall number of triples, the used vocabulary, and in-

dividual counts for RDF properties and entities. A suitable format for publishing a

data source’s statistical information is the Vocabulary of interlinked Datasets (voiD)

[2]. Additionally, voiD also allows to express statistics about data subsets, like the

interlinks to other datasets, which is quite useful when retrieving data from different

data source. However, complex information, like frequent graph patterns, can not be

expressed with voiD.

DARQ [49] employs so called service descriptions describing data source capa-

bilities. A service description contains information about the RDF predicates found

in the data source and it can also include additional statistical information like counts

and the average selectivity for predicates in combination with bound subjects or ob-

jects. However, the explicit definition of service description for each involved data

Federated Data Management and Query Optimization for Linked Open Data 125

source is not feasible for a large number of Linked Open Data sources. Moreover,

DARQ restricts the query expressiveness as predicates always need to be bound.

Source Inspection. If no dump nor data description is offered by a data source but

only a SPARQL endpoint it is still possible to retrieve some statistics by sending

specifically crafted queries. But this can be tedious work as initially no knowledge

about data set size and data structure is available. So the first step is to explore

the data structure (schema) by querying for data type and properties. Additionally,

SPARQL aggregates are required to retrieve counts for individual data instances,

which are not supported before SPARQL 1.1. But even with counts, crawling data

is expensive and SPARQL endpoints typically restrict the number of requests and

the size of the returned results.

Result-based Refinement. As an alternative for data inspection, it is possible to

extract data statistics from the results returned for a query. This approach has little

extra processing overhead and it is non-intrusive. However, the lack of exact statis-

tics in the beginning results in increased communication cost and longer execution

time as more or even all data sources have to be queried. But with every returned

result the statistics will be refined. Moreover, changes in the remote data sets are

adapted automatically. Ideally, this approach is combined with some initial basic

statistics setup which minimizes the number of inefficient queries in the beginning.

5.3.3 Index Localization

The index management can also be viewed from the perspective of where an index

is located, i.e. at the data source or at the federator, and which statistical information

it maintains, i.e. local data source statistics or global federation statistics.

Data Source Index. A data source usually maintains its own statistics for local

query optimization. These statistics are not accessible from the outside due to their

integration with the data source’s query engine. Publicly exposed data statistics,

e.g. as voiD descriptions, are explicitly generated and need to be updated when the

actual data changes.

Virtual Data Source Index. If a data source does not offer any data statistics pub-

licly they have to be collected by other means, as mentioned above. The result is

essentially a virtual index which is created and managed at the federator as part of

the federation index.

Federation index. The federator maintains a centralized index where the statistical

information of all known data sources is collected and updated. The stored statistical

information ranges from basic item counts to complex information like frequent

graph patterns. All statistical data is connected to the data source where the data can

be found.

Distributed Federation Index. In a cooperative environment, a federation index

may be partitioned and distributed among all data sources to improve scalability.

Like in peer-to-peer systems, a data source would additionally keep a part of the

126 O. Görlitz and S. Staab

global index and references to data sources with similar information. In such an en-

vironment, the query execution can take advantage of the localized index informa-

tion and less central coordination is needed. The interlinks in Linked Data Sources

can already be seen as a step in that direction. To support cooperation, a new pro-

tocol would be required to exchange information among linked data sources about

mutual links and data statistics. The usage of a distributed index for data federation

is outlined in [18] but it involves a large number of update messages when data

changes. An efficient solution for updating a distributed index is presented in [20].

6 Query Optimization

The objective of the query optimization is to find a query execution plan which

minimizes the processing cost of the query and the communication cost for

transmitting query and results between mediator and Linked Data sources. In the

following, basic constraints for the federation of RDF data sources and the struc-

ture of query execution plans will be presented before optimization strategies are

discussed.

Existing federation approaches for RDF mainly use centralized joins for merging

intermediate results at the mediator. The application of semi-joins has not yet been

considered for the optimization of distributed RDF queries. We will show that op-

timization based on dynamic programming, which is presented in more detail, can

easily be applied for semi-join optimizations of federated SPARQL queries.

6.1 Data Source Mappings

The mapping of multiple data sources to different query fragments implies specific

constraints for the query optimization. Consider the SPARQL query in Fig. 8 with

two triple patterns which can be answered by three data sources, i.e. foaf:name is

matched by {http://dblp.uni-trier.de/, http://dbpedia.org/}
and the combination of dbprop:nationality and dbpedia:German by

{http://dbpedia.org/, http://rdf.freebase.com/}.

1 SELECT ?name
2 WHERE {
3 ?coauthor f o a f : name ?name .
4 ?coauthor dbprop : n a t i o n a l i t y dbpedia : German
5 }

http://dbpedia.org/

http://dblp.uni-trier.de/

http://rdf.freebase.com/

Fig. 8. Query fragment with data source mappings

Federated Data Management and Query Optimization for Linked Open Data 127

Although DBpedia could answer the whole query it is not possible to just merge

the result from DBpedia with the joined results of the other two sources since a

partial result set of DBpedia, i.e. results for a single triple pattern, may also be

joined with an intermediate result from http://dblp.uni-trier.de/ or

http://rdf.freebase.com/. Hence, each triple pattern has to be evaluated

individually at the respective data sources. The results for every pattern are com-

bined via UNION and finally joined. For a SPARQL endpoint, which could resolve

remote graphs, the rewritten SPARQL query would look like in Fig. 9.

1 SELECT ?coauthor ?name
2 WHERE {
3 {
4 SERVICE <http://dblp.uni-trier.de/> {
5 ?coauthor f o a f : name ?name
6 }
7 UNION
8 SERVICE <http://dbpedia.org/> {
9 ?coauthor f o a f : name ?name

10 }
11 } .
12 {
13 SERVICE <http://dbpedia.org/> {
14 ?coauthor dbprop : n a t i o n a l i t y dbpedia : German
15 }
16 UNION
17 SERVICE <http://rdf.freebase.com> {
18 ?coauthor dbprop : n a t i o n a l i t y dbpedia : German
19 }
20 }
21 }

Fig. 9. Rewritten SPARQL query which maps triple patterns to different data graphs and

merges the results via UNION

6.2 Query Execution Plans

The output of the query parser is an abstract syntax tree containing all logical query

operators, e.g. join, union, triple pattern, that make up the query. The tree structure

defines the order in which the query operators have to be executed, i.e. child nodes

have to be evaluated first. A query execution plan is an executable query plan where

logical operators are replaced by physical operators, e.g. a join may be implemented

as nested loop join, sort-merge join, hash-join, or, as explained in Sect. 5.1.2, as

semi-join or bind-join.

The structure of the query execution plan is also important. The two main types

are left-deep trees and bushy trees. Figure 10 depicts both variations for the running

example. Left-deep trees imply basically a pipelined execution. Starting with the

leftmost leaf node operators are evaluated one after another and results are passed

as input to the parent node until the root node is reached. In contrast, bushy trees

allow for parallel execution as sub trees can be evaluated concurrently.

128 O. Görlitz and S. Staab

?author foaf:name ”Paul Erdos” ?article dc:creator ?author

⋊⋉ ?author ?article rdf:type foaf:Document

⋊⋉ ?article ?article dc:creator ?coauthor?

⋊⋉ ?article ?coauthor foaf:name ?name

⋊⋉ ?coauthor

?author foaf:name ”Paul Erdos” ?article dc:creator ?author

⋊⋉ ?author

?article rdf:type foaf:Document

⋊⋉ ?article

?article dc:creator ?coauthor?

⋊⋉ ?article

?coauthor foaf:name ?name

⋊⋉ ?coauthor

Fig. 10. Left deep and bushy query execution plan

The choice of physical operators also affects the execution characteristics. Al-

though the processing and communication cost can be reduced significantly with

semi-join it also implies longer query execution times as operators have to wait for

the input of preceding operators. Streaming the data between operators can speed up

the execution but with the SPARQL standard streaming is only possible for query re-

sults. Queries including variable bindings have to be propagated completely before

the query execution can start.

The leaf node operators represent access plans, i.e. they are wrappers which send

the query fragments to the data sources and retrieve and merge the results. If semi-

joins are used, the access plan will include the propagated variable bindings in the

query fragments. Additionally, a semi join operator needs to project the join vari-

ables from the results returned by the child operator, which is executed first, before

the variable bindings can be passed on.

Filters are not explicitly mentioned in the execution plans but will be considered

during the execution. Generally, filters are pushed down as far in the tree as possi-

ble, i.e. a filter will be attached to a leaf node or join node if the node satisfies all

variables in the filter and there is no other child node that does. Filters attached to

leaf nodes are included in the query fragment sent to remote data sources. In case

of a semi-join, the filter will also be propagated down to child nodes along with

the variable bindings. Otherwise, the filter will be applied by the federator on the

(joined) result set.

6.3 Optimization Fundamentals

The objective of the query optimization is to find a query execution plan with min-

imal cost in terms of processing cost and communication cost. Typically, the query

execution time is the main cost measure. It combines both processing cost and com-

munication cost.

Federated Data Management and Query Optimization for Linked Open Data 129

The join order has a significant influence on the query execution time. Small in-

termediate result sets reduce the communication cost as well as the join processing

cost. Thus, the join order optimization is often the main focus of the query op-

timization. Join order optimization in SPARQL is mainly about optimizing basic

graph patterns, i.e. a set of conjunctively connected triple patterns. Other operators,

like OPTIONAL and UNION, usually have additional constraints which complicate

the optimization. They are not further considered here.

There are different optimization strategies which will be discussed shortly. All of

them rely on the same two basic measures for estimating the cost of a query exe-

cution plan, namely cardinality and selectivity. Cardinality is the estimated number

of elements in a result set which are returned for a query expression. Selectivity de-

fines the estimated fraction of elements which match a query expression. Selectivity

values are in the range [0..1] where a selectivity of 0 means most selective and 1

means least selective.

The cardinality and selectivity for RDF is based on triples and formally defined

as follows:

Definition 3 (RDF graph cardinality). Let |G| = |{Si ∈ G}| be the cardinality of

a graph, i.e. the graph size in terms of the overall number of triple statements con-

tained in the graph.

Definition 4 (RDF term selectivity). Let selG(t) = |{St∈G}|
|G| be the selectivity of

term t ∈ T in graph G with t = sub j(Si) ∨ t = pred(Si) ∨ t = ob j(Si).

Definition 5 (Triple Pattern Selectivity). The selectivity of a triple pattern P is

the product of the selectivities of the contained RDF terms:

selG(P) =
n

∏
i

selG(ti); ti ∈ const(P)

Consequently, the pattern cardinality |PG| = |G|× selG(P) is the estimated num-

ber of matching statements in graph G. This assumes that the RDF terms in triple

patterns are independent.

6.4 Optimization Strategies

There are different approaches for query optimization. Usually there is a trade-off

between finding the optimal query plan and finding a query plan quickly. Optimiza-

tion strategies can be classified by static and dynamic optimization. Static optimizers

generate one query plan and sticks to it during the whole query execution. Dynamic

optimizers may change a query plan during execution due to updated statistics.

Applying heuristics is a common approach to find a good solution fast. Popular

heuristics are pushing down filters and sorting query expression by their estimated

selectivity. The optimization approach presented in [56] uses iterative improvement

and simulated annealing.

130 O. Görlitz and S. Staab

Although heuristics can provide good results they will often produce sub optimal

execution plans. A guaranteed optimal solution can be found with the dynamic pro-

gramming approach, which is commonly used for query optimization in databases.

The SPARQL federation implementation in [49] also uses dynamic programming

but details are not given. Dynamic programming will be discussed in more detail in

the following section.

Query optimization is a complex topic and there are a lot more approaches, some

of which have already been applied for SPARQL. For example, there is RCQ-GA

[31], a genetic algorithm for optimizing chain queries. An evolutionary algorithm

for approximate querying with anytime behavior is presented in [21].

6.5 Dynamic Programming

Dynamic programming [54] is an optimization strategy in traditional relational

databases which ensures to find the optimal query execution plan for any given query.

All possible query execution plans are iterated and inferior plans are pruned based on

the calculated cost estimates. A cost function is used to estimate the execution cost

for each operator based on the cardinality and selectivity of intermediate results.

6.5.1 Query Plan Generation

In Dynamic programming query execution plans are generated in a bottom up fash-

ion. The initialization is done by creating an access plan for each query pattern.

Then in each iteration step n-ary joins are created by combining partial plans from

previous iterations. Joins which yield cross products are deferred until the end. An

optimized algorithm for the generation of bushy trees is presented in [39]. If many

joins and different alternatives for physical operator are involved in the query plan

generation the number of plan variations can rapidly grow too large for the avail-

able memory. Iterative Dynamic Programming [34] can be used in such a situation

to iterate the plans in a divide and conquer fashion.

6.5.2 Query Plan Evaluation

The result of each iteration step is a set of execution plans which includes equivalent

plans with different operator order. The plan evaluation step computes for each plan

the execution cost, in order to prune inferior plans. The execution cost is computed

recursively based on a cost model which uses the cardinality of each query operator

to estimate the individual processing and communication cost. The cardinality of

query expressions is defined as follows.

Definition 6 (Query expression cardinality). Let AG and BG be query expressions

applied on graph G. Then, |AG| is the expression cardinality and selG(A) = |AG|
|G| is

the selectivity of expression AG. Under the assumption that terms in expressions are

independent, we define the cardinality of complex expressions as

Federated Data Management and Query Optimization for Linked Open Data 131

|AGi
. BG j

| = |AGi
|× |BG j

|×min(selGi
(A), selG j

(B))

|AGi
UNION BG j

| = |AGi
|+ |BG j

|

|AG FILTER (exp)| = |AG|× selG(exp)

Definition 7 (RDF filter selectivity). Similar to [54] the selectivity of a filter is

defined as:

selG(a = x) = selG(x)

selG(a > x) =
maxa − x

maxa −mina

or
1

3
if not comparable.

selG(a || b) = selG(a)+ selG(b)− selG(a)× selG(b).

selG(a&&b) = selG(a)× selG(b) assuming that a and b are independent.

selG(!a) = 1− selG(a).

6.5.3 Cost Model

Each query operator is evaluated based on the cost estimates for the individual op-

erations. The cost of a query execution plan c(Q) is the sum of the cost of all its

operators. The cost cop of an operator applied on a query fragment Q∗ and a set of

variable bindings B is defined based on a cost model. The constants cconnect , ccompare,

chash, and ctransmit define the cost for establishing a connection to a data source and

the cost for comparing, hashing, and transmitting a binding. The cost ceval is the cost

for evaluating a query fragment at a data source. It depends on the actual implemen-

tation which is usually not known and may employ index lookups or full table scans.

Hence, ceval is based on rough estimates.

cremote eval(Q
∗,B) = cconnect + csend(Q

∗,B)+ ceval(Q
∗,B)+ csend(B

′
)

csend(B) = |B| · ctransmit

c f ilter(B, f) = |B| · ccompare

cunion(B, B̂) = |B|+ |B̂|

cnested−loop− join(B, B̂) = |B| · |B̂| · ccompare

chash− join(B, B̂) = min(|B|, |B̂|) · ccompare + max(|B|, |B̂|) · chash

csort−merge− join(B, B̂) = (|B| · log|B|+ |B̂| · log|B̂|+ |B|+ |B̂|) · ccompare

Parallel Execution Cost. For parallel query execution plans the overall cost is the

maximum cost of all individual plans.

c(Q) = max(Q
′

1, . . . ,Q
′

n)

7 Improvements for Federation

The presented federation infrastructure and query optimization covers the basic re-

quirements for the federation of Linked Open Data sources. However, there is still

132 O. Görlitz and S. Staab

room for improvements. Not every optimization technique, which works for dis-

tributed and federated databases, may be applied to federated linked data. Some

constraints are due to limitations of the SPARQL standard, as pointed out earlier.

7.1 Streaming Results

The execution chain of operators can be a critical bottleneck if large intermediate

results are produced or if some data sources have bad response times. The standard

SPARQL protocol and its implementation in typical SPARQL endpoints requires

that a query, including all filters expressions, must be completely available before

the query optimization can be performed. That implies that each query stage in

the chain has to be completed before the next one can be executed. In order to

speed up the query execution, partial query results may be propagated as soon as

they become available. However, such data streaming is not (yet) supported by the

SPARQL standard.

7.2 Result Ranking

A SPARQL query does not define an order for a result set, unless it is explicitly

defined with the keyword ORDER BY. Hence, the result items have to be considered

unordered. Nevertheless, some result items may be more relevant than others (from

a user’s perspective) and should be returned first. However, the criteria for relevance

in a federated infrastructure may also include trust and other factors, like response

time and data quality. Existing ranking algorithms for RDF data, like RSS [43] or

TripleRank [19], are not directly applicable because they are working on the link

structure and do not take other aspects into account.

Ranking is also important for the query optimization. The dynamic programming

approach [54] considers so called interesting orders, i.e. orders which are required

for the final result and can minimize the join processing cost. Such information is

not yet considered for federated queries.

7.3 Views

Views are a common concept in the relational database world. They allow for data

abstraction and simplify the querying of complex data relations. For RDF there is

no standardized definition of views. With so called named graphs[13] it is possible

to define a context for RDF graphs. But this is rather limited and not flexible enough

for managing a large number of RDF graphs, as all RDF triples in a graph context

have to be explicitly listed.

Networked RDF Graphs [51] extend named graphs with a SPARQL based view

mechanism. They allow users to define RDF graphs both, by extensionally listing

statements describing the graph or by using views which are defined as SPARQL

queries on other graphs. These views can be used to include parts of other graphs,

to transform data before including it and to denote rules. Networked Graphs can be

evaluated in a distributed setting using existing protocols. The benefits of networked

Federated Data Management and Query Optimization for Linked Open Data 133

graphs is the easy reuse and exchange of graphs, recursive view definitions and the

application for data integration from distributed data sources. Especially the last

point is interesting for Linked Open Data.

Views are basically an adequate way to establish an abstraction for underlying

data schemata. They also provide transparency concerning data distribution. If data

is moved or merged only the respective view definition needs to be adapted while

everything else remains unchanged.

8 Performance Evaluation

In order to compare different federation infrastructures, an evaluation scenario is

required which can measures the performance based on different criteria. Different

benchmarks like LUBM [22], the MIT Barton dataset benchmark [1], or the SP2

benchmark [52] have been developed in recent years, but primarily for evaluating

query processing performance of local repositories on a single large data set. Hence,

they are not applicable for a distributed infrastructure. Unfortunately, there is no

suitable benchmark for evaluating an infrastructure for (federated) Linked Open

Data sources. So the problem is to find an evaluation scenario with several linked

data sets and a number of complex queries spanning these data sets. Essentially,

there is only the option to choose between real world and artificial data sets which

both have advantages and disadvantages.

8.1 Real World Datasets

The number of available linked data sets has grown significantly in recent months

with DBPedia [9] being one of the most popular ones. Thus, there should be lots

of interesting information to be queried. However, formulating meaningful queries

involving multiple data sources requires a good understanding of the information

provided by the data sources in the first place. A good set of queries should cover

different query types and should also produce results of different sizes. Due to the

large number and diversity of linked data source, plus the constantly changing data,

it requires a lot of effort to create such a consistent set of benchmark queries. But

more importantly, the possibility to reproduce results is questionable.

8.2 Artificial Datasets

Most of the above mentioned benchmarks use artificial data sets. The design objec-

tive of such artificial datasets is to cover all typical characteristics of data relations

and queries that can be evaluated on top of them. Hence, they allow for comparable

evaluations of different systems. The only problem with existing artificial bench-

marks is that they are not directly applicable for evaluating data federation which

requires the existence of multiple data sources. The obvious solution is to split one

large data set into several smaller partitions.

134 O. Görlitz and S. Staab

8.3 Data Partitioning

The SP2 benchmark [52] is a good basis for creating a data set for benchmarking the

federated scenario. It covers a wide range of SPARQL query types and reproduces

the characteristics of the DBLP bibliography dataset. Its data generator can be used

to create data sets of arbitrary size.

In order to resemble the characteristics of linked data sources the partitioning

should be applied vertically and horizontally and also retain a certain overlap be-

tween the partitions. Vertical partitioning means splitting the data schema, i.e. differ-

ent partitions should only share a few common RDF types and predicates to mimic

different domains. Horizontal partitioning implies a separation at the instance level,

e.g. RDF triples with the same subject are placed in the same partition. Overlap can

be realized by placing data instances in multiple different partitions. This usually

happens automatically when data instances occurs in subject and object position of

RDF triples.

9 Summary

A federated infrastructure was presented in this chapter which allows for transpar-

ent querying of distributed Linked Open Data sources. The main components of the

architecture, namely the federator, the data catalog, and the data statistics were dis-

cusses in details. The SPARQL standard does not support all requirements for an

efficient processing of federated queries. Specifically, semi-joins, which can signif-

icantly reduce the processing an communication cost, are not well supported.

The optimization of SPARQL queries is mainly focusing on join order optimiza-

tion. A new optimization strategy using semi-joins and dynamic programming was

explained in more detail. There is still room for improving the federation of Linked

Open Data, e.g. with data streaming, ranking, and the support for data views. Espe-

cially, the efficiency of the query processing is not optimal yet.

References

1. Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: Using the Barton libraries dataset as

an RDF benchmark. Tech. rep., Massachusetts Institute of Technology Computer Science

and Artificial Intelligence Laboratory (2007)

2. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets – On

the Design and Usage of voiD, the “Vocabulary Of Interlinked Datasets”. In: Proceedings

of the Linked Data on the Web Workshop. CEUR Workshop Proceedings, Madrid, Spain

(2009); ISSN 1613-0073

3. Atre, M., Chaoji, V., Zaki, M., Hendler, J.: Matrix “Bit” loaded: A Scalable Lightweight

Join Query Processor for RDF Data. In: Proceedings of the 19th International World

Wide Web Conference, Raleigh, NC, USA, pp. 41–50 (2010)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nu-

cleus for a Web of Open Data. In: Proceedings of the 6th International Semantic Web

Conference, Busan, Korea, pp. 722–735 (2007)

Federated Data Management and Query Optimization for Linked Open Data 135

5. Berners-Lee, T.: Linked Data Design Issues,

http://www.w3.org/DesignIssues/LinkedData.html

6. Bernstein, P., Chiu, D.: Using Semi-Joins to Solve Relational Queries. Journal of the

ACM 28(1), 25–40 (1981)

7. Bizer, C., Cyganiak, R.: D2R Server – Publishing Relational Databases on the Semantic

Web, http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

8. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International

Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

9. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann,

S.: DBpedia – A Crystallization Point for the Web of Data. Web Semantics: Science,

Services and Agents on the World Wide Web 7(3), 154–165 (2009)

10. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications

of the ACM 13(7), 422–426 (1970)

11. Breslin, J., Decker, S., Harth, A., Bojars, U.: SIOC: an approach to connect web-based

communities. International Journal of Web Based Communities 2(2), 133–142 (2006)

12. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.97, Namespace Document

(January 1, 2010), http://xmlns.com/foaf/spec/

13. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Web Semantics: Science,

Services and Agents on the World Wide Web 3(4), 247–267 (2005)

14. Cheng, G., Qu, Y.: Searching Linked Objects with Falcons: Approach, Implementation

and Evaluation. International Journal on Semantic Web and Information Systems 5(3),

49–70 (2009)

15. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF, W3C Recommen-

dation (January 15, 2008), http://www.w3.org/TR/rdf-sparql-protocol/

16. D’ Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.: Char-

acterizing Knowledge on the Semantic Web with Watson. In: Proceedings of the 5th

International Workshop on Evaluation of Ontologies and Ontology-based Tools (EON),

Busan, Korea, pp. 1–10 (2007)

17. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Pellegrini, T., Auer,

S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media, pp.

7–24. Springer, Heidelberg (2009)

18. Flesca, S., Furfaro, F., Pugliese, A.: A Framework for the Partial Evaluation of SPARQL

Queries. In: Proceedings of the 2nd International Conference on Scalable Uncertainty

Management, Naples, Italy, pp. 201–214 (2008)

19. Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking SemanticWeb Data By

Tensor Decomposition. In: Proceedings of the 8th International Semantic Web Confer-

ence, Chantilly, VA, USA, pp. 213–228 (2009)

20. Görlitz, O., Sizov, S., Staab, S.: PINTS: Peer-to-Peer Infrastructure for Tagging Systems.

In: Proceedings of the 7th International Workshop on Peer-to-Peer Systems (IPTPS),

Tampa Bay, Florida, USA (2008)

21. Gueret, C., Oren, E., Schlobach, S., Schut, M.: An Evolutionary Perspective on Approx-

imate RDF Query Answering. In: Proceedings of the 2nd International Conference on

Scalable Uncertainty Management, Naples, Italy, pp. 215–228 (2008)

22. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems.

Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 158–182

(2005)

23. Haas, L., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing Queries across Diverse

Data Sources. In: Proceedings of the 23rd International Conference on Very Large Data

Bases, Athens, Greece, pp. 276–285 (1997)

136 O. Görlitz and S. Staab

24. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a Clustered

RDF Store. In: Proceedings of the 5th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS 2009), Chantilly, VA, USA, pp. 94–109 (2009)

25. Harris, S., Seaborne, A.: SPARQL Query Language 1.1, W3C Working Draft (January

26, 2010), http://www.w3.org/TR/sparql11-query/

26. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: SWSE: Answers

Before Links! In: Proceedings of Semantic Web Challenge (2007)

27. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data Sum-

maries for On-Demand Queries over Linked Data. In: Proceedings of the 19th Interna-

tional World Wide Web Conference, Raleigh, NC, USA, pp. 411–420 (2010)

28. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for

Querying Graph Structured Data From The Web. In: Proceedings of the 6th International

Semantic Web Conference, Busan, Korea, pp. 211–224 (2007)

29. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL Queries over the Web of Linked

Data. In: Proceedings of the 8th International Semantic Web Conference, Chantilly, VA,

USA, pp. 293–309 (2009)

30. Heimbigner, D., McLeod, D.: A Federated Architecture for Information Management.

ACM Transactions on Information Systems 3(3), 253–278 (1985)

31. Hogenboom, A., Milea, V., Frasincar, F., Kaymak, U.: RCQ-GA: RDF Chain Query Op-

timization Using Genetic Algorithms. In: Proceedings of the 10th International Confer-

ence on E-Commerce and Web Technologies, Linz, Austria, pp. 181–192 (2009)

32. Josifovski, V., Schwarz, P., Haas, L., Lin, E.: Garlic: A New Flavor of Federated Query

Processing for DB2. In: Proceedings of the 2002 ACM SIGMOD International Confer-

ence on Management of Data, Madison, Wisconsin, pp. 524–532 (2002)

33. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Computing

Surveys 32(4), 422–469 (2000)

34. Kossmann, D., Stocker, K.: Iterative dynamic programming: a new class of query op-

timization algorithms. ACM Transactions on Database Systems (TODS) 25(1), 43–82

(2000)

35. Langegger, A., Wöß, W., Blöchl, M.: A Semantic Web Middleware for Virtual Data

Integration on the Web. In: Proceedings of the 5th European Semantic Web Conference,

Tenerife, Canary Islands, Spain, pp. 493–507 (2008)

36. Maduko, A., Anyanwu, K., Sheth, A., Schliekelman, P.: Graph Summaries for Subgraph

Frequency Estimation. In: Proceedings of the 5th European Semantic Web Conference,

Tenerife, Canary Islands, Spain (2008)

37. Manola, F., Miller, E.: RDF Primer, W3C Recommendation (February 10, 2004),

http://www.w3.org/TR/rdf-primer/

38. Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS Core: Simple Knowledge Or-

ganisation for the Web. In: Proceedings of the 3rd European Semantic Web Conference,

Budva, Montenegro, pp. 95–109 (2006)

39. Moerkotte, G., Neumann, T.: Analysis of Two Existing and One New Dynamic Program-

ming Algorithm for the Generation of Optimal Bushy Join Trees without Cross Products.

In: Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,

Korea, pp. 930–941 (2006)

40. Muralikrishna, M., DeWitt, D.: Equi-Depth Histograms For Estimating Selectivity Fac-

tors For Multi-Dimensional Queries. In: Proceedings of the 1988 ACM SIGMOD Inter-

national Conference on Management of Data, pp. 28–36. ACM Press, Chicago (1988)

41. Neumann, T., Weikum, G.: RDF-3X: a RISC-style Engine for RDF. In: Proceedings of

the 34th International Conference on Very Large Data Bases, Auckland, New Zealand,

pp. 647–659 (2008)

Federated Data Management and Query Optimization for Linked Open Data 137

42. Neumann, T., Weikum, G.: Scalable Join Processing on Very Large RDF Graphs. In:

Proceedings of the 35th SIGMOD International Conference on Management of Data,

Providence, RI, USA, pp. 627–640 (2009)
43. Ning, X., Jin, H., Wu, H.: RSS: A framework enabling ranked search on the semantic

web. Information Processing and Management 44(2), 893–909 (2007)
44. Ntarmos, N., Triantafillou, P., Weikum, G.: Counting at Large: Efficient Cardinality Esti-

mation in Internet-Scale Data Networks. In: Proceedings of the 22nd International Con-

ference on Data Engineering, Atlanta, Georgia, USA (2006)
45. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:

Sindice.com: A Document-oriented Lookup Index for Open Linked Data. International

Journal of Metadata, Semantics and Ontologies 3(1), 37–52 (2008)
46. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Trans-

actions on Database Systems 34(3), 1–45 (2009)
47. Prud’hommeaux, E.: SPARQL Federation Extensions 1.1, Editor’s Draft (March 25,

2010), http://www.w3.org/2009/sparql/docs/fed/service
48. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Recom-

mendation (January 15, 2008), http://www.w3.org/TR/rdf-sparql-query/
49. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Pro-

ceedings of the 5th European Semantic Web Conference, Tenerife, Canary Islands, Spain,

pp. 524–538 (2008)
50. Schenk, S., Saathoff, C., Staab, S., Scherp, A.: SemaPlorer – Interactive Semantic Ex-

ploration of Data and Media based on a Federated Cloud Infrastructure. Journal on Web

Semantics: Science, Services and Agents on the World Wide Web 7(4), 298–304 (2009)
51. Schenk, S., Staab, S.: Networked Graphs: A Declarative Mechanism for SPARQL Rules,

SPARQL Views and RDF Data Integration on the Web. In: Proceeding of the 17th Inter-

national World Wide Web Conference, Beijing, China, pp. 585–594 (2008)
52. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance

Benchmark. In: Proceedings of the 25th International Conference on Data Engineering,

Shanghai, pp. 222–233 (2009)
53. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL Query Optimization

(2008); Arxiv preprint arXiv:0812.3788
54. Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path Selection

in a Relational Database Management System. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, Boston, MA, USA, pp. 23–34 (1979)
55. Sheth, A., Larson, J.: Federated Database Systems for Managing Distributed, Heteroge-

neous, and Autonomous Databases. ACM Computing Surveys 22(3), 183–236 (1990)
56. Stuckenschmidt, H., Vdovjak, R., Houben, G.J., Broekstra, J.: Index Structures and Al-

gorithms for Querying Distributed RDF Repositories. In: Proceedings of the 13th Inter-

national World Wide Web Conference, New York, NY, USA, pp. 631–639 (2004)
57. Tomasic, A., Raschid, L., Valduriez, P.: Scaling Heterogeneous Databases and the Design

of Disco. In: Proceedings of the 16th International Conference on Distributed Computing

Systems, Hong Kong, pp. 449–457 (1996)
58. Tran, T., Haase, P., Studer, R.: Semantic Search – Using Graph-Structured Semantic

Models for Supporting the Search Process. In: Proceedings of the 17th International Con-

ference on Conceptual Structures, Moscow, Russia, pp. 48–65 (2009)
59. Tran, T., Wang, H., Haase, P.: Hermes: Data Web search on a pay-as-you-go integra-

tion infrastructure. Web Semantics: Science, Services and Agents on the World Wide

Web 7(3), 189–203 (2009)
60. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic Web

Data Management. In: Proceedings of the 34th International Conference on Very Large

Data Bases, Auckland, New Zealand, pp. 1008–1019 (2008)

http://www.w3.org/TR/rdf-sparql-query/

Chapter 6

Queries over Web Services

Efthymia Tsamoura, Anastasios Gounaris, and Yannis Manolopoulos

Aristotle University of Thessaloniki,

Thessaloniki, Greece

{etsamour,gounaria,manolopo}@csd.auth.gr

1 Introduction

Nowadays, technologies such as grid and cloud computing infrastructures and

service-oriented architectures have become adequately mature and have been

adopted by a large number of enterprizes and organizations [2,19,36]. A Web

Service (WS) is a software system designed to support interoperable machine-to-

machine interaction over a network and is implemented using open standards and

protocols. WSs became popular data management entities; some of their benefits

are interoperability and reuseability.

Seeking to benefit from the above opportunities, the web and grid data manage-

ment infrastructures are moving towards a service oriented architecture by putting

their databases behind WSs, thereby providing a well-documented, interoperable

method of interacting with their data (e.g., [5,32]). Furthermore, data not stored in

traditional databases can be made available via WSs. As a consequence, there is

a growing interest in systems that are capable of processing complex queries (i.e.,

tasks) spanning services deployed on remote resources. The services can perform

two operations; they either perform processing of data, or they play the role of a

wrapper that retrieves data from a resource.

Currently, two classes of infrastructures that employ WSs to process data have

been developed, namely the WS query infrastructures and the workflow manage-

ment systems (WfMSs). The former process SQL-like queries or search queries over

information sources (e.g. [5,4,42]). Like traditional database management systems,

they perform the following tasks in order to answer a submitted query: query trans-

lation, service selection and query optimization. In the first two steps, the appro-

priate services that can correctly answer the submitted query are selected (either

with or without user interaction), while the final step, which is the main topic of

this chapter, aims to provide an efficient service execution plan. The other category

comprises WfMSs, where the workflow components are services (e.g., [33,23]). In

WfMSs the user has to select the services to process the data of interest, the location

of the input data (which are either extracted by a service that polls a resource or they

form a data stream) and the service invocation order, which is fixed. Languages such

as BPEL4WS have emerged for specifying WS composition in workflow-oriented

scenarios [1].

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 139–169.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

140 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

An example of a problem of optimization queries over WSs is given below. We

assume that WSs provide an interface of the form WS : X → Y , where X and Y are

sets of attributes, i.e., given values for attributes in X , W S returns values for the

attributes in Y , as shown in the following example adapted from [42]. In the generic

case, the input tuples may have more attributes than X , while attributes in Y are

appended to the existing ones.

Example 1. Suppose that a company wants to obtain a list of email addresses of

potential customers selecting only those who have a good payment history for at

least one card and a credit rating above some threshold. The company has the right

to use the following WSs that may belong to third parties, the first of which contains

a database of person ids.

W S1 : /0 → SSN id (ssn)
W S2 : SSN id (ssn,threshold) → credit rating (cr)
W S3 : SSN id (ssn) → credit card numbers (ccn)
W S4 : card number (ccn,good)→ good history (gph)
W S5 : SSN id (ssn) → email addresses (ea)

There are multiple valid orderings to perform this task, although several precedence

constraints exist: WS1 must always be at the beginning and WS3 must precede W S4.

The optimization process aims at deciding on the optimal (or near optimal) order-

ing under given optimization goals. When there are multiple logically equivalent

services for the same task (e.g., there are two services containing email addresses

at distinct places) or the physical placement of a service is flexible, then the problem

becomes more complex. �

In this chapter we will discuss several different flavors of queries over WSs and

the corresponding optimization algorithms. Note that some of these cases can be

reduced to problems that have been examined in the context of traditional database

queries in a straightforward manner. Traditional database solutions for such cases

can be easily transferred to our setting by replacing database operators with WSs;

for this reason, throughout the text, we will use the terms operators and services

interchangeably. For example, the problem of optimal ordering of centralized WSs

with a view to minimizing the response time may resemble the problem of order-

ing commutative filters in pipelined queries with conjunctive predicates [24,22], in

the sense that the calls to WSs may be treated in the same way as expensive predi-

cates. Note that ordering some types of relational joins can be reduced to the same

problem, as well [7].

However, reducing the problem of optimizing queries over WSs to the problem

of optimizing traditional queries is not always feasible because there are also many

substantial differences, and, as such, several optimization problems encountered in

queries over WSs have not been investigated in traditional query processing. These

differences stem from the fact that, in queries over WSs, there may exist precedence

constraints between the WSs, selectivities may be higher than 1 (e.g., WS3 in the

example can return more than one tuple) and, typically, the execution of queries

over WSs typically takes place in a both distributed and parallel manner.

Queries over Web Services 141

1.1 Optimization Problems of Queries over WSs

In this chapter, we examine several distinct query optimization problems that can

be broadly classified into four main categories, namely operator ordering, operator

scheduling, tuple routing and data transfer planning. For each problem, we present

some of the known solutions. Note that these solutions are not directly comparable

with each other since they deal with different problems.

Operator ordering where the goal is to build an operator (or WS) execution plan

that minimizes a pre-defined criterion by defining an appropriate partial or total

ordering of the operators. In other words, the optimization decisions relate to the

ordering of operators in the execution plan exclusively and issues such as allocation

of operators to resources do not apply. Note that the ordering need not be linear.

Problems that fall into this category assume that necessary metadata (e.g., operator

cost per input tuple, selectivity, etc.) are available and in addition, the operators

are pre-allocated on host machines. A well-known problem is the min-cost operator

ordering problem. Given a set of operators, the aim is to define an ordering of the

operators so that all input queries are evaluated with the minimum total execution

cost of operators. Optimization criteria will be discussed in more detail in Sec. 2.

Tuple routing which is a generalization of operator ordering in the sense that

not only a single operator plan to be followed by all input tuples is created. The

alternative approach, advocated by tuple routing techniques, may route input tuples

through different plans, which are also termed as interleaving plans [13]. A set of

interleaving plans consists of multiple simultaneously active operator plans, each

of which processes different partitions of the original input tuple set. When a new

tuple enters the system it is routed to one of these plans, according to a probability

weight.

Operator scheduling where the goal is to decide the processor on which each

service is evaluated. Problems of this category appear when the system is also re-

sponsible for resource allocation. It is assumed that the system is capable of per-

forming dynamic service deployment before the execution of the query and there

are multiple choices regarding the host nodes for each service. Operator scheduling

can be examined either in conjunction with operator ordering or in isolation. In the

latter case, operator ordering has been fixed in a previous step.

Data transfer planning where the focus is shifted to data transmission. The

aforementioned query optimization problems are operation centric, i.e., they de-

fine the operator execution order and/or the operator location. In the data transfer

problems, the primary concern is to optimize data transmissions. As such, these

problems emphasize more on scheduling the data transmission operations, or on the

specification of the amount of data exchanged between the hosts. Obviously, op-

erator scheduling and data transfer planning problems are met only in parallel or

distributed environments, whereas operator ordering and tuple routing problems are

encountered in centralized settings, as well.

142 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

1.2 Chapter Contributions and Structure

The contribution of this chapter is twofold. First, it presents a detailed overview of

the problems encountered in the optimization of queries over WSs. The problems

do not differ only in their nature as detailed above, but also in regard to the type

of queries, type of services or operators and the exact execution environment to

which they are tailored. This discussion results in the development of a taxonomy-

like classification of the problems in WS queries that appears in Sec. 2. Second,

this chapter discusses state-of-the-art solutions to distinct flavors of the problem of

optimizing queries over WSs in Sec. 3. Especially for the problem of minimizing

the response time in decentralized pipelined queries, a novel algorithm is presented.

A comparison of the key properties of the different solutions appears in Sec. 3.6,

while Sec. 4 concludes the chapter.

2 Different Aspects of the Problem of Optimizing WS Queries

Before probing into advanced query optimization algorithms that are relevant to

queries over WSs, we must first discuss the factors of the problem, which greatly

affect its complexity. These factors refer to the execution environment, the type of

input queries, the type of operators involved and the query optimization criteria and

are common to all kinds of problems mentioned in Sec. 1. The taxonomy presented

here aims at providing a complete view of these factors in a systematic way.

2.1 Execution Environment

We are mainly interested in queries in parallel and distributed query execution en-

vironments, like those in [35], since these environments are more common in WS

queries. However, a great number of algorithms originally proposed for central-

ized environments are still relevant. In such single-processor systems, only a central

node evaluates input queries, although the queries may process data from multi-

ple distributed resources. A distributed environment, such as the Internet and the

grid [19], consists of multiple, possible heterogeneous, independent and potentially

autonomous sites that are loosely connected via a wide-area network. On the other

hand, a parallel environment consists of multiple, homogeneous processors and data

resources spread over a local network. As such, the communication cost may dom-

inate the query execution process in a distributed environment, which, usually, is

not the case in a parallel setting. Nevertheless, the similarities between parallel and

distributed systems are more significant compared to their differences; so, we pre-

fer to distinguish between centralized and non-centralized (i.e., either parallel or

distributed) systems, only.

A parallel or distributed environment may be either static or dynamic. In the latter

case, the environmental characteristics, such as the number of available processors,

the processor workload, the network traffic, etc., may change over time rendering

Queries over Web Services 143

the problem of query optimization more challenging. Query optimization in dy-

namic environments, also called adaptive query processing [15], has been a topic

of investigation since late 70s [18]; however, the problem has received renewed at-

tention in the last decade. The vast majority of works on adaptive query processing,

like those mentioned above, deal with changes in the operator characteristics and the

input data rather than changes in the execution environment; only a few exceptions

to this are known (e.g., [20]). Centralized environments are considered to be static;

of course this is not always true, e.g., the amount of available memory may be sub-

ject to unpredictable changes, but the dynamicity of the environment can be safely

overlooked when the resource characteristics we are mostly interested in, such as

processing cost per tuple, usually play a minor role in optimization.

In addition, a distributed or parallel environment may utilize parallelism with

a view to speeding up and scaling up query execution [17]. Three types of paral-

lelism have been identified in parallel query processing, namely independent, parti-

tioned and pipelined parallelism. In independent parallelism, query operators none

of which use data produced by the others, may run simultaneously on distinct ma-

chines. In pipelined parallelism, data already processed by an operator may be pro-

cessed by a subsequent operator in the pipeline, at the same time as the sender

operator processes new data. Finally, partitioned parallelism refers to running sev-

eral instances of the same operator on different machines concurrently, with each

instance only processing a partition of the same original data set.

The three aforementioned forms of parallelism can co-exist within a single query

execution plan. For instance, in the introductory example, WS2 and W S3 can pro-

cess in parallel output data items of WS1; this corresponds to independent paral-

lelism. Also, W S1 and WS3 can be active simultaneously, i.e., WS3 processes out-

put tuples of WS1, while the latter keeps generating new tuples; this corresponds to

pipelined parallelism. Finally, consider a scenario where WS3 is physically deployed

Execution

environment

Centralized

Parallel/Distributed

Static

Dynamic

Independent / Partitioned / Pipelined

No parallelism

Centralized data

transfers

Decentralized data

transfers

Dynamicity

Parallelism

Data transfers

Fig. 1. Diagram of the different aspects regarding the execution environment

144 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

on two nodes, each processing half of the tuples of WS1; in that case, partitioned

parallelism is applied, as well. Obviously, parallelism can yield significant benefits

only in multi-processor, parallel or distributed environments.

Distributed environments are also differentiated regarding the type of manage-

ment of intermediate data transfers. In multi-processor systems, query operators

can be placed and evaluated anywhere across the network. Regarding the interme-

diate data transfers, in a centralized data transfer approach, the intermediate data is

transferred between resources via a central point. On the other hand, in a decentral-

ized managed data transfer approach, processors exchange data directly. Since data

is transferred from the source resource to the destination directly, the bottleneck

problem caused in centralized approaches is ameliorated and these approaches are

characterized by lower transmission times. Fig. 1 summarizes the different aspects

regarding the execution environment.

2.2 Input Queries

The optimization algorithms that apply to queries over WSs either optimize each in-

put query separately or optimize multiple queries simultaneously. In the latter case,

they try to benefit from the overlap regarding the data resources they access, or

even the constituent predicates. Multi-query optimization algorithms try to lever-

age this overlap in order to minimize the execution, communication and I/O cost.

Additionally, input queries can be classified with respect to their time duration into

continuous or non-continuous. Continuous queries are persistent queries that allow

users to receive new results when they become available [43]. They are mainly met

in streaming environments, where new data is continuously supplied and passed

to WS sets for further processing. On the other hand, the non-continuous ad-hoc

queries are executed on finite data. Optimization techniques that treat each tuple

separately can be applied to both continuous and ad-hoc finite queries. An example

of a continuous query over WSs is the following (adapted from [12]), where it is

assumed that separate WSs are responsible for checking the price variations of Dell,

Micron and Intel stocks:

“Notify me whenever the price of Dell or Micron stock drops by more than 5% and

the price of Intel stock remains unchanged over the next three months.”

Regarding their type, input queries can be expressed as traditional SQL-like database

queries in the form of select-project-join (SPJ) and aggregates, or as search, infor-

mation retrieval queries over information resources. Search queries are typically

unstructured and often ambiguous; users submit one or more keywords to a search

engine and the search engine returns approximate, i.e., incomplete answers with in-

formation that is related to the keywords provided in decreasing order of relevance.

Fig. 2 provides a diagram of the different query aspects.

Queries over Web Services 145

Input Queries

SQL-like

IR -like

Continuous queries

Ad-hoc

Single query

Multiple queries

Number of queries

Duration

Statement-style

Fig. 2. Diagram of the different aspects regarding input queries

2.3 Input Operators

The type of input queries is also strongly correlated to the type of operators in the

query execution plan. The operator attributes that are of interest include selectivity

and precedence constraints (see Fig. 3). Selectivity is defined as the average ratio

of output and input tuples. A WS that receives as input a country name and re-

turns a list of major cities has average selectivity above one, and another service

that, for the same input, returns just the capital has selectivity equal to one. Sim-

ilarly, a service that may receive the name of any city in the world and returns

airport codes only if the given city is nearby an airport has average selectivity be-

low one, since, worldwide, there are fewer airports than cities. The operators in a

query can be selective, i.e., their selectivity is between 0 and 1, or proliferative, i.e.,

their selectivity is greater than 1. IR-style services are typically characterized by

high average selectivity values: given a single tuple containing a keyword, multiple

data items are returned.

Input Operators

Constrained

Unconstrained

Correlated

Independent

Selective

Proliferative

Selectivity

Correlation

Constraints

Fig. 3. Diagram of the different aspects regarding input operators

146 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

Moreover, the operators are considered to be correlated when their selectivity

depends on the operators upstream in the query plan. If the selectivities are inde-

pendent of the ordering, then the operators are called independent. Note that the

selectivity of an independent operator may be correlated with the values of the input

attributes, which is the case in [9]. A last parameter that categorizes the operators

is the existence or not of prerequisite operators. More specifically, a constrained

operator cannot be executed before the completion of its prerequisite operators, in

contrast to an unconstrained one. The prerequisite operator O j of an operator Oi is

denoted by O j ≺ Oi.

2.4 Optimization Criteria

A critical factor in the optimization process is the exact optimization goal. Multi-

ple criteria exist, such as maximizing query throughput, minimizing monetary cost,

energy consumption, etc. In this chapter, we focus on two aspects, namely the min-

imization of the total query execution cost and the minimization of the query re-

sponse time. Minimization of the total execution cost can be split in two parts. In

centralized environments, execution cost encapsulates the cost for processing the

operators and the disk I/Os. In distributed environments, the cost for transferring

data among the operators is also considered. The minimization of execution cost

aims at minimizing the sum of the processing and transmission cost for all opera-

tors in the query plan.

However, the opportunities imposed by parallelization have moved the interest to

the optimization of other criteria, such as the response time, i.e., the time needed to

produce the full result set. In a pipelined parallel environment, all operators process

data simultaneously. As such, minimizing the query response time is equivalent to

the minimization of the execution time of the longest running operator (often re-

ferred to as the bottleneck operator) instead of the sum of the execution times of all

operators. When the query is evaluated with the help of interleaving plans (see Sec.

1.1), then the minimization of response time can be expressed as the maximization

of the tuple flow [13]. These optimization criteria are depicted in Fig. 4.

Optimization

criteria

Total operator

processing cost

Total data

transfer cost

Response time

Tuple flow

Fig. 4. Optimization criteria

Queries over Web Services 147

3 Optimization Approaches

This section studies state-of-the-art algorithms for the problems presented in Sec.

1.1. The section starts by presenting some operator ordering problems in both static

and adaptive execution environments and continues with tuple routing, scheduling

and data transfer planning problems.

Independently of the execution environment, in the problems that are presented,

except the data transfer planning ones, the data to be processed is either streamed

by a single data resource or extracted from a database and then sent to subsequent

services for processing. On the other hand, in the presented data transfer planning

problems, we consider two different data resource models. In the first case, multiple

data resources transfer data to a centralized processing component, while in the

second case, data reside on traditional databases that are disparate across a network.

In order to answer a query involving calls to multiple services, the following ac-

tions must be performed by a query management component. First, the candidate

services that may take place during the query execution phase must be selected. Af-

ter that, statistics, regarding the per-tuple processing cost and the selectivity of the

services, as well as the network status, must be gathered. This data is utilized by

an optimization component that builds a feasible and efficient (in terms of a pre-

selected optimization criterion) service ordering. It is assumed that the algorithms

that deal with operator ordering and tuple routing problems exploit such query man-

agement components.

3.1 Operator Ordering Problems in a Static Environment

The operator ordering problems that are studied in the current subsection deal with

static execution environments. In Sec. 3.1.1, we study problems, where the opti-

mization objective is the query response time minimization, while in Sec. 3.1.2,

we present problems, where the objective is the minimization of the per tuple total

execution cost.

The services in Sec. 3.1 are considered to provide an interface of the form W S :

X →Y , where X and Y are sets of input and output attributes, respectively. Each WS

typically performs operations such as filtering out data items that are not relevant

to the query, transforming data items, or appending additional information to each

input tuple.

3.1.1 Minimizing the Response Time

Srivastava et al. are among the pioneers that deal with query optimization when the

data resources and the operators that process data are implemented as WSs. They

consider a parallel and static execution environment, in which data is pipelined

among services that are placed in arbitrary places. To this end, they propose a

WSMS that, given an SQL-like input query, undertakes the task to produce an appro-

priate ordering of the services, in order to minimize the query response time. Query

execution proceeds as follows. The output of one WS is returned to the WSMS

148 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

and the latter redirects the received tuples to a subsequent WS, finally producing

the query results. After giving a brief description of the execution environment, we

present a formal problem definition utilizing the term operator instead of service.

More specifically, given an ad-hoc SPJ query Q that is defined over a set of N

operators O = {O1,O2, . . . ,ON}, the goal is to identify an operator ordering P for

all input tuples that minimizes the response time of the query, in a parallel and static

execution environment in which data is pipelined among the operators. Since the

operators are executed in parallel, the maximum rate at which input tuples can be

processed through the pipelined plan P is determined by the bottleneck operator (see

Sec. 2.4). For every input tuple to P, the average number of tuples that an operator

Oi needs to process is given by

Ri(P) = ∏
k|Ok∈Pi(P)

σk (1)

where Pi(P) is the set of operators that are invoked before Oi in the plan P and σi

is the service selectivity. The average processing time required by operator Oi per

input tuple is Ri(P)ci, where ci is the per tuple processing cost of Oi. Since the cost

of a plan is determined by the operator with the maximum processing time per input

tuple, the bottleneck cost of a plan P is given by

cost(P) = max
1≤i≤N

(Ri(P) · ci) (2)

Srivastava et al. have proposed a greedy algorithm for the special case where the

intermediate data transfers are centralized [42]. The operators are assumed to be

independent, whereas arbitrary selectivity values and existence of precedence con-

straints are supported. In the produced plans, the output of an operator may be fed

to multiple operators simultaneously. Starting from an empty operator plan, in every

iteration of the algorithm, the next operator Or to be appended to P is the one that

incurs the minimum processing cost per tuple. In order to find the minimum cost

of appending Or to P, the best cut in P is found, such that on placing edges from

the operators in the cut to Or, the incurred cost is minimized. As such, the problem

is reduced to a network flow problem [11]. The worst case complexity of the algo-

rithm is O(N5) and the algorithm is provably optimal. For selective operators, the

complexity is significantly lower since the optimal plan P is a linear ordering of the

operators by increasing cost, ignoring their selectivity. For proliferative services, the

produced plans may be parallel, i.e., a partial ordering is produced.

Example 2. Let O = {O1, . . . ,O10} be a set of 10 operators with corresponding costs

and selectivities shown in Table 1 and 2, respectively. Since all operators are se-

lective, the proposed algorithm orders them by increasing processing cost. Thus,

the optimal ordering that minimizes Eq.(2) according to [42] is

P = {O1O5O2O7O4O10O8O9O3O6}. �

A drawback of this algorithm is that it does not take the potentially heterogeneous

communication links between the operators into account. This is significant when

the execution is decentralized, given also that the communication cost may be the

Queries over Web Services 149

Table 1. Costs of operators in Example 2

Oi 1 2 3 4 5 6 7 8 9 10

ci 2 7 12 8 4 16 7 10 10 9

Table 2. Selectivities of operators in Example 2

Oi 1 2 3 4 5 6 7 8 9 10

σi 0.8 0.7 0.9 0.3 0.5 0.6 0.4 0.1 0.6 0.7

dominant cost. In [42], it is assumed that the output of an operator is fed to the sub-

sequent operators indirectly, through a central management component thus annihi-

lating the need to consider the different communication costs explicitly. Tsamoura et

al. address the afore-mentioned limitation by proposing a novel efficient algorithm

for the optimal total ordering of operators, when the intermediate result transfers are

decentralized and the communication costs between the operators may differ [46].

Let ti, j be the time needed to transfer a tuple from operator Oi to O j. Similarly

to [42], there is no limitation regarding the operator selectivities and the existence

of precedence constraints; however, the selectivities are assumed to be independent,

as well. The response time of a linear operator ordering S is given by the bottleneck

cost metric in accordance to [42] with ti, j factored in:

cost(S) = max
1≤i≤N

Ri(S)(ci + σiti,i+1), (3)

where tN,N+1 = 0. Ti, j = ci + ti, jσi is the aggregate cost of Oi with respect to O j. The

above formula implies that in general Ti, j �= Tj,i, since ci and σi values may differ

from c j and σ j values. Note that if ti, j is equal for all service pairs, the problem can

be solved in polynomial time, as shown in [42].

The proposed algorithm is based on the branch-and-bound optimization approach.

It proceeds in two phases, namely the expansion and the pruning one. During ex-

pansion, new operators are appended to a partial operator ordering C, while during

the latter phase, operators are pruned from C with a view to exploring additional

orderings. The decision whether to append new operators or prune existing ones

from a partial plan C is guided by two cost metrics, ε and ε respectively. The for-

mer corresponds to the bottleneck cost of C, and is given by Eq. (3), while the

latter is the maximum possible cost that may be incurred by operators not currently

included in C:

ε = max
l,r

⎧

⎨

⎩

(

∏ j|O j∈C σ j

)

Tl,r, Ol �∈C, Or �∈C
(

∏l−1
j=0 σ j

)

Tl,r, Ol : last operator in C, Or �∈C

⎫

⎬

⎭

(4)

The algorithm consists of the following simple steps. Starting with an empty plan C

and an empty optimal linear plan S with infinity bottleneck cost, in every iteration

of the algorithm, the parameters ε and ε are computed. If the bottleneck cost ε of

150 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

C is lower than ε , then a new operator is appended to C; this operator is the one

having the minimum aggregate cost with respect to the last operator in C. If the

bottleneck cost ε of the current plan C is higher than or equal to the bottleneck cost

ρ of the best plan found so far S, then the operators in C after the bottleneck service,

including the latter, are pruned. Finally, whenever the condition ε ≤ ε < ρ is met, a

new solution is found. That condition implies that the ordering of the services that

are not yet included in C does not affect its bottleneck cost. As a consequence, all

plans with prefix the partial plan C have the same bottleneck cost. So, a candidate

optimal solution S is found that consists of the current plan C followed by the rest

of the services in any order. The bottleneck cost ρ of the best plan found so far S

is set to ρ = ε . The last solution is the optimal one. The detailed description of the

algorithm, along with the proofs of correctness and optimality can be found in [46].

Furthermore, detailed real-world ([45]) and simulation ([46]) evaluation has shown

that the proposed algorithm can yield significant performance improvements (of an

order of magnitude in many cases).

The following example demonstrates the steps of the algorithm proposed in [46]

for minimizing the response time in a distributed and static environment, which

employs pipelining during query execution.

Example 3. Let us assume that the operators in Example 2 are allowed to commu-

nicate directly with each other and the network connections are heterogeneous. The

corresponding aggregate costs of the operators are shown in Table 3. For example,

the cell T1,2 of Table 3 is evaluated as T1,2 = c1 + t1,2σ1 = 2 + 65 ∗ 0.8, where 0.8 is

the per cost to transfer an tuple from O1 directly to O2.

Fig. 5 shows the partial plans at the end of each iteration. Initially, the plans C

and S are empty and the bottleneck cost of S is set to ∞. The algorithm starts by

identifying the operator pair, which incurs the minimum bottleneck cost. The cor-

responding operators are O1 and O7. After that, C = O1O7. In the second iteration,

since ε = 8 < ε = σ1 ×T7,3 = 36 and ε < ρ = ∞, a new operator is appended to C,

the one having the minimum aggregate cost with respect to O7; that operator is O9.

Table 3. Aggregate cost matrix T

i \ j 1 2 3 4 5 6 7 8 9 10

1 - 54 35 42 14 50 8 33 17 10

2 52 - 18 33 47 40 69 37 42 43

3 49 26 - 60 68 74 98 40 66 57

4 23 19 24 - 17 46 21 9 42 27

5 11 33 35 19 - 10 40 52 14 32

6 52 44 57 91 23 - 44 22 72 46

7 10 43 45 24 36 26 - 35 17 19

8 14 15 14 11 20 11 17 - 17 16

9 21 40 46 78 22 66 25 48 - 79

10 16 45 44 53 48 44 29 47 90 -

Queries over Web Services 151

1
st

iteration (at the beginning ǫ = 0, ǫ = 98, ρ = ∞)

O1 O7

2
nd

iteration (at the beginning ǫ = 8, ǫ = 36, ρ = ∞)

O1 O7 O9

3
rd

iteration (at the beginning ǫ = 13.6, ǫ = 25.28, ρ = ∞)

O1 O7 O9 O5

4
th

iteration (at the beginning ǫ = 13.6, ǫ = 9.984, ρ = ∞)

O1

5
th

iteration (at the beginning ǫ = 0, ǫ = 78.4, ρ = 13.6)

O1 O10

6
th

iteration (at the beginning ǫ = 10, ǫ = 72, ρ = 13.6)

O1 O10 O7

7
th

iteration (at the beginning ǫ = 23.2, ǫ = 25.2, ρ = 13.6)

O1

8
th

iteration (at the beginning ǫ = 0, ǫ = 78.4, ρ = 13.6)

O1 O5

9
th

iteration (at the beginning ǫ = 14, ǫ = 41.6, ρ = 13.6)

C = ∅

10
th

iteration (at the beginning ǫ = 0, ǫ = 98, ρ = 13.6)

O4 O8

11
th

iteration (at the beginning ǫ = 9, ǫ = 6, ρ = 13.6)

C = ∅

Fig. 5. The steps in Example 3

In the third iteration, since ε = 13.6 < ε = σ1 ×σ7 ×T9,10 = 25.28 and ε < ρ = ∞
the operator O5 is appended to C forming the partial plan C = O1O7O9O5. Now,

since ε = 13.6 > ε = σ1 ×σ7 ×σ9 × T5,8 = 9.984, and ε < ρ = ∞, a solution is

found. Thus, S is set to C, ρ = 13.6 and C is pruned. After the pruning, C = O1

(the bottleneck operator is O7). The termination condition, see [46], is not triggered

given that there exists a two operator prefix that has not been investigated and its

cost is less than ρ : T4,8 = 9.

152 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

In the fifth iteration, since ε = 0 < ε = 78.4 and ε = 0 < ρ = 13.6, a new operator

is appended to C = O1; that is O10. A new operator is also appended in the sixth

iteration forming the partial plan C = O1O10O7. In the seventh iteration, the partial

plan is set to C = O1, as ε = 23.2 > ρ = 13.6 and the bottleneck operator is the

second one, i.e., O10. In the eight iteration, O5 is appended to C = O1, while in

the ninth iteration, the partial plan is set to C = /0, as ε = 14 > ρ = 13.6 and the

bottleneck operator is the first one, i.e., O1. As a result, any other plan starting

with O1 can be safely ignored. Since the plan C is empty, the algorithm searches

for the pair of operators with the minimum aggregate cost. In our example, this

pair consists of O4 and O8. In the eleventh iteration, a new solution is found, since

ε = 9 > ε = 6 and ε < ρ = 13.6. Thus, S = O4O8, the bottleneck operator is O4

and ρ is set to 9. After the pruning C = /0, and the algorithm safely ignore plans

starting with O4O8. This causes the algorithm to terminate, since the cost of the less

expensive operator pair except those beginning with O1, which is O5O6, is higher

than ρ : T5,6 = 10 > ρ = 9. So the algorithm terminates, after having essentially

explored all the 10! orderings in just 11 iterations. �

The characteristics of these two state-of -the-art algorithms for the optimization

of queries over WSs in a pipelined parallel environment are summarized in Table 4.

Table 4. Operator ordering algorithms for minimizing the response time

Work Execution environment Input queries Input operators

[42] Parallel/distributed, static,

centralized data transfers,

pipelined parallelism

Single, ad-hoc, SQL-

like

Independent, both selective

and proliferative, both con-

strained and unconstrained

[46] Distributed, static, de-

centralized data transfers,

pipelined parallelism

Single, ad-hoc, SQL-

like

Independent, both selective

and proliferative, both con-

strained and unconstrained

3.1.2 Minimizing the Total Processing Time

In previous sections we saw that the query response time equals the maximum ex-

ecution cost spent by an operator in order to process an input tuple and/or to send

them to a subsequent operator. On the other hand, in a min-cost operator ordering

problem, the goal is to minimize the total operator execution cost (processing and

or transferring) that is incurred per input tuple. From now on, the term execution

cost, unless clarified otherwise, encapsulates both the processing and transferring

cost spent by an operator.

Ordering operators with a view to minimizing the per tuple total execution cost,

a problem also commonly referred to as the min-cost operator ordering problem,

is essential for achieving good system throughput. In general, solutions to the min-

cost problem initially proposed for single-node settings may be applied to parallel

settings characterized by resource homogeneity in a straightforward manner.

Queries over Web Services 153

The min-cost ordering problem comes in several flavors. One of the most in-

teresting ones refers to a parallel and static execution environment, where data is

directly exchanged between the operators through pipelining; data communication

can occur via a coordinator as well, without essentially modifying the problem, as

long as homogeneous network links are assumed. If the operators are independent,

then well-established fast solutions apply (e.g., [24,22]). However, correlated oper-

ators pose a more challenging problem. More specifically, given an ad-hoc select

query Q that is defined over a set of unconstrained, correlated and selective opera-

tors O = {O1,O2, . . . ,ON} with fixed processing cost ci and selectivity σi, the goal

is to find an operator linear ordering S that minimizes the total execution cost of

operators per input tuple. This cost encapsulates only the processing cost of tuples

and is formally given by the following equation:

cost(S) = c1 +
N

∑
i=2

ciDi, Di =
i−1

∏
j=1

(1−d(j| j−1)) (5)

d(i| j) is the conditional probability that the operator Oi will drop a tuple that has

not been dropped by any of the operators that precede Oi in S, and d(i|0) = 1−σi

is the unconditional probability that operator Oi will drop a tuple. Any drop prob-

ability is linearly related to selectivity, given that d(i| j) = 1−σ(i| j). Babu et al.

have proved that this problem is equivalent to the pipelined set cover problem [7].

The pipelined set cover problem is MAX SNP-Hard [30], which implies that any

polynomial operator ordering algorithm can at best provide a constant-factor ap-

proximation guarantee for this problem. In [30], a 4-times approximation algorithm

is introduced to solve this problem. According to that algorithm, the operators must

be ordered in a way that satisfies the following condition (termed greedy invariant):

d(i|i−1)

ci

≥
d(j|i−1)

c j

,1 ≤ i ≤ j ≤ N (6)

Example 4. We continue Example 2, aiming now at minimizing the total execution

time (only the processing time is considered). In this example, the selectivities of the

operators are independent, so the algorithm in [7] is reduced to those in [24,22] and

the operators are ordered in decreasing order of (1−σi)/ci. As such, first O5 is se-

lected, followed by O1, O8 and so on. If the operators were correlated, then, after se-

lecting O5, the conditional selectivities σ(i|5) of all other operators would have to be

estimated, in order to detect the second operator. �

Next, the min-cost operator ordering problem is studied in a multi-query setting.

This problem is also known as the shared min-cost operator ordering problem. More

formally, let Q = {Q1,Q2, . . . ,QM} be a set of M, potentially continuous select

queries that are evaluated over a set of N selective, unconstrained and correlated

operators O. Each query is a conjunction of the operators in O. For each input tuple,

operator Oi ∈ O either returns a tuple or rejects it. The proportion of rejected tuples

is defined by the operator selectivity. The goal is, given an input tuple t, to find the

ordering that identifies the queries satisfied by t with the minimum cost. Note that an

input tuple satisfies a query if it is not rejected by none of its constituent operators.

154 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

Obviously, if a query is satisfied, then all of its constituent operators must be

evaluated. On the other hand, if an operator of a query rejects a tuple, then we do

not have to evaluate the rest operators belonging to the same query (and are not

evaluated so far). Thus, in a produced ordering, only a subset of operators O☛ ⊆ O

have to be evaluated, in order to determine the queries that are satisfied, and thus,

the per tuple total processing cost is given by:

cost(S) = ∑
i|Oi∈O′

ci (7)

Munagala et al. have proved the equivalence of this problem to the minimum set

cover problem, and proposed an approximate greedy algorithm as a solution [31].

More formally, at any stage of the algorithm, the next operator to be evaluated is

expected to resolve the maximum number of unresolved queries per unit cost. We

say that for a given tuple t, a query is resolved if all its constituent operators return

t or the currently evaluated operator rejects t. Let pi be the number of unresolved

queries the operator Oi is part of and 1− σi the probability that the operator Oi

rejects an input tuple. Then, the expected number of queries resolved by Oi is pi(1−
σi). The next operator to be evaluated is the one that minimizes the ratio ranki =
ci/ pi(1−σi). Oi is then removed independently from filtering out or not an input

tuple. In addition, the queries that have been resolved due to the operator evaluation,

and any other operator, which is not part of at least one not yet resolved query, is

also removed. The algorithm terminates when all submitted queries are resolved.

Example 5. This example presents the steps of the algorithm proposed by Munagala

et al. for the shared min-cost operator ordering problem. Suppose that the following

queries are available Q1={O1,O3,O7,O10}, Q2={O4,O5,O8}, Q3 = {O2,O4,O10},

Q4 = {O1,O7,O9,O10}, Q5 = {O3,O6,O7,O9}. Let t be an input tuple, which is not

rejected by any operator (except O1, O5 and O9). As a consequence, only the query

Q3 is satisfied for t, since none of its constituent operators rejects this tuple. Figure 6

shows the results after every iteration of the algorithm. The algorithm starts by iden-

tifying the operator which minimizes the ratio ranki = ci/pi(1−σi), which is O7

with rank7 = 3.88 (see also Tables 1 and 2). Since O7 does not reject the input tuple,

no query is resolved. After that, operator O1 is selected with rank1 = 5. Operator O1

rejects t, thus resolving queries Q1 and Q4. None of the not yet evaluated operators

is removed, since they are included in at least one of the not yet resolved queries, i.e.,

Q2, Q3 and Q5. The next two operators are O4 and O5 with rank4 = 5.71 and rank5 =
8, respectively. Since O5 rejects t, query Q2 is also resolved. The next operator is

O2 with rank2 = 23.33. After evaluating operator O2, operator O9 is evaluated with

rank9 = 25. Since O9 rejects input tuple t, query Q5 is also resolved. Apart from that,

operators O3 and O6 do not have to be evaluated, since they are not part of any un-

resolved query. Finally, the remaining operator, i.e., O10 is evaluated, and thus query

Q3 is satisfied. �

Liu et al. have proposed an edge-coverage-based approximate greedy algorithm for

the same problem that achieves a better approximation ratio [28]. In [31], the shared

min-cost operator ordering problem is viewed as the problem of covering the input

Queries over Web Services 155

Q 1 Q 2 Q 3 Q 4 Q 5

O 1, O3

O7, O10

O4, O5

O8

O2, O4

O10

O1, O7

O9, O10

O3, O6

O7, O9

Q1 Q2 Q3 Q4 Q5

O1, O3

O10

O4, O5

O8

O2, O4

O10

O1

O9, O10

O3, O6

O9

1st iteration O7 is selected (rank7 = 3.88)

Q2 Q3 Q5

O4, O5

O8

O2, O4

O10

O3, O6

O9

2nd iteration O1 is selected (rank1 = 5)

Q2 Q3 Q5

O5

O8

O2

O10

O3, O6

O9

3rd iteration O4 is selected (rank4 = 5.71)

Q3 Q5

O2

O10

O3, O6

O9

4th iteration O5 is selected (rank5 = 8)

Q3 Q5

O10

O3, O6

O9

5th iteration O2 is selected (rank2 = 23.33)

Q3

O10

6th iteration O9 is selected (rank9 = 25)

7th iteration O10 is selected
Q3

Fig. 6. The steps in Example 5, where each box corresponds to an unresolved query contain-

ing its remaining operators

156 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

queries through a suitable choice of operators. However, in [28], the same problem

is viewed as the problem covering the connections between queries and operators

through a suitable choice of operators, rather than covering the queries themselves.

The algorithm makes use of a bipartite graph. A bipartite graph G = (O,Q,E)
consists of two partitions, the set of the not yet evaluated operators (initially O)

and the set of the not yet resolved queries (initially Q); an edge e = (Oi,Q j) ∈ E

between an operator and a query indicates the fact that the operator is present in

the corresponding query. Given an input tuple t, the next operator to be evaluated

in each step is the one that covers the maximum number of edges in the bipartite

graph with the minimum processing cost. For an operator Oi, the expected number

of edges covered is the sum of the expected number of the queries that Oi evaluates

to true1 plus the expected number of the operators that do not have to be evaluated if

operator Oi evaluates to false (these are the not yet evaluated operators that belong to

the not yet evaluated queries, where Oi is part of). More formally, the next operator

to be evaluated, given a tuple t, is the one that minimizes the ratio

unit − pricei =
ci

σiδ (Oi)+ (1−σi)∑∀Qk|(Oi,Qk)∈Ei
δ (Qk)

(8)

where Ei is the remaining set of edges in the current iteration, δ is the degree of an

operator or a query respectively in the bipartite graph and Qk is any query involving

Oi. After each operator evaluation, the bipartite graph is updated with the performed

actions being identical to those in [31].

Example 6. We reconsider the problem in Example 5 employing the edge-coverage

based algorithm proposed in [28]. Figure 7 shows the operator-query bipartite graph

after every iteration of the algorithm. Let t be the current input tuple. In the first iter-

ation, operator O1 is selected for evaluation with unit-price = 2/(0.8∗2+0.2∗ (4+
4)) = 0.625. After that, queries Q1 and Q4 are removed from the graph along with

operator O1, since O1 rejects t. In the second iteration, the operator O4 is selected

with unit-price = 8/(0.3 ∗ 2 + 0.7 ∗ (3 + 3)) = 1.66. In the third iteration, O7 is se-

lected, while in the fourth iteration we evaluate O5 with unit-price = 4/(0.5+0.5∗
2) = 2.66. Since operator O5 rejects the input tuple, query Q2 is removed from the

graph along with operator O8. The latter is removed as it is not part of any unresolved

query. In the fifth iteration, O2 is selected for evaluation, while in the sixth iteration,

O9 is selected with unit-price=10/(0.6 + 0.4 ∗3)= 5.55. After evaluating operator

O9, query Q5 along with operators O3 and O6 are removed from the graph. Finally,

operator O10 is evaluated, since it is the only remaining operator. �

A common problem with the performance of WSs is that they may be too slow or

prohibitively expensive in some cases. In that case, if there exist some additional

highly selective operators that are inexpensive and correlated to the expensive ones,

it is beneficial to incorporate them early in the plan. This is the main rationale in

1 We say that, given a tuple t, an operator Oi evaluates to true a query Qi if Oi ∈ Qi and Oi

returns t. Otherwise, we say that Oi evaluates Qi to false.

Queries over Web Services 157

1
st

 iteration: O 1 is selected (unit-price=0.625)

Q3

O10

Q3 Q5

O3 O6 O9 O10

Q3 Q5

O2 O3 O6 O9 O10

Q2 Q3 Q5

O2 O3 O5 O6 O8 O9 O10

Q2 Q3 Q5

O2 O3 O5 O6 O7 O8 O9 O10

Q2 Q3 Q5

O2 O3 O4 O5 O6 O7 O8 O9 O10

Q1 Q2 Q3 Q4 Q5

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

2
nd

 iteration: O 4 is selected (unit-price=1.66)

3
rd

 iteration: O 7 is selected (unit-price=2.5)

4
th

 iteration: O 5 is selected (unit-price=2.66)

5
th

 iteration: O 2 is selected (unit-price=5.38)

6
th

 iteration: O 9 is selected (unit-price=5.55)

Q3
7

th
 iteration: O 10 is selected

Fig. 7. The steps in Example 6

158 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

[14]. More specifically, the work in [14] exploits the fact that some additional low-

cost operators Oi �∈ O can be evaluated so as to reject tuples at lower cost avoiding

the cost of evaluating expensive operators. In this work, the proposed solution is

a conditional plan. A conditional plan is a decision tree where each interior node

corresponds to an operator that splits the plan into several conditional plans, in turn.

During evaluation, the tree is traversed. At every node, the query processor evaluates

the corresponding operator and follows one of the sub-plans depending on its output.

Lazaridis and Mehrota in [25] deal with a problem similar to [14]. Let Q be

an ad-hoc, select query evaluated over a set of N independent, unconstrained and

selective operators O. The goal is to find an operator ordering that minimizes the

total operator processing cost per tuple, in order to decide whether an input tuple is

rejected by any of the operators or not. In [25], as in [14], this is done by inserting

additional lower cost operators that are not part of the original operators mentioned

in the query explicitly.

A motivation example is as follows. Suppose a query that uses an expensive face

identifier method, which compares input images with stored images containing faces

of criminals:

SELECT * FROM Camera, Criminals

WHERE FaceIdentifier(Camera.image, Criminals.image)

Suppose also that the user has access to two additional, less expensive methods,

ObjectDetector and FaceDetector which detect foreign objects and human faces,

respectively. By using these methods we can reject some input images at lower cost:

if an image does not contain an object or a face, then there is no reason to test

whether it contains a particular face of a criminal. We infer a negative result for

FaceIdentifier from a negative result by either of the two methods ObjectDetector

and FaceDetector.

Table 5 summarizes the main characteristics of the proposed solutions to dif-

ferent flavors of the min-cost operator ordering problem. As already explained, al-

though some of these solutions were originally proposed for centralized settings,

Table 5. Algorithms for flavors of the min-cost operator ordering problem

Work Execution environment Input queries Input operators

[7] Parallel, decentralized data

transfers, pipelined paral-

lelism

Single, continuous,

SQL-like

Correlated, selective and

unconstrained

[31] Centralized Multiple, continuous,

SQL-like

Correlated, selective and

unconstrained

[28] Centralized Multiple, continuous,

SQL-like

Independent, selective and

unconstrained

[14] Centralized Single, ad-hoc, SQL-

like

Correlated, selective and

unconstrained

[25] Centralized Single, ad-hoc, SQL-

like

Independent, selective and

unconstrained

Queries over Web Services 159

their results can be easily transferred to parallel settings or distributed settings with

centralized data transmission, and, as such, they can be employed to optimize queries

over potentially remote WSs. Also, techniques proposed for continuous queries may

be applicable to ad-hoc queries on finite data, too.

3.2 Operator Ordering Problems in Dynamic Environments

Wide area settings hosting WSs are typically subject to changes, which may have

significant impact on queries. Babu et al. have extended their work in [7] to address

the more general problem where the execution environment is dynamic. This is

achieved by utilizing two components, a so-called “profiler” and a “re-optimizer”.

The profiler maintains a time-based sliding window of tuples dropped in the recent

past. A profile tuple is created for every tuple in the sliding window and shows which

operators have unconditionally rejected it. The re-optimizer can then compute any

selectivity estimates that it requires from the profile tuples. The re-optimizer’s job is

to ensure that the current operator ordering satisfies Eq. (6). Similarly, the operator

costs can be monitored, as well. The above render the algorithm proposed in [7]

robust to environmental changes.

In the context of adaptive query processing [15], Avnur and Hellerstein have pro-

posed the eddies execution model for minimizing the response time of ad-hoc SPJ

queries at runtime [6]. The operators can be of arbitrary type, i.e., both selective and

proliferative, both constrained and unconstrained, and both correlated and indepen-

dent. In the eddies model, every tuple may follow a different plan. The original eddy

implementation employed two main approaches to routing. The first one, called

back-pressure, causes more tuples to be routed to fast operators early in query exe-

cution. The second approach augments back-pressure with a ticket scheme, whereby

the eddy gives a ticket to an operator whenever it consumes a tuple and takes a ticket

away whenever it sends a tuple back to the eddy. In this way, higher selectivity op-

erators accumulate more tickets. When choosing an operator to which a new tuple

should be routed, the ticket-routing policy conducts a lottery between the operators,

with the chances of a particular operator winning being proportional to the num-

ber of tickets it owns. In this way, higher selectivity operators tend to receive more

tuples early in their path through the eddy. The algorithm in [7] can also be incorpo-

rated into eddies routing policies. Several extensions to eddies have been proposed,

including the works in [9,38,29,44]. The work of Tian and DeWitt [44] explicitly

considers distributed execution environments supporting decentralized data trans-

ferring. In a distributed eddy, each operator, instead of returning processed tuples

back to a central eddy, it redirects them to a subsequent operator. The operators

learn query execution statistics and exchange them with other operators periodi-

cally. Based on these statistics, each operator makes its own routing decisions with-

out consulting the central eddy or any other operator. By employing such eddies in

distributed queries over WSs, the need of an optimizer that constructs an execution

plan becomes obsolete.

160 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

3.3 Tuple Routing and Scheduling Problems

WSs can usually process many requests concurrently due to multi-threading. Each

server hosting a WS has limited capacity though, so an optimizer has to build plans

that respect the capacity constraints. Allowing multiple concurrent calls to operators

is considered in tuple routing problems. These problems deal with the selection of

one or more operator orderings, in order to maximize the number of tuples processed

per unit time, this is why they are also called flow maximization problems. Their

main rationale is to benefit from as much capacity of the processors hosting the

operators as possible.

Condon et al. have proposed a solution for the special case where the orderings

are linear, the execution environment is parallel and static, the data transfers are

decentralized and pipelined parallelism is employed [13]. Let Q be an ad-hoc select

query consisting of calls to N independent, unconstrained and selective operators

O. ri is the rate limit of each operator and is measured in tuples per time unit. Each

tuple can be routed individually, so that different tuples can follow distinct routes.

The problem is to find one or more operator orderings in order to maximize the

tuple flow per unit time. More formally, suppose that a set of M different linear

operator orderings are available, {π1,π2, . . . ,πM} that process different subsets of

input tuples in parallel. Let fi be the number of tuples sent through linear plan πi per

unit time. Then, the total number of tuples processed per unit time by the different

linear orderings is given by

F = ∑
πi

fi, fi > 0 ∀ πi (9)

The goal is to find the set of fi and πi values that maximize Eq. (9) without violating

the rate limits ri of the operators.

Condon et al. proposed a recursive algorithm for this problem, which is detailed

in [13]. Operators are initially ordered (from N to 1) in a way that satisfies the

following condition:

riσi ≤ ri+1∀i,1 ≤ i ≤ N −1, (10)

After that, the flow of tuples along each ordering is increased until either (i) an

operator is saturated, i.e., it processes the maximum possible number of input tuples

according to its rate limits, or (ii) the residual capacity of Oi, 1 ≤ i ≤ N times its

selectivity σi becomes equal to the residual capacity of Oi+1. In [13], it is shown that

if stopping condition (i) is satisfied, the constructed flow is optimal. On the other

hand, if stopping condition (ii) is satisfied, the operator Oi+1 is immediately placed

after Oi and the operators Oi+1 Oi are replaced by a single operator Oi,i+1 with rate

limit equal to the residual capacity of Oi and selectivity equal to the product σiσi+1.

The resulting smaller problem is then solved recursively.

Example 7. Let O2 = {O1,O2,O3,O4,O5} be a set of five operators with rate limit

and selectivity values {12,8,7,4,2} and {0.9,0.3,0.7,0.5,0.8}, respectively. Ini-

tially, the operators are sorted in descending rate limit order, i.e., O3 O4 O2 O5 O1;

this ordering satisfies Eq. (10). The minimum flow of tuples that triggers either of

Queries over Web Services 161

the two conditions (see [13]) is f3,4,2,5,1 = 4.36. If f3,4,2,5,1 = 4.36 tuples per time

unit are sent through the ordering O3 O4 O2 O5 O1, then the residual capacity of

O2 times its selectivity is equal to the residual capacity of O4. After that, the or-

dering O3 O4 O2 O5 O1 is kept and a new operator ordering is created. To this

end, operators O2 and O4 are merged into a single operator with residual capacity

r2,4 = 5.82 (the residual capacity of O2) and selectivity σ2,4 = σ2 ×σ4. The new

smaller sub-problem is solved recursively. In the second iteration, f3,2,4,5,1 = 5.25

is the minimum flow of tuples that triggers stoping condition (2), while none of the

operators becomes saturated with less flow. Thus, the ordering O3 O2,4 O5 O1 is

kept and the operators O2,4 and O5 are merged into an operator O5,2,4 with residual

capacity equal to the residual capacity of O5 and selectivity σ5,2,4 = 0.105, forming

a new ordering O3 O5,2,4 O1. The problem is again solved recursively. The algo-

rithm terminates in the fifth iteration, where a single operator O1,5,2,4,3 has been

left with residual capacity r1,5,2,4,3 = 0.2316, i.e., f1,5,2,4,3 = 0.2316 tuples per time

unit must be sent along this ordering, in order to saturate the single operator. To-

gether, the flows constructed in the aforesaid five stages yield the following optimal

solution to the max-throughput tuple routing problem for the given input instance:

f3,4,2,5,1 = 4.36, f3,2,4,5,1 = 5.25, f3,5,2,4,1 = 1.58, f3,5,2,4,1 = 1.58, f3,1,5,2,4 = 0.79,

f1,5,2,4,3 = 0.2316 and fπ = 0 for all other π orderings. The steps of the algorithm

are shown in Figure 8. �

3O

3

3

12

0.9

r

4O

4

4

8

0.3

r

2O

2

2

7

0.7

r

5O

5

5

4

0.5

r

1O

1

1

2

0.8

r

2,4

2,4

5.82

0.21

r

3

3

2.39

0.9

r 5,2,4

5,2,4

2.18

0.105

r
1

1

1.09

0.8

r

3

3

0.81

0.9

r
1,5,2,4

1,5,2,4

0.94

0.084

r

1,5,2,4,3

1,5,2,4,3

0.2316

0.0756

r

1,5,2,4,3

1,5,2,4,3

0

0.0756

r

3O 2,4O 5O 1O

3O 5,2,4O
1O

3O 1,5,2,4O

1,5,2,4,3O

3,4,2,5,1 4.36f1st iteration

3,2,4,5,1 5.25f2nd iteration

3,5,2,4,1 1.58f3rd iteration

3,1,5,2,4 0.79f
4th iteration

1,5,2,4,3 0.2316f5th iteration

1,5,2,4,3O

3

3

7.64

0.9

r 5

5

3.17

0.5

r 1

1

1.58

0.8

r

Fig. 8. The steps in Example 7

162 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

[16] extends the algorithm in [13] so that precedence constraints among operators

and arbitrary selectivities are supported.

Liu et al. deal with the joint problem of flow maximization and scheduling in a

heterogeneous, multi-query, parallel-processor environment [27]. More formally, let

Q = {Q1,Q2, . . . ,QK} be a set of K ad-hoc select queries and O = {O1,O2, . . . ,ON}
be a set of N, potentially correlated, unconstrained and selective operators. Each

query is a conjunction of the operators in O. For every input tuple t, operator Oi ∈ O

either returns a tuple or rejects it. Furthermore, let M be a set of heterogeneous pro-

cessors and yi(Mk) be the cost of evaluating operator Oi on processor Mk. The goal

is to find, for each input tuple t, one or more operator orderings and an associated

allocation scheme so that the flow of tuples processed per unit time is maximized.

In the proposed algorithm, each operator Oi is always evaluated on the processor Mk

for which the incurred load yi(Mk) is minimized (for simplicity we denote yi(Mk)
by yi). For the operator ordering problem, Liu et al. leverage the fact that the flow

maximization problem in heterogeneous processing environments is equivalent to

the problem of min-cost operator ordering in centralized environments, where the

cost of each operator Oi is given by yi. The problem addressed is a generalized case

of the shared min-cost operator problem introduced in [31] and [28]. Other operator

scheduling problems are studied in [47,8,41,3,37].

The main characteristics of the algorithms are summarized in Table 6.

Table 6. Solutions to tuple routing problems (first row) and scheduling problems (second

row)

Work Execution environment Input queries Input operators

[13,16] Parallel, static, decen-

tralized data transfers,

pipelined parallelism

Single, ad-hoc, SQL-

like

Independent, both selective

and proliferative, both con-

strained and unconstrained

[27] Parallel, static, heteroge-

neous processors, pipelined

parallelism

Multiple, ad-hoc,

SQL-like

Both independent and corre-

lated, both selective and un-

constrained

3.4 Data Transfer Planning Problems

Consider a dynamic environment, where multiple data sources stream data to a cen-

tral processing node through heterogeneous communication links, in order to eval-

uate aggregate queries. These queries combine data from multiple data sources and

their answers must be re-computed as data updates arrive to the sources. It is as-

sumed that each data source stores the values of a single data attribute. The goal

is to minimize the total communication cost, in order to evaluate multiple (possi-

bly overlapping) aggregate continuous queries. No parallelism is employed during

queries execution.

Queries over Web Services 163

Olston et al. have provided a solution for this problem exploiting the fact that

the precise answer of a continuous query may not always be necessary [34]. In such

cases, approximate answers of sufficient precision may be computed from a small

fraction of the input stream items. Users need to submit quantitative precision con-

straints along with continuous queries, which the processing node uses to filter stream

items at the remote data sources. Each query is associated with a pair of real values,

L and H that define an interval [L H] in which the precise answer is guaranteed to lie.

The reasoning behind the algorithm is quite simple: a data source does not need to

stream the data that does not affect the answer, according to the previously defined

precision requirements. For example, if the current exact answer is 10 and the preci-

sion interval is [7 13], then data sources holding updated data with values from 7 to

13 do not have to proceed to data transmission. The heuristic algorithm for filtering

the stream items on the remote resources, called filter tuning, consists of an iterative

two-step procedure. In the first step, each data resource shrinks the bound width peri-

odically at a predefined rate. Each time the bound width of a data source shrinks, the

so-called “leftover” width is reallocated to other data sources, ensuring all precision

constraints are still satisfied. In the second step, the data sources that increase their

bound widths are heuristically selected; the algorithm selects the ones that stream

data at high rates and are connected with expensive communication links.

Li et al. in [26] deal with another data transfer planning problem. In this work,

it is assumed that the data resources are spread across a wide-area distributed envi-

ronment, and there is a single data resource per host. The links between hosts are

heterogeneous, while the data resources can directly transfer data to other resources.

Any SQL-like query can be submitted, and there is no limitation regarding the type

of operators. For every submitted query, a query plan is provided in the form of a

rooted tree. The plan specifies the operators to be evaluated on each data resource

and the evaluation order. The aim is to schedule the data transfers across the queried

data resources, in order to minimize the total data transferring cost when evaluating

the query plans. It is proven that the problem is NP-hard for arbitrary communi-

cation networks by a reduction from the Steiner tree problem in graphs [39]. Li

et al. proposed a polynomial time algorithm for this problem, which relies on the

weighted hyper-graph minimum cut algorithm [26]. The produced data movement

plan is optimal for tree-shaped communication networks, while it is an approxima-

tion to the optimal one for more general communication networks.

3.5 Other Problems Related to Queries over WSs

Thus far we have dealt with problems in which the services provide exact answers.

Search queries belong to a different paradigm. In [10], Braga et al. deal with the

joint problem of finding a WSs plan and an access pattern for each service for search

query optimization. The execution environment is distributed and static, while the

services can exchange data directly through pipelining. The proposed algorithm ex-

plores the space of plans using a heuristic, branch and bound strategy and it is ap-

plicable, under some modifications, for the optimization of both the total service

processing cost and the response time criteria. Another common problem with WSs

164 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

is that they are slow and the communication cost may well dominate the process-

ing cost. Block-based data transmission may alleviate this problem, as proposed in

[42,21]. Finally, [40] explore adaptive approaches to parallelizing calls to WSs.

3.6 Discussion and Open Issues

The purpose of the current section is to summarize the problems that have been

studied for query optimization over WSs and the state-of-the-art algorithms that

have been proposed.

Concerning the operator ordering problem in static execution environments, we

have presented several algorithms that aim to minimize either the response time of

the submitted query, or the per tuple total processing cost. Srivastava et al. intro-

duced a general purpose WSMS for query optimization in a parallel environment

that utilizes pipelined parallelism during query execution [42]. The major assump-

tions that are made are the following. The services do not exchange data directly, but

a central component undertakes the intermediate data transfers. Also, the selectivity

and the processing cost of the operators are constant and independent of the input

attribute values. Under these assumptions, a provably optimal algorithm has been

proposed that schedules parallel invocations of the operators, in order to minimize

the response time of the submitted queries. The work of Tsamoura et al. comprises

an extension of the work in [42] for distributed execution environments, where the

operators exchange data directly over non-negligible and heterogeneous commu-

nication links [46]. The pipelined execution model is also applied. However, the

proposed algorithm builds only linear operator orderings. A problem of significant

importance that has not been addressed is the generalization of the latter algorithm

for building parallel operator invocations. Furthermore, it would be very interesting

to study the query response time minimization problem in a dynamic environment,

where the per tuple processing and transferring costs, change significantly over time.

After that, we have presented several flavors of the min-cost ordering problem

both in centralized [31,28,14,25] and parallel execution environments [7]. The above

min-cost operator ordering problems deal with select queries, while the cost needed

to transfer tuples from one service to another is negligible. In [7], given an in-

put query that is evaluated through a set of correlated, unconstrained and selec-

tive operators, the goal is to build a linear operator ordering that minimizes the

total cost of processing operators per input tuple.The proposed algorithm provides

a 4-times approximation solution, while an heuristic technique has been introduced

for the generalization of the above algorithm when the wide-area settings are sub-

ject to changes. Furthermore, Munagala et al. [31] and Liu et al. [28] deal with a

multi-query flavor of the min-cost ordering problem in a centralized execution en-

vironment. In particular, given a set of one or more queries that consist of a set of

independent, selective and unconstrained operators, the goal is to find an optimal

operator ordering, in order to answer all input queries with the minimum total pro-

cessing cost. The last two works that are studied try to minimize the per tuple total

Queries over Web Services 165

processing cost for an input query by utilizing additional, lower cost and highly se-

lective operators [14,25]. Those operators need not be part of the initial operator set.

To summarize, for operator ordering in a static execution environment, the following

problems have been addressed:

• Response time minimization of single SPJ queries employing pipelined paral-

lelism and independent operators both in a parallel and distributed execution

environment. Decentralized data transfers have been considered, as well.

• Total operator execution cost minimization. Three different problem flavors that

consider unconstrained operators are discussed; namely, (i) optimization of a

single-query that employs parallelism and assumes correlated operators in a

parallel environment, (ii) optimization of a single query with correlated opera-

tors in a centralized environment both for correlated and independent operators

and (iii) optimization of multiple queries with both independent and correlated

operators in a centralized environment.

Regarding the response time minimization, no work has been done for multi-query

optimization or correlated operators. Furthermore, other types of parallelism (such

as partitioned) have not been considered. The above works deal with SQL-like

queries. The only work that deals with IR-like queries is presented in [10]. [10]

deals with the joint problem of selecting the more appropriate services to invoke,

when multiple services have the same functionality but different binding patterns,

and of ordering the selected services in a distributed and static execution environ-

ment that employees pipelined parallelism. However, no performance guarantees

have been provided.

In the context of adaptive operator ordering for minimizing the response time

of a query, eddies [6] and distributed eddies [44] try to overcome the “hassle” of

varying processing and communication costs in a dynamic execution environment

by routing each tuple independently.

In Sec. 3.3, we have presented two throughput maximization problems [13,27].

Both of them employ inter-operator parallelism in order to maximize the tuple

throughput, i.e., the number of tuples processed by the operators per unit time. The

work in [16] deals with single query optimization, imposing only the independent

assumption on input operators. On the other hand, the work in [27] deals with mul-

tiple select queries and unconstrained, selective operators. It also performs operator

scheduling. For both proposals, the underlying execution environment is static and

parallel. In general, adaptive query processing is in its infancy.

We have dedicated the last part of Sec. 3 to the description of two data transfer

planning problems in a static and dynamic execution environment. Both of them

deal with multiple input queries, while the communication links are heterogeneous.

The work of Olston et al. deals with a centralized execution environment, where

multiple continuous aggregate queries are evaluated in a central processing com-

ponent [34]. There the data resources are disparate in a wide-area network and

166 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

periodically stream data to the central component. Considering that the precise an-

swer is not always necessary for some or all input queries, the goal is to appropri-

ately tune the amount of data sent by each remote data resource, in order to minimize

the total communication cost for answering input queries. Li et al. deal with another

data transfer planning problem. As in [26], the data resources are disparate in a

wide-area heterogeneous environment, while the latter can directly exchange data.

Given a plan that specifies the operations to be performed on input data the goal is to

appropriate schedule the data exchanges among the resources, in order to minimize

the total data transferring cost when evaluating the input queries. Both works do not

encapsulate the processing cost in order to answer the submitted queries. A limi-

tation of the problem considered in [34] is that it handles only aggregate queries,

while a limitation of [26] is that it requires a plan that specifies the operator in-

vocation order. As both works deal with the min-cost metric, an interesting aspect

would be the exploration of problems having other optimization criteria, such as the

response time of the submitted queries. For example, regarding the problem in [26],

the objective might be to minimize the maximum response time of the submitted

queries. The characteristics of the proposed algorithms are summarized in Tables 4,

5 and 6.

The following remarks arise from the above discussion. The data transfer cost and

the network heterogeneity issue are largely overlooked. In the majority of the works,

the state-of-the-art operator ordering and tuple routing algorithms consider paral-

lel and/or centralized execution environments, where the processing cost dominates.

Another important issue that needs more attention is dynamicity. The presented prob-

lems mainly deal with static execution environments which is not the case in wide-

area infrastructures such as the grid. The operator independence assumption must be

reconsidered, since, in a real setting, the processing cost and the selectivity of uti-

lized operators may be tightly related with the input attributes values. Another prob-

lem that should be investigated in the future is the combination of different forms of

parallelism. Finally, the majority of presented problems deal with SQL-like queries.

Extending current approaches or investigating new ones for IR queries optimization

is crucial, since querying information sources is an important part of information

management in Web and other distributed wide-area organizations.

4 Conclusion

This chapter discussed queries over WSs focusing on their optimization. Queries

over WSs are becoming increasingly common due to the proliferation of publicly

available WSs and remote and decentralized computing infrastructures such as grid

and cloud computing. We presented a taxonomy of the problems encountered in

the optimization of such queries taking into account the type of the optimization

problems, the type of queries, the type of services or operators and the exact ex-

ecution environment to which the queries are tailored. Some of the problems can

be efficiently solved by utilizing known algorithms from the database community,

Queries over Web Services 167

whereas, for some others, novel algorithms have been proposed. This chapter dis-

cussed the state-of-the-art solutions that apply to the problem of optimizing queries

over WSs, explaining their main characteristics. Especially for the problem of min-

imizing the response time in decentralized pipelined queries, a novel algorithm was

presented.

References

1. Business process execution language for web services,

http://bpel.xml.org/tags/bpel4ws

2. Abadi, D.J.: Data management in the cloud: Limitations and opportunities. IEEE Data

Eng. Bull. 32(1), 3–12 (2009)

3. Agrawal, K., Benoit, A., Dufossé, F., Robert, Y.: Mapping filtering streaming applica-

tions with communication costs. In: Proc. of the Twenty-First Annual Symposium on

Parallelism in Algorithms and Architectures (SPAA), pp. 19–28 (2009)

4. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M., Vadacca, S.: Grelc data gather service: a

step towards P2P production grids, pp. 561–565 (2007)

5. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Watson, P., Fernandes,

A.A.A., Fitzgerald, D.J.: Ogsa-dqp: A service for distributed querying on the grid.

In: Proc. of the International Conference on Extended Database Technologies (EDBT)

(2004)

6. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. In: Proc. of

the International Conference on Management of Data (SIGMOD), pp. 261–272 (2000)

7. Babu, S., Matwani, R., Munagala, K.: Adaptive ordering of pipelined stream filters. In:

Proc. of the International Conference on Management of Data (SIGMOD), pp. 407–418

(2004)

8. Benoit, A., Dufosse, F., Robert, Y.: Filter placement on a pipelined architecture. In: In-

ternational Symposium on Parallel and Distributed Processing, vol. 0, pp. 1–8 (2009)

9. Bizarro, P., Babu, S., DeWitt, D., Widom, J.: Content-based routing: different plans for

different data. In: Proc. of the 31st International Conference on Very Large Data Bases

(VLDB), pp. 757–768 (2005)

10. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multidomain queries on

the web. In: Proc. of the VLDB Endowment, vol. 1, pp. 562–573 (2008)

11. Burge, J., Munagala, K., Srivastava, U.: Ordering pipelined query operators

with precedence constraints. Technical Report 2005-40, Stanford InfoLab (2005),

http://ilpubs.stanford.edu:8090/705/

12. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagaracq: a scalable continuous query system

for internet databases. In: Proc. of the 2000 ACM SIGMOD International Conference on

Management of Data (SIGMOD), pp. 379–390 (2000)

13. Condon, A., Despande, A., Hellerstein, L., Wu, N.: Algorithms for distributional and

adversarial pipelined filter ordering problems. ACM Transactions on Algorithms 5(2),

24–34 (2009)

14. Deshpande, A., Guestrin, C., Hong, W., Madden, S.: Exploiting correlated attributes in

acquisitional query processing. In: Proc. of the 21st International Conference on Data

Engineering (ICDE), pp. 143–154 (2005)

15. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Foundations and

Trends in Databases 1(1), 1–140 (2007)

16. Despande, A., Hellerstein, L.: Flow algorithms for parallel query optimization. In: Proc.

of the 24th International Conference on Data Engineering (ICDE), pp. 754–763 (2008)

http://bpel.xml.org/tags/bpel4ws
http://ilpubs.stanford.edu:8090/705/

168 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

17. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance database

systems. Communications of the ACM 35(6), 85–98 (1992)

18. Epstein, R.S., Stonebraker, M., Wong, E.: Distributed query processing in a relational

data base system. In: Lowenthal, E.I., Dale, N.B. (eds.) Proc. of the 1978 ACM SIGMOD

International Conference on Management of Data, June 2, pp. 169–180. ACM, New York

(1978)

19. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure, sec-

ond edn. Morgan Kaufmann Publishers, San Francisco (2003)

20. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A., Watson, P.: Adap-

tive workload allocation in query processing in autonomous heterogeneous environ-

ments. Distrib. Parallel Databases 25(3), 125–164 (2009)

21. Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M.D.: Robust runtime optimiza-

tion of data transfer in queries over web services. In: Proc. of the ACM International

Conference on Data Engineering (ICDE), pp. 596–605 (2008)

22. Hellerstein, J.M., Stonebraker, M.: Predicate migration: Optimizing queries with expen-

sive predicates. In: Proc. of the ACM SIGMOD International Conference on Manage-

ment of Data SIGMOD, pp. 267–276 (1993)

23. Taylor, I., Shields, M., Wang, I.: Resource management of triana p2p services. In: Grid

Resource Management (2003)

24. Krishnamurthy, R., Boral, H., Zaniolo, C.: Optimization of nonrecursive queries. In:

Proc. of VLDB, pp. 128–137 (1986)

25. Lazaridis, I., Mehrotra, S.: Optimization of multi-version expensive predicates. In: Proc.

of the ACM SIGMOD International Conference on Management of Data (SIGMOD),

pp. 797–808 (2007)

26. Li, J., Deshpande, A., Khuller, S.: Minimizing communication cost in distributed multi-

query processing. In: Proc. of the 21st International Conference on Data Engineering

(ICDE), pp. 772–783 (2009)

27. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Generic flow algorithm for shared

filter ordering problems. In: Proc. of the 27th ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of database systems (PODS), pp. 79–88 (2008)

28. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-optimal algorithms for shared

filter evaluation in data stream systems. In: Proc. of the ACM International Conference

on Management of Data (SIGMOD), pp. 133–146 (2008)

29. Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous

queries over streams. In: Proceedings of the 2002 ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD), pp. 49–60. ACM, New York (2002)

30. Munagala, K., Babu, S., Motwani, R., Widom, J.: The pipelined set cover problem. Tech-

nical Report 2003-65, Stanford InfoLab (2003)

31. Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with shared

expensive filters. In: Proc. of 26th ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS), pp. 215–224 (2007)

32. Nieto-Santisteban, M.A., Gray, J., Szalay, A.S., Annis, J., Thakar, A.R., O’Mullane, W.:

When database systems meet the grid. In: CIDR, pp. 154–161 (2005)

33. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,

Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: a tool for the composition and en-

actment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

34. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed

data streams. In: Proc. of the 2003 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD), pp. 563–574. ACM, New York (2003)

Queries over Web Services 169

35. Ozsu, M., Valduriez, P. (eds.): Principles of Distributed Database Systems, 2nd edn.

Prentice-Hall, Englewood Cliffs (1999)

36. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing:

State of the art and research challenges. Computer 40(11), 38–45 (2007)

37. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:

Network-aware operator placement for stream-processing systems. In: Proc. of the 22nd

International Conference on Data Engineering (ICDE), pp. 49–60 (2006)

38. Raman, V.: Interactive query processing. PhD thesis, UC Berkeley (2001)

39. Robins, Y., Zelikovski, A.: Improved steiner tree approximation in graphs. In: Proc. of

the 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779 (2000)

40. Sabesan, M., Risch, T.: Adaptive parallelization of queries over dependent web service

calls. In: Proc. of the International Conference on Data Engineering (ICDE), pp. 1725–

1732 (2009)

41. Srivastava, U., Munagala, K., Widom, J.: Operator placement for in-network stream

query processing. In: Proc. of the twenty-fourth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS) (2005)

42. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over web

services. In: Proc. of the 32nd Conference on Very Large Databases (VLDB), pp. 355–

366 (2006)

43. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only

databases. In: Proc. of the 1992 ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD), pp. 321–330. ACM, New York (1992)

44. Tian, F., DeWitt, D.J.: Tuple routing strategies for distributed eddies. In: Proc. of the 29th

Conference on Very Large Databases (VLDB), pp. 333–344 (2003)

45. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Decentralized execution of linear work-

flows over web services (submitted for publication)

46. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Optimal service ordering in decentralized

queries over web services. Technical Report,

http://delab.csd.auth.gr/˜tsamoura/publications.html

47. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow application

on utility grids. In: Proc. of the First International Conference on e-Science and Grid

Computing (E-SCIENCE), pp. 140–147 (2005)

http://delab.csd.auth.gr/~tsamoura/publications.html

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 171 – 212.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 7

Towards Adaptively Approximated Search in

Distributed Architectures

Barbara Catania and Giovanna Guerrini

Dipartimento di Informatica e Scienze dell’Informazione
Università degli Studi di Genova

Via Dodecaneso 35, 16146 Genova, Italy
{catania,guerrini}@disi.unige.it

Abstract. Innovative applications over distributed architectures, like the
Web, often require the analysis of strongly related, highly heterogeneous
data, stored in remote and autonomous data sources, that can be either to-
tally available at query processing time (stored data) or become available in
a continuous stream (data stream). In these contexts, search efficiency is a
key issue. However, classical processing techniques, according to which
queries are executed exactly, both for what concerns the request and for
what concerns the processing technique, which is set at the beginning of the
execution, may not ensure adequate performance and quality (in terms of
completeness and of accuracy) of the returned result. To overcome such
problem, approximate and adaptive query processing techniques have been
proposed. Adaptive techniques aim at ensuring an efficient query process-
ing whenever a priori information, needed to statically select once at the
beginning of the processing the most efficient processing technique, is not
available. Approximation, by contrast, has been proposed for ensuring a
higher result quality in presence of data heterogeneity and limited data
knowledge. In highly dynamic and heterogeneous environments, these two
approaches have usually been considered as orthogonal. However, we claim
that applications exist that could benefit from a combined approach. An ex-
ample are Web applications allowing to specify queries on heterogeneous
data (streams), retrieved through mash-up from different sites. Since data
are dynamically acquired, they cannot be statically reconciled, before proc-
essing queries. Moreover, adopting a single approximate search strategy,
fixed a priori, could penalize the system efficiency and/or the quality of re-
sult, whenever heterogeneity only characterizes subsets of input data. The
aim of this chapter is to make one step towards the integration of such ap-
proaches by introducing Approximate Search with Adaptive Processing
(ASAP for short) systems. In ASAP, decisions concerning when, how, and
how much to approximate are taken dynamically, with the goal of optimiz-
ing both the quality of result and the efficiency of processing.

172 B. Catania and G. Guerrini

1 Introduction

One of the main reasons for DBMS success is logical data independence, that is,
the neat separation between the specification of ‘what’ we are searching from
‘how’ these searches (queries) are processed. The system is responsible for trans-
forming declarative queries into execution plans, determined before the processing
starts.

This approach ensures excellent performance for query execution on data with
a completely known structure, executed in quite stable environments, with the
availability of a reasonable set of statistical information on data. In the last years,
however, there has been a rapid evolution of environments and applications that
need to query data collections, that has radically modified the processing context.
Specifically, in data integration applications, Web services, data streams, P2P
systems, and hosting, data characteristics, as well as the dynamic processing con-
ditions, are much more variable and unpredictable. The higher and higher resource
sharing and the increasing interactivity in query processing make even those data
properties that are traditionally conceived as static (such as relation cardinality and
number of distinct values for an attribute) difficult to be known a priori and to be
estimated in the above mentioned new contexts. The need thus emerged on one
side to adapt the processing to dynamic conditions, thus giving up the a priori
selection of a single execution strategy, fixed before processing starts. On the
other side, as a consequence of data heterogeneity and limited data knowledge, we
often cannot claim to get only ‘precise’ answers, that exactly satisfy the search
condition expressed by the query, because in the above mentioned new contexts
data are quite heterogeneous and exactly characterizing what we are looking for is
really difficult. As a consequence, the search conditions of traditional queries,
such as selections and joins, are relaxed or their evaluation is approximated, to
improve result quality,1 in terms of completeness and relevance with respect to the
original query.

Up to now, query approximation and adaptive query processing have been
mainly investigated as independent approaches. An exception is given by rank-
aware optimization techniques (see Section 6) which deals with the detection of
efficient execution plans for top-k queries (which can be seen as a particular type
of approximate queries) rather than with the selection of approximation techniques
in the choice of the execution plan for traditional queries, like selections and joins.
There are however applications, working in highly dynamic and heterogeneous
environments, that will benefit from combining the two approaches. In the Web
context, a typical example is given by Web applications allowing the specifica-
tion of queries on heterogeneous data (streams), retrieved through mash-up from
different sites. Other examples concern interactive queries over highly heteroge-
neous XML data collections and multi-sensor applications. In all these examples,
data are heterogeneous because collected from different sources but heterogeneity

1 We remark that, under limited, insufficient resources, approximation has also been pro-

posed as an approach to quickly provide an answer to a query. In this chapter, we do not
further consider this kind of approximation.

Towards Adaptively Approximated Search in Distributed Architectures 173

information is not necessarily known in advance. At the same time, user queries
can be imprecise since the user, due to such heterogeneity, may not exactly know
the characteristics of data to be queried. As a consequence, a single execution plan
of the user request may not be the more reasonable choice due to the high variabil-
ity of the environment.

Based on these considerations, the aim of this chapter is to make one step to-
wards the integration of approximate and adaptive query processing techniques by
introducing Approximate Search with Adaptive Processing (ASAP for short) sys-
tems. In ASAP, decisions concerning when, how and how much to approximate
are taken dynamically, with the goal of optimizing both the quality of result and
the efficiency of processing. Indeed, in environments like the Web, data quality
parameters are as important as classical parameters like response time. ASAP can
therefore be defined as a new type of adaptive query processing which takes into
account quality issues, in terms of completeness and accuracy of the result, be-
sides performance. To this purpose, it leads to the definition of execution plans
which interleave both precise and approximate evaluation in the most efficient
way. The choice of approximation techniques may increase result completeness,
when the original query result is stretched, or relevance, when the original query
result is shrinked. This leads to the definition of QoD (Quality of Data)-oriented
execution plans, in contrast with usual QoS (Quality of Service)-oriented execu-
tion plans, that are driven by efficiency or availability goals.

In the chapter, we first of all provide a survey of the main constituents of
ASAP, that is, query approximation and adaptive query processing techniques.
Approximation techniques will be classified with respect to their main goal and
their reference approach, taking into account the characteristics of applications in
distributed environments, with the Web as a special case. Adaptive query process-
ing will be surveyed with respect to their main application contexts: local query
processing, distributed query processing, and query processing on streaming data.
In revising existing work, we consider several data types whose management may
benefit from an ASAP approach: relational data, XML data, geo-spatial data (a
specific type of structured data, nowadays quite relevant for distributed applica-
tions), both totally available at query time or made available as a continuous
stream. Then, we present the notion of adaptively approximated search, through
the definition of a generic query processing framework that can reveal useful in
very diverse applicative scenarios, and we discuss the requirements a query proc-
essor needs to meet to support adaptively approximate processing. Different
choices in addressing these requirements, possibly motivated by different applica-
tion scenarios and execution contexts, lead to different instantiations of the
framework and to different types of query processors relying on ASAP (called
ASAP systems). Each execution plan, analyzed post-mortem and selected by an
ASAP optimizer, is called ASAP technique and corresponds to a specific approach
to adaptively approximate the processing of a traditional query (e.g., selection or
join). The presented requirements are independent of the considered data model
and summarize the several challenges that, from our point of view, should be
addressed in order to make ASAP a practical technology.

174 B. Catania and G. Guerrini

We remark that a first step towards ASAP techniques has been made in
[LMF+09] where an adaptive technique has been proposed to change an exact join
operator into an approximate one when the presence of heterogeneity on the join-
ing attribute prevents the identification of new matches, in the context of situ-
ational applications and mash-up [Jhi06]. Differently from [LMF+09], here the
attempt is to provide an overall and reference framework for adaptively applying
any kind of approximation. The ASAP approach also differs from rank-aware and
quality-based query processors since in those cases the aim is to provide efficient
processing for specific approximate techniques (top-k) or for traditional queries
taking into account QoD parameters, respectively.

The paper is organized as follows. In Section 2, various examples of applica-
tion contexts are provided which can benefit from adaptively approximated
search. Query approximation techniques are surveyed in Section 3 while adaptive
query processing is revised in Section 4. Requirements for ASAP systems are then
discussed in Section 5. Section 6 briefly surveys work related to ASAP. Section 7
concludes the paper by providing a roadmap to be followed in order to make
ASAP techniques a practical technology.

2 Examples

In this section we introduce some examples of contexts in which ASAP techniques
can be profitably exploited. These examples differ on the type of data involved
(i.e., relational, XML, spatial, spatio-temporal), on the processing context
(i.e., stored vs streaming data), on the type of approximation (i.e., stretching vs
shrinking).

Interactive queries over XML data collections. Consider the context in which
several collections of XML documents, stored at autonomous sources, are interac-
tively queried, through a Web application. Consider for instance a Web applica-
tion providing help in planning evening programs, involving for instance cinema,
theatre, or live music and dinner. According to her preferences, a user may formu-
late a query like “Determine the cinemas or theaters accessible to user with dis-

abilities where no later than 7 pm there is a movie/performance whose subject is

fantasy with a close Indonesian ethnic restaurant”. The collections, though con-
taining related documents, do not share a common schema thus exact approaches
are impractical due to the great (and unpredictable) structural and content
variations of the diverse sources. Heterogeneity may appear in the collections at
different levels:

− Different tags may be employed in different collections to label the same in-

formation (e.g., subject instead of type, hours instead of time).
− The hierarchical structure of documents in different sources may be slightly

different (e.g., accessibility information may be represented as an attribute of a
cinema element, or as a sub-element of this elements, or as a descendant of this
element, for instance as a sub-element of a features sub-element).

Towards Adaptively Approximated Search in Distributed Architectures 175

− Different strings may be employed at content level to represent the same infor-
mation (e.g., Indonesian instead of Indonesia).

Given the casual and interactive nature of queries, and since the application inter-
acts with different data sources and Web sites to dynamically crawl data, it is not
reasonable to reconcile these heterogeneities. Thus, the original user queries will
be solved in an approximate way, relaxing some equality constraints to similarity
constraints, and returning only the most similar results to avoid returning too
many results, relying on some similarity function. Once again, given the casual
and interactive nature of queries, it is not reasonable to fully analyze the docu-
ments available in the source to extract enough information on their heterogeneity
degrees to obtain the best similarity function to be used in approximating queries
over the sources [SBM+07]. The most effective approach in this context could be
to start querying the sources with some similarity function and use feedbacks on
query execution to tune the approximation and similarity functions to be used in
subsequent queries. Thus, in processing the subsequent queries on the same
source, that refine, adjust, or completely modify the previous one, the application
will rely on feedbacks from previous query executions. For instance, feedbacks
can reveal that a certain tag or a certain data content were matched exactly in the
exploited source, thus there is no need to approximate conditions involving them
when evaluated against data in that source.

Mash-up applications. Consider the following monitoring request, submitted in
the context of a Web application: "Determine the transportation lines that may be

delayed because of car accidents and display them on a map". This example in-
volves at least three types of autonomous data sources, from which data is re-
trieved through mash-up:

− those containing relational information on car accidents: address, geographical

position, and involved area (data stream);
− the one containing the road map (stored);
− those containing geo-spatial information about transportation lines (for instance

stored in two different sources, one for buses and the other one for cable cars).

Since data on car accidents vary over time and can be collected by different sub-
jects, the set of roads they refer to varies as well, and so does the associated ge-
ometry. This example exhibits various kinds of heterogeneity:

− Among strings, if the accident data source and the road map employ different

formats for the alphanumeric representation of addresses.
− Among dynamic geo-spatial data, if areas related to car accidents are repre-

sented in different ways; for example, one source may represent such area just
as a single point, another may represent the area as a polygon. We notice that
such data are dynamic since they dynamically arrive from various sources.
Therefore, information about the area representation may not be available in
advance.

176 B. Catania and G. Guerrini

− Among static geo-spatial data, if transportation lines are represented in different
ways in the data sources (e.g., as lines for buses and as regions for cable cars).
In this case we may assume that such information are static in the sense that
they are all available to the application and they do not change during
computation.

As pointed out above, the dynamicity of car accidents does not allow to know in
advance information on these data (specific representation of a data value – an
address – or the type used to represent a geo-spatial information – the accident
area –). Additionally, since data are dynamically acquired, their static reconcilia-
tion, before query processing starts, is not completely feasible (and not viable
from a performance viewpoint). Finally, to cope with heterogeneity, the adoption
of a priori fixed approximate search strategy is not a reasonable solution since it
could penalize the system efficiency and/or the quality of result, whenever hetero-
geneity only characterizes subsets of input data (these information may not be
available a priori because of the high dynamicity).

Multi-sensor applications. Consider a traffic operation center that produces and
makes available on the Web a speed map of a metropolitan area, where the differ-
ent motorway and freeway networks are broken into short segments and different
color-coded speed are displayed for each segment. The center has two different
sources of data: a stream of fixed sensors in the road network and a stream of
readings from vehicles with on board GPS systems. Fixed sensors provide traffic
speed and volume data from their location, vehicle data consists of speed and
location for each vehicle. Suppose moreover that more detailed information, with
different speed levels associated with different colors, of the five most congested
areas closest to the city center should be provided as side bars. In this context we
have to cope with different needs:

- Continuously monitor the data stream coming from the fixed sensor network,

to determine the speed levels of the various segments.
- Determine the five most congested areas closest to the city centre (approxi-

mate top-k continuous query).
- For these areas, dynamically revert to rely on the more detailed stream data

coming from vehicles to produce the more detailed maps.

In this example, the diverse representations of speed on the map cannot be stati-
cally decided since they depend on dynamic conditions, which can be checked
through the execution of approximate continuous queries. Further approximation
issues may arise due to possible different levels of details of different network
maps and to mismatches and heterogeneity in data provided by the different
sensor networks.

Towards Adaptively Approximated Search in Distributed Architectures 177

3 Query Approximation

In the following, after a brief introduction to query approximation and a classifica-
tion of the main approaches, we review existing proposals for traditional, XML,
and geo-spatial data.

3.1 An Introduction to Query Approximation

In the last years, there has been a rapid evolution of environments and applications
that has radically modified query processing over data collections. Indeed, in data
integration applications, Web services, data streams, P2P systems, and hosting,
just to cite a few, data is highly heterogeneous and their characteristics are quite
variable and unpredictable. In those contexts, query processing is therefore influ-
enced by two main factors:

− Data heterogeneity. Data referring to the same entity may be contained in dis-

tinct datasets and represented in different ways. Processing such datasets inside
the same query may therefore lead to data quality problems. In general, the de-
gree of heterogeneity depends on the considered data types. Heterogeneity in
relational/XML data arises from different value representation formats (for re-
lational data) or structures (for XML data), which may be due to the different
provenance of data on processing. Heterogeneity in geo-spatial data is often
due to the employment of different resolution levels in representing data refer-
ring to the same geographical area.

− Limited data knowledge. The user may not always be able to specify the query
in a complete and exact way since she may not know all the characteristics of
data to be queried, even if data come from just one single source (possibly, be-
cause such characteristics may change during query execution, as in mash-up
applications [Jhi06]).

Based on the previous considerations, we often cannot claim to get only ‘precise’
answers, that exactly satisfy the search condition expressed by the query, since in
the above mentioned contexts it is quite common to find inconsistent or ambigu-
ous data and it is really difficult to exactly characterize what we are looking for.
As a consequence, the quality of the obtained result, in terms of completeness and
accuracy, may be reduced, since interesting objects may not be returned. On the
other hand, several uninteresting objects can be returned as answer, thus reducing
user satisfaction. More generally, data heterogeneity and limited data knowledge
may lead to the following two problems [ACDG03]:

− Empty or few answers. This problem arises when the query is too selective or

data are quite heterogeneous (see [Luo06] for an approach detecting empty re-
sult queries without actual execution). In this case, it would be relevant for the
user to stretch the query in order to get a set of approximate items, as result,
ranked according to their relevance to the original query.

178 B. Catania and G. Guerrini

− Many answers. This problem arises when the query is low selective. In this
case, ranking the obtained results and returning only a subset of them, corre-
sponding to the more relevant ones (thus, shrinking the result), could be quite
useful to the user.

In order to address the problems described above, in presence of highly heteroge-
neous data under highly dynamic architectures, approximation techniques can be
used in order to stretch or shrink the result set, with the aim of providing more
interesting or less unsatisfactory answers, respectively. Two main groups of ap-
proximation techniques can be devised (see Figure 1):

− Query relaxation. The concept of query relaxation has been introduced in In-
formation Retrieval and adopted in several contexts as an approach for avoiding
empty or too many answers. Query relaxation techniques allow the retrieval of
a result also in very heterogeneous contexts or when the characteristics of data
we are looking for are not completely known and this may lead to imprecise
query specification. The main idea of query relaxation is to modify the query in
order to stretch or shrink the result set. Query relaxation approaches can be
classified depending on their scope into:

o Query rewriting approaches: the query is rewritten using less or more strict
operators, in order to get a larger or smaller answer set. Techniques of this
type can be used to address both the empty or few answers and the many an-
swers problems.

o Preference-based approaches: user or system preferences are taken into ac-
count in order to generate the result, with the aim of providing best results
first. Such techniques usually address the empty or few answers problem.
However, they can also be thought as a shrinking approach with respect to
the overall set of possible results, since they reduce the cardinality of the re-
sult dataset.

o Recommendation systems: data correlation and past user history are used in
order to suggest to the user further results besides those obtained by execut-
ing the specified query. Such techniques increase the number of results with
respect to the original query but of course they are not suitable to solve the
empty answers problem.

− Approximate query processing. It refers to all the techniques for executing a
traditional query (e.g., a join) by using ad hoc query processing algorithms
which automatically apply the minimum amount of relaxation based on the
available data, in order to return the non-empty result more similar to the user
request. This is possible for example by replacing equality checks with similar-
ity checks, using a specific similarity function, depending on the domain of the
attributes to be joined. Approximate query processing is suitable in all envi-
ronments where data can be quite heterogeneous and may contain errors. Dif-
ferently from query relaxation approaches, in this case the query is not
changed; rather, its execution is modified in order to get more and approximate
answers with respect to a traditional execution. Usually, approximate query
processing allows one to get a larger result set, thus they are stretching tech-
niques solving the empty or few answers problem.

Towards Adaptively Approximated Search in Distributed Architectures 179

Table 1 classifies the approaches described above based on: (i) the problem for
which they have been defined (data heterogeneity, limited data knowledge);
(ii) the underlying approach, stretching (+) or shrinking (-) the result; (iii) which
information should be supplied by the user or the system in order to apply the
corresponding techniques; (iv) the base operators to which they can be applied.
Details about the content of the table will be provided in the remainder of this
section.

Fig. 1. Classification of query approximation techniques

Table 1. Properties of approximation techniques

Approach Reference

problem

Approach User in-

formation

Reference

queries

Query rewriting Query spec + / - Cardinality

constraints

Selection,

join

User prefe-

rence-based

Query spec. +/ - Ranking

function,

set of

relevant

attributes

Selection

(join)

System prefe-

rence-based

Query spec. + Selection,

join

Recommenda-

tion

systems

Query spec. + Selection,

join

Approximate

query

processing

Heterogeneity + Similarity

function

Selection,

join

Query
rewriting

Recom-
mendation

systems

Query approximation

Query relaxation Approximate query processing

Preference-
Based

Top-k Skyline

Value-
based

Structure-
based

Query-
based

User preferences System preferences

180 B. Catania and G. Guerrini

In the following, we discuss and classify in more details query relaxation and
approximate query processing approaches for traditional and XML data as well as
for geo-spatial data. As pointed out in the following, query approximation consti-
tutes nowadays one of the hot topics in traditional and XML query processing.
Very recently, approximation approaches has also been proposed to deal with geo-
spatial data, which represents a further fundamental data type for innovative appli-
cations in distributed architectures.

Finally, we notice that some techniques already exist that provide approxima-
tion through a summary representation of the input dataset. Such techniques have
been mainly proposed for semi-structured data (as [PGI04]). Since we are inter-
ested in query approximation approaches which do not alter the input dataset, we
do not further consider such approaches in the following.

3.2 Query Rewriting

The aim of query rewriting is to rewrite the user query into a new one when the
results of the original query are too few or too many. This problem is in general
different from the query rewriting issue in data integration problems, since in that
case an input query, expressed over a global schema, has to be rewritten according
to a possibly different local schema, in order to be locally executed. The main
advantage of the query rewriting approach for query relaxation is that the gener-
ated queries can be executed using already existing query processing algorithms
without the need of additional infrastructure. Of course, more efficient query
processing algorithms can however be provided in order to exploit the properties
of the resulting query set.

Query rewriting approaches can be used to address both the empty or few an-
swers as well as the many answers problem. Preliminary work on query rewriting
has been proposed in [Chau90], where a formal model for query stretching (called
query generalization) has been provided. More practical approaches, instantiating
that basic idea, have later been proposed. They can be classified into value-based,
structure-based, and query-based depending on the used information for relaxing
the query. More precisely:

− Value-based techniques rely on information concerning data distribution and

query size estimation. This is the approach used in [MK09], for range and
equality predicates on numerical and categorical attributes, and in [KWFH04],
for range queries. In both cases, input information concerning the desired car-
dinality of the result set and information concerning data distribution are used
to relax queries. The approach proposed in [MK09] is interactive, in the sense
that the user can specify her preferences during the relaxation process.

− Structure-based query relaxing techniques use schema or structure information
(in case of semi-structured information like XML documents) during the re-
laxation process. This is the case of the approach proposed in [ZGBN07], for
relaxing queries over data modeled using a modeling tool, called malleable
schema, for modeling all the diverse and vague, both structured and semi-
structured, entities of the real world. Most structure-based query rewriting

Towards Adaptively Approximated Search in Distributed Architectures 181

approaches have been proposed for XML documents, where structure informa-
tion may refer to the type of relationships existing between nodes and order in-
formation [Lee02].

− Query-based approaches relax queries based on properties of the used query
conditions. An example of query-based technique, which can be either directly
applied by the system or requested by the user, is given by the geo-spatial re-
laxed topological selection operators and nearest neighbor operators proposed
in [BBC+06]. Relaxation in this case is applied by considering during the exe-
cution topological relations whose similarity with respect to that specified in
the query is higher than a given threshold, specified by the user in the query.
Nearest neighbor operators, if the query condition is undefined for the spatial
data at hand (for example, the user asks for all the rivers that cross a street,
when rivers and streets are polygons and therefore relation cross is not defined)
substitute the query relation with the most similar ones defined for the consid-
ered objects. Such operators can however return an empty answer when no ob-
ject in the dataset satisfies the set of relaxed topological relationships.

With respect to data streams, query rewriting is mainly applied for efficiency
issues, in order to limit the scope of the considered query, for example by applying
a window size reduction. Such techniques are called static in [MWA+03].

3.3 Preference-Based Methods

Preference-based methods allow the user or the system to specify preferences in
various ways and then use them in computing the result. Preferences can be speci-
fied in order to enlarge the result set in presence of the empty or few answers
problems. When considered with respect to the overall set of data, preference-
based methods can however be though as a shrinking approach, since only the
‘best’ results are returned, thus addressing the many answers problem. In the fol-
lowing, both user-based and system-based approaches will be surveyed.

User preferences. Two main operators have been proposed based on user prefer-
ences: top-k and skyline operators. The aim of the top-k operator is to restrict the
number of returned results to a fixed number (k), based on some ranking. The aim
of the skyline operator is to return only the best matches to the specified query. In
both cases, specific query processing algorithms have been provided in order to
efficiently generate the result.

While top-k operators return a small result at the price of specifying a ranking
function, which is not a simple task, skyline operators avoid this specification at
the price of a larger result set, which, even for two dimensional interest attributes,
may be quite huge. In both cases, processing over join operations is challenging
[IBMS08].

Top-k operators. The top-k operator returns the k objects that best satisfy a given
condition. The answer to a top-k query is an ordered set of objects, where the
ordering reflects how closely each object matches the given query condition.
Specific similarity measures can be used for ordering objects [IBMS08]. The

182 B. Catania and G. Guerrini

properties of the chosen ranking function impact in the design of top-k query
processing techniques. Most of the existing top-k processing approaches rely on
monotone ranking functions, which guarantee very good performance. They are
used in several common applications, especially in the Web context [MBG04].
However, for complex applications, the ranking function can be expressed as a
generic numeric expression to be optimized [ZHC+06].

A survey and a classification of existing top-k processing approaches for tradi-
tional and XML data has been proposed in [IBMS08]. Even if top-k operators can
be themselves considered as a query approximation approach, they can further be
executed in an approximate way, in order to improve performance. In those cases,
approximate answers are associated with a probabilistic measure pointing out how
far they are from the exact top-k answers [ARSZ03,YHC05]. Approximate top-k
query processing has also been investigated in P2P environments [MTW05].

Concerning XML documents, top-k approaches rely on scoring functions that
take into account similarity of both the content and the structure of the documents
with respect to the considered query. Some of the existing approaches just extend
techniques developed for relational data to the XML context [TBM+08]. Others
consider specific XML scoring functions [AKM+05] and keyword search
[GSBS03].

In the geo-spatial context, top-k operators return the first k objects that satisfy a
given condition, based on a preference function computed over spatial and non
spatial attributes. There exist top-k operators for various spatial operations, includ-
ing spatial join [ZPZ+05], distance-based selection [HS99, XZK+05], preference
query with respect to neighborhood objects [YDM+07]. The most extensively
studied spatial query mechanism is ranking neighboring objects by the distance to
a single query point [RKV95,BGRS99], which constitutes an instance of a top-1
problem. For multiple query points, Papadias et al. [PTMH05] studied ranking by
the “aggregate” distance, for a class of monotone functions aggregating the dis-
tances to multiple query points.

The methods described above assume that all the relevant data are available be-
fore processing. Further, they report a single result and terminate. On the other
hand, in stream environments, data are not known in advance. In those contexts,
the aim is no more to compute a top-k query over all stream data; rather, the ob-
jective is to continuously monitor the top-k tuples over the stream and, accord-
ingly, changing the result in a continuous way. One of the preliminary approach of
this kind has been provided in [MBP06]. In [MAA06], an integrated approach for
solving the problems of finding the top-k elements and finding frequent elements
in a data stream are considered.

Skyline operators. In some applications, such as data exploration and decision
making, it might be important to rank objects without using a specific ranking
function, thus returning the ‘best results’ among all the possible ones, since defin-
ing a ranking function in those contexts could be cumbersome. This problem can
be addressed in two distinct ways: (i) the system is delegated to compute the more
adequate ranking function taking into account data information; (ii) preferences

Towards Adaptively Approximated Search in Distributed Architectures 183

are still provided by the user but in terms of sets of attributes considered relevant
for the ranking. Approach (i) will be described below, when we introduce tech-
niques based on system-based preferences. The second approach relies on the
definition of a partial relation among items, which can be formally specified using
the concept of dominance and of skyline.

Given a set of points, each representing a list of values for the list of relevant
attributes, the skyline contains the points that are not dominated by any other
point. A point A dominates a point B if it is better in at least one dimension and
equal or better in all the others, by considering a specific scoring function
[BKS01].

Various algorithms have been proposed for skyline computation [BKS01]. In-
dex based techniques (B-tree [BKS01], bitmap [TEO01], nearest neighbor
[KRR02]) avoid scanning the overall set of data for skyline computation, improv-
ing performance with respect to basic techniques [BKS01]. The approaches cited
above assume the interest is specified by a set of totally ordered attributes. This
assumption does not allow the application of the existing techniques to temporal
intervals and categorical data. To solve this problem, in [CET05a,CET05b] par-
tially ordered domains are transformed into pairs of integers, over which the sky-
line is then computed.

The main problem in dealing with skyline is due to their often huge size. In or-
der to address this problem, a common approach is to integrate both top-k and
skyline advantages in a single technique. Three main approaches can be consid-
ered to this purpose [HB08]:

− The first approach consists in evaluating the quality of skyline objects and

returning first high quality results. An approach of this type has been proposed
in [YLL+05]. Starting from the observation that queries often refer to attribute
subsets, the idea is that of pre-computing all possible skylines of all subspaces
with all possible preferences (skycubes), which in general, for numeric attrib-
utes, are just two: the-more-the-better, the-less-the-better. When the user poses
a query to a subspace, pre-computed skylines can be returned as result. A rank-
ing is also provided in order to return ‘best’ skyline objects first. Other ap-
proaches for evaluating skyline relevance are proposed in: [CJT+06a], where
the concept of skyline frequency is proposed as a way to measure the impor-
tance of a point based on the number of subsets of dimensions for which it is in
the skyline; [CJT+06b], where the concept of k-dominance, relaxing the usual
notion of dominance by considering at least k dimensions, is introduced;
[LYZZ07,TDLP09], which consider finding k skyline tuples that best represent
the contour of the entire skyline, called k representative skyline; [YM09],
which proposes the top-k dominating query as the query scoring each tuple with
the number of tuples it dominates; [XZT08, MC09, LYH09], proposing vari-
ous approaches for scoring attribute importance.

− The second approach suggests to propose first to the user an overview of the
skyline, which can be later refined. This is the case of the technique presented
in [BZG05], for computing an approximation of the skyline object set. In this
case, the result of a skyline query is just a sample of the real skyline result set.

184 B. Catania and G. Guerrini

The sample must contain only skyline objects, should be computed fast, should
be small and representative.

− The third approach consists in eliciting more user preferences. An example is
presented in [BGL07a, BGL07b]; the proposed approach allows users to add
preference information incrementally. Each new elicited preference reduces
skyline results. New preference information can be specified as new dominance
relations, as equivalence relations, or as more complex trade-offs.

Concerning skyline computation over geo-spatial data, the problem of finding
spatial locations that are not dominated with respect to the network distance to a
single query point has been considered in [HJ05]. In presence of multiple query
points, in [SSK09,SLAH09] various algorithms have been proposed for comput-
ing the spatial skyline, i.e., for identifying the locations such that no other location
is closer than them to all query points.

Skyline queries have also been investigated for XML and stream data. Simi-
larly to top-k queries, also for skyline it is not possible to compute the result over
all stream data, due to resource limitations. Rather, the skyline is progressively
generated, in an approximated way, based on data at hand, and then continuously
monitored and updated, based on new object arrival or expiration. We refer the
reader to [MXA04,TP06,LWLG09,CS09,ZLC09] for some recent works in those
contexts.

System preferences. Preferences are not necessarily specified by the user. Rather,
they can be implicitly applied by the system. This is the case of the relaxation
technique proposed in [KLTV06]. Here, relaxation is applied to relational selec-
tion and join conditions over numeric attributes by redefining the semantics of
such operators based on a relaxing function, quantifying the distance of each tuple
(pair of tuples) with respect to the specified condition, using a numeric function
(usually, the difference between numeric values appearing in the condition and in
the tuple(s)). The relaxed version of the query provides a non-empty answer while
being ‘close’ to the original query formulated by the user, using a skyline-based
approach. Another approach for automatic ranking database result has been pre-
sented in [ACDG03], where techniques for automatically deriving ranking func-
tions for both the empty or few and the many answers problems are investigated,
adapting typical Information Retrieval approaches to the database context.

An approach similar to that presented in [KLTV06] has been provided in
[Pod10] for both topological geo-spatial selection and join operators. Queries can
be either syntactically correct or contain errors with respect to the used topological
predicate which may not be defined for the object dimensions at hand (non well-

defined conditions). Queries with non well-defined conditions are quite frequent in
environments where the user does not know, for some application reason, the
feature type dimension (e.g., in mash-up applications getting geo-spatial data from
different Web-services). Non well-defined conditions are rewritten by the system
using the most similar topological relations defined for the dimension of features
in the available data. Two different relaxation semantics are proposed. The Best

Towards Adaptively Approximated Search in Distributed Architectures 185

Fit semantics applies the minimum amount of relaxation to the query condition in
order to return a non empty answer. Thus, it models a variation of a top-1 query
dealing with spatial relations, based on system preferences. The Threshold seman-
tics relaxes the topological query up to a certain fixed limit, depending on system
parameters. For all the considered operators and semantics, query processing algo-
rithms, based on the usage of R-trees, have been provided.

3.4 Recommendation Systems

Recommendation systems aim at recommending to the users items not in the re-
sults of the posed queries but of potential interests. Recommendation methods can
be further classified, according to [SDP09], depending on data to be considered
for recommendation, into:

− current-state, if they use only the query result and the database content;
− history-based, which uses past user history;
− external sources, if they consider data contained in sources which are external

to the database.

History-based approaches can be further classified into [AT05]:

− content-based, if they recommend items similar to those the user has preferred
in the past;

− collaborative, that recommend items that similar users have liked in the past;
− hybrid, if they combine both approaches.

Recommendation systems have been initially proposed for Web services, very
recently some approaches have also been proposed for the database context
[AT05]. In particular, a framework for the declarative specification of the recom-
mendation process over structured data is proposed in [KBG09] while the works
reported in [SDP09] and [CEP09] present specific recommendation processes of
current-state and content-based type, respectively. As far as we know, no current-
state approaches have been still provided for geo-spatial and XML data.

3.5 Approximate Query Processing

Approximate query processing refer to all the techniques for executing a tradi-
tional query (e.g., a join) by using ad hoc query processing algorithms which
automatically apply the minimum amount of relaxation based on the available
data, in order to return a non-empty result more similar to the user request.

In the relational context, most approximation techniques concern the join op-
erator [KS05] or face approximate match issues for strings [GIJ+01,CGK06] or
numeric values, a quite relevant problem in case of join between tables coming
from different data sources. The presence of distinct strings representing the same
information may arise for human factors (incorrect data entry or ambiguity during
data specification), application factors (errors in database population or not en-
forced constraints), or obsolescence, since data are usually dynamic.

186 B. Catania and G. Guerrini

Formally, an approximate join of two tables R1and R2 is a subset of the Carte-
sianproduct of R1 and R2. Specified attributes of R1 and R2 are matched and
compared using a similarity function, instead of a usual equality predicate. The
used similarity functions have strong analogies with those used in the context of
data quality, for detecting that two values are distinct representations of the same
real world entity (record linkage [KSS06] or removal of duplicate records
[EIV07]).

Match can be performed by considering as matching field either a single attrib-
ute, a set of attributes, or an entire tuple. The general problem thus becomes that
of, given two field values, quantifying their similarity, as a number between 0 and
1. If the field is numeric, numeric methods can be used. If fields are strings, the
problem is more challenging. The existing techniques can be broadly classified
into edit-based functions, if compare strings with respect to the single characters
they contain, token-based if compare strings with respect to the tokens their con-
tain, where a token is in general a substring satisfying specific properties [KS05].

The naive method for executing an approximate join consists in computing the
similarity score for each pair of fields and keep only those whose similarity value
is greater than a given threshold. This method is of course I/O and CPU intensive
and therefore not scalable. Several algorithms have therefore been proposed with
the aim of reducing the number of pairs over which similarity is computed, by
taking advantage of efficient relational join methods [KS05].

For XML data, the approximate query processing problem has been deeply in-
vestigated, due to the very flexible structures and to the highly heterogeneous
contexts in which XML data are used. The proposed approaches share the goal of
integrating conditions over structure with the generation of approximate results.
Queries are typically expressed through twigs (i.e., small trees) to which data have
to conform. Approaches differ on how conditions over structure are relaxed during
approximation and on how similarity is quantified. Conditions that can be relaxed
could be specified with weights assigned to nodes and edges [ACS02]. The ap-
proximation degree for the structure is higher since even the ancestor/descendant
relationship may not be preserved [SMG+08]. For what concerns similarity meas-
ures, used for quantifying proximity with respect to the twig, a survey can be
found in [GMB06]. In [AKM+05] for example, twigs are decomposed into paths,
whose correspondence with paths in the document is evaluated separately and
single evaluations are then aggregated.

Some approaches have also been proposed for the approximate match of tree
structures, in the context of both approximate join between XML data [GJK+02,
ABD+08] and in the context of duplicate removal [WN05]. In this case, the need
arises of determining whether the similarity between two tree structures is higher
than a given threshold.

In querying data streams, approximation is used to deal with situations in which
limited resources do not allow to produce an exact answer in a short time
[DGR03,LLR07].2 In particular, approximate techniques have been proposed for

2 We remark that these techniques are employed to cope with QoS requirements (effi-

ciency) differently from the others we discussed in this section and from the ones that we
wish to face with ASAP techniques.

Towards Adaptively Approximated Search in Distributed Architectures 187

data reduction and synopsis construction (a survey has been presented in
[ABB+02]) including: sketches [AMS96,FM83], random sampling
[AGP00,AGP+99,CMN99], histograms [IP99,PG99], wavelets [CGR+00], and
sliding windows [BDM02,DGI+02]. Such approximate query processing tech-
niques are called dynamic techniques in [MWA+03]. Both approximate join and
aggregate queries have been considered in this context [KS03].

Similar problems can be found in the spatio-temporal context, for example with
continuous nearest neighbour queries [HZY05]. Also in this case, approximation
is due to efficiency issues, not to data heterogeneity. Approximation issues also
arise for spatial and temporal data represented at different resolutions and
granularities [USU06,QQZ06] and in multi-way spatial join [PA02].

4 Adaptive Query Processing

In the following, after a brief introduction to adaptive query processing, we dis-
cuss the different styles of adaptation and review the main approaches that have
been proposed in the context of local, distributed, and streaming data.

4.1 An Introduction to Adaptive Query Processing

As the database field has broadened to consider more general data management,
the weaknesses of the traditional plan-first execute-next query processing model,
according to which a query is processed following an execution plan selected on
the basis of data statistics and a query optimization strategy, and then executed
according to this plan with little or no run-time decision making, have begun to
show themselves.

In emerging data management environments, such as data integration and data
streams, as well as in most new query processing contexts, ranging from XML
engines, to continuous queries engines, to Web or text engines, data statistics or
other kind of information the optimizer can rely on may not be available a priori
(before the query execution), or, if available, they may not be accurate, or even
wrong. As a consequence, using this information to take decisions about which
query plan to execute could result in a bad choice (sub-optimal plan).

Techniques addressing problems due to the lack of reliable statistics, unex-
pected correlations, unforeseen execution costs, and dynamic nature of data, using
feedbacks for calibrating query execution, with the main goals of achieving better
response time and more efficient CPU utilization, have proliferated and has re-
sulted in a set of approaches, collectively named adaptive query processing (AQP,
see [DIR07] for a recent survey). Adaptive query processing techniques do not
rely on a priori information; rather they incrementally gather current information,
that may be less complete but is up to date, in parallel with the query execution.
Experimental evidence demonstrates the efficiency of the approach, resulting in
several cases in the choice of an optimal or near-optimal execution plan.

The driver for the development of AQP techniques can be identified with the
limits of traditional statistics-based query optimizers in coping with certain types
of queries and in working in certain querying and query processing environments,

188 B. Catania and G. Guerrini

characterized by missing or unreliable cardinality estimates. As the query is con-
cerned, AQP is motivated by characteristics, such as query parameters and corre-
lation, that statistics-based query optimizers have shown themselves unable to deal
effectively with, and complex queries involving many tables, for which traditional
optimizers rely on heuristic approaches to limit the plan search space. For what
concerns the environments, we have from one side interactive query environments
for data exploration and from the other one processing domains like data streams
and wide area data sources.

The limitations of traditional query processing are quite evident in contexts
where queries may be long running, and the data characteristics - and hence the
optimal query plans - may change during the execution of the query. An obvious
example of such data dynamicity is constituted by data stream environments,
where there is also the need for multi-query optimization, since there are several
continuous queries running on the same stream data, that may share some sub-
expressions, and the feedback from one query may be beneficial on the execution
of other queries. In traditional database systems there is (almost) no inter-query
state sharing. By contrast, data and computation sharing is crucial in processing
queries on data streams.

The spectrum of adaptive query processing techniques has thus been quite
broad:

− they may span multiple query executions or adapt within the execution of a
single query;

− they may affect the query plan being executed or the scheduling of operations
within the plan;

− they have been developed for improving the performance of local DBMS que-
ries, distributed queries, queries on streaming data.

4.2 Styles of Adaptation

In the following, we present the general reference architecture for AQP and then
the main styles of adaptations that correspond to instantiations of the architecture
with different adaptation frequencies, namely inter-query adaptation, plan-change
based adaptation, eddies.

MAPE Architecture. As introduced in [KC03] one of the methods to implement
an adaptive behavior inside a system is that of using a MAPE (Monitor, Analyze,
Plan, Execute) architecture. This type of architecture is formed by two main com-
ponents: a managed component and an autonomic manager. The managed compo-
nent is the one that carries over the real work to be done, the processing algorithm
in our case. The autonomic manager on the other hand continually uses a MAPE
approach in order to guarantee that the managed component is always giving the
best possible effort. The components of such an architecture:

− Monitor the managed component actual performance and behavior in order to

obtain valuable statistics and other type of information;
− Analyze the previously collected statistics and information to detect problems

and/or opportunities;

Towards Adaptively Approximated Search in Distributed Architectures 189

− Plan a new behavior for the managed component in order to solve current prob-
lems or exploit in the best way the new opportunities;

− Execute the new decided behavior.

In the context of AQP, the Monitor step involves monitoring data characteristics,
such as cardinality and distribution, and system characteristics, such as memory
utilization and network bandwidth. Analysis is concerned with determining how
well execution is proceeding, and is mainly guided by performance, or availabil-
ity, goals and based on plan cost models or local heuristics. The Plan step may
reconsider the query execution plan through an optimizer (in plan-change based
adaptation, discussed below) or a routing policy (in eddies [AH00], discussed
below). The Execute step corresponds to switching from one plan to another with
careful state migration to reuse work and ensure correct answers.

The engineering effort in developing an adaptive query processor can thus be
seen in defining more in detail all the four phases of the MAPE approach in order
to build an efficient adaptive system that solves the specific processing problem to
be faced. This general architecture can be instantiated in very different ways, lead-
ing to a wide spectrum of adaptation, depending on the frequency of adaptation.

Inter-query adaptation. The lowest level of adaptation consists in incorporating
feedback from previous query executions for better selectivity/cardinality estima-
tion. The statistics collected during the execution of a query are employed to better
optimize future queries [SLM+01]. Since this approach does not reconsider nor
switch plans during query execution, it is much simpler to be realized and it is not
considered as fully adaptive in some surveys [DIR07].

Plan-change based adaptation. The coarser level of intra-query adaptation is
plan-change based adaptation, where adaptation is inter-operator. According to
this approach, the model relying on a well defined query execution plan at any
time is retained, but the plan may be changed at well defined points during query
processing. Mid-query re-optimization stops query processing when it detects that
optimizer estimates are too different from run-time actual, and re-invokes the
optimizer to pick a new plan. Adaptation is at fairly coarse granularity, typically at
materialization points in query plan.

Adaptation can then be intra-operator: the query processor can use feedback
and dynamic estimates to modify the query plan during execution, namely by
replacing a physical operator with another that performs the same function. This
idea has proven viable for pipelined3 query plans, primarily as a dynamic optimi-
zation technique to improve the performance of a complex query, in cases where
the initial query plan produced by the optimizer proves inefficient.

3 A pipelined plan executes all operators in the query plan in parallel, by sending the output

data of an operator directly to the next operator in the pipeline, as opposed to materialized
plans in which operators are applied in sequence, computing (and materializing if needed)
whole intermediate results.

190 B. Catania and G. Guerrini

[BB05] collectively refers to those approaches as plan-based since the execu-
tion of a current plan is monitored and re-optimization triggered whenever ob-
served plan properties (e.g., intermediate result size) or system conditions (e.g.,
available memory) significantly differ from the estimates. The result is an opti-
mizer that adds additional operations to track statistics (conventional as well as
statistics on query sub-expressions collected during execution), detects and cor-
rects situations where a non efficient plan is being executed. Both pipelined and
non-pipelined plans can be executed.

Plan-based approaches instantiated the general MAPE architecture as follows:

− Monitor, through observation, statistics collected on data that passes through
selected points in a plan;

− Assess whether an observed value is significantly different from an estimate, or
outside the range of values for which the current plan is optimal; comparison
may be in terms of estimated cost to completion;

− Plan based on the current statistics including those tracked by the current plan;
− Execute plan switching, with the goal of reducing the time devoted to the

switch.

Plan switching involves many issues that need to be carefully addressed:

− Correctness: the new plan must not output results that have already been output

by previous plan, nor miss results, especially in pipelined plans.
− Reuse of work: the current plan and plans before it may have processed a sub-

stantial part of the query; we need to consider (in a cost-based manner) whether
the new plan can reuse this work instead of restart query processing from
scratch.

− Plan state: the state captured by a plan can be taken into account as well, in-
cluding: base data for the query (may be windows over stream), intermediate
materialized sub-expression, in flight data in pipelined segments, temporary
structures such as hash tables and sorted sub-lists.

In processing queries over stored data with non pipelined plans correctness may be
ensured by producing no output data till the processing is complete (by buffering)
or by keeping track of the data output so far. Work can be reused (if deemed con-
venient, on a cost basis) through materialized sub-expressions. Switch cost may be
minimized starting the new plan on new input, combining the data partition pro-
duced by different plans after all sources are exhausted. In processing queries over
streams, or with pipelined plans, there is no problem of duplicate results (each
input is seen once). The state is migrated in temporary structure (e.g., hash tables)
for reusing work in the new plan. To reduce the switch cost, one approach is to let
the new plan process new data as it arrives, and compute later results from the
‘combination’ of old and new data, in an incremental fashion during processing of
new data.

Towards Adaptively Approximated Search in Distributed Architectures 191

Though most AQP approaches cope with this correctness and reuse issues, the
validity of the runtime changes proposed is rarely addressed in a rigorous manner
and the adaptation undertaken is not formally characterized. One exception is
constituted by [EFP06] for the replacement of join operators in pipelined query
plans. Specifically, they provide a notation for describing partially evaluated op-
erators and for each operator characterize the states, referred to as quiescent states,
in which the result produced by the operator in the state can be precisely defined
in terms of the input to the operator at this point in time. An operator in a quies-
cent state can thus be replaced by any other operator able to compute the remain-
der of the result. The complete result is then the union of that produced by the
original operator with that produced by the replacement one. Note that this union
may not be carried out explicitly, since replacing operators may simply resume the
evaluation of a suspended plan. This establishes a safe foundation for a fine-grain
replacement of operator in the middle of the execution.

Eddies. The finest-grained instantiation of the MAPE architecture is per-tuple
adaptation that do not consider at all the notion of query plan, rather it views query
processing as routing of tuples through operators and realizes plan changes by
changing the order tuples are routed. The eddies technique, proposed in [AH00], is
based on this idea. The eddy operator is a special operator that sits at the center of
a tuple dataflow, intercepting the input and the output tuples of all other operators.
It allows to control the execution plan at run-time at the level of each single tuple.
Each tuple is considered as a message that should be sent from one operator to
another. The routing scheduling can be changed when a specific asset of the query
evaluation engine is reached. The eddy operator, thus, monitors the plan execu-
tion, and takes the decision concerning how routing tuples based on the asset.
Most tuples exploit the route that is more efficient currently, while the rest
explore other routes. [BB05] refers to the approaches relying on this idea as rout-

ing-based AQP approaches. The result is a greedy approach to optimization via
selective tuple routing. The statistics the approach relies on are operator-level
selectivities and incremental costs during execution. Routes through operators
simulates pipelined plans.

Eddies instantiate the general MAPE architecture as follows:

− Monitor and assessment are realized through exploration and competition;
− Plan is implicit, and re-optimization happens automatically when statistics

change;
− Execute enforcing routing constraints to avoid generating duplicate results and

relying on fine-grained primitives for tuple router to migrate state, if not com-
pletely pipelined with no state.

4.3 Adaptive Approaches for Local Query Processing

The main motivation for AQP in local query processing is correcting optimizer
mistakes, mainly due to unavailability of statistics about attribute correlations and

192 B. Catania and G. Guerrini

skewed attribute distributions. Out of date statistics can be another reason for
optimizer mistakes.

The first complete AQP prototype based on possible re-optimization during
execution is Re-Opt [KD98], that re-optimizes the remaining query if statistics of
materialized sub-plans differ significantly from optimizer estimates. A similar
approach, that avoids unnecessary re-optimization and support re-optimization
within pipelines is [MRS+04], that is prototyped in a commercial optimizer and
shows significant benefits on real workloads.

Parametric queries are another motivations for AQP in this context. Many ap-
proaches to parametric optimization have been proposed [BBdW09] for handling
parameters (mainly user inputs, but also memory size) whose values are unknown
during optimization. The resulting optimization framework generates plans opti-
mal for partitions of the parameter domains, and defers plan selection until the
actual parameter values are known at run-time.

Most adaptive techniques have been proposed in the relational contexts. In the
XML context, we mention [MAK+05], in which adaptation is used to allow that
distinct partial matches for the same query follow distinct execution plans, consid-
ering the top-k nature of the problem. It is therefore a case of adaptive processing
of an approximate query. In the spatial context, we recall the adaptive technique
proposed in [SML03], for the execution of distance-based spatial join, and that in
[Yu05], for range queries over multi-dimensional points.

4.4 Adaptive Approaches for Distributed Query Processing

The main motivation for AQP in distributed query processing is for coping with
unknown statistics. In data integration systems, data sources available on-line and
other data management systems that support queries over autonomous remote data
sources, there is the need to cope with executing a query involving one or more
sources for which no statistics are available. In addition to all the issues arising in
AQP on local data, here another issue to adaptively consider is how to maximize
CPU utilization, given the rate at which data are received from the distributed data
sources.

Query scrambling [UFA98] deals with startup delay and bursty data arrival
from remote data sources, with the goal of minimizing idle time during query
processing, with the overall goal of reducing query response time [UF01]. Eddies
[AH00], which we have already discussed in Section 4.2, and distributed eddies
[TdW03] have been proposed as an approach to cope with the widely fluctuating
characteristics of resources in large federated and shared-nothing databases.

In [IFF+99] query optimization for data integration systems is addressed. The
work is motivated by absence of statistics and unpredictable data arrival character-
istics, as well as overlap and redundancy among sources, that requires the proces-
sor to minimize the access to redundant sources and respond flexibly when some
sources are unavailable. Adaptation is considered both at operator and plan level:
adaptive operators such as the double pipelined hash join, also referred to as
symmetric hash join, together with a collector operator realizing an efficient union
of data from a large set of possibly overlapping or redundant sources have been

Towards Adaptively Approximated Search in Distributed Architectures 193

proposed. Adaptive behavior is coordinated by a set of event-condition-action
rules, where events may be raised by the execution of operators or at materializa-
tion points in the plan. Actions include modifying operator executor, re-ordering
of operators, or re-optimization.

[BFM+00] is also concerned with query optimization for data integration and
supports adaptation at plan and operator scheduling levels. Adaptive data parti-
tioning [IHW04] is based on the idea of dividing source data into regions, each
executed by different, complementary plans. This approach can be applied not
only for correcting badly estimated cardinality and selectivity values, but also to
discover and exploit order in source data as well as source data that can be effec-
tively pre-aggregated.

Adaptive workload allocation in autonomous heterogeneous environments have
been investigated in [ASP+09] and in cloud computing in [PAL+09]. An adaptive
approach to query parallelization has been proposed in [PBC+09].

4.5 Adaptive Approaches for Query Processing on Streaming Data

Processing queries on streaming data requires to reconsider most of the basics of
queries on stored data: not only transient, but also persistent (continuous) queries
need to be processed; query answers are necessarily approximate due to the un-
boundedness of the stream leading to window joins to limit scope and to synopsis
structures to approximate aggregates. Query operators and plans are necessarily
adaptive: reacting to changes in input characteristics and system conditions is a
major requirement for long-running query processing over data streams. For in-
stance, stream arrival may be bursty, unpredictably alternating periods of slow
arrival and periods of very fast arrival. The system conditions as well, e.g., the
memory available to a single continuous query, may vary significantly over the
query running time. In a situation where no input statistics are known initially and
input characteristics as well as system conditions vary over time, all the relevant
statistics are estimated during execution. Pipelined plans only can be executed,
since operators in continuous query plans are non-blocking. To minimize the
overhead, sampling based techniques are used for statistics tracking, which is
combined with query execution whenever possible.

 The optimization objectives are also different in a streaming context: the over-
all objective is to maximize the output rate for a query, rather than devising the
least cost plan, and optimization is also rate-based for what concerns the input: the
rates of the stream is taken into account during optimization rather than the input
cardinality. Another optimization goal is to minimize resource (memory) con-
sumption. Finally, it may be driven by QoS (e.g., availability) requirements
[CCD+03].

Both plan-based and routing approaches have been considered for continuous
queries. Plan-based approaches for continuous queries are referred to as CQ-based
approaches in [BB05]. Eddies for continuous queries have been proposed in
[MSH+02] and TelegraphCQ [CCD+03]. In Niagara [NdWM+01] the focus is on
the adaptive sharing of common sub-expressions. In StreaMon [BW01] on inte-
grated statistic collection (with sample-based tracking) and query re-optimization.

194 B. Catania and G. Guerrini

In CAPE [RDS+04] adaptation appears at many levels, ranging from operators, to
scheduling, to distributed processing. Borealis [AAB+05] stream processing en-
gine distributes query processing across multiple machines, monitoring run-time
load and dynamically moving operators across machines to improve performance,
and relies on load shedding for detecting and eliminating CPU overload from
multiple machines by selectively dropping tuples in a coordinated fashion. An
overall optimization approach for sensor networks have been proposed in
[GBJ+09].

The proliferation of XML data produced by Web services has led to the devel-
opment of specific approaches for XML data streams. Proposed approaches con-
sider different granularities ranging from sequences of primitive tokens (e.g., start
and end tag of an element) to sequences of document fragments. In the last few
years, several approaches have been proposed for processing queries on XML data
stream ([DAF03], [GS03], FluXQuery [KSS+04], BEA/XQRL [FHK+03],
[IHW02], XSM [LMP02], XSQ [PC03]). A survey on XML stream query process-
ing can be found in [WLR+09].

Continuous queries on spatio-temporal data streams [MXA04], supported for
instance in Place [MXA+04] and Sole [MA08], are particularly meaningful in the
mobile context, where the ever increasing availability of wireless networks (i.e.,
Wi-Fi) and GPS-equipped mobile devices, makes it easier to develop location-
aware applications, such as traffic monitoring and tourist services. The specificity
of this context is mainly that mobile objects are typically numerous (e.g., the vehi-
cles in a city), volatile, and their position needs to be frequently updated (e.g.,
vehicles equipped with GPS).

5 Requirements for ASAP Systems

We define ASAP (Approximate Search with Adaptive Processing) as a new ap-
proach to QoD-oriented query processing, with the aim of guaranteeing a high
result data quality, with respect to completeness and relevance, in the most effi-
cient way. In the following, we call ASAP systems query processors relying on
ASAP and with ASAP technique each execution plan, analyzed post-mortem,
defined by the ASAP optimizer. The main characteristics of ASAP are:

− ASAP systems use an adaptive inter- or intra-query processing approach to

query execution.
− Similarly to quality-based optimizers (see Section 6), ASAP systems take into

account quality information, possibly provided in an interactive way, in the se-
lection of the best query execution plan. In ASAP, quality is defined with re-
spect to result completeness, by increasing the number of potentially interesting
results, or result significance, by reducing the number of irrelevant results.
Plans at the same quality level are then chosen with respect to efficiency
considerations.

− In the choice of the best query execution plan, ASAP takes into account both
precise and approximate query processing techniques, in order to guarantee a
high result quality in the most efficient way.

Towards Adaptively Approximated Search in Distributed Architectures 195

Since ASAP relies on both precise and approximate processing techniques, the
space of the execution plans for a given query may in general exponentially in-
crease with respect to a traditional query processor. Of course, depending on the
application context, the levels of freedom can be reduced and we believe that, in
concrete cases, ASAP will compete with respect to traditional processing in terms
of performance. Possible worst performance are traded-off with an increased qual-
ity of the result set, as explained above.

In order to develop a general framework for ASAP processing there are several
issues to be taken into account, which are listed below. Some of them (1-2) refers
to the interactions of an ASAP system with the working environments. Others (3-
7) concern the ASAP system itself and lead to a specific instantiation of the
MAPE architecture introduced in Section 4.2. Among them, requirements 6 and 7
deal with specific issues, to take into account when considering intra-query
adaptiveness.

1. Application contexts. Suitable application contexts for the usage of ASAP sys-

tems have to be identified.
2. User participation. A characterization of the type of interactions between the

user and ASAP techniques.
3. Frequency of adaptation. A choice of the most appropriate granularity of im-

plementation of the MAPE architecture for ASAP systems.
4. Properties monitored. A characterization of the properties to monitor and of the

conditions to assess, that are the basis on which a decision in terms of the proc-
essing techniques can be taken.

5. Re-optimization. A characterization of the overall goal of planning, in terms of
the quality-efficiency trade-off and of the general principles that can guide it.

6. Correctness. A characterization of the conditions that ensure that a correct
result is produced upon switch, which also entails determining processing states
in which a switch between different techniques can be made.

7. Reusability. Upon a change in the processing techniques, whether some infor-
mation on the processing/result on the already processed data can be reused, or
whether the processing restarts from scratch with no information available.

In the following, for each of the previous topics, a list of challenges will be pro-
vided and discussed in details, providing some concrete examples. We notice that,
though we discuss different challenges independently, the arising issues are not
orthogonal and may impact one another. For instance, if the adaptation is inter-
query, then plan switching is not an issue.

5.1 Application Contexts

Challenge 1: Identify the application contexts where ASAP systems can be

successfully used.

The first challenge in the design of an ASAP system concerns the identification of
the application contexts in which ASAP could be effectively used. This requires
the identification of reference architectures, data models, and queries.

196 B. Catania and G. Guerrini

Sub-challenge 1.1: Identify the reference architectures and data models suitable

for ASAP.

Based on what stated in Section 1 and the examples presented in Section 3, man-
agement of stored data under distributed architectures and data streams are the
more natural contexts in which applying ASAP. Additionally, based on what
stated in Sections 4 and 5, at the state of the art, a large number of approximation
techniques have already been defined for relational, XML, geo-spatial data, either
stored or in streams. Therefore, we claim that ASAP should be considered as a
framework for all such data models.

Sub-challenge 1.2: Identify the types of queries suitable for ASAP.

ASAP increases the degree of freedom of the optimizer since it takes into account
quality issues besides performance in the selection of the query plan. As a conse-
quence, the size of the plan space increases with respect to a traditional optimizer.
In order to keep the problem tractable, we claim that the analysis of ASAP should
start from simple selection and join queries, followed by conjunctive and Select-
Project-Join queries.

5.2 User Participation

Challenge 2: Formalize the types of interactions between the user and an ASAP

system.

An important issue related to user participation concerns whether the usage of an
ASAP system is transparent to the user or not and, in case the answer is yes, in
which measure. Two main sub-challenges can therefore be considered, as pointed
out below.

Sub-challenge 2.1: Identify the level of user awareness in using an ASAP system.

ASAP query optimizers should be designed in order to apply ASAP techniques
each time a request is posed to the system in order to always guarantee a good
trade-off between response time and result quality. At each switch state (see
Section 5.6), the optimizer will choose the execution plan, taking into account
result quality and efficiency. Therefore, it seems reasonable to assume that the
user should trust the query processor in applying the approach which guarantees
the best compromise between efficiency and result quality, based on a specific
contract with it [Cha90]. Thus, we claim that she has not to be informed each time
an ASAP technique is applied. On the contrary, we point out that, when using
ASAP techniques inside a traditional optimizer, the user should be informed of
the fact that an ASAP technique is going to be used for the execution of her re-
quest, since, in this case, this is just a choice of the optimizer which may alter the
expected user result.

Towards Adaptively Approximated Search in Distributed Architectures 197

Sub-challenge 2.2: Develop a model for the specification of user preferences.

Most query approximation techniques rely on user or system information, such as
cardinality constraints (for some query rewriting approaches), ranking (for top-k
operators) or similarity (for approximate join) functions, sets of interesting attrib-
utes (for skyline operators) (see Table 1). In order for an ASAP system to consider
for optimization one approximation method, the required information for its appli-
cation has therefore to be available to the query processor. While some informa-
tion can be directly chosen by the system (e.g., similarity functions), other requires
a user specification. A model has therefore to be developed in order to specify all
user and system preferences related to a specific domain.

Sub-challenge 2.3: Identify when user preferences have to be specified to the

system.

Different approaches can be followed for user-preference specification. They
mainly depend on the user type:

− Frequent user. In this case, we can assume the user knows quite well the appli-
cation domain. Therefore, it seems reasonable to ask her to specify preferences.
This can be done a priori or at the time the user asks for the usage of an ASAP
technique (in case a traditional optimizer is used).

− Non frequent user. In this case, the user may not know the domain in depth.
Therefore, imposing the specification of preference information, that are not
necessarily used during the processing, seems a too strong requirement, espe-
cially in the context of traditional optimizers. Only system-defined preferences
should be therefore used in this case.

In both cases, preferences can be specified una-tantum or may change, through
user-interaction, during processing. This situation seems reasonable for long-
running transactions or data streams. In those cases, information upon which in-
teraction has to be based have to be carefully defined.

5.3 Frequency of Adaptation

Challenge 3: Choose the most appropriate granularity of implementation of the

MAPE architecture for ASAP systems.

ASAP systems as adaptive query processors will rely on the general architecture
discussed in Section 4.2, however appropriate frequency of adaptation needs to be
chosen. Given the more ambitious goals of the ASAP framework, that does not try
to maximize a single objective function in processing and rather tries to determine
the most advantageous trade-off between possibly conflicting goals (such as effi-
ciency of processing and data quality), and on the approximation techniques con-
sidered in the framework, coarser grained plan-change based adaptation seem
more adequate than techniques relying on eddies. Moreover, both intra-query and
inter-query adaptation can be considered.

198 B. Catania and G. Guerrini

5.4 Properties Monitored

Challenge 4: Characterization of the properties to monitor and of the conditions

to assess.

To properly instantiate the MAPE framework, the properties monitored during the
processing need to be devised, depending on the general goals of approximation,
as well as on the processing contexts. These properties may refer both to QoS
(Quality of Service) and QoD (Quality of Data) properties. An appropriate model
for the assessment based on the monitored properties needs to be developed,
which leads to the following sub-challenges.

Sub-challenge 4.1: Characterize properties for QoS monitoring.

QoS factors vary mainly depending on the application and processing contexts,
but they mainly refer to efficiency and availability. Thus, QoS-related properties
may refer to processing time, but also to CPU usage, network bandwith, and other
typical measures used in AQP approaches.

Sub-challenge 4.2: Characterize properties for QoD monitoring.

QoD factors vary mainly depending on the motivations that lead to introduce ap-
proximation in our processing. Thus, for stretching techniques QoD is character-
ized in terms of completeness, while for shrinking techniques QoD is character-
ized in terms of relevance. QoD-related properties surely include the cardinality
of result, but other relevant properties could be devised as well, such as heteroge-
neity or entropy in the result, which may be reasonable to monitor and assess for
inter-query adaptation.

Sub-challenge 4.3: Develop suitable cost and estimation models for assessment.

Depending on the properties monitored, an appropriate model for assessment
needs to be defined. The basic ideas would be to rely on the ratio between the
resources employed up at a certain point and the expected/affordable one for QoS
and on the ratio between the cardinality (which is much easier to dynamically
evaluate than completeness or significance) of the result produced up to a certain
point and the expected one.
This entails many challenging issues, both for what concerns developing realistic
estimation models, that will likely be probabilistic models, and combining differ-
ent components into a single model. Obviously, assessment relying on different
components entails all the challenges of components assessment and the further
issues related to combining models.

5.5 Re-optimization

Challenge 5: Characterize the overall goal of planning, in terms of the quality-

efficiency trade-off and of the general principles that can guide it.

Towards Adaptively Approximated Search in Distributed Architectures 199

To keep re-planning feasible, in such a multi-faceted approach such as ASAP,
some basic choices that limit the space to search for the most convenient solution
must be made. A basic choice of the approach we propose, intrinsic to the motiva-
tions that lead to its definition, is to consider QoD first. Thus, the first aspect con-
sidered during re-optimization is whether the query as it is addresses the QoD
requirements and, in case it does not, it is approximated/refined accordingly. To
this purpose, a new query may have to be generated and, for it, the most appropri-
ate processing technique needs to be selected. This entails revisiting the notion of
query execution plan in the ASAP context. We may assume that each instantia-
tion of the framework specifies a pool of techniques to be used for approximation.
The reasonable sets of approximation techniques which can be used together in
ASAP and how they can be interleaved, as well as appropriate heuristics to limit
the plan search space, need to be defined. These considerations lead to the follow-
ing sub-challenges.

Sub-challenge 5.1: Define the notion of ASAP query execution plan.

The classical notion of query plan needs to be revisited in the context of ASAP,
thus establishing the building block of QoD-driven query processing. The notion
of ASAP execution plan will provide the basis on which QoD-oriented optimiza-
tion will be developed and thus needs to be formally defined.

Sub-challenge 5.2: Identify the type of interplays between techniques used by

ASAP.

We claim that three distinct types of interplays can be applied by ASAP.

1. From exact processing to approximate processing. The aim of this interplay is
to increase result quality by choosing an approximate evaluation of the query.

2. From approximate processing to precise processing. The aim of this interplay
is to increase efficiency by choosing a precise evaluation of the query, usually
computationally less expensive than the approximate one. This kind of inter-
play can also be useful in stretching or shrinking the result, when the approxi-
mate technique is shrinking or stretching, respectively.

3. From one approximate processing to another. The aim of the interplay in this
case is either:

− To change the type of the used approximation approach when data character-
istics change. As an example, this may allow the processor to switch from a
relaxation technique to an approximate processing when data heterogeneity
increases. This fact can be detected by checking integrity constraints, e.g.,
foreign keys, which, in presence of high data heterogeneity, may not be sat-
isfied any more. In this case, result quality increases while efficiency is not
taken into account.

− To change the specific approximate technique used (but not the type of the
approximation used) for efficiency reasons. This approach seems reasonable
when the considered techniques are instances of the same leaf in the tree
presented in Figure 1 (e.g., two different top-k evaluations, two different ap-
proximate join evaluations using different similarity measures, threshold, or

200 B. Catania and G. Guerrini

algorithms). When the techniques are instances of two distinct query relaxa-
tion approaches (e.g., query rewriting and preference queries, or top-k and
skyline), the switch can be considered relevant assuming that user-
preferences may change during the computation (from a cardinality con-
straint to a ranking function to a set of important attributes) through user in-
teraction or system decision. In this last case, result quality is improved
while efficiency is not taken into account.

Sub-challenge 5.3: Identify the approximation techniques that can be used alone

or together in ASAP.

Based on the classification reported in Section 3.1, it seems reasonable to assume
that, from a theoretical point of view, all approximation techniques can be used,
alone (i.e., only involved in switches of the first two types) in ASAP. A considera-
tion is however required for all approaches based on a global execution, i.e., that
need to access all the items before output the result. We claim that, in an ASAP
context, similarly to what happens in streaming processing, such techniques
should be applied, possibly in a continuous way, locally to a window. Such win-
dow should be dynamically defined and may correspond to the number of items
analyzed before the next switch.

For the usage of a specific approximation technique, adequate preferences
should be selected based on what specified by the user and possibly refined by the
system. For example, if a skyline execution is scheduled, the set of attributes over
which performing the execution has to be chosen. In case a top-k operator is se-
lected, besides choosing the ranking function, parameter k should be selected. Its
value may depend on some statistics on the average window size.

Concerning groups of approximation techniques to be used together, inside the
same plan, we claim that they should pursue the same goal and follow the same
approach. In particular, based on Figure 1 and Table 1, the following situations
may arise:

− Heterogeneous data, stretching approach: in this context, approximate query
processing techniques should be used.

− Query specification problems, stretching approach: all stretching query relaxa-
tion approaches can be used together in this context.

− Query specification problems, shrinking approach: all shrinking query relaxa-
tion approaches can be used in this case.

We notice that, in presence of heterogeneous data, shrinking approaches do not
seem to be useful (see Table 1). This is because, as pointed out in Section 3, in
presence of heterogeneous data, the typical approach is to relax equality checks
into similarity-based checks. As a consequence, more results can be returned
(stretching approach).

We finally remark that, in case ASAP is used to solve problems coming from
both heterogeneous data and query specification, we claim that the approaches
listed above for each problem can be used together inside the same query plan.

Towards Adaptively Approximated Search in Distributed Architectures 201

Sub-challenge 5.4: Develop suitable heuristics to prune the plan search space.

Based on the techniques considered in the instantiation of the framework, it is
crucial, to limit the complexity of ASAP optimization, to rely on heuristics to limit
the size of the plan search space. Thus, well-founded heuristics to determine
which alternatives to explore and which ones to disregard, thus realizing a pruning
of the plan search space, need to be developed.

5.6 Correctness

Challenge 6: Characterize the conditions that ensure that a correct result is

produced upon switch.

In AQP, correctness upon plan switch means that the new plan must not output
results that have already been output by previous plan, nor miss results. Difficul-
ties are in ensuring this, but, since the result set is fixed, the definition is rather
obvious to state. In ASAP, by contrast, even defining correctness and characterize
it is not trivial. First of all, approximation by itself shifts the characterization of
the result from exact to similar, thus some effort is needed in this correctness
characterization. Moreover, the result set itself is different, depending on the
approximation introduced. The switch, therefore, may change the result set, both
in a larger and in a smaller set, depending on whether we switch from an approxi-
mate to an exact technique, or vice-versa. The situation is even more complex
since approximation, as discussed in Section 3, can be either stretching or shrink-
ing. Thus a switch from exact to approximate stretching, as well as a switch from
approximate shrinking to exact, causes the expected result set to enlarge, though in
different ways.

As a general consideration, we claim however that each single ASAP query plan
should rely on either stretching or shrinking techniques. The motivation is that,
using stretching and shrinking techniques inside the same plan may reduce the
control over the overall result and may lead to an unbound number of possible
switches at each step. Indeed, we claim that, as pointed out in [MK09], by mixing
stretching and shrinking approaches one could transform any query to any other
query.

Sub-challenge 6.1: Devise properties for correctness of the switch in terms of no

duplicate results.

What we aim at ensuring is that, applying ASAP with a technique T1 switched to
a technique T2 at a point where a portion P of input data has been processed does
not cause the production of results that would not have been produced by T1 and
T2 applied separately on the portions of data processed before and after P, respec-
tively. In other words, the same input data item does not contribute twice to the
result as a consequence of the switch. While this property is particularly meaning-
ful for materialized results, we also have the converse property, very relevant for
pipelined plans, corresponding to the following sub-challenge.

202 B. Catania and G. Guerrini

Sub-challenge 6.2: Devise properties for correctness of the switch in terms of no

misses.

What we aim at ensuring is that, applying ASAP with a technique T1 switched to
a technique T2 at a point where a portion P of input data has been processed does
not cause the miss of results that would have been produced by T1 and T2 applied
separately on the portions of data processed before and after P, respectively. In
other words, an input data item does not fail to contribute to the result as a conse-
quence of the switch.

Once these properties have been properly characterized, we also need to character-
ize the processing states in which we can safely switch.

Sub-challenge 6.3: Define safe switch states.

This means to characterize, in dependence of the specific switch we may want to
realize, in which plan states a switch can be realized so that the correctness of the
switch can be guaranteed. The challenge is even more hard for fine-grain inter-
operator adaptation, where the switch is realized in the middle of an operator
processing, and thus a notion of quiescent state needs to be devised. For instance,
in [LMF+09] where the switch is between an exact and an approximate join algo-
rithm, both implemented through symmetric hash join, safe switch states are those
in which a tuple from one of the two data sources have been probed against the
hash table containing the set of tuples from the other data source processed so far.

5.7 Reusability

Challenge 7: Characterize the amount of processing work that can be reused

upon a switch.

One of the main issues of adaptive and thus of ASAP techniques is to minimize
switch costs and thus to avoid thrashing [DIR07]. The most obvious way to
achieve this goal is to reuse as much as possible the processing work done so far,
both in terms of results already produced and in terms of auxiliary structures (e.g.,
hash tables) already available. We refer to these auxiliary structures built by the
processing technique as plan state. Upon a change in the processing technique, we
need thus to determine whether the result on the already processed data, or some
other information on the processing, can be reused, otherwise the processing re-
starts from scratch with no information available. However, it is not always con-
venient to reuse the work already done, if this requires some extra work to become
usable by the new technique, thus the choice of whether or not to reuse should be
made in a cost-based manner. This leads to the following sub-challenges.

Sub-challenge 7.1: Define properties for reuse of work.

Depending on the type of the switch, on the techniques involved, and on the proc-
essing context (e.g., stored or streamed data), we need to determine whether upon

Towards Adaptively Approximated Search in Distributed Architectures 203

a switch the processor needs to restart query processing from scratch or it can
reuse (and how) the part of the query and the portions of data already being proc-
essed before the switch.

Sub-challenge 7.2: Develop cost models for reuse of work.

Depending again mostly on the type of the switch and on the techniques involved,
if the reuse of work is possible, but some transformation work is needed, it may be
the case that this extra work is more costly than restart query processing from
scratch. Thus an appropriate cost model allowing to determine whether reuse is
convenient should be defined to guide this decision.

Sub-challenge 7.3: Define properties for plan state reuse.

The various information collected by a processing technique on data, which we
collectively refer to as plan state, and that may include base data for the query (in
streaming contexts), intermediate materialized sub-expressions, temporary struc-
tures such as hash tables and sorted sub-lists, can be taken into account for reuse
upon switching. For these information as well, most of the decisions depend on
the specific techniques and information involved, and should be taken on cost
basis. For instance, referring again to [LMF+09], exploiting a symmetric hash join
both for exact and approximate join, the hash tables built when processing tuple in
one case can be exploited when switching to another technique. Specifically,
maintaining hash tables both on attribute values and their q-grams, allows a tech-
nique to reuse the auxiliary structures developed by the previous one. This would
have not been possible, for instance, if the switch between an approximate join
based on a q-gram based hash table and an approximate join based on trie indexes
interplayed.

6 Related Work

The main existing proposals closed to ASAP refer to the following research areas:
query approximation, adaptive query processing, rank-aware query processing,
and quality-based query processing. Query approximation and adaptive query
processing have been surveyed in details in Sections 3 and 4. The others areas will
be briefly described in the following.

Rank-aware Query Optimization. Rank-aware query optimization deals with the
detection of efficient execution plans for top-k queries, where the ranking function
is user specified. The idea is to integrate rank-aware operators in query engines
through the definition of an extended rank-aware relational algebra. In
[ISA+04,LCIS05], such an approach has been followed for top-k selection and
join queries. An adaptive extension of this approach has then been proposed in
[IAE+06]. Those approaches consider top-k queries as a first-class query type
which has therefore to be optimized, as any other relational operator. Optimization
chooses between the usage of specific top-k algorithms and of a traditional

204 B. Catania and G. Guerrini

join-then-sort plan in generating the ranked result. Other rank-aware operators
have been proposed in [BCG02,CH02,NCSLV01].

Similarly to ASAP, rank-aware query processing deals with the execution of
approximated queries (top-k in this case), possibly in an adaptive way. However,
there are two main differences between the approaches. Rank-aware optimization
considers only performance criteria in optimization and top-k queries are seen as
first-class query types to be optimized. On the other hand, in ASAP, optimization
is performed taking into account quality issues first. ASAP applies on traditional
queries, such as selection and join, and approximation is seen as just an opportu-
nity to increase result quality by the optimizer. Of course, ASAP optimizers can
then rely on rank-aware optimizer in order to efficiently execute a top-k query,
when selected for execution.

Quality-Based Query Processing. Quality-based query processing refers to proc-
essing techniques which take into account data quality parameters in estimating
the cost of a query plan. Quality-based query processing has been mainly consid-
ered in data integration systems, where the quality of the various data sources has
a strong impact on query result. Various QoS and QoD criteria have been consid-
ered. For example in [BKK+01], the user can specify quality constraints on, among
the others, results (e.g., size of the result) and time (e.g., time to get the first re-
sults). Such constraints are then used in all the phases of query processing. If they
cannot be fulfilled, the query plan is dynamically adapted or the query is aborted.
On the other hand, in [NL99], quality criteria may concern the data source, spe-
cific queries computable by a source, or the ability of a source to provide attribute
values for a certain query. A QoS-oriented multi-query scheduling over data
streams has then been proposed in [WTZ09].

Similarly to ASAP, quality-based query processors take into account quality
parameters in choosing the best execution plan. However, they consider a broad
spectrum of quality criteria while ASAP deals with specific QoD constraints re-
lated to the empty answer and the many answer problems. Additionally, ASAP
uses quality criteria in choosing the best approximate query to be used for stretch-
ing or shrinking the user query. Rather, current quality-based query processing
approaches use them only in the selection of traditional query execution plans.

7 Concluding Remarks

The advent of new application environments, such as data integration systems, Web
services, data streams, P2P systems, has greatly increased variability and unpre-
dictability of data characteristics and dynamic processing conditions. In order to
effectively query data in such new contexts, adaptive query processing has been
proposed as an approach to adapt the processing to varying dynamic conditions
while approximation methods have been introduced with the aim of relaxing que-
ries or approximating their evaluation in order to improve result quality.

In this chapter, we claimed that applications exist that could benefit from a
combined approach of Approximate Search and Adaptive Processing, leading to
the definition of ASAP systems. In an ASAP system, decisions concerning when,
how, and how much to approximate a standard query are taken dynamically, with

Towards Adaptively Approximated Search in Distributed Architectures 205

the goal of optimizing both the quality of result, in terms of completeness and
relevance with respect to the original query, and the efficiency of processing.
Differently from other quality-based query processors, ASAP systems pursue the
quality goals by proposing execution plans which interleave both precise and
approximate evaluation in the most efficient way.

After reviewing existing work on approximate and adaptive query processing,
several requirements for setting up ASAP systems have been discussed in the
chapter. The overall problem is of course quite vast. In order to make the first
steps towards the design of ASAP systems, we believe that the proposed chal-
lenges should be addressed in bottom-up and example driven way. This may help
in addressing challenge 1. In particular, we propose the following road map, com-
posed of three main research directions:

− General theoretical foundations of ASAP systems. This research direction in-
cludes the definition of a preference model (sub-challenges 2.1 and 2.2), QoS-
and QoD-oriented parameters to be monitored and used in query optimization
(sub-challenges 4.1 and 4.2), an estimation model for the assessment of QoD
parameters (sub-challenge 4.3), formal definitions of correctness, completeness,
and safety of switches (challenge 7), formal definition of ASAP execution plan
(sub-challenges 5.1 and 5.2).

− Optimization at each switch state. This research direction includes the defini-
tion of techniques for pruning ASAP execution-plans based on the considered
parameters, at a switch point (sub-challenge 5.4). We suggest to start by first
considering only QoD-oriented parameters and consider QoS-oriented parame-
ters, together with QoD ones, as a second step, in order to first investigate is-
sues concerning data quality, which represent a key feature of ASAP systems.
Specific groups of optimization techniques should be considered in order to
limit the problem (sub-challenge 5.3).

− Adaptive optimization. This research direction concerns the definition of the
overall ASAP optimization framework. We suggest to start by considering in-
ter-query adaptation and investigate intra-query adaptation as a second step
(challenge 3) and deal with specific groups of approximation techniques (sub-
challenge 5.3). Issues to be taken into account are possible user interactions
(sub-challenge 2.3) and principles concerning reusability of the processing
work (challenge 8).

The results coming out from such research will be the base for the development of
ASAP prototype systems, to be used for a concrete evaluation of their efficiency
and effectiveness when used in distributed architectures.

References

[ABB+02] Arasu, A., Babcock, B., Babu, S., McAlister, J., Widom, J.: Characterizing
Memory Requirements for Queries over Continuous Data Streams. In: PODS, pp. 221–
232 (2002)

[AAB+05] Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
J.-H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.:
The Design of the Borealis Stream Processing Engine. In: CIDR, pp. 277–289 (2005)

206 B. Catania and G. Guerrini

[ABD+08] Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate Joins for
Data-Centric XML. In: ICDE, pp. 814–823 (2008)

[ACDG03] Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Data-
base Query Results. In: CIDR (2003)

[ACS02] Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: EDBT, pp.
496–513 (2002)

[AGP00] Acharya, S., Gibbons, P.B., Poosala, V.: Congressional Samples for Approximate
Answering of Group-by Queries. In: SIGMOD, pp. 487–498 (2000)

[AGP+99] Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for
Approximate Query Answering. In: SIGMOD, pp. 275–286 (1999)

[AH00] Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In:
SIGMOD, pp. 261–272 (2000)

[AKM+05] Amer-Yahia, S., Koudas, N., Marian, A., et al.: Structure and Content Scoring
for XML. In: VLDB, pp. 361–372 (2005)

[AMS96] Alon, N., Matias, Y., Szegedy, M.: The Space Complexity of Approximating the
Frequency Moments. In: ACM Symp. on Theory of Computing, pp. 20–29 (1996)

[ARSZ03] Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region Proximity in Metric
Spaces and its Use for Approximate Similarity Search. ACM Trans.on Information Sys-
tems 21(2), 192–227 (2003)

[ASP+09] Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Wat-
son, P.: Adaptive Workload Allocation in Query Processing in Autonomous Heteroge-
neous Environments: Distributed and Parallel Databases, vol. 25(3), pp. 125–164 (2009)

[AT05] Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-art and Possible Extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

[BB05] Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: CIDR,
pp. 238–249 (2005)

[BBC+06] Belussi, A., et al.: Towards Similarity-Based Topological Query Languages. In:
EDBT Workshops, pp. 675–686 (2006)

[BBdW09] Bizarro, P., Bruno, N., DeWitt, D.J.: Progressive Parametric Query Optimiza-
tion. IEEE Trans. Knowl. Data Eng. 21(4), 582–594 (2009)

[BCG02] Bruno, N., Chaudhuri, S., Gravano, L.: Top-k Selection Queries over Relational
Databases: Mapping Strategies and Performance Evaluation. ACM Trans. Database
Syst. 27(2), 153–187 (2002)

[BDM02] Babcock, B., Datar, M., Motwani, R.: Sampling from a Moving Window over
Streaming Data. In: ACM-SIAM Symp. on Discrete Algorithms, pp. 633–634 (2002)

[BFM+00] Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: Dynamic Query Scheduling
in Data Integration Systems. In: ICDE, pp. 425–434 (2000)

[BGL07a] Balke, W.-T., Güntzer, U., Lofi, C.: Eliciting Matters – Controlling Skyline
Sizes by Incremental Integration of User Preferences. In: Kotagiri, R., Radha Krishna,
P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp.
551–562. Springer, Heidelberg (2007)

[BGL07b] Balke, W.-T., Güntzer, U., Lofi, C.: User Interaction Support for Incremental
Refinement of Preference-based Queries. In: RCIS, pp. 209–220 (2007)

[BGRS99] Beyer, K.S., Golstein, J., Ramakrishnan, R., Shaft, U.: When is “ Nearest Neighbor”
Meaningful? In: EDBT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999)

[BKK+01] Braumandl, R., Keidl, M., Kemper, A., Kossmann, D., Kreutz, A., Seltzsam, S.,
Stocker, K.: ObjectGlobe: Ubiquitous Query Processing on the Internet. VLDB Jour-
nal 10(1), 48–71 (2001)

Towards Adaptively Approximated Search in Distributed Architectures 207

[BKS01] Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp.
421–430 (2001)

[BW01] Babu, S., Widom, J.: Continuous Queries over Data Streams. SIGMOD Re-
cord 30(3), 109–120 (2001)

[BZG05] Balke, W.-T., Zheng, J.X., Güntzer, U.: Approaching the Efficient Frontier:
Cooperative Database Retrieval Using High-Dimensional Skylines. In: Zhou, L.-z.,
Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 410–421. Springer,
Heidelberg (2005)

[CCD+03] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein,
J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR
(2003)

[CEP09] Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query Recommendations for Inter-
active Database Exploration. In: SSDBM, pp. 3–18 (2009)

[CET05a] Chan, C.Y., Eng, P.-K., Tan, K.-L.: Efficient Processing of Skyline Queries with
Partially-Ordered Domains. In: ICDE, pp. 190–191 (2005)

[CET05b] Chan, C.Y., Eng, P.-K., Tan, K.-L.: Stratified Computation of Skylines with
Partially Ordered Domains. In: SIGMOD, pp. 203–214 (2005)

[CH02] Chang, K.C.-C., Hwang, S.: Minimal Probing: Supporting Expensive Predicates for
Top-k Queries. In: SIGMOD, pp. 346–357 (2002)

[Cha90] Chaudhuri, S.: Generalization and a Framework for Query Modification. In: ICDE,
pp. 138–145 (1990)

[CGK06] Chaudhuri, S., Ganti, V., Kaushik, R.: A Primitive Operator for Similarity Joins
in Data Cleaning. In: ICDE (2006)

[CGR+00] Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query
Processing using Wavelets. In: VLDB, pp. 111–122 (2000)

[CJT+06a] Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On High
Dimensional Skylines. In: EDBT, pp. 478–495 (2006)

[CJT+06b] Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant Skyline in High Dimensional Space. In: SIGMOD, pp. 503–514 (2006)

[CMN99] Chaudhuri, S., Motwani, R., Narasayya, V.: On Random Sampling over Joins. In:
SIGMOD, pp. 263–274 (1999)

[CS09] Cohen, S., Shiloach, M.: Flexible XML Querying Using Skyline Semantics. In:
ICDE, pp. 553–564 (2009)

[DAF03] Diao, Y., Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.M.: Path
Sharing and Predicate Evaluation for High-Performance XML Filtering. ACM Transac-
tion on Database Systems 28(4), 467–516 (2003)

[DGI+02] Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining Stream Statistics over
Sliding Windows. In: ACM-SIAM Symp. on Discrete Algorithms, pp. 635–644 (2002)

[DGR03] Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data
Streams. In: SIGMOD, pp. 40–51 (2003)

[DIR07] Deshpande, A., Ives, Z., Raman, V.: Adaptive Query Processing. Foundations and
Trends in Databases 1(1), 1–140 (2007)

[EFP06] Eurviriyanukul, K., Fernandes, A.A.A., Paton, N.W.: A Foundation for the Re-
placement of Pipelined Physical Join Operators in Adaptive Query Processing. In: Grust,
T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L.,
Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp.
589–600. Springer, Heidelberg (2006)

208 B. Catania and G. Guerrini

[EIV07] Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.: Duplicate Record Detection: A
Survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

[FHK+03] Florescu, D., Hillery, C., Kossmann, D., Lucas, P., Riccardi, F., Westmann, T.,
Carey, M.J., Sundararajan, A., Agrawal, G.: The BEA/XQRL Streaming XQuery Proc-
essor. In: VLDB, pp. 997–100 (2003)

[FM83] Flajolet, P., Martin, G.: Probabilistic Counting. In: IEEE Symp. on Foundations of
Computer Science (1983)

[GBJ+09] Galpin, I., Brenninkmeijer, C.Y.A., Jabeen, F., Fernandes, A.A.A., Paton, N.W.:
Comprehensive Optimization of Declarative Sensor Network Queries. In: Winslett, M.
(ed.) SSDBM 2009. LNCS, vol. 5566, pp. 339–360. Springer, Heidelberg (2009)

[GIJ+01] Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S.,
Srivastava, D.: Approximate String Joins in a Database (Almost) for Free. In: VLDB,
pp. 491–500 (2001)

[GMB06] Guerrini, G., Mesiti, M., Bertino, E.: Structural Similarity Measures in Sources
of XML Documents. In: Darmont, J., Boussaid, O. (eds.) Processing and Managing
Complex Data for Decision Support, pp. 247–279. IDEA Group, USA (2006)

[GJK+02] Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML
Joins. In: SIGMOD, pp. 287–298 (2002)

[GS03] Gupta, A.K., Suciu, D.: Stream Processing of XPath Queries with Predicates. In:
SIGMOD, pp. 419–430 (2003)

[GSBS03] Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Key-
word Search over XML Documents. In: SIGMOD, pp. 16–27 (2003)

[HB08] Hwang, S., Balke, W.: Preference Query Formulation and Processing: Ranking and
Skyline Query Approaches. In: DASFAA Tutorial (2008)

[HJ05] Huang, X., Jensen, C.S.: In-Route Skyline Querying for Location-Based Services.
In: Kwon, Y.-J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428, pp.
120–135. Springer, Heidelberg (2005)

[HS99] Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. ACM Trans.
Database Syst. 24(2), 265–318 (1999)

[HZY05] Hsueh, Y.-L., Zimmermann, R., Yang, M.H.: Approximate Continuous k Nearest
Neighbor Queries for Continuous Moving Objects with Pre-defined Paths. In: ER Work-
shops, pp. 270–279 (2005)

[KBG09] Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Flexrecs: Expressing and Com-
bining Flexible Recommendations. In: SIGMOD, pp. 745–758 (2009)

[KC03] Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

[KD98] Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-optimization of Suboptimal
Query Execution Plans. In: SIGMOD, pp. 106–117 (1998)

[KLTV06] Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing Join and Selection
Queries. In: VLDB, pp. 199–210 (2006)

[KRR02] Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: an Online Algo-
rithm for Skyline Queries. In: VLDB, pp. 275–286 (2002)

[KS03] Koudas, N., Srivastava, D.: Data Stream Query Processing: A Tutorial. In: VLDB
Tutorial (2003)

[KS05] Koudas, N., Srivastava, D.: Approximate Joins: Concepts and Techniques. In:
VLDB Tutorial (2005)

[KSS06] Koudas, N., Sarawagi, S., Srivastava, D.: Record Linkage: Similarity Measures
and Algorithms. In: SIGMOD Tutorial (2006)

Towards Adaptively Approximated Search in Distributed Architectures 209

[KSS+04] Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: FluXQuery: An
Optimizing XQuery Processor for Streaming XML Data. In: VLDB, pp. 1309–1312
(2004)

[KWFH04] Kadlag, A., Wanjari, A.V., Freire, J., Haritsa, J.R.: Supporting Exploratory
Queries in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004.
LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004)

[IAE+06] Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.:
Adaptive Rank-aware Query Optimization in Relational Database. ACM Transactions
on Database Systems 31(4), 1257–1304 (2006)

[IBMS08] Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing
Techniques in Relational Database Systems. ACM Comput. Surveys 40(4) (2008)

[IFF+99] Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An Adaptive
Query Execution System for Data Integration. In: SIGMOD, pp. 299–310 (1999)

[IHW02] Ives, Z.G., Halevy, A.Y., Weld, D.S.: An XML Query Engine for Network-bound
data. VLDB Journal 11(4), 380–402 (2002)

[IHW04] Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Process-
ing Data Integration Queries. In: SIGMOD, pp. 395–406 (2004)

[IP99] Ioannidis, Y., Poosala, V.: Histogram-Based Approximation of Set-Valued Query-
Answers. In: VLDB, pp. 174–185 (1999)

[ISA+04] Ilyas, I.F., Shah, R., Aref, W.G., Vitter, J.S., Elmagarmid, A.K.: Rank-aware
Query Optimization. In: SIGMOD, pp. 203–214 (2004)

[Jhi06] Jhingran, A.: Enterprise Information Mash-ups: Integrating Information, Simply. In:
VLDB, pp. 3–4 (2006)

[Lee02] Lee, D.: Query Relaxation for XML Model. Phd Thesis, University of California
(2002)

[LCIS05] Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: Query Algebra and Opti-
mization for Relational Top-k Queries. In: SIGMOD, pp. 131–142 (2005)

[LLR07] Li, Y., Lokey, S.W., Ramakrishna, M.V.: Performance Study of Data Stream
Approximation Algorithms in Wireless Sensor Networks. In: ICPADS, pp. 1–8 (2007)

[LMF+09] Lengu, R., Missier, P., Fernandes, A.A.A., Guerrini, G., Mesiti, M.: Time-
completeness Trade-offs in Record Linkage using Adaptive Query Processing. In:
EDBT, pp. 851–861 (2009)

[LMP02] Ludäscher, B., Mukhopadhyay, P., Papakonstantinou, Y.: A Transducer-Based
XML Query Processor. In: VLDB, pp. 227–238 (2002)

[Luo06] Luo, G.: Efficient Detection of Empty-Result Queries. In: VLDB, pp. 1015–1025
(2006)

[LYH09] Lee, J., won You, G., won Hwang, S.: Personalized Top-k Skyline Queries in
High-Dimensional Space. Inf. Syst. 34(1), 45–61 (2009)

[LYZZ07] Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: The k Most Represen-
tative Skyline Operator. In: ICDE, pp. 86–95 (2007)

[LWLG09] Li, L., Wang, H., Li, J., Gao, H.: Efficient Algorithms for Skyline Top-K Key-
word Queries on XML Streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DAS-
FAA 2009. LNCS, vol. 5463, pp. 283–287. Springer, Heidelberg (2009)

[MAK+05] Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing
of Top-k Queries in XML. In: ICDE, pp. 162–173 (2005)

[MA08] Mokbel, M.F., Aref, W.G.: SOLE: Scalable Online Execution of Continuous Que-
ries on Spatiotemporal Data Streams. VLDB Journal 17(5), 971–995 (2008)

210 B. Catania and G. Guerrini

[MAA06] Metwally, A., Agrawal, D., Abbadi, A.E.: An Integrated Efficient Solution for
Computing Frequent and Top-k Elements in Data Streams. ACM Trans. Database
Syst. 31(3), 1095–1133 (2006)

[MBG04] Marian, A., Bruno, N., Gravano, L.: Evaluating top-k Queries over Web-
Accessible Databases. ACM Trans. on Database Systems 29(2), 319–362 (2004)

[MBP06] Mouraditis, K., Bakiras, S., Papadias, D.: Continuous Monitoring of Top-k Que-
ries over Sliding Windows. In: SIGMOD, pp. 635–646 (2006)

[MC09] Mindolin, D., Chomicki, J.: Discovering Relative Importance of Skyline Attrib-
utes. PVLDB 2(1), 610–621 (2009)

[MK09] Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873
(2009)

[MRS+04] Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust
Query Processing through Progressive Optimization. In: SIGMOD, pp. 659–670 (2004)

[MSH+02] Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive
Continuous Queries over Streams. In: SIGMOD, pp. 49–60 (2002)

[MTW05] Michel, S., Triantafillou, P., Weikum, G.: KLEE: A Framework for Distributed
Top-k Algorithms. In: VLDB, pp. 637–648 (2005)

[MWA+03] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku,
G.S., Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management,
and Approximation in a Data Stream Management System. In: CIDR (2003)

[MXA04] Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable Incremental Processing of
Countinuous Queries in Spatio-Temporal Database. In: SIGMOD, pp. 623–634 (2004)

[MXA+04] Mokbel, M.F., Xiong, X., Aref, W.G., Hambrusch, S.E., Prabhakar, S., Ham-
mad, M.A.: PLACE: A Query Processor for Handling Real-time Spatio-temporal Data
Streams. In: VLDB, pp. 1377–1380 (2004)

[NCSLV01] Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting In-
cremental Join Queries on Ranked Inputs. In: VLDB, pp. 281–290 (2001)

[NdWM+01] Naughton, J.F., DeWitt, D.J., Maier, D., Aboulnaga, A., Chen, J., Galanis, L.,
Kang, J., Krishnamurthy, R., Luo, Q., Prakash, N., Ramamurthy, R., Shanmugasunda-
ram, J., Tian, F., Tufte, K., Viglas, S., Wang, Y., Zhang, C., Jackson, B., Gupta, A.,
Chen, R.: The Niagara Internet Query System. IEEE Data Eng. Bull. 24(2), 27–33
(2001)

[NL99] Naumann, F., Lesser, U.: Quality–driven Integration of Heterogeneous Information
Systems. In: VLDB, 447–458 (1999)

[PA02] Papadias, D., Arkoumanis, D.: Approximate Processing of Multiway Spatial Joins
in Very Large Databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang,
J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 179–196. Springer,
Heidelberg (2002)

[PAL+09] Paton, N.W., Aragão, M.A.T., Lee, K., Fernandes, A.A.A., Sakellariou, R.:
Optimizing Utility in Cloud Computing through Autonomic Workload Execution. IEEE
Data Eng. Bull. 32(1), 51–58 (2009)

[PBC+09] Paton, N.W., Chávez, J.B., Chen, M., Raman, V., Swart, G., Narang, I., Yellin,
D.M., Fernandes, A.A.A.: Autonomic Query Parallelization using non-Dedicated Com-
puters: an Evaluation of Adaptivity Options. VLDB J 18(1), 119–140 (2009)

[PC03] Peng, F., Chawathe, S.S.: XPath Queries on Streaming Data. In: SIGMOD, pp.
431–442 (2003)

[PG99] Poosala, V., Ganti, V.: Fast Approximate Answers to Aggregate Queries on a Data
Cube. In: SSDBM, pp. 24–33 (1999)

Towards Adaptively Approximated Search in Distributed Architectures 211

[PGI04] Polyzotis, N., Garofalakis, N., Yoannidis, Y.E.: Approximate XML Query An-
swers. In: SIGMOD, pp. 263–274 (2004)

[Pod10] Podesta‘, P.: Query Processing and Analysis of Multi-resolution Spatial Data in
Distributed Architectures. PhD Thesis, University of Genoa, Italy (2010)

[PTMH05] Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

[QQZ06] Qin, S., Qian, W., Zhou, A.: Approximately Processing Multi-granularity Aggre-
gate Queries over Data Streams. In: ICDE (2006)

[RDS+04] Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., Pielech, B., Mehta,
N.: CAPE: Continuous Query Engine with Heterogeneous-Grained Adaptivity. In:
VLDB, pp. 1353–1356 (2004)

[RKV95] Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIG-
MOD, pp. 71–79 (1995)

[SBM+07] Sanz, I., Berlanga, R., Mesiti, M., Guerrini, G.: ArHeX: Flexible Composition
of Indexes and Similarity Measures for XML. In: ICDE Workshops, pp. 281–284 (2007)

[SDP09] Stefanidis, K., Drosou, M., Pitoura, E.: “You Also Like” Results in Relational
Databases. In: PersDB (2009)

[SLM+01] Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning
Optimizer. In: VLDB, pp. 19–28 (2001)

[SMG+08] Sanz, I., Mesiti, M., Guerrini, G., Berlanga, R.: Fragment-based Approximate
Retrieval in Highly Heterogeneous XML Collections. Data Knowl. Eng. 64(1), 266–293
(2008)

[SML03] Shin, H., Moon, B., Lee, S.: Adaptive and Incremental Processing for Distance
Join Queries. IEEE Trans. Knowl. Data Eng. 15(6), 1561–1578 (2003)

[SSK09] Sharifzadeh, E., Shahabi, C., Kazemi, L.: Processing Spatial Skyline Queries in
both Vector Spaces and Spatial Network Databases. ACM Trans. Database Syst. 34(3)
(2009)

[SSLAH09] Son, W., Lee, M.-W., Ahn, H.K., Hwang, S.-W.: Spatial Skyline Queries: An
Efficient Geometric Algorithm. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K.,
Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 247–264. Springer, Heidelberg
(2009)

[TBM+08] Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: Effi-
cient and Versatile Top- k Query Processing for Semistructured Data. VLDB J 17(1),
81–115 (2008)

[TDLP09] Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based Representative Skyline. In:
ICDE, pp. 892–903 (2009)

[TdW03] Tian, F., DeWitt, D.J.: Tuple Routing Strategies for Distributed Eddies. In:
VLDB, pp. 333–344 (2003)

[TEO01] Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In:
VLDB, pp. 301–310 (2001)

[TP06] Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams.
TKDE 18(3), 377–391 (2006)

[UF01] Urhan, T., Franklin, M.J.: Dynamic Pipeline Scheduling for Improving Interactive
Query Performance. In: VLDB, pp. 501–510 (2001)

[UFA98] Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial
Delays. In: SIGMOD, pp. 130–141 (1998)

[USU06] Ünal, A., Saygin, Y., Ulusoy, Ö.: Processing Count Queries over Event Streams
at Multiple Time Granularities. Inf. Sci. 176(14), 2066–2096 (2006)

212 B. Catania and G. Guerrini

[XZK+05] Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On Computing Top-t Most Influential
Spatial Sites. In: VLDB, pp. 946–957 (2005)

[XZT08] Xia, T., Zhang, D., Tao, Y.: On Skylining with Flexible Dominance Relation. In:
ICDE, pp. 1397–1399 (2008)

[YLL+05] Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient Computa-
tion of the Skyline Cube. In: VLDB, pp. 241–252 (2005)

[YM09] Yiu, M.L., Mamoulis, N.: Multi-dimensional Top Dominating Queries. VLDB
J. 18(3), 695–718 (2009)

[YDM+07] Yiu, M.L., Dai, X., Mamoulis, N., Vaitis, M.: Top-k Spatial Preference Que-
ries. In: ICDE, pp. 1076–1085 (2007)

[YHC05] Yu, H., Hwang, S., Chang, K.: RankFP: A Framework for Supporting Rank
Formulation and Processing. In: ICDE, pp. 514–515 (2005)

[Yu05] Yu, B.: Adaptive Query Processing in Point-Transformation Schemes. In: Ander-
sen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 197–
206. Springer, Heidelberg (2005)

[WN05] Weis, M., Naumann, F.: DogmatiX Tracks down Duplicates in XML. In: SIG-
MOD, pp. 431–442 (2005)

[WLR+09] Wei, M., et al.: XML Stream Query Processing: Current Technologies and
Open Challenges. Open and Novel Issues in XML Database Applications: Future Direc-
tions and Advanced Technologies. IGI Publishing (2009)

[WTZ09] Wu, J., Tan, K.L., Zhou, Y.: QoS-Oriented Multi-query Scheduling over Data
Streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS,
vol. 5463, pp. 215–229. Springer, Heidelberg (2009)

[ZPZ+05] Zhu, M., Papadias, D., Zhang, J., Lun Lee, D.: Top-k Spatial Joins. IEEE Trans.
on Knowl. and Data Eng. 17(4), 567–579 (2005)

[ZGBN07] Zhou, X., Gaugaz, J., Balke, W.-T., Nejdl, W.: Query Relaxation using Malle-
able Schemas. In: SIGMOD, pp. 545–556 (2007)

[ZHC+06] Zhang, Z., Hwang, S., Chang, K., et al.: Boolean + Ranking: Querying a Data-
base by k-Constrained Optimization. In: SIGMOD, pp. 359–370 (2006)

[ZLC09] Zhu, L., Li, C., Chen, H.: Efficient Computation of Reverse Skyline on Data
Stream. In: CSO, pp. 735–739 (2009)

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 213–234.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 8

Online Social Networks: Status and Trends

George Pallis, Demetrios Zeinalipour-Yazti, and Marios D. Dikaiakos

Department of Computer Science

University of Cyprus

1678, Nicosia, Cyprus

{gpallis,dzeina,mdd}@cs.ucy.ac.cy

Abstract. The rapid proliferation of Online Social Network (OSN) sites has
made a profound impact on the WWW, which tends to reshape its structure,
design, and utility. Industry experts believe that OSNs create a potentially
transformational change in consumer behavior and will bring a far-reaching
impact on traditional industries of content, media, and communications.
This chapter starts out by presenting the current status of OSNs through a
taxonomy which delineates the spectrum of attributes that relate to these
systems. It also presents an overall reference system architecture that aims
at capturing the building blocks of prominent OSNs. Additionally, it pro-
vides a state-of-the-art survey of popular OSN systems, examining their ar-
chitectural designs and business models. Finally, the chapter explores the
future trends of OSN systems, presents significant research challenges and
discusses their societal and business impact.

1 Introduction

With the emergence of Web 2.0, end-users are placed at the heart of various Web
technologies, which tend to reshape the future of the WWW in terms of its struc-
ture, design, and utility. In this context, Online Social Networks (OSNs) are
emerging as a new type of “killer application” on the Internet, which can be con-
sidered as a natural extension of Web applications that establishes and manages
explicit relationships between users. Specifically, an OSN consists of users who
communicate with each other in an online setting in diverse ways. Nowadays, we
have been witnessing the rapid rise of a large variety of OSN sites, which publish
user-generated or aggregated content, allow users to annotate published content
with tags, reviews, comments and recommendations, and provide mechanisms that
enable the establishment of user communities based on shared interests [2], [11].

The first well-known OSN site, called SixDegrees.com, was launched in 1997;
its name originates from the six degrees of separation concept. Six degrees of
separation is the theory that anyone can be connected to any other person through
a chain of acquaintances that has no more than five intermediaries. Through
SixDegrees.com, users could create their profiles, have a list of friends and

214 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

contribute information to their community. Although this site attracted million of
users, it could not evolve into a sustainable business and closed down in 2000. The
founder of SixDegrees.com believes that it was ahead of its time. From 2003, we
witnessed a revolution and uptake of OSN sites that established most of nowadays
most popular OSN sites. This revolution has brought a dramatic shift on the busi-
ness, the cultural and the research landscape of the WWW [11]. Figure 1, presents
a timeline that shows the evolution of OSN sites during the last decade.

PerfSpot

Windows Live Spaces
Cyworld (US)

Facebook (everyone)

Yahoo! 360

Bebo

YouTube
Cyworld (China)

Facebook

(Harvard only)

Catster

Hyves

NetLog

MySpace
LinkedIn

Last.FM

Delicious

FriendSter

Fotolog

Cyworld

MiGente

SixDegrees closes

Assian Avenue

SixDegree.com

LiveJournal

BlackPlanet

Ryze

Skyblog

Hi5

Xing

Piczo

Facebook (high

school networks)

Twitter
Google Wave

╆97 ╆98 ╆00 ╆01 ╆02 ╆03 ╆04 ╆05 ╆06 ╆07 ╆08 ╆09

Google Buzz

╆10

PerfSpot

Windows Live Spaces
Cyworld (US)

Facebook (everyone)

Yahoo! 360

Bebo

YouTube
Cyworld (China)

Facebook

(Harvard only)

Catster

Hyves

NetLog

MySpace
LinkedIn

Last.FM

Delicious

FriendSter

Fotolog

Cyworld

MiGente

SixDegrees closes

Assian Avenue

SixDegree.com

LiveJournal

BlackPlanet

Ryze

Skyblog

Hi5

Xing

Piczo

Facebook (high

school networks)

Twitter
Google Wave

╆97 ╆98 ╆00 ╆01 ╆02 ╆03 ╆04 ╆05 ╆06 ╆07 ╆08 ╆09

Google Buzz

╆10

Fig. 1. Timeline of Online Social Network Sites

According to Nielsen Online's latest research1, social network and blogging

sites are nowadays the fourth most popular activity on the Internet; this means that

more than two-thirds of the global on-line population visit and participate in social

networks and blogs. In fact, social media have pulled ahead of e-mail in the rank

of the most popular online activities. Another interesting finding is that social

networking and blogging accounts for nearly 10% of all time spent on the Internet.

These statistics suggest that OSNs have become a fundamental part of the online

experience on the WWW throughout the world.

The key breakthrough brought by OSN sites like Facebook, Myspace, Flickr,

LinkedIn, and YouTube, and the main driving force behind their success, is that

OSN sites promote the vision of a Human-centric Web, where the network of people

and their interests become the primary source of information, which resides entirely

on social networking services. Consequently, the main objective of OSN systems is

to provide social networking functionality as a core service to a variety of high-level

applications and services. In addition, online social networking opens new interest-

ing problems and creates challenges for research in an environment that becomes

increasingly complex, and less structured [1], [43]. Nowadays, OSNs have become

the subject of numerous startup companies, offering users the ability to create,

search and manage their own OSN communities.

1 Nielsen Company: http://blog.nielsen.com/nielsenwire/
wp-content/uploads/2009/03/nielsen_globalfaces_mar09.pdf

Online Social Networks: Status and Trends 215

Currently, the main technical underpinnings of OSN infrastructures and services
include Web 2.0 technologies, service-oriented software, caching, database and
content distribution technologies. From a technical point of view, OSN sites provide
APIs, software frameworks and open-source platforms that enable application
developers to build applications and manipulate their content. The core of OSN
platforms is the social graph, where nodes represent individual actors within a social
network and edges represent the interdependencies between the actors, which is
integrated with new applications [11]. Social networking services make the social
graph an integral element of their backend infrastructure, and provide direct access
to parts of the graph through their end-user interfaces. In addition, the advent of the
Linked Open Data W3C project opens new perspectives to OSNs allowing user
contributed content to become even more open and accessible. Specifically, Linked
Open Data project2 aims to connect data sets using semantic Web technologies such
as RDF (Resource Description Framework) or RDFa (a simpler variation). RDF
based descriptions of social data provide a rich typed graph and offer a much more
powerful and significant way to represent online social networks than social graphs.
In this context, several ontologies are used to represent social networks. For in-
stance, FOAF3 is used for describing people profiles, their relationships and their
activities online and SIOC4 ontology provides the basis for defining the users.

The goal of this chapter is to discuss OSN platforms from different perspec-

tives. The main contributions of this chapter can be summarized as follows:

• We present a reference architecture for OSNs in order to establish some
common terminology and for ease of exposition. Such an architecture facili-
tates the process of identifying the technical challenges that arise in construct-
ing OSNs.

• We develop a comprehensive taxonomy of OSNs that provides an in-depth
coverage of this field in terms of OSN organizational structure and service
types. The main aim of our taxonomy is to explore the unique features of
OSNs and to provide a basis for categorizing present and future development
in this area.

• We present a state-of-the-art survey of prominent OSN platforms that pro-
vides a basis for instantiating the blocks of our taxonomy and for understand-
ing the current social networking landscape. It also presents the underlying
Web technologies that are currently exploited in the social networking field.

• We discuss significant open problems and research challenges that need to be
addressed in order to develop efficient OSN infrastructures and services. Fi-
nally, we identify the strengths, weaknesses, and opportunities as well as the
business and societal impact of OSNs.

2 Linked Open Data project: http://linkeddata.org/
3 The Friend of a Friend Project: http://www.foaf-project.org/
4 SIOC-project: http://sioc-project.org/

216 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

The rest of the chapter is structured as follows: Section 2 describes the architec-

ture of OSNs, providing an insight into the technological characteristics of these

platforms. Section 3 presents the taxonomy of OSNs and Section 4 performs a

detailed survey of prominent OSN platforms. Section 5 outlines the research chal-

lenges of OSNs, focusing on Decentralized OSNs and on the business and societal

impact of this technology. Finally, Section 6 concludes this chapter.

2 Architecture of OSNs

An online social networking site is a Web site that:

• Acts as a hub for individuals to establish relationships with other persons
(friends, colleagues, etc.). Each user articulates a list of other users with
whom a connection is shared.

• Includes a wide range of tools for people to build a sense of community

in an informal and voluntary way. Online users interact with each other,

contribute information to the common information space, and participate

in different interactive activities (e.g., photo uploading, tagging, etc.).

• Contains specific components that allow people to: define an online pro-
file, list their connections (e.g., friends, colleagues), receive notifications
on the activities of those connections, participate in group or community
activities, and control permission, preference and privacy settings.

A reference architecture of OSNs is depicted in Figure 1. The entire system is
formed by the following layers:

• Data Storage layer: This layer consists of two components: The Storage

Manager, which is responsible for efficiently storing the information of

social graphs and for handling increased database loads. This is usually

achieved by adopting distributed memory caching. The other component,

called Data Store, comprises the storage elements that store information

items of a social networking service. Data Stores can be Multimedia

Databases, User Profiles Databases etc.

• Content Management layer: This layer is responsible for three main
tasks. Firstly, it facilitates the incorporation of social information from
remote OSN sites through a Content Aggregator that gathers and organ-
izes content from social media but also distributes it to other OSN plat-
forms. Secondly, it facilitates the maintenance and the retrieval of the
social content graph through the Data Manager. Thirdly, it controls the
access of users by creating and maintaining an access control scheme.

Online Social Networks: Status and Trends 217

• Application layer: Each OSN site supports numerous services such as
search, news feeds, mobile access, etc. The services communicate with the
data manager and the access control manager in order to analyze and manage
the social content graph. The applications are provided to users through an
application manager. The application manager facilitates the user interaction
via a set of APIs. This component also includes a service framework for scal-
able cross-language services development. Such a framework allows users to
deploy applications by abstracting the portions of each language that tend to
require the most customization into a common library that is implemented in
each programming language.

The users interact with an OSN platform through HTTP requests. Each user can
either be registered as an authorised user or be anonymous. Registered users usu-
ally have more rights than the anonymous ones (e.g., comment published articles,
upload figures, etc.). The access control module is responsible for addressing

Storage Manager

Data

Manager

Access Control Manager

Content

Aggregator

Service

Framework

Application

Manager

S
e
a
rc

h

M
u

s
ic

P
h

o
to

s

V
id

e
o

s
Applications

U
s

e
r

In
te

rf
a
c

e

Operating System

Hardware Infrastructure

Data StoresD
a

ta
 S

to
ra

g
e

L
a

y
e
r

C
o

n
te

n
t

M
a

n
a

g
e

m
e
n

t

L
a

y
e

r

A
p

p
li
c

a
ti

o
n

L
a

y
e

r

Storage Manager

Data

Manager

Access Control Manager

Content

Aggregator

Service

Framework

Application

Manager

S
e
a
rc

h

M
u

s
ic

P
h

o
to

s

V
id

e
o

s
Applications

U
s

e
r

In
te

rf
a
c

e

Operating System

Hardware Infrastructure

Data StoresD
a

ta
 S

to
ra

g
e

L
a

y
e
r

C
o

n
te

n
t

M
a

n
a

g
e

m
e
n

t

L
a

y
e

r

A
p

p
li
c

a
ti

o
n

L
a

y
e

r

Fig. 2. Reference Architecture of an Online Social Network Platform

218 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

privacy and security settings of OSN users. Specifically, most of the research in
the field of OSN security and privacy has focused on the development of privacy-
preserving techniques providing answers to issues such as the ownership of per-
sonal information and the protection of privacy [8], [15], [17], [38], [41].

Each OSN platform consists of multiple application servers, which provide a
set of services and APIs. A user forwards a request to the OSN platform, which
forwards it to the appropriate application server. A load balancer is responsible for
monitoring the application servers of an OSN platform, balancing the load of
requests, handling failover, and forwarding the requests to the application servers.
The graph servers track and manage the connection relationships among users.

In terms of content distribution, cache servers speed up dynamic Web applica-
tions by alleviating the load of application servers. Specifically, OSNs involve a
significantly different set of requirements compared to traditional Web applica-
tions. One of the major difference among OSNs platforms, are the relations and
trust among users, which change over time. This behavior dictates the design of
data placement, replication and distribution algorithms in OSNs. Another signifi-
cant difference is that OSNs involve a large number of small files that need to be
frequently accessed and updated by a large number of users and the propagation of
file updates to guarantee data coherency. To further improve the system perform-
ance, OSN platforms distribute their content over Content Distribution Networks
(CDNs) (e.g., Akamai, etc.) or Cloud Infrastructures. In a CDN setting [30], user
requests are automatically routed to the nearest edge location, so content is deliv-
ered with the best possible performance. In a Cloud setting, the system is built
over large clusters of processors. For instance, Facebook users can build their
applications on Amazon Web Services (Amazon Elastic Compute Cloud (Ama-
zon EC2) and Amazon CloudFront), improving reliability, flexibility, and cost-
effectiveness.

Finally, the Data Stores of OSN platforms can be either centralized or distrib-
uted across multiple administrative domains. Centralized OSNs raise concerns
regarding the protection of privacy and scalability. To overcome these limitations,
data can be stored in a peer-to-peer infrastructure [12], [44], [45]. To support such
a scheme, the reference architecture of Figure 1, should be extended by i) an over-
lay network layer on top of the operating system and network subsystem; and ii)
an overlay management layer. The overlay network layer would provide mecha-
nisms for node identity management, topology construction and maintenance,
message routing, node search services, interfacing with local resources and the
underlying fabric. The overlay management layer will provide mechanisms for
authentication and authorization, decentralized monitoring, management, and
adaptive control of peer-to-peer resources.

3 Taxonomy of OSNs

This section proposes a taxonomy that covers the key aspects of OSNs. This tax-
onomy is split into four branches. The first branch covers the scope of OSN sys-
tems in terms of activities. The second branch deals with the data model of OSNs,
since the data model is the way in which data sources are stored in a system. The

Online Social Networks: Status and Trends 219

third branch, called system model, categorizes the OSNs regarding the hosting and
content distribution of application servers. The fourth branch is from the point of
view of the formation of users’ network within OSN platforms. Figure 3 depicts
the OSNs taxonomy.

OSN

Scope Model Data Model System Model Network Model

Entertainment Business Web-based Cloud-based User-oriented Content-orientedCentralized Decentralized

OSN

Scope Model Data Model System Model Network Model

Entertainment Business Web-based Cloud-based User-oriented Content-orientedCentralized Decentralized

Fig. 3. OSN Taxonomy

In terms of their scope model, OSNs can be classified into the following two
categories:

• Entertainment: Most OSNs are dedicated to entertainment. Their focus
is on delivering fun and interactive social experience online to registered
users. Popular OSN sites that are mainly entertainment-oriented are
Facebook, Myspace, Hi5 and Flickr.

• Business: In this category, the focus of OSNs is to connect the world’s
professionals to make them more productive and successful. Through
business OSNs, registered users create profiles that summarize their pro-
fessional expertise and accomplishments. Indicative OSN sites in this
category are LinkedIn and Xing.

The next dimension of our taxonomy is the data model followed by OSN provid-
ers. Here we identify the following categories:

• Centralized: the data of centralized OSNs are stored entirely in physical
proximity (e.g., within a cluster or data center), concentrating the data of
all their users under a single administrative domain. Today, most OSNs
rely on centralized storage and functionality. However, centralized OSNs
raise concerns regarding the protection of privacy and their scalability in
the context of an expanding base of users and applications.

• Decentralized: the data of decentralized OSNs is distributed across
multiple administrative domains [13], [35]. Application servers run on
desktop machines (i.e., peers) owned by users. In general, hosting

220 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

personal data on peers is more privacy-preserving than delegating control
to a third-party service provider. In addition, this model is cheaper than
acquiring dedicated centralized equipment. The main drawback of this
approach is that peers might not be available continuously. Peers are
prone to failures, reboots, power-offs, and network disconnections [12].
More discussion about the decentralized OSNs is given to section 5.

Our next dimension under discussion is the system model of OSNs. In particular,
we identify the following two categories:

• Web-based scheme: the application servers are hosted by Web sites that
provide a set of services and APIs. In such a scheme, the load balancer
balances the load of requests, handles any failover, and forwards the re-
quests to the appropriate application servers. In Web-based schemes,
most OSN services are free to users.

• Cloud-based scheme: the application servers are hosted by a utility
computing infrastructure such as Amazon Elastic Compute Cloud (EC2).
In such a scheme, each user stores its own data on a personal virtual ma-
chine instance, called Virtual Server. The main advantages of this scheme
are its high availability and its improved privacy since each user keeps its
personal data in a Virtual Server residing in a Cloud computing environ-
ment. Also, Cloud-based schemes are usually integrated with CDN infra-
structures (e.g., Amazon Cloud Front integrates with Amazon EC2). This
results in distributing content to end users with low latency and high data
transfer speeds. On the other hand, hosting data in a Cloud increases the
costs due to utilizing a commercial infrastructure.

Finally, our taxonomy addresses the network model of OSNs that can be classified
into the following two categories:

• User-oriented OSNs: The OSNs of this category emphasize on the
social relationships. In such OSNs, content sharing is mainly among
users who belong to the same community. Indicative OSNs of this cate-
gory are the Facebook, MySpace and LinkedIn.

• Content-oriented OSNs: The users’ network is not determined by the
underlying social relationships but by their common interests. Indicative
OSNs of this category are blog networks, question answering networks
and video networks (e.g., YouTube).

4 Case Studies

This section presents various case studies of the most popular OSN platforms. For
each OSN platform, we present a brief history, its scope, some technical issues
and its business model. Table 1 summarizes the key characteristics of OSN plat-
forms taking into account the taxonomy described in the previous section.

Online Social Networks: Status and Trends 221

4.1 Facebook

History & Scope. Facebook (www.facebook.com) was founded by Mark Zucker-
berg while he was a psychology student at Harvard University. In February 2004,
Zuckerberg launched "The facebook"; the name was taken from the sheets of
paper distributed to freshmen, profiling students and staff. Within 24 hours, 1200
Harvard students signed up, and after one month, over one half of the undergradu-
ate population had a profile. In August 2005, it became Facebook.com and the
address was purchased for $200,000. In September 2006, the network was ex-
tended beyond educational institutions to anyone with a registered email address.
Nowadays, Facebook is one of the most popular online destinations with more
than 300 million subscribers, whospend an average of 20 minutes on the site daily,
contribute 4 billion pieces of information, 850 million photos, and 8 million vid-
eos every month. The main scope of Facebook is entertainment. Facebook is both
a user-oriented and a content-oriented OSN site. Not only do the users create their
networks among their friends, but also they can create networks based on common
interests (e.g., Princeton alumni Network). Each registered user has a personal
profile, adds friends and sends them messages, uploads photos, videos, links, and
updates her personal profile to notify friends about herself.

Architectural Design. The data model architecture of Facebook is centralized and
based on a typical hierarchical PHP Web application model with a layer of data
caching. The caching layer is provided via the memcached open source software.
Regarding the application layer, Facebook supports an Apache open source RPC
mechanism called Thrift, which is used for both low-latency real-time RPC and
persistent structured data storage across a variety of applications, such as Search,
News Feed etc. The RPC language is influenced by CORBA’s Interface Defini-
tion Language (IDL). Facebook supports various backend services that use the
Hadoop, Scribe and Hive frameworks. Regarding the data storage layer, data
(e.g., photos, statuses, and comments) are periodically stored to central reposito-
ries and relational (MySQL) databases. As far as the system model is concerned,
Facebook application servers run on Web-based and Cloud-based infrastructures
(i.e., Amazon EC2).

Business Model. Since the subscription to Facebook is free, the business model of
Facebook depends on advertising. This business model is based on the principle
that free subscriptions build audiences with distinct interests and expressed needs
that advertisers will pay to reach. Facebook supports two advertising polices; the
Pay for Clicks (also called cost per click or CPC) advertising allows advertisers to
specify a certain amount that they are willing to pay each time a user actually
clicks on their ad, whereas, the Pay for Views (also called cost per thousand
impressions or CPM) advertising allows customers to specify how much they are
willing to pay for 1000 views of their ad. Also, Facebook provides the option to
target the ads to specific groups of users. This allows advertisers to write ad text
that is more personalized, making their ad more appealing to the users they are
reaching. Facebook supports several targeting options such as location, birthdays,

222 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

likes and interests. An indicative success story of Facebook advertising is the
following: “Over 12 months, CM Photographics generated nearly $40,000 in
revenue directly from a $600 advertising investment on Facebook. Of the
Facebook users who were directed to CM Photographics' website from the ads,
60% became qualified leads and actively expressed interest in more information.”
The worth of Facebook’s social network has been estimated to $15 billion5. It is
remarkable to note that two-thirds of comScore’s U.S. top 100 websites and half
of comScore’s Global top 100 websites have implemented Facebook Connect, a
Facebook API that enables individuals and organizations to link their applications
to Facebook. comScore is a global leader in measuring the digital world and the
preferred source of digital marketing intelligence.

4.2 MySpace

History & Scope. MySpace (www.myspace.com) was developed in August 2003 by
eUniverse employees who sought to mimic the more popular features of Friendster - a
social networking website. The first MySpace users were eUniverse employees. In
July 2005, MySpace was sold for US$580 million to Rupert Murdoch's News
Corporation. MySpace became the most popular social networking site in the US in
June 2006. Nowadays, MySpace is one of the fastest growing OSN sites with 300
million users. Its main scope is entertainment. MySpace is a user-oriented OSN site.
Each registered user can share among friends a personal profile, photos, videos, links,
etc. The user can also play games and update her personal profile to notify friends
about herself. MySpace also runs event management, such as product launches and
album launches for major labels which provides additional revenue streams.

Architectural Design. MySpace architecture is centralized and based on ASP.Net
2.0 Web application model with a layer of data caching and extracted services
components. Specifically, MySpace consists of more than 500 Web servers
running windows 2003/IIS 6.0/APS.NET. The Data Stores of MySpace consist of
1200 cache servers running 64-bit Windows 2003 with 16GB of objects cached in
RAM, and 500 database servers running 64-bit Windows and SQL Server 2005.
The caching layer is provided via the memcached open source software. Within
the data storage layer, data is stored in central repositories and relational data-
bases. As far as the system model is concerned, MySpace application servers run
on Web-based and Cloud-based infrastructures (Amazon EC2).

Business Model. The subscription to MySpace is also free. Therefore, the business
model of MySpace is also dependent on advertising. Similarly to Facebook, MySpace
supports two advertising polices: the Pay for Clicks and the Pay for Views. With a rich
set of demographic and behavioral data, MySpace enables advertisers to target their
precise audience based on attributes, interests and activities. All the services are of-
fered free to users. Users can create new content to attract, on their turn, new users.
This has led several companies to advertise their products through the MySpace
platform.

5 http://www.facebook.com/press/releases.php?p=8084

Online Social Networks: Status and Trends 223

4.3 Hi5

History & Scope. Hi5 (hi5.com) was founded in 2003 by entrepreneur Ramu
Yalamanchi, who is also its current Chief Executive Officer. According to
comScore, in 2008 Hi5 was the third most popular social networking site in terms
of monthly unique visitors. Nowadays, Hi5 is available in 50 languages and is one
of the most popular online destinations for entertainment with more than over 60
million active users. Hi5 provides a robust platform for third-party developers to
integrate games, content, and other applications. Hi5 is a user-oriented OSN site
where each registered user can upload photos, videos, songs, personal information
and share them with friends. Also, the users can join groups with semantically
common interests.

Architectural Design. Hi5 architecture is based on an N-tiered Java architecture
model. The Data Stores of Hi5 consists of PostgreSQL database servers. Hi5 runs
using open-source software on a Linux platform. Specifically, Hi5 uses Linux
Servers running SuSE Enterprise Linux, Apache and Lighttpd Web servers, the
Squid proxy server for Web acceleration, Resin and Tomcat Java Application Serv-
ers, Struts for Model-View-Controller (MVC), Spring for Java Application Frame-
work, iBatis for Object Relational Mapping, the Lucene library for indexing, and
the Enunciate as Web service deployment framework. The caching layer is pro-
vided via the memcached open source software. Regarding the data storage layer,
data is stored in a centralized configuration of the PostgreSQL object-relational
database system. All queries are centrally maintained in XML files. Regarding the
system model, application servers run on a Web-based infrastructure.

Business Model. Like previous OSNs, the business model of Hi5 also depends on
advertising. Hi5 is collaborating with SponsorSelect - a premium advertising
network that is reinventing behavioral targeting –in order to allow its users to
choose the advertising they wish to see. By allowing users to self-select
advertising, advertising is more relevant and performs better for advertisers,
publishers (a publisher displays ads, text links, or product links on its Web site)
make more money and can provide better content and services to users for free.

4.4 Flickr

History & Scope. Flickr (www.flickr.com) is the most popular OSN dedicated to
photo and video sharing, where millions of photos are uploaded, tagged and or-
ganized by more than 8.5 million registered Web-users. Flickr was founded by
Stewart Butterfield and Caterina Fake. In February 2004, Flickr was launched
by Ludicorp, a Vancouver-based company. In March 2005, Flickr was acquired by
Yahoo!. Flickr is a user-oriented OSN site and its main scope is entertainment. In
Flickr, every user enters/selects new tags for a particular photo/video and the
system suggests related tags to user, based on the tags that the user or other people
have used in the past along with (some of) the tags already entered.

Architectural Design. Flickr architecture is based on a typical hierarchical PHP Web
application model with a layer of data caching. The Data Store of Flickr consists of 62
MySQL databases across 124 servers, with about 800,000 user accounts per pair of

224 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

servers. The MySQL databases are hosted on servers that are Linux-based, with a
software platform that includes Apache, PHP, shards, Memcached, Squid, Perl and
Java. The system administration tools include anglia for distributed system monitoring
and Cvsup for distributing and updating collections of files across a network. Flickr
supports tools for image processing (ImageMagick) and deployment (SystemImager).
Data (e.g., photos, videos and tags) are stored in central repositories and relational
MySQL databases. Regarding the system model of Flickr, application servers run on
Web-based and Cloud-based infrastructures (Amazon EC2).

Business Model. With 3 billion pictures, Flickr is the biggest repository of digital
images and videos on the Web. The basic account is for free, but Flickr charges users
that want a professional and more sophisticated account. Flickr follows a consolidated
business model, the “freemium” model, in which the registrations fees are varied from
free to a premium "pro" version, with the latter featuring more capabilities.

4.5 LinkedIn

History & Scope. LinkedIn (www.linkedin.com) was founded in 2003 by Reid
Hoffman. LinkedIn is an interconnected network of experienced professionals
from around the world, representing 150 industries and 200 countries. In Decem-
ber 2009, LinkedIn had more than 55 million registered users and it was available
in four languages. The scope of LinkedIn is mainly for business, allowing users to
maintain a list of contact details of people they know and trust in business.
Through this network people can find jobs and business opportunities, whereas
employers can post and distribute job listings for potential candidates. LinkedIn is
a user-oriented OSN site where registered users create their networks by sending
personal invitations. A key feature of LinkedIn is that registered users can be rec-
ommended by someone in one's contact network.

Architectural Design. The data model of LinkedIn is centralized. It is an open
architecture that consists of one monolithic Web application. Its Data Store in-
cludes a set of databases and a social network graph. LinkedIn runs on the Solaris
operating system, uses Tomcat and Jetty as application servers, Oracle and
MySQL as Databases, Spring for Java Application Framework, the Lucene library
for indexing and ActiveMQ for Java Message Services (JMS). Web applications
provide the GUI to the user and update the databases directly. Regarding the sys-
tem model, application servers run on a Web-based infrastructure.

Business Model. LinkedIn is free to join. In addition, LinkedIn offers a premium
version providing more tools for finding and reaching the “right” people.
Specifically, with a premium account users can send messages directly to people
and search for profiles that do not belong in their network. An indicative success
story is when LinkedIn drove highly users to the MAZDA6 site and delivered
some of the highest KPI ratings of all lifestyle sites on the plan.

4.6 Twitter

History & Scope. Twitter (www.twitter.com), founded by Jack Dorsey, Biz Stone
and Evan Williams in March 2006 and launched publicly in July 2006, is a social

Online Social Networks: Status and Trends 225

networking and micro-blogging service that allows users to post their latest up-
dates. An update is limited to 140 characters (called tweets) and can be posted
through a Web form, a text message, or an instant message. Tweets delivered to
the author's subscribers who are known as “followers”. Senders can restrict their
posts to specific friends or, by default, allow open access. Registered users can
also follow lists of authors instead of following individual authors. The scope of
Twitter is twofold: business and entertainment. For instance, Twitter has been
used for campaigning (2008 US presidential campaign), educational purposes,
public relations etc. Twitter is a content-oriented OSN site since a user’s network
is determined by the underlying social relationships; users create their networks by
becoming “followers”.

Architectural Design. The data model of Twitter is centralized and based on the
Ruby on Rails Web application framework with a layer of data caching. The
caching layer is provided via the memcached open source software. Regarding the
data storage layer, data is periodically stored to central repositories and relational
(MySQL) databases. Also, it supports networked resource monitoring tool (Munin
and Nagios) for analyzing resource trends. As far as the system model is con-
cerned, Twitter application servers run on Web-based infrastructures.

Business Model. Twitter is free for all registered users. Contrary to most OSN
sites, Twitter does not provide any advertising policy. In addition, it does not
support any premium account. Nowadays, Twitter is in beta test with providing
enterprise subscriptions that would target corporate customers. The idea to provide
enterprise subscription is based on the assumption that the more businesses use
Twitter, the more ways the company will find to monetize their traffic.

4.7 YouTube

History & Scope. YouTube (www.youtube.com), founded by Steve Chen, Chad
Hurley and Jawed Harim in February 2005, is a social networking that allows
users to post their videos. In November 2006, YouTube was bought by Google for
$1.65 billion. Recently, YouTube has been ranked as the fourth most visited Web-
site on the Internet According to comScore, YouTube is the dominant provider of
online video in the US. It is estimated that 20 hours of new videos are uploaded to
the site every minute. In March 2008, YouTube's bandwidth costs were estimated
at approximately US$1 million a day. The scope of YouTube is for entertainment.
All users can watch open videos, while registered users are permitted to upload an
unlimited number of videos. YouTube is a content-oriented OSN site since users’
network is determined by users’ common interests.

Architectural Design. The data model of YouTube is decentralized and based on
the distributed storage system, called BigTable6. BigTable developed at Google and
its scope is to store efficiently large-scale structured data. To further improve its
performance, BigTable is used with MapReduce7, a framework for running parallel

6 BigTable: http://labs.google.com/papers/bigtable.html

7 MapReduce: http://labs.google.com/papers/mapreduce.html

226 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

computations. Regarding the content delivery, most popular content is moved to a
CDN provider (Akamai), whereas, less popular content is delivered through You-
Tube servers. A distributed multilevel cache is used for decreasing latency. NetSca-
ler Web application controller is used for load balancing and caching static content.
Regarding the data storage layer, data is periodically stored to MySQL databases.
As far as the system model is concerned, YouTube application servers run on Web-
based and Cloud-based infrastructures (Amazon EC2).

Business Model. YouTube is free for all the users (subscribers or not). The business
model of YouTube depends on advertising (i.e., Google AdSense). Google AdSense
uses its Internet search technology to serve advertisements based on Website
content, the user's geographical location, users’ tags, and other factors. Those
wanting to advertise with Google's targeted advertisement system may enroll
through AdWords. AdWords offers Pay for Clicks advertising, and site-targeted
advertising. Thus, the business model of YouTube is based on mass collaboration.
Providing free access to its users results to an increased number of users and, hence,
to increased profits through increased advertisement rates and more advertisers.

Table 1. Main Characteristics of OSN sites

O S N Platform Scope Data Model System

Model

Network

Model

E
n

te
r
ta

in
m

e
n

t

B
u

si
n

e
ss

C
e
n

tr
a

li
z
e
d

D
e
c
e
n

tr
a

li
z
e
d

W
e
b

-b
a
se

d

C
lo

u
d

-b
a
se

d

U
se

r
-o

r
ie

n
te

d

C
o
n

te
n

t-

o
ri

en
te

d

Facebook

MySpace

Hi5

Flickr

LinkedIn

Twitter

YouTube

Online Social Networks: Status and Trends 227

5 Future Research Challenges

Despite the fact that most OSN sites are centralized, nowadays, we observe a
paradigm shift from centralized to distributed infrastructures [12], [35]. In gen-
eral, decentralization can provide answers to issues that have raised controversy in
the context of centralized OSNs, such as the ownership of personal information
and the protection of privacy; problems in cross-platform service provision and
user lock-in [15], [17]. Decentralization promises higher performance, fault-
tolerance and scalability in the presence of an expanding base of users and appli-
cations. OSN decentralization has been identified as a key research challenge [12].
However, the transition to a fully distributed architecture so as to scale up OSNs is
nontrivial. It is often a costly endeavor and specially challenging for OSNs that
were not designed to be fully distributed from day one [12], [35]. In this context,
this paradigm shift gives rise to many research questions intersecting networking,
security, distributed systems and social network analysis, leading to a better un-
derstanding of how technology can support social interactions.

In the following sub-sections we present requirements and challenges towards
developing efficient Decentralized Online Social Networking (DOSN) infrastruc-
tures and services. Finally, we conclude this section by presenting the business
and social impact of OSNs.

5.1 Overlay Networking

Researchers have analyzed different properties of OSNs, mainly focusing on their
formation and evolution as well as their information propagation over the network
[1], [29], [34]. The advent of DOSNs creates new perspectives and challenges
in networking [12], [43]. The objective is to build fundamental overlay services
that will form the foundation for DOSN services and applications. This requires
the investigation of novel architectures, algorithms and protocols for overlay net-
works of peers so as to provide the run-time environment and the basic communi-
cation functionality required by DOSN services and applications.

Therefore, self-management techniques, P2P publish/subscribe mechanisms
and software component models should be developed. Thus, it is important to
devise algorithms for self-management of the existing network infrastructure as
well as for efficient group-based communications and information sharing (pub-
lish/subscribe) among the participants of DOSNs. In addition, a publish/subscribe
solution must be able to effectively deal with large populations of dynamic users,
large numbers of topics, arbitrary subscription patterns and be robust to malicious
peer behaviour. Finally, adaptive component models for DOSNs will enable the
underlying infrastructure to continuously operate under ever changing network
conditions, enabling the safe manipulation and configuration of existing overlay
resources at runtime.

Finally, it is also important to understand how the workload of DOSNs is re-
shaping the Internet traffic as this is valuable in designing the next-generation Inter-
net infrastructure and content distribution systems (e.g., CDNs). Although current
DOSNs contribute a lot less than peer-to-peer applications in terms of bytes, DOSNs

228 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

might add features that increase the per-user bandwidth demand [12]. Given this
potential of traffic explosion (e.g., when video becomes popular within a OSN site),
it is crucial to explore the network-level dynamics of DOSNs [34].

5.2 Privacy and Trust

The amount of digital content today circulated in OSNs is enormous providing
personal information about their users (i.e., profiles, friend relationships, daily
activities, photos, videos, etc.). Although security and privacy concerns can pre-
vent such efforts in practice, the problem remains since the data is located on a
single server. Up to now, many researchers have started to work on improving the
access control systems provided by OSNs. Specifically, most of the research in the
field of OSN security and privacy has focused on the development of privacy-
preserving techniques to mine OSN data [14]. In addition, several research efforts
[8], [15], [17], [38], [41] focus on addressing the restrictions of protection mecha-
nisms provided by current OSNs. Decentralized OSNs address many privacy
concerns since the personal data of users is distributed across multiple administra-
tive domains. This provides users more control over their content, reducing the
system’s vulnerability. Therefore, novel privacy-aware access control solutions
should also be developed, providing users as much control as possible over their
data and the way they are protected. In [35], the authors compare the privacy, cost,
and availability tradeoffs for DOSN schemes.

Considering that OSNs host a variety of personal data, it is also crucial to identify
possible threats arising from distributed malicious data and content in DOSNs. In the
context of Web, it has been observed a recent increase of exploits, such as drive-by
downloads [32] and malicious documents [23], or other related Web threats such as
Cross-Site Scripting (XSS) [6], [10] and Cross-Site Request Forgery (CSRF) [9].
OSNs are considered as ideal targets for this kind of threats, since they are usually
composed by complex AJAX interfaces that serve millions of users who trust each
other. For instance, a social application may be used to launch DoS attacks against
third parties [5] or a fake user account may be used for SPAM distribution. Regard-
ing the DOSNs, data replication takes place in user’s desktops. This further aug-
ments the probability of hosting malicious content in a user’s computer machine.
Therefore, a DOSN must provide the required mechanisms for the identification and
further prevention of malicious content distribution. Thus, it is important to provide
practical workarounds and directed guideline for detecting and preventing further
distribution of malicious content, where this is possible. This can be achieved by
applying data encryption policies. Such policies ensure that data are accessible to
users who have the right private keys. In [42] a secret sharing protocol for DOSNs is
presented.

5.3 Knowledge Discovery and Search

The role of network structure on the Web has grown in significance in the field of
knowledge discovery and information retrieval, stimulated to a great extent by the
importance of link analysis in the development of Web search techniques. But the
Web has always contained a second network, less explicit but equally important,

Online Social Networks: Status and Trends 229

and this is the social network on its users, with latent person-to-person links encod-
ing a variety of relationships including friendship, information exchange, and influ-
ence. Developments over the past few years - including the emergence of OSN
systems and rich social media, as well as the availability of large-scale e-mail and
instant messaging datasets - have highlighted the crucial role played by OSNs, and
at the same time have made them much easier to uncover and analyze [1].

The study of evolution of OSNs and their properties have been one of the cen-
tral areas of social network analysis. In particular, it is inherently related with the
problem of predicting particular attributes of OSNs [18]. A large body of work has
focused on the study of global evolution of networks and the identification of
communities [7], [21]. Other recent research work has focused on developing
algorithmic tools for the analysis of evolving networks [34], [37] as well as infer-
ring users’ profiles based on social graphs [27].

There is now a considerable opportunity to exploit the structure, evolution and
information content inherent in DOSNs since the prospect of decentralization
raises a number of interesting research challenges. However, the complexity of
DOSNs requires devising novel algorithms and mechanisms in order to study and
model the evolution of DOSNs in both macroscopic and microscopic level. At the
macroscopic level mining patterns that characterize the evolution of the network
when it is viewed as a global structure should be investigated. At a microscopic
level algorithms that identify primitive “patterns" of evolution will be developed
[21]. A specific prediction problem that has drawn an amount of interest in the
research community is the link-prediction problem [24]. The question is to infer
which new interactions among the members of a DOSN are likely to occur in the
near future. In addition, it is crucial to study the problem of link formation in
DOSNs. New models for the evolution and the formation of links should be built
by integrating all available information: topological structure of the graph, content
information of the users of the network, as well mined patterns of evolution. Con-
sidering that DOSNs are very large and complex, methodologies and tools from
the field of Complex Networks should be used in order to exploit them [31]. Also,
methodologies and mechanisms should be investigated that allow identifying
interesting patterns in the network and create/select features for characterizing the
various components of the system and predicting their evolution. Such features
can be the popularity of certain items or the existence of a link between two items,
and they can be used for designing improved ranking models, providing early
characterization of spam, early characterization of being member of a community
(strongly connected components), leader, reputation of authors, etc.

In terms of searching, the current evolution of OSN sites is characterized by an
increasing availability of online services and novel search facilities (e.g., services
for searching scientific literature, photos, videos, vacation offers, travels, restau-
rants, online shops, and so on). A recent survey [28] has shown that people turn to
OSNs rather than typical search engines or Q&A sites for certain question types
and topics. However, the quality of their answers goes much beyond what can be
achieved via conventional, general purpose search engines. Authors in [16] de-
scribe a social model of user activities before, during, and after search. Recently,
Horowittz and Kamvar [20] presented a large-scale social search engine, called

230 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

Aardvark. Contrary to traditional Web search engines, the scope of Aardvark is
not to find the documents that satisfy the user’s information need, but to find the
person that can satisfy the user’s information need. This person belongs to the
user’s social network.

The shift in search paradigm that we observe in OSNs opens up a number of in-
teresting research questions in information retrieval. The main challenge posed by
content in DOSN sites is the fact that the distribution of quality has high variance:
from very high-quality items to low-quality, sometimes abusive content [4], [13].
This makes the tasks of filtering and ranking in such systems more complex than
in other domains [40]. Also, trust in a traditional search engine is based on author-
ity, whereas in a social search engine, trust is based on intimacy. However, social
media systems present inherent advantages over traditional collections of docu-
ments: their rich structure offers more available data than in other domains. In
addition to document content and link structure, DOSNs exhibit a wide variety of
user-to-document relation types, and user-to-user interactions [2], [3], [22], [39].

5.4 Business and Social Impact

Online social networking is a complex, large and rapidly expanding sector of the

information economy whose impact is expected to be far-reaching. User-generated

content is causing changes in the traditional content/media industry structure. In

the future, community features will be an integral part of all digital experiences -

from information/publishing to business and entertainment. Companies providing

services for social networking and media (e.g., sysomos8 - a product suite that

provides customers with tools for measuring, monitoring, understanding and en-

gaging with the social media landscape) or adding social networking features to

existing services must anticipate significant growth.

From technological perspectives, the success of OSN sites represents a growing

threat to the monopoly of Google. For instance, Facebook has become one of the

most popular online platforms with more than 300 million registered users (one

fifth of all Internet users – circa August 2009) who spend an average of 20 min-

utes on the site every day, contributing 4 billion pieces of information, 850 million

photos, and 8 million videos every month. This means that Facebook not only has

it become perhaps the largest source of personal data online, but also it has em-

barked on an ambitious effort to challenge Google’s position as the dominant

driver of Web traffic and the dominant power in Web advertising. This challenge

has led to the introduction by Google of the OpenSocial API, which promises to

provide functionality similar to that of Facebook’s platform, even though relying

on open-standard technologies. Also, to the recent introduction by Google of the

Buzz social networking services, which is integrated with Gmail.
The key added ingredient of OSN platforms is their social dimension with the

aim of linking users together to facilitate their interaction and make it richer and

8 Sysomos: http://www.sysomos.com/

Online Social Networks: Status and Trends 231

more productive. The power of people interacting with people in an online setting
has driven the success or failure of many companies in the Internet space. Kees
Winkel (http://futurecase.wordpress.com/) argues that 2% of nodes in a social
network are all that need to be reached to ensure an idea or marketing initiative
successfully. A white paper9 from AT&T discusses the business impact of social
networking. According to this paper, the impact of social networking in business
is catalytic, driving several companies to change their vision and organization.

Except of business, OSNs have also social impact. Authors in [36] studied the
impact of OSNs in marketplaces and observed that social networking improves e-
commerce presenting a very positive impact. Information from OSNs can also be
exploited to improve Internet search engines [26], while others have applied this
information to increase profits from viral marketing [33]. OSNs have also applica-
tions in Vehicular ad hoc Networks (VANETs) where groups of vehicles’ drivers
socialize and communicate with each other in order to inform for the roads’ condi-
tions [19]. As far as the education is concerned, OSNs can be helpful to a students
learning environment, as long as it is used correctly and responsibly [25].

6 Conclusion

OSNs are popular infrastructures for information sharing, communication and

interaction on the Internet. With over half a billion users, OSNs are nowadays

a mainstream research topic of interest for computer scientists, economists,

sociologists etc.

In this chapter, we have analyzed and categorized the infrastructural and tech-

nical attributes of OSNs. We have developed a comprehensive taxonomy for

OSNs based on their scope, data model, system model and network model. We

have also provided a detailed survey of the most popular OSNs and identified the

underlying Web technologies that are currently in use in social networking do-

main. In doing so, the readers can gain an insight into the technologies, services

and business models that are currently followed in this field. It is also presented

the system architecture for OSNs, where the main components of an OSN plat-

form are described.

However, and despite their impressive success, OSN services face significant

challenges that need to be addressed in order to improve the end-user experience

and to allow for a healthy market expansion in the future. Consequently, content

distribution, scalability and privacy issues are gaining more attention in order to

meet up the new technical and infrastructure requirements of the next generation

OSNs. This has led to a paradigm shift from a centralized infrastructure to a

decentralized one. Thus, a section of this chapter is devoted to discuss the open

problems and research challenges for OSNs. Finally, we explore the societal and

business impacts of social networking.

9
http://www.bligoo.com/media/users/1/50369/files/Business -

Social Networking Impact.pdf

232 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

References

[1] Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of Topological Characteris-

tics of huge Online Social Networking Services. In: Proceedings of the 16th Interna-

tional Conference on World Wide Web (WWW 2007), Banff, Alberta, Canada

(May 2007)

[2] Amer-Yahia, S., Lakshmanan, L., Yu, C.: SocialScope: Enabling Information Discov-

ery on Social Content Sites. In: Proceedings of the CIDR 2009, Asilomar, CA, USA

(2009)

[3] Amer-Yahia, S., Benedikt, M., Lakshmanan, L., Stoyanovic, J.: Efficient Network-

aware Search in Collaborative Tagging Sites. In: Proceedings of VLDB Endow,

vol. 1(1), pp. 710–721 (2008)

[4] Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More.

Hyperion Publisher (July 2006)

[5] Athanasopoulos, E., Makridakis, A., Antonatos, S., Antoniades, D., Ioannidis, S.,

Anagnostakis, K.G., Markatos, E.P.: Antisocial Networks: Turning a Social Network

into a Botnet. In: Proceedings of the 11th International Conference on Information Se-

curity, Taipei, Taiwan, September 2008, pp. 146–160. Springer, Heidelberg (2008)

[6] Athanasopoulos, E., Pappas, V., Markatos, E.P.: Code-Injection Attacks in Browsers

Supporting Policies. In: Proceedings of the 3rd Workshop on Web 2.0 Security & Pri-

vacy (W2SP), Oakland, California, USA (May 2009)

[7] Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group Formation in Large So-

cial Networks: Membership, Growth, and Evolution. In: Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data mining, New

York, NY, USA, August 2006, pp. 44–54 (2006)

[8] Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an Online

Social Network with User-defined Privacy. In: Proceedings of the ACM SIGCOMM

2009 Conference on Data Communication, Barcelona, Spain, August 2009, pp. 135–

146 (2009)

[9] Barth, A., Jackson, C., Mitchell, J.C.: Robust Defenses for Cross-Site Request Forgery.

In: Proceedings of the 15th ACM Conference on Computer and Communications Se-

curity (CCS 2008), Alexandria, USA (October 2008)

[10] Barth, A., Weinberger, J., Song, D.: Cross-Origin JavaScript Capability Leaks: Detec-

tion, Exploitation, and Defense. In: Proceedings of the 18th USENIX Security Sympo-

sium (USENIX Security 2009), Montreal, Canada (August 2009)

[11] Boyd, D.M., Ellison, N.B.: Social Network Sites: Definition, History, and Scholarship.

Journal of Computer-Mediated Communication 13(1) (2007)

[12] Buchegger, S., Datta, A.: A Case for P2P Infrastructure for Social Networks - Oppor-

tunities and Challenges. In: Proceedings of the 6th International Conference on

Wireless On-demand Network Systems and Services, Snowbird, Utah, USA

(February 2009)

[13] Buchegger, S., Schioberg, D., Vu, L.-H., Datta., A.: PeerSoN: P2P Social Networking

– Early Experiences and Insights. In: Proceedings of the 2nd Workshop on Social

Network Systems (SocialNets 2009), Nuremberg, Germany (March 2009)

[14] Carminati, B., Ferrari, E.: Access control and Privacy in Web-based Social Networks.

Journal of Web Information Systems 4(4), 395–415 (2008)

[15] Carminati, B., Ferrari, E., Perego, A.: Enforcing Access Control in Web-based Social

Networks. ACM Transactions on Information & System Security 13(1), 6 (2009)

Online Social Networks: Status and Trends 233

[16] Evans, B.M., Chi, E.H.: Towards a Model of Understanding Social Search. In: Pro-

ceedings of 2008 ACM Conference on Computer Supported Cooperative Work

(CSCW 2008), San Diego, California, USA (November 2008)

[17] Fong, P.W.L., Anwar, M.M., Zhao, Z.: A Privacy Preservation Model for Facebook-

Style Social Network Systems. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,

vol. 5789, pp. 303–320. Springer, Heidelberg (2009)

[18] Guo, L., Tan, E., Chen, S., Zhang, X., Zhao, Y.: Analyzing Patterns of User Content

Generation in Online Social Networks. In: Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Paris, France

(June 2009)

[19] Gupte, M.T., Hajiaghayi, M., Han, L., Iftode, L., Shankar, P., Ursu, R.M.: News Post-

ing by Strategic Users in a Social Network. In: Leonardi, S. (ed.) WINE 2009. LNCS,

vol. 5929, pp. 632–639. Springer, Heidelberg (2009)

[20] Horowittz, D., Kamvar, S.D.: The Anatomy of a Large-scale Social Search Engine. In:

Proceedings of the 19th International Conference on World Wide Web (WWW 2010),

Raleigh, North Carolina, USA (April 2010)

[21] Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic Evolution of Social

Networks. In: Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data mining, Las Vegas, USA (August 2008)

[22] Leskovec, J., Hattenlocher, D., Kleinberg, J.: Predicting Positive and Negative Links in

Online Social Networks. In: Proceedings of the 19th International Conference on

World Wide Web (WWW 2010), Raleigh, North Carolina, USA (April 2010)

[23] Li, W.-J., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.D.: A Study of Mal-

code-Bearing Documents. In: Proceedings of the 4th International Conference on De-

tection of Intrusions and Malware, and Vulnerability Assessment (2007)

[24] Liben-Nowell, D., Kleinberg, J.: The Link Prediction Problem for Social Networks. In:

Proceedings of the 12th International Conference on Information and knowledge man-

agement (CIKM), New Orleans, Louisiana, USA (November 2003)

[25] Liccardi, I., Ounnas, A., Pau, R., Massey, E., Kinnunen, P., Lewthwaite, S., Midy, M.-

A., Sarkar, C.: The role of Social Networks in Students’ Learning Experiences. In:

Working Group Reports on ITiCSE on Innovation and Technology in Computer Sci-

ence Education, Dundee, Scotland (December 2007)

[26] Mislove, A., Gummadi, K.P., Druschel, P.: Exploiting Social Networks for Internet

Search. In: Proceedings of the 5th Workshop on Hot Topics in Networks (HotNets

2006), Irvine, CA, USA (November 2006)

[27] Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are Who you Know:

Inferring User Profiles in Online Social Networks. In: Proceedings of the 3rd ACM In-

ternational Conference of Web Search and Data Mining (WSDM 2010), New York

(February 2010)

[28] Morris, M.R., Teevan, J., Panovich, K.: What do people ask their social networks, and

why? A Survey study of status message Q&A behavior. In: Proceedings of CHI 2010,

Atlanta, Usa (April 2010)

[29] Nazir, A., Raza, S., Gupta, D., Chuah, C.-N., Krishnamurthy, B.: Network Level Foot-

prints of Facebook Applications. In: Proceedings of Internet Measurement Conference

(IMC 2009), Chicago, Illinois, USA (November 2009)

[30] Pallis, G., Vakali, A.: Insight and Perspectives for Content Delivery Networks. Com-

munications of ACM 49(1), 101–106 (2006)

234 G. Pallis, D. Zeinalipour-Yazti, and M.D. Dikaiakos

[31] Papadopoulos, F., Krioukov, D., Boguna, M., Vahdat, A.: Greedy Forwarding in Dy-

namic Scale-Free Networks Embedded in Hyperbolic Metric Spaces. In: Proceedings

of IEEE INFOCOM, San Diego, CA, USA (March 2010)

[32] Provos, N., Mavrommatis, P., Abu Rajab, M., Monrose, F.: All your iFRAMEs point

to Us. In: Proceedings of the 17th USENIX Security Symposium, San Jose, California,

USA (July 2008)

[33] Richardson, M., Domingos, P.: Mining Knowledge-sharing Sites for Viral Marketing.

In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Edmonton, Alberta, Canada (July 2002)

[34] Schneider, F., Feldmann, A., Krishnamurthy, B., Willinger, W.: Understanding Online

Social Network Usage from a Network Perspective. In: Proceedings of Internet Meas-

urement Conference (IMC 2009), Chicago, Illinois, USA (November 2009)

[35] Shakimov, A., Varshavsky, A., Cox, L.P., Caceres, R.: Privacy, Cost, and Availability

Tradeoffs in Decentralized OSNs. In: Proceedings of the 2nd ACM Workshop on

Online Social Networks (WOSN 2009), Barcelona, Spain (August 2009)

[36] Swamynathan, G., Wilson, C., Boe, B., Almeroth, K., Zhao, B.Y.: Do Social Networks

improve e-commerce?: a Study on Social Marketplaces. In: Proceedings of the 1st

Workshop on online Social Networks, Seattle, WA, USA (August 2008)

[37] Tantipathananandh, C., Berger-Wolf, T., Kempe, T.D.: A framework for Community

Identification in Dynamic Social Networks. In: Proceedings of the 13th ACM

SIGKDD International conference on Knowledge Discovery and Data mining, New

York, NY, USA, August 2007, pp. 717–726 (2007)

[38] Tootoonchian, A., Gollu, K.K., Saroiu, S., Ganjali, Y., Wolman, A.: Lockr: Social Ac-

cess Control for Web 2.0. In: Proceedings of the 1st Workshop on Online Social Net-

works (WOSN 2008), Seattle, WA, USA (August 2008)

[39] Ukkonen, A., Castillo, C., Donato, D., Gionis, A.: Searching the Wikipedia with Con-

textual Information. In: Proceedings of the 17th International Conference on Informa-

tion and Knowledge Management (CIKM), Napa Valley, California, USA (November

2008)

[40] Vieira, M.V., Fonseca, B., Damazio, R., Golgher, P., Davi, B., Ribeiro-Neto, B.: Effi-

cient Search Ranking in Social Networks. In: Proceedings of the 16th International

Conference on Information and Knowledge Management, Lisbon, Portugal, November

2007, pp. 563–572 (2007)

[41] Villegas, W., Ali, B., Maheswaran, M.: An Access Control Scheme for Protecting Per-

sonal Data. In: Proceedings of the 6th Annual Conference on Privacy, Security and

Trust (PST 2008), Fredericton, New Brunswick, Canada (October 2008)

[42] Vu, L.H., Aberer, K., Buchegger, S., Datta, A.: Enabling Secure Secret Sharing in Dis-

tributed Online Social Networks. In: Proceedings of Annual Computer Security Appli-

cations Conference (ACSAC) 2009, Hawaii, USA (December 2009)

[43] Willinger, W., Rejaie, R., Torkjazi, M., Valafar, M., Maggioni, M.: Research on

Online Social Networks: Time to Face the Real Challenges. In: Proceedings of the 2nd

Workshop on Hot Topics in Measurement and Modeling of Computer (2009)

[44] Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Exploiting Locality for Scalable

Information Retrieval in Peer-to-Peer Systems. Information Systems (InfoSys) 30(4),

277–298 (2005)

[45] Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: pFusion: An Architecture for

Internet-Scale Content-Based Search and Retrieval. IEEE Transactions on Parallel and

Distributed Systems (TPDS) 18(6), 804–817 (2007)

Chapter 9

Enhancing Computer Vision Using the Collective

Intelligence of Social Media

Elisavet Chatzilari1,3, Spiros Nikolopoulos1,2,

Ioannis Patras2, and Ioannis Kompatsiaris1

1 Centre for Research & Technology Hellas, Informatics and Telematics Institute,

6th km Charilaou-Thermi Road, Thermi-Thessaloniki, GR-57001 Thessaloniki, Greece

Tel.: +30-2311.257701-3; Fax.+30-2310-474128

ehatzi@iti.gr, nikolopo@iti.gr, ikom@iti.gr
2 School of Electronic Engineering and Computer Science,

Queen Mary University of London, E1 4NS, London, UK

Tel.: +44 20 7882 7523; Fax: +44 20 7882 7997

i.patras@eecs.qmul.ac.uk
3 Centre for Vision, Speech and Signal Processing University of Surrey Guildford,

GU2 7XH, UK

e.chatzilari@surrey.ac.uk

Abstract. Teaching the machine has been a great challenge for computer

vision scientists since the very first steps of artificial intelligence. Through-

out the decades there have been remarkable achievements that drastically

enhanced the capabilities of the machines both from the perspective of in-

frastructure (i.e., computer networks, processing power, storage capabilities),

as well as from the perspective of processing and understanding of the data.

Nevertheless, computer vision scientists are still confronted with the problem

of designing techniques and frameworks that will be able to facilitate effort-

less learning and allow analysis methods to easily scale in many different do-

mains and disciplines. It is true that state of the art approaches cannot produce

highly effective models, unless there is dedicated, and thus costly, human su-

pervision in the process of learning that dictates the relation between the con-

tent and its meaning (i.e., annotation). Recently, we have been witnessing the

rapid growth of Social Media that emerged as the result of users’ willingness

to communicate, socialize, collaborate and share content. The outcome of

this massive activity was the generation of a tremendous volume of user con-

tributed data that have been made available on the Web, usually along with

an indication of their meaning (i.e., tags). This has motivated the research ob-

jective of investigating whether the Collective Intelligence that emerges from

the users’ contributions inside a Web 2.0 application, can be used to remove

the need for dedicated human supervision during the process of learning. In

this chapter we deal with a very demanding learning problem in computer

vision that consists of detecting and localizing an object within the image

content. We present a method that exploits the Collective Intelligence that

is fostered inside an image Social Tagging System in order to facilitate the

automatic generation of training data and therefore object detection models.

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 235–271.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

236 E. Chatzilari et al.

The experimental results shows that although there are still many issues to

be addressed, computer vision technology can definitely benefit from Social

Media.

1 Introduction

The recent advances of Web technologies have effectively turned ordinary people

into active members of the Web, that generate, share, contribute and exchange vari-

ous types of information. Web users act as co-developers and their actions and col-

laborations with one another have added a new social dimension on Web data. This

social dimension of information was fostered by the next generation of the Web,

namely Web 2.0, the applications of which have generated (and still generate) a re-

markable volume of multimedia content. Based on this huge repository of content,

various services have evolved [55], ranging from the field of eCommerce, to emer-

gency response [56] and consumer collective applications such as realtravel.com

[14]. The intelligence provided by single users organized in communities, takes a

radical new shape in the context of Web 2.0, that of Collective Intelligence. Collec-

tive Intelligence emerges from the collaboration, communication and sharing among

the users of social networks.

Although Collective Intelligence is at least as old as humans and appears in a

wide variety of forms e.g., bacteria, animals, computer networks, it is now occur-

ring in dramatically new forms. For example, Google1 uses the knowledge millions

of people have stored in the World Wide Web to provide useful answers to users’

queries and Wikipedia2 motivates thousands of volunteers around the world to create

the world’s largest encyclopedia. With new communication technologies and using

the Internet as host, a large number of people all over the planet can now work to-

gether in ways that were never before possible in the history of humanity. But what

exactly is Collective Intelligence and how can we benefit from it; The MIT Center

for Collective Intelligence3 frames the research question as “How can people and

computers be connected so that-collectively-they act more intelligently than any in-

dividuals, groups, or computers have ever done before?”. It is now more important

than ever for us to understand Collective Intelligence at a deep level so as to take

advantage of these new possibilities.

In the field of multimedia data management, Collective Intelligence provides

added value to the shared content and enables the accomplishment of tasks that are

not possible otherwise. The acquisition of valuable knowledge is a big departure from

traditional methods for information sharing, since managing Collective Intelligence

poses new requirements. For example, semantic analysis has to fuse information

coming both from the content itself, the social context and the emergent social dy-

namics. This fact has motivated increasing interest in discovering the different layers

of Collective Intelligence, as well as in using these layers to empower new forms of

1 http://www.google.com
2 http://en.wikipedia.org
3 http://cci.mit.edu

Enhancing Computer Vision Using the Collective Intelligence of Social Media 237

Web Data Management. Important progress towards this objective has been achieved

in the context of the WeKnowIt4 project were Collective Intelligence is considered

to be the synthesis of 5 different layers namely, Personal Intelligence, Media Intelli-

gence, Mass Intelligence, Social Intelligence and Organizational Intelligence.

In this chapter we investigate whether the Collective Intelligence derived from

the user contributed content can be used to guide a learning process that will teach

the machine how to recognize objects from visual content, the way a human does.

We examine the problem both from the perspective of the teacher, which consists of

knowledge that is build incrementally in an evolutionary and decentralized manner

and therefore is characterized by questionable reliability, lack of structure, ambigu-

ity and redundancy; as well as from the perspective of the learner that consists of

models that apply learning algorithms on training data to capture the diversity of an

object’s form and appearance, and therefore demand for close supervision.

The rest of the chapter is structured as follows. Section 2 elaborates on the role of

learning in computer vision and provides a description of Social Tagging Systems

in the context of Web Multimedia Data. Section 3 emphasizes on the key aspect

of multimedia analysis and provides an overview of the basic mechanisms that are

used for learning. Section 4 presents an approach for training object detection mod-

els using data from collaborative tagging environments, that exploits the Collective

Intelligence derived from the massive users’ contribution. Concluding remarks are

drawn in Section 6.

2 Learning and Web 2.0 Multimedia

2.1 Learning in Computer Vision

Learning has always been of primary importance for computer vision scientists. If

we wish to construct a visual system that is able to scale on an arbitrary large num-

ber of concepts, effortless learning is crucial. Humans learn to recognize materials,

objects and scenes from very few examples and without much effort. A 3-year old

child is capable of building models for a substantial number of concepts and rec-

ognizing them using these models. By age of six humans recognize more than 104

categories of objects [7] and keep learning more throughout their life. Can a com-

puter program learn how to recognize semantic concepts from images? This is the

general question addressed by the computer vision scientists. But what is the pro-

cess of learning; what is the mechanism that allows humans to initially require many

examples to learn, as performed by little babies, and after they have learned how to

learn, they can learn from just a few examples; and most importantly what is the

role of the teacher in this process and what is the minimum amount of supervision

that is absolutely necessary for facilitating efficient learning?

In [38] the authors make the hypothesis that, once a few categories have been

learned with significant effort, some information may be abstracted from the process

to make learning further categories more efficient. Similarly in [41] when images

4 http://www.weknowit.eu/

238 E. Chatzilari et al.

of new concepts are added to the visual analysis model, the computer only needs to

learn from the new images. What has been learned about previous concepts is stored

in the form of profiling models, and the computer needs no re-training. On the other

hand in [67] the authors claim that with the availability of overwhelming amounts

of data, many problems can be solved without the need for sophisticated algorithms.

The authors mention the example of Google’s “Did you mean” tool, which corrects

errors in search queries by memorizing billions of query-answer pairs and suggest-

ing the one closest to the user query. In their paper the authors present a visual

analog to this tool using a large dataset of 79 million images and a non-parametric

approach for image annotation that is based on nearest neighbor matching.

However, the need for effortless learning coupled with the fact that the images

archived on the Internet are growing at a phenomenal rate, has motivated other

researchers to turn their interest in weakly (i.e. image level) annotated instead of

strongly (i.e. region or pixel level) annotated images. Fig. 1 shows an example im-

age with both strong and weak annotations. Photo sharing through the Internet has

become a common practice and according to the reports released in 2007, flickr.com

has 40 million monthly visitors and hosts two billion photos, with new photos in the

order of millions being added on a daily basis. In this context, the authors of [11]

use multiple instance learning to learn models from images labeled as containing

the semantic concept of interest, but without indication of which image regions are

observations of that concept. Similarly in [18] object recognition is viewed as ma-

chine translation by learning how to map visual objects (blobs) to concept labels. In

[15] models are learned from ambiguously labeled examples, where each example

is supplied with multiple potential labels, only one of which is correct. Approaches

that learn an object category from just its name include [21], where the authors

obtain images from the web using Google or Yahoo search engines and takes the

returned results to be pseudo-positively labeled training images.

The key trade-off between the annotation-based models (which use labels pro-

vided by human annotators) and search-based models (which use models automati-

cally obtained from the Web), is from the one side the amount of human effort that

is required in annotation-based models and on the other side the expected decrease

Seaside

Vacations

Gulf

Fig. 1. An example image annotated both strongly (i.e., each of the identified image regions

is assigned with a label) and weakly (i.e., a set of labels is provided to describe the image

content)

Enhancing Computer Vision Using the Collective Intelligence of Social Media 239

in classification performance that will result from search-based methods [34]. Re-

cently, and driven by the widespread appeal of social sites, we have been witnessing

an increasing research interest in using social sites and in particular Social Tagging

Systems (STS), instead of the search engines, to obtain the necessary labels.

2.2 Social Tagging Systems and Web 2.0 Multimedia

An STS is a web-based application, where users, either as individuals or more

commonly as members of a community (i.e., social networks), assign labels (i.e.,

arbitrary textual descriptions) to digital resources. Their motivation for tagging is in-

formation organization and sharing. Social tagging systems tend to form rich knowl-

edge repositories that enable the extraction of patterns reflecting the way content

sementics is perceived by the web users. In [27] the authors show that the tag pro-

portions each resource receives crystallizes after about 100 annotations attributing

this behavior to the users’ common background and their tendency for imitation on

other users’ tagging habits. The availability of such content in the Web is high and

the exploitation of the Collective Intelligence that is fostered by this type of content

still remains a challenge.

In order to extract the knowledge that is stored and often “hidden” in social data,

researches have employed various approaches: a) Clustering techniques that are

based on tagging information and tag co-occurrence to derive semantically-related

groups of tags and resources [4], [28], [30], b) Ontology driven tagging organization

and mining, by combining Web 2.0 and Semantic Web, [29], [60], [54], c) content-

based analysis of tagging-related sources that explore both tags and visual features

(in a supplementary manner) for browsing and retrieving semantically related im-

ages [2], [57], [25]. Despite the active research efforts in this area, the full potential

of Web 2.0 data has not been exploited yet. Few approaches exploit the fact that

the tag and visual information space are highly correlated and the Collective Intel-

ligence that will emerge from the massive participation of users in contributing and

tagging multimedia content can be used to facilitate the learning process of com-

puter vision systems.

However, while the Collective Intelligence derived from social data seems a very

promising source of information, it has some serious limitations that mainly derive

from the unconstrained nature of Web 2.0 applications. Users are prone to make mis-

takes and they often suggest invalid metadata (tag spamming). The lack of (hierarchi-

cal) structure of information results in tag ambiguity (a tag may have many senses),

tag synonymy (two different tags may have the same meaning) and granularity vari-

ation (users do not use the same description level, when they refer to a concept).

There is a growing number of research efforts that attempt to overcome the afore-

mentioned limitations and exploit the dynamics of social tagging systems to

facilitate different types of multimedia applications. In [2], the authors claim that the

intrinsic shortcomings of collaborative tagging can be tackled by employing content-

based image retrieval technique. The user is facilitated in image database browsing

and retrieval by exploiting both the tag and visual features in a supplementary way.

In [25] a number of clustering techniques were employed in order to couple tagging

240 E. Chatzilari et al.

information with content-based features. The clustering was tag-oriented and oc-

curred in two steps. In the first step the resources were assigned to clusters, depending

on the similarity of their accompanying tags. In the second step, visual features were

employed, in an effort to increase the purity of already created clusters. The second

step of the process could be regarded as a “misleading tags tracking phase”. Another

work that combines user data with feature-based approaches is presented in [24], that

is used to rank the results of a video retrieval system. The authors use this knowledge,

along with a multimedia ontology to build a learning personalized environment.

There are also works that address the problem of identifying photos from social

tagging systems that depict a certain object, location or event [35], [57]. In [35] the

authors make use of community contributed collections and demonstrate a location-

tag-vision-based approach for retrieving images of geography-related landmarks.

They use clustering for detecting representative tags for landmarks, based on their

location and time information. Subsequently, they combine this information with

vision-assisted process for presenting the user with a representative set of images.

In [57] the authors are concerned with images that are found in community photo

collections and depict objects (such as touristic sights). The presented approach is

based on geo-tagged photos and the task is to mine images containing objects in a

fully unsupervised manner. The retrieved photos are clustered according to different

modalities including visual content and text labels.

In all cases the authors are trying to benefit from the Collective Intelligence that

emerges from the content contributed to STSs and improve the efficiency of cer-

tain tasks. However the correlations between the tag and visual information space

that are established when the users suggest tags for the uploaded visual content, are

mostly treated as complementary sources of information that both contribute to the

semantic description of the resources. In contrast to the above this chapter investi-

gates whether the aforementioned correlations can be used to facilitate the learning

process of multimedia analysis models. For this reason in the following Section we

provide a short introduction to some of the techniques used for multimedia analysis.

3 Multimedia Analysis and Management

3.1 The Need for Semantics

The efficient management of multimedia data poses many technological challenges

in terms of indexing, querying and retrieving, that require a deep understanding of

the information at a semantic level. Driven by this need and given that machines’

perception is limited to numbers and strings, there have been many research efforts

that try to map semantic concepts or events to low level features, an issue addressed

as bridging the “semantic gap”.

The very first attempts for image retrieval were based on keyword search [50]

applied either on the associated annotations (assuming that annotations existed) or

on the images’ file names. However, these approaches apart from requiring textual

annotations of the multimedia data, they are barely as descriptive as the multimedia

content itself. To overcome these limitations, the use of the image visual charac-

teristics has been proposed. In this case, the visual content is utilized by extracting

Enhancing Computer Vision Using the Collective Intelligence of Social Media 241

a set of visual features from each image or image region. By comparing the visual

features an algorithm can decide whether the two images/regions represent the same

semantic concept. Then, image retrieval is performed by comparing the visual fea-

tures of an example image/region that is associated with a semantic concept by the

user, to the visual features of all images in a given collection [20] (known as Query

By Image Content systems).

Subsequently, more sophisticated methods were proposed that aimed at simulat-

ing the functionality of human visual system by allowing the machines to mimic the

procedure followed by a human when identifying semantics in visual content. In this

direction pattern classification has been brought to the core of most image analysis

techniques in order to render a kind of meaning on visual patterns. A typical pat-

tern classification problem can be consider to include a series of sub-problems the

most important of which are: a) determining the optimal feature space, b) remov-

ing the noisy data that can be misleading, c) avoid overfitting on training data, d)

use the most appropriate distribution for the model, e) make good use of any prior

knowledge that may help you in making the correct choices, f) perform meaningful

segmentation when the related task requires to do so, h) exploit the analysis con-

text, etc. All the above are crucial for initiating a learning process that aims at using

the available training samples to estimate the parameters of a model representing

a semantic concept. In the following section we discuss and provide related refer-

ences for some of the aforementioned sub-problems, giving special emphasis on the

mechanisms of learning.

3.2 Visual Features Extraction and Regions Identification

Many problems derive from the fact that it is very difficult to describe visual content

effectively in a form that can be handled by machines. In general, feature extrac-

tion is a domain dependant problem and it is unlikely that a good feature extrac-

tor for a specific domain will work as good for another domain. The extraction of

features for efficient image representation has attracted a lot of interest in the scien-

tific community of image analysis. Motivated by the principles of human perception,

most researchers have tried to describe images/regions using color, shape and tex-

ture characteristics. Some of the most widely adopted techniques for representing

images/regions include the descriptors proposed by the MPEG-7 standard [1] that

capture different aspects of color, texture and shape. Other approaches rely on the

corners and edges that can be found inside an image in order to describe the image

using a set of interest points. The Scale-Invariant Feature Transform (SIFT) proposed

in [44] and its modifications (i.e., color SIFT, opponent SIFT, etc [59]) are considered

some of the most representative algorithms of this category. Particularly important

is also considered the vector quantization approach initially proposed in [64] where

in analogy to text, images/regions are represented as bags-of-visual words that have

been learned through an extensive training process using representative data.

Additionally, many problems derive from the fact that images tend to include

more than one objects in their content, which decreases the descriptiveness of the

feature space and raises the need for segmentation. The segmentation of images into

242 E. Chatzilari et al.

regions and the use of a separate set of features for each region was introduced to

address the aforementioned issue. Segmentation techniques seek to detect groups

of pixels sharing similar visual characteristics and identify in this way meaning-

ful objects (similar to the ones identified by human visual system). In the field of

segmentation one of the most commonly used methods is Normalized Cuts [62]

which is a graph partitioning algorithm using a global criterion, the normalized cut,

for segmenting the graph. Other approaches include [52] that segments color im-

ages by applying a variance of K-means on intensity, position and texture features,

as well as [12] that is based on the Expectation-Maximization (EM) algorithm. Both

segmentation and feature extraction are two very important techniques for identify-

ing patterns in visual content. However, in order to bridge the semantic gap these

patterns will have to be classified into meaningful concepts. This is where the role

of learning takes place since it is used to estimate the parameters of a model that

will be sub-sequently used to classify new, unseen images or regions.

3.3 Learning Mechanisms

Humans can classify images through models that are built using examples for every

single semantic concept. Based on this assumption, researchers have been trying

to simulate human visual system by using machine learning algorithms to classify

the visual content. A set of training samples plays the role of the examples that

a person uses to learn a concept. Based on the prior knowledge that we have on

the training samples during the learning process, we can distinguish between the

following basic categories; unsupervised, strongly supervised, semi-supervised and

weakly supervised learning.

3.3.1 Un-supervised Learning

Unsupervised learning is a class of problems in which one seeks to determine how

the data are organized. It is distinguished from supervised learning in that the learner

is given only unlabelled examples. One of the most known forms of unsupervised

learning is clustering. The clustering output can be hard (a partition of the data into

groups) or fuzzy (where each data point has a variable degree of membership in each

output cluster) [6]. Clustering algorithms can be divided in two major categories, hi-

erarchical [32] and partitional [47]. Hierarchical methods produce a nested series of

partitions whereas partitional methods produce only one partition. Many cluster-

ing algorithms require the specification of the number of clusters to produce in the

input data set, prior to the execution of the algorithm. Barring knowledge of the

proper value beforehand, the appropriate value must be automatically determined, a

problem for which a number of techniques have been developed [13], [23]. Another

important step in any clustering scheme is the selection of a distance measure, which

determines how the similarity of two elements is calculated. The distance measure

influences the shape of the clusters, as some elements may be close to one another

according to one distance and farther away according to another.

Enhancing Computer Vision Using the Collective Intelligence of Social Media 243

3.3.2 Strongly-Supervised Learning

In strongly-supervised learning there is prior knowledge about the labels of the

training samples and there is one-to-one relation between a sample and its label

(e.g., each region of the image depicted in Fig. 2 is associated with a label). The

aim of strongly-supervised learning is to generate a global model that maps input

objects to the desired outputs and generalize from the presented data to unseen situ-

ations in a “reasonable” way. Some of the most widely used types of classifiers that

typically rely on strongly annotated samples are the Neural Network (Multilayer

perceptron) [19], Support Vector Machines [51], naive Bayes [17], decision tree [8]

and radial basis function classifiers [46]. A known issue in supervised learning is

overfitting (i.e. the model describes random error or noise instead of the underlying

relationship) which is more probable to occur when the training samples are rare

and the dimensionality of the feature space is high. In order to avoid overfitting, it

is necessary to use additional techniques (e.g. cross-validation, regularization, early

stopping, Bayesian priors on parameters or model comparison), that can indicate

when further training is not resulting in better generalization.

3.3.3 Semi-supervised Learning

Semi-supervised learning algorithms try to exploit unlabeled data, which are usu-

ally of low cost and can be obtained in high quantities, in conjunction with some

supervision information. In this case, only a small portion of the data is labeled and

the algorithm aims at propagating the labels to the unlabeled data. The earliest idea

about using unlabeled data when learning a classification model is self-learning. In

self-learning, the classification model is initially trained using only the labeled data

and at each step a part of the unlabeled data is labeled according to the output of the

current model. Then, a new classification model is trained using both the labeled as

well as the data that were labeled as positive from the previous step.

Another category of semi-supervised learning algorithms is based on the cluster

assumption, according to which the points that are in the same cluster belong to

Fig. 2. An image depicting the object sea that is manually annotated at region level

244 E. Chatzilari et al.

the same class. So there should be regions with high density of points (which for-

mulate the clusters) and low-density regions where the decision boundary lies in.

Most of the recent semi-supervised classification approaches aim at creating new

specialized learning algorithms that are able to combine labeled and unlabeled data.

More specifically, in order to have the ability to choose a learning algorithm with the

required attributes most state-of-the-art methods combine semi-supervised learning

with boosting techniques. Boosting is part of the ensemble learning family algo-

rithms and aims at building an ensemble by training each new model instance to

emphasize the training instances that previous models mis-classified [5]. The most

popular algorithm that utilizes the boosting method is Adaboost (short for Adap-

tive Boosting) presented in [22]. Algorithms that adopted the SemiBoost approach,

which employs the boosting method in order to improve any existing supervised

learning algorithm with unlabeled data, include [48], [37], [9].

3.3.4 Weakly-Supervised Learning

By weakly-supervised we refer to the process of learning using weakly labeled data

(i.e., samples labeled as containing the semantic concept of interest, but without

indication of which segments/parts of the sample are observations of that concept,

(as shown in Fig. 3). In this case, the basic idea is to introduce a set of latent variables

that encode hidden states of the world, where each state induces a joint distribution

on the space of semantic labels and image visual features. New images are annotated

by maximizing the joint density of semantic labels, given the visual features of the

new image [11]. The most indicative weakly-supervised learning algorithms are the

ones that are based on aspect models like probabilistic Latent Semantic Analysis

(pLSA) [63], [21] and Latent Dirichlet Allocation (LDA) [39], [58]. These models

are typically applied on weakly annotated datasets to estimate the joint distribution

of semantic labels and visual features.

3.4 Annotation Cost for Learning

Object detection schemes always employ some form of supervision as it is prac-

tically impossible to detect and recognize an object without using any semantic

information during training. However, semantic labels may be provided at different

levels of granularity (global or region level) and preciseness (one-to-one or many-

to-many relation between objects and labels), imposing different requirements on

the effort required to generate them. Indeed, there is a clear distinction between the

strong and accurate annotations that are usually generated manually and constitute a

laborious and time consuming task, and the weak and noisy annotations that are usu-

ally generated by web users for their personal interest and can be obtained in large

quantities from the Web or collaborative tagging environments like flickr5. Due to

the fact that the annotation cost is a critical factor when designing an object detec-

tion scheme with the intention to scale in many different objects and domains, in the

5 www.flickr.com

Enhancing Computer Vision Using the Collective Intelligence of Social Media 245

Labels

clouds;

sea;

sun;

tree;

Fig. 3. An image depicting the object sea that is manually annotated at global level

following we distinguish the object detection methods based on the characteristics

of the dataset that they employ and the effort required for its annotation. Our goal

is to highlight the tradeoff between the annotation cost for preparing the necessary

training samples and the quality of the resulting models.

In the first category we classify the methods that use manually annotated images

at region level as the one depicted in Fig. 2. These methods rely on strongly super-

vised learning and are usually developed to recognize certain types of objects with

very high accuracy. In [70] and [66] manual annotations of faces are used in order

to train the classifiers. In [43] a method for the recognition of buildings is proposed

and in [36] an implicit shape model for the detection of cars is presented. In [71]

manual annotations at region level are used to train a probabilistic model integrat-

ing both visual features and spatial context. Annotating images at region level is

probably the task with the highest annotation cost.

Image annotations at global level, even manual ones, are easier to obtain than

region level annotations. This fact has motivated many researchers in developing al-

gorithms that rely on weakly-supervised and semi-supervised learning, and are able

to exploit global annotations for performing object detection. The Corel database is

probably the most widely used set of images annotated manually at global level (as

shown in Fig. 3) and has been used in numerous works. Jia Li and James Z. Wang

[40] used the Corel dataset to train models for each concept separately, while in [69]

it was used to evaluate the performance of an algorithm that considers the recogni-

tion of visual concepts to be part of the segmentation process. The Corel dataset has

been also used by Duygulu et. al. that presented a methodology for mapping words

to image regions using an algorithm based on EM [18], as well as in [10] where

a label propagation algorithm that incorporates time, location and visual similarity

for event and scene detection has been proposed. The widespread use of Corel and

other datasets of similar type can be mainly attributed to the fact that the global an-

notations associated with the images was noise free and accurate. This allowed the

246 E. Chatzilari et al.

researchers to derive some probabilistic relations between objects and labels and

use these relations to perform object detection on new images. However, labels ac-

curacy comes with the cost of manual annotation which is something that limits the

scaling potentials of the schemes relying on such labels. This was the reason that re-

searchers turned their interest on the Web and started to investigate whether it could

be used to obtain globally annotated images.

Using the Web as a source many approaches have been proposed that obtain glob-

ally annotated images through search engines, using the name of the object as ar-

gument (see Fig. 4 for some example images obtained using the query word “sea”).

Keiji Yanai uses visual content from the Web as training images for a generic clas-

sification system [73] and in [21] the authors learn object categories from Google’s

image search. However, since search engines in their current form rely primarily on

the image filename or the surrounding text to decide whether to return an image or

not, the quality of the obtained annotations is very low. Thus, although these type of

global annotations can be obtained at practically no cost, the high level of noise ren-

ders particularly difficult the extraction of reliable probabilistic relations between

objects and labels.

Fig. 4. Images depicting the object sea, obtained automatically from the Google Image Search

engine using “sea” as the query word

For this reason, the most recent research efforts are focusing on the content that

is being massively contributed by Web users in the context of Web 2.0 applications.

In [57] object and event detection is performed by clustering images downloaded

from flickr based on textual, visual and spatial information and verified through

Wikipedia6 content. Similarly a framework that probabilistically models geographi-

cal information for event and activity detection using geo-tagged images from flickr

6 www.wikipedia.com

Enhancing Computer Vision Using the Collective Intelligence of Social Media 247

is presented in [33]. Although the tag annotations that accompany the images con-

tributed by social users are less noisy from the ones obtained via the search engines,

they are still considered to be rather noisy for directly extracting the necessary prob-

abilistic relations between objects and labels, see Fig. 5 for an example image ob-

tained from Flickr along with the associated tags.

Tags:
sky; sun;
sea; surf;
sunset;
otakibeach ;
raging; storm;
gale; newzealand ;
ocean; reflections;
Sea-ward,
white gleaming
thro ' the

busy scud;
geotagged ; interestingness;
explore; explored;
in explore; frontpage ;
tomraven ; framed;
2009; q209 ;
visipix ;

Fig. 5. Image depicting the object sea, obtained automatically from Flickr along with the

associated tags

In Table 1 we summarize the pros and cons for each of the aforementioned types

of annotation. As a general conclusion we can say that manual image annotation

(either at region or global level) is a time consuming task and as such it is particu-

larly difficult to be performed on the desired volumes of content that are needed for

building robust and scalable classifiers. On the other hand, the STSs and the Web

provides cost free annotations that are very noisy to be used directly for extracting

the necessary probabilistic relations between objects and labels. The Collective In-

telligence that emerges from the tagged images aggregated in STSs would have to

be exploited towards removing the existing obstacles. In this direction we present

a method that transforms global image tags into region level annotations, in a form

suitable to be used by a strongly-supervised learning algorithm for object detection.

4 Leveraging Social Media for Training Object Detectors

As already described, machine learning algorithms fail in two main categories in

terms of the annotation granularity, the algorithms that are designed to learn from

strongly annotated samples (i.e., samples in which the exact location of an object

within an image is known) and the algorithms that learn from weakly annotated

samples (i.e., samples in which it is known that an object is depicted in the image,

but its location is unknown). In the first case, the goal is to learn a mapping from vi-

sual features fi to semantic labels ci given a training set made of pairs (fi,ci). On the

248 E. Chatzilari et al.

Table 1. Pros & Cons for the different types of annotation

Annotation Type Automated

Annotation

Scaling

Capabil-

ity

Training

Efficiency

Learning

Mechanism

Related Techniques

Region-level

(manual) (Fig. 2)

Poor Poor Excellent strongly-

supervised

Viola & Jones [70],

Sung & Poggio

[66], Li et al. [43],

Leibe et al. [36],

Wand et al. [71]

Global-level

(manual) (Fig. 3)

Fair Fair Good weakly-

supervised

Li & Wang [40],

Vascooncelos et al.

[69], Duygulu et al.

[18], Cao et al. [10]

Global-level (au-

tomatically via

Search Engines)

(Fig. 4)

Excellent Excellent Poor weakly-

supervised

Yanai [73], Fergus

et al. [21]

Global-level (au-

tomatically via

Social Networks)

(Fig. 5)

Excellent Excellent Fair weakly-

supervised

Quack et al. [57],

Dhiraj & Lue [33]

other hand, in the case of weakly annotated training samples, the goal is to estimate

the joint probability distribution between the visual features fi and the semantic

labels ci given a training set made of pairs between sets {(f1, . . . , fn),(c1, . . . ,cm)}.

While model parameters can be estimated more efficiently from strongly anno-

tated samples, such samples are very expensive to obtain. On the contrary, weakly

annotated samples can be found in large quantities especially from sources related

to social networks. Motivated by this fact, our work aims at combining the advan-

tages of both strongly supervised (learn model parameters more efficiently) and

weakly supervised (learn from samples obtained at low cost) methods, by allow-

ing the strongly supervised methods to learn object detection models from training

samples that are found in collaborative tagging environments.

4.1 Problem Formulation

The problem can be formulated as follows. Drawing from a large pool of weakly

annotated images, our goal is to benefit from the knowledge that can be extracted

from social tagging systems, in order to automatically transform some of the weakly

annotated images into strongly annotated ones. In order to do this, we consider that

if the set of weakly annotated images is properly selected from the repository of a

collaborative tagging environment, the most populated tag-“term” and the most pop-

ulated visual-“term” will be two different representations/expressions (i.e., textual

and visual) of the same object. We define tag-“terms” to be sets of tags that are pro-

vided by social users to describe an image and are grouped based on their semantic

Enhancing Computer Vision Using the Collective Intelligence of Social Media 249

affinity (e.g., synonyms, derivatives, etc). Respectively, we define visual-“terms” to

be sets of image regions that are identified by an automatic segmentation algorithm

and are grouped based on visual similarity. The most populated tag-“term” (i.e., the

most frequently appearing tag, counting also its synonyms, derivatives, etc) is used

to provide the semantic label of the object that the developed classifier is trained

to identify, while the most populated visual-“term” (i.e., the cluster of image re-

gions containing the most instances) is used to provide the set of strongly annotated

samples for training the classifier. It is clear that the process of leveraging weakly

annotated images to become the strongly annotated training samples of a supervised

learning scheme, is primarily achieved through the semantic clustering of image re-

gions to objects (i.e., each cluster consists of regions that depict only one object). Us-

ing the notation of Table 2 semantic clustering can be formulated as follows. Given

a large set of images Iq ∈ Sc with annotation information of the type {(fd(r
Iq
1),. . . ,

fd(r
Iq
m)), (c1,. . . , ct)}, semantic clustering would produce pairs (wi, ci) where each

wi is a set of regions extracted from all images in Sc that depict only ci. Semantic

clustering can only be made feasible in the ideal case where the image analysis tech-

niques employed by our framework works perfect. However, this is highly unlikely

due to the following reasons. In case of over or under segmentation we will have

more or fewer regions from the actual objects in image, making perfect semantic

Table 2. Legend of Introduced Notations

Symbol Definition

S The complete social dataset

N The number of images in S

Sc An image group, subset of S that

emphasizes on object c

n The number of images in Sc

Iq An image from S

RIq
= Segments identified

{r
Iq

i , i = 1, . . . ,m} in image Iq

fd(r
Iq

i) = Visual features

{ fi, i = 1, . . . ,z} extracted from a region r
Iq

i

C = Set of objects that appear

{ci, i = 1, . . . ,t} in the images of group Sc

W = Set of clusters created by the

{wi, i = 1, . . . ,o} region-based clustering algorithm

pci
Probability that tag-based image selection

draws from S an image depicting ci

TCi Number of regions depicting object ci in Sc

250 E. Chatzilari et al.

clustering impossible. Similarly, the inadequacy of visual descriptors to perfectly

discriminate between different semantic objects is likely to lead the clustering algo-

rithm in creating a different number of clusters than the number of actual semantic

objects, or even mix regions depicting different objects into the same cluster. Thus,

instead of requiring that each wi is mapped with a ci, we only search for a single

pair (wk,cz) where the majority of regions in cluster wk depicts cz. Given that both

wi (i.e., visual-“term’) and ci (i.e., tag-“term”) are sets (of images regions and user

contributed tags, respectively), we can apply the Pop(·) function on them, that cal-

culates the population of a set (i.e., number of members). Eventually, the problem

addressed in our approach is what should be the characteristics of Sc so as the pair

(wk, cz) determined using k = argmaxi(Pop(wi)) and z = argmaxi(Pop(ci)) satisfies

our objective i.e., that the majority of regions included in wk depicts cz. Our approach

in using user contributed content to create Sc is motivated by the fact that due to the

common background that most users share, the majority of them tend to contribute

similar tags when faced with similar type of visual content [49]. This is the point

where our approach benefits from the Collective Intelligence that emerges from an

STS, in the sense that it would be over-ambitious to rely on such an assumption if

tags were to be contributed by just one or a few users. However, since the tags in

an STS originate from a significantly large amount of users, it is statically safe to

conclude that the majority of tag assignments will conform to the aforementioned

rule. Then, given this assumption it is expected that as the pool of the weakly an-

notated images grows, the most frequently appearing “term” in both tag and visual

information space will converge into the same object.

4.2 Framework Description

The framework we propose for leveraging the weakly annotated data in order to train

object detection models, is depicted in Fig. 6. The analysis components that can be

identified in our framework are, tag-based image selection, image segmentation,

extraction of visual features from image regions, region-based clustering using their

visual features and learning of object detection models using strongly annotated

samples.

More specifically, given an object c that we wish to train a detector for, our

method starts from a large collection of user tagged images and performs the fol-

lowing actions. Images are selected based on their tag information in order to for-

mulate image group(s) that correspond to thematic entities. Given the tendency of

social tagging systems to formulate knowledge patterns that reflect the way con-

tent is perceived by the web users [49], [27], tag-based processing is expected to

identify these patterns and create image group(s) each one emphasizing on a cer-

tain object. By emphasizing we refer to the case where the majority of the images

within a group depict different instances of a certain object and that the linguis-

tic description of that object can be obtained from the most frequently appearing

tag (see Section 4.3.1 for more details). Subsequently, region-based clustering is

performed on all images belonging to the image group that emphasizes on object

c, that have been pre-segmented by an automatic segmentation algorithm. During

Enhancing Computer Vision Using the Collective Intelligence of Social Media 251

Image

Group 1

Image

Group 2

Image

Group N

Img1: sand, wave, rock, sky
Img2: sea, sand
Img3: sand, sky
Img4: person, sand, wave, see Image

Group 2

Tag frequency Check

sand, wave, rock
sky

sea, sand

sand, sky
person, sand, wave,

see

Users – User

Communities

Tags Web resources

Tag-based

Image Selection

Segmentation

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Visual Features Space

Clustering

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Visual Feature

Extraction

Supervised

Learning

Positive Examples

Negative Examples

Object Detection

Model for Sand

Fig. 6. Actions performed by our framework in order to train a model for detecting the object

sand

region-based clustering the image regions are represented by their visual features

and each of the generated clusters contains visually similar regions. Since the ma-

jority of the images within the selected group depicts instances of the desired object

c, we anticipate that the majority of regions representing the object of interest will

be gathered in the most populated cluster, pushing all irrelevant regions to the other

clusters. Eventually, we use as positive samples the visual features extracted from

the regions belonging to the most populated cluster to train (in a strongly supervised

manner) a model detecting the object c. Although noisy tags and inaccurate seg-

mentation are likely to prevent the most populated cluster from gathering all regions

depicting object c, the fact that the collection of user tagged images can be arbitrary

large (due to its “social” origin) can compensate for the loss in accuracy.

We can view the process of using image tag information to create an image group

Sc that emphasizes on object c, as the process of selecting images from a large

pool of weakly annotated images using as argument a query tag tq. tq is the linguis-

tic description of the object c. The selection criteria can be keyword-based search

(in the trivial case), pre-annotated groups, or more sophisticated approaches (see

Section 4.3.1). Although misleading and ambiguous tags always hinders this pro-

cess, the expectation is that as the number of selected images grows large and the

tag-proportions for each image crystallizes [27], there will be a connection between

what is depicted in the majority of the selected images and what is described by the

majority of the contributed tags.

252 E. Chatzilari et al.

Let us assume that using tag-based selection we construct an image group Sc ⊂ S

emphasizing on object c. What we are interested in is the frequency distribution

of objects ci ∈ C appearing in Sc based on their frequency rank. We can view the

process of constructing Sc as the act of populating an image group with images

selected from a large dataset S using certain criteria. In this case, the number of

times an image depicting object ci appears in Sc, can be considered to be equal

with the number of successes in a sequence of n independent success/failure trials,

each one yielding success with probability pci
. Given that S is sufficiently large,

drawing an image from this dataset can be considered as an independent trial. Thus,

the number of images in Sc that depict object ci ∈ C can be expressed by a random

variable K following the binomial distribution with probability pci
. Eq. (1) shows the

probability mass function of a random variable following the binomial distribution.

Prci
(K = k) =

(

n

k

)

pk
ci
(1− pci

)n−k (1)

Given the above, we can use the expected value E(K) of a random variable following

the binomial distribution to estimate the expected number of images in Sc that depict

object ci ∈ C, if they are drawn from the initial dataset S with probability pci
. This

is actually the value of k maximizing the corresponding probability mass function,

which is:

Eci
(K) = npci

(2)

If we consider α to be the average number of times an object appears in an image,

then the number of appearances (#appearances) of an object in Sc is:

TCi = αnpci
(3)

Moreover, we accept that there will be an object c1 that is drawn (i.e., appears in

the selected image) with probability pc1
higher than pc2

, which is the probability

that c2 is drawn, and so forth for the remaining ci ∈ C. This assumption is exper-

imentally verified in Section 4.4.2 where the frequency distribution of objects for

different image groups are measured in a manually annotated dataset. Finally, us-

ing eq. (3) we can estimate the expected number of appearances (#appearances)

of an object in Sc, ∀ci ∈C. Fig. 7(a) shows the #appearances ∀ci ∈ C against their

frequency rank, given some examples values of pci
with pc1

> pc2
> It is clear

from eq. (3) that if we consider the probabilities pci
to be fixed, the expected differ-

ence, in absolute terms, on the #appearances between the first and the second most

highly ranked objects c1 and c2, increases as a linear function of n, see Fig. 7(b)

for some examples. Additionally, apart from increasing the expected absolute dif-

ference on the #appearances between the two most frequently appearing objects,

the high values of n also minimize the probability of the case where c2 although

drawn with probability smaller that c1 appears more times in the generated image

group. In Fig. 8 we draw the probability mass function of two random variables that

correspond to objects c1, c2 of Fig. 7(b) (i.e., pc1
= 0.8, pc1

= 0.6) for three different

values of n (i.e., n = 50, n = 100 and n = 200). The probability of experiencing the

case where c2, although drawn with smaller probability, appears more times than c1

Enhancing Computer Vision Using the Collective Intelligence of Social Media 253

c1 c2 c3 c4 c5
0

10

20

30

40

50

60

70

80

90

100

Objects

#
 a

p
p
e
a
ra

n
c
e
s

(a)

c1 c2 c1 c2 c1 c2
0

20

40

60

80

100

120

140

160

180

200

Objects

#
a
p
p
e
a
ra

n
c
e
s

n=50

n=100

n=200

df=10

df=20

df=40

(b)

Fig. 7. a) Distribution of #appearances ∀ci ∈C based on their frequency rank, for n=100 and

pc1
=0.9, pc2

= 0.7, pc3
= 0.5, pc4

= 0.3, pc5
= 0.1. b) Difference of #appearances between

c1, c2, using fixed values for pc1
= 0.8 and pc2

= 0.6 and different values for n.

(a) (b) (b)

Fig. 8. a) Probability mass function for n = 50 trials and pc1
= 0.8, pc2

= 0.6. b) Probability

mass function for n = 100 trials and pc1
= 0.8, pc2

= 0.6. c) Probability mass function for

n = 200 trials and pc1
= 0.8, pc2

= 0.6.

in Sc, is proportional to the surface where the two curves overlap. It is clear from

Fig. 8 that as n increases, the variance of the two random variables decrease, forcing

the surface of the overlapping region to also decrease (e.g., for n = 200 the surface

of the overlapping region is almost zero). Based on these observations, we reach the

theoretical expectation that there is higher probability in wk being a set of regions

the majority of which depict cz as n increases.

4.3 Implementing the Framework

In this section we provide details for the analysis components that are used by the

proposed framework. Due to the fact that a necessary pre-requisite for our frame-

work to work efficiently is operating on a large number of images, a discussion

about the complexity of each analysis component is also included.

254 E. Chatzilari et al.

4.3.1 Tag-Based Image Selection

In this section we specify the approaches that are used to select images from a large

dataset of arbitrary content, based on their tag information. We employ one of the

following three approaches based on the associated annotations:

Keyword-based search: This approach is used for selecting images from strongly

annotated datasets. These datasets are usually hand-labeled and the tags provided

by the annotators can be considered to be mostly accurate and free of ambiguity.

Thus, in order to create Sc we need only to select the images that are tagged with

the linguistic expression of the object c.

Flickr groups: are virtual places hosted in collaborative tagging environments that

allow social users to share content on a certain topic. Although managing flickr

groups still involves some type of human annotation (i.e., a human assigns an image

to a specific group) it can be considered weaker than the previous case since this

type of annotation does not provide a full description of the objects depicted in the

image. In this case, Sc is created by taking the images contained in a flickr group

titled with the name of the object c. From here on we will refer to those images as

roughly-annotated images.

SEMSOC: stands for SEmantic, SOcial and Content-based clustering and is ap-

plied in our framework on weakly annotated images (i.e., images that have been

tagged by humans in the context of a collaborative tagging environment, but no

rigid annotations have been provided) in order to create semantically consistent

groups of images. SEMSOC was introduced by Giannakidou et. al. in [25], [26]

and is an un-supervised model for the efficient and scalable mining of multimedia

social-related data that jointly considers social and semantic features. The reason

for adopting this approach in our framework is to overcome the limitations that

characterize collaborative tagging systems such as tag spamming, tag ambiguity,

tag synonymy and granularity variation (i.e., different description level). The out-

come of applying SEMSOC on a large set of images S, is a number of image groups

Sci ⊂ S, i = 1, . . . ,m, where m is the number of created groups. This number is de-

termined empirically, as described in [25]. Then in order to obtain the image group

Sc that contains the images depicting the desired object c, we select the SEMSOC-

generated group Sci where its most frequent tag relates with c. Fig. 9 shows four

examples of image clusters generated by SEMSOC, along with the corresponding

most frequent tag.

4.3.2 Segmentation

Segmentation is applied on all images in Sc with the aim to extract the spatial masks

of visually meaningful regions. In our work we have used a K-means with connec-

tivity constraint algorithm as described in [53]. The output of this algorithm is a

set of segments RIq = {r
Iq
i , i = 1, . . . ,m}, which roughly correspond to meaningful

objects, ci ∈ C. The time efficiency of the segmentation process depends mainly

on the size of the image. The segmentation of low-resolution images is performed

Enhancing Computer Vision Using the Collective Intelligence of Social Media 255

(a) Vegetation (b) Sky

(c) Sea (d) Person

Fig. 9. Examples of image groups generated using SEMSOC (in caption the corresponding

most frequent tag). It is clear that the majority of images in each group include instances of

the object that is linguistically described by the most frequent tag. The image is best view in

color and with magnification.

256 E. Chatzilari et al.

considerably fast but the time efficiency of the algorithm degrades quickly as the im-

age size increases. Therefore in order to cope with high-resolution images

the authors of [53] make the reasonable assumption that the regions falling below

the 0.75% of the total image area are insignificant. Based on this assumption the

segmentation algorithm is applied on a reduced version of the image (i.e., by down-

scaling its original version). This improves the time efficiency of the algorithm but

at the expense of the quality of the segmentation result. To alleviate this, the pixels

belonging to blocks on edges between regions are reclassified using the Bayes clas-

sifier. Applying the segmentation algorithm on reduced images with reclassification

using the Bayes classifier, delivers the same segmentation quality with segmentation

time significantly reduced.

4.3.3 Visual Descriptors

In order to visually describe the segmented regions we have employed the following:

a) the Harris-Laplace detector and a dense sampling approach for determining the

interest points, b) the SIFT descriptor as proposed by Lowe [45] in order to describe

each interest point using a 128-dimensional feature vector and c) the bag-of-words

approach initially proposed in [64] in order to obtain a fixed-length feature vector

for each region. The feature extraction process is similar to the one described in [59]

with the important difference that in our case descriptors are extracted to represent

each of the pre-segmented image regions, rather than the whole image.

More specifically, for detecting interest points we have applied the Harris-Laplace

point detector on intensity channel, which has shown good performance for ob-

ject recognition [74]. In addition, we have also applied a dense-sampling approach

where interest points are taken every 6th pixel in the image. For each interest point

(identified both using the Harris-Laplace and dense sampling approach) the 128-

dimensional SIFT descriptor is computed using the version described by Lowe [45].

SIFT descriptors have been been found to be particularly robust against variations

in scale, rotation, changes in brightness and contrast, etc. A Visual Word Vocab-

ulary (Codebook) was created by using the K-Means algorithm to cluster in 300

clusters, approximately 1 million SIFT descriptors that were sub-sampled from a

total amount of 28 million SIFT descriptors, extracted from 5 thousand training im-

ages. The Codebook allows the SIFT descriptors of all interest points contained in

an image region to be vector quantized against the set of Visual Words and create

a histogram. Thus, ∀r
Iq
i ∈ RIq and ∀Iq ∈ Sc a 300-dimensional feature vector f (r

Iq
i)

is extracted, that contains information about the presence or absence of the Visual

Words included in the Codebook. All feature vectors were normalized so as the sum

of all dimensions to be equal with 1.

4.3.4 Clustering

For performing feature-based region clustering we applied the affinity propagation

clustering algorithm on all extracted feature vectors f (r
Iq
i), ∀r

Iq
i ∈ RIq and ∀Iq ∈ Sc.

This is an algorithm that takes as input the measures of similarity between pairs of

Enhancing Computer Vision Using the Collective Intelligence of Social Media 257

data points and exchanges messages between data points, until a high-quality set of

centers and corresponding clusters is found. Affinity propagation was proposed by

Frey and Dueck [23] and was selected for our work due to the following reasons:

a) The requirements of our framework imply that in order to learn a robust object

detection model, clustering will need to be performed on a considerably large num-

ber of regions, making computational efficiency an important issue. The common

approach followed by most clustering algorithms is to determine a set of centers

such that the sum of squared errors between data points and their nearest centers is

minimized. This is done by starting with an initial set of randomly selected centers

and iteratively refining this set so as to decrease the sum of squared errors. However,

such approaches are sensitive to the initial selection of centers and work well only

when the number of clusters is small and the random initialization is close to a good

solution. This is the reason why these algorithms need to re-run many times with

different initializations in order to find a good solution. In contrast to this, affinity

propagation simultaneously considers all data points as potential centers. By view-

ing each data point as a node in a network, affinity propagation recursively transmits

real-valued messages along edges of the network until a good set of centers and cor-

responding clusters emerges. In this way, it removes the need to re-run the algorithm

with different initializations which is very beneficiary in terms of computational ef-

ficiency. b) The fact that the number of objects depicted in the images of an image

group can not be known in advance, poses the requirement for the clustering pro-

cedure to automatically determine the appropriate number of clusters based on the

analyzed data. Affinity propagation, rather than requiring that the number of clus-

ters is pre-specified, takes as input a real number for each data point. This number

is called preference and has the meaning that data points with larger preferences are

more likely to be chosen as centers. In this way the number of identified centers

(number of clusters) is influenced by the values of the input preferences but also

emerges from the message-passing procedure. If a priori, all data points are equally

suitable as centers, as in our case, the preferences should be set to a common value.

This value can be varied to produce different numbers of clusters and taken for ex-

ample to be the median of the input similarities (resulting in a moderate number of

clusters) or their minimum (resulting in a small number of clusters). Given that it is

better for our framework to handle noisy rather than inadequate (in terms of indica-

tive examples) training sets, we opt for the minimum value in our experiments.

4.3.5 Learning Model Parameters

Support Vector Machines (SVMs) [61] were chosen for generating the object de-

tection models, due to their ability in smoothly generalizing and coping efficiently

with high-dimensionality pattern recognition problems. All feature vectors assigned

to the most populated of the created clusters are used as positive examples for train-

ing a binary classifier. Negative examples are chosen arbitrary from the remaining

dataset. Tuning arguments include the selection of Gaussian radial basis kernel and

the use of cross validation for selecting the kernel parameters. Considering that the

size of available samples can grow arbitrary big, training a model could become a

258 E. Chatzilari et al.

particularly costly procedure. The SVMlight implementation of SVMs was used to

address the problem of large scale tasks. The algorithmic and computational im-

provements that were incorporated by the SVMlight implementation as well as the

complexity issues are analyzed in [31].

4.4 Experimental Study

The goal of our experimental study is twofold. On the one hand, we wanted to get

an experimental insight on the cluster-to-object assignment error introduced by the

visual analysis algorithms and check whether our expectation on the most populated

cluster holds. On the other hand, we aimed at comparing the quality of object mod-

els generated by the proposed framework, against the models trained by manually

provided strong annotations.

4.4.1 Datasets

To carry out our experiments we have relied on three different types of datasets.

The first type includes the strongly annotated datasets constructed by asking people

to provide region detail annotations of images pre-segmented with the automatic

segmentation algorithm of Section 4.3.2. For this case we have used a collection of

536 images from the Seaside domain annotated in our lab, denoted as SB. The second

type refers to roughly-annotated datasets like the ones formed by flickr groups. In

order to create a dataset of this type, for each object of interest, we have downloaded

500 member images from a flickr group that is titled with a name related to the

name of the object, we refer to this dataset as SG. The third type refers to the weakly

annotated datasets like the ones found in collaborative tagging environments. For

this case, we have crawled 3000 SF3K and 10000 SF10K images from flickr using the

wget7 utility and the flickr API facilities, in order to investigate the impact of the

dataset size on the robustness of the generated models. Depending on the annotation

type we use the selection approaches presented in Section 4.3.1 to construct the

necessary image groups Sc. Table 3 summarizes the information of the datasets used

in our experimental study.

4.4.2 Tag-Based Image Selection

As a result of our assumption on the tagging habits of social users, we expect the

absolute difference between the number of appearances (#appearances) of the first

(c1) and second (c2) most highly ranked objects within an image group Sc, to in-

crease as the volume of the initial dataset S increases. This is evident in the case

of keyword-based search since, due to the fact that the annotations are strong, the

probability that the selected image depicts the intended object is equal to 1, much

greater than the probability of depicting the second most appearing object. Simi-

larly, in the case of flickr groups, since a user has decided to assign an image to a

7 wget: http://www.gnu.org/software/wget

Enhancing Computer Vision Using the Collective Intelligence of Social Media 259

Table 3. Datasets Information

Symbol Annotation

Type

No. of

Images

objects Selection

approach

SB strongly

annotated

536 sky, sea, veg-

etation, person,

sand, rock, boat

keyword

based

SG roughly-

annotated

4000

(500

for

each

object)

sky, sea, veg-

etation, person,

car, grass, tree,

building

flickr

groups

SF3K weakly an-

notated

3000 cityscape,

seaside, moun-

tain, roadside,

landscape,

sport-side

SEMSOC

SF10K weakly an-

notated

10000 jaguar, turkey,

apple, bush,

sea, city,

vegetation,

roadside, rock,

tennis

SEMSOC

group titled with the name of the object, the probability of this image to depict the

intended object should be close to 1. On the contrary, for the case of SEMSOC that

operates on ambiguous and misleading tags, this claim is not evident. For this reason

and in order to verify our claim experimentally, we plot the distribution of objects’

#appearances in four image groups created to emphasize on objects sky, sea, veg-

etation, person, respectively. These image groups were generated from both SF3K

and SF10K using SEMSOC. Each of the bar diagrams depicted in Fig. 10, describes

the distribution of objects’ #appearances inside an image group Sc, as evaluated by

humans. This annotation effort was carried out in our lab and its goal was to provide

weak but noise-free annotations in the form of labels for the content of the images

included in both SF3K and SF10K . It is clear that as we move from SF3K to SF10K the

difference, in absolute terms, between the number of images depicting c1 and c2,

increases in all four cases, advocating our claim about the impact of the dataset size

on the distribution of objects’ #appearances, when using SEMSOC.

4.4.3 Clustering Assessment

The purpose of this experiment is to provide an insight on the validity of our ap-

proach in always selecting the most populated cluster for training a model recog-

nizing an object described by the most frequently appearing tag. In order to do so

we evaluate the content of each of the formulated clusters using the strongly anno-

tated dataset SB. More specifically, ∀ci depicted in SB we obtain Sci ⊂ SB and apply

260 E. Chatzilari et al.

0

50

100

150

200

S
ky

ve
ge

ta
tio

n

B
ui
ld
in
g

P
eo

pl
e
ou

td
oo

rs

S
to
ne

, r
oc

k(
s)

R
oo

f

S
ea

S
an

d
C
ity

O
th
er

N
u
m

b
e
r

o
f
im

a
g
e
s

0

100

200

300

400

ve
ge

ta
tio

n
S
ky

P
eo

pl
e
ou

td
oo

rs

S
to
ne

, r
oc

k(
s)

R
oa

ds
id
e

B
ui
ld
in
g

O
th
er

W
at
er
 (
la
ke

, r
iv
er
)

R
oo

f

F
ra
nc

e,
 P

ar
is

N
u
m

b
e
r

o
f
im

a
g
e
s

0

50

100

150

200

250

300

S
ea

P
eo

pl
e
ou

td
oo

rs

S
an

d

ve
ge

ta
tio

n

W
av

es
 (
se

a)

O
th
er

P
eo

pl
e
in
do

or

B
ui
ld
in
g

S
to
ne

, r
oc

k(
s)

A
ni
m
al

N
u
m

b
e
r

o
f
im

a
g
e
s

0

20

40

60

80

100

P
eo

pl
e
ou

td
oo

rs

R
oa

ds
id
e

B
ui
ld
in
g

ve
ge

ta
tio

n
S
ky

O
th
er

R
oo

f

S
to
ne

, r
oc

k(
s)

W
at
er
 (
la
ke

, r
iv
er
)

P
eo

pl
e
in
do

or

N
u
m

b
e
r

o
f
im

a
g
e
s

0

50

100

150

200

S
ky

ve
ge

ta
tio

n

B
ui
ld
in
g

S
to
ne

, r
oc

k(
s)

S
ea

R
oa

ds
id
e

R
oo

f
C
ity

S
un

se
t

P
eo

pl
e
ou

td
oo

rs

N
u
m

b
e
r

o
f
im

a
g
e
s

(a) Sky

0

100

200

300

400

500

ve
ge

ta
tio

n

R
oa

ds
id
e

S
ky

S
to
ne

, r
oc

k(
s)

A
ni
m
al

B
ui
ld
in
g

W
at
er
 (
la
ke

, r
iv
er
)

G
re
en

 la
nd

sc
ap

e

P
eo

pl
e
ou

td
oo

rs

G
re
en

 c
ol
or
ed

 o
bj
ec

t

N
u
m

b
e
r

o
f
im

a
g
e
s

(b) Vegetation

0

50

100

150

200

250

300

S
ea

P
eo

pl
e
ou

td
oo

rs

ve
ge

ta
tio

n

B
ui
ld
in
g

S
an

d

S
to
ne

, r
oc

k(
s)

B
oa

t

O
th
er

R
oc

k

A
ni
m
al

N
u
m

b
e
r

o
f
im

a
g
e
s

(c) Sea

0

20

40

60

80

100

P
eo

pl
e
ou

td
oo

rs

P
eo

pl
e
in
do

or

R
oa

ds
id
e

T
ur
ke

y
co

un
tr
y

S
ky

R
oc

k
m
us

ic

B
ui
ld
in
g

ve
ge

ta
tio

n
C
ity

S
to
ne

, r
oc

k(
s)

N
u
m

b
e
r

o
f
im

a
g
e
s

(d) Person

Fig. 10. Distribution of objects’ #appearance in an image group Sc, generated from SF3K

(upper line) and SF10K (lower line) using SEMSOC

clustering on the extracted regions. In Fig. 11 we visualize regions distributions

among the generated clusters by projecting their feature vectors in three dimensions

using PCA (Principal Component Analysis). The regions depicting the object of in-

terest ci are marked in squares, while the other regions are marked in dots. Color

code is used to indicate a cluster’s rank according to their population (i.e., red: 1st,

black: 2nd, blue: 3rd, magenta: 4rth, green: 5th, cyan: 6th). Thus, in the ideal case

all squares should be painted red and all dots should be colored differently. Squares

being painted in colors other than red, indicate false negatives and dots painted in

red indicate false positives. We can see that our claim is validated in 4 (i.e., sand,

vegetation, rock, boat) out of 7 examined cases. In the cases of objects sea, sky and

person, the error introduced from visual analysis, prevents clustering from assigning

the regions of interest into the same cluster.

4.4.4 Comparing Object Detection Models

In order to compare the efficiency of the models generated using training samples

with different annotation type (i.e., strongly, roughly, weakly), we need a set of ob-

jects that are common in all three types of datasets. For this reason after examining

the contents of SB, reviewing the availability of groups in flickr and applying SEM-

SOC on SF3K and SF10K , we ended up with 4 object categories Cbench={sky, sea,

vegetation, person}. These objects exhibited significant presence in all different

datasets and served as benchmarks for comparing the quality of the different mod-

els. The factor limiting the number of benchmarking objects is on the one hand the

need to have strongly annotated images for these objects and from the other hand

the un-supervised nature of SEMSOC that restricts the eligible objects to the ones

Enhancing Computer Vision Using the Collective Intelligence of Social Media 261

−0.3
−0.2

−0.1
0

0.1

−0.2

0

0.2

−0.2

−0.1

0

0.1

0.2

red:346
black:304
blue:259

magenta:214
green:162

(a) Sky

−0.2

0

0.2

−0.1
0

0.1
0.2

0.3
−0.3

−0.2

−0.1

0

0.1

0.2

red:296
black:252
blue:235

magenta:191
green:179

(b) Sea

−0.2
−0.1

0
0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.3

−0.2

−0.1

0

0.1

0.2

red:279
black:233
blue:218

magenta:208
green:141

(c) Sand

−0.2
−0.1

0
0.1

0.2

−0.4

−0.2

0

0.2

0.4
−0.2

−0.1

0

0.1

0.2

red:193
black:159
blue:155

magenta:141
green:134

(d) Person

−1

−0.5

0

0.5 −0.3
−0.2

−0.1
0

0.1
0.2

−0.4

−0.3

−0.2

−0.1

0

0.1

red:75
black:61

blue:9

(e) Boat

−0.4
−0.2

0
0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

red:72
black:69
blue:34

magenta:23
green:6

(f) Vegetation

−1

−0.5

0

0.5
−0.4

−0.2
0

0.2
0.4

−0.2

−0.1

0

0.1

0.2

0.3

red:48
black:45
blue:14

magenta:7

(g) Rock

Fig. 11. Regions distribution amongst clusters. The regions depicting the object of interest

are marked in squares, while the other regions are marked in dots. Squares being painted in

colors other than red, indicate false negatives and dots painted in red indicate false positives.

This Figure is best viewed in color with magnification.

262 E. Chatzilari et al.

identified by clustering the images in the tag information space. For each object

ci ∈ Cbench, one model was trained using the strong annotations of SB, one model

was trained using the roughly-annotated images contained in SG, and two models

were trained using the weak annotations of SF3K and SF10K , respectively. In order

to evaluate the performance of these models we test them using a subset (i.e., 268

images) of the strongly annotated dataset SB
test ⊂ SB, not used during training. F-

Measure was used for measuring the efficiency of the models.

person sea sky vegetation
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Model Comparison Diagram

F
 m

e
a
s
u
re

Flickr 3k

Flickr 10k

Flickr Groups

Manual

Fig. 12. Performance comparison between four object recognition models that are learned

using samples of different annotation quality (i.e., strongly, roughly and weakly)

By looking at the bar diagram of Fig. 12, we derive the following conclusions:

a) Model parameters are estimated more efficiently when trained with strongly an-

notated samples, since in 3 out of 4 cases they outperform the other models and

sometimes by a significant amount (e.g., sky, person). b) Flickr groups can serve as

a less costly alternative for learning the model parameters, since using the roughly-

annotated samples we get comparable and sometimes even better (e.g., vegetation)

performance than manually trained models, while requiring considerable less effort

to collect the training samples. c) The models learned from weakly annotated sam-

ples are usually inferior from the other cases, especially in cases where the proposed

approach for leveraging the data has failed in selecting the appropriate cluster (e.g.,

sea and sky). However, the efficiency of the models trained using weakly annotated

samples is likely to be improved if the size of the dataset is increased.

From the bar diagram of Fig. 12 it is clear that when using the SF10K the incorpo-

ration of more indicative examples into the training set improves the generalization

ability of the generated models in all four cases. However, in the case of object sea

we note also a drastic improvement of the model’s efficiency. This is attributed to

the fact that the increment of the dataset size alleviates the error introduced by visual

analysis algorithms and allows the proposed method to select the appropriate clus-

ter for training the model. In order to visually inspect the content of the generated

clusters we have implemented a viewer that is able to read the clustering output and

Enhancing Computer Vision Using the Collective Intelligence of Social Media 263

simultaneously display all regions included in the same cluster. Using this viewer

to inspect the content of the formulated clusters, we realize that the selected cluster

is not the one containing the regions depicting sea when using the SF3K , whereas

the correct cluster is selected when using the SF10K . Fig. 13 and Fig. 14 show in-

dicative images for some of the generated clusters for the object sea obtained using

the SF3K and SF10K dataset respectively. The clusters’ rank (#) refers to their pop-

ulation. We can see that when using the SF3K dataset the regions depicting sea are

split in two clusters (ranked #4 and #5), while the most populated cluster #1 con-

sists of regions primarily depicting people. On the other hand, in the case of the

SF10K dataset, where the correct cluster is selected (see Fig. 14), it seems that the

larger size of the utilized dataset compensates for the error introduced by the visual

analysis algorithms.

5 Related Methods

The presented method can be considered to relate with various works in the literature

in different aspects. From the perspective of exploring the trade-offs between anal-

ysis efficiency and the characteristics of the dataset, we find similarities with [34],

[16]. In [34] the authors explore the trade-offs in acquiring training data for image

classification models through automated web search as opposed to human annota-

tion. The authors set out to determine when and why search-based models manage

to perform satisfactory and design a system for predicting the performance trade-off

between annotation- and search-based models. Essentially what the authors are try-

ing to do is to learn a model that operates on prediction features (i.e., cross-domain

similarity, model generalization, concept frequency, within-training-set model qual-

ity) and provide quantitative measures on when the cheaply obtained data is of suf-

ficient quality for training robust object detectors. In [16] the authors investigate

both theoretically and empirically when effective learning is possible from ambigu-

ously labeled images. They formulate the learning problem as partially-supervised

multiclass classification and provide intuitive assumptions under which they expect

learning to succeed. This is done by using convex formulation and showing how to

extend a general multiclass loss function to handle ambiguity.

There are also some works [72], [65], [68] that rely on the same principle as-

sumption with our method. In [72] the authors are based on social data to introduce

the concept of flickr distance. Flickr distance is a measure of the semantic relation

between two concepts using their visual characteristics. The authors rely on the as-

sumption that images about the same concept share similar appearance features and

use images obtained from flickr to represent a concept. Subsequently, the distance

between two concepts is measured using the Jensen-Shannon (JS) divergence be-

tween the constructed models. Although different in purpose from our approach the

authors present some very interesting results demonstrating that the collaborative

tagging environments like flickr can serve as a particular valuable source for mining

the necessary information for implementing various computer vision tasks. In [65]

the authors make the assumption that semantically related images usually include

one or several common regions (objects) with similar visual features. Based on this

264 E. Chatzilari et al.

#1 Cluster - person

#2 Cluster - noise

#3 Cluster - sea

#4 Cluster - sea + sky

Fig. 13. Indicative regions from the clusters generated by applying our approach for the object

sea generated by the SF3K dataset. The regions that are not covered in red are the ones that

have been assigned to the corresponding cluster.

Enhancing Computer Vision Using the Collective Intelligence of Social Media 265

#1 Cluster - sea

#2 Cluster - person

#4 Cluster - sand

#6 Cluster - sky

#7 Cluster - building

Fig. 14. Indicative regions from the clusters generated by applying our approach for the object

sea generated by the SF10K dataset. The regions that are not covered in red are the ones that

have been assigned to the corresponding cluster.

266 E. Chatzilari et al.

assumption they build classifiers using as positive examples the regions clustered

in a cluster that is decided to be representative of the concept. They use multiple

region-clusters per concept and eventually they construct an ensemble of classifiers.

They are not concerned with object detection but rather with concept detection mod-

eled as a mixture/constellation of different object detectors. In the same lines the

work presented in [68] investigate non-expensive ways to generate annotated train-

ing samples for building concept classifiers using supervised learning. The authors

utilize clickthrough data logged by retrieval systems that consists of the queries sub-

mitted by the users, together with the images in the retrieval results, that these users

selected to click on in response to their queries. Although the training data collected

in this way can be potentially noisy, the authors rely on the fact that clickthrough

data exhibit noise reduction properties, given that they encode the collective knowl-

edge of multiple users. The method is evaluated using global concept detectors and

the conclusion that can drawn from the experimental study is that although the auto-

matically generated data cannot surpass the performance of the manually produced

ones, combining both automatically and manually generated data consistently gives

the best results.

Finally our work bares also similarities with works like [3] and [42] that operate

on segmented images with associated text and perform annotation using the joint

distribution of image regions and words. In [3] the problem of object recognition

is viewed as a process of translating image regions to words, much as one might

translate from one language to another. The authors develop a number of models for

the joint distribution of image regions and words, using weak annotations. In [42]

the authors propose a fully automatic learning framework that learns models from

noisy data such as images and user tags from flickr. Specifically, using a hierarchi-

cal generative model the proposed framework learns the joint distribution of a scene

class, objects, regions, image patches, annotation tags as well as all the latent vari-

ables. Based on this distribution the authors support the task of image classification,

annotation and semantic segmentation by integrating out of the joint distribution the

corresponding variables.

6 Conclusions

Although the quality of object detection models trained using the described method

is still inferior from the one achieved using manually trained data, we have shown

that under certain circumstances Social Media can be effectively used to facilitate

effortless learning. Particularly encouraging was the experimental observation con-

cerning the size of the dataset that showed a consistent improvement on all differ-

ent types of objects. Given that the size of publicly available content is constantly

increasing in the context of social networks, we can claim that by using a larger

collection of Social Media we will eventually achieve performance similar to the

one obtained using manually trained models. As a general conclusion we can say

that social networks can provide more semantically enhanced media than search en-

gines, in pretty much the same effort. Although the noise present in the tags hinders

Enhancing Computer Vision Using the Collective Intelligence of Social Media 267

the direct use of these media for training machine learning algorithms, the Collec-

tive Intelligence that emerges from the massive participation of users in social net-

works can be used to remove the need for dedicated human supervision in machine

learning.

Another important issue is the computational cost of the proposed framework,

especially when the size of the social dataset is large. On a core 2 duo processor

running on 3.33GHz with 3.25GB of RAM, image segmentation takes place in a few

seconds and the time needed for extracting the SIFT features and creating the bag-

of-words representation of each region is of the same order. Similarly, the clustering

of regions and the calculation of the necessary support vectors are also executed

within a few seconds, on average. Thus, the time needed for analyzing a single image

for the presence of a certain concept is less than a minute, enabling the proposed

framework to be used in real life applications.

Acknowledgement. This work was sponsored by the European Commission as part

of the Information Society Technologies (IST) programme under EC grant number

IST-FP6-026978 - X-Media and the European Community’s Seventh Framework

Programme FP7/2007-2013 under grant agreement n215453 - WeKnowIt and the

contract FP7-248984 GLOCAL.

References

1. MPEG-7 Visual Experimentation Model (XM). Version 10.0,

ISO/IEC/JTC1/SC29/WG11, Doc. N4062 (2001)

2. Aurnhammer, M., Hanappe, P., Steels, L.: Augmenting navigation for collaborative tag-

ging with emergent semantics. In: International Semantic Web Conference (2006)

3. Barnard, K., Duygulu, P., Forsyth, D.A., de Freitas, N., Blei, D.M., Jordan, M.I.: Match-

ing words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)

4. Begelman, G.: Automated tag clustering: Improving search and exploration in the tag

space. In: Proc. of the Collaborative Web Tagging Workshop at WWW 2006 (2006)

5. Bennett, K.P., Demiriz, A., Maclin, R.: Exploiting unlabeled data in ensemble meth-

ods. In: KDD 2002: Proceedings of the eighth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pp. 289–296. ACM, New York (2002),

http://doi.acm.org/10.1145/775047.775090

6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer

Academic Publishers, Norwell (1981)

7. Biederman, I.: Recognition-by-components: A theory of human image understanding.

Psychological Review 94, 115–147 (1987)

8. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.

Wadsworth and Brooks, Monterey, CA (1984)

9. d’Alché-Buc, F., Grandvalet, Y., Ambroise, C.: Semi-supervised marginboost. In: NIPS,

pp. 553–560 (2001)

10. Cao, L., Luo, J., Huang, T.S.: Annotating photo collections by label propagation ac-

cording to multiple similarity cues. In: MM 2008: Proceeding of the 16th ACM

international conference on Multimedia, pp. 121–130. ACM, New York (2008),

http://doi.acm.org/10.1145/1459359.1459376

http://doi.acm.org/10.1145/775047.775090
http://doi.acm.org/10.1145/1459359.1459376

268 E. Chatzilari et al.

11. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic

classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29(3),

394–410 (2007)

12. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using

expectation-maximization and its application to image querying. IEEE Transactions on

Pattern Analysis and Machine Intelligence 24, 1026–1038 (1999)

13. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002),

doi:10.1109/34.1000236

14. Conrady, R.: Travel technology in the era of Web 2.0. Trends and Issues in Global

Tourism 2007. Springer, Heidelberg (2007)

15. Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images.

In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pp. 919–926 (2009),

http://doi.ieeecomputersociety.org/10.1109/

CVPRW.2009.5206667

16. Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images.

In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR 2009) (2009)

17. Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier under

zero-one loss. Machine Learning 29(2-3), 103–130 (1997),

citeseer.ist.psu.edu/domingos97optimality.html

18. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as machine

translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G.,

Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer,

Heidelberg (2002)

19. Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural

networks–a review. Pattern Recognition 35(10), 2279–2301 (2002), doi:10.1016/S0031-

3203(01)00178-9

20. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.:

Efficient and effective querying by image content. J. Intell. Inf. Syst. 3(3-4), 231–262

(1994), http://dx.doi.org/10.1007/BF00962238

21. Fergus, R., Li, F.F., Perona, P., Zisserman, A.: Learning object categories from google’s

image search. In: ICCV, pp. 1816–1823 (2005)

22. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and

an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997),

http://dx.doi.org/10.1006/jcss.1997.1504

23. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,

972–976 (2007), www.psi.toronto.edu/affinitypropagation

24. Ghosh, H., Poornachander, P., Mallik, A., Chaudhury, S.: Learning ontology for per-

sonalized video retrieval. In: MS 2007: Workshop on multimedia information retrieval

on The many faces of multimedia semantics, pp. 39–46. ACM, New York (2007),

http://doi.acm.org/10.1145/1290067.1290075

25. Giannakidou, E., Kompatsiaris, I., Vakali, A.: Semsoc: Semantic, social and content-

based clustering in multimedia collaborative tagging systems. In: ICSC, pp. 128–135

(2008)

26. Giannakidou, E., Koutsonikola, V.A., Vakali, A., Kompatsiaris, Y.: Co-clustering tags

and social data sources. In: WAIM, pp. 317–324 (2008)

27. Golder, S.A., Huberman, B.A.: The structure of collaborative tagging systems.

CoRR abs/cs/0508082 (2005)

http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206667
http://doi.ieeecomputersociety.org/10.1109/CVPRW.2009.5206667
citeseer.ist.psu.edu/domingos97optimality.html
http://dx.doi.org/10.1007/BF00962238
http://dx.doi.org/10.1006/jcss.1997.1504
www.psi.toronto.edu/affinitypropagation
http://doi.acm.org/10.1145/1290067.1290075

Enhancing Computer Vision Using the Collective Intelligence of Social Media 269

28. Grahl, M., Hotho, A., Stumme, G.: Conceptual clustering of social bookmarking sites.

In: 7th International Conference on Knowledge Management (I-KNOW 2007), Know-

Center, Graz, Austria, pp. 356–364 (2007)

29. Gruber, T.: Ontology of folksonomy: A mash-up of apples and oranges (2005),

http://tomgruber.org/writing/ontology-of-folksonomy.htm

30. Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias–an algorithm for

mining iceberg tri-lattices. In: ICDM 2006: Proceedings of the Sixth International Con-

ference on Data Mining, pp. 907–911. IEEE Computer Society, Washington (2006),

http://dx.doi.org/10.1109/ICDM.2006.162

31. Joachims, T.: Making large-scale support vector machine learning practical, pp. 169–184

(1999)

32. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

33. Joshi, D., Luo, J.: Inferring generic activities and events from image content and

bags of geo-tags. In: CIVR 2008: Proceedings of the 2008 International Conference

on Content-based Image and Video Retrieval, pp. 37–46. ACM, New York (2008),

http://doi.acm.org/10.1145/1386352.1386361

34. Kennedy, L.S., Chang, S.-F., Kozintsev, I.: To search or to label?: predicting the per-

formance of search-based automatic image classifiers. In: Multimedia Information Re-

trieval, pp. 249–258 (2006)

35. Kennedy, L.S., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How flickr helps us make

sense of the world: context and content in community-contributed media collections. In:

ACM Multimedia, pp. 631–640 (2007)

36. Leibe, B., Leonardis, A., Schiele, B.: An implicit shape model for combined object cat-

egorization and segmentation. In: Toward Category-Level Object Recognition, pp. 508–

524 (2006)

37. Leistner, C., Grabner, H., Bischof, H.: Semi-supervised boosting using visual similarity

learning. In: CVPR (2008)

38. Li, F.F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pat-

tern Anal. Mach. Intell. 28(4), 594–611 (2006)

39. Li, F.F., Perona, P., Technology, C.I: A bayesian hierarchical model for learning natural

scene categories. In: CVPR, vol. 2, pp. 524–531 (2005)

40. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. In: MULTIMEDIA

2006: Proceedings of the 14th Annual ACM International Conference on Multimedia,

pp. 911–920. ACM, New York (2006),

http://doi.acm.org/10.1145/1180639.1180841

41. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans. Pattern

Anal. Mach. Intell. 30(6), 985–1002 (2008),

http://dx.doi.org/10.1109/TPAMI.2007.70847

42. Li, L.-J., Socher, R., Fei-Fei, L.: Towards total scene understanding: Classification, anno-

tation and segmentation in an automatic framework. In: IEEE Conference on Computer

Vision and Pattern Recognition (2009)

43. Li, Y., Shapiro, L.G.: Consistent line clusters for building recognition in cbir. In: ICPR,

vol. (3), pp. 952–956 (2002)

44. Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of

the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157

(1999), doi:10.1109/ICCV.1999.790410

45. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vi-

sion 60(2), 91–110 (2004),

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

http://tomgruber.org/writing/ontology-of-folksonomy.htm
http://dx.doi.org/10.1109/ICDM.2006.162
http://doi.acm.org/10.1145/1386352.1386361
http://doi.acm.org/10.1145/1180639.1180841
http://dx.doi.org/10.1109/TPAMI.2007.70847
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

270 E. Chatzilari et al.

46. Lukaszyk, S.: A new concept of probability metric and its applications in approximation

of scattered data sets. Computational Mechanics 33, 299–304 (2004),

http://www.ingentaconnect.com/content/klu/466/

2004/00000033/00000004/art00007

47. MacQueen, J.B.: Some methods for classification and analysis of multivariate observa-

tions. In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the fifth Berkeley Symposium on

Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California

Press, Berkeley (1967)

48. Mallapragada, P.K., Jin, R., Jain, A.K., Liu, Y.: Semiboost: Boosting for semi-supervised

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 2000–

2014 (2008), doi:10.1109/TPAMI.2008.235

49. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr,

academic article, to read. In: Hypertext, pp. 31–40 (2006)

50. Meadow, C.T.: Text Information Retrieval Systems. Academic Press, Inc., Orlando

(1992)

51. Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neurocom-

puting 55(1-2), 169–186 (2003)doi:10.1016/S0925-2312(03)00431-4,

http://www.sciencedirect.com/science/article/

B6V10-49CRCBP-1/2/346ddc665b1b67be089a7d5d46edca07

52. Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: Still image segmentation tools for object-

based multimedia applications. IJPRAI 18(4), 701–725 (2004)

53. Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: Still image segmentation tools for object-

based multimedia applications. IJPRAI 18(4), 701–725 (2004)

54. Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web

Semant. 5(1), 5–15 (2007),

http://dx.doi.org/10.1016/j.websem.2006.11.002

55. O’Really, T.: What is Web 2.0: Design Patterns and Business Models for the Next Gen-

eration of Software. O’Reilly Media Inc., Sebastopol (2005)

56. Palen, L., Hiltz, S.R., Liu, S.B.: Online forums supporting grassroots participation in

emergency preparedness and response. Commun. ACM 50(3), 54–58 (2007),

http://doi.acm.org/10.1145/1226736.1226766

57. Quack, T., Leibe, B., Gool, L.J.V.: World-scale mining of objects and events from com-

munity photo collections. In: CIVR, pp. 47–56 (2008)

58. Russell, B.C., Freeman, W.T., Efros, A.A., Sivic, J., Zisserman, A.: Using multiple seg-

mentations to discover objects and their extent in image collections. In: CVPR, vol. (2),

pp. 1605–1614 (2006)

59. van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 99(1)

(doi:5555),

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.154

60. Schmitz, P.: Inducing ontology from flickr tags. In: Proc. of the Collaborative Web Tag-

ging Workshop (WWW 2006) (2006),

http://www.rawsugar.com/www2006/22.pdf

61. Scholkopf, B., Smola, A., Williamson, R., Bartlett, P.: New support vector algorithms.

Neural Networks 22, 1083–1121 (2000)

62. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, vol. 0, p. 731 (1997),

http://doi.ieeecomputersociety.org/10.1109/CVPR.1997.609407

63. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects

and their localization in images. In: ICCV, pp. 370–377 (2005)

http://www.ingentaconnect.com/content/klu/466/2004/00000033/00000004/art00007
http://www.ingentaconnect.com/content/klu/466/2004/00000033/00000004/art00007
http://www.sciencedirect.com/science/article/B6V10-49CRCBP-1/2/346ddc665b1b67be089a7d5d46edca07
http://www.sciencedirect.com/science/article/B6V10-49CRCBP-1/2/346ddc665b1b67be089a7d5d46edca07
http://dx.doi.org/10.1016/j.websem.2006.11.002
http://doi.acm.org/10.1145/1226736.1226766
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.154
http://www.rawsugar.com/www2006/22.pdf
http://doi.ieeecomputersociety.org/10.1109/CVPR.1997.609407

Enhancing Computer Vision Using the Collective Intelligence of Social Media 271

64. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in

videos. In: ICCV 2003: Proceedings of the Ninth IEEE International Conference on

Computer Vision, p. 1470. IEEE Computer Society, Washington (2003)

65. Sun, Y., Shimada, S., Taniguchi, Y., Kojima, A.: A novel region-based approach to visual

concept modeling using web images. In: ACM Multimedia, 635–638 (2008)

66. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection.

IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998)

67. Torralba, A.B., Murphy, K.P., Freeman, W.T.: Contextual models for object detection

using boosted random fields. In: NIPS (2004)

68. Tsikrika, T., Diou, C., de Vries, A.P., Delopoulos, A.: Image annotation using click-

through data. In: 8th ACM International Conference on Image and Video Retrieval, San-

torini, Greece (2009)

69. Vasconcelos, M., Vasconcelos, N., Carneiro, G.: Weakly supervised top-down image seg-

mentation. In: CVPR, vol. (1), pp. 1001–1006 (2006)

70. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple fea-

tures. In: CVPR, vol. (1), pp. 511–518 (2001)

71. Wang, Z., Feng, D.D., Chi, Z., Xia, T.: Annotating image regions using spatial context.

In: International Symposium on Multimedia, vol. 0, pp. 55–61 (2006),

http://doi.ieeecomputersociety.org/10.1109/ISM.2006.32

72. Wu, L., Hua, X.-S., Yu, N., Ma, W.-Y., Li, S.: Flickr distance. In: ACM Multimedia,

31–40 (2008)

73. Yanai, K.: Generic image classification using visual knowledge on the web. In: ACM

Multimedia, 167–176 (2003)

74. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for clas-

sification of texture and object categories: A comprehensive study. Int. J. Comput. Vi-

sion 73(2), 213–238 (2007),

http://dx.doi.org/10.1007/s11263-006-9794-4

http://doi.ieeecomputersociety.org/10.1109/ISM.2006.32
http://dx.doi.org/10.1007/s11263-006-9794-4

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 273–310.

springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 10

From Extensional Data to Intensional Data:

AXML for XML

Viet Binh Phan, Eric Pardede, and J. Wenny Rahayu

Department of Computer Science and Computer Engineering

La Trobe University, Melbourne VIC 3086, Australia

{vbphan@students,e.pardede@,w.rahayu@}latrobe.edu.au

Abstract. As a data representation language, eXtensible Markup Language

(XML) needs to satisfy new requirements from the rapid development of

Peer-to-Peer architectures and wide use of Web Services. The solution of

this problem is the proposal of Intensional XML Data, such as Active XML

(AXML). AXML consists of normal XML data and embedded Web Service

calls. This extension of XML promises many advantages such as: (1) reus-

able data, (2) dynamic and fresh data, (3) user-oriented and intensive data,

(4) time and bandwidth saving, (5) Web Service invocations simplifica-

tions, (6) sharing computing tasks as well as (7) support for distributed

computing.

This chapter focuses on the introduction of intensional XML data, a new

extension for XML that is able to integrate XML data and Web Services.

Moreover, a current solution for intensional XML that is known as Active

XML (AXML) will be introduced and discussed. Advantages of the new

XML extension and its comparison to traditional XML will be presented

through examples.

1 Introduction

Traditional database systems are well suited to managing and organizing struc-

tured data, and they are also used as one of foundations for building and publish-

ing websites over centralized network architectures and internet. The strength of

these database systems is derived from strict requirements of structured data as

well as their own data formats. However, there is a considerably high cost impli-

cation for data exchange and integration between these database systems, applica-

tions and websites built on top of these database systems. Moreover, there is a

high demand for storing non-structured data which is not well-suited to be stored

inside these database systems. These problems were solved by the emergence of

eXtensible Markup Language (XML).

XML [1] is a text-based language. It is flexible, scalable and it can capture

semi-structured data. These features have caused it to become very popular for data

representation and exchange over the internet. XML is applied as a means to com-

municate between applications over networks, regardless of different platforms.

274 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

XML is also widely used as a repository for non-structured data. It can be said that

XML successfully met the expectations of database communities in the early phase

of the internet, along with centralized architectures.

In the early development stage of the internet, client-server architecture is a

typical model for web applications. Nevertheless, the centralized network models

do not support various properties needed in current web applications, such as ex-

changeability, heterogeneity, scalability of data and autonomous systems. There-

fore, peer-to-peer architectures are proposed as an alternative solution. Many con-

sidered this to be the third developmental stage of the internet. In addition, the

development of peer-to-peer architecture is also supported and facilitated by the

emergence of web services technologies that help to remove the antagonism be-

tween diversified systems and platforms.

In decentralized architectures, each peer is information consumer as well as pro-

vider. Information exchanged between peers is including extensional XML data as

well as XML data that are dynamically generated, constructed and provided by web

services. The issues of how to manage dynamic XML data has become a research

interest by database community. INRIA has proposed ideas that apply “intensional”

XML data to organize and integrate regular XML data and dynamic XML part. The

ideas for intensional data is derived from current well-known implementations such

as embedded JavaScript codes inside HTML files and active database, triggers as

well as stored procedures in Relational Database systems.

In the context of this chapter, intensional XML data are defined as intensive

XML data which are representatives for actual extensional XML data. Intensional

data are information about web services as well as their concrete parameters which

will return corresponding and normal XML data after being activated. In INRIA

proposal, intensional XML data are embedded inside XML documents, those

XML documents then be called Active XML (or AXML for short) [2, 3]. This

new XML extension with special characteristics offers advantages to web technol-

ogy, particularly in peer-to-peer architectures. Moreover, it promises to facilitate

and provide a declarative frame work to integrate data and service.

This chapter will provide basic knowledge about XML as well as AXML and

its applicability. After the introduction, we discuss XML in general in section 2. In

section 3, we talk about Intensional XML Data, which is the bridge between XML

and the solution of AXML. In section 4, details on AXML are provided. In section

5, we briefly discuss alternative solutions to AXML and we conclude this chapter

in section 5.

2 eXtensible Markup Language (XML)

When internet is rapidly widespread, the demands to communicate and exchange

information between applications and data repositories are imperative. With the

rapid increase in the popularity of the internet, the need to facilitate the exchange

of communication between applications and data repositories is imperative.

However, often data formats of diversified database systems are not compatible.

Database communities must spend time and money to find a solution for convert-

ing information between database systems for integration purposes. It is also

From Extensional Data to Intensional Data: AXML for XML 275

necessary to specify concrete applications to convert data between database sys-

tems because each application is only suitable for a specific database system, and

when a new database system is proposed, we have to create new programs to con-

vert data from the new to the old database system. Therefore, the World Wide Web

Consortium (W3C) proposed a new data representation that is simple, exchange-

able, flexible, and can be easily transformed to and from old database systems.

This new kind of data format is known as eXtensible Markup Language (XML). It

is derived from SGML, and was proposed and has been, developed as well as

standardized by the W3C since 1996 [1].

XML can be applied in two main domains: document publishing and informa-

tion exchange. Initially, XML was proposed to confront the challenges of publish-

ing a very large scale of data and exchanging diversified information over the web

and traditional database systems, such as Relational, Object-Oriented and Object-

Relational databases.

2.1 Why XML?

XML is a markup language like SGML and HTML. It has tags, which are flexibly

used to define structure and contain information. However, the advantage of XML

compared with SGML and HTML is that it is not as complex as SGML, and is not

only used to publish documents in web browsers like HTML. To make it more

clear, we will look at the simple example below.

<p>

Mr.

Viet Binh Phan

PhD Candidate

</p>

In HTML, tags are predefined and fixed. Each is used for a specified purpose. In

the example, tag <p> is used for a paragraph,
 specifies the start of a new line,

 is used for bold font. HTML tags are not designed to carry and manage data.

For humans, it is easy to see that information between the first pair of and

 is a person’s name. For machines to extract a name from this HTML docu-

ment, it is possible to find the second pair of tags . Unfortunately, in practice,

this is not simple. For example, there are many tags and in HTML

documents but these tags will contain various information, not only people’s

names. Therefore, it can be said that we cannot propose an algorithm to extract

expected data from HTML documents. However, with XML, this can be solved

simply by covering people’s name between tags <name> and </name>, for instance.

This technique allows a computer to recognise and process information mechani-

cally and effectively.

<person>

 <title >Mr.</title>

 <name>

 <first_name>Viet Binh</first_name>

 <last_name>Phan</last_name>

 </name>

 <status>PhD Candidate</status>

</person>

276 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

It can be seen again that tags in XML are arbitrarily defined by users for their pur-

poses. XML only facilitates to describe tags and specify the related relationship

between them [4]. For example, in the XML document above, there is a root ele-

ment, namely <person>. This element contains three child elements <title>,

<name> and <status>. Element <name> has two children </first_name> and

<last_name>. These children are descendants of <person>.

From these two examples of HTML and XML, it is clear that HTML will not

be replaced by XML; these two markup languages complement each other. XML

will perform the task of describing data and the data will be formatted and dis-

played by HTML over the web.

2.2 Basic Concepts of XML

XML is a meta-language to define other languages such as SVL, MathML and

XSLT [5-7]. The most important characteristic of XML is applying tags to

markup, defining structure and containing data. XML allows users deploying text

to express data and construct the data under a tree-liked structure (see Fig.1).

The extensible feature of XML means that we can define our own set of tags,

organise data according to our preference and design types, relationships and hier-

archies of data to serve our purposes. We can also decide orders, positions and oc-

currence of tags and its own enclosed data.

As semi-structured data, XML is different to a traditional data model where

the data structure must be defined beforehand with fixed data types and lengths. In

addition, all data must comply with constrains specified by their schema. Data

structures in XML are flexible and may not need any pre-defined schema. The

number of data structures is only dependent on our purposes. Therefore, XML can

represent both kinds of data models: structured and semi-structured data. Another

strength of XML is that it provides flexible data representation that assists the ex-

change of information between systems and different database platforms. Besides,

XML schema is changeable and XML data is portable because of its natural char-

acteristics inherited from the semi-structure data model.

Fig. 1. Tree-like structure of XML document

From Extensional Data to Intensional Data: AXML for XML 277

The XML framework is centred around XML documents that are plain text and

formed by tags. A tag is an XML name delimited by two angle brackets. Tags are

used to markup data. Each opening tag is accompanied with a corresponding clos-

ing tag. An XML element is a combination of a pair of opening and closing tags,

enclosing any content such as its attributes data. Data in XML documents can be

represented as a hierarchical tree-like structure that is constituted by nodes. An

XML node can be an element, attribute, processing instruction or text.

We can also see that each element in XML documents has a name identified by

its bounded tags that depict the content. It can be said that elements describe them-

selves. Therefore, XML is also called a self-describing language.

2.2.1 XML Documents Structure

In XML 1.0, XML data is considered to be data objects. However, the term “XML

document” is used because it was based on an earlier standard to compose narra-

tive text for publications [4, 8], regardless of being deployed for information ex-

change or presented to a human audience. XML documents comprise of process-

ing instructions, comments, elements, attributes, parsed entities and un-parsed

entities. The structure of XML documents are explained as follows.

• XML declaration is always placed at the beginning of a document. It starts by

<?xml> and is closed by <?>. It includes version, encoding and standalone

strictly in that order. However, version is the only compulsory component. If

there is no declaration, the XML document will be considered as version 1.0.

An XML declaration will look like this <?xml version="1.0" encod-

ing="UTF-8"?>

• A processing instruction is application-specific information to instruct XML

processors. It is used to indicate that a piece of information is not data in the

document, but it is needed to be passed to the application. A processing in-

struction must be bounded by <?xml> and <?>. The first part of a processing

instruction is the name of the application and the next will be the application

instruction.

• Elements are text encircled by an opening and a closing tag. Elements are ba-

sic data units in XML documents. The first element is called the root node.

Other elements must be contained inside the first element.

• Namespace must be immediately followed by its related element.

• An attribute is a pair of a name and a value related to an element. Attributes

must be placed inside start-tags and close-tags of the elements. Attributes

must have their own value which is enclosed by two single-quotes or two

double-quotes.

• Comments begin with <!--> and end with <-->. An XML processor will ig-

nore parsing information in a comment since it is only used by human readers.

2.2.2 XML Namespace

As previously mentioned, tags in XML are defined by their authors. This offers

flexibility for creating XML documents, but issues arise when we need to

278 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

integrate XML documents from various sources, for example, if we combine two

documents together.

<!— Document 1 -->

<person>

<title >Mr.</title >

……………………………

</person>

<!— Document 2 -->

<book>

<title> Data Quality </title>

…………………………….

</book>

In this instance, a name conflict will occur between title in <person> and title

in <book>. These tag names are designed to express diverse meanings and con-

tents. To solve this problem, W3C introduces the concept of XML namespace to

avoid name conflicts. The idea is that an element name is constructed from two

components. The first is a global name, namely URI namespace and the second is

local name that is the ordinary element’s name. Namespace is declared as attrib-

utes of associated elements by xmlns keyword with the syntax

xmlns:prefix=“URI”, shown as follows.

<rootElement>

 <p:person xmlns:p=”http://www.latrobe.edu.au/personName”>

 <p:title >Mr.</p:title >

 ……………………………

 </p:person>

 <b:book xmlns:b=”http://www.latrobe.edu.au/bookTitle” >

 <b:title>Data Quality</b:title>

 …………………………….

 </b:book>

</rootElement>

In common practice, XML namespaces are defined as attributes inside root ele-

ments. For illustration, the same XML document above can be rewritten as

follows.

<rootElement xmlns:p=”http://www.latrobe.edu.au/personName”

xmlns:b=”http://www.latrobe.edu.au/bookTitle”>

 <p:person>

 <p:title >Mr.</p:title >

 ……………………………

 </p:person>

 <b:book>

 <b:title> Data Quality </b:title>

 ……………………………

 </b:book>

</rootElement>

From Extensional Data to Intensional Data: AXML for XML 279

2.2.3 XML Model

A data model is a set of building blocks to construct the data structure and a set of

regulations to stipulate the data relationship. In XML, basic units are elements and

data is organized as a tree-like structure. Each element has a parent-child and sib-

ling-sibling relationship to other elements. Elements that have both text and other

elements are called to have mixed content such as in the following Fig.2.

doc

os

os

Windows 3.1

Windows Vista

and

are belonged to Microsoft Corporation

<doc>

 <os> Window 3.1</os> and

<os>Window Vista</os> are

belonged to Microsoft

Corporation.

</doc>

Fig. 2. The conceptual XML document structure

2.2.4 Well-Formed and Valid XML Documents

Although XML is self-describing flexible language, it is still controlled by some

basic requirements. Based on how well XML documents conform to the approved

requirements, these XML documents are classified into two possible levels: well-

formed and valid XML documents. A well-formed document is one which meets

all basic rules to declare its entities. The rules are listed below.

• Every XML document must have one and only one root element.

• Each open-tag must be accompanied by and enclosed with a corresponding

close-tag.

• Every element has to be appropriately nested. Intersection of two arbitrary

elements must be empty or be one of these elements.

• Elements’ name must obey naming convention. For example, the first char-

acter must be a letter, but not numbers or punctuation characters. The name

must not contain any space or reserved characters such as <. The name is

not allowed to start with phrase xml (uppercase, lowercase or mixed).

Documents which do not satisfy these rules are not XML documents [9]. Only

well-formed documents can be parsed and interpreted by XML parsers. If the

structure of a well-formed XML document obeys a DTD or XML schema, the

document is called a valid XML document.

2.2.5 XML Classifications

In respect to contained data, XML documents can be divided into two classes:

data-centric and document-centric. Data-centric documents convey structured data

280 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

in which the order of data is not important and mixed content is not allowed, such

as information on product orders. It can be said that data-centric documents de-

scribe and organize information similar to traditional database systems.

Document-centric documents contain unstructured data such as book contents,

for instance. In document-centric documents, the order of data and elements are

very important and must be obeyed. Moreover, these documents can contain

mixed contents.

The following two XML documents, orders.xml and books.xml, will provide

an example of typical data-centric and document-centric classes.

<!--orders.xml is data centric XML -->

<orders>

 <order>

 <orderNumber></orderNumber>

 <orderDate></orderDate>

 <customer customerId= “1000”>

 <customerName>John</customerName>

 <customerAddress>John</customerAddress>

 </customer>

 <item itemId= “1234”>

 <itemName>Table</itemName>

 <price>200</price>

 <quantity>3</quantity>

 </item>

 <item itemId= “4321”>

 <itemName>Chair</itemName>

 <price>100</price>

 <quantity>12</quantity>

 </item>

 </order>

</orders>

<!--books.xml is data centric XML -->

<books>

 <book isbn=”12345678”>

 <title>Open and Novel issues in XML Database Applica-

tion</title>

 <editor>Eric Pardede</editor>

 <chapter chapterNo=”1” chapTitle=”Closing the gap between

XML and Relational Database Technology: State-of-the-

Practice, State-of-the-Art and Future Directions”>

 <author>Mary ann Malloy</author>

 <author>IrenaMlynkova</author>

 <abstract>AS XML technologies have become a standard

for data representation ………</abstract>

 <content> ……………………………………. </content>

 </chapter>

 </book>

</books>

From Extensional Data to Intensional Data: AXML for XML 281

2.3 XPath and XQuery

In the previous sections, we have discussed basic concepts and the logical and

physical structure of XML. Next, we will investigate how to exploit XML data

with common XML languages using XPath and XQuery.

XPath is one of the most typical XML query languages. It was recommended

and released on 16 November 1999 by W3C. Primitively, this language applies

XPath expressions for locating and exacting fragments of XML document. The

notion of an XPath expression is quite similar to the concepts of path in DOS. The

abbreviation dot (.) is used to specify a self-node and double dots (..) for a parent-

node of a context node.

XPath can be used to specify path to node(s), and extract and return one or

many nodes that satisfies users’ pre-conditions. There are two types of XPath ex-

pressions: relative and absolute expression. Absolute expressions specify the path

to locate XML fragments from root nodes and always starts with a slash (/),

whereas, relative expressions will start from the location of the current element.

For example, /element1/element2/…/elementN is an absolute XPath expres-

sion, and element1/element2/…/elementN is a relative one. In XPath expres-

sions, every element following an elementK must be descendants of the elementK.

To illustrate XPath, we will consider some examples of XML documents

orders.xml as follows:

<?xml version="1.0"?>

<Orders>

 <Order OrderNo="1047">

 <OrderDate>2002-03-26</OrderDate>

 <Customer>John Costello</Customer>

 <Item>

 <Product ProductID="1" UnitPrice="70">Chair </Product>

 <Quantity>6</Quantity>

 </Item>

 <Item>

 <Product ProductID="2" UnitPrice="250">Desk </Product>

 <Quantity>1</Quantity>

 </Item>

 </Order>

</Orders>

XPath expression /Orders selects all child node of the root node Orders. The ex-

pression can also be written in unabbreviated /child::Orders. Similarly, these

two XPath expressions /child::Orders/child::Order/child::Item and

/Orders/ Order/Item are equivalent. These expressions will locate all child

nodes of item.

To extract a descendant of a node, we can declare keyword descendant or use

double slash (//). To illustrate, child::Orders/child::Order/child :Item/

child::Quantity is the same as Orders//Quantity.

To extract attributes, the key word attribute or abbreviated as @ is needed to

be declared before the attribute name. Expression /Orders/ Order/Item/Product

/attribute::ProductId or /Orders/Order/Item/ Product/@ProductId will

return the value of attribute ProductId.

282 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

The key word parent or abbreviated as double dots (..) can be used to go

backward and return to the parent node of the context node. The expression

../Quantity or parent::Quantity will return node Item, which is the parent

node of Quantity.

An asterisk abbreviator (*) is applied to specify nodes with arbitrary names. For

example, Order/*/* will return all grandchild nodes of Order element.

In the previous example, every specified node in the XPath expressions will be

returned. However, we can restrict the nodes returned by attaching conditions to

the XPath expression. These conditions must be placed inside an open and a

closed square bracket.

General XPath expressions can be formalized as a non-empty string

</or//><step/>… <step/><step>. Abbreviations in this expression are ex-

plained as follows:

• Everything inside a pair of angle brackets may exist or may not exist.

• In each XPath expression, double slash only appears once.

• </or//> can be / or //

• <Step> can be

o Parent or child descendant

o ancestor or following-sibling
o preceding-sibling

o following or preceding or attribute
o namespace
o self or descendant-or-self or ancestor-or-self then

::element-name

o *
o element-name

o element-name[Condition] Where [Condition] can be a posi-

tion test expression or a contained element expression test or an at-

tribute test expression or a Boolean test expression or a combination

of these tests/or//

XPath also provides functions to assist in extracting information and filtering

nodes. These functions are divided into four groups, namely set functions, string

functions, boolean functions and number functions. They can be applied in con-

dition to restrict the nodes returned. More information about XPath can be

found at http://www.w3.org/TR/xpath.

XQuery is another XML query language which is an extension of XPath and

recommended by W3C in January 2007. XQuery is considered to be the most

popular and important query language for XML-like SQL in traditional relational

database systems. Both XPath and XQuery are applied to navigate, locate and ex-

tract XML fragments. These XML languages can be applied to extract data for

web services, transform to HTML or XHTML by XSLT, search web documents

and generate summary reports [7].

XQuery and XPath have the same data model that is described as a “node-

labelled, tree-constructor representation” [10]. Each XQuery expression can be a

From Extensional Data to Intensional Data: AXML for XML 283

combination of XPath expressions, element constructors, FLWOR expressions,

list expressions, data-type expressions and conditional and qualified expressions.

It is also noted that XQuery supports all XPath operators and functions.

Path expressions are one of the most frequently used expressions in XQuery.

These expressions are usually used with collection()and doc() functions. The

two functions are employed to open an XML collection or an XML file. The

XQuery path expression doc(“oders.xml”)/Orders/Order will return all items in

orders.xml.

Predicate is also applied in XQuery to restrict the data returned. For example, to

extract items that have Quantity>100, we will use the expression

doc(“oders.xml”)/Orders/Order/Item[Quantity>100].

FLWOR expression is considered to be the spirit of XQuery. The abbreviated

word “FLWOR” stands for For, Let, Where, Order by and Return. This expression

is very similar to the Select ... From clause in traditional database systems. The

for clause in XML is like the select clause in SQL. Path expression with the

doc() function is similar to From in SQL. The where and order by clauses appear

in both languages and have the same meaning. The let clause is used to assign a

value to a variable or to declare a variable. The return clause is applied to give

satisfying results back to users. For example, to list all items in orders.xml, we

can use the XQuery expression below

for $x in doc(“orders.xml”)/Orders/Order

Order by $x

Return $x/Item

An XQuery expression does not only return fragments of XML documents, it can

also construct a new valid XML element by inserting literal start and end tags in

proper positions inside the XQuery. An XQuery expression is also able to define

results ordered in HTML form

<!--XQuery Expression-->

<List_Of_Customers>

{for $x in doc("orders.xml")/Orders/Order

 return $x/Customer}

</List_Of_Customers>

<!--XQuery Result-->

<List_Of_Customers>

 <Customer>John Costello</Customer>

<List_Of_Customers>

<!--XQuery Expression for HTML result format-->

<html>

 <h1>Ordered Items</h1>

 <body>

 {for $x in doc(“orders.xml”)/Orders/Order

 return {$x/Item}}

 </body>

</html>

284 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

<!--XQuery Results in HTML format-->

<html>

 <h1>Ordered Items</h1>

 <body>

 <Item>

 <Product ProductID="1" UnitPrice="70">Chair</Product>

 <Quantity>6</Quantity>

 </Item>

 <Item>

 <Product ProductID="2" UnitPrice="250">Desk</Product>

 <Quantity>100</Quantity>

 </Item>

 </body>

</html>

Conditional clauses in XQuery are defined by the if-then-else statement.

Other functions and operators can also be used in conditional clauses to filter data

as shown in the example below.

<Large_Quantity>

 {for $x in doc(“orders.xml”)/Orders/Order

 return

 if ($x/Item/Quantity >50)

 then data($x/Item)

 else ()}

</Large_Quantity>

In this expression, the return statement is governed by an if statement. Only

Item that has Quantity greater than 50 will be extracted. Note that parentheses

must be used to cover if and else expressions.

List expressions in XQuery can be constant lists (1, 3, 5, 7), integer ranges

1 to 10, or an XPath expression. Moreover, the list can be constructed from un-

ion, intersect, except operators, functions such as remove, index-of,

count, etc. The expression below shows an example of using list expressions.

<!--XQuery Expression using list-->

<html>

 <body>

 <h1>List Example</h1>

 {for $x in (1, 2, 3, doc("orders.xml")/Orders/

Order/Item, 4, 5)

 return {$x}}

 </body>

</html>

From Extensional Data to Intensional Data: AXML for XML 285

<!--XQuery list result-->

<html>

 <body>

 <h1>List Example</h1>

 1

 2

 3

 <Item>

 <Product ProductID="1" UnitPrice="70">Chair</Product>

 <Quantity>6</Quantity>

 </Item>

 <Item>

 <Product ProductID="2" UnitPrice="250">Desk</Product>

 <Quantity>100</Quantity>

 </Item>

 4

 5

 </body>

</html>

Quantified expressions including some-in-satisfies and every-in-satisfies

are used in XQuery as a combination with the list expression. As an example,

the following XQuery expression will list all the customers who have a first name

“John” as well as their order date.

<Customer_John>

 {for $x in doc(“orders.xml”)/Orders/Order

 where some $y in $x/Customer satisfies contain($y, “John”)

 return

 $x/Customer

 $x/OrederDate}

</Customer_John >

In the first section of this chapter, we briefly described XML foundations such as

XML document structure, XML namespace, XML data models and well-formed

documents. XQuery and XPath, two typical XML languages are also introduced in

the latter part of this section. As discussed at the beginning of this chapter, XML

must extend its capabilities in order to be applied in the third developmental stage

of the internet. In the next section, we will investigate the reasons and the motiva-

tion for the development of the new XML extension.

3 Intensional XML Data

The history of internet development can be divided into three distinct periods:

(1) the primitive stage, (2) the appearance of the World Wide Web and (3) the

286 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

innovation of Peer-to-Peer networking technology [11]. In the first stage, the inter-

net was mostly used by researchers and IT professionals. In the second stage,

WWW technologies impacted a large number of internet applications in the real

world. XML and XML-based techniques were invented, developed and widely

deployed in this period. It is clear that the interests of researchers and IT technolo-

gies were predominantly centred around client/server architectures.

However, the rapid development of peer-to-peer networking technology as well

as the development of the capability to transfer data over the internet increased the

need to share information in the commerce community, for research and for per-

sonal uses [12, 13]. Besides, there are many different platforms, diversified pro-

grams used to produce information so these can cause many problems to data ex-

change over the internet.

Therefore, web services were proposed as a new paradigm to integrate web-

based applications, and were used as an effective tool to remove the antagonism of

diversified systems and platforms. Web services have become one of the most im-

portant information providers over the internet. These sources of information are

heterogeneous, independent, autonomous and very scalable.

Hence, it can be seen that the third period of internet development raises issues

regarding the integration and management of large scale data from autonomous

and heterogeneous resources. Problems such as how to reduce bandwidth usage, to

apply a single query to retrieve information across multiple and diversified

sources of databases etc. and the cost of sharing files motivated the proposal for a

new XML extension. This extension must be able to manage regular XML data as

well as dynamic parts of XML data that is so-called intensional data.

Intensional data can be seen as meta-data that provides information used to re-

trieve explicit data from web services. The intensional data facilitates, instructs

and provides the means for retrieving explicit XML data from multiple sources

and web services. Based on ideas about intensional data, in Active XML proposed

by the INRIA group [2, 3], intensional data are information about web services,

their parameters and other properties to activate those web services and material-

ize returned results. Using Active XML instead of regular one, many applications

can be built more effectively. The following scenarios will illustrate how inten-

sional data can be used in the context of a local newspaper, a Real Estate Agent

and a hospital.

Scenario 1: A Local Newspaper Homepage Content [14]

The homepage of a newspaper comprises: (1) explicit data such as the newspa-

per’s name, the current date and time, etc. and (2) implicit data such as the

weather forecast and local events. In this scenario, it is easy to see that information

about weather and local events should not be given extensionally because this in-

formation only makes sense at a specific time (see [14]). This information is usu-

ally retrieved by web service calls.

Scenario 2: Collaborative Management for a Real Estate Agency [15]

A real estate agency wants to design a database to manage, facilitate and provide

collaborative and mobile workspaces for their staff as well as information to

From Extensional Data to Intensional Data: AXML for XML 287

customers [15]. Each staff member can access their related documents, create new

information and insert these into documents from their portable devices such as

mobile phones and laptops via internet.

In this scenario, the most suitable solution is using intensional data on peer-to-

peer architecture because it reduces overload on the central server and each peer

can have their own initiative and independency. [15] proposes and organizes the

following approach. The database is divided into 3 separate documents including

properties, requests and status (see Fig. 3). These documents contain comprehen-

sive information about properties for sale managed by the real estate. This infor-

mation will be updated on the central repository. Staff can also examine this in-

formation on the central database. All information will be exchanged and

organized between peers and the central repository by intensional information via

web services (see [15]).

AXML

Document

name

Content Enclosed Services

to Access Document

Properties.xml

<properties>

 <property propID=”344” type=”studio”>

 <status> …</status>

 <assign>…</assign>

 ………………

 <maybeClients>…</maybeClients>

 </property>

</properties>

getProperties(assignedTo, type,

location. price)

getPicture(proID)

addClient(propID, clientDescr,

by)

Requests.xml

<requests>

 <type> Villa</type>

 <price> ….</price>

 ………………

</requests>

getRequest(reqDescr)

putRequest(reqDescr , han-

dleBy)

allStatus.xml

<allStatus>

 <propStatus propID=”344” up-

dated=”3/2/03” status=”open”/>

 ………………

<allStatus>

getStatus(propID)

updStatus(propID)

Fig. 3. AXML Documents and Web services for a Real Estate Agency

Scenario 3: Electronic Patient Record Management [16]

Electronic Patient Record (EPR) is a document under the control of a number of

peers such as hospitals, patients, insurance companies, and the Department of

Health. These peers exist on remote mobile devices, computers and servers. These

peers can be information providers as well as consumers. Patients can add or re-

move their information. Doctor and Nursers can access this information with some

restrictions. Moreover, all data can be controlled and monitored by hospitals, in-

surance companies and Department of Health. (see [16], Fig.4). In this scenario,

each peer works independently of other peers. The patients’ information is distrib-

uted by these peers. That information can also be arbitrarily updated at anytime by

peers such as patient’s monitoring device, hospital. Therefore, the scenario is

288 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

suitable to applying intensional data. Patients’ information will be contributed by

peers via web services. Using dynamic XML data assists and guarantees that data

retrieved from each peer is up-to-date and correct at anytime.

Fig. 4. Models and Relation between peers in EPR

Scenario 4: Organizing Personal Auction Page [17]

A person wants to use a simple page and available web services provided by

www.auction.com to organize and manage information of specified categories of

auction as well as current offers in those categories. This simple page will be used

for their personal observation on their interested auction categories. It can be seen

that categories for auction are stable but items offered in those categories can be

changed every day. Therefore, the database for the personal page should be

AXML because active XML guarantees fresh data at any time.

Intensional data is used and accompanied by support of web services. Inten-

sional data can be applied in centralized architectures but in that case, the power

of intensional data may not be fully exploited because only the central servers take

the responsibility to provide web services as well as information.

Intensional data has a more powerful impact in peer-to-peer models. It will ap-

ply and take advantages of the power of peers and web services in contributing

and consuming data. From the scenarios presented above, some advantages of ap-

plying intensional data can be seen as follows.

• Intensional data assists data re-use. For example, in scenario 1, the edi-

tors do not need to regularly update information about weather or cur-

rency exchange rates. They only need to subscribe to web services such

as Weather Forecast web sites and credible banks and offer this corre-

sponding service to their readers. This allows organizations and individu-

als to share and re-use data.

From Extensional Data to Intensional Data: AXML for XML 289

• The dynamic data enables end-users to receive both extensional informa-

tion and intensional data. This allows the users to retrieve corresponding

data only when they need that information. Furthermore, it is known that

data in real life are changeable such as information about weather, ex-

change rates and headline news. Therefore, using static data such as static

XML may lead to outdated information whereas using an intensional data

approach ensures dynamic and fresh data.

• Intensional data can carry more information than extensional data. It is

because intensional information is concise so it provides end users with

high and intensive contents. This kind of information enables users to ob-

tain their needed extensional data independently and directly from the

original sources. Popular example is the use of intensional data in search

engines such as Google and Yahoo.

• In most cases, full extensional information contains a large amount of

complex data that may distract users. Moreover, in many cases, lots of

data found and retrieved are not really useful and even never used. For

those reasons, data should be summarized and sent to end users. Com-

mon example are the returned results from search engines such as in

Google and Yahoo. Another example is the organization of information

in online newspapers. Fully listed news is not necessary as this will make

it difficult for the readers to easily find the news topics in which they are

interested. Therefore, news in the newspaper is given intensionally by be-

ing classified in groups. Each group contains a headline (intensional data)

of concrete news.

• Another advantage from using intensional data is that it can assist to

share computing tasks between information providers and consumers be-

cause server sides (information providers) can send intensional data to

client (information requesters) instead of computing, processing and ma-

terializing results, then requesters will be responsible to process and ma-

terialize their needed data. It may help to reduce overload at server sides

or information providers.

• Applying an intensional data approach reduces communication costs. To

illustrate, we will consider the example below.

Using an example from scenario 1, with a traditional database, when a reader re-

quests information for local cultural events in Cabramatta, Sydney – Australia, the

newspaper server will send the request to TimeOut.com server.

The TimeOut.com server has to look for local cultural events at the

http://www.timeoutsydney.com.au/ server and so on until the requested informa-

tion has been found. Then, extensional data for the request will be gradually sent

back (see Figure 5 A). However, using intensional data, the result will be returned

intensionally (see Figure5 B). The extensional data retrieved do not need to be

conveyed over intermediate servers and the readers will be given extensional data

directly from the system An. Therefore, it can be said that intensional data assists

in reducing communication costs [17].

290 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

Reader Local

Newspaper

TimeOut.com TimeOutSydney.com.au System An ……

Request

Reader Local

Newspaper

TimeOut.com TimeOutSydney.com.au System An ……

Request Request Request Request

Returned data

Request Request Request Request Request

Returned data Returned data Returned data Returned data

Returned data

A

B

Fig. 5. Communication Cost Saving through intensional XML

• Intensional data assists to simplify web service invocation. Instead of

programming complex software to call web services, we only need to

create simple intensional documents that contain embedded web services

calls. Programmers do not need to control piping. It is simple to create

the intensional documents that consist of web services where the parame-

ters of these web service are other web services [2]. In addition, end users

can generalize the use of web services because they reemploy these ser-

vices frequently.

Briefly, intensional XML data can offer advantages including: applicable to share

computing tasks between peers, integrate and manage heterogeneous, autono-

mous, large scale and dynamic XML data, data re-use, user-oriented and intensive

data, save time and bandwidth, support distributed computing and simplifying web

services uses.

From the scenarios and corresponding advantages discussed, it is easy to see

that XML should be extended through the inclusion of new features such as sup-

porting intensional data to satisfy the needs of the development of web technolo-

gies, peer-to-peer architecture and web services in the third developmental period

of the internet. In the next section, we will introduce a solution to support, man-

age, and integrate both regular and dynamic XML data known as active XML.

4 Active XML Solution

In this section, we discuss Active XML for the management of static and dynamic

XML data.

From Extensional Data to Intensional Data: AXML for XML 291

4.1 AXML Basic Concepts

As discussed in previous sections, the development of the internet, network archi-

tectures and web services lead to the proposal for a new class of XML called Ac-

tive XML (AXML) [2], a declarative framework to connect and exploit advances

in web services in peer-to-peer architecture. AXML framework provides the

means for data and services integration, facilitates for peer-to-peer architectures

which are considered as effective approaches to solve heterogeneity, inter-

operability, autonomy, scalability and independence of sources [17]. In addition, it

can be said that AXML arose from ideas to employ concepts of stored procedures

and triggers in Relational Database Systems to XML.

The core of AXML is AXML documents, which are a particular class of XML

documents. They contain both regular XML data and extraordinary and abstract

data known as embedded web service calls or programs. These web services and

programs are intensional data, and can be considered as remote procedures like

triggers in Relational Database systems.

These embedded service calls will enrich the original document by returning

results when services are activated. One of the most important reason for the exis-

tence of intensional documents is to enable web services invocation from any-

where on the web. Therefore, it is not essential to exchange and send whole

documents with fully extensional data.

When an embedded service is invoked, a process known as Materialization will

be started. This process will evaluate program(s) corresponding with the service

call. Then, returning results will be added or will replace the intensional data. It is

noted that the returned results can be both extensional and other intensional infor-

mation. Figure 6 is a description for a fragment of AXML tree before and after in-

voking a service call.

Node

Web Service

call Node
Node

Method Parametrs

Node

Web Service

call Node
Results

Method Parametrs

Node

Results Node

Case 1

Case 2

Node
(A)

(B)

Fig. 6. AXML Tree Before and After Web Service Activation

292 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

The following example is an AXML document [14] containing two dynamic

parts which are the elements <weather> and <exhibits>. These elements are two

web service calls “forecast@weather.com” and “getEvents@TimeOut.com” to-

gether with their corresponding parameters.

<?xml version="1.0" encoding="UTF-8" ?>

<newspaper xmlns="http://lemonde.fr"

 xmlns:rss="http://purl.org/rss"

 xmlns:axml="http://activexml.net">

 <title>Le Monde</title>

 <date>2-Apr-2003</date>

 <edition>Paris</edition>

 <weather>

 % service call

 <axml:call service=forecast@weather.com >

 <city>Paris</city>

 <unit>Celsius</unit>

 </axml:call>

 </weather>

 <exhibits>

 % service call

 <axml:call service=getEvents@TimeOut.com>

 exhibits

 </axml:call>

 </exhibits>

 <stories>

 <rss:item id="cx_ah_0_218">

 <rss:title>Google goes Blog-Crazy</rss:title>

 <rss:pubDate>

 Feb 18, 2003 10:36:03 GMT

 </rss:pubDate>

 <rss:description>

 Google just acquired Pyra labs,

 the company that makes Blogger.

 </rss:description>

 </rss:item>

...

 </stories>

</newspaper>

After activating the web service forecast@weather.com [14], the web service call

in the element <weather> will be replaced by its corresponding returned results.

The piece of AXML document will be:

...

<weather>

 <temp>16</temp>

</weather>

...

Service call elements are the heart of AXML documents. They are special ele-

ments with functions to manage intensional information. Therefore, elements con-

sist of particular attributes and elements. Generally, service call elements are de-

noted by the <sc> tag. These elements contain children elements and attributes to

define the web service to invoke, the invocation methods and the parameters and

methods for handling returned results.

From Extensional Data to Intensional Data: AXML for XML 293

Service calls stored inside AXML documents can be classified into three

groups:

• Web service calls to any web services on the web, for example, the invo-

cations to web services provided by Amazon.com.

• Web service calls to a peer-to-peer network.

• Continuous service calls that can deliver a stream of data including re-

quests, parameters and returning results. End of streams will be notified

by special and adopted signals like End-Of-Stream [18]. These embedded

web services can be available web services that are provided by third par-

ties. They can also be declared by XML Query Languages inside AXML

documents [3, 17]. For example, the AXML document below contains

service calls defined by X-OQL [18].

<!-- Original AXML Document -->

<example xmlns:axml="http://futurs.inria.fr/gemo/axml/">

 <axml:sc axml:id="simple">

 <axml:return>

 <axml:append/>

 </axml:return>

 <axml:ws-soap endpoint="http://localhost:6969

 /MyPeer/services/GenericQueryService">

 <q:executeGenericQuery xmlns:q="http:// fu

 turs.inria.fr/gemo/axml/service/Query">

 <q:declaration>

 for $x in doc(’/db/bookstore3.xml’)/*/*

 return $x

 </q:declaration>

 </q:executeGenericQuery>

 </axml:ws-soap>

 </axml:sc>

</example>

<!—Document after service call invocation -->

<example xmlns:axml="http://futurs.inria.fr/gemo/axml/">

 <axml:sc axml:id="simple"

 activated="2008-04-08T11:30:01.656+02:00">

 <axml:activation status="TERMINATED"/>

 <axml:return>

 <axml:append/>

 </axml:return>

 <axml:ws-soap endpoint="http://localhost:

 6969/MyPeer/services/GenericQueryService">

 <q:executeGenericQuery xmlns:q="http://futurs.

 inria.fr/gemo/axml/service/Query">

 <q:declaration>

 for $x in doc(’/db/bookstore3.xml’)

 /*/* return $x

 </q:declaration>

 </q:executeGenericQuery>

 </axml:ws-soap>

 </axml:sc>

294 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

 <book axml:origin="simple" axml:timestamp="2008-04-

 08T12:40:42.765+02:00"category="COOKING3">

 <title lang="en">Everyday Italian2</title>

 <author>Giada De Laurentiis3</author>

</book>

 <book axml:origin="simple" axml:timestamp="2008-04-

 08T12:40:42.765+02:00"category="CHILDREN3">

 <title lang="en">Harry Potter2</title>

 <author>J K. Rowling2</author>

 </book>

</example>

Based on the AXML initiative proposed by INRIA, currently three AXML sys-

tems have been built. The first is an experimental AXML system built by an Ac-

tive XML group from INRIA. The second is an AXML system built on top of an

Object Relational Database system. The final one is an implementation of the

AXML peer-for -2ME-peer platform. We will introduce each of these systems in

the following section.

4.2 AXML Projects

This is the first project to propose the idea of deploying intensional data in XML

database systems. Researchers from INRIA used a local newspaper scenario as an

experimentation set-up for their AXML framework. The home page of a local

newspaper will expose extensional information such as the name of the newspaper

and the current date. The weather forecast and a list of exhibitions are displayed

by intensional information by invoking web services provided by timeOut.com

and weatherForecast.com. This intensional information will be materialised when

it is needed by calling the corresponding web services.

Architectures. The experimental AXML system is built by relying on current

technologies including XML, Web, Web service, SOAP and WSDL [14]. To build

the AXML system, four software programs are deployed: Tomcat 5.5, eXist,

Axis2 and AXML service calls execution engine [18]. There are three cases to

combine these components, and the AXML system is configured with a peer-to-

peer network (See Fig.8).

Fig. 7. AXML Peer Architecture

From Extensional Data to Intensional Data: AXML for XML 295

Each AXML peer is a repository of AXML documents. In the system, each

AXML peer performs three functions: web server, client and engine (See Fig.7).

To play the role of server side, each peer provides services including algebra

(SendOperator, ReceiveOperator and NewNodeOperator), a query service

(GenericQueryService) to execute queries, and a materialization service that pro-

vides an entry point to activate AXML documents. Playing the role of client side,

each peer is equipped with a SOAP client, and web interfaces to assess, optimize

and access AXML documents. As an engine, AXML peer includes a database

access layer, a document manager for organizing AXML documents, and

materializers that provide information on how to evaluate AXML documents [18].

Fig. 8. Components Configurations

Important Operators. In this AXML system (see [18]), the AXML peer is

equipped with essential web services :

• RECEIVE: to get and manage returning results from a service call.

• SEND: to pass data to a specified address.

• NEW NODE: to create and install the new AXML data peer’s repository

• MATERIALIZE: to contain various operations such as evaluate (to mate-

rialize the document in a depth first manner), evaluateNode (to material-

ize the document starting at a specified node), activate (to activate a

specified service call), etc.

• GenericQueryService: to implement a stream processing engine. It re-

ceives a query declaration and parameter streams and answers XQueries

over the database

296 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

• DummyStreamService: to test the streamed back results of a specified

query.

• OptimaxService: to act as a distributed query optimizer. Given an active

document, the web service transforms it into a distributed plan. The

documents that have service calls to GenericQueryService are candidates

for optimization with this web service.

AXML peers collaboration (see Fig.9 & Fig.10). In this AXML system, AXML

peers will be able to collaborate with other peers, as well as:

• Exchange a message, a peer can send request messages to other peers and

get returning results that are conveyed by SOAP messages.

• Materialize some service calls before responding to produce more results.

• Optimize requested queries. Incoming SOAP messages will be optimized

to bring results from the whole peer-to-peer network quicker.

• Evaluate active documents.

• Serve as an integrator of results from several web services.

Fig. 9. AXML architecture

Fig. 10. Peer Interactions

From Extensional Data to Intensional Data: AXML for XML 297

Service calls element. The syntax of service calls complies with normal regula-

tions to declare XML elements. However, the service call elements contain some

special attributes. The service call is tagged as <sc> with axml prefix. Their attrib-

utes include services to call, methods of service invocation and methods to man-

age returned results. Parameters of service calls are usually stored as children of

the service calls.

Services calls consist of five attributes: (i) Service URL, which is the end point

URL of the service; (ii) serviceNameSpace, which is used for the body of the

SOAP message; (iii) methodName, which is the name of operation to invoke the

service; (iv) signature, which is the URL of WSDL file for the service; and (v)

useWSDLD, which is a boolean value that stipulates whether or not to perform

type validation.

Methods of service invocation are specified by six attributes: (i) id, which is a

unique value of the service call; (ii) name, which assigns the service call with a

name; (iii) frequency, which stipulates the interval to invoke the service; (iv) call-

able, which is a boolean value which specifies whether or not to allow another

AXML peer to activate the service; (v) lastCalled, which is the storing time of the

last service activation; and (vi) followedBy, which indicates the next service call

that will be activated after completing activation of the current service.

Methods to manage returned results consist of two attributes: (i) mode, which is

the stipulation of storing returned results, and (ii) doNesting, which is the history

of previous results inserted.

Parameters must be presented for every service call. If a service does not have

any parameter, this parameter element will be declared with an empty content. Pa-

rameters can be concrete values or an XPath expression. If there are many parame-

ters for a service call, these parameters must be in order as specified.

Management of activation of service calls. AXML systems embed service calls

and manage activation of service calls. Therefore, it is easy to see that controlling

service calls activation is one of the most important issues in AXML systems.

Methods to activate service calls are specified by a frequency attribute. The at-

tribute can be (i) once, where the service call is being activated only one time

when start-up an AXML peer, (ii) lazy, where the service call is being activated by

user demands, (iii) on “DATE”, where the service is activated exactly on a speci-

fied date and time and (iv) every “TIME INTERVAL”, where the service is acti-

vated after a certain time interval in seconds [19].

The attribute callable has two values, “true” and “false”. If this attribute is

“false”, the corresponding service will never be activated.

The history of the last service call activated is also kept by the attribute last-

Called and set by the AXML system. This attribute is usually used for frequently

activated services.

For the chain activation, the attribute followedBy is applied to indicate that the

service will be invoked after completing the current service.

It is noted that an invocation of a service call can retrieve results containing

other service calls that may need to be activated and so forth. Therefore, this will

result in recursive and infinite calls, so systems need to restrict these activations

by limited intervals (see [2]).

298 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

Continuous service calls. In an auction scenario, to have information about of-

fers, the service getOffers(“Toy”) will be automatically activated daily. These

kinds of service calls are called ‘continuous service’ calls. The process of a con-

tinuous service call generally consists of three steps [19].

1. A requester peer registers a subscription to a service provider containing

desired continuous service calls,

2. The service provider will automatically evaluate the service after TIME

INTERVAL and send the results to the requester peer,

3. The requester peer receives and merges the results as stipulation specified

by mode attribute.

Continuous service calls assist client sides not to repeatedly activate the same ser-

vice calls. However, the service can result in overhead for the provider sides be-

cause of periodically implementing the service call, generating data, and sending

data back to the requesters.

Managing and Passing Parameters. When a peer invokes a service, it will use

SOAP protocol as an envelop to send requests. The invocation may enclose pa-

rameter(s). Normally, the parameters in AXML documents will be organized as

children of a service call (see Fig.6). Parameters of service calls can be explicitly

stated or given intensionally by using XPath. Two AXML documents (see [17])

listed below are examples for extensional and intensional parameters.

<!-- Stating parameters explicitly -->

<axml id=user"25"> Welcome to mypeer com!

 <category name="Toys">

 <sc>auction.com/getOffers("Toy")</sc>

 </category>

 <category name="Glassware">

 <sc>eBay.com/getAuctions("Glassware")</sc>

 </category>

</axml>

<!-- Stating parameters using XPath -->

<axml id=user"25"> Welcome to mypeer com!

 <category name="Toys">

 <sc>auction.com/getOffers([../@name/text()])</sc>

 </category>

 <category name="Glassware">

 <sc>eBay.com/getAuctions("Glassware")</sc>

 </category>

</axml>

It is noticed that when there is more than one instance matched with the given

XPath expression, the service call will be repeatedly activated for every matched

parameter. Particularly, parameters may not only be a simple string like the previ-

ous examples, but can also be an AXML document. It also contains other web ser-

vice calls. As an example of an auction, before allowing user “25” to bid for an

item, it may be necessary to check the user’s balance. Hence, an additional service

call will be invoked by activating a service call bank.com/getBudget(user”25”).

The illustration is shown in the example below.

From Extensional Data to Intensional Data: AXML for XML 299

<axml id=user"25"> Welcome to mypeer com!

<category name="Toys">

<sc>

auction.com/getOffers([../@name/

text()], <sc>bank.com/getBudget(user"25")</sc>)

</sc>

<category>

<category name="Glassware">

<sc>eBay.com/getAuctions("Glassware")</sc>

<category>

</axml>

Managing returned results. Results that are returned after activating a service

call can be managed in several different ways. In [17-19], received results can re-

place or be appended as a sibling of a corresponding service call. The method of

management of results is specified by the attribute mode, with two values includ-

ing replace and merge. The doNesting attribute is employed to keep track of pre-

viously inserted results. To manage the life-span of these results, [17] specifies

that a time-stamp can be added to the results as a special attribute, namely

expiresOn.

[2, 18] summarize that decisions must be made in relation to performance, ca-

pabilities, securities and functionality when undertaking materialization of inten-

sional data: To control the materialization process, AXML project developers only

employ XML schema.

Storing AXML documents: In the AXML project, all AXML documents are

stored by using a file-systems directory which is defined by an internal program

[14]. This approach does not support access control, data compression and the in-

dexing of data. These AXML documents are only processed by the operational

system [20].

This section is a brief introduction to Active XML systems, including scenario,

architectures and other aspects of the systems such as the structure of the service

call element, service call activations and management, result management as well

as storage aspects. It is noted that in the first Active XML project, file-systems are

used as a repository, which offers advantages and disadvantages on the implemen-

tation of the AXML system.

4.3 ARAXA Project

The ARAXA project proposed another approach to store and query AXML documents

by employing the Object Relational Database System (ORDB). Intensional data will

be accommodated to objects using user-defined types and methods. To manage con-

tinuous services, an additional agent will be created, the agent will observe the system

clock to activate continuous service calls at appropriate times automatically.

Mapping methods proposed by [21] are applied to map AXML documents to

ORDB. However, these mapping methods do not support the reconstruction of

original AXML documents because attributes and elements are stored equally.

Hence, [20] applies two additional solutions for the mapping methods [21].

Firstly, attributes will be distinguished from elements by adding the symbol @ to

300 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

the attribute name and its parent Dewey code will be recorded. Secondly, a new

relation will be added to mapping schema and a new column doc id is also added

to Edge relation (see [20], Fig.11).

Fig. 11. Tatarinov’s Mapping Method Modification [20]

Architectures. Each AXML peer in the ARAXA project consists of two main

modules which are Control Module and Integration Module (see Fig.12) The Inte-

gration Module is a client application. It is operated independently with a DBMS.

In this module, the XML Relational Mapper is responsible for mapping and stor-

ing AXML documents. In the mapping process, service calls will be identified and

stored in the Service Call Catalog of the Control Module. The Query/Result Proc-

essor is used for translating XQuery and Xpath to SQL as well as to reconstruct

the returned results to XML data.

The Control Module is composed of four modules: (i) a Service Call Catalog

to keep service calls which is updated after each service invocation; (ii) a Service

Manager to manage and execute service calls; (iii) a Results Manager to manage

and materialize obtained results; and (iv) a Monitor Agent to observe the system

clock to execute continuous service calls. The full architecture of the system is

shown in Figure 12.

Fig. 12. ARAXA Architecture

From Extensional Data to Intensional Data: AXML for XML 301

Management of service calls. As mentioned, service calls are divided into two

groups based on modes to execute: 1) service calls with lazy mode and 2) con-

tinuous service. The former needs to be observed during the query evaluation

process because the obtained results will be used to answer given queries. In the

latter, service calls must be monitored at all times to activate them regularly. AR-

AXA researchers use two relations to store service calls [20].

Service call

(id, path id, dewey, doc id, serviceURL, methodName, service-

NameSpace, useWSDLDefinition, signature, callable, frequency,

lastcalled, followed, mode, doNesting)

Parameter

(id, service id, path id, type, name)

A new method to activate web services is created and applied, namely exe-

cute_service(), which is operated independently from the database system. Then,

the services will be invoked by a query. The class diagram and the following ex-

ample (see Fig. 13) depict the association of ARAXA infrastructures with the

DBMS [20].

Materialization. The materialization process in ARAXA includes seven steps

[20]: (i) looking for appropriate services to answer a given query; (ii) translating

the given query into SQL; (iii) finding dependency of the service calls; (iv) ar-

ranging these service calls; (v) storing obtained results in corresponding relational

tables by mapping; (vi) evaluating the given query, and (vii) reconstructing results

to XML and sending to users.

Fig. 13. Infrastructure Class Diagram [20]

It is noticed that there are some different ways to invoke service calls during

the materialization process (see [20, 22]). Therefore, optimization strategies are

essential in order to make the performance effective. ARAXA applies techniques

proposed by [22, 23] to optimize the materialization process and avoid invoking

unnecessary service calls.

302 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

For example, in relational table book(author, price, ISBN), price is dynamic

data provided by a service call with the parameter ISBN. When evaluating a query

related to price information, dynamic data price must be materialized by invoking

a price service. Figure 14 demonstrates the translation process in ARAXA.

Fig. 14. ARAXA Translation Mechanism [20]

This section introduces the object-oriented approach to implement the AXML

system. The section mostly focuses on three issues, namely architecture, manage-

ment of service calls and materialization that is different from the INRIA project.

To deploy Active XML on mobile devices that own limited resources and comput-

ing capability (in comparison with normal computers), we will investigate propos-

als for AXML on the next project on a J2ME platform.

4.4 AXML for J2ME Platform

In the AXML project proposed by INRIA and the ARAXA project, AXML peers

are developed for computers. Each peer is built on complex components such as

Tomcat, Axis2, eXist or an object-oriented database system. Therefore, it can be

said that these Active XML systems are computing and resource consumers.

However, Internet and web services are not only used and exploited by computers

but also by hand-held devices that have limited resources and computing capabil-

ity, particularly mobile phones. Therefore, the idea of employing AXML to mo-

bile phones on J2ME platform is raised. The implementation of AXML on mobile

phones is different to that for computers. This is because mobile phones have con-

siderably weak processors, limited resources such as memory and storage space,

and a lack of applications support for processing XML on mobiles. These specific

features require particular designs to apply AXML to mobile phones based on the

J2ME platform.

From Extensional Data to Intensional Data: AXML for XML 303

Architecture. AXML mobile peers consist of two main parts. The first is the

AXML peer including the AXML repository for managing AXML documents, the

client for materializing service calls and the server for receiving and responding to

requests from the outside world via proxy. The second is the proxy, which is re-

sponsible for controlling communication between mobile devices and the outside

environment.

Management of service calls. In this architecture (see Fig. 15),Web service refer-

ence contain information of <sc> elements that will be provided to Service execu-

tor. Static analysis is a module that takes responsibility for choosing service

call(s) to activate, arranging these service calls in order and provide parameters for

them. Then, the information of service call(s) will be transformed to XML-RPC

message and sent to AXML proxy.

The activation of web service calls is controlled by Static Analysis module and

Inspector module. The Static Analysis module will be in charge for triggering lazy

modes whereas Inspector is applied for immediate mode (when service call is ex-

pired and data need to be refresh).

Web service Reference

Web service

Parameters

(Information of Web

services)

Static Analysis

(Lazy mode)

To provide correct parameters

to corresponding service

Service Executor

Assemble parameters to

the invoked service

Translates them to a XML-

RPC style XML envelope

XML-RPC

Inspectors

(Immediate mode)

Fig. 15. Service Manager Architecture

Storage. The limitation of resources and applications is overcome by storing the

AXML document inside the Phone Specific Record Store with a J2ME platform.

The AXML repository components are Persistent memory manager, File Re-

triever, and DOM cache [24] (see Fig.16).

Persistent Memory Manager uses a mechanism to store and retrieve data that is

modelled upon the Records Management System in RDB. This system is com-

prised of Stores, with each Store being divided into Records. Every AXML docu-

ment is assigned a unique initial location URL.

File Retriever takes responsibility for searching AXML files in Record Stores

or at the URL location. The DOM cache tries to retain information about DOM

trees, which have already been generated, until such memories are revoked by the

Garbage Collector.

304 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

Fig. 16. AXML Repository in Mobile Phones

The AXML on the J2ME platform presents proposals and gradually clarifies is-

sues as to how to apply AXML to systems with limited resources. In these cases,

standard software or supportive applications may not be applied and each particu-

lar implementation may have to design its own applications based on its particular

platforms and its ACML documents storage method.

4.5 Summary AXML Projects

Based on these three AXML projects, we can see that each AXML system must

have some typical components as follows:

• AXML repository. This is the foundation of an AXML system. The most

important issue to answer is which platform should be used for storing

AXML documents to adapt with available infrastructure.

• AXML document manager applications. Based on the platform used for

storage, there must be additional applications deployed to manage dynamic

data.

• AXML engine or materialisation modules. These components process dy-

namic data (service calls) and generate appropriate results.

• Modules to manage continuous services. Being able to facilitate continuous

service calls is one of the most important issues in managing AXML docu-

ments. Functionalities for continuous service have not been supported in

previous systems.

The heart of AXML is the <sc> element. This element contains special attributes

and child elements with specific regulations to organize, manage and activate web

services. A brief summary of <sc> element is depicted on Figure 17.

From Extensional Data to Intensional Data: AXML for XML 305

Type Explanations Required?

Web service information

@Service URL URI Service URL Y

@Service Namespace URI For the body element

of the SOAP message

Y

@Method Name NCName Method Name Y

Signature URI To do type validation N

useWSDLDefinition boolean For type validation N

Service call information

Id ID To identify service call Generated

Name String Specify name of service N

Frequency String How to activate service N

Callable Boolean Allow to activate service N

LastCall unsignedLong To observe last activation Generated

FollowedBy String Next service being acti-

vated

N

Service call result handling

Mode String To specify how to store

results

N

doNesting Boolean To observe previous in-

serted results

N

Service call parameters

Value String To specify parameters be-

ing value

XPath String To specify parameters be-

ing XPath

Fig. 17. A summary of Sc Element [19]

Proposals and ideas from AXML projects introduce new approaches to data and

service integration. However, these systems are quite complex for end-users to set

up and employ. Moreover, these systems need to be improved in many aspects.

Reasons for materializing intensional information before or after sending to cli-

ents are specified but not completely solved [2, 14, 17]. There is no mechanism

and ability to check when intensional data must be materialized before sending to

receivers. It is also difficult when end-users employ hand-held devices or obtain

all extensional data to work off-line. These problems have become a major con-

cern and need to be solved in the future.

In addition, standards for declaring service calls and managing parameters, ac-

tivation of service calls, as well as managing and organizing returning results have

not been clarified. For example, in some cases, if service calls are replaced by cor-

responding results, the reasons for using intensional data will be not useful be-

cause it will lose its dynamic character. Always merging results with the service

call in [17] can cause very large AXML documents as well as repeating and re-

dundant data or overuse expensive XML update operation. Moreover, if the results

contain other service call(s), the management of these services will be complex.

The issues of AXML storage and which database systems should be employed

to manage AXML documents are not explicitly explained. Some researchers pro-

pose to use native XML database systems [2, 18], some apply RDB or OODB [14,

20]. Using native XML database systems can be appropriate for typical properties

306 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

of AXML documents such as heterogeneity, inter-operability and large scales, but

there are also some problems such as update, triggers and stored procedures facili-

ties that do not have standards and are not well supported. Under traditional

database systems, heterogeneity, inter-operability and large scales are the major

concerns. Moreover, traditional database systems must transform native data to

their special data types which is quite expensive. Furthermore, the effects of de-

ploying AXML on different database systems have not yet been specified because

these experimental AXML systems are not widely deployed.

The way to apply the effects of AXML deployment in general networks and on the

internet has not been discussed. In addition, a comparison of AXML systems and non-

AXML-based systems has not been proved by scientific experiments and statistics.

Storing AXML documents is one of the most important issues in AXML pro-

jects. It will determine how to build the AXML systems and the management of

data and service calls. Most current proposals are based on existing database sys-

tems such as file-system storage and XML native databases [2, 14], RDB [25],

ORDB [20] and specific Record Stored platform [24]. Each of these storage ap-

proaches has typical advantages and problems. For example, file-system storage

does not support indexing and data compression. Native XML database storage

approaches need additional applications to take reasonability for activating the

service calls. RDB and ORDB storage must deal with scalability and the expen-

siveness of mapping from an XML document to their data structures and format.

These approaches also need additional programs to manage continuous service

calls. Moreover, an evaluation of performance (speed, usage of disk space, and

ability of optimization) between AXML-based systems and other systems is

needed to carefully analyse the advantages of Active XML systems.

This section introduces basic ideas for the implementation of AXML as well as

principal elements of service calls in AXML. In the next section, we will discuss

these implementations and propose some ideas for managing intensional data in

native XML database systems.

 AXM

Project

AR-

AXAA

AXML for Mobile

Employs Database system File-

system

storage

O-R

DBMS

Record Stored that is

provided by Mobile Infor-

mation Device Profile

Evaluation Performances W X X

Stipulations for which dy-

namic part can be sent ex-

tensionally or intensionally

X W W

Fig. 18. A Comparison of Three AXML Projects

5 Alternative Solutions to Intensional XML Data

From existing AXML proposals, we can see some alternative approaches to ex-

tend XML features to integrate data and services.

From Extensional Data to Intensional Data: AXML for XML 307

(1) Trigger-like approach stores web services and regular XML data to-

gether. Information on service call nodes is stored as a stored XML procedure or

as an XML trigger. The node is also stored in the XML document as a simple and

special node, namely sc node. When an arbitrary sc node is evaluated, the corre-

sponding trigger (or procedure) will be fired. The trigger takes responsibility for

the retrieval of extensional XML data by activating its service calls, and the re-

turned data will be updated to the XML document.

Advantages. We may apply foundations of trigger and procedures from tradi-

tional database systems. The implementation may be simple over traditional data-

base systems.

Disadvantages. We need a module to monitor the processing of each query. How-

ever, this observation is not supported by any database system. Triggers are only

activated on update queries but not on retrieval queries. Moreover, triggers and

stored procedures are still not implemented and support by W3C.

(2) Plug-in Module for XML database system(s) (see Figure 19) can be used

and placed between users and XML database systems. For simplicity, the plug-in

may have some module(s) including:

Web service call Manager Module (Module 1)
Input : address of a web service call.

Purpose : automatically get the WSDL of web service call, analyze this

file to indicate required parameters and their types and analyse

possible returned results

Output : general information about parameter and web service call re-

sponse

Activator Module (Module 2)
Input : web service information

Purpose : create a SOAP message, send the SOAP to corresponding web

service provider, and get response

Output : returned AXML results

Web Service Node Dectector Module (Module 3)
Input : XML node

Purpose : check the node. If that node is a web service node, this module

will take information on the web service in that node and pass it

to the second module. This module satisfies requirements such

as: simplicity to avoid imposing overheads on queries that do

not evaluate regular nodes.

Output : boolean (true if the second module activated and false if opposite)

Update Module (Module 4)
Input : XML node (from the third module)

Purpose : return result (from the second module), update document at the

node (with some additional information: timestamp, etc.), and

process returned web service fragments before updating the node.

Output : boolean (true if the document is updated and false if not)

308 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

Query Transformer Module (Module 5)
Input : XML query (from end-users)

Purpose : catch every query before implementing them, analyze the

query, and then insert the third module inside the query at the

possible place.

Output : the query with embedded second module

Advantages. It is simple, easy and mobile for end-users to deploy, install and apply.

Disadvantages. We may need to create a particular plug-in for each particular

XML database system. It may be difficult to interfere with the inside code of

XML database systems and it may have some side effects.

Module 5: capture users’ queries;

Analyze them and construct the queries with

embedded third module

Users

Pass the queries to XML Processors

Module 3: Observe every node before evaluated by

the original queries.

If it is web service node,

invoke the second module

If it is not, implement

these queries normally

Module 2: Find corresponding web service. Create

SOAP message; post it to Web service provider; get

the responds.

Call the fourth module

Keep doing the original queries

Finished

Module 4: update the node

Fig. 19. Brief Description for AXML Database System Creation

From Extensional Data to Intensional Data: AXML for XML 309

6 Conclusion

The rapid development and widespread use of the Internet is partially influenced

by XML and web services technology. However, it seems that XML still lacks the

capability to integrate and manage data retrieved from diversified web services.

XML does not fully satisfy the current needs for requirements from development

of peer-to-peer architectures as well as data and service integration.

This chapter introduces the XML evolution to Active XML (AXML). This

XML extension is not only used for exchanging and representing data, it combines

new features to integrate regular data and intensional data from web services.

In the first section, a concise summarization of XML and related technologies

such as XML namespace, XPath and XQuery is presented. Problems of XML in

applying web services in web technologies are outlined. Then, AXML – a solution

for data and web services integration is briefly introduced. In the last section a

concise proposal to implement and improve the current AXML solution is given.

In the future, some issues in AXML still need to be improved. They include

standards to store intensional data, database storage solution for storing the data,

query optimizations, solutions for infinite and asynchronous activations, criterions

for intensional data materializations, and particularly security issues because there

can be codes embedded inside the data. Moreover, how to effectively organizes,

manage and inform available web services from one peer to other peers is another

area to be investigated.

In conclusion, the new XML extension, which can combine and manage web

services, will facilitate and extend the capability of XML in data exchange as well

as data and service integration. In addition, this new XML extension will be an ef-

fective motivation for the widespread use of web services in contemporary web

technology.

References

1. W3C. Extensible Markup Language (XML) 1.0, 5th edn., (November 26, 2008),

http://www.w3.org/TR/REC-xml/ (cited 2009 20 February 2009)

2. Milo, T., et al.: Exchanging intensional XML data. ACM Trans. Database Syst. 30(1),

1–40 (2005)

3. Abitrboul, S., et al.: Active XML: peer-to-peer data and web services integration. In:

Proceedings of the 28th International Conference on Very Large Data Bases,

pp. 1087–1090. VLDB Endowment, Hong Kong (2002)

4. Hoque, R.: XML for Real Programmers, 3rd edn. Morgan Kaufmann, Sandiego (2000)

5. Goldfarb, C.F., Prescod, P.: The XML Handbook, 4th edn. Prentice Hall PTR, USA

(2002)

6. Mercer, D.: XML: A Beginner’s Guide. Obborne/McGraw-Hill, New York (2001)

7. Open and Novel Issues in XML Database Application: Future Directions and Ad-

vanced Technologies. In: Pardede, E. (ed.), Information Science Reference, Hershey -

New York (2009)

8. Bradley, N.: The XML Companion, 3rd edn. Addison-Wesley, London (2002)

310 V. Binh Phan, E. Pardede, and J. Wenny Rahayu

9. W3C. XQuery 1.0 and XPath 2.0 Data Model (XDM) (January 23, 2007),

http://www.w3.org/TR/xpath-datamodel/#document-order (cited

2009 24 February 2009)

10. Mercer, D.: XML: A Beginner’s guide. Osborne/McGraw-Hill, New York (2001)

11. Pras, A., et al.: Peer-to-Peer Technologies in Network and Service Management. J.

Netw. Syst. Manage. 15(3), 285–288 (2007)

12. Wallach, D.S.: A Survey of Peer-to-Peer Security Issues. In: Okada, M., Babu, C. S.,

Scedrov, A., Tokuda, H. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 42–57. Springer,

Heidelberg (2003)

13. Tutschku, K., Tran-Gia, P.: Traffic Characteristics and Performance Evaluation of

Peer-to-Peer Systems. In: Steinmetz, R., Wehrle, K. (eds.) Peer-to-Peer Systems and

Applications, pp. 383–397. Springer, Heidelberg (2005)

14. Abiteboul, S., Benjelloun, O., Milo, T.: The Active XML project: an overview. The

VLDB Journal 17(5), 1019–1040 (2008)

15. Abiteboul, S., et al.: Managing distributed workspaces with active XML. In: Proceed-

ings of the 29th International Conference on Very Large Data Bases, vol. 29,

pp. 1061–1064. VLDB Endowment, Berlin (2003)

16. Abiteboul, S., et al.: An electronic patient record on steroids: distributed, peer-to-peer,

secure and privacy-conscious. In: Proceedings of the Thirtieth International Confer-

ence on Very Large Data Bases, vol. 30, pp. 1273–1276. VLDB Endowment, Toronto

(2004)

17. Abiteboul, S., et al.: Active xml: A data-centric perspective on web services. In: Web

Dynamics, pp. 275–300 (2004)

18. Ghitescu, A., Taroza, E.: ActiveXML documentation. INRIA Saclay Ile-de-France. p.

41 (2008)

19. TheActiveXMLteam, Active XML User’s Guide. GEMO INRIA (2005)

20. Ferraz, C.A., Braganholo, V.P., Mattoso, M.: Storing AXML documents with AR-

AXA. In: SBBDSBC, SBC, pp. 255–269 (2007)

21. Tatarinov, I., et al.: Storing and querying ordered XML using a relational database sys-

tem. In: Proceedings of the 2002 ACM SIGMOD International Conference on Man-

agement of Data, pp. 204–215. ACM, Madison (2002)

22. Ruberg, G., Mattoso, M.: XCraft: boosting the performance of active XML materiali-

zation. In: Proceedings of the 11th International Conference on Extending Database

Technology: Advances in Database Technology, pp. 299–310. ACM, Nantes (2008)

23. Abiteboul, S., et al.: Lazy query evaluation for Active XML. In: Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data, pp. 227–238.

ACM, Paris (2004)

24. Cremarenco, C.: Implementation of the Active XML Peer for the J2ME platform. In:

Faculty of Automatics Control and Computers, p. 88. University Bucharest (2003)

25. Vidal, V., Lemos, F., Porto, F.b.: Towards automatic generation of AXML web ser-

vices for dynamic data integration. In: Proceedings of the 2008 EDBT Workshop on

Database Technologies for Handling XML Information on the Web, pp. 43–50. ACM,

Nantes (2008)

Chapter 11

SOA to Realize Network Enabled Capability

David Webster, Lu Liu, Duncan Russell, Colin Venters,
Zongyang Luo, and Jie Xu

Distributed Systems and Services Group,
School of Computing, University of Leeds,

LS2 9JT, United Kingdom
D.E.Webster@leeds.ac.uk

http://www.comp.leeds.ac.uk/distsys/

Abstract. Network Enabled Capability (NEC) is the UK Ministry
of Defence’s aspiration to enhance the achievement of military effect
through the networking of future and existing military capabilities.
The NECTISE (NEC Through Innovative Systems Engineering) pro-
gram responded to this need by investigating the question ‘are you

ready for NEC?’ on behalf of equipment and service providers. Re-
search work on this project proposed Service Oriented Architectures
(SOA) as an architectural approach to delivering dependable and
sustainable military capability. Specifically the work looked at how
loosely coupled services could be used to expose and reuse functions
and databases and how to describe the quality of service for heteroge-
neous systems and networks. The System of Systems that NEC will
be realized from will not be implemented from scratch, but rather
will be migrated from legacy assets over time. These assets will pro-
vide both functionality and data/information services, for example a
weather sensor.

The focus of this chapter is to layout an understanding of the
challenges faced and lessons learned in realizing NEC when migrat-
ing legacy assets to an SOA (Service Oriented Architecture) based
System of Systems over time in order to reuse their functionality and
databases. This work was based around a Software Demonstrator to
illustrate a situational awareness capability realized by dynamically
discovering and aggregating sensor data. This focus is not specifically
on sensors, however, the sensor example provides a good example of
data integration to realize military capability.

An abstract decision process model for wrapping legacy compo-
nents was proposed to guide how existing system components can
be selected for integration into the system of systems that NEC will
be realized from. This model can be used to assist in the integration
process of system components when migrating to or between execu-
tion architectures. The process model provides decision support for
trade-offs between the costs of reimplementation, system wrapping
and those costs incurred as a consequence of System of Systems com-
plexity and ongoing maintenance.

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 311–346.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

 Migrating Legacy Assets through

312 D. Webster et al.

1 Introduction

Network Enabled Capability (NEC) is the UK Ministry of Defence’s aspira-
tion to enhance the achievement of military effect through the networking of
future and existing military capabilities [3 9]. Military capability in the con-
text of NEC has been described as “ the ability to achieve a specified ‘wartime’
objective” [4 3]. It is important to state at this point that NEC is not a system,
but rather is the integration of assets to fulfil a mission objective. The MOD
defines NEC as “the coherent integration of sensors, decision-makers, weapon
systems and support capabilities to achieve the desired effect” [3 9], therefore,
the networking of communications is only part of the problem as human ac-
tivities are required within this asset integration. Military capability is the
whole integration of resources including people and equipment; this includes
the systems that provide dependable inter-operation to support human activ-
ity. Examples of capability include: surveillance; capture and defend hilltop;
and deliver and administer medica l treatment in the field.

To rea lize NEC the Armed Forces need to be flexible, ready and rapidly
deployable, with the application of contro lled and precise force, to achieve
rea lisable effects and should have the ability to support and co-operate with
each other to deliver a rea l-time capability [35]. To be successful in achiev-
ing this goa l, NEC requires system integration of independent components
(both functional and data oriented) that can evolve, operate in a depend-
able manner, managing system and component changes, cost effectively and
connecting industria l, defence and pan-defence environments. In NEC one o f
the cha llenges (amongst many) involves the through-life provision of military
capability; acquisition, service and support.

The NECTISE (NEC Through Innovative Systems Engineering) program
[37] responded to this need by investigating how loosely coupled services can
be used to expose and reuse the functions and databases and describe the
quality of service for heterogeneous systems and networks. The EPSRC and
BAE Systems jointly funded NECTISE throughout its three year duration,
which involved ten UK universities and aimed to address the question of how
BAE Systems delivers systems to NEC to the UK MOD, taking account of
the aims summarised in the 2005 Defence Industrial Strategy [38].

Systems developed by NEC oriented programs will be delivered over time
and these will need to be updated rapidly as technology and ongoing capa-
bility needs develop. Systems that come out of NEC programs will possess
varying timescales for their life-cycles, which, in order to provide integrated
operation, need to be coordinated in some manner, be it implicit or explicit.
It is generally acknowledged that some military systems will have a long ser-
vice life; for example a ship may have a service life of forty years. During this
time the operational environment will evolve and the operational concepts
will evolve. As noted by [32] in the military context “many currently fielded
embedded information systems face readiness challenges imposed by evolving
missions and extended service life spans”. Likewise, assets will be used within
multiple capabilities throughout their active service lives.

Migrating Legacy Assets through SOA 313

The focus of this chapter is to layout anunderstanding of the challenges faced
and lessons learned in realizing NEC when migrating legacy assets to an SOA
(Service Oriented Architecture) based System of Systems over time. This has
come from an understanding that the System of Systems that NEC will be re-
alized from will not be implemented from scratch for the NEC initiative, but
rather migrated from from legacy assets over time. SOA technologies (for in-
stance Web Services) allow data provided by legacy applications to be inte-
grated inamanageablemanner to support the realizationofNEC.Whilst legacy
systems have been discussed in research literature in the context of system life-
cycles [15,14,53,10]; the drive for this chapter is that organizations operating
legacy systems face ongoing maintenance risks of ‘ brittle systems’ [12,32] and
that can be viewed as a false economy in the long run - this is particularly the
case when the characteristics of NEC are taken into consideration.

This chapter further presents our experience in examining and testing the
benefits and consequences of SOA applied to the NEC environment through
conceptual understanding of existing practice and a proof-of-concept SOA
Software Demonstrator to simulate a situational awareness capability where
data is aggregated from multiple dynamically discovered sensors in a geo-
graphical region. It should be noted at this point that the focus of this work
is not specifically on sensors, however, the sensor example provides a good
example of data integration to realize military capability.

The structure of the remainder of this chapter is as follows. Section 2 reca-
pitulates current research work from NECTISE conducted towards delivering
NEC through the SOA architectural style and helps to justify the decisions for
whySOA is a suitable architectural approach for realizingNEC. InSection 3 the
incremental delivery within the NEC Systemof Systems is discussed.This leads
to an examination of the problems faced when implementing NEC from exist-
ing assets and discusses techniques to reuse existing assets. A decision support
model for wrapping legacy system components within an SOA environment is
proposed. Section 4 discusses a scenario for NEC based on sensor data inte-
gration which was used for our developed Software Demonstrator system. In
Section 5 we discuss the lessons learned our research work (partially based on
the Software Demonstrator) when providing a sustainable and maintainable
approach to NEC provision through wrapped legacy assets. Finally in Section
6 conclusions are drawn and the potential for future work is outlined.

2 Service Oriented Architectures in NEC

Within NECTISE, SOA has been proposed as an architectural style for the
realization of military capability to aid the engineering process for scalable
System of Systems [43,44,45].

Engineering at the capability and product system engineering levels is
defined by the MOD in [18]. Military Capability Engineering is concerned
with the management of system of systems coherence and is defined by a
high level capability architecture, critical scenarios and mission threads. On

314 D. Webster et al.

the other hand, Product Systems Engineering involves mortal projects that
deliver capability. The key linkage between the two is described that Product
Systems’ “interoperability requirements should be derived from the system-of-
system portfolio architecture to which they contribute.” NEC will be enabled
by a networked system of systems and will be provided through multiple
services from multiple providers. The engineering process for systems that
contribute towards capability, therefore, will be affected by requirements and
changes from the capability engineering level.

2.1 Service Oriented Architectures

‘Service Oriented Architecture’ (SOA) is an architectural style that has been
proposed as a way for businesses to redefine their processes to take advantage
of ‘formerly isolated component activities’ [8] for building distributed systems
that are cross-organisational. This marks the move away from building tradi-
tional ‘stove-pipe’ systems with fixed requirements [5] to building distributed
systems from reusable and discoverable components. This proposal reflects
the Defence Industrial Strategy’s statement that “we are seeing a shift away
from platform oriented programmes towards a capability-based approach” [38].

The premise here from the above definitions is that a deployed software
application component can be reused as a ‘network-available service’ with
published and discoverable interfaces. Part of this reusability comes from the
ability to clearly define the software interface in a manner and the data that
passes through it abstracted away from the underlying system technology to
promote loose coupling.

Service Contracts - A service contract in the context of SOA is a techni-
cal service contract describing the service’s interface, according to [21]. SOA
contracts provide a description of technical constraints of using the service
and any associated requirements. The motivation of providing a service con-
tract is to ensure a consistent expression of service capabilities [20]. This can
be viewed as the documentation of the benefits and obligations for each party
in the service interaction, or as a promise from a service provider in order for
a service client to be built around that promise [4].

Service contracts define the data required for service providers and clients
to communicate and build upon what in the past has been known as an
Application Programming Interface (API) [46]. Typically this information is
described using an Interface Definition Language (IDL).

Service contracts can be described at different granularities. To give an
example of this concept, describing a service with a fine granularity requires
less logic processing of the data that passes through the interface than de-
scribing a service with a coarse granularity as this will map closer to internal
business documents and handling logic. Describing the data granularity of
services typically involves to how the input, output and fault messages of a
service endpoint are described [21].

Migrating Legacy Assets through SOA 315

Loose Coupling - “Loose Coupling” is the degree to which software compo-
nents depend on each other, according to [25] and similarly defined by [2] as:

“a feature of software systems that allows those systems to be linked
without having knowledge of the technologies used by one another”.

The loose coupling that SOA provides (both through the standardised com-
munication protocols and the logical separation of systems into services) deliv-
ers an architectural approach to limit the impact of changes to services’ inter-
nal systems on other services that will each have their own internal life-cycle.
SOAs provide a style of loose coupling by negating the need for providers and
consumers to require access to each other’s underlying implementation details
and system components (for instance, databases) of these services.

With this in mind, one of the major attributes of SOA is in the interfaces
for services. The interface can be described as a logical layer abstraction of
the components that provide functionality within the service [2]. This can
be further clarified as a provider who offers a service to a consumer/client
through the use of an interface - stating obligations of the provider and the
responsibilities that the consumer must agree to. A key to the SOA paradigm
in software is that services should ideally share schemas and contracts, not
classes as is the case with object-oriented languages [36]. As discussed, one
benefit of achieving loose coupling is to ensure that when modifications are
made to a software system, the effects on local systems are reduced. One
tactic to achieve this is to use ‘deferred binding’ by binding modules as late
to run-time as possible [7].

2.2 Web Services

Web Services are a de facto set of industry standards for implementing an
SOA and are used to define contracts that publicly describe a service’s oper-
ations or capabilities. Web Services can be described as:

“self-contained, modular business applications that have open, Internet-
oriented, standards-based interfaces”; according to [49].

To give a more technical description, Web Services are composed of a group
of specifications: WSDL, XML Schema, SOAP and WS-Profile. Web Services
Definition Language (WSDL) is an XML-based machine-processable interface
definition language for describing messages that are exchanged between a
client and service provider [11] and is considered to be the most important
of these standards according to [21]. XML Schema is a formal language used
to describe and validate the structure of XML documents, for instance the
WSDL document. The ‘SOAP’ (initially standing for Simple Object Access
Protocol) protocol specification defines an XML-based stateless protocol for
exchanging structured and typed information across Web peers, typically
in a Web Services environment [50]. WS-Policy is a specification used for
describing behaviour characteristics of a service in a machine processable
manner.

316 D. Webster et al.

WSDL - WSDL is composed of abstract and concrete parts [51]. The
abstract part of the WSDL description describes the messages that are ex-
changed. This can be broken down into types and service definitions (see
Figure 1). The concrete part of the WSDL document defines the network
protocol and message format of messages sent and received and defines an
endpoint which associates a network address with a binding [11,51]. The ad-
vantage of separating the abstract from concrete part of the WSDL is that
multiple service providers can provide similar services that implement the
same abstract service definition.

Fig. 1. WSDL abstract document part and technology mapping. Adapted from
[21].

Migrating Legacy Assets through SOA 317

2.3 NEC Requirements and Realizing NEC through an SOA

In the delivery of military capability enabled by networks, dynamic integra-
tion based on SOA has the following characteristics [45,43]:

– Service Integration - Services are defined as composable functions, similar
to component architecture [48], and can be combined to form higher levels
of functionality and deliver capability.

– Service Discovery - Service providers offer services in a loosely coupled
architecture to consumers for dynamic composition. The consumer re-
quires discovery mechanisms to locate and bind before utilising services.
For NEC, discovery is the means to identify service types for integration
before forces are operational, and to enable dynamic binding in service
integration during operations.

– Service Reconfiguration - Services can be adapted to meet consumer re-
quirements at binding time. During service discovery, the consumer and
provider may negotiate terms of service delivery involving QoS param-
eters. For example, using redundancy, such as replication of resources,
may improve service dependability.

– Service Evolution - By abstracting the interface from the service imple-
mentation, a service can adapt to changes in its environment and the
demands of the service consumer. Selecting appropriate resources at the
time of service execution allows the resources to be updated and adapted
without interrupting service availability. This supports continuous service
delivery and therefore, sustainable delivery of capability.

The NEC initiative recognises that offering functionality is the main re-
quirement in supporting military capability, and that functionality can be
delivered without ownership of the delivery mechanism.

In NECTISE, design for change is being addressed by exploring archi-
tectures that can both adapt to changes and themselves can evolve within
carefully defined limits. Traditional design methodologies (e.g. waterfall) ad-
dress the issues of design for change by planning future changes in detail.
However, modelling future changes is an extremely difficult task for complex
system development. Agility in NEC represents an ability to adapt to changes
occurring in through-life provision of capability not only at the design time
but also at runtime. The frequent changes made in the short life-cycles could
cause significant modifications of the interfaces of these military services,
which lead to serious versioning and compatibility problems. Services need
to be frequently re-integrated and re-configured to provide a reliable and sus-
tainable capability. When factoring the agility of the systems that need to be
evolved in order to satisfy new requirements of services then if some of these
systems are legacy systems potential impedance to this redevelopment agility
should be considered properly. By comparison to product delivery, service de-
livery is a continuous process, assuring reliability by maintaining the service
provision and evolving the service implementation to respond to changes in
environment, situation, supply, information and ongoing development.

318 D. Webster et al.

SOA enables systems to operate across organizational boundaries and,
therefore, contributes towards the ability for services to be discovered from
different organizations and bound just before runtime [3]. This is supported
by mechanisms of discovery to match services during composition. Architec-
tural characteristics required by NEC, such as flexible interoperability and
future proof evolvability, can be for the most part provided by SOA, where
organisations, systems and computing each have defined service interfaces.

It should be noted, however, that services may be information services and
are dedicated to providing data as opposed to purely computational services
or those that control a physical resource - an example of an information ser-
vice is exposing weather data or sensor data through a Web Service. The
rapid growth of information services and resources in military systems makes
it difficult and challenging to manage dynamic information and resources
efficiently. In military systems, information is usually obtained from multi-
ple data sources (e.g. database systems, file systems) to be integrated into
a usable format for decision-making by battlefield commanders. For exam-
ple, to analyse the implications of an aerial attack, background information
could include data on meteorology, topography, settlements, population, in-
frastructure, sociology, and even hydrology. The premise of SOA, therefore,
works towards standardising the mechanism by which data and information
are described; for instance through XML Schema.

2.4 SOA and Workflows to Realize NEC

One advantage of SOA is that the functionality provided by system compo-
nents can be exposed as services and reused in different contexts. A way to
achieve this integration of services to realize business processes is through the
use of a workflow. In the case of Web Service based SOA implementations,
a standard service integration workflow technology is the Business Process
Execution Language (BPEL)1.

Workflow is defined by Hollingsworth [28] as “the computerised facilitation
or automation of a business process, in whole or part.” Business processes
are descriptions of an organisation’s activities designed to fulfil a customer’s
need, whereas similarly information processes are tasks performed by systems
(people or computers) that process or provide information [27].

In the NEC context, as described by the UK Defence Industrial Strategy,
a real-world example for capability enabled by networks is to achieve sen-
sor data fusion through “rationalising the masses of incoming sensor data”.
Our research work was based around a Software Demonstrator to illustrate a
situational awareness capability realized by dynamically discovering and ag-
gregating sensor data. An example SOA workflow would be the integration
of data from sensors, which can be discovered at run-time using ultra-late
binding. This example forms the basis of the practical Software Demonstra-
tor described in Section 4 and was introduced briefly in our previous work

1 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.eps

Migrating Legacy Assets through SOA 319

[43]. Figure 2 shows a simple illustrative example of a target tracking capa-
bility. In this example, the capability is to detect and track a moving target
within an area of interest. This is realized by integrating sensors that have
their functionality shared on the network as services. The benefit of this ap-
proach is that these sensor services can be discovered and configured both
at mission planning time and at run-time. Using a workflow approach, the
sensors can be discovered and then configured based on functionality and
quality of service attributes. The resultant data returned from the sensors is
then aggregated through a data fusion algorithm. In the illustrated example
the target (which for the case of our chapter’s example is an automobile) can
be seen travelling through grassland valley terrain between two hills.

Fig. 2. High-level illustration of sensor integration scenario for target tracking

320 D. Webster et al.

2.5 An SOA Integration Model for Realizing NEC

The abstract SOA integration model for NEC has been developed through
the NECTISE architectures research work. It has been presented both within
the NEC and academic communities [33,34,35]. It helps understanding of the
reuse of system/platform functionality and data flow through services to re-
alize a capability. Figure 3 visually represents our model for the abstraction
of SOA in the provision of network-enabled military capability within NEC.

In the capability layer, new capability requirements are determined through
long to medium term capability planning. In the integration layer, configu-
rations and specifications are defined based on these requirements. Config-
uration defines the actual combination of services used to implement the
capability. This allows the abstract concept of the capability to be defined in
terms of a set of abstract specifications.

In this model, functions (‘F’) provided by concrete platform hosted sys-
tems are exposed and abstracted as services (‘FA ... FD’) in order to be
reused. In the integration layer these services are integrated close to (or at)
run-time to realize a capability; in the diagram this is shown through the use
of a workflow to invoke the individual services. As discussed earlier in this
chapter, workflows are one way to integrate information services and can be
implemented at the integration layer. The effects from the integration within
the workflow are then synchronised to implement military capability.

To give a concrete example of this integration in action (based on the scenario
presented in Section 2.4), a capability definition is created whereby a moving
target needs to be tracked across a terrain. In order to realize this capability an
integration workflow is used based on an SOA architectural style. Surveillance
functionality is provided by an [open] network of sensors of different types.

The integration workflow submits real-time requests to a sensor service reg-
istry that dynamically discovers sensors, retrieving attributes such as position
and range. A selection algorithm determines which sensors can ‘see’ the region
of interest. The relevant sensors are contacted, which return information about
the detected points of interest. This sensor information is processed to elimi-
nate duplicates and points outside of region of interest and the detected feature
positions are displayed on a map. This sensor information along with human
interpretation combines to realize a target tracking capability.

In order to realize military capability, the following life-cycle description
can be applied:

1. At the Capability Management level, there is a life-cycle (for example,
owned by the MOD), which defines the need for capabilities, defines them,
evolves them, uses them strategically and eventually ends their life if
needed.

2. Within each capability, there will be a life-cycle which takes the defini-
tion of the capability from (1) and creates that capability. In the case of
SOA, this would be by composing a capability from services. This process
will involve defining the individual services needed to fulfil the capability,

Migrating Legacy Assets through SOA 321

Fig. 3. An SOA integration model for realizing NEC

constructing the capability, maintaining/evolving the capability, and end-
ing the life of the capability. This is where new services would be defined,
if necessary, or selected for the workflow from existing services.

3. There is also a life-cycle for the individual services themselves. This will
go along the line of create, maintain/evolve, end of life, as will happen
with the capability itself similarly.

Summarising, the System of Systems to realize NEC will in itself contain a
number of asynchronous life-cycles for individual systems. SOA has been pro-
posed as an architectural approach to implementing this System of Systems.
The rationale behind this is that the impact of changes to system internals
should not affect other systems due their encapsulation through well defined
interface specifications.

To recapulate, in this chapter the realization of applying SOA to an NEC
environment in light of real-world constraints of military systems is investi-
gated. Whilst SOA based integration is fairly well established in the research
literature at a high-level, this chapter aims to add to this knowledge by fo-
cussing on how to implement an SOA system of systems in an NEC context.
Specifically the challenge investigated is based on a fundamental character-
istic of NEC in that its underlying systems will not be built from scratch
as SOA-enabled, but rather will evolve from a whole host of existing legacy
assets. Examples of concrete assets are a sensor or a database. This inves-
tigation is conducted by looking at SOA-based integration from both the
capability integrator and service provider’s perspectives and is further bro-
ken down in terms of the SOA-based service and system platform delivery
later on.

322 D. Webster et al.

3 Incremental Service Delivery within the NEC
System of Systems

3.1 Introduction to Constraints of Developing Service Systems
for NEC

The delivery of NEC will not involve a clean sheet implementation, but
will come largely from a migration of existing assets. As the UK MOD De-
fence Equipment and Support (de&s) Handbook on Systems Engineering
[19] states, in the context of MOD’s working with disparate commercial ap-
proaches to systems engineering:

“MODs open architecture approach needs to acknowledge exist-
ing legacy system boundaries, while over time and where practicable
seeking to migrate these systems closer to the target architecture.”

Incremental delivery is an important design feature when building complex
systems. As has been acknowledged for single software systems, in order to
deliver capability, full capability can be delivered through a single step, or al-
ternatively through a number of evolutionary steps [9]. Brooks [23] describes
this pattern of building a system (as opposed to specifying a satisfactory
system in advance) as growth. The UK Defence Industrial Strategy [38] rec-
ommends incremental acquisition life-cycles to reduce project management
risk and to enable the flexible insertion of new technology to respond to
evolving requirements.

Whilst dynamic architectural styles (eg., SOA) have been proposed for the
realization on NEC by supporting ongoing development without dependence
on previous implementations [43], the ‘growing’ nature of military Systems
of Systems to realize NEC will involve legacy assets (systems) that will need
to be factored in to the development process of services and their integration.
The large volume of existing equipment and often the data bound to these
provides a major constraint in the migration constraint of military systems to
the NEC environment . A legacy system can be described as an old system
that still provides essential business services [47]. Most of this equipment
was not designed as SOA-enabled; additionally most legacy equipment is no
longer actively being further developed. The clean-sheet ideal of developing
SOA services that can be integrated and reused is not as simple as presented
at the outset when legacy systems are factored in.

3.2 Existing Approaches to Reuse Legacy Systems as (Web)
Services

In this section existing literature on recovering and reusing existing legacy sys-
tems as services is discussed. These techniques can be broadly categories into
‘white box’, ‘black box’ and ‘grey box’ techniques, generally described as follows:

– Black box - Legacy system has no source code available and cannot be
decomposed.

Migrating Legacy Assets through SOA 323

– White box - Legacy system has source code available. This allows for
refactoring and re-architecting of the system.

– Grey box - As with black box, but the system can be decomposed, for
example the system uses a component architecture.

A black-box approach to reusing legacy software systems across hosted pro-
cessor execution environments is proposed by Corman [16]. Here the descrip-
tion of a software wrapper given here is of a “software adapter or shell that iso-
lates a software component from other components and its processing environ-
ment (its context)”. The options he gives for achieving this wrapping include:

– Re-host - Translate/recompile source code for new target host proces-
sor - this assumes either access to source code or the ability to transcode
existing executable code.

– Hybrid - Spread system functions between old and new processors. Mi-
grate over time.

– Emulate - Emulate the original target processor architecture. This type
of approach has been described elsewhere by Booch [10] as putting it ‘on
life support’.

Theuse of software emulationof an execution environmentallows for a growth
path for legacy and useful system executables that previously depended on now
obsolete hardware. The approach presented in the paper describes a graphical
tool to express data interfaces and constraints of the legacy system to deter-
mine whether requirements of the system on a new execution environment can
be met. This approach based on the premise that legacy development tools can
be used to maintain a computing system executable. The third-party maintain-
ers of software systems, however may be forced (due to contracting) into using
prescribed tools for generating artifacts that only useful within a specific suite
of development tools, according to Kennedy [30]. These tools will also be sub-
ject to a servicing life-cycle and will become legacy systems themselves.

In Corman’s paper the emulated approach was tested on an F-15 tactical
fighter to allow the reuse of an Ada 83 Operational Flight Program com-
ponent with a COTS PowerPC microprocessor. Through a demonstration
activity, the emulated component was able to operate within given execution
timeliness requirements despite the emulation overhead. Whilst this approach
has demonstrated that the legacy system can be reused to extend its service
life in a new processing environment, new requirements (functional and non-
functional) over time acting on the legacy system as a result of operating an
a new context are not yet considered.

The creation of wrappers in a workflow integration context has been used
to mediate between legacy C code and Object-Oriented Java code for use
within Triana workflows for scientific communities, as documented by Huang
[29]. In this situation, tools have been developed to aid in the semi-automatic
conversion between C and Java interfaces and then for the wrapping of Java

324 D. Webster et al.

components within the Triana workflow environment. This technique, how-
ever, requires access to the original C code and assumes that the C code will
recompile on the target execution environment.

The approach proposed by Zhang [53] can be classified as a grey box
approach. Here the assumption is that a particular legacy system can be
broken up into smaller components. Following this process these components
are wrapped as reusable information services of various granularities based on
a domain model analysis to bridge the difference between the domain model
and the legacy system component model. A decision tree based on specific
criteria is used to determine if a legacy system is suitable for decomposition
within this approach. These criteria involve:

– Is reusable and reliable functionality embedded within the system with
valuable business logic available?

– Are reuse components from the legacy system reasonably maintainable
compared to maintenance effort on the who le legacy system?

– Can the functionality be exposed as independent services and are they
useful from the requirements point of view?

If these are satisfied then this approach takes legacy systems with source
(or at least individual binary components/classes) available and partitions
them up to expose certain parts as services. Here the legacy code components
are modelled as UML models to aid in understanding of the legacy system
and the linkage between components. Once particular components have been
decided as mapping closely to the business defined service components (in this
case Web Services) then the glue code is developed - in the case of Zhang’s
paper, the approach is using Java to mediate between existing C++ code
and an Axis SOAP processor.

In summary, whilst this approach attempts to reduce the system complex-
ity compared with wrapping black-box legacy systems, a shortcoming of the
approach is that the maintenance associated with the ‘glue code’ of the medi-
ator components is not given due consideration. Furthermore, this approach
has limited applicability to black box ‘monolithic’ systems that cannot be
decomposed unless they provide available source code. For NEC there are
a number of challenges that complicate this situation. Firstly as described,
NEC initiative recognises that for service providers and contractors offering
functionality, this service functionality can be delivered without ownership of
the delivery mechanism. This means that it is not possible to make general
assumptions for the state of legacy systems used to provide this service - for
instance, whether they are black box monolithic systems or whether they are
fully documented systems with source code available in order to be modified
and customised by any party within the supply chain.

The approach described by Kotonya [31] aims to modernise legacy systems
and provide a means for requirements mapping. To achieve this, domain enti-
ties/actors associated with the system are identified and secondly their needs
are mapped to the reusable legacy systems. By performing this the impact of

Migrating Legacy Assets through SOA 325

change from the requirements domain can be assessed on the legacy systems.
Part of this analysis involves assessing the impact on system life-cycle plan-
ning as a result of new enhancements, for example the extensions to legacy sys-
tems required to allowoperation onnewplatforms.To achieve this requirement,
sources are modelled as viewpoints from various stakeholders within a UML
model - this allows further mapping onto modelled legacy systems through a
service intermediary.

This approach offers an advantage over Zhang [53] as systems can be mod-
elled in a way that allows for the expression of component cost, certification
and dependability requirements. Similarly as with Zhang [53] this paper ac-
knowledges and suffers from the problem that system degradation will occur
manifested as patches and “increasingly complex glue code”.

3.3 Abstract Decision Process Model for Wrapping Legacy
Components

An abstract decision process model for wrapping legacy components is pro-
posed here and illustrated in Figure 4. This provides a guide to how existing
system components can be selected for integration into the System of Sys-
tems that will be used to realize NEC. For instance, this model is to be used
to assist in the integration process of system components when migrating to
or between execution architectures or in new operating contexts. Wrappers
are a standard technique for reusing a legacy software component in a new
originally unintended context and can be used to reuse legacy systems in new
contexts. The concept of wrappers will be explored further in Section 5.1.

The decisions that the model will guide involves whether to wrap existing
components based on the characteristics of modifiability for these compo-
nents. Such guidance will inform the developer/integrator when new system
life-cycles are created as a side-effect of implementing a wrapper - these are
shown in Figure 4.

As discussed later in Section 5.1 the characteristics of the legacy system
that will guide this process model’s paths involve whether existing system
components are modifiable. In the case of software components this can be
through the inability to gain access to source code or that the component
may not be modifiable (or at least difficult or costly) due to its phase in the
servicing life-cycle. In the case of a wrapper being used, there may be no need
to modify the underlying component.

The main decision points of the process shown in Figure 4 can be broken
down as follows:

– The ideal case is where a system component does not need to be wrapped
and can be integrated as is. In the scope of this chapter we do not focus
on the evaluation and certification process of integrating systems in NEC
for space, but do point the reader to our previous work conducted within
the NEC context [52].

– If the source code or development tools for the system component are
available (and ideally documented) then the option is available to modify

326 D. Webster et al.

Can reuse

existing system

component?

Build new

system

Can

reuse as-is

in current exec

environment?

Source

availiable?

Perform

component

Integration

YES

NO

Modify source to

conform to execution

environment interface

specification

YES

Can system

be run on

current exec

environment?

Emulate

system

Connect to

external

legacy system

Develop

interface

wrapper

YES

NO

NO

YES

NO

creation of new

component life-cycle

creation of new

component life-cycle

Fig. 4. UML activity diagram for wrapping options when integrating a component
into a system or workflow

Migrating Legacy Assets through SOA 327

the component to operate with the interface standard required for inte-
gration in the System of Systems. This maintenance may be costly due
to a lack of developer expertise or documentation within the organization
to perform this modification of legacy code.

– In the case where the system component is non-modifiable, then the de-
cision to make is whether the (software) system can be executed on the
target execution environment or not.

•Where the component can be executed on the target execution en-
vironment, but does not conform to the correct interface, then an
interface-mediating wrapper can be developed.

•Where the component cannot be executed on the target execution
environment - for example due to relying upon a different micropro-
cessor architecture for execution or incompatible service container -
then there are two possible options:
1) emulate the microprocessor architecture;
2) reuse the legacy execution environment and provide an interface
(possibly physically) between the two execution environments.

An interface-mediating wrapper can then be developed to mediate
between the differing system interfaces.

A key hypothesis to state here is that the creation of wrapping interfaces
will increase the overall complexity of the wrapped systems as a whole and,
therefore, the System of Systems. The wrapped interfaces will need to evolve
in accordance to the interface requirements of integrating with the System
of Systems environment over time. The process model, therefore, provides
decision support to trade-off reimplementation cost against complexity and
maintenance responsibility.

4 NECTISE SOA Demonstration and Critical
Evaluation

In this section we discuss our experience with the NEC Software Demon-
strator and discuss the legacy problems it can help to expose both above
and below the Service Layer. The NEC Software Demonstrator was used to
illustrate aspects of the research into systems architecture and through-life
systems management (TLSM) within the NECTISE project and was imple-
mented using Web based tools and technologies; for instance WSDL, SOAP,
BPEL, XML Schema, HTML+AJAX.

The scenario aimof the SoftwareDemonstratorwas tomodel aRegionSurveil-
lance capability using dynamic service integration of sensor networks in the
NEC battlefield - this allows a comprehensive ‘picture’ to be formed of the ge-
ographical region based on data communicated to a controller from deployed
mobile sensors. Due to the high cost and confidential nature of testing our re-
search work on real military systems a small but informed simulation environ-
ment has been developed for use within this research work. The surveillance

328 D. Webster et al.

capability was based on Points of Interest (PoIs), physical and military fea-
tures within a geographical area that are detected by a group of simulated sen-
sors. The integration of sensors was achieved by using a workflow to contact a
sensor service registry and to dynamically discover sensors for a given region.
The workflow uses simulated sensors that access a simulation of PoIs and then
exposes this data as services. The sensor data is then processed to eliminate
duplicates and points outside the region of interest and the detected feature
positions are displayed on a map. The workflow can be illustrated at a high
level in Figure 5. This diagram can be directly mapped onto the SOA integra-
tion model shown in Figure 3 and illustrates the implementation technology
used in the lower boxes. The workflow integrates Web Services which were the
chosen demonstration implementation technology for SOA. The implementa-
tion of region surveillance used Google Maps to display the results from the
feature detection workflow. A screenshot from this interface can be shown in
Figure 6. This screenshot shows the output of the sensor integration workflow
plotted onto a Google Maps interface within a web browser. The blue rectangle
is the region of interest. The lists on the right of the image show the detected
features and the sensors that have been accessed in the workflow.

Data Points

(simulation

model)

Sensor

Services

Web

Services

Integration

Process

BPEL

Visualization

and Control

Google Maps

<<realizes>><<invoked by>><<exposed as>>

Fig. 5. A high-level overview of the sensor integration workflow

The Software Demonstrator was developed in NetBeans 6.1 IDE on a
GlassFish application server, which enabled our research group members to
write, deploy, test and debug SOA applications using the Extensible Markup
Language (XML), Business Process Execution Language (BPEL) and Java
Web Services.

4.1 Makeup of the Demonstrator Implementation

The Software Demonstrator consists of three main modules:

1. Web Services to simulate capabilities of different systems;
2 . A workflow module for dynamic web services selection and composition;

Migrating Legacy Assets through SOA 329

Fig. 6. Sensor surveillance Software Demonstrator screenshot

3. A client interface with sensor information display and user input.

The workflow dynamically discovers and integrates date from the sensor
services and is implemented in a Java written Web Service itself. An Apache
Derby SQL database server contains a model of the sensor and feature posi-
tions and their other attributes. There are five types of sensors maintained in
the database including human observer, optical, infrared, and long-range and
short-range radar. The detectable features include bridges, buildings, vehi-
cles, helicopters, and humans. Each feature has a coordinate position xn, yn
and movement is simulated through a path of coordinates. One or more of
the sensors can detect each type of feature. Sensors are assumed to be static.
Figure 7 illustrates a user querying information about a sensor in the field.

Three types of web services have been created: Sensor Registry, Sensor,
and Data Filter. The Sensor Registry was implemented as an Enterprise Java
Bean (EJB). The registrys function is to return a list of sensors that can ‘see’
the region of interest. This square region is defined by the request with two
pairs of coordinates x1, y1 and x2, y2 and Sensor services are selected from
their attributes about position and range. A Sensor service is called for each
entry in the list returned by the registry. The Sensor returns a list of all
features that sensor can detect. The Data Filter service reduces the detected
features from all the sensors by eliminating duplicate feature points and those
outside the region of interest.

The Map Client allows the user to define the coordinate pairs for the ROI
along with required response time. The user interface, shown in Figure 6,
displays a map of the ROI utilizing Google Maps and POI overlay. In order
to integrate the Map Client application with the rest of the components of

330 D. Webster et al.

Fig. 7. Example of a user querying a sensor node within the Map Client

the demonstrator system as a whole, we needed the application to act as a
client component of the Sensor Workflow component.

Due to the ‘Same Origin Policy’ [42] built into most web browsers, this
technical limitation required a mediating component to connect the web
browser client-side application with the Sensor Workflow. This policy pre-
vents the properties of a document loaded from one origin being modified
from another origin. Whilst we could have implemented a Web Services client
within the web browser application, the allocation of this responsibility to
the Servlet meant that the implementation architecture was simplified and
allowed us to build upon existing and well-proven technologies from the Java
Framework for Web Services.

In order to achieve this connectivity, an intermediate component was cre-
ated to mediate requests from the user interface to the Sensor Workflow. To
implement this mediator, a Java Servlet was created to mediate requests from
the HTML+JavaScript part of the Map Client to the Web Service interface
of the Sensor Workflow. Whilst we could have implemented a web services
client within the JavaScript part of the user interface, the allocation of this
responsibility to the Servlet meant that the implementation architecture was
simplified and allowed us to build upon existing and well proven technolo-
gies from the Java Framework for Web Services in addition to easing the
debugging process.

The implementation of the user interface of the Map Client consisted of
an HTML+Javascript application that makes asynchronous requests to the
mediator servlet commonly known as the AJAX technique (Asynchronous
JavaScript And XML). In order to connect the client application to the me-
diator Servlet a simple XML schema was created to pass region and QoS

Migrating Legacy Assets through SOA 331

requests to the Sensor Workflow through the mediator and consequently, re-
turn sensor and feature information from the Sensor Workflow. The features
were then overlaid into a Google Maps display of the ROI. A UML deploy-
ment diagram is illustrated in Figure 8.

Fig. 8. UML Deployment Diagram for Map Client

Whilst the primary aim of the Software Demonstrator was to demonstrate
architectural and dependability aspects of NEC (based on our previous expe-
rience [34]), the life-cycle aspects are focussed on in this chapter and demon-
strate the challenges of migrating legacy assets to an SOA NEC environment
as introduced previously in the chapter.

4.2 Life-Cycle Aspects of the Demonstrator

The following life-cycle related use-cases were illustrated through the Soft-
ware Demonstrator:

1. Show Platform Upgrade
2. Show Service Life-cycles (Evolution)

Each of these use-cases is described in the context of the life-cycle work and
illustrate the SOA implementation challenges when reusing legacy systems
in SOA. These use-cases help expose evolution challenges above and below
the Service Layer.

Show Platform Upgrade. This use-case illustrates a service upgrade. The
upgrade to a service may be by changing the underlying system implemen-
tation without changing the service definition. The upgrade may improve

332 D. Webster et al.

quality of service attribute values, or it may improve efficiency of service
delivery, thereby providing an internal benefit without affecting service de-
livery. This is found at the Platform Layer in Figure 3. The process can be
described as having foundation in the concept of Refactoring [1].

Show Service Life-cycles (Evolution). This use-case illustrates the life-
cycle of a service and its underlying system(s). The service life-cycle would
include:

– Conceptual definition using service discovery to identify capability gaps;
– Development using evaluation to identify and trade-off possible solutions;
– In-service, by adding and removing the service from deployment;
– Disposal, where a service implementation is retired, causing:

1. A change in service execution from one system to another by being
replaced by another system;

2. A change to the integration due to upgrading to new version, requir-
ing all users of the existing service to migrate to the new one;

3. End of life for service, requiring users of existing service to find alter-
native (newer) service or cease use of that function entirely.

The lesson learned here was that whilst it is possible to view the wrapping
of a legacy system to provide an SOA interface as a solution for controlling
the description of and access to its functionality, there are problems regarding
the evolution and versioning of this interface description. Here is a research
challenge whereby there is a dependancy between the service clients and
service providers based on the agreed functionality of a particular version of
a service. For example, if a service provider updates the interface of a service
in a non backwards compatible manner and does not maintain the old version
of the service interface, then the old client will not be able to access the service
without reengineering. This shows that the problem of ‘legacy’ can occur at
the Integration Layer.

By supporting the existing interface, backwards compatibility can be en-
sured. An example of this is to add an additional versioned interface to a ser-
vice or by extending the existing interface with new parameters or functions in
a backwards-compatible manner. A second option is for the service provider to
provide multiple interfaces [4,13]. Whilst it is possible to still maintain inter-
faces for older versions of clients, this creates a maintenance responsibility.

As stated, in the case where backwards compatibility cannot be maintained
and a new interface is defined, then interface mismatch will occur and will re-
quire upgrading of clients. In this case, older clients need to be migrated to op-
erate with the new service interface. Here a wrapping solution may resolve the
interface mismatch between the old client and new service, with the associated
issues of increasing the complexity of the System of Systems as a whole and the
creation of maintenance responsibility for the wrapping solution at the SOA In-
terface Layer level. There are many situations in the real-world where a client
not being able to upgrade to a new service interface, for instance:

Migrating Legacy Assets through SOA 333

1. client systems no longer being maintained (legacy systems);
2. timeliness of upgrade cycles.

Within the development of the Software Demonstrator the concept of ser-
vice evolution was demonstrated during its development. Two versions of a
sensor access component were developed with both versions corresponding
to the same client interface. This meant that the client was able to access
the second version of the component with the same interface despite it be-
ing evolved to provide a different underlying behavior. To realize this, two
versions of sensor workflow were implemented to represent serial and parallel
processing of sensor aggregation as shown in Figure 9.

Serial
Sensor Access

(Version 1)

Parallel
Sensor Access

(Version 2)

<< Interface >>
Sensor Access

Fig. 9. UML diagram of serial and parallel sensor access components

Version 1 - Serial Sensor Access - Version 1 of the Sensor Access com-
ponent implements a serial process of sensor access, thus the sensor accessing
is sequentially processed. In implementation, there is only one thread in the
program. Each sensor name returned from the aggregated sensors list is han-
dled sequentially.

Version 2 - Parallel Sensor Access - Version 2 of the Sensor Access
component used parallel sensor access. For each sensor name returned from
Sensor List, a thread was launched to access the sensor Web Service. This
provided the following advantages:

– Improved workflow performance by launching network requests in par-
allel, rather than waiting for one to finish before launching the next.
In related research work in the GRID context, Quan [17] successfully
demonstrated that parallel matching of GRID processing resources and

334 D. Webster et al.

their subsequent configuration allowed that approach to meet SLA dead-
lines and achieve cost optimization.

– Improved resilience to failure of any Web Service requests. Web Service
technology usually has a timeout for lost responses, typically 30 seconds.
By issuing requests in parallel, the overall timeout would be a maximum
of one failed response.

– The additional enhancement was to model variable availability in sensor
accesses. Each sensor has a random ability to respond to a request. This
is a basic model of two aspects:
•network traffic delays in either request or response
•request or response message loss - in particular using Web Services

there is no guaranteed messaging, unless WS-ReliableMessaging is
used.

The implementation of both the Version 1 (serial) and Version 2 (parallel)
versions of the sensor access services that correspond to the same interface
demonstrated the following advantages:

1. The two versions of the software services could be developed indepen-
dently and orthogonally.

2. The versions of the software services could be swapped at run-time, mean-
ing that they could be used for demonstration purposes to demonstrate
the effects of serial and parallel access to sensors from a workflow. How-
ever, this meant that the interface could not be changed, leaving the only
option of extending the interface and require clients to possess knowledge
to utilize this (advanced) interface.

4.3 Exposing a Legacy Sensor Application to an SOA Network

The example presented here demonstrates wrapping legacy systems to op-
erate within an SOA environment. In this example an unmodifiable legacy
sensor application is exposed as a Web Service in order to allow it be in-
tegrated into an SOA enabled business process. This system model can be
summarized with UML as in Figure 10.

In this model a Service provider (‘Sensor Service Provider’) and client
‘Sensor Client’ are defined. The Web Service (‘Sensor Wrapper’) server
is hosted within the ‘Sensor Service Provider’ along with the legacy appli-
cation (‘readsensor’) that communicates with the physical sensor hardware.
‘Sensor Wrapper’ acts as both an external facing Web Service and a wrap-
per to the ‘readsensor’ application.

In this example ‘readsensor’ is a legacy executable that reads in an im-
age from an optical sensor, performs some image processing and then directs
a textual encoding of the image in base64 to the standard output stream.
We acknowledge that this is a contrived example as the Demonstrator was
simulation based and did not use any physical equipment; however, it demon-
strates our argument. A mockup screenshot of an example client of the service
can be seen in Figure 11.

Migrating Legacy Assets through SOA 335

:Web Infrastructure

:Client

:Sensor Service Provider

<< Web Service Client >>

Sensor Client

<< Legacy Executable >>

 readsensor

<< Web Service >>

Sensor Wrapper

Fig. 10. UML diagram of wrapped sensor System of Systems

Fig. 11. Mockup screenshot showing a typical client decoded optical sensor image
of the tracked target

336 D. Webster et al.

The wrapping of the ‘readsensor’ application to a GlassFish hosted Web
Service was a relatively simple task to implement and test. The reader is
directed towards the code listing in Program 1 to see the implementation of
this wrapper. However, this example exposes the fragile nature of this kind
of wrapping solution as there are limitations on the value the wrapping com-
ponent can add to the legacy application. To give an example; the business
process utilizing this exposed sensor application has a requirement to not
only retrieve the sensor image data, but also to provide a timestamp and
geo-location coordinates for the sensor. Given that the original ‘readsensor’
application cannot be modified; this may be achieved by recording the time
that the sensor was accessed and attaching a GPS to the service provider
with the assumption that the sensor reading is taken immediately follow-
ing the call to the ‘readsensor’ application and the server is located at the
same location of the sensor. This implementation can be summarized as the
‘decorator design pattern’ [24].

Whilst the above example demonstrates that it is possible to bridge the
mismatch between capability requirements on an unmodifiable legacy system
and the functionality that the system exposes, there will be a limitation to
how far this approach can be taken. To give an example, if a business require-
ment is that the sensor imagery needs to be exposed along with directional
data (for example, as a compass would provide), then this functionality can-
not be provided from ‘readsensor’ as-is. Likewise, if the sensor is a remote
sensor and not physically attached to the Web Service mediatior, then it may
not be possible to determine the geo-location of the sensor imagery.

Migrating Legacy Assets through SOA 337

Program 1 Simple Sensor Wrapper program in Java

/**

* Simple Sensor Wrapper

*/

@WebMethod(operationName = "getSensorImage")

public String getSensorImage()

{

/**

* Launch ’readsensor’ program and read the output

* represented by plain text with base64 encoding.

*/

Runtime runtime = Runtime.getRuntime();

Process proc;

StringBuffer programOutput

= new StringBuffer();

try

{

proc = runtime.exec("readsensor");

InputStream inputstream = proc.getInputStream();

InputStreamReader inputstreamreader

= new InputStreamReader(inputstream);

BufferedReader bufferedreader

= new BufferedReader(inputstreamreader);

// read the program output

String programOutputLine;

while (

(programOutputLine = bufferedreader.readLine())

!= null)

{

programOutput.append(programOutputLine);

}

} catch (Exception ex) { return null; }

/**

* Return the wrapped program output to the

* Web Service client.

*/

return programOutput.toString();

}

338 D. Webster et al.

5 Conclusions of Legacy System Migration towards
SOA

Wrappers are a standard technique for reusing a legacy software component in
a new originally unintended context and have been discussed in this chapter
as a solution for this purpose. Whilst in this chapter software wrappers have
been discusses as the primary technique for reusing legacy components there
are, however, other techniques that are covered here. Aside from reimple-
menting the component from scratch, an alternative technique is to ‘recover’
legacy software through reverse engineering of its business logic [53]; this also
helps to document its organisation and functionality [47]. The drawback of
this approach is that it is invasive to the legacy system and that the accurate
recovery of the business logic is difficult. Furthermore, reverse engineering of
software systems may be impractical if source code is not available [26].

We identified and discussed the NEC need to investigate the wrapping of
legacy equipment into an SOA as a response to the requirements for NEC
discussed in Section 2.3. In this chapter, the realization of this process has
been explored in more detail to expose hidden factors (for instance, System
of Systems complexity, coupling, and maintenance costs) when migrating to
an SOA enabled NEC environment from existing legacy assets.

The point to focus on here is that suppliers and system providers trans-
ferring to SOA based delivery of functionality will undertake the process of
wrapping existing legacy assets into an SOA in order to conform to an SOA
implementation’s communication infrastructure, for instance a Web Services
middleware. We can characterize this wrapping of legacy systems to an SOA
middleware interface as the Adapter design pattern [53,25], which is some-
times referred to as a software wrapper. The software wrapper is a form
of encapsulation whereby a software component is exposed with an alterna-
tive abstraction manifested as a software interface [6]. The purpose of the
wrapper, therefore, is to allow system components that would be otherwise
incompatible to be able to communicate with each other. Whilst the wrapper
can be a complex piece of software, the cost of wrapping is often less than
reimplementing the legacy system/component from scratch [47].

5.1 Challenges in Legacy System Migration towards SOA for
NEC

The frequent changes made in the short life-cycles for new requirements on
services to realize ongoing capability requirements for NEC could cause sig-
nificant modifications of the interfaces of these military services, which lead
to serious versioning and compatibility problems. Services need to be fre-
quently re-integrated and re-configured to provide a reliable and sustainable
capability. When legacy systems are factored into the System of Systems the
problems that occur here, therefore, are twofold:

– 1) When new requirements are required of services, the systems that
provide them need to be re-engineered for them to evolve to meet their

Migrating Legacy Assets through SOA 339

new requirements. If the underlying systems are ‘healthy’ systems that
are currently in a evolutionary or servicing phase of their life-cycle (as can
be illustrated in a Staged Life-cycle [40]) then this is just a reengineering
process, where current approaches to agile development can be applied
where appropriate. If there is a legacy system that is being wrapped to
the service interface, then a danger with the practice of wrapping legacy
assets is that the software system underneath the SOA interface will
be difficult or costly to modify once in the late servicing and phase-out
phases of a staged life-cycle model. As stated one attribute of this problem
is the ‘health’ of the development of that underlying system. For example
if the system is in a phaseout phase of its life-cycle then it will be costly
to modify, particularly if it relies upon diminished manufacturing sources
(DMS) [32] both for hardware and software development.

– 2) A wrapping process could be used to satisfy an initial requirement to
use a particular legacy system through an SOA integration middleware
‘as-is’, for example taking a black box approach. However, there will be
challenges in evolving that system in order to adapt to ongoing capabil-
ity requirements as a result of exposing the asset in a new environment
through the service infrastructure. Examples of such challenges are hav-
ing to deal with the increased information processing throughput over
time; and using a system (or system component) in a domain or context
that it was not intended or designed for.

Reflecting on the discussion of existing approaches to wrap legacy systems
to service interfaces in Section 3.2 - (with the exception of legacy systems
which are either highly composable or have full source code available) - these
systems suffer from the specific problems that they involve glue code to bridge
the gap between the service requirements and the functionality and throughput
ability of the legacy system. Challenges that still remain from existing work
is the management of complexity over time with new requirements demanded
from services - this has the potential to become unmanageable in a long running
System of Systems over time. In the NEC context, the major problems here are
the large number of stakeholders with differing capability requirements that
will demand a high tempo for agile changes to be made services.

Using agile development methods for NEC, it is very important to check
whether the current change will affect the interface of the service or QoSdefined
in the Service Layer Agreement. Good advice is that a comprehensive analysis
and evaluation of the impact on dependencies must be done before any change
is put into effect. However,where there are demands from multiple stakeholders
in NEC that demand rapid response to ongoing capability requirements, this
is not an easy process to go through when factoring in the ‘legacy’ challenge.

5.2 Maintenance Life-Cycle of Wrappers

Just as software components/systems need to be maintained, wrappers will
possess their own servicing life-cycle since they will wrap between one or more

340 D. Webster et al.

evolving interfaces. Wrappers will need to maintain interoperability despite
ongoing interface evolution. Figure 12 provides a simple model to illustrate
the relationship of the wrapper component against the two component inter-
faces that it is mediating between.

Component BComponent A Wrapper Component

Fig. 12. UML component diagram representing an abstract model of component
interface wrapping

In the UNIX programming domain, programmers are advised to avoid us-
ing wrapping ‘glue’ layers to hide cracks and unevenness in software layers
[41]. The problem here is that this process is responsible creating an ad-
ditional layer of glue with the caveat of too many layers being the loss of
transparency within a system. Whilst the technology in the SOA domain is
different, the concept still applies, as the network integration of services will
include wrapping components that will have to be managed and maintained.
Therefore, the life-cycle complexity of the System of Systems is increased
through the use of wrappers. We can logically conject that since a wrapper
of a system mediates between two moving standards (which may be propri-
etary) the wrapper will also need to be maintained and evolved in accordance
with its wrapped interfaces.

Figure 13 demonstrates the placement of the legacy system wrapper in
the context of NEC service system integration. As with the capability life-
cycle description in Section 2.5, requirements can be viewed as affecting the
underlying system through the interface. These changes, as discussed earlier,
can be functionality changes or performance requirement changes for instance
an increase in processing throughput.

6 Conclusion and Opportunities for Future Work

This chapter reports our understanding of how to implement and realize NEC
Systems of Systems when developing from existing assets rather than a purely
clean-sheet position. The NECTISE program included the investigation of
sustainable system maintainability with respects to the NEC problem and
this work has explored a number of challenges to be faced in realizing NEC
when migrating legacy assets to an SOA based System of Systems over time.

Migrating Legacy Assets through SOA 341

Platform Layer

Service Layer

Legacy

Component/System

Service Interface

Wrapper

Component

Integration Layer

Capability Layer

R
e
q

u
ire

m
e
n

ts

Fig. 13. Wrapping a legacy system in the context of capability integration

The challenges and constraints that have guided this research in the NEC
domain include:

– System of Systems will be grown over time and not comprehensively
designed upfront.

– Factors such as cost will drive the migration of existing/legacy assets to
an SOA infrastructure rather than developing solutions from scratch.

– Systems that realize NEC possess varying timescales for their life-cycles
and need to provide integrated operation at their current stage. In mili-
tary systems, long life systems are common; for example a ship may have
a service life of forty years. During this time the operational environment
and operational concepts will both evolve.

This work shows that whilst it is possible to produce an abstract system
model for SOA integration by abstracting the functionality of platform hosted
systems into services which can be recombined (as in Figure 3), there are still
‘devils in the detail’. Application of SOA to an NEC environment has been in-
vestigated in light of real-world constraints of military systems. Specifically the
reuse of legacy systems in an SOA-enable NEC environment has been consid-
ered. SOA-based integration has been viewed from both the capability integra-
tor and service provider’s perspectives and is further broken down in terms of
the SOA-based service and system platform. We have explored problems from
both legacy systems (changing underneath and extra requirements due to a
context change) and evolution and mismatch at the Interface Layer. Problems

342 D. Webster et al.

of ‘legacy’ can occur at both the Platform Layer and at the SOA Integration
Layer. These will occur, not just at the stage where non-SOA legacy assets are
integrated, but when SOA-enabled services are evolved over time.

A summary of the understanding for the use of legacy systems is as follows:

1. The wrapping of legacy systems has been illustrated through the diagram
shown in Figure 13 and the worked sensor example in Section 4.3. On-
going capability requirements affect wrapped legacy systems through the
Service Interface layer. Limitations to how far this approach can be taken
have been discussed, in particular for performance limitations and the in-
ability to modify the system. The mediator/wrapperwill need to bridge the
gap of requirements put upon that system in its new context and the func-
tionality implemented by the system in its original context. As discussed in
Section 5.2 a hypothesis is presented that maintenance life-cycles need to
be associated with wrappers created to overcoming interface mismatch. A
decision support model has been proposed (Figure 4) to inform the devel-
oper of the creation of these life-cycles and the maintenance responsibility.
A more structured documentation and analysis process is planned for fu-
ture work. Part of this documentation includes the tracking of the creation
of and life-cycles associated with wrapping components.

2. Whilst it is possible to view the wrapping of a legacy system to an SOA
interface as a solution for controlling the description of and access to its
functionality, there are still problems regarding the evolution and ver-
sioning of this interface description. Whilst it will be possible for ser-
vice providers to support older versions or at least provide backwards-
compatible versions of interfaces, semantic changes or the maintenance
of a single interface version will prompt a reengineering task for existing
clients. The evolution of the dependancy between service clients and ser-
vice providers based on the agreed functionality of a particular service
interface version is a challenge for future research.

3. Use of wrapper/adapter technologies is a potential solution to the prob-
lem of architectural and interface mismatch. This occurs below the Inter-
face Layer for replacing replacing traditional systems whilst still main-
taining the SOA interface definition and also above the Service Layer
when providing functionally equivalent services from different service
providers. The Software Demonstrator has illustrated that changing a
serial sensor aggregation component with a parallel sensor aggregation
component to improve performance is possible whilst encapsulating this
change behind the same service interface.

Future work has been considered which would include formally analyzing
the complexity, maintainability and interoperability for wrapping legacy sys-
tems into SOA infrastructures used in a System of Systems to realize NEC.
Modeling of this work would be investigated in the context of documenting
and reverse engineering the wrapping and legacy architectures through the
use of MODAF (MOD Architecture Framework).

Migrating Legacy Assets through SOA 343

A structured approach to evaluating the replacement of components is
required for future development of the Software Demonstrator. An approach
for the design of a component behaviour test suite has been proposed by
Flores [22] for equivalent components. This approach can be used as a starting
point and will be key to evaluating the through-life upgrading, refactoring
and replacement of components whilst still maintaining a System of Systems
to realize capability.

Finally, whilst only wrappers have been suggested here, there is scope for
other techniques for mitigating architectural mismatch to be investigated and
evaluated.

Acknowledgements

The work reported in this paper has been supported by the NECTISE pro-
gramme, jointly funded by BAE Systems and the UK Engineering and Phys-
ical Sciences Research Council Grant EP/D505461/1. The authors would like
to thank John Davies from BAE Systems (INSYTE) for his input into this
research work.

References

1. Refactoring: improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., Boston (1999)

2. Allen, P.: Service Orientation: Winning Strategies and Best Practices. Cam-
bridge University Press, Cambridge (May 2006)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts. In:
Architectures and Applications, Springer, Heidelberg (November 2003)

4. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Evolving services from a
contractual perspective. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 290–304. Springer, Heidelberg (2009)

5. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and
challenges. IEEE Computer 39(10), 36–43 (2006)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Professional, Reading (April 2003)

7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Professional, Reading (April 2003)

8. Bernstein, P.A.: Middleware: a model for distributed system services. Commun.
ACM 39(2), 86–98 (1996)

9. Boehm, B., Hansen, W.: The spiral model as a tool for evolutionary acquisi-
tion. In: Bowers, P. (ed.) Journal of Defense Software Engineering, Crosstalk,
vol. 14.5, pp. 4–11 (May 2001)

10. Booch, G.: Nine things you can do with old software. IEEE Software 25(5),
93–94 (2008)

11. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web services architecture. In: W3C Note NOTE-ws-arch-20040211,
World Wide Web Consortium (February 2004)

344 D. Webster et al.

12. Brooks Jr., F.P.: The mythical man-month. In: Proceedings of the International
Conference on Reliable Software, page 193. ACM Press, New York (1975)

13. Cisco Systems. Service virtualization: Managing change in a service-oriented
architecture. Technical report (2007),
http://www.cisco.com/en/US/prod/collateral/contnetw/ps5719/ps7314/

prod%5fwhite%5fpaper0900aecd806693c2.html - (last accessed October 13th,
2009)

14. Cohen, D., Larson, G., McDougal, D., Ware, B.: Extending life cycle of legacy
systems. In: International Conference on Computer Networks and Mobile Com-
puting, vol. 0, p. 291 (2003)

15. Comella-Dorda, S., Wallnau, K.C., Seacord, R.C., Robert, J.E.: A survey of
legacy system modernization approaches. Technical report, Report CMU/SEI-
2000-TN-003, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA (2000)

16. Corman, D.: The iuls approach to software wrapper technology for upgrading
legacy systems. In: Bowers, P. (ed.) Journal of Defense Software Engineering,
Crosstalk, vol. 14.12, pp. 9–13 (December 2001)

17. Altmann, J., Quan, D.M., Yang, L.T.: Improving the capability of the sla work-
flow broker with parallel processing technology. International Journal of Com-
puter Systems Science and Engineering 24 (September 2009)

18. de&s.: The systems engineering handbook: Principles, practices and techniques.
In: Draft D. UK Ministry of Defence (2007)

19. Director General Safety & Engineering. Implementing systems engineering in
defence. Technical report, UK Ministry of Defence. de&s (2008)

20. Erl, T.: SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River
(2007)

21. Erl, T., Karmarkar, A., Walmsley, P., Haas, H., Umit Yalcinalp, L., Liu, K.,
Orchard, D., Tost, A., Pasley, J.: Web Service Contract Design and Versioning
for SOA. Prentice Hall PTR, Upper Saddle River (2009)

22. Flores, A., Usaola, M.P.: Testing-based assessment process for upgrading com-
ponent systems. In: IEEE International Conference on Software Maintenance,
ICSM 2008, October 28, vol. 4, pp. 327–336 (2008)

23. Brooks Jr., F.P.: No silver bullet essence and accidents of software engineering.
Computer 20(4), 10–19 (1987)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-
Wesley, Boston (1995)

25. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc, Boston (1995)

26. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is
so hard. IEEE Software 12, 17–26 (1995)

27. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow manage-
ment: from process modeling to workflow automation infrastructure. Distrib.
Parallel Databases 3(2), 119–153 (1995)

28. Hollingsworth, D.: Workflow management coalition - the workflow reference
model. Technical report, Workflow Management Coalition (January 1995)

29. Huang, Y., Taylor, I., Walker, D.W., Davies, R.: Wrapping legacy codes for
grid-based applications. In: Parallel and Distributed Processing Symposium,
International, vol. 0, p. 139b (2003)

http://www.cisco.com/en/US/prod/collateral/contnetw/ps5719/ps7314/prod%5fwhite%5fpaper0900aecd806693c2.html
http://www.cisco.com/en/US/prod/collateral/contnetw/ps5719/ps7314/prod%5fwhite%5fpaper0900aecd806693c2.html

Migrating Legacy Assets through SOA 345

30. Kennedy, D., Nesterov, S.: Issues with third party maintenance of software in-
tensive legacy systems: A case study – avionic mission systems. In: 18th Annual
International Symposium of INCOSE Utrecht, The Netherlands (2008)

31. Kotonya, G., Hutchinson, J.: A component-based process for modelling and
evolving legacy systems. Softw. Process 13(2), 113–125 (2008)

32. Littlejohn, K., DelPrincipe, M.V., Preston, J.D., Calloni Dr., B.A.: Reengi-
neering: An affordable approach for embedded software upgrade. In: Bowers,
P. (ed.) Journal of Defense Software Engineering, Crosstalk, vol. 14.12, pp. 4–8
(December 2001)

33. Liu, L., Russell, D., Looker, N., Webster, D., Xu, J., Davies, J., Irvin, K.:
Evolutionary service-oriented architecture for network enabled capability. In:
International Workshop on Verification and Evaluation of Computer and Com-
munication Systems (VECoS), Leeds, UK, Published by the eWiC series of the
British Computer Society (BCS) (2008)

34. Liu, L., Russell, D., Webster, D., Luo, Z., Venters, C., Xu, J., Davies, J.K.:
Delivering sustainable capability on evolutionary service-oriented architecture.
In: IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, vol. 0, pp. 12–19 (2009)

35. Liu, L., Russell, D., Xu, J., Davies, J., Irvin, K.: Agile properties of service
oriented architectures for network enabled capability. In: Realising Network
Enabled Capability (RNEC 2008), Leeds, UK (2008)

36. Microsoft. Soa in the real world. Online Book. (August 2007),
http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=cb2a8e49-

bb3b-49b6-b296-a2dfbbe042d8&displaylang=en

(retrieved September 21, 2009)

37. NECTISE. Network enabled capability through innovative systems engineering
(nectise) (2005), http://nectise.com/

38. UK Ministry of Defence. Defence industrial strategy: Defence white paper
(cm6697). Technical report, UK Ministry of Defence (2005)

39. UK Ministry of Defence. Joint Services Publication 777, 1st edn. (2005),
http://www.mod.uk/NR/rdonlyres/E1403E7F-96FA-4550-AE14-

4C7FF610FE3E/0/nec jsp777.pdf

40. Rajlich, V.T., Bennett, K.H.: A staged model for the software life cycle. Com-
puter 33(7), 66–71 (2000)

41. Raymond, E.S.: The Art of UNIX Programming. Pearson Education, London
(2003)

42. Ruderman, J.: Same origin policy for javascript. Technical report (2009),
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript

43. Russell, D., Looker, N., Liu, L., Xu, J.: Service-oriented integration of systems
for military capability. In: IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, vol. 0, pp. 33–41 (2008)

44. Russell, D., Xu, J.: Service oriented architectures in the delivery of capability.
In: Proc. of Systems Engineering for Future Capability (2007)

45. Russell, D., Xu, J.: Service oriented architectures in the provision of military
capability. In: UK e-Science All Hands Meeting 2007, Nottingham, UK (2007)

46. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging dis-
cipline. Prentice-Hall, Inc., Upper Saddle River (1996)

47. Sommerville, I.: Software Engineering (International Computer Science), 8th
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=cb2a8e49-bb3b-49b6-b296-a2dfbbe042d8\&displaylang=en
http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=cb2a8e49-bb3b-49b6-b296-a2dfbbe042d8\&displaylang=en
http://nectise.com/
http://www.mod.uk/NR/rdonlyres/E1403E7F-96FA-4550-AE14-4C7FF610FE3E/0/nec_jsp777.pdf
http://www.mod.uk/NR/rdonlyres/E1403E7F-96FA-4550-AE14-4C7FF610FE3E/0/nec_jsp777.pdf
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript

346 D. Webster et al.

48. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

49. uddi.org. UDDI Executive White Paper (2001)
50. W3C. Soap version 1.2 part 0: Primer 2nd edn. W3C Recommendation (April

2007)
51. Web Services Description Working Group. Web services description language

(wsdl) version 2.0 part 1: Core language. Technical report, W3C (2007)
52. Webster, D., Looker, N., Russell, D., Liu, L., Xu, J.: An ontology for evalua-

tion of network enabled capability architectures. In: Realising Network Enabled
Capability (RNEC 2008), Leeds, UK (2008)

53. Zhang, Z., Yang, H.: Incubating services in legacy systems for architectural
migration. In: Asia-Pacific Software Engineering Conference, vol. 0, pp. 196–
203 (2004)

Author Index

Akritidis, Leonidas 83

Bozanis, Panayiotis 83

Catania, Barbara 171
Chatzilari, Elisavet 235

Dikaiakos, Marios D. 213

Giatsoglou, Maria 19
Görlitz, Olaf 109
Gounaris, Anastasios 139
Guerrini, Giovanna 171

Katsaros, Dimitrios 83
Kompatsiaris, Ioannis 235

Liu, Lu 311
Luo, Zongyang 311

Manolopoulos, Yannis 139
Mendes, Emilia 59

Nikolopoulos, Spiros 235

Pallis, George 213
Papadopoulos, Symeon 19
Pardede, Eric 273
Patras, Ioannis 235
Phan, Viet Binh 273

Rahayu, J. Wenny 273
Russell, Duncan 311

Staab, Steffen 109

Tsamoura, Efthymia 139

Vakali, Athena 1, 19
Venters, Colin 311

Webster, David 311

Xu, Jie 311

Zeinalipour-Yazti, Demetrios 213

	Innovations and Trends in Web Data Management
	Communities and Open Problems in the Web 2.0 Environment
	Capturing Groups of Data over the Web Graph
	Discovery of User Groups and Communities in Social Networks
	Motivation for Community Identification and Indicative Application Areas
	The Aims of This Book
	References

	Massive Graph Management for theWeb andWeb 2.0
	Introduction
	Handling Massive Graphs on the Web
	Transactional Graph Databases
	RDBMS-Based Frameworks
	 Object Database-Based Frameworks
	Native Graph Stores
	Custom
	Distributed Transactional Databases

	Data Mining-Oriented Solutions
	Compression-Based Databases
	Streaming Solutions
	Distributed Data Mining-Oriented Solutions

	A Case for Web 2.0 Graph Stores: Social Tagging Systems
	Introduction to Social Tagging Systems
	Social Tagging Systems: Analysis Tasks
	Application Setting

	STS Data Management Framework Benchmark
	Participating Frameworks Description
	Benchmark Tests Description
	Benchmark Results

	Conclusions and Outlook
	References

	Web Engineering and Metrics
	Introduction
	Measurement Scales
	Nominal Scale Type
	Ordinal Scale Type
	Interval Scale Type
	Ratio Scale Type
	Absolute Scale Type
	Summary of Scale Types

	Overview of Empirical Investigations
	Issues to Consider When Conducting Empirical Studies
	Detailing Formal Experiments
	Typical Design 1
	Typical Design 1: One Factor and One Confounding Factor
	Typical Design 2
	Typical Design 3
	Typical Design 4
	Summary of Typical Designs

	Detailing Case Studies
	Detailing Surveys
	Conclusions
	References

	Modern Web Technologies
	Introduction
	The Client-Server Model
	The Peer-To-Peer (P2P) Model
	Hypertext
	Hypertext Transfer
	Hypertext Markup
	XML
	RSS Feeds

	Scripting
	Asynchronous Transfers and AJAX
	Application Deployment
	Database Servers
	Hypertext Preprocessor - PHP
	Active Server Pages - ASP/ASP.NET
	Java Server Pages - JSP

	SOAP
	Distributed Applications
	Cloud Computing
	The Mobile Web
	Web 2.0 Applications
	Web Communities
	Social Networks
	Office Suites
	File and Media Sharing Services
	Real-Time Web

	Discussion
	References

	Federated Data Management and Query Optimization for Linked Open Data
	Introduction
	Example
	Linked Open Data Search
	Requirements
	Architecture Variations
	Federation Challenges

	Related Work
	Federation Infrastructure for Linked Open Data
	Federator
	Data Catalog
	Data Statistics

	Query Optimization
	Data Source Mappings
	Query Execution Plans
	Optimization Fundamentals
	Optimization Strategies
	Dynamic Programming

	Improvements for Federation
	Streaming Results
	Result Ranking
	Views

	Performance Evaluation
	Real World Datasets
	Artificial Datasets
	Data Partitioning

	Summary
	References

	Queries overWeb Services
	Introduction
	Optimization Problems of Queries over WSs
	Chapter Contributions and Structure

	Different Aspects of the Problem of Optimizing WS Queries
	Execution Environment
	Input Queries
	Input Operators
	Optimization Criteria

	Optimization Approaches
	Operator Ordering Problems in a Static Environment
	Operator Ordering Problems in Dynamic Environments
	Tuple Routing and Scheduling Problems
	Data Transfer Planning Problems
	Other Problems Related to Queries over WSs
	Discussion and Open Issues

	Conclusion
	References

	Towards Adaptively Approximated Search in Distributed Architectures
	Introduction
	Examples
	Query Approximation
	An Introduction to Query Approximation
	Query Rewriting
	Preference-Based Methods
	Recommendation Systems
	Approximate Query Processing

	Adaptive Query Processing
	An Introduction to Adaptive Query Processing
	Styles of Adaptation
	Adaptive Approaches for Local Query Processing
	Adaptive Approaches for Distributed Query Processing
	Adaptive Approaches for Query Processing on Streaming Data

	Requirements for ASAP Systems
	Application Contexts
	User Participation
	Frequency of Adaptation
	Properties Monitored
	Re-optimization
	Correctness
	Reusability

	Related Work
	Concluding Remarks
	References

	Online Social Networks: Status and Trends
	Introduction
	Architecture of OSNs
	Taxonomy of OSNs
	Case Studies
	Facebook
	MySpace
	Hi5
	Flickr
	LinkedIn
	Twitter
	YouTube

	Future Research Challenges
	Overlay Networking
	Privacy and Trust
	Knowledge Discovery and Search
	Business and Social Impact

	Conclusion
	References

	Enhancing Computer Vision Using the Collective Intelligence of Social Media
	Introduction
	Learning and Web 2.0 Multimedia
	Learning in Computer Vision
	Social Tagging Systems and Web 2.0 Multimedia

	Multimedia Analysis and Management
	The Need for Semantics
	Visual Features Extraction and Regions Identification
	Learning Mechanisms
	Annotation Cost for Learning

	Leveraging Social Media for Training Object Detectors
	Problem Formulation
	Framework Description
	Implementing the Framework
	Experimental Study

	Related Methods
	Conclusions
	References

	From Extensional Data to Intensional Data: AXML for XML
	Introduction
	eXtensible Markup Language (XML)
	Why XML?
	Basic Concepts of XML
	XPath and XQuery

	Intensional XML Data
	Active XML Solution
	AXML Basic Concepts
	AXML Projects
	ARAXA Project
	AXML for J2ME Platform
	Summary AXML Projects

	Alternative Solutions to Intensional XML Data
	Conclusion
	References

	Chapter Migrating Legacy Assets through SOA to Realize Network Enabled Capability
	Introduction
	Service Oriented Architectures in NEC
	Service Oriented Architectures
	Web Services
	NEC Requirements and Realizing NEC through an SOA
	SOA and Workflows to Realize NEC
	An SOA Integration Model for Realizing NEC

	Incremental Service Delivery within the NEC System of Systems
	Introduction to Constraints of Developing Service Systems for NEC
	Existing Approaches to Reuse Legacy Systems as (Web) Services
	Abstract Decision Process Model for Wrapping Legacy Components

	NECTISE SOA Demonstration and Critical Evaluation
	Makeup of the Demonstrator Implementation
	Life-Cycle Aspects of the Demonstrator
	Exposing a Legacy Sensor Application to an SOA Network

	Conclusions of Legacy System Migration towards SOA
	Challenges in Legacy System Migration towards SOA for NEC
	Maintenance Life-Cycle of Wrappers

	Conclusion and Opportunities for Future Work
	References

	Cover
	Front Matter
	Innovations and Trends in Web Data Management
	Communities and Open Problems in the Web 2.0 Environment
	Capturing Groups of Data over the Web Graph
	Discovery of User Groups and Communities in Social Networks
	Motivation for Community Identification and Indicative Application Areas
	The Aims of This Book
	References

	Massive Graph Management for theWeb andWeb 2.0
	Introduction
	Handling Massive Graphs on the Web
	Transactional Graph Databases
	RDBMS-Based Frameworks
	Object Database-Based Frameworks
	Native Graph Stores
	Custom
	Distributed Transactional Databases

	Data Mining-Oriented Solutions
	Compression-Based Databases
	Streaming Solutions
	Distributed Data Mining-Oriented Solutions

	A Case for Web 2.0 Graph Stores: Social Tagging Systems
	Introduction to Social Tagging Systems
	Social Tagging Systems: Analysis Tasks
	Application Setting

	STS Data Management Framework Benchmark
	Participating Frameworks Description
	Benchmark Tests Description
	Benchmark Results

	Conclusions and Outlook
	References

	Web Engineering and Metrics
	Introduction
	Measurement Scales
	Ordinal Scale Type
	Nominal Scale Type
	Ratio Scale Type
	Interval Scale Type
	Absolute Scale Type
	Summary of Scale Types

	Overview of Empirical Investigations
	Issues to Consider When Conducting Empirical Studies
	Detailing Formal Experiments
	Typical Design 1
	Typical Design 2
	Typical Design 1: One Factor and One Confounding Factor
	Typical Design 3
	Typical Design 4

	Detailing Case Studies
	Summary of Typical Designs

	Conclusions
	Detailing Surveys
	References

	Modern Web Technologies
	Introduction
	The Client-Server Model
	The Peer-To-Peer (P2P) Model
	Hypertext Transfer
	Hypertext
	Hypertext Markup
	XML
	RSS Feeds

	Scripting
	Asynchronous Transfers and AJAX
	Application Deployment
	Database Servers
	Hypertext Preprocessor - PHP
	Active Server Pages - ASP/ASP.NET

	SOAP
	Java Server Pages - JSP

	Distributed Applications
	Cloud Computing
	The Mobile Web
	Web 2.0 Applications
	Web Communities
	Social Networks
	Office Suites
	File and Media Sharing Services
	Real-Time Web

	Discussion
	References

	Federated Data Management and Query Optimization for Linked Open Data
	Introduction
	Example
	Linked Open Data Search
	Architecture Variations
	Requirements
	Federation Challenges

	Related Work
	Federation Infrastructure for Linked Open Data
	Federator
	Data Statistics
	Data Catalog

	Query Optimization
	Data Source Mappings
	Query Execution Plans
	Optimization Fundamentals
	Optimization Strategies
	Dynamic Programming

	Improvements for Federation
	Streaming Results
	Result Ranking
	Views

	Performance Evaluation
	Real World Datasets
	Artificial Datasets

	References
	Summary
	Data Partitioning

	Queries overWeb Services
	Introduction
	Optimization Problems of Queries over WSs

	Different Aspects of the Problem of Optimizing WS Queries
	Execution Environment
	Chapter Contributions and Structure
	Input Queries
	Input Operators
	Optimization Criteria

	Optimization Approaches
	Operator Ordering Problems in a Static Environment
	Operator Ordering Problems in Dynamic Environments
	Tuple Routing and Scheduling Problems
	Data Transfer Planning Problems
	Other Problems Related to Queries over WSs
	Discussion and Open Issues

	Conclusion
	References

	Towards Adaptively Approximated Search in Distributed Architectures
	Introduction
	Examples
	Query Approximation
	An Introduction to Query Approximation
	Query Rewriting
	Preference-Based Methods
	Recommendation Systems
	Approximate Query Processing

	Adaptive Query Processing
	An Introduction to Adaptive Query Processing
	Styles of Adaptation
	Adaptive Approaches for Local Query Processing
	Adaptive Approaches for Distributed Query Processing
	Adaptive Approaches for Query Processing on Streaming Data

	Requirements for ASAP Systems
	Application Contexts
	User Participation
	Frequency of Adaptation
	Re-optimization
	Properties Monitored
	Correctness
	Reusability

	Related Work
	Concluding Remarks
	References

	Online Social Networks: Status and Trends
	Introduction
	Architecture of OSNs
	Taxonomy of OSNs
	Case Studies
	Facebook
	MySpace
	Flickr
	Hi5
	Twitter
	LinkedIn
	YouTube

	Future Research Challenges
	Overlay Networking
	Privacy and Trust
	Knowledge Discovery and Search
	Business and Social Impact

	Conclusion
	References

	Enhancing Computer Vision Using the Collective Intelligence of Social Media
	Introduction
	Learning and Web 2.0 Multimedia
	Learning in Computer Vision
	Social Tagging Systems and Web 2.0 Multimedia

	Multimedia Analysis and Management
	The Need for Semantics
	Visual Features Extraction and Regions Identification
	Learning Mechanisms
	Annotation Cost for Learning

	Leveraging Social Media for Training Object Detectors
	Problem Formulation
	Framework Description
	Implementing the Framework
	Experimental Study

	Related Methods
	Conclusions
	References

	From Extensional Data to Intensional Data: AXML for XML
	Introduction
	eXtensible Markup Language (XML)
	Why XML?
	Basic Concepts of XML
	XPath and XQuery

	Intensional XML Data
	Active XML Solution
	AXML Basic Concepts
	AXML Projects
	ARAXA Project
	AXML for J2ME Platform
	Summary AXML Projects

	Alternative Solutions to Intensional XML Data
	References
	Conclusion

	Chapter Migrating Legacy Assets through SOA to Realize Network Enabled Capability
	Introduction
	Service Oriented Architectures in NEC
	Service Oriented Architectures
	Web Services
	NEC Requirements and Realizing NEC through an SOA
	SOA and Workflows to Realize NEC
	An SOA Integration Model for Realizing NEC

	Incremental Service Delivery within the NEC System of Systems
	Introduction to Constraints of Developing Service Systems for NEC
	Existing Approaches to Reuse Legacy Systems as (Web) Services
	Abstract Decision Process Model for Wrapping Legacy Components

	NECTISE SOA Demonstration and Critical Evaluation
	Makeup of the Demonstrator Implementation
	Life-Cycle Aspects of the Demonstrator
	Exposing a Legacy Sensor Application to an SOA Network

	Conclusions of Legacy System Migration towards SOA
	Challenges in Legacy System Migration towards SOA for NEC
	Maintenance Life-Cycle of Wrappers

	Conclusion and Opportunities for Future Work
	References

	Back Matter

