

Bruno Baruque and Emilio Corchado

Fusion Methods for Unsupervised Learning Ensembles

Studies in Computational Intelligence,Volume 322

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our

homepage: springer.com

Vol. 299.Vassil Sgurev, Mincho Hadjiski, and

Janusz Kacprzyk (Eds.)

Intelligent Systems: From Theory to Practice, 2010

ISBN 978-3-642-13427-2

Vol. 300. Baoding Liu (Ed.)

Uncertainty Theory, 2010

ISBN 978-3-642-13958-1

Vol. 301. Giuliano Armano, Marco de Gemmis,

Giovanni Semeraro, and Eloisa Vargiu (Eds.)

Intelligent Information Access, 2010

ISBN 978-3-642-13999-4

Vol. 302. Bijaya Ketan Panigrahi,Ajith Abraham,

and Swagatam Das (Eds.)

Computational Intelligence in Power Engineering, 2010

ISBN 978-3-642-14012-9

Vol. 303. Joachim Diederich, Cengiz Gunay, and

James M. Hogan

Recruitment Learning,2010

ISBN 978-3-642-14027-3

Vol. 304.Anthony Finn and Lakhmi C. Jain (Eds.)

Innovations in Defence Support Systems, 2010

ISBN 978-3-642-14083-9

Vol. 305. Stefania Montani and Lakhmi C. Jain (Eds.)

Successful Case-Based Reasoning Applications-1, 2010

ISBN 978-3-642-14077-8

Vol. 306. Tru Hoang Cao

Conceptual Graphs and Fuzzy Logic, 2010

ISBN 978-3-642-14086-0

Vol. 307.Anupam Shukla, Ritu Tiwari, and Rahul Kala

Towards Hybrid and Adaptive Computing, 2010

ISBN 978-3-642-14343-4

Vol. 308. Roger Nkambou, Jacqueline Bourdeau, and

Riichiro Mizoguchi (Eds.)

Advances in Intelligent Tutoring Systems, 2010

ISBN 978-3-642-14362-5

Vol. 309. Isabelle Bichindaritz, Lakhmi C. Jain, Sachin Vaidya,

and Ashlesha Jain (Eds.)

Computational Intelligence in Healthcare 4, 2010

ISBN 978-3-642-14463-9

Vol. 310. Dipti Srinivasan and Lakhmi C. Jain (Eds.)

Innovations in Multi-Agent Systems and
Applications – 1, 2010

ISBN 978-3-642-14434-9

Vol. 311. Juan D.Velásquez and Lakhmi C. Jain (Eds.)

Advanced Techniques in Web Intelligence, 2010

ISBN 978-3-642-14460-8

Vol. 312. Patricia Melin, Janusz Kacprzyk, and

Witold Pedrycz (Eds.)

Soft Computing for Recognition based on Biometrics, 2010

ISBN 978-3-642-15110-1

Vol. 313. Imre J. Rudas, János Fodor, and

Janusz Kacprzyk (Eds.)

Computational Intelligence in Engineering, 2010

ISBN 978-3-642-15219-1

Vol. 314. Lorenzo Magnani,Walter Carnielli, and

Claudio Pizzi (Eds.)

Model-Based Reasoning in Science and Technology, 2010

ISBN 978-3-642-15222-1

Vol. 315. Mohammad Essaaidi, Michele Malgeri, and

Costin Badica (Eds.)

Intelligent Distributed Computing IV, 2010

ISBN 978-3-642-15210-8

Vol. 316. Philipp Wolfrum

Information Routing, Correspondence Finding, and Object
Recognition in the Brain, 2010

ISBN 978-3-642-15253-5

Vol. 317. Roger Lee (Ed.)

Computer and Information Science 2010
ISBN 978-3-642-15404-1

Vol. 318. Oscar Castillo, Janusz Kacprzyk,

and Witold Pedrycz (Eds.)

Soft Computing for Intelligent Control
and Mobile Robotics, 2010

ISBN 978-3-642-15533-8

Vol. 319. Takayuki Ito, Minjie Zhang,Valentin Robu,

Shaheen Fatima, Tokuro Matsuo,

and Hirofumi Yamaki (Eds.)

Innovations in Agent-Based Complex

Automated Negotiations, 2010

ISBN 978-3-642-15611-3

Vol. 320. xxx

Vol. 321. Dimitri Plemenos and Georgios Miaoulis (Eds.)

Intelligent Computer Graphics 2010
ISBN 978-3-642-15689-2

Vol. 322. Bruno Baruque and Emilio Corchado

Fusion Methods for Unsupervised Learning Ensembles, 2010

ISBN 978-3-642-16204-6

Bruno Baruque and Emilio Corchado

Fusion Methods for
Unsupervised Learning
Ensembles

123

Dr. Bruno Baruque

Departamento de Ingeniería Civil

Escuela Politécnica Superior

Universidad de Burgos

Avda. Cantabria, s/n

09006 Burgos, Spain

E-mail: bbaruque@ubu.es

Dr. Emilio Corchado

Departamento de Informática y Automática

Facultad de Ciencias

Universidad de Salamanca

Plaza de la Merced, s/n

37008 Salamanca

Spain

E-mail: escorchado@usal.es

ISBN 978-3-642-16204-6 e-ISBN 978-3-642-16205-3

DOI 10.1007/978-3-642-16205-3

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2010936510

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Abstract

The application of a “committee of experts” or ensemble learning to artifi-
cial neural networks that apply unsupervised learning techniques is widely
considered to enhance the effectiveness of such networks greatly. This book
examines in one of its chapters the potential of the ensemble meta-algorithm
by describing and testing a technique based on the combination of ensem-
bles and statistical PCA that is able to determine the presence of outliers
in high-dimensional data sets and to minimize outlier effects in the final re-
sults. After that, it presents its central contribution, which consists on an
algorithm for the ensemble fusion of topology-preserving maps, referred to as
Weighted Voting Superposition (WeVoS), which has been devised to improve
data exploration by 2-D visualization over multi-dimensional data sets. This
generic algorithm is applied in combination with several other models taken
from the family of topology preserving maps, such as the SOM, ViSOM, SIM
and Max-SIM. A range of quality measures for topology preserving maps that
are proposed in the literature are used to validate and compare WeVoS with
other algorithms. The experimental results demonstrate that, in the majority
of cases, the WeVoS algorithm outperforms earlier map-fusion methods and
the simpler versions of the algorithm with which it is compared. All the al-
gorithms are tested in different artificial data sets and in several of the most
common machine-learning data sets in order to corroborate their theoreti-
cal properties. Moreover, a real-life case-study taken from the food industry
demonstrates the practical benefits of their applications to more complex
problems.

Contents

1 Introduction . 1
1.1 Background . 1
1.2 Contributions . 2
1.3 Organization . 3

2 Modelling Human Learning: Artificial Neural

Networks . 5
2.1 The Human Learning Process . 5

2.1.1 The Biological Neuron . 7
2.2 Artificial Neural Networks . 8

2.2.1 Learning Algorithms in Neural Networks 9
2.2.2 Reinforcement Learning . 9
2.2.3 Supervised Learning . 10
2.2.4 Unsupervised Learning . 10

2.3 Hebbian Learning . 11
2.4 Hebbian Learning and Statistics . 12

2.4.1 Principal Component Analysis . 13
2.4.2 Oja’s Models . 16
2.4.3 Negative Feedback Network . 16

2.5 Competitive Learning . 18
2.5.1 The Self-Organizing Map . 18
2.5.2 The Visually Induced SOM . 21
2.5.3 The Scale Invariant Map . 23
2.5.4 Assessing Quality of Training of Topology

Preserving Models . 26
2.6 Conclusions . 29

3 The Committee of Experts Approach: Ensemble

Learning . 31
3.1 The Ensemble Meta-algorithm . 31

3.1.1 The Classification Problem . 31
3.1.2 Ensemble General Concepts . 32

VIII Contents

3.2 Commonly Used Ensemble Models . 34
3.2.1 Bagging . 34
3.2.2 Boosting . 37
3.2.3 Mixture of Experts . 41

3.3 Combining Ensemble Results . 43
3.3.1 Selection . 43
3.3.2 Voting Combinations . 44
3.3.3 Linear Combinations . 44

3.4 Ensembles of Artificial Neural Networks 45
3.4.1 Supervised ANNs . 46
3.4.2 Unsupervised ANNs . 46

3.5 Conclusions . 47

4 Use of Ensembles for Outlier Overcoming 49
4.1 Introduction . 49
4.2 The Outlier Problem . 49
4.3 The Re-sampling PCA Algorithm . 51

4.3.1 Ensemble Construction . 51
4.3.2 Results Combination . 52

4.4 Experiments and Results . 53
4.4.1 Artificial Data Set . 54
4.4.2 Real Life Data Set: Liver Disorder Data Set 59
4.4.3 Real Life Data Set: Food Industry Application 60
4.4.4 ANNs Approach . 65

4.5 Conclusions . 66

5 Ensembles of Topology Preserving Maps 67
5.1 Introduction . 67
5.2 Problem Statement . 67
5.3 Topology-Preserving Map Combination Models 68

5.3.1 Previously Proposed Models for SOM Ensemble
Summarization . 69

5.3.2 Novel Proposed Model: Superposition 74
5.3.3 Discussion of the Fusion Models 76

5.4 Experiments and Results . 77
5.4.1 Comparison between Single Model and Ensemble

as Classifiers . 77
5.4.2 Comparison between Fusion by Distance and

Fusion by Similarity Algorithms 79
5.4.3 Comparison between Fusion by Distance and

Superposition Algorithms . 83
5.4.4 Comparison between Bagging and Boosting as

Ensemble Training Algorithm . 87
5.4.5 Food Industry Application . 91

5.5 Conclusions . 94

Contents IX

6 A Novel Fusion Algorithm for Topology-Preserving

Maps . 95
6.1 Introduction . 95
6.2 Fusion by Ordered Similarity . 95
6.3 The Weighted Voting Superposition Algorithm 96

6.3.1 WeVoS Algorithm . 97
6.3.2 Discussion . 99

6.4 Application of WeVoS to Different Models 100
6.4.1 Topology-Preserving Models . 101
6.4.2 Ensemble Models . 101
6.4.3 Quality Measures . 102

6.5 Experiments and Results . 103
6.5.1 Comparison of Fusion Algorithms over a

1-D SOM. 103
6.5.2 Comparison of Fusion Algorithms over the

2-D SOM. 104
6.5.3 Comparison of Fusion Algorithms over the

ViSOM . 111
6.5.4 Comparison of Fusion Algorithms over the SIM

and Max-SIM . 112
6.5.5 Comparison of Fusion Algorithms When Combined

with Boosting . 114
6.5.6 Food Industry Application . 118

6.6 Conclusions . 121
6.7 Future Work . 122

7 Conclusions . 123
7.1 Concluding Remarks . 123
7.2 Future Research Work . 124

A The Cured Ham Data Set . 127
A.1 Sensory Analysis and Instruments . 127
A.2 E-Nose Odour Recognition . 127
A.3 The Cured Ham Data Sets . 129

A.3.1 Ham Data Set 1 . 129
A.3.2 Ham Data Set 2 . 129

A.4 Analysis of the Data Set. 130

B Table of Experiments . 131
B.1 Chapter 4 . 131
B.2 Chapter 5 . 132
B.3 Chapter 6 . 134

References . 137

List of Figures

2.1 Depiction of the human brain . 5
2.2 Diagram of a biological neuron . 7
2.3 Basic architecture of a feed-forward ANN. 11
2.4 PCA of a multivariate Gaussian distribution centred

at [1,3] . 13
2.5 Basic architecture of a negative feedback network 18
2.6 Conceptual diagram of a 2D-SOM representation of 3D

data set . 19
2.7 Updating of the characteristics vectors of SOM neurons 20
2.8 Comparison of the representation of the Iris data set by a

SOM and a ViSOM . 22
2.9 Contraction or Expansion force for the updating of the

ViSOM neurons . 23
2.10 A SIM trained on uniformly distributed data 24
2.11 Results for the SIM when the learning rate is increased 25

3.1 Schematic diagram of the Bagging process 35
3.2 Mixture of Experts architecture . 42

4.1 Principal components of a data set with and without
outliers . 50

4.2 Eigenvectors determining the direction of higher variance
in the data set with and without outliers
(100 samples data set) . 54

4.3 Average for each of the principal components as a result of
averaging the directions obtained by the Re-PCA method
using 100 samples . 55

4.4 Eigenvectors determining the direction of higher variance
in the data set with and without outliers
(30 samples data set) . 57

XII List of Figures

4.5 Average for each of the principal components as a result of
averaging the directions obtained by the Re-PCA method
using 30 samples . 59

4.6 Directions calculated by the Re-PCA ensemble over the
‘BUPA’ data set . 60

4.7 The ham data set projected over the principal components
obtained form a single statistical PCA (without outliers) 61

4.8 The ham data set projected over the principal components
obtained from a single statistical PCA
(including 4 outliers) . 62

4.9 The ham data set projected over the principal components
obtained from a Re-PCA of 80 samples
(including 4 outliers) . 63

4.10 The ham data set projected over the principal components
obtained from a Re-PCA of 120 samples
(including 4 outliers) . 64

5.1 Alignment of three networks and their subsequent merging
into one final map . 70

5.2 Topology approximation of the SOM and the SOM Fusion
by Similarity algorithm to the “doughnut” artificial dataset . . 74

5.3 Comparison of the SOM and Max-SIM bagged models
when trained on a radial data set. 78

5.4 2-D representation of the compared model’s grid
represented over the Iris data set . 80

5.5 Topographic Error calculated over the single SOM and the
Fusion by Euclidean Distance . 81

5.6 Ensemble of 5 SOMs trained over the Iris data set and the
final Superposition from that ensemble . 83

5.7 The Iris data set as represented by Single SOM, Fusion by
Distance, Superposition and Superposition + Re-Labelling . . . 84

5.8 Comparative representation of the Cancer data set using
SOM and ViSOM and Superposition+Re-Labelling 86

5.9 Maps obtained by a single ViSOM and the three Fusion
algorithms over the Iris dataset. Ensemble trained using
the AdaBoost.M2 algorithm . 88

5.10 Visual Comparison of the Single ViSOM and the three
presented Fusion algorithms using the ham data set 92

5.11 Same Superposition+Re-Labelling as previously shown
with more detailed labelling of neurons . 92

6.1 Schematic diagram of the weighted voting in WeVoS 98
6.2 Distortion measured over four different fusion algorithms

for a 1-D ensemble of SOMs . 103

List of Figures XIII

6.3 Visual comparison of the five models -four ensemble fusion
models and the single model- discussed in the book 105

6.4 The 4 quality measures obtained from the 4 different
summarization algorithms and the single SOM trained on
the Iris data set . 106

6.5 The 4 quality measures obtained from the 4 different
summarization algorithms and the single SOM trained on
the Wine data set . 108

6.6 The 4 quality measures obtained from the 4 different
summarization algorithms and the single SOM trained on
the Wisconsin Breast Cancer data set. 109

6.7 The 4 quality measures obtained from the 4 different
summarization algorithms and the single ViSOM trained
on the Wine data set. 111

6.8 The single SIM and the three summarizations for the
same 6-network ensemble trained over the circular data set
employing the SIM learning Algorithm 113

6.9 The 4 quality measures obtained from the 4 different
summarization algorithms and the single SIM trained on
the artificial circular data set. 115

6.10 The 4 quality measures obtained from the 4 different
summarization algorithms and the single Max-SIM trained
on the artificial circular data set. 116

6.11 Different maps obtained by training the ensemble of
SOM maps using a different meta-algorithm -Bagging or
AdaBoost- and finally applying the WeVoS algorithm 117

6.12 Results of all 4 quality measures applied to the 3 different
ensemble training algorithms -single, Bagging, AdaBoost-
and the single SOM trained using the Iris data set. 118

6.13 Visual comparison between a PCA analysis, a single SOM
and the three fusion algorithms performed over the same
ensemble of 5 SOM; all trained on the Ham dataset 119

6.14 The 4 quality measures obtained from the 3 different
ensemble training algorithms and the single SOM trained
on the Ham data set. 121

A.1 Human odour recognition process compared with E-Nose
odour recognition process . 128

A.2 E-Nose αFOX 4000 . 128

List of Tables

4.1 Percentage of information captured by each of the principal
components (selecting 50 points but excluding outliers) 56

4.2 Percentage of information captured by each of the principal
components (selecting 50 points and including outliers) 56

4.3 Percentage of information captured by each of the principal
components in the first part of the experiment (30 samples
without outliers) . 57

4.4 Percentage of information captured by each of the principal
components in the second part of the experiment (30
samples with outliers) . 58

4.5 Percentage of information captured by each of the principal
components in the first experiment (176 samples without
outliers). Simple PCA is applied . 61

4.6 Percentage of information captured by each of the principal
components in the first experiment (176 samples including
outliers). Simple PCA is applied . 62

4.7 Percentage of information captured by each of the principal
Components in the third experiment (80 samples, including
outliers). Re-PCA is applied . 64

4.8 Percentage of information captured by each of the principal
Components in the third experiment (120 samples,
including outliers). Re-PCA is applied . 65

5.1 Classification accuracy of three different models applied to
the radial data set (without outliers) . 78

5.2 Classification accuracy of three different models applied to
the radial data set (including 20 outliers) 79

XVI List of Tables

5.3 Comparison of SOM and ViSOM using an ensemble of 10
maps to calculate the MQE for the average of all 10 maps,
the 10-map Fusion using the Euclidean distance algorithm,
and the 10-map Fusion using the Voronoi similarity
algorithm (average of five different cross-validation tests) 82

5.4 Comparison of the Distortion of the Fus. By Euclidean
Distance and Fus. By Voronoi Similarity of an ensemble of
SOM and ViSOM . 82

5.5 Classification accuracy of the different models obtained
from a SOM and ViSOM ensemble for the Iris data set 85

5.6 Classification accuracy of the different models obtained
from a SOM and ViSOM ensemble on the Cancer data set . . . 87

5.7 Percentage of correct recognition of samples in the Iris data
set training the ensemble with Bagging algorithm. 88

5.8 Percentage of correct recognition of samples in the Iris data
set training the ensemble with AdaBoost.M2 algorithm. 89

5.9 Percentage of correct recognition of samples in the
Wisconsin Breast Cancer data set training the ensemble
with Bagging algorithm . 89

5.10 Percentage of correct recognition of samples in the
Wisconsin Breast Cancer data set training the ensemble
with AdaBoost.M1 algorithm . 90

5.11 Model classification accuracy over the Ham data set
training ensembles with the Bagging meta-algorithm 93

5.12 Model classification accuracy over the Ham data set
training ensembles with the AdaBoost.M2 93

List of Algorithms

1 Bagging . 36
2 AdaBoost General Algorithm . 39
3 PCA ensemble results combination . 53
4 Map Fusion by Euclidean Distance . 71
5 Map Fusion by Voronoi Polygon Similarity 73
6 Map Fusion by Superposition . 75
7 Weighted Voting Summarization . 99

Chapter 1

Introduction

This book conducts a review of research into the application of “committee
of experts” or ensemble learning techniques to artificial neural networks that
employ unsupervised learning for dimensionality reduction tasks and espe-
cially, for visualizing multi-dimensional data sets. In addition, it sets out a
method of assessing and identifying data-set outliers by means of ensemble
and statistical analysis.

1.1 Background

Data Mining (DM) (Frawley et al, 1992) is the process of sorting through
large amounts of data and picking out relevant information. It is usually em-
ployed by business intelligence organizations, and financial analysts, although
its use is increasingly prevalent in various scientific disciplines to extract in-
formation from the enormous data sets generated by modern experimental
and observational methods. It has been described as “the non-trivial extrac-
tion of implicit, previously unknown, and potentially useful information from
data” and “the science of extracting useful information from large data sets
or databases”. One of the many techniques used for this relevant method of
information extraction is data visualization.

An Artificial Neural Network (ANN) is a software simulation that typically
emulates certain features of real neural networks found in animal brains. A
branch of Artificial Intelligence (AI), ANNs consist of connectionist systems
that have different applications based on their neural architecture. They can
be used for pattern recognition, information compression and dimensionality
reduction, clustering, classification, and visualization, among others. Some
of these tasks, which will be discussed in greater detail in Chapter 2, also
come under the umbrella of data mining, a field in which ANN tools are also
considered useful. This book examines ANNs that implement unsupervised
learning algorithms, where unsupervised is taken to mean that the networks
will not be trained with a data set that includes pre-labelled data. This

B. Baruque & E. Corchado: Fusion Meth. for Unsupervised Learn. Ensem., SCI 322, pp. 1–4.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

2 1 Introduction

process models similar ones found in young animals: all animals must learn
to identify structure in their environment in an unsupervised manner.

Data projection or visualization, which facilitates the analysis of internal
data set structures for the human expert, figures prominently among the
applications of these unsupervised artificial neural networks. This can be
achieved by data projection over more informative axes or by generating
maps that represent the inner structure of data sets. Techniques such as
Hebbian learning can be used for the first type of data visualization, and
Self-Organizing Maps (SOM) are probably the most widely used technique
for the second type.

Topology-preserving maps consist of algorithms that visualize and in-
terpret large high-dimensional data sets, which means that the topology-
preserving map is a useful tool for data mining by visual inspection. Typical
applications are visualization of process states or financial results by repre-
senting instances of central dependency in the map data.

A major criticism of artificial neural networks in general is that their al-
gorithms are rather unstable. One of the most common procedures to over-
come instability in supervised learning algorithms is the use of the ensemble
learning schema. In the field of AI, ensemble learning (Polikar, 2006) is the
process by which multiple models, such as classifiers or experts, are strategi-
cally generated and combined to solve a particular computational intelligence
problem. Ensemble learning is primarily used to improve the performance
-classification, prediction, function approximation, etc.- of a model, or to re-
duce the likelihood of a poorly adapted model being selected. An overview
of these ideas and techniques is included in Chapter 3. It is important to
note that the main ensemble learning algorithms and their most common
applications are in the field of supervised learning.

1.2 Contributions

A preliminary study is performed to justify the concept of combining ensem-
ble learning and unsupervised learning, which involves a method for adapt-
ing one of the most simple ensemble algorithms, known as Bagging (Breiman,
1996), to Principal Component Analysis (PCA) (Hotelling, 1933). The model
has a dual application: firstly it can serve to indicate the presence of outliers
in an analyzed data set; secondly, it can improve principal component (PC)
calculation by approximating the PCs to those that would be obtained if no
outliers were present in the data set.

Although this is not strictly an unsupervised learning technique, it can in
one sense be compared with unsupervised learning; as whenever a data set
includes outliers, it is not possible to determine whether the data projection
directions are greatly influenced by the presence of those outliers or whether
the influence of those outliers is negligible. The results confirm the usefulness
of this approach both for synthetic and for real data sets. Chapter 3 details
the implementation of the model and the tests that were performed.

1.3 Organization 3

The central contribution of this book lies in the field of ensemble learn-
ing for unsupervised algorithms; more specifically, it concerns the family of
algorithms used for topology-preserving mapping. Certain algorithms have
recently been proposed to obtain an ensemble of artificial neural networks
and to fuse then into a final map, with the aim of improving on the results
obtained by a single map. Two such algorithms -Fusion by Euclidean Dis-
tance and Fusion by Voronoi Polygon Similarity-, initially conceived for data
classification and topology learning, respectively, are studied and discussed
in Chapter 5. They provide useful solutions to the problems for which they
were originally intended, although certain functional issues need to be consid-
ered for data visualization. In the same chapter, an initial approach to fusion
algorithms for topographic-preserving mapping -Superposition- is presented,
which aims to improve the data visualization features of the previously pro-
posed models. This algorithm imposes a more restricted training on each of
the maps in the ensemble, enabling the final fused map to be calculated in a
simpler way, which is done by calculating the centroids of the neuron weights
at each position on all the maps.

An upgrade of this same algorithm, called Weighted Voting Superposi-
tion (WeVoS) is described, which generates better visualization results than
previous algorithms in the resulting fused maps. It is based on obtaining
a performance or “quality” measure for the maps that compose the ensem-
ble. Subsequently, instead of simply calculating the centroids of the neurons,
which amounts to simple averaging, a weight is assigned to each neuron that
is proportional to the “quality” of the neuron, in a similar way to the weighted
voting scheme for combining ensemble outputs. This has the effect of select-
ing the best possible position for each neuron, from the set of possibilities
that are available on the map ensemble. Moreover, the neighbourhood func-
tion is used when performing the fusion, which is a decisive feature for the
visualization of the correct structure in a data set. The WeVoS model and
its capabilities are subjected to a thorough study, which comprises various
quality measures, tests with different data sets, and comparisons with similar
algorithms. Different data sets were used to test WeVoS and to compare its
results with those of the SOM, ViSOM, SIM and Max-SIM.

Finally, it is shown that WeVoS is able to improve the visualization per-
formance of single topology-preserving models and the ensemble fusion algo-
rithms previously presented in the literature.

1.3 Organization

This book is structured as follows: in Chapter 2, the main ideas underly-
ing the human learning are outlined. Likewise, the implementation, using
various computing techniques, of various sub-processes that involve ANNs
and their different learning strategies are described, paying special attention
to topology-preserving maps. Chapter 3 presents a summary of the most
interesting ideas that relate to ensemble learning: theoretical explanations,

4 1 Introduction

different types of ensemble training and different techniques to combine the
results of their components. A combination of ensemble learning incorpo-
rating a statistical technique to discover interesting projections for a data
set, and to identify the presence of outliers in the data set is presented and
discussed in Chapter 4. Moreover, it presents and discusses the experimen-
tal results for this algorithm, and a real life case study to which was ap-
plied. Chapter 5 centres on combination techniques for ensembles of topology-
preserving maps, which are known as fusion techniques. It includes a detailed
study of two previously presented algorithms and proposes a preliminary ver-
sion of a novel algorithm. Moreover, it sets out the experiments, results and
comparisons of all these endeavours in combination with different topology-
preserving algorithms. Chapter 6 presents the main contribution of the book,
consisting of an improved version of the fusion algorithm presented in the pre-
vious chapter, entitled WeVoS. It details a complete study of its performance
using various data sets, which includes a real life case-study. Finally, Chapter
7 presents the conclusions of the book and possible lines of future work. Ap-
pendix A contains background information on the real-life case study taken
from the food industry.

Chapter 2

Modelling Human Learning: Artificial
Neural Networks

2.1 The Human Learning Process

The autonomatic nervous system conducts stimuli from sensory receptors
to the brain and the spinal cord, which conducts these impulses back to
other parts of the body. As with other higher vertebrates, the human nervous
system has two main parts: the central nervous system -the brain and spinal
cord-, depicted in Figure 2.1 and the peripheral nervous system -the nerves
that carry impulses to and from the central nervous system- (Britannica,
2009).

This book concentrates on functional aspects of one of the main parts of
this system: the human brain.

Our intention is to describe the biological foundations of modern-day infor-
mation processing which seeks to emulate the functioning of the human brain
to obtain results that other approaches could only achieve with great diffi-
cult. Four main functions may be considered in relation to the performance
of the human brain:

Fig. 2.1 Depiction of the human brain

Figure taken from (Carus, 1905)

B. Baruque & E. Corchado: Fusion Meth. for Unsupervised Learn. Ensem., SCI 322, pp. 5–29.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

6 2 Modelling Human Learning: Artificial Neural Networks

1. Sense. The brain has a set of sensory faculties -sight, hearing, smell, taste,
touch- which relay information to it on events in the outside world. It
integrates information from these different senses and creates an inter-
nal representation of the external world. All experience is filtered by the
senses; and these sensory signals -e.g., sound, sight, taste, touch-, in turn,
initiate a cascade of cellular and molecular processes in the brain that alter
neuronal neurochemistry, cytoarchitecture and, ultimately, brain structure
and function. This process of creating an internal representation of the ex-
ternal world -i.e., information- depends upon the pattern, intensity and
frequency of neuronal activity produced by sensing, processing and stor-
ing signals.

2. Process. Once the human sensory apparatus has translated physical or
chemical information from the outside -or inside- world into neuronal ac-
tivity, this set of signals is relayed to the brain for processing. Sensory
information from both the external and the internal environment enters
the central nervous system at the level of the brain stem and mid-brain.
As this primary sensory input comes in, it is matched against previously
stored patterns of activation and if unknown, or if associated with previ-
ous threats, the brain will activate a set of responses that are designed to
help promote survival. As the brain cannot possibly create a unique neu-
ral imprint or pattern of change to store every constituent element of an
experience, it stores “template” patterns based upon the first set of organ-
isational experiences. All future incoming input is matched against these
stored templates and, if sufficiently different from the original pattern, the
brain will make neural changes -i.e., create a memory- that reflect these
tiny differences.

3. Store. As the brain processes incoming information, it has the capacity to
store elements of these incoming signals. It owes its ability to create mem-
ories to changes in its neurons and neural systems from one “homeostatic”
state to another. Neurons undergo molecular changes that respond to a
set of stimuli-induced -e.g., sensations- alterations in activity.

4. Act. Finally, the brain mediates and controls the actions of the human
body. By regulating and directing the actions of the neuromuscular, auto-
nomic nervous, endocrine and immune systems, the brain is able to control
the actions of the human being.

Now this simple -and somewhat misleading- description of the human learning
process is only a crude approximation of the key actions of the brain. Indeed,
there are hundreds if not thousands of local and regional feedback loops in
an open and interactive dynamic system -far beyond the reach any existing
mathematical model of a complex system-.

Although interesting advances have certainly been made in artificially em-
ulating all four functions, the scope of this work will centre on emulating the
second and third functions of the human cognitive process, which are more
directly related with the process commonly known as ‘learning’.

2.1 The Human Learning Process 7

2.1.1 The Biological Neuron

Ramon y Cajal (Ramon y Cajal, 1889) was the first who introduced the idea
of neurons as structural constituents of the brain. The neuron is the main
functional component of the brain. It can be defined as a specialised kind of
cell that integrates the (input) activity of other neurons that are connected
to it and propagates that integrated (output) activity to other neurons. This
process is accomplished by a complex series of biochemical events within the
neuron. The parts of a neuron in which we are interested are the following:
the dendrites, the cell body, the axon, the terminals and the synapse. The
scheme representing a biological neuron is showed in Figure 2.2.

Fig. 2.2 Diagram of a biological neuron

Figure taken from (Ruiz, 2007)

⊲ Dendrites are spindly protrusions from the cell body that collect chemical
signals from other neurons and convert them into electrical activity along
the thin membrane that encloses the cell.

⊲ The cell body contains the nucleus and cellular machinery. The membrane
around the cell body integrates the electrical signals arriving from all the
dendrites, again coded in terms of a graded potential, and converts them
into a series of all-or-no electrical potentials that propagate along the axon.

⊲ The axon is a long, thin projection of the neuron through which action
potentials are propagated to other neurons, often over a considerable dis-
tance. Most of the axon in the majority neurons is covered by a myelin
sheath, which speeds up the conduction of action potentials. The strength
of the integrated signal that the axon transmits is encoded primarily in
its firing rate: the number of electrical impulses it generates in a given
amount of time -e.g. spikes per second-.

8 2 Modelling Human Learning: Artificial Neural Networks

⊲ The terminals are the branching ends of the axon at which the electrical
activity of the axon is converted back into a chemical signal with which it
can stimulate another neuron. This is accomplished by releasing a neuro-
transmitter into the small gap between the terminal and the dendrite of the
next neuron. Neurotransmitters are chemical substances that are capable
of exciting the dendrites of other neurons. The signal strength transmitted
at the terminal is determined by the amount of neurotransmitter released.

⊲ The synapse is the small junction that exists between the terminals of one
neuron and the dendrites of another. The neurotransmitter that is released
into the synapse rapidly crosses the gap and affects next neuron’s dendrite
by occupying specialised sites on its membrane. This is where the chemical
signal from one neuron is converted into an electrical signal in the next
one.

2.2 Artificial Neural Networks

Certain Artificial Neural Network (ANN) concepts used in this book are
presented in this section, and the different learning algorithms in ANNs are
explained. We will see that some of them are based on the biological networks
presented in Section 2.1. Ever since their inception, studies on ANNs have
been motivated by an understanding that the brain computes in an entirely
different way from the conventional digital computer.

The brain makes up for the relatively slow operation of its neurons (nerve
cells) by having a truly staggering number of , with massive interconnections
between them. Some studies have estimated that there are around 10 billion
neurons in the human cortex, and 60 trillion synapses or connections, which
makes it an enormously complex structure.

The brain is a highly complex, non-linear, parallel computer (information-
processing system). It has the capability of organising neurons so as to per-
form certain computations -e.g. pattern recognition, perception and motor
control- much faster that than the fastest digital computer in existence today.
A clear example of these is that the brain routinely accomplishes perceptual
recognition tasks -e.g. recognising a familiar face embedded in an unfamiliar
scene- in something of the order of 100-200 ms while a conventional computer
would take much longer to perform a similar task.

An ANN is a system that is designed to model the way in which the brain
performs a particular task or function of interest. The network is usually im-
plemented using electronic components or simulated in software on a digital
computer. To achieve good performance, neural networks use a massive inter-
connection of simple computing cells referred to as ‘neurons’ or ‘processing
units’. In a network, knowledge is obtained through a learning process and
inter-neuron connection strengths, known as synaptic weights, are employed
to store this knowledge. The rule which modify the synaptic weights of a
network in an orderly way to reach a desired objective is referred to as a
learning algorithm.

2.2 Artificial Neural Networks 9

2.2.1 Learning Algorithms in Neural Networks

There are three main types of learning algorithms for automated weight set-
ting in networks:

1. reinforcement learning
2. supervised learning
3. unsupervised learning

Reinforcement learning is defined by characterising a learning problem, rather
than by characterising learning methods. This type of learning is concerned
with how an agent ought to take actions in an environment so as to maximize
some notion of long-term reward. Reinforcement learning algorithms attempt
to find a policy that maps states of the world to the actions the agent ought
to take in those states.

The elements required in supervised learning are:

⊲ the input
⊲ the network’s internal dynamics
⊲ an evaluation of the target.

Supervised learning algorithms use these three elements to set the weights
of the model -in short, to train the model- before using it for its final pur-
pose. Typically, ANNs using supervised learning use error descent to modify
weights.

On the other hand, for unsupervised learning only the first two elements
are required. No external mechanism is used to check on the weight setting
mechanism.

2.2.2 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 2005) involves learning how to
map situations to actions so as to maximise a numerical reward signal. The
learner is not told which actions to take, as in most forms of machine learning,
but instead must discover which actions are the most rewarding by trying
them. In the most interesting cases, actions may affect not only the immediate
reward but also the next situation and thereby, all subsequent rewards. These
two characteristics -trial-and-error search and delayed reward- are the two
most important distinguishing features of reinforcement learning.

This learning mechanism is different from supervised learning in the sense
that the supervised learning implies learning from examples provided by a
knowledgeable external supervisor. This in itself is not enough in order to
learn from interaction. In interactive problems it is often impractical to ob-
tain correct examples of desired behaviour that are representative of all the
situations in which the agent has to act. In uncharted territory -where one
would expect learning to be most beneficial- an agent must be able to learn
from its own experience.

10 2 Modelling Human Learning: Artificial Neural Networks

2.2.3 Supervised Learning

Associative memory networks are simple one or two layer networks that store
patterns for subsequent retrieval. They include the class of networks known as
content addressable memories or memory devices (Kosko, 1987) that permit
the retrieval of data from pattern keys that are based on attributes of the
stored data.

Two classes of associative memory can be implemented: auto-associative
and hetero-associative. Auto-associative memories recall the same pattern y
as the input x, that is x = y. In hetero-associative memories the recall pattern
is different from the input, x �= y. Clearly, an association between patterns is
stored in this case. Auto-associative memories are very useful when a noisy or
partially complete pattern is the only available input and the output pattern
is the original, complete, non-noisy pattern.

An essential feature of supervised learning is the existence of an external
teacher. The network is trained on examples the target outputs of which are
known. Thus the training set must already include the answer to the problem
that is presented to the network.

For auto-associative supervised networks, the input data is presented to
the input neurons; it is propagated forward through weights to the hidden
neurons and then through the next layer of weights to the output neurons.
The target pattern is equal to the input pattern.

2.2.4 Unsupervised Learning

Human beings seem to be able to learn without explicit supervision.
One aim of unsupervised learning is to mimic this aspect of human learn-

ing; hence, this type of learning tends to use methods that are more plausible
from a biological perspective than those using error descent methods. For ex-
ample, such algorithms involve local processing at each synapse and it is not
necessary for global information to pass through the network. So an unsu-
pervised network must self-organise with respect to its internal parameters,
without external prompting, and to do so, it must react to some aspect of
the input data. Typically this will be either redundancy in the input data or
clusters in the data; i.e. there must be some structure in the data to which
it can respond.

There are two major methods of unsupervised learning:

⊲ Hebbian learning.
⊲ Competitive learning.

which are described in the following two sections (2.3 and 2.5).

2.3 Hebbian Learning 11

2.3 Hebbian Learning

Some of the methods discussed in this book are based on Hebbian learning.
Hebbian learning is named after Donald Hebb (Hebb, 1949) who conjectured:

“When an axon of a cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency as one of the cells
firing B, is increased”.

This statement is sometimes expanded (Haykin, 1999) into a two-part rule:

1. If two neurons on either side of a synapse (connection) are activated si-
multaneously -i.e. synchronously-, then the strength of that synapse is
selectively increased.

2. If two neurons on either side of a synapse are activated asynchronously,
then that synapse is selectively weakened or eliminated.

If we consider a basic feed-forward neural network, this could be interpreted
as the weight between an input neuron and an output neuron, which is greatly
strengthened when the input neuron’s activation, when passed forward to the
output neuron, causes the output neuron to fire strongly. It can be seen that
the rule favours a strong reaction: if the weights between inputs and outputs
are already large -and so an input will have a strong effect on the outputs-,
the eventuality that the weights will increase is also large. The architecture
of the feed-forward network is shown in Figure 2.3.

Fig. 2.3 Basic architecture of a feed-forward ANN

In mathematical terms, if we consider the simplest feed-forward neural
network which has a set of input neurons with associated input vector, x,
and a set of output neurons with associated output vector, y, we have the
expression:

12 2 Modelling Human Learning: Artificial Neural Networks

yi =
∑

j

Wijxj (2.1)

where Wij represents the weight vector between jth input and ith output.
The Hebbian learning rule is defined by:

△Wij = η(xjyi) (2.2)

where η is the learning rate parameter. In other words, the weight between
each input and output neuron increases in proportion to the magnitude of
the simultaneous firing of these neurons. Now, we can introduce the value of
y into the learning rule, calculated by the feed-forward step of the activity
to get:

△Wij = ηxj

∑

k

Wikxk = η
∑

k

Wikxkxj (2.3)

The statistical properties of the learning rule are emphasised in the last ex-
pression. This may now be seen how the learning rule depends on the corre-
lation between different parts of the inputs data’s vector components.

The basic rule, as it stands, gives us a positive feedback rule which has an
associated difficulty due to lack of stability: if the ith input and jth output
neurons tend to fire strongly together, the weight between them will tend
to grow more strongly; if the weight grows strongly, the jthoutput will fire
more strongly the next time the ith input neuron fires, which will lead to a
higher value for the rate of change of the weights. So it is necessary to take
preventive measures in order to curtail unrestricted growth of the weights.
These preventive measures can include:

1. Bounding the weights i.e. defining a range of values [wmin, wmax] within
which the weights must remain.

2. Normalising the weights after each update, which ensures that the maxi-
mum value of the weight for each output neuron is equal to 1.

3. Having a weight decay term within the learning rule to stop it growing too
large.

4. Create a network containing a negative feedback of activation.

2.4 Hebbian Learning and Statistics

This section outlines several statistical methods and related neural algorithms
and coding techniques. It is not meant as an exhaustive list, but to list meth-
ods that are used in this project. Firstly, the well-known Principal Compo-
nent Analysis (PCA) technique (Pearson, 1901; Hotelling, 1933) is described
followed by an explanation of three neural implementations of this method.

2.4 Hebbian Learning and Statistics 13

2.4.1 Principal Component Analysis

This section explains the nature of PCA by referring to several definitions of
its various aspects, and discusses its strong and weak points.

PCA originated in work by (Pearson, 1901), and independently by
(Hotelling, 1933) to describe the variations in a set of multivariate data in
terms of a set of uncorrelated variables each of which is a linear combination
of the original variables. Its goal is to derive new variables, in decreasing or-
der of importance, that are linear combinations of the original variables and
are uncorrelated with each other.

From a geometrical point of view, PCA can be defined as a rotation of the
axes of the original coordinate system to a new set of orthogonal axes that
are ordered in terms of the amount of variation of the original data that they
account for. A graphical representation of this characteristic can be found in
Figure 2.4. Using PCA, it is possible to find a smaller group of underlying
variables that describe the data. So the first few components of this group
could be used to explain most of the variation in the original data. Note that,
even if it is possible to characterise the data with a few variables, it does not
follow that it is possible to assign an interpretation to these new variables.

An important problem when analysing high-dimensional data is the iden-
tification of patterns that cut across dimensional boundaries. Such patterns
may become visible if the basis of the space is changed, however an a priori

decision as to which basis will reveal most patterns requires prior knowledge
of the unknown patterns. PCA offers a potential solution to this problem.

Fig. 2.4 PCA of a multivariate Gaussian distribution centred at [1,3]

14 2 Modelling Human Learning: Artificial Neural Networks

It aims to find the orthogonal basis that maximises the data’s variance
for a given basis dimensionality. The usual method is to find the direction
which accounts for most of the data’s variance -the first basis vector (the first
Principal Component direction)- and then to find the direction that accounts
for most of the remaining variance -the second basis vector- and so on. Pro-
jecting data onto the Principal Component directions, we perform a dimen-
sionality reduction that is accompanied by the retention of as much variance
(or information) in the data as possible. This dimensionality reduction can
be considered of great use in data mining applications, as the processing of
low dimensional data is always considered less draining on computational
resources.

The basis vectors of this new co-ordinate system can be shown to be the
eigenvectors of the covariance matrix of the data set and the variance on
these co-ordinates are the corresponding eigenvalues. The optimal projection
from N to M dimensions given by PCA is the subspace spanned by the M
eigenvectors with the largest eigenvalues.

Using the analysis proposed by (Bishop, 1995), it is possible to describe
this operation as mapping vectors xd in an N-dimensional space onto vectors
in an M-dimensional space (x1...xN), where M ≤ N . x may be represented
as a linear combination of a set of N orthonormal vectors Wi:

N∑

i=1

yiWi (2.4)

The vectors satisfy the orthonormality relation:

W t
i Wj = δij (2.5)

where δ is the Kronecker delta.
Making use of the Eq. 2.5, the coefficients yi may be given by:

yi = WT
i x (2.6)

which can be regarded as a simple rotation of the co-ordinate system from the
original x’s to a new set of co-ordinates given by the y’s. If only one subset
M < N of the basis vectors, Wi , are retained, so that only M coefficients are
used, then replacing the remaining coefficients by constants bi each vector x
may be approximated by the following equation:

x̃ =

M∑

i=1

yiWi +

N∑

i=M+1

biWi (2.7)

Consider the whole data set of D vectors xd, where d = 1, . . . , D. It is
necessary to make the best choice of and so that values obtained by Eq. 2.6

2.4 Hebbian Learning and Statistics 15

give the best approximation of Eq. 2.7 over the whole data set. The vector
xd has an error due to the dimensionality reduction:

xd − x̃d =

N∑

i=M+1

(yd
i − bi)Wi (2.8)

The best approximation can be defined as that which minimises the sum of
the squares of the errors over the whole data set

EM =
1

2

D∑

d=1

∥∥xd − x̃d
∥∥2

=
1

2

D∑

d=1

N∑

i=M+1

(yd
i − bi)

2 (2.9)

Calculating the derivative of with respect to and set it to zero, then:

bi =
1

D

D∑

d=1

yd
i = WT

i x̄ ∀i ∈ M + 1...N (2.10)

where the sample mean vector x̄ is defined as:

x̄ =
1

D

D∑

d=1

xd (2.11)

Now, the sum of squares error can be written as:

EM =
1

2

N∑

i=M+1

D∑

d=1

{
WT

i (xd − x̄)
}2

=
1

2

d∑

i=M+1

WT
i ΣWi (2.12)

where Σ is the sample covariance matrix of the set of vectors and is given
by:

Σ =
1

D

∑

d

(xd − x̄)(xd − x̄)T (2.13)

Then, minimising EM with respect to the choice of Wi, it can be shown
(Bishop, 1995) that the minimum occurs when the basis vectors satisfy

ΣWi = λiWi (2.14)

So, those Wi are the eigenvectors of the covariance matrix. If the covariance
matrix is real and symmetric, it can be proved to have orthogonal eigenvec-
tors, which is assumed. Substituting the Eq. 2.14 into Eq. 2.12 and making
use of the orthonormality relation (Eq. 2.5), then the value of the error cri-
terion at the minimum may be expressed as:

EM =
1

2

M∑

i=1

λi (2.15)

16 2 Modelling Human Learning: Artificial Neural Networks

Then the minimum error is obtained by choosing the (N −M) smallest eigen-
values, and their corresponding eigenvectors, as the ones to discard. These
y’s are usually called the principal components.

2.4.2 Oja’s Models

Oja made significant contributions (Oja, 1982, 1989) during the resurgence
of research into ANNs in the early 80’s. It is a well-known fact that Hebbian
Learning is inherently unstable, due to a problem with positive feedback
causing unconstrained growth. The way in which Oja’s models deal with
this problem in a way that also gives them important information extraction
properties.

2.4.2.1 Oja’s Weighted Subspace Algorithm

Oja developed his previous work (Oja, 1992) in (Oja, 1989) to now identify
the actual principal components using the Weighted Subspace Algorithm. It
recognised the importance of introducing asymmetry into the weight decay
process in order to force weights to converge towards the Principal Compo-
nents. The model is defined by the equations:

yi =

N∑

i=1

Wijxj (2.16)

where a Hebb-type rule with decay modifies the weights according to

△Wij = ηyi(xj − Θi

M∑

k=1

ykWkj) (2.17)

Ensuring that Θ1 < Θ2 < Θ3... allows the neuron whose weight decays
proportionally to Θ1 -i.e. whose weight decays least quickly- to learn the
principal values of the correlation in the input data. As a consequence, this
neuron will respond maximally to directions that run parallel to the first
principal component. The second output cannot compete with the first, but
is in a stronger position to identify the second principal component, and so on
for all of the outputs in the network. It can be shown that the weight vectors
will converge to the principal eigenvectors in the order of their eigenvalues.

2.4.3 Negative Feedback Network

The Negative Feedback Network (Fyfe, 1993) is introduced in this section
and reference will be made to it in subsequent sections.

2.4 Hebbian Learning and Statistics 17

Consider an N-dimensional input vector, x, and a M-dimensional output
vector, y, with Wij being the weight linking jth input to ith output, and let
η be the learning rate. The initial situation is that there is no activation at
all in the network. The input data is fed forward via weights from the input
neurons (the y-values) to the output neurons (the x-values) where a linear
summation is performed to give the activation of the output neuron. This
can be expressed as:

yj =

N∑

j=1

Wijyj , ∀i (2.18)

The activation is fed back through the same weights and subtracted from the
inputs -where the inhibition takes place-:

ej = xj −
∑

Wijyi, ∀j (2.19)

After that simple Hebbian learning is performed between input and outputs:

ΔWij = ηejyi (2.20)

The effect of the negative feedback is to stabilise network learning. Thus,
it is not necessary to normalise or clip the weights to achieve convergence
towards a stable solution. Note that this algorithm is clearly equivalent to
Oja’s Subspace Algorithm (Oja, 1989) since

ΔWij = ηejyi = η(xj −
∑

k

Wkjyk)yi (2.21)

This network is capable of finding the principal components of the input data
(Charles and Fyfe, 1998) in an equivalent way to Oja’s Subspace algorithm
(Oja, 1989), and so the weights will not find the Principal Components but a
basis of the Subspace spanned by these components. The architecture of the
typical ANN using negative feedback is shown in Figure 2.5. The difference
with the feed-forward model (Figure 2.3) is that the network’s inputs (x) can
be modified.

The network uses simple Hebbian learning to enable the weights to con-
verge in order to extract the maximum information content from the input
data. Writing the algorithm in this way provides a model of the process which
allows different versions and algorithms to be devised such as the Maximum
Likelihood Hebbian learning rule (Corchado et al, 2004), based on an explicit
view of the residual (x− Wy) which is never independently calculated when,
for example, using Oja’s learning rule.

Feedback is said to exist in a system whenever the output of an element in
the system influences in part, the input applied to that particular element.
It is used in this case to maintain the equilibrium of the weight vectors.

18 2 Modelling Human Learning: Artificial Neural Networks

Fig. 2.5 Basic architecture of a negative feedback network

2.5 Competitive Learning

In this kind of learning, the output neurons of a neural network compete
among themselves to become the active (firing) neuron. This also mirrors
the reality of what takes place in the brain, in that there are finite resources
for learning and so one neuron’s gain is another neuron’s loss. This is the
biggest difference with Hebbian learning in which several output neurons
may be simultaneously active; in the case of competitive learning only a
single output neuron is active at any one time. This characteristic makes
competitive learning a highly suitable tool to find those statistically salient
features that may be used to classify a set of input patterns. Rumelhart and
Zipser (Rumelhart and Zipser, 1985) claim that there are three basic elements
to a competitive learning rule:

1. A set of neurons that are identical except for some randomly distributed
synaptic weights, and which therefore respond differently to a given set of
input patterns.

2. A limit imposed on the “strength” of each neuron.
3. A mechanism that permits these neurons to compete for the right to re-

spond to a given subset of inputs, such that only one output neuron, or
only one neuron per group, is active -i.e., “on”- at any one time. The neuron
that wins the competition is called a winner-takes-all neuron.

By means of an adaptive process, each individual neuron of the neural net-
work gradually becomes sensitive to different input categories, or sets of sam-
ples in a specific domain of the input space, thereby becoming a feature
detector.

2.5.1 The Self-Organizing Map

The Self-Organizing Map (SOM) (Kohonen et al, 1977; Kohonen, 1995)
is the most widely used of all the neural network models referred to as

2.5 Competitive Learning 19

Topology-Preserving Maps. All these models share the same objective: to
generate a low dimensional representation of the training samples while pre-
serving the topological properties of the input space. On account of this
characteristic, their main use is for the visualisation and clustering of data.
In most cases, high-dimensional data is analysed, thus any data-mining tech-
niques that use the data space are bound to be overly complicated. An ac-
curate low-dimensional representation of the data will be of great advantage
for most data-mining algorithms.

The basic SOM consists of m units located on a regular low-dimensional
grid, U , usually 1- or 2-dimensional (see Figure 2.6).

Fig. 2.6 Conceptual diagram of a 2D-SOM representation of 3D data set

Each unit j has an associated D-dimensional characteristics vector wj =
[wj1, ..., wjd]. The unit positions kj on the grid are fixed from the beginning.
The map adjusts to the data by adapting the prototype vectors. Together,
the grid and the set of characteristics vectors form a low-dimensional map
of the data manifold: a 2-dimensional representation where nearby objects in
topological terms -map units and neurons- remain close to each other.

The learning process, by which the network neurons adapt to the data is
an iterative process. Several operations have to be performed at each train-
ing step t. The first operation is to select an entry at random from the data
set that is analysed, consisting of a d-dimensional vector xi, which consti-
tutes the input to the network. Then, the Euclidean distance between the
input vector and the characteristics vector of all the neurons in the network
is calculated. The neuron with the lowest distance to the input is deemed the

20 2 Modelling Human Learning: Artificial Neural Networks

winning neuron, which will be called the Best Matching Unit (BMU). This
situation is expressed mathematically in Eq. 2.22:

wv = arg mink {‖xi − wk(t)‖} (2.22)

Subsequently, the characteristics vectors for the BMU and its neighbourhood
are “moved” towards the presented input, to reinforce the similarity between
the BMU -and its neighbourhood- and the inputs. Thus, a neuron specialises
in recognising input patterns that are similar to the one that is presented. The
most characteristic element of SOM learning is the use of a neighbourhood
function, which enables the BMU to update its vector to the input and also
enables neighbouring neurons to update in direct proportion to their distance
from the BMU in the map lattice. This neuron update process in the SOM
is presented graphically in Figure 2.7.

Fig. 2.7 Updating of the characteristics vectors of SOM neurons

Figure taken from (Yin, 2002b)

Neuron updating in the SOM can be represented as:

wk(t + 1) = wk(t) + α(t)η(v, k, t)(x(t) − wk(t)) (2.23)

where, x denotes the network input, wk the characteristics vector of each
neuron; α, is the learning rate of the algorithm; and η(v, k, t) is the neigh-
bourhood function, in which v represents the position of the winning neuron
(BMU) in the lattice, and k the positions of the neurons in its neighbourhood.
The most common function is a Gaussian function centred on the position of
the BMU; although other functions, such as the difference of Gaussians, are
also widely used.

The characteristic Gaussian function may be defined as:

η(v, k, t) = e
‖wv−k‖
2σ2(t) (2.24)

2.5 Competitive Learning 21

where v and k are positions of the BMU and kth unit on the SOM grid and σ is
the neighbourhood radius. Both the learning rate α(t) and the neighbourhood
radius σ(t) decrease monotonically during training; the learning rate to zero
and the neighbourhood radius to some suitable non-zero value, usually one.

Furthermore, an additional step can be performed: neighbourhood learn-
ing of randomly chosen neurons can be reinforced by using those neuron’s
weights as the input for a small percentage of the updating times -e.g., 10%
iterations-, which avoids having to have empty spaces in the map where neu-
rons have not reacted to any data. As a result of the leaning process -i.e. the
presentation of all input vectors and the adaptation of the weight vectors-
the SOM generates a mapping from the input space onto the lattice U , in
which the topological relationships in the input space are preserved in U to
the highest possible degree. By taking account of the BMU as well as its
neighbouring neurons (2.23) when updating; nearby neurons gradually spe-
cialise to represent similar inputs, and the representations become ordered
on the map lattice. This topological ordering of data into a 2D map is one of
the main features of the SOM algorithm.

2.5.2 The Visually Induced SOM

Neighbourhood learning is adopted in the SOM to retain the topological order
of the neurons in the map. Thus, the map can be used to show the relative
relationships between data points. However, the SOM does not directly show
the inter-neuron distances on the map. For visualisation, the SOM requires
the assistance of a colouring scheme to print the inter-neuron distances, which
therefore allows the clusters and boundaries to be marked.

For the map to capture the data structure naturally and directly, the
distance quantity must be preserved on the map, along with the topology.
Ideally, the nodes should be uniformly and smoothly placed in the nonlinear
manifold of the data space: the distances of any two nearest neighbouring
neurons should be approximately the same and the distances between a neu-
ron and its furthest neighbouring neurons should increase proportionally and
regularly according to the structure of the map grid. If so, the positions of
the neurons can serve as grades for measuring the distance of any mapped
points. The map will then appear as a smooth, graded mesh embedded in
the data space, onto which the data points are mapped and the inter-point
distances are approximately preserved.

Like the SOM, the ViSOM (Yin, 2002b,a) projects high-dimensional data
in an unsupervised manner, but it constrains the lateral contraction force
and hence regularises the inter-neuron distance to a parameter that defines
and controls the resolution of the map. It preserves the data structure as well
as the topology as faithfully as possible. Figure 2.8 presents the difference in
the representation obtained by a SOM and a Vi-SOM trained over the same
data set. In this case the well-konwn Iris data set is represented by a SOM
and a ViSOM, both of size 20x20.

22 2 Modelling Human Learning: Artificial Neural Networks

(a) SOM data visualisation (b) ViSOM data visualisation

Fig. 2.8 Comparison of the representation of the Iris data set by a SOM and a
ViSOM

Figure taken from (Yin, 2002b)

Like the SOM, the ViSOM uses a neuronal grid structure and they both
basically use the same training algorithm. The difference between both algo-
rithms lies in the way the weights of its composing units are updated. The
steps of this algorithm can be summarised as follows:

At time step t, an input x(t) is drawn randomly from the data set or
data space. A winning neuron can be found on the basis of its distance to
the input, using the same expression as the SOM (Eq. 2.22). Then, in the
SOM algorithm, the weights of the neurons in a neighbourhood of the winner
are updated by Eq. 2.23 (see also Fig.2.6). The second term in this equa-
tion (x(t) − wk(t)), which can be considered as the updating force, can be
decomposed into two different forces:

Fkx ≡ x(t) − wk(t) = [x(t) − wv(t)] + [wv(t) − wk(t)] ≡ Fvx + Fkv (2.25)

The first force, Fvx, represents the updating force from the winner v to the
input x, which is the same as that used by the winner in (Eq. 2.23). It adapts
the neurons toward the input in a direction that is orthogonal to the tangent
plane of the winner. While the second force, Fkv, is a lateral or contraction
force bringing neuron k to the winner v. It is this contraction force that brings
neurons in the neighbourhood towards the winner and thus forms a contrac-
tion around the winner on the map at each time step. In the ViSOM, this
lateral contraction force is constrained by regularising the distance between a
neighbouring neuron to the winner. These forces are graphically represented
in Figure 2.9.

It can be seen that if the dvk is larger than Δvkλ; i.e. if the wk is far-
ther away from wv under the specified resolution, the constraint is positive,
so a contraction force remains in place. Otherwise, the constraint becomes
negative, so an opposite or an expansion force applies.

2.5 Competitive Learning 23

(a) Contraction force between the
BMU and two neighbouring neurons

(b) Expansion force between the BMU
and two neighbouring neurons

Fig. 2.9 Contraction or Expansion force for the updating of the ViSOM neurons

Figure taken from (Yin, 2002a)

The scale of the force is controlled by the normalised distance between
these two weights until they are in proportion to the distances of their weights
in the data space. Therefore, the updating of neurons in the case of the
ViSOM can be expressed as:

wk(t + 1) = wk(t) + α(t)η(v, k, t)

[
(x(t) − wv(t)) + (wv(t) − wk(t))

dvk −△vkλ

△vkλ

]

(2.26)

where, dvk and △vk are the distances between neurons in the data space v
and k on the unit grid or map, respectively, and λ is a positive pre-specified
resolution parameter. It represents the desired inter-neuron distance -of two
neighbouring nodes- reflected in the input space.

The ViSOM produces a smooth and regularly graded mesh through the
data points and enables a quantitative, direct, and visually appealing measure
of inter-point distances on the map.

2.5.3 The Scale Invariant Map

The Scale Invariant Map (SIM) (Fyfe, 1996) is a regular array of nodes ar-
ranged on a lattice, similar to a Self-Organising Map (SOM) (Kohonen, 1988),
although it uses a training method based on a negative feedback network. A
neighbourhood function and competitive learning are used in the same way
as with the SOM. The input data is fed forward to the outputs in the usual
way. Following its selection, the winner, c, is deemed to be firing (yc = 1)
and all other outputs are suppressed (yi = 0 ∀i �= c). The winner’s activation
is then fed back through its weights and this is subtracted from the inputs,
and simple Hebbian learning is used to update the weights of all nodes in the
neighbourhood of the winner.

24 2 Modelling Human Learning: Artificial Neural Networks

Training on a SOM relies on iteratively selecting a winner stimulated by the
inputs, and updating the weights. With the SIM, the weights of the winning
node are fed back as inhibition to the inputs -similar to the process detailed
in Section 2.4.3-, and simple Hebbian learning is then used to update the
weights of all nodes in the neighbourhood of the winner.

e = x − Wcyc, (yc = 1) (2.27)

△Wi = hciηe, ∀i ∈ Nc (2.28)

This has the effect of updating all weight vectors in parallel to the vector
x − Wc, which is made clear by rewriting Eq. 2.28 as:

△Wi = hciη(x − Wc), ∀i ∈ Nc (2.29)

In the negative feedback from a winning neuron to the input data, there are
large number of residuals which are relatively small in magnitude and a much
larger number of residuals which are much greater in magnitude. This is more
likely to be approximated by an exponential distribution than by a Gaussian
distribution.

The final effect of this type of feedback learning is that a pie-slice of data is
actually won by each neuron. This algorithm is called a scale-invariant feature
map because it ignores the magnitude of each input vector, and responds
solely to the relative proportions of the magnitudes of each input vector
element. The way the SIM matches the data in a “pie-slice” manner, is shown
in Figure 2.10.

It is well known that, given similar input data to those used above, a one-
dimensional self-organizing map (SOM) will self-organize to spread itself over
the square to minimise the expected distance between the code points and

Fig. 2.10 A SIM trained on uniformly distributed data

2.5 Competitive Learning 25

the points of the square. However, if this features map increases the learning
rate, an interesting effect comes into play: the mapping winds round upon
itself so that each outer neuron -which is currently winning competitions- is
backed up by a set of support neurons. The results of such an experiment
are shown in Figure 2.11. Note that those weights which continue to occupy
space within the outer ring of neurons do not win any competitions. They can
be thought of as backups for those neurons which are winning competitions:
a substitute is ready to replace one of the winners should it fail.

Fig. 2.11 Results for the SIM when the learning rate is increased

2.5.3.1 The Maximum Likelihood Scale Invariant Map

Exploratory Projection Pursuit (EPP) (Friedman and Tukey, 1974; Friedman,
1987) is a more recent statistical method than PCA aimed at solving the diffi-
cult problem of identifying structure in high dimensional data. It does this by
projecting the data onto a low dimensional subspace in which we search for its
structure by eye. However not all projections will reveal the structure of the
data equally well. An index measures the degree of “interest” of a given projec-
tion, and the data is then represented in terms of projections that maximise
that index.

“Interesting” structures are usually defined in terms of near-Gaussian
distributions, as most projections of high-dimensional data onto arbitrary
lines through most multi-dimensional data yield this type of distribution
(Diaconis and Freedman, 1984). Therefore to identify “interesting” features
in the data, it is possible to look for those directions onto which the data-
projections are as far from the Gaussian as possible. (Corchado et al, 2004)

26 2 Modelling Human Learning: Artificial Neural Networks

presents a neural method of performing EPP from a probabilistic perspective
called “Maximum likelihood”.

A formula is derived to replace the classical Hebbian rule in an ANN
(Section 2.3) to perform this kind of EPP:

△Wij = η · yisign(ej)|ej |
p−1 (2.30)

Applying the Maximum Likelihood Hebbian Learning (MLHL) to work in
the SIM algorithm is a very straightforward procedure.

It can be done by simply modifying the weight update of all nodes in the
neighbourhood of the winner, which is expressed as in Eq. 2.31.

△Wi = hci · η · sign(e − Wc)|e − Wc|
p−1, ∀i ∈ Nc (2.31)

By giving different values to the parameter p (Corchado and Fyfe, 2002a),
the learning rule is optimal for different probability density functions of the
residuals. hci is the neighbourhood function as in the case of the SOM and
Nc is the number of output neurons. Finally, η represents the learning rate.

This new algorithm is called Maximum Likelihood Scale Invariant Map -or
Max-SIM for short- (Corchado and Fyfe, 2002b) and will be used in following
chapters.

2.5.4 Assessing Quality of Training of Topology

Preserving Models

In the case of supervised learning, having established the collection of desired
outputs for the ANN inputs usually implies that a certain deviation from
the ANN’s learning state and the desired output can be calculated quite
easily. When dealing with unsupervised learning, the process only depends
on the inputs and the dynamics of the learning rule; which makes it much
more difficult to determine the accuracy of the training in relation to the
input data set. Such a measure would be relevant, not only for a theoretical
analysis of the learning process, but also for practical purposes, as it could be
used to determine how well the algorithm is adapting to the characteristics of
the data. Unfortunately, there is no general canonical measure to determine
the quality of the training of unsupervised learning algorithms, which also
includes Self-Organizing Maps.

In the case of the SOM, several quality measures have been proposed in the
literature (Polani, 2003; Pozlbauer, 2004), which examine different character-
istics of the model. For a better understanding of the results presented in this
book, a list of the most interesting measures accompanied by an explanation
of each one is included in the following subsections.

2.5 Competitive Learning 27

2.5.4.1 Quantization Error

Quantization Error is related to all forms of vector quantization and cluster-
ing algorithms. Thus, this measure completely disregards map topology and
alignment. It requires a test data set to be calculated. Quantization error
is computed by determining the average distance of the test data set en-
tries to the cluster centroids by which they are represented. In case of the
SOM, the cluster centroids are the characteristics vectors. Its mathematical
expression is:

EQ =
1

|D|

∑

xi∈D

‖xi − wi‖
2 (2.32)

where |D| is the number of entries in the data set used D, and wi the BMU
for each presented input xi.

2.5.4.2 Topographic Error

Topographic Error (Kiviluoto, 1996) is the most simple of the topology-
preservation measures. A data set is also needed to calculate this measure.
For all data samples, the respective best and second-best matching units -1st

BMU and 2nd BMU- are determined. If these are not adjacent on the map lat-
tice, this is considered an error. The total error is then normalized to a range
from 0 to 1, where 0 means perfect topology preservation. Its mathematical
expression is as follows:

ET =
1

|D|

∑

xi∈D

u(xi) (2.33)

where |D| is the number of entries in the data set used D, and the value of
function u is either 1, if the first and second BMU for input entry xi are
adjacent in the map grid, or 0 in any other case.

Usually, a single value is returned that quantifies this property. It is how-
ever possible to decompose the Topographic Error such that they can be
visualized on a map lattice. This can be done, for example, by raising the
error for a unit every time it is selected as the 1st BMU by a data sample,
and the 2nd BMU is not adjacent in the output space.

2.5.4.3 Topographic Product

One of the main uses of non-linear mapping methods is for visualization of
high-dimensional data. In such visualizations, it is crucial that data prox-
imities are trustworthy. This measure (Bauer and Pawelzik, 1992) attempts
to determine the degree to which that is true; i.e. if two data samples are
represented as nearby (or related) on the map, then to what extent is the
same also true for the input space.

28 2 Modelling Human Learning: Artificial Neural Networks

Computation of the Topographic Product only involves the map’s charac-
teristics vectors. Its three-part mathematical expression -which are called P3

and P in the original publication- is as follows:

P3(j, k) =

(
k∏

l=1

Q2(j, l)Q2(j, l)

)1/k

(2.34)

P =
1

N(N − 1)

N∑

j=1

N−1∑

k=1

log(P3(j, k)) (2.35)

In which, Q1(j, k) =
dV (wj ,w

nA
k

(j)
)

dV (wj ,w
nV

k
(j)

) and Q2(j, k) =
dA(wj ,w

nA
k

(j)
)

dV (wj ,w
nV

k
(j)

) considering

nA
k (j) the kth nearest neighbour of the neuron j with distances measured in

the output space, and nV
k (j) as the kth nearest neighbour of the neuron j

with distances measured in the input space, between wj and wnV
k

(j).

2.5.4.4 Distortion

As explained in (Lampinen and Oja, 1992), there is a function that the algo-
rithm optimizes, when using a constant radius for the neighbourhood function
of the learning phase of a SOM. This function, called Distortion measure, can
be used to measure the overall topology preservation of a map in a more de-
tailed way than Topographic Error. Also a test data set is needed for its
calculation.

ED =
∑

xi∈D

∑

wk∈W

η(vi, k) ‖xi − wk‖
2

(2.36)

where xi represents each entry of the data set;η(vi, k) represents the neigh-
bourhood function between the BMU and every other neuron in the map; (vi

the position of the BMU corresponding to xi; k the position of each other
neuron in the network; and wk being each of the characteristics vector that
compose the network (W). Further discussion can be found in (Vesanto et al,
2003).

2.5.4.5 Goodness of Map

This measure, described in (Kaski and Lagus, 1996) combines two of the
previous error measures: the square quantization error and the topographic
error. It takes into account both the distance between the input and the
BMU and the distance between the first BMU and the second BMU on the
shortest path between both neurons along the grid map, calculated by only
taking into account only neurons that are direct neighbours in the map for
each input; measuring both the continuity of the mapping from the data set

2.6 Conclusions 29

to the map grid, and the accuracy of the map in representing the set. The
mathematical expression of this measure for each data entry is shown below:

d(xi) = ‖xi − vi‖ + min

|Kv′

i
|−1∑

k=0

∥∥wIi(k)
− wIi(k+1)

∥∥ (2.37)

where, vi and v’i represent the weights of the first BMU and the second
BMU respectively, corresponding to data entry xi. Ii(k) and Ii(k+1) represent

indexes of the kth and the kth+1 neurons along the minimum path from vi to
v’i, both neurons being direct neighbours in the map grid. According to that
definition wIi(0) = vi; which is to say, the first neuron in the path is the first
BMU for data entry xi and wIi(kv’i

) = v’i , which is to say, the last neuron
in the path that corresponds to the second BMU for data entry xi. The final
goodness of the map is defined as the average of the values obtained by Eq.
2.37 for all data entries in the test data set.

2.6 Conclusions

This section has introduced the basic concepts of ANNs, concentrating partic-
ularly on unsupervised networks, which will be investigated in greater depth
further on this book, and has remarked on the main differences with the
supervised ones. Special emphasis is placed on Hebbian Learning and Com-
petitive Learning; the two types of unsupervised learning on which this book
is centred. Accordingly, Oja’s model and negative feedback algorithms are dis-
cussed, which are algorithms that make use of the first type of learning, and
the Self-Organizing and its derivations, which are the main representatives
of the second type of learning.

Chapter 3

The Committee of Experts Approach:
Ensemble Learning

3.1 The Ensemble Meta-algorithm

The main concept behind ensemble learning model is the simple intuitive idea
of a committee of experts working together to solve a problem.

In all likelihood, when dealing with a complicated problem, a group of ex-
perts with varied experience in the same area will have a higher probability of
reaching a satisfactory solution than a single expert. All members contribute
their own experience and initiatives and the group as a whole can choose to
uphold or to reject a new idea on its own merits.

In the field of AI, ensemble learning is the process by which multiple mod-
els, such as classifiers or experts, are strategically generated and combined to
solve a particular computational intelligence problem. Ensemble learning is
primarily used to improve the performance -classification, prediction, function
approximation, etc.- of a model, or reduce the likelihood of an unfortunate
selection of a poor one.

3.1.1 The Classification Problem

At its inception, the ensemble meta-algorithm was created to improve the ca-
pabilities of existing models for data classification. In this section, the prob-
lem is formally presented, to provide a fuller understanding of ensembles and
their use.

Statistical classification is a procedure in which individual items are placed
into groups based on quantitative information on one or more characteristics
inherent in the items -referred to as traits, variables, characters,...etc.- and
based on a training set of previously labelled items.

In a typical classification algorithm supervised training, the data set con-
sists of a series of vectors of features (denoted x), each of which is considered
as a data entry.

Each entry has also an associated class label (y), so each entry belongs
to a separate class within the data set. It is assumed that there exits some

B. Baruque & E. Corchado: Fusion Meth. for Unsupervised Learn. Ensem., SCI 322, pp. 31–47.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

32 3 The Committee of Experts Approach: Ensemble Learning

underlying function f , such that y = f(x) for each data entry (x, y). The
goal of the classification algorithm is to find a good approximation of h to
f , which can be applied to assign labels (to classify) new input data entries
that were not previously presented to the classifier.

As pointed out by (Dietterich, 2000), classification algorithms that output
a single hypobook suffer from three problems that can be partially overcome
by the use of ensemble methods:

⊲ Statistical problem: this problem arises when the hypobook space that the
algorithm is trying to learn is too large for it to be correctly represented
by the amount of data entries available for training. In those cases, there
might be a series of very different hypobook that obtain the same accuracy
on the training data, which turns the choice of training data into a random
decision. There is a risk that the chosen hypobook might work well with
available data, but that its accuracy might suffer when classifying future
data. An algorithm suffering from this problem it is said to have high
‘variance’.

⊲ Computational problem: this problem appears when it can not be guaran-
teed that the learning algorithm will find the best hypobook within the
hypobook space. In ANNs or the so called decision trees (Breiman et al,
1984), finding the hypobook that best fits the data is computationally too
expensive, so heuristics are used instead. These heuristics can get trapped
by local minima and hence fail to find the best hypobook. Algorithms that
suffer from this problem are sometimes described as having high ‘compu-
tational variance’.

⊲ Representation problem: this last problem arises when the hypobook space
does not contain a hypobook that is a good approximation of the real
underlying function f . Algorithms suffering from this problem are said to
have high ‘bias’.

3.1.2 Ensemble General Concepts

As can be inferred from Section 3.1.1, building a highly accurate classification
rule is certainly a difficult task. On the other hand, it is hardly a difficult task
to come up with very rough rules of thumb that are only moderately accurate.
Ensemble Learning, is based on the observation that finding many rough
“loose” rules for classification can be a lot easier than finding a single, highly
accurate prediction rule. The ensemble approach begins with a method or
algorithm to discover the rough rules of thumb. The ensemble meta-algorithm
repeatedly applies this “weak” or “base” learning algorithm, feeding it each
time with a different subset of the training examples. Each time it is called,
the base learning algorithm generates a new weak classification rule. After
repeated rounds the boosting algorithm must combine these weak rules into
a single prediction rule that will hopefully be much more accurate than any
one of the weak rules.

3.1 The Ensemble Meta-algorithm 33

Ensemble algorithms are probably an effective method of producing a very
accurate classification rule by combining rough and moderately inaccurate
rules of thumb.

The ensemble meta-algorithm intuitively helps to reduce the problems dis-
cussed in Section 3.1.1. The problem of being unable to generalize well when
presented with new data, due to having chosen the wrong hypobook (statis-
tical problem) appears less serious when several different hypobook are used.
The problem of the learning algorithm stuck in local minima when using
heuristics (computational problem) is softened by the use of several models
trained in a similar, although not in an exactly equal way, so that each of
them will face different local minima, as they are trained with different data
sets. And finally, it appears easier to obtain a final hypobook to solve a com-
plex problem by dividing the problem into several simple ones and tackling
each of them individually (representational problem). In a final stage, the
hypotheses of each classifier may be combined to obtain the final solution.

There is considerable evidence to suggest that the use of ensembles can
lead to an improvement in the performance of single models in classifica-
tion or regression tasks (Breiman, 1996; Freund and Schapire, 1996; Schapire,
1990; Kuncheva et al, 2002). The underlying reason for increased reliability
through the use of ensembles is that different classification algorithms will
show different patterns of generalization. In other words, each one will com-
mit different errors when dealing with the same data set; hopefully only one
will commit an error at any one time. Thus, in the combined output of the
ensemble, individual errors will be compensated by correct responses from
the rest of the ensemble members. More formal explanations of the way en-
sembles can improve performance may be found in (Sharkey and Sharkey,
1997; Heskes, 1997; Ruta and Gabrys, 2002; Kuncheva, 2004). As is widely
accepted, in (Geman et al, 1992) this improvement potential is explained in
terms of two concepts called ‘bias’ and ‘variance’. Simplifying the explana-
tions in that work, variance can be considered as representing the extent to
which the output of a classifier is sensitive to the data set in which it is
trained; in other words, the extent to which, when trained with one data set
as its input, the classifier will yield outputs that are as accurate as those it
would generate were it trained with another data set. On the other hand, bias
refers to the capacity of the classifier to generalize correctly when presented
with a test set that is different from the one that is used for its training, as
an average over the set of possible training sets.

The strength of the ensemble meta-algorithm is its potential to achieve a
compromise between the desired result of both a small variance and a small
bias; as a trade off between fitting the data too closely (high variance) and not
taking data into account at all (high bias). It is generally accepted (Bishop,
1995) that the effect of combining a set of classifiers, each one trained on a dif-
ferent subset of a general data set, represents a decrease in variance, without
affecting the bias. Thus, the best strategy would be to concentrate on obtain-
ing a series of classifiers with low bias in their own subsets and then combine

34 3 The Committee of Experts Approach: Ensemble Learning

them to compensate for the variance that arises when calculating the final
output. An important element is the effective combination of the classifiers,
which relies in part on the presence of a certain variance in the components of
the ensemble that is generally referred as ‘diversity’. Obviously, there would
be no advantage in having an ensemble of classifiers generalizing in exactly
the same way. What is needed is a set of classifiers, each of which generalize
the problem well, leading to a small amount of errors. The key point being
that the other components do not share the error which a classifier commits,
so that even though not all of the classifiers obtain the correct answer, a
majority of them do. In other words, the set of classifiers in the ensemble
must exhibit a certain degree of diversity as a group. A much more thorough
study of diversity properties can be found in (Sharkey and Sharkey, 1997).

Ways of achieving an advantageous diversity when constructing an ensem-
ble is the main point in these kinds of meta-algorithms, some of which are
discussed below.

3.2 Commonly Used Ensemble Models

When constructing an ensemble there are two main approaches to how each
of the classifiers or components of the ensemble are going to be trained to
solve the problem at hand:

⊲ Independent Training: in which each of the classifiers is trained without
any knowledge of how the other components of the ensemble are trained.
The most widely known algorithm of this type is known as the Bagging
ensemble (Breiman, 1996) (see 3.2.1).

⊲ Coordinated Training: in which one of the classifiers composing the en-
semble is trained, taking account of how previous classifiers were trained
to modify the way in which the current one performs its training, so it can
overcome possible weaknesses of the other components. This is the idea
behind Boosting algorithms (Schapire, 1990; Freund and Schapire, 1996)
(see 3.2.2).

3.2.1 Bagging

‘Boostrap aggregating’ or ‘bagging’ for short, is one of the earliest, most in-
tuitive and perhaps the simplest ensemble-based algorithms, the performance
of which is surprisingly good (Breiman, 1996). Having a data set composed of
N data entries, in each iteration of the meta-algorithm, a lower number of N ′

entries are randomly and uniformly selected, with replacement, from the N
entries composing the original data set and grouped into what will be consid-
ered a new data set. In that way, it is possible to obtain several re-sampled data
sets in which various entries from the original data set will appear -one or many

3.2 Commonly Used Ensemble Models 35

Fig. 3.1 Schematic diagram of the Bagging process

times- and other entries will not appear at all. A classifier will be trained em-
ploying only one of those sub-sets. This classifier may be considered as an un-
specified learning algorithm, usually called the weak learning algorithm, which
is denoted generically as “WeakLearn”. The training algorithm for the classi-
fier may be considered quite unstable, which implies that minor changes in the
training can lead to quite different results. This procedure will yield an ensem-
ble of classifiers with sufficient diversity of hypobook. The schematic diagram
depicting this process is shown in Figure 3.1.

In a more formal way, this idea can be explained as follows: L is the
learning data set, consisting of data with the form (xn, yn), n = 1 . . .N ,
where yn represents the entry’s class. Let us assume that there is a learning
algorithm to train a classifier h(x, S) that approximates the desired hypobook
y = h(x, S).

Now, let us suppose a sequence of different learning sets {St}, each con-
sisting of N ′ independent observations from the same distribution. The idea
is to obtain a better classifier from those data sets than the one obtained by
a single learning set, by using the sequence of classifiers trained over the data
sets {h(x, St)}.

If y is a numerical value, the most straightforward approximation would be
to calculate the average of {h(x, St)} over t. If y is a class j ∈ {1 . . . J}, then one
method of aggregating the h(x, St) is by voting. If Nj = nr {kϕ(x, Lk) = j}
then this can be done by taking hfin(x) = argmaxjNj that is, the j for which
the maximum is Nj .

Usually only one data set S is available, without further replications. In
this case, a replication of the process leading to the hfin(x) can be achieved

36 3 The Committee of Experts Approach: Ensemble Learning

Algorithm 1. Bagging

Input: number of classifiers required: M
Output: final hypobook

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: procedure Train Ensemble(S1...Sm)
3: for t = 1 to T do

4: Construct a training set St ⊲ sampling N ′ items randomly from S
5: Call WeakLearn, with training set St

6: Get back hypobook ht: X → Y
7: end for

8: end procedure

For any new entry x, the bagged output will be calculated as:

⊲ hfin(x) = 1
M

∑
t ht(x) if the expected output is a numerical prediction

⊲ hfin(x) = argmaxjNj if the output is a discrete class.

by repeatedly obtaining several bootstrap samples of the original data set S
and placing them in separated data sets {St}.

The pseudo-code detailing how the bagging meta-algorithm works is pre-
sented in Algorithm 1.

The mathematical explanation of why this meta-algorithm works is the
following:

If we denote that over many independent replicates of the training set L,
φ predicts class label y for input x with a relative frequency of Q(y|x) =
P (φ(x, L) = y), then the overall probability that the classifier classifies the
input x with the correct label is:

r =

∫ [
∑

y

Q(y|x)P (y|x)

]
PX(dx) (3.1)

in which P (y|x) is the probability that input x generates class y and PX(dx)
the x probability distribution.

For the aggregated classifier, which output is calculated as a vote φA(x) =
argmaxiQ(i|x), the probability of a correct classification of x is:

∑

y

I(argmaxiQ(i|x) = y)P (y|x) (3.2)

where I(·) is the indicator function.
Call φ order-correct at the input x, if when input x results in class y more

often than in any other class, then φ also yields class y more often than
any other class. If we call C the set of all inputs where φ is order-correct,
we arrive at the following expression for the correct classification probability
of φA:

3.2 Commonly Used Ensemble Models 37

rA =

∫

x∈C

maxyP (x|y)PX(dx) +

∫

x∈C′

[
∑

y

I(φA(x) = y)P (x|j)

]
PX(x)

(3.3)
Even if φ is order-correct at x, its correct classification rate can be far from
optimal, but φA is optimal. If a predictor is good in the sense that it is
order-correct for most inputs x, then aggregation can transform it into a
near-optimal predictor.

Conversely, poor predictors can be transformed into worse ones. There is
another obvious limitation of bagging. For some data sets, it may happen
that ϕ(x, L) is close to the accuracy limits that the data may attain. Hence,
no amount of bagging will ever improve accuracy. Bagging unstable classifiers
usually improves them. Bagging stable classifiers is not a good idea.

3.2.2 Boosting

As pointed out above, all the classifiers in the Bagging algorithm (Section
3.2.1) ensemble are trained independently by manipulating the data set en-
tries, or more formally by generating a different distribution over the train-
ing examples. Then unweighted voting between all the classifiers determines
which ensemble output label will be used when classifying a new sample.

A natural evolution of this idea would be to gather information about how
a distribution works when presented to a classifier and then to choose the
next distribution of data so it can improve the overall classification accuracy
of the ensemble, by making it “expert” in certain classification areas where
the other classifiers are not performing so well.

As explained in Section 3.1.2, an ensemble would perform better when
a correct balance in the diversity of its components is achieved. Therefore,
boosting meta-algorithms are generally meant to place the greatest weight
on the examples that are most frequently misclassified by the preceding weak
rules; thereby forcing the base learner to focus its attention on the “hardest”
examples. The desired diversity will be achieved by the fact that different data
distributions are used, so classifiers will be trained in different ways. The main
point of the boosting algorithm is that, unlike bagging, these differences in
their behaviour will centre precisely on the areas where data is more difficult
to classify. Hence, having different hypobook for classifying “difficult” entries
will increase the probability of correctly classifying those data entries.

Intuitively, taking a weighted majority over many hypotheses, all of which
were trained on different samples taken from the same training set, has the
effect of reducing the random variability of the combined hypobook.

One of the first and the simplest boosting algorithms, as proposed by
(Schapire, 1990), illustrates the way in which boosting works. Each iteration
of boosting creates three weak classifiers: the first classifier C1 is trained with
a random subset of the available training data. The training data subset for
the second classifier C2 is chosen as the most informative subset, given C1.

38 3 The Committee of Experts Approach: Ensemble Learning

Specifically, C2 is trained on a training data only half of which is correctly
classified by C1, and the other half is misclassified. The third classifier C3 is
trained with instances on which C1 and C2 disagree. The three classifiers are
combined through a three-way majority vote, which means that, intuitively
speaking, there is an increased probability that, when classifying a new sam-
ple, at least 2 of the 3 classifiers should agree in the correct class, so the
ensemble will reach the correct classification through its voting process.

3.2.2.1 AdaBoost

Among the great variety of boosting algorithms, the most widely known might
well be the “Adaptative Boosting” or “AdaBoost” proposed by Freund and
Schapire in (Freund and Schapire, 1996).

This new algorithm is very nearly as efficient as the boost-by-majority ex-
plained in Section 3.2.2. However, unlike boost-by-majority, the accuracy of the
final hypobook produced by the new algorithm depends on the accuracy of all
the hypotheses returned by the weak classifiers composing the ensemble. It is
therefore able to exploit the power of the “weak” learning algorithm more fully.

Also, this new algorithm gives a clean method for handling real-valued
hypotheses which are often produced by neural networks and other learning
algorithms.

In (Freund and Schapire, 1996) two different variants of the algorithm are
denoted AdaBoost.M1 and AdaBoost.M2. The two versions are equivalent
for binary classification problems and differ only in the way that they handle
problems with more than two classes.

The main process is the same for both variants: as with the Bagging algo-
rithm, the input of the boosting algorithm takes a training set of N examples
S = 〈(x1, y1) . . . (xn, yn)〉 in which xi is an instance drawn from a space X and
represented in some way -typically, a vector of attribute values- , and yi ∈ Y
is the class label associated with xi. The boosting algorithm calls on the ser-
vices of WeakLearn repeatedly in a series of rounds. On each iteration t, the
booster also provides WeakLearn with a distribution Dt over a training set St.
In response, WeakLearn computes a classifier or hypobook ht: X → Y which
should misclassify a non-trivial fraction of the training examples, relative to
Dt . Thus, the weak learner’s goal is to find a hypobook ht which minimizes
the (training) error ǫt = Pri∼Dt

[ht(xi) �= y]. Note that this error is measured
with respect to the distribution Dt that was provided to the weak learner. This
process continues for T iterations, and, at last, the booster combines the weak
hypotheses h1 . . . hT into a single final hypobook hfin.

The difference between both variants of the algorithm lies in the way in
which Dt is computed in each iteration and the way the final hypobook
hfin calculates its outputs. The basic procedure for AdaBoost is detailed in
Algorithm 2.

AdaBoost.M1: (Freund and Schapire, 1996) The initial distribution D1 is
uniform over S so D1(i) = 1/m for all i . To compute distribution Dt+1 from

3.2 Commonly Used Ensemble Models 39

Algorithm 2. AdaBoost General Algorithm

Input: sequence of m examples S = 〈(x1, y1) . . . (xm, ym)〉 with labels yi ∈
Y = {1 . . . k}
weak learning algorithm WeakLearn

number of iterations T
Output: final hypobook
1: Initialize:D1(i) = 1/m for all i
2: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
3: procedure Train Ensemble(S1...Sm)
4: for t = 1 to T do

5: Construct a training set St ⊲ sampling N ′ items randomly from S
6: Call WeakLearn, with training set St and distribution Dt

7: Get back hypobook ht: X → Y
8: Calculate the error of ht: ǫt

9: Set β = ǫt/(1 − ǫt)
10: Update distribution Dt

11: end for

12: end procedure

Output: the final hypobook:
hfin(x)

Dt and the last weak hypobook ht, has to be multiplied by the weight of
example i has to be multiplied by some number βt ∈ [0, 1) if ht classifies xi

correctly, and otherwise the weight is left unchanged. The weights are then
re-normalized by dividing them by the normalization constant Zt, chosen so
that Dt+1 would be a distribution, as shown in Equation 3.4:

Dt+1(i) =
Dt(i)

Zt
×

{
βt if ht(xi) = yi

1 otherwise
(3.4)

In effect, “easy” examples that are correctly classified by many of the previous
weak hypotheses get lower weights, and “hard” examples which often tend to
be misclassified get higher weights. Thus, AdaBoost focuses most weight on
the examples which appear to be hardest for WeakLearn.

The final hypobook hfin is a weighted vote -i.e. a weighted linear threshold-
of the weak hypotheses. That is, for a given instance x, hfin outputs the label
y that maximizes the sum of the weights of the weak hypotheses predicting
that label. The hypobook weight is defined as:

hfin(x) = argmaxy∈Y

∑

i:ht(xi)=yi

log
1

βt
(3.5)

so that greater weight is given to hypotheses with lower error.

40 3 The Committee of Experts Approach: Ensemble Learning

AdaBoost.M2: (Freund and Schapire, 1996) The main disadvantage of Ad-
aBoost.M1 is that it is unable to handle weak hypotheses with error greater
than 1/2. The expected error of a hypobook which randomly guesses the label
is 1− 1/k , where k is the number of possible labels. Thus, the AdaBoost.M1
requirement for k = 2 is that the prediction is just slightly better than ran-
dom guessing. However, when k > 2, the requirement of AdaBoost.M1 is
much stronger than that, and might be hard to meet.

The second version of AdaBoost attempts to overcome this difficulty by ex-
tending communication between the boosting algorithm and the weak learner.
Firstly, the weak learner is allowed to generate more expressive hypotheses
the output of which is a vector in [0, 1]k rather than a single label in Y .
Intuitively, theyth component of this vector represents a “degree of belief”
that the correct label is y. The components with values close to either 1 or
0 respectively correspond to labels that are considered either plausible or
implausible.

To measure the accuracy of this degree of belief, a more complex error
measure is obviously needed. This pseudo-loss measure is computed with
respect to a distribution over the set of all pairs of examples and incorrect
labels. By manipulating this distribution, the boosting algorithm can focus
the weak learner not only on hard-to-classify examples, but more specifically,
on the incorrect labels that are hardest to discriminate.

More formally, a mislabel is a pair (i, y) where i is the index of a training
example and y is an incorrect label associated with example i. Let B be the
set of all mislabels: B = {(i, y) : i ∈ {1, . . . , m} , y �= yi}. A mislabel distribu-
tion is a distribution defined over the set of all mislabels. On each boosting
iteration t , AdaBoost.M2 supplies the weak learner with a mislabel distri-
bution Dt. In response, the weak learner computes a hypobook ht, expressed
as ht: X × Y → [0, 1].

Then, the pseudo-loss of hypobook ht with respect to mislabel distribution
Dt is calculated as:

ǫt =
1

2

∑

(i,y)∈B

Dt(i, y)(1 − ht(xi, yi) + ht(xi, y) (3.6)

It is important to outline that the pseudo-loss is minimized when correct
labels yi are given values near to 1 and incorrect labels y �= yi values near to
0. More details on this formula are provided in (Freund and Schapire, 1997).

The distribution of mislabels is updated to reflect the accuracy of the en-
tries selected in that iteration are classified by the newly generated hypobook
in a similar way to AdaBoost.M1:

Dt+1(i, y) =
Dt(i, y)

Zt
× β(1/2)(1+ht(xi,yi)−ht(xi,y) (3.7)

In this case, the update of the distribution is not only based on whether the
entry was correctly classified but also on a quantification for a particular

3.2 Commonly Used Ensemble Models 41

entry of how near or how far away the “degree of belief” was to the correct
solution.

The weak learner’s goal is to find a weak hypobook ht with small pseudo-
loss. Thus, some modification may be needed to use a standard “off-the-shelf”
learning algorithms in this way, although this is often straightforward. After
receiving ht, the mislabel distribution is updated using a similar rule to the
one used in AdaBoost.M1. For a given instance x, the output of the final
hypobook hfin is the label y that maximizes a weighted average of the weak
hypobook values ht(x, y). Also, although weak hypothesesht are evaluated
with respect to the pseudo-loss, the evaluation of the final hypobook hfin

uses the ordinary error measure.

hfin(x) = argmaxy∈Y

T∑

t=1

(
log

1

βt

)
ht(x, y) (3.8)

The experiments presented in (Freund and Schapire, 1997) prove that boost-
ing significantly and uniformly outperforms bagging when the weak learning
algorithm generates fairly simple classifiers.

3.2.3 Mixture of Experts

The mixture of experts is also a widely known paradigm for the combination
of classifiers (Jacobs et al, 1991). The main difference with the previously
discussed models is that this one is composed of two differentiated parts: the
set of classifiers and a final “gating mechanism” that manages the combination
of the outputs of the ensemble components.

Both the classifiers and the gating mechanism -which usually consists of
an ANN that has been trained by using the expectation maximization (EM)
algorithm (Dempster et al, 1977)- are trained at the same time over a given
data set. Each of the ensemble components generates a particular hypobook
with regard to the data. The gating mechanism is also trained using the
same data set as the other components of the model. In this case, though,
the aim of this training is to determine which weights will need to be given
to each of the classifiers’ outputs in relation to a particular input, in order to
maximize the accuracy of the output of the final hypobook. In other words,
the underlying idea of using the gating mechanism is to find out whether
training data have been properly learnt by each of the classifiers.

Figure 3.2 illustrates the mixture of experts model. The outputs of these
classifiers on their training data sets samples, along with the actual correct
labels for those blocks constitute the training data set for the gating mech-
anism. By comparing the output of each one with the expected one, the
gating mechanism can identify which of the classifier are experts in certain
data regions.

42 3 The Committee of Experts Approach: Ensemble Learning

Fig. 3.2 Mixture of Experts architecture

Therefore, when the system is asked to classify a new entry, each classifier
will generate an output according to its hypobook. The gating mechanism
will determine the degree to which a classifier is considered an expert in the
input space region where the new entry belongs and will accept the response
of those classifiers with a higher weight in the voting over the final output.

The output of the whole system would be:

hfin =

M∑

j=1

wjhj (3.9)

in which, wj is the weight that the gating mechanism gives to a particular
classifier. For a single pattern (x, d) the error function to be minimised for
the system would be: efin = 1

2 (hfin −d)2. Then, if using gradient descent for
training the system, the weights given to each classifier would be calculated
using the partial derivative:

∂emix

∂gi
= hi(

M∑

j=1

wjhj − d) (3.10)

Mixtures of experts are particularly useful when different experts are trained
on different parts of the feature space, or when heterogeneous sets of features
are available to be used for a data-fusion problem. Several mixture-of-experts
models can also be further combined to obtain a hierarchical mixture of
experts (Jordan and Jacobs, 1994).

3.3 Combining Ensemble Results 43

3.3 Combining Ensemble Results

The most common ensemble algorithms have been briefly overviewed in the
previous section. An important aspect that might improve the ensemble re-
sults is hinted at in those algorithms. It is not only a matter of how each
component is trained, but also of how the results of each component are
combined to obtain the final output.

The combination of the models can be accomplished at any of these three
levels:

1. In the input space, by a process known as Data Fusion.
2. In the architecture of the machines, by a process that we call Fusion.
3. In the output space, by a process known as Aggregation.

The first level is a complex subject that will not be directly addressed as it
is considered beyond the scope of this book. The second level, on the other
hand, represents the central contribution of this book, and is the subject of
detailed analysis in subsequent chapters. The third level is briefly discussed
in this section, as certain aspects bear some relation to the rest of the book.

According to (Polikar, 2006) there are generally two types of combinations:
machine selection and machine fusion. In machine selection, each model is
trained to become an expert in some local area of the total feature space,
and the output is aggregated or selected according to its performance. In
machine fusion, all the learners are trained over the entire feature space;
the combination process involves merging the individual machine designs to
obtain a single expert with a superior performance.

A very simplified overview of the combination methods used in the pre-
viously discussed algorithms -in the machine selection category- is presented
in this section. For further information, a much more detailed classification
is proposed and discussed in (Ruta and Gabrys, 2000).

3.3.1 Selection

The simplest way to obtain a better performance of an ensemble of classifiers
is to estimate the performance of each one and to select the model that
obtains better results, dropping the rest. This technique is also known in
literature as ‘bumping’ (Tibshirani and Knight, 1999) meaning “boostraped
umbrella of models parameters”.

Bumping is said to work because the bagging procedure sometimes leaves
out data points which have a strong pull on the classifier, prompting solutions
which exhibit poor generalisation. Outliers for example are of little use when
training a classier for good generalisation and so a classifier which is trained
on data samples minus the outliers is likely to exhibit good generalisation.

This technique seems too naive, and in almost every case, is outper-
formed by the more sophisticated combination techniques. For example in
(Petrakieva and Fyfe, 2003) a comparison of the technique with other more

44 3 The Committee of Experts Approach: Ensemble Learning

complex ones in the field of topology-preserving maps thereby favoured
the voting combinations discussed in Section 3.3.2. The same was true for
(Heskes, 1997). Nevertheless, as it is also a much simpler technique when re-
ferring to its computational complexity, there can be cases where the simpler
approach, which requires less computational power, can perform equally well.

In (Heskes, 1997) Heskes also proposes an algorithm called ‘balancing’
that is considered a compromise solution, half-way between bumping and the
voting process in bagging, although for this simple classification, it should be
included under the heading of voting combinations (Section 3.3.2).

3.3.2 Voting Combinations

In cases where the expected output is a discrete class, the simplest strategic
combination for the final output of an ensemble is simple voting of its outputs,
as for the original Bagging algorithm (Section 3.2.1). A very simple and widely
used combination rule is presented as the final output, the most frequent label
among the labels predicted by each member of the ensemble.

Bahler and Navarro (Bahler and Navarro, 2000) conducted a broad empir-
ical study on the use of different combination rules. They found that when
accuracy is approximately balanced across the estimators, majority voting
performs as well as any more complex combination rule. When accuracy is
imbalanced, majority voting tends to decrease in reliability, while more com-
plex methods which take account of the individual performances, such as
Bayesian methods (Ali, 1995), retain their performance.

3.3.3 Linear Combinations

In cases where the expected output is a number, rather than a discrete
class, the most straightforward approach to the combination of the ensem-
ble outputs consists in calculating the mean of the output values for all the
components:

hfin =
1

M

M∑

i=1

fi (3.11)

When information about the performance of the classifiers is available, the
linear weighted summation of the outputs will usually obtain more accurate
results. This is the case of the AdaBoost algorithm (Freund and Schapire,
1996) (Section 3.2.2.1) and the Mixture of Experts (Jacobs et al, 1991) (Sec-
tion 3.2.3).

hfin =
M∑

i=1

wifi (3.12)

One of the first studies to consider combinations of different estimators -in
this case for regression problems- was by Perrone (Perrone, 1993). It proposes

3.4 Ensembles of Artificial Neural Networks 45

a method for determining the optimal weights to perform the combination
that is based on a calculation of the correlation matrix. This matrix can not
be calculated analytically, but can be approximated with a validation set.
See also (Hashem, 1997) for more details.

Several other studies on classification problems have also been published.
For example, (Tumer and Ghosh, 1996) provides a theoretical framework
for analysing the simple averaging combination rule when the classifier
outputs are estimations of the subsequent probabilities of each class. In
(Fumera and Roli, 2001), this framework is extended to work with non-
uniform weighting. This study provides an analytical way to calculate the
corresponding weight of each classifier for classifiers with non-correlated es-
timator errors. It acknowledges that the analytical computation of optimal
weights is a very difficult problem for classifiers with correlated estimation
errors -the most likely situation- , there being no solution to this problem in
the literature.

3.4 Ensembles of Artificial Neural Networks

As explained in Chapter 2, ANNs can be used as universal approximators.
Due to this characteristic, among many of their applications, they can be
used for pattern recognition, classification, regression analysis, prediction,
function approximation,...etc.

One of the most interesting strengths of ANNs, and one of the main reasons
why they are used for tasks that other analytical solutions find difficult to
apply, lies in their ability to generalize beyond the data that has been used
for their training. As also stated in Chapter 2, before an ANN can be used,
it is trained over a sample set of the data with which it will subsequently be
required to function. Its performance will be measured in terms of its ability
to generalise beyond this sample, and to perform correctly when responding
to examples that had never before been presented to it.

In this case, the problem is to obtain a sample of the data set that is
sufficiently representative of the future problems that the ANN will be asked
to solve. Unfortunately, for most real world problems that ANNs help to
solve, this representative sample is impossible to determine. It is here where
ensemble techniques can be of such help. When trained in a concrete data set,
from which non a priori information is known, it would be quite reasonable
to think that an ANN will on some occasions generalize incorrectly, it is also
quite reasonable to think that, due to the benefits explained in Section 3.1.2,
the ensemble meta-algorithms can be used to improve the performance of
these models.

Generally, ANN algorithms are based on an iterative process in which
data set entries are randomly presented to the network. The same learning
algorithm that makes these models exhibit great generalization abilities, also
makes them quite unstable. Making any changes to the training data set
or to the learning parameters can lead to very different results. According

46 3 The Committee of Experts Approach: Ensemble Learning

to (Sharkey and Sharkey, 1997) when a data set is presented to an ANN,
its learning algorithm responds with an approximation of the function from
which the data was extracted. A small change to this training data set can
make the same ANN -even when using the same parameters for the learning
phase- approximate a different function, thus changing the results. Another
of the weaknesses of these types of iterative algorithms is that they are quite
computationally intensive, often taking hundreds or thousands of iterations
to complete the learning process.

The task of selecting the correct set of training parameters or data set
is a very daunting task because of these characteristics. As explained, this
leaves room for improvement through the use of ensemble algorithms, as
achieving sufficient diversity for the components of the ensemble is a rather
simple task. Usually, only a small variation in the data set is usually enough.
These variations are achieved by means of quite simple operations such as
data set re-sampling, non-linear transformations or pre-processing operations
such as dimensionality reduction. Also, the task of training several rather
approximate networks, instead of one very accurate one, can reduce the risk
of using too many iterations when attempting to train a network that, in the
end, has to be discarded, because its generalization capacity is not as good
as expected.

3.4.1 Supervised ANNs

As explained earlier, the learning algorithm for the majority of ANNs used
in combination with any kind of ensemble meta-algorithm, is quite prone to
improve the results of single models, due to the inherent characteristics of
its training. Furthermore, those ANNs that use the supervised learning type
of algorithm, may potentially be used with the more sophisticated ensemble
methods that can adapt ensemble construction during their training without
much effort, such as AdaBoost (Section 3.2.2.1). Using supervised learning, an
estimation of the strengths and weakness of the previously trained component
can be determined at each step of the ensemble construction, so that this
information is available for the construction of the next classifier.

The combination of supervised ANNs and ensembles has been ex-
plored in many previous studies (Perrone and Cooper, 1993; Jimenez, 1998;
Maqsood et al, 2004) with quite interesting and promising results.

3.4.2 Unsupervised ANNs

There is nothing new in the application of ensembles with ANNs. A bibliogra-
phy on ensemble use in supervised ANNs will contain many different models
and applications, which have been proposed, tested and analyzed over the
last 10 years. In contrast, the use of any kind of ensemble meta-algorithms

3.5 Conclusions 47

with ANNs that make use of unsupervised learning has hardly been explored
in a comparable way.

This situation is not strange, as the difficulties of obtaining a meaningful
combination of several unsupervised ANNs are evident. Almost all supervised
ANN ensembles rely on the performance of each of their composing units to
calculate the combination of results in some way, so that they represent the
final output of the ensemble. Many of the most sophisticated methods rely
on network performance measures to try to improve their training.

In the case of the unsupervised ANNs, the main obstacle is the difficulty
of determining the degree to which network performance deviates from the
expected optimum. In many cases, this is because the expected performance
remains undefined.

Despite this, many steps have already been taken towards improving
the performance of unsupervised ANNs with the aid of ensembles. In
(Giacinto and Roli, 2001), ensembles and unsupervised ANNs are used for
the classification of images; in (Miskin, 2000), this combination is used for
classification of multi-dimensional data; in (Greene et al, 2004), it is used
for clustering in medical applications; and, in (Bennett et al, 2002) a novel
semi-supervised learning model is based on a combination of unsupervised
learning techniques.

3.5 Conclusions

In this chapter, state-of-the-art ensemble meta-algorithms have been pre-
sented. The chapter began with a brief introduction and went on to provide
an explanation of their advantages and the problems they can solve. The
most widely-known algorithms have been presented along with their most in-
teresting characteristics. Finally, the use of this meta-algorithm with ANNs,
which is central to this book, has been reviewed.

Chapter 4

Use of Ensembles for Outlier
Overcoming

4.1 Introduction

A method for overcoming the influence of outlier samples in projection meth-
ods is described in this chapter, having been devised and tested as a proof of
concept for the use of ensembles in combination with unsupervised learning.

The main goal of all visualization techniques is to bring to the user a
deeper understanding of a multi-dimensional data set by generating some
kind of graphical representation that can be easily inspected by the naked
eye, enabling the viewer to rapidly focus on the most interesting groups or
clusters of data. Projection methods are those based on the identification
of “ ‘interesting” directions in terms of any specific index and/or projection.
These indexes or projections are, for example, based on the identification
of directions that account for the largest variance of a data set, by using
methods such as Principal Component Analysis (PCA) (see Section 2.4.1)
(Pearson, 1901; Hotelling, 1933), or by looking for higher order statistics,
such as the skweness or kurtosis -which is the case of Exploratory Projection
Pursuit (EPP) (Friedman, 1987)- .

Having identified the interesting projections, the data is then projected
onto a lower dimensional subspace in which it is possible to examine its
structure visually, which normally involves plotting the projection onto two
or three dimensions. The remaining dimensions are usually discarded as they
relate mainly to a very small percentage of the information or the data set
structure. In that way, the structure identified through a multi-variable data
set may be easily analyzed with the naked eye.

As explained in the following section, the presence of outliers in the data
is a common problem that greatly affects the results of these methods. The
use of ensembles can potentially help to overcome this instability.

4.2 The Outlier Problem

Outliers are observations that lie at an abnormal distance from other values
in a data set. In one sense, this definition leaves it up to the analyst -or a

B. Baruque & E. Corchado: Fusion Meth. for Unsupervised Learn. Ensem., SCI 322, pp. 49–66.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

50 4 Use of Ensembles for Outlier Overcoming

consensus process- to decide what will be considered abnormal. The presence
of outliers can be caused by a number of different reasons and usually in-
dicates faulty data, erroneous procedures, or areas where a theory might be
invalid. A number of these outlier cases appear in almost every medium-sized
non-artificial data set, distorting its variance and hence hindering its analysis
(Dixon, 1950).

As already explained, some projection methods and particularly PCA try
to determine the directions of the highest second statistical order (variance)
in the data set. In a simpler way, these high variance directions account
for directions with the highest statistical dispersion, averaging the squared
distance of their possible values from the expected values (mean).

The problem in this case is that the variance calculation is done globally
by employing both statistical and connectionist models. Outlier samples in
a data set can affect its direction of highest dispersion. Each data point
that is situated at some distance from the majority of the other points in
the data set can influence the final result, as it introduces a higher variance
in comparison with the rest; even though it might be very small and even
anecdotal or dispensable. A number of these outlier cases appear in almost
every medium-sized non-artificial data set, distorting its variance and hence
hindering its analysis.

The outlier situation is illustrated in Figure 4.1. Considering the same data
set as in Chapter 2, the first two principal components (PCs) are quite clear
without the presence of appreciable outlier data points. In Fig.4.1 they are
outlined in continuous black. Now, this situation could change, if that data set
contained outliers. By adding five outlier points (marked in Figure 4.1 with

Fig. 4.1 Principal components of a data set with and without outliers

4.3 The Re-sampling PCA Algorithm 51

an X) the direction of the highest data dispersion -or, in statistical terms,
variance- changes to those marked in Figure 4.1 with dashed red line. Were
no outliers present at all, there would be no difference between the second
PC and the first.

Obviously, the best axes for projecting this data set would be the ones
detected with no outliers in the data set, as in those directions where the
vast majority of the data set is spread out.

The problem is that the presence of outliers, although not a representative
sample of the data set, shifts the variance in those directions, as the variance
calculation only accounts for the variance and does not take account of the
number of samples in any one direction.

The main purpose of this chapter is to present a method that attempts
to solve this problem by using an ensemble meta algorithm. It is stated in
(Kuncheva, 2004) that bagging is especially recommended when applied to
unstable algorithms or learning methods. The main premise of the investiga-
tion detailed in this chapter is that, as an inherently unstable algorithm in
the presence of outliers, PCA can be stabilized by the application of bagging.

4.3 The Re-sampling PCA Algorithm

This section presents the proposed solution to the outlier problem described
in the previous one, devised during the work done for the present thesis. The
technique used to detect and to overcome the presence of outliers in a mul-
tidimensional data set is based on statistical re-sampling theory. Calculation
of the maximum variance over a data set is quite straightforward. It is not
so simple to determine whether maximum variance is merely due to a few or
very many samples. In other words, the problem can consist in determining
whether that direction is really interesting in terms of how representative it
is in relation to the whole data set. The algorithm proposed will be referred
to as Re-PCA in the rest of the thesis.

4.3.1 Ensemble Construction

There is no objective function in the calculation of variance. The ensem-
ble construction algorithm used in this study will therefore be the Bagging
algorithm. As explained in Chapter 2 this algorithm trains all components
independently; it does not need to know the performance of one to train an-
other. To apply this technique, it is necessary to have several replications of
the data set under analysis. Accordingly, several independent analyses can be
performed over different data sets obtained from the same source. As so many
different data sets are in many cases often unavailable, they are emulated by
the use of re-sampling with replacement over the data set.

52 4 Use of Ensembles for Outlier Overcoming

If the entire data set does not include elements that drastically alter their
statistical properties -i.e. in this case, its second statistical moment: the
variance- , the set of results obtained from the analysis of different subsets
should be similar within a small margin. On the other hand, if few outliers
that alter these statistical properties are included in the main data set, dif-
ferent results may be expected in terms of the directions of the principal
components. As there are, by definition, very few outliers in relation to the
size of the entire data set,it is easy to imagine that, when re-sampling the
data, one of those infrequent outlier data points would only be included in a
minority of the subsets. Intuitively speaking, it is also reasonable to expect
that PCA performed on subsets containing outliers will be influenced more
by the outliers, if the ratio of the outliers to the number of other data points
is high.

The next step consists of performing an individual PCA analysis on each
one of the t subsets obtained by re-sampling the original one. These calcula-
tions use the statistical method detailed in Chapter 2, Section 2.4.1. Theoret-
ically, the analysis can also be performed by means of a connectionist model
using Hebbian learning, although there are certain problems in doing so.

At the end of this stage, t different sets of principal components are
available- all calculated over a slightly different data set- .

4.3.2 Results Combination

The combination of results to obtain the final directions -called eigenvectors-
for the Principal Components are done by averaging the results of each of
the statistical analyses composing the ensemble.

Each analysis presents its result for each of the required components, and
a process of voting and averaging of the results is performed. Firstly, the
sum of all eigenvectors is calculated. This will be considered as a tentative
“average” of the directions.

Then, for the same component, the cross products of each eigenvector and
each of the aforementioned sum vectors are calculated. Any overly deviated
direction has to be identified -due to the inclusion of outliers in that par-
ticular subset of data- to complete the averaging of directions, in order to
arrive at the final principal components by resolving the final direction of
each component. The scalar product (the projection) of each one of the ana-
lyzed directions (eigenvectors) in reference to the previous calculated sum is
calculated. In the following steps, the vectors which are further away -their
scalar product is higher than a certain threshold- are disregarded.

Finally, the sum of the vectors is calculated again, which now corresponds
to an average for the directions that were considered “similar”, as they were
no longer influenced by the more pronounced deviations. This process is de-
scribed in the algorithmic pseudo-code in Algorithm 3.

4.4 Experiments and Results 53

Algorithm 3. PCA ensemble results combination

Input: A set of different vectors representing a set of principal components
V = 〈(v11, v12...v1n), (v21, v22...v2n)...(vm1, vm2...vmn)〉
Output: Final principal components V ′ = 〈(v′1, v

′
2...v

′
n)〉

1: procedure Combination(V)
2: for i = 0 to m do

3: Calculate the sum of all vectors:
−→
S i =

∑m
j=1 vj

4: Calculate the scalar product of each vector and the sum: Pj =
−→
Si · −→v j

5: Construct another set of vectors including only those that cor-
respond to a scalar product lower than a set threshold (th): −→v j ∈
V ′

i if Pj < th

6: Calculate the sum of V ′
i :

−→
S′

i =
∑m

j=1 v′
j

7: end for

8: Output
−→
S′

9: end procedure

As can be seen, the idea is firstly to identify the analyses which “proposed” a
direction for a Principal Component that is quite different from the directions
“proposed” by the other analyses composing the ensemble. It is assumed that
in such cases the re-sampled data set will contain one or more outliers, thus,
their results will not be taken into account. It is also very simple to take
account of the analyses that were not included in the final combination and
the differences between them and the others. This provides additional help
when determining whether the data modifying the entire data set analysis
can be regarded as outliers. If a low number of analyses contain non-frequent
directions, their data may be considered rare in the data set, so they can be
regarded as outliers. If the same non-frequent directions appear in a relatively
high number of analyses, then those data can be considered to represent a
significant portion of the data set and they therefore have to be taken into
account in the analysis.

4.4 Experiments and Results

Three different data sets were analysed as a test of the method presented
in Section 4.3.2. The first data set is artificial, the second is the well-known
‘BUPA’ Liver Disorders data set, extracted from the UCI Machine Learning
Repository (Asuncion and Newman, 2007), and the third was extracted from
an interesting case-study on the food industry.

54 4 Use of Ensembles for Outlier Overcoming

4.4.1 Artificial Data Set

The artificial data set used in this series of experiments comprises one main
point cloud, at some distance above which there are several points that are
considered outliers. The main cloud is an elongated cluster which moves
within the axis delimited by the line defined by points [1,1,0], [2,1.6,0],
[3,2.2,0] and [4,2.8,0]. It is expected that 3 clear principal components will be
obtained by employing this data set, as the variance of each direction differs
in each case with respect to the other two. The outlier points are spread over
the same axis, but are displaced 5 units above on the vertical axis. There are
118 points in the main cluster and 8 outliers.

In order to test various characteristics of the proposed Re-PCA algorithm
with regard to different proportions of outliers in the other data points and
various sizes of the data sets, experiments with 30, 50 and 100 randomly
selected points were performed. In each case, the experiments were repeated
10 times for each of these cases and the comparative analysis is presented
below.

Some of this experimental results can also be found in (Gabrys et al, 2006).

Experiment 1

In this set of experiments, 10 subsets of 100 randomly selected points from the
entire data set (without replacement) were generated and PCA was performed
on each one. Firstly, the above-described method was only applied to the data
set that is formed of the main elongated data cluster -i.e. without the outliers-.
The results of PCA obtained from those 10 subsets are represented in Figure
4.2. In that figure eigenvectors determining the direction of higher variance
in the data set without outliers (Fig. 4.2a) and with outliers (Fig. 4.2b) are
displayed for a data set composed of 100 samples.

(a) Eigenvectors calculated by Re-
sampling PCA (excluding outliers)

(b) Eigenvectors calculated by Re-
sampling PCA (including outliers)

Fig. 4.2 Eigenvectors determining the direction of higher variance in the data set
with and without outliers (100 samples data set)

4.4 Experiments and Results 55

Examining Figure 4.2a it is easy to see that the Re-PCA method has
found almost the same direction for the first principal component, as it was
expected. The directions of the second and third principal components were
slightly more dissimilar in the different tests, but they all still followed a
consistent direction.

Figure 4.2b represents the results obtained by performing exactly the same
experiment except for the inclusion of the 8 outliers in the sampled data set.
As expected, these outliers destabilized the data set, making different PCAs
behave in inconsistent ways and throwing up very different results where
the analysis is made over subsets of the same data set. As can be seen,
the distribution of the directions corresponding to the principal components,
produced when outliers are taken into account, are more spread out than in
Figure 4.2a -data without outliers- . Notably, there is less consensus in the
component that has to represent the greatest amount of information -the1st

principal component- than when the outliers are not included. This means
that the directions found in each case are rather dissimilar to the others. The
final averaged directions are shown in Figure 4.3.

Fig. 4.3 Average for each of the principal components as a result of averaging the
directions obtained by the Re-PCA method using 100 samples

The averaged directions in Figure 4.3 display a reasonably correct final
consensus for the Principal Components to the naked eye, if compared with
Figure 4.2. The first crosses the entire data set in the most elongated di-
rection, the second captures the second direction in which the data set
stretches -which coincides with the direction towards the outlier location-
and is perpendicular to the first, and, finally, the third crosses the other two
perpendicularly.

56 4 Use of Ensembles for Outlier Overcoming

Experiment 2

In this case the same experiment is also performed 10 times for 50 randomly
selected points from the entire data set (without replacement). It should be
noted that the decrease in the number of samples included in each of the
subsets analysed by Re-PCA has a destablizing effect on the experiments.
The “fans” formed -in the case of the 50-point data set- by the directions
corresponding to the three principal components in the ten tests are far more
separated than those obtained in an analogous experiment based on 100 sam-
ples. The “percentage of information” that is represented by each of the prin-
cipal components is shown in Table 4.1, including maximum and minimum
information percentages from the 10 subsets.

Exclusion of the 50 data samples had a destabilizing effect on the individual
PCAs, although the first and second principal components appear to run
in an almost perpendicular direction to the other eight on two out of ten
occasions (20%), indicating some instability which may be due to the presence
of outliers in the data set. The second principal component is always very
unstable because all the outliers are in its direction. Table 4.2 shows the
“percentage of information” for each of the principal components, including
the maximum and minimum percentage of information from the 10 subsets
under analysis.

Table 4.1 Percentage of information captured by each of the principal components
(selecting 50 points but excluding outliers)

Percentage of information captured

Principal Component max min

First 72% 68%

Second 16% 14%

Third 14% 12%

Table 4.2 Percentage of information captured by each of the principal components
(selecting 50 points and including outliers)

Percentage of information captured

Principal Component max min

First 70% 44%

Second 44% 15%

Third 13% 9%

4.4 Experiments and Results 57

Experiment 3

To test the stability of the presented model, PCA was performed over 10
subsets, this time each of only 30 points. The results for this data set are
shown in Figures 4.4a and 4.4b. Figure 4.4a represents eigenvectors deter-
mining the direction of higher variance in the data set without outliers (Fig.
4.4a) and with outliers (Fig. 4.4b) are displayed for a data set composed of
100 samples.

(a) Eigenvectors calculated by Re-
sampling PCA (excluding outliers)

(b) Eigenvectors calculated by Re sam-
pling PCA (including outliers)

Fig. 4.4 Eigenvectors determining the direction of higher variance in the data set
with and without outliers (30 samples data set)

The percentage of information -in the form of the explained variance- that
is represented by each one of the principal components is detailed in Table 4.3,
including the maximum and minimum percentages of information (variance)
from the analysed 10 subsets.

As can be seen from the experiments described above, the greater the
number of samples included in the analysis, the more stable the behaviour of
each individual PCA. Compared with Figure 4.2, Figure 4.4 provides visual
confirmation that the directions found using 100 points are more consistent

Table 4.3 Percentage of information captured by each of the principal components
in the first part of the experiment (30 samples without outliers)

Percentage of information captured

Principal Component max min

First 72% 68%

Second 18% 14%

Third 14% 11%

58 4 Use of Ensembles for Outlier Overcoming

than those using only 50 or 30 points. It can also be seen (Figure 4.2 and
Figure 4.4) that the inclusion of outliers in the analysed data set introduces a
substantial degree of instability, which yield “fans” that are more spread out
-less consistent results- , or which even yield completely different directions
for its principal components. This also serves as proof of the intuitive idea
mentioned in Section 4.2: as whenever less data is included in the data set, the
influence of the outliers on the variance analysis is greater, as the proportion
of deviated samples with respect to non-deviated ones increases.

The percentage of information that is represented by each of the principal
components in this case is detailed in Table 4.4, including maximum and
minimum information percentages (variance) from the 10 subsets.

Table 4.4 Percentage of information captured by each of the principal components
in the second part of the experiment (30 samples with outliers)

Percentage of information captured

Principal Component max min

First 69% 49%

Second 41% 17%

Third 13% 8%

The results presented in Table 4.4 are quite different from the results
obtained without the inclusion of the outliers. It is clear from a comparison
of both tables (Table 4.3 and Table 4.4), that the presence or the absence of
outliers in a data set influences not only the direction of the largest variance,
but also the relative difference between the maximum and the minimum
values of the principal components. The amount of information associated
with the first principal component is different depending on whether outliers
are included in the analysed data. The amount of information detected by
the first component (Table4.4) in the presence of the outliers is inferior to the
amount it detects without outliers (Table 4.3). In this case, the amount of
information represented by this second component (Table 4.4) is substantially
higher than when outliers are not included (Table 4.3), which is due both to
the shape of the artificial data set that is used and due to the fact that the
outliers are situated in the direction associated with the second principal
component.

The use of PCA ensembles in such cases is particularly useful, as in 70%
of cases where “the true” principal component is found, it is representative of
the majority selection, and then stability is enhanced by averaging the eigen-
vectors from the majority (70%) of similar principal directions. Moreover, in
3 out of 10 cases (30%), the method finds that the first and second principal
components have opposing directions to the majority ones.

4.4 Experiments and Results 59

Fig. 4.5 Average for each of the principal components as a result of averaging the
directions obtained by the Re-PCA method using 30 samples

Looking at Figure 4.4b, it can be seen that the first principal component
runs in an almost horizontal direction on 7 occasions, while it runs along
a diagonal from the bottom-right to the upper-left corner on the other 3
occasions. These three deviated directions will not be taken into account
when calculating the averages, as the majority cluster consists of the 7 cases
where the first Principal Component appears in the horizontal direction.

As explained above, calculating the average directions (Figure 4.5) yields
approximately the same main directions established by the three principal
components in the experiment using 120 points. This can be considered an
empirical proof of the robustness of the proposed Re-PCA method.

4.4.2 Real Life Data Set: Liver Disorder Data Set

The proposed method was tested with a real data set called ‘BUPA’ obtained
from the UCI online repository (Asuncion and Newman, 2007). Applying the
method described in this study to the complete data set with over 200 points
in each sampling test -2/3 of the whole data set- gives the result shown in
Figure 4.6b. Figure 4.6b shows the application of the same model to the data
set without outliers.

The samples considered as outliers after inspection by the naked eye are
designated by their order of appearance in the data set. Outliers in class 1
(21): 190, 317, 316, 182, 205, 335, 345, 343, 189, 312, 344, 175, 168, 183, 25,
172, 311, 167, 326, 148, 261. Outliers in class 2 (20): 85, 36, 134, 233, 331,
300, 179, 323, 342, 111, 115, 77, 186, 252, 294, 139, 307, 224, 286, 157.

60 4 Use of Ensembles for Outlier Overcoming

(a) Directions corresponding to 200
points over the ‘BUPA’ data set (exclud-
ing outliers)

(b) Directions corresponding to 200
points over the ‘BUPA’ data set (includ-
ing outliers)

Fig. 4.6 Directions calculated by the Re-PCA ensemble over the ‘BUPA’ data set

In Figure 4.6b, the directions corresponding to the first principal com-
ponent are very tight, although those corresponding to the second and third
are too spread out -several directions are even almost perpendicular to others
corresponding to the same principal component- . The direction of the first
component is tight due to the outliers -laid out in that particular direction- .
The opposition of the first and the second principal components are due, once
again, to the instability that those outliers bring to the whole data set. On
the contrary, after analyzing Figure 4.6b, it may be seen that, although the
directions of the first PC are much more spread out than in Figure 4.6b, they
do not run in opposing directions -there is a fair degree of consensus over the
direction- and the second and third components run in a significantly tighter
direction.

4.4.3 Real Life Data Set: Food Industry Application

The data set used in this set of experiments is taken from a case study on
the food industry. It consists of data obtained from the analysis of certain
chemical properties of samples cut from different types of Spanish cured hams.
As this same data set is used in further experiments, full details are included
in Appendix A.

In this case, Ham data set 1 was used, composed of 176 samples of ham,
each made up of 18 different variables. Some of the results from this experi-
ment may also be found in (Baruque et al, 2006).

Experiment 1

Performing a single PCA analysis over the original data and representing the
data on the axes obtained in the analysis gives a quite interesting result. In

4.4 Experiments and Results 61

the resulting projection (Figure 4.7a), the samples of the highest quality hams
-JC7C, JCCS and partially JCTE- can be seen to the right of the image; the
altered parts are all grouped together in the center of the image, and the stan-
dard and the low quality hams are situated to the left of the image -JCNO,
JCTC- . Even the fact that some of the high-quality ham samples -JCCS and
JCTE- were more rancid than others is reflected in the image, where several
of them appear mixed up in the group of standard quality types. The fact that
those samples are precisely the more rancid ones is easily verifiable by attach-
ing an identifier to each of the points. It can be clearly seen in the projection of
the data over the first and second principal components, as well as in the first
and third components as shown in Figure 4.7.

(a) Projection over the 1
st and 2

nd Prin-
cipal Components

(b) Projection over the 1
st and 3

rd Prin-
cipal Components

Fig. 4.7 The ham data set projected over the principal components obtained form
a single statistical PCA (without outliers)

Table 4.5 shows the percentage of information captured by each one of
the first three principal components. This information can be compared with
the same information in following experiments, where the inclusion of a few
outliers varies the whole analysis.

Table 4.5 Percentage of information captured by each of the principal components
in the first experiment (176 samples without outliers). In this case the simple PCA
is applied

Principal Component Percentage of information captured

First 86.58%

Second 8.47%

Third 4.66%

62 4 Use of Ensembles for Outlier Overcoming

Performing a Re-PCA analysis over this data set does not reveal further
noticeable information. As no outlier points are included in the data set all
the independent tests composing the Re-PCA give almost the same result,
so the average of their results coincides almost completely with the result of
a simple PCA.

Experiment 2

Four outlier measures were added to the original data set for this experiment,
in order to observe the effect that the inclusion of outliers has on the PCA
analysis. Performing a simple PCA analysis and projecting the data on the
two axes determined by the principal components, in exactly the same way
as in the previous experiments, gave the results shown in Figure 4.8. In this
figure the outliers are called JCOUT to differentiate them from the other
samples.

It may be seen that although the first and second components are affected
by the inclusion of outliers, the groups described in Experiment 1 can still

(a) Projection over the 1
st and 2

nd Prin-
cipal Components

(b) Projection over the 1
st and 3

rd Prin-
cipal Components

Fig. 4.8 The ham data set projected over the principal components obtained from
a single statistical PCA (including 4 outliers)

Table 4.6 Percentage of information captured by each of the principal components
in the second experiment (176 samples including outliers). In this case the simple
PCA is applied

Principal Component Percentage of information captured

First 83.78%

Second 8.4%

Third 7.8%

4.4 Experiments and Results 63

be distinguished. On the contrary, the third principal component found is
completely different, as the projection of the data set over the first and third
principal components no longer shows those groups.

Regarding Table 4.6 it may be seen that the percentage of information
captured by the first principal component is lower in this case, while that
percentage rises for the third PC. This means that the first component is no
longer able to capture as much information as before -as the variance of the
data set has been altered- and the third component is the “one in charge” of
dealing with the information that was previously captured by the first one.
This provides empirical confirmation that the presence of very few outliers
can alter the results of the PCA analysis in a significant way.

Experiment 3

In this experiment, the Re-PCA was applied to the data set including out-
liers. 80 samples from the whole data set were randomly selected (without
replacement) for each PCA analysis. Ten different analyses were performed
and averaged to obtain the results shown in Figure 4.9.

(a) Projection over the 1
st and 2

nd Prin-
cipal Components

(b) Projection over the 1
st and 3

rd Prin-
cipal Components

Fig. 4.9 The ham data set projected over the principal components obtained from
a Re-PCA of 80 samples (including 4 outliers)

Inspecting Figure 4.9a it is quite clear that the first and second principal
components are able to display almost the same information as in Experi-
ment 1, which was the experiment done without outliers in the data set. An
inspection of Figure 4.9b (corresponding to 1st and 3rd principal components)
reveals a slightly clearer structure.

At first sight, this might be interpreted as a very good improvement on Ex-
periment 2, but checking Table 4.7 it can be seen that the process is still too
unstable, as the single PCA analyses that compose the Re-PCA outperform
the single PCA on some occasions -87% of information for the 1st PC- but

64 4 Use of Ensembles for Outlier Overcoming

Table 4.7 Percentage of information captured by each of the principal components
in the third experiment (80 samples including outliers). In this case the Re-PCA is
applied

Percentage of information captured

Principal Component max min

First 87.1% 79.9%

Second 11% 8.5%

Third 9.2% 4.3%

very poorly in the other -79.9% of information for the 1st PC- . This can be
explained by the fact that less than the half of data set is used for each of
the analyses.

Experiment 4

On this occasion the procedure followed in Experiment 3 was repeated, but
this time 120 randomly selected samples were included from the whole data
set in each of the ten analyses performed over the Re-PCA process. The
results of projecting the data set over the three main principal components
in this experiment are shown in Figure 4.10.

The results in this case are similar to those obtained in Experiment 1,
taking into account that the outliers also have to be represented -so the
images get a bit distorted- . The group information described in Experiment
1 is clearly distinguishable on both the axes formed by the 1st and 2nd and

(a) Projection over the 1
st and 2

nd Prin-
cipal Components

(b) Projection over the 1
st and 3

rd Prin-
cipal Components

Fig. 4.10 The ham data set projected over the principal components obtained from
a Re-PCA of 120 samples (including 4 outliers)

4.4 Experiments and Results 65

Table 4.8 Percentage of information captured by each of the principal components
in the first part of the experiment (120 samples, including outliers). In this case the
Re-PCA is applied

Percentage of information captured

Principal Component max min

First 86.5% 82.5%

Second 9.4% 8%

Third 7.9% 4.6%

by the 1st and 3rd principal components. In Table 4.8, the difference between
the information percentages captured by each of the principal components
is displayed. As may be verified, the difference is much lower now, which
shows that in this experiment the directions identified in each of the ten
tests coincide to a much greater higher. This means that the directions of
maximum variance found in this experiment are more consistent than those
found in Experiment 3.

4.4.4 ANNs Approach

As explained in Chapter 2, PCA analysis can also be performed using an
ANN with feed-forward Hebbian Learning. This type of algorithm, when
appropriately trained, i.e. when it is made to converge towards a solution,
can find the directions of principal components to a degree of accuracy that
is comparable to pure statistical calculations. Moreover, as it is considered
an unstable algorithm -based on connection dynamics- , the possibility of
improving ANN dimensionality reduction is an interesting prospect.

Chapter 3 describes why potential improvements to the ensemble lie in
the possibility of constructing a set of classifiers or an analysis that strikes
the right balance between diversity that is often either too high or too low.
The problem in this case is that the algorithm performing the analysis is
too unstable to work well as a straightforward ensemble. The neuronal PCA
can offer quite dissimilar results, due to the random nature of its iterative
learning algorithm; even when trained with the same set of parameters and
the same data set. So, while the algorithm converges towards its solution,
which may be as correct as that obtained by statistical analysis -capturing
the same percentage of information- , the directions do not have to coincide
with the others, nor do they even have to coincide with the results of two
different analyses by exactly the same learning algorithm.

Therefore, in the case of the PCA calculated by an ANN with the proposed
algorithm, it is impossible to distinguish between the case where no outliers
are present in the training data set and the case where they are present, as the

66 4 Use of Ensembles for Outlier Overcoming

directions obtained by the Re-PCA exhibit the same inconsistencies in both
cases. This is the reason why the Re-PCA is only used in these experiments
in combination with the statistical PCA analysis.

4.5 Conclusions

This chapter has described an initial approach to the use of ensembles for im-
proving the results of a single statistical model. This adaptation is done with-
out the aid of an objective function. Instead, a way of calculating a consensus
from the components of an ensemble is devised. The technique has demon-
strated its usefulness in overcoming the distortion effect that the “noise” of
outlier samples can have on data-set dimensionality reduction. It is true that
the models in this case can not be considered unsupervised learning models,
as they are obtained by mathematical calculations. The intention to apply
the same technique to an unsupervised learning technique was not possible,
due to the high instability of the model. Nevertheless this is a step forward
in the study of how ensemble meta-algorithms may improve unsupervised
learning models for projection-based data visualization.

Chapter 5

Ensembles of Topology Preserving Maps

5.1 Introduction

In the case of projection methods based on unsupervised learning, the prob-
lem of instability makes it difficult to devise an easy way of combining their
results into a final solution. This is mainly because it is a global type of anal-
ysis, which means that very little information can be obtained once it has
been completed.

This chapter centres on different methods of enhancing the use of ensem-
bles with another visualisation-centred unsupervised learning algorithms: the
topology-preserving map family.

5.2 Problem Statement

As happens with many ANN algorithms, topology-preserving maps -such
as the SOM, ViSOM, SIM or Max-SIM (see Chapter 2)- are quite unsta-
ble (Bishop, 1995). The presence or absence of a little data can modify the
behaviour of the whole model in very different ways. When dealing with un-
supervised learning models, this problem becomes even more apparent, as
there is no clear way to make a quantitative assessment of its performance
or the degree to which two different executions of the same algorithm differ.

The ensemble model can be regarded as a possible solution to overcome this
problem. The same principle, which was used in Chapter 4 in the ensemble
meta-algorithm to overcome the outlier problem in projection methods, can
be used here to improve the performance of this family of algorithms. It
is also true that this type of learning is rather robust against outliers in the
training data set, but ensembles can be used to boost other key features of the
topology-preserving maps, such as pattern recognition or data representation
capabilities. The SOM is regarded as a vector quantization method for space
approximation and tessellation, which can be used to faithfully approximate
statistical distributions in a nonparametric, model-free fashion. SOM learning

B. Baruque & E. Corchado: Fusion Meth. for Unsupervised Learn. Ensem., SCI 322, pp. 67–94.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

68 5 Ensembles of Topology Preserving Maps

is also efficient, effective, and suitable for high-dimensional processing. Thus,
in both statistical and computational terms, SOM is a promising scheme for
complex data fusion and joint modelling.

The characteristic competitive learning of these models is also a random
iterative process, but in this case, results are not obtained globally for the
whole data space, but instead different sets of neurons are trained over dif-
ferent regions of the data space, leaving more options open to combine the
results of different maps.

If a SOM does not correctly represent a portion of the data space, perhaps
because it is dedicating more neurons to represent another, it is reasonable
to believe that a different SOM trained over slightly different data samples
belonging to the same portion of space may obtain better results, at least
for that portion of space. In that case, ensemble fusion or combination al-
gorithms can potentially obtain a final map that is as clear as possible and
that represents the data set characteristics detected by each of the individual
maps that compose the ensemble.

5.3 Topology-Preserving Map Combination Models

Topology-preserving maps -especially the most widely known: the SOM- have
been used for information fusion applications in several previous works.

The first proposed model, which included various cooperating SOMs to
outperform what could be achieved with only one map, should be the Hierar-
chical SOM proposed by Luttrell in (Luttrell, 1989). Usually a ‘hierarchical
SOM’ refers to a tree of maps in which the higher maps act as a pre-processing
stage for the lower ones. As the hierarchy is traversed upwards, the informa-
tion becomes more and more abstract. He pointed out that although adding
extra layers to a vector quantifier yields a higher Distortion in reconstruction,
it also effectively reduces the complexity of the task. Another advantage is
that different kinds of representations are available at different levels of the
hierarchy. Later on, a multi-layer version of that algorithm was proposed by
Lampinen and Oja (Lampinen and Oja, 1992).

In (Cho, 2000), Cho uses a bagged ensemble of a modification of the SOM
-called ‘Structure-Adaptative SOM’- to classify handwritten numbers. The
interesting part of this work is its use of two different multi-map levels.
The first one is called the Structure-Adaptative SOM, which can “split” neu-
rons of the original map into new sub-maps when the representation detail
of that neuron is insufficient. Secondly, a bagged ensemble of the proposed
Structure-Adaptative SOM is used for classification by majority voting. In
(Petrakieva and Fyfe, 2003) Petrakieva and Fyfe use a 1-D SOM ensemble
for data classification purposes. Also, in (Jiang and Zhou, 2004), Jiang and
Zhou use a SOM ensemble for image segmentation by clustering image pixels.
In this last case, a final calculation step is needed to combine the different
clustering results they obtain.

5.3 Topology-Preserving Map Combination Models 69

A factor which groups together the above-described works is that they all
use the SOM algorithm as a pattern recognition and/or classification tool.
It is therefore easy to employ any of the combination algorithms detailed in
Chapter 3 (Section 3.3) or similar ones to obtain the final outputs.

5.3.1 Previously Proposed Models for SOM Ensemble

Summarization

When using the SOM as an analysis tool, the combination of results is easy,
as there is no real need for human interpretation of the intermediate results,
due to the fact that in the majority of cases the final result is the interesting
result. The problem with these types of combinations arises when the desired
output is not a numeric prediction or a class membership degree, but the
plain 2-D representation of a multi-dimensional data set for easy inspection
by humans. Representing all the networks in a simple image is only useful
when dealing with 1-D maps -as seen in (Petrakieva and Fyfe, 2003)- but gets
too messy when visualising 2-D maps.

In that case, the expected output value would not be yielded by the ANN,
but by the map generated by the ANN. A much more complex fusion algo-
rithm is needed as it is necessary to devise a system that can calculate a final
topology-preserving map that somehow summarises the best aspects of the
maps composing the ensemble.

To summarise this situation, the desired outcome of the ensemble com-
bination process is a single map that unites the improved performance and
stability of the use of ensembles with the simplicity and clarity of multi-
dimensional data, all of which may be inspected on a single map.

Various works (Georgakis et al, 2005; Saavedra et al, 2007) have developed
map summarizations to obtain a final map, two of which are detailed below.

5.3.1.1 Map Fusion by Euclidean Distance

In (Georgakis et al, 2005) Georgakis et al. use a SOM ensemble for document
clustering. They propose a fusion of an ensemble of maps by firstly, aligning
the neurons and then by calculating the centroid of the vectors corresponding
to neurons aligned towards the same position. These centroids are calculated
as the simple sum of all vectors, as can be seen in Eq. 5.1.

wc =
1

|Wk|

∑

wi∈Wk

wi (5.1)

To determine how this alignment can be done, the authors apply the following
idea:

Let Lij denote the set of feature vectors that are assigned to the neuron

wj
i , which is the set of training inputs to which the neuron, as the BMU in

the map, is reacting. Neurons that are close to each other in the ℜNw should

70 5 Ensembles of Topology Preserving Maps

be similar. That is, let w1 and w2 be the neurons whose respective sets L1
1

and L2
3 contain more common features than any other neuron couple. Then,

the reference vectors corresponding to these neurons will, in all probabil-
ity, be closer to each other than another possible neuron combination under
Euclidean distance.

When aligning the networks, one should make a partition of the L × D
neurons intoL disjoint clusters. There are two constraints, though, both of
which have to be met at the same time:

⊲ Each cluster will contain only D neurons.
⊲ Each cluster will contain only one neuron from each of the D networks.

The schematic diagram of the alignment of the neurons in the different net-
works is presented in Figure 5.1.

Fig. 5.1 Alignment of three networks and their subsequent merging into one final
map

Figure taken from (Georgakis et al, 2005)

The algorithm can be implemented by using dynamic programming to deal
with its high computational complexity. The fused map is firstly initialised by
using only two maps of the ensemble to calculate the fusion. Then the same
calculation is performed again between the resultant fused map and another
one of the maps composing the ensemble. This is repeated until all the maps
of the ensemble have been included in the calculation of the fused map. A
pseudo-code of how this algorithm works can be found in Algorithm 4.

5.3 Topology-Preserving Map Combination Models 71

Algorithm 4. Map Fusion by Euclidean Distance

Input: Set of trained topology-preserving maps: M1...Mn

Output: A final fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging (re-sampling with replace-

ment) meta-algorithm : Mn

3: procedure Fusion(Mn)
4: initialise Mfus with the weight vectors of the first map: Mfus ← M1

5: for all M ∈ Mn do

6: for all w′
i ∈ Mfus do

7: calculate Eucl. Dist. between w′
i and ALL neurons of map Mi

⊲ let w∗ be the closest neuron in map Mi to the one selected in
Mfus

8: w∗ ← argmini (ED(w′
i, wi))

9: wc ← w′
i + w∗/2 ⊲ applying Eq. 5.1 to two neurons

10: w′
i ← wc ⊲ replace wi by the centroid (wc)

11: end for

12: end for

13: end procedure

Finally, in addition to calculating the characteristic vectors of the neurons
in the fused map, the set feature vectors corresponding to each neuron should
also be updated. These sets are the unions of the sets corresponding to the
clusters of neurons formed in the previous step. Let fij denote frequency
of the jth input in the set Lifinal. If the frequency is close to the valueD
then more neurons in the constituent networks have that particular neuron
assigned to them during the training phase. Therefore, the more frequent an
input is, the higher its importance to the particular neuron of the final map.
In other words, the inputs assigned to a particular neuron are ordered in
descending order of appearance.

It can be inferred by analysing the pseudo-code that the computational
complexity of the algorithm is of O((M − 1)N2), in which M is the number
of maps in the ensemble, and N the number of neurons in each map.

5.3.1.2 Map Fusion by Voronoi Polygons Similarity

In (Saavedra et al, 2007) Saavedra et al. proposed a SOM fusion model that
aims to learn data topologies in a more precise way than the single SOM
model. The Fusion-SOM model is an ensemble of Self-Organizing Maps that
are combined by fusing prototypes that are modelling similar Voronoi poly-
gons (partitions) and the neighbourhood relation is given by the edges that
measure the similarity between the fused nodes. The aim of combining the
SOM is to improve the quality and robustness of the results.

72 5 Ensembles of Topology Preserving Maps

In order to calculate the degree to which the data partition represented
by two different neurons overlaps -and therefore, the degree to which they
can may considered similar- , a binary vector of the same size as the data set
used to train the network is associated with each map neuron. This vector
contains a ‘1’ in the data position that was recognised by the neuron and
‘0’ in the data position that was not recognised. It will serve to compute the
dissimilarity between two neurons by using Eq. 5.4.

ds(br, bq) =

∑
XOR(br, bq)∑
OR(br, bq)

(5.2)

Let r and q be the neurons whose dissimilarity will be determined and br

and bq the binary vector relating to each neuron with the data sample that
it recognises.

This vector also serves to calculate the usage of each of the neurons, which
is used in the fusion algorithm. Those neurons with a recognition rate lower
than a given threshold, are discarded for the ensemble fusion calculations.
After eliminating the poor reacting ones; the remaining neurons of all the map
are considered, altogether, for a clustering of neurons process; that groups
neurons with similar Voronoi polygons in the same sets. Those sets must
satisfy the following criteria:

{
ds(br, bq) < θf ∀r, q ∈ Wsn

ds(br, bq) > θf ∀r, q /∈ Wsn

(5.3)

where θf is a connection threshold that is introduced as a parameter of the
algorithm.

The described sets become neurons in the final map, by calculating the
centroids of its composing neurons (Eq. 5.1). Finally, to reconstruct the map
lattice; the connections between the neurons in the fused map must be re-
calculated. Neurons obtained from fusing clusters that are similar enough,
are considered neighbours in the final map. This may be expressed as: .

min

br ∈ Wsk, bq ∈ Wsl
ds(br, bq) < θc (5.4)

where Wsk and Wsl are two different sets of neurons considered similar
enough to be fused and θc is a given connection threshold.

The complete pseudo-code for the proposed fusion algorithm is presented
in Algorithm 5.

Visual examples of how this fusion algorithm behaves on artificial data
sets can be found in Figure 5.2.

As may be appreciated from the examples, this SOM Fusion algorithm
preserves the topology of the input space by effectively locating the proto-
types and relating the neighbouring nodes, which improves the performance
of the individual SOM and the resulting lattice represents the topology of
the data.

5.3 Topology-Preserving Map Combination Models 73

Algorithm 5. Map Fusion by Voronoi Polygon Similarity

Input: Set of trained topology-preserving maps: M1...Mn,
usage threshold: θu , fusion threshold: θf , connection threshold: θc

Output: A final fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging (re-sampling with replace-

ment) meta-algorithm : Mn

3: let θu, θf and θc be the usage, fusion and connection thresholds respec-
tively

4: procedure Fusion(M1...Mn)
5: for all Mi ∈ Mn do ⊲ for all maps in the ensemble
6: for all wj ∈ Wi do ⊲ for all neurons in each map

⊲ accept neurons with a recognition rate higher than a given
threshold

7: Wfus ← wi if
∑

i br(i) > θu

8: end for

9: end for

10: for all wi ∈ Wfus do

11: calculate dissimilarity between wi and ALL neurons in Wfus (Eq.
5.2)

12: Di ← ds(wi, wk)∀wk ∈ Wfus

13: end for

14: group into different sub-sets (Wsn) the neurons that satisfy the con-
ditions of Eq. 5.3

15: for all Wsn do

16: calculate the centroid (wc) of the set by using Eq. 5.1
17: add the centroid to the set of nodes of the final map (W ∗

fus)
18: end for

19: for all wr ∈ W ∗
fus do ⊲ for all neurons in the fused map

20: Connect wr with any other neuron in W ∗
fus , if they satisfy Eq.

5.4
21: end for

22: end procedure

The algorithm’s computational complexity is also quadratic in this case.
All neurons considered for each map must be compared by using the fol-

lowing expression to calculate their dissimilarity: O(N ′2), in whichN ′ is the
total number of neurons of all maps that have recognition rate higher than
θu. The same complexity also applies to the calculation of which neurons
must be grouped, through:O(N ′2). Likewise, when calculating the final dis-
similarity between the fused neurons: O(C2), in which C is the final number
of neurons in the map.

74 5 Ensembles of Topology Preserving Maps

(a) Single SOM (b) Fusion by Voronoi Polygon Sim-
ilarity

Fig. 5.2 The figures show the topology approximation of the SOM and the SOM
Fusion by Similarity algorithm to the “doughnut” artificial data set

Figure taken from (Saavedra et al, 2007)

5.3.2 Novel Proposed Model: Superposition

Both of the previously presented models satisfy the condition of being able to
generate a single final map by fusing an ensemble of SOMs. In their respective
works they are used and tested to fuse SOMs, although they are equally
applicable to other topology-preserving map models.

As pointed out, both also had different objectives in mind for the final
fused map. Fusion by Euclidean Distance was originally considered a tool for
clustering and pattern recognition. Fusion by Similarity of Voronoi Polygons
is mainly used for learning data topology. Accordingly, several characteristics
of the topology-preserving maps are omitted in these algorithms. This is
especially so when referring to one of their most defining characteristics:
their ability to represent high-dimensional data as a 2-D map, preserving the
inner structure of the data set.

The earlier models aim to calculate the best characteristics vector for each
neuron in the fused map from the characteristics vector of the neurons in the
ensemble maps, but they do not take the neighbourhood of each neuron into
account. This results in poor topology preservation in the final fused map.
Even in the case of the second algorithm, the reconstruction of a 2-D map
is impossible. Many neurons can be disregarded, due to their low recognition
rate, resulting in blank spaces in the grid of the map. Additionally neigh-
bouring relationships between the final neurons are recalculated, forming a
new shape that will not necessarily resemble the shape of a grid.

In order to avoid those problems and to obtain a truthful representation
of a data set under study an alternative algorithm for topology-preserving
map fusion is presented. It consists of “superposing” the maps formed by the
networks composing the ensemble into a final map, by means of a neuron-by-
neuron comparison. Note that the weights of each network in the ensemble

5.3 Topology-Preserving Map Combination Models 75

are initialised in a way that makes the neurons in the same position of two
-or more- networks comparable. To do so, it is important to make the maps
as similar as possible; the bagging algorithm being given the task of including
sufficient variance for the ensemble to outperform the single model. To ensure
as much similarity as possible between maps, all of them are trained using
the same parameters and each of the ensemble components is initialised with
the state in which the training of the previous was finished. Also, when each
map finishes its training, a measure of quality selected among those presented
in Chapter 2 is calculated. If the measure does not reach a certain limit, the
map is discarded and a new one is trained to replace it. The pseudo-code for
this fusion algorithm is included in Algorithm 6.

Algorithm 6. Map Fusion by Superposition

Input: Set of trained topology-preserving maps: M1...Mn

Output: A final fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging (re-sampling with replace-

ment) meta-algorithm: Mn

3: procedure Fusion(M1...Mn)
4: for all wj ∈ Wi do

5: w∗
i ←

∑n
k=1 wk

i /n ⊲ centroid of the units in the same position in
all maps

6: b∗i ← OR(bk
i) ⊲ Frequency at recognising a class: sum of

frequencies of the neurons selected for each class.
7: end for

8: end procedure

Additionally there is a one last step that can be performed. As described,
the algorithm has an additional interesting effect: the same data samples of
the data set are said to be recognised by two or more different units. This
method differs from competitive learning with which the maps are usually
trained. It is due to the way the data that activated a neuron as the BMU is
computed in step 5 of the Algorithm 6. If the same data sample is recognised
by two -or more- neurons in different positions of two different ensemble
maps, the two neurons in that position in the final map will be marked as
the BMUs for that sample. The implications of this situation are discussed
in subsequent sections.

Furthermore, the option exists of a final re-labelling step in the algorithm,
in which the training data set is presented to the map again to decide, once
and for all, which of the neurons in the final map is really the BMU for
each sample; the final result yields a regular topology-preserving map. At the
experimental stage, the map obtained through the application of Algorithm
6 is referred to as ‘Superposition’, while the map obtained after applying this
final re-labelling step is referred to as ‘Superposition + Re-labelling’.

76 5 Ensembles of Topology Preserving Maps

The computational complexity in this case is O(M × N), in which M is
the number of maps in the ensemble, and N the number of neurons in each
map. As in most cases M ≪ N , this algorithm consumes less computational
resources than the two previously described fusion, as it is less complex to
calculate.

5.3.3 Discussion of the Fusion Models

As detailed in the subsequent sections -Section 5.4- the idea of having an en-
semble of topology-preserving maps as classifiers is perfectly valid. Examples
show that performance is increased by the use of the bagging meta-algorithm.
It is reasonable to suggest that the primary intention of the ensemble or com-
mittee of experts idea was to improve the classification capabilities of the so
called “weak learners”.

Nevertheless, it should also be added that classification was not intended
as the main feature of these kinds of algorithms. It should not, therefore, be
very difficult to identify models that yield better results.

The concept of a unique model summarising the characteristics of several
other diverse ones seems more suitable for one of the most characteristic
features of this kind of models: data inspection by the naked eye. The single
map has numerous advantages for human experts who would otherwise have
to compare several maps to establish the most interesting characteristics of
data sets. This unique map idea can also be easily adapted to well-known
SOM architectures that would be more complicated to implement with an
ensemble of maps such as the Hierarchical SOMs.

The differences between the three fusion models presented in this chapter
are dependent on the final intention for which they where devised. Fusion by
Euclidean Distance was originally intended to improve clustering and classifi-
cation, which is why it stresses re-calculating the position of the neurons and
especially the samples recognised by each neuron. This has the same effect as
explained in the case of superposition: two different neurons are supposedly
detected as the BMU for the same data sample. The effect of this can be seen
in some of the experimental results included in Section 5.4. The final map
surface in Fusion and Superposition is covered by a much higher number of
labelled neurons than in a single map, which will all be able to classify data
when fired. This is an advantage when classifying data, but can be considered
a disadvantage, in that it detracts from the representation of the data set,
when that is the desired final output.

Also, this fusion completely disregards the neighbourhood of neurons in
the map. Thus, the result is a final map with poor topology preservation,
due to twists in the map’s grid and disordered neurons; what makes it a poor
tool for visualisation. Finding the actual closest unit to another one using
Euclidean distance would be a NP-complete problem. It would simply take
too long to compute in large maps, which is why the algorithm works with
an approximation to identify the units to be fused. This also means that the

5.4 Experiments and Results 77

map is easily calculated in a batch process, when all the composing maps have
finished their training; although this makes it quite unusable for an on-line
process.

Fusion by Voronoi Polygons Similarity was especially devised for recogni-
tion of data topology, but not for representing that topology in a map. The
map’s grid is the actual desired representation. In that sense, the final fusion
obtained with this algorithm is closer to Neural Gas (Martinez and Schulten,
1991) than to the SOM. The final map consists of a series of neurons con-
nected as a graph, with no defined number of neighbours for each neuron.
Usually the number of neurons for that map is lower than for its component
maps, as it omits non-responding units.

The final fused map obtains a very low quantization error, which also
makes it quite useful for pattern recognition tasks, but which means that it
is impossible to obtain a 2-D map representation of the data structure.

Finally, the Superposition algorithm tries to avoid the pitfalls of those
previous models. The idea is to impose stricter restrictions when training the
different maps composing the ensemble, by using the state of the previous one
to initialise the next one. Thus, it is reasonable to consider that, in each of
the composing maps, the most similar neuron to the neuron in the final map
will be in the same position in all maps. The neighbourhood relationships are
therefore completely preserved by using this approach. The union of the sets
of samples recognised by the corresponding neuron in each map is used for
storing data samples recognised by each neuron. In that way, the classification
advantages of Fusion by Distance can apply.

Having a final map with the same structure as a single map also enables
it to be used in more complicated architectures, such as hierarchical SOMs
or as an on-line learner, as new data is easily incorporated in the ensemble
and pushed up to the Superposed map.

5.4 Experiments and Results

5.4.1 Comparison between Single Model and Ensemble

as Classifiers

The first experiment was designed to confirm the adaptability of the
concepts relating to improvements in classification results presented in
(Petrakieva and Fyfe, 2003), in this case for another topology-preserving
map architecture. In the case of this experiment, the tests were performed
for comparison of the SOM and Max-SIM models -which are described in
Chapter 2- .

A radial data set was generated in order to test the performance of the
three fusion models in a data set where it supposedly will make a clear dif-
ference. It was composed of six normal 2-dimension distributions laid out
radially, the centres of which were situated at points [3,2], [1,4], [-2,4], [-3,1],

78 5 Ensembles of Topology Preserving Maps

(a) Ensemble of 10 SOMs trained on the
bagged data

(b) Ensemble of 10 Max-SIMs trained on
the bagged data

Fig. 5.3 Comparison of the SOM and Max-SIM bagged models when trained on a
radial data set

[-2,-4] and [1,-2] respectively. The number of samples corresponding to each
distribution was as follows: 50, 100, 70, 50, 20 and 100. A visual representa-
tion of the results is shown in Figure5.3.

The SOM networks of the experiment were trained following the same
steps detailed in (Petrakieva and Fyfe, 2003). The weights of the neurons
of the maps were initialised following the first principal component of the
data set. In the case of the Max-SIMs, neurons were subjected to radial
initialization.

Table 5.1 shows the classification results when the Max-SIMs were trained
over the radial data set described above. The results were obtained from a
10-fold cross validation -minimum, maximum and average accuracy- testing
runs are shown in the table. In this case the data set did not contain any
outliers.

Table 5.2 shows the classification results when the data set includes several
outliers in the outward part of the radial set. The results are obtained from
a 10-fold cross validation -minimum, maximum and average accuracy- from
10-fold cross-validation testing runs are shown in the table. In this case,
including 20 outlier samples.

Table 5.1 Classification accuracy of three different models applied to the radial
data set (without outliers)

Accuracy of the model (without outliers)

min max average

Single Max-SIM 81.28% 86.15 % 83.58%

Ensemble Max-SIM 86.15% 88.2% 87.02%

Ensemble SOM 80.76 % 86.41 % 83.11%

5.4 Experiments and Results 79

Table 5.2 Classification accuracy of three different models applied to the radial
data set (including 20 outliers)

Accuracy of the model (including outliers)

min max average

Single Max-SIM 75.3% 83.1% 79.6%

Ensemble Max-SIM 82.1% 86.3% 84.1%

Ensemble SOM 79.2% 85.6% 82.8%

As expected, the Max-SIM ensemble model obtains better results than the
single Max-SIM and the SOM ensemble models, with and without outliers
in the data set, as can be seen in both Table 5.1 and Table 5.2. The results
confirm those obtained by Petrakieva and Fyfe (Petrakieva and Fyfe, 2003).
This was clearly expected as the results are based on classical bagging theory.
The experiment relies on the bagged ensemble of several classifiers to obtain
a final result by majority voting. In this sense, the Max-SIM functions like
any other classifier, such as classification trees, Bayes classifiers or percep-
tron trees. These experiments confirm that the advantage of using ensemble
methods are also applicable to topology-preserving maps.

The added robustness of the ensemble model versus the single map against
outliers is confirmed. Comparing both Tables (5.1 and 5.2), it can be seen that
the inclusion of the outliers degrades the results of all models. The difference
is that the average classification results for the cross-validation are almost
3% in the case of the single Max-SIM, but they are only 2% in the case of
the Max-SIM ensembles, and only 1% in the case of the SOM ensembles.

5.4.2 Comparison between Fusion by Distance and

Fusion by Similarity Algorithms

The next experiment is intended to generate a comparison between the two
SOM fusion algorithms that were previously proposed in the literature: Fu-
sion by Distance and Fusion by Similarity. Further information about the
experiments presented in this section is available in (Baruque et al, 2007).

The first notable point is the structural difference between the maps gen-
erated by the two models. The clearest way to compare these differences
visually is by representing them in the input space of the data with which
they are trained. In our case, Figure 5.4 depicts three maps represented over
the well-known Iris data set (Asuncion and Newman, 2007). The maps were
trained over the complete data set -4 dimensions- but to represent them on
a 2-D image, the first 2 Principal Components of the data set were calcu-
lated and both data and map’s neurons weights were projected over those
two components.

80 5 Ensembles of Topology Preserving Maps

(a) Single SOM

(b) Fusion by Euclidean Distance (c) Fusion by Voronoi Polygon Similarity

Fig. 5.4 2-D representation of the compared model’s grid represented over the Iris
data set

Looking briefly at at Figure 5.4, there are several obvious differences. The
single map (Figure 5.4a) is presented as a clear grid, which attempts to cover
as much of the data space as possible, to enable it to represent all data in
the final map. Fusion by Euclidean Distance (Figure 5.4b) is extended in the
same way, but in this case the grid is not so clear, as it includes many twists
and the neurons appear disordered. This is due to the way it is computed,
which favours the position of single neurons to approximate data, but leaves
aside the neighbourhood of the neuron. Fusion by Voronoi Polygon Similarity
(Figure 5.4c) also presents a completely different structure. Although it is also
expanded to reach the whole data set, in this case, not even a grid is preserved.
The number of neurons in this third map is lower than in the other two
models, as neurons that do not react to any data are removed from the final
map. There are several neurons positioned on each side of the data set, but
there are no neurons in the gap between the two groups. Moreover, the way
in which the neurons are connected is no longer a grid with a fixed number of
neighbours for a particular neuron. Instead, the neighbouring relationships
depend on the Voronoi polygon covered by each neuron. This means that
there can be neurons with a high number of neighbours or isolated neurons

5.4 Experiments and Results 81

(a) Topographic Error for each neuron in
a single SOM

(b) Topographic Error for each neuron in
Fusion by Euclidean Distance

Fig. 5.5 Topographic Error calculated over the single SOM and the Fusion by
Euclidean Distance

with no neighbours at all. The structure of this map (Figure 5.4c) therefore
resembles a graph more than a grid of interconnected units.

These same differences are confirmed in a more analytical way by means
of topographic error analysis -explained in Chapter 2-. The results of the
Topographic Error calculated over the single SOM in Figure 5.4a and over
the Fusion by Euclidean distance in Figure 5.4b, are shown in Figure 5.5.

The higher topographic error of Fusion by distance is graphically repre-
sented in Figure 5.5. Neurons coloured in red (high error) are localized in the
SOM map (5.5a) where the gap between two groups of the data set is situ-
ated. In Fusion by Distance (5.5b) these red/orange marked neurons appear
all over the map, without any clear structure, illustrating the way in which,
for no particular reason, many more neurons generally display this kind of
error in relation to the data set.

Further analytical results are provided by a comparison between the two
fusion algorithms used in combination with two different topology-preserving
models. The comparison includes the two fusion algorithms applied to two
different topology-preserving algorithms -the SOM and the ViSOM – in or-
der to verify whether the different algorithms share similar characteristics.
This comparison is based on two different quality measures for the maps -
Quantization Error and Distortion –, each of them presented in Table 5.3
and Table 5.4. Three widely known data sets held in the UCI repository
(Asuncion and Newman, 2007) -Iris, Wisconsin Breast Cancer and Wine-
were used for the tests.

It may be seen from Table 5.3 that the Mean Quantization Error (MQE)
of Fusion by Distance is, by a small margin, lower than the single model in
almost all cases for both models. This was expected, as the fusion is intended
to reduce the distance between neurons and data samples by re-adapting the
neurons. In the case of Fusion by Voronoi Similarity, the MQE values are
much lower than the single model, because of the lower number of neurons

82 5 Ensembles of Topology Preserving Maps

Table 5.3 Comparison of the two topology-preserving models (SOM, ViSOM)
using an ensemble of 10 maps to calculate the MQE for the following: the average
of all 10 maps, the 10-map Fusion using the Euclidean distance algorithm, and the
10-map Fusion using the Voronoi similarity algorithm. The results of the table are
the average of five different tests performed using cross-validation

SOM ViSOM

Single

Fus.
Eucl.
Dist.

Fus.
Voronoi
Simil. Single

Fus.
Eucl.
Dist.

Fus.
Voronoi
Simil.

Iris 0.19 0.20 0.14 0.18 0.17 0.13

Cancer 1.95 1.93 1.16 1.74 1.54 1.23

Wine 9.91 10.40 4.42 9.40 9.13 4.06

Table 5.4 Comparison of the Distortion of the Fus. by Euclidean Dsitande and
Fus. by Voronoi Similarity of an ensemble of SOM and an esnemble of ViSOM

SOM ViSOM

Single

Fus.
Eucl.
Dist.

Fus.
Voronoi
Simil. Single

Fus.
Eucl.
Dist.

Fus.
Voronoi
Simil.

Iris 1.35 1.50 2.12 1.45 1.59 2.33

Cancer 19.03 25.12 43.52 15.46 19.23 41.98

Wine 69.12 71.50 60.93 65.82 55.81 62.81

in the final map in comparison with the other two models. These values will
always be lower when less neurons contribute to the general error.

The Distortion measure in Table 5.4 is an error measure that shows
how each map preserves the topology of the data set used for its training.
Table 5.4 shows a comparison of the two topology-preserving models -SOM,
ViSOM- using a 10-map ensemble by calculating Distortion for: the average
of all 10 maps, the Fusion of the 10 maps using the Euclidean distance al-
gorithm, and the fusion of the maps using the Voronoi similarity algorithm.
The results of the table are the average of five different tests performed using
cross-validation.

As shown in Figures 5.4 and 5.5, Fusion by distance obtains a higher error
than the single model in almost every case, which was expected. Although
the results of this fusion algorithm outperform the single model when used
to classify new data, the final fused map does not preserve the relationship
between its neurons. Fusion by Voronoi Similarity yields similar results to the

5.4 Experiments and Results 83

other fusion -exhibiting higher Distortion- , except in the Wine data set. In
the case of this data set, which is the most complex of the three, the density
of edge-connecting neurons is higher than in the Iris data set, as there are
fewer “dead” neurons. In that case, Distortion will decrease, as the number
of edges for a neuron is usually higher than in a single map.

When comparing two variants of the topology-preserving algorithms, it can
be inferred that the ViSOM obtains better results than the SOM in the three
data sets both for the MQE (Table 5.3) and the Distortion measures (Table
5.4), albeit by a small margin. This is due to its procedure of updating inter-
neuron weights, as it forces the inter-neuron distances on the map to adapt
to the inter-data distances of the input space; improving overall adaptation
to the data set.

5.4.3 Comparison between Fusion by Distance and

Superposition Algorithms

The following experiment aims to test the differences in the behaviour of the
Fusion by Distance algorithm and the proposed Superposition algorithm. As
in the previous experiment, the first thing to notice would be the structure
of their networks. A representation of the map in the input space that is
projected over the Iris data set is displayed in Figure 5.6. The figure shows
an ensemble of five SOMs trained over the Iris data set -each one represented
in one colour- and the final Superposition calculated over that ensemble.
Both the data set and the maps are represented over the first 2 Principal
Components of the data set.

The first thing that meets the eye in Figure 5.6 is that, with this fusion
algorithm, a much smoother grid was obtained than in the previous test. The
algorithm imposes a stricter initialisation of the map than the previous two.

(a) Ensemble of five SOMs (b) Superposition calculated over five SOMs

Fig. 5.6 Ensemble of 5 SOMs trained over the Iris data set and the final Superpo-
sition from that ensemble

84 5 Ensembles of Topology Preserving Maps

(a) Single SOM (b) Fusion by Distance

(c) Superposition (d) Superposition + Re-Labelling

Fig. 5.7 The Iris data set as represented by Single SOM, Fusion by Distance,
Superposition and Superposition + Re-Labelling

These ensembles consider neurons that are located at the same position as
direct candidates to be fused, so there is no need to search the entire map for a
suitable neuron, which is a much better way of preserving the neighbourhood
of the map.

The final objective of the map fusion is depicted in Figure 5.7. It is the
Iris data set as represented by the four models under comparison: Single
SOM, Fusion by Distance, Superposition and Superposition + Re-Labelling.
Summaries were obtained from the same ensemble of five SOMs, trained using
the Bagging meta-algorithm, all maps exactly with the same parameters.
The bagged SOMs composing the ensemble were trained by re-sampling 120
samples each.

Although all four representations retain similar structure, there are sev-
eral interesting differences. In the case of Fusion by Distance (Figure 5.7b)
and Superposition (Figure 5.7c), there is a greater density of neurons that
recognise data. This is due to the effect of having more than one BMU in the
fusion stage, which to some extent explains the improvements to classifica-
tion that were originally reported for Fusion by Distance. However, it should

5.4 Experiments and Results 85

also be noted that several neurons appear disordered in the case of Fusion
by Distance (Figure 5.7b). For example, two classes are mixed at the top
right of the image, and the separation between the two linear groups is not
very clear at the bottom right. Superposition (Figure 5.7c) yields a similar
result in relation to the density of the reacting units, but with a more ordered
lay out. The outlined defects in the representation mentioned for Fusion by
Distance are not present in this map. Finally, Superposition + Re-Labelling
(Figure 5.7d) have the effect, once again, of obtaining a lower number of units,
in a similar way to the single SOM (Figure 5.7a), although the separation
between groups appears to be more clearly represented in the first than in
the second. As previously intended, the most suitable map depends on the
tasks it is intended to perform. For data visualisation, it can be argued that
Superposition + Re-Labelling creates a more truthfully representation of the
data set on which it was trained. For data classification it might be more
useful to have extra classifying units, as in Superposition -or even Fusion by
Distance- .

For further analytical proof of the classification capabilities of the different
models, a 5-fold cross-validation over the Iris data set is included in Table5.5.
This table includes the classification results for the 4 single maps -the single
map and three of the fusion algorithms- plus the classification rate achieved
by the bagged ensemble of maps when it is not fused, for the case of the SOM
(10x10 and 20x20) and the ViSOM (10x10 and 20x20). The results of the table
are the average of five different tests performed using cross-validation.

Table 5.5 Classification accuracy of the different models obtained from a SOM
and ViSOM ensemble for the Iris data set

Best
Single
Map

Bagged
Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (10x10) 78% 94% 92% 73% 75%

SOM (20x20) 50% 81% 62% 59% 58%

ViSOM (20x20) 82% 92% 78% 74% 77%

ViSOM (30x30) 74% 83% 82% 70% 71%

From the analysis of Table 5.5 some conclusions can be inferred. First of
all, as expected, the best classifier is always the bagged ensemble for all the
models, which is precisely its objective. An ensemble of classifiers always
appears to outperform a single model. Also, when comparing classification

86 5 Ensembles of Topology Preserving Maps

(a) Visualisation of the SOM ensem-
ble using the Superposition+Re-Labelling
method

(b) Visualisation of the ViSOM ensem-
ble using the Superposition+Re-Labelling
method

Fig. 5.8 Comparative representation of the Cancer data set using SOM and ViSOM
and Superposition+Re-Labelling

accuracy, Superposition outperforms Superposition + Re-Labelling. As ex-
plained before, this seems to be due to the higher amount of classifying neu-
rons in the first model. Finally, Fusion by Distance seems to be a good solution
to improve performance when the single map fails to obtain very good re-
sults -in the case of the SOM (20x20)- , but in all cases it is outperformed by
Superposition. This is because both use the same process for preparing their
units prior to classification, but Superposition preserves the neighbourhood
of the map more clearly.

A similar study to the previous one is presented in this case for the Wis-
consin Breast Cancer data set, also obtained from (Asuncion and Newman,
2007). Superposition and Superposition+Re-Labelling of the data set are
shown in Figure 5.8: in a comparative representation of the Cancer data
set using two different topology-preserving models (SOM and ViSOM), but
the same Bagging parameters for the training of the ensemble and the same
algorithm for the fusion of maps (Superposition+Re-Labelling).

Similar differences hinted at the previous comparison may be observed
here.

Almost the same may be said for the experiments performed on this data
set (Table 5.6), wich show the classification accuracy of the different models
obtained from a SOM and ViSOM ensemble on the Cancer data set. The
result of the table is the average of the five cross-validation tests. The only
difference is that in this case, fusion by Fusion Distance outperforms Super-
position on several occasions -SOM (20x20), SOM (30x30), ViSOM(30x30)- .
The Cancer data set is a binary class problem that contains many more sam-
ples, and one class is especially denser than the other. As it is a completely
different data set- and specially with binary class -is not surprising that in
some cases one algorithm outperforms the other, without any of them being
clearly superior.

5.4 Experiments and Results 87

Table 5.6 Classification accuracy of the different models obtained from a SOM
and ViSOM ensemble on the Cancer data set

Best
Single
Map Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (10x10) 92% 96% 95% 93% 93%

SOM (20x20) 77% 95% 74% 87% 85%

SOM (30x30) 69% 92% 70% 82% 76%

ViSOM (20x20) 94% 96% 96% 94% 94%

ViSOM (30x30) 94% 97% 94% 95% 95%

ViSOM (40x40) 91% 96% 94% 92% 92%

5.4.4 Comparison between Bagging and Boosting as

Ensemble Training Algorithm

This experiment 5.7 aims to determine whether the way the ensemble is
trained has a direct and noticeable effect, both on the ensemble and on the
ensuing fusion map calculated from it. This comparison will be performed
between two of the most spread algorithms for ensemble construction: Bag-
ging and AdaBoosting. Further experiments regarding this issue can also be
found in (Corchado et al, 2007).

As in previous experiments a visual representation of the results is shown
in Figure 5.9. All maps were trained using the same parameters. The ensem-
ble was constructed using the AdaBoost.M2 algorithm (Freund and Schapire,
1996). Its has 5 maps, each trained with 120 samples from the Iris data set.

Visually, the difference between using one algorithm or another is hardly
significant. No special features can be distinguished by the naked eye, when
comparing Figure 5.9 with Figure 5.8, which was trained using the Bagging
algorithm. The use of different algorithms for training the ensemble hardly
has a drastic effect on the visualization results.

With regard to the classification results, the four tables shown (Table 5.7 to
Table 5.10) present the accuracy results obtained for two different data sets by
the two different algorithms for ensemble training -Bagging and AdaBoost-.
All results are the average obtained form a 10-fold cross validation.

Table 5.7 and Table 5.8 show the classification differences when using
Bagging and AdaBoosting for ensemble construction with the Iris data set.
The results appear to contradict the idea that the AdaBoost would further
improve the ensemble classification results. On the basis of average improve-
ments in accuracy in both tables, for each of the ensemble models over the

88 5 Ensembles of Topology Preserving Maps

(a) Single ViSOM (b) Fusion by Distance

(c) Superposition (d) Superposition + Re-Labelling

Fig. 5.9 Maps obtained by a single ViSOM and the three Fusion algorithms over
the Iris data set. The ensemble was trained using the AdaBoost.M2 algorithm

Table 5.7 Percentage of correct recognition of samples in the Iris data set training
the ensemble with Bagging algorithm

Best
Single
Map Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (5x5) 94% 97.33% 84% 94% 94.6%

SOM (10x10) 73.3% 97.3% 80.6% 82% 83.3%

SOM (20x20) 48.6% 90.6% 66.6% 69.3% 58%

ViSOM (10x10) 93.3% 92.6% 61.3% 87.3% 94%

ViSOM (20x20) 87.3% 97.3% 80.6% 89.3% 94%

5.4 Experiments and Results 89

Table 5.8 Percentage of correct recognition of samples in the Iris data set training
the ensemble with AdaBoost.M2 algorithm

Best
Single
Map Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (5x5) 95.3% 97.3% 77.3% 90.6% 96.0%

SOM (10x10) 75.3% 95.3% 80.6% 83.3% 83.3%

SOM (20x20) 58% 90% 71.3% 71.3% 61.3%

ViSOM (10x10) 92% 94.6% 79.3% 97.3% 90.6%

ViSOM (20x20) 86.6% 94.6% 86.6% 88.6% 88.6%

Table 5.9 Percentage of correct recognition of samples in the Wisconsin Breast
Cancer data set training the ensemble with Bagging algorithm

Best
Single
Map Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (5x5) 97% 97% 89.4% 96.1% 96.2%

SOM (10x10) 93% 96% 93.4% 93.3% 94.7%

SOM (20x20) 77.6% 96% 83.4% 90% 82.4%

ViSOM (10x10) 94.1% 97% 96.1% 93.6% 94.4%

ViSOM (20x20) 80.9% 95.3% 92.3% 83% 84%

ViSOM (30x30) 77.3% 93.3% 91.7% 78.3% 79.6%

best single map, it may be concluded that, except in the case of the Super-
position, the use of AdaBoost does not improve the classification accuracy
of the ensemble. Although the AdaBoost ensemble does improve the classi-
fication results with respect to the single map, it does not outperform the
improvements of the Bagging ensemble.

Table 5.9 and Table 5.10 show the classification differences when using Bag-
ging and AdaBoosting for ensemble construction with the Wisconsin Breast
Cancer data set. In this case, having calculated the average improvements
of the ensemble-based methods, the results favour the AdaBoost over the
Bagging algorithm for the ensemble training.

It should be noted that as the two data sets have a different number of
classes, a different variant of the AdaBoost was used in each case. The vari-
ants were chosen according to the authors’ recommendations on the number

90 5 Ensembles of Topology Preserving Maps

Table 5.10 Percentage of correct recognition of samples in the Wisconsin Breast
Cancer data set training the ensemble with AdaBoost.M1 algorithm

Best
Single
Map Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (5x5) 96% 95.8% 93.8% 96% 96.7%

SOM (10x10) 91.6% 96.4% 94.3% 92.8% 94.5%

SOM (20x20) 79.6% 96.6% 94.4% 86.1% 89.3%

ViSOM (10x10) 85.4% 96.9% 93.8% 94% 93.6%

ViSOM (20x20) 84.9% 96.3% 95.1% 86.8% 87.7%

ViSOM (30x30) 77.9% 95.1% 93.3% 83.8% 84.5%

of classes to distinguish in the data set. As the Iris data set contains three
classes, the AdaBoost.M2 algorithm is considered the most appropriate one;
whereas the AdaBoost.M1 was selected for the binary classification of the
Cancer data set. It is also important to note that these differences in the
algorithms should theoretically obtain better results if used with the appro-
priate data set.

The cause of these contradictory results would appear to lie in the difficulty
of obtaining a good balance over the diversity of the ensemble. As explained
in Chapter 3, for a really useful ensemble, it is important to generate an
ensemble of single models that have sufficient diversity to produce results that
complement each other. In the case of the fusion of topology-preserving maps,
this balance should be observed even more strictly. When using an ensemble
of maps for classification, a certain degree of diversity is advantageous. If the
intention is to fuse them into a final map, this diversity should not exceed a
certain limit. If the trained maps are too dissimilar, the risk is that the maps
that are to be fused might exhibit very different characteristics, so much so
that they will neither be clearly nor correctly represented in a single, uniform
map. As pointed out before, when training the maps in the ensemble, it is
important to try to do so with the most similar characteristics as possible,
with the exception of the data sub-set. In this case, the difference in how
the data set is selected clearly influences the training of each map, such that
the training of the ensemble has an added degree of freedom in which the
single maps can differentiate. As the results suggest, this is not necessarily
a bad result, but it is definitively a point to be taken into account when
planning ensemble training, especially in cases where the nature of the data
set requires a very low or a very high degree of diversity.

5.4 Experiments and Results 91

5.4.5 Food Industry Application

The final set of experiments involved an industrial case study: the application
of topology-preserving maps for visualisation and assessment to the classifi-
cation of a data set of Spanish cured hams -See Appendix A for a detailed
description-.

As explained in the description of the data set, the main objective is to
obtain a meaningful representation of the data set, so that an intuitive idea
of the quality of the ham samples can be presented as a visual image. The
analysis is also intended to assess the classification of new samples by human
experts. To do so, the intention is to represent the new samples in the map
so experts can have a clear idea of the location of the new samples in relation
to the data that they have previously studied in a very intuitive way.

Figure 5.10 shows the results of applying the different models to a sim-
plified version of Ham data set 1 described in Appendix A. The data set is
exactly the same, although for reasons of clarity the samples are labelled with
a simpler classification. Only three classes are used: ‘unspoilt’, represented
both by number ‘1’ and green triangles; ‘acid/rancid’ represented both by
number ‘3’ and red circles and ‘tainted’, represented both by number ‘2’ and
blue squares. The four maps are obtained from VISOM models with a size of
30x30. The ensemble fusion maps have been calculated by using 10 bagged
models.

Analysis and visualisation are quite promising in Figure 5.10. In all fig-
ures it can be seen that the ‘tainted’ samples -represented as blue squares-
appear in a compact group to the middle-right of the images. In the single
SOM (Figure 5.10a) this group appears quite isolated from the rest, except
on the bottom-left part of the group, where it is quite near a group of normal
samples. Superposition (Figure 5.10c) also presents this group as isolated
from the rest. In this case the ordering of data is even clearer as all neu-
rons surrounding the ‘tainted’ area are neurons that recognise ‘acid/rancid’
smells. Superposition + Re-Labelling (Figure 5.10d) presents the same iso-
lated ‘tainted’ area, along with more clear groupings among the ‘unspoilt’
general cloud. Observing Figure 5.11, which shows a more expressive classi-
fication of this data over the same map showed in Figure 5.10d, it can be
confirmed that those are meaningful groups, as they mainly group together
samples of similar quality.

Classification accuracy is also measured for this experiment (Tables 5.11
and 5.12). Unlike the previous experiment, on this occasion two different ways
of training the ensemble are compared. One ensemble has been trained using
the Bagging algorithm, while the AdaBoost algorithm was used to train the
other. As explained in Chapter 3, this second algorithm uses the classification
information of the previously trained classifier in an attempt to improve the
accuracy of the next one.

The results are presented in Table 5.11 and Table 5.12. All measures are
the average of using a 10 fold cross-validation over the Ham data set. The

92 5 Ensembles of Topology Preserving Maps

(a) Single ViSOM map (b) Fusion by Distance map

(c) Superposition Map (d) Superposition+Re-Labelling Map

Fig. 5.10 Visual Comparison of the Single ViSOM and the three presented Fusion
algorithms using the ham data set

Fig. 5.11 Same Superposition+Re-Labelling as previously shown with more de-
tailed labelling of neurons

5.4 Experiments and Results 93

Table 5.11 Model classification accuracy over the Ham data set training ensembles
with the Bagging meta-algorithm

Best
Single
Map

Bagged
Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (10x10) 68.4% 84.1% 73% 69% 78.4%

SOM (20x20) 49.5% 78.7% 62.2% 57.7% 59.3%

SOM (30x30) 40.8% 67.2% 49.1% 52.6% 52.1%

ViSOM (20x20) 78% 90% 87.1% 83.9% 79.7%

ViSOM (30x30) 69.1% 82.8% 81.5% 61.7% 60.4%

ViSOM (40x40) 62.5% 86.9% 52.7% 70.4% 71.3%

Table 5.12 Model classification accuracy over the Ham data set training ensembles
with the AdaBoost.M2

Best
Single
Map

Bagged
Ensemble

Super-
position

Superp.
+ Re-

labelling

Fusion
by Dis-
tance

SOM (10x10) 70.2% 82.9% 71.7% 73.4% 78%

SOM (20x20) 47.8% 78.3% 62.6% 61.7% 62.6%

SOM (30x30) 38% 66.7% 58.7% 49.4% 51.7%

ViSOM (20x20) 80.9% 91.1% 81.1% 82% 84.6%

ViSOM (30x30) 68% 90% 72.1% 70.9% 75.5%

ViSOM (40x40) 64.9% 85.6% 75.8% 66.3% 71%

ensembles are all composed of 10 networks, altough trained using a different
ensemble meta-algorithm. The performance is very similar in all cases and
the map size is correct, so few tests were performed with the more dubious
parameters in order to ascertain whether the ensembles could contribute any
significant improvement.

Regarding the automated classification of samples, the ViSOM outper-
formed the SOM in almost all cases, when training the ensembles with the
Bagging and with the AdaBoosting algorithms. This behaviour was expected
as the ViSOM is devised to adapt to the data set in a more accurate way.

Comparing Tables 5.11 and Table 5.12, it can be inferred that the use of
the AdaBoost algorithm has a noticeable effect on the classification accuracy

94 5 Ensembles of Topology Preserving Maps

of the generated ensemble. Calculating the average increase in accuracy of
the ensemble over the best single map -which is calculated by subtracting
the value of the first column from the second one and averaging the results-,
it can be seen that that difference was hardly noticeable: being 20.2% for
the bagging algorithm, and 20.8% for the AdaBoost algorithm. In the case
of the fusion algorithms the average improvement for Fusion by Distance is
5.5% when using the Bagging algorithm and 8.93% when using the AdaBoost,
which is almost a 5% improvement in accuracy.

Regarding the different ensemble fusion algorithms, the results are compa-
rable to those obtained in previous experiments. The accuracy of the ensemble
of maps is much higher than its equivalent single and combined networks. The
three fusion models are much more dependent on individual performances,
so they obtain much lower classification accuracy than the ensemble, but
still achieve significantly better classification rates than the single model.
AdaBoost obtains better results than Bagging in most cases, although the
difference is not very significant.

5.5 Conclusions

This chapter has presented ensemble fusion as a viable option for the combi-
nation of ensembles of topology-preserving models. The aim of these kinds of
algorithms is to obtain a single map that can outperform the results obtained
by the single map method, but which still retains the simplicity of handling a
map instead of an ensemble. This is particularly useful for data visualisation
of the maps.

Three different algorithms for map fusion have been described and dis-
cussed. Two of them had already been presented in earlier works and the
third is presented in this thesis as an algorithm that overcomes certain prob-
lems observed with the previous ones. Each has its own advantages and dis-
advantages, as they were all designed to enhance different characteristics of
the maps.

Several data sets have been used to test and compare all three of them, in
order to understand their different capabilities more fully.

Chapter 6

A Novel Fusion Algorithm for
Topology-Preserving Maps

6.1 Introduction

As observed in Chapter 5, few methods have been proposed to fuse the com-
ponents of an ensemble of topology-preserving maps into a final map that
summarizes the information of the different composing maps(Georgakis et al,
2005; Saavedra et al, 2007). Nevertheless, as previously explained, there are
multiple advantages to this approach.

Seeking further improvements to the results, two different approaches have
been followed and are presented in the rest of this chapter. Firstly, an algo-
rithm combining two of the previously proposed models -Fusion by Distance
and Fusion by Similarity- is presented in Section 6.2.

Subsequently, an improved version of the Superposition algorithm is pre-
sented in Section 6.3.1.

6.2 Fusion by Ordered Similarity

In an attempt to overcome the different problems detected in the previously
proposed map-fusion models, a combination -Fusion by Voronoi Polygon Sim-
ilarity and Fusion by Euclidean Distance- was devised and is included in the
comparative study of the different models.

The Fusion by Voronoi Polygon Similarity algorithm can obtain a very
good adaptation of the map neurons to the data set, with a very low quan-
tization error. This characteristic can be very useful when the objective of
the training is to learn and to represent the topology of a 2-D data set. How-
ever, it is not a great help when trying to represent the inner structure of
a multi-dimensional data set in a 2-D map, as a lot of neighbouring infor-
mation between neurons is disregarded. Neurons that do not recognize any
data entry are left out of the final map, and their positions are replaced by
blank spaces. One possible way to improve this situation is to use one of the
two previously discussed criteria for determining the two closest neurons to

B. Baruque & E. Corchado: Fusion Meth. for Unsupervised Learn. Ensem., SCI 322, pp. 95–122.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

96 6 A Novel Fusion Algorithm for Topology-Preserving Maps

fuse, depending on the situation. The concept is to calculate the fusion on
a neuron-by-neuron basis again, as described in Chapter 5, Sections 5.3.1.1
and 5.3.1.2.

This variation consists in relying on two different strategies to find suitable
neurons to fuse. Firstly, a search is made for the most similar neuron in the
Voronoi Similarity Polygon (see Eq. 5.2) in order to identify a suitable neuron
to fuse in a map from the ensemble. If the neuron in the fused map does not
recognize any data entry, then the search for the nearest neuron by Euclidean
Distance is performed. The fusion of neurons is done as in all other fusion
methods, by calculating its centroid. Thus, the blank spaces that the Voronoi
similarity fusion method left, are filled with neurons that do not recognize
any data; but they preserve the neighbouring neurons and therefore, the
topology. The approach in question is defined and tested for the first time in
this doctoral book. This criterium will be referred to henceforth as ‘Ordered
Similarity’.

The computational complexity of this algorithm is quadratic; as the other
two fusion methods are on which it is based (see Chapter 5). Firstly, a cal-
culation of the dissimilarity between all neurons in all the maps must be
performed, which is O(N2), in which, N is the total number of all neurons in
all the maps. Then the calculation of dissimilarities between all neurons must
be determined, in which, once again, the complexity is expressed as O(N2).
Finally, calculation of dissimilarities between fused neurons, to determine the
new neighbourhood has a complexity of O(C2), in which C is the number of
fused neurons.

6.3 The Weighted Voting Superposition Algorithm

As discussed in earlier chapters, previously presented fusion algorithms have
been devised with different purposes in mind, such as data classification or
topology learning. This entails several weaknesses when those fusions are used
for data visualization; a function that was not foreseen by the authors of the
aforementioned fusion algorithms.

This book has previously presented and discussed an initial fusion algo-
rithm called Superposition in the preceding Chapter 5, in an attempt to
obtain a suitable model for the purposes of data visualization; one of the
most characteristic features of topology-preserving maps.

In this section a novel algorithm for performing this task is presented. It
is based on the Superposition algorithm also proposed in Chapter 5. The
intention behind this algorithm is to improve on previously presented models
that relate to data visualization; one of the most characteristic features of
topology-preserving maps.

6.3 The Weighted Voting Superposition Algorithm 97

6.3.1 WeVoS Algorithm

Simplifying things, the idea of Superposition is to consider each individual
map neuron as a final result of the competitive learning process. Therefore,
finding the arithmetic average of its weights vector could be seen as classic
averaging of the final results and could therefore be performed, for example,
by the original Bagging algorithm.

In line with the idea of combining the ensemble results, another very com-
mon technique for the combination of results for the components of the en-
semble is weighted voting. Weighted voting is based on a priori knowledge of
a component’s performance, so that its vote will have greater or lesser weight
than others depending on how well it performs.

Although topology-preserving maps make use of unsupervised learning,
there are many measures (Lampinen and Oja, 1992; Kaski and Lagus, 1996;
Kiviluoto, 1996) to assess the quality of the map that is generated. Some
of those measures have been presented in detail in Chapter 2 and are briefly
revised in Section 6.4.3. Many of them can be decomposed to obtain a measure
of the quality -or error- of each individual unit of the map. Using this measure,
there is a way to determine the quality level of each of the components in
a set of neurons or, in other words, a criterium to determine the degree to
which the training of each neuron is either better or worse than the other
neurons in a given data set.

Applying this idea to the Superposition algorithm, the weights of the neu-
ron in the same position in each ensemble map are taken into consideration
when calculating the weights of a specific neuron in the fused map. In a sim-
ilar way to the weighted combination of results in the ensembles, all of them
enter into the calculatation of the final weights of the fused neuron, but the
weight of each one will be proportional to its quality. This informed decision
on the quality of each neuron is expected to improve on the results obtained
by the other fusion algorithms.

Many of the aforementioned measures are in fact error calculations, and
many of those same measures are calculated with the training data set. The
number of recognized samples is also taken into account, in order to distin-
guish between neurons that have a low error because they are activated by
only a few samples and those that despite being activated by many data
samples obtain a low error rate.

The mathematical expression for neuron vote weighting is expressed in
Eq. 6.1.

Vp,m =

∑
bp,m∑M

i=1 bp,i

·

∑
qp,m∑M

i=1 qp,i

(6.1)

The algorithm making use of this weighted voting for the final arrangement
or tuning of the fused map neurons is called Weighted Voting Superposition
(WeVoS).

Briefly, the WeVoS algorithm functions in the following way: first of all
an ensemble of maps is trained. Then, the chosen quality/error measure is

98 6 A Novel Fusion Algorithm for Topology-Preserving Maps

Fig. 6.1 Schematic diagram of the weighted voting in WeVoS

calculated for each of the neurons in all the ensemble maps. The fused map
is initialized by calculating the centroids of the neurons in the same position
of all the maps, that is, by calculating the superposition of the ensemble.
For each of the neurons in the fused map, the average neuron quality as well
as the number of total samples recognized in that position for the ensemble
maps are calculated. The weight of the vote for each neuron can be calculated
with this information by using Eq. 6.1. To modify the position of the neuron
in the fused map, the weights of each of the neurons in that position are fed
to the final map. The learning rate in each case will be the weight of the vote
for that neuron. A schematic diagram of this situation is depicted in Figure
6.1, and a detailed description of the algorithm can be found in Algorithm 7.

The computational complexity of this algorithm, although higher than
in the case of the Superposition algorithm described in Chapter 5 (Section
5.3.2), is lower than the computational complexity of the other fusion algo-
rithms with which it has been compared. Firstly, the quality of each neuron
must be calculated, which in the majority of the quality measures presented
so far also depends on the data set used for training. So the computational
complexity of that first stage is O(M × (N + D)), where M is the number
of maps, N is the number of neurons on each map and D the size of the
data set. Then, a calculation of the new position for the fused neuron is cal-
culated taking the weights of the neurons in the other maps into account,
but only in the same position, which has a complexity of O(M × N). This is
much less complex than the quadratic expressions in the previously described
algorithms, as it is expected that M ≪ N .

6.3 The Weighted Voting Superposition Algorithm 99

Algorithm 7. Weighted Voting Summarization algorithm

Input: Set of trained topology-preserving maps: M1...Mn, training data set:
S
Output: A final fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging meta-algorithm : M1...Mn

3: procedure WeVoS(M1...Mn)
4: for all map Mi ∈ Mn do

5: calculate the quality/error measure chosen for ALL neurons in the
map

6: end for

⊲ These two values are used in Eq. 6.1
7: calculate an accumulated total of the quality/error for each position

Q(p)
8: calculate recognition rate for each position B(p).
9: for all unit position p in Mi do

10: initialize the fused map (Mfus) by calculating the centroid (wc)
of the neurons of all maps in that position (p) Eq. 5.1

11: end for

12: for all map Mi ∈ Mn do

13: for all unit position p in Mi do

14: calculate the vote weight (V p,Mi
) using Eq. 6.1.

15: feed the weights vector of neuron wp into the fused map (Mfus)
as if it was an input to the network.

The weight of the vote (V p,Mi
) is used as the learning rate (α).

The position of that neuron (p) is considered as the position of the
BMU (v). ⊲ This causes the neuron of the fused map (w∗

p) to
approximate the neuron of the composing ensemble (wp,m) according to
the quality of its adaptation.

16: end for

17: end for

18: end procedure

6.3.2 Discussion

As upheld by the results, the Fusion by Ordered Similarity algorithm im-
proves the results of the other two algorithms on which it is based, with
regard to those aspects in which they each perform worse. For example, it
enables the fused map to retain a certain topology, which Fusion by Similar-
ity does not do, and it reduces the Distortion that in some cases arises with
Fusion by Distance. Its problem is that it is unable to outperform any of
the best characteristics of the other models. This situation results in a fusion
model that is not really suitable for any of the proposed tasks.

100 6 A Novel Fusion Algorithm for Topology-Preserving Maps

The WeVoS algorithm appears to be a more interesting algorithm. It relies
on the way the ensemble composing maps are trained in order to indirectly
force commonality between maps, it does not need to search for available
units to fuse all over the map, which results in lower complexity. It uses the
ensemble algorithm to initialize, and, especially, to assess neuronal positions,
rather than to calculate a completely different position for them, as the other
two fusion algorithms do. It also preserves one of the most characteristic
features of the topology-preserving maps by taking the neighbouring func-
tion of this kind of maps into account. As shown by the results in Section
6.5, this algorithm represents a useful improvement on topology-preserving
map analysis of different data sets. Based on the ensemble model, it is also
recommended for data sets with very few or highly dispersed entries.

The weighted voting scheme for fine tuning or adapting the final weights
of the neurons of the map creates a framework that could include many vari-
ations. For example, instead of using a single measure for calculating this
weight, a linear combination of more than one could be useful. Interesting
variations of the algorithm proposed in this book could be based on adapta-
tions of how the other fusion algorithms work. Euclidean distance or Voronoi
polygon similarity calculations could be included in the weighting of the vote
without too much difficulty. This could help to construct an even more in-
formative decision about the final inter-neuronal weights of the maps, as it
would add further information on whether the weights of a specific neuron
deviate excessively from the other neurons in that position, and on whether
their inclusion in the voting would negatively affect the final fused neuron.

Although these are interesting ideas to explore, it is difficult to define the
degree to which the performance of the final map will either be improved by
these modifications -which would also increase the computational complexity-
or will remain unchanged. The inclusion of too many criteria for the adap-
tation of the final neurons also risks increasing the instability of the final
calculations step, resulting in poorer results.

6.4 Application of WeVoS to Different Models

The WeVoS algorithm is a fusion algorithm for ensembles of topology-
preserving maps. Its only initial condition is that the maps composing the
ensemble should be reasonably similar. Several experiments were conducted
to test the effects of employing the WeVoS algorithm in combination with
different models to analyse a number of data sets. In the experiments that
applied the WeVoS to different models, a map was initialised with the fi-
nal weights of the previously trained map. The WeVoS algorithm neither
constrains the algorithm used to train the maps, nor the algorithm used to
train the ensemble. A brief overview of the different possible combinations is
included in this section.

6.4 Application of WeVoS to Different Models 101

6.4.1 Topology-Preserving Models

The WeVoS algorithm is generally applicable to many members of the
topology-preserving-map family of algorithms. The experiments to assess its
capabilities were performed over the following algorithms.

Among the family of topology-preserving maps, the best known is the
Self-Organizing Map (SOM) (Kohonen, 1995). The main application of this
algorithm is to perform dimensionality reduction that enables it to present
multi-dimensional data sets as 2-D maps that provide a simple visualization
of the data set. The characteristic feature of these maps is that they are
topographically ordered, so data samples that are similar in the input multi-
dimensional space, will appear close in the final map. In its initial form, the
SOM was a general purpose algorithm, applicable to any data set.

One interesting modification of the SOM is the Visualization Induced SOM
(ViSOM) (Yin, 2002b) algorithm. This modification of the SOM is designed
to improve its data visualization characteristics. It modifies the updating of
neuron weights in the training of the map in such a way that they preserve
not only the neighbouring relationships between the data they represent, but
also the distance between such data. In this way, with just one quick glance
at the map, the human operator can gain an intuitive idea, of which samples
are similar and of the degree to which that is true. The ViSOM is also a
general purpose algorithm, applicable to any data set.

A further modification of the SOM is the Scale-Invariant map or SIM (Fyfe,
1996). This ANN also yields a map as an output. The special feature of this
algorithm is that the updating of its neurons is done by using the classic
Hebbian learning rule (Hebb, 1949) in the neighbourhood of the winner.
Instead of competitive learning, a negative feedback learning approach is
used. The result of this type of update is a characteristic circular or spherical
shape of this map. Rather than having a polygonal shape, the data space to
which each neuron responds, as in the SOM, can be considered a “pie-slice”
of the data due to its form. Thus, it is reacting to data regardless of the scale
of the map. Due to this characteristic, the map is especially recommendable
for use with circular or spherical shaped data sets.

Yet another modification of the SIM is the Maximum Likelihood SIM
(or Max-SIM) (Corchado and Fyfe, 2002b), which is based on applying a
modification of the Hebbian learning rule for training the neurons -called
Maximum Likelihood (Corchado et al, 2004)- that enables the SIM to be
adjusted for different data distributions.

6.4.2 Ensemble Models

As a fusion algorithm, the WeVoS algorithm can be applied to any ensemble
of topology-preserving maps regardless of the algorithm with which they are
trained. Nevertheless, the way the ensemble was trained will, of course, have
a decisive effect on the final result.

102 6 A Novel Fusion Algorithm for Topology-Preserving Maps

Two different ensemble training algorithms were used in the experiments:
Bagging (Breiman, 1996) and AdaBoost (Freund and Schapire, 1996). The
former is one of the simplest and most widely used ensemble algorithms.
It consists of training the same model -any machine learning algorithm- in
different data sets extracted all from the same source. Usually, these several
data sets are emulated by repeated bootstrapped re-samplings over the data
set under analysis. Each of these re-sampling steps is done in a completely
independent way to the other steps.

AdaBoost is based on the same idea, but tries to improve the learning of
the subsequent models -initially classifiers- by obtaining information on the
performance of the previously trained ones. Once a classifier has finished its
training, its performance is evaluated in the training data set. This enables
the AdaBoost algorithm to find samples for which the trained classifier per-
formance is worse, and it will place special emphasis on those samples when
training the next model. In that way, classifiers will be trained to perform
well in specific areas where others are not performing as well, so they will
better complement each other when working as an ensemble.

6.4.3 Quality Measures

Several quality measures for topology-preserving maps were used to compare
the results of WeVoS with other similar algorithms. As previously explained
-see Chapter 2- no agreed measure exists that determines the overall quality
of a map. Instead, many measures have been proposed in the literature, each
of which concentrate on a different feature of the SOM family.

The experiments shown in Section 6.5 featured several of those measures:
Distortion (Lampinen and Oja, 1992): can be used to calculate the overall

topology preservation of a map in an accurate way. It is one of the main
features that WeVoS is trying to improve, which reflects its importance to
this line of research.

Goodness of Adaptation (Kaski and Lagus, 1996): measuring both the con-
tinuity of the mapping from the data set to the map grid and the accuracy
of the map that represents the data set, this measure is of interest because it
is the most general of all those used in the experiments.

Topographic Error (Kiviluoto, 1996): one of the simplest topology-
preservation measures, this measure is included in the experiments for the
sake of completeness.

Mean Quantization Error : Quantization Error is related to all forms of
vector quantization and clustering algorithms. It completely disregards map
topology and alignment and, once again, is included in the experiments for
the sake of completeness.

Classification Error : Although topology-preserving maps were not initially
designed as classifiers, their pattern-matching abilities can to some extent
classify new samples. This measure is calculated in few experiments, as it
is not directly related to the quality of map representations. It is included

6.5 Experiments and Results 103

among the experiments because the ensemble meta-algorithms were originally
intended to increase the classification accuracy of a single model.

6.5 Experiments and Results

6.5.1 Comparison of Fusion Algorithms over a 1-D

SOM

The experiment consisted of training an ensemble of SOMs several times over
the same data set, reducing the number of elements in the data set each time.
Some outliers were also included in the sample. The objective is to verify the
degree to which the maps obtained by the fusion algorithms are affected by
the reduction in the number of samples with which they are trained. For each
step in the experiment, a 5-fold cross-validation was performed. The data set
was a 2-D horseshoe shaped one similar to that used in (Kaski and Lagus,
1996). It has 570 entries in the first step and of 163 entries in the last one.

The Distortion measure obtained in each of the steps for each of the models
compared is presented in Figure 6.2.

It may be seen from Figure 6.2 that when the number of samples avail-
able for training the algorithm decreases, the Distortion of the entire model
obviously increases. The most interesting feature of the figure is the way in
which the inclusion of less data in the analysis changes the Distortion. It
may be easily observed that WeVoS is the model with the lowest increase
in the Distortion, followed by the single SOM and by the other two fusion
algorithms.

Fig. 6.2 Distortion measured over four different fusion algorithms for a 1-D en-
semble of SOMs

104 6 A Novel Fusion Algorithm for Topology-Preserving Maps

This is proof that the use of ensemble meta-algorithms can lead to ad-
ditional stability when combined with rather unstable models such as the
SOM.

6.5.2 Comparison of Fusion Algorithms over the 2-D

SOM

The first experiment drew a comparison of the four map fusion algorithms
-Fusion by Distance, Fusion by Voronoi Polygons Similarity, Fusion by Or-
dered Similarity and WeVoS- when functioning in combination with the stan-
dard SOM algorithm. three of the most commonly used data sets from the
UCI repository (Asuncion and Newman, 2007) were used in this comparative
study: the Iris, the Wisconsin Breast Cancer and the Wine data sets.

6.5.2.1 Iris Data Set

As in other experiments Figure, 6.3 depicts differences in the map grid struc-
ture of the maps under comparison for the single SOM and the four different
fusion algorithms. The projections were obtained by calculating the first two
Principal Components of the Iris data set and projecting all the data over
those two axes. The ensemble used for this visual comparison is shown in
Chapter 5 (see Figure 5.4). It is an ensemble of 5 SOMs, all trained with
exactly the same parameters over the Iris data set using the bagging meta-
algorithm. All three measures have errors, so the closer the result is to 0.0
the better it may be considered.

Figures for the SOM (Figure 6.3a), Fusion by Distance (Figure 6.3b) and
Fusion by Similarity (Figure 6.3d) are the same as presented in Chapter 5
(Figure 5.4). Fusion by Ordered Similarity (Figure 6.3c) obtains a similar
result to Fusion by Distortion, which at first glance can hardly be considered
of interest for the purpose of data set visualization for the reasons that have
previously been explained. On the other hand, WeVoS (Figure 6.3e) can be
seen to generate a clear grid over the data set. Compared with the single
SOM, it is more clearly spread out over the data set, especially in the group
to the left of each image, which therefore means that the data is more sparsely
displayed in the output space of the 2D map.

More analytical results are included in Figure 6.4, which show a com-
parison between the four models previously compared using several of the
most widely used quality measures. The charts represent the evolution of the
quality measure with respect to the four models (Y-axis) and the increasing
number of maps used in the ensemble (X-axis).

Regarding quantization error (Figure 6.4a), all the ensemble methods ob-
tained higher errors than the single model, except for Fusion by Similarity.
This situation was expected, as none of the summarization algorithms were
intended to obtain a lower quantization error. On the contrary, one of the

6.5 Experiments and Results 105

(a) Single SOM

(b) Fusion by Euclidean Distance (c) Fusion by Voronoi Polygon Similarity

(d) Fusion by Ordered Similarity (e) WeVoS-SOM

Fig. 6.3 Visual comparison of the five models -four ensemble fusion models and
the single model- discussed in the book

ideas behind the algorithms is to reduce the potential overfitting of a single
map (Bishop, 1995; Tetko et al, 1995), whether for obtaining better classifi-
cation accuracy or for a better visual representation of the data set. Hence,
an overly low quantization.

106 6 A Novel Fusion Algorithm for Topology-Preserving Maps

(a) Mean Quantization Error (b) Topographic Error

(c) Distortion (d) Goodness of Adaptation

Fig. 6.4 The 4 quality measures obtained from the 4 different summarization
algorithms and the single SOM, trained on the Iris data set

The case of Fusion by Similarity is different, because neurons with a low
activation rate are removed from the final fused map which will have less
neurons than the other maps. Therefore, the presence of fewer neurons will
mean less error, as fewer neurons will contribute to the total error obtained
by the map. The mean is calculated from the data set input and not from the
neurons on the map, so the mean obtained with fewer neurons will be lower
than other maps with more neurons. Concentrating on measures directly
related to visualization, it can generally be observed that the ensemble fusion
methods, with the exception of WeVoS, perform worse than the single map.

The three previous fusion algorithms obtained a far higher error for To-
pographic Error (Figure 6.4b) than the single SOM. The WeVoS obtained a
similar error to the SOM, although in most cases it was a bit higher. It is
worth noting that this measure is one of the oldest and the most simplistic
measures for topographic ordering and it is not widely regarded as a very
trustful one.

6.5 Experiments and Results 107

The results of the following measure -Distortion (Figure 6.4c)- appear to
contradict the previous one. In this case, it can be observed that WeVoS
consistently presented a lower Distortion measure than the single SOM, which
in turn has a lower error than the other three fusion algorithms. In this case
the advantage of using the WeVoS algorithm appears to justify the added
effort of constructing an ensemble.

Finally, in the case of the Goodness of Adaptation (Figure 6.4d), which
as previously stated is a measure that combines the quantization and topo-
graphic characteristics of the SOM, both the WeVoS algorithm and the single
SOM obtained similar results, although once again the single SOM obtained
a slightly lower error. In conclusion, although WeVoS can obtain a map with
less Distortion than the single SOM, it records a higher data quantization
error than the SOM, as can be seen from Figure 6.4a. This is also the reason
why Fusion by Similarity obtained a value that was even lower than the single
SOM for Goodness of Adaptation.

As an overall observation, it is also worth pointing out that the WeVoS
obtains quite stable results, which vary slightly depending on the number of
maps; in contrast with the other three fusion algorithms, which yield high
variations in their results, as in many cases the error increases as the number
of maps increase. Obviously the single SOM obtains stable results, as they are
always measured from the training of a single map with the same parameters
only in slightly different sets of data inputs.

6.5.2.2 Additional Experiments

The same experiment was repeated for the Wine and Wisconsin Breast Can-
cer data sets, to check if the results presented for the Iris data set were
consistent and to investigate the degree to which it may be generalized to
other situations. The results are respectively presented in Figures 6.5 and 6.6.

Mean Quantization Error (Figure 6.5a) yielded a slightly different result.
Nevertheless, Fusion by Distance and by Ordered Similarity obtained far
higher errors than the others, but in this case Fusion by Similarity did not
clearly outperform the other fusion methods and only obtained similar results
when the size of the ensemble was 5 maps or more. Moreover, WeVoS and
the single SOM performed equally well and obtained very similar results.

Regarding Topographic Error (Figure 6.5b), the WeVoS algorithm clearly
outperformed the other models, as its Topographic Error was lower than that
of the single SOM and much lower than those of the other ensemble fusion
methods. On the other hand, the single SOM clearly outperformed the WeVoS
algorithm in the case of the Distortion measure, in the (Figure 6.5c) although
the former still performed much better than the other ensemble fusion meth-
ods. Once again in this case, unlike in the previous experiment, Goodness
of Adaptation (Figure 6.5d) performed better in the WeVoS algorithm than
in the SOM, and these two results were far better than those of Fusion by
Distance and Fusion by Ordered Similarity.

108 6 A Novel Fusion Algorithm for Topology-Preserving Maps

(a) Mean Quantization Error (b) Topographic Error

(c) Distortion (d) Goodness of Adaptation

Fig. 6.5 The 4 quality measures obtained from the 4 different summarization
algorithms and the single SOM, trained on the Wine data set

Moreover, Fusion by Similarity appears to obtain better results than any
other model, but as previously explained, the quantization characteristic of
this map means that it will always obtain better results, as it contains fewer
neurons to add to the error total. The results of Fusion by Similarity differ
when compared with the other algorithms as the Goodness of Adaptation
measure involves quantization.

Finally, the same experiment was repeated for the Wisconsin Breast Cancer
data set and the results are presented in Figure 6.6.

In this case, the results were also consistent with those presented previ-
ously. With the exception of quantization error, almost all the same remarks
regarding the previous experiments are also applicable to this one. In this
case, Quantization error (Figure 6.6a) obtained contradictory results to the
two previous experiments. The summarization methods, except for WeVoS,
obtained lower error measures than the single SOM. This is probably due to
the nature of this particular data set, which is far less sparse than the other
two; favouring algorithms that disperse their neurons throughout the input
space.

6.5 Experiments and Results 109

(a) Mean Quantization Error (b) Topographic Error

(c) Distortion (d) Goodness of Adaptation

Fig. 6.6 The 4 quality measures obtained from the 4 different summarization
algorithms and the single SOM, trained on the Wisconsin Breast Cancer data set

In this experiment, Topographic and Distortion errors (Figure 6.6b and
Figure 6.6c) were similar to the first one -using the Iris data set- . While To-
pographic Error is lower for the single SOM, WeVoS is the fusion method that
obtains the lowest Distortion. The other fusion algorithms obtain a higher
error than these two in both measures.

Finally, in relation to the Goodness of Adaptation (Figure 6.6d), once
again the single SOM and WeVoS performed in comparable ways, though
the single SOM obtained a slightly lower error. Fusion by Similarity had a
slightly higher error than WeVoS in this case, instead of obtaining a lower
error than the SOM, as it did in the first case.

6.5.2.3 Overall Remarks

As seen in the analytical results, it can be inferred that the usefulness
of the ensemble meta-algorithms, and WeVoS summarization in particular
depend to a certain degree on the “sparseness” of the data set under analy-
sis. A “sparse” data set means a data set with a high number of dimensions,

110 6 A Novel Fusion Algorithm for Topology-Preserving Maps

but a relative low number of entries. This “sparsity” is intuitively related to
learning complexity and to the extraction of correct patterns from that data.
Nevertheless, there are several consistent results that are worth noting.

The WeVoS-SOM algorithm did not obtain lower Quantization error than
the Single SOM in any of the experiments, because this model focuses on the
visualization of structure more than on the vector quantization capabilities of
the maps it obtains. The results for Topographic Error were not conclusive,
and were only clearly different in one experiment for the WeVoS-SOM and
for the Single SOM. This was to some extent predictable, as this measure is
widely considered a very simplistic one. Interestingly, the Distortion measure
is the most important measure in this study as it relates more than any
other to the visualization feature of topology-preserving maps. It represents
the topographical ordering of the maps and was clearly and consistently lower
for the WeVoS-SOM than for the single SOM in 2 out of 3 experiments.

The experiment in which that was not true involved the more complicated
Wine data set. This data set has the highest number of dimensions (13) and
relatively few entries (178) to analyse. Compared with the Iris (only 4 di-
mensions and 150 entries) and the Cancer (9 dimensions, but 683 entries),
the nature of the Wine data set makes its analysis and visualization a more
difficult task. On the other hand, Goodness of Adaptation -a measure combin-
ing quantization and topographic preservation measurement -yielded rather
complementary results to the Distortion measure. This measure was generally
quite high for the previously devised ensemble models (Fusion by Distance,
Fusion by Similarity) and their combination (Fusion by Ordered Similarity)
when compared with the WeVoS-SOM and the Single SOM, which obtained
similarly low values. In 2 of the 3 experiments -Iris and Cancer- , the single
SOM obtained better results, due mainly to the weaker quantization capa-
bilities of the WeVoS-SOM. But in the third experiment involving the most
complex data set in this study -Wine- , the WeVoS-SOM model obtained
consistently better results than the Single SOM.

The results in this case are due to a combination of the characteristic
low Distortion measure of the WeVoS-SOM and the low Quantization error
that it obtained in this particular experiment. As expected, the advantages
of using the ensemble meta-algorithm, and particularly the WeVoS-SOM,
became increasingly evident in this situation as the data set under study
became more complex.

Ordered Similarity, the other fusion method presented in this book, is not
really able to prove its worth, obtaining in almost every case higher errors
than WeVoS. This algorithm was conceived as an attempt to overcome the
problems of two previous fusion methods -Fusion by Distance and Fusion
by Similarity- ; its main problem appears to be that it is unable to outper-
form their best aspects. Despite obtaining better results for neighbourhood
preservation than Fusion by Similarity (see Topographic Error and Distor-
tion measures), it never outperformed Fusion by Distance in those same mea-
sures. Furthermore, it was unable to outperform the best aspects of Fusion by

6.5 Experiments and Results 111

Similarity -Quantization error- . Thus, the model obtained the worst results
for Goodness of Adaptation.

6.5.3 Comparison of Fusion Algorithms over the

ViSOM

A second series of tests were performed to check the degree to which a change
in the topology-preserving algorithm used for training the maps would impact
on the results generated by the different summarization models.

As expected, the results were very similar to those of the SOM, so, to
avoid undue repetition, the explanations are briefly outlined. Only Fusion by
Similarity obtained a lower Quantization Error (Figure6.7a) than the average
of the single map, which was predictable, as Fusion by Similarity contains
fewer units than the other maps. This means that the measure does not di-
rectly reflect a better behaviour than the others. Both Fusion by Distance

(a) Mean Quantization Error (b) Topographic Error

(c) Distortion (d) Mean Quantization Error

Fig. 6.7 The 4 quality measures obtained from the 4 different summarization
algorithms and the single ViSOM, trained on the Wine data set

112 6 A Novel Fusion Algorithm for Topology-Preserving Maps

and WeVoS obtained higher error values than the single map. The summa-
rization models aim to obtain a representation that holds true for the inner
structure of the data set as a whole, but less so for data representation in the
Euclidean space.

With regard to the topology-preservation measures -Topographic Error in
Figure 6.7b and Distortion in Figure 6.7c- , WeVoS-ViSOM clearly achieved
a considerably lower error than the other models. Regarding Topographic
Error (Figure 6.7b), the measures obtained were lower in most cases than
those obtained by the single map. The WeVoS model consistently obtained
the lowest error for the Distortion measure (Figure 6.7c).

The Goodness of Adaptation measure (Figure 6.7d) of the model that is
presented, which is a blend of the other quality measures, once again yielded
predictable results. When increasing the number of maps of the ensemble,
the adaptation quality of the map thus obtained diminished in the case of
Fusion by Distance, but remained stable for both Fusion by Similarity and
WeVoS. The only fusion method with a error lower than that achieved by
the single model was Fusion by Similarity, which is due to the very special
way in which it is computed. It should not be forgotten that this algorithm
yields maps with a lower number of units, thereby affecting the calculation
of measures related to the quantization error of the whole map.

In summary, it is worth noting that although the ViSOM is usually a
slightly more unstable algorithm than the SOM -as two different update forces
take part in the neuron updating process- the results for the four measures
are very close to those obtained by the regular SOM algorithm.

6.5.4 Comparison of Fusion Algorithms over the SIM

and Max-SIM

A final additional test was performed to verify whether using the different
models in conjunction with the SIM and Max-SIM variants of the topological-
preserving maps would yield similar results to those obtained with the pre-
viously tested map models.

In this case (Figure 6.8), all models use a circular shape for their adaptation
to the data set. The resultant 1-D networks are shown embedded in the 2-D
data set. This was expected, as this circular shape is the most characteristic
feature of the SIM algorithm. The single SIM (Figure 6.9a) adapts to the
data set correctly, but using a slightly too open map. The Fusion by Distance
(Figure 6.8b) suffers from an expected problem: several twists appear on its
structure. For classification problems that does not seem to be an important
issue, but when dealing with visual inspection this approach has the problem
of not always preserving strictly the topology of the network.

Concerning the Fusion by Similarity (Figure 6.8c) it can easily be seen
that, although the shape is correct, there are too many unnecessary units.
This is due to the fact that, with such a big data set, is impossible for a 1-D
network to cover the data space correctly, so very few units are related with

6.5 Experiments and Results 113

(a) Single SIM (b) Fusion by Euclidean Distance

(c) Fusion by Voronoi Polygon Similarity (d) Weighted Voting Superposition

Fig. 6.8 The single SIM and the three summarizations for the same 6-network
ensemble, trained over the circular data set, employing the SIM learning Algorithm

Voronoi polygons that overlap because they recognized mainly the same data
entries.

The WeVoS-SIM (Figure 6.8d) obtains an oval shape without any twist
or dead neurons, providing the best results. Results yielded by the applica-
tions of the WeVoS-SIM are very similar to those obtained by the WeVoS-
MaxSIM. This second experiment’s corresponding figures are not showed due
to the limit of space. Regarding the different summarization models, it can
be observed how single models, adapt to the data set correctly, but that their
results can be improved by the use of the ensemble meta-algorithms. Among
these summarization methods, the WeVoS obtains a simple network, without
major twists and obtains a result more adapted to the data set shape than
the single model.

In this case (Figure 6.8), all the models have a circular shape for their
adaptation to the data set. This was expected, as this circular shape is the
most characteristic feature of the SIM algorithm. The single SIM (Figure
6.9a) correctly adapts itself to the data set, but it uses a map that is too open.

114 6 A Novel Fusion Algorithm for Topology-Preserving Maps

Fusion by Distance (Figure 6.8b) suffers from a predictable problem: several
twists appear in its structure. This does not seem to be an important issue
for classification problems, but the problem of this approach when dealing
with visual inspection is that it does not always strictly preserve the topology
of the network.

With regard to the Fusion by Similarity (Figure 6.8c), it can easily be seen
that, although the shape is correct, there are too many unnecessary units.
This is due to the fact that it is impossible for a 1-D network to cover the
data space correctly with such a large data set, so very few units are related
with overlapping Voronoi polygons because they mainly recognize the same
data entries.

The best results were generated by the WeVoS-SIM (Figure 6.8d), which
obtained an oval shape without any twists or dead neurons. The results
yielded by the applications of the WeVoS-SIM are very similar to those ob-
tained by the WeVoS-MaxSIM. The figures on this second experiment are
not shown due to limitations on space. As for the different summarization
models, it can be seen how single models adapt to the data set correctly,
although their results could be improved by the use of the ensemble meta-
algorithms. Among these summarization methods, WeVoS obtains a simple
network, without major twists and obtains a result that is more adapted to
the data set shape than the single model.

The comparison of quality obtained by each of the four fusion algorithms,
calculated over the same ensemble of maps is shown for each measure in each
figure (Figure 6.9 and Figure 6.10). They represent variations in the mea-
sures when the number of maps included in the summary are increased from
1 to 15. The X-axis represents the number of maps, while the Y-axis repre-
sents the measure. As expected, according to the measures on topographic
ordering, WeVoS obtained better results than other models both for the SIM
and the Max-SIM. The exception to this is Fusion by Similarity, the results
of which were altered and were not directly comparable, as the number of
units they contained were different from the rest. The other three models
behave in a more consistent way, and the WeVoS model obtained the lowest
error rates. As already made clear, the meta-algorithm’s main purposes are
preservation of neighbourhood and topographic ordering. In confirmation of
these results,again with the exception of Fusion by Similarity, WeVoS ob-
tained better results than any other model for Goodness of Adaptation of
the map.

6.5.5 Comparison of Fusion Algorithms When

Combined with Boosting

The objective of the following experiment was to test the degree to which the
meta-algorithm used for the training of the ensemble would impact on the
final results of the fusion algorithms. Some results of similar experiments can
be also found in (Baruque et al, 2009).

6.5 Experiments and Results 115

(a) Mean Quantization Error (b) Topographic Error

(c) Distortion (d) Goodness of Adaptation

Fig. 6.9 The 4 quality measures obtained from the 4 different summarization
algorithms and the single SIM, trained on the artificial circular data set

Figure 6.11 shows the results of having applied a different ensemble algo-
rithm to the same data set with the same topology-preserving algorithm. Both
AdaBoost.M1 and AdaBoost.M2 were tested for the sake of comparison, tak-
ing into account that the first algorithm can also be applied to multi-class data
sets, although the second one is understood to be more suitable. All the SOMs
in the ensembles that are shown were trained using the same parameters.

Figure 6.11a displays the map obtained by a single SOM. It contains three
different classes, one of them -class one, represented by circles- clearly sep-
arated from the other two. Figure 6.11b represents the summary obtained
by the WeVoS algorithm over an ensemble trained with the bagging meta-
algorithm. In this case, a smooth map is obtained as all data set entries are
considered of equal importance in all iterations. It is worth noting that the
classes are displayed in a more compact way than in the single SOM. Class
1 (circles) appears further away from class 2 (squares) and classes 2 and
3 (triangles) display greater horizontal separation at the top of the image,
although this separation is not so clear to the middle-left of the figure.

Figure 6.11c represents the map obtained from an ensemble trained on Ad-
aBoost.M1 algorithm. As this algorithm concentrates on difficult to classify

116 6 A Novel Fusion Algorithm for Topology-Preserving Maps

(a) Mean Quantization Error (b) Topographic Error

(c) Distortion (d) Goodness of Adaptation

Fig. 6.10 The 4 quality measures obtained from the 4 different summarization
algorithms and the single Max-SIM, trained on the artificial circular data set

classes, only one neuron is used in the final map to represent class 1, which
is obviously the easiest of the three to distinguish. This may be considered a
desirable or not-so-desirable result, depending on the use of the final network.
In the case where the map is meant to be used for classification purposes,
it may well be considered more suitable than the single map, although the
contrary would be true, were it intended for visualization purposes.

Finally, the result of using AdaBoost.M2 is shown in Figure 6.11d. As this
algorithm uses a finer granularity for classification than the previous version,
it again represents class 1 in greater detail than the AdaBoost.M1 (Figure
6.11c), but it shows slightly more compact groups than the single algorithm
(Figure 6.11a) and a clearer separation of groups than the Bagging algorithm
(Figure 6.11b).

In Figure 6.12, the quality measures obtained from the ensemble algorithms
were measured from their corresponding WeVoS summarizations, while the
data on the single models were obtained directly from those models.

Figure 6.12a represents the classification error of the different variants
under study. Obviously, the maps obtained through ensemble algorithms

6.5 Experiments and Results 117

(a) Single SOM (b) WeVoS from an ensemble trained with
the Bagging algorithm

(c) WeVoS from an ensemble trained with
the AdaBoost.M1 algorithm

(d) WeVoS from an ensemble trained with
the AdaBoost.M2 algorithm

Fig. 6.11 Different maps obtained by training the ensemble of SOM maps, using
a different meta-algorithm -Bagging or AdaBoost- and finally applying the WeVoS
algorithm

outperformed the single model as they were designed to do so. Figure 6.12b
represents the topographic ordering of the final map. Again, ensemble mod-
els obtain lower errors than the single one, especially the two variants of
AdaBoost. Figure 6.12c represents a more detailed measure of the topolog-
ical ordering of the maps and shows a different situation than Figure 6.12b
for the AdaBoost algorithm. This points to an overfitting problem.

Finally, Figure 6.12d represents a measure that combines quantization and
Distortion errors. In this case, the results for the two variants of AdaBoost
were predictable, as the algorithm tries to concentrate not on the whole data
set, but on the samples within it that are the most difficult to classify, which
increases its distance with respect to other samples. The bagging algorithm
obtained a lower error, although a bit higher than the simple model. This
is due to the nature of the WeVoS algorithm, which pays more attention to
the topology preservation of the summary than to the quantization of the

118 6 A Novel Fusion Algorithm for Topology-Preserving Maps

(a) Classification Error (b) Topographic Error

(c) Distortion (d) Goodness of Adaptation

Fig. 6.12 Results of all 4 quality measures applied to the 3 different ensemble
training algorithms -single, Bagging, AdaBoost- and the single SOM, trained using
the Iris data set

model, the former being one of the most characteristic features of the family
of models under study.

6.5.6 Food Industry Application

Finally, the real-life case study presented in Appendix A is used, in this case,
to test and compare the models’ behaviour in a practical situation. In this
case the data set used is the Ham data set 2. Results regarding very similar
experiments can be found in (Baruque et al, 2008).

Regarding the visual inspection of the maps obtained in Figure 6.13, the
projection of the data set over its two first Principal Components -obtained
by a conventional PCA analysis- is shown alongside three maps obtained by
training over the same data set.

6.5 Experiments and Results 119

(a) Ham data set projection over the first 2
Principal Components

(b) Single SOM (c) Fusion by Euclidean Distance

(d) Superposition + Re-Labelling (e) Weighted Voting Superposition

Fig. 6.13 Visual comparison between a PCA analysis of the Ham data set, a single
SOM and the three fusion algorithms performed over the same ensemble of 5 SOM;
trained on the Ham data set

120 6 A Novel Fusion Algorithm for Topology-Preserving Maps

It may be observed from Figure6.13a, that the data set is clearly grouped.
Most of the unspoilt samples are situated in a compact group on the right of
the image (triangles), while tainted samples are represented in 2 main groups
to the left of the image (squares). The rancid/acidic samples (circles), even
if considered unspoilt at some point, are in the process of spoiling, so that is
their natural position. In Figure 6.13a they are clearly shown as separate from
the group of the normal samples and they lie within the group of definitively
tainted samples. The exception is a group of samples situated on the top left
of the image. These samples are considered to be from a high-quality ham.
Usually this kind of ham, having been cured for more time than the other
hams, has similar qualities to the rancid samples. In this case, that seems
to be the reason why it is separated from the main unspoilt group, but also
from the definitively acid/rancid samples.

This same organization can be observed, even after the samples were ro-
tated, in the maps representing the data set. In Figure 6.13b, which depicts
the map obtained by a single SOM, the unspoilt samples appear in a group,
separated from the rest, in this case, to the upper right side of the image.
There is also a group of a few unspoilt samples separated from the rest.
The separate group of spoilt samples appears in two different subgroups: the
acid/rancid samples grouped with the tainted ones, as in the PCA analysis.

As regards the differences between the models, it is easy to observe that
the Fusion by Distance 6.13c obtained a much more distorted map than the
other models. Superposition + Re-Labelling 6.13d obtained a clearer image,
similar to that of the SOM, although the tainted and acid/rancid groups that
appear from the middle-left to middle top of the image are more compact and
defined in this map. Finally, the WeVoS-SOM has a general structure that
is very similar to the other models. The difference in this case is that more
neurons recognize samples in the same groups, so the groups are clearer to
the viewer.

The next step in the study was the training of single maps and ensembles
of a different number of maps over the same subset of samples, in order to
compare their characteristics. This was done using a standard 5-fold cross-
validation technique in order to be able to use the whole data set for the
experiments. Each measure represented the average of the measures obtained
by each of the maps trained with 4-folds and tested over the other remaining
fold.

Figure 6.14 shows several measurements obtained from three models com-
pared in the study, all of which are error measurements in different areas of
representation of the data set. As may be observed, in the last three mea-
surements (Figure 6.14b to Figure 6.14d), not only did the ensemble sum-
marization methods (WeVoS) obtain a lower error, but they were also shown
to be more stable, and were not dependent on any specific execution of the
training. As expected, the only exception to this was the MQE, because
it is a measurement of how far or how close the samples are from the unit
that represents them, whereas the WeVoS meta-algorithm improves the visual

6.6 Conclusions 121

(a) Mean Quantization Error (b) Mean Quantization Error

(c) Distortion (d) Goodness of Adaptation

Fig. 6.14 The 4 quality measures obtained from the 3 different ensemble training
algorithms and the single SOM, trained on the Ham data set

representation of the data set. The remaining measurements denote the ac-
curacy of the representation in relation to the topological organization of the
map.

6.6 Conclusions

This chapter has presented a study of the capabilities of a proposed
method for the summarization of an ensemble of Self-Organizing Maps called
Weighted Voting superposition (WeVoS), which aims to obtain the most faith-
ful visual representation of a high-dimensional data set projected as a 2-D
map. The combination of these algorithms is referred to as the WeVoS-SOM.

A complete study of its performance under several widely known real data
sets, using a variety of analytical quality measures, has been performed and
analysed. The main feature of this algorithm is a reliable visual representation
of the data set by enhancing the topology preservation feature, which is one
of the most important aspects that the original model that is intended to

122 6 A Novel Fusion Algorithm for Topology-Preserving Maps

improve. This characteristic is reflected by the Distortion and, to an extent,
by the Goodness of Adaptation measures.

The WeVoS model proves its real usefulness when representing more com-
plex data sets rather than simpler ones, where the added complexity of cal-
culating an ensemble of maps is compensated by an improvement in the
visualization results. As an added advantage, the computational complexity
of the algorithm is lower than in other previously ensemble fusion algorithms.
While previous models performed their calculations in relation to the entire
extension of the maps to be fused, WeVoS performs calculations only on “ho-
mologous” neurons and their neighbourhoods in the respective maps of the
ensemble; resulting in a less computationally extensive algorithm.

A novel modification of previous algorithms to carry out summarization
of Self-Organizing Maps ensembles, called Fusion by Ordered Similarity, has
also been presented, analysed and compared with the previous models on
which it is based and with the WeVoS algorithm. Fusion by Ordered Simi-
larity obtained better results than the two models on which it is based with
respect to their worst respective facets, but it failed to outperform their best
respective facets.

6.7 Future Work

During the work for this book some modifications of the WeVoS model were
contemplated, although not implemented or tested. The concept behind those
modifications is to integrate the idea of Euclidean Distance or Voronoi Poly-
gon Similarity into the calculations of the Vote Weighting for the fused
neurons.

Future work includes implementing and testing these variations with more
topology-preserving models and with other interesting real data sets.

Chapter 7

Conclusions

7.1 Concluding Remarks

This thesis has explored the combination of ensemble learning in conjunc-
tion with unsupervised learning. It has also included some others, such as
the combination of statistical PCA with ensemble learning. Its main contri-
bution concerns topology-preserving maps and its principal objective is the
improvement of the visualization capabilities of both statistical and neuronal
methods for data visualization tasks.

The most significant contributions of the thesis are:

⊲ A method for the assessment and the identification of outliers, and to an
extent a method of dealing with their inclusion in a data set, through a
combination of the Bagging algorithm and statistical PCA.

⊲ An algorithm for obtaining the fusion of an ensemble of topology-
preserving maps that is capable of improving the visualization achieved
by the single map and other ensemble fusion algorithms.

Specifically, the first contribution is achieved by a repeated PCA analysis
over a re-sampled data set and the averaging and the comparison of the
components found for each of the re-sampled data sets. The tests shown in
Chapter 4 prove the validity of the concept, as the proposed model is able to
detect the presence of outliers in the data set by observing the spread of the
representation of the directions found by the different analyses. This situation
has been tested both for artificial and real data sets with good results in all
cases.

Its second contribution is the development of an algorithm for generical fu-
sion of topology preserving maps. In this work, a preliminary approach to this
fusion is performed by an algorithm called Superposition, which is described
in Chapter 5. Then, an improved version of that algorithm, called WeVoS,
which is the central contribution of the thesis, is presented in Chapter 6. This
algorithm calculates the quality measures in the literature for each neuron on
the maps composing the ensemble. Once this is done, an informed decision

B. Baruque & E. Corchado: Fusion Meth. for Unsupervised Learn. Ensem., SCI 322, pp. 123–125.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

124 7 Conclusions

may be taken on the most advisable values for the final neuronal weights to
be assigned to the neurons in the final map.

A complete study of the algorithm in combination with several topography
preserving algorithms has been presented. For this study, the following data
sets and ensemble combination algorithms were used in combination with the
proposed algorithm: SOM, ViSOM, SIM and Max-SIM.

Some of the conclusions that may be drawn from these tests are:

⊲ In general terms, the WeVoS algorithm works in a similar way for all
topography preserving models regardless of the model that is used as a
basis for the ensemble.

⊲ The way the ensemble is trained has a direct effect on the final resultant
map, so its selection is also a variable to take into account that depends on
the task the fused map is meant to accomplish. For example, the Boosting
algorithm obtains good results for classification tasks, but Bagging appears
to obtain clearer results for visualization.

⊲ The WeVoS algorithm proves its real usefulness when representing more
complex data set rather than simpler ones, when the added complexity
of calculating an ensemble of maps is compensated by an improvement in
their visualization.

This weight of vote scheme opens up a framework where many other varia-
tions and options can be included.

Depending on the task to perform either one or the other measure can
be used for calculation of the weights. For example, if the map is intended
to be used for data exploration, measures such as topographic error or es-
pecially, Distortion would be more appropriate. If it is intended to perform
data classification, the classification accuracy of each neuron might well be
more advisable. Finally, instead of using a single measure for calculating this
weight, a linear combination of more than one measure could be useful.

Although the use of ensemble algorithms has improved the stability of the
model, it was observed that the effect of including too many vote-weighting
measures adds a unstable component to the calculations that can degrade
the performance of the fused map. No experimentation was undertaken in
this thesis on that phenomenon, which is considered an interesting area for
future research.

7.2 Future Research Work

As mentioned in previous sections, the weighted voting scheme for fine tun-
ning or adapting the final weights of the neurons of the map creates a frame-
work where many variations could be included. For example, instead of using
a single measure for calculating this weight, a linear combination of more
than one could be useful.

As described here, the algorithm only takes the performance of the neurons
into account, and not their position in relation to the other neurons. Some

7.2 Future Research Work 125

of the most interesting variations of the algorithm proposed in this thesis
could be adaptations of the way in which other fusion algorithms work. It
is not difficult to include Euclidean distance or Voronoi polygon similarity
calculations into the weighting of the vote. This could serve to construct an
even more informative decision of the final inter-neuronal weight of the maps,
because this additional information would clarify whether the weighting of
one specific neuron deviates from the others in that position, the inclusion of
which would negatively affect the final fused neuron.

The inclusion of additional criteria in the weighting of the vote for the
fusion of neurons has still to be formalised and tested.

Other future work includes implementing and testing these variations with
more topology preserving models and with other interesting artificial and real
data sets.

Appendix A

The Cured Ham Data Set

A.1 Sensory Analysis and Instruments

Sensory analysis is a method used to describe the sensations that humans
perceive with their 5 senses when in contact with a product. Among the
5 senses, we can distinguish between physical -hearing, touch, sight- and
chemical -olfaction, taste- senses. The sense of smell, also called olfaction,
is the perception of odorant molecules either by direct inhalation or during
mastication -retro nasal route- . The sense of taste consists of the perception
of savours perceived by the tongue during tasting. Commonly, savours are
classified into 5 categories: salt, sour, bitter, sweet, umami.

There exist 2 types of tests in sensory analysis:

⊲ hedonic tests (I like it / I don’t like it) which consist of consumer tests
⊲ analytical tests (descriptive or discriminative) that are conducted by a

trained sensory panel

For analytical tests, Electronic nose and tongue analyzers can also be used.
These instruments have the specificity to analyze smell/taste in the same way
as human nose and tongue: instead of separating and identifying the various
chemical compounds, they measure a global smell/taste.

A.2 E-Nose Odour Recognition

Alpha MOS (AlfaMOS , 2008) has developed solutions linked to chemical
senses. FOX Electronic Nose is a smell and Volatile Organic Compounds
(VOC) analyzer. It is based on Metal Oxide Sensor detection system.

The odour recognition process may be summarized as:

1. The sample is heated for a given time to generate volatile compounds in
the head space of the vial containing the sample.

2. The gas phase is transferred to a detection device which reacts to the
presence of molecules.

128 A The Cured Ham Data Set

3. The differences in sensor reactions are recorded using statistical calculation
techniques to classify the odours.

This process, compared with the human sense of smell is presented in Figure
A.1.

Fig. A.1 Human odour recognition process compared with E-Nose odour recogni-
tion process

Figure extracted from (AlfaMOS , 2008)

Fig. A.2 E-Nose αFOX 4000

Figure extracted from (AlfaMOS , 2008)

A.3 The Cured Ham Data Sets 129

The readings taken by each sensor are separated and stored in a simple
database for further study. In this study the analyses are performed using an
E-Nose αFOX 4000 (Alpha M.O.S., Toulouse, France) with a sensor array of
18 metal oxide sensors. The E-Nose takes readings every 0.5 seconds, and has
an acquisition time of 120 seconds and an acquisition delay of 600 seconds.

After having obtained the readings for each sample of cut ham taken from
the 18-sensor array in the electronic nose, the highest reading from each
sensor is stored in a database along with the corresponding results of the
sensory evaluation by the professional human testers. Figure A.2 depicts this
machine.

A.3 The Cured Ham Data Sets

A.3.1 Ham Data Set 1

The data set consists of measures obtained from several brands of seven dif-
ferent types of Spanish ham, available in the Spanish market. The types of
ham selected for this objective -with their codification in this experiment be-
tween brackets- are the following: the fat of hams cured for the same period of
time (JCTC), cured ham of superior quality (JCCS), ham cured under ‘Tra-
ditional Speciality Guaranteed’ or TSG (JCTSG), cured ham with protected
‘Designation of Origin’ (JCDO) from Teruel, a region in Spain (JCTE), ham
that is cured over seven months (JC7C), cured ham with 2 differentiated
defects, off-flavours or taints (JCCA and JCBO) and standard cured ham
(JCNO). The commercial brands from which the samples were extracted are
not taken into account in this study.

Moreover, a simpler version of the labelling of those samples is considered.
in which the labels correspond to the level of quality that is detected. The
classes are ‘unspoilt’, ‘rancid/acid’ and ‘tainted’. The first corresponds to
eateable samples ranging from high quality to standard ones; the second
corresponds to samples that are detected with an acid/rancid smell but are
still edible, and the third one corresponds to non-edible samples. Samples
labelled as JCCA and JCBO in the first label, correspond to ‘tainted’ samples.
The ‘unspoilt’ and ‘rancid/acid’ samples can correspond to any of the other
procedence groups.

Several samples were cut from different parts of each type of ham and
measurements were taken from each of these samples, using the E-Nose αFOX
4000 (Alfa MOS, Toulouse, France) with a sensor array of 18 metal oxide
sensors. The final data set consisted of a total of 176 samples of ham, each
composed of 18 different variables.

A.3.2 Ham Data Set 2

A second data set obtained from the same source was also used, but this time
with much simpler labelling. In this case the sensor’s data was obtained by

130 A The Cured Ham Data Set

exactly the same process, but the labels were assigned by professional human
testers according to their own perceptions; rather than by its procedence from
an analysed sample.

Professional classifications are usually far more detailed, but were re-
stricted in this initial study to three possible values: ‘unspoilt’, ‘rancid/acid’
and ‘tainted’. Thus, our final data set consisted of readings taken from a total
of 154 samples of ham, on which the readings were composed of 18 different
variables measured over three possible categories.

A.4 Analysis of the Data Set

The main problem of any automated food taster is its subjectivity, which is
also true for almost all human activities. No uniform, consensual and objec-
tive method exists of representing the reaction of a person to a stimulus. In
the case of human tasters, their activity is expected to be as objective as
possible, as their sole interest is to assess the quality of the food.

This assessment can influence a range of cases from those involving public
health and spoilt or inedible food, to those that are less severe, but that are
also of commercial importance, which influences the final price of the product.
In the case of non-edible products, there are of course many more detailed
standards with which products must comply before they are exposed to hu-
man consumption. Quality assessments of certain types of food are usually
made by human expert tasters, which influence product price and prestige.

The idea behind the analysis of this data set is precisely to obtain a method
to assess the way in which human experts determine, in the most objective way
possible, the quality of a cured ham sample. As this analysis is directly related
to how the human brain processes information from the senses, the neural net-
work approach appears to be a very appropriate and interesting one.

Human expert tasters usually undergo a certain degree of training to become
a recognized taster and possess more or less detailed knowledge of the chemical
properties of the food. Nevertheless, the idea of presenting chemical analyses
of the food samples does not appear sensible, as in this case it is rather coun-
terintuitive and differs from the way in which the electronic nose functions -i.e.
obtaining a global odour measure instead of analyzing chemical compounds- .

Therefore, in this approach, the analysis was performed by the E-Nose but
the results were displayed for the human expert in a simple image that groups
similar samples together, so that the expert can gain a straightforward idea
of where a specific sample is situated in relation to its quality.

The human brain functions by acquiring the data through the senses and
storing the interpreted sensations in similar brain regions so the become
clustered and recognizable. In this way, it may be said that the AI process
emulates the way in which the human brain functions in relation to sen-
sory analysis. The aim is to present this clustering as relationships between
stimulus in a simple image, so that the information is accessible and easily
understood in the most immediate way possible.

Appendix B

Table of Experiments

This appendix summarizes all the experiments presented in the thesis, indi-
cating in which Figure or Table the results of a determined experiment are
showed.

B.1 Chapter 4

Data set Samples / Outliers Algorithm Figures Tables

Artificial 100 / no Re-PCA 4.2a

100 / yes Re-PCA 4.2b, 4.3

50 / no Re-PCA 4.1

50 / yes Re-PCA 4.2

30 / no Re-PCA 4.4a 4.3

30 / yes Re-PCA 4.4b, 4.5 4.4

BUPA Liver Disorder 200 / no Re-PCA 4.6a

200 / yes Re-PCA 4.6b

Spanish Ham 176 / no PCA 4.7 4.5

176 / yes PCA 4.8 4.6

80 / yes Re-PCA 4.9 4.7

120 /yes Re-PCA 4.10 4.8

132 B Table of Experiments

B.2 Chapter 5

Data set Summarization Map Figures Tables

Radial
(artificial)

Bagging +
Ensemble

SOM 5.3a 5.1, 5.2

Max-SIM 5.3b 5.1, 5.2

Iris single SOM 5.4a, 5.5a, 5.7a 5.3, 5.4, 5.5,
5.7, 5.9

ViSOM 5.5, 5.7, 5.9

Bagging +
Ensemble

SOM 5.6a 5.5, 5.7, 5.9

ViSOM 5.5, 5.7, 5.9

Bagging +
Fus. Euc.
Distance

SOM 5.4b, 5.5b, 5.7b 5.3, 5.4, 5.5,
5.7, 5.9

ViSOM 5.5, 5.7, 5.9

Bagging +
Fus. Similarity

SOM 5.4c 5.3, 5.4, 5.5,
5.7, 5.9

ViSOM 5.5, 5.7, 5.9

Bagging +
Superposition

SOM 5.6b, 5.7c 5.5, 5.7, 5.9

ViSOM 5.5, 5.7, 5.9

Bagging +
Superposition
+ Re-Labelling

SOM 5.7d 5.5, 5.7, 5.9

ViSOM 5.5, 5.7, 5.9

AdaBoost +
single

SOM 5.8

ViSOM 5.9a 5.8

AdaBoost +
Fus. Euc.
Distance

SOM 5.8

ViSOM 5.9b 5.8

AdaBoost +
Superposition

SOM 5.8

ViSOM 5.9c 5.8

B.2 Chapter 5 133

Data set Summarization Map Figures Tables

AdaBoost +
Superposition
+ Re-Labelling

SOM 5.8

ViSOM 5.9d 5.8

Cancer Bagging +
Superposition
+ Re-Labelling

SOM 5.8a 5.6, 5.10

ViSOM 5.8b 5.6, 5.10

Spanish
Ham

Bagging +
single

SOM 5.11

ViSOM 5.10a 5.11

Bagging +
ensemble

SOM 5.11

ViSOM 5.11

Bagging +
Fus. Euc.
Distance

SOM 5.11

ViSOM 5.10b 5.11

Bagging +
Fus. Similarity

SOM 5.11

ViSOM 5.11

Bagging +
Superposition

SOM 5.11

ViSOM 5.10c 5.11

Bagging +
Superposition
+ Re-Labelling

SOM

ViSOM 5.10d, 5.11

AdaBoost +
single

SOM 5.12

ViSOM 5.12

AdaBoost +
ensemble

SOM 5.12

ViSOM 5.12

134 B Table of Experiments

Data set Summarization Map Figures Tables

AdaBoost +
Fus. Euc.
Distance

SOM 5.12

ViSOM 5.12

AdaBoost +
Fus. Similarity

SOM 5.12

ViSOM 5.12

AdaBoost +
Superposition

SOM 5.12

ViSOM 5.12

AdaBoost +
Superposition
+ Re-Labelling

SOM 5.12

ViSOM 5.12

B.3 Chapter 6

Data set Summarization Map Figures

Horse shoe
(artificial)

single SOM 6.2

Bagging + Fus.
Distance

SOM 6.2

Bagging + Fus.
Similarity

SOM 6.2

Bagging + Fus. Ord.
Similarity

SOM 6.2

Bagging + WeVoS SOM 6.2

Radial
(artificial)

single SIM 6.8a, 6.9

Max-SIM 6.10

Bagging + Fus.
Distance

SIM 6.8b, 6.9

Max-SIM 6.10

Bagging + Fus.
Similarity

SIM 6.8c, 6.9

B.3 Chapter 6 135

Data set Summarization Map Figures

Max-SIM 6.10

Bagging + WeVoS SIM 6.8d, 6.9

Max-SIM 6.10

Iris single SOM
6.3a, 6.4,
6.11a, 6.12

Bagging + Fus.
Distance

SOM 6.3b, 6.4

Bagging + Fus.
Similarity

SOM 6.3c, 6.4

Bagging + Fus. Ord.
Similarity

SOM 6.3d, 6.4

Bagging + WeVoS SOM
6.3e, 6.4,
6.11b, 6.12

AdaBoost.M1 +
WeVoS

SOM 6.11c, 6.12

AdaBoost.M2 +
WeVoS

SOM 6.11d, 6.12

Wisconsin
Breast Cancer

single SOM 6.6

Bagging + Fus.
Distance

SOM 6.6

Bagging + Fus.
Similarity

SOM 6.6

Bagging + Fus. Ord.
Similarity

SOM 6.6

Bagging + WeVoS SOM 6.6

Wine single SOM 6.5

ViSOM 6.7

Bagging + Fus.
Distance

SOM 6.5

ViSOM 6.7

Bagging + Fus.
Similarity

SOM 6.5

ViSOM 6.7

136 B Table of Experiments

Data set Summarization Map Figures

Bagging + Fus. Ord.
Similarity

SOM 6.5

ViSOM 6.7

Bagging + WeVoS SOM 6.5

ViSOM 6.7

Spanish Ham PCA 6.13a

single SOM 6.13b, 6.14

Bagging + Fus.
Distance

SOM 6.13c, 6.14

Bagging + Fus.
Similarity

SOM 6.14

Bagging + Fus. Ord.
Similarity

SOM 6.14

Bagging +
Superposition +
Re-labelling

SOM 6.13d

Bagging + WeVoS SOM 6.13e, 6.14

References

Alpha mos - smell, taste & chemical profiling (2008)
Ali, K.: A comparison of methods for learning and combining evidence from multiple

models. technical report uci tr 95-47. Tech. rep., University of California, Irvine,
Dept. of Information and Computer Sciences (1995)

Asuncion, A., Newman, D.J.: Uci machine learning repository (2007)
Bahler, D., Navarro, L.: Methods for combining heterogeneous sets of classifiers. In:

17th Natl. Conf. on Artificial Intelligence (AAAI), Workshop on New Research
Problems for Machine Learning (2000)

Baruque, B., Gabrys, B., Corchado, E., Herrero, I., Rovira, J., González, J.: Outlier
overcoming using re-sampling techniques. In: Diaz, F., Corchado, J.M., Fdez-
Riverola, F. (eds.) 5th International Workshop on Practical Applications of
Agents and Multiagent Systems (IWPAAMS 2006), Universidad de Valladolid.
Servicio de imprenta, Segovia, Spain (2006)

Baruque, B., Corchado, E., Yin, H.: Visom ensembles for visualization and classi-
fication. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN
2007. LNCS, vol. 4507, pp. 235–243. Springer, Heidelberg (2007)

Baruque, B., Corchado, E., Rovira, J., Gonzalez, J.: Application of topology pre-
serving ensembles for sensory assessment in the food industry. In: Fyfe, C.,
Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 491–497.
Springer, Heidelberg (2008)

Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: Ensemble methods for boost-
ing visualization models. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado,
J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 165–173. Springer, Heidelberg
(2009)

Bauer, H., Pawelzik, K.: Quantifying the neighborhood preservation of self-
organizing feature maps (1992)

Bennett, K.P., Demiriz, A., Maclin, R.: Exploiting unlabeled data in ensemble meth-
ods. In: Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 289–296 (2002)

Bishop, C.: Neural Networks for Pattern Recognition, Oxford (1995)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression

trees. WADSWORTH ADV. BOOK PROG (1984)
Britannica, E.: Human nervous system (2009)

138 References

Ramon y Cajal, S.: Conexión general de los elementos nerviosos. La Medicina Prác-
tica (1889)

Carus, P.: The Soul of Man (1905)
Charles, D., Fyfe, C.: Modelling multiple cause structure using rectification con-

straints. Computation in Neural Systems 9, 167–182 (1998)
Cho, S.B.: Ensemble of structure-adaptive self-organizing maps for high perfor-

mance classification. Information Sciences 123(1-2), 103–114 (2000)
Corchado, E., Fyfe, C.: Maximum likelihood topology preserving algorithms (2002a)
Corchado, E., Fyfe, C.: The scale invariant map and maximum likelihood hebbian

learning (2002b)
Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood heb-

bian learning for exploratory projection pursuit. Data Mining and Knowledge
Discovery 8(3), 203–225 (2004)

Corchado, E., Baruque, B., Yin, H.: Boosting unsupervised competitive learning en-
sembles. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN
2007. LNCS, vol. 4668, pp. 339–348. Springer, Heidelberg (2007)

Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society Series B (Methodolog-
ical) 39(1), 1–38 (1977)

Diaconis, P., Freedman, D.: Asymptotics of graphical projections. The Annals of
Statistics 12(3), 793–815 (1984)

Dietterich, T.G.: Ensemble methods in machine learning. In: MCS 2000: Proceed-
ings of the First International Workshop on Multiple Classifier Systems, pp. 1–15.
Springer, London (2000)

Dixon, W.J.: Analysis of extreme values. The Annals of Mathematical Statis-
tics 21(4), 488–506 (1950)

Frawley, W.J., Piatetsky-shapiro, G., Matheus, C.J.: Knowledge discovery in
databases: an overview. AI Magazine 13(3) (1992)

Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Inter-
national Conference on Machine Learning, pp. 148–156 (1996)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55,
119–139 (1997)

Friedman, J.H.: Exploratory projection pursuit. Journal of the American Statistical
Association 82(397), 249–266 (1987)

Friedman, J.H., Tukey, J.: A projection pursuit algorithm for exploratory data
analysis. IEEE Transactions on Computers 23, 881–889 (1974)

Fumera, G., Roli, F.: Error rejection in linearly combined multiple classifiers. In:
Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 329–338. Springer,
Heidelberg (2001)

Fyfe, C.: Pca properties of interneurons. In: Proceedings of International Conference
on Artificial on Artificial Neural Networks - ICANN 1993, pp. 183–188 (1993)

Fyfe, C.: A scale-invariant feature map. Network: Computation in Neural Systems 7,
269–275 (1996)

Gabrys, B., Baruque, B., Corchado, E.: Outlier resistant pca ensembles. LNCS
(LNAI), pp. 1434–1442. Springer, Berlin (2006)

Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Computation 4 (1992)

References 139

Georgakis, A., Li, H., Gordan, M.: An ensemble of som networks for document
organization and retrieval. In: International Conference on Adaptive Knowledge
Representation and Reasoning (AKRR 2005) (2005)

Giacinto, G., Roli, F.: Design of effective neural network ensembles for image clas-
sification purposes. Image and Vision Computing 19(9-10), 699–707 (2001)

Greene, D., Tsymbal, A., Bolshakova, N., Cunningham, P.: Ensemble clustering in
medical diagnostics. In: Proceedings of 17th IEEE Symposium on Computer-
Based Medical Systems CBMS 2004 (2004)

Hashem, S.: Optimal linear combinations of neural networks. PhD thesis, Purdue
University (1997)

Haykin, S.: Neural networks. Prentice Hall Upper Saddle River, NJ (1999)
Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Lawrence

Erlbaum Associates (1949)
Heskes, T.: Balancing between bagging and bumping. In: Mozer, M.C., Jordan, M.I.,

Petsche, T. (eds.) Advances in Neural Information Processing Systems, Denver,
Colorado, USA, pp. 466–472 (1997)

Hotelling, H.: Analysis of a complex of statistical variables into principal compo-
nents. Journal of Education Psychology 24, 417–444 (1933)

Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural Computation 3, 79–87 (1991)

Jiang, Y., Zhou, Z.H.: Som ensemble-based image segmentation. Neural Process
Lett. 20(3), 171–178 (2004)

Jimenez, D.: Dynamically weighted ensemble neural networks for classification. In:
The 1998 IEEE International Joint Conference on, Neural Networks Proceedings,
1998. IEEE World Congress on Computational Intelligence, vol. 1, pp. 753–756
(1998)

Jordan, M.J., Jacobs, R.A.: Hierarchical mixtures of experts and the em algorithm.
Neural Computation 6(2), 181–214 (1994)

Kaski, S., Lagus, K.: Comparing self-organizing maps. In: Malsburg, Cvd., Seelen,
Wv., Vorbruggen, J.C., Sendhoff, B. (eds.) Lecture Notes in Computer Science,
Bochum, Germany, pp. 809–814. Springer, Berlin (1996)

Kiviluoto, K.: Topology preservation in self-organizing maps. In: IEEE International
Conference on Neural Networks (ICNN 1996), vol. 1, pp. 294–299 (1996)

Kohonen, T.: An introduction to neural computing. Neural Networks 1(1), 3–16
(1988)

Kohonen, T.: Self-Organizing Maps, vol. 30. Springer, Berlin (1995)
Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: A principle

of neural associative memory. Neuroscience 2(6), 1065–1076 (1977)
Kosko, B.: Constructing an associative memory. BYTE 12(10), 137–144 (1987) issn

= 0360-5280
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-

Interscience, Hoboken (2004)
Kuncheva, L.I., Skurichina, M., Duin, R.P.W.: An experimental study on diversity

for bagging and boosting with linear classifiers. Information Fusion 3(4), 245–258
(2002)

Lampinen, J., Oja, E.: Clustering properties of hierarchical self-organizing maps.
Journal of Mathematical Imaging and Vision 2, 261–272 (1992)

Luttrell, S.P.: Hierarchical self-organizing networks. In: Proceedings of the ICANN
1989 (1989)

140 References

Maqsood, I., Khan, M.R., Abraham, A.: An ensemble of neural networks for weather
forecasting. Neural Computing and Applications 13(2), 112–122 (2004)

Martinez, T.M., Schulten, K.J.: A neural-gas network learns topologies. Artificial
Neural Networks, 397–402 (1991)

Miskin, J.W.: Ensemble learning for independent component analysis. Tech. rep.,
in Advances in Independent Component Analysis (2000)

Oja, E.: Simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology 15(3), 267–273 (1982)

Oja, E.: Neural networks, principal components, and subspaces. Int. J. Neural
Syst. 1(1), 61–68 (1989)

Oja, E.: Principal components, minor components, and linear neural networks. Neu-
ral Networks 5(6), 927–935 (1992)

Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine 2(6), 559–572 (1901)

Perrone, M.: Improving regression estimation: Averaging methods for variance re-
duction with extensions to general convex measure optimization. PhD thesis,
Brown University, Institute for Brain and Neural Systems (1993)

Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hy-
brid neural networks, pp. 126–142. Chapman and Hall, Boca Raton (1993)

Petrakieva, L., Fyfe, C.: Bagging and bumping self organising maps. Computing
and Information Systems Journal (2003)

Polani, D.: Measures for the organization of self-organizing maps. In: Seiffert, U.,
Jain, L.C. (eds.) Self-organizing Neural Networks: Recent Advances and Appli-
cations (Studies in Fuzziness and Soft Computing), vol. 16, pp. 13–44. Physica-
Verlag, Heidelberg (2003)

Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine 6(3), 21–45 (2006)

Pozlbauer, G.: Survey and comparison of quality measures for self-organizing maps.
In: Rauber, J.P., Polzlbauer, G., Andreas (eds.) Fifth Workshop on Data Analysis
(WDA 2004), pp. 67–82. Elfa Academic Press, London (2004)

Ruiz, M.: Diagram of a typical myelinated vertebrate motoneuron (2007),
http://en.wikipedia.org/wiki/Neuron

Rumelhart, D., Zipser, D.: Feature discovery by competitive learning. Cognitive
Science 9, 75–112 (1985)

Ruta, D., Gabrys, B.: An overview of classifier fusion methods. Computing and
Information Systems 7(1), 1–10 (2000)

Ruta, D., Gabrys, B.: A theoretical analysis of the limits of majority voting errors
for multiple classifier systems. Pattern Analysis and Applications 5(4), 333–350
(2002)

Saavedra, C., Salas, R., Moreno, S., Allende, H.: Fusion of self organizing maps. In:
Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS,
vol. 4507, pp. 227–234. Springer, Heidelberg (2007)

Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227
(1990)

Sharkey, A., Sharkey, N.: Combining diverse neural nets. Knowledge Engineering
Review 12(3), 1–17 (1997)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
Cambridge, Massachusetts (2005)

http://en.wikipedia.org/wiki/Neuron

References 141

Tetko, I.V., Livingstone, D.J., Luikov, A.I.: Comparison of overfitting and over-
training. Journal of Chemical Information and Computer Sciences 35(5), 826–833
(1995)

Tibshirani, R., Knight, K.: Model search by bootstrap "bumping". Journal of Com-
putational and Graphical Statistics 8(4), 671–686 (1999), published by: American
Statistical Association, Institute of Mathematical Statistics, and Interface Foun-
dation of America (1999)

Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers.
Connection Science 8(3-4), 385–403 (1996)

Vesanto, J., Sulkava, M., Hollmen, J.: On the decomposition of the self-organizing
map distortion measure. In: Proceedings of the Workshop on Self-Organizing
Maps (WSOM 2003), pp. 11–16 (2003)

Yin, H.: Data visualisation and manifold mapping using the visom. Neural Net-
works 15(8-9), 1005–1016 (2002a)

Yin, H.: Visom - a novel method for multivariate data projection and structure
visualization. IEEE Transactions on Neural Networks 13(1), 237–243 (2002b)

	Introduction
	Background
	Contributions
	Organization

	Modelling Human Learning: Artificial Neural Networks
	The Human Learning Process
	The Biological Neuron

	Artificial Neural Networks
	Learning Algorithms in Neural Networks
	Reinforcement Learning
	Supervised Learning
	Unsupervised Learning

	Hebbian Learning
	Hebbian Learning and Statistics
	Principal Component Analysis
	Oja�s Models
	Negative Feedback Network

	Competitive Learning
	The Self-Organizing Map
	The Visually Induced SOM
	The Scale Invariant Map
	Assessing Quality of Training of Topology Preserving Models

	Conclusions

	The Committee of Experts Approach: Ensemble Learning
	The Ensemble Meta-algorithm
	The Classification Problem
	Ensemble General Concepts

	Commonly Used Ensemble Models
	Bagging
	Boosting
	Mixture of Experts

	Combining Ensemble Results
	Selection
	Voting Combinations
	Linear Combinations

	Ensembles of Artificial Neural Networks
	Supervised ANNs
	Unsupervised ANNs

	Conclusions

	Use of Ensembles for Outlier Overcoming
	Introduction
	The Outlier Problem
	The Re-sampling PCA Algorithm
	Ensemble Construction
	Results Combination

	Experiments and Results
	Artificial Data Set
	Real Life Data Set: Liver Disorder Data Set
	Real Life Data Set: Food Industry Application
	ANNs Approach

	Conclusions

	Ensembles of Topology Preserving Maps
	Introduction
	Problem Statement
	Topology-Preserving Map Combination Models
	Previously Proposed Models for SOM Ensemble Summarization
	Novel Proposed Model: Superposition
	Discussion of the Fusion Models

	Experiments and Results
	Comparison between Single Model and Ensemble as Classifiers
	Comparison between Fusion by Distance and Fusion by Similarity Algorithms
	Comparison between Fusion by Distance and Superposition Algorithms
	Comparison between Bagging and Boosting as Ensemble Training Algorithm
	Food Industry Application

	Conclusions

	A Novel Fusion Algorithm for Topology-Preserving Maps
	Introduction
	Fusion by Ordered Similarity
	The Weighted Voting Superposition Algorithm
	WeVoS Algorithm
	Discussion

	Application of WeVoS to Different Models
	Topology-Preserving Models
	Ensemble Models
	Quality Measures

	Experiments and Results
	Comparison of Fusion Algorithms over a 1-D SOM
	Comparison of Fusion Algorithms over the 2-D SOM
	Comparison of Fusion Algorithms over the ViSOM
	Comparison of Fusion Algorithms over the SIM and Max-SIM
	Comparison of Fusion Algorithms When Combined with Boosting
	Food Industry Application

	Conclusions
	Future Work

	Conclusions
	Concluding Remarks
	Future Research Work

	Cover
	Front Matter
	Introduction
	Background
	Contributions
	Organization

	Modelling Human Learning: Artificial Neural Networks
	The Human Learning Process
	The Biological Neuron

	Artificial Neural Networks
	Reinforcement Learning
	Learning Algorithms in Neural Networks
	Supervised Learning
	Unsupervised Learning

	Hebbian Learning
	Hebbian Learning and Statistics
	Principal Component Analysis
	Oja�s Models
	Negative Feedback Network

	Competitive Learning
	The Self-Organizing Map
	The Visually Induced SOM
	The Scale Invariant Map
	Assessing Quality of Training of Topology Preserving Models

	Conclusions

	The Committee of Experts Approach: Ensemble Learning
	The Ensemble Meta-algorithm
	The Classification Problem
	Ensemble General Concepts

	Commonly Used Ensemble Models
	Bagging
	Boosting
	Mixture of Experts

	Combining Ensemble Results
	Selection
	Voting Combinations
	Linear Combinations

	Ensembles of Artificial Neural Networks
	Supervised ANNs
	Unsupervised ANNs

	Conclusions

	Use of Ensembles for Outlier Overcoming
	The Outlier Problem
	Introduction
	The Re-sampling PCA Algorithm
	Ensemble Construction
	Results Combination

	Experiments and Results
	Artificial Data Set
	Real Life Data Set: Liver Disorder Data Set
	Real Life Data Set: Food Industry Application
	ANNs Approach

	Conclusions

	Ensembles of Topology Preserving Maps
	Problem Statement
	Introduction
	Topology-Preserving Map Combination Models
	Previously Proposed Models for SOM Ensemble Summarization
	Novel Proposed Model: Superposition
	Discussion of the Fusion Models

	Experiments and Results
	Comparison between Single Model and Ensemble as Classifiers
	Comparison between Fusion by Distance and Fusion by Similarity Algorithms
	Comparison between Fusion by Distance and Superposition Algorithms
	Comparison between Bagging and Boosting as Ensemble Training Algorithm
	Food Industry Application

	Conclusions

	A Novel Fusion Algorithm for Topology-Preserving Maps
	Fusion by Ordered Similarity
	Introduction
	The Weighted Voting Superposition Algorithm
	WeVoS Algorithm
	Discussion

	Application of WeVoS to Different Models
	Topology-Preserving Models
	Ensemble Models
	Quality Measures

	Experiments and Results
	Comparison of Fusion Algorithms over a 1-D SOM
	Comparison of Fusion Algorithms over the 2-D SOM
	Comparison of Fusion Algorithms over the ViSOM
	Comparison of Fusion Algorithms over the SIM and Max-SIM
	Comparison of Fusion Algorithms When Combined with Boosting
	Food Industry Application

	Conclusions
	Future Work

	Conclusions
	Concluding Remarks
	Future Research Work

	Back Matter

