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Foreword

It is a great pleasure for me to write this foreword about a book that comes out
of one of the first research projects funded by ANR, the French National Research
Agency. ANR was established by the French government in 2005 to fund research
projects, based on competitive schemes giving researchers the best opportunities to
realize their projects and paving the way for groundbreaking new knowledge. The
role of the Agency is to bring more flexibility to the French research system, fos-
ter new dynamics and devise cutting edge-strategies for acquiring new expertise.
By identifying priority areas and fostering publicprivate collaborations, the ANR
also aims at enhancing the general level of competitiveness of both the French re-
search system and the French economy. The first calls for proposal were launched in
early 2005, selection by peer review took place, and ICTER (Information Integrity
and Confidentiality for Reconfigurable Technologies), was one of the first selected
projects which addressed the issue of security in digital circuits and systems. Since
then, many other projects have been submitted to and funded by ANR on closely
related topics, this is certainly another measure of the success of ICTER. A few
years later, the project results are found to be quite impressive, among which this
book is clearly a significant outcome. It will contribute to a better understanding of
technologies related to the digital security of electronic devices, which are at the
core of information technology as they are key to the trust that we can put in our
digital systems. Writing a book of this magnitude is a significant effort; I wish much
success to it and congratulate the authors for their achievement. I see it as another
proof for ANR of the dynamism of the French research.

Professor Bertrand Braunschweig
Head of the Information and Communication Technology

Department of the ANR

Paris, France
2011, March
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Preface

This book is the result of a national project (ICTER) funded by the French National
Research Agency (ANR) and involving four research centers (Montpellier, Paris,
Lorient, Saint-Etienne) and a private company. When the project started in 2005,
very few studies addressed the topic of digital security for reconfigurable architec-
tures including FPGAs (Field Programmable Gate Arrays). But it was already clear
that the sustained rate of integrating hardware and software resources in FPGAs
would impact future embedded systems, especially in the field of digital security.
The complexity of global systems has increased opportunities for designers and
users but also resulted in an increase in vulnerabilities. We foresaw this problem
and decided to combine efforts to identify the strengths and weaknesses of recon-
figurable platforms from the point of view of security. We discovered a world of
immense and unique opportunities for research. Our choice immediately focused on
a holistic view, taking into account technological, logical, architectural and system
levels, and hence, the security pyramid. This concept corresponds to a value chain
structure in which the close links between each stage represent a significant gain,
but also many potential security flaws.

Since 2005, we have not only been monitoring developments in the field but also
been contributing to the state of the art. We have shown that by taking the target
technology into account, it is possible to provide innovative techniques to build a
system robust enough withstand a large number of attacks. We do not claim to have
solved every problem, but we have established some rules and benchmarks that
will undoubtedly be used in future applications on FPGAs. We would like to take
this opportunity to thank all the contributors to this book, colleagues and PhD and
Master students who shared and contributed to the same scientific objectives as we
did. A warm thank to Dr. Reouven Elbaz, from Intel company, who friendly spent
time to bring comments and remarks on our work. We all participated together in this
very exciting project that involved many enthusiastic discussions and culminated in
the significant contributions we are happy to share with you here. This project was
generously supported by French Research Agency, ANR.1 In fact, in 2005 ours was

1http://www.agence-nationale-recherche.fr/.
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viii Preface

among the very first projects to be approved by the ANR. We thank the ANR for
having confidence in us and for supporting this work, without this support, this book
would not exist.

“Security trends for FPGAs” is designed for all those who would like to upgrade
their knowledge in the field of security and digital platforms including reconfig-
urable FPGAs. We believe you will find many useful technical references and solu-
tions to your problems. We had a lot fun writing this book, we hope you will enjoy
reading it just as much.

Benoit Badrignans
Jean Luc Danger

Viktor Fischer
Guy Gogniat
Lionel Torres

Montpellier, France
Paris, France
Saint-Etienne, France
Lorient, France
Montpellier, France
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Chapter 1

Introduction and Objectives

L. Torres

1.1 Motivation

Today there are around 3 billions of cell phone users in the world and 50% of the
world population is expected to own a cell phone by the end of 2011. This just shows
to what extent electronic mobile devices have already become an integral part of
our lives, cell phones being one of the most remarkable examples. Between 2007
and the end of 2011 the equivalent of around 587 billion dollars will be have been
exchanged through cell phone transactions. As cell phone users, we really need to
have confidence in exchanges with remote servers. What people worry about most
when paying for purchases on-line or by cell phone is security. But bank information
is not the only sensitive data exchanged with and/or stored on mobile devices. A lot
of other personal information can be stolen. Identity theft is a new threat that people
are not yet really conscious of. Its easy to steal information from someone and also
to steal their identity. In this new connected world, companies are obliged to work
on such problems if their customers are to have confidence in their products.

Companies also face new challenges. When a new mobile product comes onto the
market, everyone tries to bypass protections and/or restrictions in order to execute
specific software procedures. Competitors can spy on technological innovations and
hackers can jeopardize their image. The most significant example is the iPhone. Ap-
ple applied so many restrictions to its product (phone provider restriction, software
execution restriction) that within a few weeks (and even days for the 3G version),
the iPhone was jailbroken in order to bypass these restrictions. Today all the pro-
tection mechanisms included in software are almost always broken by hackers. In
addition, it is difficult to protect a mobile device due to the small hardware and soft-
ware capabilities of the system. And since the device is out there in the field, owners

L. Torres (�)
LIRMM—UMR CNRS 5506, University of Montpellier 2, Montpellier, France
e-mail: lionel.torres@lirmm.fr

B. Badrignans et al. (eds.), Security Trends for FPGAS,
DOI 10.1007/978-94-007-1338-3_1, © Springer Science+Business Media B.V. 2011
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2 L. Torres

of the system can do almost anything they want with the device, open it, and change
the hardware or software.

New reliable solutions are needed to protect both users and manufacturers
from ‘hackers’. Companies need to protect their intellectual property and busi-
ness, whereas users are only looking for a secure environment for their data and
exchanges. It is now well established that embedded systems are facing increasing
attacks since the private digital information embedded in these systems is getting
larger every day. The rate of digital data exchanged has also increased exponentially
and transferred information has to be kept safe since confidentiality and integrity are
mandatory. Embedded systems play an essential role in our society and are already
included in many electronic devices from low-end to high-end systems. Security is
a serious problem and attacks against these systems are becoming more critical and
sophisticated. New solutions are needed to enable the definition of secure embed-
ded systems since current technologies face several challenges and cannot cope with
security requirements and performance constraints. Architectures will have to meet
high performance requirements, be energy efficient, flexible, tamper resistant and
reliable to enable their wide adoption.

FPGAs can address these requirements and provide efficient security primitives.
Their characteristics enable the system to prevent attacks or to react when attacks
are detected while guaranteeing the necessary energy and computation efficiency. In
this book, we present an analysis of current threats against embedded systems and
especially FPGAs. We discuss requirements according to the FIPS 140-2 standard
in order to build a secure system. This point is of paramount importance as it guar-
antees the level of security of a system. We also highlight current vulnerabilities of
FPGAs at all the levels of the security pyramid (Fig. 1.1). From a design point of
view, it is essential to be aware of all the levels to find a comprehensive solution.
The strength of a system is defined by its weakest point; there is no advantage in
enhancing other means of protection, if the weakest point is left untreated. Many
severe attacks considered weak points to escape a complex brute force attack.

Several solutions are described in this book especially at the logical, architec-
tural and system levels to provide a global solution. However, operating system and
application levels are beyond the scope of this book as we only deal with hardware
solutions here. But it is important to bear in mind that they have to be taken into
account for a complete system. A lot of different types of threats have to be consid-
ered, any information that leaks from a cryptographic device could be exploited by
an attacker. For example, attacks based on power consumption or electromagnetic
emissions are possible with low competencies and low cost. Attackers can induce
errors during the encryption (or decryption) process in order to collect information
concerning secret information, such as cryptographic keys. Therefore cryptographic
devices must be protected against fault injection and leakage information. For ASIC,
many countermeasures are now well established, but this is not the case for FPGA
devices. Only a few academic or industrial studies have been conducted to ensure
the confidentiality and integrity of FPGA devices.

The number of possible threats to mobile device is huge. The first step toward
a secure environment would be to ensure the data and application cannot be stolen
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Fig. 1.1 Security pyramid: toward a defense-in-depth

or modified. But is it really possible to have a mobile system with these features?
As already mentioned earlier, mobile devices have limited hardware and software
resources. In order to tackle the security issues, some new features need to be added
to the system. This book details several solutions for secure application execution
and application update. New secure schemes are proposed to ensure data confiden-
tiality, integrity and authentication. These new schemes fit the tight requirements
of embedded systems (performance, memory footprint, logic area and energy con-
sumption). The cost of different architectures for performance, memory, and energy
are estimated. Innovative solutions for remote reconfigurations are also detailed tak-
ing into account security when downloading a new bitstream. The replay of an old
bitstream in the field is a major threat for embedded systems, this issue is discussed
and an original solution proposed.

1.2 Security Model

The security of a device is never perfect: given enough time and money, an attacker
can always break into a system. Therefore the security level is sized according to
the security objective. To evaluate the robustness of a system, three parameters have
to be taken into account:

• The profile of the attacker: this is a combination of different factors: knowledge of
the system, its skills (informatics, mathematics and electronics), means (in terms
of time and money).

• The different possible methods of attack: the threat varies with the system envi-
ronment and accessibility. For instance, a satellite is much more difficult to attack
physically than are personal security devices like smart cards.
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• The value of the protected information: security mechanisms have to be sized
according to the value of the information to be protected.

In the particular case of FPGA devices, four different entities are involved: the
FPGA vendor who built the FPGA chip, the System Designer (SD) who created
an FPGA based system, the IP provider who supplies IP cores used in the system,
and finally the system owner who is the end user of the system. In 1991, IBM [1]
provided a classification of attackers:

• Level 1: clever outsider. These attackers have only limited time and money at
their disposal, and only have access to publicly available documentation on the
system in question (on Internet, data sheets, software driver source or binary).
Their skills are limited to state-of-the-art attacks (mathematics, electronics and
informatics) suitable for light weight equipment. They mainly perform known
attacks rather than inventing a new form. Two examples of this type of attacker
are students or engineers who hack systems during their spare time, for instance,
they may tamper with their video game console to crack the game. In the field of
FPGA based systems, we consider that they can perform:
– Trivial attacks with limited equipment, like bus probing, memory dumping,
– Slightly more elaborate attacks like Simple Power Analysis (SPA) on unpro-

tected cryptographic algorithm implementation,
– Attacks that require less than the power of a dozen standard current computers.

• Level 2: knowledgeable insider. These attackers have access to all the neces-
sary documentation and information (technical documents, C or HDL source
codes, electric schematics, bug reports, security vulnerabilities) for the system
concerned. They may be former employees of the company that built the system.
They generally dispose of considerable means since they may be employed by a
competitor. Their level of competence is high regarding the application and the
system. They are able to perform the following attacks:
– Level 1 attacks,
– Attacks that require confidential information such as encryption keys used in

the system,
– Attacks requiring heavy equipment like Differential Power Analysis (DPA) or

fault injection tools,
– Attacks requiring less than the power of a thousand of modern computers.

• Level 3: funded organizations. These attackers are the most powerful imagin-
able. They have unlimited financial and technical means and time at their disposal.
Such attackers are generally big companies, a country, or even criminal organiza-
tions (mafia). Typically smart cards used for banking applications are the targets
of such attackers. They can apply all known threats such as:
– Lower level attacks,
– Attacks requiring less that 280 operations,
– Invasive attacks aimed at probing or modifying device at transistor and routing

level.
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All through this book, we consider that FPGA vendors are trustworthy, i.e. they
do not intentionally include security vulnerabilities in their chips. The system de-
signer (SD) is also considered to be trustworthy since we tackle the problem of
FPGA design security from the point of view of the system designer. IP providers
are trusted but do not necessary trust the system designer. Finally system owners
are not considered to be trustworthy, for instance companies that provide pay TV do
not trust the owner of the system.

We also consider that only level 3 attackers (funded organizations) can perform
invasive attacks on the FPGA device, the security mechanisms implemented by the
FPGA vendors are subject to the same rule. Therefore below level 3, we consider
that the FPGA chip itself is trustworthy.

To summarize, the security level of an application is determined by the power of
the attacker, the attack model concerned (for instance local or remote attack) and
the value of the information to be protected.

1.3 Organization of the Book

There are five main chapters:

• Chap. 2 provides definitions used for the security model and introduces the vocab-
ulary used throughout the book. In this chapter we also discuss existing attacks
at each level of the security pyramid, physical, logical, architectural and system
levels, and outline some countermeasures. This chapter provides readers with a
first insight into the field of security and FPGAs.

• In Chap. 3 we address the problem of Side Channel Attacks (SCA), mainly dif-
ferential power and electromagnetic attacks. This chapter is a brief survey of dif-
ferent kinds of general techniques to address SCA.

• These models are then used in Chap. 4 to evaluate robust logic styles in FPGAs.
We compare different structures and show that it is possible to propose original
logic styles in FPGAs to improve the robustness of FPGAs against SCA.

• In Chap. 5 we discuss how to generate true random number generators in FPGAs,
which is essential for most security applications. It is clear that key generation and
management are strong points in securing a reconfigurable platform. We propose
a set of techniques and several metrics to compare solutions.

• In Chap. 6, we describe how to embed confidentiality and integrity of data pro-
cessed by reconfigurable platforms at the system level. The threat model is in-
troduced here. Several results are given to illustrate the efficiency of different
solutions.

We believe this book provides good overview of different practical techniques
that can be used in reconfigurable platforms. However, it is not intended to provide
an exhaustive review of all the techniques that can be found in the literature, but
rather one way of dealing with security from technology to system for reconfig-
urable platforms.
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Security FPGA Analysis
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and L. Torres

Abstract Security is becoming since several years a major issue in the domain of
embedded systems. Fine grain reconfigurable architectures like FPGAs are provid-
ing many interesting features to be selected as an efficient target for embedded sys-
tems when security is an important concern. In this chapter we propose an overview
of some existing attacks, a classification of attackers and the different levels of secu-
rity as promoted by the FIPS 140-2 standard. We identify the main vulnerabilities of
FPGAs to tackle the security requirements based on the security pyramid concept.
We propose a presentation of some existing countermeasures at the different levels
of the security pyramid to guarantee a defense-in-depth approach.

2.1 Introduction

Standardized cryptographic algorithms, like AES or RSA, are designed to resist
cryptanalysis attacks, such as differential cryptanalysis. Only exhaustive attacks
against the cipher key are possible, so the security of these algorithms relies on the
length of the cipher key and if it is sufficiently long, such attacks are then impos-
sible. Table 2.1 summarizes current minimum strength recommendations for cryp-
tographic algorithms. In 2011, a minimum of 112 security bits is required for all
cryptographic algorithms [5].

Thus cryptography algorithms are mathematically designed to be strong enough
for current processing technologies. However, hackers can also attack software or
hardware implementations for a lower cost. In such cases, implementation may be
the weak point of the encryption process. For example, a new software side channel
attack, called Branch Prediction Analysis (BPA) attack, was recently discovered and
shown to be practically feasible on popular commodity PC platforms. This shows
that a carefully written spy process, run simultaneously with an RSA process, can
collect almost all the secret key bits in a single RSA signing execution. For this
reason, security needs to be considered at different levels, i.e. from the technology
to the application. If all these levels and the links between them are not taken into
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Table 2.1 NIST recommendation for cryptographic algorithms

Date Min of
strength

Symmetric key
algorithms

Asymmetric
(RSA)

Hash (A) Hash (B)

2006 to 2010 80 2TDEA* 1024 SHA-1** SHA-1

3TDEA* SHA-224 SHA-224

AES-128 SHA-256 SHA-256

AES-192 SHA-384 SHA-384

AES-256 SHA-512 SHA-512

2011 to 2030 112 3TDEA* 2048 SHA-224 SHA-1

AES-128 SHA-256 SHA-224

AES-192 SHA-384 SHA-356

AES-256 SHA-512 SHA-384

SHA-512

>2030 128 AES-128 3072 SHA-256 SHA-1

AES-192 SHA-384 SHA-224

AES-256 SHA-512 SHA-356

SHA-384

SHA-512

Hash (A): Digital signatures and hash-only applications

Hash (B): HMAC, Key Derivation Functions and Random Number Generation. The security
strength for key derivation assumes that the shared secret contains sufficient entropy to support
the desired security strength. The same remark applies to the security strength for random number
generation
*TDEA (Triple Data Encryption Algorithm). The assessment of at least 80 bits of security for
2TDEA is based on the assumption that an attacker has 240 matched plaintext and ciphertext
blocks at the most
**SHA-1 has been shown to provide less than 80 bits of security for digital signatures; the security
strength against collisions is assessed at 69 bits. The use of SHA-1 is not recommended for the
generation of digital signatures in new systems; new systems should use one of the larger hash
functions. SHA-1 is included here to reflect its widespread use in existing systems, for which the
reduced security strength may not be of great concern when only 80 bits of security are required

consideration, weaknesses can easily and rapidly appear in the devices concerned.
Classical implementations of cryptography algorithms and secure embedded sys-
tems have been performed on ASICs and processors, but FPGAs are becoming in-
creasingly attractive for cost and performance reasons and should be considered as
a new alternative for security issues. As we explain in this chapter, FPGAs provide
several key features that are recommended for security. For example when SRAM
technologies are used, it is possible to dynamically change the functionality of the
system to react to an attack. It is also possible to update some new hardware cryp-
tography cores by remote reconfiguration even when the system has already been
used for several years. This helps maintain the security level of a system at a time
when cryptanalysis techniques are undergoing constant improvement. FPGAs pro-
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vide an appropriate performance level for most embedded systems and, when com-
bined with a processor core, can provide a whole secure solution. In this chapter we
present an extensive analysis of FPGAs and their security in order to define the role
that this technology could play in future applications.

The rest of the chapter is organized as follows: in Sect. 2.2, to give the reader
some general background in the field, we describe the security principles and per-
form an initial analysis of attacks against FPGAs. In Sect. 2.3, we describe the secu-
rity requirements for cryptographic modules according to the Federal Information
Processing Standard Publication (FIPS PUB 1402) [33]. This point is very impor-
tant when building a secure system. In Sect. 2.4, we analyze the vulnerabilities of
FPGAs according to the security pyramid and describe possible technology, logic,
architecture and system levels. In Sect. 2.5, we describe several countermeasures
that have been developed and demonstrate how they can be used to build a secure
system. Finally in Sect. 2.6, we present a number of conclusions.

2.2 Security Principles and Attacks Against FPGAs

The five main principles on which security is based to ensure the correct execution
of a program and the correct management of the communications are:

• Confidentiality: only the entities involved in the execution or the communication
have access to the data;

• Integrity: the message must not be damaged during transfer and the program must
not be altered before being executed;

• Availability: the message and/or the program must be available;
• Authenticity: the entity must be sure that the message comes from the right entity

and/or the system must trust the program source code;
• Non-repudiation: the entities involved in the execution or the communication

must not be able to deny the exchange.

Guaranteeing all these points in a system is intellectually and financially costly.
Efforts by attackers to disrupt one of these elements use two different approaches:
extracting secret information (or the keys used to codify the information); or disturb-
ing the system. The latter can also be classified in several levels: stop the system;
temporarily stop the system; and/or change the functionality of the system (some-
times by opening doors to retrieve secret information).

Attackers are considered as adversaries, with varying abilities and with varying
financial means at their disposal, and their attempts to disturb a system must be
stopped. Generally, the power of an attacker can be classified using the description
provided by IBM [1], as described into Chap. 1.
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2.2.1 Hardware Attacks

The main goal of hardware attacks depends on the goal of the attacker. There are
generally several objectives. The first is obtaining secret information like cipher
keys. The second is causing a breakdown of the system (e.g. denial of service at-
tack). We first describe attacks that aim to obtain secrets, and second, denial of
service attacks. Some attacks are difficult to classify, hardware modification of the
main memory being one of them since this kind of attack can be considered as a
software attack but relies on a hardware technique to modify the memory content.
The goal of this attack is to insert a malicious program in the system. A similar
attack targets FPGAs by altering the bitstream.

To be able to decrypt information, the attacker needs the cipher key. One way to
obtain cipher keys is to listen to side channels. This kind of attack is called a side
channel attack and can take several different forms [19]. The best known relies on
the power signature of the algorithm [25]. By analyzing the algorithm signature it is
possible to infer the round of the algorithm. What is more, differential analysis com-
bined with a statistical study of the power signature can lead to the extraction of the
cipher key. However to reach this goal, the attacker has to make certain assumptions
about the value of the key. The two methods are called SPA: Simple Power Analy-
sis and DPA: Differential Power Analysis. Similar solutions are also possible using
electromagnetic emissions (Differential Electromagnetic Analysis) [3]. Instead of
analyzing the power signature, the attacker analyzes electromagnetic signature of
the chip. One important aspect is the cost of such attacks. This type of attack is
much cheaper than a reverse engineering attack which requires an electronic mi-
croscope to study the structure. Temporal analysis or timing attack [24] is another
way to obtain cipher keys. The temporal reaction of the system leaks information
enables the attacker to extract the cipher key or other secret information such as a
password. Like with DPA, the attacker has to make certain assumptions about the in-
formation to be extracted, e.g. knowledge of the algorithm, in which case the branch
instructions in the program can also help to solve a secret since a timing model of
the algorithm can be established. Indeed, timing hypotheses are possible as the pro-
gram running on the target device is often known. In this case, thanks to statistical
studies, information can be extracted.

Fault injection [26] is the last way to obtain secrets through a side channel. How-
ever, like reverse engineering, more equipment is required than for the types of
attacks described above. The injection of a fault into a system through the mem-
ory, for example, corresponds to a modification of a bit (laser or electromagnetic
waves). Knowledge of the implementation of the algorithm is crucial to solve a se-
cret. In most cases, the fault is inserted in the last round of an algorithm [26]. This is
because the trace of the fault is more visible in the ciphered result. The goal of such
hardware attacks is to obtain secret information from the chip. Regular improve-
ments in side-channel attacks have been made in the last ten years and use advanced
techniques to extract information. This book provides extensive discussions on the
subject.
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Denial of service attacks are different and the aim here is to cause a system
breakdown. In autonomous embedded systems, power is an essential concern. It
is one of the most important constraints on the system. To give an example, with
a cell phone or a PDA, an attacker can perform a large number of requests that
aim to activate the battery and hence to reduce the life of the system [27, 31]. In
wireless communication systems, another type of attack activates the transmitter
antenna to obtain the same result (i.e. reducing the life of the system). Increasing
the workload of a processor is another way of consuming more battery. Indeed the
workload of the system is related to power consumption, so an attacker may try to
force the processor to work harder [27, 31]. As a consequence, the lifetime will be
affected.

The range of attacks against a system is wide and depends on several parameters:
the goal, the budget, and the type system concerned. Hardware attacks are already
a serious threat to embedded systems but software attacks are becoming more and
more dangerous and need to be recognized and prevented.

2.2.2 Software Attacks

Like in servers and workstations, embedded systems are being increasingly affected
by viruses and worms [9]. The difference between a virus and a worm is that a
virus requires the help of a human to infect a system and then to spread, whereas
a worm does not. A worm is considered to be autonomous. All computer science
concepts can be transposed to the embedded system domain. The replacement of
a program by a malicious threatens the security of the system. The malicious pro-
gram may either try to access sensitive data or to shut down the system. Concerning
secret data, cipher keys are the most sensitive data as once the attacker knows the ci-
pher keys, he/she has access to all the information in plain. Encrypting memory and
protecting cipher keys are classical solutions to these attacks. However protections
used in computer science are not appropriate for embedded systems (less comput-
ing power and memory). As a result, dedicated solutions for embedded systems are
gradually emerging (e.g. bus or program monitoring) [8]. The number of attacks tar-
geting embedded systems is also increasing rapidly. For example, a virus or a worm
can be sent to the same system several times to launch the antivirus. Scanning the
whole system increases the workload of the processor and thus decreases the battery
lifetime which may be critical for autonomous systems. The concept of embedded
systems extends the scope of viruses and of worms.

The classification of hardware and software attacks (as depicted in Fig. 2.1) is
generic and can be applied to different platforms. Here we focus on attacks against
FPGA-based designs which are more hardware oriented, as we explain in the fol-
lowing sections.
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Fig. 2.1 Hardware and
software attacks coverage
against embedded systems

2.3 Objective of an Attacker

The most common threat against an implementation of a cryptographic algorithm is
obtaining a confidential cryptographic key, that is, either a symmetric key or the pri-
vate key of an asymmetric algorithm. Given that in most commercial applications,
the algorithms used are public knowledge, obtaining the key will enable the attacker
to decrypt future communications (assuming the attack has not been detected and
countermeasures have not been taken) and, which is often more dangerous, to de-
crypt past communications that were encrypted.

Another threat is the one-to-one copy, or cloning of a cryptographic algorithm
together with its key. In some cases this is enough to run the cloned application in
decryption mode to decipher past and future communications. In other cases, exe-
cution of a particular cryptographic operation with a presumably secret key is—in
most applications—the only criterion used to authenticate a party to a communica-
tion. An attacker who can perform the same function can attack the system.

Yet another threat is applications in which the cryptographic algorithms are pro-
prietary. Even though such an approach is not common, it is a standard practice in
applications such as pay-TV and in government communications. In such scenar-
ios, it is advantageous for an attacker to reverse-engineer the encryption algorithm
itself. The associated key might be recovered later by other means (bribery or clas-
sical cryptanalysis, for instance). The above discussion generally assumes that an
attacker has physical access to the encryption device. Whether that is the case or not
depends to a great extent on the application concerned. However, we believe that
in many scenarios such access can be taken for granted, either through outsiders or
through dishonest insiders.

2.3.1 Security System Using FPGAs

Based on reports by Wollinger et al. [50] and Wollinger and Paar [49], we list the
potential advantages of FPGAs in cryptographic applications.
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• Algorithm agility. This term refers to cryptographic algorithms switching during
operation of the targeted application. While algorithm agility is costly with tradi-
tional hardware, FPGA can be reprogrammed on the fly.

• Algorithm upload. Upgrading fielded devices is conceivable with a new encryp-
tion algorithm. FPGA-equipped encryption devices can upload the new configu-
ration code.

• Architecture efficiency. In certain cases hardware architecture can be much more
efficient if it is designed for a specific set of parameters. One example of a pa-
rameter for cryptographic algorithms is the key. FPGA allows this type of archi-
tecture, and enables optimization using a specific set of parameters. Depending
on the type of FPGA, the application can be completely or partially modified.

• Resource efficiency. The majority of security protocols are hybrid protocols that
require several algorithms. As they are not used simultaneously, the same FPGA
device can be used for both through runtime reconfiguration.

• Algorithm modification. There are applications that require modification of stan-
dardized cryptographic algorithms.

• Throughput. General purpose microprocessors are not optimized for rapid exe-
cution. Although typically slower than ASIC implementations, FPGA implemen-
tations have the potential to run much faster than software implementations (as
with a processor).

• Cost efficiency. There are two cost factors that have to be taken into considera-
tion when analyzing the cost efficiency of FPGAs: the cost of development and
the unit price. The cost of developing an FPGA implementation for a given algo-
rithm is much lower than for an ASIC implementation. Unit prices are not high
compared with the cost of development. However, for high-volume applications
(more than one million circuits) ASIC is usually the most cost-efficient choice.

FPGAs obviously have some interesting features and should not be discarded for
security applications. To analyze the problem of FPGA security, it is important to
define the model of computation to be used and the areas to be protected. There are
three possibilities: The first is considering the FPGA and its surrounding (normally
a processor and memory) as a trusted area; the second is restricting the trusted area
to the FPGA itself; and the third is when certain functional parts inside the FPGA
are considered to be trustworthy and others are not.

2.3.1.1 FPGA Based Security Models

In the context in which the FPGA and its environment is considered as a trusted area
(Fig. 2.2), the main element involved in the system security is the I/O interface. In
this case, the data entering or leaving the system need to be protected (for example,
confidentiality and authentication). In fact three interfaces can be used depending
on the boundary of the security perimeter. The first is related to the I/Os of the
system. In a secure execution context no information should leak from this interface
so all the data has to be encrypted. The second is related to the FPGA configuration
file if remote configuration is possible. In this case, it is essential to protect the
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Fig. 2.2 FPGA, processor and memory trusted area: model one for FPGA-based secure systems

bitstream by encrypting it. If all the configurations are within the trusted area, they
can be in clear form. The third interface is related to all the critical information
dealing with the security of the system, for example the transfer of a new key or a
new certificate. In this case, the interface needs to be different from the I/O one in
order to increase the security of the system; this interface should also be protected.
Generally authentication mechanisms are needed to ensure that only an authorized
party can send new data through this interface.

In the second context, the FPGA is considered as a trusted area but its environ-
ment is not (Fig. 2.3). For such a model, in addition to protecting the I/O interfaces
with the system as a whole, it is necessary to protect the communication inside the
system in a per-block (Memory, Processor, FPGA) granularity. In this case, several
techniques need to be considered in order to provide authentication, confidential-
ity and integrity verification. Furthermore, as the number of communications over
the bus is generally critical, very efficient and optimized cryptography resources

Fig. 2.3 FPGA trusted area: model two for FPGA-based secure systems
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Fig. 2.4 Modules of FPGA trusted area: model three for FPGA-based secure systems

are needed. The latency of the exchanges is of paramount importance and needs
to be tackled. In the second context, protecting the FPGA configuration is also an
important issue.

Finally, in the third context, the FPGA itself contains regions that are trusted and
regions that are not (Fig. 2.4). In such a situation, only the configurations (i.e. bit-
streams) that compose the FPGA functionality need to be encrypted. FPGA’s trusted
area needs to be protected, but at this granularity, fine aspects of bitstreams have to
be considered. This solution involves the same challenges as the previous ones since
data exchanged within the FPGA but also exchanged with external resources need
to be protected, but the solutions should lead to a very low overhead so as to not pe-
nalize the execution of the whole system. This model is clearly the most challenging
one to design.

2.3.1.2 Threats Against FPGAs

Before building a solution it is essential for designers to clearly define the execution
context and the kinds of threats they will be facing.

In this section, we describe several types of attacks against FPGAs. However,
some of them will be discussed in detail in subsequent sections when we deal with
FPGAs’ vulnerabilities and countermeasures.

Black Box Attack—In this type of attack, the intruder sends all possible input
combinations and with the results he/she obtains, he/she may be able to reverse-
engineer a chip. In practice, this type of attack is difficult to perform on complex
systems.

Read-Back Attack—Read back attacks are based on the ability to read the FPGA
configuration, usually using the JTAG plug. This feature is provided in most FPGAs
to promote debugging capabilities. The aim of the attack is to read the configuration
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of the FPGA through the JTAG or programming interface to obtain secret informa-
tion. Recently FPGAs vendors have considerably improved their devices to increase
the level of protection.

Cloning of SRAM FPGAs—SRAM FPGA based systems normally store the con-
figuration file in a non-volatile memory outside the FPGA. In such a situation, an
eavesdropper can easily retrieve the configuration file flowing through the port, and
possibly clone the same design in other FPGAs. The only possible way to protect
the system in this case is to encrypt the bitstream. FPGAs vendors provide this pos-
sibility in their most recent devices.

Physical Attack against SRAM FPGAs—The goal of an attack targeting the phys-
ical layer of an FPGA is to investigate the chip design in order to obtain secret in-
formation by probing points inside the FPGA. These attacks target the parts of the
FPGA that are not available through the normal I/O pins. Using instruments based
on focused ions (FIB), for example, the attackers can inspect the FPGA structure
and retrieve the design or the keys. Such attacks are hard to implement due to the
complexity of the equipment required. Moreover, some technologies, like Antifuse
FPGAs and Flash FPGAs, which have their own limitations, can make attacking
even harder.

Side-Channel Attacks—In this case, the physical implementation of the systems
is used to leak information like energy consumption, execution time and electro-
magnetic fields. By observing these phenomena, an attacker can obtain the power,
time and/or electromagnetic signatures of the system, which, in turn, can reveal se-
crets concerning the underlying implementation. Gathering such signatures is one
step in the problem. In fact, the data obtained still has to be processed to obtain the
desired results. Very sophisticated techniques have been developed in the last few
years that require few measurements to attack a system.

Data analysis—In fact, the data acquired by read back attacks, as well as those
from side channel attacks, are considered as noise. The fact that an attacker pos-
sesses this information does not imply that he/she will be able to obtain the original
design running in the FPGA, but nevertheless makes this possible.

Reverse-engineering is the work done after the bitstream has been obtained, for
example, when it is necessary to discover the data structure used by the manufac-
turer to codify the configuration of the FPGA. Reverse engineering is not limited to
bitstreams but can also be achieved by observing bus activities during program exe-
cution in a softcore processor implemented in the FPGA. Many reverse engineering
attempts on FPGAs succeed, and normally the manufacturers use a disclosure term
to morally refrain the attackers, which is not sure at all.

Leakage data is processed using techniques like Simple Power Analysis (SPA)
or Differential Power Analysis (DPA). Normally the aim of these approaches is to
identify energy consumption patterns similar to the ones obtained in the known exe-
cution pattern of a cryptographic algorithm. Then, finding the key is only a question
of time and of the quantity of statistics obtained.
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2.4 Security Requirements for Modules

The security of systems used to protect sensitive information is provided by crypto-
graphic modules. Security requirements for cryptographic modules are specified in
the Federal Information Processing Standard Publication (FIPS PUB 140-2) [33].
These requirements are related to the secure design and implementation of a cryp-
tographic module.

2.4.1 Security Objectives

Security requirements for cryptographic modules are derived from the following
high-level functional security objectives:

• To employ and correctly implement the approved security functions for the pro-
tection of sensitive information.

• To protect a cryptographic module from unauthorized operation or use.
• To prevent the unauthorized disclosure of the contents of the cryptographic mod-

ule, including plaintext cryptographic keys and other critical security parameters
(CSPs).

• To prevent the unauthorized and undetected modification of the cryptographic
module and cryptographic algorithms, including the unauthorized modification,
substitution, insertion, and deletion of cryptographic keys and CSPs.

• To provide indications of the operational state of the cryptographic module.
• To ensure that the cryptographic module performs properly when operating in an

approved mode of operation.
• To detect errors in the operation of the cryptographic module and to prevent the

compromise of sensitive data and CSPs resulting from these errors.

While the security requirements specified in the FIPS 140-2 standard are intended
to maintain the security provided by a cryptographic module, conforming with this
standard is necessary but is not sufficient to ensure that a particular module is secure.
The operator of a cryptographic module is responsible for ensuring that the security
provided by the module is sufficient and acceptable to the owner of the information
that is being protected, and that any residual risk is acknowledged and accepted.

Similarly, the use of a validated cryptographic module in a computer or telecom-
munication system is not sufficient to ensure the security of the whole system. The
overall security level of a cryptographic module must provide the level of security
that is appropriate for the security requirements of the application and of the envi-
ronment in which the module has to be used, and for the security services that the
module has to provide.
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Fig. 2.5 Security requirements in four security levels, according to the FIPS 140-2 Standard

2.4.2 Security Levels

The standard defines four qualitative levels of security—Level 1 to Level 4
(Fig. 2.5). These four increasing levels of security enable cost effective solutions
that are appropriate for different degrees of data sensitivity and different application
environments.

Security Level 1 requires only the use of an approved algorithm or security func-
tion. It allows the software and firmware components of a cryptographic module to
be executed on a general purpose computing system using an unevaluated operating
system. No specific physical security mechanisms are required in a Security Level 1
cryptographic module beyond the basic requirement for production-grade compo-
nents. Security Level 2 enhances the physical security of the module by adding the
requirement for tamper evidence and a role based authentication of an operator. A
trusted (verified) operating system with an approved degree of security should be
used starting from Level 2. In Security Level 3, the security mechanisms should de-
tect and respond to attempts at physical access, unauthorized use or modification
of the cryptographic module. The tamper detection circuitry should “zeroize” all
plaintext CSPs when a physical intrusion is detected. At this security level, the role
based authentication from Level 2 is replaced by identity based authentication. At
Level 3, the I/Os of plaintext CSPs should be performed using ports that are physi-
cally separated from other data ports. Security Level 4 is the highest security level.
The module should be enclosed in a complete protection envelope. Intrusion into
the module should have a very high probability of being detected and the module
should detect fluctuations in environmental conditions, namely voltage and temper-
atures that are outside the normal operating range.

2.4.3 Security Requirements

The security requirements specified in the FIPS 140-2 standard cover 11 ar-
eas related to the design and implementation of a cryptographic module. These
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areas include cryptographic module specifications; module ports and interfaces;
roles, services, and authentication; finite state models; physical security; oper-
ational environment; cryptographic key management; electromagnetic interfer-
ence/electromagnetic compatibility (EMI/EMC); self tests; and design assurance.
The last area concerned with the mitigation of other attacks has not yet been tested
but the vendor is required to document implemented controls (e.g. differential power
analysis). While most of these areas are related to the technology used (FPGAs in
our case), some only concern design methodology (e.g. finite state models). Below,
we analyze only those design and implementation areas that are directly related to
the application of FPGAs in security modules. These areas include:

• Cryptographic module specification
• Cryptographic module ports and interfaces
• Physical security
• Operational environment
• Cryptographic key management
• EMI/EMC
• Self-tests

Cryptographic module specification deals with a combination of hardware, soft-
ware and firmware means used to implement cryptographic functions and protocols
within a defined cryptographic boundary. A cryptographic module should imple-
ment at least one approved security function used in an approved mode of operation.
A cryptographic boundary should consist of an explicitly defined perimeter that es-
tablishes the physical bounds of a cryptographic module. If a cryptographic module
consists of software or firmware components, the cryptographic boundary should
contain the processor(s) and other hardware components that store and protect the
software and firmware components. Hardware, software, and firmware components
of a cryptographic module can be excluded from the security requirements if it is
demonstrated that these components do not affect the security of the module.

Cryptographic module ports and interfaces—Two hierarchical levels of I/O ports
are defined by the standard: physical ports and logical interfaces. The module should
have at least four logical interfaces (data input, data output, control input and sta-
tus output) that can share the same physical port. Data input and output are used
to transfer plaintext and ciphertext data and plaintext (only up to Security Level 2)
and ciphertext CSP. Starting from Security Level 3, the I/O port for plaintext CSP
should be physically separate from other data ports. All data output via the data
output interface should be prevented when an error state exists and during self tests.
The control input interface serves to provide commands and signals, and to control
data (including function calls and manual controls such as switches, buttons, and
keyboards). The status output interface enables the design to send signals, indica-
tors, and status data (including return codes and physical indicators such as Light
Emitting Diodes and displays).

Physical security—A cryptographic module is protected by physical security
mechanisms in order to restrict unauthorized physical access to the contents of the
module and to avoid unauthorized use or modification of the module (including
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substitution of the entire module) when installed. All hardware, software, firmware,
and data components within the cryptographic boundary should be protected. Phys-
ical security requirements are specified for three defined physical embodiments of a
cryptographic module:

• Single-chip cryptographic modules use a single integrated circuit (IC) chip as
a stand alone device. Examples of single chip cryptographic modules include
smart cards with a single IC chip. Although single chip cryptographic modules
are the most vulnerable to side channel attacks, they are usually used in a hostile
environment. Single chip modules based on FPGAs have not been used up to now,
since they involve the use of a non-volatile technology.

• Multi-chip embedded cryptographic modules are physical devices in which two
or more IC chips are interconnected. If possible, they should be embedded in
an opaque enclosure. Examples of multi-chip embedded cryptographic modules
include adapters and expansion boards.

• Multi-chip stand-alone cryptographic modules are physical embodiments in
which two or more IC chips are interconnected and the entire enclosure is phys-
ically protected. Examples of multi-chip, stand alone cryptographic modules in-
clude encrypting routers or secure radios.

Operational environment—The operational environment of a cryptographic
module refers to the management of the software, firmware, and/or hardware com-
ponents required for the module to operate. The operational environment can be
non-modifiable (e.g. firmware contained in ROM, or software contained in a com-
puter with I/O devices disabled), or modifiable (e.g. firmware contained in RAM
or software executed by a general purpose computer). An operating system is an
important component of the operating environment of a cryptographic module.

Cryptographic key management—The security requirements for cryptographic
key management encompass the entire life cycle of cryptographic keys, crypto-
graphic key components, and CSPs used by the cryptographic module. Key man-
agement includes random number and key generation, key establishment, key dis-
tribution, key entry/output, key storage, and key zeroization. Secret keys, private
keys, and within the cryptographic module, CSPs should be protected from unau-
thorized disclosure, modification, and substitution. Inside the cryptographic module,
public keys should be protected against unauthorized modification and substitution.
A cryptographic module may use random number generators (RNGs) to generate
cryptographic keys and other CSPs internally. There are two basic classes of gen-
erators: deterministic and nondeterministic. A deterministic RNG consists of an al-
gorithm that produces a sequence of bits from an initial value called a seed. A non-
deterministic RNG produces output that depends on some unpredictable physical
source that is beyond human control. There are no FIPS Approved nondeterministic
random number generators. If intermediate key generation values are sent outside
the cryptographic module, the values should be sent either (1) in encrypted form
or (2) under split knowledge procedures. Key establishment can be performed by
automated methods (e.g. use of a public key algorithm), manual methods (use of
a manually-transported key loading device), or a combination of automated and
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manual methods. Cryptographic keys stored inside a cryptographic module should
be stored either in plaintext or encrypted. Plaintext secret and private keys should
not be accessible to unauthorized operators from outside the cryptographic module.
A cryptographic module should associate a cryptographic key (secret, private, or
public) stored inside the module with the correct entity (e.g. the person, group, or
process) to which the key is assigned. A cryptographic module should provide meth-
ods to zeroize all plaintext secret and private cryptographic keys and CSPs inside the
module. Zeroization of encrypted cryptographic keys and CSPs or keys otherwise
physically or logically protected inside an additional embedded validated module
(meeting the requirements of this standard) is not required.

Electromagnetic Interference Compatibility (EMI/EMC)—Cryptographic mod-
ules should meet EMI/EMC requirements. While the metallic enclosure of the multi-
chip cryptographic module enables these requirements to be met quite easily, stan-
dard single chip modules are difficult to design.

Self-Tests—A cryptographic module should perform power up self tests and con-
ditional self tests to ensure that the module is functioning properly. Power up self
tests should be performed when the cryptographic module is powered up. Condi-
tional self tests should be performed when an applicable security function or opera-
tion is invoked (i.e. security functions for which self tests are required). If a crypto-
graphic module fails a self test, the module should enter an error state and output an
error indicator via the status output interface. The cryptographic module should not
perform any cryptographic operations while in an error state. All data output should
be inhibited when an error state exists. A cryptographic module should perform the
following power up tests: cryptographic algorithm test, software/firmware integrity
test, and critical functions test. It can also perform the following conditional self
tests: pair-wise consistency test, software/firmware load test, manual key entry test,
continuous random number generator test, and bypass test.

2.4.4 Security Policy

A cryptographic module security policy should consist of a specification of the secu-
rity rules, under which a cryptographic module should operate, including the secu-
rity rules derived from the requirements of the standard and the additional security
rules imposed by the vendor. There are three major reasons that a security policy is
required:

• It is required for FIPS 140-2 validation.
• It allows individuals and organizations to determine whether the cryptographic

module, as implemented, satisfies the stated security policy.
• It describes the capabilities, protection, and access rights provided by the crypto-

graphic module, allowing individuals and organizations to determine whether it
meets their security requirements.
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Fig. 2.6 Security pyramid: toward a defense-in-depth

2.5 Vulnerabilities of FPGAs

When dealing with security, it is important for the designer to not disregard any
parts of the security barriers. The strength of a system is defined by its weakest
point; there is no reason to enhance other means of protection if the weakest point
remains untreated. To address this fundamental issue, the different hierarchical lev-
els of a design (from application to technological levels) must be reviewed. Each
level has specific hardware or software weaknesses, so specific mechanisms need
to be defined in order to build a global secure system (i.e. defense in depth). De-
pending on the requirements and the security to be reached, several levels have to
be considered. Thus it is important to clearly define the security boundaries for the
system to be protected. In this chapter, we tackle this point by defining the security
pyramid that covers the levels of security. In the following sections we address the
different levels from technological to system levels as highlighted in Fig. 2.6 and
slightly discussed into the Chap. 1. Operating system and application levels are be-
yond the scope of this chapter as we only deal with hardware solutions. However
it is important to bear in mind that they need to be taken into consideration for a
complete system. A lot of threats have to be considered, all information that leaks
from a cryptographic device can be exploited by an attacker. For example, attacks
based on power consumption or electromagnetic emission can be performed with
low competencies and at low cost. Furthermore, attackers can cause errors during
the encryption (or decryption) process aimed at to obtaining secret information, such
as cryptographic keys. Therefore cryptographic devices must be protected against
fault injection and leakage information. Many countermeasures are now well estab-
lished for ASIC, but this is not yet the case for FPGA devices. Only a few academic
or industrial studies have been conducted to ensure the confidentiality and integrity
of FPGA devices. Nevertheless, this topic has attracted a lot of attention in the last
few years and major progress is underway.
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2.5.1 Technological Level

The technological level corresponds to the device and mainly concerns tamper evi-
dence or resistance. Many authors have targeted the technological level but mainly
for ASIC-based designs. However in [50] and [49], the authors performed an in-
depth analysis of attacks against FPGAs at the technological level. Several tech-
nologies are possible for FPGAs, the most widespread being SRAM, Flash and
Antifuse. Each technology has advantages but also some limits. Secured ASICs fre-
quently incorporate mechanisms able to detect an attempt by an attacker to make an
invasive attack, for example by removing package sealing and by inserting probes
at appropriate points in order to obtain cipher keys. At chip level, the mechanism
could be distributed sensors to check the package has not been removed. These se-
cured packages are also suitable for FPGA devices. However at die level, FPGA
users are limited by the capabilities of the device, they cannot add special security
mechanisms such as analog sensors. The level of protection provided by FPGAs
technologies is an interesting metric to identify the studies required to improve the
security level. In the IBM Systems Journal, Abraham et al. [1] defined the security
levels for modern electronic systems.

• Level 0 (ZERO)—No special security features added to the system. It is easy to
compromise the system with low cost tools.

• Level 1 (LOW)—Some security features in place. They are relatively easily de-
feated with common laboratory or shop tools.

• Level 2 (MODLOW)—The system has some security against non-invasive attacks;
it is protected against some invasive attacks. More expensive tools are required
than for level 1, as well as specialized knowledge.

• Level 3 (MOD)—The system has some security against non-invasive and invasive
attacks. Special tools and equipments are required, as well as some special skills
and knowledge. The attack may be time consuming but will eventually succeed.

• Level 4 (MODH)—The system has strong security against attacks. Equipment
is available but is expensive to buy and operate. Special skills and knowledge
are required to use the equipment for an attack. More than one operation may
be required so that several adversaries with complementary skills would have to
work on the attack sequence. The attack could fail.

• Level 5 (HIGH)—The security features are very strong. All known attacks have
failed. Some research by a team of specialists is necessary. Highly specialized
equipment is necessary, some of which might have to be specially designed and
built. The success of the attack is uncertain.

According to this classification, it is possible to specify a general security level for
existing FPGA technologies and ASIC circuits. These levels are not fixed and de-
pend on the factory and the type of circuit (several families may be processed in the
same factory and some of them may be highly security efficient, like military fam-
ilies). Table 2.2 lists the security levels of existing technologies, especially FPGA
circuits.
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Table 2.2 Security level of
classical integrated circuits Integrated circuit Security level

SRAM FPGA 0

ASIC gate array 3

Cell-based ASIC 3

SRAM FPGA with bitstream encryption 3

Flash FPGA 4

Antifuse FPGA 4

SRAM FPGAs need a bitstream transfer from the root EEPROM at power up
(due to the configuration memory that is an SRAM volatile memory). Consequently,
it is easy for a hacker to read the bitstream during the transfer using a simple probe.

Thus unprotected SRAM FPGAs are not efficient for safe design. However,
with a bitstream encryption it is possible to considerably improve the security
level since the security weakness is overcome. SRAM FPGAs have a good resis-
tance against some attacks like power analysis. Although ASICs are often con-
sidered to be a secure technology, they are actually relatively easy to reverse en-
gineer. Because, unlike FPGAs, ASICs do not have switches, and it is thus pos-
sible to strip the chip and copy the complete layout to understand how it works.
Methods to reverse engineer ASIC exist. The cost of reverse engineering is high
since the tools required are expensive and the process is time consuming. It is
not a simple process and the security level is 3 for such devices. Contrary to
ASICs, FPGAs, like antifuse or flash, are security efficient since they are based
on switches. With these FPGAs, no bitstream can be intercepted in the field (no bit-
stream transfer, no external configuration device). In the case of antifuse FPGAs,
the attacker needs a scanning electron microscope to identify the state of each anti-
fuse. Nevertheless, the difference between a programming and a non-programming
antifuse is very difficult to see. Moreover, such analysis is intractable in a de-
vice like Actel AX2000 that contains 53 million antifuses and, according to Actel
(http://www.actel.com/products/solutions/security/), only 25% (on average) of these
antifuses are programmed. For flash FPGAs, there is no optical difference after con-
figuration, so invasive attacks are very complex. The same advantages are cited by
QuickLogic to promote their flash FPGAs with ViaLink technology. Even if the an-
tifuse and the flash FPGAs are very security efficient, they can only be configured
(or programmed) once, so they are not reconfigurable devices. Furthermore as de-
fined by the FIPS 140-2 standard, for security levels 3 and 4, it has to be possible to
zeroize all the secret information, which is not possible with technologies like flash
and antifuse. The system built with these devices is thus not flexible. If the designer
wants a reconfigurable device, he should choose an SRAM FPGA. Moreover, the ca-
pacities of the SRAM FPGAs are the highest for FPGA devices. The market share
of SRAM FPGAs is more than 60% (just counting the two leading companies Xil-
inx (http://www.xilinx.com) and Altera (http://www.altera.com)). Further research
is required to improve the security level of such FPGAs and particularly to improve
bitstream encryption. In recent years, FPGAs vendors have been tackling this point

http://www.actel.com/products/solutions/security/
http://www.xilinx.com
http://www.altera.com
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in order to provide their customers with efficient solutions to encrypt the SRAM
FPGA bitstream. However, they still have some drawbacks and could be further
improved by taking the latest innovations of these FPGAs into account.

2.5.2 Logical Level

It is now widely recognized that the Achilles’ heel of secure applications, such as
3DES and AES ciphering algorithms, is their physical implementation. Among all
the potential techniques to retrieve the secret key, side channel attacks are worth
mentioning. Although there are a lot of different types of side channel attacks, the
DPA attack is considered to be one of the most efficient and most dangerous since
it requires few skills and little equipment to be succeed. Thus at the logical level,
all attacks that are possible on ASICs, like side channel attacks and fault attacks,
are reproducible in FPGAs. Secret leakage can even be amplified, which makes the
attack easier. At first sight, FPGAs appear to be less robust than ASICs. This could
have different causes:

• The FPGA structure has heavy loaded wires made up of long lines or lines seg-
mented by pass transistors. As power consumption is proportional to the capaci-
tance load, this makes measuring power consumption more easy.

• The designers often take advantage of pipelining in FPGAs, as the DFF (D Flip
Flop) is “free” in every cell. The DFF is not only used as a power contributor to
power consumption in CMOS ASICs but as predictor (for correlation attacks) of
relevant key dependent consumption for the attack strategies. The FPGAs have
very rapid (for performances and fighting metastability) and high power consum-
ing DFFs at their disposal but they also drive logic that could be predictable.

• The use of pass transistors generates a power consumption expression that varies
partly in V dd3 and not only in V dd2, and as the CMOS gates are just under the
conduction threshold, this helps make measuring the power consumption easier
in FPGAs.

All these reasons make FPGAs more vulnerable to attacks since they are based on
variations in power (analyzed for passive attacks and provoked for fault attacks)
on cells where the key is involved. When analyzing power consumption during a
ciphering operation, peaks are clearly discernible in the acquisition trace at every
clock period. An efficient attack on FPGA is based on predicting the transitions
of relevant DFF or logic driven by these DFFs, where there could be contribution
to or leak from the key. For instance, it is possible to predict logic states at the
S-box outputs during the first and last round of symmetric key algorithms. Many
attacks on FPGA implementations have been reported in the last five years. For
example, in [34], an SPA was successfully used in an unprotected implementation of
an elliptic curve cryptographic algorithm. Furthermore as underlined in [34], attacks
on FPGAs allow a hacker to:

• Evaluate the intrinsic resistance or vulnerability of this device class;
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• Assess the resistance or vulnerability of the algorithms, executed on a real con-
current platform. Compared to a simulation, measurements made on an emulating
device are indeed expected to be closer to the final projection in an ASIC.

In [42] and [39], the authors describe successful correlation power attacks (CPAs)
against DES and AES implementations programmed into FPGA. The attacks sce-
nario does not differ from that of ASICs (such as smart cards). Unsurprisingly, in
all cases, the attacks were just as successful as when carried out against hardwired
devices. As a consequence, there is a real incentive to devise countermeasures that
take the architecture of FPGAs into account. It is important to come up with inno-
vative solutions based on accurate knowledge of the FPGAs’ internals in order to
counter these attacks. Current FPGAs vendors have not yet taken up this challenge.

2.5.3 Architecture Level

Logical errors can be used to perform attacks at algorithmic level. A simple exam-
ple is an attack against RSA algorithm implementation. RSA is based on modular
exponentiation, decryption of a ciphered message C follows the following formula:

M = CE mod N,

where C is the ciphered message, E the private exponent, N the public modulus,
and M the unciphered message

The usual way to perform this calculus is the square and multiply algorithm, for
either software or hardware implementation.

In the original algorithm, multiplication is carried out only if the exponent bit
concerned is 1. So a dummy operation can be inserted in order to have a constant
computation time. Supposing that an attacker can create an error at a precise algo-
rithm step, he/she could easily guess the decryption key, which is secret information.
To succeed, the attacker must create an error during the first multiplication and only
the first; at the end of the algorithm, if the result is wrong, the multiplication was
not a dummy one, so the first bit of the exponent is 1. If the result is correct, the
multiplication was a dummy one, so the first bit of the exponent was 0. The other
exponent bits can be discovered by repeating this scheme for all the multiplication
steps. There are many ways to create an error during a computation. A simple way
is to increase clock frequency above the maximum allowed by the attacked device.
Uncommon temperature, voltage supply or clock glitch can also cause computa-
tion errors. With laser or focus ion beams, errors can be created in specific areas in
the circuit. This type of fault injection requires specific expensive equipment but can
provide better results. In the previous example, attackers do better by introducing er-
rors only in the multiplier area, consequently other operations will not be affected.
Other types of fault analysis exist, [16] deals with such attacks on smart card imple-
mentation of AES symmetric cipher. Of course this attack can target ASIC as well as
FPGA platforms. However, in the future it will be interesting to see if FPGA struc-
ture could provide specific countermeasures. This point was judiciously exploited
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by [39] to explore the advantages and limits of pipelining techniques from a secu-
rity point of view. This architectural aspect (along with scheduling and resources
allocation) is indeed a new dimension when refining a software code into an RTL
description. FPGAs are appropriate tools for the rapid comparison of different ar-
chitectures. At the architectural level, one basic block to consider is the processor.
In the following section an example is given based on 32-bit processor and results
obtained with SCA.

2.5.3.1 Processor Level

The MicroBlaze and the Nios II are 32-bit soft-core processors designed and sup-
ported by Xilinx and Altera respectively, for their FPGAs. Because of the growing
number of embedded systems involving applications with security services, it is
necessary to analyze potential weaknesses of these architectures used in most of the
modern FPGAs.

The MicroBlaze and Nios II implement both a classic RISC Harvard architec-
ture exploiting the Instruction Level Parallelism (ILP) with a 5-stage pipeline: In-
struction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access (MA),
Write Back (WB). All pipe stages are hooked together with a set of registers, com-
monly named pipeline registers. They play the main role of carrying data and control
signals for a given instruction from one stage to another.

As a case study, an evaluation was conducted on the MicroBlaze with the Data
Encryption Standard. The processor was programmed in ANSI C code on a Xilinx
Spartan-3 Starter Kit board (XC3S1000 FPGA). Without loss of generality, the at-
tacks were performed at the end of the first encryption round, when the left part of
the plaintext message and the result of the Feistel function are XORed. The result
of this operation contains a partial information about the cipher key, and thus, is a
potential point of attack.

Critical instructions are detailed in the following list:

• LWI R4, R19, 44; the result of the Feistel function is loaded from data memory
into register R4

• LWI R3, R19, 40; the left part of the message is loaded from data memory into
register R3

• XOR R3, R4, R3; the result of the XOR operation between R3 and R4 is stored
into register R3

• SWI R3, R19, 32; the content of R3 is stored into data memory

According to these instructions and to the chosen model of attacks, the sensitive
data are handled during the XOR and the SWI instructions. During the execution
of these instructions (in Fig. 2.7), we observe that the sensitive data are unprotected
during the EX, MA, and WB stages.

A Differential ElectroMagnetic Analysis (DEMA) was conducted on the pro-
posed DES software implementation [6]. The secret key was discovered with less
than 500 electromagnetic traces. Besides, the most interesting result is the effect
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Fig. 2.7 The 5-stage pipeline during the execution of critical instructions

of the pipelining technique. Figure 2.8 illustrates the DEMA obtained for the first
sub-key (50,000 electromagnetic traces were collected to emphasize the impact of
this hardware feature). In the picture, the black curve refers to the correct sub-key,
while the others correspond to the wrong sub-key hypotheses (the guessed sub-key
is characterized by the highest amplitude).

Fig. 2.8 DEMA traces obtained for the first sub-key of the DES software implementation with the
MicroBlaze
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The margin is basically defined as the minimal relative difference between the
amplitude of the differential trace obtained for the guessed sub-key (black curve)
and the amplitude of the differential traces obtained for the other sub-keys (other
curves). This one reaches more than 50% for the correct sub-key during several time
periods, which underlines the considerable vulnerability of a pipelined architecture.

The conclusion to be drawn from the above investigation seems fairly straightfor-
ward: the pipelined datapath of embedded microprocessors for FPGAs is a critical
security issue.

2.5.4 System Level

At this level, we consider the system as a set of communicating blocks. Some are se-
cure, and the main focus is communication between the modules. One of the threats
at the system level is the “man in the middle” attack, in which an adversary eaves-
drops on the communication channel. The security of the blocks depends on the
cryptographic algorithm used to cipher the information. The problem is ensuring
that the communication is secure in an unsecured channel. In addition, guaranteeing
security has a cost and the cost of communication may be increased by the use of se-
curity dedicated modules integrated in the original design. The solutions described
below are some of the recent techniques described to address this problem. Some of
them are orthogonal in relation to others, meaning that we simultaneously can use a
set of techniques. As mentioned in previous sections, in an FPGA context, the con-
figuration bitstream is one potential weakness in secure applications. This bitstream
can be used to perform various types of attacks and needs to be considered at the
system level in order to define a global solution.

• Bitstream retrieval—The first step is to retrieve the entire bitstream from the sys-
tem. The easiest way is to use the read-back capabilities of most FPGAs. This
function, which is used for debugging, allows a bitstream to be extracted from an
FPGA device during run time. Of course, in a secure context, this feature has to be
disabled, but this is not sufficient, since in low cost SRAM FPGAs, bitstream re-
trieval is very simple, even without a read back mechanism. Indeed the bitstream
is stored in an external EEPROM, so the attacker can probe the data line between
the FPGA and EEPROM to obtain it. This threat does not exist for non-volatile
FPGAs because configuration data are stored inside the device, so only intrusive
attacks are possible. Bitstream encryption mechanisms are available for most ad-
vanced FPGAs. A secret encryption key is stored inside the programmable device,
while for volatile FPGAs an external battery is used to maintain key value. Thus
the device accepts an encrypted bitstream and uses its dedicated decryption en-
gine to obtain unciphered data. Attackers cannot decrypt the bitstream without
the secret key. With this feature, attackers have to discover the secret key they
need to recover bitstream data through (for example) an intrusive attack.
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• Attackers’ objectives concerning bitstreams—When an attacker discovers the
FPGA configuration, a lot of information, some of which may be critical, be-
comes accessible. The first threat is bitstream reverse engineering; some compa-
nies are specialized in FPGA reverse engineering [14]. In this way, attackers could
potentially access all information stored in the FPGA architecture, possibly secret
cipher keys or maybe the structure of cryptographic algorithms not available to
the public. Attackers can also inject their own bitstream into the programmable
device, in this way reverse engineering becomes unnecessary, since the attacker
could simply create a dummy system. For example, if the FPGA is used to en-
crypt written data to a hard disk drive, the attacker could build a system that does
not cipher data. Another threat is fault injection into the bitstream [11]. Even
without knowledge of the architecture, small modifications can seriously modify
the system. Fault attacks are also suitable in this context. The final drawback of
FPGA is cloning. An attacker in possession of the configuration data can clone
the device ignoring possible intellectual property rights. This is not a real security
weakness, rather an industrial threat that is specific to programmable devices. In
conclusion, the bitstream is the image of the underlying FPGA architecture, it is
similar to ASIC layout, therefore configuration data have to be protected.

• Remote configuration—Remote configuration is an interesting FPGA feature that
allows systems to be upgraded by removing a potential security breach, or by
upgrading algorithms. But this feature must be extremely well secured since it
gives many possibilities to attackers. The first related threat is undesired recon-
figuration, i.e., the design could be changed remotely by the attacker without user
permission. A simple switch button could avoid this threat. The second is “man
in the middle” attacks. The user wants to upgrade his/her programmable security
device, but an attacker intercepts the request and replies with a fake configuration.
For that reason, the connection must be secured by an authentication and integrity
checking engine. Such secured mechanisms are already suitable for most FPGAs,
Actel or Xilinx FPGAs, and application notes [2] describe secured remote con-
figuration schemes.

Key management is also a major concern for embedded systems. This threat is not
specific to FPGAs, ASICs are also vulnerable. Cryptographic devices need to store
some symmetric and asymmetric keys to perform encryption or decryption. During
system use, these cryptographic keys need to be changed or generated randomly. So
these types of devices require secure key management.

2.6 Countermeasures

In the previous section we described some vulnerabilities of FPGAs from the tech-
nological level up to the system level. Fortunately it is possible to deal with these
vulnerabilities to take advantages of the flexibility and the performances offered by
FPGAs. In this section, we first review technological issues and then present logical
solutions, such as dual-rail or asynchronous techniques. At the architecture level,
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we highlight the fact that the parallelism and flexibility provided by FPGAs can be
very efficient aids in building a secure primitive. Finally at the system level, the
main issue is related to communication security and monitoring of the behavior of
the system. We describe several techniques to address these problems.

2.6.1 Technological Level

At the technological level, the main countermeasures are related to physical pro-
cesses, circuits, and packaging [49, 50]. Some sensors can be used to detect any
attacks against the device. With standard FPGAs, the user is blocked by chip ca-
pabilities as most FPGAs do not have analog parts that can monitor environmental
parameters. In the latest Actel FPGA, called Fusion, various analog functions are
available like temperature sensors, clock frequency or voltage monitoring. These
functionalities can be used to detect possible fault injection. To prevent physical
attacks, it is also necessary to make sure that the retention effects of the cells are
as small as possible, so that an attacker cannot detect the status of the cells. The
solution would be to invert the data stored periodically or to move the data around
in memory. Cryptographic applications cause long-term retention effects in SRAM
memory cells by repeatedly feeding data through the same circuit. One example is
specialized hardware that always uses the same circuits to feed the secret key to the
arithmetic unit. This effect can be neutralized by applying an opposite current or by
inserting dummy cycles in the circuit. In terms of FPGA application, this is very
costly and it may even be impractical to provide solutions like inverting the bits or
changing the location of the whole configuration file. One possible alternative would
be to change only the crucial part of the design, like the secret keys, through dynamic
partial reconfiguration. Counter techniques such as dummy cycles and opposite cur-
rent approach can also be used for FPGA applications. Technological issues depend
on the FPGA vendor but solutions like dynamic reconfiguration can provide some
opportunities to strengthen the security of the device against certain tampering tech-
niques that benefit from the retention effect of cells. Using sensors inside FPGAs
will certainly become more common in the future to monitor the internal activity of
FPGAs.

2.6.2 Logical Level

So far, the published countermeasures against attacks on FPGAs have mainly been
inspired by techniques used to protect ASICs. The “Masking” and “Hiding” meth-
ods are among the most efficient ways of protecting FPGAs. Hiding consists in mak-
ing the power consumption as constant as possible by using dual rail with precharge
logic (DPL) and a four-phase protocol inspired by Asynchronous Logic. This en-
sures that:
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• Transitions are independent of the target values (logical 0 or 1), because the in-
formation is encoded on two indiscernible wires;

• No leaks are caused by consecutive data correlation because of the intermediate
precharge phase.

The most straightforward countermeasure built on the DPL is referred to as
“wave dynamic differential logic” WDDL [43, 44]. The four-phase cadence is en-
forced by appropriate registers. In the meantime, the differential logic uses positive
dual functions. The WDDL logic could be more secure in FPGAs than in ASICs,
because the two dual gates are implemented in LUTs, which ideally are much alike.
However some flaws have been underlined. Vulnerabilities are caused by the imbal-
ance between the two networks and above all by the “early evaluation” (EE) effect.
The latter is due to the differences in delay between two gate inputs. The effect is
particularly marked in FPGAs where there is a wide range of routing. Associated
with the need for speed and a low complexity design, new DPLs have been devised
to enhance WDDL in FPGAs, among which: MDPL [35], STTL [36], BCDL [32].

The masking countermeasure allows the mean of the power consumption to be
balanced by masking the sensitive data with a random variable [18, 45, 46]. Hence
the observation is theoretically not exploitable by an adversary. In FPGA technol-
ogy, the masked data are computed at the same time as the mask itself. This im-
plementation, called “zero-offset” [47], allows the designer to keep a high level
of ciphering throughput. However, whatever the implementation (hardware or soft-
ware), the masking protection could give rise to higher order attacks [30]. Hence
enhanced masking structures should be designed and used in FPGAs. One example
is provided in the chapter on countermeasures.

Other countermeasures are possible at the logical level:

• Random underlying operations—FPGAs enable many more attacks to be de-
feated than the fixed architectures implemented in ASIC devices. A promising
solution is to frequently modify the operation used in any particular cipher. For
example, S-Box transformation used in the most recent symmetric bloc cipher
(AES) could be computed in different ways, e.g. using Galois field GF(2n) op-
erations, using a big lookup table or using the internal RAM memory embedded
in most FPGAs. In this way, the power consumption would differ for each type
of S-Box implementation.

• Random noise addition—A lot of countermeasures have been proposed, from
clock randomization, power consumption randomization, or compensation [11]
to tamper detection. However, longer differential power analysis generally leads
to recovery of the secret key. With enough samples, the statistical analysis used by
DPA can remove any random noise on power consumption. To understand why,
we need to understand that DPA attacks succeed because a calculus always leaves
the same power consumption trace. Adding random noise to power lines is not
enough, because it could be removed by a number of different signal processing
techniques. This can be represented by:

TotalPower(t) = RealPower(t) + RandomPower(t),
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where TotalPower is the power trace that an attacker can easily measure,
RealPower is the power consumed by the cryptographic algorithm that the at-
tacker wishes to obtain, and RandomPower is the random noise added to de-
feat DPA. To extract the RealPower, the attacker could collect a large number
of TotalPower traces and then average the collection. With enough TotalPower

traces, the average will be very close to RealPower. According to this analysis,
adding random noise is not a perfect solution, it could make DPA longer but
would not make it impossible. A better way is to act directly on the RealPower

factor.

In the FPGA context, other types of methods can be applied using runtime recon-
figuration. For example, in the case of the AES algorithm, differential power analy-
sis targets sub-byte operations. Power consumption is generally correlated with data
involved in the sub-byte function because this operation is always done with the
same logic gates. With partial reconfiguration, the sub-byte function could be done
differently at every computation, so power consumption would be different. This
method is similar to masking mechanisms, the input data and the final result may
be the same but the underlying operations are not identical, so that power consump-
tion is no longer correlated with the data. These different points will be analyzed in
detail in the following chapters of this book.

2.6.3 Architecture Level

At the architectural level, some solutions use a method called LRA (leak resistant
arithmetic) based on a random number representation [4, 7]. In these works, input
data are represented according to a residue number system base which can be se-
lected randomly before or during the encryption process. After computation, the re-
sult is converted into a classical binary representation. To help the reader understand
this approach, we will explain some mathematical concepts. Leak Resistant Arith-
metic (LRA) is based on the Residue Number System and on Montgomery’s mod-
ular multiplication algorithm proposed in [4]. The Residue Number System (RNS)
relies on the Chinese Remainder Theorem (CRT). This theorem states that it is pos-
sible to represent a large integer using a set of smaller integers. A residue number
system is defined by a set of k integer constants, m1,m2,m3, . . . ,mk , called moduli.
The moduli must all be co-prime; no modulus can be a factor of any other. Let M be
the product of all the mi . Any arbitrary integer X smaller than M can be represented
in the residue number system as a set of k smaller integers x1, x2, x3, . . . , xk with

xi = X mod mi .

With this representation, simple arithmetic operations, like additions, subtractions
and multiplications, can be performed absolutely in parallel. Once represented in
RNS, the operations do not generate any carry. For example, adding A and B in
RNS is just:

Sumi = (ai + bi) mod mi .
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This sum involves k modular additions that can be performed in parallel. However,
the conversion from RNS to decimals is not so simple. Fortunately, this conver-
sion is only needed after all modular multiplications, so its cost is amortized. For
cryptographic applications, modular reduction (x mod M), modular multiplication
(x ∗ y mod M) and modular exponentiation (xy mod M) are some of the most im-
portant operations. They can be calculated using Montgomery’s algorithm, modified
for RNS representation. In addition to possible parallelism, LRA could also provide
an algorithmic countermeasure against side channel attacks. With LRA, it is pos-
sible to compute the same calculus (RSA or ECC algorithms) in different bases.
The goal of this approach is to randomize intermediate results. The same modular
multiplication leads to different basic RNS operations, so power consumption will
differ if the RNS base differs. RNS bases have to be chosen randomly so the attacker
cannot obtain the base value, and by extension, the underlying RNS operations.

Another issue is related to fault injection at the architectural level with the aim of
recovering sensitive data. A common way to avoid fault injection attacks is to use
redundancy [2]. Critical parts in the design are replicated, and then outputs are com-
pared, which generally allows errors to be detected. Mathematical error detection
can also be used, [7] shows how to use redundant information to detect potential
errors during calculus. This mechanism also relies on RNS, but an extra modulus
is used to check the correctness of the result. Verification is possible at the end of
each modular multiplication, so this type of attack can be detected. Moreover the
physical location of each operator can be changed dynamically during the lifetime
of the FPGA. Therefore, accurate fault injection using laser or focused ion beams is
no longer possible, as attackers cannot identify the exact operator position.

Agility is another important metric for cryptographic applications since, as men-
tioned previously, providing a moving target increases the complexity of setting up
an attack. To illustrate this point, the following case study deals with an AES secu-
rity primitive. All selected implementations were performed on Xilinx Virtex FPGA,
which is a fine grain configurable architecture. For this architecture, the configura-
tion memory relies on a 1D configuration array. This is a column based configuration
array and so partial configuration can be performed only column by column. For se-
curity issues, this type of configuration memory does not provide full flexibility but
still enables partial dynamic configuration to perform security scenarios. Figure 2.9
summarizes all the different implementations in four charts; each chart corresponds
to specific parameters. Figure 2.9.a corresponds to the AES cryptographic core se-
curity primitive with BRAMs (i.e. embedded RAM) on non-feedback mode [15, 20,
28, 37, 41]. Thus key setup management is not used for these studies. Concerning
agility, all the solutions are based on static and full configuration. The configura-
tion is defined through predefined configuration data and performed remotely. The
configuration time is on average tens of ms, since full configuration is performed.
The security module controller is not addressed in these studies since the imple-
mentations are static. Figure 2.9.a shows that various area/throughput trade-offs are
possible depending on the implementation. It is important to dynamically adapt the
performance and to ensure the security of the module. From the security point of
view, it enables the global system to behave as a moving target, while from the
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Fig. 2.9 Agility design space for the AES security primitive: throughput/area/reliability trade-offs

performance point of view, it allows different throughputs to be used dynamically
depending on the actual requirements of the application. Figure 2.9.b corresponds
to the AES cryptographic core security primitive without BRAMs on feedback [10,
13, 15] and non-feedback modes [13, 20, 22, 40]. Like in the previously example,
key setup management is not used. Solutions [10, 13, 15] correspond to feedback
mode while the others correspond to non-feedback mode. Feedback solutions en-
able throughput of on average hundreds of Mbits/s whereas non-feedback solutions
enable around tens of Gbits/s. The same remarks as previously apply to agility char-
acteristics; static, full and predefined configuration is used. In these studies the goal
is to promote high throughput while reducing area and dealing with a specific ex-
ecution mode. However as explained in this section, dynamism and reliability also
have to be considered.

Figure 2.9.c shows different ways to manage fault detection that ensure relia-
bility, an essential feature for security. Faults can be detected at different levels
of granularity from algorithm to operation level [23]. The performance/reliability
trade-off is interesting since a finer level of granularity enables reduced fault detec-
tion latency and facilitates a rapid reaction against an attack. But the price of this
efficiency is area overhead. No type of error detection can improve performance, it
is thus important to dynamically adapt the level of protection depending on the envi-
ronment and on the state of the system. Concerning agility, static, full and predefined
configuration is used. Finally, Fig. 2.9.d provides some interesting values since so-
lutions using dynamic configuration are proposed. In [10], full configuration with
predefined configuration data is implemented, whereas in [29] partial configuration
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with dynamic configuration data is performed. In both cases, remote configuration
is performed since the Configurable Security Module is considered be an agile hard-
ware accelerator. Both solutions also deal with key setup management, in [10] this
is performed inside the module so that the architecture is generic and in [29] it is
performed by the remote processor, which means key specific architecture can be
provided. In [29] the remote processor implements the security module controller
that computes the new configuration when new keys have to be taken into account
by the cryptography core. This type of execution enables considerable flexibility
since the configuration data can be defined at run time. However in that case, the
computation time to define the new configuration data is in the range of 63–153 ms,
which may be prohibitive for some applications. The reconfiguration time for new
configuration data is not critical (around tens of µs) since only partial configuration
is performed. As can be seen in Fig. 2.9.d, partial configuration enables significant
area savings compared to a generic implementation since in the latter, the archi-
tecture is specialized for each key. The security policy supported by the security
module controllers are not explicitly presented in these works. Figure 2.9 shows
that different solutions can be implemented for the same security primitive and so
different area/throughput/reliability trade-offs can be considered. Agility enables
these trade-offs and consequently both performance and security to be dynamically
adapted to the actual execution context. The last important point is related to power
consumption which has not been tackled in previous studies, even though for em-
bedded systems, it may be an essential feature. In [38], energy efficient solutions
are proposed for the AES security primitive. In this case, the important metric is
Gbits/joule, which is very relevant since ambient systems are mobile.

It is important for designers who have to build modules to be aware of all these
trade-offs in order to promote agility and to meet performance requirements. Fur-
ther detailed studies on configuration power consumption, secure communication
links and security module controller policy are required in order to propose secure
modules and by extension, secure systems. However agility provides many keys to
building high-security/high-performance systems.

2.6.4 System Level

Generating a perfectly secured system is an illusion; so the best way to prevent
unanswerable threats is to detect them and to respond appropriately. Attacks against
secured devices vary and many parameters have to be monitored to detect them. The
SAFES (Security Architecture for Embedded Systems) approach focuses on pro-
tecting embedded systems by providing an architectural support for the prevention,
detection and remediation of attacks [17]. Most embedded systems are implemented
as System on a Chip devices, where all important system components (processor,
memory, I/O) are implemented on a single chip. This solution extends the func-
tionality of such systems to include both reconfigurable hardware and a continuous
monitoring system that guarantees secure operations. Through monitoring, abnor-
mal behavior of the system can be detected and hardware defense mechanisms can
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Fig. 2.10 The Security Architecture for Embedded Systems. The reconfigurable architecture con-
tains the security primitives and the monitors protect the system

be used to fend off attacks. Such an approach has several advantages since appli-
cation verification and protection is provided by dedicated hardware and not inside
the application. The security mechanisms can be updated dynamically depending
on the application running on the system, which guarantees the durability of the
architecture. The SAFES approach focuses on embedded security and exploits the
characteristics of embedded computations.

Figure 2.10 provides an overview of the architecture. As we can see, several
monitors are used to track system-specific data. The number and complexity of the
monitors are important parameters as they are directly related to the overhead cost
of the security architecture. The role of these monitors is to detect attacks against
the system. To provide such a solution, the normal activity (i.e. correct or expected)
behavior of the modules is characterized in such a way that irregular behavior is
detected. Autonomy and adaptability have been stressed to build an efficient security
network of monitors. The monitors are autonomous in order to build fault tolerant
systems; if one monitor is attacked, the others continue to manage the security of the
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system. The monitors are distributed so as to be able to analyze the different parts
of the system (e.g. battery, buses, security primitives, communication channels).

Different levels of reaction, reflex or global, are used depending on the type of
attack. A reflex reaction is performed by a single monitor, in this case the response
time is very short since no communication is required between the different moni-
tors. A global reaction is performed when an attack involves a major modification
of the system. In this case, the monitors need to define a new global configuration
of the system, which requires a longer response time. The monitors are linked by
an on-chip intelligence network. This network is controlled by the Security Exec-
utive Processor (SEP) that acts as a secure gateway to the outside world. The SEP
provides a software layer to map new monitoring and verification algorithms to
monitors. This point is important to meet FIPS 140-2 requirements, which require
that data I/Os and security I/Os are implemented through separate links. In response
to abnormal behavior, the SEP can issue commands to control the operation of the
system. For example, it can override the power management or disable I/O opera-
tions.

Detecting an attack is a good thing, but a good response to a threat is of course
needed. In order to qualify for FIPS 140-2 security level 2, the secret information
has to be deleted in a short time. In an FPGA context this could be a problem if
cipher keys are stored in the bitstream, because deleting bitstream memory could
take too long for FIPS recommendations. For FIPS 140-2 levels 3 and 4, the task is
even harder, as the entire secured device has to be destroyed. Such devices are rare
and are reserved for government use, for example for nuclear weapons. A common
reaction is to trigger explosives if an attack is detected, but chemical products can
be used instead. These mechanisms could be used in the FPGA context, but another
solution is possible. If the configuration memory and the FPGA content are erased,
we can consider that the secured device is destroyed. Thus the job is dual-purpose,
the FPGA content has to be destroyed, and the configuration memory has to be
erased because it is the image of the underlying FPGA content. For SRAM FPGA
devices, the first problem could be resolved by removing the FPGA power supply,
which would result in the removal of the volatile configuration. In secured volatile
FPGAs, erasing the bitstream memory can be avoided. In fact these devices embed
a secret key used to decrypt the bitstream, and configuring data decryption is no
longer possible when this key is erased. The need to erase configuration memory
could be replaced by removing the bitstream secret key. As volatile FPGAs require
a battery to maintain the configuration of the secret key, secured volatile FPGA
devices could be considered destroyed if all power sources are removed (secure
configuration battery and FPGA power supply). For non-volatile technologies, such
a simple mechanism cannot be used because the secret key and bitstream data are
not erased when the power is off. Of course configuration memory is not a problem
for non-volatile FPGAs.

To perform a non-invasive attack such as DPA or DEMA, attackers need to col-
lect a lot of leakage information computed with the same cipher key. The system
could detect an abnormal use of a device by fixing a maximum number of operations
allowed with the same key, for example. As previously mentioned, fault injection
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could be detected at lower levels. But redundancy in attack detection is not a bad
thing as it allows different types of attacks to be countered. With standard FPGAs,
the user is limited by chip capabilities, most FPGAs do not have analog parts that
can monitor environmental parameters. With the latest Actel FPGA, Fusion, vari-
ous analog functions are available including temperature sensors, clock frequency
or voltage monitoring. These functionalities can be used to detect possible fault in-
jection.

In order to overcome standard FPGA deficiencies (no analog parts for example),
one solution is to use tamper proof sealing, like IBM PCI Cryptographic Coproces-
sor product [21]. Invasive attacks are no longer possible, and the metal shield also
protects against electromagnetic analysis attacks. With such a mechanism, many
parts like analog sensors could be placed in a trusted environment near the FPGA,
thereby extending the capabilities of the programmable device. This is not possible
without tamper proof sealing because an attacker could freely act on analog sensors
or even remove them.

One major concern with FPGAs at the system level concerns communications
between the different resources within the system. Depending on the trusted area
coverage within the system, it is essential to protect the communications and to min-
imize the overhead due to cryptography primitives. Some solutions are presented
below. Their goal is to lessen the cost of confidentiality and integrity.

PE-ICE is a dedicated solution providing strong encryption and integrity check-
ing to data transferred on the processor-memory bus of an embedded computing
system [12]. It was designed to optimize latencies introduced by the hardware se-
curity mechanisms on read and write operations. To achieve this goal, PE-ICE uses
a single block encryption algorithm. Data confidentiality is thus guaranteed by en-
cryption while integrity checking relies on the spreading feature of block encryption
algorithms and on resources available on chip.

Data privacy is provided by AES (Advanced Encryption Standard) encryption.
AES is a block cipher algorithm that processes 128-bit blocks with a 128-bit key.

The spreading feature of block encryption algorithms implies that once a block
encryption is performed, the position and the value of all bits in a ciphertext block
C are influenced by each bit of the corresponding plaintext block P . Consequently
if P is composed of two distinct data (PL and T ), after ciphering, it is impossible
to distinguish the PL ciphered part from the T part in C. Moreover if one bit is
modified in C, after decryption all bits of the corresponding plaintext block will be
affected.

PE-ICE integrity checking process: The previous property is used to add the in-
tegrity checking capability to block encryption. In a write operation (Fig. 2.11), a tag
value is inserted in each plaintext block P before encryption. As a result, P is com-
posed of a payload PL (data to protect) and a tag (T ). Such a tag must be a nonce,
a Number used ONCE, for a given encryption key and does not need to be calcu-
lated over the data with a specific algorithm; for example, it can be generated by a
counter. After encryption, an indistinguishable and unique PL/T pair is created and
the resulting ciphered block C is written in the external memory. In a read operation
(Fig. 2.11) C is loaded and decrypted. The tag T derived from the resulting plain-
text block is compared to an on chip regenerated tag called the reference tag T . If
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Fig. 2.11 PE-ICE principle: the protection is based on the spreading feature on block encryption
algorithms

T does not match T , it means that at least one bit of C has been modified (spoofing
attack), PE-ICE raises an integrity checking flag to prevent further processing.

The tag generation: In the context of processor—memory communication, the
hardware engine executes both encryption and decryption. Therefore, the engine
has to hold the tag value T of each ciphered block between encryption and the de-
cryption or alternatively, must be able to regenerate it in read operations to perform
the integrity checking process. The challenge is to reach this objective by storing
as little tag information as possible on the engine to optimize on chip memory us-
age. Moreover T may be public knowledge because an adversary needs the secret
encryption key to create an accepted PL/T pair. CPUs process two kinds of data,
Read Only (RO) data and Read/Write data (RW). The composition of the tag differs
for each kind of data and depends on their respective properties. RO data are only
written once in external memory and are not modified during program execution.
In addition, the secret encryption key is changed for each application downloaded
in the external memory. Therefore, the tag can be fixed for each plaintext block of
RO data. PE-ICE uses the most significant bits of the ciphered block address as tags
(Fig. 2.11.a). If an attacker launches a splicing attack, the address used by the pro-
cessor to fetch a block and by PE-ICE to generate the tag reference (T ) will not
match the one loaded as the tag (T ). RW data are modified during software execu-
tion and are consequently sensitive to replay attacks. Using only the address as the
tag is not enough to prevent such attacks because the processor cannot check if the
data stored at a given address is the most recent data (temporal permutation). For
that reason, the tag is composed of the most significant bits of the address of each
ciphered block, concatenated with a random value (Fig. 2.11.b). The random value
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Fig. 2.12 One Time Pad model: ciphering and deciphering are performed through a XOR opera-
tion

of each plaintext block is changed for each write operation and is stored on chip to
be able to regenerate the tag reference during read operations.

The OTP (One Time Pad) approach is an alternative solution to PE-ICE that
tries to further parallelize the decryption time and the fetch latency. If we consider a
block of 512 bits, i.e. the same size as the cache line that corresponds to a keystream
and that is created using an AES algorithm, this block is created with the address
of the data, a timestamp and a fixed vector (these data are required to protect the
memory against classical attacks, spoofing, relocation, and timing). Except for the
timestamp, all the information is known by the processor before memory access.
Considering the possibility of using a special (fast) cache for timestamp storage,
while the processor is fetching the data, a hardware engine computes the keystream
(required for OTP). When the data are ready, the computation to decipher the in-
formation is only a bit-a-bit XOR gate (principle of OTP). Figure 2.12 shows the
general model and the benefit of using OTP compared to classical ciphering tech-
niques. If the memory access time is longer than the AES computation time, the
deciphering latency is completed hidden by the model, as can be seen in Fig. 2.13.

Code compression techniques can also be used to reduce the cost of cryptography
[48]. This solution aims to overcome the main problem of memory encryption i.e.
the encryption delay. In general the decryption unit is defined in the secure area of
the system, between the processor cache and the main memory, so that, by observing
the bus activity, an attacker will be able to find encrypted information. This approach
will impose an overhead in the processing time due to the deciphering unit.
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Fig. 2.13 OTP access time:
keystream generation time is
hidden by the memory access
time. Ciphering is performed
through a XOR operation

Using code compression, the number of transfers between the cache and the main
memory will be reduced, which means that the global decryption overhead will
be minimized, and if a scheme that naturally improves performance is used, the
overhead can be completely avoided.

The general idea is presented in Fig. 2.14. After the compression phase, the AES
algorithm is used to encrypt the blocks of 4 × 32 bits (the same size as a cache line).
The compressed and encrypted code is then loaded into the main memory. When the
processor asks for an instruction, the decompressor asks the cache if it is available.
In this case, no deciphering is necessary. If the instruction in the cache is a codeword,
the decompressor acts by delivering the corresponding instructions. If the instruction

Fig. 2.14 Code compression techniques to mitigate the cost of cryptography
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is not present in the cache, the deciphering unit is used, retrieving the block from
the main memory and converting it into a compressed code that is delivered to the
cache. This method relies on the efficiency of the compression to avoid some cache
misses and, consequently accesses to the main memory. Moreover, the density of the
code that is transferred through the bus is higher, so that less deciphering is required
for the whole execution of the code.

All the solutions presented above allow for a more efficient and secure design at
the system level. These solutions could also be considered for ASICs and are not
fully dedicated to FPGAs. However, the advantages of FPGAs should not be con-
sidered as dealing only with a single level but with the whole security pyramid. In
such a case, the different contributions e.g. dynamic reconfiguration at all the levels
(i.e. technological, logic, architecture and system) and logic security improvements
provide some very interesting features and should encourage the use of FPGAs for
secure embedded systems.

2.7 Conclusions

Embedded systems are currently facing an increasing number of attacks since the
amount of digital private information embedded in these systems is getting bigger
every day. The rate of digital data exchanged is also increasing exponentially and
transferred information must be kept secure since confidentiality and integrity are
mandatory. Embedded systems are playing an essential role in our society and are
already included in many electronic devices from low end to high end systems. Se-
curity is a serious problem and attacks against these systems are becoming more
critical and sophisticated. New solutions are needed to allow the definition of secure
embedded systems since current technologies are facing several challenges and can-
not cope with security requirements and performance constraints. Architectures will
have to meet high performance requirements, be energy efficient, flexible, tamper
resistant and reliable to enable their wide adoption. FPGAs can address these re-
quirements and provide efficient security primitives. Their characteristics enable the
system to prevent attacks or to react when attacks are detected while guaranteeing
the required energy and computation efficiency.

In this chapter we have analyzed current threats against embedded systems and
especially FPGAs. We have described the standard FIPS requirements to build a
secure system. This point is of paramount importance as it guarantees the level of
security of a system. We have also highlighted current vulnerabilities of FPGAs at
all the levels of the security pyramid. From a design point of view, it is essential
to be aware of all these levels in order to provide a comprehensive solution. As
mentioned earlier in this chapter, the strength of a system is defined by its weakest
point; there is no reason to enhance other means of protection, if the weakest point
is not tackled. Many serious attacks target this weakness in order to avoid facing
the complexity of brute force attacks. Several solutions have been outlined in this
chapter especially at the logical, architectural, and system levels to find a global
solution.
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Chapter 3

Side Channel Attacks

V. Lomné, A. Dehaboui, P. Maurine, L. Torres, and M. Robert

Abstract This chapter presents the main Side-Channel Attacks, a kind of hardware
cryptanalytic techniques which exploits the physical behavior of an IC to extract se-
crets implied in cryptographic operations. We show in this chapter the main modern
concepts about Side Channel Attacks (Simple and Differential Power Analysis) and
how they can be deployed on FPGA architecture. We give also a set of details on
platform and equipment needed to conduct such type of experiments. Then we pro-
pose a discussion about the leakage model of digital IC, comprising FPGA, and we
illustrate these attacks on a set of real case study. We conclude this chapter by giving
the latest information and link toward new efficient Side Channel Attacks.

3.1 Introduction

In the past 100 years, we have seen the emergence of modern cryptography, along
with many cryptographic primitives and protocols. The development of new the-
oretical cryptanalytic techniques to try to defeat the main cryptographic algo-
rithms has increased knowledge of how to design cryptographic primitives and
schemes.

In theoretical cryptanalysis today, a cryptographic algorithm is considered as a
black box. Even when attackers know the cryptographic algorithm, they only have
access to pairs of plaintexts/ciphertexts, and their goal is to guess the cryptographic
key.

The robustness of modern cryptographic algorithms is based on these assump-
tions, and a cryptanalytic attack is a method that allows an assailant to guess the key
with a complexity (in time and/or in memory) lower than a brute force attack.

But if a cryptographic algorithm is modeled as a gray box, i.e. in such a way that
an attacker can obtain intermediate information during the cryptographic operation
requiring the key, these assumptions no longer hold true.

In this context, and with the increasing use of embedded cryptographic devices
with embedded cryptographic secrets, several tamper attacks have appeared since
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the beginning of the 1990s. These enable an attacker to obtain intermediate infor-
mation during the cryptographic operation, and then to deduce the secret key with a
complexity much lower than classical theoretic cryptanalytic attacks.

Figure 3.1 shows different models from theoretical and hardware cryptanalytic
points of view. In the gray box model, physical leakages from the device can be
identified or the computation running on the device can be disturbed. As we ex-
plain in this chapter, these different approaches enable cryptographic secrets to be
extracted. Cryptanalytic techniques for hardware are classified as invasive attacks,
semi-invasive attacks, or non-invasive attacks. We describe these attacks in detail in
the following sections.

3.1.1 Invasive Attacks

Invasive attacks are a tamper attack in which the device is completely destroyed
in order to extract secret information. The best known invasive attack is hardware
reverse engineering, as described in [69]. The goal is to retrieve the layout of the cir-
cuit using chemistry techniques and/or high resolution microscopy. This technique
is often used for cloning or anti-cloning purposes.

The first step consists in decapsulating the chip. A high resolution picture is
then taken of each metal layer, and chemistry techniques are used to remove each
succeeding metal layer to penetrate deeper into the chip right down to the transistor
level. When attackers have a picture of each metal layer, they can use dedicated tools
to go back to the netlist of the circuit. Finally, they obtain the behavioral description
of the chip.

This attack has been conducted in the case of the MyFare stream encryption al-
gorithm, which was kept secret by NXP. An invasive attack revealed the algorithm’s
functionality [46]. The method is shown in Fig. 3.2.

Although this technique is very powerful, but it has two drawbacks. Firstly, it
requires very expensive equipment and highly qualified engineers. Secondly, thanks
to technology shrinking techniques, it requires more and more sophisticated mi-
croscopy. In the case of SRAM and Flash based FPGAs, the configuration file, also
called the bitstream, is stored in a dedicated off or on chip Flash memory. Thus,
considering that the layout of an FPGA is roughly an array of reconfigurable cells,
invasive attacks that allow attackers to obtain the hardware description of the at-
tacked chip still provide no information about the configuration file, because the
reconfigurable cells lose their configuration data as soon as the FPGA is switched
off.

For instance, Fig. 3.3 shows the layout of an FPGA; as can be seen, optical ob-
servation of the floorplan provides no clues about the FPGA’s configuration.
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Fig. 3.1 Black-box and gray-box models from a cryptanalytic point of view
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Fig. 3.2 Reverse-engineering of the MyFare CRYPTO1 algorithm. On the left, pictures of the
circuit. On the right, netlist reconstruction

Fig. 3.3 Layout of a Stratix FPGA (ALTERA). On the left, a magnified photograph of the silicon
die. On the right, the application actually programmed in the matrix, viewed under QUARTUS but
invisible under the microscope

3.1.2 Semi-invasive Attacks

Semi-invasive attacks consist in retrieving physical information or disturbing the
cryptographic operation computed by the device after decapsulation. These kinds of
attacks are called semi-invasive because they require physical modification of the
device, but do not destroy it. Indeed, attackers usually uses chemistry techniques to
remove the package of the chip. In some cases, other sophisticated techniques may
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Fig. 3.4 Commercial laser
attack setup from Riscure (on

the left)—zoomed view of
memory with the laser pulse
in pink (on the right) (color
online)

be required for example thinning down the substrate. For this purpose, different
approaches can be used.

The first approach belongs to the fault attacks category. One or several faults
are generated during the cryptographic operation using, for instance, light pulses.
A concrete light based fault attack was first reported in [63]. Since these first con-
crete results, more sophisticated techniques have been elaborated using a laser (for
instance red or infra-red diode laser), allowing the fault to be generated on either
the front or back of the chip, and/or the fault to be focused on one or a few bits [8].
Figure 3.4 shows a commercial laser attack setup from Riscure (on the left), and
zoomed view of memory with the tiny laser pulse in pink (on the right).

Another technique, called probing attack [32], consists in placing a small needle
on a bus line of the microcontroller to retrieve information. Different authors have
shown that even if attackers can only spy on one random bus line, they can nev-
ertheless obtain enough information to reveal a cryptographic key. As an example,
the authors of [62] describe a probing attack applied on AES. Recently, a general
side-channel method based on single bit probing [24] was introduced as a way to
optimize cube attacks [25]. Such attacks use a learning step, and can consequently
even work on a proprietary algorithm.

A recent kind of semi-invasive attack consists in measuring, on the back side,
photons emitted by transistors when they switch. This attack [13] requires thinning
down the substrate and a high performance camera. Then, after the acquisition of
photons emitted by the chip during the cryptographic computation of different data
and the same unknown key, a statistical treatment, similar to that used in SCA re-
veals the cryptographic key. Moreover, this powerful technique follow the displace-
ment of the current to be monitored by computing a movie disclosing the switching
of transistors. However, this attack requires very expensive equipment that is avail-
able only in a few advanced laboratories.

3.1.3 Non-invasive Attacks

Non-invasive attacks are powerful techniques to extract secret information from
cryptographic devices without physical modification of the device. As explained
above, we distinguish two approaches, one consists in identifying physical leakages
during the cryptographic operation (called Side Channel Attacks (SCA)), the other
in disturbing computation (called Fault Attacks (FA)).



52 V. Lomné et al.

Side Channel Attacks consist in measuring physical leakages from the device
during a cryptographic operation. The main idea behind this approach is that CMOS
technology has an interesting property from a cryptanalytic point of view: it leaks
physical information correlated with processed data. This class of attacks is very
powerful, and requires only affordable measuring and testing equipment. Different
physical leakages can be measured. Typical leaks are the computational time of
the cryptographic operation [35], power consumption by the device [36], or the
electromagnetic radiations emitted by the chip [26].

In some cases secret information can be extracted via a physical leakage from
only one cryptographic operation, in others the attacker needs to record physical
leakages from several cryptographic operations and to apply a statistical treatment
on these records. On a classical smart card without dedicated countermeasures, sev-
eral thousand records of cryptographic operations enable both symmetric ciphers
(like DES or AES) and asymmetric ciphers (like RSA or ECC) to be broken in a
very short computational time (a few hours using a desktop computer).

The first type of Side-Channel Attacks is the Timing Attack, which exploits differ-
ences in the computational time of a cryptographic operation. But from a practical
point of view, methods have been proposed to implement a cryptographic algorithm
in both hardware or software, ensuring that its computational time is constant.

However, power and electromagnetic side channels are physical leakages that are
tightly correlated with the processed data due to CMOS properties, and these kinds
of attacks are considered to be very powerful by manufacturers and government
agencies. Moreover, using a tiny electric or magnetic sensor that is smaller than
the chip, a 3D electromagnetic radiation map can be computed. This is achieved
by running the same set of instructions several times, while placing the sensor in
different positions.

The second approach belongs to the fault attacks category. The initial idea,
from [17], is to run the cryptographic operation twice, one safe and another faulty.
Dedicated cryptanalytic techniques enable one pair of safe/faulty cryptographic
computations to be exploited to extract the key, with a low complexity in com-
parison to classical cryptanalytic techniques. In other cases a differential approach
is required to retrieve the key [16], in which case the attacker needs several pairs of
safe/faulty cryptographic computations to retrieve the cryptographic key.

The first concrete way proposed in the literature to generate faults during a com-
putation is the glitch attack [10]. The idea is to modify the supplying signal of the
device during a sharp time shorter than a clock period. The device can be overpow-
ered or underpowered. As a result, a setup time or hold time violation will occur,
and the attacker generates a logical error in the result of the cryptographic operation.
A variant consists in suddenly modifying the clock period.

There is another way to generate faults in cryptographic devices without phys-
ically modifying the circuit. The idea is to place an electromagnetic sensor above
the device and to generate an electromagnetic field through the chip. Although few
works have reported concrete results of this kind of attack, concrete experimental
results can be found in [61].

Some circuits can even be disturbed by a steady stress. For instance, paper [34]
shows how to obtain incorrect computations from an AES implemented in an FPGA.
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The method consists in underfeeding the device, so as to generate setup time vio-
lations. A comprehensive study of this way of injecting such faults in an FPGA is
available in [15] for various FPGA families. The outcome of these experiments is
that the description of the algorithm can greatly improve the resistance of the im-
plementations against these “global faults”.

In the rest of this chapter, we only deal with Power and Electromagnetic based
Attacks will be detailed [67]. For more information on Timing Attacks, the reader
can consult [35] or [19]. For information on Fault Attacks, [16, 17, 30] and [12] are
good starting points.

The following explanations are applicable to for all kind of ICs used in embed-
ded devices, and especially for FPGAs that use hardware or software cryptographic
primitives.

3.2 Power and Electromagnetic Measurement Platform

In this section, we describe the platform used to perform power and/or electromag-
netic measurements of an FPGA running cryptographic operations.

3.2.1 Equipment

One example of an overall platform is given in Fig. 3.5, it is made up of several
parts described in the following sections. Other boards are described in [67]. Also
of particular interest are the so-called “Side Channel Analysis Standard Evaluation
BOards” (SASEBO) [54].

3.2.1.1 Attacked Device

For the experiments described in this chapter, the attacked device is an Xilinx FPGA
Spartan3-1000 embedded in a Digilent board. The Spartan die is encapsulated in a
Cavity Up Ball Grid Array (BGA) package, and is roughly 7 mm by 7 mm in size,
whereas the whole package is roughly 17 mm by 17 mm.

3.2.1.2 Oscilloscope

The main component of the equipment required for a Side Channel Attack, (and
the most expensive device in a Side Channel Attack platform) is an oscilloscope.
A Lecroy 735Zi scope was used for the experiments described in this chapter. It
belongs to the latest generation of Lecroy scopes, and has impressive properties:
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Fig. 3.5 Power and
Electromagnetic
Measurement Platform

• 4 channels;
• a maximum sampling rate of 40 GSa/s;
• a frequency bandwidth of 3.5 GHz;
• a resolution of 8 bits per point (without averaging);
• a vertical sensitivity of 2 mV;
• a maximum memory depth of 32 MSa.

Moreover, like other high-performance scopes, it allows remote control via Eth-
ernet connections. Thus, once the scope is on, it can be fully controlled remotely.
Furthermore, specific advanced modes for the trigger can be very useful for SCA
purposes, but these functionalities were not exploited in our experiments.

3.2.1.3 Current Probes

To accurately measure the current consumed by the attacked device, current probes
have interesting properties and are affordable. Tektronix current probes CT1 and
CT6 [1] were used in the platform described here. First, the voltage regulator on
the Digilent board supplying the power to the FPGA core was removed. Power was
supplied by a battery, and the current probe was placed on the VDD or GND wire
(between the battery and the pins of the core).

The current probe CT1 has a frequency bandwidth of 1 GHz and the CT6 of
2 GHz, and an accuracy of 5 mV/mA. Low-noise amplifier (described below) was
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plugged at the output of the current probe to increase the amplitude of the signal
enabling accurate measurement of power consumption.

3.2.1.4 Magnetic Sensors

The size and the shape of a magnetic sensor are the most important characteristics
that determine the accuracy of the sensor. Hand-made magnetic sensors can be built.
Attempts have often been made to build the smallest coiled wire, made of copper,
and with several turns. Although these sensors produce good results (for instance
some DEMA attacks succeeded with several hundred measurements), commercial
magnetic sensors are often preferred [55].

Consequently, we used the Rhode and Schwarz HZ-15 probe set which contains
different electric and magnetic sensors. Among them, the H field probe RSH2.5-2
gives accurate measurements, with good precision (its diameter is around 0.5 mm,
thus when placed close to the IC, one is about 1 mm when working on encapsulated
chips). Moreover, it allows precise measurements with a huge frequency bandwidth
(spanning from 1 MHz to 3 GHz) even through the package of the FPGA. It con-
sequently appears to be a good compromise to measure the magnetic activity of
packaged chips.

3.2.1.5 Low-Noise Amplifier

To ensure sufficient power and accurate electromagnetic measurements, a low noise
amplifier can be used. We used one with a frequency bandwidth of 1 GHz, and a
gain of 63 dB.

3.2.1.6 Motorized X-Y -Z Stage

Using a tiny magnetic sensor to measure a particular area of the attacked chip re-
quires positioning the sensor at the exact location required. For this task, we used
a motorized X-Y -Z stage. The three axes have a precision of 50 µm, and the stage
can be fully controlled remotely by serial connection.

3.2.1.7 Computer

A personal computer was used to control the whole platform. It was connected to the
board embedding the attacked device via one serial port, to the scope via Ethernet,
and to the X-Y -Z motorized stage via another serial port to drive it.
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3.2.2 Acquisition Software

To automate the acquisition of measurements, we developed a software in Matlab.
It runs on the computer controlling the whole platform. Typically, to perform an
EM cartography, i.e. to obtain EM measurements of the same calculation(s) with
the magnetic sensor placed at different positions above the chip to draw a map, the
following steps are recommended:

• the initial position (Xinit, Yinit,Zinit), the number of positions (nbX, nbY ), the dis-
placement step (dis), the key (K) and the number of plaintexts (nbPTIs) are chosen
by the user;

• once the script is launched, PTIs are chosen randomly;
• the motorized stage is positioned at the first position (Xinit, Yinit,Zinit);
• the computer sends to the scope and adjusts it so that the entire computation is

correctly recorded; it also sends the key K (optional) and the PTI1 to the chip; the
chip sends to the scope a trigger signal on the channel 1 to launch the recording
of the magnetic signal on channel 2 (the magnetic sensor is connected to the low
noise amplifier, which is connected to channel 2 of the scope);

• once the computation is finished, the scope sends the acquired EM trace to com-
puter;

• the two previous steps are repeated nbPTIs times;
• the motorized stage is positioned at the second position (Xinit + dis, Yinit,Zinit),

and the three previous steps are repeated;
• the same steps are repeated until all the positions have been covered.

The localization of the cryptographic modules is an advanced topic that is beyond
the scope of this introduction concerned with side channel attacks. Interested readers
should refer to [23, 52, 56, 57].

3.3 Leakage Models

Power and Electromagnetic (EM) based Side Channel Attacks is a hardware crypt-
analytic technique that exploits physical leakages emitted by a cryptographic de-
vice. In this section, we explain how physical measurements can be realized and
how leakage model can be used.

3.3.1 Power Consumption Leakage

Complementary Metal-Oxide-Semiconductor (CMOS) is the most used technology
in microprocessors, microcontrollers, static RAM, and other digital logic circuits.
Two important characteristics of CMOS devices are high noise immunity and low
static power consumption. Significant power is only drawn while the transistors in
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the CMOS device are switching between on and off states. Consequently, CMOS
devices do not produce as much waste heat as other forms of logic, like NMOS.
CMOS also enables a high density of logic functions on a chip. It was primarily for
these reasons that CMOS won the race in the 1980s and became the most widely
used technology for VLSI chips.

The power consumption of a CMOS circuit is the sum of the power consumption
of the logic cells that make up the circuit [31]. Hence, the total power consumption
mainly depends on the number of logic cells in a circuit, the connections between
them, and how the cells are built. The power consumption of a CMOS gate is gen-
erally considered in terms of two components [22]:

• The dynamic power component: this is mainly related to the charging and dis-
charging of the load capacitance at the gate output, but also to the short circuit
current that flows during the transition of the input from one voltage level to
another. Indeed there is a short period during which both PMOS and NMOS tran-
sistors are on simultaneously, thus creating an electrical path between the VSS
and VDD rails.

• The static power component: this is due to leakage in the substrate that flows
even when the gate is not switching. In turn, this leakage is made up of several
components including gate to source leakage, which flows directly through the
gate insulator, mostly by tunneling, and source-drain leakage attributed to both
tunneling and sub-threshold conduction. However, so far no research paper has
reported an attack using this static leakage.

While the transistors that comprise the CMOS gate are switching between on and
off states, a significant amount of power is consumed, due to the dynamic power
consumption. This characteristic of the CMOS technology is interesting from a
cryptanalytic point of view. Indeed, an attacker can use the fact that the dynamic
power consumption is tightly correlated with the number of switching bits to guess
a secret value in a cryptographic operation.

Moreover, electrical simulations in recent works [39] showed that, in deep-
submicron CMOS technologies, the percentage of static power consumption among
the global power consumption of a circuit increases with a decrease in the technol-
ogy shrinking techniques used. As the static power consumption of a gate mainly
depends on the biasing of its inputs and its internal nodes, static power consumption
is correlated with the last value computed by this gate. An attacker can thus exploit
the relation between static power consumption and a computed value to guess a
secret value in a cryptographic computation [51].

Different practical techniques can be used to measure the power consumption of
a chip, depending mainly on how the chip is encapsulated, and how it is supplied:

• if a small resistor is placed between the VDD (GND) of the circuit and the VDD
(GND) of the power supply, the consumption of the circuit can be measured at
the pins of the resistor;

• another way is to use a dedicated current probe [1].
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3.3.2 Electromagnetic Leakage

EM radiations emitted by an integrated circuit are mainly due to the displacement of
current through the rails of the metal layers. This phenomenon has been formalized
by Maxwell’s equations.

Practical experiments in [47] showed that the power and ground (P/G) network
represent the majority of EM radiations of a CMOS device. Thus, when transistors
are switching between on and off states, current crosses the P/G network to sup-
ply the pins of the switching transistors, and this displacement of current creates
variations in the EM field induced by the electrical behavior of the circuit.

Practically speaking, either the electric or the magnetic field can be measured.
But for EM based SCA, measuring the magnetic field generally gives better results.
The magnetic field emitted by a chip is measured using a near field magnetic sen-
sor [48].

3.3.3 Hamming Weight vs. Hamming Distance Models

In Kocher’s original paper [36], the leakage model used is based on the Hamming
Weight of the bit that the attacker tries to guess. This model, called the Hamming

Weight leakage model, considers that a 0 does not lead to excess of power con-
sumption (or EM radiations), whereas a 1 involves a significant amount of power
consumption. Thus:

• transitions 0 → 0 and 1 → 0 are considered as not leading to excess power con-
sumption;

• transitions 0 → 1 and 1 → 1 are assumed involve an excess of power consump-
tion.

Actually this model does not exactly match with the reality, except in precharged
logics (where each register is precharged at 0 before being updated, in this case the
Hamming Distance of a such word is equal to its Hamming Weight).

So the Hamming Weight (HW) leakage model could be improved by consider-
ing the switching state rather than the output state of the word concerned [18] (the
Hamming Distance between the previous and the new state):

• transitions 0 → 0 and 1 → 1 do not lead to excess power consumption;
• transitions 0 → 1 and 1 → 0 involve excess power consumption.

This leakage model is called the Hamming Distance (HD) leakage model. Fig-
ure 3.6 summarizes how these two leakage models rank transitions of one bit, con-
sidering its four possible transitions.

Other leakage models are possible, for instance a leakage model that distin-
guishes rising transitions and falling transitions has been studied in [45, 48], but
the results obtained were similar to those obtained with the HD model.
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Fig. 3.6 Ranking of a
transition of one bit following
the Hamming Weight and
Hamming Distance leakage
models

3.4 Side-Channel Attacks

As shown previously, both the power consumption and the EM radiations of a cir-
cuit are tightly correlated with the data it processes. In this context, different crypt-
analytic methods have been proposed to exploit this behavior, and to guess secrets
involved in a cryptographic operation. The four main methods that exploit power
or EM leakage presented here are respectively SPA/SEMA, DPA/DEMA, Template
attacks, and Information theoretic attacks.

Note that, in the rest of the chapter, we do not distinguish between power con-
sumption and EM radiations of cryptographic operations. Our explanations focus on
the algorithmic treatment of physical leakages, mainly considering power based at-
tacks. Indeed, up to now most published works are related to the power side channel
but the algorithmic treatment is the same as for the EM side channel.

3.4.1 SPA/SEMA

The Simple Power Analysis (SPA), originally described in [36], exploits a single
power consumption trace of a cryptographic operation to guess the secret used in
the computation (SEMA stands for Simple ElectroMagnetic Analysis, in the case of
an EM trace of a cryptographic operation).

Actually, this method works directly when applied on some asymmetric cryptog-
raphy operations. For instance, in the case of an RSA decryption, the computation
of the modular exponentiation:

m = cd (mod n) (3.1)

with m being the plaintext, c the ciphertext, d the private key exponent and n the
modulus, can be naively calculated using the right-to-left binary method (di is the
ith bit of d), as described in Algorithm 1.

Depending the value of each bit of the private key exponent d , one computes
only a squaring operation or both a multiplication and a squaring operation. Hence
the power consumption (or EM radiations) of each elements of the for loop will
be different depending on the value of the bit of the private key exponent d , and
by simply analyzing one trace, an attacker can easily guess bit values of the pri-
vate key d . Figure 3.7 shows a typical trace (after demodulation at the FPGA clock
frequency [44]).

A similar attack is possible on ECC, but rather than attacking the square and
multiply algorithm, one can attack the double-and-add algorithm involved in the
point multiplication.
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Algorithm 1 Right-to-left binary method for modular exponentiation
Inputs: c, d = (dl−1dl−2 . . . d0)2, n

Output: m

m = 1
for i = 0 to l − 1 do

if di = 1 then

m = m ∗ c (mod n)

end if

c = (c ∗ c) (mod n)

end for

Result: m

Fig. 3.7 Example of an
SEMA on RSA

Concerning symmetric key cryptography, SPA attacks focusing on specific im-
plementations of the key schedule have been published. [42] reports an SPA against
the AES Key Expansion, and [5] describes an SPA against the key schedule of the
Camellia block cipher.

3.4.2 DPA/DEMA

The Differential Power Analysis (DPA), originally described in the Kocher’s pio-
neering paper [36], is a powerful technique that allows the attacker to guess secret
keys used in a lot of cryptographic primitives. A lot of authors have proposed im-
provements of this attack along with countermeasures. When the attacker uses the
EM radiations of the chip rather than its power consumption, DPA becomes DEMA,
for Differential Electromagnetic Analysis.

3.4.2.1 Original Algorithm

DPA is a known plaintext or known ciphertext attack. The adversary enciphers (resp.
deciphers) N PlainText Inputs (PTI) (resp. N CipherText Outputs, CTO) with an un-
known key stored in the device, and monitors the power consumption of the device
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Fig. 3.8 Electromagnetic radiation traces of three different DES encryptions monitored on
an FPGA

during each ciphering (resp. deciphering) operation. At the end of the first stage, he
obtains N PTIs (resp. N CTOs) and N power consumption traces. Each trace is the
change versus time in the power consumption of the chip.

Note that these traces have to be well aligned; this means that the time index of
the beginning of ciphering has to be the same for all measurements.

If the measurements are not well aligned (due for instance to countermeasures
like random clock frequency or dummy instructions), different preprocessing tech-
niques enables traces to be re-synchronized [4, 6, 7, 21, 33, 53].

Figure 3.8 shows several EM radiation traces corresponding to the DES encryp-
tions of different PTIs with the same key monitored on an FPGA.

The second stage is statistical processing of the N PTIs (resp. N CTOs) with the
N traces.

In the rest of the chapter, the DES [2] is used as example, because it is the best
most known block cipher and the principles that apply to the DPA also apply to other
cryptographic ciphers, such as AES [3]. For the sake of convenience, we consider
that the adversary is using a known plaintext attack and is trying to guess the round-
key 1 of the DES (the remaining 8 bits could then be discovered through a brute
force attack). A similar algorithm allows the round-key 16 in a known ciphertext
attack to be discovered.

Since the set of all possible values for the round-key 1 is too large to test all of
them, the adversary usually divides the round-key 1 into 8 parts of 6 bits each (here
called sub-keys) and attacks each sub-key independently and sequentially. Thus, for
each sub-key, there are 64 possible values.

Moreover, attacking each sub-key independently allows all kind of implementa-
tions to be targeted. For instance, in software implementations, depending on the
size of the data bus (generally 8, 16 or 32), sbox processing can be computed se-
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quentially, and so sbox 1 is not processed at the same time index as sbox 8. Unlike
in some hardware implementations, all the sboxes are processed at the same time,
meaning other approaches are possible, as explained below.

The adversary makes hypothesizes on the 6 bits of the attacked sub-key, and for
each PTI, he computes the output (4 bits) of the corresponding sbox. This value is
called the Intermediate Value (IV). In the state-of-the-art mono-bit DPA [36], the
adversary targets out of the four, for instance the Less Significant Bit (LSB).

If the LSB of IV1 (corresponding to the first plaintext, PTI1) is equal to 0, the
associated trace (T1) is ranked in set A. If the LSB of IV1 is equal to 1, T1 is ranked
in set B. As explained above, the adversary ranks all the traces, in sets A or B, and
then computes the difference in the means of sets A and B. The resulting curve is
called a differential curve, and corresponds to a sub-key hypothesis. The adversary
computes the 64 differential curves corresponding to the 64 possible values for a
given sub-key hypothesis.

As explained in [36], the differential curve, denoted �, for a sub-key hypothesis
Ks , is calculated as follows:

�Ks [j ] =
∑N

i=1 D(PTIi,Ks)Ti[j ]
∑N

i=1 D(PTIi,Ks)
−

∑N
i=1(1 − D(PTIi,Ks))Ti[j ]
∑N

i=1(1 − D(PTIi,Ks))
, (3.2)

where �Ks [j ] is the j th sample of the differential curve, N is the number of traces
used, PTIi is the ith plaintext, Ti[j ] is the j th sample of the trace and D the decision
function than ranks traces in set A or B, also called selection function.

If the sub-key hypothesis is wrong, all the computed intermediate values will be
wrong with respect to the data really processed on the chip. In this case, the traces
will be randomly classified in sets A and B. The mean curves of sets A and B will
be similar, and the differential curve will look like a thick horizontal line (mainly
composed of noise).

On the other hand, if the sub-key hypothesis is correct, all the computed inter-
mediate values will match the data really processed on the chip, and traces in set
A will have the same characteristic: at the time index where the intermediate value
is computed, the LSB of IV equal to 0 will not lead to excess power consumption.
Conversely, when the LSB of IV is equal to 1, a bit more energy will be consumed
at the same time index and spikes corresponding to the clock cycle where IV is
computed will be greater on traces in set B than on traces in set A. When the dif-
ference in the means of the 2 sets is being computed, a spike will appear at the time
index of the differential curve concerned indicating that the sub-key hypothesis is
correct.

Figure 3.9 shows the 64 differential curves computed following guesses of sub-
key 1 of round-key 1 of the DES, using 500 EM traces (each one averaged 20
times). Differential curves corresponding to wrong guesses of the sub-key are in
cyan, whereas the curve corresponding to the correct guess of the sub-key is in
black, and has the greatest peak. To guess the eight parts of round-key 1, processing
is applied sequentially on each sub-key.
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Fig. 3.9 Example of a successful DEMA: 64 differential curves computed following hypotheses of
sub-key 1 of round-key 1 of the DES, using 500 EM traces (each one averaged 20 times). Differen-
tial curves corresponding to wrong hypotheses of the sub-key are in cyan, the curve corresponding
to the correct hypothesis of the sub-key is in black (color online)

3.4.2.2 Improvements of DPA

Hamming Weight vs. Hamming Distance Leakage Models In the original DPA
algorithm, and as explained in the previous section, the selection function follows
the Hamming Weight (HW) power consumption model. But previously, we ex-
plained that the Hamming Distance (HD) power consumption model matches reality
better.

Moreover, an iterative implementation is used in most hardware implementations
of block ciphers. Thus, only one generic round is implemented, and at each clock
cycle the intermediate result of the previous round is used as input with the current
round-key generated by the key schedule.

Hence, rather than considering an output bit of an sbox, we can consider the bit
linked to the previous one in R1 [2]. Thus, as the adversary knows the value of
this bit in R0 (because he/she knows the PTI), and assuming that R0 and R1 are
stored in the same register which is updated at each round, we can compute the
Hamming Distance between the value of the targeted bit in R0 and R1. In this case,
it is generally not the power consumption of an inverter that is estimated, but the
power consumption of a flip-flop.

Multi-bit DPA Another way to improve DPA attacks consists in considering the
four bits linked to the output of the sbox rather than only one. As proposed in [14],
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we can compute the differential curve for each bit out of the four from the output of
the sbox, and sum the four differential curves.

We can also rank traces using another criterion [43]: by summing the number of
switching bits out of the four considered, and if the sum is smaller than 2, we rank
the associated trace in set A, whereas if the sum is greater than 2, we rank the trace
in set B.

Distinguishers In the original DPA algorithm, the distinguisher used to corre-
late predictions with measurements is called Difference of Mean (DoM). Different
works have proposed other methods, based on different mathematical tools. Here,
we describe the best known.

Partition Distinguishers As explained previously, the Difference of Means

(DoM) distinguisher consists in ranking, according to a key hypothesis, all the traces
in two sets, following a criterion. Then the difference in the means of the two sets
of traces is computed. Applying this method to the different key hypotheses reveals
the correct key hypothesis.

In the previous paragraph, we described different improvements of Kocher’s at-
tack, like the multi-bit DPA proposed by Messerges [43], or the method suggested
by Bevan [14].

Another proposal, presented in [37], consists in ranking traces in more than two
sets. In the case of attacking a DES, if the attacker focuses on the four output bits
of an sbox, he/she can rank traces in five sets, one per Hamming Weight. Consid-
ering four bits b0, b1, b2 and b3, the Hamming Weight of the word b3b2b1b0 is
between 0 and 4, and leads to five possible values. Then the attacker has to choose
coefficients ai , i = 0, . . . ,3, assigned to each set. This method has been called Par-
titioning Power Analysis (PPA).

Unfortunately, no efficient method has been proposed to determine these coeffi-
cients in the general context. Indeed, due to the process variations, foundries cannot
ensure that all the bus lines have exactly the same geometrical dimensions. For ex-
ample, bit b0 will not consume exactly the same amount of power (or radiate exactly
the same field) as bit b1. This is all the more true in the presence of countermeasures.
For instance, in a circuit where the nets are balanced (for instance thanks to a dual-
rail logic [68]), the coefficients ai are given in Fig. 3.10 [58].

Blind techniques enable identification of the coefficients. The optimal coeffi-
cients in the context of masking are derived in [50]. In a general context, the stochas-
tic approach, discussed in Sect. 3.4.3.2, always applies.

Comparison Distinguishers In a differential SCA, the attacker wants to estimate
the relation between predictions, depending on a key hypothesis, and on measure-
ments. In [18], the authors suggest using a well-known statistical tool, Pearson’s

correlation coefficient. Let X and Y be two random variables, cov(X,Y ) be the co-
variance between X and Y , and σX and σY be the standard deviations of X and Y ,
Pearson’s correlation coefficient is computed as follows:

ρ(X,Y ) =
cov(X,Y )

σX × σY

. (3.3)
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Fig. 3.10 Optimal weights
found for the sbox output of
DES in dual rail with
precharge logic

This mathematical tool measures the dependence between two quantities, and for
SCA, its application is straightforward. Let N be the number of traces, Ks the key
hypothesis, PTIi the ith PlainText Input, H(Ks,PTIi) the number of switching bits
according to the key hypothesis Ks and the plaintext PTIi , Ti(j) the j th sample of
the ith trace, Eq. (3.3) becomes:

ρKs [j ] =
N.

∑N
i=1 H(Ks,PTIi).Ti(j)−

√

N.
∑N

i=1 H(Ks,PTIi)2 − (
∑N

i=1 H(Ks,PTIi))2

×
∑N

i=1 H(Ks,PTIi).
∑N

i=1 Ti(j)
√

N.
∑N

i=1 Ti(j)2 − (
∑N

i=1 Ti(j))2
. (3.4)

The variant of the DPA using the Pearson’s correlation has been called Correla-
tion Power Analysis (CPA), and was first introduced in [18].

However, Pearson’s correlation measures only linear dependencies between two
quantities. Other tools, like Spearman’s rank correlation, or Kendall’s tau rank corre-
lation, can measure linear dependencies between two random variables, but practical
experiments have shown that these tools give very similar results [9].

Another author [28] introduced a different statistical tool, mutual information.
Mutual information allows both linear and non-linear dependencies between two
random variables to be measured. This is called Mutual Information Analysis
(MIA). This technique is discussed in Sect. 3.4.4.1.

Key Search Generally, when the attacker has computed the 64 differential curves
corresponding to guesses of the sub-key Sk using N traces, he/she searches for
the maximum (in absolute) of each differential curve. Among the 64 maxima, the
biggest one reveals the guessed during the attack using N traces. A classical opti-
mization for the key search step consists in reducing the proportion of the differen-
tial curve inspected to detect the maximum. The key search may concentrate on a
part of the curve corresponding to the attacked round.
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3.4.3 Template Attack

The Template Attack (TA) is considered to be the most powerful type of SCA. The
scenario of such an attack is slightly different than that required for other kinds of
SCA. First, to build templates for the different possible values of the secret, attackers
have to be in possession of a circuit identical to the circuit under attack. Then, they
measure one trace on the attacked device, and using appropriate methods, compare
this trace with the different templates they built to guess the value of the secret.

3.4.3.1 Original Template Attack

This attack, firstly described in [20], happens in two stages, the template building
stage, and the template matching stage.

Template Building Phase In the first stage, attackers use the circuit under their
full control, which is identical to the circuit under attack, to build templates for each
pair of data and key.

Power traces can be characterized by a multivariate normal distribution, which
is fully defined by a mean vector M and a covariance matrix C. In the rest of the
paragraph, the pair (M,C) is referred to as a template. The attacker builds a template

(M,C)di ,kj for each pair of data and key (di, kj ) following these steps:

• for each pair of data and key (di, kj ), acquire p traces T
di ,kj

1 , . . . , T
di ,kj
p ;

• compute a mean vector Mdi ,kj for each pair (di, kj ) from the p traces as follows:

Mdi ,kj =
1

p

p
∑

l=1

T
di ,kj

l ; (3.5)

• (optional) compute pairwise differences between the mean vectors Mdi ,kj in order
to identify and select only points P1, . . . ,Pn at which large differences show up.
This optional step significantly reduces the processing overhead with only a small
loss of accuracy;

• for each pair di, kj and for each acquired trace T
di ,kj

l , l = 1, . . . , p, compute the

noise vector N
di ,kj

l , l = 1, . . . , p as follows:

N
di ,kj

l = (T
di ,kj

l (P1) − Mdi ,kj (P1) . . . T
di ,kj

l (Pn) − Mdi ,kj (Pn)); (3.6)

• for each pair di, kj , compute the noise covariance matrix Cdi ,kj between all pairs

of components of the noise vectors N
di ,kj

l s, l = 1, . . . , p, for all the p traces, as
follows:

Cdi ,kj [u,v] = cov(Nl(Pu),Nl(Pv)). (3.7)

Thus, for each data and key pair (di, kj ), the attacker has built a template, that
characterizes the deterministic part of the power trace, but also its noise part, mod-
eling it using a multivariate Gaussian model.
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Template Matching Phase In the second stage, the attackers use a power trace
from the device under attack to determine the key. To this end, they evaluate the
probability density function of the multivariate normal distribution with (M,C)di ,kj

and the trace of the device under attack.
In other words, given a power trace t of the chip under attack, and a template

(M,C)di ,kj , the attacker computes the probability:

p(t; (M,C)di ,kj ) =
1

√
(2π)n · det(C)

e− 1
2 (t−M)T ·C−1·(t−M). (3.8)

The attacker does this for every template. As a result, he/she obtains the probabil-
ities p(t; (M,C)d1,k1), . . . , p(t; (M,C)dD,kK ). The probabilities measure how well
the templates fit to a given trace. Intuitively, the highest probability should indicate
the correct template. Because each template is associated with a key, the attacker
also gets a clue to the correct key. This intuition is also supported by the maximum-
likelihood decision rule.

The points of interest can be either selected heuristically [20], by ad hoc tech-
niques [27], or by dimensionality reduction tools, such as principal components
analysis [11].

3.4.3.2 Stochastic Method

An improvement of TA is suggested in [59, 60]. It consists in using a stochas-
tic method to approximate the real leakage function within a suitable vector sub-
space. The attack requires some engineering skills to introduce a relevant parametric
model. Then, the on-line attack basically consists in simultaneously:

• estimating the best parameters, using a linear regression, and
• deciding which model is the closest to the side channel measurements, using the

minimal Euclidean distance as a distinguisher.

An empirical comparison of template and stochastic attacks is provided in [65].

3.4.4 Information Theoretic Attacks

3.4.4.1 MIA—Mutual Information Analysis

At CHES 2008, a generic side channel distinguisher, MIA, was proposed in [29]. It
is an attractive alternative to the above-mentioned attacks since some assumptions
about the adversary can be disregarded. In particular, it does not require a linear
dependency between the leakage and the predicted data, as is the case for DPA and
CPA, and so it is not only able to exploit any kind of dependency but does not need
to profile the leakage as it is the case for template attacks [20].

The rationale of MIA is to compare distributions of observations with random
distributions rather observations with a model. This is why the MIA measures the
Kullback-Leibler divergence between observations knowing the correct sub-key and
observations not knowing anything about the internal values [70].
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3.4.4.2 EPA—Entropy Power Analysis

Mutual information analysis has been tested in noisy real world designs. It indeed
appears to be a powerful approach to break unprotected implementations. However,
the MIA fails when applied on a DES cryptoprocessor with masked substitution
boxes (sboxes) in ROM [66]. However, this masking implementation remains sensi-
tive to Higher Order Differential Power Analysis (HO-DPA). For instance, an attack
based on variance analysis clearly reveals the vulnerabilities of a first-order mask-
ing countermeasure. A novel approach to information theoretic HO attacks, called
Entropy-based Power Analysis (EPA), has therefore been proposed. This new attack
gives greater importance to highly informative partitions and distinguishes the key
hypotheses better [41].

3.4.4.3 VPA—Variance Power Analysis

Information theoretic attacks are extremely powerful, as they exploit any deviation
from a random probability density function (PDF). However, estimating PDFs is
a hard task [49, 70], since for the PDFs to be accurate, it ideally requires a lot
of measurements. To simplify the attack, articles [38, 40, 64] suggest limiting the
analysis of the PDFs to their second cumulant. The estimation is much faster and
the distinguisher thus gains strength. This is referred to as variance power analysis
(VPA). This metric to compute distances between PDFs is extremely useful against
implementations protected by first-order masking.

3.5 Conclusions

More than ten years after the first publication of Kocher’s attack, a lot of improve-
ments have been proposed for power and EM based Side Channel Attacks. Firstly,
it has been shown that both power consumption and EM radiations of a circuit can
leak sensitive information. Secondly, different methods have been proposed to ex-
tract a secret key used in a cryptographic operation from physical leakages emitted
by the device. In this chapter we described SPA/SEMA, DPA/DEMA and Template
Attacks. We also described different improvements of differential SCA that give
better results than the original attack, especially when the attacker has some knowl-
edge of the implementation. To thwart these attacks, a lot of methods have been
proposed. Due to the specificities of FPGAs, some of these countermeasures are not
applicable, while others are relatively easy to integrate. The next chapter describes
the main methods used to protect cryptographic algorithms implemented in FPGAs
against Side Channel Attacks.

References

1. Tektronix Current Probes Ct1, Ct2, Ct6. http://www.tek.com

http://www.tek.com


3 Side Channel Attacks 69

2. Data Encryption Standard: FIPS PUB 46-3 (1999)
3. Advanced Encryption Standard: FIPS PUB 197 (2001)
4. A method for resynchronizing a random clock on smartcards. In: Eurosmart (2001)
5. A simple power analysis attack against the key schedule of the camellia block cipher. Inf.

Process. Lett. 95(3), 409–412 (2005)
6. Improving the DPA attack using wavelet transform. In: NIST Physical Security Testing Work-

shop (2005)
7. High-resolution side-channel attack using phase-based waveform matching. In: CHES,

pp. 187–200 (2006)
8. Diode Laser Station. Riscure (2009)
9. DPA contest 2008/2009. http://www.dpacontest.org (2009)

10. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Proceedings of the
5th International Workshop on Security Protocols, pp. 125–136 (1998)

11. Archambeau, C., Peeters, É., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal
subspaces. In: CHES, Yokohama, Japan, October 10–13. LNCS, vol. 4249, pp. 1–14. Springer,
Berlin (2006)

12. Bar-el, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice
guide to fault attacks (2004)

13. Di-Battista, J., Courrège, J.-C., Rouzeyre, B., Torres, L., Perdu, P.: When failure analysis
meets side-channel attacks. In: CHES, pp. 188–202 (2010). doi:10.1007/978-3-642-15031
-9_13

14. Bevan, R., Knudsen, E.: Ways to enhance differential power analysis. In: ICISC, pp. 327–342
(2002)

15. Bhasin, S., Selmane, N., Guilley, S., Danger, J.-L.: Security evaluation of different AES im-
plementations against practical setup time violation attacks in FPGAs. In: HOST (Hardware
Oriented Security and Trust), July 27th, pp. 15–21. IEEE Comput. Soc., Los Alamitos (2009).
doi:10.1109/HST.2009.5225057. In conjunction with DAC-2009, Moscone Center, San Fran-
cisco, CA, USA

16. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: CRYPTO,
pp. 513–525 (1997)

17. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic proto-
cols for faults (extended abstract). In: EUROCRYPT, pp. 37–51 (1997)

18. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: CHES,
pp. 16–29 (2004)

19. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: SSYM’03: Proceedings of
the 12th Conference on USENIX Security Symposium, pp. 1–1. USENIX Association, Berke-
ley (2003)

20. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: CHES, pp. 13–28 (2002)
21. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware

countermeasures. In: CHES, pp. 252–263 (2000)
22. Coron, J.-S., Naccache, D., Kocher, P.: Statistics and secret leakage. ACM Trans. Embed.

Comput. Syst. 3(3), 492–508 (2004)
23. Dehbaoui, A., Lomne, V., Maurine, P., Torres, L.: Magnitude squared incoherence EM analy-

sis for integrated cryptographic module localisation. Electron. Lett. 45(15), 778–780 (2009).
doi:10.1049/el.2009.0342

24. Dinur, I., Shamir, A.: Generic analysis of small cryptographic leaks. In: FDTC, Santa
Barbara, CA, USA, August 21, pp. 51–65. IEEE Comput. Soc., Los Alamitos (2010).
doi:10.1109/FDTC.2010.11

25. Dinur, I., Shamir, A.: Side channel cube attacks on block ciphers. Cryptology ePrint Archive,
Report 2009/127. http://eprint.iacr.org/ (March 2009)

26. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: CHES,
pp. 251–261 (2001)

27. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: CHES, Yoko-
hama, Japan, October 10–13. LNCS, vol. 4249, pp. 15–29. Springer, Berlin (2006)

http://www.dpacontest.org
http://dx.doi.org/10.1007/978-3-642-15031-9_13
http://dx.doi.org/10.1007/978-3-642-15031-9_13
http://dx.doi.org/10.1109/HST.2009.5225057
http://dx.doi.org/10.1049/el.2009.0342
http://dx.doi.org/10.1109/FDTC.2010.11
http://eprint.iacr.org/


70 V. Lomné et al.

28. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: CHES,
pp. 426–442 (2008)

29. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F., Veyrat-Charvillon, N.: Mutual
information analysis: a comprehesive study. J. Cryptol. 24(2), pp. 269–291 (2010)

30. Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Smart Card Research and Advanced
Applications VI, IFIP 18th, World Computer Congress, TC8/WG8.8 & TC11/WG11.2 Sixth
International Conference on Smart Card Research and Advanced Applications (CARDIS),
Toulouse, France, 22–27 August, pp. 159–176. Kluwer, Dordrecht (2004)

31. Guilley, S., Hoogvorst, P., Pacalet, R.: Differential power analysis model and some results. In:
Proceedings of WCC/CARDIS, Toulouse, France, August, pp. 127–142. Kluwer, Dordrecht
(2004). doi:10.1007/1-4020-8147-2_9

32. Handschuh, H., Paillier, P., Stern, J.: Probing attacks on tamper-resistant devices. In: CHES,
pp. 303–315 (1999)

33. Kafi, M., Guilley, S., Marcello, S., Naccache, D.: Deconvolving protected signals. In:
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Chapter 4

Countermeasures Against Physical Attacks
in FPGAs

J.-L. Danger, S. Guilley, L. Barthe, and P. Benoit

Abstract This chapter presents a set of countermeasures against physical attacks
specifically dedicated to FPGA. Countermeasures as masking, hiding, are first dis-
cussed. Then we give a set of information and an overview on different logic style
designed to be robust against SCA. The main objective herein is to compare these
techniques and show that they can be suitable and implementable for FPGA com-
ponents. A comparison of different logic style will conclude this chapter.

4.1 Introduction

Off the shelf FPGAs are often used for high-end applications that require embed-
ded cryptography. State of the art commercial FPGA technologies do not have any
specific feature to withstand side channel attacks that target the user application.
For this reason, methods to protect them have to be designed at the logic and back-
end levels of the design stages. Many countermeasures have been developed for
ASICs and this can be used as a basis to develop specific protections for FPGAs.
However the regular FPGA tiling structure and the huge space of interconnect and
programmable switches may limit or reduce the robustness of countermeasures orig-
inally designed for ASICs. In this chapter we provide some answers to attacks and
countermeasures embeddable in off the shelf FPGAs, with a special focus on side-
channel attacks in symmetrical cryptography.

The protection of cryptographic IPs against side channel attacks at logical level
is currently not so advanced in FPGAS as it is in ASICs, even though at first sight,
FPGAs appear to have an intrinsic structure which makes them much more vulner-
able:

• ASIC protections at back-end level (such as the fat wires [59] or back-end dupli-
cation [20] methods) are hardly feasible in FPGAs because of constrained and a

priori unknown or limited routing resources.
• The interconnection makes up the largest part of the FPGA [26]. It includes

lines, pass transistors, transmission gates, bidirectional buffers, switch matrices
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and connection boxes. These components increase the capacitive load of the in-
terconnection and thus overall power consumption. This particularity facilitates
passive attacks.

• D Flip-Flop (DFF) are numerous and fast. There are two reasons for their ra-
pidity: they speed up processing and fight metastability. However they greatly
increase power consumption increase. Moreover attacks on register nodes can
lead to knowledge of the activity of combinatorial nodes that contain the secret
information.

• The use of switches like pass transistors makes the power consumption model
quite specific to FPGAs in which the current can vary according to a higher order
equation in Vdd [13, 14].

With regards to ASICs, a study by Kuon and Rose [26] shows that FPGAs are
on average 35 times bigger and consume 12 times more than ASICs. To withstand
attacks on programmable devices that are not specifically designed for security, it
could be worthwhile designing dedicated logic styles and implementation methods.
In this chapter we provide an overview of current techniques and focus on differ-
ent countermeasures (masking, hiding), and logic styles (WDDL, STTL, BCDL)
specifically designed to fight Side Channel Attacks (SCA). Our aim is to show the
potentials and limitations of countermeasures in FPGAs that could obstruct or pre-
vent attacks.

4.2 Countermeasures Against Side Channel Attacks in FPGAs

The types of countermeasures that are used to protect hardware devices against
SCAs can be considered at levels Protocol, Architecture and Netlist.

Protection of protocol and of architecture is independent of the technology (either
software or hardware). However the implementation in FPGAs can take advantage
of hardware properties like concurrent computation, reprogrammability and high
levels of algorithmic noise.

The Protocol level can merely consist in regular key changes as described in [25,
32] in order to prevent the adversary from accumulating enough traces to be able
to attack. One advantage of this level of protection is that it is provable. As an
illustration of this technique, Fig. 4.1 shows that at every 100th ciphering operations
the key is changed, thus limiting the scope of the attack if more than 100 traces are
needed.

However this type of protection can be time consuming and costly as it requires
a specific key exchange or synchronization mechanism to ensure Alice and Bob
always use the same key. Rather than changing the key, the FPGA offers the possi-
bility to reprogram the implementation. As mentioned by F.-X. Standaert [51], this
feature certainly merits further research as only a few studies have been conducted
so far. Among them Chaudhuri et al. [9] details a dedicated FPGA architecture us-
ing agility to thwart SCAs, whereas Mentens [33] explains how security can be
enhanced with dynamic reconfiguration.
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Fig. 4.1 Dynamic key
change by hashing every
100th encryptions

Strengthening security at architectural level is certainly the least constraining
method as it can be applied in all technologies that have logical model. For hard-
ware implementations, this corresponds to the Register Transfer Level (RTL). One
of the major countermeasures in this category is “masking” which consists in pro-
cessing masked data rather than the data itself. The goal of the protection by mask-
ing is to randomize the power consumption and thus decorrelate as far as possible
the computation activity from the secret information, which is generally the key for
cryptographic algorithms. For this reason, masking provides a constant power con-
sumption mean. As explained in detail in the next section, the mask has to be saved
or processed.

Another means of providing protection consists in obfuscating the computation
by generating noise which decreases the Signal to Noise Ratio “SNR” or more pre-
cisely the “leakage” to noise ratio. This makes the secret signal indiscernible. For
instance, extra glitches in combinational gates can be added or extra jitter noise in-
serted at the clock stage. In software this can lead to the insertion of dummy instruc-
tions. Theoretically, this type of countermeasure is not very robust as the adversary
can increase SNR by using more traces. For instance, the extra noise generated by
the increase in pipelining reported in [53] or by unrolling the implementation as
reported in [5] do not provide efficient protection against SCA.

At both architecture and netlist levels, one of the most efficient protection tech-
nique relies on the use of a differential logic. The efficiency of this type of coun-
termeasure, often called “hiding”, is based on attempting to make the power con-
sumption constant by using dual-rail logic split in True and False networks. The
rationale is to have one network consume power, while the other does not. One ad-
vantage of the hiding technique is to provide natural protection against fault attacks
as explained in Sect. 4.4.

In this chapter we focus on two major countermeasures, masking and hiding. In
particular, we discuss various differential logic styles that are well suited for FPGAs.
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4.3 Countermeasures Based on Masking

4.3.1 Masking Principle

The masking countermeasure is certainly less complex to implement in FPGAs than
elsewhere as it is applied at the architectural level only. Masking is performed on
internal variables that are transformed into shares of masked variables and the mask
itself. Software and hardware implementations both take advantage of this counter-
measure, which has been the subject of many studies [2, 8, 19, 34]. The masking
technique relies on concealing internal sensitive variables x by a mask m which
takes random values. The internal variable x does not exist as a net in the cryptosys-
tem but can be reconstructed by a pair of signals (m, xm = x θ m), where xm is the
masked variable and θ is an operation which can be Boolean or arithmetic. Boolean
masking uses the bit wise exclusive-or (xor) operation:

xm = x ⊕ m,

whereas arithmetic masking typically uses a modulus operation on a finite field:

xm = x + m (mod n) or

xm = x ∗ m (mod n),

where n = 2|x| = 2|m| is equal to the number of values of the sensitive value or of
the mask.

Indeed, for a correct masking scheme, the mask (and therefore the masked data)
must be uniformly distributed throughout the secure data flow.

Another way to use the mask is the “random pre-charging” method [7]. This con-
sists in temporal stages alternating between the mask m and the internal variable x.
As a result, power consumption, which is mainly caused by the Hamming distance
of two consecutive values, is not directly correlated with x. The drawback in hard-
ware implementation is a decrease in throughput which is approximately a factor of
2 compared to “spatial” masking.

The implementation of masking is simple when the function f has the following
linearity property:

f (xθm) = f (x)θf (m),

where θ is still a group operation.
The value of f (x) can be reconstructed from the application of f (xθm) and

f (m)−1, hence the computation of f (x) can be extracted at the very end of the
algorithm. This avoids direct leakage of information as xθm and m are independent
from x (as in Shannon’s notion of “one-time pad” [50]).

If f is non-linear, the masking structure becomes more complex as f (x) cannot
be reconstructed mathematically from f (xθm) and f (m).1 In symmetrical cipher-
ing algorithms, the non-linear part corresponds to the S-boxes S. A common tech-
nique applied in software is to use a specific memory acting as a LUT Sm such that

1At least, not in a straightforward manner, i.e. without inverting f if it is invertible.
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Fig. 4.2 S-box for masking

Sm(x ⊕ m) = S(x) ⊕ m. Consequently the size of this memory to implement the
new table increases from 2n to 22n, n being the number of bits of the mask.

Figure 4.2 illustrates the complexity change when this masking scheme is used.
It should be noted that it is not secure in hardware, because the register trans-

fers unmask the data. The leakage, in the Hamming distance [53] model (which is
implicit in FPGAs), is expressed as:

x ⊕ m
︸ ︷︷ ︸

initial value

⊕S(x) ⊕ m
︸ ︷︷ ︸

final value

= x ⊕ S(m).

For AES, masking can take advantage of the fact that the S-box is a combination of
the inverse function in GF(28) and an affine function as proposed in [2] and [61].
However this implementation is very sensitive to zero-value attack [18]. This attack
can be prevented by using the implementation proposed by Oswald in [39], which
takes advantage of the multiplicative masking in GF(4) with only a slight increase
in complexity.

4.3.2 Masking Implementations and Vulnerabilities

The robustness of masking countermeasures based on Boolean operators are prov-
able against first order attacks [6], a first order attack being an attack where only
the variable x is considered. However masking logic is sensitive to Higher-Order
Attacks (HO-DPA) [35], where the attacker uses multiple observations of the same
sensitive variable or multiple correlated variables. HO-DPA efficiency is directly
related to the knowledge of the leakage, the way to observe the correlated vari-
ables [55] and the complexity of the masking implementation [2, 39, 40]. A pitfall
introduced by the masked logics is the leakage of sensitive information through
glitches. Unless special care is taken, the glitches can indeed depend on unmasked
sensitive information, since some gates are likely to combine the masked data with
the mask, thereby generating temporarily unprotected transitions [30]. Some special
gates [12, 17] or synthesis techniques [37, 38] have been proposed to counter this
effect.

In this chapter we will explain the HO-DPA on the classical hardware masking
implementation referred to as “zero-offset” [62] and is illustrated in Fig. 4.3.

In the “zero-offset” circuit the second-order DPA can be performed by using ob-
servations of both the masked data xm = x ⊕ m and the mask m that are computed
concurrently. In order to understand the second-order DPA principle, let us con-
sider the PMF (Probability Mass Function) of the activity corresponding to those of



78 J.-L. Danger et al.

Fig. 4.3 “Zero-offset”
masked DES, implemented
with ROMs

the combined X and M registers in Fig. 4.3. The activity of these two registers is
expressed by:

A = HW [�(x, k) ⊕ �(m)] + HW [�(m)]. (4.1)

Where � expresses the distance of a register output, i.e.

�(x, k)
.
= x ⊕ S(x ⊕ k),

�(m)
.
= m ⊕ m′.

If the registers have four bits (as for DES implementation), there are five possible
PMFs depending on the HW(�(x, k)) values, when the key is correct, as shown at
the top of Fig. 4.4.

When the key is incorrect, the leakage corresponds to that of function A de-
scribed in Equation 4.1 where:

• x is uniformly distributed in [0x0,0xf], because the guessed key is wrong,
• m is uniformly distributed in [0x0,0xf], because the mask is random and un-

known to the attacker.

An HO-DPA attack of special interest is the mutual information analysis (MIA)
introduced by Gierlichs [15].

It uses the Mutual Information MI(O;�(x, k) ⊕ �(m) + �(m)) as a distin-
guisher to build the attack, where optimized attacks close to MIA for example, vari-
ance based power attacks (VPA) [29] or entropy based power attacks (EPA) [28] can
be devised.

4.3.3 Example of Protection for DES

Let us consider the “zero-offset” implementation of DES studied at UCL [54]. Its
iterative architecture is illustrated in Fig. 4.5. This algorithmic masking associates a
mask (ML,MR) with the plaintext (L,R).

At each round i ∈ [0,16[, one intermediate mask (MLi,MRi) is calculated in
parallel with the intermediate cipher word (Li,Ri). If we leave aside the expansion
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Fig. 4.4 PMFs corresponding to the five possible values of HW (�(x, k))

E and the permutation P , the DES [1] round function f is implemented in a masked
way by using a set of functions S and a set of functions S′:

S(xm ⊕ k) = S(x ⊕ m ⊕ k) = S(x ⊕ k) ⊕ m′,

m′ = S′(xm ⊕ k,m) = S′(x ⊕ m ⊕ k,m).
(4.2)

The variable m′ is a new mask that can be used again in the next round.
The set of functions S contains the traditional S-boxes applied on masked inter-

mediate words. The size of each S is 64 words of 4 bits when implemented with a
ROM. The function S′ is a new table which has a much greater ROM size of 4 K
words of 4 bits, as there are two input words of 6 bits.

To mitigate the attacks on “zero-offset” implementations one possible solution
is to balance the distribution. Authors in [27] propose to “squeeze” the leakage by
inserting specific bijections before and after storing the mask. These bijections can
be part of the “masked” ROM, see Fig. 4.6. The intermediate data (e.g. Sboxes out-
put) have been protected by the same strategy, so as to ensure seamless “squeezing”
throughout the combinational logic.

For AES, the implementation of the masked SubBytes structure S′ would lead
to ROM memory blocks with size 216 words of 8 bits, which represents a huge
increase in complexity. It is thus preferable to use substitution boxes with operators
computing in smaller fields than GF(28) as in [39].
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Fig. 4.5 Masked DES datapath

Another possible solution is reduce the implementation cost by regenerating m′

from Eq. (4.2):

m′
= S(x ⊕ k ⊕ m) ⊕ S(x ⊕ k). (4.3)

This implementation called “universal S-Box masking” (USM) is illustrated in
Fig. 4.7. It is such that some non-masked values (namely the S-box input and out-
put) appear clearly in the implementation. This undoubtedly represents a potential
threat. The size is merely increased by a factor of 2 due to the fact the S-box are du-
plicated. This is much less than the increase proposed in [54] where look up tables
are 4 K × 4 memories.

In order to protect the USM implementation, the above mentioned squeezing
leakage principle can be applied. The protected USM is shown in Fig. 4.8. It is
composed of layers of the encoded table including input and output bijections. The
bijections have to be chosen to ensure the maximum possible balance between the
distribution of activity for the right key. For instance a robustness evaluation facil-
itates this choice. The bijections for the expansion and the permutation of DES are
linear (“XOR with constant” operation) as these functions split the 32-bit words.
However it is important to use non-linear bijections (at least 3 bits) for the S-Box ta-
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Fig. 4.6 Leakage squeezing
of DES with a masked ROM
implementation

Fig. 4.7 Universal masked f

function (of DES), with
transiently unmasked values
highlighted in green (color
online)

ble as the Hamming distance reveals the unmasked value if linear bijection are used.
The tables are implemented either in LUT networks or FPGA embedded RAMs.

These implementations were tested in a STRATIX II FPGA which is based on
an adaptive LUT Module (ALM) cell. They were compared with unprotected DES,
masked ROM and masked USM implementations without any leakage squeezing.

Table 4.1 summarizes the memories needed for each implementation and the
estimated throughput.

These results show that in hardware implementations, the leakage squeezing
method has little impact on complexity and speed. Moreover the USM implemen-
tation is particularly efficient as it avoids the use of large ROMs while maintaining
high throughput.
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Fig. 4.8 Leakage squeezing
of DES with a masked USM
implementation

Robustness can be evaluated by using the theoretical framework introduced by
Standaert et al. in [52]. The authors suggest analyzing side channel attacks with
a combination of information theoretic and security metrics. These metrics aim at
evaluating the amount of information provided by a leaking implementation and the
possibility to turn this information into a successful key recovery.

Figure 4.9(a) shows the mutual information values obtained for each kind of
implementation on simulated traces with respect to an increasing noise standard
deviation over [0.1,10] (i.e. an increasing SNR over [−20,20]).

Table 4.1 Complexity and speed results. “l. s.” denotes the “leakage squeezing” countermeasure

Implementation ALMs Block memory
[bit]

M4Ks Throughput
[Mbit/s]

Unprotected DES (reference) 276 0 0 929.4

DES masked USM 447 0 0 689.1

DES masked ROM 366 131072 32 398.4

DES masked ROM with l. s. 408 131072 32 320.8

DES masked USM with l. s. 488 0 0 582.8
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Fig. 4.9 Mutual information metric computed on several DES implementations

These results demonstrate the reduction in information leakage implied by the
use of the leakage squeezing technique. As expected, the two implementations based
on leakage squeezing leak less information than the zero offset implementation and
the unprotected DES for all SNRs. Figure 4.9(b) is a zoom on the evolution of
the mutual information in the case of the implementations based on the leakage
squeezing technique in order to compare them.

Next real attacks were carried out on real power consumption traces in both the
“zero offset” and “USM with squeezed leakage” implementations. For each sce-
nario, a set of 25,000 power consumption traces was acquired using random masks
and plaintexts. The first order success rate as described in [52] was calculated for
different attack distinguishers; VPA [29], EPA [28] and MMIA [16]. The result is
given in Fig. 4.10.

We can see that the attacks based on various distinguishers perform well in the
“zero offset” implementation but not in the leakage squeezing implementation.

Fig. 4.10 First order success
rate of 3 distinguishers,
FPGA implementation
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4.3.4 Example of Masked Processor for a Software

Implementation

As explained in Chap. 2, experimental results suggest that pipelined processors in-
crease the risk of SCAs, and have to be considered with care. A typical masking
implementation for embedded processors in FPGAs requires some considerations.

One solution consists in implementing a dual pipelined datapath. Basically, the
idea is to introduce a special datapath for the mask itself, which can be coupled to the
classic RISC pipeline. Hence, instead of directly handling raw data, the processor
operates on a dual datapath with masked data. The main role of the new datapath is
to keep the corresponding mask for each masked data along the pipeline.

By far, the main difficulty is encountered during the EX stage, where all mathe-
matical operations are implemented. As a first hypothesis, the ALU operations are
not customized for any mask in order to compute the correct value. Also even if
SCAs are still effective on combinational logic, one may consider that the leakage
at the register stages is predominant. Indeed, to tackle clock skew issues, buffers
are used to drive long lines, involving thus increased power consumption at the reg-
ister level. This is especially the case for FPGAs. Hence, the ALU operations are
performed with unmasked data, whereas the EX pipeline registers are masked.

Moreover, RISC-based architectures are structured around load-store instruc-
tions. All potential critical data coming from the data memory use load instructions
and could take advantage of a masking scheme when going to the register banks.
This approach not only offers the advantage to handle any instruction using a mask-
ing scheme but also provides a full compatibility with the processor’s instruction
set.

A MicroBlaze instruction set compliant processor, the SecretBlaze [3], has been
developed for Xilinx FPGA. It implements the ideas of the RISC-based masked dat-
apath. Among different types of masking, the boolean masking was chosen because
of its low overhead cost and its good integration into the pipeline. Hence, the masked
data result from XOR operations between the raw data and the mask values.

The SecretBlaze provides a dual datapath, two register files, a MAsked Memory
Unit (MAMU), and a pseudo random generator (PRNG). The PRNG generates a 32-
bit mask value at each clock cycle. The goal of the MAMU is to manage memory
accesses with a static mask. Figure 4.11 illustrates the core block diagram of the
SecretBlaze. The main differences from the original MicroBlaze are highlighted in
gray.

The masking strategy is performed whenever a new value is loaded from the data
memory. The loaded data is immediately XORed with the mask generated from the
PRNG. The effect of the static mask is afterward removed. Both, the masked data
and the mask itself, are stored respectively into the register file and the mask register
file during the next clock cycle. As a consequence, no unprotected data is stored into
register files of the processor. By analogy, store instructions follow the same scheme
in reverse.
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Fig. 4.11 SecretBlaze Block Diagram

For all instructions, the data have to be unmasked for the inputs of the ALU.
Although another PRNG would have been the most secured solution, the mask of
the first operand is XORed with the value of the PRNG in order to reduce the gate
cost of the datapath (the XOR operation between two random numbers is a random
number). The same remark can be made for the MA stage. Finally, instructions
involving address computations such as loads, stores, as well as branches, have to
be unmasked for the address assignments. This poses no significant threat because
the addresses do not contain any sensitive information.

The performance and the resource impact of the proposed countermeasure were
evaluated with an overhead of 80% of extra flip-flops, owing to the introduction of
the PRNG and mask pipeline registers. Then, we observe a slight increase in the
usage of slices and LUTs (+30%), related to extra-logic for the datapath of the
mask. In terms of performance, the operating frequency is only reduced by 11.2%.

In order to evaluate the robustness of the masking technique, attacks were con-
ducted on the processor running a software DES program, with and without the
countermeasure at the hardware level. Results obtained show that the masked Se-
cretBlaze offers a better resistance against DEMA of approximately a factor 2 during
the execution of the critical instructions.

Figure 4.12 illustrates the DEMA obtained with 50,000 electromagnetic traces.
Unlike the results observed in Chap. 2, this picture shows the efficiency of the pro-
tection, since the correlation at the different stages of the pipeline is no more rel-
evant. However, the EX stage of the XOR instruction is still a weak point of the
architecture. The conclusion to be drawn from these considerations is that the ALU,
more generally combinational logic, is still a critical security issue in FPGAs, even
registers are more numerous and more energy-consuming. Further investigations
should be conducted to identify alternatives for securing the ALU of the processor,
like hiding techniques detailed in the next section.
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Fig. 4.12 DEMA traces obtained for the first sub-key of the DES software implementation with
the SecretBlaze (blue = wrong key hypothesis, black = good key hypothesis) (color online)

4.4 Countermeasures Based on Hiding

4.4.1 Hiding Technique

The Hiding technique consists in achieving constant power consumption whereas
Masking aims at averaging it. One way to obtain constant activity is to use differen-
tial logic characterized by the fact each variable is made up of two complementary
signals. This logic is such that when one signal switches, the other does not and
vice versa. This allows the design to be balanced in terms of activity since in CMOS
technology the main power consumer is the switching rate. To make sure the number
of transitions (0 → 1 or 1 → 0) remains constant, the computation has two distinct
stages:

1. A Precharge stage to reset all the signals in a known state, and
2. An Evaluation stage where the computation is performed with a fixed number

of transitions.
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The differential logic is also called “Dual Rail with Precharge Logic (DPL)” be-
cause the two signals from the same variable need twice as many routing resources.
Therefore the complexity is at least twice that of an unprotected implementation.

The DPL signalization of the variable a is conveyed by two wires (at , af ) for
each Boolean variable, at is the TRUE signal and af is the FALSE. The state of the
variable is either:

• NULL= (0,0) or (1,1) while in Precharge.
• VALID ∈ {(0,1), (1,0)} while in Evaluation.

Therefore, every evaluation consists in the transition of exactly one wire
((0,0) → (0,1) or (0,0) → (1,0)). If the design is properly balanced, which tran-
sition actually occurred is indiscernible by an attacker. The computation with DPL
logics is a structure of a TRUE and FALSE networks with possible crossing wires
interpreted as inversions. Although perfectly sound at logical level, in practice, DPL
ends up being implemented in physical devices where the timing parameters impact
the balance between the TRUE and FALSE networks. This unbalanced behaviors
can damage the level of protection provided by DPL logics. Between the precharge
to evaluation, and vice-versa, there may be:

1. Spurious transitions, referred to as glitches, that negate the hypothesis of activity
invariability.

2. Early Evaluation (EE) effects. This takes place if the gate switching depends on
the difference between the arrival time of the inputs.

3. Technological Bias (TB). This flaw results from the imbalance between the dual
signals. It can be caused by manufacturing dispersion, by the place-and-route
stage or merely by the types of gate driving the true and false networks. This
could be exploited by an attacker who measures the signal from one wire of a
pair.

In this section, we focus on the different styles that map very well in FPGAs:
WDDL [58], STTL [43], BCDL [11, 36].

4.4.2 WDDL and Its Variants

The Wave Dynamic Differential Logic (WDDL) proposed by Tiri [58] is one of the
simplest DPL logic styles.

The NULL state (0,0) is propagated by a wave of (0,0) pairs through the netlist
thanks to the use of positive gates. A Boolean function f is said to be positive if for
two Boolean variables x and y:

x · y = x ⇒ f (y) ≥ f (x).

This type of function corresponds to an assembly of AND and OR gates. Fig-
ure 4.13 illustrates a two-input “AND2” gate, the logic network TRUE T receives
the two TRUE inputs at and bt . The dual “OR” function is implemented by the
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Fig. 4.13 “AND” WDDL
gate

F network which receives the FALSE inputs af et bf . Thus T (x)
.= H(x) and

F(x)
.= H(x), F(x) can be obtained by using the De Morgan’s law.

Non-positive logic like inverters or NAND gates are implemented by crossing the
two networks. The number of Flip-Flops is necessarily multiplied by four. These are
duplicated for the two TRUE and FALSE networks and also for the precharge and
evaluation stage as shown in Fig. 4.14.

The timings in Fig. 4.15 show that the number of transitions is the same (two)
during the Precharge ⇒ Evaluation stage and vice-versa. As in CMOS technologies,
power consumption is directly correlated with this number, the logic is reputed to
be balanced.

The positivity of WDDL ensures the absence of glitches in the complete netlist.
However, as shown in [56, 57], WDDL is prone to early evaluation (EE). The early
evaluation effect is due to the difference in timing between two variables of one gate.
This timing difference is transferred to the WDDL gate output during the transitions
Precharge ⇔ Evaluation. Figure 4.16(b) illustrates the principle of early evaluation
for a 2-input AND gate and its dual 2-input OR gate, as represented in Fig. 4.13.
Output switching �t1 is different from �t2 and therefore can reveal information
about the state of the inputs.

In addition, WDDL still has technological bias (TB) i.e. imbalance between the
dual TRUE and FALSE networks at both structure and routing levels. Constraining

Fig. 4.14 A digital circuit
and its WDDL equivalent

Fig. 4.15 Simulation
showing the WDDL timings
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Fig. 4.16 Early evaluation

routing is not so easy in FPGAs because the interconnect structure is confiden-
tial. The two causes of imbalance plus the EE effect have enabled some attacks on
WDDL circuits, as described by the authors of WDDL themselves in an ASIC [60]
or independently in an FPGA [44].

The impact of the place and route (P/R) steps on the timings of dual rail designs
is of major importance to obtain dual rail balance and thus reduce the correlation
between the processed data and power consumption. Without any P/R constraints
it was shown in [44] that WDDL is attackable. Novel P/R strategies that take ad-
vantage of FPGAs with cells composed of two-output LUTs have appeared. For
instance in [45] the balancing strategy is to place and route the gate in the same
STRATIX II ALM.

Some variants of WDDL have been devised to facilitate the balance of the WDDL
networks. For instance Double WDDL (DWDDL) was introduced in [63] to coun-
terbalance one unbalanced network with a dummy dual one. The main drawback of
DWDDL is its complexity which is double that of WDDL.

Isolated WDDL (IWDDL) [31] is a different strategy to separate a WDDL netlist
into two unconnected halves. Here, inverters are kept but a potential glitch is stopped
by systematically inserting one register after it. This strategy is expensive in terms
of gate complexity and requires a redesign of the controller. Additionally, the de-
sign becomes much more pipelined, which requires much higher clock frequencies
to maintain an acceptable throughput. However, the advantage of this approach is
stopping the propagation of the EE wave.

As DWDDL and IWDDL are complex but theoretically robust, one point is ques-
tionable: won’t completely separating the netlist open the door to well located EMA
attacks that can selectively record the activity of one specific part of the circuit, thus
defeating the activity invariability property.

4.4.3 Synchronized Logics: STTL, BCDL

Another strategy to get rid of the early evaluation effect is to synchronize the vari-
ables before starting the gate evaluation and precharge stages. However, to make
sure no glitches occur, the following conditions have to be met:
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Fig. 4.17 Two-input AND
gate implementations:
(a) basic dual rail AND
(b) SecLib dual rail AND,
(c) STTL AND (d) compact
STTL AND

1. Evaluation starts after all the input signals are valid.
2. Precharge starts by following one of these two rules:

• Rule sync-1: Precharge starts after all the inputs becomes NULL.2

• Rule sync-2: Precharge starts before the first input becomes NULL.

If the precharge is always late (rule sync-1), the gate outputs need to be mem-
orized. While for rule sync-2 no memorization is necessary but there is a specific
precharge signal.

STTL In [43], the authors suggest using an additional third wire to synchronize
the input arrivals by using C-elements to create the Secure Triple Track Logic
(STTL), like in Asynchronous logic. In this case, rule sync-1 applies. This third
wire should indicate whether the output data is stable (and thus valid) or not. Fig-
ure 4.17 displays different implementations of a dual rail two-input AND gate.

Figure 4.17(a) represents the basic dual rail AND in asynchronous logic. Fig-
ure 4.17(b) is a more secure dual rail AND gate, also called SecLib [22] where
the two dual outputs are balanced. Figures 4.17(c) and 4.17(d) represent the STTL
AND gate, with a more compact triple rail AND in (d). Operator C stand for a C-
element [49], (Z = (a +b) ·c+Z · (a +b+c)), and C’ for a generalized C-element.
Implementations (b), (c) and (d) are power balanced. However, the third rail in (c)
and (d) must fulfill a timing constraint to effectively obtain a quasi data independent
timing behavior at block level.

The validity output pin ZV of triple rail gates is controlled by buffers, three in
the case of Fig. 4.17(d). These buffers ensure that the delay �v in propagation from
the validity inputs (av, bv) to the output ZV remains greater than the delays �d

from (a1, a0, b1, b0) inputs to the data outputs (Z0,Z1). Note that the number of

2NULL is the value in precharge phase.
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Fig. 4.18 The basic
operation of secure triple
track logic

buffers must be defined by the designers to guarantee that this timing characteris-
tic is satisfied even in the presence of output load mismatches introduced by the
place and route step as described in [43]. With such design guidelines of triple rail
gates, we can confidently guarantee that the time at which a triple rail gate fires is
independent of the specific data processed by its containing block.

Figure 4.18 illustrates this key characteristic of secure triple rail logic. After the
firings of av, bv, cv and dv (assumed to occur at the same time without loss of gen-
erality), e0, e1, f 0 and f 1 fire first. Then, the firing of ev and f v occur, which in
turn triggers g0 or g1, followed by gv, since validity rails have a longer propagation
delay. Thus the firing of triple rail gates is triggered by the validity rails character-
ized by a switching speed lower than that of data rails. In other words, the validity
rail array (arrows in Fig. 4.18) operates as a backbone of the logical block, sequenc-
ing the events independently of data processing (dashed arrows in Fig. 4.18).

During the firing sequence, the time at which e0 (f 0, g0), e1 (f 1, g1) settle
may diff, due to possible output load mismatches. This is represented by the gray
rectangles on Fig. 4.18. However, these arrival time mismatches do not affect the
firing of the following gates, which are triggered by the validity rails. This charac-
teristic avoids the effect of load mismatches piling up on timing along data paths.
This guarantees quasi data independent power consumption and computation time
at the block level.

BCDL Balanced Cell-based Differential Logic (BCDL) [11, 36] is a synchronized
logic which takes advantage of a global signal that allows the designer to both reduce
the complexity of the design and speed up the calculation. This global precharge sig-
nal called PRE allows rule sync-2 to be fulfilled, and as a result, no memorization
function, such as C-elements, is needed.
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Fig. 4.19 The basic BCDL
cell

Fig. 4.20 Timing
optimization in the DPL
protocol when the precharge
time is reduced

The basic BCDL gate is presented in Fig. 4.19. Synchronization is performed by
a “unanimity to 1” operator on the left side of the figure and can operate on a bundle
of data.

The global PRE signal is constrained to be faster than any inputs. Consequently
when the U/PRE of Fig. 4.19 falls to 0 ⇒ the precharge is forced, and when U/PRE

rises to 1 ⇒ the evaluation begins after “unanimity to 1”.
As the calculation in Tables T and F can be completely separated, the complexity

of the tables is reduced as they receive 2n+2 inputs rather than 22n in others DPL,
n being the number of gate inputs. Therefore the implementation with embedded
RAM in FPGAs is appropriate. Another complexity gain is the ease of implemen-
tation of 2-input gates as they are not limited by the positiveness constraint. For
instance, a XOR BCDL gate including synchronization can be done in one ALM of
STRATIX II or one LUT6 (dual LUT5) in VIRTEX 5 families.

As the BCDL design allows squeezing of the precharge step, it can compute
about 75% faster than WDDL because the precharge is global. This possibility is
depicted in Fig. 4.20.

Table 4.2 gives the complexity and speed of an AES implementation in a
STRATIX FPGA for WDDL and BCDL.
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Table 4.2 Complexity and speed of an AES implementation in WDDL and BCDL

ALM Reg RAM Max. freq. Max. throughput

No protection 1078 256 40 Kb 71.88 MHz 287.52 Mbps

WDDL 4885 1024 – 37.07 MHz 74.14 Mbps

BCDL 1841 1024 160 Kb 50.64 MHz 151.92 Mbps

Fig. 4.21 MDPL AND gate

4.4.4 DPL with Masking: MDPL

Masked Dual-rail with Precharge Logic (MDPL [41]) is an attempt to fix the oth-
erwise imbalance of WDDL. The assumption is that, in some conditions, it may be
difficult to constrain a router to balance the differential interconnect. Indeed, the two
solutions available in the literature, namely the fat wire [59] and the backend dupli-
cation [20] methods, apply primarily to ASICs. Transposition to FPGA is possible,
although with less fine grained control over the result [21]. For this reason, MDPL
swaps the true and the false routes with a random mask, so as to protect from fatal
routing unbalance. By the same token, it makes up for the structural unbalance of
the dual pair of gates. The only gates involved in the logic are majority functions,
both for the true and the false networks. Figure 4.21 represents the MDPL AND
gate. When the random mask m is 0 the TRUE network performs the AND, whereas
the FALSE network performs the OR, which is the dual gate of AND, it is the other
way round when m is 1.

Although MDPL fails to provide a solution to the early evaluation and precharge
of WDDL as presented in [42], it could be efficient against the TB effect. It has
been shown that the mask itself could be attacked [46]. Consequently MDPL was
enhanced and became the improved MDPL (iMDPL) by adding a synchronization
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stage [24]. The Dual Rail switching Logic (DRSL) [10] is very similar to iMDPL
and more dedicated to ASIC. However it has been shown in [11] that without P/R
care the DRSL can generate glitches when returning to the precharge phase. Syn-
chronized logic like BCDL can take advantage of the random masking to mitigate
the TB if few constraints apply during the P/R phase. For instance, BCDL with a
mask (MBCDL) would need an extra mask input to the evaluation tables for random
swapping of the TRUE and FALSE networks.

4.4.5 Intrinsic Fault Resilience of Dual-Rail With Precharge

Logics

Single bit faults are inefficient against DPL because they turn a VALID data into
a NULL token, that propagates and results in a non-exploitable error since it hides
the faulted value. This is the typical scenario described in the seminal paper [48],
introducing the intrinsic immunity of DPL against some classes of DFA.

Highly multiple faults ((1,0) ↔ (0,1)) randomly generate a large quantity of
NULL values along with some more unlikely but devastating bit-flips. However,
as NULL values are systematically propagated, they proliferate very quickly after
some combinatorial logic layers traversal. And as they have the nice property of
being able to contaminate VALID values, the risky coherent bit-flips (simultaneous

0
∗→ 1 and 1

∗→ 0 in one dual-rail couple) is very likely to be jammed through the
propagation towards the algorithm output. This absorption property is all the more
efficient as the number of NULL generated by the multiple faults is high. There-
fore, the only way to inject a ‘poisonous’ fault is to stress the circuit sufficiently to
generate multiple faults, without nonetheless creating too many faults so as to leave
a chance for them not to be absorbed during their percolation towards the outputs
[4, 23].

4.4.6 Comparison of DPL Families

Table 4.3 compares robustness, speed and complexity of a few DPLs. In fact, it is
difficult to evaluate robustness fairly, as the DPL countermeasure depends on the tar-
get technology and the quality of the P/R stages. However most non-synchronized
DPL, such as WDDL and MDPL have been attacked without any particular P/R ef-
fort [42, 44, 57]. The analysis of DPL robustness is still an ongoing research project.
Some ideas come from the information theory with mutual information analysis [15]
and the stochastic approach [47]. In Table 4.3, robustness against SCA is indicated
by the logic capacity to be insensitive to early evaluation and technological bias.
The fault column indicates if the logic able to cope with symmetric fault (faults be-
ing ‘1’ or ‘0’), which is preferable, rather than asymmetric. Fault detection can be
combinatorial or sequential. If it is sequential the cost is higher.
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Table 4.3 Comparison of robustness, complexity and speed of a few DPLs

Logic Compl. Speed Robust. SCA Robust. FA Design Constr.

EE T. B. Fault Det.

WDDL * < 1/2 asym comb Positive gates

MDPL * < 1/2 ✓ asym comb MAJ gate + RNG

STTL * < 1/4 ✓ sym seq 50% more wiring

DRSL * < 1/2 partly ✓ sym comb + RNG

IWDDL < 1/2 · n ✓ asym comb superpipeline

BCDL ** > 1/2 ✓ sym comb

MBCDL * > 1/2 ✓ ✓ sym comb + RNG

Table 4.4 Hardware countermeasures overhead

Countermeasure None: reference Masking Hiding: WDDL Hiding: BCDL

Period 1 ≈ 1× ≈ 2× ∈ [1,2]×
Area: gates 1 ≈ 2× ≈ 2× ≈ 2×
Area: memory 2n × m 22n × m 22n × 2m 2n+1 × 2m

Two stars in the complexity column means that the DPL needs less gates/
memories to be implemented. The ratio with an unprotected implementation is given
in the speed column. If the ratio is greater than 1/2, this means the DPL has an ac-
celerated precharge stage, like for BCDL. Finally the design constraints are listed,
for instance the needs of an RNG.

4.5 Comparison of FPGA, ASIC and Software Countermeasures

As shown in 4.3 and 4.4, FPGAs and ASICs allow for the implementation of mask-
ing and hiding techniques that do not affect the processing speed too much. Those
targets are indeed much easier to protect than software targets, since the designer has
full control over implementation. Instead, on a processor, only some instructions are
available, which makes the implementation of countermeasures very awkward.

The overhead of hardware implementations is given in Table 4.4. Regarding hard-
ware countermeasures, it is remarkable that the throughput is almost unchanged. In-
deed, the mask can be processed in parallel, the only interaction between the several
shares occurring during recombination, merely consists in xor operations. In dual-
rail logics, the precharge inevitably causes a dead cycle for each evaluation cycle.
And since, in addition, some gates cannot be used for all logics (for instance, posi-
tive gates are required in WDDL), the complexity and speed results are worse than
without protection. Thus, the throughput is about halved in WDDL. BCDL has the
special feature that the precharge cycle can be shrunk, which results in an overhead
in terms of throughput that is less than a factor of two. Regarding the number of
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resources required to implement the countermeasures, they are about doubled, since
two paths are created both for masking and hiding strategies. The biggest difference
comes from the RAMs. In masking, unless special structures can be used (such as
the factorizing of the S-Box in AES), the number of address bits for the masking is
doubled. The same goes for the hiding style, where the number of output bits is also
doubled. BCDL is an exception, as the precharge is global. Thus only one additional
input bit is required (for the precharge global line) to zero the dual-rail output.

The difference between FPGAs and ASICs is due to the fact that RAMs are avail-
able in larger quantities in FPGAs. Thus makes all the countermeasures presented
in this section especially attractive. In addition, the FPGAs can take advantage of
their reconfigurability capability to mutate their implementation, thereby preventing
some attacks that rely on the hypothesis of constant architecture.

Comparing the overhead of Hardware versus Software implementations is more
difficult. First of all, no software “hiding” countermeasure has been proposed so far.
Regarding masking, it is usually accepted that an overhead of 100 for the throughput
is a reasonable approximation. The advantage of hardware is thus clear.

4.6 Conclusions

Cryptographic algorithms can be mapped without difficulty in FPGAs. Although
these targets are a priori leaking more than ASICs, thanks to their genericity, they
also welcome traditional countermeasures, typically those based on masking and
hiding. Programming these countermeasures was shown to be feasible, and a num-
ber of case-studies have been cited. We conclude that the remarkable property of
countermeasures in hardware is that they have almost no affect on the throughput of
the algorithm. This contrasts greatly with software countermeasures, which are con-
siderably slowed down when a rigorous masking is enforced. Also, the reconfigura-
bility of FPGAs enables algorithmic countermeasures, such as period implementa-
tion update, which impedes attacks that rely on a stable side-channel measurement.
This potentiality is rarely addressed in the literature; it is clear that such high-level
countermeasures can be further enhanced for greater system-level security.
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Chapter 5

True Random Number Generators in FPGAs

V. Fischer and F. Bernard

Abstract The issue of random number generation is crucial for the implementa-
tion of cryptographic systems in FPGAs. Random numbers are often used in key
generation processes, authentication protocols, zeroknowledge protocols, padding,
in many digital signature schemes, and even in some encryption algorithms. For
these applications, security depends to a great extent on the quality of the source
of randomness. The quality of the generated numbers is checked by statistical tests.
In addition to the good statistical properties of the obtained numbers, the output of
the generator used in cryptography must be unpredictable. For this reason, pseudo-
random generators that are easily implementable in digital logic devices, including
FPGAs, are not suitable for many cryptographic applications. In this chapter, we
present the state-of-the-art of true random number generators in (reconfigurable)
logic devices. We evaluate sources of randomness and the general principles used to
extract and process randomness in FPGAs.

5.1 Introduction

Random number generators (RNGs) are one of basic cryptographic primitives used
to design cryptographic protocols. Their applications include—but are not limited
to—the generation of cryptographic keys, initialization vectors, challenges, nonces
and padding values, and the implementation of countermeasures against side chan-
nel attacks. RNGs aimed at cryptographic applications must fulfill basic security
requirements. First of all, their output values must have good statistical properties
and be unpredictable. In modern designs, some additional features are required: the
generator must be inherently secure, robust and resistant to attacks and/or tested on
line using generator specific tests.

The security of cryptographic systems is mainly linked to the protection of confi-
dential keys. In high end information security systems, when used in an uncontrolled
environment, cryptographic keys should never be generated outside the system and
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they should never leave the system in clear. For the same reason, if the security sys-
tem is implemented in a single chip (cryptographic system-on-chip), the keys should
be generated inside the same chip. Implementation of random number generators in
logic devices (including configurable logic devices) is therefore a major challenge.

There are three basic RNG classes used in cryptography:

Deterministic (pseudo-) random number generators (PRNG) are mostly fast and
have good statistical properties. They are usually used as key generators in stream
ciphers. Due to the existence of some underlying algorithms, PRNGs are easy to
implement in logic devices. However, if the algorithm is known, the generator out-
put is predictable. Even when the algorithm is not known but some of the generator
output sequences have been recorded, its behavior during the recorded sequence
can be used in future attacks. For this reason, pseudo-random number generators
must be computationally secure (i.e., the underlying algorithm cannot be guessed
computationally) and their seed value should never be reused. Binary sequences
(counters) encrypted using a secure encryption algorithm are considered to be
computationally secure. The reuse of the seed value can be avoided by saving the
last counter value and using the following counter value next time.

Physical (true-) random number generators (TRNG) use physical processes to gen-
erate random numbers. If the underlying physical process cannot be controlled, the
generator output is unpredictable and/or uncontrollable. The final speed of TRNGs
is limited by the spectrum of the random signal and by the principle used to ex-
tract entropy from it (e.g. sampling frequency linked with the noise spectrum).
The statistical characteristics of TRNGs are closely related to the quality of the
entropy source, but also to the randomness extraction method. Because physical
processes are subject to fluctuations, the statistical characteristics of TRNGs are
usually worse than those of PRNGs.

Hybrid random number generators (HRNG) represent a combination of a (fast and
good quality) deterministic RNG seeded repeatedly by a (slow but unpredictable)
physical RNG. The designer has to find a satisfactory compromise between the
speed of the generator and its predictability (by adjusting the time interval between
seeds and the size of a seed).

In spite of the slower speed of TRNGs, they are more often used in cryptographic
applications than PRNGs. It is interesting to note that TRNGs are the only crypto-
graphic primitives that have not been subject to standardization up to now. However,
before using the generator in practice, the principle and its implementation inside
a cryptographic module has to be validated by an accredited institution as part of
a security evaluation process. Generators that do not have a security certificate are
considered to be insecure in terms of their use in cryptographic applications. For
this reason, the study of main existing TRNG principles and of their characteristics
presented in this chapter is of great interest.
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Fig. 5.1 TRNG general structure

5.2 Design of TRNGs

The general structure of a TRNG is depicted in Fig. 5.1. The generator should use
an uncontrollable physical process as a source of randomness. Since physical phe-
nomena used in TRNGs are mostly analog processes, some method enabling data
conversion from analog to digital domain is usually necessary. An analog to digital
conversion can be included in the randomness extraction procedure. The obtained
unprocessed raw binary signal (so-called digital noise) can have low entropy and/or
bad statistical properties. In this case, some post processing algorithms can be used
to enhance the statistical parameters of the output bitstream. However, TRNG out-
put post processing can sometimes mask a serious fault in the generator. Standard
statistical tests may then fail to detect the masked weakness. Having the possibility
to test the unprocessed digital noise is therefore recommended. The security of the
generator can be increased if the statistical tests are applied on the fly and if they are
designed to suit the generator’s principle with particular reference to its potential
weaknesses.

True random number generators use different sources of randomness and numer-
ous principles to extract it. We next evaluate the main TRNG principles using three
classes of characteristics: quality related parameters, security related parameters and
design related parameters.

• Quality-related parameters

– Source of randomness
– Method of randomness extraction and entropy of the digital noise
– Post processing method applied (optional)
– Output bit rate and its stability

• Security-related parameters

– Existence of a mathematical model
– Inner testability
– Security (robustness, resistance against attacks)

• Design-related parameters

– Resource usage
– Power consumption
– Feasibility in logic devices and FPGAs
– Design automation
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It is important to note that these characteristics of TRNGs are not all equally impor-
tant. Security parameters like robustness, availability of a stochastic model, testa-
bility, etc. always take priority in a data security system. Their weight in TRNG
evaluation is much higher than that of other parameters like power consumption, bit
rate, etc.

5.2.1 Sources of Randomness in Logic Devices

Logic devices are designed for the implementation of deterministic logic systems.
Each unpredictable behavior in such a system (caused by a metastability, clock jit-
ter, radiation errors, etc.) can have catastrophic consequences for the behavior of
the overall system. Although unpredictable events due to the physical nature of the
underlying technology are unavoidable, vendors of logic devices tend to minimize
them. For this reason, the randomness extraction methods used in the TRNG design
should be critically examined in order to keep up with the evolution of the underly-
ing technology. Most logic devices do not contain any analog blocks, so the sources
of randomness are related to the operation of logic gates. Several phenomena and
their combinations can be used: variation in the delay of logic gates, analog behav-
ior of logic gates between two logic levels (e.g. metastability), setup and hold time
violation and thermal noise generated inside the device.

The instability of the delays of logic gates causes signal propagation variations
over time. These variations can be seen as a clock period instability (the jitter) in
clock generators containing delay elements assembled in a closed loop (ring os-
cillators). The variation in propagation time is also used in generators with delay
elements in an open chain assembly. The chain is used to increase or adjust the total
delay.

Since resistors and capacitors can be easily implemented in digital technology,
the thermal noise generated in resistors can be used to modulate the frequency of
a free running oscillator (RC oscillator). The thermal noise is thus converted to the
time domain, where it can be easily extracted. However, this principle cannot be
used in FPGAs, because appropriate structures are not available.

Some generators use the tracking jitter introduced by phase locked loops (PLLs)
to generate random numbers. These so called analog PLLs are easy to implement
in digital devices (including FPGAs), because the RC filter which is in such PLLs,
is mostly the only “analog” block, can be easily implemented using the same tech-
nology. We can therefore consider a PLL-based TRNG as a generator that can be
implemented in logic devices in general.

5.2.2 Randomness Extraction Methods

In logic devices that do not contain an analog block, randomness is often extracted
by sampling a (clock) signal on the rising or falling edges of a reference (clock) sig-
nal using synchronous or asynchronous flip-flops (latches). The random bit stream
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can be obtained in two ways: sampling random signals at regular intervals or sam-
pling regular signals at random time intervals. In synchronous systems, the first
method is preferable in order to guarantee a constant bit rate on the output.

The choice between synchronous and asynchronous flip-flops does not seem to be
important in ASICs, but it is very important in FPGAs. This is because synchronous
flip-flops are hardwired in logic cells as optimized blocks and their metastable be-
havior is consequently minimized. On the other hand, latches can usually only be
implemented in Look up tables (LUTs) and are therefore subject to metastable be-
havior to a greater extent. Up to now, the behavior of synchronous and asynchronous
flip-flops and their use for randomness extraction in FPGAs has not been sufficiently
evaluated.

The randomness extraction method is usually linked to the basic principle of
the generator and to the source of randomness. The randomness extraction proce-
dure and postprocessing are sometimes merged in the same block and cannot be
separated. In that case, the entropy of the randomness source is modified by post-
processing and cannot be measured or evaluated correctly.

In the true random number generator evaluation process, the source of random-
ness and the randomness extraction method are tightly linked and cannot be disso-
ciated. For this reason, it is more reasonable to evaluate these two generator param-
eters together. The best way to do so is evaluating the entropy included in the digital
noise.

5.2.3 Postprocessing the Raw Binary Signal

The evaluation of TRNGs is almost always based on statistical tests that are applied
to random sequences produced by the TRNG. Sometimes the entropy source may
have some weaknesses that lead to the production of non-random numbers (long
sequences of zeros or ones). For this reason, postprocessing may be necessary to
improve the statistical properties of random numbers, for example to increase en-
tropy per bit, reduce bias and/or correlation.

The quality of the digital noise signal (the signal obtained in the randomness ex-
traction block) can deteriorate for several reasons: (a) the entropy of the source is
not high enough (this is often the case if metastability is used as a source of ran-
domness); (b) the entropy, which is high in the original signal, is not well extracted;
(c) the extracted samples are correlated. The entropy per bit at the output of the
generator is mostly increased at the cost of reduction and/or variation in the bit rate.

XOR Corrector The XOR corrector is a simple linear function that applies an
exclusive or operation on non-overlapping blocks of n bits in order to generate one
output bit. It can dramatically reduce the bias on the generator output at the cost of
reducing its bit rate n-times. However, the bias of the output bit stream is reduced
only if the original bits are independent. The main advantages of the XOR corrector
are its simplicity and the possibility to maintain a constant output bit rate. For a
good analysis of the XOR corrector, the reader should refer to [12].
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Von Neumann’s Corrector Von Neumann’s corrector is a simple non-linear func-
tion that takes successive pairs of bits and, if the bits are not the same, uses the first
bit of the pair, and discards identical pairs. The output bit rate is therefore data de-
pendent.

Although the input stream is stationary and may be biased, the output will be
unbiased. However, if the original stream is autocorrelated, the output may still be
autocorrelated. It should also be noted that von Neumann’s corrector will produce
a biased output if the input stream features a cycle with period 2. If the corrector is
implemented in hardware, it may interfere with the generator and result in exactly
this type of occurrence.

Linear Feedback Shift Registers (LFSRs) LFSRs are used in many random bit
stream generators. There are several reasons for this: (1) LFSRs are easy to im-
plement in hardware; (2) they can produce sequences of large period; (3) they can
produce sequences with good statistical properties; and (4) because of their struc-
ture, they can be easily analyzed using algebraic techniques.

A LFSR of length L consists of L delay elements each capable of storing one
bit and having one input and one output and a clock that controls the movement
of data. During each unit of time, the following operations are performed: (i) the
content of the first delay element is output and forms part of the output sequence;
(ii) the content of element i is moved to stage i − 1 for each i, 1 ≤ i ≤ L − 1; and
(iii) the new content of the last delay element is the feedback bit that is calculated by
summing modulo 2 the previous contents of a fixed subset of elements (depending
on the underlying polynomial) [32].

Resilient Functions Resilient functions are specific functions used in cryptogra-
phy and coding theory. They derive from Boolean functions. The study of Boolean
functions is very important in cryptography (particularly in the design of symmetric
key algorithms). For more details on Boolean functions in general (degree, Normal
Algebraic Form, Möbius transform, Walsh-Hadamard transform, etc.), the reader
should refer to [21].

In more informal terms, resilient functions are suitable for postprocessing be-
cause the knowledge of any m values of the input to the function does not allow
anyone to make a better than random guess at the output [44]. Resilient functions
are based on the same principle as error correcting codes. While error correcting
codes are used to suppress random errors, resilient functions are used to extract
these random bits. The raw binary signal (digital noise) can be considered as a bit
stream containing a redundancy and the resilient function reduces the bit rate while
extracting random bits. In this way, the resilient function increases the entropy per
bit at the generator output. For more details on linear codes and resilient functions
in error correcting codes theory, the reader should refer to [9] and [24].

Encryption of the Digital Noise Signal This kind of the digital noise postpro-
cessing uses both diffusion and confusion properties of cryptographic functions.
The perfect statistical characteristics of most of the encryption algorithms can be
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used to mask generator imperfections. One of advantages of this approach is that
the encryption key can be used as a cryptographic variable to dynamically modify
the behavior of the generator. Although this kind of postprocessing block (the ci-
pher) is rather complex and expensive, the TRNG can reuse (share) the cipher that
is used for data encryption.

Hashing of the Digital Noise Signal One of the most time consuming but also one
of the most secure methods is cryptographic postprocessing based on hash functions
such as MD5, SHA-1 or others. It uses diffusion and one-wayness (as opposed to
encryption of the raw binary signal) properties of hash functions to ensure the un-
predictability of bits generated by the TRNG if a total breakdown of the noise source
occurs. In this case, due to the non-linearity property of hash functions, the TRNG
will behave like a PRNG.

5.2.4 Output Bit Rate

The speed is a secondary parameter (after security) in many cryptographic applica-
tions. Output bit rates from hundred kilobits per second up to 1 megabit per second
are usually sufficient. However, there are some speed critical data security applica-
tions for which high speed generators are required. For example, Quantum cryptog-
raphy requires a high bit rate (up to 100 megabits per second) because of the very
low efficiency of key data transmission over the low-power optical channel.

High speed telecommunication servers are a second example. They need to gen-
erate session keys on a regular high speed basis (tens of megabits per second). For
example, a 10-Gbit Ethernet hub/server would need about 20 Mbits/s random bits
to generate one 128-bit session key for each 64 kB data block in order to be able to
resist side channel attacks.

High speed telecommunication servers can be given as a second example. They
need to generate session keys on a regular high speed basis (tens of megabits per
second). For example a 10-Gbit Ethernet hub/server would need about 20 Mbits/s
random bits to generate one 128-bit session key for each 64 kB data block in order
to be able to face side channel attacks.

Another aspect of the output bit rate that has to be considered is its variabil-
ity. Some generators give random numbers periodically, others generate output in
irregular time intervals. In the second case, a FIFO is required to accumulate the
generated numbers. Another solution is to estimate the smallest bit rate available at
the output and to sample the output at this rate. The disadvantage of the first solution
is that, depending on the mean output bit rate and the need for random numbers, the
FIFOs sometimes need to be very big. The disadvantage of the second solution is
that if the estimated bit rate is incorrect, the random numbers may not be sometimes
available at the output.
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5.2.5 Modeling TRNGs

The main part of a security certification process deals with evaluation of the design
and implementation of the generator. The aim of the evaluation is to quantify the
entropy per random bit [34]. However, entropy is a property of random variables
and not of observed realizations (random numbers). In order to quantify entropy,
we thus need to analyze the distribution of the random variables, e.g. by the use of
a stochastic model. The stochastic model specifies a family of probability distribu-
tions of random variables that enables verification of a lower entropy bound for the
raw binary signal. In [34], the authors use a model that gives a lower bound of the
average conditional entropy per internal random number. The value given by the
model can be used to test the entropy of the generated numbers in real time.

5.2.6 Testability

Inner testability means that the generator structure enables evaluation of the entropy
of the raw binary signal (the raw binary signal must be available). This functionality
is required in recent TRNG evaluation procedures [45]. However, when randomness
extraction and post processing are merged in the same process, the unprocessed
random signal is not available. Even when this signal is available, it is sometimes
composed of a pseudo random pattern combined with a truly random bit stream.
The pseudo random pattern makes statistical evaluation of the signal more difficult.
For this reason, we propose a new testability level: an absolute inner testability.
The output of the generator featuring absolute inner testability does not include a
pseudo random pattern and contains only a true random bit stream. The functional
simulation output of the generator with absolute inner testability is always zero. If
(for some reason) the source of randomness fails in a hardware generator, the test
output will be zero. This fact can be used to secure the generator.

5.2.7 Security Evaluation

It is often very difficult (and sometimes impossible) to build a stochastic model for a
particular generator. In that case, another approach can be used to validate the use of
the generator in cryptographic applications. This approach is based on the analysis
of the impact of the changing environment or an attack on the generator (security
evaluation). There are three possibilities: (i) proof exists that the generator cannot
malfunction as the result of any attack or of a changing environment, (ii) neither
security proof nor attack exists, (iii) some attack on a particular generator has been
reported.
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5.2.8 Resource Usage

To evaluate various TRNG principles, it is important to analyze the resources needed
for generator hardware implementation. Generally speaking, all kinds of resources
available in FPGAs can be used to generate random numbers: LUT based or mul-
tiplexer based logic cells, embedded memory blocks, clock blocks with PLLs and
DLLs, embedded RC oscillators, hardwired multipliers, programmable interconnec-
tions, etc.

FPGAs have many logic cells, so the use of logic cells (the logic area) is usually
not a problem. The topology and electrical parameters of programmable intercon-
nections are strongly technology dependent. Many TRNG designs require the de-
signer’s manual intervention during placement and routing (P/R). Concerning P/R,
some designs can be easily implemented in one FPGA family, but are difficult or
impossible to implement in others. The choice and the number of embedded hard-
wired blocs is usually much more limited (PLLs, RC oscillators, multipliers, mem-
ory blocks) and varies with the vendor and the technology. The use of hardwired
blocks can thus be a limiting factor for reusability of the TRNG principle.

5.2.9 Power Consumption

The power consumption of the generator is linked to its randomness source (e.g. the
oscillator), to the clock frequency used and to algorithm agility. In power critical
applications, the generator can be stopped when not in use. However, the possibility
to control bit stream generation can be used to attack the generator.

5.2.10 Feasibility in FPGAs

Compared to the implementation of TRNGs in ASICs, their implementation in FP-
GAs is much more restricted. Many TRNGs implemented in ASICs use analog com-
ponents to generate randomness (e.g. chaos based TRNGs using analog to digital
converters, free running oscillator based generators using thermal noise from diodes
and resistors, etc.) and to process randomness (e.g. operational amplifiers, com-
parators, etc.). Most of these functional blocks are usually not available in FPGAs,
although some of them may be available in selected families, e.g. RC oscillators in
Actel Fusion FPGA, analog PLLs in most Altera and Actel families but not in old
Xilinx families. From the point of view of their feasibility in FPGAs, some gener-
ators are not feasible or are difficult to implement in FPGAs, some are feasible in
selected FPGAs and the most general principles are feasible in all FPGAs.
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5.2.11 Design Automation

The fact that the generator uses resources that are available in FPGAs does not au-
tomatically mean that it can be implemented in this kind of device. The range of
tolerance of some technology parameters can be such that it prevents reliable imple-
mentation of the generator. The parameter that most often limits generator imple-
mentation in FPGAs is the availability of routing resources and their characteristics.
Some generators require perfectly balanced routing. This necessitates perfect con-
trol of the module placement (e.g. symmetrical placement of two modules in relation
to another module) and routing. While most FPGA design tools allow precise con-
trol of placement, the routing process is difficult or impossible to control (e.g. in the
Actel family). Even when routing can be partially or totally controlled (e.g. Altera
and Xilinx families), the delays in the configurable routing net vary so much from
device to device that it is impossible to balance module interconnections in a general
manner and the design will be device dependent, i.e. it has to be balanced manually
for each device. Such manual intervention is not acceptable from the point of view
of the practical implementation of the generator. The best generators (very rare) can
be mapped automatically (without manual intervention) in all FPGA families. From
practical point of view, it is still acceptable if the implementation of the generator
requires manual intervention (P/R) for each family and/or type of device. However,
generators that require manual optimization on a per device basis are not acceptable
for industrial applications.

5.3 Quality and Security Issues in TRNG Design

The output of a good TRNG should be indistinguishable from the output of an ideal
TRNG, independently of operating conditions and time. The quality of the genera-
tor output bit stream and its security parameters including robustness against aging,
environmental changes, attacks, existence of selftest and online tests are very im-
portant in the TRNG design.

5.3.1 Operating Conditions and Quality of the TRNG Output

Good TRNGs are supposed to give a uniformly distributed stream of 0s and 1s at
their output. The quality of the generator output is tightly linked with the quality
of the source of randomness and to the randomness extraction method used. The
spectral characteristics of the source of randomness and the randomness extraction
determine the principal parameters of the generated bit stream: the bias of the output
bit stream, correlation between subsequent bits, visible patterns, etc. While some of
these faults can be corrected by efficient post processing, it is better if the generator
inherently produces a good quality raw bit stream.
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If the extractor samples the source of randomness too fast, adjacent bits could
be correlated. For this reason, it is good practice to check the generated bit stream
for a short term auto correlation. It is also possible that the digital noise exhibits
some other short term dependencies, which need to be detected by some generator
specific tests.

The behavior of the generator is often influenced by external and/or internal elec-
trical interferences. The most obvious effect of this will be discrete frequencies from
the power supply and from various internal signals appearing in the noise spectrum.

The spectrum of the generated noise signal can be significantly influenced by a
low frequency 1/f noise caused by semiconductors. Furthermore, the high frequen-
cies from the noise spectrum may be unintentionally filtered out by some internal
capacities.

Some generators can feature so called bad spots. Bad spots are short periods
when the generator ceases to work, possibly due to electrical interference or to ex-
treme excursions of the overloaded part of the generator circuitry.

Another dangerous feature of the generator can be a back door, which refers to
the deviations from uniform randomness deliberately introduced by the manufac-
turer. For example, let us suppose that instead of using some physical process, the
generator would generate a high quality pseudo random sequence with a 40-bit seed.
It would be impossible to detect this behavior by applying standard statistical tests
on the output bit stream, but it would be computationally feasible for someone who
knows the back door to guess successive keys.

5.3.2 TRNG Evaluation and Testing

TRNG must undergo the quality and security evaluation process before it can be
used in data security systems. For a long time, TRNG testing was limited to eval-
uating the ability of generated sequences to pass a battery of statistical tests (FIPS
140-1 [17], NIST SP 800-22 [43] or DIEHARD [40, 41]).

5.3.2.1 General Strategy of Statistical Testing

The role of TRNG statistical testing is to evaluate the hypothesis that the generator
is indeed random. This hypothesis is called the null hypothesis (H0), because it is
based on our beliefs, in the absence of evidence. The statistical tests should provide
the evidence that the hypothesis is true. If the tests are not successful, the hypothesis
is rejected, otherwise it is not (but it shouldn’t be completely accepted because there
is no evidence that the hypothesis is true). For each existing test, a relevant random-
ness statistic is chosen and used to determine the rejection of the null hypothesis.
Under the assumption of randomness, such a statistic has a distribution of possible
values. A theoretical reference distribution of this statistic under the null hypothesis
is determined by mathematical methods. From this reference distribution, a critical
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value is determined. A statistical value is then computed on the sequence and is
compared to the critical value. If the statistical value exceeds the critical value, the
null hypothesis for randomness is rejected.

A good true random number generator may produce a sequence that does not ap-
pear to be random while a bad TRNG may produce an apparently random sequence.
Two different kinds of errors are usually considered:

• Type 1 error: when the statistical test rejects a sequence that is in fact random
(false reject).

• Type 2 error: when the statistical test accepts a sequence that isn’t in fact random
(false acceptance).

The probability of a Type 1 error is denoted α and the probability of the Type 2
error is denoted β . Because of these errors, no statistical test can specify with cer-
tainty whether a sequence is random or not. The significance level of the test is
defined by the probability of the Type 1 error (α).

For each statistical test, a P -value is computed. This P -value is the probability
that a perfect (ideal) random number generator would have produced a sequence
seemingly less random than the sequence that was tested. If the P -value is greater
than α, then the null hypothesis is accepted. Otherwise, it is rejected.

For cryptographic applications, α is usually chosen in interval [0.001;0.01]. An
α of 0.001 indicates that one sequence in 1000 sequences is expected to be rejected
by the test if the sequence was random. For a P -value ≥ 0.001, a sequence would
be considered to be random with 99.9% confidence, whereas for a P -value < 0.001,
a sequence would be considered to be non-random with 99.9% confidence.

Even though statistical tests are required to evaluate the quality of the generated
sequence, they are not able to distinguish between pseudo random data generated
by a deterministic generator and truly random data from a physical TRNG. For
this reason, a new evaluation methodology for physical random number generators
was proposed by the BSI (Bundesamt für Sicherheit in der Informationstechnik) in
2001—AIS31 [33, 45].

5.3.2.2 AIS31: Methodology for TRNG Evaluation

AIS31 is an evaluation methodology for true (i.e. physical) random number gener-
ators. In contrast to the standard methods that tests only TRNG output, AIS31 also
tests the raw binary signal. This new approach is motivated by the fact that the post
processing can mask serious defects of the generator. If a stochastic model of the
physical randomness source is available, it can be used in combination with the raw
signal to estimate entropy and bias depending on random input variables and on the
generator principle.

The raw binary signal is also used in Online tests. Online tests should be applied
to the digital noise signal while the generator is running. They provide ways to stop
the TRNG (at least temporarily) when a conspicuous statistical feature is detected.
A special kind of online test required by the AIS31 is a “total failure test” or Tot test

that should be able to immediately detect total failure of the generator.
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AIS31 introduces two TRNG functionality classes depending on the security re-
quirements: P 1 and P 2. Class P 1 applications include:

• challenge response protocols,
• transmission of initialization vector in clear,
• seeds for PRNGs class K1 and K2 (AIS 20).

Class P 2 contains:

• symmetric and asymmetric cryptographic keys,
• padding bits,
• zero knowledge proofs,
• seeds for PRNGs class K3 and K4 (AIS 20).

The functionality class P 2 requirements are more restrictive. For example, in
P 2, the generated random numbers are practically impossible to determine even if
the predecessors or successors are known.

Nine statistical tests are proposed in AIS31 for use at different stages of the
TRNG evaluation. Five of them (tests T0 to T4) test generated numbers (TRNG
output):

• T0: Disjointness test—tests the coincidence of non-overlapping patterns in a se-
quence,

• T1: Monobit test—tests the bias of a bit stream,
• T2: Poker test—tests the occurrence of non-overlapping 4-bit blocks in the bit-

stream,
• T3: Runs test—tests the number of 0-runs (or 1-runs) of length i < 6 and i ≥ 6,
• T4: Long runs test—searches for runs of length i ≥ 34, while no long runs are

allowed.

The last four tests (tests T5 to T8) test the raw binary signal, while tolerating some
weaknesses. The rejection limits in these tests are set according to the knowledge
that a considerable bias could be present in the bit stream.

• T5: Autocorrelation test,
• T6: Uniform distribution test,
• T7: Comparative test for multinomial distribution,
• T8: Coron’s entropy test.

A TRNG is said to be P1-compliant if it satisfies class P1 requirements:

• Generated random vectors must pass the disjointness test T0.
• Output random bit streams have to pass selected statistical tests, e.g. T1 to T4.
• The raw binary signal should be tested for the total failure of the source of ran-

domness (fast total failure test).
• When intended for high strength security applications, the statistical properties

have to be verified in different operating conditions (temperature, voltage).
• Online test(s) must check the internal random numbers on demand or at regular

intervals.
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A TRNG is said to be P2-compliant if it satisfies P 1 requirements plus following
class P 2 requirements:

• The bias of the digitized noise (raw signal) should be ≤ 0.025.
• Tests T 5 to T 8 applied on the raw binary signal have to pass.
• Post processing (if used) must not reduce the average entropy per bit.
• A set of special statistical tests has to be applied on each TRNG start (startup

test).
• For high strength mechanisms, the statistical parameters and in particular the en-

tropy of the digitized noise signal must be tested in different operating conditions.
• For high strength mechanisms, the TRNG must itself trigger an online test at

regular intervals.

Evaluating TRNGs is a difficult task. Clearly it should not be limited to testing the
TRNG output. Following the AIS31 methodology, the designer should also provide
a stochastic model based on the noise source and the extraction process and propose
statistical and online tests suited to the generator’s principle. AIS31 gives a one
proposed methodology. It does not favor or exclude any reasonable TRNG design.
The applicant can also substitute alternative evaluation criteria, however these must
be clearly justified.

5.4 Jitter as a Source of Randomness

As mentioned in the previous section, clock jitter is a source of randomness that
can be reliably used in logic devices. Jitter is a general term used to specify clock
or oscillation uncertainty in the time domain. Jitter can be defined as [48] a short-
term variation of an event from its ideal position. In general, it is the variation in
time of the zero crossing (rising or falling edge) of the clock signal. This definition
helps understand what jitter is, but the situation is more fuzzy when we need to
quantify the jitter. The problem is that different measurement techniques are used
in different applications and that several authors define them differently according
to their specific needs.

5.4.1 Jitter Quantification

To avoid confusion, let us first define clock jitter and its common measurements over
time intervals. The instantaneous output voltage of an oscillator can be expressed
[58] in the frequency or time domain as

V (t) = V0 sin(ω0t + ϕ(t)) = V0 sin

(

2π

T0
(t + δ(t))

)

, (5.1)

where ϕ(t) is the phase deviation in the frequency domain expressed in radians and
δ(t) = ϕ(t)/ω0 is the time deviation (the jitter) expressed in seconds. For clock
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Fig. 5.2 Clock jitter
measurements: Phase jitter
(δn), Period jitter (δ′

n) and
Cycle-to-cycle jitter (δ′′

n )

applications, time domain measurements are preferable, since most specifications
of concern involve time domain values. There are three basic measurements of the
jitter in the time domain: phase jitter, period jitter, and cycle-to-cycle jitter.

Phase jitter is defined as the phase advance of the observed clock from an ideal
clock with period. It is a phase measurement made at discrete time intervals nT0,
n = 0,1,2, . . . ,∞. An ideal clock signal would have a cycle occurrence (e.g. rising
edge) when t = nT0, but the noisy clock signal with the time deviation δ(nT0) will
have a time shift error. We can express the cycle occurrences of the noisy clock
using the ideal period

tn = nT0 + δ(nT0) = nT0 + δn. (5.2)

Phase jitter δn is defined as the difference between noisy clock period and ideal
period time nT0. It is thus equivalent to a discrete measurement of the time deviation
sampled at each ideal clock period:

δn = tn − nT0. (5.3)

Period jitter δ′
n is defined as the difference between measured adjacent clock pe-

riods and the ideal clock period T0. It can be considered the first difference function
of the phase jitter. Like the phase jitter, it is a discrete measurement, made at period
intervals and is defined as

δ′
n = (tn − tn−1) − T0 = δn − δn−1. (5.4)

Cycle-to-cycle jitter is the measured difference between two successive clock
periods

δ′′
n = (tn − tn−1) − (tn−1 − tn−2) = δ′

n − δ′
n−1. (5.5)

It contains information about the short term dynamics of the jitter evolution and can
be obtained by applying the first order difference to the period jitter or the second
order difference to the phase jitter. The relationship between the phase jitter, the
period jitter and the cycle-to-cycle jitter is depicted in Fig. 5.2.

5.4.2 Jitter Behavior over Time

Phase noise measures an oscillator’s uncertainty in the frequency domain, while
jitter measures this uncertainty in the time domain. Now we analyze in more detail
how jitter behaves over time.
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Fig. 5.3 TIE as a difference between two clock edges separated by an ideal edge delay of N clock
periods. Its mean square average value is known as timing jitter

Consider the time interval between two arbitrarily chosen rising clock edges sep-
arated by N clock periods. Let the ideal rising edge delay for the N clock cycles be
written as τ = N · T0. The two actual clock edges and their time separation are now
influenced by the fluctuating time deviation δ(t) and can be written as:

tris1 = t + δ(t),

tris2 = (t + τ) + δ(t + τ), (5.6)

tris2 − tris1 = τ + (δ(t + τ) − δ(t)).

The accumulated error between the two clock edges is known as the time interval
error (TIE). The TIE for an N clock period interval is defined as

TIE(t, τ ) = δ(t + τ) − δ(t) =
1

ω0
(ϕ(t + τ) − ϕ(t)). (5.7)

In other words, TIE is a measure of the accumulated timing error between end-
points t and t + τ over the τ = N · T0 time interval (see Fig. 5.3). If the measure-
ment is initialized such that t = 0 and δ(t) = 0, the TIE is identical to the phase
jitter δn = δ(N · T0). TIE and phase jitter are thus sometimes used interchangeably.
Taking the mean square average of the TIE, which is called the timing jitter, gives

TIE(t, τ )2 =
1

ω2
0

[ϕ(t + τ)2 − 2ϕ(t + τ)ϕ(t) + ϕ(t)2]. (5.8)

It shows the cumulative effect of the jitter over time if one assumes knowledge of
ideal clock locations. The TIE can be obtained by integrating the period jitter after
subtracting the ideal period from each measured period. This metric diverges over
time.

5.4.3 Jitter Composition

Clock jitter usually has two components (see Fig. 5.4): random jitter, which is
caused by a non-deterministic phenomenon like thermal/flicker noise and determin-

istic jitter, which is caused by some deterministic processes.
Random jitter obeys the central limit theorem and it has a Gaussian probability

distribution function (PDF). As its name suggests, it has a random behavior and
statistical tools (e.g. means, standard deviation) are thus often used to measure it.
Random jitter is caused by the sum of many independent contributors inherent to
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Fig. 5.4 Clock jitter
composition

any electric circuit: thermal vibrations of semiconductor crystal structures, thermal
vibrations of conductor atoms and many other minor contributors [37, 49, 50, 57].

Deterministic jitter has two other components (see Fig. 5.4): periodic jitter and
data dependent jitter. Deterministic jitter is typically caused by power supply varia-
tions, cross talks, electromagnetic interference (EMI), simultaneous switching out-
puts and other regularly occurring interference signals.

The main confusion when one is confronted with jitter measurement and quantifi-
cation is that some jitter metrics apply only to random jitter and not to deterministic
jitter, while the latter is present almost all the time.

5.4.4 Jitter Measurement

5.4.4.1 External Methods of Jitter Measurement

A lot of measuring equipment enables precise jitter measurement outside the device.
The jitter is mostly represented by a histogram, from which one can see if it has some
deterministic components or not. If it does not, the jitter can be quantified from the
histogram using the standard deviation σ , which represents 68.28 percent of the
samples in the histogram. The jitter size obtained from σ is called RMS jitter. This
kind of jitter evaluation is valid only for Gaussian jitter distributions (see Fig. 5.5).
If the jitter histogram differs from an ideal Gaussian distribution, this means that if

Fig. 5.5 Jitter histograms: jitter with random component only (a), with both a random and a de-
terministic component (b)
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the jitter contains some deterministic components, measuring the RMS jitter from
the histogram is no longer possible.

Typically, we can assume that the random (stationary) noise sources will result in
average phase deviation values that are independent of the time shift. They therefore
share the same RMS value ϕ2

rms = ϕ(t)2, and we can consider the TIE from Eq. (5.8)

to be a function of the observation interval only, i.e. TIE(t, τ )2 = TIE(τ )2. The
remaining term from Eq. (5.8) represents the autocorrelation function of the phase
deviation Rϕ(τ ) = ϕ(t + τ)ϕ(t). If the jitter contains only the random component,
the mean-square average value for TIE equates to a σ 2 variance of the Gaussian
distribution of the jitter. In this way, the timing jitter (or accumulated jitter) can be
represented by the variance of the TIE, TIE(τ )2, which can be written as

σ 2
TIE(τ ) =

2

ω2
0

[ϕ2
rms − Rϕ(τ )]. (5.9)

The N -cycle timing jitter is therefore a function of RMS phase jitter, which does
not depend on the time interval, and of the interval dependent autocorrelation.

It can be seen that the period jitter is a timing jitter over an interval of one period
(τ = T0), i.e.

σ 2
PER(τ ) = σ 2

TIE(T0). (5.10)

The timing jitter measured over one signal period is commonly used as a fundamen-
tal jitter measurement for free running oscillators with an unbounded RMS phase
jitter.

The cycle-to-cycle jitter represents the error between adjacent periods. It is equal
to the difference between the TIE at time τ = 2T0 and τ = T0. The variance of the
cycle-to-cycle jitter can be calculated as:

σ 2
CTC(τ ) = 4σ 2

PER − σ 2
TIE(2T0). (5.11)

Because the histogram representation does not provide any information about
the time evolution of the jitter, it is sometimes useful to represent the time depen-
dence of the jitter, i.e. the period jitter (or cycle-to-cycle jitter) vs. time. When it
is necessary to quantify the jitter that is composed of random and deterministic
components, we usually measure the peak-to-peak jitter, which is the difference be-
tween the biggest and the smallest value in the jitter population over a certain time
period τ . Due to the unbounded nature of the random jitter, the peak-to-peak value
increases with τ . We can also try to separate or extract the random jitter from the
composed jitter, but in this case, precise modeling of the entire system is necessary
to avoid incorrect separation.

In [27, 28] Hajimiri and Lee give a complete theory of modeling the phase noise
in oscillators and how to relate it to the timing jitter. Although this work refers to
low level electrical modeling, it can serve as a starting point for high level modeling.
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Fig. 5.6 Timing jitter measurement embeddable in logic devices

5.4.4.2 Embedded Methods of Jitter Measurement

The clock jitter measured outside the FPGA is significantly influenced by the device
input/output circuitry. It is therefore useful to measure the jitter inside the device.
The method published in [53] is presented in Fig. 5.6.

The time base generator generates a measurement interval (signal ENA) enabling
ring oscillator output. The clock generated in the ring oscillator is used to increment
an n-bit counter, which is stopped at the end of measurement interval. The output
value of the counter is proportional to the ring oscillator frequency. As shown in
Sect. 5.4.2, the TIE can be derived from the obtained counter value.

5.5 Random Number Generators in Logic Devices

In this section, we discuss in detail the main TRNG designs reported in the litera-
ture. Most of them use digital technology and can be (or have already been) imple-
mented in FPGAs. However, many other design that exploit analog components or
other technologies that cannot be directly implemented in FPGAs are not included
in our analysis. For example, the designs proposed in [1, 32, 34, 42, 56, 59] use
noise sources, other designs e.g. [2, 4, 5] use precise delay elements and/or analog
circuitry that are not feasible or not available in reconfigurable logic devices.

We group TRNG designs implementable in FPGAs according to the noise source
exploited or according to the method used to extract randomness. According to these
criteria, we can distinguish seven groups of TRNG designs:

• Generators that sample independent jittery clock(s),
• Stateless generators using gated ring oscillators,
• Generators using coherent sampling,
• Generators that combine pseudo and true randomness,
• Generators using open delay chain,
• Generators based on metastability,
• Other generators.
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Fig. 5.7 Sunar et al.’s TRNG and modifications proposed by Wold and Tan (dashed lines)

5.5.1 Generators that Sample Independent Jittery Clock(s)

In this group of TRNGs, the output of one or more high frequency oscillators
(mostly ring oscillators) is sampled using synchronous or asynchronous D flip-flops
[3, 36, 52]. The sampling frequency is mostly a reference clock signal (e.g. from a
quartz oscillator).

Sunar et al.’s Generator The principle of the random number generator proposed
by Sunar et al. [47, 60] is presented in Fig. 5.7. This TRNG uses n ring oscillators
(114 for selected Xilinx FPGA), and each oscillator comprises 13 inverters. The
number of oscillators is selected according to the size of the measured jitter and
the sampling frequency. The outputs of oscillators are XOR-ed together in order to
obtain a high frequency raw signal. This signal is sampled using a low frequency
reference clock in a D flip-flop (DFF) to obtain a digitized random signal. Sunar et

al. propose a mathematical proof that defines the relationship between the number
of oscillators, sampling frequency and the digital noise entropy. Based on this es-
timated entropy, the digital noise signal is postprocessed using a resilient function
based on a cyclic code [256,16,113].

The work published in [44] was the first practical application of the principle
proposed by Sunar et al., but the number of inverters and the number of ring oscil-
lators were not the same (three inverters, 210 oscillators in a robust version and 110
oscillators in an economic version). The resilient function remained unchanged.

The main advantage of this TRNG principle is that it does not depend on the tech-
nology and can be easily implemented in all FPGA families. It does not require any
manual intervention during the mapping procedure. It uses an acceptable amount of
resources and has a relatively high output bit rate. Thanks to the use of a resilient
function, the output bit rate is constant. Since many oscillators used in the design
oscillate continuously, the power consumption of the generator is relatively high.

Although the authors of the original generator claim that it is the only existing
generator that is provably secure, it appears that their mathematical proof is based
on unrealistic physical assumptions (a single XOR gate cannot linearly process a
huge number of high speed signals, and ring oscillators are not totally independent
as assumed in the proof) [14].
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Fig. 5.8 TRNG of Bucci et al.

In [20], Wold and Tan proposed a significant modification of the generator—they
showed that adding a flip-flop to the output of each ring oscillator (as it is depicted in
Fig. 5.7) solves the problem of the speed of the XOR gate. However, their suggestion
on how to reduce the number of rings is security critical and should consequently
be avoided.

The generator is inner testable, but not absolutely inner testable: ring oscillators
create a pseudo random pattern that cannot be removed. It is therefore possible that
the manipulations or attacks on the generator would not be detected.

In [20], Fischer et al. showed that the generator can become a subject of attack
because the local Gaussian and the global deterministic jitter accumulate differently.
Since the sampling clock comes from a fixed external reference, the pattern on the
XOR gate output strongly depends on the deterministic jitter. Fortunately, the secu-
rity of the generator can be improved by using a reference signal that comes from
another ring oscillator implemented in the same device rather than a fixed external
reference clock signal. According to these authors, the improvement in security is
due to the fact that the deterministic jitter (which represents the means of attack)
will accumulate in the source ring oscillators and in the reference ring oscillator in
the same way. In this way, the accumulated deterministic jitters compensate for each
other.

5.5.2 Stateless Generators Using Ring Oscillators

The class of stateless generators is defined in [3]. The aim of the design of stateless
random number generators is to remove the dependence of the next state of the gen-
erator on its previous state (i.e. to remove predictability). The internal state of ring
oscillator based TRNGs described in the previous section depends on the evolution
of mutual phases of ring oscillators. This kind of generator contains some memory
elements, the set of current phases of all oscillators. In order to remove dependence
on the previous state, all the rings using gated ring oscillators can be regularly “re-
started”. The stateless TRNGs obtained are mostly absolutely inner testable.

Bucci et al.’s Generator The principle of random number generator proposed
by Bucci et al. [3, 6] is presented in Fig. 5.8. The generator exploits relative jitter
between two gated ring oscillators sharing the same delay elements (
t1 to 
t4).
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These four delay elements are connected by means of a symmetrical switching ma-
trix in order to obtain two ring oscillators sharing the same delay elements and thus
featuring an identical mean period. The cross coupled oscillators start to oscillate
synchronously and their relative accumulated jitter increases as long as they con-
tinue running. A detector enables detection of the differential jitter above a given
threshold (an inverter propagation delay). Depending on the sign of the detected jit-
ter, a random bit is generated and both oscillators are stopped and restarted to begin
a new cycle. With this approach, the accumulated relative jitter depends on the noise
generated inside the circuit and so the data rate of the generator is not constant.

This generator was used in a 0.13 µm CMOS Standard Cells technology from
Infineon Technologies. The authors claim that after about 20 complete periods, the
relative jitter is sufficient for the generation of a new bit. The generator requires
post processing. Since it uses a von Neumann corrector, the output rate is irregular. It
requires very few hardware resources. The gated ring oscillators prevent randomness
generation and power consumption is thus reduced. Because the generator is reset at
the beginning of each cycle, it is stateless and so absolutely inner testable. Although
the authors does not propose a model, it seems that, given the relative simplicity
of the generator, a stochastic model could be developed. Following the principle of
differential jitter accumulation, we presume the generator would be robust against
attacks.

Because the generator uses only logic resources, it should be (at least theoreti-
cally) implementable in FPGAs. However, it requires manual intervention to imple-
ment perfectly symmetrical cross coupled oscillators. This symmetry is very diffi-
cult or even impossible to obtain in certain FPGA families.

5.5.3 Generators Using Coherent Sampling

The class of generators based on coherent sampling uses two or more clock gen-
erators with related output frequencies. Depending on the frequency ratio (or the
phase difference) and the method of randomness extraction, these generators can
be absolutely inner testable. The principle is simple and can be modeled relatively
easily.

Fischer and Drutarovsky’s Generator The basic principle behind the method
proposed by Fischer and Drutarovsky in [18] is to extract randomness from the jitter
of the clock signal synthesized in an embedded analog phase locked loop (PLL).

The jitter is detected by sampling a reference (clock) signal using a rationally
related (clock) signal synthesized in the PLL. In order to extract randomness, the
reference signal has to be sampled near the edges influenced by the jitter. The basic
structure of the proposed generator is depicted in Fig. 5.9.

Let CLJ be an on chip PLL synthesized rectangular clock waveform with the
frequency

FCLJ = FCLK

KM

KD

, (5.12)
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Fig. 5.9 Fischer and Drutarovsky’s TRNG

where CLK is a reference clock signal. Parameters KM and KD are multiplication
and division factors of the PLL respectively. The CLJ signal is sampled by the D

flip-flop using a clock signal with a frequency FCLK . KD rising edges of CLK signal
and 2KM edges (rising and falling) of CLJ signal occur during one time period

TQ = KDTCLK = KMTCLJ . (5.13)

It was shown in [18] that if KM and KD are relative primes, the set of samples
creates an equidistant set of values. The worst case distance between the two closest
edges of CLK and CLJ during the period TQ is given by

MAX(
Tmin) =
TCLK

4KM

GCD(2KM ,KD) =
TCLJ

4KD

GCD(2KM ,KD), (5.14)

where GCD means Greatest Common Divisor. If KM , KD , and FCLJ are chosen so
that

σjit > MAX(
Tmin) (5.15)

the sampling edge of CLK will fall at least once into the edge zone of CLJ (the edge
zone means the time interval around the edge with a width smaller than σjit ) during
each period TQ. For this reason, at least one of KD samples will depend on random
jitter. In order to remove the pseudo random pattern, KD samples are XOR-ed in
the decimator to give one output bit.

In [19], Fischer et al. showed that the sensitivity of the generator to jitter can
be enhanced using two PLLs. If two PLLs are not available, a chain of delay ele-
ments can be used to increase the probability of overlapping of the CLK and CLJ

edge zones [19]. Liu and McNeil proposed another PLL based TRNG that can be
implemented in logic devices [38], but not in reconfigurable hardware.

The generator does not require post processing. Its output bit rate is relatively
low, but remains constant. It uses very few logic resources, but the use of PLLs
could be restrictive in some designs (some FPGAs contain only one or two PLLs).
Because of the small logic area required by the generator, its power consumption
could be very low, if PLL operation could be controlled (disabled). This is possible
in most FPGAs featuring PLLs.

The generator is absolutely inner testable. Based on the simple principle of the
generator (the use of two rationally related frequencies), in [46], the authors propose
a simple stochastic model that specifies the dependence of the output (bias) on the
jitter source statistical parameters (σ ). The model can serve as the basis for the
implementation of embedded tests in order to improve resistance against attacks.
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Fig. 5.10 Kohlbrenner and Gaj’s Generator

The generator can be easily implemented in all FPGAs containing PLLs (most
recent FPGA families, including Xilinx Virtex 5). The design can be fully automated
and does not require any manual intervention. The only parameters that have to be
adjusted to ensure correct operation of the generator are those of the PLL (KM

and KD).

Kohlbrenner and Gaj’s Generator Since the generator discussed in the previous
section uses PLLs that are not available in all FPGAs, in [35], the authors propose
a derivation of the same principle (see Fig. 5.10): they use a pair of ring oscillators
oscillating at two very close frequencies (period difference is set to tens of ps).
A D flip-flop is used to sample the first generated clock signal on the rising edge
of the second one. The flip-flop output features a small frequency signal (a beat
signal) with an unstable period related to the difference in frequency between the
two clocks. In the following stage of the generator, a counter measures the unstable
period of the beat signal. The least significant bit of the counter (implemented as a
1-bit T flip-flop) is sampled on the rising edge of the beat signal to give the next
random bit of the generator.

It appears that the most critical part of this TRNG is the need for the precise set-
ting of the two ring oscillator frequencies. The obtained frequencies have to be very
close but not the same in order to obtain an appropriate beat signal. The frequency
difference is directly proportional to the random output bit rate and indirectly pro-
portional to the sensitivity on the jitter. In this way, if the two frequencies are very
close, the generator will be able to extract very small jitter, but the beat signal will
have very long period causing very small bit rate of the generator.

Due to process variations, the frequencies of the ring oscillators can differ up
to 8% inside the chip and even more between chips [35]. Since the frequency dif-
ference is related to the sensitivity to the jitter, the generator could cease to work



5 True Random Number Generators in FPGAs 125

Fig. 5.11 Tkacik’s TRNG

in some devices. In order to solve this problem, manual placement on a per-device
basis may be needed. This is the main disadvantage of the proposed principle.

The generator is stateless and is thus absolutely inner testable (although to date,
no test has been proposed). Since the structure of the generator is relatively sim-
ple, even if it is not provided in the original paper, a mathematical model should
be feasible. The fact that the generator uses two frequencies generated using the
same principle (ring oscillators) implemented in the same device should increase its
robustness against active attacks.

The authors used the generator in Xilinx Virtex FPGA devices. They reported a
bit rate of about 600 kbits/s. However, the output bit stream required post processing
to reduce the bias to an acceptable level. The generator is potentially implementable
in all FPGA families. It uses very few logic resources and could thus consume rela-
tively little power.

5.5.4 Generators that Combine Pseudo and True Randomness

This class of generators combine true randomness obtained from free running oscil-
lators (mostly ring oscillators) with pseudo randomness obtained from algorithmic
logic structures such as Fibonacci, Galois and cellular automata shift registers (or
rings). Since both sources of randomness share the same hardware, the generators
are not inner testable and the entropy of the generated bit stream is very difficult or
impossible to evaluate.

Tkacik’s Generator The principle of random number generator proposed by
Tkacik [51] is presented in Fig. 5.11. This TRNG is composed of two state ma-
chines: one linear feedback shift register (LFSR) and one cellular automata shift
register (CASR), which are clocked by jittery clock signals from two independent
free running oscillators. The registers have different lengths. The LFSR, which is
based on a primitive polynomial, is 43 bits long, and the CASR is 37 bits long.
Only 32 bits are selected from both. These 32-bit signals are permuted according
to a fixed scheme (not published). The permutation reduces the correlation between
the bits and is referred as ‘site spacing’ [31]. The two 32-bit vectors are then XOR-
ed together in order to be sampled in the following 32-bit register, giving a 32-bit
random number at its output.
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Fig. 5.12 Golic’s TRNG

The oscillators that drive the shift registers never stop (free running) even when
the generator is not in use. In this way, the LFSR and CASR are assumed to be in
an undetermined state after a sufficiently long period (due to the drift in time of the
two oscillator frequencies).

Tkacik’s generator behaves according to its internal state, which is given by the
current state of the LFSR and CASR. For this reason, when multiple successive ran-
dom words are needed, the design of the TRNG requires that the application waits
for a minimum period before sampling the next number. This allows the shift regis-
ters to complete their cycle at least twice between two successive random numbers
[51].

The initial states of the registers that comprise the generator are not initialized
at power up so that the initial state is (theoretically) unpredictable. Nevertheless, in
[13], Dichtl showed that there could be serious security flaws and that (theoretically)
the output of this generator is predictable. The flaws discussed in [13] are described
only at a theoretical level with no practical application of the proposed attack. Since
pseudo randomness and true randomness are mixed at the source, the generator
does not require post processing in order to pass the NIST tests. The output speed is
constant, but is limited by the fact that the generator requires a minimum sampling
time that cannot be violated. However, the speed is still reasonably high.

The generator can be easily implemented in reconfigurable hardware and, de-
pending on the choice of rings and sampling frequencies, can provide high through-
put. Its design is not technology critical, so that it can be implemented without
manual intervention.

Golic’s Generator The principle of random number generator proposed by Golic
[22, 23] is presented in Fig. 5.12. This TRNG is based on two ring oscillators with
linear feedback obtained from generalized LFSRs (Fibonacci and Galois LFSR),
while the shift registers are replaced by delay elements (inverters).

Just like in LFSRs, the linear feedback implemented inside both oscillators can
be expressed using polynomials. However, since the shift registers are replaced by
inverters, structures with linear feedback oscillate freely. Because of the intrinsic
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variation in the time delay of each oscillator element, the internal state changes
chaotically very rapidly and cannot be predicted. In [14], Dichtl and Golic estimate
that each of the rings with linear feedback can give a random output value after a
period as short as 25 ns.

In order to increase the robustness, the outputs of the two rings are mixed together
in a XOR gate before being sampled in a D flip-flop. The final throughput is directly
proportional to the sampling frequency, which should be chosen according to the
spectrum of the signal present at the XOR gate (more precisely to the low frequency
limit of the spectrum) in order to avoid output bit correlations.

The generator uses LFSR based post processing to reduce the bias of the digital
noise present at the output of the XOR gate. The output bit rate can thus be very
high and constant.

In [14], Dichtl and Golic propose an improvement of the original principle by
restarting the oscillators from the same initial conditions. A novel sampling method
that almost doubles the entropy rate is also proposed in this paper.

The entropy included in the digitized noise signal was shown to be very high
[14]. However, there are three serious flaws in Golic’s generator that have not been
explained to date: (1) while the principle of the generator (the use of linear feedback
rings generating a chaotic signal) suggests that the XOR gate output shouldn’t be bi-
ased, the bias observed is surprisingly high; (2) the spectrum of the generated noise
is not flat (white noise), but some frequencies are dominant; (3) some generator
implementations stop running randomly.

The original version of the generator is inner testable, but not absolutely inner
testable (it is not stateless). However, the enhanced version from [14] is absolutely
inner testable. The behavior of the generator has not yet been sufficiently analyzed.
Its complexity will probably cause obstacles in elaborating a mathematical model.
The robustness of Golic’s generator against attacks is difficult to estimate, but no
attacks have been proposed up to now.

The generator uses relatively few logic resources (logic gates only) and the ver-
sion that restarts the oscillators can be used in applications that require reduced
power consumption. It is easy to implement in all FPGA families and its synthesis
can be fully automated (no manual intervention needed).

5.5.5 Generators Using Open Delay Chain

This class of generators is made up of an open delay chain and enables high data
rates. Two designs based on similar principles were proposed independently in 2007.
One was implemented in ASIC [4], the other in FPGA [10]. Both designs use a delay
line composed of a chain of n delay elements, while the delay of each element has
to be smaller than the standard deviation of the jitter.

It is interesting to note that although both generators use very similar principles,
the authors of the first one [4] consider extracting entropy from the clock jitter and
those of the second one [10] from the metastability behavior of the latch. Although
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Fig. 5.13 Danger et al.’s TRNG

both generators have very similar structure and characteristics, we discuss only that
of Danger et al., since it was intended for FPGAs.

Danger et al.’s Generator The random number generator principle proposed by
Danger et al. [10] is presented in Fig. 5.13. The input clock signal is split into two
data paths: a data signal path and a clock signal path. The data signal enters the
delay chain where the delay elements are merely parts of the same wire. Each delay
element output is sampled by a D-latch built from an FPGA LUT. The n latches are
enabled using the clock signal output from a global buffer and routed by a specific
rail. Their outputs are XOR-ed together in order to capture changes in any one of
them. The XOR gate output is resynchronized by DFFs to keep the state stable
during one clock period.

The authors claim that by using the race between a signal and its delayed clone,
it is possible to obtain a few latches along the delay chain to work near a metastable
region. The latches in a metastable state converge towards a stable state depending
on the noise level. If at least one latch is in a metastable state, the probability of
1’s at the output will be P ∈ ]0,1[. However, the authors admit that the generator
may accidentally get stuck at VSS or VDD because of the temperature or because
of variations in the supply voltage caused unintentionally or by a malicious attacker.
In order to counter this effect, in [11], they propose to dynamically adjust the delay

T between the clock signal and the data signal. The TRNG output probability is
permanently calculated and exploited by a controller that drives a coarse delay chain
built from FPGA carry or MUX primitives. This allows rapid delay chain calibration
and switching towards the most appropriate metastable latch.

Because of discrete delay values, this TRNG requires post processing to reduce
bias at the output. A simple von Neumann corrector is used because the reduction
in the bit rate (at least by a factor of 4) is affordable as the original bit rate is as high
as the clock frequency.

The output bit rate of the generator is potentially very high. The final value of
the bit rate and its stability will depend on the post processing method used. How-
ever, it is very probable that for high clock frequencies, the subsequent bits will be
correlated (because of the limited spectrum of the sampled jitter).

The generator is absolutely inner testable. It uses relatively few resources (logic
gates and interconnect lines). Since the clock used to generate randomness can be
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Fig. 5.14 Vasyltsov et al.’s TRNG

stopped, the generator can consume relatively little power. However, its design is
strongly technology dependent (it depends on available routing resources). It is pos-
sible that it would not be feasible in some FPGA families (if delay elements cannot
have sufficiently small delay). It is very probable that the design will need to be
optimized for each FPGA family (depending on FPGA topology).

5.5.6 Generators Using Metastability

TRNG concepts based on metastability are much rarer in the literature than those
based on noisy clock sampling or other concepts. Most of these generators are ded-
icated to ASICs [16, 30, 55]. Although some of them (e.g. that described in [55])
should be realizable in FPGAs, their implementation is not discussed. On the other
hand, the generator published in [54] was intended especially for reconfigurable
devices and was tested in Xilinx FPGAs.

Since FPGA manufacturers try to minimize metastability events in hardwired
(dedicated) flip-flops, it seems that the best way to use metastability in FPGAs
would be soft latches implemented in LUTs. This is the case of the generators de-
scribed in [54, 55]. Both principles are similar to that described in [16] using a pair
of cross connected inverters and multiplexers to switch the loops between oscillatory
and bistable phases.

Vasyltsov et al.’s Generator The principle described in [55] uses a new type of
ring oscillator working in two modes: metastability (entropy accumulation) mode
and oscillations mode (see Fig. 5.14).

In the metastability mode, the loops of individual inverters are closed (using mul-
tiplexers). According to the authors, the output voltage of each inverter converges
somewhere near a metastability level and remains there as long as the loop remains
closed. Due to inherited thermal noise, the output voltage stochastically fluctuates
around the metastable level. Since each inverter is disconnected from the others and
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the threshold voltage is applied to its input, the inverters form a set of independent
noise sources. After disconnecting the feedback loops of the inverters, the ring os-
cillator starts to oscillate. As claimed in the paper, its initial state depends on the
entropy coming from stochastic fluctuations of each inverter.

Because no details about implementation are provided in the paper [55], it is
quite difficult to assess the characteristics of the proposed generator. According to
the information provided, we would expect that the generator could reach a rela-
tively high and regular bit rate. However, the authors mention that the statistical
parameters of the output bit stream varied with time and temperature. For this rea-
son, the generator required stable temperature and voltage to function well. Another
point that indicates some weaknesses of the generator is the fact that the output bit
stream is strongly biased.

The proposed TRNG is absolutely inner testable, because it is reset regularly at
the beginning of each entropy accumulation interval. The mathematical model has
not been published up to now. The difficulty of designing such a model may be
related to the complexity of the inverter’s behavior in the metastable region. Since
the original version of the generator has several implementation weaknesses, its
robustness against attacks needs to be analyzed in detail.

The generator uses few logic resources and its power consumption is probably
relatively low. Its feasibility in various FPGA technologies also needs to be vali-
dated.

Varchola and Drutarovsky’s Generator The principle described in [54] ex-
tracts randomness from temporary oscillations when a bistable circuit is resolving
a metastable event. The authors propose a new temporarily instable structure called
Transition Effect Ring Oscillator (TERO), for which the oscillatory phases are in-
troduced periodically on both the rising and falling edges of the control signal (see
Fig. 5.15). The authors show that the number of oscillations depends on the intrinsic
noise in logic cells. The oscillations are counted in a modulo 2 counter (T flip-flop)
that stops counting at a random value reached when the oscillations die down.

This TRNG is absolutely inner testable because it is reset at regular intervals.
The embedded tests can use the simple mathematical model presented in the pa-
per to enhance the robustness of the generator against attacks. The TERO TRNG
uses few logic resources and its power consumption is relatively low. Although it
is feasible in FPGAs, its reliability depends on the period of the control clock and
the number of oscillations. If the oscillations last longer than the half period of the
control signal, the generator’s output is constant. Note that number of oscillations
depends mainly on the symmetry of the structure, but also on the size of the jitter
and its accumulation (a perfectly symmetric oscillator without random jitter would
oscillate indefinitely). For this reason, the control clock frequency would have to be
adjusted for each device according to placement and routing, these depending on
the device characteristics. When setting the frequency, the designer should also take
into account the impact of temperature and voltage fluctuations.
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Fig. 5.15 Varchola and Drutarovsky’s TRNG

5.5.7 Other TRNG Principles

In this section, we present principles that require special features that are rare in FP-
GAs or that are significantly topology dependent. For example, chaos based gener-
ators need some non-linear analog components for their implementation and RAM-
based generators use randomly initialized embedded RAM blocks.

The theory of chaos, as a branch of the theory of non-linear dynamic systems,
drew attention to a surprising fact: low-dimensional dynamic systems are capable of
complex and unpredictable behavior, which is intuitively very promising for random
number generation. Indeed, there are a large number of designs in this domain [7, 8,
15, 16, 39]. In [15], the authors use an on chip reconfigurable system from Cypress
(featuring ADC) to generate randomness from chaos. No chaos based generator has
been implemented in true FPGAs to date, but we expect that the production of an
FPGA including ADC based on successive iterations (the kind of converter that
enables chaotic behavior to be obtained) is only a question of time.

RAM-Based TRNGs It is well known that the RAM memory is initialized ran-
domly when it is being powered up. The random contents of the FPGA RAM mem-
ory can be used during the initialization of each device to generate random numbers
and/or to generate a device fingerprint such as a physical unclonable function (PUF)
[29]. Note that while TRNGs and PUFs are often based on similar principles, their
source of randomness is not the same: TRNGs are based on randomness originating
from the exploitation of the device, while PUFs use randomness originating from
the manufacturing process. However, random RAM contents cannot be found in all
FPGAs, because the RAM memory in most volatile reconfigurable devices is ini-
tialized to zero or other user-defined value during device configuration.

In order to extend the use of RAM blocks as a source of randomness, two inde-
pendent papers use written collisions in dual port embedded memories when writing
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different data to the same memory location [25, 26]. The obtained bit rate can be
very high, but the principle is not directly exploitable in all technologies. Because
of the complexity of the process which depends on the device topology, it would
probably be very difficile to build a stochastic model of the generator’s behavior.

5.6 Conclusions

In this chapter, we presented various aspects of the design, implementation and eval-
uation of TRNGs. Basic generator principles were described, analyzed and com-
pared. Although numerous principles can be exploited in FPGAs, many of them
have disadvantages that limit their practical use in cryptographic applications in
general, and especially in applications in which the generator is intended for the
generation of confidential keys.

It is clear that the classical approach to TRNG design, which is limited to a
statistical evaluation of the generator output, is no longer sufficient. We believe sig-
nificant effort is necessary to better characterize existing sources of randomness in
reconfigurable devices. Understanding the probability distribution and its charac-
teristics for random processes taking place within the devices is difficult. However,
the characterization of internal processes is crucial for the successful construction
of stochastic models, which are indispensable for the reliable evaluation of entropy.
Without a deep understanding of the entropy generation process, it is impossible to
evaluate the robustness and security of the generator, and these are indispensable in
cryptographic applications.
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Chapter 6

Embedded Systems Security for FPGA

B. Badrignans, F. Devic, L. Torres, G. Sassatelli, and P. Benoit

Abstract The main goal of this chapter is to study FPGA devices in the field of
secured applications. We mainly address data protection based on a well defined
threat model. When dealing with FPGAs at the system level, two kinds of data are
of paramount importance: bitstream and external memory. To cover these topics,
we first review state of the art FPGA security mechanisms and good practices, fol-
lowed by performance analysis achievable using hardware implementation of cryp-
tographic algorithms in current FPGAs. We then tackle external memory protection
and how FPGAs can provide an efficient solution. Next, we highlight security is-
sues specific to FPGAs, bitstream replay attacks, for example, and suggest solutions
to improve bitstream management security, focusing on secure remote updating of
FPGA bitstreams. Finally we give the results of a concrete case, i.e., a platform
based on an FPGA device. This last section provides both a practical and an indus-
trial point of view that will enable readers to evaluate the pertinence of the solutions
proposed.

6.1 Introduction and Objectives

Motivations to employ FPGAs (Field-Programmable Gate Array) in secure systems
are multiple: hardware configuration can be updated all along system life-cycle, FP-
GAs can be finely configured to implement cryptographic functions efficiently, and
security applications generally generate low sales volumes making FPGAs more
attractive than ASICs (Application Specific Integrated Circuits). However ASICs
often contain special features that are not available in all FPGAs. For instance, most
current FPGAs do not include non-volatile memories that are useful in security ap-
plications (e.g., to store cryptographic keys). Moreover designers including FPGA
devices in their design must not only consider in its threat analysis the applicability
of attacks generally targeting ASICs and general purpose processors (e.g., memory
tampering) but must also explore threats specific to FPGAs. For instance, an adver-
sary tampering with the FPGA configuration file, a.k.a. the bitstream, can modify
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functions implemented inside the FPGA user logic and thereby impact the behavior
of the FPGA-based system. The main goal of this chapter is to explore threats poten-
tially impacting FPGA-based systems. We address data protection based on a well
defined threat model where the adversary has physical access to the FPGA-based
system.

We mainly address data/code protection since two kinds of data—bitstream and
external memory—are of paramount importance when dealing with FPGAs at the
system level. In order to highlight the importance of the threats discussed in this
chapter, we identified three security-sensitive applications potentially including FP-
GAs in their designs.

Physically Inaccessible Systems Some systems like satellite or space craft are
intrinsically protected against physical attacks since inaccessible during their de-
ployment in space. Devices can also be made inaccessible using secure rooms or
strong-box. Due to their peculiar location we can consider that they are protected
against any attack requiring physical access to the device. However the cost of this
system as well as their potential strategic importance (e.g., in military and commu-
nication satellites) emphasis the requirement to make them highly secure against
remote attacks.

Personal Hardware Security Modules—HSM Hardware security modules are
devices dedicated to provide a high level of security which generally cannot be
achieved using general purpose computers. They often offer ways to physically pro-
tect cryptographic keys or sensitive data. These systems are used in highly secure
applications such as in-line banking applications, ATMs transactions, and compa-
nies network infrastructures. Since the appearance of smart card for payment and
money withdrawal, most individual owns an increasing number of security modules
(e.g., biometric passport, mobile phone SIM card, French health insurance card).

Smart cards do not embed programmable logic yet (even though the growing
market of multi-applications cards might encourage such features in a near future
[25]) but they are not the only personal secure devices available. For instance the
smart drive provided by the French company Bull embeds an FPGA device in charge
of cryptographic and key management operations. This device, called Globull, is a
secure USB hard disk drive protected by a user PIN (Personal Identification Num-
ber). It provides also cryptographic services like smart cards, such as on-board RSA
key generation, RSA signature and encryption. Therefore we can reasonably imag-
ine that in coming years most individuals traveling with sensitive data will have
advanced personal security devices embedding FPGA devices. Applications can be:
mobile disk encryption, e-mail protection, secure key management, VPN access.

Therefore we can reasonably assume that in the near future most individuals who
travel with sensitive data will own advanced personal security devices that can take
embedded FPGA devices. Some applications are mobile disk encryption, e-mail
protection, secure key management, or VPN access. Whatever the application, per-
sonal security devices have their own constraints. Firstly, most devices assume that
attackers will never access them when they are unlocked by the user. For instance,
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laptop disk encryption is ineffective if someone steals it when its disk is unlocked.
In addition, the devices can reasonably trust their owner, after all the information
that these devices protect belong to the user.

Set-Top Boxes/Video Game Console Set-top boxes are devices generally rented
out to customers by ISP (Internet Service Provider) or pay-TV providers. Since these
systems provide access to protected multimedia content they must embed some se-
curity features to enforce digital right management. Their environments are dramat-
ically different from previous examples of applications. First such systems are not
shielded or physically protected and the user is potentially the adversary. There-
fore, the adversary has physical access and is not limited in time to carry out his/her
attack. Moreover he often benefits from a community of attackers or security re-
searchers [42] sharing their technical knowledge and discoveries online.

In order to address security concerns related to these possible scenarios, this
chapter is divided into three main parts each of which addresses one of the three
key points involved in dealing with security and FPGAs. The first point is related
to protecting data and code processed by FPGAs. We present a widely recognized
threat model and existing efforts to protect a system against these threats, and then
several possible solutions. These approaches leverage applications and FPGA char-
acteristics to reduce the cost of security. The benefit is a strong optimization com-
ponent in terms of memory overhead and performance. The second point is related
to reconfiguration management of targeted architectures. This point is very sensi-
tive as FPGAs offer considerable flexibility through dynamic reconfiguration. This
feature can not only be used to perform upgrades and bug fixing, but also allows
for reactions in the case of an attack. However, if not handled correctly, this strong
advantage can become a security breach. After describing potential threats that use
the reconfiguration link, we detail current efforts to counter them. Then we pro-
pose an original technique to perform remote partial reconfiguration. Based on such
technology, a whole protocol and architecture were designed to perform secure re-
configuration. The third point is defining a secure platform. We thoroughly analyze
what is required to obtain a fully secure FPGA based on previous solutions. A pro-
totype of this platform has been designed and offers interesting features to target,
including gigabit network encryption, SSL accelerator or offload engine, VPN ac-
celerator, Hardware Security Module with high performances.

6.2 Definitions—Glossary

In this chapter, the following vocabulary is used to distinguish the different internal
logic types in FPGA devices:

• static logic is the static part of the FPGA; the designer cannot modify its archi-
tecture. FPGA devices often embed general purpose processor in the static logic.

• user logic is the configurable logic embedded in FPGA devices. The user logic
may include LUTs, RAM blocks, hardware multipliers, DSP blocks or switch
matrix for routing signals.
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• configuration logic is the part of the static logic in charge of loading the bitstream
into the user logic, it is typically composed of a JTAG chain or any configuration
port and of the bitstream decryption engine (if any).

In the following section we distinguish four stakeholders involved in an FPGA-
based system development life cycle:

• The FPGA vendors are the companies designing, producing and providing
FPGA chips (e.g., Xilinx, Altera or Actel).

• IP designers provide reusable units of hardware units often delivered as netlist
or Hardware Description Language (HDL) codes. IP cores may be encryption
engines, general purpose processors or memory interfaces.

• The System Designer (SD) assembles IPs provided by different IP designers to
produce the final bitstream which configures the FPGA device. In case of complex
FPGA-based systems, we assume in this book that the SD is also responsible
to produce the platform potentially composed of different types of circuit (e.g.,
General purpose processors, ASICs or FPGAs).

• The system owner is the end user who exploits the system, the SDs and IP de-
signers do not necessarily trust owners.

We distinguish three types of FPGA chips with respect to their configurability
properties:

Current FPGAs can be classified in three different types:

• Anti-fuse FPGAs are historically the first non-volatile FPGAs. Each configura-
tion point is controlled by an anti-fuse element. Configuration is fixed and cannot
be changed after programming. Actel is the leader in this market.

• Flash-based FPGA configuration sites are controlled by a Flash transistor, they
are reconfigurable but non-volatile.

• The last type is SRAM based FPGAs or volatile FPGAs are composed of SRAM
memory cells and, therefore, cannot keep their configuration when power is down.
An external non-volatile memory is generally required to store the bitstream. Al-
tera and Xilinx are the leading companies in the market of SRAM FPGAs, offer-
ing low-cost as well as high-performance SRAM-based FPGA devices.

FPGAs can be configured in two main ways:

Static Reconfiguration is the classical ability of FPGA devices to be reconfig-
ured when powered down. This feature is useful for cryptography and security-
sensitive applications. Cryptographic algorithms have a limited lifetime, the system
designer can provide new algorithms during the exploitation of the system. New
attacks can also be discovered and again the system designer can provide a more
robust version of the system.

Dynamic Reconfiguration is the ability of FPGAs to be reconfigured at runtime.
Xilinx has been supplying tools and mechanisms for this purpose for many years.
This feature allows the system to swap logic blocks thus allowing many applications.
However, the process also introduces security issues since portions of the bitstream
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need to be secured. The system designer may encrypt and authenticate these pieces
of hardware in order to avoid a malicious bitstream being loaded. This has to be done
inside the user logic since the SD is in charge of partial reconfiguration through
an internal port located in the user logic, called ICAP for Internal Configuration
Access Port. Partial reconfiguration security is not addressed in this book since it
is not applicable on all FPGAs, and also because the concepts developed to secure
classical bitstreams can be used for partial reconfiguration.

6.3 Confidentiality and Integrity of Data Processed by

Reconfigurable Platforms

Data processed by general purpose processors embedded in the static logic of FP-
GAs or by IPs implemented in the user logic are commonly stored in off-chip mem-
ories. In applications where physical adversaries are considered (e.g., set top box),
an attacker can retrieve data transiting on the bus, thereby challenging data confi-
dentiality, or tamper with them, thereby challenging data integrity. In this section
we first describe the passive and active attacks allowing an adversary to retrieve
or tamper with data transiting between the FPGA chip and the memory. Then we
describe potential countermeasures to this security issue and solutions we recently
proposed.

6.3.1 Threat Analysis

Confidentiality and integrity of data stored in off-chip memory is usually a security
concern when attackers with physical access to the device are considered (e.g., in
application like set-top box). However, the main trust assumption made is that the
processor chip is resistant to all physical attacks and is thus trusted. Moreover, the
cryptographic engine required for encryption and authentication are assumed resis-
tant to side channel attacks. We consider the adversary has full control of the data
stored in memory and transiting on the bus between the FPGA chip and the mem-
ory. We consider two kinds of physical attacks an adversary can carry out: passive
and active attacks. Passive attacks consist in probing the bus to retrieve the memory
content. Such attacks challenge the confidentiality of data in memory.

In an active attack, the adversary corrupts the data residing in memory or tran-
siting over the bus; this corruption may be considered as data injection since a new
value is created. Figure 6.1 gives the example of an attacked device where an adver-
sary connects his own (malicious) memory to the targeted platform via the off chip
bus.

We distinguish between three classes of active attacks, defined with respect to
how the adversary chooses the inserted data. Figure 6.2 depicts the three active
attacks; below, we provide a detailed description of each one based on the attack
framework in Fig. 6.1:



142 B. Badrignans et al.

Fig. 6.1 An example of a
framework of attack targeting
the external memory of a
computing platform

1. Spoofing attacks: the adversary exchanges an existing memory block with an
arbitrary fake one (Fig. 6.2-a, the block defined by the adversary is stored in the
malicious memory, the adversary activates the switch command when he wants
to force the processor chip to use the spoofed memory block).

2. Splicing or relocation attacks: the attacker replaces a memory block at address
A with a block at address B , where A �= B . Such an attack can be considered

Fig. 6.2 Three kinds of active attacks: (a) spoofing, (b) splicing and (c) replay
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as a spatial permutation of memory blocks (Fig. 6.2-b: the adversary stores the
content of the block at address 1 in the genuine memory at address 5 in the mali-
cious memory. When the processor requests the data at address 5, the adversary
activates the switch command so the processor reads the malicious memory. As
a result, the processor reads the data at address 1).

3. Replay attacks: a memory block located at a given address is recorded and in-
serted at the same address at a later point in time; by doing so, the value of
the current block is replaced by an older one. Such an attack can be considered
as a temporal permutation of a memory block, for a specific memory location
(Fig. 6.2-c: at time t1, the adversary stores the content of the block at address
6 in the genuine memory at address 6 in the malicious memory. At time t2, the
memory location at address 6 has been updated in the genuine memory but the
adversary does not perform this update in the malicious memory. The adversary
activates the malicious memory when the processor requests the data at address
6, thus forcing it to read the old value stored at address 6).

6.3.2 State of the Art

Two distinct strategies are described in the state of the art to thwart the active attacks
described in our threat model. Each strategy is based on different authentication
primitives, namely a cryptographic hash function and a message authentication code
(MAC) function. In this section, we first describe how these primitives allow for
memory authentication and how they should be integrated in tree structures in order
to avoid excessive overheads in on-chip memory.

6.3.2.1 Authentication Primitives for Memory Authentication

Hash Functions The first strategy (Fig. 6.3-a) that enables memory authentica-
tion consists in storing on-chip a hash value for each memory block stored off-chip
(write operations). The integrity of read operations is checked by re-computing a
hash over the loaded block and by then comparing the resulting hash with the on-
chip hash fingerprinting the off-chip memory location. The on-chip hash is stored
in the tamper resistant area, i.e., the processor chip, and is thus inaccessible to ad-
versaries. Therefore, spoofing, splicing and replay are detected if a mismatch occurs
in the hash comparison. However, this solution may have an unaffordable on-chip
memory cost: by considering the common strategy [17, 22, 38] of computing a fin-
gerprint per cache line and assuming 128-bit hashes and 512-bit cache lines, the
overhead will be 25% of the memory space to be protect.

MAC Functions In the second approach (Fig. 6.3-b), the authentication engine
embedded on-chip computes a MAC for every data block it writes in the physical
memory. The key used in the MAC computation is securely stored on the trusted
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Fig. 6.3 Authentication primitives for memory integrity checking

processor chip such that only the on-chip authentication engine itself is able to
compute valid MACs. As a result, the MACs can be stored in untrusted memory
because the attacker is unable to compute a valid MAC over a corrupted data block.
In addition to the data contained by the block, the pre-image of the MAC func-
tion contains a nonce. This enables protection against splicing and replay attacks.
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The nonce precludes an attacker from passing off a data block at address A, along
with the associated MAC, as a valid (data block, MAC) pair for address B , where
A �= B . It also prevents the replay of a (data block, MAC) pair by distinguishing
two pairs related to the same address, but written in memory at different points in
time. In read operations, the processor loads the data to be read and its correspond-
ing MAC from the physical memory. It checks the integrity of the loaded block by
first re-computing a MAC over this block and a copy of the nonce used in the write
operation and by then comparing the result with the fetched MAC. However, to en-
sure the resistance to replay and splicing, the nonce used for MAC re-computation
must be genuine. A naive solution to assure this requirement is to store them in the
trusted and tamper-evident area, the processor chip. The related on-chip memory
overhead is 12.5% in the case of computing a MAC per 512-bit cache line using
64-bit nonces.

6.3.2.2 Integrity Trees

In the previous section, we presented two authentication primitives that can prevent
the active attacks described in our threat model. These primitives require storage of
reference values—i.e., hashes or nonces—on-chip to thwart replay attacks. They do
provide memory authentication but only at a high cost in terms of on-chip memory.
If we consider a realistic case of 1 GB of RAM memory, the hash and MAC (with
nonce) solutions require respectively at least 256 MB and 128 MB of on-chip mem-
ory. These on-chip memory requirements are clearly not affordable even for high
end processors. It is thus necessary to “securely” store these reference values off-
chip. By securely, we mean that we must be able to ensure their integrity to preclude
attacks on the reference values themselves. Several authors suggest applying the au-
thentication primitives recursively on the references. By doing so, a tree structure is
formed and only the root of the tree (the reference value obtained in the last iteration
of the recursion) needs to be stored on the processor chip, the trusted area. There
are two existing tree techniques (in addition to those described in this work):

1. Merkle Tree [10] uses hash functions and is historically the first integrity tree. It
was originally introduced by Merkle [30] to authenticate digital signatures and
adapted for integrity checking of memory content by Blum et al. [10].

2. PAT (parallelizable authentication tree) [24] overcomes the issue of non-
parallelizability of the tree update procedure by using a MAC function.

General Model of Integrity Tree The common philosophy behind integrity trees
is splitting the memory space to be protected into M equal size blocks that are
the leaf nodes of the balanced A-ary integrity tree (Fig. 6.4). The remaining tree
levels are created by recursively applying the authentication primitive f over A-
sized groups of memory blocks, until the procedure yields a single node called the
root of the tree. The arity of the constructed tree is thus defined by the number of
children A a tree node has. The root reflects the current state of the entire memory
space; making the root tamper-resistant thus ensures tampering with the memory
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Fig. 6.4 General model of
2-ary integrity tree

space can be detected. How the root is made tamper-resistant depends on the nature
of f and is detailed below. Note that the number of checks of the verification of
the integrity of one leaf node required depends on the number of iterations of f

and thus on the number of blocks M in the memory space. The number of checks
corresponds to the number of tree levels L defined by: L = lgM .

6.3.2.3 Execute-Only Memory (XOM)

XOM [28] is a security solution from Stanford University. The XOM approach,
which provides memory protection, is based on a complex key management. The
main XOM features are data ciphering, data hashing, data partitioning, interruption
and context switching protection. Figures 6.5 and 6.6 provide an overview of the
XOM architecture and mechanisms. All the security primitives are included in the
trusted zone. The only security information that is not in the trusted zone are the
session keys. That is why XOM owns a complex key management to guarantee a
secure architecture.

The first version of XOM [28] is known to have security holes, like no protection
against replay attacks. In [45], the authors extended their proposal and replaced the
AES-based ciphering scheme with a system based on OTP to guarantee protection
against replay attacks and also to increase the performances of the system. Con-
cerning the global security level of the XOM architecture, the attack possibilities are
fully dependent on the integrity checking capabilities. To succeed, attackers must
be able to pass through the integrity check in order to execute their own program
or use their own data. They may exploit some collisions in the hash algorithm used.
For example, with MD5 the signature is 128 bits long. If attackers wish to attack the
system, they need to find two inputs that will produce the same result with MD5.
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Fig. 6.5 XOM architecture for write request

Fig. 6.6 XOM architecture for read request

So they have one chance out of 2128 to get the same result. The security level of the
XOM mainly depends on the hash algorithm used, because SHA-1 could be used
for integrity checking. In this case the signature would be 160 bits long and the
probability of success would be one out of 2160.

6.3.2.4 AEGIS

AEGIS [37, 40] is an additional memory security solution from Massachusetts Insti-
tute of Technology. The confidentiality in the AEGIS solution relies on OTP encryp-
tion [39]. This encryption method typically has a small impact on memory latency
at the cost of memory space. The solution used by AEGIS for integrity checking
is called cached hash tree. This hashing approach is similar to a Merkle tree [30]
but to increase the efficiency of the method, some hash tree nodes are stored in a
cache memory included in the secure zone. The advantage is that instead of com-
puting all the tree nodes to the root, the system only needs to compute the values
until one value from the secured memory is reached. The only weakness in this so-
lution is architecture performance. Architecture performance is fully dependent on
the size of the cache memory used to store the secured nodes. Architecture perfor-
mance also depends on the algorithm used for hashing. As mentioned above, SHA-1
computation requires 80 cycles and MD5 only 64. AEGIS thus appears to be a very
complete solution to protect memory and program. The overhead is high in several
domains. The silicon area increased by 1.9 [40]. The CPU core is the part that is the
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most affected by this overhead. Moreover, all the logic needed to control the specific
mechanisms contributes to increasing the area (OTP core and hash core). The global
architecture performances depend on parameters like the size of the protected mem-
ory and of the cache memory. For security concerns, like XOM, AEGIS depends on
the integrity checking capabilities of the hash algorithm used for the Merkle tree. In
[40], the authors use SHA-1 which leads to a 160 bit signature. This means that the
likelihood of a successful attack is one out of 2160.

6.3.3 Proposed Memory Authentication Techniques

In this section, we describe memory authentication techniques proposed recently.
We first present a new authenticated encryption mode, the Block Level AREA
(Added Redundancy Explicit Authentication), which provides data integrity and
confidentiality and a cryptographic engine, called PE-ICE (Parallelized Encryption
and Integrity Checking Engine), based on this mode. We then show that the Block
Level AREA, like the authentication primitives described in Sect. 6.3.2, have to be
integrated into a tree structure called TEC-Tree (Tamper-Evident Counter Tree), in
order to avoid excessive overheads in on-chip memory. In the last part of this sec-
tion, we present another approach named AES-TASC (Time Address Segment Ci-
pher) that allows the use of a security policy to reduce the overhead due to security
mechanisms.

6.3.3.1 Block-Level AREA and PE-ICE

Block-Level AREA Block-Level AREA [15, 17] (Fig. 6.3-c) leverages the dif-
fusion property of block encryption to add an integrity checking capability to this
type of encryption algorithm. To do so, the AREA (Added Redundancy Explicit
Authentication [20]) technique is applied at the block level:

1. Redundant data (an n-bit nonce N ) is concatenated to the data D we want to
authenticate to form a plaintext block P (where P = D||N ), ECB (Electronic
CodeBook) encryption is performed to generate ciphertext C.

2. Integrity verification is done by the receiver who decrypts the ciphertext block
C′ to generate plaintext block P ′, and checks the n-bit redundancy in P ′, i.e.,
assuming P ′ = (D′||N ′), verifies whether N = N ′.

Thus, in a memory write, the on-chip authentication engine appends an n-bit
nonce to the data to be written to memory, encrypts the resulting plaintext block
and then writes the ciphertext to memory. The encryption is performed using a key
securely stored in the processor chip. In read operations, the authentication engine
decrypts the block it fetches from memory and checks its integrity by verifying that
the last n bits of the resulting plaintext block are equal to the nonce that was inserted
during encryption (in the write of the corresponding data). [15, 17] propose a system
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on chip (SoC) implementation of this technique for embedded systems. They show
that this engine can efficiently protect read only (RO) data of an application (e.g.,
its code) because RO data are not sensitive to replay attacks; therefore the address
of each memory block can be efficiently used as a nonce.1 However, for Read/Write
(RW) data (e.g. stack data) the address is not sufficient to distinguish two data writes
at the same address but at two different points in time. To recover the nonce in a read
operation while ensuring its integrity, [15, 17] propose storing the nonce on chip.
They evaluate the corresponding overhead at between 25% and 50% depending on
the block encryption algorithm implemented.

PE-ICE A Parallelized Encryption and Integrity Checking Engine, PE-ICE was
designed [15, 17], based on the block level AREA technique to encrypt and authen-
ticate off-chip memory. However, to avoid re-encryption of the whole memory when
the nonce reaches its limit (e.g., a counter that rolls over), we propose to replace it
with the chunk address concatenated with a random number. For each memory block
processed by PE-ICE, a copy of the enrolled random value is kept on chip to make
it tamper resistant and secret. In the following, a PE-ICE configuration is defined
as an implementation of PE-ICE with a given block cipher. A PE-ICE configuration
is denoted PE-ICE-bw where bw is the bit width of the block processed by the un-
derlying block cipher. In this section we first describe a PE-ICE configuration. Then
we evaluate the performances of several PE-ICE configurations at runtime.

PE-ICE-160—A PE-ICE Configuration. The Rijndael algorithm is the block ci-
pher that won the NIST contest for a new block encryption standard. The related
standard is called AES [2] (Advanced Encryption Standard). AES processes 128-bit
blocks and enrolls 128, 192 or 256-bit keys. However, the original Rijndael [11]
block cipher supports any key and block sizes that are a multiple of 32 between 128
and 256. This leads to several configurations for PE-ICE based on this block cipher.
We studied three of them, PE-ICE-128, PE-ICE-160 and PE-ICE-192, that use the
Rijndael algorithm processing respectively 128-bit (AES), 160-bit (Rijn-160) and
192-bit (Rijn-192) blocks. For the sake of clarity, we only detail PE-ICE-160 con-
figuration in this chapter; for a description of the other configurations, the reader is
referred to [15].

PE-ICE shifts the physical address by inserting tags between payloads. This
shift must be transparent for the CPU, thus PE-ICE handles the address translation
(Fig. 6.7).

Memory Consumption The amount of memory consumed by PE-ICE depends
on the tag storage of the off chip memory and on the storage of the reference ran-
dom values for the on chip memory. The off chip memory overhead is defined by
the ratio between the tag and the payload bit widths. For PE-ICE-160, the off chip
memory overhead is 25%. The on chip memory overhead is defined by the ratio
of the bit-length of a random value used to protect an RW chunk against replay to

1Note that the choice of the data address as nonce also prevents spoofing and splicing attacks on
RO data when MAC functions are used as authentication primitives.
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Fig. 6.7 Layout of a PE-ICE-160 chunk before encryption

the bit length of the corresponding protected payload. For PE-ICE-160, the on chip
memory overhead is respectively 6.25% and 25% depending if it is 8 bits or 32 bits
long. As we show in Sect. 6.3.3.2, we proposed in [15, 18] a scheme to reduce this
overhead.

The cost of data authentication in PE-ICE can be evaluated by its overhead com-
pared to AES-ECB encryption. On average this cost is 22%. This latency overhead
is partially due to the increase in the intrinsic latency of the underlying block ci-
pher. The hardware cost of PE-ICE-160 and of the AES-ECB is approximately 80
Kgates. At no additional hardware cost and with a low latency overhead, we showed
that PE-ICE:

1. Strengthens AES-ECB encryption—the tag inserted before encryption prevents
an adversary from detecting when the same data is transferred twice by monitor-
ing bus transactions.

2. Provides data authentication in addition to data confidentiality.

Performance Evaluation Results Eight benchmarks [1] designed for embedded
systems were used in this evaluation, running on an ARM processor core. The sim-
ulation results for the base platform serve as the reference and are shown in IPC
(instructions per cycle) in Fig. 6.8 for two different data cache and instruction cache
sizes (4 KB and 128 KB). We observed that the performance slowdown was mainly
related to the data cache miss rate, see Fig. 6.9.

Figure 6.10 shows the simulation results of the platforms emulating the AES-
ECB engine, PE-ICE-128, PE-ICE-160 and PE-ICE-192, in IPC normalized to the
performance of the base platform. The AES-ECB engine chart clearly shows that
the overhead of PE-ICE is mainly due to encryption; in the worst case it is 50%
(CJPEG–4 KB) and 31.5% and of 14.3% on average for a 4 KB and 128 KB data
cache, respectively. This quite significant timing performance cost can be dramati-
cally reduced by using a wider processor-memory bus (e.g. 64 bits) and by running
the encryption algorithm at its maximum frequency. We evaluated the implementa-
tion of PE-ICE with several block ciphers and showed that it provides data integrity
in addition to data confidentiality with negligible hardware cost and performance
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Fig. 6.8 Simulation results of the base platform for two different data cache sizes (4 KB and
128 KB) and two different instruction cache sizes (4 KB and 128 KB)

Fig. 6.9 Data cache miss rate for the set of benchmarks used for performance evaluation

overhead compared to standard encryption. In [15, 16], we also showed that PE-ICE
is more efficient than the conventional approach in ensuring data confidentiality and
integrity. The conventional approach is called generic composition and consists in



152 B. Badrignans et al.

Fig. 6.10 Run time overhead
of AES-ECB encryption and
of PE-ICE configurations for
two data cache sizes
(4 KB–128 KB)

chaining encryption with authentication performed with a message authentication
code algorithm. We showed that a generic composition scheme can require 50%
more hardware resources than PE-ICE and has an 18% overhead compared to an
encryption only scheme. In order to decrease the on chip memory overhead and be
sure to prevent replay attacks, we propose to build a tree that uses the block level
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AREA as authentication primitive. In the next section, we describes the TEC-Tree
(Tamper-Evident Counter Tree) [18].2

6.3.3.2 The Tamper-Evident Counter Tree (TEC-Tree)

In the TEC-Tree [18] the authentication primitive f is the Block-level AREA
(Fig. 6.4). Thus, the authentication primitive tags its input with a nonce N before
ciphering it with a block encryption algorithm in ECB mode and a secret key K kept
on-chip. The block level AREA is first applied to the memory blocks to be stored off
chip, and then recursively over A-sized groups of nonces used in the last iteration
of the recursion. The resulting ciphered blocks are stored in external memory and
the nonce used in the ciphering of the last block created—i.e., the root of the TEC-
Tree—is kept on chip, making the root tamper resistant. Indeed, without the key, an
adversary cannot create a tree node and without the on chip root nonce he cannot
replay the tree root. During verification of a data block D, D’s branch is brought
on-chip and decrypted. The integrity of D is validated if:

• Each decrypted node bears a tag equal to the nonce found in the payload of the
node in the tree level immediately above;

• The nonce obtained by decrypting the highest level node matches the on chip
nonce.

The tree update procedure consists in:

• Loading D’s branch decrypting nodes,
• Updating nonces,
• Re-encrypting nodes.

TEC-Tree authentication and update procedures are both parallelizable because
f operates on independently generated inputs: the nonces. The distinctive charac-
teristic of TEC-Tree is that it allows for data confidentiality. Indeed, as its authen-
tication primitive is based on a block encryption function, the application of this
primitive on the leaf nodes (data) encrypts them. The memory overhead3 MOTEC of
TEC-Tree [18] is:

MOTEC =
2

A − 1
.

2TEC-Tree uses nonce in its design as redundancy for the block level AREA techniques. In [15],
we first proposed to build a tree—called PRV-Tree, for PE-ICE protected Random Value Tree—
similar to TEC-Tree except that it uses random numbers instead of nonces. The purpose of the
PRV-Tree is to decrease the probability for an adversary of succeeding a replay by increasing the
length of the random number while limiting the on chip memory overhead to the storage of a single
random number (the root of PRV-Tree).
3[18] give a different formula for their memory overhead because they consider ways to optimize
it (e.g. the use of the address in the constitution of the nonce). For the sake of clarity, we give
a simplified formula of the TEC-Tree memory overhead by considering that the whole nonce is
made of a counter value.
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Table 6.1 Architectural Parameters for Simulation

Merkle Tree PAT (Parallelizable
Authentication Tree)

TEC-Tree
(Tamper-Evident
Counter Tree)

Splicing, Spoofing
Replay resistance

Yes Yes Yes

Parallelizability Tree Authentication
only

Tree Authentication
and Update

Tree Authentication
and Update

Data Confidentiality No No Yes

Memory Overhead 1/(A − 1) 3/2(A − 1) 2/(A − 1)

Comparison with Existing Trees Table 6.1 sums up the properties of the existing
integrity trees. PAT and TEC-Tree are both parallelizable for tree authentication and
update procedures while preventing all the attacks described in the state of the art.
TEC-Tree additionally provides data confidentiality. However, TEC-Tree and PAT
also have a higher off chip memory overhead than Merkle Tree, in particular because
they require storage of additional meta-data, the nonces.

6.3.3.3 AES-TASC

Memory Security Architecture The AES-TASC (Time Address Segment Ci-
pher) approach, shown in Fig. 6.11, relies on a hardware security core (HSC) fash-
ioned from FPGA logic and embedded memory that is able to manage different
security levels according to the data address received from the processor. A small
lookup table (the security memory map or SMM) is included in the core to store the
security level of memory segments accessed by tasks. Three security levels are pos-
sible for each memory segment: confidentiality only, confidentiality and integrity, or
no security. The implementation of the security policy in the SMM is independent
of the processor and associated operating system. The configuration of the SMM
and the rest of the core is contained in the encrypted FPGA bitstream. The isolation
of the SMM makes it secure against software modifications at the expense of soft-
ware level flexibility. New multi-task applications require a new FPGA bitstream to
achieve a new memory security protocol.

Security Level Management The increased use of soft and hard-core processors
in FPGAs has facilitated the use of operating systems in FPGA based systems. The
use of an OS provides a natural partitioning of the application code and data. In
Fig. 6.11, the application instructions and stack data of Task 1 have different secu-
rity levels. In this case, the application designer may wish to keep task processor
data secure to prevent copying. The application code may be less sensitive, con-
sequently eliminating the need for security. Our approach is designed to be used
in conjunction with a memory management unit (MMU). This unit ensures that a
task will not read or write memory segments that are not associated with it, which
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Fig. 6.11 Overview of the memory security system

creates a security risk if the security levels differ. The availability of configurable
security levels has an advantage over requiring all memory to perform at the high-
est security level of confidentiality and integrity checking. The amount of on chip
memory required to store tags for integrity checking can be reduced if only exter-
nal memory that requires security is protected. In addition, the latency and dynamic
power of unprotected memory accesses is minimized since unneeded security pro-
cessing is avoided. FPGA reconfigurability enables optimization of the required on
chip storage and modification via a new bitstream.

Memory Security Core Architecture Confidentiality in our system is similar
to the AES-based encryption scheme called Binary Additive Stream Cipher [29].
Rather than encrypting write data directly, our approach first generates a keystream

using AES that operates using a secret key stored in the FPGA bitstream. In our im-
plementation, a time stamp value, the data address, and the segment ID of the write
data are used as input to an AES encryption circuit to generate the keystream. These
parameters are required to protect the system against spoofing, replay and realloca-
tion attacks. This keystream is then XORed with the data to generate ciphertext that
can be transferred outside the FPGA. The time stamp is incremented during each
cache line write. The same segment ID is used for all cache lines belonging to a
particular application segment (i.e. same level of protection). The advantage of the
AES-TASC (AES in time address segment counter mode) approach over direct data
encryption of the write data can be seen during data reads. Keystream generation
can start immediately after the read address is known for read accesses. After the
data is retrieved, a simple, fast XOR operation is needed to recover the plaintext.
If direct data encryption is used, the decryption process would require many FPGA
cycles after the encrypted data arrives at the FPGA. Thus, the use of AES-TASC
significantly reduces the read latency of security. One limitation of this approach is
the need to store the time stamp (TS) values for each data value (usually a cache
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Fig. 6.12 Hardware Security Core Architecture

line) on chip so it can be used later to check data reads. A high level view of the
placement of security blocks is given in Fig. 6.12.

The percentage performance loss due to our security scheme is higher for systems
that include smaller caches. This is to be expected, since smaller caches are likely to
have a larger number of memory accesses, increasing the average fetch latency. Per-
formances are directly related to the designers security policy. A very conservative
approach in terms of security will lead to a larger performance penalty whereas a
fine tune security policy will lead to a limited reduction in performance. In practice,
the use of programmable protection allows the impact on application performance
to be reduced compared to uniform protection. An average of 12% performance
reduction was observed for a set of applications from multimedia and communica-
tion domains. This result compares favorably with other cryptographic approaches
where up to 50% performance loss can be observed. The same remarks apply to
the memory overhead, which is directly impacted by time stamp and integrity tag
values that consume secured on chip embedded memory and energy efficiency. Ex-
periments that have been conducted have shown the benefit of a flexible approach
to security.

6.4 Secure Bitstream Management

FPGAs are very specific silicon devices. Like microprocessors, they can be pro-
grammed and reprogrammed, but in the case of programmable logic devices the
architecture of the chip is changed according to a binary file called a bitstream. In
contrast, microprocessors are only programmed with instructions. If this hardware
reconfiguration capability is attractive for low-volume applications and opens a wide
range of opportunities for engineers or researchers, it can be a drawback in the field
of security sensitive applications. Therefore in the following section, we analyze the
impact of this feature on the robustness of a secure system.
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6.4.1 Threat Model

The first threat to a bitstream is an attacker who succeeds in retrieving it from the
system. The easiest way is to use the read-back capabilities of most FPGAs. This
function, generally used for debugging, allows the bitstream to be extracted from
an FPGA device at run time. Of course, this feature has to be disabled in a secure
context, but this not sufficient. For low cost SRAM FPGAs, bitstream retrieval is
very simple, even without a read-back mechanism. Indeed, the bitstream is stored
in an external non-volatile memory, so the attacker can probe the data line between
the FPGA device and this memory in order to access the bitstream. This threat does
not exist for non-volatile FPGAs because configuration data are stored inside the
device, so only intrusive attacks are possible. Bitstream encryption mechanisms are
available for most advanced FPGAs. A secret encryption key is stored inside the
programmable device, while for volatile FPGAs, an external battery is used to store
key values. Thus the device accepts an encrypted bitstream and uses its dedicated
decryption engine to obtain deciphered data. Attackers cannot decrypt the bitstream
without the secret key. With this feature, attackers have to discover the secret key
using intrusive attacks to recover bitstream data, for example. In FPGA devices with
embedded configuration memory, if the designer has taken the trouble to prevent
read-back, bitstream retrieval from the device is only possible using invasive attacks.
However, if the design is intended to be updated during its lifetime, the bitstream
will travel through insecure channels such as public networks, and the bitstream
consequently needs to be protected using cryptographic mechanisms even for non-
volatile FPGAs.

When an attacker retrieves a plaintext FPGA bitstream, many data are accessible
and may be critical. The first threat is bitstream reverse engineering, some software
projects claim to succeed in Xilinx bitstream reverse engineering [32]. Thus attack-
ers could access all data stored in the FPGA architecture, possibly secret crypto-
graphic keys or non-public cryptographic algorithms. Attackers can also inject their
own bitstream into the programmable device thereby rendering reverse engineer-
ing unnecessary, instead they can simply create a dummy system. For instance if
the FPGA chip is used to encrypt data written to a hard disk drive, the attacker
could build a system that does not cipher data. Another threat is fault injection into
the bitstream [7]. Small modifications can deeply modify the system without the
knowledge of the architecture. The last FPGA drawback is cloning. An attacker in
possession of the configuration data can clone the device ignoring potential intel-
lectual property rights. This is not a real security weakness, but rather an industrial
threat that is specific to programmable devices. A bitstream is the image of the
FPGA underlying architecture, it is similar to the ASIC “layout”, for that reason,
configuration data have to be well protected. In the following section, we provide a
more detailed state of the art on these aspects.
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Fig. 6.13 Overview of the static logic needed to enable bitstream encryption

6.4.2 State of the Art

FPGA vendors are generally sensitive to the security issues of FPGA based designs;
hence they provide tools and mechanisms that allow system designers to ensure an
acceptable level of security according to their requirements. Below we review cur-
rently available security features in main FPGA devices. However, we only consider
the leading FPGA vendors (Xilinx, Altera, Lattice and Actel).

6.4.2.1 Bitstream Encryption

Most often, the first security feature offered by FPGA vendors is bitstream encryp-
tion. This is very attractive even for applications that have no security concerns.
Bitstream encryption was originally proposed to protect the confidentiality of any
intellectual property included in the design. Without this precaution anyone gaining
access to the bitstream can at least clone the design in another FPGA.

To allow system designers to encrypt bitstream and thus the FPGA chip to de-
crypt it, FPGA vendors must add to their devices a decryption engine, a non-volatile
key register and control logic that manages configuration (see Fig. 6.13). During the
manufacturing stage of a product, the system designer introduces a random and
secret key in the non-volatile memory. Then each time the FPGA device reloads
its configuration, the decryption engine decrypts the bitstream that comes from the
configuration port and transmits the result to the configuration logic. Thanks to this
mechanism, bitstream confidentiality is ensured. Today many FPGA devices include
a decryption engine to protect the intellectual property of their customers. Currently,
Xilinx and Altera provide encrypted bitstream solutions for high end FPGA chips
in the Virtex and Stratix families respectively [8, 43]. On the other hand, Lattice
and Actel provide solutions even for low cost devices [6, 27]. The latest Xilinx low
cost devices also include bitstream encryption but only for large FPGA matrices
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(Spartan 6, Virtex 6). Since volatile FPGA vendors generally choose to avoid ex-
pensive Flash process, the FPGAs require an additional external battery to store the
bitstream decryption key value. However, the latest Xilinx devices include fuses that
allow the user to store the cryptographic key without an external battery. Bitstream
encryption is a non-negligible cost for FPGA vendors; they need to add a decryption
engine that provides a reasonable throughput to be sure the configuration time is ac-
ceptable. However for Flash-based FPGAs such as Actel, the configuration time is
less critical since they do not need to decrypt the bitstream at each power up. The
static logic includes the decryption engine and the key memory, so the security level
of the bitstream protection is determined by the FPGA vendor. For instance, if the
FPGA vendor does not take side channel attacks on configuration logic into account,
a lot of mechanisms that can be built on bitstream trustworthiness will be useless.

6.4.2.2 Bitstream Integrity Checking

If a message is only encrypted, nothing attests to its integrity, because classical en-
cryption does not ensure it. Therefore, in addition to encryption, FPGA vendors pro-
vide mechanisms to check bitstream integrity at each configuration. In the absence
of any integrity checking mechanisms, attackers can easily modify an encrypted
bitstream. However, since they do not know the decryption key value, they cannot
predict the effect of the modification. Two main effects can be obtained: (i) an incor-
rect bitstream loaded in the FPGA chip could damage the chip and the whole FPGA
based system; (ii) the bitstream does not damage the FPGA device but modifies the
behavior of a part or of the whole design in an uncontrollable way. In the latter case,
attackers can target a particular area of the bitstream (and therefore of the design),
for instance they could tamper with the embedded RNG to generate weak keys. So
FPGA vendors have to include mechanisms that are able to detect bitstream mod-
ification. This feature has to be provided by FPGA manufacturers, not by system
designers, at least during the bitstream loading time. Most FPGAs use 32- or 16-bit
cyclic redundancy code (CRC) combined with AES-CBC encryption. However, the
primary aim of CRC is to detect and correct errors during bitstream transmission.
As this is not a cryptographically secure mechanism, the probability of loading an
unauthentic bitstream is not negligible, even if the bitstream is encrypted. In the
FPGA context, a corrupted bitstream can destroy the device by causing short cuts.
This threat can be considered as a fault injected into the configuration logic. The
latest Actel devices [6] and series 6 Xilinx FPGAs (Spartan and Virtex 6) include
cryptographically secure mechanisms to ensure integrity. Actel claims to implement
a real cryptographic integrity checking mechanism by using an AES block for both
decryption (CBC mode) and integrity checking (AES-based MAC), a message au-
thentication code is included in the bitstream and the configuration logic checks it
before starting the design (Fig. 6.14). For Actel, configuration time is not critical
since the bitstream is loaded only once. Series 6 Xilinx FPGAs [44] include an in-
tegrity checking engine in the static logic using the SHA-1 algorithm. This engine
checks bitstream trustworthiness while the AES engine is decrypting it, in order to
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Fig. 6.14 Actel’s integrity bitstream mechanism

save configuration time. This mechanism is based on an HMAC algorithm that uses
SHA cryptosystem with a 256-bit key.

Cryptographic mechanisms that ensure both integrity and confidentiality already
exist, they are known as Authenticated Encryption (AE) algorithms. Therefore, the
academic literature proposes secure schemes that are suitable even for volatile FP-
GAs. These solutions can be implemented using a block cipher in a particular mode
of operation, [35] proposes to use the EAX mode and provides time and area over-
head which appear to be suitable for volatile FPGAs. Similarly, [12] proposes to use
two AES cores and [26] suggests the AES-GCM mode.

6.4.2.3 Locking Reprogramming

In most SRAM FPGAs, there are no non-volatile elements and so the bitstream
protection key memory is powered by an external battery. The corollary is that an
attacker with physical access to the system can remove the battery and erase the key.
Moreover, even when the key is initialized and the battery present, the FPGA chip
will accept unencrypted bitstream that an attacker can easily generate. The effect
on security is that attacker can load a malicious bitstream. One solution is to add
a design authentication key in the bitstream used by an external trusted party to
authenticate the design. The other solution, which is more convenient since it does
not require an external party, is to lock the FPGA device to only accept encrypted
bitstream. Another extreme solution is to prevent any further configuration.

Actel has provided this locking feature for a long time, obviously in anti-fuse
based FPGAs since these are programmable only once, but also in the ProASIC 3
and Fusion families [4]. This mechanism, called Flash Lock, acts like a password,
the system designer sets the key (password) in the FPGA chip then the SD can
choose among different security parameters. The designer can prevent the FPGA
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bitstream being read or written without the proper password, and once unlocked,
the bitstream can be sent in plaintext or only encrypted depending on SD policy. If
the SD wants to allow further remote updating without revealing the password key,
he can configure the FPGA device to accept only encrypted bitstream, in which case
the bitstream can be sent over an untrusted network; in this case FPGA chip is not
locked (i.e. it accepts encrypted bitstreams without the password).

A more drastic solution provided by Actel in their ProASIC and Fusion families
is to disable any further reprogramming even with a password key. Obviously any
further remote update is then impossible. However this solution can be interesting
for very sensitive applications that need to avoid cryptography usage when possible,
mainly because secret keys can be retrieved in many different ways (such as physical
attacks or even social engineering).

Finally, the latest Xilinx and Altera FPGAs include a new feature that enables
system designers to lock the reprogramming of the device. To avoid the cost of Flash
technology, Xilinx uses eFuse technology to implement this feature. The solution
is flexible since a battery powered key can still be used depending on application
requirements, if fast key erasure is needed, battery solutions are best. In order to use
eFuse memory, the system designer has first to program a key in this memory. At
this point he can still read and write the bitstream key in order to check the value,
and if the value is valid, can lock the FPGA device by programming another eFuse
register that disables any further read and write access to the key register; moreover
one bit in this control register allows the SD to constrain the FPGA chip to only load
bitstreams that are encrypted with the eFuse key. In this way, attackers who do not
know the bitstream key cannot load a malicious design in the FPGA.

6.4.3 Remote Reconfiguration

Remote updating of hardware systems is a convenient service enabled by FPGA-
based systems. This service is essential in applications like space-based FPGA sys-
tems or set top boxes. However, remote update schemes have to consider replay
attacks, as described in Fig. 6.15. This attack consists in simply recording a bit-
stream corresponding to a version of the FPGA design, and then replaying it later
to reintroduce security breaches that have been corrected by the system designer in
the latest bitstream version. According to current bitstream encryption mechanisms,
the attack is possible even if the bitstream is encrypted.

6.4.3.1 Related Work

Few academic or industrial studies have addressed this attack. In [35] and [12]
the keyed hash is computed only over the received bitstream. As previously men-
tioned, most current FPGA vendors do not provide strong bitstream integrity check-
ing mechanisms, and none have addressed the replay attack issue. In all cases, the
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Fig. 6.15 Replay attack of an FPGA bitstream

FPGA configuration logic is unable to distinguish between different (keyed hash,
bitstream) pairs legitimately generated by the SD in the past. As a result, an adver-
sary who replays a bitstream and its keyed hash will succeed in his attacks. A replay
is particularly dangerous for system security because even if bitstream encryption is
enabled by the FPGA’s static logic, it allows for system downgrading. The purpose
of a bitstream update triggered by the SD may be to remove system vulnerabilities,
so by replaying the previous FPGA configuration, an attacker can effectively pre-
clude security-critical updates. In the following sections, we provide solutions to
counter such an attack.

Existing bitstream integrity solutions prevent spoofing of the bitstream but are
unable to prevent a replay attack and the bitstream is consequently exposed to sys-
tem downgrade threats. In [6, 12, 35] the keyed hash is computed only over the
received bitstream. For that reason, the FPGA configuration logic is unable to distin-
guish between different (keyed hash, bitstream) pairs legitimately generated by the
SD in the past. As a result, an adversary who replays a bitstream and its keyed hash
will succeed in his attack. Recent work on reconfigurable trusted computing pro-
poses FPGA-based implementations of the Trusted Platform Module (TPM) [14].
This work leverages TPM functionalities to provide a secure update of the FPGA
bitstream. In addition, [36] proposes an implementation of TPM on current FPGA
technologies that does not require bitstream encryption. [36] assumes that reverse
engineering of the bitstream is too difficult to achieve and relies on a trusted external
non-volatile memory.

[13] introduces the issue of bitstream replay attacks. The author suggests two
different avenues of research to solve the problem. The first requires the SD to im-
plement additional security features in the user logic to send authenticated messages
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to a trusted authority, who then attests to the version of the running FPGA configu-
ration. This suggestion is explored in this section (see 6.4.3.2). While this approach
fits the general reasoning of FPGA vendors, i.e., that an SD who wants a specific
functionality should pay for it himself by developing it in the user logic rather than
it being hardwired and supplied to everyone who buys FPGAs, we do not believe it
is the best solution. Firstly, it requires the implementation of a cryptographic engine
in the user logic to set up an authentication channel and a challenge-response pro-
tocol with the SD. This is not an efficient solution, since the one already provided
in secure FPGAs for bitstream encryption could also be used for that purpose if the
scheme was implemented in the static logic (i.e. as part of the bitstream loading
logic). Secondly, the SD in need of the replay-resistant feature for his design is not
necessarily a security expert; hence, custom implementation of a replay-resistant
system can result in unreliable solutions. Consequently, we suggest mechanisms
that require less security expertise and allow the SD to lock the FPGA based system
to a particular bitstream version.

[13] also suggests a second approach that use nonces in the authentication pro-
cess to ensure the freshness of the bitstream. [13] does not, however, define the
architecture and protocols that would be necessary to build a replay-resistant bit-
stream authentication mechanism. As this solution is developed and evaluated in
[9], we do not present it here and interested readers should refer to this paper for
further information.

Based on these studies, it is clear that system designers lack efficient solutions
to prevent bitstream downgrade and more generally to ensure bitstream security.
Therefore, in the following sections we propose two possible solutions along with
their advantages, drawbacks and limitations.

6.4.3.2 Contribution to Remote Configuration Security (1): FPGA Polling

Principle The first solution can be applied to any FPGA device that supports
bitstream encryption and integrity checking. Bitstream encryption is used to hide a
value related to the bitstream version; each new release of the bitstream will contain
a new value, called TAG. In addition to this TAG, the encrypted bitstream contains
a unique value that aims at identifying a particular device, each device contains its
own identifier, called KID. Figure 6.16 describes this layout.

For security reasons, inner FPGA logic (user logic) cannot access the bitstream
encryption key. Thus designers cannot use this key directly to perform cryptographic
operations. However, designers can hide secrets in the encrypted configuration bit-
stream. These values may be secret or private keys stored in user logic such as look
up tables or embedded RAM blocks.

As suggested by Saar Drimer in [12] these secrets can be used to authenticate
the bitstream. If one bitstream decryption key is kept secret by the system designer
for each FPGA chip, only the FPGA chip containing the relevant key can decrypt
the authentication secret. This allows authentication of the design running on the
FPGA. The key can also be used to check if the version of the secret corresponds to
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Fig. 6.16 Key equipment needed for Solution 1

the current genuine version of the design. These two values are used in the proposed
protocol to ensure authentication of both the transaction and the current bitstream
version. Since this solution can be applied in any FPGA chip that includes a bit-
stream encryption feature, we assume that like in most SRAM-based FPGAs, there
is no internal non-volatile memory and that the FPGA design cannot store the cur-
rent version number because it does not have an embedded trusted reference. In
this solution, the SD needs to implement a cryptographic engine and glue logic able
to perform authentication with an external trusted party (TP) to authenticate the
bitstream version. The proposed solution consists in regular polling of the FPGA
bitstream version by the external trusted party who also knows the TAG and the KID

values. The trusted party could be the system designer himself but it could also be an
external processor or system. The trusted party regularly sends a nonce to the FPGA
chip that replies with an encrypted value. This encrypted value is the concatenation
of the nonce with the TAG ciphered with KID. The trusted party can check that the
bitstream version is valid by checking the TAG value, but also that the response is
not a replay using the nonce. These two checks are made using KID to decipher the
response; they are thus authenticated according to the FPGA device concerned.

In the following, we consider that the FPGA device and the trusted party are
located on the same board, that all the considerations of this solution can be applied
to a remote trusted party (access through Internet for instance) and since all the
communications are tagged, authenticated and encrypted, that they are not subject
to attacks. How the SD securely updates the trusted party is beyond the scope of
this book, although he could a secure microprocessor able to securely store key
materials, for instance, but in this case, would need to include a mechanism in the
device to avoid replay attacks on trusted party updates.

Platform Initialization First, the SD initializes the platform by setting a secret
key to decrypt the bitstream. To do so, he uses the appropriate tools and mecha-
nisms provided by FPGA vendors. This key must remain secret. Next, he initializes
the trusted party that is located on the FPGA based device, loads a TAG that does not
need to be secret (0 for instance) and a key KID that will be used to ensure platform
authentication. He can optionally load the initial bitstream in the FPGA configu-
ration memory (which could be inside the FPGA chip in the case of non-volatile
FPGAs).
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Remote Update Process Detail Once the platform is initialized and the bitstream
is loaded in the FPGA user logic, polling of the trusted party (TP) can begin. The
goal of polling is to check that the bitstream version is genuine.

The process described here requires that an encryption engine is embedded in the
FPGA device that will be used to authenticate the current version of the bitstream
used. The encryption algorithm can be of any kind (i.e. stream cipher, block cipher,
asymmetric) but a symmetric block cipher may be best because these algorithms are
compact and easy to implement in FPGAs. A standard AES engine can be used for
this purpose.

When the SD wants to provide a new version of his FPGA design, he has to re-
motely modify the FPGA bitstream and also the trusted party TAG value. However,
he can send the bitstream securely since its integrity and confidentiality are ensured
by the FPGA device. Alternatively, he can send the new TAG version to the TP using
a secure network connection (for instance SSL). Once the bitstream is loaded into
the FPGA chip and the TAG is changed in the TP, the polling process can (re)start.

Assuming that the AES algorithm is used, the proposed polling mechanism can
be described as follows:

1. The trusted party sends a nonce to the FPGA device. This nonce will be used
later to check that the FPGA response is genuine, i.e. not a replay of an old
FPGA response. The method used to send the nonce is platform-dependent. For
instance it could be a serial link between the TP and the FPGA, or if the TP is a
remote server, it could be over Internet.

2. The FPGA chip receives the nonce and computes its response. To do so, first
it concatenates the nonce and its current TAG value. Then it authenticates this
concatenation using its embedded signature engine and its identity key. Since the
KID value is only known by the SD, the FPGA device and the TP, this response
cannot be generated by an attacker.

3. Once the answer is computed, the FPGA chip sends the value to the TP, and since
the response is encrypted, an attacker has almost no chance of generating a valid
response. If an attacker tries to modify this answer, the TP will reject it, which
can only result in a denial of service.

4. On reception, the TP decrypts the FPGA response using KID. The decrypted
value is then compared to the concatenation of its own copy of the nonce and its
TAG value.
a. If these values are correct, TP can continue its polling process as the current

bitstream version is genuine.
b. If only the TAG value is different, this means that the FPGA device is running

a different bitstream version than the genuine one. TP then applies the system
designer policy, which could be to turn off the whole system, or to reload a
genuine version in the FPGA configuration memory.

c. If only the nonce is different, this means an attacker is probably trying to
replay an old answer given by the FPGA chip as the genuine version. To do
this, he lets the FPGA device be upgraded to the genuine version, then records
a set of FPGA response. After this stage, the attacker performs a downgrade
of the FPGA bitstream (recorded from a previous remote update), and then
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Fig. 6.17 Graphical representation of the protocol

tries to replay the old FPGA answers. The nonce ensures that this attack is not
applicable. Once again the TP applies the system designer policy.

d. If both the TAG and the nonce are invalid, the cause of the error is harder to
determine, maybe it is simply a transmission error due to the channel between
the FPGA chip and the TP. So depending on the SD policy, the trusted party
may try to poll the FPGA device one more time discarding this failure.

Figure 6.17 is a simplified graphic representation of the polling procedure.

Security Analysis The main security drawback of this solution is that the KID

value has to be shared between three different entities: the SD, the FPGA chip and
the trusted party. This means that attacks are more likely and that more entities have
to be trustworthy. Next, the system designer has to implement a decryption engine in
the user logic that is subject to physical attacks like any cryptographic algorithm im-
plementation. However, the SD may not be a security expert and could consequently
introduce weaknesses in the protocol or in the implementation. The update of the
trusted entity must also be realized by the SD and can result in threats in his proto-
col. The polling frequency has also an impact on system security. Security does not
need to be very high to counter an attack between two polls. The attacker first needs
to replay an old version. This operation can take a relatively long time (a few mil-
liseconds) depending on the FPGA bitstream loading speed. Next the attacker has
to perform the attack. Finally he has to reload the genuine bitstream before the next
polling of the TP. Therefore the SD should choose the pulling frequency according
to requirements of his particular threat model.

Cost Evaluation The authentication engine that generates responses inside the
FPGA may be symmetric or asymmetric. Both allow secure implementation of the
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solution, but the symmetric solution is less convenient than the asymmetric one.
With a symmetric cipher, if anyone needs to check the key, they need to have this
key. The solution can be made with an AES block used as a MAC. Whereas an
asymmetric cipher can be checked without compromising its secrecy. In counter-
part, asymmetric ciphers are more compute intensive operations. So the choice will
depend on the application.

It should be noted that an existing cryptographic engine in the user logic can be
reused by the SD to perform authentication responses. The mean performance of
this engine will be reduced since some operations will be reserved for the version
checking protocol, meaning the application cannot use it at this time. The overhead
is directly related to the polling frequency specified by the trusted party.

Assuming that the SD decides to use a dedicated cryptographic engine to imple-
ment this solution, the cost could be relatively high; especially if the FPGA device of
the application has limited resources. Obviously the asymmetric approach requires
much more logic and time to compute the response. But the cost of the symmet-
ric approach is also non-negligible if the AES engine is not reused by the SD. The
cost of the additional logic gates needed to implement the protocol is negligible
compared to the cost of a hardware cryptographic engine.

Conclusion The proposed solution allows the TP to securely monitor the FPGA
bitstream version using existing SRAM based devices. However this is not the ideal,
perfectly convenient solution. First it entails a non-negligible cost for the SD. Sec-
ond, the entity that wants to check the design version has to question the device.
The SD must also find a polling frequency that is not too high in order to main-
tain reasonable performance, and not too low to avoid replay attacks between two
polling sequences. Moreover, this process forces the SD to include secure key man-
agement in his design. He must manage the bitstream key, embed an identity key
and an update TAG inside the encrypted bitstream. All these drawbacks are due to
the fact that the FPGA device itself does not check if a bitstream replay attack is
underway. Unfortunately, this is the only way to ensure update security for most
current FPGAs. The ideal solution would be to lock the FPGA chip to only one
bitstream version, and provide a secure solution to the SD to remotely change the
current genuine bitstream version. The following section addresses this need.

6.4.3.3 Contribution to Remote Configuration Security (2): Using Embedded

Non-volatile Memory

Finding a solution to lock current FPGAs to a bitstream version is not easy, mainly
because it requires that the FPGA is able to store a reference of the current bitstream
version TAG. It is possible to implement an AES engine and the comparator, as men-
tioned in our first proposal above. But dealing with non-volatile storage of the TAG
is more problematic. User logic is by nature volatile (even on Flash based FPGAs),
and the TAG value cannot be stored inside the bitstream since, in the threat model,
the attacker could replay an old bitstream. It cannot be stored in an external memory
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Fig. 6.18 Overview of the equipment needed for the second proposal

either since the attacker could replay the memory content. So the TAG value must be
stored in an embedded non-volatile memory. This memory must be protected from
external dumping and tampering, and must also be usable by user logic to enable the
secure TAG update that will be performed by the FPGA design. Some Actel FPGAs
[6] include a feature called Flash ROM. This non-volatile memory can be read from
inner logic and can be programmed via JTAG with an encrypted bitstream. How-
ever the FROM is not writable from inner logic, so a secure TAG update mechanism
cannot be used. In fact, the ideal solution would be to enable the FPGA device to
perform the TAG update by itself, although such a mechanism could not use exter-
nal JTAG since an attacker would be able to replay any communication performed
using JTAG. For that reason, a FROM could not be used to enhance solution 1. How-
ever, FUSION FPGAs from Actel [5] include a more interesting feature: a user flash
memory. This non-volatile memory is accessible from user logic for both read and
write operations. In addition, using a secret enables it to be protected against dump-
ing and tampering from external inputs and outputs such as the JTAG port. Thanks
to this feature, solutions can be found to lock such an FPGA chip to a particular
bitstream version and to remotely modify the version number.

Next we present a minimum but nevertheless secure solution, whose goal is to
minimize hardware overhead and key management for the system designer. This is
why the solution does not include complex cryptographic algorithms.

Principle The goal of this secure update mechanism is to lock the FPGA to a
specific version in order to prevent replay attacks.

Generic Design Overview Figure 6.18 shows the FPGA design that enables a
secure remote update of bitstream mechanism to be implemented. The FPGA is
composed of three parts. The first part, static logic, is hard-wired and cannot be
configured. It contains a deciphering module that protects the confidentiality and
integrity of the bitstream, and its key. This key, named K, is only known by the
FPGA and the SD. The second part, user logic, can be configured by the SD and
contains a bitstream version verification mechanism. It is composed of a finite state
machine (FSM) able to manage:
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Fig. 6.19 Graphical representation of the protocol

• A network controller to enable the update to be performed remotely.
• A non-volatile memory controller to store a first power up flag, the current bit-

stream version number and keys shared with the SD.
• A block cipher to ensure mutual authentication of the FPGA and the SD.

The third part, user NVM, contains three keys shared with the SD. They must be
unique for each FPGA and are used to encrypt the tag:

• Kreq: for the Update command.
• Kack1: for the Update command acknowledgment.
• Kack2: for the new bitstream version and acknowledgment of start up on the cor-

rect device.

Since the goal is to lock the FPGA to a particular version, the NVM also contains
the value indicating the current genuine version. This value, named TAG, can be
only incremented by the SD. It will be compared to the tag contained in the user
logic, also named TAGUL (refer to Fig. 6.18). Each bitstream version contains its
own TAGUL. In practice, it is a constant in the design source code: version zero is
tagged with a zero, version one with a one, and so on. The NVM is written the first
time from outside FPGA chip in a trusted zone before being locked using the FPGA
vendor mechanism [3]. After locking, the NVM can be read and written only from
the user logic.

Update Process Figure 6.19 focuses on communications between the SD and the
FPGA. It explains the process used to check that the current bitstream version is
genuine and to securely implement this non-volatile value for a future update. The
update process is described in more detail below.

Update command: This command increments TAGF to prepare the FPGA to an
update. The SD sends the update command containing the tag encrypted with the
Kreq as cipher key to the FPGA. After decryption, the FPGA compares the tag
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contained in his own bitstream (TAGUL) and the tag sent by the presumed SD. If
they are different, the FPGA continues to work and waits for a new update com-
mand. Otherwise it implements the TAGF and starts to encrypt the new tag with
the cipher key Kack1. To inform the SD that the tag increment command has been
received, the FPGA sends the result of the encryption. The design is stopped.

Download a new bitstream version: The SD sends the new ciphered bitstream,
with its MAC, to the FPGA. When the new design starts up, the FPGA performs
the new tag encryption using Kack2 as cipher key and sends the result to the SD.
This acknowledgment informs the SD that the new bitstream has been correctly
downloaded to the right FPGA and that the design has started.

Bitstream version verification: Each time the design starts up, it checks itself that
TAGUL and TAGF are the same. If they are different, a replay attack has been
detected and an alarm (a signal in the design) is triggered that can be used by the
SD to apply his policy. He can for instance stop or destroy the system, or enter a
degraded mode.

Security Analysis This analysis focuses on bitstream replay and remote DoS
attacks. Our scheme assumes that the FPGA vendors encryption and integrity veri-
fication mechanisms are secure. For instance, the Actel mechanism implemented in
the static logic checks the bitstream integrity using a MAC while the device is still
operating. If the MAC validates the bitstream, the device will be erased and pro-
grammed. Otherwise, the device will continue to operate uninterrupted and will not
take the new bitstream into account. The tag is encrypted with three different keys
to prevent replay attacks. Indeed, to avoid the attacker responding by pretending to
be the device or the SD, only one-time messages (key-tag pairs) are transmitted over
the untrusted network. Since, for a bitstream version, the tag is the same for all the
FPGAs, Kreq, Kack1 and Kack2 must be unique for each device.

In the step, which is to download a new bitstream version, the new TAG cannot
be spoofed because its integrity has been checked thanks to a MAC. For the same
reason, an attacker cannot replace this bitstream with his own. The bitstream boot
up acknowledgment enables update failures to be detected.

Implementation Considerations The only requirement of this protocol is the
presence of an embedded NVM in the FPGA chip and a mechanism that provides
bitstream confidentiality and integrity. For instance Spartan3-AN FPGA from Xil-
inx has an embedded Flash memory. Xilinx also provides a DNA mechanism, but
it does not protect bitstream confidentiality. Lattice also provides such services in
their XP2 FPGA family. Bitstream confidentiality and integrity are provided, but
NVM is used to save a RAM copy and it is less easy to store data.

Demonstration Platform Our demonstration platform is based on an Actel Fusion
starter kit (FPGA: Fusion AFS600). It is a non-volatile FPGA with an embedded
user flash memory and a confidentiality and integrity mechanism. Figure 6.20 de-
scribes this demonstrator. The network is emulated by the RS232 link, the bitstream
is downloaded through the JTAG port, and the block cipher is a 3-DES. The fact that
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Fig. 6.20 Overview of FPGA design

Kreq, Kack1 and Kack2 are stored in the flash memory with TAGF allows the same
bitstream file to be produced for the whole set of FPGAs: i.e. only the three keys
that differentiate the device. During the initialization procedure, these three keys
and TAGF are downloaded through the JTAG port before locking.

Figure 6.21 describes the FPGA Master FSM algorithm. In order to reduce the
latency, we decided to cipher TAGUL with Kreq while waiting for the update com-
mand. The two ciphered tags are then compared as soon as the SD tag is received.
With this improvement, steps 1, 2 and 3 (respectively power up, first power up and
authentication) are performed before receiving the SD update command.

Results Table 6.2 summarizes the overhead in terms of clock cycles and time re-
quired for each step. The design clocks at 60 MHz. Steps 2 and 3 (respectively first
power-up and authentication) are performed during user design execution and do
not increase the mechanism performance overhead. Step 4 is not considered here
because the performance overhead is not significant compared to FPGA program-
ming (several seconds). Considering all these elements, the performance overhead
is estimated at only 54 cycles: step 1 (Power up).

Table 6.3 summarizes the overhead in terms of area. It shows the proportion of
FPGA occupied by each component of this secure remote update mechanism im-
plementation. This area overhead can be relativized considering that 3-DES, RS232
and flash memory controller can be reused by the SD. Only the master FSM cannot
be reused.

The cost of flash memory is not shown because it is insignificant: 672 bits (in-
cluding 32 bits for the first power up flag) on the 4 Mbits (0.016%). The SD can use
the rest of this physical flash memory for his own purposes.

Conclusion Solution 2 is a communication protocol between the SD and an
FPGA platform to update the FPGA configuration while preserving its confiden-
tiality and integrity. This protocol also provides protection against replay attacks
and detects update failures. In addition, we show that the corresponding area and
performance overheads are negligible, thanks to the reusability of the core.
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TAGF : F l a s h memory t a g
TAGUL : User l o g i c t a g
Ek (M) : E n c r y p t i o n o f M w i t h K as c i p h e r key \ i n d e x {Key}
CTAGKx: Tag c i p h e r e d by Kx

Step 1: Power-up

1 Read (TAGF)

2 if (TAGF �= TAGUL) then

3 goto 22

4 end if;

Step 2: First power-up

5 Read (flag)

6 if (flag = true) then

7 Read (Kack2)

8 CTAGKack2 := EKack2 (TAGUL)

9 Send(CTAGKack2)

10 end if;

Step 3: Authentication

11 Read (Kreq)

12 CTAGKreq := EKreq(TAGUL)

13 Read (Kack1)

14 CTAGKack1 := EKack1(TAGUL)

15 Wait for CMD

16 If (CMD = CTAGKreq) then

Step 4: TAGF incrementation

17 Write (TAGF+1)

18 Send(CTAGKack1)

19 Else

20 goto 15

21 end if;

22 SYSTEM SHUTDOWN

Fig. 6.21 Security protocol implementation on FPGA

6.4.3.4 Contribution to Remote Configuration Security (3): Security

Architecture for Remote FPGA Update and Monitoring

When no non-volatile embedded memory is available, it is not possible to lock the
FPGA to a particular bitstream version without an external trust party. However, one
possible solution is that FPGA vendors modify their configuration logic to include
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Table 6.2 Performance overhead for the AFS600 device

Step # Cycles Duration (µs) F = 60 MHz

1. Power-up 54 0.9

2. First power-up 187 3.1

3. Authentication 175 2.9

4. TAGF increm. 108 1.8

Total 524 8.7

Table 6.3 Area overhead for the AFS600 device

Entity # Tiles % of Actel AFS600

3-DES 1305 9%

RS232 418 3%

Flash Controller 1005 7%

Master FSM 777 6%

Total 3505 25%

a version checking mechanism. A low-cost solution for FPGA vendors [9] has been
proposed. The version TAG of the FPGA is kept in the configuration logic using a
few flash or battery powered SRAM cells. The configuration logic uses the authen-
ticated encryption algorithm CCM to ensure confidentiality, integrity and bitstream
freshness. The logical gate cost and configuration time overhead is low regarding
current implementation of bitstream encryption and integrity mechanisms. Inter-
ested readers should refer to this paper for further information.

6.4.4 FPGA Remote Update: Conclusion

From a security standpoint, remote updating of FPGA based systems is a challenge.
We have shown that existing mechanisms aimed at providing bitstream confiden-
tiality and integrity via encryption and authentication fail to prevent bitstream re-
play and thus system downgrade. Three different solutions were proposed to solve
this problem. The first one is applicable to all encrypted FPGAs (volatile and non-
volatile). The second requires a secure non-volatile memory that is currently only
available in Actel Fusion FPGAs, however we hope that next generation FPGAs
will be aware of this threat and will have embedded non-volatile user storage. Fi-
nally we proposed a complete solution for FPGA vendors who wish to provide a
comprehensive solution to their customers at low cost.

According to Table 6.4, the proposed solutions are unique in the academic and
industrial literature, since other solutions fail to take replay attack into account. Our
solutions apply to both volatile and non-volatile FPGA devices, by accounting for
their particularities. In addition, we propose a new complete solution [9] that pro-
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Table 6.4 Secure update solution comparison

Solution Suitable
devices

Cost for FPGA
vendors

Development
time for system
designer

Logic gates cost
for system
designer

Additional cost

1 All
encrypted
FPGAs

None High High Regular polling

2 ACTEL
Fusion

Low for Flash
based FPGAs

Medium Low None

3 Currently
none

Medium Low None None

vides confidentiality, cryptographic integrity verification, replay attack counter mea-
sure and also provides convenient way for the system designer to remotely manage
the bitstream update process. All the contributions concerning bitstream security
and the study cited in this chapter about FPGA security, are used in the follow-
ing section to develop a Reconfigurable Cryptographic Platform that benefits from
these results. The platform can be considered as a concrete application of the con-
cepts developed throughout this book and, thanks to its context, is close to industrial
concerns.

6.5 Example of Board Integration: Toward a Secure Platform

To apply the knowledge described in this book, we use a concrete application. This
approach allows us to evaluate the solutions we propose from an industrial point of
view. This study was done with the help of a French company called Netheos [31]
which develops applications for information security. The company aims to create
products dedicated to security, based on FPGAs, to occupy low and middle volume
markets. Their main targets are corporate and bank sectors, or even government in-
frastructures. The platform aims to be configurable to respond to many different
needs, and it might be reconfigurable in order to evolve, for instance when a crypto-
graphic algorithm or protocol is broken. The code name of the platform is RCP for
Reconfigurable Cryptographic Platform. Objectives with this platform is twofold:

• To increase the security of key management compared with a software only solu-
tion. This is done by keeping cryptographic keys inside a piece of hardware where
keys are only accessible to perform cryptographic computation, not for reading or
writing. These keys are generated by the hardware itself with an embedded true
random number generator.

• To achieve high performances for cryptographic algorithms such as RSA or AES
schemes. This can be done by having a high bandwidth communication chan-
nel with the FPGA chip and by using high-speed hardware accelerators (such as
RSA or AES IP cores). Depending on the application, these accelerators can be



6 Embedded Systems Security for FPGA 175

instantiated multiple times to achieve even better performances by parallelizing
computations.

We intend to use its platform for applications such as giga-bit network en-
cryption, SSL accelerator or off-load engines, VPN accelerators, high-performance
Hardware Security Modules, but also for customer specific applications.

6.5.1 Requirements

In the following section we present the features we would like to include in the
secure platform.

Scalability The platform needs to be as generic as possible regarding cost, per-
formance and security level. It should be able to support relatively low and high
security levels. In the first case, the platform needs to keep costs low and provide
reasonable security. In the other cases, performance and security concerns are more
important than cost. The more resources included in the FPGA, the more perfor-
mances can be obtained, for instance by implementing many types of cryptographic
algorithm accelerators. The selection of the FPGA model will thus determine the
performances that can be achieved with the platform.

To obtain security level scalability of the platform, two types of attacks need to
be distinguished:

• Logical attacks: that have to be countered by implementing a logically secured
hardware and software design.

• Physical attacks: that can be prevented by implementing cryptographic algo-
rithms with side channel and fault injection countermeasures, but also by adding
a secure surface enclosure such as those proposed by [23]. This type of tam-
per respondent enclosure, which is widely used for Hardware Security Modules
(HSM), will erase the cryptographic key when attacks are detected, thus guar-
anteeing protection against invasive attacks that are quasi impossible to prevent
only using logical mechanisms. With such protection, this platform can hope to
achieve FIPS 140-2 certification at level 3, at which key destruction is mandatory
under attack.

Target Applications The board targets two applications:

• Cryptographic accelerators: the platform needs at least one high-speed interface
to communicate directly over the network or through the host.

• Secure key containers (HSM): One of the most important points for a crypto-
graphic device is secure key management in a logical and physical way. A key
must never leave the device without being encrypted, or for some applications,
should not leave the device even if it is encrypted.

Regarding the second application, even if confining the key to the secure device
makes sense with respect to security, it reduces the usability of the solution. If the
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Table 6.5 LX and SX family characteristics

FPGA Family LXT SXT

FPGA Model XC5VLX30T XC5VLX50T XC5VSX35T XC5VSX50T

Slices 4800 7200 5440 8160

Logic Cells 30720 46080 34816 52224

Block RAM 36 60 84 132

DSP48E slices 32 48 192 288

secure device stops working because an irreversible failure occurs in the hardware,
or maybe because an attack is detected, all the cryptographic keys become irre-
versibly unusable. Therefore most hardware security modules use a master intended
to cypher the user keys. Encrypted user keys are stored outside the HSM. A mech-
anism allows master key backup on a secure medium such as a smart card. For
both applications, software and hardware updating should be possible throughout
the life cycle of the device, maybe to correct security vulnerabilities or to increase
performances. However this feature opens the door to many threats and must be
implemented carefully.

6.5.2 Platform Design

FPGA Choice The FPGA device is the most important component and deter-
mines the price and the performances of the platform. But it plays also a role in
the security of the system. Based on the results of a comparison of current FPGAs,
we decided to use a Virtex5 FPGA (in 2008). It provides mechanisms and features
that enable the implementation of useful security countermeasures. For instance, it
allows for continuous monitoring of the integrity of the loaded bitstream, an embed-
ded thermal sensor can detect dangerous variations in the environment. Bitstream
encryption allows cryptographic keys to be hidden in RAM blocks or look up ta-
bles. Internal read back of the loaded bitstream can increase the robustness of the
integrity check of the configuration. Finally, the partial reconfiguration feature is at-
tractive to implement adaptive and evolutionary design. Since the price of the FPGA
chip price represents most of the cost of the board, we designed the platform to sup-
port any Virtex5 FPGA that fits an FFG-665 package, so Virtex5 LX30T, LX50T,
SX30T and SX50T can be used without PCB modifications. The cheapest FPGA
that can be used is Virtex5 LX30T, which has limited DSP and storage capacities.
The most attractive FPGA for cryptographic applications is Virtex5 SX50T, because
it includes many storage (RAM blocks) and arithmetic elements (DSP blocks) that
can be used to implement high performance cryptographic cores (such as RSA, ECC
or AES). LX and SX family characteristics are listed in Table 6.5.

Cryptographic Engines One of the main advantages of FPGAs over CPUs is that
developers can implement specialized pieces of hardware that allow very efficient
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Algorithm Implementation Slices Blocks RAM Multipliers Throughput

AES 128 (Encryptor
and decryptor.
w/HWkey
expansion)

Helion Tech 864 0 0 3781 Mb/s
our 803 5 0 1024 Mb/s

SHA-256 Helion Tech 325 0 0 1722 Mb/s
our 792 1 0 1144 Mb/s

RSA-1024 (full
exponent wo/CRT)

Helion Tech 1800 1 0 20 signature/s
our 378 2 5 24 signature/s

Fig. 6.22 Comparison of results of the implementation of cryptographic IP cores

cryptographic algorithm implementations. AES hardware implementation is a good
example; it is quite easy to implement a dedicated engine that executes an AES
round in one clock cycle while keeping a reasonable silicon area. However AES
engines are not available on most CPU or SoC platforms.

That is why a set of cryptographic engines was developed. This work focuses
on the most widely used cryptographic algorithms such as AES, RSA and SHA-2.
Most optimizations were found in academic publications describing algorithmic
or architectural enhancement to straightforward algorithm implementations. This
work takes advantage of these optimizations and produced efficient and compact
implementations. Our main contribution is the comparison of different implementa-
tion styles and the development of configurable cryptographic cores that offer large
area/throughput/functionalities/security trade offs.

The details of the development of these blocks are not given in this book, but Ta-
ble (Fig. 6.22) gives a brief comparison of our results using commercially available
cores.

Comparing cryptographic engines is not easy [21] mainly because many imple-
mentations are available and they do not use the same FPGA family, or do not use
the same core functionalities. For this reason, we used the same FPGA family for
our comparison (Virtex5) and the IP cores cited have the same functionalities (for in-
stance the AES IP core is able to perform encryption and decryption with hardware
key expansion). Finding results in academic publications that allow a fair compar-
ison was not possible, mainly because most of these publications are old and use
obsolete FPGA devices (such as Virtex or Virtex2 FPGAs). The results achieved
with the IP cores developed during this study are no better than the results achieved
by Helion Technology (a private company). However, the goal of the present study
was not to design highly efficient IP cores but to develop state of the art crypto-
graphic engines and to use them to build a complete security platform.

Secure Microprocessor Based on the results of the FPGA bitstream security
study described in previous sections, we decided to provide the board with a secure
microprocessor in addition to the Virtex5 chip. The following arguments justify this
choice:
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• Since Virtex5 are volatile FPGAs that do not include a non-volatile storage ele-
ment, it is impossible to store a value inside the chip after power down. Although
it is possible to store securely values outside the chip in an encrypted flash mem-
ory, a master key has to be used to decrypt this memory, thus, to remain non-
volatile, the key must be stored in the FPGA bitstream. However this solution is
not applicable when the application requires volume, because each FPGA needs
a different bitstream to provide each board with a unique key.

• There is no trusted hardwired TRNG in FPGA devices. Even if it is possible
to implement secure TRNG in user logic [19], we decided that this represents
a serious risk when high security level certification is required. For that reason,
random numbers can be generated in three places on the platform: inside the user
logic of the FPGA, in the secure microprocessor, or in the smart card of the board.

• The secure microprocessor we selected provides many security features such as
internal and external sensor management. A battery powered key memory is au-
tomatically erased when an attack on the clock, the package of the chip, the tem-
perature, or the power supply is detected. The package integrity sensor is very
important since FPGA vendors do not provide such packages. Thanks to this fea-
ture it is possible to produce a low-cost hardware security module without sur-
face enclosure, where the heart of the security level (the secure microprocessor)
is physically protected by its package.

• The cost of such a microprocessor is very low compared to the FPGA. PCB com-
plexity increases with this BGA device, but this cost should be compared with the
non-negligible security add on.

Based on this choice, the secure microprocessor will be the heart of the system
since it generates cryptographic keys and stores the master key.

FPGA Architecture The goal is not to develop a fixed architecture but a flexi-
ble one that allows the design to be scaled according to application requirements.
For instance, an application that requires many RSA operations in parallel will have
several embedded RSA hardware accelerators in order to achieve higher through-
put. The configuration of the platform is currently performed off line, before phys-
ical synthesis of the FPGA architecture. Ultimately the goal is to provide run-time
reconfiguration according to application requirements, by using dynamic reconfigu-
ration. This goal was not addressed in this study but will the subject of future works
in order to provide such functionality while keeping the same level of security. Since
cryptographic operational keys are stored in the secure microprocessor of the board,
the communication between the FPGA and this component must be secured. This
constraint leads to the architecture described in Fig. 6.23.

Figure 6.23 shows the architecture we developed. The “core Wrapper” square
refers to a slot where the platform user can instantiate any IP cores compatible with
the open source wishbone bus [33], these may be cryptographic IP cores or even
application specific IPs. To make the platform usable from the outside world, it is
equipped with PCI Express connectivity.

A direct connection exists from the secure processor and key memories. These
memories can only be written from the microprocessor, so with this FPGA architec-
ture, the key cannot travel to the host. An AES decryption engine is placed between
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Fig. 6.23 General target
architecture of the
reconfigurable cryptographic
processor

the external processor and the key memory to prevent board level attacks (for in-
stance using bus probing).

High Speed Communication Interfaces To be as flexible as possible according
to Virtex5 functionalities, we decided to connect the FPGA to a PCI Express bus
with eight lines with a maximum throughput of 16 giga bits per second on each of
the two ways (reception and transmission). We also connected the FPGA to two RJ-
45 interfaces that can support giga bit Ethernet, we deliberately chose two interfaces
to allow red/black architecture [41] that are commonly used for governmental or
military applications.

Trusted Area A secure microprocessor allows tamper respondent mechanisms to
fulfill FIPS140-2 level 3 requirements; however Virtex5 FPGA cannot comply with
this standard since its package does not respond to tampering and so physical inva-
sive attacks are feasible. To allow our secure platform to reach level 3, we designed
the board’s PCB to facilitate the use of a tamper resistant enclosure such as [23].
This was achieved simply by reducing the area to be protected to the minimum in
order to decrease cost of enclosure. The secure area boundary is shown in Fig. 6.24,
it includes:

• The FPGA where user keys are used;
• The secure microprocessor where master key is stored and user keys are gener-

ated;
• The FPGA configuration flash memory, since we have shown that bitstream se-

curity is not totally guaranteed by FPGA vendors (bitstream replay, bitstream
integrity);
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Fig. 6.24 General scheme of
the NETHEOS platform

• The core voltage regulator of the FPGA, this increases the robustness of the plat-
form regarding power analysis because an attacker can only measure current fil-
tered by the regulator;

• A smart card used to diversify true random sources (from the smart card, the
secure processor and the FPGA);

• And finally the sensors used to monitor enclosure integrity, allowing the secure
microprocessor to erase the master key.

Security Scalability To achieve security level scalability of the board, two types
of attacks have to be distinguished:

• Logical attacks that must be countered by implementing a logically secured hard-
ware and software design.

• Physical attacks that can be prevented by implementing cryptographic algorithms
with side channel and fault injection countermeasures, and also by adding a se-
cure surface enclosure.

Tamper respondent enclosure is widely used for hardware security modules
(HSM) that erase cryptographic keys when an attack is detected, thus ensuring pro-
tection against invasive attacks that are quasi impossible to counter only with logical
mechanisms. With such protection, this platform should achieve FIPS 140-2 certifi-
cation at level 3 where key destruction is required to counter attacks. Secure surface
enclosure is an industrial process that consists in enclosing a security system inside
a tamper respondent envelope. It is an active seal that generates an alarm when the
system is tampered with; this alarm can be used by the system to erase sensitive
data. These surface enclosures thus have to be powered to enable the system (which
requires energy) to erase the keys. That is why most HSMs include a battery, which
can be located inside or outside the secure enclosure, since if the attacker simply
removes the battery, the keys will be erased as they are stored in a volatile mem-
ory. Development of a secure enclosure is a hard task, particularly if a high level
of security is required. The classical approach is to enclose the system in a mesh of
conductive wires. This mesh is connected to sensors that detect variations in wire
conductivity and trigger alarms. Therefore, if attackers try to remove the protec-
tion, they are very likely to cut a wire. However an attacker with a high degree of
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Fig. 6.25 Secure PCB surface enclosure designed by Gore

competency and sophisticated equipment may localize the mesh by using X-ray and
succeed in passing between the wires without cutting them. A company called Gore
proposes surface enclosures that have already been tested and validated, hence re-
ducing the cost for a company that wants to create a physically protected device.
The conductive mesh used by Gore is non-metallic to avoid X-ray attacks. The prin-
ciple of the architecture of a Gore secure surface enclosure is shown in Fig. 6.25
[23]. This figure shows the PCB of the system enclosed by the Gore active sensor
and an opaque cover. The cover is connected to the PCB by a destructive interface
that triggers an alarm when tampered with.

The Gore tamper respondent sensor (in gray in the figure) can enclose the whole
system or a part of the PCB. In the latter case, contacts between the enclosure and
PCB require particular attention since the assailant may try to attack this weak part.
That is why additional security mechanisms can be added inside the PCB itself.
An opaque cover, generally made of metal, is added to protect the system from
the environment. The board developed during the present study enables the use of
such tamper respondent enclosures. It includes a battery and circuitry to allow key
erasure. Moreover, since data remanence of sensitive information is obviously a
concern for the final device, a mechanism that connects power to ground is also
included.

Secure Key Management The secure microprocessor stores the value of a master
key in its secure battery powered key memory, and operational keys are encrypted
using this master value. Since the FPGA is the device that performs high-speed
cryptography using dedicated hardwired engines, the secure microprocessor must
decrypt operational key and send the plaintext value to the FPGA. The communi-
cation channel between FPGA and microprocessor can be secured using encryption
according to security objectives of the application.

Secure Backup/Restore Operational key backup and restoration operations are
performed using a safepad and a smart card. The safepad ensures there is a trusted
path to enter a PIN code (without passing through the host computer), the smart card
ensures the physical security of the backup.
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Communication Between FPGA and Secure Processor The secure micropro-
cessor is the device that generates and securely stores user objects. The FPGA de-
vice is used to accelerate cryptographic computations, consequently it has to use
these cryptographic keys in plaintext form. However unencrypted communications
between the FPGA and the processor are not acceptable when local attacks are pos-
sible, an attacker can spy on the communication bus to retrieve cryptographic keys.
Even with a tamper respondent enclosure, it is preferable to encrypt the commu-
nication channel between the two chips so that all security does not rely on the
enclosure. In order to communicate safely, the two chips have to share a symmet-
ric key; this cannot be the master key because that key must never leave the secure
microprocessor, otherwise the confidentiality of this key is harder to ensure. Thus a
mechanism of key sharing must be implemented. At least two methods can be used
to reach this goal:

• During the bitstream and processor code generation process the system designer
hard codes a symmetric key in the FPGA logic and in the flash memory of the
processor. There is no need for a key sharing protocol. However this method has
certain drawbacks, first, the system designer knows the symmetric key value and
the customer does not necessarily trust the SD. And, in order to simplify key
management, bitstream and processor code generation process, the SD should
provide the same symmetric key to all his designs, therefore breaking one product
enables all the products to be broken. Finally the shared key remains the same
throughout the life of the product, whereas side channel attacks such as DPA can
lead to key discovery; however, if the key is changed regularly, power analysis
attacks become more difficult.

• The system designer hard codes a private key pair in the processor code and an-
other key pair in the FPGA bitstream, both signed by a trusted authority to avoid
man in the middle attacks. These key pairs will be used to regularly exchange
symmetric keys to avoid differential side channel attacks (DPA, DEMA). How-
ever this method has the same drawbacks as the previous one, and the cost of
implementation is higher since asymmetric and symmetric algorithms have to be
used.

6.5.3 Performance Results

In order to measure real performance and to show the advantage of having many
IPs that can operate in parallel, an openSSL engine [34] was developed. The term
engine here refers to a library that is dynamically linked to openSSL and allows
this application to perform cryptographic operations using hardware devices. The
engine developed is quite simple, it is based on the GMP (GNU Multi Precision)
engine, i.e. the software implementation of the cryptographic algorithm that uses
GMP, whereas openSSL uses a library called Big Numbers. This option was pre-
ferred since the GMP engine code is quite simple to modify. The code that per-
forms the modular exponent in software has been replaced by a call to the RSA IP
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Key size RCP (-multi 4) AMD Sempron
3000+ (-multi 1)

Intel Core2 CPU
2.13 GHz (-multi 2)

512 1282 sign/s 1579 sign/s 3334 sign/s
1024 421 sign/s 360 sign/s 731 sign/s
2048 85 sign/s 66 sign/s 134 sign/s
4096 13 sign/s 10 sign/s 22 sign/s

Fig. 6.26 Practical results of openSSL engine with CRT using six RSA IP cores

cores connected to the platform. GMP uses by default the Chinese remainder theo-
rem (CRT), which allows the RSA exponent to be split into two smaller exponents,
thereby dramatically reducing modular exponent computation time. For instance
a 1024-bit modular exponent is reduced to two 512-bit modular exponents. This
engine measures performance and checks the results of RSA computation using a
simple call to the command line:

openssl speed -multi X -engine gmp rsa

The multi argument of the command line allows X RSA computation to be run in
parallel, for instance a call with -multi 2 gives better results when the test runs on a
dual core processor. For the platform, the best results are achieved when the multiple
parallel operation number is equal to the number of RSA IP cores instantiated. For
instance, results of a test on a platform that includes six RSA IP cores are given in
Table 6.26.

The results of openSSL engines were compared to two different types of general
purpose CPUs. A single core processor: AMD Sempron, whose best performance
is obviously achieved using the argument -multi 1 while the Intel Core 2 processor
allows parallel RSA computation giving better results with -multi 2. The best results
were achieved with the platform using -multi 4 because the CRT algorithm is used,
and consequently two RSA engines are needed to perform one complete exponent.
In terms of efficiency, a good way to compare is to sum the costs of the solutions.
An Intel Core 2 processor running at 2 GHz cost about US$ 70 at the time of writ-
ing, while a Virtex5 LX30T cost about US$ 350, i.e. a ratio of five to one, while
performance was twice lower on our implementation than on Virtex5 LX30T. So
with our RSA engine, FPGAs are not competitive in terms of the cost: performance
ratio using a general purpose CPU. However when the platform is used for massive
RSA computation, the host CPU usage remains low. The most important argument
for our FPGA-based implementation, is that by using the platform, it is possible to
enhance the physical security of RSA private keys since they can be generated on
board, used inside the platform, and never travel through host memory.

6.5.4 Conclusions

According to the results of the present study, there is no perfect FPGA device cur-
rently available for security-sensitive or cryptographic applications. Even the choice
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Fig. 6.27 An imaginary highly secured FPGA

between non-volatile and volatile FPGAs is not trivial and also often depends on the
application. For instance, we were forced to use an external processor, which com-
plicates the PCB design, increases vulnerabilities of the communication with the
FPGA and represents an additional cost. Therefore, in this conclusion we ‘imagine’
a perfect FPGA device for such applications (see also Fig. 6.27):

• First it must have some embedded secure battery powered memories for highly
sensitive data that can be very rapidly erased from user logic or by an external
alarm.

• It must also include non-volatile memories that are useful in security, for instance
to implement PIN code mechanisms or to store bitstream version TAGs to prevent
bitstream replay attacks.

• FPGA vendors must provide strong mechanisms that ensure bitstream confiden-
tiality and integrity, and that prevent bitstream replay attacks.

• The device must have an embedded mechanism allowing the system designer to
force the FPGA device to accept only encrypted and authenticated bitstream, like
the Actel Flash Lock mechanism or the Xilinx e-Fuse.

• Ideally it should have an embedded certified random number generator, such as a
smart card. An even better solution would be to embed a smart card in the same
package as the FPGA matrix.

• The FPGA device should be embedded inside a tamper proof or even better a
tamper respondent package that triggers alarms when attacks are detected. For
instance by using a metal mesh able to detect package opening and to trigger
built in mechanisms to erase a battery powered memory. This package should
also provide basic protection against electromagnetic analyses such as a Faraday
cage.
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Future works will focus on improving the platform by adding run time reconfigu-
ration based on application requirements and by adding new cryptographic IP cores
or by improving the performance of existing ones as well as improving communi-
cation architecture.
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Chapter 7

Conclusions

Benoit Badrignans, Jean-Luc Danger, Guy Gogniat, Viktor Fischer,

and Lionel Torres

This book addresses a wide spectrum of techniques and solutions for reconfigurable
platforms. Most of the techniques can be also used or adapted for other domains (for
instance System on Chip) but here we chose to discuss FPGAs in detail, as they are
increasingly used for many embedded systems applications. The security analysis
described at the beginning of the book identified links between technology, archi-
tecture and systems. We showed that at the technology level, it is possible to offer
new logic styles to prevent side channel attacks, and, at the same time, dedicated
FPGA designs that respond to these attacks. Another key point is undoubtedly how
to generate encryption keys on an FPGA. This is crucial for the robustness of a com-
plete system that can support the generation and management of protected sessions.
We also showed that it is possible to compare these techniques and we assessed
their relative effectiveness. Finally, we discussed how to manage the confidential-
ity and integrity of data and code of a reconfigurable platform, including providing
hardware protection mechanisms. These safeguards also protect the bitstream con-
figuration of an FPGA. Research in this domain is not yet advanced, despite the
fact it is indispensable for the security of re-configurable platforms. For the future,
modern technology offers users easy access to many widely used global networks
(WiFi, 3G data networks, LAN, etc.) and hassle free access to private services, data
management and storage. For instance, Google services offer remote storage with
gigabytes of storage, enabling users to access their private data (documents, agenda,
contacts, etc.) from any location using any connected device (laptop, cell phone,
PDA). This may not be completely true for everyone, but is undoubtedly repre-
sentative of the short term future. In the first half of the 20th century, wired home
phones were rare, whereas today almost everyone owns at least one cell phone. This
trend, known as Pervasive or Ubiquitous computing, belongs to the post desktop era
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of human-machine interaction in which information processing has penetrated ev-
eryday objects and activities to such an extent that many ordinary activities openly
incorporate computational devices of different types. For example, a home ubiq-
uitous computing environment might interconnect lighting and environmental con-
trols with personal biometric monitors woven into clothing so that illumination and
heating conditions are remotely continuously and imperceptibly adjusted. Pervasive
computing generally encourages the massive digitization of personal information
and services and draws attention to the security issues involved in protecting pri-
vacy and intellectual property (IP). The wide spectrum of attacks and consequences
described in such scenarios not only concerns a well identified set of information
and services, but may also compromise other aspects ranging from environmental
control to home security. Flexibility will be the key for all new paradigm comput-
ing approaches in the coming years. The use of reconfigurable platforms is already
underway, and security concerns are pointed to as one of the main bottlenecks that
need to be addressed. The aim of this book was to give readers and security engi-
neers an overview of a wide spectrum of current solutions. Throughout the book,
our objective was to present some hardware security schemes that match the re-
quirements of embedded systems in order to protect the data and the code contained
in reconfigurable platforms.
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