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Section I

Design of Learning Environments  

and Curricula



Chapter 1

Introduction

Celia Hoyles and Jean-Baptiste Lagrange

Abstract This chapter reports on the aims, organisation and outcomes of the 17th 

ICMI Study and in its final section provides an executive summary of the book as a 

whole.

1.1 Introduction

This book is the outcome of a decision by the ICMI Executive Committee (EC) in 

July 2002 to launch an ICMI Study, the 17th, to be called “Technology revisited”. 

The title reflected the fact that the very first ICMI Study, held in Strasbourg in 

1985, had focused on the influence of computers and informatics on mathematics 

and its teaching (Churchhouse 1986; Cornu and Ralston 1992). ICMI considered 

that the time was ripe to return to this theme. Part of its remit for ICMI Study 17 

was to look at what had been achieved over the previous decades in terms of 

theory development as well as what had been the actual impact of technology on 

the teaching and learning of mathematics.

Consideration of the first ICMI Study provided a fruitful starting point for the 

International Programme Committee (IPC) for ICMI Study 17. Even a cursory 

glance revealed that this earlier Study had representatives from a restricted set of 

countries (Europe and North America). Additionally the focus of the papers was 

almost exclusively on using computers to model and explore rather advanced 

mathematical ideas, for example using “symbolic manipulators” in courses of 

calculus or linear algebra in order to allow students to focus on conceptual rather 

than procedural or technical issues. Many authors identified the potential of the 

systems they described, but several noted that there was little evidence of any 
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2 C. Hoyles and J.-B. Lagrange

significant impact on the mathematics curriculum of secondary schools and 

universities (primary-level mathematics was not considered at all).

The IPC for the new Study wanted to broaden the focus of concern and in particular 

were urged by ICMI explicitly to consider the situation of developing countries: how 

technology could be used for the benefit of these countries rather than serve as yet 

another source of disadvantage.This introductory chapter summarises the main points 

of the Discussion Document1 for ICMI Study 17, the background and the challenges. 

It also provides a brief report of the Study Conference, held in Hanoi in December 

2006. Finally, it presents an executive summary of the book.

1.2 Background and Challenges to ICMI study 17

Since the first ICMI Study in 1992, there have been major developments in digital 

technologies in terms of hardware: computers of all types, calculator and handheld 

technologies, digital technologies widely used in society at large such as mobile 

phones and digital cameras and of course the massive influence of the World Wide 

Web. Aligned to these hardware changes, new software have been developed with 

potential impact on all phases of education, and on informal contexts of education. By 

the time of ICMI study 17, digital technologies were becoming ever more ubiquitous 

and their influence touching most, if not all, education systems. In many countries, it 

is hard to conceive of a world without high-speed interactivity and connectivity.

These developments have spawned an increasing number and range of studies 

around the use of digital technologies in mathematics education, some focused on 

the impact of specific software, others looking more broadly at the interaction of 

teachers, students and technologies. The goals, objectives and orientations of these 

studies have shifted with a broadening of the perspectives, theoretical frameworks 

and methodologies adopted. Their outcomes are challenging for the mathematics 

education community. As Hoyles and Noss (2003) claimed: “there are major 

research issues for mathematics education that are shaping and being shaped by the 

issues confronting ‘technologists’”. In mathematics education, epistemological studies 

of mathematics and psychological approaches to learning mathematics have been 

extensively supplemented by investigations into teacher and classroom practices, 

but how far studies have taken on board the challenges of the use of digital 

technologies and their potential for the improvement of mathematics teaching, 

learning and the curriculum, remains a matter of debate.

This was the background of ICMI Study 17, which aimed to achieve a balance 

between two, potentially contradicting, aims:

• Toreflectonactualusesoftechnologyinmathematicseducation

• Toaddresstherangeofhardwareandsoftwarewiththepotentialtoimpactupon

or contribute to mathematics teaching and learning

1 See the announcement in (Hoyles and Lagrange 2005).
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This Study sought to identify and analyse some of the issues in mathematics 

teaching and learning, practically and theoretically, in the light of the use of digital 

technologies. Most digital technologies do not make explicit how they work or how 

they can be used in mathematics education. This means that taking account of their 

design, particularly in terms of implications for epistemology, is a central challenge. 

But, as we attempt to incorporate new technological tools into teaching and 

learning, we also intend to make progress in trying to understand how the related 

epistemological structures are mediated by learning communities, and reciprocally, 

how learning communities are shaped by the artefacts and technologies in use.

This Study also recognised the diversity in available software and hardware for 

use in mathematics education, but also considered the influences of diverse curricula 

organisations, from highly centralised to locally autonomous, and the availability 

of resources in different countries - whether this was access to handheld devices, 

computers or to the Web. It sought to take account of cultural diversity and how 

issues of culture alongside those related to teacher beliefs and practice all shape 

both the way digital technologies are used and their impact upon mathematics and 

its teaching and learning.

1.3 The Study Conference

The Study Conference for ICMI Study 17 took place in Hanoi, Vietnam and was 

hosted by the Hanoi Institute of Technology from 3 to 8 December 2006. Choosing 

to have this conference in Vietnam was for the IPC one way to ensure that the work 

of the Study would be sensitive to the question of cultural diversity and that the 

voices of peripheral countries would be heard.

Following the publication of the Discussion Document and the submission of 

papers around the themes identified, about 100 delegates were invited to participate 

in the conference with the following regional distribution: Africa 3; Asia 9; 

Australia, New Zealand 11; Central and South America 8; Europe and Russia 52; 

Middle Orient 9; USA and Canada 22.

Plenary keynotes were scheduled, one at the beginning and the other at the end 

of the conference. For the opening plenary we wanted the conference to be addressed 

by somebody with vision, experience and stature in the fields of mathematics, math-

ematics education and technology. We were delighted that Seymour Papert agreed 

to join the conference, speaking to the title 30 years of digital Technologies in 

Mathematics Education and the Future. Using the recently prototyped “100 dollar 

laptop” renamed the “XO” to present his talk, Professor Papert argued that with full 

and easy access to computers, a new approach to mathematics education would be 

possible with particular benefits for developing countries. But he challenged us to 

consider that while it was important to consider how existing knowledge could be 

addressed in technology-enhanced ways, we should reserve at least 10% of our time 

and energy to consider what new types of mathematical knowledge and practices 

might emerge as a result of access to and effective use of digital technologies.  
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His accident the next day was a terrible shock to all participants, and the conference 

struggled to survive this loss, even as Professor Papert struggled in hospital. The best 

tribute we could think of was to try to keep the spirit of his ambition alive in the 

meeting by asking for participants to consider “Papert’s 10%” in all their sessions 

and in their subsequent papers: and we hope that the notion of Papert’s 10% will be 

the central idea that readers of this book take away with them.

Michèle Artigue, now president of ICMI, gave the concluding key-note using her 

experience as a researcher in the field. She recalled the evolution of the technological 

landscape and of research since the first ICMI study, mentioning especially how equity 

issues hardly mentioned twenty years ago now tend to be at the forefront, and 

pointed to the wealth of theoretical constructs that have emerged in order to address 

technological issues in mathematics education. She structured her lecture around 

five perspectives: theories, the teacher, curricula, design, and regions of the world.

Other plenary sessions were organised in the form of panels. Consistent with the 

Study’s special focus on cultural diversity, one panel was based on presentations from 

selected continents with the brief that they would show what was being put in place 

in their regions around the use of digital technologies in mathematics education. 

The themes of the two other panels were chosen to reflect two issues that we 

thought likely to make considerable impact in the future; namely the potential of 

connectivity to enhance teaching and learning mathematics and the crucial influence 

of design. Both issues were raised in the original Discussion Document but received 

less attention from the invited participants.

Working groups met in six sessions throughout the Study conference whose 

major aim was to prepare for this book. The participants were grouped on the basis 

of their written contributions. Initially seven themes had been prepared as set 

out in the Discussion Document (1) Mathematics and mathematical practices, 

(2) Learning and assessing mathematics with and through digital technologies, 

(3) Teachers and teaching, (4) Design of learning environments and curricula, 

(5) Implementation of curricula and classroom practice, (6) Access, equity and 

socio-cultural issues, (7) Connectivity and virtual networks for learning.

Two themes – Mathematics and mathematical practices, and connectivity and 

virtual networks for learning – had few contributors. Regarding the former, this is 

a clear difference with the first study, which was mainly concerned with the impact 

of technology on the mathematical practice. Regarding the latter, it reflects the fact 

that rather little research had been undertaken on this topic – the reason for the 

organisation of a plenary panel about the theme of connectivity. Given the number 

of contributions, two other themes important for the Study, implementation of 

curricula and classroom practice and access, equity and socio-cultural issues, were 

combined together into a single working group.

Discussions within each of the four themes were chaired by members of the IPC 

who would then take a leading role in four themes preparing the four main sections 

of this book. The proceedings of the Study Conference gathered all the prior written 

contributions of the invited participants and the abstracts of the plenaries. Thus its 

content is different from this book. These proceedings were published as a CD-Rom 

(Hoyles et al. 2006).
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Following a request from the local committee for participation from Vietnamese 

teachers and consistent with the special focus of the Study on developing countries, 

the IPC decided that Vietnamese teachers would be able to attend all plenary 

sessions and parallel contributing talks and that activities would be organised for 

them while working groups addressed the themes of the Study. The workshop that 

was set up for this purpose was attended by 44 Vietnamese teachers, three teachers 

from Cambodia and two teachers from Thailand. Six sessions of three parallel 

laboratory activities were organised for the participants to the workshop (in addition 

to the two-hour session of parallel software presentation organised for all the 

participants to the conference). Laboratory sessions were devoted to the presentation 

and use of educational software.

The evaluation made by the participants of the workshop at the end of the 

conference was very positive. Beyond the interest of the academic activities per se, 

most participants pointed out that they had established invaluable contacts with 

teachers from different institutions all over the region, as well as with overall 

participants at the conference from the broad international spectrum.

1.4 Summary of the Book

The book starts with Chap. 1, a foreword by the co-chairs of the ICMI Study and 

the editors of the book. The book is then divided into five sections. Each section 

starts with a chapter of introduction and overview by the section editors, followed 

by several chapters that relate to theme of the section.

Section 1: Design of Learning Environments  

and Curricula

Chapter 2 introduces the first section of the book. The section editors present its 

purpose and its focus on the issues and challenges involved in designing mathematics 

learning environments that integrate digital technologies. They point to the complexity 

of the design process, given that the tools made available in these learning environments 

shape mathematical activity in ways that are not altogether predicable. In addition 

to considering the specific affordances and constraints of different digital technologies 

for structuring mathematical learning experiences, the chapter also considers the 

implications of design decisions on tools, curriculum, teaching and learning. The editors 

conclude that appreciating the interdependencies of tools, activities, pedagogies and 

learning outcomes and designing accordingly is a challenge that mathematics 

educators will continue to face as digital technologies evolve and extend their reach. 

It is hoped that the section will help designers and users to take up this challenge. 

In addition, the content of the section should serve to guide policy and curriculum-level 

decisions in the development and implementation of technology.
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Chapter 3 considers how using digital technologies in “out of school” modelling 

projects can foster collaboration and motivation among students. The two case 

studies presented in the chapter illustrate the wide range of mathematical ideas that 

can be addressed in this way. The authors reflect upon the underlying theoretical 

principles that guided the design process in their work, in order that the use of 

technologies would optimise the chances of significant learning experiences for 

students. The chapter illuminates how different activity structures can take advantage 

of the affordances of digital technologies, especially through the design and building 

of animations and games. It also suggests how new representational infrastructures 

could bring changes to the mathematics content itself.

Chapter 4 focuses on design, this time through the lens of learning different 

geometries, including Euclidean 3D, co-ordinate geometry and non-Euclidean 

geometries. The authors stress the non trivial decisions that have to be made when 

designing for different geometries on the flat computer screen. They analyse the 

specific design decisions that motivate and differentiate common examples of these 

digital technologies. Such decisions are not only about the geometry but also about 

the learner in terms of supporting their perceptions of key features of geometry.

Chapter 5 deals with large-scale implementation projects, and brings to the fore 

issues in designing and deploying technology-based mathematical activities in 

different countries and jurisdictions. It analyses the varying beliefs represented in 

the implementation of projects in different cultures: theoretical frameworks, 

methodologies, ideas about mathematical literacy, and assumptions about the 

appropriateness of abilities and the willingness of teachers and students to engage in 

activities. The authors also note convergences especially towards the development 

of on-line environments and activities based upon widely accessible Dynamic 

Geometry environments.

Section 2: Learning and Assessing Mathematics  

with and Through Digital Technologies

Chapter 6 introduces the second section of the book, which focuses on developing 

understandings of how technologies can enhance the learning and teaching of 

mathematics, and the implications for assessment practices. The chapter emphasises 

some of the considerations elaborated in the chapters of the section, for example 

how digital technologies might be employed to open windows on learners’ developing 

knowledge, how interactions with digital tools mediate learning trajectories and the 

challenges involved in balancing the use of mental, paper-and-pencil and digital 

tools in both assessment and teaching activities.

The chapter ends with a short reflection on the section as a whole, noting that 

the major content emphases are algebra and geometry, suggesting therefore 

that more attention should be given in the future to for example calculus, 

statistical reasoning and proof. A closer relationship could also usefully be developed 

between mathematics education research and educational science in general. 
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Despite these reservations, it is hoped that the chapter presents a thorough synthesis 

of the research completed since the first ICMI study. As such it should prove invalu-

able to all mathematics educators whether or not their central interest is the use of 

digital technology.

In Chap. 7, the central question at stake is what theoretical frameworks are used 

in technology-related research in the domain of mathematics education and what do 

these different theoretical frames offer. The chapter first provides a historical 

overview of the development of theoretical frameworks that are considered to be 

relevant to the issue of integrating technological tools into mathematics education. 

Then some current developments are described, with a particular focus on instrumental 

approaches and semiotic mediation. While discussing future trends, the authors observe 

theoretical advancements, but also note that there is rather limited articulation of 

some of the different theoretical frameworks. They also point to what they see as 

factors that are given insufficient attention, for example the role of language in 

instrumental genesis, the role of the teacher in technology-rich learning environments, 

and the influence of the available tools on tasks and task design. They also note that 

connectivity, both among technologies and among theoretical frameworks, might 

be a key focus for future studies.

Chapter 8 focuses on mathematical knowledge and practices that result from 

access to digital technologies. It first describes how technology has influenced the 

contexts for learning mathematics, and the emergence of a new learning ecology. 

Second, the mathematical knowledge that “resides” within the different technologies 

is addressed, and third, changes in mathematical practices in education are considered. 

As a result of these analyses, the authors propose a transformation of the traditional 

didactic triangle into a didactic tetrahedron with the introduction of technology as 

a fourth vertex and conclude by restructuring this model so as to redefine the space 

in which new mathematical knowledge and practices can emerge.

Chapter 9 addresses the fact that with the significant development and use of 

digital technologies, diverse routes have opened for learners to construct and compre-

hend mathematical knowledge and to solve mathematical problems. The authors 

consider how the availability of digital technologies has allowed intended learning 

trajectories to be structured in particular forms and how these, coupled with the 

affordances of engaging mathematical tasks through digital pedagogical media, 

might shape the actual learning trajectories.

Chapter 10 addresses the issue of automatic assessment supported by digital 

technologies. Assessment is seen as a fundamental part of the learning cycle, 

central to learning and often a primary driver of students’ activity. Significant 

technical developments of the last two decades are described through examples of 

internet-based systems. The authors stress the potential power of computer-aided 

assessment because of its immediacy and the mathematical sophistication of 

automatically generated feedback.

The last chapter of the section, Chap. 11, considers the relationships between 

research on the role of technology in mathematics education and the framework of 

social learning theories and suggests that social perspectives on teaching and learning 

with technology have become increasingly prevalent. Four typologies of digital 
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technologies and their role in collaborative practice are identified: technologies 

designed for both mathematics and collaboration; technologies designed for 

mathematics; technologies designed for collaboration; and technologies designed 

for neither mathematics nor collaboration.

Section 3: Teachers and Technology

Chapter 12 introduces the section by noting that despite the fact that teachers have 

a central role in the mathematics classroom, they have been somewhat neglected 

players in research considering the relations between digital technologies and 

mathematics education and that those studies that do exist confirm that modifying 

teaching practices to include new tools is quite challenging.

The integration of any new artefact into a teaching situation can be expected to 

alter the situation’s existing equilibrium and requires teachers to undergo a complex 

process of adaptation. In the case of digital technologies, the modifications required 

of routine practices are likely to be particularly pronounced. The goal of the section 

is then to give account of this complex reality and to take up the associated 

challenges by synthesising various research studies. It also aims to address 

implications of these issues for teacher professional development. It is suggested 

that by offering a synthesis of current research work, and a perspective of future 

developments on complex and crucial issues, this section will be of considerable 

interest for persons involved at every level of teacher management and education, 

as well as for all mathematics educators aware of the central role of the teacher in 

the implementation of technology.

Because pedagogical aspects associated with the use of digital tool in mathematics 

teachers are rather more complex than originally imagined, the need to involve teachers 

as partners has become increasingly evident. The authors of Chap. 13 assume that 

this complexity is linked to the fact that tools are a constituent part of culture, hence 

the introduction of new artefact necessarily involves the establishment of new 

cultural practices. The central argument permeating this chapter is the importance 

of forging partnerships with practising mathematics teachers. The focus of the 

partnership can be the design of learning activities involving the use of digital tools 

and/or the design of the digital tools themselves.

Chapter 14 points out that the actual take up of technology within mathematics 

classrooms has progressed rather slowly. Given this scenario, the authors focus on 

the search for theoretical frameworks that might illuminate the teacher’s role in 

technology-integrated learning environments and clarify the factors that mediate 

teachers’ use of digital technologies. Of the frameworks considered, particular 

attention is paid to two, the instrumental approach and Valsiner’s zone theory.

In Chap. 15, the final chapter of this section, the authors turn their attention to 

teacher education course in mathematics and technology. They first note that course 

developers do not yet have access to a robust corpus of literature documenting 

strategies already tried and tested by others. They then offer a number of dimensions 
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by which teacher education courses might be characterised. In terms of classifying 

the beliefs underpinning the courses analysed, three areas are considered: views 

related to the implementation of technology into teaching; beliefs associated with 

the impact on technology on teaching practices, the teacher’s role and teaching 

activities; and views on how to prepare teachers. In addition, four strategies used 

by teacher educators across the five courses are identified and discussed.

Section 4: Implementation of Curricula:  

Issues of Access and Equity

Chapter 16, which introduces the section, starts from the observation that access to, 

and use of, digital technologies differs between countries, and within countries, 

according to socio-economic, gender and cultural factors. Thus, the influence and 

place of digital technology at all levels of mathematics education provides a unique 

opportunity to examine reform and change in mathematics curricula and teaching 

by, for example, examining the political, economic, social and cultural factors that 

promote or impede access to and integration of digital technologies for quality 

learning in mathematics. Thus chapters in this section seek to understand how 

cultural practices in technology-integrated mathematics enhance, or erode, equity 

and access in mathematics education.

In this chapter, the section editors first stress the necessity to distinguish the 

curricula as intended by authorities, from that which is actually implemented by 

teachers and from what is attained by the learners. They conclude that despite 

the fact that the possibilities that rapidly emerging digital and communication 

technologies can afford for mathematics, the evidence suggests that there will always 

be a lag between the development of “new mathematics” and its implementation in 

education systems. They also suggest that implementation of mathematics afforded by 

digital technologies is more likely to occur when and where there is a shared vision 

among political leaders, education authorities, mathematicians and mathematics 

teachers. The potential therefore exists for late but fast-developing countries to by-pass 

the curriculum experiments and out-dated technologies of earlier periods.

Given the rarity of comprehensive documentation and analysis about the 

implementation of curricula involving technology and associated issues of access 

and equity in countries of different economic capacity and cultural heritage, it is 

hoped that this section will be invaluable for decision makers and researchers at all 

levels from across the international spectrum.

The second chapter of this section, Chap. 17, provides useful information 

about the intended and implemented curricula of different countries and regions, 

including Russia, South Africa, China, Vietnam and several Latin-American nations. 

The differences in economic capacity and cultural heritage of these countries and 

of developed western nations is an opportunity to analyse the influence of social, 

economic, political and cultural factors on the integration of digital technologies 

in mathematics curricula.
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In order to work to the goal that everyone can take advantage of technology-rich 

mathematics curricula, Chap. 18 begins by defining equity and access in the context 

of digital technology and mathematics education; that is, equitable distribution of 

resources, equitable pedagogies and equitable learning outcomes. The authors 

then synthesise research studies that focus on the role of gender and socio-economic  

differences in access to, and learning outcomes derived from technology-rich 

mathematics, and express principles regarding equitable pedagogies with respect to 

the use of digital technologies in mathematics. They also note a lack of studies 

involving students with special needs.

In the political, social and cultural factors influencing intended curricula, as well 

as the resistances to their implementation, the authors of the last chapter of this 

section, Chap. 19, distinguish those factors concerned with the development of 

technology literacy from those more focused on taking advantage of the capacity 

of digital technologies to support or enhance mathematics teaching and learning. 

All these factors may differ from one level to another and from one culture to another, 

depending on the role that society assigns to mathematics teaching. They observe that 

system-level curricula change that involves the integration of digital technologies in 

high-stakes assessment was more likely to result in widespread implementation.

Section 5: Future Directions

Completing the comprehensive synthesis of the potential and impact of digital 

technologies and mathematics teaching and learning provided by the first four 

sections, this section that looks to the future is well placed to conclude the book.

In the introductory chapter (Chap. 20), the editors of this section simply indicate 

that the three chapters of the section were derived from the plenary sessions at the 

Study conference, namely the plenary panels and lecture.2

Chapter 21 is derived from the panel about design for transformative practices 

and returns to the issue of design already addressed in Sect. 1. Creators and designers 

of well-established and widely used software environments were invited to give 

panel presentations about their own unique expertise of designing and building their 

environments. Their contributions in this chapter throw light on the type of design 

decisions that have to be made, how these decisions connect with visions of teaching 

and learning, and how they can give rise to changes in practice and in future designs.

Chapter 22 is derived from another set of invited panellists who were asked 

to present3 their views and experience of the role of connectivity and virtual 

networks for learning mathematics. This area was thought to have a strong impact 

upon mathematics education in the future but at the time of the Study conference 

2 We are unfortunately unable to produce a text of the second plenary lecture by Seymour Papert 

given his tragic accident.
3 One team participated through a video link.
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there was rather little research or practice on which to build. The contributions 

derived from experiments that took advantage of connectivity within one 

classroom or across classrooms. As the introduction states, while there is no doubt 

that connectivity will transform how students interact with each other, yet if and 

how connectivity, in whatever form, transforms mathematical practices in school is a 

matter of future investigation.

The final chapter of the book, Chap. 23, is derived from the closing plenary 

address of Michèle Artigue, President of ICMI. She takes advantage of her personal 

experience of analysing the evolution of relationship between digital technologies 

and mathematics education over the last two decades, and situates her reflections 

about the future in its historical perspective. Then, she focuses on dimensions that 

she suggests are crucial for thinking about the future: that is dimensions that 

concern theories, the teacher, the curriculum, and issues of design and equity. 

She stresses that the reflection issued of the ICMI Study should assist the community 

in thinking about what educators can do in order to ensure that digital technologies 

better serve the cause of mathematics education.

1.5 Conclusion

Twenty years after the synthesis brought by the first ICMI study, the scenery of digital 

technology in mathematics education has radically changed and we look forward to 

still more dramatic changes. We hope that this book will help mathematics educators 

to take-up the challenges that technology will continue to bring about, many of which 

cannot be predicted at this point. “Rethinking the terrain” was urgent. The work could 

not have been done without the contributions and work of the many experts who 

participated in the Study conference or are authors of this book. Prominent among 

these experts is of course Seymour Papert who taught us how reflection on the past 

can support visions for the future. This book is gratefully dedicated to him.
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Chapter 2

Introduction to Section 1

Celia Hoyles and Nathalie Sinclair

Abstract In this introduction, we provide a brief overview of the goals of the Design 

of Learning Environments and Curricula working group. We then describe the three 

chapters that follow this introduction, and that emerged from the working group 

discussions, each of which focus on a different aspect of designing environments 

for mathematics learning, namely, consideration of the mathematics itself (and how 

it might change with the digital technology), the learner (and her different psycho-

logical and cognitive approaches to that content might change) and the curriculum 

(and its specific exigencies and opportunities).

The purpose of this theme was to focus closely on the issues and challenges that 

need to be faced in designing mathematics learning environments that integrate 

digital technologies. We recognised, and wanted to emphasise, that the tools made 

available in such learning environments shape the mathematical knowledge 

involved – and sometimes in unpredictable ways. We also wanted to focus on the 

ways in which the use of digital technologies shape the practices of teaching and 

the modalities of learning. In addition to considering the specific affordances and 

constraints of different digital technologies for structuring mathematical learning 

experiences (including various software packages, hardware configurations and 

web-based programs), this theme considered the implications of specific design 

decisions for curriculum, teaching and learning.

We proposed the following questions, which were used to guide the submission 

of proposals from researchers as well as the discussion sessions at the conference:

1. What theoretical frameworks and methodologies are helpful in understanding 

how design issues impact upon the teaching and learning of mathematics?
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2. How does the use of different technology-integrated environments both influence 

the learning of different mathematical concepts and shape the trajectories through 

which the learning develops?

3. How can technology-integrated environments be designed so as to foster significant 

mathematical thinking and learning opportunities for students?

4. What kinds of mathematical activities might different digital technologies afford 

and how can learning experiences (including the tools, the tasks and the settings) 

be designed to take advantage of these affordances?

5. How can technology-integrated learning environments be designed so as to influ-

ence and change curriculum, and how can this be achieved consistently over time?

6. How can technology-integrated learning environments be designed so as to remain 

sensitive to persistent challenges, for example, swift and inevitable obsolescence 

and ongoing maintenance costs?

7. How are new types of technology-mediated mathematical knowledge and 

practices related to current classroom curricula and values, and how should 

aspects of mathematics curriculum therefore be removed or changed?

Of the papers submitted to this theme, we selected for discussion at the Study 

Conference ten that most directly attended to the questions listed above (see the 

Proceedings for a complete list). At the conference itself, in order to structure our 

discussions we split the participants into three groups. Given the principle design 

interest of Theme 4, the groups were created in order to focus closely on the three 

separate, but overlapping components involved in the design of digital technolo-

gies: the mathematics, the learner, and the curriculum.

Given the strong representation of geometry-based software, the mathematics 

content group (including Keith Jones, Kate Mackrell and Ian Stevenson) focussed 

specifically on digital technologies related to geometry, and chose to tackle questions 

(2) and (4). In particular, they have written about the design of digital technologies for 

the learning of “different” geometries, including Euclidean 3D, co-ordinate geometry 

and non-Euclidean geometries. They discuss the specific design decisions that are 

involved in representing these geometries on the flat computer screen, and consider 

both mathematical and pedagogical implications of these decisions. They also examine 

the ways in which previous design principles used in dynamic geometry environment 

have influenced the development of software and of tasks in 3D environments such 

as Cabri 3D and Autograph (version 3). They also respond to question (7) above by 

pointing to ways in which digital technologies might change the knowledge of school 

mathematics, both in extending it to include different branches of mathematics, and 

in linking it, through other learning technologies – rather than through the more 

common mathematics hierarchy – to new mathematical ideas. Finally, they point to 

a number of design decisions affecting student understanding of different geometries 

through digital technologies that are frequently overlooked but that are in need of 

further research. Given the growing privileging of numbers and algebra in school 

mathematics, especially in North America, this chapter will be crucial in guiding 

policy- and curriculum-level decisions about the role of geometry, and especially 

3d geometry, in developing students’ visual and spatial intuitions.



2 Introduction to Section 1 17

In terms of the learner component, we formed a second group that focussed on 

ways in which digital technologies can motivate student mathematical learning 

through long-term engagement in collaborative modelling projects. The authors of 

Chap. 4 illustrate this type of learner-focussed interaction through two case studies 

of interactive microworlds: Lunar Landing (which involves the creation of a compu-

ter-based games) and Graphs ‘n Glyphs (which involves the creation of anima-

tions), both of which target a relatively wide range of mathematical ideas for 11–14 

year old learners. The authors compare their approaches in terms of question (1), 

that is, in terms of the underlying theoretical principles guiding the design and 

motivation for their work. The chapter also addresses questions (3) by reflecting on 

how digital technologies can foster significant learning experiences for students 

(including both the affective and cognitive dimensions of learning). They discuss 

some of the specific design choices involved in maintaining student engagement in 

the modelling environment while also maximising opportunities for mathematical 

expressiveness. This chapter also addresses question (7), by providing two exam-

ples of digital technologies that follow Papert’s “10% principle” in offering new 

forms of knowledge for school mathematics.

Our third group gathered together researchers involved in large-scale implemen-

tation projects, and brought to the fore issues in designing and deploying technology-

based mathematical activities in different countries and jurisdictions. Questions 

(5)–(7) were prime motivators in guiding the discussion at the conference as well 

as the writing of the chapter. Of special interest were the varying beliefs reflected 

by the range of cultures represented in the implementation projects in terms of theo-

retical frameworks, methodologies, ideals about mathematical literacy, and assump-

tions about the abilities and willingness of teachers and students. The authors 

discuss three main themes that emerged from these large-scale implementation 

projects, and that reflected their conservative approach: the increased focus on the 

teacher, the high fidelity to existing curriculum content, and the relatively “closed” 

nature of tasks made available to learners. The chapter discusses these themes 

within the broader evolution of digital technologies in mathematics education and 

offers predictions on some of the trends that might arise in the future.

The main thread of the three chapters, from software design around a specific 

content area, to design considerations around specific learning objectives, to imple-

mentation considerations at different scales, allowed us to address most of the ques-

tions posed in the discussion document of the ICMI Study and to offer some 

reflections on important issues in the design of digital technologies for mathematics 

education. We acknowledge that in the interests of our agreed foci we, of necessity, 

had to leave out some of the insights reported in the individual papers submitted to 

Theme 4 and we hope that interested readers will refer for the conference proceed-

ings for more detailed reading. Appreciating the interdependencies of tools, activi-

ties, pedagogies and learning outcomes and designing accordingly is a challenge 

we will continue to face as digital technologies continue to evolve.



Chapter 3

Designing Software for Mathematical 

Engagement through Modeling

Jere Confrey, Celia Hoyles, Duncan Jones, Ken Kahn, Alan P. Maloney, 

Kenny H. Nguyen, Richard Noss and Dave Pratt

Abstract The framing theory guiding the work described here is that mathematics  

learning is facilitated through long-term student engagement in collaborative projects, 

integration of sustained emphasis on content knowledge, deep engagement of 

student interests, and support for student experience and progress, and commitment 

to learning through interactive microworlds that foster modeling and collaboration. 

We describe two case studies of software design/implementation, one an animation 

environment, and the other a game and game-design microworld. We describe 

each case in some detail, and compare the projects’ affordances, constraints, and 

design lessons, and persisting challenges.

Keywords Design • Pedagogical • Epistemological • Bidirectionality • Animation 

• Momentum • Game • Meta-game • Engagement • Layered design • Professional 

transitional software

3.1 Introduction

Students are typically told that they must study mathematics in order to keep open their 

options to pursue quantitatively-oriented careers in mathematics, science, technology, 

or engineering. For most of them, this is a very distant and abstract motivation, 

especially for students whose familial network does not include members who currently 

engage in such work. Indeed, it is estimated that only 10% of students in the United 

States complete the prerequisites necessary to take Calculus (Roschelle et al. 2000), 

A.P. Maloney (), J. Confrey and K.H. Nguyen

Friday Institute for Educational Innovation, College of Education,  

North Carolina State University, Raleigh North Carolina, USA

C. Hoyles, K. Kahn, R. Noss and D. Pratt

London Knowledge Lab, Institute of Education, University of London, London, UK

D. Jones

Alder Coppice Primary School, Northway, Sedgley, Dudley, West Midlands, UK

C. Hoyles and J.-B. Lagrange (eds.), Mathematics Education  19 

and Technology-Rethinking the Terrain, DOI 10.1007/978-1-4419-0146-0_3,

© Springer Science + Business Media, LLC 2010



20 J. Confrey et al.

and similarly government statistics for England show that in 2006 only 7%, of all 

16-year-olds who had chosen to continue to study to advanced level post-16, chose 

mathematics. These data provide evidence that these long-term motivational statements 

are rather unsuccessful in convincing students to persist with mathematics.

Yet, these same students live in a world permeated by technology – the internet, 

satellite communications and mobile phones. Their lives are managed by numerous 

technological systems, many completely invisible (transportation, finance and loans, 

manufacturing, demographics, medicine, and so on (see, for example, Noss et al. 

(2007)). In order to secure a middle-class income, students must be competent in the 

use of these new technologies (Murnane and Levy 1998) who refer to this need for 

competence as a key technology-knowledge gap. It is especially ironic in that those 

countries with the most access to the products of these revolutions often demonstrate 

the least progress in developing the underlying necessary student proficiencies.

The importance of tapping into youth culture should not be underestimated in motivat-

ing and sustaining student educational progress. This is especially true for subjects like 

science and mathematics, which carry considerable social capital yet are easy for students 

to dismiss as irrelevant, boring and hard in a world of digital images, animations, easy 

information retrieval and communication. We need engaging environments, in which the 

mathematics is actually needed for students to achieve goals that they find compelling, and 

made visible to students and expressed in a language with which they can connect.

Our starting points derive from the position that effective student learning of 

mathematics is facilitated through: (a) long-term engagement in collaborative 

projects for which they take individual and collective responsibility (e.g. Harel and 

Papert 1991), and “tools [that] approach students from an angle that seems interesting 

and relevant to them” (Rosas et al. 2003); (b) integration of sustained emphasis on 

content knowledge, deep engagement of student interests, and support for student 

experience and progress (Jolly et al. 2004); and (c) commitment to learning through 

interactive microworlds that foster modeling and collaboration.

Modeling, approached in this way, promotes the learning of powerful mathematical 

ideas through use, in contrast to the conventional way in which mathematics is 

presented (Papert’s Power Principle (Papert 1996)). We build on our preceding research 

on modeling and the role of sharing and critiquing models (see for example Noss 

and Hoyles (2006), Simpson et al. (2005), and Ainley et al. (2006) on how modeling 

places emphasis on the utility of a mathematical concept), and draw on the definition 

of modeling by Confrey and Maloney (2007b):

Mathematical modeling is the process of encountering an indeterminate situation, prob-

lematizing it, and bringing inquiry, reasoning, and mathematical structures to bear to transform 

the situation. The modeling produces an outcome – a model – which is a description or a 

representation of the situation, drawn from the mathematical disciplines, in relation to the 

person’s experience, which itself has changed through the modeling process. (p. 60).

Further, we emphasize the importance for accessibility of what we term layering 

of mathematical and scientific principles and abstraction, and embedding increasing 

problem-solving complexity into the software.

In this chapter, we present two case studies that followed different paths from this 

common basis. Both adopted similar methodologies with a commitment to iterative 
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design, testing and feedback in multidisciplinary teams. An inevitable consequence 

of the current curriculum and high-stakes testing environment was that both case 

studies took place outside of school. One case study focuses on making animations 

in an environment called Graphs ‘n Glyphs; the other on designing and developing a 

game-construction kit around the theme of Lunar Lander. The two projects differed 

in the degree of explicitness of the mathematics inherent in the software, the extent to 

which a curriculum was planned to support the software, and the long term goals for 

the technology in relation to schools and curriculum. For example, there was no intention 

in the case of the UK-based Lunar Lander to ‘fit’ the game into the curriculum1; 

while the US team envisioned Graphs ‘n Glyphs as a software-integrated curriculum 

unit ultimately for use in the classroom and within programs of teacher professional 

development in mathematics and technology.

3.2  Case Study 1: Graphs ‘n Glyphs: Animation  

Software for Mathematics Learning

3.2.1 Aims and Description of the Software

Building on experience with the development of Function Probe (Confrey and Maloney 

2007a) and Interactive Diagrams (Confrey et al. 1999; Confrey and Maloney 1999) 

the Graphs ‘n Glyphs animation software project (Confrey and Maloney 2006) took 

shape from the team’s research interests in issues of student learning of both rational 

numbers and fundamentals of trigonometric reasoning. Using the software, students 

can model objects and motion in two-dimensional space and also (in the future) 

from the three-dimensional world in two-dimensional space.

We recognized that students’ cultural and economic surroundings are saturated with 

digital technology, graphics, animation, and video, all displayed in two-dimensional 

space. The technology and the imaging seem to be compelling, but few understand 

the mathematics and science that underlie graphics and animation. We developed an 

animation microworld, Graphs ‘n Glyphs, as a model environment for fusing the goals 

of generating learning research and developing a successful mathematics educational 

program that takes particular account of the educational needs of at-risk students.

Graphs ‘n Glyphs seeks to engage students with a technology while concomitantly 

teaching content that prepares them for advanced mathematics (i.e. algebra, geometry, 

and trigonometry). It has the potential to break new ground in the use of an innovative 

integration of modeling and animation in the context of mathematics instruction, 

and in investigating the use of an animation environment for mathematical learning. 

The environment is designed to introduce students to the ways in which computer 

animations are produced and to permit them to create, edit, and share their animations. 

1 In fact the Lunar Lander was designed to form part of materials within the BBC Jam initiative.
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Thus, through this software and project, we invite them to participate in a compelling 

animation microworld while making the underlying mathematical and computational 

elements visible and comprehensible. In doing so, we aim to teach students the 

fundamental mathematical ideas of integer and rational number operations, similarity 

and scaling, coordinate graphing and tables, basic geometric concepts, transformations, 

and ratio reasoning. Other learning goals include angles, elementary trigonometry, 

percents, and decimals. The context of animation provides opportunities to strengthen 

and connect students’ numerical and geometric knowledge, and to build on the 

foundations established in early childhood (reference the report synthesizing the 

studies by Clements (2004)). When fully developed2, the software environment will 

also facilitate students’ learning about optics and acoustics – the science as well as 

the geometry – and trigonometry-based modeling that underlies three-dimensional 

images, animations, and their accompanying sound.

3.2.2 Main Issues in Software Design

Theoretical/research base. The software design draws on four major thematic 

approaches from mathematics learning: (a) modeling, (b) project-based instruction, 

(c) learning progressions, and (d) microworlds. The work then extends these four 

theoretical themes by linking the software directly to the functionality and design of 

software used professionally for animation and graphics. In this way, the work draws 

upon the study of communities of practice (Lave and Wenger 2002) and on how 

their practices can be useful to draw students into well-paid careers (Hall 1999).

The underlying philosophy behind the work is the theme of modeling (as men-

tioned in Sect. 3.1) through the development and revision of inscriptions (graphics, 

tables, transformation records; Latour 1990) that permit one to render graphical and 

acoustic animations on the computer. We also build on the work of Lehrer and 

Schauble (2000, 2006) that conceives of students learning via a continuum of models 

from physical microcosms to hypothetical-deductive. Our intervention consists of 

a combination of elements on and off the computer; we emphasize the importance 

of building different levels of abstraction into the software (Lehrer et al. 2002). The 

activities and tasks form a learning progression akin to learning trajectories described 

by Confrey (1990), Simon (1995), Gravemeijer et al. (2004), and Clements and 

Sarama (2004), and conceptual corridors as described by Confrey (2006).

These elements are drawn together via the concept of microworlds defined 

first by Papert (1980) and extended by Weir (1987) and then Hoyles et al. (1991). 

In Graphs ‘n Glyphs, we draw upon the definition of Microworld, changed from 

“teaching computers to solve problems” to “designing learning environments 

for the appropriation of knowledge and, as a consequence of this change in 

2 Three levels of the software are planned, if funding permits. The first is described herein; the 

second adds 3D perspective and lighting and the third adds in acoustics and sound.
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focus, the transitional object takes on a central role” (Hoyles et al. 1991, p. 2). 

This signals a shift from the traditional direct-learning paradigm to one that is 

steeped in experiential learning. As Miller et al. (1999) explains, “In contrast to 

more traditional educational strategies that try to teach the target knowledge to the 

student directly, learning by exploration focuses on stimulating the student’s 

initiative in gaining knowledge about the domain. Because microworlds both 

support exploration and behave according to the laws and constraints of the subject-

matter domain, educators believe that students’ activities in the microworld produce 

or foster education about the domain” (p. 305). In Graphs ‘n Glyphs, students explore 

the rich environment of animation and use it as a vehicle for mathematical inquiry. 

By working through the activities and tasks, they begin to mathematize environments, 

distance, similarity, scaling, and slope.

Collaborative design. Graphs ‘n Glyphs was collaboratively designed by a team 

of mathematics educators, game and graphics designers, and a programmer, in 

order to accomplish several goals at once. We required the software to incorporate 

authentic professional animation software features, and to encompass specified 

mathematical content, while being robustly learner-centered. These three design 

goals co-defined each other during the iterations of design, implementation, and 

revision of the software.

We endeavoured to design software that would be as similar as practicable to 

professional animation, graphical, and video editing tools such as Adobe Photoshop, 

Macromedia Freehand, Macromedia Flash, Apple iMovie and 3D Studio Max. One 

of our aims was to represent this software to student users as software that would 

prepare them for using professional tools. Whenever possible, the graphical tools, 

object-manipulation metaphors, commands, file management conventions, and 

timeline behavior are similar to those used in professional software. At the same 

time, we sought to ensure that the mathematics underlying such tools and behav-

iors, instead of invisible as usual behind user-friendly graphical user interfaces, 

would in this instance be visible to students and, furthermore, would be required to 

construct the animations.

Features of modeling and animation, mathematical content, and learner- 

centereddesign. The software is designed to allow users to begin to represent 3D 

objects in motion in 2D screen space. They build objects as sequences of con-

nected points, and animate the images via on-screen mathematical transforma-

tions (translation, reflection, rotation, and both aspect preserving and 

non-preserving scaling).

Students engage in aspects of modeling the 3D world on a 2D space by:

• Creating,modifying,andreplicatingobjectsonthe2Dplane,usingaseparate

“local coordinate plane” on which objects are constructed, and the “global 

coordinate plane” on which to place each object and its own local plane.

• Movingtheobjectsbyspecifictransformationsontheplane.

• Sequencingthetransformationsintosmoothmotionviaatimeline.

• Interpretingvisualfeedbackasaformofinteractivity.

• Tellingastorywiththeanimation,andusingvisualrepresentations.
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Mathematical topics incorporated into the software and accompanying curricular 

units include:

• Measurement.

• Additionandsubtractionofpositiveandnegativeintegers.

• Coordinategraphing.

• Transformations:translation,rotation,scaling,stretching,reflection.

• Ratio,similarity,andscaling.

Learner-centered design components include:

• Multiplesimultaneousrepresentations(graphs,tables,andtimeline).

• Movementbetweenrepresentationsthatcanbeconfiguredeitherbidirectionally

or unidirectionally.

• Adaptations of professional software features to serve the development by

students of conceptual content (for instance, coordinate point representations, 

pivot point on the local coordinate plane, and scaling “handles”).

3.2.3 Notable Characteristics of the Software

The software interface comprises four primary windows and a graphical display for 

the animations (see Fig. 3.1).

Students build objects in a graphing window that consists of a local (one for each 

object) and a global plane (on which each object is positioned and moves). Tables 

Fig. 3.1 Graphs ‘n Glyphs user interface
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display the coordinate-pair values of each object’s points on both the local and the 

global planes (and in which they can add or remove points from the object defini-

tion). The object palette permits saving and reproducing objects, transformation tools 

for visually transforming objects and mathematically specifying the transforma-

tions. The timeline or sequencer permits students to organize, edit, and run their 

animation sequences of transformations. The windows are dynamically linked and 

support predictions, data gathering, and feedback. Visual and numerical feedback, 

embedded in the multiple representations, facilitates student assessment of their 

own progress on the various curricular activities. Students who feel they have not 

mastered certain concepts can choose to keep the detailed feedback available even 

as they move on to more advanced tasks.

Perhaps the most exciting aspects of the software for students in our 2006 study 

were the transformation tools and the timeline. Graphs ‘n Glyphs incorporates two 

modes for transformations. One, which we call the “doodle” mode, involves selecting 

a transformation from the tools palette, and visually carrying out (drag-and-drop) 

transformations. Doodle mode allows students to conduct visual experiments in 

transformational motion and values. The values of a transformation are displayed at 

the right side of the tool area. For example, in Fig. 3.2, the dog has been translated 

eight units in the positive x direction, and two units in the positive y direction.

Then, to build an animation, the student uses the animation window located 

above the graph pane. The student specifies the values of each transformation, each 

of which is recorded within an animation sequence. To build such transformations, 

the student chooses to insert a new transformation, and, from a dialog box, selects 

(a) the type of transformation, (b) the object to which it will be applied and (c) the 

values of the transformation. For example, a student may want to show a dog rearing 

on its hind legs. Figure 3.3a illustrates how a student could specify moving the dog’s 

pivot point from the center of the dog to its hind foot. An object’s pivot point defines 

the origin of the local plane and is also the point of invariance for scaling and rota-

tion. This is, essentially, a translation of the pivot point by negative two in the x 

direction and by negative four in the y direction. Figure 3.3b illustrates a clockwise 

rotation of 50° for the dog, which the student might specify after moving the pivot.

Fig. 3.2 Translation of an object (dog), in “doodle” mode
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Fig. 3.3 a Move-pivot transformation. b Rotation

Once a transformation record has been built (Fig. 3.4a), the user views and modifies 

the transformations in the timeline tool (Fig. 3.4b), a transformation sequencer in which 

transformations can now be run as smoothly-sequenced animations with standard 

video-control buttons. Their order, duration, and speed can be changed by simple drag-

and-drop; double-clicking re-opens the dialog box for editing of numerical values.

Figure 3.5 shows the timeline of the transformation from Fig. 3.3, and the final 

state of the dog. Note the final position of the dog’s pivot point.

Scaling and distorting an object are illustrated in Fig. 3.6. To make the objects 

behave as desired, the pivot point’s position again becomes a critical animation ele-

ment. In doodle mode, an object is scaled by manipulating the handles on the scal-

ing frame. To stretch an object with relation to the local x- or the y-axis, one drags 

the side or top handles. To scale (preserving aspect ratio), one drags one of the 

corner handles (Fig. 3.6a). However, when students build an animation sequence, 

they must use the transformation timeline and must specify each transformation 

numerically. In the transformation dialog box, the corner entry field specifies the 

aspect-preserving (scaling) transformation (shown in Fig. 3.6b), and the other two 

entry fields specify stretches in relation to the two axes.
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Fig. 3.4 a Transformation record, showing three different transformations: a move-pivot, a rota-

tion, and a translation. b Same transformations in the Timeline; transformations can be re-ordered, 

shortened or lengthened (drag and drop)

Fig. 3.5 Simple animation of the dog

Software and Curriculum Integration: The design study conducted in summer 

2006 involved a group of rising sixth graders (students who had completed fifth 

grade). Curriculum units were designed to reinforce students’ notions of addition, 

subtraction, and measurement on the number line, and introduce them to Cartesian 
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Fig. 3.6 a Handles for visual scaling and stretching. b Transformation dialog box for scaling or 

stretching an object

graphing and geometric transformations. Hands-on and paper-and-pencil activities 

and formative assessments were used during the student workshop. Software 

activities were carried out in parallel with the mathematical instruction. These included 

building objects on the Cartesian plane (specifying points, vertical and horizontal 

distances), taxicab geometry (Krause 1975), matching exercises as instruction in trans-

formations, mazes to reinforce numerical specification of transformation sequences, 

and, finally, creating their own objects and animations.

3.2.4 Major Achievements

Design Study. The 3-week design study in summer 2006 led us to conclude that the 

animation, modeling, and mathematics instruction that are combined in Graphs ‘n 

Glyphs (GnG) have considerable potential for enhancing student engagement in 
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Fig. 3.7 Professional transitional 

Software schematic

mathematics learning as well as deepening their understanding of fundamental 

principles of rational number, graphing, and trigonometry. Several outcomes stand 

out. (1) Student engagement and persistence was far beyond expectations. By day 3, 

students were arriving early and staying late, and staying on task for hours at a 

time. Part of the excitement for the students was their use of the computers. 

They checked out laptops overnight and used them to connect to the internet 

themselves at home, show parents their work, and explore online games. (2) In the 

actual hands-on and computer-based animation activities, the overriding important 

factor for the children was the story they tried to tell. The creative narrative expression 

was highly engaging for the children. (3) Most of the students were very weak in 

addition and subtraction, were unfamiliar with negative numbers, had virtually no 

concept of subtraction as a way to measure distance. All made progress on these 

concepts and skills. (4) By the end of the study, the students understood the definitions 

of the geometric transformations they were using, could work with them on the 

computer, and had become fluent in verbally specifying and incorporating transfor-

mations as they planned their animations, and could describe them to an audience 

in the final workshop presentations. (5) Subsequent feedback from parents suggests 

that many of the children were more confident and interested in mathematics at 

school, and felt that what they learned in the workshop has helped them in the next 

year’s mathematics classes.

Professional Transitional Software (Fig. 3.7). As the project progressed, we 

explicitly developed the concept of “professional transitional software,” of which 

Graphs ‘n Glyphs is an example: learner-centered software in the service of particular 

educational content (such as mathematics), which incorporates interface design 

features and functionality that are typical of software used in particular types of 

professions. The content in the Graphs ‘n Glyphs project will eventually comprise 

algebraic and trigonometric-reasoning fundamentals and more explicit modeling 

curriculum trajectories. The software also incorporates fundamental metaphors and 

features of software that is routinely used in computer-based graphic art and animation, 
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which span a variety of creative pursuits and occupations; familiarity with these 

will both motivate students and expand their technical experience, interests, and 

thence their view of occupations to which they can aspire to as they progress into 

high school and beyond. We believe that Graphs ‘n Glyphs represents progress 

toward a new model for twenty-first century education, especially in the sense of 

Jolly et al.’s (2004) principles for successful programs for at-risk students: the con-

tent embedded in the software and curriculum is robust, the animation context pro-

vides an engaging environment that is relevant to students’ own experiences and 

interests, and it supports familiarity with tools and movement toward expertise 

with advanced software that further enhances their ability to express their creativity 

and create potential opportunities for their adult occupations.

3.2.5 Major Challenges

Several challenges confront the design, implementation, and use of educational 

software that aims for multiple learner-centered goals. Design that aims simultaneously 

to facilitate deep reasoning in a discipline such as mathematics, and development 

of technological skills, while engaging and supporting at-risk students in purposeful 

creative activity, is essential. The complexity of the design challenges reflect some 

of the complexity facing education in the current century.

Software design with multidisciplinary teams. Combining mathematics educators 

who are software designers and professional graphics and animation specialists in 

the same team led to sometimes-vigorous design and trouble-shooting discussions, 

and required decisions to be taken that promoted the long-term mathematics edu-

cational goals even at the expense of fidelity to professional software. Two major 

examples illustrate this point. (1) In most professional animation applications, scaling 

of an object is accomplished by scaling of the entire local plane and preservation of 

the object’s coordinates. This serves various visual and working needs of anima-

tors. However, from a mathematical pedagogical perspective, this was undesirable, 

because it removes the need for students to grapple with the multiplicative implica-

tions of scaling and distortion. We implemented scaling in Graphs ‘n Glyphs so that 

the local coordinate plane remains fixed, and the coordinates of the scaled object 

change in the expected multiplicative ways. (2) It is important mathematically to show 

the point of invariance during scaling. When a student clicks on the scaling tool, 

rays extending from this point of invariance (i.e. the pivot point) are displayed so 

that the student can see the reference point for the multiplicative act of scaling.

Energetic design debates between the artist/animators and the mathematics educa-

tors/designers during the project were chronicled on the team’s blog. The software’s 

overarching purpose was to be an environment for learning and utilizing mathemat-

ics in the most pedagogically rich way, so such debates were usually resolved in favor 

of a learner-centered design feature. Nonetheless, these conflicts were few, and the 

software remains faithful to professional software features in many respects.

Issues of representation and pedagogy. The software’s tools are important 

in promoting visual reasoning (Confrey and Maloney 2007a), but the graphical user 
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interfaces of professional animation software (on which GnG is based) are deliberately 

designed to hide the mathematics, making software use more like drawing than like 

mathematics.

During the iterative design and implementation cycles of GnG’s development, we 

encountered pedagogical issues which are familiar to educational software designers, 

and which are complicated by the animation and modeling context. One of the most 

interesting from the standpoints of both learner-centered design and support of 

content-based reasoning are related to each other: that is directionality of multiple 

representations and visual feedback. Directionality applies as soon as one uses 

simultaneous multiple representations and – particularly so for GnG –when tasks can 

be accomplished using either text/numeric inputs and visual tools (drag-and-drop 

manipulations), and when one mode of input is dynamically updated on-screen, and vice 

versa. For example, the team struggled over whether the software should immediately 

display tabular point coordinates when the student visually (drags) edits an object’s 

points, or whether the student should be required to predict, and then check, the 

coordinate values in order to reinforce Cartesian graphing skills. Similarly, when a 

student numerically specifies a particular transformation, should the student imme-

diately see the result, or should the student be permitted to reflect and predict the next 

position of the object? There are many times when one might want to delay the feedback 

provided to the student, in order to reinforce mathematical skills or reasoning.

Hence, Graphs ‘n Glyphs provides visual transformation tools (the doodle 

mode mentioned earlier), which allow students to experiment with and learn 

about individual transformations and which also display the transformation values. 

The doodle mode does not record the transformation values, however. When students 

build sequences of transformations into animations, they must record the individual 

transformations, and they must do so by specifying the type of transformation as 

well as the values of the transformation parameters.

We continue to evaluate situations in which any pair of representations (for 

instance, an object on the graph and the display of its points’ coordinates in the 

table) are bidirectionally (simultaneously displayed) or only accessible to the user 

in one of the representations.

In the curriculum we developed to scaffold children’s learning with the software, 

we also sought to implement instruction consistent with conceptual corridors in the 

way tasks are sequenced. We employed paper-and-pencil tasks as well as on-screen 

tasks in our instruction. Practice was encouraged, and assessments were periodically 

conducted. The finalized implementation of Graphs ‘n Glyphs, as with any educational 

software-curriculum system, will depend on feedback from settings where student 

interactions are encouraged and instructors guide and monitor the students’ work.

3.2.5.1 Reflections on Design

We are actively considering the viability of the software for both engaging and 

sustaining student interest and the effectiveness of the implemented software and 

curriculum units in enhancing student learning of and confidence with mathematics. 
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The animation and modeling context, driven in large measure by mathematical 

concepts and tools, appears to be viable for student engagement and learning. The 

students in our initial design study were not classified as gifted, and many lacked 

confidence. Most of these students lacked competence in the mathematics that the 

state curricular standards suggested they should have mastered. For instance, the 

Missouri Grade Level Expectations indicate that by the end of fifth grade students 

should have already mastered addition and subtraction of positive and negative 

integers as well as multiplication of double digit numbers (Missouri Department of 

Elementary and Secondary Education 2004). However, it was clear from our pre-test 

results that students in our studies were still struggling with addition and subtraction. 

Feedback from students and parents suggested that many of the design study 

participants retained a measure of improved confidence and interest in math during 

the ensuing school year.

Level 1 of Graphs ‘n Glyphs has been discussed here. Design and implementa-

tion of levels 2 (three-dimensional graphics, incorporating models of light transmis-

sion, reflection, and shadow) and 3 (incorporating sound creation and reproduction) 

will be undertaken upon availability of resources.

3.3  Case Study 2: Lunar Lander, a Prototype Web-Based 

Space Travel Games Construction Kit

3.3.1 Aims and Description of the Software

The aims of this work were to design a prototype space travel game construction 

kit based on the familiar “Lunar Lander” theme that would (a) be engaging for 

11–14 year old students, (b) motivate the interaction with ideas of mass, gravity, 

velocity and acceleration and the relationships between them in the design of the 

game, and (c) stimulate in the playing of the game the use of different representations 

of these mathematical and scientific ideas in order to optimize the chances of 

winning. The work drew on our previous research that had investigated the potential 

of student-construction of computer games for learning. Thus, in the Playground 

Project (see, for example, Hoyles et al. (2002)) we attempted to tap in to children’s 

games culture by adding a new dimension whereby they built their own games, or 

modified the games of others by editing play objects or playing with the rules of the 

games (Harel 1988; Kafai 1995). The Playground project set out to design and try 

out computational worlds in which the objects in a game and the means for expressing 

them were engaging, in which the programming of a game was itself a game. 

Thus we designed tools that gave to children the opportunity to construct creative 

and fun games, and at the same time, offered them an appreciation of – and a 

language for – the rules that underpinned their games.

Our attachment to constructionism as an orienting framework, along with our 

commitment to a modeling approach within microworld design, meant that we 

acknowledged that effective learning would ‘not come from finding better ways for 
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the teacher to instruct but from giving the learner better opportunities to construct’ 

(Papert 1991, p. 3). Our belief that building things is a locus of significant educational 

change drove the initial rationale for microworlds and provides a crucial organising 

distinction between systems which put the child in the role of builder and thinker, 

and those which place him or her in the role of listener or receiver (see for example 

Hoyles, 1993 on design of microworlds, and Noss and Hoyles 1996). But construc-

tion is not enough. As with Graphs ‘n Glyphs, the Lunar Lander work had to grap-

ple with the problem of knowledge – what mathematical ideas would the student 

encounter – as well as the challenge of designing engaging game-like situations that 

simultaneously fostered learning and engendered ownership, in which the mathe-

matical ideas we planted could become a source of power for the student.

This challenge has occupied us for many years. We have, on occasions, left the 

mathematics relatively inexplicit. At other times, we have been more prescriptive 

about the mathematics underpinning our design. For example, the WebLabs project 

sought directly to engage 11–14 year old students in deep mathematical challenges 

(such as the cardinality of infinite sets; see Kahn et al. (2005), Mor et al. (2006), 

Simpson et al. (2007)). We will return to the question of explicitness in the concluding 

section.

Overview of the game: The software employs narrative as a key device. This was 

not a simple matter for design: after all, story-telling does not immediately come to 

mind when devising an activity structure for engaging with difficult mathematical 

ideas, based as they are on precision and rigour. (For some general observations 

on this question, see Mor and Noss (2008)). The game starts with a player being 

hired as a game developer at a game company. The player is presented with a goal 

and is able to interact with virtual teammates in order to acquire both the needed 

components and the knowledge to proceed (actually, encountering the knowledge 

is not a necessary condition for proceeding). The design of this game about making 

games – the meta-game – aimed to provide structure, background information, guidance, 

and a gradual introduction to features and capabilities. The team of simulated 

experts includes a programmer, a scientist, an historian, an assistant game designer, 

and an animator.

The meta-game embodies the design of a learning sequence. It was introduced 

as a way of orienting students to the issues in the game and its design while avoiding 

prescriptive instructions. The response of each teammate to a visit by the player is 

scripted, but also depends upon both the current state of the game being constructed 

by the player and the history of the player’s interactions with all the teammates. 

This gives the player freedom to visit the teammates in any order and with any 

frequency. Furthermore, each game component has an associated help button. 

When a component’s help button is pressed, the player is informed which team-

mates have something to say about it. For example, the programmer, the scientist, 

the historian, and the game designer all have a unique perspective on the compo-

nent which implements gravity.

Following the meta-game, the player can work through a suggested activity sequence 

and in so doing builds up the design skills and knowledge to build a Lunar Lander 

and know how to control it to optimum effect.
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3.3.2 The Activity Sequence

In a first phase, the player is presented with a series of challenges. The first chal-

lenge is to make a game in which an astronaut is adrift and needs to reach her 

space ship. The means to do this is to acquire program fragments and artwork, 

which can be accomplished using only components involving horizontal motion 

that is achieved by ‘throwing’ rocks (previously collected by the astronaut). 

Challenges that have to be faced include agreeing on constraints (e.g. will the 

astronaut get back safely? Is she going too fast when she hits the spaceship?). The 

second challenge is to invent a new game. For example, the spaceship has started 

to move off in a vertical direction. Can the astronaut reach it now? This clearly 

means that the astronaut has to move ‘diagonally’ and in such a way so as to 

intercept the spaceship.

Once these game-making challenges have been encountered, students are ready 

to build a Lunar Lander, and a game panel with images of the astronaut and lander 

is presented (see Fig. 3.8). Beside it is a control panel with a start button. Pushing 

the start button initially does nothing, since none of the game elements have been 

given programs (the design imperative –‘nothing should happen unless the student 

makes it happen!’ – was a contentious design decision that is yet to be resolved).

The control panel also has a button that causes the behavior gadgets panel to 

appear (Fig. 3.9). It contains gadgets that consist of one or more code boxes. Any 

Fig. 3.8 The initial game construction page
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Fig. 3.9 Behavior gadgets are dragged from the behavior gadgets panel, which initially contains 

only a horizontal velocity gadget and a horizontal rock throwing gadget. As the meta-game progresses, 

the behavior gadgets panel acquires more elements

picture-object can be given a behavior by placing a behavior gadget on its ‘back’ 

(the back of an object is accessed by flipping it over). The behavior can be altered 

by setting sliders on the gadget’s settings page. The code boxes of a behavior gadget 

can be removed, whereupon they expand to display the code that implements the 

behavior. Portions of the code that can safely be edited without programming 

expertise are colour highlighted.

The total mass of rocks (i.e. total fuel), the largest rock (the maximum rate of 

fuel usage), and the rock velocity (the propellant velocity) can all be adjusted by 

moving sliders. As one does so, the system calculates and displays derived values 

such as force, and performs unit conversions where appropriate. These parameters 

reflect real engineering tradeoffs. For example, adding more rocks/fuel does 

increase the duration of manoeuverability but at the cost of a greater total mass and 

hence a smaller acceleration from identical rock throws.

Landing on the moon involves several game-design decisions: what speed 

constitutes a safe landing? Should a criterion of ‘winning’ be minimising the use of 

fuel as well as how quickly a safe landing can be made? Once the design parameters 

are agreed by the players, the different teams need to think how they can use the tools 

provided to support their play: for example the dynamically configurable “gauges” 

(Kalas 2007) that can measure and monitor any of 13 values in graphical or numerical 

displays (see Fig. 3.10), including velocity, acceleration, remaining fuel, total mass, 

the application of thrust (by throwing rocks out in the opposite direction), and 

graph these values against time. Subsequent activities comprise the generation of 

multiplayer games in which players compete over the network in a race to land on 

the moon. The aim of this activity is to encourage reflection on the design of optimum 

strategies to win the game: for example, through reflection on the symbolic trace of 

a landing produced by the autopilot facility. This is a recording of all the changes 

to thrusters made manually during a landing and thus captures the settings of any 

‘manual’ landing, settings whose parameters can be tweaked to produce an optimal 

landing. Finally students are challenged to invent new games to play using their 

own criteria for winning.

Limitations of space prevent us from illustrating how students used this range of 

panels, behaviors, and other objects that control instrumentation. For example, how 

they used the gauges to ensure a safe landing or how the two-player version of the 

game typically involved a race to be the first to land safely on the moon.
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3.3.3 Main Issues in Software Design

There have been numerous attempts to design a programming-based approach 

to learning over the years. The most successful have achieved tangible learning 

outcomes across various topics, such as music, mathematics, language, and physics. 

(Some of these are discussed in Noss and Hoyles (2006).) They have also provided 

important pointers to the possibilities of learning that transcends the procedural and 

superficial by encouraging a playful – yet mindful – spirit of enquiry on the part of 

learners, aiming to break down the curricular silos that so often characterise traditional 

schooling. For the most part, what has been missing has been generalised success 

in tapping into students’ own interests on a wide scale and engaging them in debate, 

investigation, and production.

In Playground, we had found it helpful to introduce the distinction between 

platform and superstructure. By platform, we meant the base level at which it was 

possible for users (rather than professional programmers) to interact. A platform 

would include high level programming languages but not for example machine 

code. In most cases, users interact with the platform because the designer 

expects them to do so. Most software takes pains to make the platform level 

completely invisible, and, in general, make a virtue out of this perceived necessity 

on the grounds that only programmers need to know how to program. Superstructure, 

on the other hand, describes the objects in the microworld and ways to manipulate 

them. The idea of superstructure raises new dilemmas. How visible is the platform 

level? What is the appropriate grain size for objects and relationships at the 

Fig. 3.10 A snapshot of game play with three active gauges
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superstructural level? How easy is it for the user to ‘descend’ to the platform level? 

How permeable is the barrier that separates superstructure from platform? How 

rich is the potentiality of modifying tools at the superstructural level along with 

the interactions that go with it? How familiar can and should the user be with 

platform tools?

Our approach in Lunar Lander owed much to our early experiences with Playground. 

In both Playground and WebLabs, we created a class of playground objects called 

‘behaviors’ that were portable components packaging the functionality of the programs 

into manageable pieces while allowing them to be inspected. These behaviors could 

be dropped on ‘objects’ so as to give them the functionality required, thus bypass-

ing the need to program from scratch (although, crucially, the symbolic representa-

tion could still be accessed and edited). Building games with behaviors or modifying 

behaviors in the games of others was the usual way that students interacted in 

Playground (or undertook their explorations in WebLabs).

This antecedent work pointed to the motivational benefits of this layered approach 

and the substantial commitment students often showed to their products if we could 

manage to design the grain size of interaction appropriately. We also noted that 

student-authored games tended not to suffer the difficulty that other educational 

games suffer around poor production values: much to our surprise, we found that 

when students are constructing their own games, they are relatively forgiving if the 

look and feel of the game is quite crude.

3.3.4 Notable Characteristics of the Software

There were a number of notable design characteristics that we now specify:

A straightforward interface for the composition of pre-built program fragments; 

this was made possible by an underlying computation model that simplified the 

process of composing fragments by building upon multiple independent processes. 

We have found over a number of projects that this object-oriented (from the learner’s 

point of view) approach is valuable – thinking about things-with-properties allows 

the learner to have something to reflect upon, discuss with others, and build 

understandings incrementally.

An easy means to parameterise the code, either by directly manipulating inspectable 

fragments of the code itself, or by accessing pages where the values of parameters 

(e.g. how strong is gravity on this planet?) could be directly altered.

An underlying physics model based upon conservation of momentum that is 

simpler than the one based upon F = Ma and first and second derivatives of position 

and the first derivative of momentum. From a technical point of view, this gained 

us modularity and composibility of the concurrent processes underlying the system. 

From a pedagogical point of view, this approach bought us a concrete and discrete 

way to think about forces, in which the mechanism underlying rocket thrust became 

transparent: Throwing a one kilogram rock once per second is the same mechanism as 

actual rockets that “throw” trillions of trillions of mini-rocks (molecules) per second.
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The concept of a “meta-game” in which games are made within an overarching 

narrative game structure. We decided to bring the task to life for learners, by putting 

them in the position of the game designer – what would they have to know about 

physics, about animation, programming, sound, to design the system? By doing this, 

we sought to provide structure, background information, guidance, and a gradual 

introduction to new features and capabilities in a reasonably natural way. The different 

characters reacted with a very modest degree of intelligence: the response of each 

to a visit by a player is scripted but does depend upon both the current state of the 

game being constructed by the player and the player’s history of interactions with 

all the teammates.

An autopilot in which the settings of any manual landing – i.e. the values of all the 

variables and how they are changed over time – could be captured by an autopilot. 

This automatic recording and re-running of ‘successful’ landings allows learners to 

modify parameters, reflect on their values, and how they are related. This contributes 

to work at the symbolic level aimed at optimizing their lunar lander.

A range of carefully crafted gauges (Kalas 2007) that enable the player to monitor 

13 parameter values in graphical or numerical displays, including for example, velocity, 

acceleration, remaining fuel, total mass of the lander by ‘connecting’ a graphical 

display to the lander which changes as the lander moves.

The facility to engage in multiplayer games played over the web. Players can see 

other players’ landing attempts and compete with them, and can attach gauges to their 

own and their opponents’ games. A typical Lunar Lander game has players competing 

to land with the safest landing speed using the least amount of time or fuel. A typical 

astronaut game has players cooperating to rescue the astronaut. Students are also 

challenged to invent new games to play.

Finally, a fundamental design objective that we named layered design. The construc-

tion kit provides small program fragments together with tools for customising and 

composing them. The fundamental idea is that players/learners can choose how far to 

delve into the workings of the tools. At a first layer, engagement is mainly through 

reading, watching, and making conjectures based on observation and, for example, 

describing a motion and reflecting on it. The tools for this layer are basic, perhaps 

only a handful to control a simulation on video, or the timing of movement. At a 

second layer, the learner can begin to manipulate motion, and predict and test out 

the effects of different values. At a third layer, the learner might explore further 

how variables relate to each other, for example position, velocity, and acceleration, 

by reference to the values set by sliders. And finally, a fourth layer that engages 

with these relationships either by modifying existing programming code or by 

writing new programs or fragments of programs.

3.3.5 Snapshots of Learning

We now very briefly outline some snapshots of what we interpreted as learning that 

emerged from the iterative design/test cycle with three groups of students: two 

drawn from a large, urban comprehensive school (one “Year 7” class aged 11–12; 
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one “Year 8” class, aged 12–13) and a small group of three students (aged 12–14) 

from a second school in an after-school setting.

Developing understandings of Newton’s third law: In the first task the Year 7 

students began with a relatively low knowledge of the physics concepts involved. 

For example, R suggested, “you could throw some rocks away and that would make 

her lighter so she would move.” For the most part, they were unaware that the effect of 

gravity in space is negligible (in the terms in which the software was devised). Through 

the course of the activity and experimentation with the horizontal rock thrower, students 

appeared to develop an appreciation that throwing a rock would develop an opposite 

movement proportional in velocity. Indeed, later in the session two students worked 

with the theory that “throwing larger rocks makes her move faster.”

Minimising the time for the astronaut to intercept the spaceship, or for the lander 

to safely land on the moon proved a motivating task, particularly for the Year 7 

students. Most students used an iterative strategy, e.g. T and A were delighted to 

refine their strategy again and again by optimizing the use of the horizontal rock 

thrower against the speed of reaching the spaceship.

Using the gauges: Throughout the sequence much use was made of the gauges 

and interpretation of their output. Most of the students found this relatively easy to 

put in place and tended to refer to them constantly as a guide to their use of the rock 

thrower or thrust. When landing on the moon some students applied far too much 

thrust causing the lander to move upwards and disappear off the screen. Reading the 

vertical velocity gauge, which they had set up for the lander, they predicted how the 

lander would “keep on getting slower until zero. Then it will fall back again because 

of gravity.” In the two-player game the ability to attach gauges to the opponent’s lander 

was a particularly successful feature, enabling one group to make a close comparison 

with the other and to adjust the strategy second by second.

Composing horizontal and vertical velocities: Coming up with the hypothesis 

that to achieve diagonal movement a combination of horizontal and vertical 

thrusts would be needed appeared almost effortless and was tested using, for 

example, both horizontal and vertical rock throwers to the astronaut and using both 

simultaneously.

Gravity: The Year 7 students did not immediately make a connection between the 

rock-throwing astronaut and the rock throwers for the lander, although Year 8 students 

seemed to require no prompting. The Year 7’s also only had a vague concept of gravity. 

Only two students volunteered that the lander game would be different from the 

astronaut game because of a gravitational pull near the surface of the moon.

Collaboration, competition and motivation: Beating previous best scores proved 

highly motivating, especially for the team of Year 7 boys. Collaboration centred 

around agreeing what the two teams should have in common: the total mass of 

the projectiles, an agreed safe landing action, a value for gravity, and the vertical 

starting position of their landers (for which they sought and found a new gauge, 

previously not used).

Attempts to minimise fuel use became more sophisticated. The boys realised 

that for their agreed safe landing speed of 30 m/s, they needed only to keep just 

below this figure to ensure a safe landing and minimal fuel consumption. Previously 

they had been trying to reduce velocity to minimum regardless of fuel use.
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In summary, the competitive element of the two-player version was an enormous 

motivation to the students: they loved seeing the opposition’s ship on their screen 

and being able to monitor its progress through gauges. The students became wildly 

excited during landings.

3.3.6 Challenges and Reflections on Design

Overall, the Space Travel Games Construction Kit was successful as a prototype in 

allowing access by diverse students at many layers of learning. It stimulated consid-

erable interest and discussion among students, who used quite sophisticated ideas in 

pursuit of their game making and playing. They generally enjoyed the challenge of 

the game – individually, in pairs, and also over the web; as a measure of engagement, 

many came up with inventive and meaningful suggestions for improvement.

At the same time, there remain some challenges that we have as yet been unable 

to address. We single out just two.

1. Help provided by the meta-game

This was only partially successful for three reasons. First, there was rather too much 

reading required in the initial stages to introduce the different experts; second, some 

terminology was too complex in places; and, third, although the meta-game provided 

some ‘intelligent’ help by suggesting ‘who else’ the students should consult, this was 

rather crude and sometimes led them off track.

The students made some design suggestions involving reducing the reading 

load, that a choice should be offered between reading and listening to instructions, 

and that more complex instructions – such as showing how to set up a gauge or 

to use a behavior gadget – might be communicated through demo buttons or tutori-

als. But we know there is much to do, and in our latest project, we have begun 

seriously to address the need for real intelligence on the part of the system, aimed 

not only at supporting students directly, but on helping their teachers. See http://

www.tlrp.org/proj/tel/tel_noss.html.

2. Permeability as a mechanism for layering

It is one thing to celebrate the virtues of layering as a pedagogic device. It is quite 

another to find design solutions that invite students to explore the different layers, 

to see the relationships between them, or to have a sense of what the utilities of the 

different layers are. Very few students looked beyond the highest drag-and-drop 

level; and we expect that it would take a far longer induction to create a rationale, 

and a culture, in which layers would be productively exploited.

Just what is the right level of interaction to maximise the possibility of engaging 

with – and ultimately learning about – deep ideas? If the game could be made by 

merely dropping random components onto it, something might be achieved – but 

not much. After all, it is one thing to know that gravity can be added to the system: 

quite another to know that it produces a change in momentum (an acceleration) and 
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that this can be characterised by an equation or a piece of programming code. And 

while it is important for students to acknowledge the existence of gravity – i.e. gravity 

does something (and not necessarily what might be expected) – acknowledgment is 

quite different from understanding the quantitative relations that make it work. 

We have much to do to understand and design effectively to address these issues.

3.4 Conclusions

We finish with some cross-cutting themes, notable either by the difference in the 

way the theme played out across the two case studies, or by similarities in which 

two independent design teams resolved issues.

Both teams recognised the need for a back-story. In Lunar Lander, there was 

reference to a meta-game, where the narrative was that the students would help to 

build a lunar landing game. In GnG, the hook was the potential to create working 

animations, with the children’s desire to create a narrative highly motivating.  

The back-story placed the activity squarely in the cultural world of the students 

and created an initial purpose for the students to engage (see Ainley et al. (2006), 

who discuss attempts to build purpose into the task, either as an implicit element 

of the software or more explicitly as part of the task whose completion requires 

the software as a tool).

Nevertheless, in a modeling activity, the mathematics has to do work if the pur-

poseful activity is to be steered through the design towards the learning of math-

ematics. In Lunar Lander, one of the main controls for the students was the ability 

to throw more or less rocks. Although this is certainly an unconventional represen-

tation, there is a clear link, at least clear to us as observers already enculturated into 

the mathematics of dynamics, with the notion of momentum, which was a key idea 

underpinning the design of Lunar Lander. In GnG, the students were required to 

control the animation by the explicit defining of transformations, including their 

parameters, a key idea in the designing of GnG. We have previously observed how such 

fusion of control and representation of a key mathematical idea is often a successful 

design principle when designing for abstraction (Pratt et al. submitted).

At the same time though, we note that the representation of momentum was rather 

more obscure than was the representation of transformation, which had many of the 

characteristics of transformations as seen in standard text books. It is interesting 

to consider the implications of this difference. GnG was designed for (eventual) 

classroom use, predicated on the existence of a teacher and curriculum pieces, and 

clearly oriented toward mathematics. Lunar Lander, on the other hand, was aimed 

(at least in initial design) at students who may not be in classrooms, involved no 

teacher (or even a more capable adult). It is perhaps fair to say that, without the 

presence of a teacher, the students’ rationale for ‘playing’ the game would rarely include 

mathematical priorities. This difference affects the nature of the representation/

control in opposite directions. Thus, in the case of GnG, the cultural expectation of 

teachers, parents and educational authorities require explicit reference to the formal 
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mathematics curriculum. In contrast, in the case of Lunar Lander, the cultural 

expectations of the students require that the software is more playful and less 

overtly related to formal mathematics.

The approach in Lunar Lander was to leave open access to underlying layers, 

where the mathematics would be more explicit and more formal, though possibly 

still unconventional (for example, we would regard programming as formal but 

programming is not conventionally seen as mathematical). It goes without saying 

that the extent to which the invisible layers of a program should be hidden from 

students is much more of a pragmatic rather than principled question. GnG hid 

details from students in doodle mode; Lunar Lander’s approach was to make these 

layers always-available. Ironically, the explicit transformations in GnG were always 

used by students as they were an unavoidable control over the process of creating 

animations, whereas students did not often access the always-available underlying 

layers in Lunar Lander. Why might this have been? The design team for GnG had 

a clear strategy that the mathematics of animation-making would only be addressed 

if the interface features in professional animation software, which tended to hide 

the mathematics, were removed and replaced by the explicit mathematical controls. 

Provided the students would still engage, and this was supported by the teacher and 

the curriculum, the design team could be assured that the mathematics would be 

encountered. The Lunar Lander design team decided to represent the mathematical 

ideas in rather less conventional ways, since otherwise the students may not have 

engaged in the first place. In many cases however, the students did not appear to 

need to access lower layers. It was assumed that the need to refine the landing 

would be satisfied through the auto-pilot, providing a window onto the lower layers 

of mathematics. That this did not happen very often is testimony to the complexities 

of design. Designing for insufficiency seems an important idea when designing top 

level layers. Nevertheless, for all the similarities in how the two design teams went 

about their task, the software solutions provide contrasting case studies on how, 

when and why it might be appropriate to hide or layer the mathematics.

Another interesting theme is that of directionality. Decisions have to be made 

about whether two representations should be ‘hot-wired’ or dynamically linked, so 

that changing one automatically changes another. The danger of making the two 

representations automatically dependent in that way is that students may not become 

aware of the connection if they do not need to focus on it. The danger of disconnecting 

the representations is that first of all a design decision may have to be made about 

which representation to make primitive, and this is not always obvious. Second, the 

creative process may be hampered by introducing an additional step, with resulting 

loss of engagement. GnG’s solution was to have a doodle window, in which students 

were less concerned about formal details and could play more freely, and then a separate 

animation-creating window, where students needed to focus on using the transforma-

tion language to create the expected animation, requiring some visualisation of what 

would happen. This solution is reminiscent of Logo, in which students are able to 

play at top-level and see the animation of the turtle as immediate feedback but then, 

to create a more complex program, it was necessary to build procedures, for which 

the behavior of the turtle needed to be visualised. In both Logo and GnG, the 
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 principle of insufficiency seems to apply. The more formal reflective mode must be 

utilised by the students as the freer mode is insufficient to complete the task satisfactorily. 

In Lunar Lander, students could play relatively freely and their actions would auto-

matically create code in the auto-pilot. The code could then be modified to refine the 

landing process. In one direction, the two representations were hot-wired whereas, in 

the other direction, the code would need to be amended before its exact consequence 

could be seen in the animated landing.As discussed above, autopilot was not necessary 

to complete the Lunar Lander task and so this subtle bi-directionality might not be 

witnessed by the students themselves.

Gauging success with respect to explicitness and directionality is difficult: it raises, 

not just the question of whether mathematical knowledge was learned, but what 

kinds of knowledge were available for engagement. Here we touch on a key theme 

of the ICMI Study and this volume: the theme of knowledge – on which Papert 

focused in his opening keynote and on which the conference tried to focus in its work, 

even when we had to continue without him. His entreaty that we, as mathematics 

educators, reserve “10%” of our effort to think about the knowledge that we were 

designing, a theme he has explored earlier in Papert (1996). If we think of ‘explicitness’ 

as a theme, we run the risk of considering knowledge as invariant under different 

lenses, different degrees of explicitness. But in fact, as we become more or less 

explicit about mathematics, the knowledge itself is open to change.

As an example, our choice of momentum as a fundamental idea (rather than 

force) in Lunar Lander, emerged from our wish to open layers of mathematics more 

broadly to our intended audience. It forced us (or at least encouraged us) to consider 

ways to make mathematical knowledge accessible, and in doing so, to think about 

new knowledge - at least ‘new’ in the sense of knowledge that was unconventional. 

In GnG, the situation was somewhat reversed: here professional software would 

keep hidden the mathematical layers of the transformations, so the ‘newness’ of the 

knowledge was only in relation to the utility and purpose of the mathematical tools 

in effecting animations, rather than in the newness of the mathematics itself.

Inevitably, these kinds of considerations are complex, and involve pedagogic as well 

as epistemological challenges. Yet we have no alternative. If we are genuine in our 

attempt to open mathematics to wider cross-sections of the population, to make math-

ematics operational in the sense of it achieving some personal purpose, then we have 

to acknowledge the design challenges, confront them, and somehow respond to them.
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Chapter 4

Designing Digital Technologies and Learning 

Activities for Different Geometries

Keith Jones, Kate Mackrell and Ian Stevenson

Abstract This chapter focuses on digital technologies and geometry education, 

a combination of topics that provides a suitable avenue for analysing closely 

the issues and challenges involved in designing and utilizing digital technologies 

for learning mathematics. In revealing these issues and challenges, the chapter 

examines the design of digital technologies and related forms of learning activities 

for a range of geometries, including Euclidean and co-ordinate geometries in two 

and three dimensions, and non-Euclidean geometries such as spherical, hyperbolic 

and fractal geometry. This analysis reveals the decisions that designers take when 

designing for different geometries on the flat computer screen. Such decisions are 

not only about the geometry but also about the learner in terms of supporting their 

perceptions of what are the key features of geometry.

Keywords Design • Digital technologies • ICT • Learning • Geometry • Geometries

4.1 Geometry, Technology, and Teaching and Learning

While forms of algebra software (such as Derive, Macsyma, Maple, Mathematica, 

etc.) were amongst the first mathematics software packages (pre-dating, in many 

cases, the graphical interface), it is software tools for geometry (beginning with 

Logo and followed by ‘dynamic geometry’ environments such as Cabri and 

Sketchpad) that have emerged as some of the most widely used digital technologies 

in the mathematics classroom – and arguably amongst the best researched (for 

reviews, see Clements et al. 2008; Hollebrands et al. 2008; Laborde et al. 2006).
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Our aim in this chapter is to consider the interplay between the design of digital tech-

nologies and activities that utilize those technologies for learning mathematics. We focus 

on geometry, covering both Euclidean and co-ordinate geometry in two and three dimen-

sions, and non-Euclidean geometries such as spherical, hyperbolic and fractal geometry. 

The reason for considering this span of geometries is to capture key aspects of how the 

use of digital technologies can and does shape the mathematical activity of the user.

The chapter concludes by reflecting on how some of the key decisions that 

need to be taken regarding issues of geometry are handled by designers of digital 

technologies, and by designers of related learning activities, and on the implications 

for future users of educational digital technologies.

4.2 Working with Different Geometries on the Flat Screen

A distinctive, but perhaps somewhat neglected, characteristic of current digital 

technologies is ‘flatness’, both of the screen used as the visual medium in the class-

room, and the ‘computer mouse’ operating on a flat mouse mat. As we demonstrate 

in this chapter, ‘flatness’ is problematic when representing and interacting with any 

geometry, and even introduces design issues when working with plane (two-dimen-

sional) geometry.

That the flat screen presents some difficulties in handling representations of dif-

ferent geometries is nothing new. Artists and mapmakers have wrestled for centu-

ries with trying to present the three-dimensional (3D) world on the two-dimensional 

(2D) canvas or atlas. In western art, beginning in the fifteenth Century with artists 

such as Brunelleschi, the use of perspective first found systematic presentation in 

Alberti’s Della Pittura published in 1435. The most common method for represent-

ing 3D space on a surface, usually known as linear perspective, is illustrated by 

Albrecht Dürer in a famous engraving of 1525 reproduced in Fig. 4.1. Here a hook 

on the wall takes the position of the eyes, and a taut string represents the straight 

line joining the eyes to a visible spot beyond the frame. This provides one solution 

to the problem of representing solid (3D) objects on a flat surface in a way that is 

compatible with human stereographic vision. As such, the idea of linear perspective 

is a result of taking account of human perceptual apparatus.

In cartography, many forms of map projection have been developed as attempts 

to portray the surface (or a portion of the surface) of the earth (taken as a sphere) 

on a flat surface. Each of these projections maintains some geometrical properties 

(such as distance, area, or shape), but, by their very nature, such projections cannot 

maintain all such properties simultaneously. What is preserved, geometrically, in 

any particular cartographic projection, and what is not, is dependent on the purpose 

for which the 2D map is created (Kreyzig 1991).

A major revolution in geometry came in the nineteenth century with developments 

that led to consistent non-Euclidean geometries, and the emergence of curvature as a 

key idea. Work by Euler, Wolfgang and Janos Bolyai, and Lobachevskii, to name but 

a few, showed that Euclidean geometry was one of many possible geometries: its 

uniqueness lay with its ‘flatness’, not, as Kant would have it, because it is ‘absolute’.
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Curvature, as a geometric property, and because it characterizes more geometries 

than Euclidean, became an active area of research. Gauss and Riemann, for example, 

showed that curvature is an intrinsic property of surfaces, defined locally rather 

than globally. Hitherto, curvature had been defined by embedding a non-Euclidean 

surface in Euclidean (two and three-dimensional) space and using the associated 

global co-ordinate system. Riemann’s introduction of a local description of geometry 

removed the need for projections, a technique which, as noted above, arose out of 

human (perceptual) need rather than mathematical necessity. Yet the price of this 

advance into a range of geometries can be the loss of visual intuition that we need, 

as humans, to understand our experience of space.

In architecture and in many branches of engineering, prior to the development 

of computer-assisted design and manufacture (CAD/CAM), the ‘distorting’ nature 

of the forms of projective geometry used in cartography was circumvented through 

the use of orthographic projection (as developed by Monge in the late eighteenth 

century; see Bessot 1996) in which several 2D views of the object (often referred 

to as front, side, and plan elevation) are utilized instead of a single view. With the 

development of CAD/CAM, 3D modeling became possible – first through a 

2D-to-3D paradigm (whereby the 3D object is built up from 2D objects) and more 

recently through the use of new geometric forms (including grid-like polygonal 

subdivisions of surfaces known as ‘meshes’ and curves in 3D space defined by 

Fig. 4.1 One-point perspective, as illustrated by Albrecht Dürer in 1525. Source: Willi Kurth 

(Ed.) (1963). The complete woodcuts of Albrecht Dürer. New York: Dover (illustration 338)
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control points known as ‘splines’), assisted, at times, by the use of a 3D input device 

(rather than the usual mouse on the 2D plane).

What this short historical introduction indicates is that projections of various kinds 

are the result of human needs, sometimes dependent on the available technological 

medium – such as the ‘flat screen’ of the canvas or atlas – and sometimes because 

of human stereographic vision. As such, projections need to be understood in 

relation to the problem that led to their creation.

Introducing digital technologies has enabled us to interact with more forms of 

geometrical objects, and this underlines the need to understand the conventions of 

the flat screen and how that medium alters our appreciation of the translated logical 

geometric structures (Euclidean or otherwise). What digital technologies may offer is 

a way of building, and developing, our visual intuition across a range of geometries. 

Yet we need to be much clearer as to the affordances and constraints of such 

technologies in the teaching/learning process. It is these issues that we turn to next.

4.3 Designing Digital Technologies for Different Geometries

In examining decisions about representations and interactions when designing for 

different geometries for the flat screen, we focus on three geometry technologies that 

are common to mathematics classrooms: 2D ‘dynamic geometry’ environments 

(such as Cabri and Sketchpad), software for 3D geometry (with 3D Euclidean 

geometry illustrated by Cabri 3D, and 3D coordinate geometry software illustrated 

by Autograph), and software suitable for various non-Euclidean geometries 

(illustrated by the use of Logo).

4.3.1 2D Dynamic Geometry Environments

Over the years since the first ICMI study on technology (Howson and Kahane 1986) 

when users had to rely solely on text-based input via the keyboard, major innovations 

have involved the introduction of direct manipulation graphical capabilities that 

have become synonymous with contemporary computers (Norman and Draper 

1986). Such changes have impacted particularly on geometry education with the 

development of ‘dynamic geometry’ environments (DGEs) such as Cabri and 

Sketchpad (and many others).

At first glance, a DGE is nothing more than a graphics editor enabling geometrical 

figures to be drawn on the computer screen. Yet there is more to it than this because 

with a DGE the user can utilize the mouse to ‘grasp’ an element of the on-screen 

figure and drag it about. As this ‘dragging’ takes place, the diagram on the screen 

changes in such a way that the geometrical relations specified (or implied) in 

its construction are maintained. Such digital environments are called ‘dynamic’ 

for this reason.
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Yet the way in which a DGE figure moves when it is dragged is not solely to do 

with geometry. Even though, as Goldenberg and Cuoco (1998) explain, an over-riding 

principle in DGE interface design has been to try to ensure that the behavior of 

geometrical objects constructed on-screen conform as closely as possible to how 

users would naively expect them to behave (in Euclidean 2D geometry), there is an 

unavoidable tension for DGE designers between the need for objects to move 

continuously when dragged, and the need for the position of the constructed 

elements to be uniquely determined (Gawlick 2004). The problem for DGE designers 

is that no DGE can be fully continuous and fully deterministic at the same time. For 

deterministic DGEs (and most currently available DGEs are deterministic) while 

on-screen figures are completely determined by the given points, the result is that 

some constructions can jump or behave unexpectedly when a particular point is 

dragged. With continuous DGEs (the minority at the moment), dragging any point 

does produce a continuous motion of the construction (through the use, usually, of 

a heuristic ‘near-to’ approach) but it can happen that when a dragged point is 

moved back to the original position, the resulting construction might be different 

from the original. Gawlick (2004) provides illustrations of both cases.

The result of such issues is that users of DGEs need to learn to distinguish between 

changes in the on-screen image (as objects are dragged) that are a consequence of 

geometry and those that are the result of decisions of the software designer. A seemingly 

trivial example is that, in some DGEs, objects that look the same may not act the 

same (for instance, some points may be dragged while others cannot). Yet even this 

apparently trivial issue can leave beginning DGE users wondering why not (Jones 

1999). Another design decision involves deciding whether an arbitrary point on a line 

segment might maintain the ratio to the endpoints when either is dragged – or whether, 

for instance, the point jumps to another arbitrary position (since it is an arbitrary point), 

or whether it maintains a fixed distance to one or other of the endpoints. The common 

decision by DGE designers seems to be to maintain the ratio to the endpoints when 

either is dragged. Yet this is a decision of the DGE designers; it is not something 

governed completely by geometric theory. For more on the decisions of DGE designers, 

see Goldenberg et al. (2008); Laborde and Laborde (2008); Scher (2000).

In graphing software such as Autograph (which shares some aspects of a DGE), 

every object is defined relative to a coordinate system. This means that changing 

the relative scale of the axes changes the appearance of objects. The consequence 

is that, for example, lines which have been defined as perpendicular will no longer 

‘look’ perpendicular when one axis scale is changed (though, of course, in the 

mathematical sense, the lines remain perpendicular). In contrast, in some DGEs 

(such as Cabri or Sketchpad), objects are not necessarily defined in relationship to 

coordinate axes. In such DGEs, a circle (defined, in effect, as the locus of points that 

are a fixed distance from a fixed point) retains the appearance of a circle on-screen 

even when either coordinate axis is changed. The impact of such decisions regarding 

the role of coordinate systems in the representation of objects on learners (especially 

beginners) is currently under-researched.

Whatever the DGE, another design decision relates to the provision of menu 

items (Goldenberg et al. 2008). Providing too few means that more things need to be 
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constructed, something which becomes very tedious. Yet providing too many menu 

items produces undue complexity (rather than ‘user-friendliness’) and could mean that 

teaching opportunities are lost. Finding the balance between these two aspects is a key 

design decision in any educational application – and is something that simultaneously 

involves technical and pedagogical issues (Hoyles et al. 2002). In tackling the issue 

of too many, or too few, menu item, many DGEs, while necessarily prescribing a 

selection of provided constructions, also allow some menu items to be ‘hidden’ (thus 

allowing the software interface to be simplified) while, at the same time, featuring 

a macro or ‘script’ facility for user-defined constructions to be automated (thus 

allowing new idiosyncratic menu items to be added). How this adjusting of menus 

is used by teachers, and the impact on learners, is currently under-researched.

What this section illustrates is that there is a range of issues that add complexity 

for the technology user when it might be assumed that plane geometry on a flat 

computer screen would be the most straightforward case of doing geometry with 

digital technology.

4.3.2 Software for 3D Geometry

From a purely mathematical perspective, it is perfectly possible to use common 2D 

geometry software to create ‘3D’ objects, figures, and graphs. Yet it is complicated 

and time-consuming to do so. As a consequence, recent software development has 

provided a range of geometry environments in which learners can manipulate 3D 

objects directly on-screen. Such environments include Cabri 3D and Autograph 

(version 3).

The issue of representing 3D objects on a flat screen means that a number of 

design decisions, unique to 3D software, need to be made by software developers. 

One key decision is how the opening software screen both orients the user to 3D 

space, and provides a framework for the creation of 3D figures and structures. This 

has been tackled in different ways by different software developers. The opening 

screen for Cabri 3D, for example, shows part of a plane, with, at its center, three 

unit vectors representing the x, y and z directions (see Fig. 4.2). This initial 

viewing angle was chosen so that the plane and vectors would have an appearance 

compatible with the usual textbook representation of 3D space, with the base 

(or reference) plane deliberately chosen so as metaphorically to represent the ground 

(in order to orient the user).

The opening 3D screen of Autograph (version 3) shows a framework of a 

cube bounding 3D space from −4 to 4 on each axis (see Fig. 4.2). This design was 

chosen as being likely to encompass most objects of interest at the relevant level of 

school mathematics. The scale and numbering of the axes is given along the edges 

of the framework so that labels do not ‘float’ through objects created within the 

cube. When objects are created, only the parts of the objects within this bounding 

box are displayed on the screen, the bounding box being chosen as a means of 

making this active area of the screen visible.
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Even more so than with 2D software, the designers of 3D geometry software have 

to make a number of decisions about the ways in which objects are seen on-screen. 

For example, given that in 3D software a point in space is created by clicking in any 

empty screen location, a decision has to be made about the location in space of such 

a point, as a screen location does not define a unique point in space. In Cabri 3D, 

such a point is positioned on the base plane at the position of the cursor. Autograph 

locates such a point halfway through the bounding cube and along the observer’s 

inferred line of sight through the cursor position when the point is created.

Another set of decisions is about the way 3D objects ‘look’ on-screen. For an object 

and its surfaces to have a 3D appearance, use is made of perspective and ‘rendering’ 

(the computer graphics term for the ways in which the visual appearance of a 3D 

on-screen object depends not only upon its geometry but also upon the viewpoint by 

making use of lighting, shading, and, where appropriate, texture). In terms of perspec-

tive, the default for Cabri 3D and for Autograph3 is one-point perspective. In Cabri 

3D, the default viewing distance is 50 cm, representing the screen at arm’s length 

from the viewer’s eye, chosen as it was thought to be ‘natural’. The viewing distance 

was more subjectively chosen for Autograph 3 and is shorter. In terms of ‘rendering’, 

both Cabri 3D and Autograph 3 use shading (by which the brightness of a surface 

is dependent on the direction in which it is facing relative to the inferred observer); 

Cabri 3D also uses ‘fogging’, a computer graphics terms for the effect by which 

objects ‘at a distance’ appear to be fainter than objects ‘close at hand’.

A further set of decisions relate to dragging objects using the mouse. Given that 

dragging on a flat screen can only give motion in two dimensions, in Cabri 3D a 

decision was made that ‘ordinary’ dragging would move a free point (or object) 

parallel to the base plane, while pressing ‘shift’ at the same time as dragging would 

move the point (or object) perpendicular to the base plane. In Autograph (version 3), 

dragging a free point continues to position it halfway through the bounding cube 

along the line of sight of the observer.

Fig. 4.2 Opening screens of Cabri 3D (left) and Autograph3 (right)
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Given the centrality of ‘dragging’ in 2D DGE and its implications for developing 

different types of reasoning (Arzarello et al. 2002), and as dragging is something 

which might make motion in 3D (on the 2D screen) more difficult to interpret by 

the user, the various aspects of dragging in 3D DGE are issues that could usefully 

be the focus for research.

4.3.3 Software for Various Non-Euclidean Geometries

The ‘turtle geometry’ of Logo can give rise to several types of non-Euclidean geometry, 

each of which can be made available on the usual 2D computer screen. (Abelson 

and diSessa 1980). In Logo, a turtle’s ‘state’ is defined intrinsically (by reference 

to its own movement of forward–backward and its heading of turn left or right by 

so many degrees) and locally (since measures of steps and amount of turn are 

referred only to the turtle, not external coordinates). As a result, curvature in turtle 

geometry is turn per step, and is intrinsic to the turtle’s behavior.

While the turtle is ‘viewed’ through the Euclidean lens of the flat computer 

screen, if the screen’s metric is changed so that the turtle’s steps are lengthened 

or shortened in each step (with its turns unaffected), then there is the basis for 

non-Euclidean geometries. The turtle still responds to forward and right in the same 

way, irrespective of the geometry, but adjusting the screen metric alters its behavior 

as if the turtle were in spherical or hyperbolic space. The effect is that the screen can 

be thought of as having a variable ‘temperature’ (Gray 1989): from this perspective, 

spherical geometry has a screen that increases in ‘temperature’ as the turtle moves 

towards the screen’s edge, while hyperbolic geometries get ‘cooler’ towards the 

edge. By ‘dashing’ the turtle’s path (see Fig. 4.3) so that the dashes grow longer or 

shorter according to the geometry, the turtle’s steps are expanded or contracted by 

the ‘temperature’ of the screen. A corresponding speeding up or slowing down 

of the turtle’s movement occurs as it leaves dashes as it is moved. Angles are 

preserved in these worlds, so that they sum appropriately to more (or less) than 

180° in a triangle, depending on whether the screen gets ‘hotter’ (spherical) or 

‘colder’ (hyperbolic) at the screen’s edge, respectively.

The dynamic features provided via Logo are thought to play a significant  

part in helping learners to understand what is happening geometrically when 

exploring non-Euclidean geometries (Stevenson and Noss 1999; Stevenson 2000). 

Given that non-Euclidean models are obtainable through stereographic projection 

of a sphere or a hyperboloid onto the flat screen plane, this aspect of such models 

is thought to be critical in helping learners to understand the screen images.  

As illustrated in the next section of this chapter, such features can be used in the 

design of related learning activities.

Another form of non-Euclidean geometry that can be explored through utilizing 

the Logo turtle is fractal or ‘broken’ geometry (Mandelbrot 1975), formally defined 

as geometry in a space of a non-integer dimension and illustrated by objects 

such as the ‘tree’ and ‘snowflake’ in turtle geometry (Abelson and diSessa 1980).  
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A snowflake, for instance, has an infinite perimeter, but a finite area – classic properties 

of fractal objects – leading to the scale-independent complexity of objects like the 

Mandelbrot set (Blanchard 1984; Mandelbrot 1980). Exploring fractals with Turtle 

geometry is thought to be powerful because such objects can be defined entirely in 

terms of four basic Logo commands (forward, back, right, left) and recursion.

Given the issues involved in the design of software for different geometries, 

we now turn to the issues in designing learning activities that attempt to realize the 

affordances, but take account of the constraints that are part and parcel of such 

software environments.

4.4  Designing Learning Activities to Engage  

Students with Different Geometries

As, when using 2D DGEs, dragging provides learners with an interactive way 

of validating their own constructions, much effort in task design has focused 

on encouraging learner conjecturing and on developing sequences of tasks that 

move pupils from conjectures to proofs (for examples, see Laborde et al. 2006). 

One interesting form of task is akin to a ‘black box’ (see Laborde 1998) by which 

learners are provided with a DGE figure for which they do not know the construction. 

The task is to construct a figure which has identical behaviour when dragged. 

Fig. 4.3 Using Logo to create an asymptotic triangle in hyperbolic geometry
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Such a task is not possible with paper-and-pencil technology. This illustrates the 

powerful affordances of 2D DGEs. For more on task design for 2D DGEs, see, for 

example, Garry (1997) and Laborde (1995, 2001).

In designing learning activities for 3D geometry software (both Euclidean and 

co-ordinate), the complexity of the on-screen image, and the need for learners to 

orient themselves to a flat-screen representation of 3D, need to be taken into 

account. There may also be issues for users moving from 2D DGE to 3D software. 

For example, in 2D DGE the ‘perpendicular’ tool produces a line, while in Cabri 

3D the ‘perpendicular’ does not produce a line perpendicular to a chosen line 

because the perpendicular to a line in 3D is a plane (and the perpendicular to a 

plane is a line).

Given such issues, the ways that the tools available in 3D software mediate the 

learners’ understanding of geometry are only just being researched (see, for example, 

Accascina and Rogora 2006). In designing learning tasks, Mackrell (2008), for 

example, has found that Grade 7 and 8 students can be highly motivated to use 

Cabri 3D to create their own structures. Such structures included models of 

‘real-world’ objects and/or objects that moved, with the creation of such structures 

necessitating the use of a range of mathematics. The ‘flat’ representation on the 

screen appeared to have an influence on student use. For instance, in order for an 

object to have a particular visual property when viewed from all angles (such as a 

segment being perpendicular to the base plane) the object needs to be constructed 

using the mathematical tool which creates the desired relationship (in this case the 

Perpendicular tool). Animation also appeared to be important in that it is only 

points that can be animated and hence other moving objects need to be constructed 

in relationship to the points.

Research on the use of software such as Autograph appears to be more limited, 

though teaching ideas involving the intersections of planes, and volumes of revolution 

(in Calculus) are provided by Butler (2006). More systematic studies of the use of 

software packages such as Autograph are needed.

In terms of the research on constructing a Turtle-based microworld for non-

Euclidean geometry, several principles illustrate the importance of the interplay 

between design and learning, especially the learner-centered development of tools 

and activities that mediate understanding in specific geometries (Stevenson and 

Noss 1999; Stevenson 2000). In Stevenson’s research, Papert’s (1980, 1991) principle 

of finding links to cognitive development was a central design feature. These links 

emerged by working with learners to find what engaged them with the structures of 

the new geometries. Three types of links were needed to help learners connect with 

non-Euclidean turtle geometry because of the complexity of the screen images: 

physical surfaces and their projection, metaphors, and on-screen structures. 

Through tracing paths on the physical surfaces with their fingers, learners were able 

to make sense of what they saw on screen by metaphorically linking their action 

with the screen turtle. Utilization of the metaphor ‘turtles walk straight paths’ helped 

learners identify ‘straight lines’ on curved surfaces with straight lines left by the 

turtle on the screen (Abelson and diSessa 1980). By ‘dashing’ the turtle’s path so 

that the dashes grew longer or shorter according to the geometry, learners were 
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provided with an on-screen structure that indicated that the turtle’s steps were 

expanded or contracted by the ‘temperature’ of the screen. A corresponding speeding 

up or slowing down of the turtle’s movement as it left dashes, coupled with a tool 

that drew the large-scale path which a turtle might take given a particular position 

and heading, provided a dynamic structure for learners to build up their understanding. 

The key point here is that these physical, conceptual, and virtual resources emerged 

through looking for cognitive ‘hooks’ in these specific geometrical contexts.

Overall, the principle of iterative design (see, for example, van den Akker et al. 

2006) is a feature of much work on learner activities as such a perspective pays 

careful and systematic attention to learners’ needs. For example, in Stevenson’s 

research on non-Euclidean geometries, the non-Euclidean microworld emerged 

through analysis of a series of structured activities and observations based on  

the relationship between the roles, tools and organization of resources over three 

cycles of development. It used a combination of didactic intervention, reflective 

discussions, task-based interviews and non-participatory observation of learners. 

Each of these roles was applied consciously in designing activities to achieve 

particular design objectives.

In this section, and in terms of switching attention to how learning activities are 

designed, what also needs to be acknowledged is how the activities are transformed in 

use by learners and teachers, and that feedback from task design can lead to further 

modifications of software design. As Harel (1991) points out, learning and designing 

are intimately connected, both for ‘learners’ and ‘designers’. As a field, mathematics 

education has benefited from some useful connections between technology designers 

and users, perhaps no more so than in the area of geometry education.

4.5 Shaping, and Being Shaped by, Digital Technologies

In this chapter we have shown how key decisions taken by designers of digital 

technologies for mathematics are influenced both by the mathematics involved (in 

the case of this chapter by geometrical ideas of projection, curvature, local and 

global co-ordinates, and so on), and by the affordances of the available flat-screen 

technology. For more examples of the design process see Battista (2008), where a 

case study of the design of a 2D geometry microworld is presented, and Christou 

et al. (2006), where the theoretical considerations in the design of a form of 3D 

geometry software are revealed.

We have also examined the ways in which the design of learning activities is 

affected by, but also affects, the design of the digital technology. As we have illustrated, 

the software packages featured in this chapter exemplify how mathematics and 

learner needs influence the design of the digital technology, while, at the same time, 

the use of these digital technologies undoubtedly shapes the mathematical activity 

of the user. It is this symbiotic beneficial relationship that is continuing to offer so 

much - not only in the area of geometry education, but also as fruitful ways are 

being developed of linking geometry and algebra (Jones 2009).
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Given that the book in which this chapter appears follows on from the very first 

ICMI study (Howson and Kahane 1986), it is appropriate to conclude by looking 

forward to the follow-up to this present study. It may be that, in another 20 years, we 

will have moved beyond flat screen technology, perhaps to a spherical screen for 

spherical geometry, and perhaps to ‘virtual reality’ (VR) environments which embed 

the user in space, something that is already being tested (see, for example, Kaufmann 

et al. 2000; Moustakas et al. 2005). In June 2007, Flatland the movie, an animated film 

inspired by Edwin A. Abbott’s classic novel, Flatland (originally published as Abbott 

1884) was released. Perhaps, in due course, we can look forward to the release of Flatland 

the VR game in which the learner might take part as one of the ‘creatures’ in Flatland and 

experience (in ‘virtual reality’) what it is like to ‘live’ in a flat land.

Perhaps it is fitting to finish with raising the issue of just how ‘direct’ is what is often 

called ‘direct interaction’ when interacting with different geometries using digital 

technologies. As digital technologies for geometry develop, will users feel that they are 

interacting directly with geometrical theory; or will rapidly moving dynamic on-screen 

images seem more like computer-generated imagery (CGI) of the form commonly 

found in contemporary movies? How, we ask, can interaction with different geometries 

be facilitated through different digital technologies in a way which successfully builds 

the visual intuition that we need, as humans, to understand our experience of physical 

and mathematical space? We look forward to further research on such issues.

4.5.1 Coda

This chapter examines the design of digital technologies and associated forms of 

learning activities for a range of geometries. The purpose is analyzing how design is 

influenced by the mathematics involved, by the affordances (and constraints) of the 

available technology, and by the needs of the learner. If space had permitted an even 

longer chapter title, then the borrowing of Abbott’s (1884) subtitle a romance of many 

dimensions could well be appropriate. While there is no space in this particular chapter 

for analyses focusing on other areas of mathematics (such as algebra or statistics), 

such analyses would usefully complement this chapter and are to be encouraged.

4.5.2 Notes

The main geometry software mentioned in this chapter (with publisher or contact 

in brackets) are as follows:

• Autograph (Autograph Maths)

• Cabri (Cabrilog)

• The Geometer’s Sketchpad (Key Curriculum Press)

• Logo (Logo Foundation)
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Implementing Digital Technologies  
at a National Scale
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and Nicholas Jackiw

Abstract In this chapter we describe a range of digital technology implementation 

projects that have been undertaken at a national scale in different parts of the world. 

These projects vary widely in breadth, in the digital technologies involved, in their 

relation to mandated curriculum and in their involvement of different stakeholders. 

We compare these different projects with a view to identify some significant trends 

that are currently developing in such efforts, and also with a view to guide future 

large-scale implementation work. We also analyse the projects in terms of relevant 

theories of technology use in mathematics education.
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• Curriculum • Policy • Software • Activity design • Teaching practices • Instrumentation

5.1 Introduction

The growing number of large-scale digital technology implementation projects 

may well be considered a sign of the relatively widespread acceptance of the 

presence of computer-based tools in the mathematics classroom - acceptance in 

communities such as teachers, administrators and policy makers. While early 

work with digital technologies tended to focus on individual learners, and then 

perhaps classroom – or school-based groups, these large-scale projects demand a 
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much more systemic approach that takes into consideration issues such as teacher 

adoption and curriculum integration. In this chapter, we study a small sample of 

current large-scale implementation projects with a view to both comparing and 

contrasting their choices – What technologies have they chosen to implement? 

How closely do they integrate with the curriculum? How much effort do they 

dedicate to supporting teachers? – and looking for overall trends across the 

projects. We also analyse the strengths and weaknesses of these choices.

Readers with a long history of involvement with digital technologies in 

mathematics education might find it interesting to turn back twenty years and, from 

that viewpoint, try to predict how large-scale implementation projects would play 

out. Would they involve the introduction of new mathematical topics especially 

well-suited to computer use, such as fractals, and the suppression of other topics 

made redundant by digital technologies, such as long division or plotting graphs by 

hand? Would they continue to focus on new opportunities for and modalities of 

student learning? Would implementation projects focus on a particular piece of 

software, such as Logo, or would they adopt a more pluralistic approach? 

Would incoming teachers, who have grown up in a computer-based world, respond 

differently to implementation attempts than more experienced teachers? Would 

large-scale implementation projects involve equipping all classrooms with computers 

or would they continue to develop the idea of the computer lab? Readers may well 

have more extreme predictions to make given the early hope and rhetoric around 

the use of digital technologies.

In the following section, we provide a brief description of the large-scale 

implementation projects we considered, and invite readers to refer to the confer-

ence proceedings (see Behrooz 2006; Dagiene and Jasutiene 2006; Paola et al. 

2006; Jackiw and Sinclair 2006; Trigueros et al. 2006) for more complete 

descriptions. We then offer a first round of interpretation of these projects that 

seeks to compare and contrast them on a number of axes that seem pertinent both 

to traditional concerns of technology implementation and to emerging theories 

related to the use of technology in teaching and learning. Through this analysis 

we seek to identify some trends that might be useful in future work on large-scale 

implementation. Lastly, we take a second round of analysis through a theoretical 

lens of instrumentation, and offer a different interpretation of the projects, their 

goals, and their impact.

5.2 Overview of the Projects

We now summarise each of the following projects: Mexico’s Enciclomedia, 

Italy’s M@t.abel; the US’s Sketchpad for Young Learners, Lithuania’s Mathematics 

9 and 10 with The Geometer’s Sketchpad, and Iran’s E-content initiative. As we 

move into the comparative sections, we will also provide some more detail on the 

project – the sections below are meant to provide only a flavour of each 

initiative.
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5.2.1 Enciclomedia

This Mexican national project is aimed at the primary school classrooms 

(60,000) and intends to complement existing textbook materials with computer 

programs and teaching resources that are to be used with an interactive white-

board. The mathematics section is part of a wider initiative known as 

Enciclomedia, which has produced electronic versions of grades 5 and 6 text-

books that are used in all primary schools. These textbooks have now been 

complemented to include links to computer tools designed to help teachers with 

the teaching of all subjects. Enactivism provides the theoretical and methodo-

logical underpinnings of the project; methodologically, it supports the iterative 

design approach of the resources and theoretically it supports the close connec-

tion between learning and the use of tools in human action.

The project seeks to identify concepts and problems that students find dif-

ficult in the textbooks and complement them with appropriate technology-based 

tools. The difficulties are identified through existing research, conversations 

with classroom teachers and in-depth analysis of the textbooks’ chapters spe-

cifically those that can be problematic. The resulting tools vary in terms of their 

interactivity, but are closely related to conceptual ideas presented in the text-

books and always pose a problem for students and teacher exploration. Figure 

5.1 shows a screenshot of one of the interactive activities that involves the con-

cept of perimeter. These virtual programs are accompanied by teaching guides 

that advise teachers on the use of the interactive programs and encourage col-

laborative work.

Research on the classroom use of these programs leads to further refinements of 

the digital programs. For example, changes in the mode of feedback were made on 

the Perimarea program after researchers observed that students were randomly 

guessing at answers. The researchers have found that teachers and students like the 

resources, although many teachers fear their use and that explicit direction for 

teachers helps to overcome that initial fear.

Fig. 5.1 The perimarea interactive enciclomedia activity
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5.2.2 M@t.abel

The Italian project is the most extensive of the large-scale projects described here. 

It targets the lower secondary school (grades 6–8) and the first two years of higher 

secondary school (grades 9–10). M@ implements and supports part of the curriculum 

that was developed by the Italian Commission for the Learning of Mathematics and 

focuses particularly on the notion of the mathematical laboratory in the classroom. 

The project involves both the development of teaching and learning materials, and, 

perhaps most importantly, the training of teachers to use these materials. Through 

a train-the-trainer model, the project expects to reach almost all the mathematics 

teachers in grades 6–10 within a few years. Many types of mathematical software 

are used, including Excel and Java-based dynamic geometry programs, and are 

intended to support exploration activities and to mediate, with the orchestration of 

the teacher, the transition from personal, concrete meanings that the students 

develop with the proposed activities to the more abstract, scientific meanings.

The project focuses on four thematic areas: numbers and algorithms, geometry, 

relations and functions, and data handling. There are also three transversal themes: 

measuring, argumentation and conjecturing, and posing and solving problems. Each 

activity contains a problem description as well as a diverse set of resources including 

a worksheet and an applet. The activities revolve around a problem situation (see 

Brousseau 1997) for which no routine procedures can be used in solving the problem. 

Students are given different tools that can be used to explore the problem, as in the 

“Luca” problem in which a boy sees a picture of himself at a younger age and wants 

to figure out how much he has grown since then. In another problem, students are 

given a problem involving calculating grains of sands in which they must investigate 

the powers of two. Figure 5.2 shows how the students can increase the powers of 

two and see the accompanying graphical representation change accordingly.

One of the most important components of the project involves the training of tutors 

(100 expert teachers), who are then responsible for the training of almost 4,000 teach-

ers. We will provide some more detail on this component of the project in a later 

section when we compare the modes of implementation across different projects.

5.2.3 Isfahan Mathematics House: E-Content

Iran’s project focuses at the high school level, and particularly on early calculus 

concepts (definition of functions and limit, continuity and derivatives). The project 

is housed at the Isfahan Mathematics House, which is not affiliated with the 

country’s ministry of education. The crux of the project’s work has been to develop 

effective teams of teachers, mathematicians and programmers who work together 

to create Java applets related to the above-mentioned concepts. In particular, the 

project decided to create a mediator or interface role, which would be played by 

someone who could bridge the discourses of the teachers, mathematicians and 

programmers. To date, the project has had little penetration, as teachers are 
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reportedly afraid of using the computer, and of being confronted with unexpected 

student questions. There is also little support from Iran’s educational system for the 

adoption of these applets.

5.2.4 Mathematics 9 and 10 with The Geometer’s Sketchpad

Unlike the previous projects, Lithuania’s implementation effort has chosen to focus 

on one particular software package, namely, The Geometer’s Sketchpad. The project 

involves high school level mathematics, specifically focusing on grades 9 and 10, 

and extends across the entire mathematics curriculum at those grades. Lithuanian 

teachers have very good access to technology – 27% of schools were already using 

Sketchpad before the project began – but teachers do not always have the time and 

expertise required to develop appropriate sketches for teaching, and this provided 

the main impetus for development and implementation work.

Project development began by identifying problematic dimensions of teaching 

mathematics in schools, and focused on creating resources that could better foster, 

through dynamic visualization, the understanding of definitions, properties and 

proofs. This resulted in the creation of over 800 sketches, which can all be used in 

a whole classroom situation (using a digital projector), covering approximately 

50% of the mathematical topics introduced in secondary school (as dictated by the 

Lithuanian National Curriculum). Students do not typically have direct access to 

the use of the software, since the teacher manipulates the sketches at the front of the 

Fig. 5.2 Looking at powers of 2 in M@t-abel
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classroom. However, given the high curriculum integration and the large number of 

sketches, students receive repeated exposure to dynamic visualization.

5.2.5 Sketchpad for Young Learners

As with the previous project, this one involves the exclusive use of The Geometer’s 

Sketchpad. However, it is aimed at “young learners” from the primary school grades 

3–8. As the U.S. does not have a national curriculum (these are dictated by states 

or school districts) the SYL project chose to work with a small number of reform 

curricula and to develop materials that were well-integrated with the mathematical 

ideas and tasks found in these textbooks. The goal of the project was to develop 

sketches and activities that could use the dynamic visualization capabilities of 

Sketchpad to help students explore and understand mathematical concepts and 

problems. Most the activities involve pre-built sketches, where students are invited to 

drag objects, change parameters, make simple constructions and change style elements. 

The activities come with extensive teacher notes that suggest how teachers can structure 

the use of the sketches. These teacher notes also help teachers adapt questions they 

might have used before to be more appropriate to the new representations offered 

by dynamic geometry. Most activities are intended for a laboratory situation, 

though some are designed for whole classroom use. A first set of activities have 

been made freely available on-line, and the secondary school grades 6–8 subset of 

these activities have already been downloaded by over 5,000 teachers.

A sample activity from the SYL project is Jump Along, which is targeted at the 

grades 3–5 level. Students choose different parameters for the number of the jumps 

and the size of each jump, and then watch as the jumps are made on the screen. This 

activity enables them to explore concepts around multiplication, factors and 

covariation (see Fig. 5.3). It focuses attention on visual representations of these 

concepts, rather than on computational aspects. The dynamic way in which the 

jumping occurs shows multiplication as a process – one in which 2 × 12 will look 

very different than 12 × 2, despite the two processes leading to the same place on 

the number line. Most of the activities developed in SYL involved the use of 

sketches that modelled, through dynamic geometry, various mathematical concepts.

Fig. 5.3 The jump along activity
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5.3 Comparing and Contrasting the Projects

As was evident from their descriptions above, these projects differ in many ways, 

and our first approach to trying to compare and contrast them was to identify a set 

of characteristics that could be applied to each project. For example, each project 

could be placed on a continuum regarding the extent to which the technology-based 

activities directly supported an existing curriculum. In the following section, we 

attempt to create an overall picture of the projects by placing them on a set of axes 

representing basic characteristics of the project. Our goal is to examine the intentions 

and goals of the projects, rather than their outcomes. Figure 5.4 shows the legend 

we will use to position each project on the three axes that follow.

5.3.1 Curriculum Content

By their very nature, the use of new tools will have an effect on students’ mathematical 

actions, and will thus change the intended mathematics curriculum, especially 

when that curriculum is conceived of and designed with only traditional tools in 

mind. However, increasingly, curricula in different countries are being developed to 

include the use of digital technologies – with some explicitly designating topics, 

problems or investigations to be delivered using specific educational software and 

others simply suggesting or encouraging the use of digital technologies. Changes 

in content can vary from being quite substantial, involving, say, the addition or new 

topics (such as fractal geometry) and the deletion of existing topics (long division). 

They may appear more subtle, involving, for example, changes in reasoning 

processes, such as using the kind of reasoning by continuity that dynamic geometry 

software offers. They may entail changes in the kinds of questions teachers ask (for 

example: with a dynamic number line, teachers can ask primary school students 

questions involving not only whole numbers, but also integers or real numbers).

In contrast with Papert’s (1980) vision expressed several decades ago about learn-

ing and teaching without curriculum, most of the large-scale projects have chosen to 

stay within the curriculum, and to complement, rather than diverge from, mandated 

curricula (see Fig. 5.5). However, some projects also strove to encourage new varia-

tions of curriculum content. For example, the Enciclomedia project offers activities 

aimed at scaffolding student learning, that is, activities that either provide more ele-

mentary mathematical ideas or that offer different ways of approaching those ideas. 

This might include a visual animation that helps illuminate a certain difficult idea. 

USA
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Fig. 5. 4 Legend for each project
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The visual animation, while supporting the learning of the existing curriculum, can 

also provide new content, such as geometric explanation of a mathematical idea, or a 

mathematical connection between an image and an abstract mathematical idea.

The Lithuanian approach is quite different, in that the grades 9–10 project seeks 

to identify the mathematical ideas that can be directly represented through dynamic 

visualization, and can thus benefit from technology-based presentation or exploration. 

Here the expressed goal is to support student learning within the existing curriculum, 

and to encourage new content through more implicit means, through the use of the 

tools in the software environment and the modes of interaction.

As with the Lithuanian project, the US project also attempts to identify curriculum-

based activities that are well-suited to dynamic visualization. However, it has been 

more explicit about highlighting and promoting new content opportunities such as 

focusing on the behaviour of mathematical objects instead of their properties and 

on promoting the use of the dynamic number line as a fundamental mathematical 

model. Indeed, in creating some activities, the dynamic nature of the software has led 

to tensions between the continuous representations that are intrinsic to Sketchpad 

and the more discrete representations often used in the primary school grades, where 

whole numbers dominate. An example is an activity in which students are asked to 

break a stick into three parts and determine whether those parts can form a triangle. 

In the textbook, students consider only whole numbers, but in the Sketchpad-based 

activity, one can explore the situation in a more continuous manner, where the 

lengths of each part of the stick might not be a whole number. Some teachers 

resisted exposing their students to non-whole numbers, even if no calculations were 

required. Other teachers encouraged their students to use the visual representation 

of the lengths of the sticks so that they could qualitatively compare them. While 

mere exposure to advanced concepts at the primary school level does not constitute 

a change in content, it does present interesting challenges and possibilities.

Like the SYL project, the Italian M@ project finds itself working to support 

existing curricula, but having to do so in a context in which digital technologies are 

very rarely used in classrooms, despite being promoted in the formal curriculum. 

One goal of M@ is to provide teachers with opportunities to use technologies in 

their classrooms. In this sense the initiative encourages new content according to 

the philosophy of the Mathematics for the Citizen, namely of a mathematics whose 

cognitive roots are sought in everyday life and whose theoretical aspects are built 

from the concrete argumentations of the students.

USA Lithu. Iran ItalyMex.
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Fig. 5.5 Situating the projects on the curriculum content axis
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We find it noteworthy that the projects we have described here are so modest in 

their ambitions to encourage new content for the mathematics curriculum. Perhaps, 

following extensive arguments for the benefits and opportunities of doing new 

mathematics with the new technologies, we are now in a period of restraint in which 

the goal is to support teachers in making the technologies work within the scope of 

existing school mathematics. As we shall see, the traditional interest in new content 

for learners seems to have shifted to emphasise new practices for teachers.

5.3.2 Teaching Practices

On the whole, comparing the axis below with that focused on content, the projects 

were more intent on endorsing new practices than they were in encouraging new 

content (see Fig. 5.6). By practices we include a wide variety of normative behaviours 

that might include ways of structuring interaction in the classroom (lecturing, using 

individual problem solving, coordinating small-group work), ways of assessing 

students (homework, quizzes, alternate forms of assessment), and ways of interacting 

outside the classrooms (developing lessons with colleagues, attending professional 

development workshops). We provide these just as examples; they are certainly not 

exhaustive of the range of practices involved in teaching, or targeted by the projects.

The Mexico project provides an example in which the practices being endorsed 

involved teachers’ ways of structuring interaction in the classroom. The technol-

ogy-based activities designed for Enciclomedia are intended to motivate students to 

be engaged in mathematical activities by inviting them to take part in games and by 

providing interesting contexts. Interactive whiteboards also encourage students 

to take part in the activities. Students can use the programs to validate their 

solutions to mathematical problems. The software becomes an additional source 

of knowledge, different from the teacher. Teachers themselves often resort to 

the programs to experiment with different solutions, and some of them start 

their lessons by working with an activity within Enciclomedia, without giving a 

formal explanation to the students.

The Lithuanian project focuses on one new practice to endorse, while leaving the 

others more or less stable. The new practice that is endorsed is mainly related to 

providing students with more visual and dynamic means of representing and explaining 

mathematical ideas. The project materials, which complement the widely-used 

textbooks, do not require special time for preparation, nor adjustment in classroom 

interaction structures.

Technology activities reify

existing teacher practices

Technology activities endorse

new practices

USA Lithu. IranItalyMex.

Fig. 5.6 Situating the projects on the teacher practices axis
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Italy’s M@ project has an explicit aim to endorse new teacher practices; it is one 

of the main goals of the project. New endorsed practices include not only providing 

students with more exploratory mathematical tasks mediated by digital technologies, 

but also participating in a community of colleagues (including tutors and fellow 

teachers) to discuss the impact of their new initiatives.

Iran’s project provides an interesting counterpoint to the ones described above 

in that the changes in teacher practices that the project endorses are done under a 

much less developed background of standards. So, for example, while the US may 

be seen as endorsing new practices relative to the ones most prevalent in elementary 

school today, it basically reifies the practices that have been advanced by national 

organizations such as the NCTM – practices that only a small portion of American 

teachers have adopted (see Jacobs et al. 2006). In the same way, M@ seeks to reify 

new practices advanced by Mathematics for the Citizen, a curriculum designed by 

the Italian Commission for the Learning of Mathematics. Iran’s project seeks to 

endorse new practices that are not yet mandated at the national level, and that are 

extremely rare within the teaching population.

The projects differ also in terms of the level and nature of support offered to 

teachers. The most extensive level of support is found in the M@ project, which 

includes an explicit train-the-trainer model, in which teachers receive on-site support 

from a designated tutor who has already used the M@ materials. Teachers also 

follow an e-course to help them learn about teaching with the new materials, and 

they are asked to join a group of 12 colleagues with whom they can share questions 

and difficulties. The goal of the project is to provide teachers with “e-shared 

practices” through this extensive networking.

On the other end of the spectrum, neither the Lithuanian nor the Iranian project 

provide targeted teacher support; for the former project, teachers do not seem to require 

either the mathematical or technological support, whereas for the latter, teachers 

seem to be lacking basic cultural support from the ministry or their colleagues – and 

are thus unwilling to try the new technology-based activities proposed to them.

In the middle of these two extremes, we find projects such as Enciclomedia and 

SYL which have both endeavoured to cater to teachers in terms of providing direct 

curriculum links, specific suggestions on how and when to use the technologies, 

and, in the case of SYL, many pre-made sketches that do not require much expertise 

with the software.

5.3.3 Activity Design

Our previous axis focused primarily on the role of the teacher in each of the projects. 

However, this next axis considers more closely the design choices made in terms of 

the students’ use of the tasks and tools. Our first interpretation of this axis involved 

considering the extent to which the particular technology was being used as an 

expressive medium. Take the following two ways of working with Excel for example. 

An open use of Excel might involve the student being asked to compare different 
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rates of growth - which would involve the student inputting the necessary formulas 

and using a graph or table to compare the rates of growth. In a more closed use, the 

formulas might already be set up, as well as the graphs, and the students would 

simply change certain parameters in the spreadsheet.

There has long been a tension between the desire to provide students with 

“open,” creative, constructionist ways of working with mathematical ideas and the 

necessity of restraining and constraining students to specific mathematical learning 

outcomes. Many technology-based tools for mathematics learning, such as Logo, 

Boxer, Sketchpad, Cabri, Fathom, have been stimulated by the attraction of offering  

students more “open” mathematical experiences, that is, with environments in which 

students can express themselves mathematically through the particular software’s 

“programming” language. Such “open” activity can (and should!) often lead the students 

and teacher into unknown territory, and this may lead to tension created by a teacher’s 

desire to maintain curriculum fidelity.

Such “open” experiences stand in contrast with ones in which students follow 

step-by-step exercises or drills in which students have little effect on the way the 

problem is defined and little choice on the way it must be solved – technology-based 

examples might include early example of CAI and many of the Java applets  

currently available on the internet (see Sinclair 2005). As research has shown, 

“open” experiences are very difficult to manage and create for teachers, especially 

under circumstances such as high-stakes testing, poor mathematical knowledge or 

parental and societal disapproval.

We note that Hoyles et al. (2002), describe some more middle ground interactions 

using Logo-based microworlds in which the students’ actions are restricted to 

certain objects, without compromising their expressive potential. These sorts of 

microworlds have also been created in Cabri and Sketchpad, using the macro or 

custom tool commands. They are much more difficult to create in Excel, Graphing 

Calculators, or with Java applets due to programming limitations.

With this particular interpretation of “open” vs. “closed” we noticed a strong 

tendency towards more closed student use of technologies. The pre-made sketches 

of the Lithuanian project and SYL, the highly authored exploratory resources in the 

Enciclomedia project, M@ and in Iran – these all contrast significantly with the 

more “open” activities in which students create a house in Logo or constructed a 

square in Cabri in the sense that the student is restricted to operating on pre-defined 

objects and relationships.

The tendency toward the “closed” side of the continuum (see Fig. 5.7) was interesting 

in terms of the stated goal of several of the projects to provide maximally “open” 

USALithu. Mex.
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Fig. 5.7 Situating the projects on the activity design axis
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environments. It is perhaps not surprising that the endeavour to appeal to a broad 

range of teachers, students and stake-holders has an effect of tugging toward 

more specific, restricted tools that are easy to learn and identify. The tendency 

toward the use of closed activities may also be related to an increase of attention 

to the role of the teacher in the technology-rich classroom. The designers of 

these projects had the teacher centrally in mind, and made the decision to offer 

simpler tools together with teaching guides that explicitly support the process of 

instrumentation (how to use the tool).

The Enciclomedia project reflects well the tension that results from the interplay 

between large-scale implementation and “open” design: while it aims for open 

activities, it must relate to the content of the textbook chapters and the curriculum. 

The project has favoured the design of tasks where students and teachers can 

explore mathematical ideas before they attempt to solve the corresponding 

problems in the textbook. However, in order to address very specific miscon-

ceptions that students develop with particular concepts such as fractions or 

proportionality, these tasks are very directed and focused, thereby limiting students’ 

expressive power.

The Lithuanian project has a slightly more “open” design. This is in part due to the 

fact that they are using Sketchpad, which, in contrast with internet-based applets or 

animations, offers a wide range of tools that are always available to the student, even 

with a pre-built sketch. So, while we may not consider it significantly more “open” 

if a student can change the colour of a particular linear graph, other affordances of 

the software can indeed allow the student more expressive power. The fact that all 

the activities consist of pre-built sketches certainly limits the students’ scope.

The SYL project combines pre-built activities with more “open” ones in which the 

students use construction tools to create mathematical models and explore mathe-

matical relationships. While these activities are still quite highly choreographed, they 

do provide students with additional tools for mathematical expression through which 

they might approach a problem in multiple ways or pose new problems.

The M@ project encouraged us to consider the “open” vs. “closed” axis somewhat 

differently. This project consists of an on-line platform in which an entire teaching 

situation is proposed, including worksheets, Java applets, and pointers to non 

internet-based communication technologies. Furthermore, the project has adopted 

the “mathematics laboratory” approach, which suggests a more open environment that 

involves choosing from a broad range of tools. The project also emphasises the notion 

of “doing mathematics in order to communicate,” which involves not only exploring 

mathematical ideas using an internet-based applet, but also using communication 

technologies in order to communicate their mathematical actions and understandings. 

The teacher is responsible for strongly mediating the use of the technologies in 

order to foster students’ exploration and conjecturing.

While the specific Java applets offered to the students may be thought of as 

being “closed” in terms of our original distinction, the communicative expectations 

can be seen as much more open in the sense that students are not confined to acquiring 

specific content areas but are expected to engage in important process goals of 

conjecturing, exploring and communicating. The M@ project seems unique in 

this particular sense of openness.
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5.4 Emerging Themes Across the Projects

In this section, we consider some of the critical themes that have emerged in our 

comparison of the different projects, and use a more theoretical lens to help us 

elaborate these themes.

5.4.1  Shifts in Audience: Moving Toward More  

Teacher Participation

As mentioned above, we see a shift in focus in some of the large-scale projects 

toward increased awareness of and attention to the teacher’s role in using and 

deploying digital technologies in the mathematics classroom.

In order to explore this shift further, we consider two projects that are on opposite 

extremes in this regard: Lithuania and Italy. On the one hand, the Lithuanian project 

remains focused on the student, and on improving student understanding directly. 

The pre-made sketches developed by the project can help teachers in their lesson 

preparation (in that individual teachers do not have to create the sketches from 

scratch) and allow them to offer their students new dynamic representations of 

mathematical ideas. The pre-made sketches can also help teachers make the transition 

from lecture-style demonstrations to a modality in which students are manipulating 

the technology themselves. A further aim of the project is to help students learn 

mathematics on their own – it is envisaged that students can use the sketches to 

explore axioms, to comprehend features of mathematical objects, and to understand 

theorems. Teachers are seen as guides who can help students to reach this goal.

In M@, as we have described above, there is extensive attention on the teacher. 

The project includes direct work with teachers on and with the new technologies. 

Using the theory of instrumental genesis (Vérillon and Rabardel 1995), which is 

usually applied in mathematics education to the process of technology use for stu-

dents (Artigue 2002), we might say that M@ focuses attention on the process of 

instrumentalization of teachers – that is, the process through which the teachers use 

and shape the technology. The teacher instrumentalization occurs within a frame-

work in which the processes are strongly focused on the processes of instrumentali-

zation they can promote in their own students when using technologies. There are 

thus two levels of instrumentalization at work in which the instrumentalization 

processes in teachers using M@, like a shadow, is nurtured through the correspond-

ing instrumentalization processes of their students.

5.4.2 Shifts in Value: From Pragmatic to Epistemic

In this section we continue our focus on the Lithuanian and Italian projects, but now 

return our attention to the students. In particular, we look more closely at the changing 

emphasis on what students gain from their use of digital tools. In discussing the 
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techniques that digital technologies offer for solving tasks (such as graphing or 

calculating), Artigue (2002) distinguishes two types of values that can be related to 

these techniques. She notes that “techniques are most often perceived and evaluated 

in terms of pragmatic value, that is to say, by focusing on their productive potential 

(efficiency, cost, field of validity)” (p. 248). However, she argues that techniques can 

also have epistemic value, as they “contribute to the understanding of the objects they 

involve” and thus become a “source of questions about mathematical knowledge” 

(p. 248). We offer a specific example that should help clarify the distinction.

Consider the difference between variables and parameters in a formula such as 

y = ax2 (where x, y are variables and a is a parameter). The distinction is important, 

but can be very difficult for students to appreciate. However, a dynamic geometry 

environment can help students make sense of the difference. In Fig. 5.8, one can use 

a slider for the parameter a: moving it will change the shape of the parabola. Moving 

the variable x along the axis will change the location of point P on the curve.

The use of these two instrumented practices, dragging x and dragging a, have 

pragmatic value since doing them changes both x and a (as well as the location of 

P and the shape of the parabola). These actions can also help reveal the epistemic 

aspects of the pragmatic action of dragging. Dragging a changes the whole shape 

of the curve, while dragging x changes the location of P on the curve. The epistemic 

value is usually not apparent to the student, and often requires strong teacher 

mediation (see Schneider 2000).

Although Chevallard (1992) argues that the two values are inseparable, there is 

often more attention paid to one than to the other. In particular, when the focus is 

on learning how to use a tool, the pragmatic aspect is privileged. However, since 

many of the projects are moving towards technology-based activities that decrease 

the intensity of learning to use the tool, it is possible that the epistemic aspect 

becomes foregrounded.

Fig. 5.8 Dragging variables and parameters in 

dynamic geometry
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The Lithuanian project attempts to interweave both the pragmatic and the 

epistemic. On the one hand, within each sketch, students are required to do something, 

whether it be changing a parameter or transforming an object (changing the equation, 

reflecting or rotating, or changing coordinates). On the other hand, students also 

use the tool to gain a visual appreciation of the mathematics. Figure 5.9 illustrates 

two sketches intended to help students work with systems of equations (that are not 

necessarily linear). The goal is to address the question of how many solutions such 

a system of equations will have.

The technique used is to change the parameters that define the graphs – this 

is the pragmatic value of using the sketch since the action produces different 

configurations of the objects that can allow students to assess how many solutions 

there might be. However, when changing the values of the coefficients, students 

must try to understand how each coefficient affects the shape, size and location 

of the corresponding object, and, eventually, what changes can contribute to 

producing cases with two, one or no solutions – and thus, through the task, the 

epistemic value of the tool is emphasised.

In the M@ project, the coordination of the two values plays a central role in 

the teachers’ instrumentalization, in part because its underlying philosophy is 

that the teacher plays a crucial role in mediating the two values for the students. 

As a result, each suggested practice (proposed to teachers during their discussions 

with the tutors) always incorporates an epistemic aspect; this aspect is particularly 

stressed by the tutor in the discussion in the e-learning platform. Influenced also 

by the anthropological approach of Chevallard, which has drawn attention to the 

issues of epistemic vs. pragmatic values, the Enciclomedia similarly considers 

epistemic value in the design of resources and teachings guides. The resources 

promote the pragmatic value but not by itself, always together with the epistemic 

value. The distinction has not been as central in the SYL project, given its different 

theoretical positioning.

Fig. 5.9 The graphical solution of sets of equations (a) system of linear and circle equations,  

(b) system of two circle equations
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5.5 Concluding Remarks

To date, we have minimal evidence regarding the success of these different 

implementation projects either in terms of their uptake by teachers or their effects 

on student learning. In looking across projects, it seems that some of the greatest 

achievements have been a better coordination between researchers and teachers, 

with the former slowly devising better strategies for increasing the use and effec-

tiveness of digital technologies, strategies that are much more sensitive to the 

constraints of the curriculum and to teacher instrumentation.

We also note that the types of digital technologies used in these projects 

(predominantly dynamic geometry environments and Java applets) reflect a very 

small portion of the digital technologies discussed in this book. While such choices 

seem sensible given the level of access offered by Java applets and the widespread 

use and acceptance of dynamic geometry environments, we wonder what effect 

their large-scale implementation will have on the use and development of other 

software programs such as Lunar Landing or Graphs ‘n Glyphs (described in Chap. 3). 

Indeed, it appears that most of the projects (except M@) chose to focus on the use of 

one multi-purpose digital technology. Such a choice has the advantage of minimizing 

scaffolding work for teachers and students. In fact, Goldenberg (2000) has coined 

the “Fluent Tool Use Principle,” which states that “learning a few good tools well 

enough to use them knowledgeably, intelligently, mathematically, confidently, 

and appropriately” (p. 7) can greatly contribute to a students’ mathematical 

education. On the other hand, it may curb the adoption of newer software programs 

that can respond to emerging needs in mathematics education.

5.6 Looking Forward

In their three-wave model of the development of digital technologies in mathematics 

education, Sinclair and Jackiw (2005) describe the evolution of attention from 

“Wave 1,” with its exclusive focus on the relationship between an individual learner 

and mathematics itself, to “Wave 2” and its broader focus on the context of learning, 

including the teacher and the curriculum. Examples of Wave 1 technologies include 

both Logo and multiple-choice testware of the 1970s computer-assisted instruction 

– both first wave, despite their diametrically opposed theories of learning. Wave 2 

technologies include the graphing calculator, spreadsheets, and interactive or 

dynamic geometry – technologies that have been adopted by several of the projects 

described in this chapter. Both the exigencies of the national-scale implementation 

projects (which must look beyond individual students in classrooms) and the very 

nature of Wave 2 technologies may account for the strong focus we have seen on 

the teacher and the curriculum in the projects described here.

While Wave 2 technologies are most pervasive today, Sinclair and Jackiw anticipate 

the emergence of Wave 3 technologies, which involve yet another expansion of the 
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technology’s pedagogic focus to include relationships between individual learners, 

groups of learners, the teacher, the classroom, classroom practices, and the world 

outside the classroom. They cite proto-third wave technologies such as the “networked 

calculator”, with its emphasis on collaboration and information-sharing. They also point 

to ways in which third wave technologies might evolve out of “amplifying” technolo-

gies such as networking facilities, interactive whiteboards or videoconferencing, 

which render second wave technologies more sensitive to a social knowledge web.

In our analysis of the large-scale implementation projects presented in this 

chapter, we have noted time and again how the focus has shifted toward a much 

greater attention to the teachers and to teacher practices (including teacher 

instrumentation), as well as on the interplay between digital technologies and the 

curriculum. When the focus is on the student interacting with the technology, as is 

the case in the expressed effort to re-balance epistemic and pragmatic values, the 

motivating concern is much broader than individual student learning; it relates to a 

greater awareness of the dynamic between conceptual and technical work, and the 

status of each in a given institution.

If there is a relationship between the types of digital technologies we now use in 

mathematics education and the trends we have seen emerge in current large-scale 

implementation projects, then it stands to reason that further changes in technologies 

– as in the move to the third wave – might affect the predominant concerns and 

goals of future implementation projects. Such projects might focus more on, for 

example, extending mathematical learning into students’ homes (which may begin 

to affect the role of the parent), or extending the confines of the usual classroom (to 

include other students that may be only virtually present), or introducing new 

modes of communication that are consonant with cultural trends (deploying graphing 

calculators through cell phones). In cases such as these, we might expect to encounter 

a new set of axes – different from the one we proposed for this chapter – that relate to 

the extent to which the digital technology is accessible and pervasive (outside the 

classroom) or the extent to which the implementation involves activity develop-

ment, teacher instrumentation, parent instrumentation, or infrastructural support.
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Chapter 6

Introduction to Section 2

Paul Drijvers, Maria-Alessandra Mariotti, John Olive  

and Ana Isabel Sacristán

Abstract This introduction sets the scene for the volume section 2 on the theme of 

learning and assessing mathematics with and through digital technologies. It first 

describes the section’s points of departure. Then each of the chapters of the section 

is briefly addressed. The introduction ends with a short reflection on the section 

as a whole, noting that the major content emphases are on algebra and geometry, 

with only limited attention to calculus, statistical reasoning, and proof. In closing, 

we call for a closer relationship between mathematics education research and 

educational science in general.

Keywords Mathematics education • Learning • Digital technology • Assessment • 

Learning trajectories

6.1 The Points of Departure

One of the themes that served to frame the 17th ICMI Study “Digital technologies 

and mathematics teaching and learning: Rethinking the terrain” and which was 

distinguished as a pivotal issue in the study, was that of learning and assessing 

mathematics with and through digital technologies. In the study’s Discussion 

Document (IPC 2005), this theme was described as follows:

P. Drijvers ()

Freudenthal Institute for Science and Mathematics Education, Utrecht University, Utrecht,  

The Netherlands

M.-A. Mariotti

Dipartimento di Scienze Matematiche ed Informatiche, Università di Siena, Siena, Italy

J. Olive

The University of Georgia, Lexington, GA, USA

A.I. Sacristán

Departamento de Matemática Educativa, Centro de Investigación y de Estudios Avanzados  

del IPN (Cinvestav), Mexico, Mexico

C. Hoyles and J.-B. Lagrange (eds.), Mathematics Education  81 

and Technology-Rethinking the Terrain, DOI 10.1007/978-1-4419-0146-0_6,

© Springer Science + Business Media, LLC 2010



82 P. Drijvers et al.

This theme will concentrate on developing understandings of how students learn mathematics 

with digital technologies and the implications of the integration of technological tools into 

mathematics teaching for assessment practices. Its foci will include consideration of how 

digital technologies might be employed to open windows on learners’ developing knowledge, 

and on how interactions with digital tools mediate learning trajectories. Additionally, the 

theme will address the challenges involved in balancing use of mental, paper-and-pencil, 

and digital tools in both assessment and teaching activities. (IPC 2005, p. 356)

In the same document, the following six questions and issues to address were 

formulated:

1. What theoretical approaches and methodologies help to illuminate students’ 

learning of mathematics in technology-integrated environments? What are the 

relationships between these approaches and how do they compare or contrast 

with other theories of mathematics learning?

2. How does the use of different digital technologies influence the learning of 

different mathematical concepts and the shape of the trajectories through which 

the learning develops?

3. How can technology-integrated environments be designed so as to capture 

significant moments of learning?

4. How can the assessment of students’ mathematical learning be designed to take 

into account the integration of digital technologies and the ways that digital 

technologies might have been used in the learning of mathematics?

5. How can and should learning and assessment practices reflect differences in 

resource level and in cultural heritage?

6. How can the benefits of existing technologies be maximized for the benefit of 

mathematics teaching and learning?

In the next part of this introduction, we will provide a short “guided tour” through each 

of the chapters of this section of the study volume. Next, we will briefly reflect on these 

chapters from the perspective of the above questions. This introductory chapter concludes 

with some final remarks on the mathematical topics addressed and the relationship 

between mathematics education research and educational research in general.

6.2 A Guided Tour Through the Chapters

The first full chapter of this section (Chap. 7) is entitled “Integrating Technology 

into Mathematics Education: Theoretical Perspectives.” The central question at stake 

in this chapter is: What theoretical frames are used in technology-related research 

in the domain of mathematics education and what do these theoretical perspectives 

offer? The chapter first provides an historical overview of the development of 

theoretical frameworks that are considered to be relevant to the issue of integrating 

technological tools into mathematics education. Then some current developments 

are described, with a particular focus on instrumental approaches and semiotic 

mediation. While discussing future trends, the authors observe theoretical 

advancements; still, the articulation of different theoretical frameworks is not 
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realized. Also, some aspects remain underexposed, such as the role of language in 

instrumental genesis, the role of the teacher in technology-rich learning environments, 

and the influence of the available tools on tasks and task design. Connectivity, both 

among technologies and among theoretical frameworks, might be a key focus for future 

studies. A plea is made for the development of integrative theoretical frameworks 

that allow for the articulation of different theoretical perspectives.

The next chapter (Chap. 8) focuses on mathematical knowledge and practices 

resulting from access to digital technologies. It first describes how technology has 

influenced the contexts for learning mathematics, and the emergence of a new 

learning ecology. Notions of cognitive fidelity and mathematical fidelity are introduced 

to define criteria for the use of technological tools. Then, mathematical knowledge 

that “resides” within the different technologies is addressed. As a third issue, the 

changes in mathematical practices in education are considered. It is argued that 

interactions among students, teachers, tasks, and technologies can bring about a 

shift in empowerment from teacher or external authority to the students as generators 

of mathematical knowledge and practices; and that feedback provided through the 

use of different technologies can contribute to students’ learning. As a result, the 

authors propose a transformation of the traditional didactic triangle into a didactic 

tetrahedron through the introduction of technology as a fourth vertex and conclude 

by restructuring this model so as to redefine the space in which new mathematical 

knowledge and practices can emerge.

The third full chapter of this volume section (Chap. 9) is entitled “The 

Influence, and Shaping, of Digital Technologies on the Learning – and Learning 

Trajectories – of Mathematical Concepts.” The significant development and use of 

digital technologies has opened up diverse routes for learners to construct and 

comprehend mathematical knowledge and to solve problems. This implies a revi-

sion of the pedagogical landscape in terms of the ways in which students engage 

in learning, and how understandings emerge. The authors consider how the avail-

ability of digital technologies has allowed intended learning trajectories to be 

structured in particular forms and how these, coupled with the affordances of 

engaging mathematical tasks through digital pedagogical media, might shape the 

actual learning trajectories. The chapter begins with a brief theoretical overview to 

inform the various perspectives that frame the subsequent sections, including, in 

particular, a presentation of the construct “learning trajectory.” This prefaces later 

sections addressing hypothetical learning trajectories and the affordances of dig-

ital technologies as pedagogical media. How digital technologies influence the 

evolution of learning trajectories is then considered through the use of examples 

that contextualize the construction of hypothetical learning trajectories, learning 

trajectories within and across various platforms, the emergence of actual learning 

trajectories, and the possibilities for earlier engagement with powerful ideas as 

afforded by digital technologies. The concluding section draws on these aspects 

and examples, to consider the manner in which the learning experience is trans-

formed through the engagement of digital technologies. It also attends to the 

consequential influence of this alternative engagement on the evolution of the 

leaning trajectories and hence on learning.
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The next chapter (Chap. 10) addresses the issue of automatic assessment 

supported by digital technologies. The authors describe computer aided assessment 

of mathematics by focusing on the micro-level of automatically assessing students’ 

answers. Assessment is seen as a fundamental part of the learning cycle, central to 

learning and often a primary driver of students’ activity. Significant technical 

developments of the last two decades are described through examples of internet 

based systems. As a conclusion, the authors stress the strength of computer-aided 

assessment through its immediacy and the mathematical sophistication of automatically 

generated feedback.

The final chapter of this volume section (Chap. 11) is entitled “Technology, 

Communication, and Collaboration: Re-thinking Communities of Inquiry, Learning 

and Practice.” This chapter addresses the relationships between research on the 

role of technology in mathematics education and the framework of social learning 

theories, suggesting that social perspectives on teaching and learning with technology 

have become increasingly prevalent. A review of recent literature adds further 

support to the view that there is growing interest among the mathematics education 

community in how digital technologies can enhance mathematics teaching and 

learning through attention to social aspects of coming to know and understand. 

Four typologies of digital technologies and their role in collaborative practice 

are identified: technologies designed for both mathematics and collaboration; 

technologies designed for mathematics; technologies designed for collaboration; 

and technologies designed for neither mathematics nor collaboration. As new 

technologies continue to be developed and refined, they offer new ways to construe 

communication, collaboration and social interaction and thus change the availability 

and feasibility of different kinds of communities of practice. This has implications 

for both research and practice.

6.3 Looking Back at the Original Issues

After the above global chapter description, we wonder if we really contributed 

to the six issues as they were formulated in the Study’s Discussion Document. 

To investigate this, we briefly go through these items, link them to the content of 

the chapters and summarize the main findings.

1. What theoretical approaches and methodologies help to illuminate students’ 

learning of mathematics in technology-integrated environments? What are the 

relationships between these approaches and how do they compare or contrast 

with other theories of mathematics learning?

  Theoretical approaches receive considerable attention in this section. This 

item is addressed in Chaps. 7–9 and 11. While Chap. 7 provides a general over-

view of theoretical ideas, the main theoretical frames in that chapter are the 

instrumental approaches and the notion of semiotic mediation. In Chap. 8, a 

didactic tetrahedron is introduced so as to redefine the space in which new math-

ematical knowledge and practices can emerge from technology-rich  mathematics 
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education. Chapter 9 examines the theoretical construct of learning trajectories, 

considers it in relation to the use of digital technologies and attempts to connect 

it with one of the theoretical definitions of the idea of microworld. Chapter 11 

focuses on the relationship between social learning theories and connecting or 

connective technologies. As one of the important future issues, Chap. 7 ends 

with recommendations for the development of integrative theoretical frame-

works that allow for the articulation of different theoretical perspectives. Some 

first steps in this direction are sketched.

2. How does the use of different digital technologies influence the learning of dif-

ferent mathematical concepts and the shape of the trajectories through which the 

learning develops?

  The issue of learning trajectories is addressed in Chap. 9. The chapter shows 

how the availability of digital technologies informs the shape of learning trajec-

tories, both from a theoretical perspective and in concrete examples. Other 

chapters (e.g. Chap. 8) contain practical examples and address implementation 

issues as well. Still, the redesign of learning trajectories for conceptual under-

standing in the context of digital technology remains an issue.

3. How can technology-integrated environments be designed so as to capture 

significant moments of learning?

  We take the word “capture” here not as the technological feature of recording 

students’ actions while working in a technological environment, but rather as 

technology being a catalyst for significant moments of learning to happen. The 

examples throughout the chapters provide some answers to this question. However, 

a general answer is not given. This may constitute an open problem and a focus 

for future research. As the issue of the design of digital technologies is left to Sect. 

5 of this volume, we refer to Chap. 21 in that section for more elaboration.

4. How can the assessment of students’ mathematical learning be designed to take 

into account the integration of digital technologies and the ways that digital 

technologies might have been used in the learning of mathematics?

  Automatic assessment supported by digital technologies is addressed in Chap. 

10. The strength of computer aided assessment lies in its immediacy and the math-

ematical sophistication of automatically generated feedback, which can be seen as 

the backbone of the system, but probably also as its Achilles’ tendon. However, it 

could prove promising to investigate the potential offered by this new tool for 

enhancing teachers’ work. Assessment that takes into account the ways in which 

digital technologies might have been used in the learning of mathematics is not 

explicitly addressed in Chap. 10. Chapters 8 and 9 tangentially touch on this issue 

in their discussion of how different uses of different technologies can affect learn-

ing and learning trajectories; but an explicit discussion of how to take into account 

those different uses for assessment purposes, or how to develop assessment meth-

ods that evaluate the learning that is developed through the use of digital technolo-

gies, is not included, and remains an area that requires still much research.

5. How can and should learning and assessment practices reflect differences in 

resource level and in cultural heritage?

  Item 5 is not addressed in this section but it is in Sect. 4, Chap. 18 and 19.
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6. How can the benefits of existing technologies be maximized for the benefit of 

mathematics teaching and learning?

  This issue is addressed in Chaps. 7 and 8 and others, through the presentation 

of theoretical notions as orchestration and models such as the didactical tetrahe-

dron, and through the discussion of concrete teaching examples. And the benefits, 

affordances and potentials of digital technologies for teaching and learning are 

amply discussed throughout the section, including considerations of how to 

integrate these into task-design (Chap. 9). Chapter 11 also suggests ways in which 

the new communication technologies can enhance learning opportunities through 

new modes of social interaction. Still, the issue of how to maximize the benefits 

of the integration of technology is hard to capture in overarching guidelines.

6.4 Concluding Remarks

This chapter ends with some concluding remarks on the mathematical topics 

addressed in this section and the relationship between mathematics education 

research and educational science in general.

If we consider the examples presented in this volume section, we notice a focus 

on (early) algebra, followed by geometry. Probably, this reflects the importance of 

algebra as a mathematical topic, and of algebraic skills being central in national 

and international discussions on the future of mathematics learning and teaching. 

Also, technological tools for supporting the learning of algebra are widely available. 

For geometry, the immense popularity of dynamic geometry systems has led to a 

huge library of teaching materials and research papers.

Probability and statistics, calculus and advanced mathematical thinking, are 

addressed to a lesser extent. Chapter 8 mentions some emerging research on using 

technology for the learning and teaching of statistics, and dynamic statistics software 

such as Fathom and Tinkerplots is becoming more widely used. In spite of this, 

research literature on this area is limited. As far as advanced mathematical thinking 

is concerned – in contrast with the first ICMI study (Howson and Kahane 1986) 

which focused mainly on developments at the tertiary level – calculus learning 

with technology is hardly discussed in this section, with the reports on SimCalc 

(see Chaps. 8 and 9) as exceptions; there is also some research presented on the 

development of infinity-related ideas with technology (see Chap. 9), but these are 

mostly isolated examples. Another area of advanced mathematical thinking that is 

mentioned, is that related to the development, through technology, of processes 

leading to the learning and construction of mathematical proofs; however, available 

research in this area, in particular that with the use of dynamic geometry, is only 

briefly mentioned in this section of the study volume. We look forward to the ICMI 

Study 19 for a thorough review of current research on the teaching and learning of 

proof in mathematics.

Our final remark concerns the relationship between mathematics education research 

and educational science in general. In the past, mathematics education research has 
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been quite domain-specific. Research on the use of technology for the learning and 

teaching of mathematics, in particular, focused on the specific mathematical 

insights that might be provoked through the use of techniques within mathematical 

software environments. There seemed to be a distance between the domain-specific 

research on technology in mathematics education and educational science in gen-

eral. However, some issues in this volume section suggest that this distance is 

decreasing. At the end of Chap. 7, a plea is made for integration of theoretical 

approaches. Chapter 11 deals with issues that are at present central in educational 

research in general, such as learning in communities and collaborative learning. 

This research interest, in which domain-specific and general educational perspectives 

reinforce each other are promising for future advancements.
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Chapter 7

Integrating Technology into Mathematics 

Education: Theoretical Perspectives
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Abstract The central question at stake in this chapter is: What theoretical frames 
are used in technology-related research in the domain of mathematics education 
and what do these theoretical perspectives offer? An historical overview of the 
development of theoretical frameworks that are considered to be relevant to the 
issue of integrating technological tools into mathematics education is provided. 
Instrumental approaches and the notion of semiotic mediation are discussed in more 
detail. A plea is made for the development of integrative theoretical frameworks 
that allow for the articulation of different theoretical perspectives.

Keywords Mathematics education • Technology • Instrumentation • Semiotic 
mediation • Theoretical perspectives in technology-related research in mathematics 
education

7.1 Introduction

For as long as mathematics education has been considered to be a serious scientific 
domain, researchers, educators, and teachers have been theorizing about the learning 
and teaching of mathematics. This has led to an overwhelmingly broad spectrum of 
theoretical approaches, ranging from the philosophical to the practical, from the 
global to the local, some focusing on learning in general and others very much based 
in mathematical knowledge. This body of theoretical knowledge is still growing.

Now that the issue of integrating technological tools into the teaching and learning 
of mathematics has become urgent, one can wonder what the existing theoretical 
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perspectives have to offer. Can they be applied to this new context? Or do we need 
specific theories appropriate for the specific situation of using tools for doing – and 
learning – mathematics? If yes, what is so specific about the integration of technology 
that justifies the need for such new paradigms? Are these paradigms to be considered 
as part of the body of knowledge of mathematics education, or do they rather 
belong to theories about humans’ interactions with technology? What kinds of 
problems do we want the theoretical frameworks, old or new, to solve for us?

It is our conviction that theoretical frameworks are needed in order to guide the 
design of teaching, to understand learning, and to improve mathematics education. 
Therefore, the central question at stake in this chapter is:

What theoretical frames are used in technology-related research in the domain of mathematics 
education and what do these theoretical perspectives offer?

In an attempt to answer this question, the chapter aims at providing an historical over-
view of the development of theoretical frameworks that are considered to be relevant to 
the issue of integrating technological tools into mathematics education. As such, it tries to 
present a synthesis of the state-of-the-art. Links with existing, general frameworks are 
established and new, technology-related, theoretical developments are described.

The chapter has the following more-or-less chronological structure. Section 7.2 pro-
vides an overview of important theoretical approaches developed in the past, that is, 
during the period up to the 1990s. Both technology-related theories (Sect. 7.2.2) and 
more general theories (Sect. 7.2.3) are addressed. In Sect. 7.3, more recent developments 
are described. After a more general presentation of recent learning theories from math-
ematical didactics, two frameworks that are relevant for tool use in mathematics educa-
tion are addressed in more detail: the theory of instrumental approaches (Sect. 7.3.2) and 
the notion of semiotic mediation (Sect. 7.3.3). In Sect. 7.4, finally, we try to summarize 
the situation and to sketch some of the possible challenges for future development.

7.2 Looking Back

In this section we consider the theoretical frames that were used in the technology-
related research in mathematics education in the period from the 1960s to the 
1990s. But before doing that, we look briefly at the development of theory in mathe-
matics education research in general.

In his 1981 plenary at the Psychology of Mathematics Education conference in 
France, Kilpatrick remarked that:

A lack of attention to theory is characteristic of US research in this field.… One of our greatest 
needs in research on mathematical learning and thinking is for conceptual, theory-building 
analyses of the constructs and assumptions we are using. (Kilpatrick 1981, pp. 23–24)

Although Kilpatrick was noting his concerns about US research, the phenomenon 
was more widespread. In 1980, Bauersfeld argued that the field at that time lacked 
a theoretical orientation (Bauersfeld 1980). But, the situation was soon to begin to 
change. Steiner, who spearheaded the forming of the group Theory of Mathematics 
Education at ICME-5 in 1984, wrote in 1987 that recent developments in mathematics 
education had shown a “new dynamics in the field”:
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New philosophies and epistemological theories have entered the scene: the theory of 
epistemological obstacles, a synthesis of Kuhnian theory dynamics and Piagetian genetic 
epistemology,… the epistemology of “microworlds” and of the “society of mind” based on 
cognitive studies within research on artificial intelligence. (Steiner 1987, p. 7)

Theorizing continued to evolve during the 1990s, as suggested by Lerman’s et al. 
(2002) analysis of the theories used by mathematics education researchers in the 
papers published in Educational Studies in Mathematics during the period 1990–2001. 
While theorizing in mathematics education research was still an emergent activity 
during the 1960s–1990s, in contrast, technology use was rapidly evolving. To capture 
this development, and more particularly the birth of theorizing related to the role of 
technological tools in mathematics teaching and learning, we first go back to the 
early days of technology use in mathematics education.

7.2.1  The Evolution of Technology and Its Use in the 

Mathematics Education Community

From the time of the development of the mainframe computer in 1942, the first 
four-function calculator in 1967, the microcomputer in 1978, and the graphing 
calculator in 1985 (Kelly 2003), both mathematicians and mathematics educators 
have been intrigued by the possibilities offered by technology. However, it was not 
until the late 1960s when, according to Fey (1984), mathematicians and mathematics 
educators began to feel that computing could have significant effects on the content 
and emphases of school-level and university-level mathematics.

Among the earliest applications of the new technology to mathematical learning 
in schools was Computer Assisted Instruction – the design of individualized stu-
dent-paced modules that were said to promote a more active form of student learn-
ing. Perhaps the most well known is the PLATO project (Dugdale and Kibbey 
1980; Dugdale 2007).

The next wave in technology-based approaches to mathematics learning involved 
programming, in particular, in Logo and BASIC. The development of the Logo 
programming language by (Feurzeig and Papert 1968; Papert 1980) was instrumen-
tal in this regard. Papert, a mathematician who was influenced by the theories of 
Piaget, was interested in the learning activities of young children and how the com-
puter could enhance those activities (see, e.g., Papert 1970, for descriptions of chil-
dren and junior high school students learning to program the M.I.T. “turtle” 
computer). In his 1972 article, entitled Teaching children to be mathematicians ver-
sus teaching about mathematics, Papert promoted “putting children in a better posi-
tion to do mathematics rather than merely learn about it (Papert 1972).” At the time, 
programming in BASIC was also considered a means for enhancing students’ math-
ematical problem-solving abilities (Hatfield and Kieren 1972), even for students as 
young as first graders (Shumway 1984).

The arrival of the microcomputer in the late 1970s not only increased the interest 
in programming activity, but also led to the development of more specialized pieces 
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of software. Some of these specialized software tools were created specifically for 
mathematics learning (e.g., CABRI Geometry developed by Laborde 1990, and 
Function Probe developed by Confrey 1991), while others were adapted for use in 
the mathematics classroom (e.g., spreadsheets and computer algebra systems). 
The microcomputer and the graphing calculator also fed the growth of functional 
approaches in algebra and interest in multiple representations of mathematical 
objects (Fey and Good 1985; Heid 1988; Schwartz et al. 1991). However, by the 
1990s, technological tools were still not widespread in mathematics classrooms, nor 
was there an abundance of qualitatively good software available (Kaput 1992).

Against the above technological scene in mathematics education during the years 
from the 1960s to the early 1990s, we now examine the question of the theoretical 
frames that were used in the technology-related research in mathematics education 
during the same period. We begin with the Proceedings of the 1985 ICMI Study on 
technology.

7.2.2  The Emergence of Theory from the Integration  

of Technology Within Mathematics Education

In 1985, the first ICMI Study was held in Strasbourg, France, with the theme, 
“The Influence of Computers and Informatics on Mathematics and Its Teaching at 
University and Senior High School Level.” While research on the learning and 
teaching of mathematics was not a main thrust of the questions addressed by the 
Study group, we thought it might be illuminating to peruse the Proceedings of 
the Study (Howson and Kahane 1986) for an indirect glimpse at the kind of theories 
figuring in the discussions of the Study group participants.

In the opening general report that synthesized the Study papers and discussions, 
the editors of the proceedings, Howson and Kahane, emphasized the roles that 
computers could play in the learning of mathematics, such as, “advantages to be derived 
from the use of computer graphics” (p. 20), “the design of software to encourage the 
discovery and exploration of concepts” (p. 20), and “the active involvement of students 
in their own learning through the writing of short programs” (p. 20). The activities 
of exploration and discovery were particularly pointed to. However, one cannot but 
be struck by the way in which the papers emphasized the educational potentialities 
and capabilities of computing technology − such as, visualizing, modeling, and 
programming − with an optimism that was not yet supported by evidence.

Included in the Proceedings was a set of 11 “Supporting Papers” selected from 
those that had been presented at the study conference. The papers, mostly of the 
essay variety, included deliberations on the synergy between mathematics and 
computers, and considerations of the potentialities and limitations of the computer. 
The only theoretical discussions that could be said to be present in any of the 11 
papers concerned epistemological issues involving the nature of mathematics and 
that of computer science – but at a rather general level. Theorizing and theory on 
the role of technology in the teaching and learning of mathematics were clearly 
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neither the aim nor the by-product of the study meeting. As Burkhardt (1986) 
remarked in his paper: “[This is] a conference for conjectures” (p. 147).

While not reflected in the ICMI Study papers, theory with respect to technology 
and its use in mathematics education was nevertheless developing during the 1980s. 
However, the first examples to emerge tended to be rather descriptive models of  
the roles being played by technology than research tools for designing learning 
environments or for testing hypotheses about the possible enhancement of 
mathematical learning and teaching. These theoretical beginnings focused on specific 
issues related to integrating technology into education. They had a local feel to them 
that was based in large measure on the characteristics of the technology and which 
suggested certain uses and forms of mathematical activity. Often, the theoretical 
notions were related to specific types of software and were not related to more general 
theories on learning. As examples of these first steps in theorizing, we briefly 
discuss the Tutor-Tool-Tutee distinction, the White Box–Black Box idea, the notion 
of Microworlds and Constructionism, and the Amplifier–Reorganizer duality.

7.2.2.1 Tutor, Tool, Tutee

With the arrival of the microcomputer and its increasing proliferation, a new 
framework was developed, which classified educational computing activity according 
to three modes or roles of the computer: tutor, tool, and tutee (Taylor 1980). To function 
as a tutor: “The computer presents some subject material, the student responds, the 
computer evaluates the response, and, from the results of the evaluation, determines 
what to present next” (p. 3). To function as a tool, the computer requires, according 
to Taylor, much less in the way of expert programming than is required for the 
computer as tutor and can be used in a variety of ways (e.g., as a calculator in math, 
a map-making tool in geography,…). The third mode of educational computing 
activity, that of tutee, was described by Taylor as follows: “To use the computer as tutee 
is to tutor the computer; for that the student or teacher doing the tutoring must learn 
to program, to talk to the computer in a language it understands” (p. 4). The rationale 
behind this mode of computing activity was that the human tutor would learn what 
s/he was trying to teach the computer and, thus, that learners would gain new 
insights into their thinking through learning to program.

7.2.2.2 White Box – Black Box

A theoretical idea that focused on the interaction between the knowledge of the 
learner and the characteristics of the technological tool was the White Box/Black 
Box (WBBB) notion put forward by Buchberger (1990). According to Buchberger, the 
technology is being used as a white box when students are aware of the mathematics 
they are asking the technology to carry out; otherwise the technology is being used as 
a black box. He argued that the use of symbolic manipulation software (i.e., CAS) 
as a black box can be “disastrous” (p. 13) for students when they are initially learning 
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some new area of mathematics – a usage that is akin to the Tool mode within the 
Tutor-Tool-Tutee framework. However, other researchers (e.g., Heid 1988; Berry 
et al. 1994) have shown that students can develop conceptual understanding in 
CAS environments before mastering by-hand manipulation techniques. While the 
WBBB idea is pitched in terms of two extreme positions, others (e.g., Cedillo 
and Kieran 2003) have taken this notion and adapted it in their development of 
“gray-box” teaching approaches.

7.2.2.3 Microworlds and Constructionism

Papert and Harel (1991) encapsulated the theoretical ideas underlying the educa-
tional goals of microworlds (e.g., the Turtle environment in Logo) in the notion of 
constructionism, that is, “learning-by-making.” In terms of the Tutor-Tool-Tutee 
framework, we are now in Tutee mode. Papert and Harel (ibid.) have described 
constructionism as follows:

Constructionism – the N word as opposed to the V word – shares constructivism’s connota-
tion of learning as “building knowledge structures” irrespective of the circumstances of the 
learning. It then adds the idea that this happens especially felicitously in a context where 
the learner is consciously engaged in constructing a public entity, whether it’s a sand castle 
on the beach or a theory of the universe. (p. 1)

While admitting in 1991 that the concept itself was in evolution, Papert and 
Harel provided examples of studies that Papert himself was involved with during 
the 20 years previous and that fed the early evolution of the idea. Microworlds, such 
as turtle geometry, were a central component of the theory:

The Turtle World was a microworld, a “place,” a “province of Mathland,” where certain kinds 
of mathematical thinking could hatch and grow with particular ease (Papert 1980: p. 125)

The Turtle defines a self-contained world in which certain questions are relevant and 
others are not… this idea can be developed by constructing many such “microworlds,” each 
with its own set of assumptions and constraints. Children get to know what it is like to 
explore the properties of a chosen microworld undisturbed by extraneous questions. In 
doing so they learn to transfer habits of exploration from their personal lives to the formal 
domain of scientific theory construction. (Papert 1980, p. 117)

Some critics (e.g., Becker 1987) suggested that Papert’s theory needed further 
elaboration. Later development of the notion of “microworld” would not restrict the 
term to Logo-based environments or even to computer environments (Edwards 
1998; Hoyles and Noss 2003). In a paper prepared for the ICMI Study 17, Ainley 
and Pratt (2006) describe how they drew on Constructionist ideas to develop a 
framework for task design that involved the linked constructs of purpose and utility. 
In bringing this example on Constructionism to a close, we would be remiss if we 
did not note that the potential of Logo learning environments grabbed the attention, 
and research activity, of hundreds of researchers in mathematics education during the 
1980s (see, for example, the 4 years of Proceedings of the International Conference 
for Logo and Mathematics Education from 1985 to 1989).
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7.2.2.4 Amplifier – Reorganizer

Pea (1987) re-elaborated the psychological notion of cognitive tools for the case 
of technology in education. Computers have the potential for both amplifying 
and reorganizing mathematical thinking. However, Pea argued that the one-way 
amplification perspective, whereby tools allow the user to be more efficient and to 
increase the speed of learning, misses the more profound two-way reorganizational 
possibilities afforded by the technology. By this he meant that not only do computers 
affect people, but also that people affect computers (both by the way they decide 
on what are appropriate ways of using them and on how in refining educational 
goals they change the technology to provide a better fit with these goals). Meagher 
(2006), in his ICMI Study 17 contribution, has described how digital technology 
introduced into the classroom setting can bring to the fore two-way effects that are 
unanticipated and that can lead to unintentional subversion of the expressed aims 
of a given curriculum. He proposes an adaptation of the Rotman (1995) triangular 
model of mathematical reasoning as a tool for better understanding the complex 
interaction among student, technology, and mathematics.

Pea’s theoretical work also included the development of a taxonomy comprising two 
types of functions by which information technologies can promote the development of 
mathematical thinking skills: purpose functions and process functions. The purpose 
functions engage students to think mathematically; the process functions aid them once 
they do so. The purpose functions focus on constructs such as ownership, self-worth, 
and the use of motivational “real-world” contexts and collaborative learning 
environments. The process functions include, according to Pea, five categories of 
examples: “tools for developing conceptual fluency, tools for mathematical 
exploration, tools for integrating different mathematical representations, tools for 
learning how to learn, and tools for learning problem-solving methods” (p. 106). 
Some of this work fed into the development of theories on distributed cognition 
(Pea 1989) and on situated cognition (e.g., Brown et al. 1989) – the latter construct 
being taken up in a later section of this chapter on situated abstraction.

7.2.3  Theoretical Ideas Emanating from the Literature  

on Mathematical Learning

Not only did local theorization concerning the use of new technologies in education 
begin to grow during these years; gradually, links with recently developed theory 
from the learning and teaching of mathematics were established. In that an exhaustive 
coverage is not possible, the following three examples of theoretical ideas emanating 
from the literature on mathematical learning illustrate some of the ways in which 
such theories and frameworks were used in research involving technological 
environments during the years leading up to the early 1990s.
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7.2.3.1 Process-Object

Using the process-object frame (Sfard 1989, 1991), Moschkovich et al. (1993) 
observed the ways in which students came to grips with connections across 
representations and with different perspectives regarding the given functions them-
selves. For the concept of function, the researchers described this frame as follows:

From the process perspective, a function is perceived of as linking x and y values: For each 
value of x, the function has a corresponding y value. From the object perspective, a function 
or relation and any of its representations are thought of as entities – for example, algebraically 
as members of parametrized classes, or in the plane as graphs that, in colloquial language, 
are thought of as being “picked up whole” and rotated or translated. (p. 71)

For the case of linear relations, the researchers argued that developing competency 
involves learning which perspectives and representations work best in which situations, 
and being able to move fluently from one to the other according to the demands of 
the situation and one’s desired goals. Using a computer-based microworld called 
GRAPHER, the researchers set out to develop a tutoring curriculum that would 
introduce students to the object and process perspectives within the context of linear 
functions. It is interesting to notice that the theoretical reflections drove the design 
of the software, rather than the other way around, as we encountered in the previous 
section. What Moschkovich, Schoenfeld, and Arcavi found is that developing 
flexibility between these two perspectives is difficult for students. However, they 
emphasized that technological tools such as the one used in this study offer students 
the opportunity to deal with aspects of functions and to develop intuitions that were 
simply inaccessible prior to the availability of such tools.

Other applications of the process-object framework (later to become APOS theory) 
were developed by Schwingendorf and Dubinsky (1990). They used the programming 
language ISETL as an environment for having students construct mathematical concepts 
as processes by means of writing computer programs. Programming tasks that used 
a function as input and that also yielded a function as the output were considered to 
help students encapsulate the notion of function as object. However, critics have argued 
that an approach to functions that is based primarily on programming activities, 
though valuable for emphasizing process aspects, may be too closely tied to 
computability to permit a full-blown object conception of functions. The APOS 
theory, and its element of genetic decomposition, was also used by Repo (1994) in 
one of the early studies on the pedagogical use of computer algebra.

A third approach to the process-object duality was the notion of procept, introduced 
by Gray and Tall (1991). The authors suggest that the “the use of the computer to 
carry out the process, thus enabling the learner to concentrate on the product, 
significantly improves the learning experience” (p. 137).

7.2.3.2 Visual Thinking vs. Analytical Thinking

The interplay between visual and analytical schemas in mathematical activity and 
students’ tendencies to favor one over the other (Eisenberg and Dreyfus 1986) was 
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a theoretical notion that was adopted in some of the past research studies involving 
technology. For example, Hillel and Kieran (1987) distinguished between the 
two, within the context of 11- and 12-year-olds working in turtle geometry Logo 
environments, as follows:

By a visual schema we refer to Logo constructions of geometric figures where the choice 
of commands and of inputs is made on visual cues, Rationale for choices is often expressed 
by, “It looks like…”. By an analytical schema we refer to solutions based on an attempt to look 
for exact mathematical and programming relations within the geometry of the figure. (p. 64)

These researchers found that the students did not easily make links between their 
visualizations and their analytical thinking. While research in nontechnology learning 
situations had disclosed (older) students’ preferences for working with the symbolic 
mode rather than with the graphical, the advent of graphing technology provided 
the potential for a shift toward valuing graphical representations and visual 
thinking (e.g., Eisenberg and Dreyfus 1989). These issues would continue to be 
explored in the years to come.

7.2.3.3 Representational Issues

Representational issues were very much a part of the theoretical frames of the early 
research involving technological environments in mathematics education. However, 
in much of this research, as well as in some of the research that did not involve 
technology, there was a lack of theoretical precision regarding visualization, mental 
imagery, and representations (for later precision in these theoretical areas, see, 
Bishop 1988; Dreyfus 1991; Hitt 2002; Presmeg 2006). The demand for clarification 
coming from the new technologies and their representational potential contributed 
to an effort to outline a unifying theoretical frame for representation. As Kaput pointed 
out to participants at a conference on representation in 1984, “Some mathematics 
education researchers have, in response to the need for understanding forms of 
representation in a particular area, developed local theories…; however, a coherent 
and unifying theoretical context is lacking” (Kaput 1987, p. 19). He proposed that 
a concept of representation ought to describe the five following components: the 
represented entity; the representing entity; those particular aspects of the represented 
entity that are being represented; those aspects of the representing entity that are doing 
the representing; and the correspondence between the two entities. This framework 
served as a basis for conceptualizing several “representational studies” involving the 
three representations of the tabular, the graphical, and the symbolic (e.g., Schwarz 
and Bruckheimer 1988). While the body of research on students’ making connections 
among the three representations of functions in various technological environments 
would continue to grow (e.g., Romberg et al. 1993), further developments of a 
theoretical nature with respect to representations were forecast by Kaput when he 
spoke of, “the potential of notations in dynamic interactive media” (Kaput 1998, 
p. 271, emphasis added). This particular evolution in theoretical frameworks will 
be among the ones discussed in an upcoming section.
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7.2.4 From Past to Present

A very interesting inventory of the mid-1990s research on technology in mathe-
matics education is the one carried out by Lagrange et al. (2003). In their review of 
the world-wide corpus of research and innovation publications in the field of 
Information–Communication–Technology integration, they point out that “the 
period from 1994 to 1998 appeared particularly worthy of study [662 published 
works], because during these years the classroom use of technology became more 
practical, and literature matured, often breaking with initial naïve approaches” (p. 238). 
In the entire corpus of papers that was reviewed, Lagrange et al. found that the 
only theoretical convergences were at a general level and touched upon issues 
related to visualization, connection of representations, and situated knowledge. The 
study shows that less than half of the publications surveyed appeared to go beyond 
descriptions of the environment or phenomena being observed – and this literature 
was intended to reflect a certain maturity in the field.

To summarize this section on the theoretical frames that were used in the technol-
ogy-related research in mathematics education in the period from the 1960s to the 
1990s, we notice an initial concern with the potentials of technology use rather than 
with theoretical foundations. Gradually, both local technology-driven theories emerged 
and recently developed theories from mathematics education research were adapted to 
the case of learning with technology. This overall development can be extrapolated and 
applied to the current situation, which is the issue at stake in the next section.

7.3 Current Developments

The current proceedings concerning theory in research on technology in mathematics 
education cannot be dissolved from recent technological developments. On the one 
hand, technological devices have become smaller and handheld devices such as 
graphing and symbolic calculators are widespread. On the other hand, communication 
has become a more integrated part of technology use: software can be distributed 
using the Internet, and students can work, collaborate, and communicate with peers and 
teachers in digital learning environments. The content of such learning environments, 
however, turns out to be not easy to set up. The question of what a digital course 
should look like, so that it may really benefit from the potentials of technology and 
exceed the “paper-on-screen” approach, has not yet been answered.

These technological developments are included as background to the discussion 
of current theoretical developments described in this section. Section 7.3.1 provides 
an overview of some actual theoretical approaches that have been adapted from 
existing theories in mathematics education and beyond, but with new emphases that 
signal a movement toward tailor-made frameworks for investigating mathematical 
learning and teaching within technological environments. Sections 7.3.2 and 7.3.3 
address with a certain degree of elaboration two specific theories on learning using 
technology applied to mathematics, instrumentation theory and semiotic mediation.
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7.3.1 Learning Theories from Mathematical Didactics

As mentioned above, the early 1990s witnessed the beginnings of a more mature 
literature with respect to the use of technology in mathematical learning. However, 
this maturing did not occur in a vacuum. Within the mathematics education com-
munity at large, not only had theorizing become a more widespread activity, but 
also the nature of the theories being utilized within research on the learning of 
mathematics was experiencing a shift.

While Constructivism and its Piagetian roots provided the underpinnings of the 
theoretical elaborations that emerged in research related to technology use during 
the previous decades – elaborations that focused primarily on cognitive aspects of 
learning – the theoretical writing of Vygotsky with its sociocultural emphasis began to 
percolate through the international mathematics education community in the 1980s 
(see Streefland 1985, for the first mention within PME1 Proceedings of Vygotsky’s 
work). The steady growth in the development of sociocultural perspectives by 
researchers during the ensuing years was reflected in, for example, the scientific 
program of the 1995 PME Conference where plenary and panel presentations were 
devoted to Vygotskian theory (Meira and Carraher 1995). One of the first aspects 
of Vygotskian theory to be appropriated was his zone of proximal development 
(ZPD). However, later work by mathematics education researchers focused on the 
role played by language and other mediational tools in the teaching and learning of 
mathematics (Lerman 1998; Bartolini et al. 1999; Kieran et al. 2001). Yet another 
theoretical direction appeared during these years with the notion that knowledge is 
situated and is a product of the activity, context, and culture in which it is developed 
and used (Brown et al 1989).

The sociocultural perspectives that became popular during the late 1980s and 1990s 
were adopted, and adapted, by researchers with an interest in the role of technological 
tools in mathematical learning. The first example of a present-day theory used in 
research on the teaching and learning of mathematics within technological environ-
ments that we present in this section deals with a frame that resulted from the 
adapting of aspects from both sociocultural and situated learning theories, as well 
as from classic ideas on abstraction: the Webbing and Situated Abstraction frame. 
A second example, which shares aspects of both Vygotskian and Piagetian theories 
but is quite distinct from either of these, features Brousseau’s Theory of Didactical 
Situations and illustrates the way in which one of its concepts has served to inform 
research involving the integration of technology into mathematical learning situations: 
the concept of milieu. The third and last example of this section presents an 
emerging and still developing theoretical frame, one that was conceptualized for 
use in research on modeling environments involving physical apparatus: the 
Perceptuo-Motor Activity frame.

1 The International Group for the Psychology of Mathematics Education (PME): http://www.
igpme.org/
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7.3.1.1  From Scaffolding and Abstraction to Webbing and  

Situated Abstraction

Noss and Hoyles (1996) describe how they have taken the original notion of 
scaffolding (Wood et al. 1979): “graduated assistance provided by an adult which 
offers just the right level of support so that a child can voyage successfully into his/
her zone of proximal development” (p. 107) – support that is gradually faded as the 
learner’s participation in the learning process increases – and from it have developed 
the metaphor of webbing. This metaphor is considered to more adequately take into 
account both the openness of computational settings as well as the control exercised 
by the learner. According to Noss and Hoyles, “the idea of webbing is meant to convey 
the presence of a structure that learners can draw upon and reconstruct for support 
– in ways that they choose as appropriate for their struggle to construct meaning for 
some mathematics” (p. 108). The concept of webbing is said to integrate, as well, 
a focus on the situatedness of learning.

Noss and Hoyles have drawn the latter construct from the theoretical work of 
Brown et al. (1989), who in developing the position that learning and cognition are 
situated, did not however address the issue of how learners might apply the knowledge 
learned in one setting to another. In fact, Brown et al. suggested that, “an epistemology 
that begins with activity and perception, which are first and foremost embedded in 
the world, may simply bypass the classical problem of reference – of mediating 
conceptual representations” (p. 41). While adoption of the construct of situatedness 
with its disregard for issues of transfer might have been problematic, Noss and 
Hoyles chose to tackle head-on the thorny question of students’ making connections 
between the situated computational medium and official mathematics: “This process 
of building connections turns out to be central to making mathematical meanings” 
(p. 119). Their solution to the potential cul-de-sac of situatedness was the elaboration 
of the construct of situated abstraction.

Rather than thinking about mathematical abstraction as a pulling away from a 
real referent and a focusing on relationships involving the referent-less mathematical 
object and operations, Noss and Hoyles postulated a mechanism that involves 
abstracting within, not away from the situation. Situated abstraction “describes how 
learners construct mathematical ideas by drawing on the webbing of a particular 
setting which, in turn, shapes the way the ideas are expressed” (Noss and Hoyles 1996, 
p. 122). They add that learning environments can be designed in such a way that 
expressing generality can be made a central component of the computational setting 
and, thus, that webbing and situated abstraction are co-emergent constituents of the 
mathematical learning process. Hershkowitz et al. (2001) have attempted to develop 
further the notion of situated abstraction. They have defined it as “an activity of 
vertically reorganizing previously constructed mathematics into a new mathematical 
structure” (p. 195) and have proposed three dynamically nested epistemic actions 
as its principal components: constructing, recognizing, and building-with. However, 
the application of the theory to mathematical learning in technological environments 
is less at the forefront of Hershkowitz et al.’s elaboration of situated abstraction 
than it is for Noss and Hoyles.
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What is interesting, and extremely relevant, about the approach taken by Noss 
and Hoyles is the way in which they took two theoretical concepts from the general 
mathematics education literature, that is, scaffolding and abstraction, and reworked 
them so as to better capture some of those aspects that are special about learning in 
technological environments, as well as how this learning can spark connections 
with other mathematical settings. In their reporting of empirical work that provides 
the underpinnings for their theorizing, they have described the work of the following 
two students modeling in a dynamic geometry environment for whom the computer 
acted “both as a support for developing new meanings and as a means for transcending 
that support” (Noss and Hoyles 1996; p. 126).

Cleo and Musha were two 14-year-olds faced with the task of finding the mirror 
line (i.e., line of symmetry) between two flags (see Fig. 7.1), where one was the 
reflected image of the other. Figure 7.1a illustrates the two flags; in Fig. 7.1b two 
corresponding pairs of points have been dragged to coincide; in Fig. 7.1c the students 
are beginning to drag each point until they coincide with their image. Note that the 
line of symmetry has been drawn for clarification purposes: it ‘appears’ only when 
all pairs of points are dragged together.

According to Noss and Hoyles, the two girls did not know what construction 
would yield the required line of symmetry; so they began to drag points in order to 
develop some clues. Eventually they landed on the idea of dragging together the 
topmost and bottom-most points of the flag and its image. The girls articulated their 
findings as: “The mirror line is what you see on the screen if you drag points and 
their reflection together” (p. 116). They then sketched the mirror by fitting a line 
with two points on top of their skinny flags.

With respect to the mathematical thinking of the two girls and the role played by 
the technology, Noss and Hoyles have argued the following:

What they [the two girls] didn’t ‘know’ [initially] was a mathematical model of their intuitive 
knowledge, a piece of formal, systematised knowledge which would help them to construct 
it. As we saw, the medium provided some kind of bridge between these two states: the 

Fig. 7.1 Snapshots of a strategy for locating the line of symmetry of the two flags (from Noss 
and Hoyles 1996; p. 115)
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representations the students built elaborated and illuminated their knowledge structures 
and simultaneously provided a window to and a route beyond these structures. … 
Construction implies an explicit appreciation of the relationships that have to be respected 
within any situation, a mathematical model of the situation (how else do you know what to 
focus on, and what to ignore?). The key insight is that parts of this model are built into the 
fabric of the medium, thus shaping the types of actions that are possible: they do not only 
exist in the mind of learner. (p. 126)

7.3.1.2 Theory of Didactical Situations: the Concept of Milieu

Brousseau’s (1998) Théorie des Situations Didactiques (TSD) began to take 
shape in 1970. As it continued to evolve and develop throughout the two decades 
that followed, it became the theoretical backbone of the French school of research 
in mathematical didactics. Even as other theoretical frameworks emerged in the 
1990s, such as instrumental approaches (e.g., Artigue et al. 1998; see Sect. 7.3.2), 
some of the basic ideas of TSD were implicitly integrated within them. The cen-
tral concepts of TSD that have been threaded through recent research related to 
technological learning environments include that of milieu (Floris 1999), didacti-
cal contract (Gueudet 2006), and institutionalization (Trouche 2004). We take up 
the concept of milieu as a paradigmatic example here of the way in which the 
TSD has been applied, albeit often implicitly, in recent research involving 
technological tools.

In the late 1970s, Brousseau developed the concept of milieu, and described its 
integration into the learning process as follows:

The teacher’s work therefore consists of proposing a learning situation to the student in 
such a way that she produces her knowing as a personal answer to a question and uses it 
or modifies it in order to satisfy the constraints of the milieu and not just the teacher’s 
expectations. (Brousseau 1998, p. 228)

The design of the learning situation is thus an integral aspect of the milieu. When 
instruments are part of that learning environment, situations need to be created that 
provoke the learner to use the tools in the pursuit of some mathematical goal. As pointed 
out by Artigue (2006), this learning milieu is one that by definition is antagonistic 
– that is, in opposition to the learner and his/her current state of knowledge:

Within this framework [TSD], the learning outcomes resulting from the use of an instrument 
at the practical level [that is, when a student is using an instrument to solve a problem] are 
discussed in terms of the interaction of the learner with the milieu antagoniste. … We may 
consider the learning outcomes as being the result of the adaptation of the learner to the 
milieu in consequence to the retroactions of the milieu on the learner himself/herself. Thus, 
if an educator wants to employ an instrument at the educational level, he/she has to set up 
situations in which the instrument is part of the milieu and is employed by the learner as a 
means to accomplish the proposed task. (pp. 15–16)

Artigue has contrasted this view with that of the role of instruments within Activity 
Theory (Engeström 1991) where an instrument is considered as a mediator: “Within 
this theory [Activity Theory], the learning environment is not considered as antagonist 
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to the subjects (as in the milieu antagoniste of the didactic situations theory); on the 

contrary, it is considered to be a cooperative environment” (Artigue 2006; p. 16).

What then are the implications with respect to designing technological learning 

environments when the notion of milieu constitutes a part of one’s theoretical 

frame – even if at an implicit level? Artigue (2006) has, for example, discussed the 

importance of feedback in technological learning environments. Feedback consisting 

in a simple validation of pupils’ answers is considered to be limited, in contrast with 

more elaborated feedback that is more likely to support the evolution of pupils’ 

strategies and mathematical knowledge development.

Such considerations were of central importance in the design of the tasks and 

their sequencing in a study reported by Kieran and Drijvers (2006a). While the notion 

of a technological environment that presented mathematical challenges to the student 

was not attributed theoretically to the TSD’s milieu, but rather to the instrumental 

approach to tool use (whose inheritance includes TSD and which is discussed in an 

upcoming section), the CAS environments described by Kieran and Drijvers 

deliberately took students beyond their curricular experience and placed them in 

challenging situations devised to expose limitations in the thinking frames they 

were using. For instance, they and their research colleagues adapted the xn − 1 task 

of Mounier and Aldon (1996) (which is described in Lagrange 2000) to create a 

learning situation for 10th graders that involved several different kinds of interactions 

with the CAS instrument, including the forming and testing of conjectures, reflecting 

on surprise outputs produced by the CAS, and reconciling such outputs with their 

existing and developing theoretical and technical knowledge.

Examples of some of the task questions used in the Kieran and Drijvers (2006a) 

study are shown in Figs. 7.2 and 7.3.

Fig. 7.2 Task in which students confront the completely factored forms produced by the CAS 

(Kieran and Drijvers 2006a; p. 239)

In this activity each line of the table below must be filled in completely (all three cells), one 

row at a time. Start from the top row (the cells of the three columns) and work your way 

down. If, for a given row, the results in the left and middle columns differ, reconcile the two 

by using algebraic manipulations in the right hand column. 

Factorization using 

paper and pencil

Result produced by the 

FACTOR command

Calculation to reconcile the two, 

if necessary

=− 1x
2

=− 1x
3

=− 1x
4

=− 1x
5

=− 1x
6
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In designing the sequence of the various task situations that students were to 
engage in during the project, specific a priori attention was given to variables 
related to epistemological and cognitive concerns, as well as to those potentially 
crucial moments in the sequence of tasks when, and the manner in which, teach-
ers might intervene to enrich the milieu (see also Kieran and Saldanha 2007).

7.3.1.3 Perceptuo-Motor Activity in Mathematical Learning

The integration of manipulative tools into mathematical learning environments 
has a long history (e.g., Gattegno 1963; Dienes 1960). The theoretical under-
pinnings supporting the use of such learning tools have been continuously 
evolving over the years. More recently, at a research forum held at the 2003 
annual conference of PME, Nemirovsky attempted to lay the groundwork  
for theorizing about the role of perceptuo-motor activity in mathematical learn-
ing. The large variety of technology environments offering dynamic control, 
including those involving dynamic geometry, would suggest the potentially 
widespread applicability of such a framework. Drawing on studies of functional 
brain imaging, perception, and eye movement, Nemirovsky (2003) conjectured 
the following:

While modulated by shifts of attention, awareness, and emotional states, understanding and 
thinking are perceptuo-motor activities; furthermore, these activities are bodily distributed across 
different areas of perception and motor action based in part, on how we have learned and 
used the subject itself. … We add here that that of which we think emerges from and in 
these activities themselves. … We think of, say, a quadratic function, by enacting “little 
thrusts” of what writing its equation, drawing its shape, uttering its name, or whatever else 
the use of a quadratic function in a particular context might entail. The actions one engages 
in mathematical work, such as writing down an equation, are as perceptuo-motor acts as 
the ones of kicking a ball or eating a sandwich; elements of, say, an equation-writing 
act and other perceptuo-motor activities relevant to the context at hand are not merely 
accompanying the thought, but are the thought itself as well as the experience of what the 
thought is about. (pp. 108–109)

Rasmussen and Nemirovsky (2003) have characterized how bodily activity and 
tool use combine in mathematical learning in their study of calculus students 

Fig. 7.3 Task in which students examine more closely the nature of the factors produced by the 
CAS (Kieran and Drijvers 2006a; p. 239)

Conjecture, in general, for what numbers nwill the factorization of x n−1: 
i) contain exactly two factors?
ii) contain more than two factors?

iii) include (x+1)as a factor? 

Please explain.
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engaging in a number of different tasks involving a physical tool called the water 
wheel, which was hooked up to a computer that enabled the generation of real-time 
graphs of angular velocity and angular acceleration. The analysis they reported 
focuses on the engagement of one student, Monica, with the water wheel during 
two sessions. During the first session, Monica synchronized the rotation of the 
water wheel with given graphs of angular velocity versus time. When Rasmussen 
and Nemirovsky interviewed Monica, she “personified the wheel and imaginatively 
experienced when the wheel will achieve its maximum and minimum velocity” 
(p. 129). In the process, she accounted for why these maximum and minimum 
velocities occurred. The researchers argued that “being” the water wheel engaged 
both knowing-how to be the wheel and knowing-with the water wheel, thus 
highlighting the centrality of bodily activity in this process.

Applications of the theoretical frame sketched out by Nemirovsky are also to be 
found in, for example, the research of Arzarello and Robutti (2001), who have explored 
the perceptuo-motor components of students’ building meaning for functions in an 
environment involving a calculator connected to a motion sensor (CBR). In one of 
the activities they researched, students were encouraged to try various running patterns 
in order to create different graphs. The continuous nature of the CBR graphing 
allowed students to test conjectures in a direct manner, controllable by their own 
physical movement. The authors observed that, “students’ cognitive activity passes 
through a complex evolution, which starts in their bodily experience (namely, running 
in the corridor), goes on with the evocation of the just lived experience through 
gestures and words, continues connecting it with the data representation, and 
culminates with the use of algebraic language to write down the relationships between 
the quantities involved in the experiment” (p. 39).

For our last example in this section on theorizing with respect to perceptuo-motor 
activity, we choose to refer once again to the case of Cleo and Musha, the two girls 
whose experience in Cabri Geometry was used to exemplify the theoretical framework 
of Webbing and Situated Abstraction. We do this for a twofold reason: one, to 
suggest that the same data might be interpreted according to more than one theoretical 
framework; and two, to illustrate the role that the bodily experience of dragging in 
dynamic geometry environments can play in mathematical learning (see also the 
ICMI Study 17 contribution of Lee et al. 2006, for further examples of dragging in 
dynamic geometry environments, as well as the example provided in the later section 
on Instrumentation). Noss and Hoyles (1996) themselves emphasized the role that 
physical movement played in Cleo and Musha’s arriving at a resolution of the line-of-
symmetry task: “[their] solution to the problem is sketched within the medium by a 
physical manipulation controlled by perception – seeing that the points and their images 
coincided” (p. 116). However, as was noted earlier, Noss and Hoyles’s theoretical 
explanation of the learning that took place went beyond the perceptuo-motor to 
include sociocultural, cognitive, and mathematical considerations.

While the analyses conducted by Arzarello and Robutti (2001), which were pointed 
to above, found support for the perceptuo-motor frame, as well as evidence for the 
roles that language, external representations, and instruments play in developing 
embodied conceptualizations, they have argued that the perceptuo-motor theoretical 
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tools need to be widened and deepened (Robutti and Arzarello 2003; p. 115). 
They have suggested that connections need to be made to other frames, for example, 
the embodied approach of Lakoff and Núñez (2000), the notion of ostensives 
(Bosch and Chevallard 1999), and other perspectives on abstraction and concept 
building in mathematics (e.g., Vergnaud 1990). As proposed by A. Leung (personal 
communication, September 2007), connections to the theoretical advances that 
have been made on the role of visualization in mathematical learning could also be 
very productive in this regard.

The issue of making connections between existing theoretical frames, and adapting 
them for use in research on technological environments is a non-negligeable one. 
Lagrange (2005) has, for example, argued for consideration of “four linked issues 
– didactical and epistemological analysis, changes in curricula and practices, tool and 
mathematics relationship, and design – [which would constitute] a ‘multidimen-
sional’ approach consistent with Lagrange et al. (2003, p. 239) claim that many 
research studies or reports of innovation about technology in mathematics educa-
tion fail to be relevant when they consider only one framework” (p. 148).

7.3.1.4 Discussion

The theoretical work done by Noss and Hoyles in adapting existing frames from the 
broader literature in mathematical didactics so as to take into account the special 
features offered by technological tools is one side of the coin. This approach could 
be said to illustrate a mathematics-to-technology direction for developing theoretical 
frameworks for use in technology environments dedicated to mathematical learning. 
The other side of the coin, the technology-to-mathematics direction, is highlighted 
by the efforts of Arzarello and Robutti to use the perceptuo-motor frame – a frame 
that was conceptualized specifically for use in environments involving bodily 
movement with physical tools. Their experience led them to suggest that the frame 
needed to be expanded by considering and integrating additional theories from the 
broader mathematical didactics literature. As for the third example of theory 
presented in this section, that of Brousseau’s TSD, we have discussed how certain 
aspects of that frame, such as milieu, have been taken just about as is and applied to 
research in technology environments. In the upcoming section, we will note how some 
elements of TSD have been used to elaborate more broadly a new theoretical frame 
– in this case, the theory generally referred to as Instrumentation, in particular the associated 
frame of instrumental orchestration (see Trouche 2007, for a specific example).

7.3.2 Instrumentation

Many studies on the use of technology in mathematics education refer to an 
instrumental approach. For example, out of the nine papers submitted to this ICMI 
Study 17 Conference subgroup on theoretical approaches, not less than seven 
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referred to an instrumental approach as one of the main components of the theoretical 
framework. Apparently, such an approach seems to be a dominant framework that 
has much to offer while considering the role of technology in the learning and 
teaching of mathematics.

However, for several reasons the issue is not that straightforward. First, a discussion 
in our subgroup on what an instrumental approach is and how it is used, revealed the 
presence of different accents. Therefore, we speak of “an” instead of “the” instrumental 
approach (Artigue 2008). Second, language issues play a role. For example, the 
word instrument, as will be explained below, is used in a different sense from its 
meaning in natural language: in the case of somebody playing the piano – the 
instrument in daily-life language – the instrument from the theoretical perspective 
is more than the piano alone and includes the piece that will be played, as well as 
the schemes the player uses while doing so. Third, confusion arises, particularly in 
English-speaking countries, because of the earlier theoretical development of the notion 
of instrumental understanding by Skemp (1976). One is even tempted to claim that 
instrumental approaches stress the need for reconciliation of Skemp’s instrumental and 
relational understanding (K. Ruthven, personal communication, February 2007).

As a fourth and final issue, we mention the terms schemes and techniques, 
which are used in instrumental approaches, but which refer to different theoretical 
backgrounds. The theoretical foundations of the instrumental approach to tool use 
encompass elements from both cognitive ergonomics (Vérillon and Rabardel 1995; 
Rabardel 2002) and the anthropological theory of didactics (Chevallard 1999). One 
can distinguish two directions within the instrumental approach, which link up with 
these two background frameworks (Monaghan 2005). In line with the cognitive 
ergonomic framework, some researchers see the development of schemes as the 
heart of instrumental genesis. Although these mental schemes develop in social 
interaction and with the help of orchestration, the schemes are essentially individual. 
The main perspective here is psychological and cognitive (Trouche 2000).

More in line with the anthropological approach, other researchers focus on the 
techniques that students develop while using technological tools and in social 
interaction. This approach stresses the importance of techniques, which tends to be 
underestimated in discussions on the integration of technology. It is acknowledged, 
though, that techniques encompass theoretical notions. The focus on techniques is 
dominant in the work of Artigue (2002) and Lagrange (2000), who stress in particular 
the three T’s: task, technique, theory. Artigue (2002; p. 248) notes that technique has 
to be given a wider meaning than is usual in educational discourse: “A technique is 
a manner of solving a task and, as soon as one goes beyond the body of routine 
tasks for a given institution2, each technique is a complex assembly of reasoning 
and routine work.” This quotation also emphasizes the coordination of the cogni-
tive and institutional dimensions, which is very present in instrumentation theory.

These complicated issues reveal the aim of this section. It is not a very detailed 
or sophisticated introduction into instrumentation theory; rather, it aims at sketch-

2 The word ‘institution’ has a broad sense in this theory. Here we consider didactic institutions, 
devoted to the intentional learning of specific knowledge.



108 P. Drijvers et al.

ing the global outline of this theoretical approach, clarifying the main ideas and 
vocabulary, discussing different points of view, and showing some of its power for 
research on the use of digital media in mathematics education.

7.3.2.1 Artifact and Instrument

An essential starting point in instrumentation theory is the distinction between 
artifact and instrument (Rabardel 2002). An artifact is the – often but not necessarily 
physical – object that is used as a tool. Think of a hammer, a piano, a calculator, or a 
dynamic geometry system on your PC. What exactly is the artifact in a given situation 
is not always clear. For example, in the case of dynamic geometry software, it is 
a matter of granularity if one considers the software as a whole as one single 
artifact, or if one sees it as a collection of artifacts, such as the construction artifact, 
the measurement artifact, the dragging artifact, and so on (Leung 2008). Also, 
the notion of artifact is quite wide. A scenario for using computer algebra in 
algebra teaching that is made available in a digital working space for professional 
development, for example, is an artifact that the teacher can use to shape his/her 
teaching (Bueno-Ravel and Gueudet 2007).

The way an artifact is used is nontrivial. As long as I have no idea about what 
letters stand for, word processors are useless artifacts to me. As soon as I start to 
learn to write, a pen is no longer an artifact that I use for drawing, but changes into 
an artifact that I also use for writing. Together with my developing skills, the pen 
forms an instrument for writing. This brings us to the psychological construct of the 
instrument being more than an artifact. Following Rabardel (e.g., Rabardel 2002), 
we speak of an instrument if a meaningful relationship exists between the artifact and 
the user for a specific type of task. Besides the artifact, the instrument also involves 
the techniques and mental schemes that the user develops and applies while using 
the artifact. To put this in the form of a somewhat simplified ‘formula’ we can state: 
Instrument = Artifact + Schemes and Techniques, for a given type of task.

7.3.2.2 Instrumental Genesis

The process of an artifact becoming part of an instrument in the hands of a user – in 
our case the student – is called instrumental genesis. For a hammer, this process 
includes skills for not hitting one’s fingers, but also the awareness of the type of 
problems that can and that cannot be solved with a hammer. Instrumental genesis 
also involves thinking about means to change the artifact and, for example, inventing 
a hammer with a wedge in its head that can also be used to remove nails.

Instrumental genesis is an ongoing, nontrivial and time-consuming evolution.  
A bilateral relationship between the artifact and the user is established: while the 
student’s knowledge guides the way the tool is used and in a sense shapes the tool 
(this is called instrumentalization), the affordances and constraints of the tool 
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influence the student’s problem solving strategies and the corresponding emergent 
conceptions (this is called instrumentation). The dual nature of instrumentation and 
instrumentalization within instrumental genesis comes down to the student’s thinking 
being shaped by the artifact, but also shaping the artifact (Hoyles and Noss 2003). 
It should be noted that the word ‘instrumentation’ has a somewhat double meaning 
here: in the framework of instrumental approaches, it refers to instrumentation theory 
as a whole; in the more specific context of instrumental genesis, it refers to the way the 
artifact affects the student’s behavior and thinking, as opposed to instrumentalization, 
which concerns the way the student’s thinking affects the artifact.

As an example, let us consider the graphing calculator. The menu option ‘Calculate 
Intersect’ of a TI-84 calculator is an artifact that calculates the coordinates of intersec-
tion points of graphs. On the one hand, this artifact enriches the student’s view of 
solving equations with a graphical representation. On the other hand, the artifact may 
limit the student’s conception of solutions, as the results are restricted to rounded-off 
decimal values instead of exact solutions. Of course, a student might program the 
calculator so that it will give solutions in the form of radicals, which would be an 
example of instrumentalization.

7.3.2.3 Schemes and Techniques

If instrumental genesis consists of the development of schemes and techniques, 
then the question is of course what these schemes and techniques are. The cognitive 
ergonomy approach and the anthropological approach have different views on 
schemes and techniques.

In the cognitive ergonomy approach (e.g., see Vérillon and Rabardel 1995) the 
notion of mental scheme builds on the definition of Vergnaud (1996): a scheme is 
an invariant organization of behavior for a given class of situations. More infor-
mally: a scheme is a more or less stable way to deal with specific situations or tasks. 
As we see a scheme here as part of an instrument, we speak of an instrumentation 
scheme. Within instrumentation schemes, schemes of instrumented action and uti-
lization schemes are distinguished. Utilization schemes are directly related to the 
artifact and are building blocks for more integrated schemes of instrumented action, 
which are more global schemes directed towards an activity with the object 
(Trouche 2000). In these mental schemes, technical and conceptual aspects are 
intertwined and codevelop. As we cannot look into the heads of our students – 
although neuroscientists are advancing! – schemes cannot be observed directly. 
Therefore, we focus on the observable instrumented techniques, which we define 
as a more or less stable sequence of interactions between the user and the artifact 
with a particular goal. In this interpretation, the technique can be seen as the 
observable counterpart of the invisible mental scheme.

In the anthropological approach, techniques are seen as components of praxeologies 
(Chevallard 1999), and therefore are seen as institutional objects. From this 
perspective, it is important to consider institutional conditions that enhance instru-
mental genesis.
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Essential in both schemes and techniques is the idea that technical and conceptual 
aspects coemerge and are closely related. In fact, it is the importance of this relationship 
that makes instrumentation theory powerful. We consider this to be more important 
than the difference between technique and scheme.

7.3.2.4 Examples

Let us look at some examples of schemes of instrumented action. The first example 
concerns the dragging tool in a dynamic geometry environment (DGE), as described 
by Leung et al. (2006). In line with Laborde and Capponi (1994), the authors write:

A key feature of DGE is its ability to visually represent geometrical invariants amidst 
simultaneous variations induced by dragging activities. This dynamic tool – dragging – 
induces potential dialectic between the conceptual realm (abstraction) of mathematical 
entities and the world of virtual empirical objects. Because of this possibility, dragging has 
been a major focus of research in DGE resulting in fruitful discussions on promising dragging 
modalities and strategies that seem to be conducive to knowledge construction. (p. 346)

Based on observations of students’ instrumental genesis while working on a task 
that essentially comes down to the necessary condition of Ceva’s theorem (Fig. 7.4), 
Leung et al. identified the following elements of what they call a Variational 
Dragging Scheme:

1. Create contrasting experiences by wandering dragging until a dimension of 
variation is identified.

2. Fix a value (usually a position) for the chosen dimension of variation.
3. Employ different dragging modalities/strategies to separate out critical feature(s) 

under the fixed value (i.e. a special case for the configuration)
4. Simultaneously focusing, hence “reasoning”, on covarying aspects during dragging. 

A preliminary conjecture is fused together.
5. Attempt to generalize by a change to a different value for the chosen dimension 

of variation.

Fig. 7.4 Dragging in a DGE (Leung et al. 2006; p. 350)
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6. Repeat steps 3 and 4 to find compromises or modifications (if necessary) to the 
conjecture proposed in step 4.

7. Generalization by varying (via different dragging modalities) other dimensions 
of variation. (Leung et al. 2006; pp. 350–351)

The second example of a scheme of instrumented action concerns the solving of 
parametric equations in a computer algebra environment. Drijvers and Gravemeijer 
(2004) claim that solving a parametric equation with computer algebra is a nontrivial 
issue for grade 10 students. Figure 7.5 sketches some conceptual elements that 
are involved in “simply” applying the Solve command. The authors distinguish the 
following elements, some of which have a more technical, and others a more 
conceptual character:

1. Knowing that the Solve command can be used to express one of the variables in 
a parameterized equation in other variables.

2. Remembering the TI-89 syntax of the Solve command, that is Solve (equation, 
unknown).

3. Knowing the difference between an expression and an equation.
4. Realizing that an equation is solved with respect to an unknown and being able 

to identify the unknown in the parameterized problem situation.
5. Being able to type in the Solve command correctly on the TI-89.
6. Being able to interpret the result, particularly when it is an expression (Drijvers 

and Gravemeijer 2004; p. 174)

The third and final example of a scheme of instrumented action is presented by 
Kieran and Drijvers (2006a, b). It concerns the notion of equivalence of algebraic 
expressions in combination with the use of a symbolic calculator. What is different 
here from the previous examples is that a number of techniques are distinguished 
– in this case, to decide on equivalence. Furthermore, each of the techniques affects 
the understanding of the notion of equivalence. Altogether, an important component 
of the instrumentation scheme here is the coordination of the set of available 

Fig. 7.5 Interrelated technical and conceptual elements (adapted from Drijvers and Gravemeijer 
2004; p. 173)
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techniques, including the choice of carrying out the technique by hand or with the 
symbolic calculator.

1. Substituting numerical values
2. Common form – by factoring
3. Common form – by expanding
4. Common form – by automatic simplification
5. Test of equality
6. Solving equations

Even if the three examples are different in the way schemes are described and pre-
sented, they share an interest in making tangible the interaction between the tech-
niques involved in using the artifact and mathematical thinking. And that is what 
instrumentation theory is about.

7.3.2.5 Orchestration

As a final aspect of instrumentation theory, we briefly address the notion of 
orchestration. So far, we have examined the instrumental genesis of schemes and 
techniques as an individual process. Different students may develop different 
schemes for working on the same type of task or for using a similar command in 
the technological environment. However, instrumental genesis also has a social 
dimension. Students develop mental schemes within the context of the classroom 
community, and a process of collective instrumental genesis is taking place in 
parallel with the individual geneses.

In order to describe this process of collective instrumental genesis and the 
management of the individual instruments by the teacher in the collective learning 
process, Trouche (2004) introduced the notion of instrumental orchestration. 
An instrumental orchestration is the intentional and systematic organization of the 
various artifacts available in a computerized learning environment by the teacher 
for a given mathematical situation, in order to guide students’ instrumental geneses. 
An instrumental orchestration is defined by didactic configurations (i.e., arrangements 
of the artifactual environment, according to various stages of the mathematical 
situation); and exploitation modes of these configurations. Trouche (2007) refers to 
Brousseau’s TSD in defining situation, as well as to Chevallard (1999) in discussing 
the systematic nature of orchestrations.

While addressing the ways teachers can orchestrate students’ collective instrumen-
tation, it should be noted that the artifacts in use by the students are also to be seen as 
artifacts that teachers use for their teaching. As such, the teacher’s instrumental genesis 
comes into the picture. Teachers also have their own artifacts such as electronic 
resources, teaching experiences, and teaching scenarios. From this perspective, 
instrumentation theory is double-layered and can be a fruitful tool in teacher training 
on orchestrating technology as well: teachers are themselves involved in a process 
of instrumental genesis to develop artifacts into instruments for accomplishing their 
teaching tasks (Bueno-Ravel and Gueudet 2007; Guin and Trouche 2007).
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7.3.2.6 Affordances, Constraints, Perspectives

In this final part of the section on instrumentation theory, we discuss what the theory 
offers, what it doesn’t offer, and what different perspectives exist within the theory.

The instrumental approach to tool use was recognized by French mathematics 
education researchers as a potentially powerful framework in the context of using 
CAS in mathematics education. Many publications show how valuable this approach 
is for the understanding of student-CAS interactions and their influence on teaching 
and learning (Artigue 1997, 2002; Lagrange 2000, 2005; Trouche 2000, 2004; 
Guin et al. 2004). As the examples show, it has been applied to the integration of 
computer algebra and dynamic geometry systems into the learning of mathematics, 
but also to the use of spreadsheets (Haspekian 2005) and applets (Boon and Drijvers 
2006). The examples also show what it offers: a lens that enables us to take into 
account, to investigate, and to assess the subtle emerging relationship between tool 
use and mathematical thinking. By means of descriptions of a priori hypothetical 
schemes and their genesis, the researcher captures his/her hypotheses and focuses 
his/her observations. A posteriori, instrumentation theory guides the data analysis 
and the conclusions.

However, instrumentation theory cannot of course be “the complete solution to 
everything” and additional theoretical perspectives may be needed. The seven 
papers that used instrumentation theory in their theoretical framework also included 
other elements, such as notions of flexibility (Andresen 2006), semiotic mediation 
(Mariotti 2006; see next section), elements of mathematical didactics (Dana-Picard 
and Kidron 2006; Kidron and Dana-Picard 2006), and phenomenography (Leung et al. 
2006). It is clear that the instrumental perspective may need to be complemented 
by, for example, topic-specific notions from mathematical didactics or general 
notions on collective learning (e.g., Wenger 1998). Combining instrumentation 
theory with other theoretical perspectives thus can be a fruitful avenue for research 
on the integration of technology in mathematics learning and teaching.

One of the future challenges for the further development of instrumentation 
theory is to fine-tune the balance − including both the similarities and the differences 
− between the cognitive ergonomics frame and the anthropological theory of didactics.

7.3.3 Mediation and Semiotic Mediation

In the previous section the particular theoretical lens of the instrumental approach 
was used to analyze the relationship between artifacts and mathematical knowledge. 
Through the notions of utilization schemes and techniques with respect to the 
solution of a task, both the cognitive and the epistemological dimensions were 
addressed. The following section aims at further elaborating the relationship between 
these two dimensions by describing other theoretical models that articulate the 
relationship between artifacts and mathematical knowledge in an educational context. 
In recent years, among the various theoretical perspectives that have been used to 
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frame research in mathematics education, some studies have adopted a semiotic 
perspective – focusing on the role of signs and symbols and their use or interpretation 
(Sàenz-Ludlow and Presmeg 2006). In the following section, we present an account 
of the ways in which semiotic perspectives can contribute to the study of the 
integration of technologies into the classroom.

7.3.3.1 Representation and the Semiotic Approach

Because of its epistemological nature any immediate relationship with mathematics 
is impossible; any relation passes through a mediation process. Ideal, immaterial, 
nonperceivable entities such as numbers or figures acquire existence, can be 
thought of and shared, only through their materialization in a concrete perceivable 
entity, generally referred to as representation. As discussed in Sect. 7.2.3.3, the 
potential of new technologies for such mediation appears very promising from 
early research studies.

In the common practice of experts, representations become so familiar as to achieve 
complete transparency. Taking an educational perspective, however, we are aware 
that the complexity of the process underlining the evolution toward transparency 
cannot be overestimated. Different theoretical perspectives model the functioning of 
representations and, in particular, the functioning of representations offered by new 
technological devices with respect to specific educational goals. Drawing on a widely 
shared assumption about the key role of representation in the development of 
knowledge, the opportunities offered by new digital technologies have been explored.

The interaction between a learner and a computer is based on a symbolic interpretation and 
computation of the learner input, and the feedback of the environment is provided in the 
proper register allowing its reading as a mathematical phenomenon. (Balacheff and Kaput 
1996, p. 470)

Acting within a computer-based environment with representations of mathematical 
ideas (concepts) occurs in at least two different kinds of modalities that correspond 
also to different kinds of technological devices. These two modalities can be classified 
as direct or indirect, according to the nature of the interaction between the user and 
the machine. In fact, action is accomplished either through communicating with the 
machine using a particular language (for instance, Logo-based environments) or 
through directly manipulating objects with the mouse (for instance, Dynamic 
Geometry environments). Obviously, in most cases both modalities are available 
and can even interact.

This perspective generated a number of studies that showed the value of such 
action in enhancing pupils’ thinking; in particular, different kinds of animations 
demonstrated their effectiveness in provoking students to engage in meaningful 
inquiry involving mathematical ideas (e.g., Nemirovsky et al. 1998; Nemirovsky 
and Borba 2004).

As was clearly illustrated by Kieran and Yerushalmy (2004), new technologies 
offer the opportunity of exploiting the coordination of multiple representations of 
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mathematical concepts – both within a given computer environment and between a 
given computer environment and the traditional paper-and-pencil environment.

Confrey (1992) and Borba (1993, 1994) refer to the coordination of and contrast 
among representations as an “epistemology of multiple representations” and suggest 
a model for the meaning of understanding in multiple representational environments.

A comprehensive account of the different theoretical perspectives addressing the 
issue of representation with respect to digital media is beyond the scope of this 
section. The European research project ReMath, which aims at coping with the variety 
and fragmentation of the different theoretical frameworks concerning the role of 
representations in enhancing mathematical learning with digital media, is addressed 
later in the chapter.

Below we focus on the idea of representation and on the process of mediation 
related to the different forms of representation involved in acting and interacting 
with technological devices.

7.3.3.2 Mediation

Taking a general perspective and assuming that context - in its most comprehensive 
interpretation - shapes human thinking, a crucial point consists in how one considers 
the distinction between humans and tools, as particular elements of the context. 
As Borba and Villarreal (2005, p. 12) claim, statements such as “computers develop 
students’ thinking” and “computers help students to graph” may or may not express 
a disjunction between humans and tools, depending on the theoretical framework 
used. This means that the interpretation of sentences of the type “computers develop 
students’ thinking” and the like depends on how one conceives the relationship 
between human cognition, knowledge, and tools.

Traditionally the dichotomy humans – tools is reflected in the disvaluing3 of techniques 
and technology (assumed as the study of techniques). The origin of this disvaluing lies 
in the assumed lack of creativity of the application of predefined techniques while 
using a tool, compared to the potentially high creative character of human beings.

On the contrary, assuming a unity between humans and tools or, as Lévy (1990) 
claims, refusing a dichotomy between humans and technology, may result in a completely 
different evaluation of the use of tools, and in different approaches to learning issues 
related to their use.

For instance, the unity between humans and media, humans-with-media 
(Borba and Villarreal 2005), may be considered a basic goal: the tool becomes 
transparent (Meira 1998); the violin is one with the violinist (Moreno-Armella and 
Santos-Trigo 2002). The consequences of this theoretical assumption on the 

3 Stemming from the ancient Greek culture, the distinction between technical and conceptual, 
and the parallel between practical and ideal, refers to philosophical positions and theoretical 
oppositions still alive at present; elaborating on this distinction is beyond the goals of this text, 
but it is useful to keep it in mind in order to understand and overcome the difficulties so often 
encountered in communicating.
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educational plane are diverse: the complexity of the school context and the diversity 
of epistemological approaches shape educational goals and their relationship to 
curricular requirements with respect to the mediation of a tool, and consequently 
with respect to mediated action, in a different way.

The general hypothesis stating the basic role of practice in the construction of 
knowledge does not fully explain the role of the use of artifacts in the particular 
case of mathematics education. The relationship between artifacts and knowledge is 
complex and asks for a careful analysis in order to avoid oversimplification. The most 
insidious risk is that mathematical meanings, rooted in the use of artifacts, might 
remain extraneous to pupils: they may remain “in the eyes of the observer”.

Figure 7.6 illustrates a model of the learning process, inspired by a socio-cultural 
approach that focuses on the use of an artifact and is expressed in terms of mediation 
(Jones 2000). This model is often summarized as follows: artifacts are a means to 
access mathematical knowledge. In other words, artifacts are considered not only 
to be a means to accomplish a concrete action, such as a compass to draw a circle, 
or a calculator to compute a multiplication, but are also considered to be a means 
for learning. As just said, the role of artifacts in learning is often expressed 
metaphorically by the expression “[…] access mathematical knowledge”, that is, 
by evoking the action of entering a place, and in this case, entering mathematical 
knowledge. This metaphor (Lakoff and Johnson 1980) is widespread in the 
mathematics education field and brings about a set of assumptions that tend to 
remain implicit. Although quite effective in expressing the potential of an artifact 
in mathematics education, such a metaphor does not help one to fully understand how 
and why the mediating artifact may function to make the learner’s access successful, 
and as such leaves a great part of the story unexpressed (Mariotti 2002).

Through elaboration of the seminal idea of semiotic mediation introduced by 
Vygotsky (1978), and through the combination of both a semiotic and an educational 
perspective, more refined theoretical models have been proposed to describe and 
explain the process that starts with the use of an artifact to accomplish a task and 
leads to the learning of a particular mathematical content.

7.3.3.3 Mediation According to a Semiotic Approach

The mediating potential of any artifact resides in the double semiotic link that such 
an artifact has with both the meanings emerging from its use for accomplishing a 
task, and the mathematical meanings evoked by that use, as recognized by an expert 

Mediating artifact

Learner Mathematics

Fig. 7.6 A model of the process of mediation by an artifact (Jones 2000)
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in mathematics. In this respect, any artifact may be considered both from the indi-
vidual point of view – for instance, the pupil coping with a task and acting with a 
tool to accomplish it – and from the social point of view – for instance, the corpus 
of shared meanings recognizable by the community of experts, mathematicians or 
mathematics teachers. From a socio-cultural perspective, the tension between these 
two points of view is the motor of the teaching-learning process centered in the use 
of an artifact.

In this respect any artifact, either belonging to the set of new technologies or 
belonging to the set of ancient technologies, may offer a valuable support according 
to its semiotic potential, although the identification of such a potential might 
require different approaches (Bartolini Bussi and Mariotti 2002).

The double semiotic relationship hinged in the artifact may become the object 
of an a priori analysis, involving in parallel two interlaced perspectives, the cognitive 
and the epistemological. The coordination of these two directions of analysis leads 
one to the identification of the semiotic potentialof an artifact, which can be related 
to particular educational goals.

The determination of its semiotic potential certainly constitutes a basic ele-
ment for designing any pedagogical plan centered on the use of a given artifact.  
The construct of instrumental genesis, discussed above, provides a crucial contribution 
to such analysis. As long as the evolution of personal meanings is related to the 
accomplishment of a task, it can be analyzed in terms of instrumental genesis, that 
is, meanings may be related to specific utilization schemes that themselves are 
related to the specificity of the tasks proposed to students. Thus, an instrumental 
approach becomes fundamental not only in the identification of semiotic potential 
but also in the design of appropriate tasks, as well as in the interpretation of pupils’ 
actions and ‘speech’ acts.

A main hypothesis assumes the contribution of semiotic processes in knowledge 
construction and the particular role of signs in the internalization process 
(Vygotsky 1978). As expressed by Radford (2003), artifacts and in particular what 
he calls semiotic systems contribute not only to accomplishing a task, but also to 
constructing knowledge:

In other words, to arrive at the goal the individuals rely on the use and the linking together 
of several tools, signs, and linguistic devices through which they organize their actions 
across space and time.

These objects, tools, linguistic devices, and signs that individuals intentionally use in 
social meaning-making processes to achieve a stable form of awareness, to make apparent 
their intentions, and to carry out their actions to attain the goal of their activities, I call 
semiotic means of objectification. (p. 41)

But how might the student become aware of meanings as related to mathematics? 
In other words, using a terminology inspired by Leont’ev (1976), how might it happen 
that personal meanings, which arise in the accomplishment of a task through the 
use of a certain artifact, become “mathematical meanings”?

Meanings are expressed through representatives of different kinds – words, gestures, 
drawings, and so on – and even through complex hybrids (Radford 2003; Radford 
et al. 2004; Arzarello 2006). Meanings emerge through their expression via external 
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representations, so that new signs4 can be socially shared. The main characteristic 
of these signs is their strong link with the actions accomplished with the artifact, in 
so far as the semiotic potential of the artifact has been disclosed.

When this semiotic process takes place in the classroom, social interaction may 
assume a common goal oriented to teaching/learning mathematics. Both pupils and 
teacher may be involved in the evolution of signs referring to personal meanings. 
The teacher’s action will be at both the cognitive and the meta-cognitive levels, 
both fostering the evolution of meanings and guiding pupils to be aware of their 
mathematical status (Cobb et al. 1993).

In acting at the metacognitive level, the teacher’s role becomes crucial: taking 
the educational goal of introducing pupils to mathematical culture, the teacher 
plays the role of cultural mediator. He/she purposely bridges the individual and the 
social perspectives and makes the artifact function as a semiotic mediator and not 
simply as a mediator. According to a Vygotskian perspective, a basic assumption  
is that the awareness of the semiotic potential of the artifact, both in terms of 
mathematical meanings and in terms of personal meanings, allows the teacher to 
use the artifactas a tool of semiotic mediation.

Thus any artifact will be referred to as toolof semiotic mediation as long as it is (or it is 
conceived to be) intentionally used by the teacher to mediate a mathematical content 
through a designed didactical intervention. (Bartolini Bussi and Mariotti 2002)

Beyond, but not in contrast with, the objective of making the artifact become 
transparent or “converting tools into mathematical instruments” (Guin and Trouche 
1999), this approach focuses on the learning process related to the use of the artifact 
using a semiotic lens. A theoretical model is proposed, describing learning as social 
endeavor, where the evolution of signs is intentionally organized and directed by the 
teacher. According to a Vygotskian perspective, this evolution corresponds to the 
move from personal meanings rooted in the context of the artifact to conscious 
mathematical meanings. Long-term teaching experiments inspired by the perspective 
of semiotic mediation have largely contributed to clarifying and developing such a 
semiotic approach; a short account of these studies is given in the following section.

7.3.3.4 Examples of Semiotic Mediation

Consider the relationship between geometrical constructions and drawing procedures 
in a DGE. Software tools such as Cabri simulate the drawing tools of classic 
geometry, and nicely reproduce on the screen what for centuries was drawn on various 
supports, paper, sand, and the like. However, far beyond the correspondence between 

4The term sign is used consistently with Pierce’s characterization: “Something which stands to 
somebody for something in some respect or capacity” (Pierce 1932; 2.228), taking into account 
the need for a broad notion of semiotic system. For further discussion, see Bartolini Bussi and 
Mariotti (2002) or Arzarello (2006).
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the graphic results of constructions, for example, the drawing on the screen and the 
drawing on the paper, the semiotic potential of Cabri resides in the correspondence 
between the logic of the stability by dragging the Cabri figure and the logic of 
the geometrical validity of the corresponding construction procedure. The meaning 
of construction as it emerges from solving construction problems in Cabri has a 
counterpart in the theoretical meaning of a geometrical construction as it is recognized 
in geometry.

The core of the dynamics of a DGE figure, as it is realized by the dragging 
function, consists of preserving its intrinsic logic, that is, the logic of its construction. 
The elements of a figure are situated in a hierarchy of properties; this hierarchy is 
defined by the construction procedure and corresponds to a relationship of logical 
conditionality. At the same time, the intrinsic relationship between a DGE and 
Euclidean geometry, as described by Laborde and Laborde (1995) amongst others, 
makes it possible to interpret the control ‘by dragging’ as corresponding to theoretical 
control – by proof and definition – within the system of Euclidean geometry.

In summary, as far as Cabri tools are concerned, the semiotic potential is 
recognizable in a double relationship. On the one hand, Cabri tools are related to 
the construction tasks and to the utilization schemes that are mobilized by the solver 
to obtain the Cabri figures on the screen. On the other hand, the Cabri tools are 
related to the geometrical construction problems that make sense and can be solved 
within classic Euclidean geometry theory through geometrical theorems.

In accordance with the identification of this semiotic potential, a pedagogical 
plan was designed for a study by Mariotti (2000, 2001). The main motive of the 
classroom activities was the evolution of the meaning of construction. At the very 
beginning, ‘construction’ made sense in the field of experience of Cabri: the solution 
of drawing problems made sense in relation to the use of particular Cabri tools 
for producing a Cabri figure, that is, a figure passing the dragging test. Then the 
meaning slowly evolved towards the theoretical meaning of geometrical construction. 
The results of extended teaching experiments attested to the emergence of intermediate 
meanings, rooted in the semantic field of the artifact, as well as their evolution into 
mathematical meanings, consistent with Euclidean geometry. Such an evolution could 
be accomplished, under the teacher’s guidance, by exploiting the correspondence 
between, on the one hand, the selection of specific Cabri tools and the elaboration of 
their utilization schemes and, on the other hand, the assumption of the corresponding 
Euclidean axioms. The appropriateness of a specific procedure to achieve a “correct” 
Cabri figure thus had a counterpart in the acceptability of the construction 
procedure according to geometrical axioms. The conventional constraints of 
axiomatic assumptions found a parallel in the choice of tools and in the acceptance 
of their constraints. In this sense, we can talk of semiotic mediation in that Cabri 
tools and their use could be exploited by the teacher to make sense of axioms and 
theorems and their functioning within a theoretical system.

The semiotic mediation approach was also used to frame the design and 
implementation of an elementary symbolic manipulator, L’Algebrista, with the aim 
of developing the meaning of symbolic manipulation as a deduction within algebra 
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theory (Cerulli and Mariotti 2002; Mariotti 2006). The microworld L’Algebrista 
was expected to offer students the opportunity to actively experience the constraints 
of the deductive rules in play in the algebraic theoretical environment. After this 
experience, the teacher could exploit the semiotic potential of the artifact to develop 
the meaning of theory, and of algebra theory in particular.

On the one hand, the constraints defined by the command buttons that are 
available correspond to the limitations defined by the axioms available in algebra 
theory. On the other hand, the actions of the commands correspond to the deductive 
rules of substitution that validate the transformation of one expression into another 
one that is equivalent. Moreover, the buttons corresponding to the axioms offer the 
opportunity of objectifying (Radford 2003) these ideas and consequently allow for 
the emergence of a reflective discourse about their functioning. Furthermore, the 
design of a specific environment where suitable commands can be used to create a 
new button, to be added to a personalized list of commands, provides the teacher 
with suitable tools to approach theory at a metalevel where the meaning of the 
‘logical status of a statement’ makes sense.

The complexity of the didactical model based on the notion of semiotic mediation 
begs for further investigations that focus on different aspects of the process of 
semiotic mediation. Recent studies have developed specific theoretical constructs, 
including the notions of semiotic node (Radford 2003) and of semiotic bundle 
(Arzarello 2006), which can provide insight into the nature of the signs emerging 
during instrumented activity. Other promising and ongoing studies are focusing on 
fine-grained analyses of the action of the teacher in “orchestrating the use of an 
artifact” (Trouche 2005; p. 123), in particular during collective discussions. Up to 
now, results have tended to be concerned with the description of types of semiotic 
games that the teacher can put in place with the aim of exploiting the semiotic 
potential of an artifact and guiding the evolution of mathematical meanings 
(e.g., Falcade et al. 2007). Despite these advances, further work in this area is needed.

7.4 Summary and Future Developments

7.4.1 Summary

Earlier in this chapter, Sect. 7.2 addressed the past theoretical thinking on the 
integration of technology in mathematics education. The review study carried out by 
Lagrange et al. (2003) indicated that before 1998 the only theoretical convergences 
were at a general level and touched upon issues related to visualization, connection 
of representations, and situated knowledge. In 7.3, current theoretical developments 
were described, with particular attention to learning theories from mathematical 
didactics, to instrumentation, and to semiotic mediation. Looking back at the chapter 
so far, we do observe theoretical advancements; still, the overall picture is not 
quite clear, as the articulation of different theoretical frameworks from different 
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backgrounds is not realized, and probably will not be realized in the future. Also, 
even if specific theories on tool mediation in students’ work on mathematical tasks 
seem to be fruitful, other aspects remain underexposed, such as the role of language in 
instrumental genesis, the role of the teacher in technology-rich learning environments, 
and the influence of the available tools on tasks and task design.

The question we address in this final section, therefore, is how we can extrapolate 
from the state-of-the-art sketched by the “historical” view of the past and present 
towards the recognition of relevant issues for the future development of theory in 
technology-related research in mathematics education.

7.4.2 Technological Developments

As theoretical thinking in this field is not independent from technological proceedings, 
let us first briefly consider possible future developments of technological tools. 
Thinking about the evolution of ICT in education, the key expression that comes to 
the fore is connectivity. The interest in personal communication strongly drives the 
need for connectivity. Even more than is the case nowadays, students and their 
teachers will communicate in oral or written form through the internet, through 
electronic learning environments, and through classroom connectivity facilities that 
allow for gathering students’ results from handheld devices and projecting them on 
an interactive whiteboard. Teachers will monitor students’ progress and students 
will be able to engage in Computer Supported Collaborative Learning (see also 
within this volume Chap. 11, on communication). Computer tools offer options for 
file transfer between handheld and desktop devices, and between different types of 
software applications such as DGE and CAS. Computer tools are integrated into more 
general mathematical environments that integrate different mathematical topics. 
Meta-tools are emerging, both as unifying artifacts and as multifunctional tools, 
where components are connected in an integrated whole. As connectivity gets more 
and more easy, out-of-school use becomes more important. Students use technology 
at home and elsewhere, and not only for school purposes. For example, they play 
computer games (team games!) with peers all over the world. Such games may make 
use of mathematical elements such as geometrical insights or functional dependencies, 
but these elements are often implicit and not much is known about possible exploitation 
of these experiences for educational purposes (Shaffer and Gee 2006).

7.4.3 Theoretical Developments

For the issue of the future development of theory in technology-related research in 
mathematics education, we are tempted to use the same key word connectivity. It is 
clear that no single theoretical framework can explain all phenomena in the complex 
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setting of learning mathematics in a technology-rich environment. Different 
theoretical frameworks offer different windows on it, and each view on the landscape 
can be sound and valuable. In fact, different perspectives may be complementary 
and as such contribute to ‘the whole picture’. Theoretical frameworks that are used 
to investigate the role of technological tools in society and at the workplace might 
also be taken into consideration (Kent et al. 2007). Whereas both the instrumental 
approaches and activity theory, which were addressed in Sect. 7.3, did not emerge 
within the frame of educational issues, they both contribute to an understanding of 
the learning of mathematics.

So if the connectivity of different theoretical perspectives is to be an issue, how 
do we manage to bridge the views of different theoretical perspectives, to understand, 
articulate, and value the different contributions that each of them offers, and to 
establish knowledge about their connectivity and their complementarity? To answer 
this question, an integrated theoretical framework is needed, not in the sense of 
a unifying “metatheory for everything” but in the sense of a metalanguage 
that helps us to address, describe, and outline the contributions of the different 
theoretical perspectives. Even if the need for a metalanguage to discuss and 
evaluate the different theoretical perspectives is evident, its development is far 
from trivial and raises many questions:

Looking for integrative perspectives raises some fundamental questions. What kind of 
integration can reasonably be aimed at? Does it make sense to look for a unified perspective, 
an overarching theory or metatheory encompassing the different existing frames? Or is 
such a perspective unreasonable, due to the incommensurability of most of the existing 
theoretical frames? What can only make sense would be then to look for structures and 
languages in order to better understand the characteristics of the corresponding approaches, 
to organize the communication between these, and to benefit from their respective 
affordances. If so, can we build such structures and languages, and how can we make these 
operational? (Artigue et al. 2006, p. 5)

However, if the issues of connecting and articulating theoretical orientations can be 
dealt with, we hope and expect that the theories on learning mathematics with 
technological means can contribute to the research on this issue and to the learning 
and teaching practices of students and teachers in their different educational settings. 
(In the latter regard, see also Zbiek et al. 2007.)

This chapter closes with a brief description of a first attempt to develop such an 
integrated theoretical framework.

7.4.4 The Remath Integrative Theoretical Framework

To describe the connectivity of theoretical perspectives by means of such a 
metalanguage is one of the main, not-too-far-in-the-future challenges in this domain. 
An interesting and promising example of an attempt to investigate theoretical 
connectivity in the domain of research on technology in mathematics education is 
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the Integrative Theoretical Frame built by Artigue and colleagues within the ReMath 
project (Artigue 2006; Artigue et al. 2006).

The research team identified three main dimensions of didactical functionality 
for ICT tools:

1. Tool characteristics and features
2. Educational goals and associated potential of the tool
3. Modalities of use in a teaching/learning process

For each of these three dimensions, concerns are made explicit by which existing 
theoretical frameworks can be described and evaluated. For the dimension of tool 
characteristics, for example (at times referred to as “characteristics of the interactive 
learning environment” in the report by Artigue et al. 2006), these concerns include 
the following:

1. The ways mathematical objects and their interaction are represented
2. The ways didactic interactions are represented
3. The ways representations can be acted on
4. Possible interactions and connections with other semiotic systems
5. Relationships with institutional or cultural systems of representation
6. The rigidity or evolutive characteristics of representations (Artigue et al. 2006; p. 48)

While the relationships of some of the various concerns to the overall dimensions 
have yet to be worked out in this emerging framework (as, e.g., in point (b) above 
where didactic interactions are included), certain representational features of the 
frame are of potential immediate use. For example, for each of the three dimensions 
in the ReMath integrative theoretical framework, the concerns are graphically 
displayed in radar charts. Figure 7.7 shows such a radar chart for the dimension of 
tool characteristics.

Fig. 7.7 Tool Characteristic radar chart within the ReMath Integrative Theoretical Framework 
(Artigue et al. 2006; p. 50)
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Such radar charts can be used to position different designs and underlying 
theoretical perspectives, and to compare and articulate them. As an exercise, let us 
look back at the example of the activity on solving parametric equations presented 
in Fig. 7.5 (Drijvers and Gravemeijer 2004). We grade each of the above concerns 
according to the priority it had in this task, with respect to its design and the 
underlying instrumental theoretical framework (as applied to individual learning). 
Using grades from 0 (i.e., not considered) to 5 (i.e., high priority), we assign 
the following scores:

 1. The ways mathematical objects and their interaction are represented
 2. This is certainly an important concern in the task, where the main mathematical 

object is a parametric equation and the interaction involves solving it with 
respect to the independent variable. We assign grade 4.

 3. The ways didactic interactions are represented
 4. This is a less important concern in the task because the didactical interactions, 

for example, between teacher and student and among students, were considered 
only to a limited extent. We assign grade 2.

 5. The ways representations can be acted on
 6. As we see a parametric equation as an algebraic representation, and the 

expression of the solution as well, acting on representations is an important 
aspect in task design. Also, it is important in the process of instrumental genesis, 
which is a central issue in the theoretical framework. We assign grade 4.

 7. Possible interactions and connections with other semiotic systems
 8. One important focus of the task and the study was to explore the relationship 

between CAS techniques, paper-and-pencil techniques, and students’ conceptual 
understanding. We see this as a way of focusing on the connections between 
semiotic systems, and therefore assign grade 5.

 9. Relationships with institutional or cultural systems of representation
10. In the study and in its focused and limited interpretation of the instrumental 

approach, institutional and cultural dimensions were hardly considered. 
Therefore, we assign grade 0.

11. The rigidity or evolutive characteristics of representations
12. On the one hand, representations within a computer algebra environment such 

as the TI-89 are quite rigid. On the other hand, instrumental genesis is an 
evolutive process. As the study focused on the identification of schemes of 
instrumented action more than on their genesis, we assign grade 1.

Figure 7.8 shows how these ratings – which do have a degree of subjectivity here 
and should be established in a more sophisticated way – can be represented in the 
radar chart, in which the rating 0 for the cultural concern is not displayed. This chart 
provides an overview of the concerns that played a role in the task design and the 
theoretical framework as it was used. It allows for comparison with another task 
and/or another theoretical perspective. It may help researchers to be explicit about 
their framework and to position their work in relation to other studies in the field.
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Chapter 8

Mathematical Knowledge and Practices 
Resulting from Access to Digital Technologies

John Olive and Katie Makar, with Verónica Hoyos, Liew Kee Kor,  

Olga Kosheleva and Rudolf Sträßer

Abstract Through an extensive review of the literature we indicate how technology 

has influenced the contexts for learning mathematics, and the emergence of a new 

learning ecology that results from the integration of technology into these learning  

contexts. Conversely, we argue that the mathematics on which the technologies are 

based influences their design, especially the affordances and constraints for learning of  

the specific design. The literature indicates that interactions among students, teachers,  

tasks, and technologies can bring about a shift in empowerment from teacher or external 

authority to the students as generators of mathematical knowledge and practices; 

and that feedback provided through the use of different technologies can contribute to 

students’ learning. Recent developments in dynamic technologies have the potential 

to promote new mathematical practices in different contexts: for example, dynamic 

geometry, statistical education, robotics and digital games. We propose a transfor-

mation of the traditional didactic triangle into a didactic tetrahedron through the 

introduction of technology and conclude by restructuring this model so as to redefine 

the space in which new mathematical knowledge and practices can emerge.

Keywords Mathematical knowledge • Mathematical practices • Dynamic 

technologies • Learning ecologies • Didactic triangle • Didactic tetrahedron

8.1 Overview of the Chapter

We have structured this chapter into three major sections: (1) mathematical knowledge 

and learning that results from the use of technology, (2) mathematical knowledge on 

which the technologies are based, and (3) mathematical practices that are made 
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possible through the use of technology. We preface these three major sections with 

a look back at the potential of digital technologies to transform the way mathematics 

could be taught and learned that emanated from the first ICMI study, and comment 

on the limited realization of that potential. We argue that the assimilation of the 

technologies to existing classroom practices rather than the technologies provoking an 

accommodation in those practices has limited that potential. In this preface we suggest 

a metaphor for how technology could transform the traditional didactic triangle 

(student, teacher, and mathematics) into a didactic tetrahedron, and use selected 

faces of that tetrahedron as the focus of subsequent major sections of the chapter.

The first major section begins with a discussion of what we mean by “mathematical 

knowledge” in a technological world and the different research perspectives on knowl-

edge in a mathematical learning context. Following this discussion, we address the 

major question of the influence of technology on the nature of mathematical 

knowledge. We give particular attention to the operational and notational aspects of 

mathematical knowledge, and then look at how technology has influenced the contexts 

for learning mathematics, and the emergence of a new learning ecology that results 

from the integration of technology into these learning contexts. We conclude this 

section of the chapter with three different case studies that illustrate novel ways of 

learning mathematics within these different learning ecologies.

The second major section of this chapter discusses the mathematical knowledge that 

“resides” within the different technologies, or, rather the mathematics on which these 

technologies are based and that influences their design, especially the affordances 

and constraints for learning of the specific design. (Design issues are addressed more 

fully in Sect. 1 of this volume.) This second section concludes with a discussion of 

how much of this mathematics the user should be aware or even understand.

In the third major section of the chapter we focus on new mathematical practices. We 

begin with a discussion of the link between knowledge and practice in mathematics learn-

ing and teaching. This is followed by a discussion of the interactions among students, 

teachers, tasks, and technologies, and the resulting shift in empowerment brought about 

by these interactions. We then look at the role of feedback that can be provided through 

the use of different technologies. We conclude this section with more detailed descriptions 

of technologies that have the potential to promote new mathematical practices in different 

contexts: dynamic geometry, statistical education, robotics and digital games. The chapter 

concludes with a summary in which we revisit our didactical tetrahedron, restructuring its 

vertices so as to redefine the space in which new mathematical knowledge and practices 

can emerge as a result of our review of the literature presented in this chapter.

8.1.1 Preface

As indicated in Chap. 7, the first ICMI study, held in Strasbourg, France in 1985 

concerned the influence of computers and informatics on mathematics and its 

teaching. This first ICMI study reported (with considerable optimism) on the potential 

of these technologies to transform the way mathematics could be taught and learned 
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(Howson and Kahane 1986). Initial predictions about the influences of technology 

built up in our minds an image that computing machines would replace arduous tasks, 

with computational giants freeing the human element (Pacey 1985). The uses of 

technology in education, however, have often simply replaced paper with computer 

screens without changing tasks; computers have been used to “simply transfer the 

traditional curriculum from print to computer screen” (Kaput 1992, p. 516) in ways 

that resemble traditional worksheets and structured learning environments, rather 

than working to transform learning (Tyack and Cuban 1995). This limitation, however, 

is less a limitation of the technology “than a result of limited human imagination 

and the constraints of old habits and social structures” (Kaput 1992, p. 515).

Piaget (1970) introduced the distinction between the assimilation and accommoda-

tion of concepts, contrasting adaptation of the environment to the organism with adapta-

tion of the organism to its environment. In assimilation, learners would attempt to 

interpret a new idea into their current framework for conceptual understanding. This 

often meant remaking the concept to fit within their perspective, sometimes at the 

expense of its intent. Piaget argued that for understanding, it was necessary to sometimes 

adapt one’s framework to take on and make the new concept viable within the environ-

ment (accommodation). In some ways, a similar revolution is taking place in mathemat-

ics classrooms – some are taking technology innovations and refitting them to retain the 

viability of the current classroom contexts. For example, many uses of technology take 

the form of creating electronic worksheets and structured lessons that more or less take 

the place of current classroom practices. Rather than have the technologies redefine 

classrooms, they are assimilated into current practice. Alternatively, technology can 

assist us in considering new forms of practice in profound ways, essentially accommo-

dating new technologies rather than assimilating them. In this chapter we shall attempt 

to describe those situations in which the use of technology has brought about an accom-

modation in the ways people teach and learn mathematics and the new kinds of mathe-

matical knowledge that results from such accommodations. Healy (2006), for example, 

describes the challenges of integrating technology into the Brazilian education system. 

Built on the assumption that the introduction of computer technology would act as a cata-

lyst for change in classroom practice, researchers came to better understand the complex-

ity of the educational system and in particular the critical role of the teacher in the process 

of learning, and the reciprocal relationship between technology and meaning-making.

We have developed an adaptation of the “didactic triangle” (Steinbring 2005) that 

attempts to incorporate the catalytic role of technology in this complex educational 

system. We add “technology” as a fourth vertex of the didactic triangle, transforming 

it into a 3D tetrahedron, creating three new triangular faces, each face illustrating 

possible inter-relationships among student, teacher, mathematical knowledge and 

technology (see Fig. 8.1). Theme B of this study focuses on teachers and teaching, 

thus, we shall primarily focus on the Student-Technology-Mathematical Knowledge 

face of this tetrahedron, realizing, of course, that the teacher is a critical component 

in any didactical situation. Transforming the didactic triangle into a didactic tetrahe-

dron through the addition of technology is seen as a metaphor for the transforming 

effects of technology when it is accommodated by the didactical situation rather than 

assimilated into it. It literally adds a new dimension to the didactical situation.
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8.2 Mathematical Knowledge in a Technological World

8.2.1 What Is Mathematical Knowledge?

Researchers in the field of mathematical education have attempted to distinguish 

among knowledge of mathematical concepts, knowledge of mathematical procedures 

and acquisition of skills (e.g. Baroody et al. 2007; Hiebert and Lefevre 1986; Star 

2005, 2007; Gray and Tall 1994; Tall et al. 2001). Other researchers (Olive 1999; 

Olive and Steffe 2002; Steffe and Olive 1996; Thompson 1995; Tzur 1999) have 

attempted to clarify whose mathematical knowledge they are studying and have 

articulated these distinctions:

• Children’s mathematics: The mathematics that children (or learners of any age) 

construct for themselves and is available to them as they engage in mathematical 

activity

• Mathematics for children: The mathematical activities that curriculum developers/

writers and teachers design to engage students in meaningful mathematical activity

• Adult mathematics: The mathematics that adults have constructed through their 

years of schooling and experience in the world

• Disciplinary mathematics: The mathematics created and studied by professional 

mathematicians

Whether one takes a radical constructivist view of knowledge (Piaget and 

Szeminska 1965; von Glasersfeld 1995; Steffe 1992) or a social constructivist view 

(Vygotsky 1978), the question of who’s mathematics we are focusing on is relevant 

when addressing our driving question of what new types of mathematical knowledge 

emerge as a result of access to digital technologies.

Many researchers have made a distinction between procedural and conceptual 

knowledge. Baroody et al. (2007) define procedural knowledge as “mental actions or 

manipulations, including rules, strategies, and algorithms, for completing a task.” 

They define conceptual knowledge as “knowledge about facts, [generalizations], 

and principles” (p. 123). Following Star (2005), Baroody et al. define these knowledge 

types independently of the degree of connectedness that may exist within each type 

of knowledge. They claim that mathematics education researchers:

Mathematical Knowledge

Student

Teacher

Technology
Technology

Student Student

Teacher Teacher

Mathematical Knowledge Mathematical Knowledge

Fig. 8.1 Transforming the didactic triangle into the didactic tetrahedron
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[H]ave long contrasted unconnected, disembodied, meaningless, context-bound, or 

mechanical procedures (what could be called a “weak scheme”) with well-connected, 

contextualized, integrated, meaningful, general, or strategic procedural knowledge (what 

could be called a “strong scheme” …). Analogously, well-connected conceptual knowledge 

has been contrasted with sparsely connected conceptual knowledge … For instance,strong 

schemas – which involve generalizations broad in scope, high standards of internal (logical) 

consistency, principle-driven comprehension, and principled bases for a priori reasoning 

(i.e. predictions are derived logically) – have been proposed to underlie deep conceptual 

knowledge.Weak schemas – which entail generalizations local in scope, low standards of 

internal (logical) consistency, precedent-driven comprehension, and no logical basis for a 

priori reasoning (i.e. predictions are looked up) – have been posited to underlie superficial 

conceptual knowledge and to explain why younger children’s concepts may be less deep 

and sophisticated (e.g., less general, logical, interconnected, or flexible) than older 

children’s or adults’. (p. 117)

Steffe (1992, 2002, 2004) and Olive (1999; Olive and Steffe 2002; Olive and 

Vomvoridi 2006) would disagree with the association of younger children’s 

mathematical concepts with weak schemas and superficial conceptual knowledge. 

They argue, instead, for a distinction between young children’s mathematics and 

older children’s mathematics (and adults’ mathematics) based on the nature and 

content of their schemes and schemas (Olive and Steffe 2002). Within the constraints 

of their experiences, young children’s schemas can be as strong as adult schemas 

(or as weak). What distinguishes both their schemes and schemas from those of 

adults are the mental constructs they have built based on their lived experiences.

Baroody et al. (2007) point out that “The construct of adaptive expertise, for one, 

unites the notions of deep conceptual knowledge, deep procedural knowledge, and 

flexibility” (p. 120). Hatano (2003) argues that flexibility and adaptability only seem 

possible when there are conceptual meanings to provide criteria for selecting among 

alternative procedures. That is, one needs conceptual knowledge to give meaning 

to processes. Gray and Tall (1994) put forward the notion of “procept” as a combining 

of process and concept. They argue that successful students can use symbols as 

procepts, whereas less successful students are limited to use of procedures.

In the examples that follow later in this chapter, we shall attempt to distinguish 

among technologies that have the potential to help users combine procedural and 

conceptual knowledge (proceptual knowledge) and those technologies that enhance 

the learning of isolated (or disconnected) processes.

8.2.2  The Influence of Technology on the Nature  

of Mathematical Knowledge

The next step in our investigation of new knowledge comes out of the need to 

examine the way that learners view mathematics, both its nature and its utility. In keeping 

with the view that young children can (and do) construct strong schemas, Steinbring 

(2005) notes that “New mathematical knowledge is not merely still unfamiliar, 

added, finished knowledge, but new mathematical knowledge has ultimately to be 

understood as an extension of the old knowledge by means of new, extensive 
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relations, which at the same time let the old knowledge shine in a new light and, even 

generalize the old knowledge” (p. 3). This requires quite a different conceptualization 

of the nature of mathematical knowledge, both by learners and by teachers. If one 

considers mathematics to be a fixed body of knowledge to be learned, then the role 

of technology in this process would be primarily that of an efficiency tool, i.e. helping 

the learner to do the mathematics more efficiently. However, if we consider the 

technological tools as providing access to new understandings of relations, processes, 

and purposes, then the role of technology relates to a conceptual construction kit. 

In this way, Steinbring argues that for learners, mathematical knowledge is always 

“on the way,” where knowledge bound in their concrete experiences emerges as new 

generalized understandings developed through ongoing interactions with ideas, 

relations, processes, structures and patterns viewed in new ways. Therefore, as we shall 

argue further in Sect. 8.4, knowledge is deeply embedded in practices and experiences.

Within the field of mathematics, many changes have taken place as a result of 

technological advancements. According to the Australian Academy of Science (2006), 

however, professionals have rarely taken advantage of new developments in the 

mathematical sciences (e.g., genetic innovation research, optimization in imaging, 

stochastic modeling), most of which have emerged out of the intersection of 

mathematics and new technologies (MASCOS 2004; Australian Academy of 

Science 2006). Likewise, despite the strong influence of technology on new 

developments in the field, little has changed in the school mathematics curriculum 

(e.g., Sorto 2006). These resistances are likely due to conflicts in teachers’ and 

curriculum publishers’ beliefs about the nature of mathematics and the goals of 

school curriculum. The foundations of what and how mathematics should be taught 

are now being challenged with the infusing of technologies into mathematics 

education. Reconciling these conflicts requires a re-evaluation of our beliefs 

about the very nature of mathematics. Most research utilizing new technologies 

in mathematics education portray mathematics as experimental, challenging, and 

empowering (e.g. Buteau and Muller 2006; Kaput 1996; Noss and Hoyles 1996; 

Papert 1972, 1980). These images resonate with philosophical challenges to the 

nature of mathematics in the last century (Lakatos 1976, 1978).

There is a perception in the general population of mathematics as a field that is 

“hard, right or wrong, routinised and boring” (Noss and Hoyles 1996, p. 223); this 

perception is rampant in school mathematics and in the public domain. The divorce 

of mathematics from its epistemological roots has often created a by-product of 

perceptions by learners that mathematics is too difficult for ordinary people to 

grasp. Technological environments potentially reconnect the learner with contexts 

in which they regain the agency to create meaning. These situations can be authentic 

contexts supported by technological tools to control complexity or they can be 

imaginary worlds in which learners can try out ideas.

Borba and Villarreal (2006; drawing on work by Tikhomirov 1981) consider  

the epistemological role of computers in learning mathematics. They argue 

that conceptualizing knowledge as atomistic leads to a view that the role of 

computers in generating knowledge is one where technologies either substitute 

humans or supplement humans. In schools, this is often the conceptualization that 
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is operationalized – technologies are used to substitute paper-and-pencil calculations 

or supplement graphing skills. However, they argue that this view is shortsighted. 

In conceptualizing technologies through a broader complexity framework, one 

begins to realize the challenges in separating technology’s effect on the transformation 

of knowledge with the transformation of practice. Borba and Villarreal further 

contend that humans and technologies are often seen as disjoint, assuming that the 

“cognitive unit” is only the human being, not the humans-with-media perspective that 

they adopt. “The very idea of considering the human being as the unit that produces 

knowledge can underestimate the importance of technologies in this knowledge 

production” (p. 12). Noss and Hoyles (1996) argue that because technologies 

mediate knowledge construction, they not only alter this construction of knowledge, 

but the meaning of knowledge for individuals as well.

8.2.3  Mathematical Knowledge: Operational  

and Notational Aspects

Mathematics in school has frequently focused on notational aspects of the discipline. 

That is, the emphasis is on the symbolic and representational aspects of mathematics 

(Fey and Good 1985; Kaput 1987, 1998; Hitt  2002), particularly in the areas of 

algebra, geometry, and statistics. School mathematics has been primarily restricted 

to routine procedures that could be carried out by hand; time and effort focused on 

teaching students to calculate and perform procedures by hand. Therefore, the 

emphasis was on the written, notational, symbolic aspects of mathematics rather 

than its more operational aspects:

In the past, teachers and students were confined to a sequential approach to learning these 

procedures, with the mastery of each step in the procedure necessary before proceeding to 

the next step. Technology allows a different approach, with more complex procedures (or 

macroprocedures) chunked into a series of simpler procedures (microprocedures) (Heid 2003). 

(Heid 2005, p. 347)

Technology has therefore allowed school mathematics to incorporate a more 

operational focus that adds another dimension to understanding. By an operational 

focus, we mean an emphasis on the practice and applications of mathematics through 

visualization, manipulation, modeling, and the use of mathematics in complex 

situations. With technology, students can use technology to solve an equation before 

they need to master factoring or the quadratic formula by hand, approximating 

solutions graphically (e.g., Fey and Heid 1995). In this way, there exist choices 

regarding which to do first (by hand or with technology) or at all. By operationalizing 

mathematics, mathematics is distributed between the student and the technology, 

with the student empowered to decide when and how to use the tool (Heid 2005; 

Geiger 2006). However, this requires the student to understand and make decisions 

about what mathematics might be useful and how it might be used. This is quite a 

new experience after conventional schooling has cued students into knowing which 

mathematics is needed for a problem up front (Boaler 1997).
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This shift to operationalize mathematics is not automatic. Initial uses of technology 

are often more rote or rely on the technology for simple computational tasks. As facility 

and understandings develop, the technology becomes more of a thinking tool, what 

Geiger (2006) and his colleagues (Galbraith et al. 2001)  term a technological 

“partner” or extension of self. As stated by Jere Confrey (in Heid 2005):

Technology is likely to change not only the content of school mathematics but also the 

processes of school mathematics and the nature of mathematical understandings. Students 

in technologically rich classrooms are likely to develop multirepresentational views 

of mathematics. Some technologies will enable them to develop almost a kinematic 

understanding of functional relationships. (p. 357)

8.2.4 Contexts for Learning Mathematics

The focus of mathematics in school has been on teaching students the power that 

mathematics has to generalize and abstract from particular contexts. These abstractions 

have developed over centuries of work by thousands of mathematicians. Rather 

than require children to begin this road again, school mathematics allows them to 

benefit from the toil and uncertainty of previous generations of mathematicians, and 

instead work with mathematical tools that have already passed the test of viability. 

The drawback has been that in the process of abstracting from context, the purpose 

of mathematics as a tool for making meaning has sometimes been forgotten or put 

aside. Some of this putting aside has been because of efficiency – the contexts in 

which mathematical meanings can be derived are neither simple to design nor simple 

in themselves. This is no surprise given the elapse of time over which these ideas 

have arisen. Some content that students encounter in schools has developed only in 

the last century (e.g. fractal geometry and iterative or recursive functions) – in 

comparison to the millennia on which their foundations are built.

Rather than adopt new mathematics, many reform curricula have chosen to embed 

traditional mathematics into what they term “real-life contexts” (e.g. CMP, Core Plus, 

Mathematics in Context, in the US). Unlike problems found in the world, however, 

many of the problems found in these curricula remain “well-defined” in their attempts 

to simplify the complexity of the situation. These “pseudo-contexts” can actually 

make mathematics more difficult to learn (especially for lower socio-economic 

students), as they give children conflicting messages about whether unintended 

contextual and experiential factors should be ignored or drawn into play (Lubienski 

2000). By oversimplifying the intellectual demands required to mathematize and 

interpret problems, and by trivializing the contribution of mathematics to solving 

real problems, the perception of mathematics as a subject with limited use outside 

of school is reinforced. Noss and Hoyles (1996) contend that technologies open the 

possibility for meaningful mathematics to be created within the context of school 

rather than simply brought in from the outside.

Contexts allow the learner to reflect on and control for the meaning and reasona-

bleness of their developing ideas. This allows them to ensure that concepts are viable 
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within the situation. Of course, a goal in mathematics is to abstract and generalize 

across contexts, but enough is not done to encourage meaning-making to begin with. 

These contexts come out of a diverse allowance of settings. Technological tools allow 

for one type of setting from which learners can play with ideas. Dynamic software 

packages can facilitate visualization (Presmeg 2006), connecting informal and formal 

mathematics (Mariotti 2006), and develop perceptions of mathematics as an instru-

ment rather than an object (Rabardel 2002). In situating the student in a transforma-

tive position of agency, these technologies potentially redefine and expand the 

student’s role as knower and creator of mathematical knowledge. Laborde and her 

colleagues (Laborde et al. 2006) remind us, however, that it is not only the interaction 

of the student and the machine that matters but also the design of tasks and learning 

environment (see Sect. 1 of this volume). They argue for an intrinsic link between 

mathematical knowledge and understanding of its use as a tool. Mackrell (2006) 

argues, for example, for the powerful influence that dynamic visualization software 

programs like Cabri 3D (2005) and Geometer’s Sketchpad (Jackiw 2001) can have on 

students’ understanding by enabling them to manipulate mathematical objects as 

tangible entities, observing and debating invariant relationships. Mathematics is, after 

all, primarily concerned with properties of invariance – the characteristics that 

describe attributes and relationships that remain constant under varying conditions. 

For example, in Euclidean geometry, the three angle bisectors of a triangle pass 

through the same point. Algebraic identities describe relationships that remain fixed 

as the values of the variables change. Coming to know these invariant properties 

through dynamically changing that which varies (rather than memorizing facts) can 

contribute to much more stable and powerful mathematical knowledge. Thus, 

dynamic technologies can become powerful contexts for learning mathematics.

8.2.5 A New Learning Ecology

It is not the technology nor the play themselves that evoke meaning, but rather 

careful interactions between the task, teacher support, technological environment, 

classroom and social culture, and mathematics (Noss and Hoyles 1996). We have 

learned much from the days of thinking the computer would solve the challenges 

of learning (Cuban 2001), but this does not mean that we should be tempted to err 

on thinking dichotomously that computers have failed to add value to learning. In the 

old way of thinking, computers were seen as human tutors and evoked a vision of the 

teacherless learning environment. New avenues for using technology take advantage 

of, rather than marginalize, teacher, task, and classroom cultures. For example, there 

is the question as to whether strong emphasis in school mathematics on developing 

expertise in symbolic manipulation should continue to be at the forefront of time in 

secondary mathematics given the accessibility of Computer Algebra Systems 

(CAS). Within geometry, traditional instruction utilizes a definition-theorem-proof 

(dtp) approach to teaching geometry, where students are first taught definitions and 

given theorems and proofs about geometric objects and relationships before having 
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an opportunity to work with and investigate these relationships for themselves. 

Dynamic geometry environments (DGEs) are challenging this perspective, including 

the very nature of what counts as a proof, when one considers that students can test 

a conjectured relationship with thousands of cases to assess its viability. DGE 

objects and the assessment of their relationships, because they are based on student 

design in search of a question, depend in new ways on using argumentation and 

justification. Proof takes on new meaning in this context, and becomes a tool that 

learners can use to explain what they discover through their dynamic explorations 

and, thus enable them to convince their peers of their new conjectures – rather than 

mimicking a mathematician’s proof to satisfy an unknown cultural construct (de 

Villiers 1999). In statistics, new visualization tools enable learners to interact with 

data through envisioning relationships informally before more formal tools are 

brought into play. For example, instead of being taught how to calculate a mean, 

learners might first examine distributions of heights of children of different age 

groups and look for viable ways to compare and talk about them. Research has found 

that in technological environments in which children can design their own tools to 

describe aspects of the data that they find useful, students can envision concepts of 

center and spread of data by talking about the “clump” in the data (Konold et al. 

2002; Makar and Confrey 2005). In an environment supported by worthwhile tasks 

and a culture of inquiry, learners have an opportunity to operationalize mathematics 

and use it as a tool for a productive purpose, rather than apply pre-made mathematical 

concepts to a contrived situation. “The challenge is to focus on the learning ecology as 

a whole, considering the interactions between different dimensions – epistemological, 

technological (or perhaps instrumental), cognitive, and pedagogical – concomitantly” 

(Healy 2006, p. 3). In the following section we present some example cases of 

technologies that have been successfully used (in different ways) as an integral part 

of the learning ecology to bring about the construction of (new) mathematical 

knowledge (for the learners).

8.2.6 Example Cases of Effective Technologies

In this section we present case reports of the uses of three different technologies: 

Computer microworlds designed with what Zbiek et al. (2007) call high levels of 

“cognitive fidelity,” simulation software and curricula designed to introduce the 

Mathematics of Change and Variation (MCV) to middle school students, and 

dynamic geometry environments (DGE). The first case is an example of how young 

children, within the context of a constructivist teaching experiment, were able to 

construct powerful fractional schemes through the use of computer-based tools that 

enabled them to enact their mental operations. The second case reports results of a 

state-wide implementation of a curriculum unit that made use of specially designed 

simulation software to improve middle school students understanding of rates, 

ratios and proportions. The third case reports on the global use of dynamic geometry 

environments. Zbiek et al. (2007) would categorize the latter two cases as exhibiting 
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high levels of “mathematical fidelity,” that is, they provide the users with 

mathematically accurate visualizations and feedback. We point out, however in 

Sect. 8.3 of this chapter, that mathematical fidelity cannot be taken as a given with 

several common technologies used in mathematics classrooms.

8.2.6.1  The Fractions Project: Using Technology  

with High Levels of “Cognitive Fidelity”

Steffe and Olive (1990) at the University of Georgia (USA) designed and  

conducted a 3-year constructivist teaching experiment with 12 children (beginning 

in their third grade in school) in order to develop cognitive models of children’s 

construction of fractions. Computer microworlds called Tools for Interactive 

Mathematical Activity (TIMA) (Biddlecomb 1994; Olive 2000b; Olive and Steffe 

1994; Steffe and Olive 2002) were specifically designed for the teaching 

experiment and were revised during the teaching experiment based on the 

children’s interactions within these environments. The TIMA provide children with 

possibilities for enacting their mathematical operations with whole numbers and 

fractions. They also provide the teacher/researcher with opportunities to provoke 

perturbations in children’s mathematical schemes and observe children’s 

mathematical thinking in action.

The software consists of on-screen manipulatives analogous to counters or beads 

(regular geometrical shapes that are called “toys”), sticks (line segments), and fraction 

bars (rectangular regions), together with possible actions that the children can 

perform on these objects. These possible actions potentially engage the user in the 

fundamental operations involved in the development of numerical schemes. These 

operations are unitizing, uniting, fragmenting, segmenting, partitioning, replicating, 

iterating, disembedding, and measuring. For example, using TIMA Bars, a child 

can partition a bar into five equal parts, disembed one of the parts by actually pulling 

it out of the bar (i.e., a copy of the part is lifted from the bar leaving all five parts 

still in the bar), and then use the REPEAT action to iterate this one part to create a 

bar that is six times as large as 1/5 of the original bar (see Fig. 8.2).

Fig. 8.2 Making 6/5 of a unit bar by disembedding 1/5 and repeating it six times
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The major purpose of this project was theory-building based on in-depth analyses 

of several case studies of the children’s interactions and cognitive constructions 

over the 3-year period. The TIMA technology provided the children with ways of 

enacting their mental operations and visualizing the quantitative relations that they 

constructed. As Olive (2002) points out in his discussion of one student’s construction 

of fractional schemes, the TIMA were critical affordances in the construction of 

Joe’s schemes:

Being able to make a stick (in TIMA: Sticks) that is “9 times as long as the 1/7-stick” 

through repetitions of a 1/7-stick, provided Joe with an instantiation of his iterable unit 

fraction. He had made a modification in his whole-number multiplication scheme that 

enabled him to use a unit fraction in the same way that he could use units of one with his 

composite units. The TIMA software had provided Joe with the tools to build a bridge from 

whole numbers to fractions. (p. 360)

The TIMA software (and later adaptations) has been used by many researchers 

in different countries since the conclusion of the Fractions Project: Nabors (2003) 

used the TIMA: Bars software in her study of proportional reasoning; Norton (2005) used 

TIMA: Bars in his study of eliciting student conjectures; Hackenburg (2007) 

used a Java version of TIMA: Bars called JavaBars (Olive and Biddlecomb 2001) 

in her research on middle school students’ rational number concepts; Chinnappan 

(2006) reported using JavaBars in his 2001 study with elementary children in Australia, 

in which “JavaBars mediated children’s cognitive actions” (Chinnappan 2001, p. 102); 

and Kosheleva et al. (2006) also used JavaBars in their study on the effects of Tablet 

PC technology on mathematical content knowledge of pre-service teachers, where 

JavaBars was found to provide “a creative workspace to explore fractions”. (p. 298)

Zbiek et al. (2007) categorized the use of the TIMA software in the Fractions 

Project as having high levels of “cognitive fidelity”:

Cognitive fidelity is a particularly important consideration for researchers. By providing 

action choices to the learner that faithfully reflect potential cognitive choices, tools such as 

the TIMA technology can provide to researchers more powerful evidence of patterns in 

children’s thinking. In turn, an improved understanding of children’s thinking can better 

inform continuing development of the tools. (p. 1177)

In addition to this important synergistic relationship between cognitive model 

building and tool development that tools with high cognitive fidelity provide, they also 

have the potential to engender the construction of new mathematical knowledge on 

the part of the user, as Olive and Lobato (2008) reported in their synthesis of the 

learning of rational number concepts using technology:

For instance, one way that technology can enhance the learning of rational number 

concepts is through the use of computer tools that allow students to enact psychological 

operations that are difficult to perform with physical materials. In order to establish a 

relation between a part and a whole in a fractional situation, the child needs to mentally 

disembed the part from the whole. With physical materials it is not possible to remove a 

part from the whole without destroying the original whole. With static pictures the part is 

either embedded in the whole or is drawn separate from the whole. … Using a computer 

tool that provides the child with the ability to dynamically pull a part out of a partitioned 

whole while leaving the whole intact, the child can enact the disembedding operation that 

is necessary to make the part-to-whole comparison. (p. 6)
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In addition to enabling students to operationalize the part-to-whole relation, the 

disembedding action, combined with repeating the disembedded part, led to iterating 

operations that enabled students to construct meanings for fractions greater than 

one (improper fractions) (Tzur 1999). The ability to enact recursive partitioning led 

to reversible reasoning and splitting operations, essential for the construction of the 

“rational numbers of arithmetic” (Olive 1999; Olive and Steffe 2002).

8.2.6.2  The SimCalc Project: Introducing the Mathematics  

of Change in Middle School – Technology  

with High Levels of “Mathematical Fidelity”

An implementation of the SimCalc simulation tools, together with the MathWorlds 

curriculum has been recently tested with more than a thousand middle school students 

and their teachers in the state of Texas (Roschelle et al. 2007). Developed by Jim 

Kaput and colleagues at the University of Massachusetts-Dartmouth over the past 

15 years, the SimCalc software and MathWorlds curriculum have undergone rigorous 

cycles of development-field testing-revisions. According to Roschelle et al.,

SimCalc software engages students in linking visual forms (graphs and simulated motions) 

to linguistic forms (algebraic symbols and narrative stories of motion) in a highly interactive, 

expressive context. SimCalc curriculum leverages the cognitive potential of the technology 

to develop multiple, interrelated mathematical fluencies, including both procedural skill 

and conceptual understanding. (p. 2)

In terms of the theoretical frameworks outlined in Chap. 7, the SimCalc software 

acts as a semiotic mediator, linking several different semiotic systems to develop 

both procedural skills and conceptual understandings. The results of this extensive 

implementation of the SimCalc MathWorlds curriculum do, indeed, indicate the 

cognitive potential of the technology, achieving what has been termed the “gold 

standard” for experimental research, both in design and effects.

The research project involved 120 grade 7 teachers recruited from 8 regions of 

Texas. A Treatment-Control experimental design was used, with teachers being 

randomly assigned (by school) to either group. Of the 120 teachers who originally 

attended the summer workshop, 95 returned complete data for the 2005–2006 

school year. At the outset of the experiment the Treatment Group of 48 teachers and 

the Control Group of 47 teachers did not differ in any significant way. In the summer 

of 2005 both groups participated in a 2-day professional development workshop 

focused on rate and proportionality. The Treatment Group received “an integrated 

replacement unit incorporating SimCalc curriculum, software, and three additional 

days of teacher training.” The Control Group “used their existing curriculum but 

had the benefit of training and materials on the topic of rate and proportionality” 

(Roschelle et al.2007, p. 3). Rate and proportionality are typically taught in a 2- to 

3-week unit in grade 7 in Texas. The Treatment Group teachers were asked to replace 

this unit with the SimCalc unit, the Control Group teachers were asked to continue 

using their existing textbooks, enhanced with professional development support. 

“The main outcome variable was student learning of concepts of rate and proportionality, 
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measured on identical tests administered before and after the 2- to 3-week rate and 

proportionality unit” (p. 4). These tests consisted of 30 items: 11 simple and 19 

complex items. The simple items were based on items used on the Texas state test 

and typically asked students to find the missing term in a proportional relationship 

(e.g. “If 2/25 =n/500, what is the value of n?”). The complex items addressed 

understanding of a direct proportional relationship as a function f(x) =kx, and the 

concept of slope of a line graph as an indication of speed in a distance–time 

relationship. All 30 items went through rigorous validation processes, “including 

cognitive interviews with students, item-response theory analyses on field test data 

collected from a large sample of students, and expert panel reviews” (p. 5).

The experiment achieved a highly statistically significant main effect (p < 0.0001), 

indicating that the students in the Treatment Group classrooms learned more than 

their counterparts in the Control Group classrooms. The difference was most pro-

nounced across the 19 complex items, and held across SES, race and gender groups. 

Based on these results, the researchers claim the following:

(a) That the SimCalc approach was effective in a wide variety of Texas classrooms

(b) That teachers successfully used these materials with a modest investment in 

training

(c) That student learning gains were robust despite variation in gender, ethnicity, 

poverty, and prior achievement. (Roschelle et al. 2007, p. 6)

The researchers make the important point that the gains were accomplished by the 

Treatment students on the more complex items dealing with proportionality and rate, 

whereas all students made similar gains on the simpler items. For example, with 

respect to the comparison of two distance–time graphs on the same coordinate axes, 

the Treatment students were more likely to use the correct idea of “parallel slope as 

same speed,” whereas Control students were more likely to have the misconception 

“intersection as same speed.” (Roschelle et al. 2007, p. 7)

Other studies on students’ conceptions of slope and rate (e.g. Lobato and Siebert 

2002; Olive and Çağlayan 2008) have highlighted the difficulties students experience 

with these concepts; thus, the results obtained through the use of the SimCalc software 

and curriculum are seen as a breakthrough in this traditionally difficult and important 

mathematical topic. For the students in the Treatment Group, the use of the SimCalc 

technology promoted the construction of new mathematical knowledge.

Kaput (1998) pointed out that dynamic, interactive software like SimCalc, 

that provide bi-directional links between authentic or simulated phenomena and 

the representations of those phenomena in several notation systems, opens up the 

Mathematics of Change and Variation (MCV) to students who have traditionally 

been shut out by “the long set of algebraic prerequisites for some kind of formal 

Calculus, this despite the fact that the bulk of the core curriculum can be regarded 

as preparation for Calculus” (p. 7). Kaput goes on to state:

…we can see that while large amounts of curricular capital are invested in teaching numerical, 

geometric and algebraic ideas and computational techniques in order that the formal 

symbolic techniques of Calculus might be learned, the ways of thinking at the heart of 

Calculus, including and especially those associated with the Fundamental Theorem, do not 
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require those formal algebraic techniques to be usefully learned. Indeed, by approaching 

the rates-totals connections first with constant and piecewise constant rates (and hence 

linear and piecewise linear totals), and then gradually building the kinds of variation, 

we have seen the underlying relations of the Fundamental Theorem become obvious to 

middle school students. (p. 7)

Thus, when we look at the strong results from the Texas implementation of 

the SimCalc curriculum in light of Kaput’s major points concerning access to the 

important ideas of Calculus, we can look forward to a majority of students creating 

new kinds of mathematical knowledge concerning change and variation as a result 

of using such technologies within a well-conceived curriculum, implemented by 

enthusiastic and well trained teachers.

8.2.6.3 Dynamic Geometry Environments

Dynamic Geometry Environments (DGEs) include any technological medium 

(both hand-held and desktop computing devices) that provides the user with tools 

for creating the basic elements of Euclidean geometry (points, lines, line segments, 

rays, and circles) through direct motion via a pointing device (mouse, touch pad, 

stylus or arrow keys), and the means to construct geometric relations among these 

objects. Once constructed, the objects are transformable simply by dragging any 

one of their constituent parts. Goldenberg and Cuoco (1998) provide an in-depth 

discussion on the nature of Dynamic Geometry. A common feature of dynamic 

geometry is that geometric figures can be constructed by connecting their components; 

thus a triangle can be constructed by connecting three line segments. This triangle, 

however, is not a single, static instance of a triangle that would be the result of 

drawing three line segments on paper; it is in essence a prototype for all possible 

triangles. By grasping a vertex of this triangle and moving it with the mouse, the 

length and orientation of the two sides of the triangle meeting at that vertex will 

change continuously.

A study by Olive (2000a) describes how a 7-year old child (Nathan) constructed 

for himself during just 5 min of exploration with the Geometer’s Sketchpad® a 

fuller concept of “triangle” than most high-school students ever achieve. He had been 

shown how to construct a triangle with the segment tool and then experimented by 

dragging the vertices of this dynamic figure, all the time asking his father if the figure 

were still a triangle. His father threw the questions back to him and when Nathan 

responded that the figures were still triangles (fat triangles, skinny triangles, etc.) his 

father asked him why they were still triangles. Nathan responded “because they still 

had three sides.” But the real surprise came when he moved one vertex onto the opposite 

side of the triangle, creating the appearance of a single line segment. Nathan again 

asked his father if this was still a triangle. His father again threw the question back 

to him. Nathan thought for a while, then held out his hand with his palm facing 

outwards, vertically, and rotated it to a horizontal position with his palm facing 

down, while saying: “Yes. It’s a triangle lying on its side!” This last comment and 

accompanying hand-motion indicates intuitions about plane figures that few adults ever 
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acquire: That they have no thickness and that they may be oriented perpendicular 

to the viewing plane. [Had Nathan entered Flatland (Abbott 1884)?] Such intuitions 

are the result of what Goldenberg et al. (1998) refer to as “visual thinking.”

Nathan’s use of the dynamic drag feature of this type of computer tool illustrates 

how such dynamic manipulations of geometric shapes can help young children 

abstract the essence of a shape from seeing what remains the same as they change 

the shape. In the case of the triangle, Nathan had abstracted the basic definition: a 

closed figure with three straight sides. Length and orientation of those sides was 

irrelevant as the shape remained a triangle no matter how he changed these aspects 

of the figure. Such dynamic manipulations help in the transition from the first to the 

second van Hiele level: from “looks like” to an awareness of the properties of a shape 

(Fuys et al. 1988). For Nathan, this was new mathematical knowledge.

Lehrer et al. (1998) found that children in early elementary school often used 

“mental morphing” as a justification of similarity between geometric figures. For 

instance a concave quadrilateral (“chevron”) was seen as similar to a triangle because 

“if you pull the bottom [of the chevron] down, you make it into this [the triangle]” 

(p. 142). That these researchers found such “natural” occurrences of mental transfor-

mations of figures by young children suggests that providing children with a medium 

in which they can actually carry out these dynamic transformations would be 

powerfully enabling (as it was for Nathan). It also suggests that young children 

naturally reason dynamically with spatial configurations as well as making static 

comparisons of similarity or congruence. The van Hiele (1986) research focused 

primarily on the static (“looks like”) comparisons of young children and did not take 

into account such dynamic transformations. The use of DGEs with school-age children 

brings about a need for research on dynamical theories of geometric knowledge.

At the secondary level dynamic geometry environments can (and should) 

completely transform the teaching and learning of mathematics. Dynamic geometry 

turns mathematics into a laboratory science rather than one dominated by computation 

and symbolic manipulation, as it has become in many of our secondary schools. 

As a laboratory science, mathematics becomes an investigation of interesting 

phenomena, and the role of the mathematics student becomes that of the scientist: 

observing, recording, manipulating, predicting, conjecturing and testing, and 

developing theory as explanations for the phenomena.

Laborde et al. (2006, citing Hoyles 1995), suggest that the process of decision-

making and reflection in the interaction between manipulation and outcomes 

provide students “with hooks they need on which to hang their developing ideas” 

(p. 292). The software constrains students’ actions in ways that require the teacher 

to conceptualize problems from a student’s point of view and encourage students to 

conceptualize mathematics in new ways. As Balacheff and Sutherland (1994) point out, 

the teacher needs to understand the “domain of epistemological validity” of a dynamic 

geometry environment. This can be characterized by “the set of problems which 

can be posed in a reasonable way, the nature of the possible solutions it permits and the 

ones it excludes, the nature of its phenomenological interface and the related feedback, 

and the possible implication on the resulting students’ conceptions” (p. 13).

The publication Geometry Turned On (King and Schattschneider1997) provides 

several examples of successful attempts by classroom teachers to integrate dynamic 
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geometry software in their mathematics teaching in ways that generated new 

mathematics (for the students). Keyton (1997) provides an example that comes 

closest to that of learning mathematics as a laboratory science. In his Honors Geometry 

class (grade 9) he provided students with definitions of the eight basic quadrilaterals 

and some basic parts (e.g. diagonals and medians). He then gave them 3 weeks to 

explore these quadrilaterals using Sketchpad. Students were encouraged to define 

new parts using their own terms and to develop theorems concerning these quadrilat-

erals and their parts. Keyton had used this activity with previous classes without the 

aid of dynamic geometry software. He states:

In previous years I had obtained an average of about four different theorems per student 

per day with about eight different theorems per class per day. At the end of the three-week 

period, students had produced about 125 theorems… In the first year with the use of 

Sketchpad, the number of theorems increased to almost 20 per day for the class, with more 

than 300 theorems produced for the whole investigation. (p. 65)

Goldenberg and Cuoco (1998) offer a possible explanation for the phenomenal 

increase in theorems generated by Keyton’s students when using Sketchpad. 

Dynamic geometry “allows the students to transgress their own tacit category boundaries 

without intending to do so, creating a kind of disequilibrium, which they must 

somehow resolve” (p. 357). They go on to reiterate a point made by de Villiers 

(1994 cited in Goldenberg and Cuoco 1998), that “To learn the importance and purpose 

of careful definition, students must be afforded explicit opportunities to participate 

in definition-making themselves” (p. 357). Marrades and Gutiérrez (2000) found 

similar results in their studies of secondary school students using Cabri Géomètre 

in proof-oriented geometry classes. Hadas et al. (2000) also found that designing 

activities in dynamic geometry to cause surprise and uncertainty was effective in 

provoking proof on the part of their students.

Keyton’s activity with quadrilaterals stays within the bounds of the traditional 

geometry curriculum, but affords students the opportunity to create their own 

mathematics within those bounds. Other educators have used dynamic geometry as 

a catalyst for reshaping the traditional curriculum and injecting “new” mathematics. 

Cuoco and Goldenberg (1997) see dynamic geometry as a bridge from Euclidean 

Geometry to Analysis. They advocate an approach to Euclidean geometry that 

relates back to the “Euclidean tradition of using proportional reasoning to think 

about real numbers in a way that developed intuitions about continuously changing 

phenomena” (p. 35). Such an approach involves locus problems, experiments with 

conic sections and mechanical devices (linkages, pin and string constructions) that 

give students experience with “moving points” and their paths.

Laborde et al. (2006) state that DGE “has provided access to mathematical ideas 

by allowing the bypassing of formal representation and access to dynamic graphing 

which is particularly important for the learning of geometry. … Just as digital 

technology provides means to by-pass formalism, it may also provide the means to 

transform the way formalism is put to use by students” (p. 284). DGEs allow for not 

only manipulations, but also macro-constructions, trace, and locus (Sträßer 2002). 

In DGE, geometric objects are constrained by their geometric properties (unlike 

paper-and-pencil sketches which can be distorted to fit expectations), similar to how 

physical objects are constrained by properties of physics when manipulated within 
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the world. By observing properties of invariance simultaneously with manipulation 

of the object, there is potential to bridge the gap between experimental and theoretical 

mathematics as well as the transition from conjecturing to formalizing.

8.2.7  Summary of Students’ Mathematical  

Knowledge in a Technological World

In this first section of the chapter we have attempted to define, deconstruct, and 

illustrate what we mean by “mathematical knowledge.” In this endeavor, we have 

examined ways in which both the nature and construction of mathematical knowledge 

have been influenced by the integration of digital technologies in mathematics 

teaching and learning in ways that create a new learning ecology. We emphasized the 

different aspects of procedural and conceptual knowledge that have been discussed 

in the literature, and attempted to illustrate how certain dynamic technologies can 

enhance the development of “proceptual” knowledge and bring out the operational 

aspects of mathematics rather than focus on the notational aspects. In particular, we 

described the use of tools that exhibit “cognitive fidelity” (certain microworlds) and 

those that embody “mathematical fidelity” (Zbiek et al.2007), such as SimCalc and 

DGEs. These kinds of technologies have been used successfully by researchers and 

classroom teachers in varying contexts to promote the learning of new mathematical 

knowledge (for the learners). As success stories, they illustrate the complex interactions 

among students, teachers and mathematics, mediated through technology as depicted 

by our didactic tetrahedron (Fig. 8.1).

We now turn to a discussion of the mathematical knowledge (if any) that is 

necessary to comprehend how certain technologies function so that we may use 

them both sensibly and sceptically.

8.3 Mathematical Knowledge“Within” Technologies

Within the general public, it is a common myth that the computer is always right 

– a perception of its “mathematical fidelity.” The main message of this section is 

that this notion is simply wrong (Sträßer 1992, 2001a). After an initial discussion 

of this issue, we suggest some pedagogical consequences of the “wrong-doing” of 

certain technologies.

8.3.1 Numbers and Arithmetic

As long as arithmetic is only done on everyday numbers (reasonably sized integers), 

the above statement concerning the infallibility of the computer is basically 

correct – the computer will normally not make mistakes in elementary arithmetic 
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problems. Nevertheless, numerical analysis shows some important restrictions of 

computer-based arithmetic:

• Aseverycomputingmachinehasfinitestorage,itisobviousthatitcannotcorrectly

represent irrational numbers or rational numbers with more digits than the 

storage can hold. This is one reason why it is advisable to stay in “algebraic 

mode” in Computer Algebra Systems (e.g., Derive) as long as possible.

• Most computing machines internally work with “floating point arithmetic,”

often not in a base-ten system but in a base-two or base-16-system. Consequently, 

the machine is simply unable to correctly represent fractions as simple as 1/3. 

To give an example widely used, the program Excel does not have more than 15 

digits plus three digits to represent the exponent, restricting the interval Excel 

can cover from −9,99999 99999 9999E307 to 9,99999 99999 9999E307. Near 

zero, the “Microsoft knowledge base” offers 1E−307 as the smallest positive 

number, and −1E−307 as the biggest negative number. An explanation for the 

maximal exponent “307” (307 being a prime number) could not be found.

From these two pieces of information, it is clear that even elementary arithmetic has 

its limitations when it is done on a computer. When it comes to very small and very 

big numbers or to limits and irrational numbers, computer arithmetic has its limitations 

and can become “wrong.” As a consequence, one can never prove the divergence of the 

harmonic series a(n) = S (1 + 1/2 + … + 1/n) by adding partial sums on a computer; 

it is necessary to go back to symbolic mathematics.

8.3.2 CAS and Problem Spotting

To avoid these pitfalls and problems, it has been suggested that students use algebra 

as long as possible when doing complicated calculations, hoping that the algebra 

postpones rounding errors as long as possible (Sträßer 2001a). For many of the 

problems related to computer-based arithmetic, this works fine. In Computer 

Algebra Systems (CAS) the problems normally start as soon as calculations go 

beyond the simple development of a formula. Spotting problem situations like 

reducing (x − 1)2/(x2 − 1) to (x − 1)/(x + 1) will be correctly handled by most modern 

CAS programs (recalling that the reduction is invalid for x = 1). Without greater 

understanding about the inner mechanisms of automatic algebraic calculations, the 

problem of this type of manipulation of equations and formulae serves as a warning 

to check the algebraic reductions provided by a particular CAS program.

8.3.3 Geometry with Linear Algebra

The algebraic and arithmetical problems seem far away when considering 

Dynamic Geometry Environments (DGEs) like Cabri, Cinderella, Geometer’s 

Sketchpad or other comparable software. In fact, this is also a wrong assumption. 
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To our best knowledge, all of the DGEs internally rely on a representation of Geometry 

by means of a multi-dimensional linear algebra (in most cases, on real numbers; 

Cinderella relies explicitly on complex numbers in order to avoid singularities). 

The “tangent monster” (Sträßer 2001b) illustrates the limitations of such a 

system: The geometric problem of identifying a tangent to a circle is condensed to 

solving a quadratic equation where the determinant is zero (converging the two 

solutions of the equation into one). With the problems of computer-based arithmetic 

in exactly handling zero, it does not come as a surprise that DGEs have difficulties 

with the number of intersections of a straight line and a circle when the Geometry 

indicates they must be tangent (implying just one solution of the quadratic equation).

Relying on an internal algebraic representation of Geometry has additional 

unwanted consequences. They emerge in situations as simple as constructing an 

angle bisector twice: Construct the angle bisector SB of an angle ASC and then 

construct the angle bisector of ASB. If one drags the point C, in most DGEs the second 

angle bisector will jump as soon as the original angle ASC gets bigger than 180°. 

This action produces the same drawing when you move the point C around to coincide 

with the original angle, as most DGEs are not “continuous,” but “deterministic” 

(i.e., when you reproduce an initial location of a point after some dragging around, 

you will get the initial drawing). Cinderella is proud of avoiding this “jump,” offering 

continuous dragging. The negative aspect of this is that when dragging C around S 

in a full circle, you will end in a different position of the second angle bisector, 

making Cinderella a non-deterministic DGE (for the example of this concept and 

more consequences of these design features of DGEs, see Gawlick (2001), who 

asserts that DGEs have to make a choice between continuity and determinism). 

There are other trivial examples where continuous and deterministic DGEs differ, 

but the point here is that there seems to be a need for a design decision in DGEs, 

which implies a choice that a geometer would like to avoid.

For statistical software like Fathom, developed for educational use, or profes-

sionally used software like SPSS, the consequences of the inner representation of 

statistical models are not as well researched as they are for DGEs. There is some 

interesting work on how “random” the random numbers are – some software packages 

even tell the user how the “random” numbers are generated. Without going into details, 

it is clear that these programs internally do not roll an ideal dice. It may be worthwhile 

to research the issue of consequences for the simulation of stochastic situations.

8.3.4  Who Has to Know What About the Underlying 

Mathematical Assumptions and Processes  

of Spreadsheets, DGEs, Statistical  

Packages and CAS?

This question has not previously been discussed in depth. The position put forward 

here is a preliminary and tentative one. It seems obvious that typical end-users of these 

software programs cannot be aware of all the underlying mathematical assumptions 
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and processes when using the software (some details are even impossible to explain 

to a prototypic end-user), even in considering only the representation of numbers 

inside a computer. To really “understand” what is going on, one has to be aware of 

rational and irrational numbers, representation systems by different bases and a 

developed concept of limits. Only a thorough scientific analysis of phenomena may 

lead to a fuller understanding, research that is being undertaken by mathematicians in 

the field of numerical analysis. As a consequence, complete understanding by every 

end-user is simply not viable, nor desirable. The computer will not be a transparent 

machine, but will remain a black box (or at best a grey box, cf. Buchberger 1989).

What can be reasonably hoped for is a basic understanding of the inner represen-

tation of mathematics (e.g., numbers, equations, stochastics, graphical representations, 

and geometric figures) within a computer and a global awareness of problems 

related to the difference between conceptual and computational mathematics. At the 

very least, teachers of mathematics and computer science should know about these 

assumptions and processes and be able to react in an appropriate way when the 

phenomena discussed above occur. The difficulties of such a position should not be 

underestimated and are open to misuse by being taken as an excuse for not knowing 

what the machine actually has produced. We suggest such a position because one 

can prove that the computer is NOT always correct, but in fact makes “mistakes” 

if compared to theoretical mathematics. In other words, there is a limit to the level 

of “mathematical fidelity” (Zbiek et al. 2007) for any digital technology.

8.4 New Mathematical Practices

8.4.1 Link Between Knowledge and Practice

In the first two sections of this chapter, we discussed ways in which technologies have 

influenced the emergence of new mathematical knowledge, and what (if anything) 

we need to understand about the inner mathematical workings of the different 

technologies. In this section, we turn to the role of technologies in developing 

new mathematical practices. Ball (2002) articulates the importance of extending 

mathematical content to include the development of mathematical practices (p. 24):

Noting that expertise in mathematics, as in any field, involves more than knowledge, we 

propose an explicit focus on mathematical know-how – what mathematicians and math-

ematics users do. We refer to these things they do as mathematical practices. Being able to 

justify claims, using symbolic notation efficiently, and making generalizations are exam-

ples of mathematical practices. Such practices are important in both learning and doing 

mathematics. Their absence can hamper mathematics learning.

In many cases, the use of technologies in schools has encouraged a closer rela-

tionship between mathematical knowledge and mathematical practice, providing 

learners with opportunities to experiment, visualize, and test emerging mathematical 

understandings. From the use of digital technologies, a new model of interaction 

between the student, the mathematical knowledge and the instrument emerges. 
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Briefly, technological tools can be experimental instruments whereby ideas can be 

explored and relationships discovered (Duke and Pollard 2004; Hoyos 2006; Hoyos 

and Capponi 2000), developing greater flexibility in analysis of complex situations. 

Realistic data, too complex to be used previously, can be brought into the classroom 

to make mathematics learning more interesting, challenging and practical (Kor and 

Lim 2004, 2006). Kosheleva et al. (2006) demonstrate how use of state-of-the-art 

technology (Tablet PC) allowed future teachers in their study to significantly 

improve learning of mathematical content knowledge through exploration and 

utilization of technology within their practice teaching.

Technology also can introduce a dynamic aspect to investigating mathematics 

by giving students new ways to visualize concepts. Bienkowski et al. (2005) 

contend that technologies can provide “virtual manipulatives” that help in visuali-

zation of abstract mathematical concepts through more tangible objects. According 

to Nemirovsky (in Heid 2005, p. 358):

There is a huge overlap between what is activated in a brain by thinking about an activity 

and what is activated when you actually perform that activity. And so I think that for example 

imagining that a cube rotates in space is deeply rooted in the physical act of rotating cubes 

with your hand.

Boon (2006) provides descriptions of a variety of virtual activities that lead to 

new ideas on visualization in learning mathematics. Chiappini and Bottino (1999) 

allege that visualization allows students to access mathematical knowledge by 

integrating the symbolic re-constructive approach (the traditional teaching strategy) 

with the motor-perceptive approach that involves actions and perceptions and produces 

learning based on doing, touching, moving and seeing. However, in Kosheleva and 

Giron (2006) it was shown that students using virtual manipulatives often formed 

math ideas and approaches that were unexpected or unwanted by the teachers and 

the designers of these virtual manipulatives. For example, in the “Algebra Scales” 

activity from the National Library of Virtual Manipulatives (Utah State University 

2007) children preferred the approaches that represented “shortcuts,” requiring less 

time to get the correct answer, thus circumventing the equation solving process for 

which the applet was designed.

It must be made clear, however, that it is not the technology itself that facilitates 

new knowledge and practice, but technology’s affordances for development of 

tasks and processes that forge new pathways. Just as cases of innovative uses of 

technology have emerged, there are valid concerns and shortcomings in the ways 

that technology has been used. Tall (1989) expressed his concern that in the process 

of using technology, the “authority of the machine” might be an impediment to 

learning, especially in the early stages. He pointed out that students would lose 

some autonomy in the problem solving process if they ignored their common sense 

and followed the lead of the machine.

On the other hand, technology has been used “to motivate students to take on, more 

and more, the responsibility of mediator in their own mathematics learning” (Buteau 

and Muller 2006, p. 77). This responsibility can lead to engagement with different kinds 

of mathematical learning practices. For example, Drijvers and Doorman (1996) 
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observed that the use of graphing calculators appeared to stimulate students’ interest 

in participating in explorative activities. Farrell (1990) reported that students who 

used graphing calculators to learn mathematics were more active in the classroom. 

More group work, investigations, explorations, and problem solving were also 

observed among students using graphing calculators. Others, for instance, Dick and 

Shaughnessy (1988), noticed that there was a shift by teachers to less lecturing and 

more investigations being conducted by students. Dana-Picard and Kidron (2006), 

in their study of a computer algebra system (CAS) as an instigator to learn more 

mathematics, stated “… the implemented Mathematics has to be understood. In order 

to afford a real understanding of the process, the user has to learn new Mathematics. 

We called this occurrence a motivating constraint of the software” (p. 130). Although 

these examples are encouraging, it is important to look beyond using technology as 

a motivational tool and move towards using technology to deepen and extend 

mathematical learning. This is challenging when developing proficiency with the 

technology takes time before the technology can become an instrument. This working 

relationship (instrumental genesis, discussed in Chap. 2) develops through 

operationalizing the mathematics with the technology. Confrey (in Heid 2005) 

emphasized that an obstacle in implementing these kinds of mathematical practices 

lay in the difficulty that (1) the type of reasoning needed to grapple with complexity 

is not taught in mathematics courses; and (2) students typically do not “own” the 

problems they work on. Overcoming these difficulties requires attention to the complex 

interactions among students, teachers, tasks, and technologies.

8.4.2  Interactions Among Students, Teachers, Tasks,  

and Technologies: Shifts in Empowerment

A key change in students’ mathematical practices spurred by technologies is the 

locus of control in a task. Technologies can often promote student engagement and 

command in key decision-making junctures during exploration. Capabilities are 

distributed between the student and the tool, with the user in charge of making decisions 

about when and how to use the tool (Heid 2005, p. 348). Control shifts more to the 

student in making decisions about how to utilize the technology in problems that 

do not “tell” which mathematics is needed up front (Heid 2005). Technologies allow 

students to check the validity of their answers and assess their own hypotheses. 

While engaging in explorative activities with the technological tools, students 

might encounter unexpected strategies that lead them further to ask new questions 

when working toward a solution (Makar and Confrey 2006).

Drijvers and Doorman (1996) assert that when students alternate between experi-

mentation and reflection, mathematical concepts are strengthened. Artigue (2002) 

agrees with this assertion in her genesis of a reflection about instrumentation and 

the dialectics between technical and conceptual work. Olivero (2006) demonstrates 

that students with considerable dynamic geometry (DGE) experience and average 

mathematical background seem to use the software with more interactions and 
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explorations, whereas students with stronger mathematical background and little 

experience with DGEs typically do not fully exploit the possibilities offered by DGEs.

Galbraith et al. (2001) and Geiger (2006) point out, however, that this shift 

in empowerment depends on how students envision their relationship with 

technologies. They articulate four metaphors for how technology can mediate 

learning. The metaphors illustrate the relationship that students might have with 

their calculator for a particular task and describe the degree of sophistication in 

which the technology is used:

• Technology as master, where the student is subservient to the technology and the 

relationship is one of dependence. An example is where the technology is used 

as a timesaving device, but the student does not evaluate whether the output is 

accurate or useful.

• Technology as servant, where the technology is subservient to the student, 

typically used to replace pen and paper computation and used as a faster means 

to the output.

• Technology as partner, where the technology is used creatively to boost student 

empowerment, treating the technology almost as a surrogate human partner.

• Technology as extension of self, where users draw on their technological expertise 

as an integral part of their mathematical thinking.

An example of technology as partner can be found in the use of scientific probes 

and sensors (CBLs) to investigate problems. Probes and sensors connected to a 

computer or a graphics calculator offer opportunities for teachers to focus mathe-

matics teaching on inquiring, understanding and reasoning instead of the drill and 

practice of routine problems typical in conventional instruction. Probeware open 

avenues for students to investigate and explore science in a mathematical setting. 

The data collected in a science experiment using the probeware can be stored and 

analyzed via the technological tools while conducting the experiment in real-time. 

The use of electronic probeware as a technological partner is capable of transforming 

mathematics into an interdisciplinary, authentic and participatory subject (Lyublinskaya 

2004, 2006).

Sinclair (2003) noted the importance of the nature of the task in either promoting 

or discouraging students’ engagement with exploration activities and geometric 

thinking in DGE. Laborde (2001) further distinguished four types of tasks used by 

teachers in DGE: (1) tasks for which the technology facilitates but does not change 

the task (e.g., measuring and producing figures); (2) tasks for which the technology 

facilitates exploration and analysis (e.g., identifying relationships through 

dragging); (3) tasks that can be done with paper-and-pencil, but in which new 

approaches can be taken using technology (e.g., a vector or transformational 

approach); and (4) tasks that cannot be posed without technology (e.g., reconstruct 

a given dynamic diagram by experimenting with it to identify its properties – the 

meaning of the task comes through dragging). For the first two types, the task is 

facilitated by the technology; for the second two, the task is changed by technology. 

The nature of the task turns into a modeling activity, where deductions are drawn 
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from observations, and solution paths may differ from the mathematics the teacher 

intends. Kieran and Drijvers (2006), in their study of learning about equivalence, 

equality and equation in a CAS environment, report on the “intertwining of 

technique and theory in algebra learning in a CAS environment.” (p. 278) Their 

analysis revealed that the relation between students’ theoretical thinking and the 

techniques they use for solving the tasks, and the confrontation of the CAS output 

with students’ expectations were the two main issues. While this confrontation 

became one of the most powerful occasions for learning in the classroom, they 

assert that appropriate management of these complications by the teacher is a 

necessary precondition to foster learning.

The findings concerning appropriate management by the teacher in Kieran and 

Drijvers study suggest that tasks with technology should not be studied without 

careful attention to the classroom environment created by the teacher. Ruthven et al. 

(2005) found that teachers often restricted students’ explorations in order to avoid 

meeting situations that did not align with the planned learning outcomes. For example, 

the teacher may structure students’ experiences in Cabri to exploit the mathematical 

fidelity of the Cabri construction with respect to classic Euclidean Geometry 

(Mariotti 2006).

Laborde and her colleagues (Laborde et al.2006) note how Logo as a “programming 

tool” can be used to support links between students’ actions and symbolic represen-

tations because students must express actions in symbolic language to produce 

objects on the computer. DGEs, on the other hand, are considered as “expressive 

tools” as students work with them to produce or manipulate geometric objects. 

“Students move from action and visualization to a theoretical analysis of diagrams 

and possibly to the expression of conjectures and reasoning” (p. 296). In their survey 

of research on technology in the teaching and learning of geometry, they indicate 

how the focus of research has also shifted among students, teachers, and tasks:

The focus initially was on the learner and his/her interactions with technology, giving rise 

to theoretical reflections about learning processes in mathematics by means of technology. 

The focus moved to the design of adequate tasks in order to meet some learning aims and 

then to the role of the teacher. The integration of technology into the everyday teacher 

practice became the object of investigation. Finally, the role of the features of software and 

technology design were also questioned and investigated in order to better understand how 

the appropriation of the technological environment by students could interfere with the 

learning of mathematics and how the teacher organizes students’ work for managing this 

interaction between appropriation of the tool and learning. (p. 296)

Thus, the interactions among students, teachers, tasks, and technologies have 

now become the focus of research in the field. Laborde and her colleagues, however, 

argue that more research is needed to better understand links between students’ 

instrumentation processes and their growth of mathematical knowledge.

In this section we have seen the emergence of another component that we need 

to encompass in our didactic tetrahedron: the nature of mathematical tasks. We 

shall address this additional aspect of the didactic situation in our concluding 

remarks for this chapter. In the next section we discuss the critical role of feedback 

that technologies can play in the development of new mathematical practices.
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8.4.3 Role of Feedback in Practice

Laborde et al. (2006) indicate that feedback through technology offers a great deal 

of opportunity for new ways of understanding mathematics; for example, feedback 

through DGEs and microworlds, generated by manipulating the environment and 

generalizing/abstracting through reflection on outcomes to actions. Such feedback 

creates a need to search for another solution if the feedback gives evidence that a 

solution is inadequate; it can also help students refine their thinking iteratively as 

they design (rather than at the end of the design process). “The software incorporating 

knowledge and reacting in a way consistent with theory impacts on the student’s 

learning trajectory in the solving process” (p. 294). The effect of technology on 

students’ learning trajectories is the focus of Chap. 9.

As described in Sect. 8.2, the use of DGEs encourages students to make conjec-

tures and the feedback they get from both measuring and dragging elements of their 

constructions allows students to rapidly test these conjectures, and, thus, refine 

them in a recursive cycle of conjecture-test-new conjecture. Hollebrands (2007) 

distinguishes two different types of strategies employed in students’ activities with 

the Geometer’s Sketchpad: reactive and proactive. The critical difference between 

the two strategies is whether the choice of action is in response to what the computer 

produced (reactive) or in advance of what the student anticipates the computer is 

supposed to do (proactive). In either strategy, the feedback provided by the DGE 

is critical for the students’ subsequent actions. Makar and Confrey (2006) found 

similar distinctions in ways that learners use and respond to feedback in dynamic 

statistical software (see Sect. 8.4.4.2).

Zbiek and Glass (2001) conjecture that students will most likely reason extensively 

and deeply when confronted with a technology-generated result that conflicts with 

their personal mathematical expectations (a result of a proactive strategy). Zbiek 

and Hollebrands (2007) provide examples from a research study with prospective 

teachers using the Geometer’s Sketchpad to support this conjecture. Students were 

investigating the effects of varying parameters on graphs of functions of the form:
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One student conjectured that graphs associated with negative values of a would be 

reflections of graphs associated with positive values of a.

When they were not, she proceeded to unravel the mathematical situation, using supple-

mental lines and symbolic reasoning to explain why a sign change in the numerator of the 

fraction would not yield the mirror image for the graph. Her reaction to this technology-based 

surprise led to her deeper understanding of this function and to her enhanced ability to 

reason in other parameter explorations. (p. 41)

Heid (2005) noted the way that feedback systems in microworlds allow learners to 

predict behavior and deepen understanding of how things work. This experience, 

according to Thompson, “demands a very different conception of mathematical 

inquiry … because microworlds are typically designed to be experimented with, 

much like you experiment with some physical system” (in Heid 2005, p. 352). Choate 
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(in Heid 2005) discusses how feedback in intelligent tutors and CAS allow for the 

“playability” (p. 350) of calculus and functions in the way that geometry has become 

“playable” through dynamic geometry environments. The calculator can perform the 

microprocedures and let the student focus on the macroprocedures, which require 

higher-level processes. Gage (2002) observed that the immediate feedback provided 

by graphing calculators enabled students to challenge misconceptions that may 

develop and hence minimize their formation. Finally, students can use graphing cal-

culators to explore complex functions in new ways, relying on the feedback generated 

to deepen their understanding. For example, in a study by Rosihan and Kor (2004), 

students investigated the following limit graphically, numerically and symbolically:
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The difficulty faced by learners in this problem was to imagine the changes when 

the x-coordinate approached zero. Graphing calculators allow students to witness 

the oscillations around x = 0 as well as other properties of the graph such as sym-

metry. Changing the window parameters on the graphing calculator allows the 

student to capture different sizes and dimensions of the graphed functions. The 

“trace” command can be used to explore the functional values around x = 0 and 

enable students to make the deduction graphically that the limit is zero. These 

examples illustrate ways that feedback from students’ interactions with technology 

can have a strong impact on their mathematical understandings and practices.

8.4.4  Example Technologies that Promote  

New Mathematical Practices

In this section we examine, in more detail, several examples of technologies that 

have promoted new mathematical practices on the part of students and/or teachers. 

We begin by revisiting dynamic geometry environments, with particular emphases on 

“dragging” and the new role of proof in DGEs. The second example examines the use 

of new technologies in the teaching and learning of statistics, with particular emphasis 

on the new dynamical statistics software programs that have recently made their way 

into pre-college classrooms. The third section looks at children’s activities in robotics 

and digital game environments, and the potential of these activities to engage children 

in mathematical practices. We have already described (in previous sections) some 

of the new practices made possible by graphing and CAS-enabled calculators, and 

the use of probeware in conjunction with calculators and computers.

8.4.4.1 New Mathematical Practices in Dynamic Geometry Environments

We now revisit the research on DGEs from the perspective of new mathematical 

practices that have emerged from the numerous applications of different DGEs in 

many parts of the world. It is well established that this type of software helps learners 
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identify and thoroughly explore properties and relationships between geometrical 

shapes (Santos-Trigo 2001), and we have already discussed how DGEs can provide 

critical feedback to the user and the importance of feedback in the development and 

testing of conjectures (see Sect. 8.4.3). Perhaps the most obvious new practice 

made possible by DGEs is the ability to drag elements within a construction and 

thus rapidly visualize many possible examples of the construction as well as to 

discern what remains invariant under this dragging action (Heid 2005; also see 

Sect. 8.2.6.3). A group of researchers in Italy led by Ferdinando Arzarello (Arzarello 

et al. 1998a) classified different modalities of dragging as follows:

(i) wandering dragging, that is dragging (more or less) randomly to find some regularity 

or interesting configurations; (ii) lieu muet dragging, that means a certain locus C is built 

up empirically by dragging a (dragable) point P, in a way which preserves some regularity 

of certain figures. (p. 3)

They also describe a third modality: dragging test that is used to test a conjecture 

over all possible configurations. Their distinction between wandering dragging and 

the more focused lieu muet dragging and dragging tests are not unlike Hollebrands’ 

(2007) description of reactive and proactive strategies in DGEs or Makar and 

Confrey’s (2006) wanderers and wonderers in dynamic statistical software (below). 

These different types of dragging modalities can be thought of as new mathematical 

practices that have emerged in the context of dynamic geometry environments.

Leung et al. (2006) extend the notion of dragging modalities in their study of 

instrumentation/instrumentalization of dragging via functions of variation (contrast, 

separation, generalization, fusion). From their observations of two pre-service teachers 

working with a DGE called C.a.R. they hypothesized a utilization scheme they call 

a Variational Dragging Scheme that involves the following components:

1. Create contrasting experiences by wandering dragging until a dimension of 

variation is identified.

2. Fix a value (usually a position) for the chosen dimension of variation.

3. Employ different dragging modalities/strategies to separate out critical feature(s) 

under the fixed value (i.e. a special case for the configuration).

4. Simultaneously focusing, hence “reasoning,” on co-varying aspects during 

dragging. A preliminary conjecture is fused together.

5. Attempt to generalize by a change to a different value for the chosen dimension 

of variation.

6. Repeat steps 3 and 4 to find compromises or modifications (if necessary) to the 

conjecture proposed in step 4.

7. Generalization by varying (via different dragging modalities) other dimensions 

of variation. (pp. 350–351)

The group at the University of Grenoble in France have been conducting research 

studies on the use of Cabri for many years (Laborde 1992, 1993, 1995, 1998). They 

have focused both on what students are learning when working with Cabri and the 

constraints both students and teachers face when teaching and learning with Cabri. 

Laborde (1992, 1993) and Balacheff (1994) conclude that the observation of what 

varies and what remains invariant when dragging elements of a figure in Cabri, 
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helped break down the separation of deduction and construction that Schoenfeld 

(1988) found in his study of geometry teaching and learning. Laborde (1998) 

points out that it takes a long time for teachers to adapt their teaching to take 

advantage of the technology. She reports three typical reactions that teachers have 

to the perturbations caused by the introduction of dynamic geometry software into 

the teaching-learning situation:

• Reactionalpha:ignoringtheperturbation

• Reactionbeta:integratingtheperturbationintothesystembymeansofpartial

changes

• Reaction gamma: the perturbation is overcome and loses its perturbing

character. (p. 2)

It is only in the last stage (reaction gamma) that teachers make an adaptation in their 

teaching that truly integrates the technology, thus generating both new teaching and 

new learning practices. Hollebrands et al. (2007) reviewed approximately 200 

research studies on the use of technology in secondary school geometry (about half 

of these studies involved DGEs). The following themes emerged from their review: 

the role of representation in the construction of geometrical knowledge and DGE 

diagrams, the design of tasks and the organization of the milieu, students’ constructions 

within a computer environment, and the instrumental genesis and its relationship to 

construction of knowledge. (This latter theme was discussed in Chap. 2 of Theme C). 

The importance of studies addressing the question of proof in a dynamic geometry 

environment was also a major topic in their review.

The primacy of “proof” as the ultimate mathematical practice has been accepted 

in the teaching and learning of geometry since the time of Euclid. The very nature 

of DGEs challenges this primacy of proof but also creates new roles for proof as a 

mathematical practice (de Villiers 1999, 2006). Hoyles and Healy (1999) indicate 

that explorations of geometrical concepts using DGEs help students to define and 

identify geometric properties, and the dependencies necessary for the development 

of a proof; however, they do not necessarily lead to the construction of a proof. Olive 

(2000a) provides an example of how the interplay between a dynamic geometric 

construction and the functional dependencies of the dynamic measurements obtained 

from that construction, did lead to the development of an algebraic proof. In a 

course for pre-service high school teachers, students found the dimensions of a 

rectangle with fixed perimeter that contained the largest possible area by constructing 

a dynamic rectangle in Sketchpad, the sum of whose sides was constrained by a 

fixed line segment. Their construction allowed them to change the base of the 

rectangle, which in turn, caused the sides to change length (in order to keep the 

perimeter fixed). By measuring the base of the rectangle and the resulting area, and then 

plotting a point in Sketchpad based on these dynamic measurements (base vs. area), 

they were able to construct the locus of the plotted point, which was a parabolic curve 

with a maximum. They discovered that their plotted point reached this maximum 

area when the rectangle appeared to be a square. However, the dynamic measures 

of base and height were not exactly the same when the plotted point appeared to 

be at its maximum. This discrepancy led to an interesting discussion, and a need 
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to prove by algebraic means that the maximum area will be attained when the 

rectangle becomes a square. Thus, they made the transition from geometric 

conjecture to algebraic proof.

The above example of finding a solution in dynamic geometry by experiment is 

analogous to finding roots of a polynomial using a graphing calculator. The solution 

can be found but the students still have a need to prove that the solution is valid.  

In the case of the rectangle with maximum area there is a need to prove the conjecture 

that, for any rectangle with fixed perimeter, the maximum area will be achieved 

when the rectangle becomes a square. Manipulating the dynamic rectangle can give 

convincing evidence that the generalization is indeed true. There is a danger here 

that students may regard this “convincing evidence” as a proof. Michael de Villiers 

(1997, 1998, 1999) has addressed this concern through a thorough analysis of the 

role and function of proof in a dynamic geometry environment. de Villiers expands 

the role and function of proof beyond that of mere verification. If students see proof 

only as a means of verifying something that is “obviously” true, then they will 

have little incentive to generate any kind of logical proof once they have verified 

(through their own experimentation) that something is always so. de Villiers suggests 

that there are at least five other roles that proof can play in the practice of mathematics: 

explanation, discovery, systematization, communication, and intellectual challenge. 

He points out that the conviction that something is true most often comes before a 

formal proof has been obtained. It is this conviction that propels mathematicians to seek 

a logical explanation in the form of a formal proof. Having convinced themselves 

that something must be true through many examples and counter examples, they 

want to know why it must be true. de Villiers (1999) suggests that it is this role of 

explanation that can motivate students to generate a proof:

When students have already thoroughly investigated a geometric conjecture through 

continuous variation with dynamic software like Sketchpad, they have little need for 

further conviction. So verification serves as little or no motivation for doing a proof. 

However, I have found it relatively easy to solicit further curiosity by asking students why 

they think a particular result is true; that is, to challenge them to try and explain it. (p. 8)

The group in Italy headed by Ferdinando Arzarello (Arzarello et al.1998a) has 

conducted investigations of students’ transitions from exploring to conjecturing and 

proving when working with Cabri. They applied a theoretical model that they had 

developed to analyse the transition to formal proofs in geometry (Arzarello et al. 

1998b). They found that different modalities of dragging in Cabri (identified above) 

were crucial for determining a shift from exploration to a more formal approach. Their 

findings are consistent with the examples given in previous sections of this paper.

8.4.4.2 Technologies that Encourage New Practices in Statistics

The influence of technology on the statistical knowledge and practices of learners 

has changed enormously in the past 15 years, although not without growing pains 

(Rubin 2007). One important benefit of access to technology has been the opportunity 

that students have to work with authentic data sets that are both larger and more 
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complex. Because the difficulty of calculations becomes overly tedious as the size 

of the data set increases, learners have been constrained previously to working with 

small, carefully chosen data sets that limit complexity of calculations, but at the 

same time become overly contrived. According to Finzer et al. (2007):

This judicious selection deprives students of the experience of data discovery. … What 

seems to us to be missing are data sets – especially large and highly multivariate data sets 

– that are ripe for exploration and conjecture driven by the students’ intrigue, puzzlement, 

and desire for discovery. (p. 1).

The graphing calculator and statistical analysis packages designed specifically 

for learning statistics (e.g., Finzer 2007; Konold and Miller 2005; Hancock and 

Osterweil 2007) support the use of authentic and realistic data and therefore 

stimulate students towards exploratory activity. This allows for a shift in emphasis 

from a focus on graphs, calculations, and procedures taught in isolation for their 

own sake towards the active use of statistics as a tool to solve interesting problems. 

This move allows learners to focus on the context under study rather than on 

the statistical tools as the objects of study (Makar and Confrey 2007). Modeling 

software can support a better understanding of representation and form “a bond 

between the data and whatever mathematical model you are starting to make” 

(Finzer, in Heid 2005, p. 357).

Students can collect large sets of real life data for data analysis. They can download, 

sort, tabulate and store these data rapidly using CBLs or web-based technologies 

and thus avoid tedious compilations of data tables by hand. Students can manipulate 

the data with symbolic expressions, solve equations, analyze data, and graph functions 

to fit the data. They can switch between screens to observe the different representations 

of the data. They can make conjectures, test their hypotheses and check their 

estimations. These dynamic technologies allow learners to work flexibly as the 

rapid display of different graphical representations allows more time for students to 

explore larger data sets and make comparison between groups, thus making statistics 

more meaningful and interesting (Kor 2004, 2005). Students can experience and 

appreciate more the practices of statisticians when they run statistical tests on 

authentic data that they obtained. Bienkowski et al. (2005) allege that students who 

engage in investigative activities with data using technologies perform better than 

those who simply report data.

The opportunities that have arisen have not been without challenges, however. 

Rubin (2007) reports that graphs are now so easy to create with software, that students 

have been deprived of the need to think about appropriate axes, scales, and other design 

issues. The drag-and-drop facility of many software packages like Fathom (Finzer 2007) 

can encourage users to simply wander through a data set aimlessly looking for an 

interesting pattern to jump out at them and then try to explain the outcome with 

anecdotal evidence – what Makar and Confrey (2006) call wanderers; at the same time, 

the ease of creating graphs supports others to assess the validity of hunches generated 

from the “I wonder” type questions that the technology was meant to encourage 

(what Makar and Confrey 2006, term wonderers). Rubin (2007) further worries that 

access to technology has not necessarily discouraged students from “over-believing” 

computers and accepting results calculated by software on blind faith.
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This attitude can lead to students accepting implausible results. … [On the other hand], 

they may also have done everything right and be seeing a relatively unlikely result. In the 

end, there’s a delicate balance to be struck here, given the uncertainty that is at the heart of 

statistical reasoning. We want students to question what the computer generates, but not to 

reject results simply because they are not within the expected probability. (pp. 29–30)

Overall, however, the newer technologies that focus on learning statistics 

discourage the “black box” mentality of previous statistical packages (Meletiou-

Mavrotheris et al. 2007; Makar and Confrey 2004). If technologies can continue 

to encourage greater focus on the utility of statistics for solving problems over 

an emphasis on the statistics as an end in itself, there is potential to resolve the 

widely reported use of statistics in situations where they don’t make sense 

(Pfannkuch et al. 2004).

8.4.4.3  Children’s Mathematical Practices Using Robotics  

and Digital Games

The use of robotics in schools is a fairly recent phenomenon. Although the 

Turtle Geometry of Logo (Papert 1970) was initially developed as a control 

language for a physical, dome-shaped robot (dubbed the “turtle”), the expense of 

the physical device and control mechanisms in the late 1970s and early 1980s made 

the physical robot turtle prohibitive as a classroom-based learning tool. Mass 

production of similar control systems with small robotic devices for the toy 

market, have now made the use of robotics a possibility again in K-12 classrooms. 

Programming robotic vehicles to travel around obstacle courses, or navigate a 

specific route, while providing a fun, game-like context, has the potential for rich 

mathematical learning.

Although the potential of digital games as rich learning tools is widely recog-

nized (Sanford 2006), this potential in schools has not yet materialized (Wijekumar 

et al. 2005). From a practical standpoint the majority of games released are not the 

kind of games that educators will find value in using as part of their teaching, and 

while a recent report (MacFarlane and Kirriemuir 2005) describes some of the issues 

reported by teachers, it also points to a pressing need to establish a better understand-

ing of the value of games in school environments and the difficulties faced by teachers 

when using them (Sanford 2006). According to Wijekumar et al. (2005), it is still 

necessary to work on moving students from a game affordance in a computer environ-

ment to a mathematical learning situation in which they may use that affordance.

There are some initiatives, however, in which robotics and digital games are 

used to try to encourage students to learn specific mathematical topics. For example: 

(1) Using robots to learn angle concepts (Hunscheidt and Koop 2006); (2) using robots 

to learn linear functions (Fernandes et al. 2006); (3) designing a game construction 

kit to foster visual reasoning and self-engaging tasks (Kahn et al. 2006); and (4) 

exploring the affordances of electronic, mathematical board games (Raggi 2006; 

Rodriguez 2007) that promote general action patterns for solving mathematics or 

science problems. Following are brief descriptions of each of these examples:
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1. With respect to an understanding of the angle concept in primary school, Hunscheidt 

and Koop (2006) introduced in the classroom a small robot on wheels programmed 

to move in centimeters, turn in degrees and wait in tenths of a second (p. 229). This 

artifact (named Pip) enabled the students to estimate and check distances and 

angles.

2. In their work with eighth graders, Fernandes et al. (2006) used robots in order 

for their students to learn functions. In the context of being given two pictures 

of distance–time graphs that represented a robot’s possible travel from a given 

starting point, students were to design programs for the robot to travel the 

represented routes. To begin, students made hypotheses about the routes 

represented in the two graphs, then discussed the possibilities of these situations, 

realizing that one of the graphs was not feasible (as the robot would have to be 

in different places at the same time) and finally understood that the graphs were 

not pictures of the robot’s route but a representation of the relationship between 

time and distance of the robot’s travel.

3. Using another kind of virtual scenario, Kahn et al. (2006) designed a Space 

Travel Games Construction Kit (STGCK) to build a variety of games similar to 

Lunar Lander (p. 261). They tested these STGCK with two student classes (one 

aged 11–12, and the other one aged 12–13) and a small group of three students 

aged 12–14. The results were that students developed understandings of 

Newton’s Laws, showing engaged activity and active experimentation with the 

materials. In particular, students solved the different tasks posed using iterative 

strategies and repeatedly refined their strategy. Kahn et al. (2006) evidenced 

collaboration, competition and motivation as the most prevalent student activities. 

In addition, the authors came to realize that students could analyze and use the 

relationships hidden in the programming code as an integral part of the game, 

when they gave students easy access to the programming code and provided 

situations where they would want to analyze and adjust that code.

4. The emergence of mathematical strategies and consecutive refining strategies 

were also some characteristics of the results obtained by the instrumentation of 

a computational board game named Domino (Raggi 2006) with two classes of 

seventh and eighth graders. In this context, symmetry was the underlying 

mathematical structure for the game. When playing against the computer, the 

winning strategy is to place your dominos symmetrically opposite the computer-

opponent’s placements. The computer game was introduced into the classroom 

as an exploratory material. Each student had to initially play against the computer 

(named Robi). The task asked of students was to find a way to beat Robi or, if 

Robi won, to try to explain why Robi was able to beat them. Two groups of 

seventh and eighth graders were involved in this experience in order to discover 

possible affordances of the computer game for helping students learn symmetry 

(Rodriguez 2007).

The purpose of the Domino game (Raggi 2006) is the search for winning strategies 

that allow the winner to activate the last two consecutive squares on the game 

board. The game is immersed with symmetry, yet this (mathematical) structure that 
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the game is intended to foment defines a potential organization that the children 

concretize in different ways once they are engaged in the task (Saxe and Bermudez 

1996). For example, a result of seventh graders playing the game against the computer 

was a rapid turn toward a different winning strategy, one which consisted of trying 

to leave blank spaces, counting out how many were necessary according to which 

turn they had. Concerning eighth grade students, it was observed that when they used 

a strategy that they believed to be a winner, they continued to use it and perfected 

it as long as it was functional. Moreover, an opponent who began to win was a cause 

for reflection and the reformulation or construction of a new winning strategy.

As stated at the beginning of this section, the major question to be answered with 

respect to new mathematical practices that might develop from either the use of robotics 

or digital games in the school context, is the movement from the game context to 

mathematical problem solving situations. To connect to another new or learned context, 

David Shaffer proposes the notion of epistemic frames as “ways of looking at the world 

associated with the ways of knowing of a particular community” (cited in Sanford 

2006, p. 13). Shaffer’s epistemic frames can be regarded as a tool for building accounts 

of students’ use of experience that was gained in one context and applied within 

another different context. According to Sanford (2006), “building on this concept 

will contribute to an attempt to build an understanding of the ways in which 

knowledge may be transferred from the game to other domains” (p. 13). The heuristics 

of students performing in the competitive situations that the mentioned games 

created corresponded to general action patterns for solving mathematics or 

science problems (cf. Polya 1945). Nonetheless, the potential of this type of 

psychological instrument (epistemic frames, Shaffer 2006) to learning specific 

mathematical topics is still to be determined, for example how it is related with 

solving specific mathematical problems.

8.4.5  Summary of New Mathematical Practices  

Made Possible with Technology

We opened this section with findings that suggest that the link between mathematical 

practices and mathematical knowledge is strengthened in didactical situations that 

involve effective uses of technology. A major affordance of technology is how it 

can be used to help students visualize abstract mathematical concepts. Students can 

model, experiment, and test their emerging mathematical understandings using 

dynamic visualization software in many mathematical domains. There is a risk, 

however, that students (and teachers) may relinquish their mathematical authority 

to the computing machine (see Sect. 8.3 for the inherent danger in relinquishing 

this authority to machines that are mathematically limited). We emphasized 

how the technology could be used to motivate students to mediate their own 

learning, and how it has brought about a shift in teaching practices from lecturing 

to student-centered investigations.
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In Sect. 8.4.2 we focused on ways in which the interactions among students, 

teachers, tasks and technology have the potential to bring about a shift in empower-

ment in the didactic situation. We introduced the need to pay particular attention 

to the design of the mathematical tasks in order to avoid students perceiving the 

role of the technology as their master rather than their servant or partner. Ultimately, 

we would like to see students use technology as an extension of themselves 

(Galbraith et al. 2001; Geiger 2006). The focus here is on where the locus of control 

lies in a mathematical task. Technology can be used to shift that locus of control 

towards the students and, thus, empower the students to take more responsibility 

for their own learning.

Several researchers have focused on the importance of task design (e.g. Sinclair 

2003; Laborde 2001) in technological environments. They argue for designing 

tasks that are transformed by the technology, leading to new mathematical practices 

(e.g. modeling real-life phenomena, making deductions based on observations), 

rather than tasks that could be just as easily completed without the technology. 

One possible outcome with such tasks, however, is that students may engage with 

mathematics that the teacher did not intend (and with which s/he may not feel 

competent). The role of the teacher becomes critical in managing these rich didactical 

situations involving technology. The teacher can attempt to constrain the situation 

so that students engage with the intended mathematics, or they can be more open 

and willing to go where the students’ investigations lead them.

The nature of different software tools also has a constraining effect on the possible 

mathematical practices. When computers were first introduced into the mathematics 

classroom, their use was primarily for teaching programming. With the development 

of the mouse interface and dynamic visualization software, the advocacy for 

programming has diminished in favor of what Laborde et al. (2006) call “expressive 

tools.” While programming tools (such as Logo) support the link between students’ 

actions and symbolic representations (programming code), expressive tools (such as 

DGEs) assist students in the move from action and visualization to conjectures and 

reasoning. This shift towards expressive tools has brought about a shift in the focus 

of research on the interactions among students, teachers, tasks and technology.

Research on the role of feedback provided by technological tools suggests 

that learning is most likely to occur when the feedback is unexpected. Feedback 

provided by computational tools (such as CAS) can shift the focus of the student 

from micro-procedures (that the tool performs) towards macro-procedures that 

involve higher-level cognitive processes. New solution methods are made possible 

by the graphical feedback provided by graphing calculators and graphing software. 

For example, the ZOOM feature on most calculators can provide students with 

visual solutions to the limits of functions at critical points.

In the last part of this section on mathematical practices we examined examples 

of several different technologies that have been used successfully to generate new 

mathematical practices. We revisited the research on DGEs from the perspective of 

new mathematical practices, emphasizing the important aspect of the different 

dragging modalities and the utilization schemes that students could develop through 

use of these different dragging modalities. The introduction of DGEs into the didactical 
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situation often created perturbations for the teacher. When teachers overcame these 

perturbations (rather than ignoring them) they made adaptations in their teaching 

that more authentically integrated the technology. The use of DGE also brings 

about new approaches to proof in geometry and an increased emphasis on the 

role of proof as explanation rather than only verification. Likewise, the use of 

dynamical statistics software has made it possible for students to work with large, 

authentic data sets, which they can download or generate through their own experi-

ments. The ease with which students can represent, explore and manipulate data 

with these tools has brought about a shift in focus from studying statistical proc-

esses for their own sake towards the active use of statistics as a tool to solve inter-

esting problems.

We concluded this section with a look at the introduction of robotics and digital 

games as contexts for learning mathematics. While the potential of these contexts 

as rich learning situations has been recognized, this potential has not yet been 

realized in mathematics classrooms. Teachers do not yet see the value of digital 

games as learning tools. The problem for teachers is finding ways to move students 

from a game affordance to a mathematical learning situation in which they may use 

that affordance. Several researchers have suggested that the use of Shaffer’s 

epistemic frames (Sanford 2006) as a theoretical tool could help teachers organize 

such movement.

8.5  Final Words: An Adaptation  

of Our Didactical Tetrahedron

We began this chapter with an adaptation of Steinbring’s (2005) didactic triangle 

that portrayed the didactical situation as interactions among student teacher and 

mathematical knowledge. We suggested that the introduction of technology into the 

didactic situation could have a transforming effect on the didactical situation that is 

better represented by a didactic tetrahedron, the four vertices indicating interactions 

among Teacher, Student and Mathematical Knowledge, mediated by Technology. 

In the third part of this chapter it became obvious that the nature and design of 

the learning task was a further interacting variable that must be taken into account 

in the didactical situation. From a social constructivist viewpoint (see Chap. 11), 

mathematical knowledge and practices are constructed as a product of the interactions 

among student, teacher, task and technology, rather than existing apart from them 

(as a separate vertex of our tetrahedron). We, therefore end this chapter with a new 

didactical tetrahedron as illustrated in Fig. 8.3. This new model illustrates how 

interactions among the didactical variables: student, teacher, task and technology 

(that form the vertices of the tetrahedron) create a space within which new mathematical 

knowledge and practices may emerge. It is not arbitrary that we place the student 

at the top of this tetrahedron as, from a constructivist point of view, the student is 

the one who has to construct the new knowledge and develop the new practices, 

supported by teacher, task and technology.
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Chapter 9

The Influence and Shaping of Digital 
Technologies on the Learning – and Learning 
Trajectories – of Mathematical Concepts

Ana Isabel Sacristán, Nigel Calder, Teresa Rojano, Manuel Santos-Trigo, 

Alex Friedlander and Hartwig Meissner, with Michal Tabach, Luis Moreno  

and Elvia Perrusquía

Abstract The significant development and use of digital technologies has opened up 
diverse routes for learners to construct and comprehend mathematical knowledge and 
to solve problems. This implies a revision of the pedagogical landscape in terms of the 
ways in which students engage in learning, and how understandings emerge. In this 
chapter we consider how the availability of digital technologies has allowed intended 
learning trajectories to be structured in particular forms and how these, coupled with the 
affordances of engaging mathematical tasks through digital pedagogical media, might 
shape the actual learning trajectories. The evolution of hypothetical learning trajectories 
is examined, while the transitions learners make when traversing these pathways are 
also considered. Particular instances are illustrated with examples in several settings.

Keywords Digital technologies • Mathematics education •  Learning trajectories  
• Contributions of digital technologies for learning

9.1 Introduction

In this chapter we consider how the use of digital technologies (DT) might influence 
the learning of mathematical concepts and shape the trajectories through which that 
learning develops. We discuss and illustrate various key aspects associated with 
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the development of learning trajectories when digital technologies are used as 
pedagogical media. These include intended or hypothetical learning trajectories, the 
actual trajectories that do emerge, the occurrence of learning trajectories within and 
across various DT platforms, and the potential shifts in trajectories that are afforded by 
DT through early engagement in conceptually “advanced” mathematical topics.

We begin by providing an overview of the main theoretical ideas used in this chapter; 
in particular the meaning of the term “learning trajectories,” a construct that is now com-
monly referred to in mathematics education in general, but that has yet to be redefined 
for the specific context of learning with and through DT (although some authors have 
begun to use it in that area, e.g. Clements et al. 2004). We propose that the systematic 
use of digital technologies plays an important role, not only in the construction of hypo-
thetical learning trajectories (defined in the next section), but also during the students’ 
actual comprehension and development of mathematical concepts. Thus, throughout the 
chapter, we are interested in discussing themes related to the mediating role of the use of 
the tools, the multiple representations of mathematical phenomena, and examples in 
which the use of digital tools can enhance the construction and evolution of students’ 
learning trajectories. One contention to which this position subscribes is that the process 
of constructing learning trajectories involves transitions between different cognitive and 
epistemological levels: e.g. from intuitive/informal to formal; from unconscious to con-
scious, from concrete to abstract; from visual to symbolic/syntactic; from synthetic to 
analytic; or from situated knowledge towards a more generalizable or abstract knowl-
edge. A learning trajectory may also involve transitions between the technological envi-
ronment and a non-DT (e.g. paper-and-pencil) environment.

While these transitions are present in any learning trajectory, the use of DT pro-
vides opportunities for teachers and students to engage in mathematical activities in 
ways that make those transitions meaningful, and broadens the range of possibilities for 
both hypothetical and actual learning trajectories. Later in this chapter we will discuss 
some of the elements that determine the process of selecting a certain activity to corre-
spond to an intended learning trajectory. One of these is the aspect of the multiple 
representations that are provided and interconnected (hotlinked) by and within digital 
environments. This can transform the way in which those transitions take place, pro-
viding a structure that learners can draw upon and reconstruct – as per Noss and Hoyles’ 
(1996) idea ofwebbing; described in Chap. 7. Other contributory elements that fashion 
the transitional process include the context of inquiry; the choice of the specific tech-
nological tools, including consideration of the propensity for open investigative prac-
tice associated with those tools or environments; the particular affordances DT bring 
to the learning experience when these tasks are engaged through digital media; the 
sequencing of tasks within an activity; and the relevance of using more than one tool to 
enhance or complement the mathematical competences or new knowledge that is gen-
erated with the use of DT. Central also are facets derived from taking into account the 
mathematical content, including the possibility of earlier engagement with concepts and 
processes that might traditionally be approached in later years.

In summary, the chapter begins with a brief theoretical overview to inform the 
various perspectives that frame the subsequent sections. This prefaces later sections 
addressing hypothetical learning trajectories and the affordances of digital 
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 technologies as pedagogical media. How DT influences the evolution of learning 
trajectories is then considered through the use of examples that contextualize the 
construction of hypothetical learning trajectories, learning trajectories within and 
across various platforms, the emergence of actual learning trajectories, and the pos-
sibilities for earlier engagement with powerful ideas afforded by DT. The conclud-
ing section draws on these aspects and examples, to consider the manner in which 
the learning experience is transformed through the engagement of digital technolo-
gies. It also attends to the consequential influence of this alternative engagement on 
the evolution of the leaning trajectories and hence on learning.

9.2 Theoretical Overview

9.2.1 On Learning Trajectories

In this chapter, we use the construct of learning trajectory to structure, organize, and 
discuss mathematical practices and knowledge derived from the use of digital tools. 
The notion of learning trajectory has been employed recently in diverse research in 
mathematical teaching and learning, and as a foundation of innovative mathematics 
curricula. However, researchers and curriculum developers interpret and use this con-
struct in different ways (Clements and Sarama 2004). In particular, a distinction needs 
to be made between an intended – or hypothetical –learning trajectory (HLT) and an 
actual learning trajectory. The first (HLT) serves as a foundation for task design, by 
characterizing and identifying possible instructional routes to approach mathematical 
task and develop students’ mathematical thinking; whereas the latter indicates the 
actual pathways followed by students as a result of working on activities or tasks – 
activities that were possibly set in terms of a hypothetical learning trajectory.

Simon (1995) proposed the term hypothetical learning trajectory to identify and 
describe relevant aspects associated with a mathematics lesson plan, including: A 
description of the students’ mathematical goals (what is intended for students to learn); 
the mathematical tasks or problems that students will work on to achieve the goals; and 
a hypothetical path that describes the students’ learning processes. Later, Simon and Tzur 
(2004) also recognized the importance of selecting and examining the tasks that promote 
the students development of new mathematical concepts in order to construct a hypo-
thetical learning trajectory to frame students mathematical learning. According to Simon 
and Tzur, some of the assumptions that justify the use of the HLT construct are:

1. Generation of an HLT is based on understanding of the current knowledge of the 
students involved.

2. An HLT is a vehicle for planning learning of particular mathematical concepts.
3. Mathematical tasks provide tools for promoting learning of particular mathematical 

concepts and are, therefore, a key part of the instructional process.
4. Because of the hypothetical and inherently uncertain nature of this process, the 

teacher is regularly involved in modifying every aspect of the HLT. (p. 93)
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The construction of hypothetical learning trajectories can be seen as the tools to 
guide and foster students’ learning. Clements and Sarama (2004) state:

Extant research is used to identify tasks as effective in promoting the learning of students 
at each level by encouraging children to construct the concepts and skills that characterize 
the succeeding level. That is, we hypothesize the specific mental constructions (i.e., mental 
actions-on-objects) and patterns of thinking that constitute children’s thinking at each level. 
…These tasks are, of course, sequenced corresponding to the order of the developmental 
progressions to complete the hypothesized learning trajectory. The main theoretical claim 
is that such tasks will constitute a particularly efficacious educational program. However, 
there is no implication that the task sequence is the only, or best, path for learning and 
teaching, only that it is hypothesized to be one fecund route. (p. 84)

Clements and Sarama (2004) suggest that the power of the learning trajectory construct 
lies in connecting both the students’ psychological developmental progression and the 
instructional sequences to promote mathematical thinking:

…we conceptualize learning trajectories as description of children’s thinking and learning in 
a specific mathematical domain and a related, conjectured route through a set of instructional 
tasks designed to engender those mental processes or actions hypothesized to move children 
through a developmental progression of levels of thinking, created with the intent of supporting 
children’s achievement of specific goals in that mathematical domain. (p. 83)

9.2.2  The Possible Influence and Mediating Role of Digital 

Technologies on Learning and Learning Trajectories

Some questions that now arise and that are discussed throughout the chapter, are: 
What role does the use of digital technologies play in the construction and development 
of hypothetical and actual learning trajectories? How can learning and its trajectories 
develop when mathematical tasks and phenomena are explored or analyzed through 
the use of digital tools as compared to other pedagogical media such as paper-
and-pencil? To what extent does the use of DT shape the learners’ mathematical 
ways of reasoning or thinking?

Important in this discussion is the symbiotic relationship between the digital 
media and the user. In accordance with Vygotsky’s (1981) theory of socio-cultural 
cognition (see Chap. 7), we contend that any cognitive activity is a mediated activity 
that depends on the continual interaction between the user and the tool. Therefore we 
consider that computing tools have a mediating role in the learning of mathematics. 
While the digital medium exerts influences on the student’s approach, and hence 
the understanding that evolves, it is his/her existing knowledge that guides the 
way the technology is used, and in a sense shapes the technology. The student’s 
engagement is influenced by the medium, but also influences the medium (Hoyles 
and Noss 2003).

Thus, students’ learning may involve different paths or trajectories depending on 
students’ experiences, previous mathematical knowledge, and the tools being used. 
Furthermore, when using digital tools there are various routes to construct hypothetical 
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learning trajectories and there are different points where learners might deviate 
from those trajectories. Thus, it is crucial for researchers and teachers to pay atten-
tion to the type of knowledge, resources and ways of thinking that students have 
developed in order to select or design tasks that promote students’ mathematical 
thinking. In developing or formulating HLTs a special emphasis should be put on 
the promotion of activities in which students have the opportunity of expressing, 
presenting, using, testing, refining, and revising or adjusting their own ways of 
thinking (Lesh and Yoon 2004).

9.2.3  Digital Technological Environments as  

Domains of Abstraction

When using DT, certain activities that were relatively meaningless using paper and 
pencil, now can have significant mathematical value. For instance, the difference 
between drawing with a computer-tool such as Dynamic Geometry or Logo, as 
compared to doing it in a paper-and-pencil setting, may require the recognition of 
relevant mathematical properties that guide the problem or mathematical object 
representation. Many studies have shown that the use of DT tools can help learners 
in the conceptualization of mathematical problems or objects (e.g. Gentle et al. 1994); 
for instance, there are reports of improved high-level reasoning and problem solving 
linked to learners investigating in digital environments (Drier 2000; Ploger et al. 
1997; Sandholtz et al. 1997).

The study of mathematics involves not only abstract but formal processes. What 
is the potential role of computer-based activities in the development of abstraction 
and formalism? Often students follow actions mindlessly without awareness that 
their results must make sense: it is from the awareness of this problem, and as a 
means to deal with the abstract nature of mathematics, that researchers proposed 
computer-based learning environments, or microworlds, where students could express 
and develop mathematical ideas (Hoyles 1993; see also Chap. 7). Furthermore, 
Noss and Hoyles (1996) consider a microworld as a domain of abstraction that can 
be understood as a setting in which students can make it possible for their informal 
ideas to start to coordinate with their more formalized ideas on a subject. The impor-
tance of having a domain of abstraction lies in the fact that it provides an environment 
where a general idea can become visible in the eyes of the students, and where 
learners can construct situated abstractions, that is, “construct mathematical ideas 
by drawing on the webbing of a particular setting” (Noss and Hoyles 1996, p. 122). 
Thus, a domain of abstraction supplies the tools so that exploration may be linked 
to formalization. Constructing bridges between students’ mathematical activity and 
formalization links the mathematical thinking in the classroom with the official 
mathematical discourse. Computer environments may improve this possibility by 
enhancing the expressive capacity of students when they can use them (for instance, 
through the language they may provide) to communicate ideas that are difficult to 
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communicate otherwise due to the lack of a sufficiently developed mathematical 
language. Related to this is the notion of situated proofs, which we will explain in 
Sect. 9.7.3.1, further below.

9.2.4  Hypothetical Learning Trajectories in DT Environments: 

Building on the Microworld Idea and Design

Hypothetical learning trajectories in DT environments and computational microw-
orlds are theoretical constructs that share essential characteristics. Nevertheless, 
they arose within different realms and responded to different needs. Microworlds 
developed in computational environments; and while they may have been designed 
with underlying potential didactic routes, these are not always made explicit in their 
building-up descriptions. On the other hand, the notion of HLT was developed 
originally within non-DT environments, and making explicit intended paths, needless 
to say, is one of its identifying elements. In this chapter, we are trying to bring 
together those two concepts, extending the idea of HLT to a DT environment, in 
order to better understand and analyze the possible changes and shifts in mathematics 
teaching and learning that result from the use of digital technologies.

In the next section, by building on theoretical descriptions of the microworld 
idea, particularly on the definition by Hoyles and Noss (1987), we examine the 
different components and aspects – together with the affordances of digital 
technologies – that need to be considered for the design and analysis of DT-based 
learning trajectories.

9.3  Affordances of Digital Technologies that Might Influence 

Learning Trajectories, and Considerations  

for the Design of HLT

Digital technologies, if used appropriately, enable mathematical phenomena to be 
presented and explored in ways that provide opportunities to initiate and enhance 
mathematical thinking, and make sense of what is happening. They may give the 
learner potential to look through the particular to the general (Mason 2005). When 
the learning experience differs with digital technology (as compared to the experience 
in traditional settings), we can assume that learning trajectories and understanding 
will also differ. We will examine these differences through a range of perspectives 
in the following sections.

We now consider several key aspects to be considered in the development and/or 
analysis of a learning trajectory when digital technologies are employed. Hoyles 
and Noss (1987) considered the didactical situation in which the interaction in a 
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microworld takes place, by taking into account the learner, the teacher, the setting 
and the activity which, in itself, is shaped by the past experiences and intuitions of 
the learner together with the aims and experiences of the teacher. They described a 
microworld as composed of four components: the pupil component (concerned 
with the existing understandings and partial conceptions that the child brings to the 
learning situation); the technical component (constituted by the software or 
programming language and a set of tools which provides the representational 
system for understanding a mathematical structure or a conceptual field); the 
pedagogical component (the didactical materials and interventions that take place 
during the computer-based activity); and the contextual component (the social 
setting of the activities). We would like to expand on their premise, by taking into 
account aspects to be considered in the design (or analysis) of DT-based HLT, that 
can be classified approximately within Hoyles and Noss’s components, although it 
is clear that many of these aspects belong to several components (see Fig. 9.1) and 
there is a strong interaction between all of them.

Fig. 9.1 The affordances of digital technologies and the aspects to be considered in the design 
and analysis of a DT-based learning trajectory



186 A.I. Sacristán et al.

9.3.1 Technical Aspects

9.3.1.1 The Choice of the Technological Tool(s) and Their Design

The choice of the digital tool or environment to be used will have a crucial influence 
for fostering and promoting mathematical thinking and in the type of learning 
trajectory that will be developed. As discussed earlier, although a new mathematical 
knowledge can be generated when using digital technologies, that knowledge is often 
situated and shaped by the tools and DT environment (Noss and Hoyles 1996; 
discussed in Chap. 7 of this volume). Furthermore, as Balacheff and Sutherland  
(1994) indicate, different tools or environments constitute different domains of 
phenomenology and thus have different epistemological validity (i.e. the knowledge that 
can be generated is different in different environments). For example, using spread-
sheets many mathematical situations can be represented in discrete ways using a table 
as a means to identify and explore invariants or patterns; whereas the use of dynamic 
software or CAS allows the problem solver to explore continuous behaviors that often 
can be modeled through an algebraic representation (Santos-Trigo et al. 2007).

According to Hershkowitz et al. (2002), the selection of appropriate computerized 
tools for teaching mathematics should take into account the following characteristics: 
(1) generality, i.e., the tool’s applicability in different content areas, its availability 
and its cultural status; (2) potential to support mathematization, i.e., the tool’s 
potential for amplification and reorganization (Pea 1985; Dörfler 1993) and of 
expressing a new “mathematical realism” (Balacheff and Kaput 1996); (3) com-

municative power (or semiotic mediation power), i.e., the tool’s power to support 
the development of mathematical language, and relate to its symbol system and to 
the symbol system more commonly used in mathematics.

Related to the choice of the tool and/or interface, is its design. One problem that 
has been observed (Rojano et al. 2009) is that often users are not able to discern the 
representational elements of the DT environment that are mathematical from those 
that are not. For example, the learner sometimes focuses his/her attention on the 
effects and messages produced by the interface that have no mathematical meaning, 
distracting him/her from the intended mathematical content. This points to the 
importance of taking into account the design of the components involved in the DT 
interface, in order to minimize, as much as possible, their potential influence.

In the next sections we consider some of the characteristic technical affordances of 
DT that may influence the learning experience in these environments and that should 
also be taken into account when choosing/designing the DT tool or environment, 
such as the availability of potentially interconnected multiple representations or the 
computational capabilities of DT.

9.3.1.2 The Role of Representations

One aspect that is central to the contribution of digital environments is the multiple 
representational registers (Duval 1993) they provide. The ability to link and explore 
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visual, symbolic, and numerical representations simultaneously in a dynamic way 
has been recognized extensively in research (Borba and Confrey 1996; Mueller-
Philipp 1994; Tall 2000; Sacristán and Noss 2008) but still warrants consideration 
when discussing attributes of various digital media. Multiple representations 
through interactive digital environments such as applets, and the designing of 
games have also enhanced the learning process (Boon 2006; Confrey et al. 2006). 
Associated with this is the idea of visualization. While the debate is inconclusive 
as to the positioning of visualization in mathematics (e.g. Jorgenson 1996; Thurston  
1995), there is greater consensus regarding the positive role of visualization or 
graphic approaches in the facilitation of understanding in mathematics education 
(Dreyfus 1991; Olive and Leatham 2000; Borba and Villareal 2005; Calder 2004).

Ainsworth et al. (1998) claim that multiple representations promote learning for 
the following reasons: (a) they express different aspects more clearly; hence, the 
information gained from combining representations will be greater than what can 
be gained from a single representation; (b) they constrain each other, so that the space 
of permissible operators becomes smaller; and (c) when required to relate multiple 
representations to each other (as can happen in DT environments), the learner has 
to engage in activities that promote understanding. In a similar vein, Goldin (2002) 
emphasizes the role of representations in resolving ambiguity when learning math-
ematics, and in providing a context for doing mathematics. And Sacristán and Noss 
(2008) illustrate how computational activities in a carefully designed microworld 
can lead to a constructive articulation of different representational forms (such as 
visual, symbolic and numeric); a process that they call representational moderation.

Most DT tools incorporate different representational elements that can mediate 
and support learning. For example, dynamic software can help the learner represent 
and examine mathematical phenomena or tasks in terms of a functional approach 
without defining explicitly the function that describes the phenomenon. Instead, the 
tool can be used to generate a numeric representation that can be analyzed graphi-
cally. Based on the graphic representation of the phenomenon the learner can analyze 
its behavior directly. As a consequence, some types of phenomena can be addressed 
by students, with the support of these representational infrastructures that may not 
demand the mastery of algebraic or formal mathematical representations, at an earlier 
age than in traditional education; this is addressed more fully in Sect. 9.3.2.6.

9.3.1.3 The Computational and Dynamic Capabilities of DT

Digital technologies also have computational and dynamic capabilities that open up 
and expand almost infinitely the range of possibilities for classroom explorations. 
For example, DT can manage large amounts of realistic data more easily than 
paper-and-pencil technology (Ridgeway et al. 2006) allowing students to more readily 
explore real-life issues through a mathematical lens. They can remove elements of simple, 
repetitive computation so that more in-depth thinking and consideration of over-
arching issues could be engaged in (Deaney et al. 2003; Ploger et al. 1997), and 
often allow the learner flexibility to quickly rearrange information and re-engage 
with activities from fresh perspectives (Clements 2000; Calder 2005).
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In addition to their computational and data-processing capabilities, DT also 
provide important dynamic perspectives. Dynamic representations of mathematical 
objects allow learners to visualize problems or mathematical processes in ways that 
were not possible before. For example, learners can view a process as it develops, 
rather than trying to analyze it from its fixed initial, partial or end results. The creation 
and exploration of dynamic models can also enhance students’ ability to model 
mathematically in a reflective way (Borba and Villareal 2005; Zbiek 1998). Or in 
the case of dynamic geometry, students can engage in explorative activities that result from 
dragging or moving particular objects within the representation: in such environment, 
the controlled movement of some elements within a geometric configuration can 
lead the learner, not only to detect and explore invariants or mathematical relations, 
but also to explore whether the relation is valid for a family of cases.

9.3.1.4 The Networking Capabilities of DT

Networking capabilities (either local or global, e.g. through the Internet) also open 
up new possibilities of ways of learning mathematics: Learner communities can be 
more interactive and collaborative when a network structure is used to share and 
discuss issues of mathematics and instructional practices (Sinclair 2005), whether 
within a classroom or beyond. In fact, activities can go beyond the relatively homo-
geneous environment of a classroom, school or local community, and give opportunity 
for richer, more diverse global perspectives in mathematics education, and the 
potential for making sense of, or generalizing, in a different way.

All of the above affordances of DT, which include its computational, dynamical, 
representational capabilities, as well as the non-judgmental feedback they can 
provide (discussed in Sect. 9.3.3.2), foster and allow students to explore, experiment, 
take risks, as well as carry out collaborative work, more independently (from the 
teacher). These “new” means of working and learning that are facilitated by DT, in 
turn, can help develop abilities and intuitive thinking that can enhance powerful 
mental conceptualizations (Meissner 2006). Thus, all of the above are contributions 
of DT that can be influential for learning and that need to be considered in the 
pedagogical design of a HLT as discussed in the next section.

9.3.2  Pedagogical and Contextual Aspects (Task Design,  

the Role of the Teacher and the Didactical Context)

9.3.2.1 The Pedagogical Setting

The simple presence of digital tools in the classroom can change completely the 
dynamics of that environment, for instance, by offering diverse opportunities for 
learners to engage in collaborative approaches to data collection and problem solving 
(as considered in the previous section).
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Although the focus of this chapter is on learning, we cannot consider it without 
taking into account the pedagogical aspects, the role of the teacher and the design 
of the task. For instance, crucial pedagogical considerations include the way a task is 
presented to the students, the support of pedagogical materials such as worksheets, 
and the milieu (Brousseau 1997) or learning context of the DT-based tasks. The context, 
used here in its broad sense, can include the social context that may promote 
collaborative work and learning; the physical setup of the classroom and equipment; 
as well as what we refer to as the “context of inquiry,” discussed in the next section.

9.3.2.2 Context of Inquiry of the Activity

The use of digital technologies can facilitate the exploration of problems embedded 
in diverse contexts, making them more interesting for the learner to solve. One context 
of inquiry are problems set in purely mathematical terms where explorations can be 
enhanced by DT through the diverse representational systems in which they are 
situated (as discussed in Sect. 9.3.1). Simulation and modeling can create another 
valuable context of inquiry. Students can also gather and analyze data and relations 
(which can, or not, be realistic).

A context-based learning of mathematics considers the use of situations involving 
mathematical problems as both the starting point, and the main process for under-
standing concepts and the performance of operations. Bickmore-Brand (cited by 
Wiest 2001, p. 75) states that “context is paramount to the construction of meaning 
the whole way through. It is the backdrop against which the parts have to make 
sense.” As stated above, an abstract mathematical problem can also be a context 
problem (Gravemeijer and Doorman 1999). In any case, a contextual task should 
be experientially “real” or concrete enough for the student, and should serve as a 
basis upon which a mathematical concept can be built. In this sense, Wilensky  (1991) 
suggests that abstract objects can become concrete if we have multiple modes of 
engagement with them.

Mason and his colleagues (1985,1995 p. 36) state that “in order to have clear, 
confident and automatic mastery of any skill, it is necessary to practice, but the 
wish to practice will arise naturally from stimulating contexts.” A context-based 
approach has both immediate and general advantages. It facilitates learning 
processes by providing concrete meaning to an otherwise abstract concept or idea 
(Heid 1995). It provides points of reference that students can review at a more 
advanced stage of learning, when work is performed at a more abstract level. It 
raises student motivation and willingness to become engaged in the learning activity 
and emphasizes the potential of using models and skills in other fields.

9.3.2.3 Level of Openness of a DT-Based Activity

Digital technologies have the potential to open up the range of possible approaches 
to investigation, and there is a need to decide on the level of openness of a selected 
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activity. The solution to an open or unstructured task does not require a specific 
method, a certain representation or an implicitly given sequence of steps, whereas 
structured problems pose specific requests with regard to the variables mentioned 
above. Digital technologies facilitate open tasks in ways that were not possible 
before, since they provide a scaffolding (Wood et al. 1976) for students to work more 
easily on their own and develop their thinking (e.g. Clements and McMillen1996). 
The open approach (where students have ownership of the development of the task) 
intends to develop problem-solving skills, to develop creative mathematical thinking, 
to provide opportunities for students to actually experience investigation, and to 
achieve a meaningful construction of knowledge (in accordance with constructivist 
theories, e.g. Bruner 1966). However, for different students, the problem’s context 
will be perceived in different ways, and as a result, students might understand a 
mathematical concept in ways the teacher didn’t anticipate, or follow “unproductive” 
paths of solution – described by Sutherland et al. (2004) as construction of idiosyn-
cratic knowledge that is at odds with intended learning.

In contrast, the structured approach enables students to pursue a more predictable 
and planned learning trajectory in the domains of mathematical content and processes 
of problem solving. Yet, a structured approach imposes a unique and clearly defined 
learning trajectory that does not necessarily meet the needs or preferences of all 
students. It is also possible, however, to consider and design semi-open tasks.

9.3.2.4 Sequencing of Tasks Within an Activity

DT-based activities and intended learning trajectories can be structured as particular 
sequences of tasks and/or explorations. In fact, in a hypothetical learning trajectory, 
an intended sequence is explicitly designed (which may not always be the case in 
some computer microworlds), although it needs to be flexible, due to the unpredictable 
events that DT bring about.

For example, a HLT using a dynamic geometry software could begin with the 
learner observing and describing invariants or conjectures visually; later those 
conjectures may be analyzed numerically by measuring and comparing attributes 
(areas, perimeters, segments, angles, etc.); then a graphic approach can be used to 
represent and examine the phenomenon and its corresponding relations; finally, 
those relations or conjectures can be supported in terms of geometric properties or 
formal arguments.

Many mathematical explorative activities follow an inductive path based on a 
transition from the investigation of particular cases to pattern generalizations, then 
to the justification of the evolving pattern and later on, to its implementation in 
additional cases. Friedlander et al. (1989) recommend a sequence of tasks that 
follows a path that leads from initial experimentations, to both implicit and explicit 
generalizations, and then to the use of an explicitly generalized pattern. A similar 
sequence was also recommended in the domain of data investigation and scientific 
research (the Pose-Collect-Analyze-Interpret-Communicate model proposed by 
Kader and Perry 1994).
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9.3.2.5 Mathematical Content

The mathematical content (i.e., concepts, algorithms, properties, definitions) is one 
of the main considerations that determine a particular activity. Nowadays, it is 
recognized that the use of digital tools can offer students the possibility of partici-
pating in activities for:

…(a) gaining insight and intuition, (b) discovering new patterns and relationships, (c) 
graphing to expose mathematical principles, (d) testing and especially falsifying conjectures, 
(e) exploring a possible result to see whether it merits formal proof, (f) suggesting 
approaches for formal proof, (g) replacing lengthy hand derivations with tool computations, 
and (h) confirming analytically derived results. (Borwein and Bailey 2003, cited in Zbiek 
et al. 2007, p. 1170)

However, activities that lack a specific mathematical aim, even if they are based on 
other considerations (such as intended cognitive processes, technological instru-
mentation or choice of representation) might not have a clear contribution to the 
learning of mathematics (Wu 1994). It is also important to mention that the use of 
digital media can help the learner, not only to identify relevant content associated 
with the construction of hypothetical learning trajectories, but also new mathematical 
content or connections among diverse approaches to the task, that can emerge as a 
result of using those tools.

9.3.2.6 The Possibility of Earlier Engagement (Shifts in Trajectories)

The introduction of technology into the educational arena has placed educational 
systems in the quandary of using technologies to teach the same old thing (more 
efficiently) or using it as an agent of change (McFarlane 1997). This is a predicament 
for the field of education in general, but also for mathematics education in particular. 
Thus, DT-based learning environments can be used either to teach the classical 
mathematics topics of traditional curricula; or to transform the contents of school 
mathematics, the means of building mathematical knowledge and the very forms of 
interaction within the classroom setting. A great deal of research work involving 
the use of digital technologies has made it clear that promoting this type of trans-
formation is quite feasible.

The access to mathematical ideas and knowledge is strongly related to the 
representational infrastructures in which that knowledge is expressed. DT tools 
may provide new representational infrastructures that can improve the learnability 
of certain mathematical ideas; hence, DT may allow children to become engaged in 
mathematical topics previously considered as too advanced for them. This is 
discussed at length by Kaput et al. (2002), and is the premise behind important 
research projects such as UK’s Playground project (http://www.ioe.ac.uk/
playground) described in that paper, and the European Weblabs project (http://
www.weblabs.eu.com), that aimed to empower young children through DT environ-
ments, so that they could access and explore advanced mathematical ideas.
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9.3.2.7 The Teacher’s Role and the Importance of Appropriate Intervention

The use of DT tools requires a different approach to teaching. The teacher’s role 
may become more that of a mediator, where the teacher not only guides students 
through their DT tasks, but also intervenes to promote learning. Many (e.g. Clements 
2002) have found that the mathematical knowledge constructed in a DT environment 
can remain hidden or “situated” within the technological context, unless teachers 
help make that knowledge explicit.

On the other hand, some researchers have also indicated that the affordances 
provided by DT-environments, when facilitated appropriately by the teacher, may 
lead students to explore powerful ideas in mathematics, to learn to pose problems, 
and to create explanations of their own. The teachers’ appropriate intervention 
during the development of DT sessions involves guiding the learners to validate 
mathematical results or relations that emerge when they formulate and explore a 
problem through the use of the tools. Furthermore, DT attributes, coupled with 
appropriate teacher intervention, can enable the learner to not only explore problems 
but to make links between different content areas that may otherwise have developed 
discretely. This role of the teacher as mediator, bridging the individual and the social 
perspectives, is discussed in more depth in Chap. 7 of this volume (in the section 
on mediation and semiotic mediation).

9.3.3 The Learner Perspective

All of the considerations discussed in previous sections affect the learner directly. 
But learners’ fore-conceptions – both mathematical, and the ones which they may 
have of the digital media – as well as their affective involvement when working 
with DT, need also be taken into account. We consider these next.

9.3.3.1  Affect and DT: The Role of Engagement  

and Motivation for Learning

Almost 30 years ago, Papert (1980) emphasized the affective value of computational 
technologies by observing how learning could be enhanced by developing the motiva-
tion of students and providing impersonal non-judgmental feedback. The effect of DT 
on student engagement and motivation has since been noted. Higgins and Muijs 
(1999) found much work pertaining to the positive effects on motivation and 
attitude, and while this enthusiasm might relate to the novelty factor initially, it can’t be 
ignored, given the correlation between students’ attitude to learning in mathematics, and 
their facility to understand. Other researchers have likewise found positive motiva-
tional effects through using digital technologies in mathematics programs (e.g. Hoyles 
2001; Kulik 1994, in his meta-analysis of computer-based learning; Sandholtz et al. 
1997; Schacter and Fagnano 1999; Lancaster 2001; and Ursini and Sacristán 2006).
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9.3.3.2 The Role of the Feedback from DT

As mentioned above, Papert (1980) valued the immediate, non-judgmental feedback 
that can be provided in computer settings. A DT-based activity can involve “trying out 
something, watching for an effect and responding to the feedback” (Weir 1987, p. 32). 
The almost instantaneous nature of the response in a digital environment, coupled 
with the interactive nature of the engagement, allows for the ease of exploration of 
ideas. Discussion is stimulated, as the results of prediction or conjecture are viewed 
rapidly and are more easily compared. This promotes reasoning as students investigate 
deviations from expected output, or the application of procedures. The feedback 
also helps develop the accuracy required for procedural structures and to be more 
explicit entering mathematical manipulations (Battista and Van Auken Borrow 
1998). Thus, the instantaneous feedback of the computer or digital media can be 
considered an important factor for enhancing student learning and in the development 
of learning trajectories. Research results (e.g. Beare 1993; Deaney et al. 2003) 
support this: For example, Chance et al. (2000) found that the facility of digital media 
to immediately test and reflect on existing knowledge was an influence on the learning 
process. Likewise, research into students learning in a CAS environment, identified that 
tension evoked from differences between actual output (the technological feedback) 
and students’ expectations, probably instigated the most valuable learning (Kieran 
and Drijvers 2006); more so, perhaps, because in DT settings cognitive conflicts 
are generally non-judgmental.

9.3.4 Introduction to the Following Sections

So far, we have identified relevant aspects of a framework for developing (and 
analyzing) DT-based learning trajectories. We recognize that the use of digital tools 
to foster learners’ construction of mathematical concepts and problem solving approaches 
involves rethinking ways to select, design, and use tasks; and have an influence on the 
milieu or learning conditions, the teacher’s role and students’ interactions.

We now consider examples that draw on the affordances offered by engaging 
mathematical tasks through digital technologies. These examples contextualize 
several pedagogical elements associated with learning trajectories and are situated 
in a range of settings involving primary- through tertiary-level students. In the first 
section we examine an example related to the design of intended (hypothetical) 
learning trajectories. Then the manner in which learning trajectories evolve across 
various platforms and the opportunity they offer students to more easily engage in 
powerful mathematical ideas are illustrated and analyzed to further demonstrate the 
diversity of learning trajectories through the various media and how they facilitate 
transitions in the learning process. This is followed by a situation where the affordances 
of the DT, through interplay with the learner’s preconceptions and the mathematical 
task, influenced the shape of an emerging, actual learning trajectory. We end with 
examples of how digital technologies can help create a shift in the usual learning 
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trajectory, by allowing learners to engage earlier with mathematical ideas or 
concepts traditionally considered more advanced, and to develop knowledge and 
intuitions that can serve as a basis for later formalization.

9.4  An Example of the Design of a Hypothetical Learning 

Trajectory Through Exploratory Tasks

Students’ explorative work with technological tools allows a variety of learning 
trajectories. The considerations related to the selection of an investigative or explorative 
activity according to possible hypothetical learning trajectories are connected to 
theories and research findings on student cognition, learning trajectories and use of 
technological tools in teaching mathematics. The implementation of exploratory, or 
investigative, activities provides opportunities for a meaningful learning of mathe-
matical concepts.

Here we provide an example from an activity, Folding Perimeters (Friedlander 
and Arcavi 2005), taken from the domain of beginning algebra. This activity was 
included in a learning unit on ratio and proportion. This section describes the main 
characteristics of this activity, and some considerations that led to its selection for 
a particular hypothetical learning trajectory. These are grouped according to some 
of the aspects described in Sect. 9.3.

9.4.1 Context of Inquiry

In this activity, students investigate the perimeters of an alternating sequence of 
squares and rectangles, during a process of repeated folding-in-two (Fig. 9.2). The 
context of paper folding is simple and familiar on one hand, and rich in mathematical 
opportunities, on the other. Tourniaire and Pulos (1985) concluded in their review 
of research on proportional reasoning, that context plays a crucial role in student 
performance and that use of a wide variety of contexts is needed in the teaching of 
this notion. This task’s context promotes a constructivist path of learning (Hershkowitz 
et al. 2002) in which students start with a problem situation, investigate the problem 
and develop the need for appropriate tools and concepts – first at an intuitive level, 
and later on constructing and analyzing newly formed tools and concepts in a more 
extended and mathematically formal manner.

Fig. 9.2 Context of the folding perimeters activity
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9.4.2 Mathematical Content

Whereas folding paper is a concrete action, the related tasks evoke experience of this 
action, which provide meaning. For this, the activity integrates various mathematical 
domains: geometric (squares, rectangles, perimeters, opposite sides, measurement), 
arithmetic (via numerical tables, operations, difference, ratio), and algebraic (with the 
use of spreadsheets –Excel – via formulas and pattern generalizations). The mathe-
matical content is stated clearly throughout the activity, and is one of the factors that 
determine the sequence of tasks – the first three tasks require a more geometrical and 
visual investigation, the next task relates to the differences between the perimeters 
of two adjacent shapes, and the last two tasks focus on the ratio of two adjacent 
shapes, and each shape with other shapes in the sequence respectively.

9.4.3 The Choice of the Technological Tool

For the activity, spreadsheets are used to support and promote the processes of 
generalization and algebraic thinking (Hershkowitz et al. 2002; Friedlander and 
Tabach 2001). The following considerations led to the selection of spreadsheets for 
this particular activity:

1. They serve as a powerful tool for data collection, organization and representation
2. They provide continuous and non-judgmental feedback throughout the solution 

process
3. They present the concept of proportion dynamically, as a sequence of con-

stant ratios obtained by applying the same rule to numerous pairs of numbers 
or quantities

4. They enable analyzing an extended collection of data
5. They emphasize the meta-cognitive skills of monitoring and interpreting results
6. They allow learners to work simultaneously on various representations
7. They present the algebraic representation as an efficient and meaningful means 

of constructing data

Spreadsheets fulfill the following criteria: (1) The generality of the tool: Spreadsheets 
have the potential to support the natural and spontaneous creation of numerical 
series by means of certain kinds of algebraic rules, and to represent numerical data 
graphically; (2) The potential to support mathematization: Spreadsheets have the 
potential to support students in their development of mathematical processes, by 
proposing patterns and expressing them via formulas and using the “dragging” (fill 
down) option (e.g. Kaput 1992); and (3) The communicative power: The symbolic 
language of spreadsheets mediates between the symbolic algebraic language 
and informal languages (Ainley1996; Filloy and Sutherland 1996; Friedlander and 
Tabach 2001; Haspekian 2005; Hershkowitz et al. 2002; Sutherland and Rojano 
1993; Wilson et al. 2005).
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9.4.4 Level of Openness

The activity discussed here addresses the issue of openness by presenting a sequence 
of tasks, both open and structured: The open tasks require students to identify any 
properties of the presented sequence of shapes, make predictions, and then look 
for patterns that describe the change in perimeter. The more directed tasks require 
the student to collect data for the first ten shapes in the sequence, organize it in a 
spreadsheet table, present it as a diagram, investigate patterns of perimeter change 
by considering first the difference and then the ratio between pairs of adjacent 
shapes, and of shapes placed in the sequence at a distance of two steps. Some 
other tasks in the activity are less directed with regard to content or solution strategy 
– for example, students are required to find any patterns of perimeter change and 
justify them.

9.4.5 Representations

In this activity, students are specifically required to present perimeters and perim-
eter changes in sheets of paper, in drawing, in numerical tables, as algebraic formu-
las, in bar diagrams, and in verbal descriptions. Some of the tasks focus on the 
construction and use of a specific representation, whereas others leave this issue 
open to the students. Figure 9.3 presents a numerical and graphical representation 
of the data and some of the results obtained by the observed students regarding the 
alternating sequence of shapes in the activity.

Fig. 9.3 Spreadsheet representation of data and results in the folding perimeters activity
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9.4.6 Sequencing of Tasks within the Activity

The activity follows a cyclic path. First, the students are required to identify and 
investigate their own patterns and in the next two cycles, they consider first changes 
in the difference, and second in the ratio of perimeters of two consecutive shapes. 
In each case, specific cases are collected, organized, and analyzed, general patterns 
are formed and conclusions are drawn, interpreted and applied.

9.4.7 Comments

The above example shows the considerations for the design of a HLT. Simon’s  
(1995) hypothetical learning trajectories attempt to constrain the range of learning 
trajectories that might emerge. However, the nature of the task will determine the 
actual learning trajectory (the learning paths followed by students while they work 
on a mathematical activity) to some extent. This actual trajectory can be different 
from the planned hypothetical learning trajectory and in fact might vary in unex-
pected ways.

In the following sections we explore, through other examples of both HLT and 
actual trajectories, how the pedagogical medium is influential on the engagement 
and subsequent understanding; and how, as such, it informs on how future hypo-
thetical learning trajectories might best evolve.

9.5  Learning Trajectories Within and Across Various 

Platforms: An Example with Dynamic Geometry and CAS

Earlier, in our brief discussion on the choice of the DT tools, we contend that different 
tools or environments constitute different domains of knowledge and phenomenology. 
Thus, it is relevant to reflect on the ways in which the use of different computational 
tools (that can be complementary) influences the design and/or development of 
learning trajectories.

Here, we illustrate and trace (through successive episodes) a learning trajectory 
that emerged from working on a task with the use of two tools: the Cabri-Géomètre 
dynamic geometry software and a hand-held graphing calculator. A group that 
includes a mathematics educator, doctoral students, and high school teachers met 
weekly to construct potential learning trajectories that resulted from examining and 
exploring mathematical tasks. The analysis of these tasks offers teachers relevant 
information to think of instructional activities in which their students recognize 
the advantages of constructing dynamic representations of problems that can lead 
them to identify and explore not only interesting relations but also diverse problem 
solving strategies.
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The tasks – from the domain of geometry – are similar to those that appear in 
usual textbooks, such as the following, illustrated in Fig. 9.4:

Given two intersecting straight lines and a point P marked on one of them, show how to 
construct, using a straightedge and a compass, a circle that is tangent to both lines and that 
has the point P as its point of tangency to one of the lines (Schoenfeld 1985, p. 15).

An important heuristic to approach this task is to assume the existence of a solution. 
Figure 9.4 shows a circle that is tangent to L

1
 at P and also tangent to L

2
. The goal 

is to identify relevant mathematical properties embedded in the figure. Some possible 
discussion questions are: Where should the centre of the tangent circle be located? 

How is the line that passes through the centre of the tangent circle and the tangency 

point P related to line L
1
? If P and Q are the points of tangency, what are the relevant 

properties of triangles PCO and QCO? To think of problems or mathematical concepts 
in terms of questions is an important principle in problem solving approaches 
(Santos-Trigo 2007). In this context, the discussion of the previous questions could 
provide information to construct a dynamic representation of the problem. This repre-
sentation can be built with the use of dynamic geometry software.

9.5.1  The Construction of a Dynamic Representation 

of the Problem

A relevant property of the tangency points on each line is that the centre of a tangent 
circle must lie on the perpendicular to each line L

1
 and L

2
 that passes through each 

tangency point. Using dynamic geometry software, one can create the following 
construction (Fig. 9.5) to find the centers of the tangent circles:

L1

L2

P

O

C

Q

Fig. 9.4 Two intersecting lines and a point P on one line: what properties does the construction 
of the circle to both lines hold?
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Draw a perpendicular to line L
1
 that passes through point P and choose point P¢ on L

2
 and 

draw a perpendicular line to L
2
 that passes through point P¢. Then draw the perpendicular 

bisector L
3
 of segment PP¢. The perpendicular bisector L

3
 cuts the perpendicular line to L

2
 

that passes through P¢ at C¢.

What is the locus of point C¢when point P¢is moved along line L
2
? One can observe 

that when point P¢ is moved along line L
2
, the position of point C¢changes: The path 

left by point C¢ (Fig. 9.5) seems to be a parabola. Indeed, point C¢, which generates 
the locus, is on the perpendicular bisector of segment P¢P, thus d(PC¢) = d(C¢P¢). 
Therefore, the locus is a parabola with focus point P and directrix line L

2
. The 

parabola and the perpendicular line to L
1
 that passes through point P intersect at two 

points C and C″. Points C and C″ are the centers of the two tangent circles to lines 
L

1
 and L

2
.

An important property of the representation of the problem is that it is possible 
to move objects within the configuration and observe the behaviors of other 
elements of the figure: For example, Fig. 9.6 shows that the locus of point C when 
point P is moved along line L

1
 is the perpendicular bisector of angles POQ and 

ROQ¢ respectively. This is because triangle PCO and triangle QCO are congruent. 
Similarly, triangle PC″O is congruent to triangle Q¢C″O.

Fig. 9.5 Constructing a dynamic representation of the problem: the locus of point C¢ when point P¢ 
is moved along line L

2
, depicts a parabola. The center C of the tangent circle will be at the intersection 

of the parabola and the perpendicular line to L
1
 that passes through point P
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Thus, to draw the tangent circles to those lines with P as tangency point the 
following construction is sufficient:

Draw a circle with centre O and radius OP, locate, draw the perpendicular line to L
1
 that 

passes through P and the perpendicular lines to L
2
 that pass through the intersection points 

(Q and Q″) of the circle with line L
2
.

The intersection points of the perpendicular line to L
1
 that passes through P with 

the perpendicular lines to L
2
 that passes by Q and Q¢ will be the centers of the tangent 

circles (Fig. 9.7).

L1

L2

P

OP'

C'
C

C''

Q

Q'

R

Fig. 9.6 The locus of point C when point P is moved along line L
1
 is the angle bisector of angles 

POQ and QOR

L1

L2

P

O

R

Q'

Q

C

Fig. 9.7 Drawing the tangent circles to line L
1
 and L

2
 using straightedge and compass
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9.5.2 From Geometry to Algebra

An algebraic approach can also be used to find the centre of the tangent circle. 
Here, again the heuristic that involves the use of the Cartesian system and locating 
the lines and the intersection point on a proper position will facilitate the process 
of dealing with the representation of the problem. Line L

2
 coincides with the x-axis 

and point P is on line L
1
. With the use of the software, one can easily find (Fig. 9.8): 

the equation of the circle with centre at the origin and that passes through P, the 
equation of the lines L

1
 and L

2
, and the perpendicular to them through points P and 

P¢ respectively.
In order to identify the centre of a tangent circle to both lines, one needs to 

solve the corresponding equations. The use of CAS (a computer algebra system), 
such as those included on hand-held graphing calculators can be useful. Figure 
9.9 shows the algebraic solution of the equations of the circle and line L

1
, while 

Fig. 9.10 shows how the graphic solution can be displayed also by the 
calculator.

1
x

1

y

L1

L2

y = 0.88x + 5.34

x = −4

x2 + y2 = 42

y = −17x/15

P'(− 4.00, 0.00)

P(−2.65, 3.00)

y = 0

(2.65, − 3.00)

C'(− 4.00, 1.80

Fig. 9.8 Algebraic representations of relevant objects in the problem
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Fig. 9.9 Solving the equation of circle and line L
1

Fig. 9.10 Visual solution on a graphic calculator

9.5.3 Discussion

In the above example, the dynamic geometry software (DG) and CAS calculators 
helped explore various ways to represent the tasks and search for relations and 
connections associated with these tasks. In this process, the first tool (DG) offers 
the opportunity of constructing a dynamic representation of the problem in which 
a set of heuristics (finding loci, relaxing conditions, assuming the problem solution, 
using the Cartesian system, looking for invariants) can be used to examine distinct 
mathematical relations. Whereas the use of the hand-held CAS calculator may 
facilitate dealing with an algebraic approach to the problem (Santos-Trigo et al. 
2006). In this context, the use of more than one tool to represent and examine the 
task is an opportunity to enhance and complement visual, numeric, geometric, 
graphic, and algebraic approaches.

In the previous example, if the construction is already made, learners could initiate 
a trajectory in which, a number of properties can be conjectured. Such conjectures 
can be inferred from dragging special points along special lines within the dynamic 
geometry environment. When working with CAS on the graphic calculator, it is 
possible to switch from a synthetic geometry perspective to an analytical geometry 
perspective and then to translate the geometric properties found in the DG environ-
ment into an algebraic task that can be done using the symbolic manipulator. Since in 
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the calculator, the analytical representation of the elements involved in the construction, 
and their corresponding graphical representations, are hotlinked, it is then possible to 
visually check if the construction fulfils the expected properties. This case clearly 
illustrates how approaching one task across different environments may promote 
different types of transitions (for example, from intuitive to formal ideas; from a 
synthetic geometry perspective to an analytical geometry one; from algebraic to 
graphical representation of functions). These transitions in turn may influence the 
way learners interpret the task proposed, build up conjectures, and validate them.

9.6  Emergence of Learning Trajectories from the Engagement 

with DT: An Example with Spreadsheets

In this section we consider the emergence of learning trajectories as mathematical 
tasks are encountered via digital media. We identify some of the particular features 
as students engage in mathematical investigations within the DT setting, and reflect 
on how these features might condition the learner’s understanding of mathematical 
phenomena in particular ways. A key focus is on how informal conjectures emerge, 
and then evolve for the learner, and how visual perturbations or tensions (caused by 
the DT feedback – see Sect. 9.3.3.2), and associated discursive networks, give 
opportunity to enhance the learning experience.

When learners engage in an investigation, interpretation pervades their engage-
ment; social and cultural experiences always condition our perspective (Gallagher 
1992) and hence understandings (Cole 1996). Learners’ interpretation of the task, their 
response to it, and the output of their deliberations are filtered by their fore-conceptions 
of the mathematics, and of the pedagogical medium through which it is encountered 
(which can be seen as a cultural forms that shape various ways of knowing – Povey 
1997). The engagement with the task likewise alters the learner’s fore-conceptions, 
repositioning the learner’s viewpoint, and allowing them to re-engage with the task 
from a fresh perspective. This cyclical process of interpretation, engagement, reflec-
tion and re-interpretation continues until some sense of consensus is reached.

This resonates with Borba and Villareal’s (2005) notion of humans-with-media, 
who contend that understanding emerges through the interaction of collectives of 
learners, media and environmental aspects, with mathematical phenomena: or with 
Kieran and Drijvers (2006) discussion of the emergence of mental schemes from 
social interaction. In essence, the mathematical task, the pedagogical medium, the 
fore-conceptions of the learners, and the dialogue evoked are inextricably linked. 
It is from their relationship with the learner that understanding evolves, as an inter-
pretation of the situation through those various filters.

Investigation of mathematical phenomena through digital pedagogical media is 
a distinctive process. The potential for using DT to enhance students’ mathematical 
modeling ability has been established previously (e.g. Zbiek1998; Drier 2000). 
Providing a multi-representational environment to test ideas, linking the general to 
the specific, being interactive, and giving students a measure of autonomy in their 
investigation are also commonalities of DT that facilitate investigation (Calder 2005). 
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There are, however, opportunities and constraints associated with the process. Typically, 
when learners investigate in a digital environment, their engagement and the dialogue 
or reflection evoked, suggests input, which is subsequently entered. The ensuing output 
(feedback) is produced visually, almost instantaneously (Calder 2004). If this 
output is at variance to what was anticipated (that is, if the students fore-conceptions 
suggest a different output), a tension may arise. This ensuing perturbation can either 
elicit, or alternatively scaffold further reflection and the modification of the learner’s 
perspective. Subsequent re-engagement with the task from this fresh viewpoint can lead 
to the initiation of informal mathematical conjecturing (Calder et al. 2006). The devel-
opment of mathematical conjecturing and reasoning can emanate from intuitive begin-
nings (Dreyfus 1999; Jones 2000; Bergqvist 2005); while the generating and refuting 
conjectures can be an effective learning strategy (e.g. Lin 2005; Meissner 2003).

The examples below are situated in an on-going study with nine and 10-year-olds 
exploring how spreadsheets might function as pedagogical media. They illustrate aspects 
of how particular learning trajectories evolved, and the influence of the tension that 
emerged from the tool’s feedback, in shaping those trajectories. The first set of data refers 
to an activity investigating the pattern formed by the 101 times table. It was noticeable 
that the children were willing to immediately enter something into a spreadsheet.

Ben How do you do times?
Awhi There is no times button. Oh no, wait, wait, wait.
Ben There is no times thing. Isn’t it the star?
Awhi =A1*101. Enter.

It appears the actual spreadsheet environment provided the impetus to take this 
initial approach. This approach was confirmed with responses in the interview:

Awhi I preferred thinking something about what I needed to do, then take it and highlight 
it down and then the whole table is there, which would help me.

Not only did the use of spreadsheets lead them to explore in a particular manner, 
it also led to an immediate form of generalization. To generate a formula that models 
a situation is to generalize in its own right, but to consciously look to fill down 
(“highlight it down”), or create a table of values is also indicative of an implicit 
cognizance of a pattern; of an iterative structure that is a way into exploring the problem. 
Awhi and Ben continue:

Ben 202.
Awhi  Now let’s try this again with three. What number do you think it will 

equal? 302?
Ben No, 3003. Oh no 303. [The output was 303]

There was a tension between the predictions based on their fore-conceptions 
(302 and 3003), and the actual output. This relatively minor cognitive conflict initiated 
a shift in their fore-conceptions, allowing them to interpret the task from a fresh 
perspective. They accurately predicted the output from other single digit numbers, 
and were able to predict and confirm in a confident, relatively uninhibited manner. 
They began to pose conjectures, and test them in an informal approach:

Awhi OK. Now you try a number.
Ben My lucky number 19.
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Awhi That’ll be one thousand, nine hundred, and nineteen.
Ben Equals. So we need to think of a rule.
Awhi Its like double the number. Its nineteen, nineteen.
Ben What about 20? Oh you’ll get 2020.

The ability to predict, form a conjecture, then test it, is indicative of a robust 
generalization process. In this case, and with others in the study, the children chose 
a particular path because they were using the spreadsheet, which determined the 
nature of their investigation: the visual feedback, showing a difference between 
their prediction and the actual output, evoked a tension influential in shaping the 
learning trajectory. The process shouldn’t necessarily stop just there, however. 
An intervention, perhaps in the form of a teacher’s scaffolding question, might initiate 
the investigation of why this visual pattern occurs.

The children were also able to quickly move beyond the constraints of the 
prescribed task, forming a fresh generalization.

Ben      Oh try 1919.
Awhi One, nine, three, eight, one, nine.

Interestingly, they appeared to disregard this output and based their next prediction 
on their previous rule.

Awhi Now make it 1818 and see if its 1818.
Ben      Look eighteen, 3, 6, eighteen.

This unexpected output caused them to reshape their emerging conjecture. After 
further exploration, they reconciled the output with their evolving theory.

Awhi What’s the pattern for two digits? It puts the number down first, then 
doubles the number. This is four digits. It puts the number down first 
then doubles, and then repeats the number.

They were using a visual referent to the theory that was evolving; considering 
the actual visual sequence, rather than the procedure that is producing the number 
patterns. This indicates a form of visual reasoning. More specifically, the questions 
evoked, the path taken, and the informal conjectures they formed and tested, where 
fashioned by visual perturbations: the tension arising in their pervading discourse 
by the difference between the expected and actual output.

The next investigation relates to the traditional Grand Vizier problem, with the 
doubling of grains of rice for consecutive squares on a chessboard, and estimating 
how long the total amount of rice might feed the world’s population. This investiga-
tion was initiated after the children had already had some experience using spread-
sheets. Formation of a mental utilization schema (i.e. instrumental genesis, Artigue 
2002) was evident.

Erin It goes 1, 2, 4, 8, 16 …., so its doubling
Kim =A1 times 2
Erin Is that fill down
Kim Go down to 64
Erin Right go to fill, then down
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They interpreted the problem, framing their engagement with their fore-conceptions 
of both the mathematics and the digital technology, and used the spreadsheet to help 
them explore it. However, the output was in a visual form significantly different 
from what they were expecting, since it was in scientific notation, and they didn’t 
recognize it.

Kim What the….
Erin Eh…
Kim What you…
Erin 9.22337 E + 18

This tension was later reconciled with teacher intervention and further exploration. 
A little later as they sought to estimate how long the rice might feed the world, there 
was no surprise with the scientific notation format:

Erin = sum (A1:A64)
Kim 1.84467E19
Erin How long will that feed?
Kim  1.84467E19 divided by 2000 [the number of grains of rice they had estimated 

would feed one person for a day]

The new understanding had been reconciled within their existing discourse. 
The visual tension when the actual output differed from the expected one was influen-
tial in the emergence of the new understanding. The learners shifted their perspectives 
(even if a minuscule degree) with each engagement with the pedagogical medium 
and activity. Each perceptual shift allowed them to re-engage from a fresh perspective, 
until either resolution was reached or teacher intervention was required. The learners’ 
trajectory, in conjunction with other influences, was conditioned by the affordances 
and constraints of the digital, pedagogical media, and the technology gave opportunity 
for redirecting trajectories within rich, mathematical contexts (e.g. in this case, visual 
reasoning permeated their mathematical thinking). The propensities of digital media, 
in the educative sense, certainly promote mathematical dialogue, and re-interpretation 
of mathematics phenomena, which in turn fosters mathematical thinking. With both 
the HLT and the actual routes the learners take as they engage with the mathematical 
activity, the mathematical thinking can be described in two ways: a spontaneous 
response that is predominantly conditioned by the learner’s preconceptions of the content 
or medium, and a reflective thinking that is shaped by broader learner discourses.

9.7  Shifts in Trajectories: Possibilities of Earlier  

Engagement with Powerful Ideas Afforded  

by DT, and the Development of Intuitions

This section is concerned with discussing the transformations or changes in didactic 
routes or learning trajectories, given that digital technologies may allow the possi-
bility of early access to powerful mathematical ideas. Digital technologies have 
affordances for the development of learning trajectories that enrich intuitive 
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representations, and can help in the transition to more analytical conceptions. For instance, 
the effective use of visualization and exploratory mathematics may give intuitions 
for formal proof by building up an overall picture of the relationships involved 
(Tall 1991). We thus begin by considering how DT can help develop intuitive 
thinking. We then present examples of early engagement with powerful ideas in 
some specific domains, not just focusing on the development of intuitions, but 
considering how learning trajectories can be transformed.

9.7.1 Using DT for Developing Intuitive Thinking

In this section we will reflect on how digital tools can help develop intuitions and 
mental representations (or Vorstellungen- see Meissner 2003, 2006) of objects, 
processes, relations and functions, and their potential relationship with individual 
learning trajectories. According to the Dual Process Theory (Kahneman and 
Frederick 2005; and Leron and Hazzan 2006), two ways1 of internalizing our expe-
riences from interacting with a problem, can be distinguished. On the one hand, we 
use our existing and not always conscious mental images or fore-conceptions 
(S1Vorstellungen) “spontaneously” and we do not change them if we do not see a 
need for it. On the other hand, if necessary, we develop conscious and reflective 
(S2) mental images on the base of our experiences. For a well-developed and powerful 
concept image both are essential: a sound and mainly intuitive “common-sense” 
and a conscious knowledge of rules and facts.

Most teachers or students or even researchers in mathematics often are unaware 
of their spontaneous and intuitive conceptions. In the traditional mathematics education 
classroom often we do not realize, or even ignore or suppress, intuitive or sponta-
neous ideas. But the teacher can adjust an intended learning trajectory to include 
tasks that stimulate creative, intuitive thinking, or alternatively allow space for 
imaginative exploration of the pedagogical medium or mathematical thinking as it 
emerges from engagement with the activities. As has been discussed in previous sections, 
the almost instantaneous nature of response (feedback) of digital technology has the 
potential to transform the intuitive thinking into analytical thinking while learning 
in mathematics.

In particular, guess-and-test behavior and guessing games can be valuable for 
developing intuitions. When we observe problem solving behavior from outside of 
mathematics education we realize that guess-and-test behavior is quite normal to 
build up mental representations (Vorstellungen) of the situation being confronted 
(Meissner 1982). When we observe children or adults working with a computer we 
also often see typical guess-and-test behavior. Students interact with the computer 
to discover properties and we see the repetition of similar keystroke sequences. 

1 In the Dual Process Theory cognition is seen as operating in two quite different modes called System 

1 and System 2.
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Computer users tend to develop two attitudes that were unusual, until recently, in 
traditional mathematics education:

–  They intensively use guess-and-test procedures (often unconsciously)
–  They demonstrate a large and often unconscious knowledge without being able 

to communicate adequately about it: Being asked for rules they are quick in 
pressing diverse sequences of buttons, but very often they cannot give precise 
verbal descriptions or explanations. Their knowledge is sometimes fully situated 
in the digital context of the interface.

There are calculators which can work syntactically operating in the same manner 
as we speak in our daily life: For example, in order to input the expression “635 + 13% 
=…” we need to enter the following key stroke sequence:

6 ,    3 ,    5 ,    + ,    1 ,    3 ,    % ,    =

Meissner and his team (summary in Meissner 2003) taught percentages with the 
percent key, without using formulae or reverse functions or algebraic transformations 
of formulae. For all types of percentage problems, if necessary, a missing value had 
to be guessed and verified by pressing always the same key stroke sequence from 
above. The students became excellent in guessing each of the values needed and 
developed an astonishing “%-feeling” (getting a quite reasonable value already in 
the first guess).

The method used to teach percentages is an attempt to enrich the mathematical 
conceptions (Vorstellungen) of the users avoiding at the beginning an algebra-like 
symbolic language (no formulae or reverse functions or algebraic transformations 
of formulae). For Meissner and his team that systematic use of guess and test 
activities became a specific DT teaching method called One-Way-Principle or 
OWP (Meissner 2003). The OWP can be used to discover many functional relation-
ships intuitively and/or consciously. The basic idea of the OWP is the following: 
First, learn the syntactical sequence of the buttons needed to get the output “Y” 
(when the input “X” and the operation “s” are given). This is a relatively simple 
task when using a calculator or computer. The goal for the learner is to find a good 
first guess and then reach a given target with only a few more guesses. There is a 
big range of possibilities to apply the OWP method to develop S1 intuitive experiences. 
For example, s may be a (+6)-operator or a (×5)-operator. With operators like these 
we develop number sense by exploring the four basic operations (including reverse 
operations). But “s” also may be a symbol for trigonometric functions and “X” and 
“Y” are real numbers. Or “s” is a symbol for a percentage function (see above). 
Or “X” symbolizes an algebraic term and “Y” the appropriate graph related to it 
via, for example, the function plot software s. The OWP can also be a powerful 
method using spreadsheets, as described below in Sect. 9.7.2.

For a long time, many guessing games using DT have been developed by other 
researchers that are useful for developing intuitions and fostering analysis by students 
of a mathematical situation, such as classic “guess-my-function” or “guess my 
rule” activities. These have been carried out in many diverse DT environments such 
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as Logo (Hoyles and Sutherland1992). More recently in the Weblabs project’s 
(http://www.weblabs.eu.com) “Guess-my-robot” activity, children had to program 
sequences as behaviors of virtual “robots” in the visual programming environment 
ToonTalk and other children (in other countries) had to reproduce these robots 
(Mor et al. 2004). Other projects using DT environments aimed to create intuitions 
for difficult abstract concept such as those of limits of infinite sequences (Sacristán 
and Noss 2008; Kahn et al. 2005) and the cardinality of infinite sets (Kahn et al. in 
preparation), in order to make infinity-related ideas more accessible to younger 
learners via carefully designed didactic routes (learning trajectories); these are dis-
cussed further below. Before that we present an example illustrating the shifts in 
trajectories that can occur with DT in the specific domain of algebra.

9.7.1.1  Early Accessto Powerful Mathematical Ideas: An  

Example of Early Algebra

In this section we consider the issue of changes in learning trajectories and the 
development of “early algebra,” for which very specialized work has been developed. 
The objective was to describe children’s thinking and learning in this specific math-
ematical domain and develop a related route of tasks designed to promote mental 
processes in that domain. This sequence of tasks was intended to enhance children’s 
developmental progression of thinking, enabling them to achieve specific goals in 
the mathematical domain in question.

The book of the 12th ICMI Study The future of the teaching and learning of 

algebra (Stacey et al. 2004) contains a chapter devoted entirely to the subject of 
early algebra. There, Lins and Kaput (2004) draw attention to the fact that intro-
ducing very young students to algebra does not mean bringing them closer to the 
study of more traditional forms of algebra, but rather to initiate them into a new alge-
braic culture. This, amongst other things, includes making drastic changes from the 
usual didactic routes to other routes that imply working with notations different 
from those of symbolic algebra. This is the case when using the SimCalc Math 

Worlds software, with which it is feasible for students with no prior background in 
algebraic symbolism to mathematically explore and analyze movement phenomena, 
with the support of a simulator and its graphic representation (Roschelle et al. 2000; 
see also Chap. 8 of this volume). The possibility of dynamically displaying the position, 
velocity and acceleration charts that correspond to one or several moving characters 
enables students to analyze the different relations existing between variables. 
Moreover, it introduces students into the notion of functional relations within a 
context of physical phenomena, and does so without symbolic representations.

The following are examples of two cases from a study (Perrusquía and Rojano 
2006) carried out with 10 year-old pre-algebraic students who showed significant 
progress towards the notion of functional relationships through the use of the 
SimCalc Math Worlds (Fig. 9.11). The SimCalc activities involved students’ analysis 
of position and speed graphics to help them gain a better understanding of the 
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dependence relationship between two variables, as well as to include concepts such 
as “it goes faster” or “this is quicker” with a mathematical meaning.

The Case of Rodrigo

At the beginning of the study, Rodrigo had a low arithmetic proficiency level. His first 
explanations about motion took into account the physical features of characters, with 
definitions such as “The clown is small, and that is why his legs go slower” or “The tires 

of the truck are bigger, and that is why it goes faster.” After completing the first 
SimCalc activities he included in his explanations elements related to the characters 
movement, such as “the red one moves slow, and the green one moves fast” until he 
finally took into consideration both variables: “It moves one third every second,” or 
“the red one goes up two floors every second.”

When first asked about his notion of speed, his answer was “every lift goes up a 

number of floors per second,” making use of an example to generate an explanation. 
Once the activities sequence was concluded, his notion of speed evolved to include 
the two variables, distance and time, making it easier for him to calculate speeds from 
a position graph.

Fig. 9.11 Math worlds provides animated worlds, where animations move according to changes in 
graphics. Graphics are represented through rectangles meaning speed: the height of a rectangle 
means “how fast,” and the width means “how long.” Position, speed, and acceleration graphs are 
dynamically linked. If there is a change in speed, the corresponding changes in the position or 
acceleration graphs are instantly displayed
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The Case of Ana Karen

Before the SimCalc activity sessions, Ana Karen showed to have a middle arithmetic 
proficiency level. At the beginning of the sessions she provided explanations such as 
“The frog’s steps are four meters long,” or “The clown’s steps are two meters long.” 
After comparing the speed of some characters she expressed the following: “The truck 

goes faster, and the car slower.” After moving on through the activities, Ana managed 
to include a little more information: “The slower clown moves five meters, and the 

faster clown moves eight meters.” In the middle of the activity sequence her definition 
of speed was “the number of kilometers a car or anything else moves forward.” At this 
point she also perceived the possibility of using distance and time to calculate the speed 
from the information contained in the position graph. By the end of the sequence 
she employed a particular situation to explain the notion of speed, taking into 
consideration the time and distance variables, but on a particular example:

E: How would you explain speed?
Ak: Speed is the distance and time a car travels.
E: How do you read speed?
Ak: If we take meters and seconds, then it will be 81 meters per second.

The following questions emerge: How can those experiences be leveraged when 
the students have to learn proper algebraic language? Will that background conceivably 
make it possible to plot a route to another destination? This type of issue raises yet 
again previous debates regarding the importance of keeping the usual mathematical 
sign systems and what is known as transformational algebra, as part of the goals of 
compulsory teaching in mathematics. In this sense there needs to be a correspondence 
between the DT-based HLT and more traditional HLTs.

9.7.1.2  The Role of Spreadsheets in the Transition Towards  

the Algebraic Method for Solving Word Problems

Another example of a trajectory that aims to take advantage of representational 
systems in mathematics for developing algebraic thought at young ages, is one 
using spreadsheets. In this case students work with algebraic ideas such as generali-
zation, the (functional) relation between variables and problem solving, using 
algebra-like notations, albeit notations that have strong numerical connotations. 
If the idea is to work with spreadsheets as scaffolds to build the usual algebraic 
knowledge, then the very limitations of the computer environment in terms of rep-
resenting the variety of algebraic expressions will indicate the trajectory and 
moments in time when the leap to algebraic symbolization takes place. The following 
are examples from studies, where students engaged in spreadsheet activities 
designed to help them to cope with word problems involving two or more unknowns 
(Sutherland and Rojano1993; Rojano 2001). The first is an example from a study 
undertaken with 9-year old pre-algebraic pupils that illustrates how the use of a 
spreadsheet can assist in the analysis process of a problem’s statement, such as that 
of the “Party Problem” below:
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The Party Problem (a simple case)

420 people attended a cocktail party, the number of men was twice the number of women. 
How many women and how many men went to the party?

This problem can be solved using an algebraic method in the following way:

If x = no. of women, and y = no. of men
Then y = 2x

and x + y = 420

By solving this system of equations, it is found that: x = 140 and y = 280, which 
is the solution to the problem.

A spreadsheet method for solving this problem is as follows: Identify the 
unknown quantity (or quantities) as well as the problem data. Suppose that, that 
which is unknown, is known, and allocate an arbitrary value to one of the unknown 
quantities, for example the number of women (Fig. 9.12). This number is then 
introduced into one of the cells. In the neighboring cells, introduce the correspond-
ing formulas for the number of men and the total amount of people who attended, 
as shown in the following diagram:

Note that these formulae shall include the name of the cell of one of the unknown 
quantities. The presupposed value is then changed until the number in the cell relating 
to the total number of people corresponds to the problem data (420). Figure 9.13 
shows the moment in which this value is obtained and, as a result, the correct values 
for unknown quantities.

The spreadsheet method can help in the analysis of the problem’s text by recording 
the steps of this analysis in a system of representations, in which natural language 
(column labels) is used along with numerical language and an algebra-like symbolic 

Fig. 9.12 Spreadsheet method to solve “The Party” problem

Fig. 9.13 The final correct values of the unknown quantities of “The Party” problem
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language. Consequently, the analysis process, which consists of clearly stating the 
relationship between elements of the problem (data and unknown quantities), uses 
all of these languages:

• Naturallanguageallowsthepresenceofreferentsthatprovidethecontextofthe

problem
• Formulas allow relationships between data and unknown quantities to be

expressed and, more importantly, allow functional relationships between 
unknown quantities to be expressed

• Thesuppositionofaspecificvalueforoneoftheunknownquantitiesallowsthe

analysis and symbolization process to be undertaken, through the use of a known 
number instead of an unknown quantity

• Thenumericalvariationoftheassumedvalueforoneoftheunknownquantities

incorporates one of the intuitive methods most frequently used by students, the 
method of trial and refinement (see Sect. 9.7.1)

In the case of the Party Problem, the spreadsheet method is illustrated using a 
simple case. However, this method can be used for the solution of problems of dif-
ferent levels of complexity. For example, problems can be addressed where the 
relationships between unknown quantities are more complex, or problems that 
include a larger number of unknown quantities (see Rojano 2001).

Problems similar to the Party Problem, as well as more complex problems, were 
used in the Anglo-Mexican Spreadsheets Algebra Project, carried out with groups of 
students in Mexico and England. In the framework of that project, case studies were 
carried out over a long period of time with children of pre-algebraic age (10–11 year 
olds) and with students resistant to algebra (14–15 year olds). In both studies, the 
children showed themselves to be capable of using a spreadsheet for solving different 
types of word problems, without having to wrestle with manipulative aspects of symbolic 
algebra and without having to reject their intuitive approaches to the solution of 
problems. More specifically, the results revealed that pre-algebraic children preferred 
to display the variation (of the unknown quantity to which an arbitrary value is allo-
cated) in a numerical column generated by a formula such as =A2+1, whereas students 
between 14 and 15 years old were able to carry out this variation in a single cell.

Some algebra resistant pupils, who proved to be competent in the solving of 
equations, but who were unable to apply this knowledge to the solution of word 
problems, ended up combining their manipulative skills with the analysis of a problem 
statement with the help of a spreadsheet. Outcomes from this study show how a 
special use of a DT environment that incorporates intermediate sign systems can 
help students make transitions, from dealing with numerical language, to the use of 
algebraic code. It has been extensively reported that this particular transition is 
problematic when traditional algebra teaching approaches are used, but this study 
shows that using DT learning trajectories can be constructed that facilitate those 
transitions. On the other hand, differences showed by pre-algebraic and algebra-resistant 
pupils in their preferences of ways of representing variation in a spreadsheet 
suggest that actual learning trajectories can be strongly influenced by pupils’ age 
and their previous experience with algebra.
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9.7.2  Early Access to Powerful Mathematical Ideas:  

Exploring Infinity-Related Notions

Another area that has been researched in terms of developing DT environments and 
representational infrastructures for early access has been that of the mathematical 
infinity. Several projects have aimed to make difficult abstract concept such as 
those of limits of infinite sequences (Sacristán and Noss 2008) and the cardinality 
of infinite sets (Kahn et al. 2005, in preparation) accessible to younger learners.

9.7.2.1 A Logo Microworld for the Exploration of Infinite Processes

In the first study (Sacristán and Noss 2008), a computational microworld using the 
Logo programming language was designed to provide a means for students aged 
14–17, to actively construct and explore different types of representations – symbolic, 
graphical and numerical - of infinite processes (infinite sequences and the construction 
of fractals, as explained below) via programming activities. In general, the computer 
setting provided an opportunity to analyze and discuss in conceptual (and concrete) 
terms the meaning of a mathematical situation. For example, drawing a geometric fig-
ure using the computer necessitated an analysis of the geometric structure under study 
and an analysis of the relationship between the visual and analytic representations.

The programming and explorative activities were part of a carefully designed 
didactic route included, and included:

• Explorations of infinite sequences, such as {1/2n}, {1/3n}, {(2/3)n}, {2n}, and 

{1/n}, {1/n1.1},…, {1/n2}, and their corresponding series, through geometric mod-
els such as spirals (Fig. 9.14), bar graphs (Fig. 9.15), staircases, and straight 
lines, and the corresponding Logo procedures, with a complementary analysis 
of the numerical values. These models constituted a straightforward way of 
translating arithmetic series into geometric form (e.g. in the “spiral” type of 
representation each term of the sequence is translated into a length, visually 
separated by a turn, so that the total length of the spiral corresponds to that of 
the sum of the terms, i.e. the corresponding series.) Through the observation of 
the visual (and numeric) behavior of the models, students were able to explore 
the convergence, and the type of convergence, or divergence, of a sequence and 
its corresponding series. The different geometric models for the same sequence, 
represented in Logo programming code, provided different perspectives of the 
same process.

• Exploration of fractal figures These included the Koch curve and snowflake 
(formed by putting together three Koch “segments”) shown in Fig. 9.16, and the 
Sierpinski triangle. The explorations involved the study of their recursive structures 
(apparent both visually and in the programming code), and dealing with apparent 
paradoxes at infinity, such as a finite area bounded by an infinite perimeter.

One of the advantages of the microworld was that the behavior of the process could 
be observed, rather than the end result as is usually the case in traditional school 
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Fig. 9.15 Bar graph model for the sequence {1/2n} 
with numeric output

Fig. 9.16 Construction process of the Koch curve, and the Koch snowflake

mathematics. Observing the behavior, such as the rate of convergence, played a 
very important role for giving meaning and finding explanations as to why in a 
particular instance a process converged or diverged. The exploration of the behavior 
was done in several ways which included the observation of the process through its 
unfolding visual and numerical behavior, the possibility to compare different 
sequences and models, and in the case of series, coordinating the behavior of the 
series with that of the corresponding sequences.

Students discovered and explored limiting (or divergent) behaviors first through 
the graphical representations and then carrying out a back and forth process 
between these representations and numeric values. The graphical element played a 
role in indicating the existence of a limit when there was visual invariance through 
several stages. For example, in the fractal explorations of the Koch snowflake, the 
apparently invariant visual image conveyed the boundaries of the area, highlighting 
its independent behavior from the infinite perimeter that delineates it. At a second 
level, students would use numeric values, organized into tables, to complement and 
confirm the observed visual behavior and give an indication of the value of the limit 
or divergence of the sequences.

Fig. 9.14 Spiral model for the 
sequence {1/2n}
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The microworld supported students in the coordination of hitherto unconnected 
or conflicting intuitions concerning infinity, based on a constructive articulation of 
different representational forms that was named representational moderation 
(Sacristán and Noss 2008). Representational moderation is sensitive to the direction 
of representations, or rather, to the trajectory between them. For example, in both the 
context of sequences and series, the approach was in the direction process to visual/
numeric, which allowed a shift in intuitions: a common initial intuition is that if a 
process is infinite, its value will also be infinite2; through the microworld tasks, the 
intuitions were replaced by an understanding of the processes involved and the intuition 
could be dismissed. In the context of the fractal explorations, the approach began 
with the figure, and then moved to numerical analysis, which allowed some of the 
students to solve the apparent Koch curve “paradox” – the idea that the infinite 
perimeter of the curve could be formed by an infinite number of “zero-length” segments 
– by examining and coordinating the two processes involved: that is, by comparing the 
rate of increase of the segments, with the rate of decrease of the size of each segment.

The environment provided a language for asking questions, as well as tools for 
exploring these questions. In many cases students found what seemed like patterns 
and properties, which led them to formulate and test conjectures, as well as articulate 
relationships and build generalizations. In this way intuitions were developed 
before a formal proof in the way advocated by Tall (1991). Furthermore, the relation-
ships uncovered constituted stepping-stones towards formal proofs; for this reason 
we called them situated or pragmatic proofs3 (see Sacristán and Moreno 2003; 
Sacristán and Sánchez 2002).

9.7.2.2  Exploration of Infinite Sequences, Series and the Cardinality  

of Infinite Setswith ToonTalk

In the WebLabs project (see Sect. 9.3.2.6) there are further examples of the design 
of a DT-based representational infrastructure and learning trajectory to assist young 
learners in developing intuitions of the infinite that can be connected with more 
formal knowledge: by building on what they already know – or what they can “see” 
– and to engage with the computational structure in a quasi-formal way.

The attempt was to help children approach infinity-related ideas by providing 
them with an alternative formalism (the computational setting) with which to construct 
and then think and talk about these deep ideas. Children programmed infinite or 
non-terminating processes that produces infinite sequences and series, similar to 

2 Nuñez (1993) explains that this confusion arises when there are several competing components 
(processes) present; that is, when two types of iterations of perhaps different nature (cardinality vs. 
measure) are confused: the process itself and the divergent process of adding terms to a sequence.

3 For example, during the explorations of sequences of the type {(1/k)n}, some students discovered that 

the corresponding series:
∞

=∑ 1
1 / n

n
k , where the integer k > 1, converge to 1/(k - 1). They then tested 

the validity of their conjecture using all the available tools in the microworld, in order to “prove” it.
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those in the previous example; in a second part of the project they also constructed 
infinite sequences such as the natural numbers, the even numbers, the integers, and 
the rational numbers, while simultaneously constructing one-to-one correspondences 
between the sets, in order to investigate their cardinality. As in the project described 
in Sect. 9.7.3.1, computer-programming activities had a central role. But in this 
case the ToonTalk environment was used. Here, also, the use of diverse tools and 
representations supported the dual view of a sequence as a process and an object. 
This was complemented with the interleaving of construction and argumentation 
activity - students built and discussed what they had built in a web-based system 
that was shared amongst students in several European countries.

In ToonTalk, programmers enter an animated world and build programs by training 
robots to manipulate boxes, perform arithmetic calculations, give birds messages to 
deliver, and more (see Fig. 9.17). They train these robots using specific example 
data and then recover generality by removing details (Kahn 2001). Two key characteris-
tics of ToonTalk are that every computational process and its data are tangible and 
manipulable. In addition, the system employs exact arithmetic instead of floating 
point numbers (used by most other computer environments); this means that numerical 
investigations, such as those of infinite number sequences and series, can be as 
precise as desired.

The HLT that was designed aimed to encourage students to:

• Experiencesurprisesarisingoutofthetensionbetweenintuitionsofinfinityand

evidence revealed through activity
• Develop a non-algebraic language for describing, discussing and reasoning

about infinity-related ideas: (a) infinite sequences, and in particular, the ideas of 
convergence, divergence and limits; (b) the cardinality of infinite sets, which 
was investigated by constructing one-to-one correspondences between sets

Fig. 9.17 The ToonTalk “Add 1” robot producing the natural numbers
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These activities were tested in several groups, mainly in the UK and Bulgaria, of 
children aged 11–14. The results of this project illustrated how the curious child can 
learn some deep, interesting, and different mathematics without first having mas-
tered the techniques that are normally only accessible to a few.

9.7.3  Early Access to Powerful Mathematical  

Ideas: Long-Term Impact

Although a good number of studies have shown that computer environments can 
play a role so that students, of very young ages, may work with sophisticated mathe-
matical ideas such as the mathematics of variation, modeling and generalization 
(Rojano and Sutherland 2001; Kaput and Blanton 2001; Hoyles and Sutherland 
1992) or infinity and infinite processes (Sacristán and Noss 2008; Kahn et al. 2005, 
in preparation) as described in previous sections, there has been, nonetheless, a high 
degree of uncertainty about the real long-term impact that early experience with 
such mathematical notions can have on students (Rojano 2008). This created the 
need to undertake longitudinal studies able to encompass several school grades 
with the same generation of students. In these cases, we take the perspective of 
hypothetical learning trajectory as applied to long-term learning processes. This not 
only represents a methodological challenge for research in mathematics education, 
but also means that researchers are faced with the arduous task of designing and 
developing a specific curriculum (well defined intended learning routes) that abides 
by the didactic approach and the technological tool(s) chosen.

It is noteworthy to refer to three studies bearing those traits: studies that were 
carried out in the last decade. One is the Computer Intensive Algebra project4 devel-
oped by Heid (1996) at Penn State University; another is the Visual Math project 
led by Yerushalmy (2000)5; and a third one is the Measure up Project6 spearheaded 
by Dougherty in Hawaii (Dougherty and Zilliox 2003).

4 Computer Intensive Algebra is a beginning algebra curriculum that introduces students to algebra 
in the context of mathematical modeling computer explorations, that provide access to multiple 
representations and assist in reasoning about algebraic expressions (Heid 1996).
5 In this study, a complete learning sequence (the Visual Math curriculum) is prepared in order to 
observe learning processes throughout a longitudinal period of 3 years (grades 7–9) using an 
alternate approach (a functional approach) to algebra teaching. One of the findings was that when 
using the alternate treatment, changes expected – for example in conception of functional variation 
and the rate of change – took a fair amount of time (Yerushalmy2000).
6 In this project, algebra is introduced to pupils at the beginning of primary school. Its approach 
is based on a Russian framework created by the melding of multiple theories (e.g. theories by 
psychologists like Davidov and Vygotsky). Pupils begin with generalizations rather than with 
specific instances, so that they can see the concepts in action rather than trying to build the bigger 
picture from a variety of specific examples. Symbolism is naturally integrated to children’s tasks 
as well as the notion of relationships between and among quantities (Dougherty 2001).
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Strict longitudinal studies, such as these, enable researchers to follow the tracks 
and repercussions of knowledge acquired under a certain focus and within specific 
learning environments. In addition, they are also an open invitation to reflect upon 
possible learning trajectories that have those foci as a point of departure.

9.8 Concluding Remarks

In this chapter, we have identified and discussed themes that are relevant during the 
construction of both hypothetical and actual learning trajectories. We argued that 
the use of digital technologies to construct hypothetical learning trajectories offers 
the teachers the opportunity to examine or explore ways in which mathematical 
concepts and problem solving strategies can be developed. These trajectories 
become relevant to organize and structure potential paths or routes that can guide 
their students’ actual development of mathematical concepts and problem solving 
approaches.

The different examples in this chapter also illustrate how the use of DT opens 
the possibility of conceiving new avenues for the learning of specific mathematical 
contents. Moreover, certain uses of DT give pupils access to advanced mathematical 
ideas, which are not currently considered in traditional curricula at the elementary 
and secondary school education level. These possibilities rely mainly on the potential 
of the DT environments to facilitate learners in making crucial transitions towards 
a mathematical way of thinking. In this way, DT can significantly alter how didactic 
and learning trajectories have been traditionally conceived.

Digital technologies seem to facilitate transitional processes that have previously 
been reported as being highly complex for the vast majority of students, such as 
transitions from the particular to the general; from what is concrete to what is 
abstract; from intuitive perception to formal thinking, from non-mathematical to 
mathematical representations (e.g. algebraic symbolism and graphics); etc.

We also recognize that there may be diverse ways or paths for students to construct 
or develop mathematical thinking and problem solving competencies. We contend that 
students’ use of different digital – and representational – means or technologies, 
offers opportunities to represent and explore mathematical situations in terms of, 
or in accordance, to the facilities or potential associated with each tool. Thus, when 
students use more than one tool in their mathematical experiences they have an opportu-
nity not only to think of mathematical situations or problems within multiple mathemat-
ical environments but also to use diverse resources and problem solving strategies.

How digital technologies shape learning and transform learning trajectories has 
a profound implication for teaching and for curriculum design. For instance, the 
examples in this chapter illustrate that hypothetical and students’ actual learning 
trajectories when using digital media may involve contents and resources of various 
areas of mathematical domains. In this sense, the curriculum needs to be organized 
or structured in a way that facilitates the articulation of several areas or mathematical 
domains.
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However, research into DT-based learning trajectories is still in its infancy. From 
a theoretical perspective, the idea of learning trajectories in the context of digital 
technologies still needs to be developed. From an empirical point of view there are 
many aspects that need to be researched. For example, one question that arises is 
what is the influence that can be had when hypothetical learning trajectories are 
made explicit; clearly when using DT actual trajectories can go in very unexpected 
ways, but making a HLT explicit for the teacher may have a significant effect that 
needs to be researched.

Finally, the ever more pervading presence of the Internet and of networking 
capabilities opens up many new scenarios of dynamics for classroom and learning 
environments (possibly beyond the school) that may lead to new forms of learning 
and shape learning trajectories in unforeseen ways. These of course, will also need 
to be researched.
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Chapter 10

Micro-level Automatic Assessment  

Supported by Digital Technologies

Chris Sangwin, Claire Cazes, Arthur Lee and Ka Lok Wong

Abstract This paper describes computer aided assessment of mathematics by 

focusing on the micro-level of automatically assessing students’ answers. This is 

the moment at which a judgment takes place and so it forms the keystone the math-

ematical assessment process, so fundamental to the learning cycle. We describe 

the principle of automatic assessment at this micro-level and report some of the 

significant technical developments of the last two decades through examples of 

internet based systems.

Keywords Assessment • Computer aided assessment • Task design • Technology

10.1 Introduction

This paper describes contemporary computer aided assessment (CAA) of mathe-

matics. In particular, we focus on the use of ICT for assessment activities and the 

micro-level of automatically assessing students’ answers to individual questions. 

This is the moment at which a judgement takes place and so this micro-level forms 

the keystone of the majority of mathematical assessments. It is striking that in the 

first ICMI study (Churchhouse et al. 1986), no examples of such assessment systems 

at the tertiary level were described or exhibited. This situation has changed significantly 

in the last two decades.

Assessment is a fundamental part of the learning cycle, is central to learning and 

is also often a primary driver of students’ activity.
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In the early 1970 researchers on both sides of the Atlantic (Snyder 1971; Miller and 

Parlette, 1974) were engaged in studies of student learning at prestigious universities. What 

they found was that unexpectedly, what influenced students most was not the teaching but 

the assessment (Gibbs and Simpson, p. 4).

The outcome of assessments is feedback of various kinds and an item of assessment has 

a number of potential purposes. Assessment becomes formative when the information is 

used to adapt teaching and learning to meet students’ needs. See Black and Wiliam (1998a, 

b) for a review of formative assessment. Sometimes termed “assessment for learning”, feed-

back here could be qualitative, e.g. written comments tailored to the student’s answer, or brief 

indications of where students’ written work departs from model solutions. Summative 

assessment, or “assessment of learning”, is to establish the achievement of the student. In 

mathematics, summative feedback is most often quantitative, either a mark or a percentage. 

Note that the nouns “mark”, “grade” or “score” are used synonymously in the literature. In 

addition to these purposes, Wiliam and Black (1996), for example, also describe evaluative 

assessment that is to measure the effectiveness of the teaching or the assessment of students. 

Such assessments could have quality enhancement or quality audit functions.

It should be noted that rarely are the outcomes to a single assessment item 

considered in isolation. It is more common to aggregate data: for formative assessment 

a “profile” of the student’s overall achievement is built. Indeed, a particular collection 

of mathematical assessment items might be constructed as a diagnostic instrument 

to provide students with a “skills audit” and the feedback consists of suggestions for 

further work. Similarly, summative assessment reduces the outcomes of a number of 

separate smaller items to a single numerical mark: either a percentage or grade. Computer 

aided assessment has a role in automating such aggregations and in the compilation 

of statistics for formative, summative and evaluative purposes. The focus of this paper 

is on the micro-level automated assessment of individual assessment items, not on 

theoretical perspectives on task sequence design – an important but separate topic.

For pragmatic reasons, an individual item of assessment may be used for a number of 

different purposes. For example, an “exercise sheet” of individual items may have a pri-

marily formative function, with written feedback and a single numerical mark that is itself 

a crude formative measure. This mark could also contribute for summative purposes as 

“continuous assessment”. Qualitative comments could be aggregated as an evaluative 

assessment to inform subsequent teaching (quality enhancement). The marks might also 

contribute as an evaluative assessment for quality audit. Strong messages are communi-

cated to students by the choices made for assessment particularly when this is both forma-

tive and summative. A “reward for sustained achievement” needs to be balanced against 

an “opportunity to learn from mistakes”. It is the use to which the outcomes of an assess-

ment are put which has a greater bearing on the purpose of the assessment than the form 

of these outcomes or the nature of the task. Hence an online CAA system could be either 

a formative learning tool or a summative assessment system. It could be used to automate 

high-stakes public examinations. Furthermore, the ability to automatically generate data 

about an individual student or across a cohort is potentially very easy with CAA, allowing 

regular, detailed and accurate evaluative assessment.

The use to which a calculator, a computer algebra system (CAS) or dynamic geom-

etry (DG) software has been put in the learning and teaching of mathematics is “almost 
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exclusively […] to model in an exploratory manner rather advanced mathematical 

ideas”, (IPC 2005, p. 3). Here we consider using these technologies to perform the 

assessment and generate outcomes, such as (a) a numerical mark, (b) written feedback 

or (c) statistics for the teacher concerning cohort achievement. These three outcomes 

approximately correspond with the summative, formative and evaluative purposes of 

assessment. An individual item may be designed and used with any of these purposes, 

and we shall consider all three. While the student is certainly using the software, the 

mode of use is, compared to the traditional use of an instrument, quite different both in 

terms of the specificity of the task and the richness of the feedback generated as a result. 

Hence, our focus here is on using technology to assess students’ work, i.e. we include 

marking/grading answers to mathematical questions.

Assessment is a very broad field, and in this paper we concentrate only on one 

aspect. We acknowledge that we leave many issues unaddressed. For example, if a 

teacher encourages students to make extensive use of tools in a course but does not 

allow their use on the end-of-course test, are students being given the opportunity 

to show what they learned with the use of such tools? If the tools are to be used on 

the test, what kinds of test items can the teacher design to bring out the mathematical 

learning that may or may not have occurred? We make no assumptions about the 

use of technology by students in this paper. While this may seem strange, it is outside 

the scope of this paper. Our focus is exclusively on the micro-level of using digital 

technology to support the automatic assessment of student’s work.

In Sect. 10.2 we shall describe the principle of automatic assessment at the 

micro-level. In Sect. 10.3 we briefly describe current practice through examples of 

internet based systems used for assessment of mathematics, including geometry, 

algebra and calculus. Section 10.4 discusses the potential future of such tools: at a 

technical level what can be assessed, what cannot?

10.2 Principle of CAA

To us the principle of mathematical computer aided assessment is the following: a stu-

dent creates mathematical objects (e.g. an algebraic expression or geometric figure) 

using a computer; then the computer automatically establishes mathematical properties 

of these objects; on the basis of these properties it assigns outcomes, including feed-

back. After discussing what is suitable and/or possible to assess, we will examine the 

structure of mathematical objects created and then the variety of outcomes generated.

10.2.1 How to Implement an Assessment?

At the very fine-grained level we address here, automatic mathematical assessment 

seeks to establish various mathematical properties of a student’s work on a specific 

mathematical question. For example, the teacher might ask “is the final answer 
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algebraically equivalent to my answer?”, “has an appropriate method been selected 

and correctly used?”, “are the construction steps correct?”, or “is this expression 

fully simplified”? We see first how to implement an assessment of the correctness 

of an answer both in an algebraic and a geometric situation.

As an illustration of the kind of CAA scenario which is the focus of this paper, 

consider the situation in which a student enters his or her response to a mathematical 

question, assumed to be an algebraic expression, into a computer aided assessment 

system. A CAS is then used to subtract the student’s response from the teacher’s 

response and to simplify the resulting expression algebraically. If the result is zero 

an algebraic equivalence between the student’s answer and the teacher’s answer has 

been established. That two expressions are equivalent in this way is a ubiquitous 

test for “correctness” and the ability to perform this test is often an important 

component of a mathematical CAA system. However as we shall see, there are 

many other properties that a teacher may seek to establish.

In the case of geometry, we highlight the difference between assessing declarative 

knowledge through written answers to traditional questions and assessing other forms 

of knowledge through manipulation, construction and experimentation. For example, 

a traditional item may require students to find unknown quantities or write a proof 

to indicate their understanding of geometrical theorems. When technology is 

involved, the task involves manipulating and constructing geometrical objects or 

formulating and testing conjectures with the given tools. Such a dynamic geometry 

(DG) environment allows students to demonstrate their geometrical knowledge in 

other modes. As an example, students might manipulate a DG worksheet to create 

a particular configuration. They submit electronically the final configuration of 

their dynamic figures in the browser when a task is finished. The final states of key 

variables are recorded, and from this the properties of the students’ geometric 

figure established, with outcomes then automatically generated. Examples will 

be given of this in due course.

However, note the important pedagogic principle being implemented in both 

examples: the student interacts with a CAA system to create a mathematical object, 

either algebraic, geometric e.g. Cabri Geometry (http://www.cabri.net), or both, 

e.g. in the case of a GeoGebra worksheet: (http://www.geogebra.org). The student 

may use technology or traditional paper and pencil approaches for intermediate 

working depending on the circumstances. The CAA system then automatically assesses 

the student’s answer that contains mathematical content, rather than a selection 

from a list of teacher provided answers, such as in multiple choice or multiple 

response questions. In evaluating the student’s answer mathematical properties are 

established automatically, and based on these properties feedback can then be auto-

matically generated to fulfil the purpose/purposes of the assessments, e.g. for summative 

assessment a numerical mark, for formative assessment textual feedback and statistics 

for evaluative assessment.

However CAAs’ designers aspire to go further than to assess the correctness of an 

answer. In both the algebraic and geometric examples the central issue of assessment 

remains: what kinds of knowledge and understanding are we testing? Further, what 

action should we programme the system to take when we have enabled it to 
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establish something relevant about the student’s answer? The process with which 

a human teacher engages when assessing work at even this micro-level is both 

complex and subtle. Both for formative and summative purposes it involves them 

making many judgements rapidly.

In an algebra question, for example, in addition to the prototype of establishing 

algebraic equivalence this might include whether an expression is factored, 

“simplified” or perhaps a solution to a given equation. As a further illustration, 

we consider whether a student has found the general solution to a differential 

equation such as

 y˝(t) – 9y´(t) + 18y(t) = 0. (10.1)

Expressed as a CAS algorithm, we first substitute the response of the student into 

the left hand side of the equation and simplify, which includes performing the 

differentiation of the student’s expression where necessary. If the result of this 

calculation is zero then the student’s answer satisfies the differential equation. Other 

tests can be devised to ensure the expression is a non-trivial (i.e. y(t) = 0) general 

solution. In particular, that the answer consists of the superposition of two linearly 

independent solutions, and the presence of general constants can be established. 

However, the choice of which letters are used to express the general constants can be 

at the discretion of the student. The CAA system does not use a CAS to simply 

establish the algebraic equivalence of the student’s answer with an expression such as

Ae3t + Be6t.

While solving (10.1) is a relatively standard problem, the use of a CAS allows the 

teacher to set and assess questions that would require significant computation to 

establish the required properties, or have non-unique solutions. We examine such 

questions in more detail below.

The problem of recognizing that an expression entered by a student is factorized 

(over some field), is significantly more subtle than comparing the student’s expres-

sion with the result of applying the CAS’s “factor” command to the teacher’s 

answer. For example, a CAA system may have to respond to any of the following 

expressions

(x – 3)2, (3 – x)2, (x – 3)(x – 3), (3 – x)(3 – x), 9(1 – x/3)2.

Only the first of these is returned by the “factor” command, while the 

others could all be argued to be correct factored forms even if they are not all fully 

simplified. Similar problems occur with other syntactic forms, such as partial 

fractions. To be useful as part of a CAA system, functions which establish such 

properties are needed. These functions ideally need to be able to generate feedback, 

for example “a common factor can be taken out of the term … in the left hand side 

of your equation”. Whether or not the teacher opts to use such feedback depends 

on the circumstances, but it should be available.
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The reader might consider all the different senses in which the word “simplify” 

is used in an average textbook on elementary algebra. Often “simplify” seems to be 

a synonym for “do what I have just shown you”. Two different examples occur with 

what (Nicaud et al. 2004) terms sorted and reduced form, when a polynomial is 

represented as x2 + 2x + 1 rather than x + 1 + x + x2. If a CAA system is to provide useful 

feedback to students it must be capable of distinguishing between expressions that 

are not fully simplified in various senses, and respond. However, such functions are 

usually not present in a mainstream CAS designed for computation and subsequent 

automatic simplification to canonical forms.

In the educational context, the work of (Gray and Tall 1994) developed the notion 

of a procept to capture the duality between process and concept in mathematics. For 

example, basic arithmetic operations make use of the same symbolism to represent 

the product of the process: one half as 1/2, and as the process itself: divide one into 

two equal parts. They comment on the ambiguities in using the same symbol for 

both as follows.

By using the notation ambiguously to represent either process or product, whichever is 

convenient at the time, the mathematician manages to encompass both – neatly side-stepping 

a possible object/process dichotomy. (Gray and Tall 1994, p. 120)

Unfortunately, while a mathematical expert (e.g. a teacher) might well use 

“the notation ambiguously to represent either process or product, whichever is 

convenient at the time”, the teacher making use of CAA must be more explicit. 

Hence it is helpful to us if we think of the process as a verb and the concept as a 

noun. As a consequence, tests other than algebraic equivalence are needed which 

rely on the ability to switch off the automatic simplification of the CAS itself, 

something which is not possible with all mainstream CAS. For example, a very 

useful test is equivalence up to associativity and commutativity of elementary 

algebraic operations. In particular we do not wish to consider the addition symbol 

+ as something to do, i.e. a process or verb, but rather as representing the concept, 

i.e. a noun. For example, 1 + 2x should be the “same” as 2x + 1, but not the same 

as, e.g. x + 1 + x. Even if both are acceptable in a particular situation, a distinction 

should be drawn between them.

10.2.2  Structure in the Tasks or Students  

Generated Mathematical Objects

We discuss some principle features of using CAA in the following sections based 

on capabilities of CAA in creating or handling mathematical objects with respect to 

their properties. A set of questions randomly generated by the computer according 

to some parameters bears the structure of the mathematical content. Reciprocally, 

examining answers to open questions implies recognition of a structure in the space 

of possible answers. In either case, automating the generation of questions or 

evaluation of answers may allow the shift of attention from individual items 
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(questions or answers) to the entire set with a structure. It therefore should have 

implications on what is being assessed. The formulation of feedback is also facilitated 

by the same capabilities of CAA.

10.2.2.1 Handling Algebraic Expressions

Many CAA systems make use of a CAS. The first system to make CAS a central 

feature was the AiM system (Klai et al. 2000), which uses Maple, as do a number 

of other systems including Maple’s own proprietary MapleTA. Other systems have 

access to a different CAS, such as Mathematica or Derive. The STACK system 

(Sangwin and Grove 2006) uses the CAS Maxima. A common feature of these 

systems is their use of an existing CAS. There are significant and perhaps rather 

surprising differences between CAS implementations, although all mainstream 

CAS are designed for the research mathematician or student essentially using CAS 

as a “super calculator”. As we have seen, the functionality required for the application 

of CAA is quite different and designers of CAA supplement the standard libraries 

with the appropriate extra functionality. It should be noted that a mainstream CAS 

is not required for CAA of algebraic or calculus questions. There are very many 

examples of highly mathematical CAA and computer based learning systems in 

which the authors replicate libraries of CAS-like functions, which represent and 

manipulate mathematical expressions. Hence, while they do not make use of a 

recognized mainstream CAS we would argue that they are in fact implementing 

computer algebra in its broadest sense.

Mathematically rich CAS functions are ideally suited to generating random 

versions of a particular problem within carefully structured question spaces. Worked 

solutions, with various steps, can similarly be constructed from templates. Such 

problems can be used for repeated practice or to reduce plagiarism and impersonation. 

Indeed, in the authors’ experience, so far CAS supported CAA has predominantly 

been used to provide traditional practice of routine techniques. Since many of the 

systems cited above originated in higher education they have also seen application 

to questions from linear algebra, vector calculus and differential equations.

It might be argued that since the CAS can perform simplifications and other 

calculations, the students should not be required to do so fluently themselves. Even 

if fluency in the actual calculations is not a high priority, basic competence will 

always be necessary and so some practice and routine manipulations will remain a 

valid application. However, by harnessing CAA within a learning cycle group work 

could be encouraged to aid understanding of a topic, with each student evidencing 

their own learning by completing their unique set of tasks. Often no one cares about 

the actual answer itself, and the numbers used in a typical mathematics question 

are themselves unimportant. The ability to randomly generate questions within 

constrained variation may be used to help students perceive the structure of the 

problem underlying that which their version represents. This embeds the experience 

of the student. The quotes that follow are taken from students’ course evaluation 

questionnaires conducted as part of routine quality audit of teaching.
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The questions are of the same style and want the same things but they are subtly different 

which means you can talk to a friend about a certain question but they cannot do it for you. 

You have to work it all out for yourself, which is good.

Given that CAS enabled CAA establishes properties, rather than simply checking 

for “the correct answer”, more questions with many correct/acceptable answers can be 

set and assessed. As an example, consider the following question. “Give an example 

of a function with a stationary point at x = 1”. To assess this, the CAS differentiates 

the student’s answer with respect to x, substitutes x = 1, and simplifies. Hence, 

there is an infinite family of correct responses and as one student commented:

Recognising […] the functions produced in question 2 was impressive, as there are a lot of 

functions […] and it would be difficult to simply input all possibilities to be recognized as 

answers.

More than one property can be requested, such as the following.

Give an example of a function with a stationary point at x = 2 and which is continuous but 

not differentiable at x = 0.

The CAS functions are used to establish whether the student’s answer (e.g. x(x − 4)) 

has each of the required properties. The screenshot shown in Fig. 10.1 is taken from 

the online system STACK, (http://www.stack.bham.ac.uk/).

In questions such as this the student must decide what properties are required, 

and then construct a mathematical object, such as a function, which satisfies them. 

The cognitive processes required are quite different from following or repeating a 

routine procedure given by the teacher. Of course, questions such as that shown in 

Fig. 10.1 could become routine: the context in which a question is set is crucial. 

However, the pedagogic potential for this style of question is well documented in 

the educational literature, for example Watson and Mason (2002) or Michener 

(1978). The work of Dahlberg and Housman (1997), suggests that it “might be 

beneficial to introduce students to new concepts by having them generate their own 

examples or having them decide whether teacher-provided candidates are examples 

or non-examples, before providing students examples and explanations” (p. 297).

Fig. 10.1 An example of an open task
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Such questions are usually absent from contemporary teaching, probably 

because of the practical constraints of time under which teachers operate. Using 

CAS-enabled CAA to assess such questions is considered in, for example, Sangwin 

(2005). It is readily acknowledged that the CAA described in this example only 

considers the final product and does not consider the solution process. Similarly, 

the pedagogic potential is related to generating and discussing examples and this 

requires integration within classroom practice.

10.2.2.2 Handling Geometric Figures

In a dynamic geometry environment, students can work directly on geometric 

figures. Some DG software (e.g. Cinderella and C.a.R.) allows teachers to set up 

assignments or exercises which can automatically check students’ constructions 

against specific requirements. A student can create a figure using whatever tools are 

provided and the geometric properties of the final figure are automatically examined. 

Once again, the focus will be put on the specified properties resulting from a range 

of possible constructions.

Even without sophisticated constructions, a students’ simple action of manipu-

lating a dynamic figure can already be a meaningful mode to demonstrate their 

understanding of geometric concepts. This can be illustrated in a web based testing 

and learning platform, Geometry in Clicks and Drags (http://geometry.eclass.hk). 

It consists of simple tasks in which students are required to manipulate dynamic 

geometric figures in order to show their understanding of certain geometric properties 

and relationships. Students taking the tests are not required to have any experience 

in using DG software for constructions. By dragging movable parts in a dynamic 

figure, students can modify certain properties of the figure and submit the figure 

resulted from their manipulations.

Figure 10. 2 shows screen shots of two such tasks. Task 1 requires students to 

rotate a movable point P through a right angle anticlockwise about the origin in a 

Fig. 10.2 Tasks 1 & 2
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coordinate plane. In task 2, students are required to drag the only movable point P to 

make a segment PE parallel to another segment CD. Some angle measurements are 

shown on the screen and will be continuously updated as P varies. In both cases, 

the point P can be dragged freely on the entire screen.

Note that in task 2, an answer cannot be obtained without any dragging to explore 

the figure. This is contrary to some students’ expectations in which an answer is 

obtained by calculation on paper and the dragging is just the final step to “input” the 

answer. In other words, for these students, the figure provided on the screen is not dif-

ferent from one shown on paper. One possible way to get an answer is shown in Fig. 

10.3. It is much easier to make PE parallel to CD by putting P on the segment BC.

While performing this kind of manipulation, students are essentially providing a 

specific configuration out of a more general one to create certain properties, based 

on whatever they are allowed to vary. In other words, among the given constraints, 

there is freedom to vary certain geometric properties. In the case of task 1, for 

example, the direction and distance of P from O are the critical properties to be 

considered and could freely vary according to students’ manipulations. While the 

CAA system can check the correctness of answers, it can also distinguish in what 

aspects and to what extent a wrong answer deviates from the correct one.

In task 2, in terms of the position of P, the answer is open, although in terms of 

inclination of PE, the answer is unique. In checking answers for this task, it is the 

angles involved, instead of the coordinates of P, which are being collected and 

processed by the CAA to determine whether PE is parallel to CD. The flexibility 

of DG behind the CAA in taking certain geometric properties in determining 

correctness of answers is more powerful than generic programmes in comparing 

students’ answers against teachers’ provided ones. Moreover, such power provides 

the basis for linking assessment to pedagogy.

For example, students’ submissions to task 2 are summarized in a table shown in 

Fig. 10.4, in terms of a numerical value representing the inclination of the variable 

Fig. 10.3 One solution to Task 2
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line in that figure. Meanwhile, clicking at individual submissions in the table will 

retrieve that student’s submitted figure in a pop-up window. Quickly browsing the 

answers in this way may help teachers to identify various approaches to this task.

In this CAA system, there are two distinct modes of assessments: evaluation and 

exploration. In the mode of evaluation, only one answer can be submitted by each 

student for each item; while in the mode of exploration, the number of submissions 

for each item is not limited. For example, task 2 can be set up in the exploration 

mode so that multiple submissions from the same student can be accepted. Note 

that the task is the same but the way the system stores and handles the answers will 

be altered. In doing so, students are encouraged to shift from considering individual 

answers to properties shared among a set of possible answers. This is in line with 

pedagogical strategies thoroughly explained and developed in Watson and Mason 

(2005), where the notion of moving from individual student’s generated examples 

(with respect to a learning task) to a “space of examples” plays a crucial role. For 

this kind of simple task, with the outcomes easily captured in terms of some critical 

parameters (such as coordinates, lengths or angle sizes), the CAA system can support 

exploration and analysis of relations among answers, which becomes more than 

merely a collection of answers. In Sect. 10.3 there are further examples showing 

how these collections of students’ answers can be represented and explored.

Fig. 10.4 Results of Task 2
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Randomly generated assessment items based on a set of parameters can also 

help to shift the attention from individual items to a class of items. Another web 

based CAA system, WIMS (Xiao 2000), described in the following section 

provides geometry exercises of this type. Examples given in this section can also 

be modified in this way. For example, in task 1, the given starting position of P can 

be randomly generated for each instance while keeping other aspects of the task 

unchanged. When gathering and analyzing the students’ results, a new dimension 

that can be explored is how the difficulty of the task may vary according to the 

initial position of the point to be rotated.

10.2.3 Generation of Feedback for Students and for Teachers

One advantage of CAA is the ability to provide feedback to the users: students 

and teachers. In case of summative assessment the feedback is a mark. It is this 

automation that permits a saving time for teachers who are more available for other 

tasks such as helping students rather than assessing them. Nevertheless, assessment 

allows information to be collected for students and teachers; we examine this type 

of information.

10.2.3.1 Qualitative Feedback for Formative Assessment

Producing relevant and helpful qualitative feedback is one of the major challenges 

of automatic formative assessment. Such feedback is seen to be a major benefit of 

CAA, since it is provided almost immediately, i.e. it is synchronous with the student’s 

work. If teachers wanted to provide such feedback it would be very time consuming 

and most probably would be asynchronous.

In CAA supported with either DG or a CAS the computer processes students’ 

answers to establish geometric/algebraic properties. Here DG tests geometric 

properties based on certain geometric relationships or measurements inside the figures. 

In both cases such properties might include establishing “correctness”, awarding 

partial credit if only a subset of the desired properties are satisfied, or examining 

whether the answer is the result of a common technical slip or known misconception. 

If the teacher knows, in advance, that certain misconceptions are common then the 

system can check if the answer appears to result from one of these. In this way, 

students’ answers are not just compared with teachers’ specified answers, but can be 

more meaningfully examined by the computer to find out what conditions are satisfied. 

That is a way to cope with partially correct answer. Let us imagine that a student is 

asked to attempt a classic integration problem. We shall assume for illustrative purposes 

that feedback is only to be generated at the end of their working process. If this student’s 

final answer is incorrect then feedback of the following type might be given.

The derivative of your answer should be equal to the function that you were asked to inte-

grate. However, the derivative of your answer with respect to x is …, so you must have done 

something wrong!
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Here, the … is automatically replaced by the derivative of the student’s answer, as 

calculated by the CAS. Such feedback is designed to encourage the students to check 

the result for themselves by differentiating. Feedback must be given in the context of 

the particular version of the random question the student attempted. It is an emblematic 

example of formative feedback because it induces the student to a metacognitive 

behaviour: developing control strategies. Many classes’ observations show that in 

classical exercises sessions, frequently teachers provide metacognitive information, 

and it is an important challenge to implement such appropriate hints in a CAA.

10.2.3.2 Cohort Achievement Data

In CAA it is usual for the system to automatically log all attempts and the  

associated outcomes. This generates a large dataset, both qualitative and quantitative. 

The advantages of being able to interrogate this data include the ability to easily see 

the numerical mark of each student on each exercise. In addition they may, depending 

on the system, know the length of time each student spent on each exercise and how 

many times it was attempted. In the case of randomly generated exercises they may 

search the results but group responses, not by student, but by information relevant 

to the random version. In this way, measures of question validity, a discrimination 

index and so on may be calculated automatically. For example, the system WIMS 

(Vandebrouck and Cazes 2005) builds two indices for a cohort of tertiary level 

students. The first concerns the efficiency. This is defined as the quotient of the total 

length of time spent on an exercise and the number of points achieved. The second 

index concerns the difficulty. This is the quotient of the number of times the 

exercise appears and the number of times students submit a result. Indeed, the more 

difficult the exercise the fewer students submit an answer. These indices allow the 

classification of exercises into three classes which approximate well those which 

teachers themselves anticipated in their a priori analysis. Yet, teachers seem to 

minimize the difficulties of each class, for instance, it appears that tasks of a low 

difficulty level, such as routine tasks or immediate applications, are not so immediate. 

In fact students need quite a long time to accomplish them. This phenomenon is 

emphasized because these tasks, due to their low difficulty level, are not often 

worked out in detail as examples by teachers.

When the CAA system records students’ incorrect answers it provides quantitative 

data linked to one specific exercise. It is then informative for teachers to analyse 

the frequent errors and a geometry example will be given below. It may also  

be possible for teachers to provide asynchronous feedback or even to anticipate them by 

explaining the origin of the difficulty. Due to the exercise’s format teachers see some 

errors that are invisible in traditional teaching. For example, Abboud-Blanchard 

et al, (2007), to solve an equation students have to choose between “multiply by…” 

or “add…”. The equation was 3x = 14. To some grade 9 pupils it was not obvious 

that divide by 3 was the same as multiply by 1/3 and hence it was not obvious to 

them that the multiplication tool was appropriate. In a subsequent interview, the teacher 

said she had not even anticipated this difficulty. She adds that in the classical lesson 
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if a pupil said “I divide by 3” she only said “Ok, very good” and never asked, “so 

you multiply by what?” She said that she will repeat this lesson next year, but she 

will emphasize this point at the beginning of the digital sheet.

The use of cohort achievement data to complete the learning cycle, and the use 

of CAA as a tool through which to deploy research instruments are comparatively 

under exploited by the educational research community. More work needs to be 

done in this area to fully understand and exploit the potential it offers.

10.3 Results of Actual CAA Use

This section reports on effective use of CAA in different ordinary classes. We shall 

see examples of tasks, students’ activity and their actual strategies. The end of the 

section discusses the limits of use of CAA and shows some cohort achievement 

data in geometry. We begin with examples from the WWW Interactive Multipurpose 

Server, WIMS (http://wims.auto.u-psud.fr). A collaborative project, available in six 

European languages, this was developed by French Professor Xiao Gang. It is a 

library of on-line interactive mathematics resources for all levels: from primary to 

tertiary education.

The exercise of Fig. 10.5 deals with knowledge about continuity and differenti-

ability of functions. Students have to recognize that the given functions are of class 

C1. Then it is enough to compute the limits and the derivatives of the two given 

restrictions and to equate the results. There are no specific suggestions for how 

students should complete this exercise. The expected answers are the numerical 

values a
1
 and a

2
. When students give a wrong answer, the computer provides the 

type of feedback shown in Fig. 10.6.

Fig. 10.5 Joint exercise in WIMS
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The feedback is in the graphical register, while the text of the exercise is in the 

analytic register. Thus the level of the task seems not be modified by the feedback, 

but the “milieu” is enriched with that new register. This feedback does not necessarily 

help students to find the solution; it provides another viewpoint that helps only if 

students have sufficient knowledge to connect both registers (to think, for example, 

of the link between derivative and the tangent’s slope). For this exercise, a random 

answer, or several successive attempts cannot lead to success without referring to the 

appropriate knowledge. Since most of these types of tasks are aimed at developing 

specific skills and concepts by working on randomly generated objects with a given 

set of parameters, students can practise repeatedly to improve their performance.

To solve the linear system shown in Fig. 10.7 students may choose between three 

options given in a panel: exchange the equations, add x times equation 1 to equation 2, 

or multiply equation 2 by a constant. Here the student’s focus of attention is solely 

directed to choosing the operations to be performed and the computer actually 

performs them. Directing the focus of attention in this way would not be possible in 

a traditional environment. It is designed to encourage the student to learn step-by-step. 

The system is not only looking for the correctness of the student’s final answer but 

also the rapidity with which the student can achieve this, as measured by the number 

of steps taken. In essence this device is much more directed by the formative aim of 

guiding the solution process and the efficiency of implementing this than by the 

summative aim of checking student’s knowledge. Another important feature of WIMS, 

also found in many other systems, allows registered teachers to manage and customize 

activities by setting parameters of the equation such as integer, rational or irrational.

Fig. 10.6 WIMS’ feedback for the joint exercise
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10.3.1 New Ways of Undertaking Mathematical Tasks

The examples of the previous section provide a small sample of the diversity of 

exercises currently available with mathematical CAA. So far we have concentrated 

on the type of task proposed. We emphasize the potential importance of open tasks 

(Fig. 10.1) and of new tasks especially in DG, such as shooting or plotting a point 

correctly (Figs. 10.2 and 10.9, below) or even partial tasks (Fig. 10.7). It would be 

either impossible to propose such exercises in a paper and pencil environment or so 

difficult that it is rarely done. Yet in context they have been found to be very useful 

as formative assessments to help students understand mathematics. And quantitative 

results obtain by tracking prove that students may work a long time to improve their 

performance on CAA exercises, (Cazes et al. 2006). A hypothetic explanation is 

that CAA modifies the didactic contract. In particular, for summative assessment 

students get immediate feedback that comes just in time, when students are really 

involved in the task. And for formative assessment students know that they cannot 

just wait until the solution is given. They must at least start to look for a result 

because they can never be sure that they will receive direct help from the teacher. 

Such qualitative results suggest a new relationship with mathematics is permitted 

by CAA. Indeed, ideally, students are immerged in a rich and reactive “milieu” 

in which they may form links between several registers. For example algebraic 

and graphic (e.g. joint exercises) or geometric and measure (see next exercises 

Figs. 10.9–10.12), or even specific and metacognitive (joint exercise or the exercise 

shown in Fig. 10.1). Students may also undertake experiments and make repeated 

attempts. Here, the CAA system may perhaps play the role of a partner providing 

helpful synchronous and customized feedback.

Moreover, CAA exercises do not ask for an academic proof but only for a correct 

result. What about the strategies used by student to solve them?

It is perhaps not surprising that new problem solving strategies appear. In the 

case of MCQ an eliminating strategy is possible, which is not specific to CAA or 

Fig. 10.7 Visual Gauss exercise
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to mathematics but is inherent in the MCQ format. Dissatisfaction with the efficacy 

of this strategy was a driver for the development of more sophisticated CAA in 

which the student’s answer is a mathematical object. Even if the student’s answer 

contains more substantial mathematical content a new strategy, linked to the feedback, 

is possible: trial and error. In many CAA systems students are permitted to have 

several attempts. In many cases it is not possible to guess, and so the most effective 

strategy is to consider carefully and correctly interpret the feedback. This is not so 

easy. For example, in the joint exercise of Fig. 10.5 the explicit clause of the contract 

is to find the values of the two parameters a
1
 and a

2
. There is also an implicit 

demand: using the feedback in the case of a wrong answer to find a correct strategy. 

In the context in which the question of Fig. 10.5 was set, it is very difficult: students 

were not explicitly taught a routine method. In the open task in calculus (Fig. 10.1) 

the feedback is very helpful. By providing the hint “think of the absolute value” the 

difficulty level of the exercise is radically changed.

These observations are confirmed by others researchers in their survey of the use 

of technology in mathematics courses in England. Ruthven and Henessy (2002) 

observed that working in class with CAA facilitate “trial and improvement” strategies 

for the students and helps teachers to organize sessions where the students can work 

at their own pace. Is the new “trial and error” strategy encouraged by this CAA 

more genuinely mathematical than the elimination strategy of the MCQ questions 

it replaces? Is an elimination strategy to be discouraged? Does this provide a new 

relationship with geometry and is “answer almost correct” an interesting didactic 

concept? At this stage it seems impossible to make general statements on these 

issues. However, the precise circumstance of the use of a question needs to be 

considered carefully by the teacher. In particular, any feedback should be designed 

by them accordingly for their particular student group. That is why an off-the-shelf 

CAA package is unlikely to provide a particularly satisfactory solution.

10.3.2 Limits and Difficulties of Using CAA

The focus so far has been on assessment of student’s answers. Randomly generating 

exercises has both benefits and pitfalls. Certainly students can train as long as they 

want on each exercise with new numerical values. However, students may develop 

some automatic strategy with no underlying mathematical reasoning. They may also 

become fatigued: practice needs to be effortful but of limited duration to be effective.

Currently the most significant drawback to CAA is that usually the only evidence 

on which to base the feedback is the final answer. It may be possible to find a correct 

answer, and hence accrue a good mark, but with no full mathematical understanding. 

As an example we consider Charles’s work on joint exercise from Fig. 10.6, which 

is studied through the log file. Overall he works for 32 min during which time he 

makes four attempts. For his first attempt, 9 min, he scores 5 out of 10, i.e. he only 

found the value a
1
. He quickly restarts the exercise and works for 13 min. This time 

he is fully correct (a mark of 10 out of 10). Next he restarts the exercise two additional 
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times, both for 5 min, and obtains full marks each time. He always reads the 

feedback, but only for a few seconds.

Since Charles succeeded during his second attempt, i.e. 22 min after starting, it 

is really quite a long time. We consider the analysis of the time spent to be very 

important to the teacher: 9, 13 min, and then two times 5 min. A similar exercise 

was proposed in the assessment at the end of the semester. The extract of his sheet 

is shown in Fig. 10.8.

Charles develops the expected reasoning for a
1
. He computes the right-hand and 

left-hand limits for each function and equates them. However, for a
2
, he computes the 

increment ratio. There is a gap between what is expected and Charles’ work. He did 

not use the most efficient technique, and this explains the length of time he spends on 

each exercise. The feedback and restarting the exercise are not sufficient to provide 

expert knowledge. Moreover, using the increment ratio is inefficient but actually 

works; and there is no limitation of time for that exercise. As anticipated in Sect. 10.3, 

the feedback does not change the task’s level. Adapted to the student’s answer, the 

feedback is likely to help connecting the graphical and the analytic registers. It can 

contribute to the elaboration by the student of a continuity and differentiability 

concept-image. However, in Charles’ case, such an effect cannot be observed.

Since nobody examined Charles’ personal strategy during the computer sessions 

he never received any advice on the most efficient method by the teacher. Hence, a 

correct answer does not mean either a correct or efficient method is used. These 

results are corroborated by other researchers. For example Gill and Greenhow (2008) 

report that “students spent far more time on the feedback than expected, resulting 

Fig. 10.8 Charles’ sheet
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in them being able to do only two or three questions in a 50-min test period rather 

than the five anticipated when writing the tests”.

When undertaking CAA, students need to interact with the machine, both to read 

mathematical text, on screen and to express themselves. In Dynamic Geometry the 

predominant mode of interaction is dragging. With other topics traditional written 

mathematical notation is used. This notation has evolved to be both communicative 

and as an aid calculation and thought. Regardless of their merits, these conventions 

have been embedded, probably irreversibly, by usage. On the other hand, when typing 

a mathematical expression into a computer keyboard the ability to take advantage 

of the features of traditional mathematical notation is severely limited. Essentially 

one has only a one-dimensional string of symbols taken from the limited alphabet 

found on, for example, Western computer keyboards. Translating mathematics into 

this limited format is a fundamental problem.

Computer scientists have addressed this problem by devising syntaxes to encode 

the meaning of an algebraic expression in a precise manner. These are used by a 

CAS, and indeed are used by students when using the CAS itself. However, 

there is a significant and surprising variety between implementations, even at the 

elementary level, see Ramsden and Sangwin (2007). Furthermore, few correspond 

closely to traditional notation. Whatever the benefits or drawbacks of notation in 

problem-solving and calculation, syntax has definite disadvantages if students 

taking tests are required to use it. Where that syntax uses conventions different 

from those underlying standard notation, the risk is that students’ answers will be 

graded “incorrect” for purely syntactical reasons, leading to students failing, as it 

were, on a technicality. This has particularly important implications for high stakes 

assessment. This issue is far from trivial, and indeed the problems persist even 

when a student is provided with a “drag and drop” equation editor type interface 

such as the DragMath applet (http://www.dragmath.bham.ac.uk). Is, for example, 

the CAA system to interpret x(t + 1) as a function application or an implied 

multiplication? While the experienced teacher may indeed be able to apply 

information from the context to disambiguate this, a CAA system is by its very 

nature strict and de-contextualized.

10.3.3  Interpreting Students’ Solutions in Simple  

Geometry Tasks

In the geometry examples described here, we see the possibilities of extending the 

modes of assessment when enhanced with technology. This is not just replication 

of tests in conventional written format. Even if only simple responses are required, 

such as choosing from a list of options or the input of a numerical value, students 

have to manipulate the dynamic figures in order to obtain relevant information. 

Therefore, the response at least partly reflects their understanding and interpretation 

of their interaction with the dynamic geometric objects. In some cases it is the result 

of their manipulation (probably dragging of movable points), or even their creation 
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of geometric objects, which directly serve as the output to be collected and 

processed by the computer.

We continue to elaborate on students’ behaviour in this environment by referring 

to some DG based testing reported in Lee et al. (2006). We focus on the minimal 

DG specific support, which allows students to drag movable points on the screen 

and provides real time measurements. This means that students are not required to 

make constructions using DG tools, and in fact prior experience of using DG is not 

assumed. Two of the test items are described below.

Figure 10.9a shows the initial configuration of a dynamic figure. It contains a 

movable line passing through a fixed point outside the screen. This can be controlled 

by dragging a movable point P. Students are asked to drag P so that the unknown 

angle a equals 120°. Measurements indicate that the lines at the top and bottom of 

the screen are parallel and therefore Fig. 10.9b should give the results required.

Figure 10.10a shows the results collected from 169 students. It indicates the 

distribution of horizontal position of point P submitted by the students. Most of them 

can put P at the correct position. Meanwhile, about one eighth of the students put P at 

an unexpected position shown in Fig. 10.11b. Lee et al. (2006) conducted observations 

and subsequent interviews with another small group of students doing the same test, 

trying to understand their strategies that were not available merely from the results 

of the test. For example, one student did consider the configuration in 11b at the 

beginning, paying attention to the two changing angles above a which did maintain a 

constant difference of 2° as P varied. He eventually chose the correct position after 

focusing on the parallel lines but not clearly deduced from the given angles of 84°.

Another test item is shown in Fig. 10.11a. Students are asked to drag the only 

movable point D in the figure to make at least one pair of parallel sides. They are 

also asked to give more than one answer if possible. The results are better presented 

as a scatter plot indicating all positions chosen by students for the movable point D 

(Fig. 10.12a). Although the item did not require two pairs of parallel sides, the majority 

of the students started considering a parallelogram (Fig. 10.11b). Figure 10.12a 

shows how the points cluster at the intersection of imaginary lines parallel to AB 

and BC. Interestingly, about 28 students chose a position along a third imaginary 

Fig. 10.9 Parallel lines
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Fig. 10.10 Student’s results for the parallel lines task

Fig. 10.11 Parallelogram task

line (dashed in Fig. 10.12a) that gave a pair of equal angles at A and C but no parallel 

sides. Correspondingly, in the later interviews, we observed students correctly making 

a parallelogram but explaining their choices based on the equal angles at A and C, 
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instead of any pair of supplementary interior angles. Their behaviour suggested that 

they were more attracted by the pair of changing angles in their reasoning than 

other information obtained in the figure.

These examples suggest some basic differences between dynamic and static 

figures when testing students’ simple geometry knowledge. The kinds of feedback 

provided by this dynamic environment may provide support as well as new 

demands for students. Meanwhile, responses gathered and processed automatically 

allow researchers and teachers to explore students’ conceptions at other levels.

10.4 Conclusions and the Future

The examples shown here rely on three specific CAA systems, but we believe these 

illustrate many of the current possibilities. We have seen very different types of 

tasks such as: open questions, new tasks like plotting a point correctly, or partial 

tasks such as solving a system by indicating the steps required. In the case of 

formative assessment, feedback may be adapted to the student’s answer especially 

in open tasks and may guide the student to the correct answer, or it may feed the 

“milieu” of the exercise. In the case of summative assessment, we saw that CAA 

systems permit a quick evaluation and a saving of time for the teacher. Lastly, 

evaluative assessment has been illustrated, especially in dynamic geometry. Some 

results pointed out both how much time students spend working on CAA tasks and 

the variety of their solving strategies. However, one of the roles of the teacher is to 

consider false or incomplete strategies.

Fig. 10.12 Results of the parallelogram task
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CAA is developing so rapidly that software development cycles overtake both 

annual teaching cycles and the ability to thoroughly evaluate particular initiatives 

and projects. This is deeply unsatisfactory but is an inescapable symptom of all 

contemporary technology. Furthermore, our students show immense sophistication 

with the use of technologies appealing to them, for example games and online 

communications. They reasonably expect institutions and their staff to keep pace 

with these changes. However not all CAA systems provide ready access to the 

teacher. In some the teacher has to be a system developer, writing computer code 

in obscure languages (e.g. Maple’s programming language) to implement questions. 

Some systems, e.g. WIMS, allow teachers to choose parameters in otherwise fixed 

items. This is technically robust, simple for the teacher but lacks some flexibility. 

Others give the teacher full control through a form interface, e.g. STACK. Here 

teachers can modify existing items, or write their own from scratch giving those 

with sufficient technical expertise complete autonomy. A more serious problem is 

that of engaging colleagues in the theoretical aspects of CAA in this environment 

of such rapid change. For example, Sangwin and Grove (2006) refer to colleagues 

as “neglected learners”. New CAA tools require new modes of thought and action 

on the part of institutions, teachers and students alike.

The strengths of CAA are the immediacy and mathematical sophistication of 

automatically generated feedback. Cohort data clearly has the potential to be better 

used by the teacher and for research. Currently only the final answer is available and 

future work needs to be done to combine existing “intelligent tutoring” systems with 

the best of the existing assessment technology. Being able to take account of steps 

in a calculation or ascertaining methods used both remain significant challenges. 

Unless the technical developments are guided by, and thoroughly investigated by 

independent educational research teams we risk missing the opportunity to embed 

significant improvements. Traditional approaches will be replicated in new formats.

It should be noted that the technologies we describe could be, and indeed often 

are, used simply to replicate in electronic form existing paper-based tasks. However 

this transposition from paper and pencil to digital environment is not transparent 

and the task is actually changed. The need to address emerging educational goals 

motivates the diversification of modes of assessment away from the traditional, 

dominant mode of timed paper-and-pencil tests. Technologies can support or even 

initiate such changes.
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Chapter 11

Technology, Communication,  

and Collaboration: Re-thinking  

Communities of Inquiry, Learning  

and Practice

Ruth Beatty and Vince Geiger

Abstract This chapter presents an overview of the role of technology in mathemat-

ics education within the framework of social learning theories. A review of past sub-

missions to ICMI sponsored activities over the last 20 suggests that social perspectives 

on teaching and learning with technology have become increasingly prevalent. 

A review of recent literature, such as the proceedings of ICMI 17, as well as broader 

research sources, adds further support to the view that there is growing interest among 

the mathematics education community in how digital technologies can enhance 

mathematics teaching and learning through attention to social aspects of coming to know 

and understand. Four typologies of digital technologies and their role in collaborative 

practice are identified: technologies designed for both mathematics and collaboration;  

technologies designed for mathematics; technologies designed for collaboration; 

and technologies designed for neither mathematics nor collaboration. As new technologies 

continue to be developed and refined, they offer new ways to construe communication, 

collaboration, and social interaction and thus change the availability and feasibility of 

different kinds of communities of practice. This has implications for both research 

and practice.
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11.1 Introduction

At the Ninth International Congress on Mathematics Education, held in Makuhari, 

Japan, Stephen Lerman, in an address to the congress titled The Socio-cultural Turn 

in Studying the Teaching and Learning of Mathematics (Lerman 2000a), stated:

It is taken for granted today that research on teaching and learning mathematics must take 
into account the social, historical and cultural milieu of schooling and pupils and of 
mathematics. (p.157)

and then further,

The term social turn in my title is intended to signal something different, however, namely 
the emergence into the mathematics education research community of theories that see 
meaning, thinking and reasoning as products of social activity. (p.157)

Lerman presents his position in this presentation, and in other work (e.g., 

Lerman 2000b) and it is hard to argue, from a general point of view, that the influence 

of a social perspective on teaching and learning is not apparent in educational 

research, school curriculum reform movements or in current advice in relation to 

improving pedagogical practice. But is this position true of all branches of research 

in mathematics education? In particular, has there been a noticeable shift in interest 

by those involved in the study of how digital technologies can enhance the learning 

and teaching of mathematics towards social aspects of acquiring knowledge and of 

meaning making in mathematics classrooms?

This paper will address this question by first providing a brief description of 

theories of intellectual development that view social activity as central to the process 

of learning and teaching. In Sect. 11.2, we review the proceedings of a selection of 

ICMI sponsored activities over the last 20 years, and consider current conceptions 

of the role of technology in collaborative mathematical practice. Four distinct 

typologies of digital technologies and the role they play in mediating collaborative 

activity are discussed in Sect. 11.3. Finally, we outline anticipated future developments, 

and conclude with some implications for future research.

11.1.1 Social Perspectives on Learning

Of the three theories of intellectual development that have had greatest influence on 

school classrooms since the turn of the last century, behaviorism, constructivism, 

and socio-culturalism, only socio-culturalism was conceived with social activity as 

a foundation for intellectual development. Those who subscribe to constructivist 

theories, however, may now argue that a role for social interaction has been incorpo-

rated into the reconceived theory of socio-constructivism. While there has been 

considerable debate about the legitimacy of this claim (see for example Cobb 1994; 

Lerman 1989, 1996) it is not the purpose of this paper to engage in this discussion 

or to attempt to resolve the dispute, and so research that incorporates the notion that 
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social life has a role to play in effective teaching and learning will not be excluded 

from consideration on the grounds of a particular theoretical position alone.

11.1.2 Socio-Constructivism

In response to the perceived shortcomings of behaviorism, a new class of theories 

was developed that collectively became known as cognitive theories of learning 

(Reynolds et al. 1996). These new theories sought to go beyond the behaviorists’ 

simplistic stimulus and response paradigm to explain the complexity of human 

thinking and cognitive development. Of the many theoretical frameworks that sit 

under the umbrella of cognitivism (e.g., schema theory, connectionism), it was the 

range of psychological theories that became known as constructivism that had the 

greatest influence on mathematics education (Confrey and Kazak 2006). The construc-

tivist position holds that learning is a process whereby the learner actively constructs 

symbolic representations of the world and uses interpretations of these representations 

to interact with the world (Noddings 1990). Fundamental to the constructivist 

understanding of intellectual growth is the Piagetian concept of disequilibrium or 

the cognitive conflict in which learners are engulfed when they encounter an idea 

that contradicts their current world view. From a constructivist perspective, intellec-

tual growth takes place when the learner is able to rearrange cognitive structures in 

order to make sense of phenomena that conflict with their existing understanding 

of the world.

While Lerman (2006) rejects “piagetian research and especially constructivist 

and radical constructivist research” (p.350) as part of the socio-cultural paradigm, 

others (see for example Cobb 2000; Cobb and Bauersfeld 1995; Cobb et al. 1992) 

have argued that social interaction has an important role to play in constructivist 

theories of learning. In this view, interaction is fundamental to the process of dis-

equilibrium as it is in social contexts that conflicting ideas between individuals may 

emerge (Palincsar 1998). Collaborative discussion also plays a role in the resolution 

of the conflict and its incorporation into new knowledge and meaning structures. 

While the role of tools per se receives less explicit attention in constructivist literature 

compared to writings in a socio-culturalist frame, cultural tools receive recognition 

as facilitators of cognitive conflict (Cobb 1995, 2002).

11.1.3 Socio-Culturalism

Unlike social constructivist perspectives, where cultural tools and social dynamics 

are seen as external supports to the construction of individual knowledge, socio-

cultural perspectives of learning emphasize the socially and culturally situated 

nature of learning. While the history of this social perspective on mind is long (see 

for example Valsiner and Veer 2000) seminal work in this area is generally attributed 
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to Vygotsky (e.g., Vygotsky and Cole 1978). Vygotsky emphasized the critical role 

of a student’s own activity in learning and thinking while at the same time arguing 

that all learning takes place within a social context. Thus, socio-cultural theory 

shifts attention from individual to social modes of thinking, and emphasizes the role of 

language in learning, both as a tool for thinking and as a medium for communication.

Lerman (2006) states that socio-cultural theory is based around the following 

assumptions:

• Conceptsappearfirstonthesocialplaneandonlysubsequentlyontheindividual

plane

• Theindividualplaneisformedthroughtheprocessofinternalization

He makes a clear distinction between socio-cultural theories and other theories that 

recognize the role of social interaction in learning on the basis of the alignment of 

theories (or not) with individualistic psychology.

From a Vygotskian perspective, as described by Luriia et al. (1979), there can 

be no strict separation of an individual from his or her social environment. In this 

view, cognitive development is the process of acquiring culture and so the individual 

and social must be regarded as complementary elements of a single interacting system.

Also central to socio-cultural theory is the principle that human action is medi-

ated by cultural tools and is fundamentally transformed in the process (Wertsch 

1985). These tools take the form of language, representations, and sign systems as 

well as physical artefacts. In the particular case of digital technologies, tools can 

be used to both amplify and reorganize cognitive processes through their integration 

into the practices of a community of learners. It is important to remember, however, 

that tool use must be incorporated into “structures of reasoning, and the forms of 

discourse that constrain and enable interactions within communities” (Resnick et al. 

1997; p. 3) and so learning is not just the accompanying changes to mental structures 

that result from tool use, but also the appropriation of methods of reasoning and 

discourse that incorporate tool use as recognized by the community of practice. Thus, 

the introduction of digital technologies into a learning environment represents 

challenges to the learner that go beyond the mastery of a tool to new modes of 

reasoning and action.

11.1.4 Communities of Practice

Drawing from the socio-cultural perspective, new views of learning have emerged 

including those of apprenticeship (Rogoff 1990) and participation (Lave and 

Wenger 1991; Wenger 1998; Wenger et al. 2002). In Cognition in Practice (Lave 

1988), Jean Lave challenged the notion that mathematical practices outside of 

schooling were merely the application of school mathematics. In a study of grocery 

shoppers and dieters, Lave observed that strategic decision making by the shoppers 

and dieters was heavily influenced by the contexts they were working in, that is, the 

knowing and processes for decision making were situated within a social milieu. 
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Consistent with that view Bishop (1988) argued that mathematics is a way of knowing 

that was culturally developed as a way of structuring a learner’s experience.

Building on Lave’s earlier work, Lave and Wenger (1991) described learning as 

a form of apprenticeship where novices are initiated into a learning community, or 

community of practice, through a process they termed “peripheral participation”.

A community of practice is a set of relations among persons, activity, and world, over time 
and in relation with other tangential and overlapping communities of practice. A commu-
nity of practice is an intrinsic condition for the existence of knowledge, not least because 
it provides the interpretive support necessary for making sense of its heritage. Thus, partici-
pation in the cultural practice in which any knowledge exists is an epistemological princi-
ple of learning. The social structure of this practice, its power relations, and its conditions 
for legitimacy define possibilities for learning. (Lave and Wenger 1991, p.98)

In their view, learning is not associated with the individual internalization of 

knowledge, but rather can be conceptualized as the degree to which a learner partici-

pates in a particular community of practice. Experts within the community, for 

example, teachers or more knowledgeable peers, are responsible for the induction 

of learners new to the community into the culture of that community including 

beliefs, values, modes of discourse and means and methods of knowledge creation. 

Judgments about learning are therefore based on the increased range of participation 

of the learner within the community.

Participation in the community of practice is seen by Lave (1996) as the mechanism 

for learning or becoming:

Rather than particular tools and techniques for learning as such, there are ways of becoming 
a participant, ways of participating, and ways in which participants and practices change. 
In any event, the learning of specific ways of participating differs in particular situated 
practices. The term “learning mechanism” diminishes in importance, in fact it may fall out 
altogether, as “mechanisms” disappear into practice. Mainly, people are becoming kinds of 
persons. (Lave 1996, p.157)

From this perspective mathematical activity is viewed as a process of enculturation 

into the modes and methods of knowledge creation, sharing, and validation, which 

characterize the practices of the community of that discipline (Goos et al. 1999). 

Students learning within a mathematical community of practice are expected to 

engage in debate about the validity of ideas and to defend positions or offer critique 

via explanations, justifications, and the provision of alternatives (Goos et al. 2000a).

Drawing on observations collected during a 2-year reform project of middle 

school mathematics classrooms aimed at fostering high-level thinking and problem-

solving skills for students from economically disadvantaged backgrounds, Foreman 

(1996) developed a comparison between the range of activity setting in traditional 

and reform classrooms, the latter, she argues, conducted according to community of 

practice principals. She found that students in reform classrooms participated in a 

wider range of activity settings than in traditional classrooms, where students had 

less opportunity to initiate topics, redirect discussion, provide elaborate explanations, 

or debate issues. Foreman contrasts this learning environment with a classroom 

conducted by a teacher, Mrs. Hanes, where the following interactional scripts were 

observed: whole class recitation lead by the teacher, whole class presentations lead 
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by one or more students, small group work lead by one or more students with the 

teacher’s intermittent assistance, individual seat work and unofficial peer group 

activities. Foreman further argues that the increased range of activity associated 

with reform classrooms brings with it new task demands, values, and purposes. She 

views the appropriation of these new demands as the instantiation of a community 

of practice where students initially participate peripherally. As students appropriate 

new skills, norms, and idea of the community, they move to greater participation in 

the community and so demonstrate their learning. However, she notes that some 

students can be resistant to this participation even when other students in the class-

room are working as a community. These students may demonstrate resistance to 

participating only within certain modes of interaction, for example, small group 

work, or may reject the collaborative norms of the classroom community altogether 

and remain passive and fail to contribute in any way.

11.1.5 Voice and Discourse

While Vygotsky provided new insight into the social aspects of learning, his 

description of the process of communication has been criticized for not reflecting 

the complexity of social discourse (Van Oers 2002), and in particular, the reciprocal 

nature of discursive negotiation as new ideas and meanings are explored. It is out 

of this concern that Bakhtin’s theory of voice and literature from the field of discourse 

have emerged.

Bakhtin’s theory of voice emphasizes the active, situated, and functional nature 

of speech as employed by various groups (Renshaw and Brown 1998). An act of 

communication, in this view, must always be constituted by a range of “voices” – 

the voice of the speaker but also traces of the voices of other members of the learning 

community who have previously used similar words or methods of argumentation 

acceptable to the community.

…we would say that people’s utterances in a communication process are not regulated by 
the processes that occur in direct interaction, but also by the historically developed style of 
communicating in that particular community of practice. (Van Oers 2002, p.68)

The development of such a voice allows members to recognize themselves as 

part of what Bakhtin called a sign community, in which a shared identity was manifest. 

The extent to which a speaker appropriates the style of communicating in the sign 

community can be used to make judgments about different levels of performance 

(e.g., explanation, justification, problem solution).

It is important to note the reciprocal nature of communication between the individual 

and the community. As the individual communicates in order to receive confirmation 

of their appropriation of the voice of the community, they may also progress the 

collective knowledge of the community and so change its voice. This constitutes 

development in the consciousness of the individual and also the collective.

This shift in focus away from views of learning as changes to the individual 

based on the acquisition of knowledge to a social view of learning that characterizes 
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intellectual development as change in the way one communicates with others is what 

characterizes the studies concerned with learning discourse – the basis of the field 

of discursive psychology (Kieran et al. 2002). In Sfard’s view (Sfard 2001, 2002; 

Sfard and Kieran 2001) learning mathematics is an initiation into a certain well-

defined discourse and she uses the metaphor “thinking-as-communicating” to frame 

her research. This discourse is reliant on symbolic artifacts as communication-

mediating tools and by meta-rules that regulate communication. Tools, and symbolic 

tools in particular (for example language, graphs, tables, algebraic formulae), are not 

viewed as simply the means of or media for communicating pre-existing knowledge, 

but rather tools are intertwined with the act of communicating and, therefore, of cog-

nition itself. Thus tools can be conceptualized as cognitive intermediatories for com-

munication within a community. Meta-discursive rules, on the other hand, guide the 

course of communicational activities within a community of learners.

Classroom studies based on the discursive field of collective argumentation 

(e.g., Brown and Renshaw 2000; Krummheuer 2007) have observed the greater 

range of communicative spaces available in classrooms conducted as a community 

of collaborative learners. In collective argumentation approaches, students are 

introduced to means of structuring classroom discourse aimed at the creation and 

sharing of knowledge – in the case of Brown and Renshaw to key words: represent, 

compare, explain, justify, agree, and validate – that facilitate students’ co-construction 

of understanding. Students often work in small groups to initially represent a task, 

compare their representations with other group members, explain and justify competing 

representations to each other, before presenting their group findings to the whole 

group for validation. Krummheur (2007) emphasizes the importance of maintaining 

flexibility in the process of argumentation. The teacher’s redirection of an argument 

away from what initially appears to be an unrelated path may result in a lost 

opportunity for the learning community to test and develop its capacity to self regulate, 

or to find an unexpected approach to solving a problem. Krummheur also cautions 

that too zealous an approach to directing the argumentation process brings with it 

the danger of lapsing into a transmissive mode of learning and teaching.

11.1.6 Distributed Cognition

Because the field of discourse focuses on the importance of language in the devel-

opment of consciousness, it places greater emphasis on semiotic tools, such as 

language and specialized symbolic systems, than it does on physical artifacts as 

mediators for learning and thinking. Despite studies that consider physical artifacts, 

such as computers, as having a vital role to play in supporting discourse and as a 

result intellectual development (see for example Cobb 2002; Kirschner and Erkens 

2007; Manouchehri 2004; McDonald et al. 2005; Pozzi et al. 1998), these tools do 

not appear to be given the same prominence as symbolic tools in theorizing the act 

of cognition.

An alternative theoretical perspective is that of distributed cognition in which 

cognition is not merely a social practice but an act distributed across individuals, 
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collectives, symbolic and physical artifacts, as well as symbolic, virtual, and physical 

environments. Drawing on aspects of Vygotskian socio-cultural theory and recog-

nizing the potential computer technology, Pea (1985, 1987, 1993) argues that 

humans are elements in a reasoning system that includes human minds, social 

contexts, and tools.

Hutchins’ (1995) account of the process of navigation on a naval vessel (as 

described by Cobb 2007) considers the whole navigation team, including all physical 

and symbolic tools, as the reasoning system that provides for the safe piloting of 

the vessel into port. Further, this reasoning system is constituted by elements that 

exist in the moment of the act, for example, the navigator and the ships guidance 

system, as well as by elements that preceded the event which led to the development 

of the processes of navigation and the physical artifacts used to navigate. This is 

because traces of the intelligence of other minds that developed the procedures that 

guide navigation and of those that designed the maps or guidance system used by 

the navigator remain in those procedures and devices.

Further, the role of tools, in Pea’s view, is more than an amplifier or extender of 

cognitive capability; tools can be used to reorganize mental processes, which in 

turn alter tasks as they were originally conceived.

Computers are commonly believed to change how effectively we do traditional tasks, 
amplifying or extending our capabilities, with the assumption that these tasks stay funda-
mentally the same. The central point I wish to make is quite different, namely, that a pri-
mary role for computers is changing the tasks we do by reorganizing our mental 
functioning, not only by amplifying it. (Pea 1985, p.168)

Thus the nature of this intelligence is not always predictable as it emerges from the 

activity that is shaping intelligence in the process of engaging with the activity. Please 

see Chap. 7 of this book for a more elaborated description of the work of Pea.

11.2  The Growth in Social Perspectives on Teaching  

and Learning with Technology

In order to benchmark, in a short paper, the validity of Lerman’s optimistic appraisal 

of a turn towards socially orientated theoretical frameworks in relation to the use of 

digital technologies, three ICMI sponsored events have been chosen across a span 

of some two decades. The first event, the initial event in ICMI’s seventeen studies 

to date, The Influence of Computers and Informatics on Mathematics and its 

Teaching, was chosen because it was in the mid-1980s that micro-computers were 

having their first significant impact in educational contexts. The proceedings of this 

event will be reviewed in order to establish a baseline for gauging interest in the 

role of digital technologies in promoting social aspects of learning at this early 

stage. The ninth ICME in 2000 was included because it was at this congress that 

Lerman made the observation that frames this paper. Finally, because it is the most 

recent study in this area, the proceedings of the symposium associated with ICMI’s 
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seventeenth study, Digital Technologies and Mathematics Teaching and Learning: 

Rethinking the Terrain, have been included in this review.

11.2.1 Early Accounts

The symposium, The Influence of Computers and Informatics on Mathematics and its 

Teaching (Churchhouse 1986), was organized under three themes, and the third, How 

can the use of computers help the teaching of mathematics?, is of relevance here.

The report on this theme opens with a discussion of what mathematics and math-

ematical activity might comprise in a future classroom. It was felt, in particular, that 

“the experimental aspects of mathematics assume greater prominence, and there is 

a corresponding wish to ensure that provision should be made for students to 

acquire skills in, and experience of, observing, exploring, forming insights and 

intuitions, making predictions, testing hypotheses, conducting trials, controlling 

variables, simulating, etc.” (p. 24–25). Curiously, despite a description of what we 

would consider now to be activities students might engage in as a group, there is no 

commentary of how students might work with each other, or how such interaction 

could promote learning.

Later in this section there is acknowledgement that technology has the potential 

to influence classroom dynamics as “this creates new interactions and relationships 

between student, knowledge, computer and teacher” (p. 25). The use of the singular 

“student” is a further indication, however, that interactions among students were 

not a concern at that time. The advantage of the computer was seen as supporting 

the development of mental images that would assist in the acquisition of mathemat-

ical concepts and processes within individuals.

11.2.2 A New Millennium

Despite Lerman’s optimism for the uptake of social perspective in education 

research articulated at the ninth ICME in 2000, the working group The Use of 

Technology in Mathematics Education provided only a modicum of support for his 

position. The reports of each subgroup of this theme reveal only one reference to 

the contribution of technology to the social aspects of learning. This appears within 

subgroup 4: Conceptual and professional development of learners and teachers in 

technologically rich classrooms, which notes “several informative empirical studies 

were presented that were routed in theoretical work in the socio-cultural perspective” 

(p. 277)

One such paper, Classroom voices: Technology enriched interactions in a community 

of mathematical practice (Goos et al. 2000b), theorized four roles for technology 

as a tool for amplifying students’ cognitive processes and reorganizing interactions 

between human and technological agencies. This paper demonstrates a clear association 
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with socio-cultural perspectives on teaching and learning but was only one of a very 

few of its type.

11.2.3 Current Climate

The 17th ICMI study, Digital Technologies and Mathematics Teaching and 

Learning: Rethinking the Terrain, provides greater support for Lerman’s optimism. 

The proceedings of this symposium were examined for indicators of a study’s 

alignment with a social theme. These included references to socio-cultural theory, 

collaboration, learning communities and classroom discourse. Of the 77 papers 

included in the proceedings, 14 papers were framed around these ideas or made 

direct reference to them in their theoretical frameworks. This represents 18% of the 

studies included in the symposium. Further, an additional ten papers were framed 

around, or made reference to, the theoretical position of instrumentalization. While 

it is arguable that this is a social perspective, the concept of semiotic mediation 

through technological tools is often traced to Vygotskian theories of intellectual 

development and by association socio-culturalism. If these papers are included in 

this analysis, then 31% could be considered to exhibit traces of educational theory 

related to the social aspects of learning and teaching. Considering either figure, and 

acknowledging the broad brush nature of the analysis, 18–31% of papers represents 

a noteworthy shift in the interest of this branch of mathematics education towards 

the social and supports the claims of Lerman 7 years earlier.

11.2.4  The Role of Technology in Collaborative  

Mathematical Practice

Despite this recent interest in social perspectives of learning with technology, a 

decade or so ago research into the role of technology in mathematics learning and 

teaching was a relatively recent activity and studies in the area were limited (Kaput 

and Thompson 1994). There now exists a vast corpus of literature that draws upon 

a wide range of theoretical perspectives in an attempt to explain phenomena associated 

with learning and teaching mathematics within technology influenced environments 

(Hoyles and Noss 2003). Over this time a number of authors have attempted to 

define the territory.

Taylor, for example, (1981) suggested three ways in which technology, specifically 

computers, is used in education as a tutor, as a tutee, and as a tool. See Chap. 2 of 

this book section for a further elaboration of the tutor-tutee-tool dimension.

While Taylor’s framework is a useful starting point to theorizing the role of 

computers in teaching and learning mathematics, in particular identifying the computer 

as a tool that can enhance the capabilities of humans, there is no attempt to discriminate 
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between how technology might be used by individuals or groups of learners. 

Building on Taylor’s commentary, Willis and Kissane (1989) have also added the 

category of Computer as a Catalyst. In this mode the computing environment is 

used as a means of provoking mathematical explorations and discussion or invoking 

the use of problem solving skills. This addition recognizes the potential of technology 

to support learning-focused interaction between students and suggests a meditative 

role for technology in learning.

The metaphor of Computer as a Catalyst is further extended by Goos and 

Cretchley (2004) in a review of the role of technology in mathematics education 

in the Australasian region. Their development of the metaphor further refines the 

view of the computer as a tool and catalyst for visualization, higher order think-

ing, and collaboration. While it is important to recognize that the three categories 

listed here are far from unrelated, this typography is useful to identify the primary 

focus of the research reviewed by these authors. Significantly, from the perspec-

tive of this chapter, the identification of the role of technology in fostering or in 

mediating collaboration is noteworthy. In particular, Goos and Cretchley observe 

that the role of technology in supporting students’ knowledge building in a math-

ematical community of learners, such as in studies of Computer Supported 

Collaborative Learning (CSCL), has recently emerged as a significant theme for 

research.

Computer-supported collaborative learning (CSCL) is a fast-growing interna-

tional field of research focusing on how technology can facilitate the sharing and 

creation of knowledge and expertise through peer interaction and group learning 

processes (Resta and Laferriere 2007). Typically, CSCL is built around a database 

to which members of a specific CSCL community share their developing understandings 

of an idea, concept, or topic through text, graphics, or other means. The paradigm 

of CSCL grew out of research on the demonstrated advantages for individual learning 

of working in groups (e.g., Johnson and Johnson 1989), and CSCL environments 

include web-based platforms, forums, and videoconferencing systems that allow both 

synchronous and asynchronous interaction, facilitating communication between 

temporally and/or geographically distributed participants.

Only recently have researchers begun to evaluate the particular affordances of 

this approach to teaching and learning, and to examine more closely what is 

uniquely feasible with new technologies that extend beyond supporting the devel-

opment of peer-to-peer discourse. Studies have focused on the potential of technol-

ogy to afford genuine collaborative efforts defined by Harasim et al. (1995) as “a 

learning process where two or more people work together to create meaning, 

explore a topic, or improve skills” by providing opportunities for exposure to mul-

tiple perspectives and interpretations (Koschmann 1994). Researchers have begun 

to identify the opportunities technology offers for the processes of sharing, critiqu-

ing, exchanging, and debating ideas as a way of developing both community 

knowledge and participating individual’s understanding (e.g., Scardamalia and 

Bereiter 1996, 2003) and how technology can support qualitatively different learn-

ing environments (group cognition, collaborative knowledge building) (Resta and 

Laferrier 2007).
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Stahl (2006) outlines some considerations with respect to technological tools 

necessary for the establishment of collaborative communities:

1. The use of cognitive tools by a collaborative community takes place through 

many-to-many interactions among people.

2. The cognition that the tools foster is inseparable from the collaboration that they 

support.

3. The relevant cognition is the group cognition; this is a linguistic phenomenon 

that takes place in discourse rather than a psychological phenomenon that takes 

place in an individuals mind.

4. The tools may be more like communication media than like hand calculators – 

they do not simply amplify individual cognitive abilities, they make possible 

specific forms of group interaction.

5. Rather than being relatively simple physical artifacts, tools for communities may 

be complex infrastructures.

This emerging field has underpinned studies specifically examining the support of 

computers for collaboration in mathematics learning.

11.3  Different Technological Typologies for Fostering 

Communication, Collaboration, and Communities  

of Inquiry

Taking socio-cultural perspectives of learning, we were particularly interested in 

identifying emergent roles of technology within the current range of pedagogical 

contexts. In particular, we were interested to identify research of technology as a 

support to communication and interaction, and the shift from classrooms as simply 

a collection of individuals towards classrooms as mathematical communities of 

inquiry – recognizing the importance of participation in communities of practice/

learning (Lave and Wenger 1991).

In order to start to identify these roles, we began with a survey of papers from 

ICMI 17 to determine current practices. The goal of this section is to provide an 

overview of our findings. In particular, we outline four typologies of how different 

types of technology are designed and utilized to support the paradigm of discourse 

communities – intellectual communities of practice – where students engage in mathe-

matics as a joint experience. These include technologies designed for:

1. Both learning mathematics and collaboration

2. Learning mathematics but not specifically for collaboration

3. Collaboration but not necessarily learning mathematics

4. Neither learning mathematics nor collaboration

We present each of the four typologies below with representative reports from the 

ICMI 17 Study, and selected articles from the broader research literature.
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11.3.1  Technologies Designed for Both Mathematics  

and Collaboration

This typology includes tools with the facility for learners to work with mathemati-

cal concepts in a virtual environment that specifically includes a component 

designed for communication. In all the examples given below, the intention under-

lying the technology is the development of mathematical understanding through 

elicited student discussion. These studies examined the affordances of using com-

puter-based tasks to mediate collaborative interactions, either in multi-site online 

interactions via the internet, or face-to-face in small group or whole group class-

room-based settings.

11.3.1.1 Internet-Based Networks

From the ICMI 17 Study, technologies of the former type include the Space 

Travel Games Construction Kit developed by Kahn et al. (2006). In this simula-

tion of computer game development, participants were provided with a construc-

tion kit comprised of small program fragments together with tools for 

customizing and composing them. This activity was designed to take place 

within the context of a metagame where learners are presented with a goal and 

need to interact with other members of their team in order to share components 

and acquire the knowledge to proceed. A component of this knowledge is math-

ematical in nature and so learners acquire this mathematical knowledge through 

interaction with peers.

Similar projects include the WebLabs (Simpson et al. 2006) and Playground 

Projects (Noss et al. 2002). In the Playgrounds Project, young students (ages 6–8) 

from various European Union (EU) countries worked in web-based programmable 

microworlds to collaborate on a variety of activities, including videogame construction, 

as a means of exploring domains such as numeric sequences, cardinality, and 

probabilistic thinking. Participants were able to communicate using two-way video, 

text messages, and the exchange of videogame program components within the 

programming environment Toontalk. For these younger children, the challenge of 

interactively designing computer games by engaging in both face-to-face and distanced 

collaboration allowed them to develop an understanding of the formalized rules that 

underpinned the components of the games, and these mathematical understandings 

were expressed as collaboratively built models. Time constraints on the project 

itself did not allow for the inclusion of an inter-site asynchronous communication 

platform. This was later integrated in the WebLabs Project, which involved older 

students (ages 13–15) who took part in the same kind of learning through program 

design/modification of mathematical models. In addition, this project included an 

asynchronous web-based communication/collaboration platform, WebReports, so 

that students from several EU countries could both communicate about their ideas 



264 R. Beatty and V. Geiger

and collaborate on the building of specific programs/models by sharing program 

modules through Toontalks. The findings suggest that on-line sharing of ideas, 

coupled with the ability to share models for collaborative construction/modification, 

not only increased students’ motivation to work on mathematical problems, but also 

supported students’ developing understanding of formalization and mathematical 

structure. “Mathematical ideas, expressed, and shared as models, can become the 

subject of reflection and discussion, and how this dialogue can begin to construct 

some rich understandings of mathematics that foreground its structure and the properties 

that follow from it” (Noss and Hoyles 2006; p. 21).

11.3.1.2 Classroom-Based Networks

In contrast to studies of multi-site on-line collaboration, a growing community of 

researchers (e.g., Stroup et al. 2002) has written about the potential of connective 

technology specifically developed to allow within-class exchanges of mathematical 

objects among students and teachers. These technologies integrate face-to-face 

interaction with the mediation afforded by a technology-based system as students 

work on a common task. Connective network components are made up of both a 

social component – face-to-face interaction, and a technological component – interaction 

between students and handhelds, or interaction between handhelds.

Investigators have looked at the affordance of combining dynamic computer-

based representations and connectivity technology as students engage in teacher-led 

real-time comparisons of aggregated student solutions that served as the basis for 

rich discussions. One example of this kind of interactive learning environment is 

participatory simulations software such as HubNet (Wilensky and Stroup 1999, 

2000), through which participants act as individual agents and observe how the 

behavior of dynamic systems as a whole emerge from individual elements. Another 

example of a different kind of public display of collective information is the 

SimCalc Math Worlds Project, (Roschelle et al. 2000; Roschelle et al. 2003; Hegedus 

and Kaput 2003, 2004). Students work with linked devices, allowing for aggregated 

representations of mathematical objects (e.g., linear functions) that are shaped and 

formed by multiple contributions and become the focus of shared attention for 

classroom discussion.

One consideration for supporting collaborative interaction is the topology of 

connective systems. In one topological model student messages travel only to and 

from the teacher hub, which supports teacher-led discussion and communication of 

artefacts, but which may not necessarily promote true collaborative inquiry given 

that the teacher leads the discussion, and that the group size (i.e., whole class) may 

be too large to allow for sustained collaborative discussion (White 2006). Another 

typology links small groups of students who share information between handhelds 

to collaboratively complete specific tasks. White’s 2006 study demonstrated how 

adding a small-group networked component increased the opportunities students 

had to participate in classroom collaboration. In this study, middle school students 

engaged in collaborative problem solving about mathematical functions using connected 
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devices linked through a local wireless network. Each student’s device displayed 

different representations of linear functions (either tabular or graphic). Students 

were assigned specific roles within their group while working to integrate the multiple 

representations. White found that both the use of networked handhelds and the 

assignment of specific task roles increased student participation and their learning 

of functions.

In a study with younger students, (Zurita and Nussbaum 2007) 6 and 7 year olds 

worked in groups of three or five to transmit mathematical information between 

handhelds in order to carry out operations on whole numbers to reach certain “goal 

numbers”. In this study, students were responsible for facilitating the successful 

outcome for all group members, and this collaborative disposition was underpinned 

by the self-coordination of the entire group through the wireless network. The results 

showed that students increased both their knowledge of basic mathematical operations 

with whole numbers, and their motivation to engage in collaborative mathematical 

activity.

11.3.1.3 Non-networked Software

This category includes technologies that have been designed to be used as the focal 

point for mathematical collaboration, but which do not necessarily include collabo-

rative interface or connective technological components. In these studies, researchers 

included computer-based environments to act as the mediator of social interaction 

between student peers (with and without teachers) – the medium through which 

shared mathematical expression could be constructed and mathematical understandings 

enhanced (Pijls et al. 2007; Sinclair 2005; Lavy and Leron 2004; Vidakovic and 

Martin 2004; Manouchehri 2004). The software, therefore, serves a communicative 

function through which individual student meanings can be made explicit and open 

to negotiation.

An example of this is the computer Tools for Interactive Mathematical Activity 

(TIMA) project, designed to facilitate dyadic peer-to-peer and triadic teacher-student-

student discussions as elementary students (K-8) engaged with a variety of computer-

based activities (Olive 2000). These activities allowed participants the possibility 

of enacting mathematical operations on whole numbers and fractions, which were 

represented as on-screen manipulatives analogous to their real-world counter-

parts (beads, sticks, and fraction bars – see Chap. 3 of Theme C for a more detailed 

description of the TIMA). Olive found that the process of interacting with the on-

screen manipulatives became the impetus for collaborative “games” underpinned by 

mathematical operations, and that the combination of interaction with and within the 

microworld and problem-solving communication brought forth students’ mathemati-

cal reasoning. Other studies, such as Groupwork with Computers (Healy et al. 1995) 

assessed the potential of computer software to facilitate collaborative discussion in 

larger groups while engaged in computer-based mathematical tasks. In this study, 

9–12-year-old students worked in groups of six on Logo-based math tasks designed to 

allow students to work together to “express and debug” their own conjectures.
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Results from both these studies reflect the complexity of integrating PC-based 

software as a means of developing mathematical understanding. In both studies, the 

authors emphasize the need to consider the interaction between the pedagogical 

intentions underlying the design of computational environments, the children’s responses 

to these environments, and the teacher’s understanding of the epistemological and 

pedagogical goals of the software in order to successfully contribute to the develop-

ment of children’s mathematical thinking. However, the authors also conclude that 

discussion facilitated through joint engagement in computer-based activities led to 

robust conceptual mathematical understanding.

11.3.2  Technologies Designed for Mathematics  

but Not Specifically for Collaboration

Technologies in this category include those that were designed specifically for 

working with mathematical ideas but were not specifically designed for the promo-

tion of social interaction. Studies include research incorporating devices such as 

graphics calculators and mathematically enabled software, for example, Maple, 

Derive, Cabri Géomètre and Geometer’s Sketchpad, SPSS, and Excel in which 

authors have explicitly identified collaborative aspects present in:

• Theco-construction,bystudentsandteachers,oftheuseofatoolinmathematical

meaning making

• Mathematical meaning making in which technology mediates interaction and

learning in small group contexts

• Theuseoftechnologytostimulateconjectureanddebateinwholeclassdiscussion

Working from a theoretical perspective in which psychological aspects of learning are 

coordinated with social aspects through students’ interaction with tasks, each other 

and their teacher, Doerr and Zangor (2000) studied the co-construction, by the 

students and the teacher, of the graphics calculator as a tool for mathematical learning. 

As a critical aspect of the social context of the classroom in which this co-construction 

took place, the emergent norms for tool usage were also examined. In a case study 

of pre-calculus classrooms five modes of graphics calculator use were identified:

• Computational tool – where the calculator was routinely used by students to

evaluate numerical expressions

• Transformational tool – where tedious computational tasks were transformed

into interpretative tasks by focusing students’ efforts on the interpretation of 

results rather than on any associate computation

• Datacollectionandanalysistool–herethecalculatorwasusedasatoolfordata

collection through the use of peripheral devices such as motion detectors, and 

the analysis of such data sets

• Visualization tool– thecalculatorherewasused todevelopvisualparameter

matching strategies to find equations that fit data sets, find appropriate views of 
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the graph and determine the nature of the underlying structure of the function, 

link the visual representation to the physical phenomena, solve equations

• Checking tool–where thecalculatorwasused tocheckconjecturesmadeby

students as they engaged with the problem investigations

Interestingly, despite the collaborative nature of the co-construction of the tool by 

all classroom participants, Doerr and Zangor found that the tendency for the use of 

the graphics calculator as a private device regularly led to the breakdown of small 

group interactions. When this occurred, it also led to the disruption of the classes’ 

collective endeavour to engage with a whole class task.

While this typography describes students’ use of technology in a classroom 

environment it does not outline the role of technology as a mediating tool or make 

provision for the role of interaction and discourse in developing mathematical 

understanding as would be expected in collaborative environments.

In a series of papers written from the French curriculum context (for example, 

Artigue 2002; Guin and Trouche 1999; Trouche 2003) an instrumental approach to 

viewing students’ activity in technology enhanced environments was developed 

(see Chap. 2 of this book for an extensive description of this approach). This 

approach describes the process of instrumental genesis in which the possibilities 

and constraints shape the conceptual development of the user, while at the same 

time the user’s conceptualization of the artefact and thus its instrumentation lead, 

in some cases, to the user changing the instrument (Drijvers and Gravemeijer 

2005). Social aspects of learning are recognised within the process of instrumental 

orchestration (Trouche 2003, 2005) and take the form of student activity where 

explicit schemas individuals have developed are shared with a small group or whole 

class. These schemas are thus available for appropriation by other class members. 

Thus utilisation schemas are essentially individual even though instrumental genesis 

may take place through a social process (Drijvers and Gravemeijer 2005).

An alternative construct for the way in which student learning is related to col-

laborative uses of technology is argued in a series of studies by Galbraith, Renshaw, 

Goos, and Geiger (Galbraith et al. 1999; Geiger 2005; Goos et al. 2000a, 2003). 

In their typography of students’ use of technology, two levels, technology as partner 

and technology as extension-of-self, are related to student–student–teacher collabo-

rative mathematic practice. This series of studies also provides evidence that technology 

can have a role in mediating classroom communities of inquiry in which the roles 

of teaches students and technology are integrated seamlessly in a classroom learning 

environment.

By contrast with the findings of Doerr and Zangor, Goos et al. observed that 

graphics calculators, as well as computers, could facilitate communication and 

sharing of knowledge in both private and public settings. In these cases students 

interacted both with and around the technology; for example, the calculator became 

a stimulus for, and partner in, face-to-face discussions when students worked 

together in small groups, or in the case of mediating whole class discussion, 

through the use of a view screen in which students were used to co-construct mathe-

matical ideas and concepts with very little input from their teacher.
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In a study involving undergraduate preservice teachers using NuCalc, an interactive 

algebra application, Manouchehri (2004) found an increase in the quality of math-

ematical explanations students offered during discussions, both in terms of complexity 

and mathematical content, while using NuCalc as compared to previous discussions 

that were not supported by any specific software. Four ways that the software supported 

discourse were identified:

1. Tool for assisting peers in constructing more sophisticated math explanations

2. Motivated engagement and increased participation in group inquiry

3. Mediated discourse resulting in a significant increase in the number of collaborative 

explanations constructed

4. Shifted the pattern of interaction from teacher to peer driven.

Further, Manouchehri concluded that because of the immediacy of feedback to students 

the software also supported a culture of conjecturing, testing, and verifying, formalizing 

mathematics and collaboration, and shifting the locus of power to the students.

11.3.3  Technologies Designed for Collaboration  

but Not Necessarily Mathematics

Technologies in this category include Information and Communication Technologies 

(ICTs), specifically, computer-mediated networked databases built to support social 

interaction, cooperation, and collaboration for learning and knowledge building. 

ICT systems can allow synchronous or asynchronous communication, can provide 

archival storage for the products of the connected group, and can enable learners to 

model, communicate, and document their shared understanding of new concepts. 

A central tenet of ICT-based epistemology is an understanding that it is not so much 

the individual student who learns and thinks as it is the collaborative group (Stahl 

2005; p.79). Meaning making occurs in the context of joint activity (Koschmann 

2002) – the inter-subjective construction of shared meanings achieved through 

group interaction (Stahl, p.82).

In the domain of mathematics education, there are two main areas of study that 

have included ICT technology. The first are those studies in which ICT is used in 

conjunction with classroom-based teaching in order to enhance the learning envi-

ronment. These include studies of technology to support asynchronous and synchro-

nous communication between students on-campus as well as those who are 

geographically distributed. In their 2007 review of ICT technology, Resta and 

Laferriere identify three primary aims of these kinds of studies including (1) to see 

how these environments support collaboration between students to enhance their 

learning processes (Kreijns et al. 2003); (2) facilitate collective learning (Pea 1994) 

or group cognition (Stahl 2006); and/or (3) to foster student engagement and keep 

track of student collaborative work and online written discourse (Stahl 2006).

The second area of study concerns the use of ICT in distance learning courses as the 

sole conduit for teaching (communication from teacher to learner) and communication 
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(between teacher and learners, and between learners), to allow for flexibility in creating 

working groups that are not bound by proximity of time and/or space.

11.3.3.1 Enhancing the Learning Environment

Examples of Enhanced Learning ICT research reported at ICMI 17 include a study by 

Beatty and Moss (2006), of their research in the use of a web-based collaborative 

workspace, Knowledge Forum (KF) (Scardamalia and Bereiter 1994), to support Grade 

4 students in generalizing with patterns as part of a teaching intervention in early 

algebra. In this study, KF was utilized after students had participated in a 12-lesson 

instructional sequence to determine how engaging in collaborative problem solving on 

the database would further develop their abilities to work with patterns and functions. 

The investigation revealed that the opportunity to work on a student-managed database 

benefited students by providing them with access to each other’s theories and per-

spectives on the problems posed, and thus supported them in developing an under-

standing of algebraic rules for patterns. Because students were restricted to 

communicating their ideas to one another via a text-based discourse platform, the structure 

of this communication necessarily became precise and, subsequently, formalized. Students 

negotiated theories, questioned one another’s theories, elaborated on their thinking and 

compared ideas. Students developed a community of practice in which the offering of 

evidence and justification for their conjectures became the norm, and this in turn 

supported students’ deepening conceptual understanding both of mathematical functions, 

and the role of justifying (a precursor to proving) in mathematical discussions.

Another study by Kramarski (2006) evaluated the effects of software designed 

to display metacognitive prompts during problem solving. In the study, based on a 

study by Kramarski and Hirsch (2003) with Self-Regulated Learning within a CAS 

environment, a database was set up for 9th grade students with two kinds of scaf-

folds (1) scaffolds to assist students in self-regulating their cognition, motivation, 

and behavior while collaborating on problem solving; and (2) instructions of how 

to provide mathematical explanations. Both online supports led to an increase in 

students’ abilities to successfully problem solve and provide mathematical explana-

tions, which suggests that the explicit guidance given heightened the level of stu-

dents’ online discourse, and that this consequently increased their ability to engage 

in deeper mathematical reasoning.

Similar results from the mathematics literature indicate that students’ need to 

clearly communicate their theories in asynchronous discussions results in enhanced 

levels of mathematical discussion (Jarvela and Hakkinen 2002) and mathematical 

understanding (Nason and Woodruff 2003; Hurme and Jarvela 2005). In these studies, 

whole group peer – peer discussions were conducted without the presence of a teacher 

voice on the database, so that students took on the responsibility for monitoring, 

critiquing, refining, and justifying their own and each other’s problem solutions.

In all these studies, the activities that took place on the database provided an 

additional collaborative communication space that enhanced, but differed from, 

classroom-based collaborative work. Online, all participating students had an 
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opportunity to enter solutions by contributing text (and in some cases, graphic) 

notes, and participate in discussions by responding to questions, providing, and 

building onto ideas and offering or critiquing findings. Through constructively 

commenting on offered solutions, students engaged in a process of revising and 

improving both their own and others’ initial ideas, and so were effective in facilitating 

the construction of complex conceptual artifacts.

Generally in these studies the discourse space was student-managed – students 

learned with and from peers, which has been shown to be effective (Cohen 1994; 

Good et al. 1992). Historical problems linked to peer learning, such as the disparity 

regarding status and the associated quality and quantity of interactive contributions 

between low and high achieving students, were somewhat alleviated by having 

students take part in online asynchronous collaborative discussions – particularly 

when collaboration was between classrooms where participants had not met other 

than through notes posted in the database (Moss et al. 2008).

One limitation that has been noted with respect to using ICT technologies in the 

domain of mathematics learning is the need to find problems that elicit sustained 

meaningful knowledge building discourse, with the suggestion that non-conventional 

and ill-structured tasks should be used as they have the potential to allow students 

to engage in sustained problem solving within the ICT environment. This in turn 

enriches the authenticity of students’ mathematical activity and their understanding 

about the nature of mathematical discourse (Nason and Woodruff 2003).

ICT and its abilities to archive discussions offers researchers a way of further 

studying distributed cognition. For example, Stahl utilized an online discourse plat-

form, Math Forum, to further study the feasibility of studying “group knowledge”, 

how group knowledge can be constructed in discourse, and how discourse analysis 

can make visible that knowledge to researchers (Stahl 2005; p.86). The focus of 

Virtual Math Teams Project (Stahl 2006), was to determine how groups of three to 

six middle- or high-school students build knowledge in a synchronous online com-

munity as they discuss mathematics in online chat rooms. In this study, students 

participated in synchronous discussions, and were also able to access and use a 

shared whiteboard for drawing geometric figures and for archiving and displaying 

contributed notes. The goal of the project was to generate empirical examples of 

concrete situations in which groups can be seen to have knowledge that is distinct 

from the knowledge of the individual group members.

11.3.3.2 Distance Learning

Distance learning is defined by the National Science Foundation (NSF) (2000) as 

education where learning occurs all or most of the time in a different place from 

teaching, and the principal means of communication between learners and teachers 

is through technology. One of the fastest growing modes of delivery is the use of 

internet-based ICT to deliver courses based on synchronous, asynchronous, or 

both synchronous and asynchronous communication where instructors and students 

are not present at the same location at the same time (Spiceland and Hawkins 2002).
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Technologically supported distance learning represents a relatively new model 

for delivering courses to students. As this model continues to be more popular, 

researchers are now looking at the relationship between distance (time and space) 

and learning. In a study conducted by Simonsen and Banfield (2006) with 25 secondary 

mathematics teachers, the authors were interested in researching the quality, nature, 

and impact of asynchronous mathematical discussions that occur in distance learning 

courses, since in these courses students are virtually encouraged to take part in 

some level of mathematical discussion as a requirement of the course. They concluded 

that participating in asynchronous discussions supported high levels of sophisti-

cated mathematical discourse. This in turn supported the construction of mathematical 

knowledge. The authors acknowledge that there is a need to examine the cognitive 

development of students involved in online learning, and the relationship between 

the quality of the discourse and students’ success in the course.

Borba (2005) has utilized both synchronous and asynchronous forms of distance 

communication in online courses for mathematics teachers in Brazil, and in connecting 

Brazilian teachers with colleagues in other countries. Borba incorporates scheduled 

online chat sessions and asynchronous email discussions in order to research the 

kinds of communication that emerge in these environments, and how these differ 

from the kinds of knowledge that are developed from other media (such as pencil and 

paper). Mathematics that is done through synchronous chats on the internet differ 

from the mathematics that is conducted in face-to-face classroom settings as writing 

in non-mathematical language becomes an integral part of “doing” mathematics

It is important to note that distance learning is not just for students who elect to 

take online courses because of time/distance constraints. The impetus for developing 

internet-based courses in Borba’s studies came from a desire to redress the social 

inequalities in Brazil, and to connect teachers living in remote parts of the country 

to research centers and universities. Sloan and Olive (2006) discuss how crucial 

distance learning is for rural schools in the US, particularly given that almost one 

third of US children are educated in rural schools. The authors equate the needs of 

rural US students to those of students attending schools in developing nations with 

respect to limited funds and/or remote geographic locations. Surveys show that for 

students in rural and economically stagnant areas, distance learning is important for 

gaining access to advanced mathematics courses, and that 46% of rural districts 

provide distance learning courses and utilize various modes of delivery including 

two-way interactive video and internet web-based courses. The authors outline the 

kinds of ongoing investment needed to continue to develop effective distance learn-

ing, including teacher professional development, and resources (money, hardware).

11.3.4  Technologies Designed for Neither Mathematics  

nor Collaboration

Finally, there were reports from other participants that noted the collaborative activity 

of learners which ensued from interaction with technologies that were not designed 

specifically for the learning of mathematics or to act as catalysts for social interaction. 
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The use of robots in a study by Fernandes et al. (2006) of K-8 level students inves-

tigated the potential for the use of robots to act as mediators between students and 

mathematics (see also Chap. 3 of Theme C). This paper documented the collaborative 

practice that followed when students were presented with problems that challenged 

them to program robots to follow a predetermined trajectory. Researchers reported 

that the mutual engagement in the enterprise lead to the co-definition between 

members of working teams of the meaning gained from the activity.

11.4 Future Developments

11.4.1 New Forms of Communities of Learners

If we consider learning as participation in a community of practice, what is clear 

from a review of these studies is that our conception of “communities of practice” 

needs to be continuously re-defined as new technologies change the kinds of commu-

nities of practice that are available and feasible. As these technologies continue to 

be developed and refined, they offer new ways to construe communication, collaboration, 

and social interaction. Ares and Stroup (2004) claim “Interactive devices make possible 

the layering of students’ discursive communication with simultaneous transactions 

through the network, potentially allowing students to contribute to collective processes 

through channels that were unavailable in conventional classrooms.” This is true for 

both classroom-based and online learning environments.

11.4.1.1  Amplifying, Enhancing, Broadening Classroom-Based 

Communities

There are three major ways in which connective technology can amplify and reshapes 

classroom-based discussions. These include (1) multiple modes of contribution 

(language, text, physical, and electronic gestures); (2) multiple representations (texts, 

graphs, visual displays of emergent systems, aggregated displays); and (3) inquiry-

oriented discussion and analysis (Ayres and Stroup 2004; p.838). One of the most 

salient technologies is the use of dynamic representations to foster student collabo-

ration. Students who work in pairs in front of the computer can engage in discussion 

mediated through a mathematical object that reflects changes in theories, which then 

allows for a back and forth of problem solving, theorizing, testing, and checking. 

In a PC sharing situation, a pair or group of students collaborate in front of a single 

machine and share a view of objects around which, and a representational context 

within which, to establish and negotiate collective meanings and convergent interpre-

tations for the phenomena that structure a joint problem space (Roschelle and Teasley 

1995; Goos 2004; Goos et al. 1999, 2003). In a networked environment, the relevant 

objects and representations of a problem are shared across devices of two or more 
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students, and mathematical objects may appear in different views, configurations, or 

representational settings that require coordinating collective meanings and discursive 

negotiation (White 2006; p.361). Students developed a precision of discourse when 

working to calibrate their devices that showed different representations of the same 

object. This coordinating discourse, or discursive alignment, can lead to the develop-

ment of a deeper understanding of the concept being considered.

Evolving classroom norms as connective technology becomes integrated into 

classroom practice can foster conditions for true collaboration. For instance, in the 

SimCalc Project, the identification of outliers in aggregate displays led to students 

collaboratively problem solving both the cause of the error and proposed solutions.

11.4.1.2 Online Communities: Virtual Communities of Learners

In web-based technologies, the communities of learners are housed within networked 

discussion spaces, and would not exist without the technology through which they 

are created. The result is entirely new forms of communities of practice linking 

members through space (synchronous discussions) and time/space (asynchronous). 

Researchers are now beginning to consider what is unique about the potential of 

collaborative study of mathematics while physically separated, and how this potential 

might be harnessed to support mathematics learning. Online communities also offer 

opportunities for groups to be national or international – bringing together different 

culturally bound paradigms of mathematical conceptions.

At the most basic level the attributes of these kinds of software, for instance the 

archiving of contributions, allow students, teachers, and researchers to trace contri-

butions and review discussions, thus accessing a record of the development of 

increasingly sophisticated collective ideas. Bakhtin’s “traces of the voices of other 

members of the learning community” become archived artifacts to document the development 

of collaborative communal understanding and, therefore, the intellectual devel-

opment of the community, something that can get lost in real-time face-to-face 

classroom-based discussions. For instance, in the Knowledge Forum software, as 

students contribute and respond to one another, their notes are automatically linked, 

and the resulting webs provide an ongoing visual record of the development of 

increasingly sophisticated collective ideas. Stahl also highlights the importance of a 

“graphical referencing tool” that allows participants to reference existing items (or 

contributions) in the online environment by drawing a line from new message to the 

existing item, as a way of giving meaning to and structuring their online interactions.

However, it is not just the features of the software itself that promoted student 

learning, but also the pedagogical knowledge building or knowledge constructing 

or co-constructing principles that can be leveraged in virtual communities (e.g., 

Stahl 2006; Scardamalia and Bereiter 2003; Scardamalia 2002). Examples of these 

include the group responsibility for ownership of ideas that are given a public life 

in the database and ask for clarification or revisions of ideas with an eye towards 

moving the theorizing forward (Moss et al. 2008). A related concept is sustained 

idea improvement – purposefully revisiting initial theories to revise and improve, 
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which provides students with an extended time to think (Moss and Beatty 2006). 

Finally, because all contributions are accessible by all participants, the collective 

knowledge of the group is “democratized” and all students contribute solutions, 

theories, critiques, comments, and ideas.

Research is still in the beginning stages of understanding how to design virtual 

communities that result in meaningful collaborative experiences. In their work 

within the WebLabs Project, (Matos et al. 2005) three components of online com-

munities that seem to engender high quality mathematical and meta-mathematical 

discussion were identified – these include facilitation, reciprocation, and audience 

awareness. Facilitation refers to keeping the WebLabs game on track, setting new 

challenges to participants and shifting the conversation towards mathematical content. 

Reciprocation refers to the fact that participants tended to respond to more difficult 

math challenges with detailed explanations accompanying their solutions. Finally 

audience awareness suggests that participants seek out other participants who will 

engage in sustained interactions, leading to heightened levels of collaboration.

Researchers agree that sustained mathematical interaction is crucial for developing 

collaborative mathematical thinking through negotiating, formulating, revising, and 

critiquing solutions for complex problems. In WebLabs, participants needed time and 

experience to shift from the competitive and technical base level of the game to a 

collaborative effort of understanding the mathematical structure of their models and 

sharing of analytical tools. In the KF studies, students needed to engage in a certain 

amount of back and forth discussion before engaging in higher-level mathematical 

discussions (e.g., Moss and Beatty 2006; Nason and Woodruff 2003).

Consistent with Pea’s notion of distributed cognition, the discussion above 

describes learning as taking place in physically proximate and in virtual communities 

in which participants and elements of their environment, including the technological 

mode employed, all contribute to changes in the learner and the community of learners.

11.4.2 Extending the Role of the Teacher

While there is a developing body of work associated with the role of technology in 

learning, less is known about how the availability of technology has affected teaching 

approaches (Penglase and Arnold 1996). There is now some evidence that technology 

can mediate more student-centred, exploratory, and discursive approaches (e.g., 

Simonsen and Dick 1997), but teachers’ personal philosophies of mathematics and 

mathematics education are also influential (Tharp et al. 1997; Thomas et al. 1996). 

Thus, the nature of an available technology alone will not ensure the implementa-

tion of collaborative practices in any learning environment and so the classroom 

teacher or the designer of the virtual learning environment has a vital role to play 

in mediating the type of social interaction that is regarded as collaboration within a 

community of learners.

In classroom-based studies that included connective technology, researchers 

emphasized the teacher’s deliberate calculated decisions about when and how to 

encourage students to use the software to facilitate collaborative problem solving 
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(e.g., Manouchehri 2004, Goos et al. 2003). Similarly in reports of the SimCalc 

MathWorlds teachers orchestrated the learning experience, and utilized a deep 

knowledge of content and pedagogy to facilitate student learning along a trajectory 

from static, inert representations to dynamic personally indexed constructions, and 

that it was this deep knowledge that allowed teachers to take advantage of a connected 

classroom (Hegedus and Kaput 2004).

However, in studies of virtual communities, the teacher’s voice in the community 

often seems peripheral or non-existent. For example, in a study by Simonsen and 

Banfield (2006) of the progression of mathematical discussion that evolved during 

an online graduate course, the researchers identified five roles for instructors/teachers 

when students are engaged in asynchronous discussion – resolve conflicts/confu-

sion, validate responses, redirect tangential threads, expand ideas, and withhold any 

input. The researchers concluded that the majority of time, withholding of instructor 

input encouraged students to increase their participation in the discussion, and their 

ability to collaboratively problem solve. As these students were secondary school 

math teachers, it is possible they were already well-versed in the norms of mathe-

matical discourse. If we consider studies of younger students, such as those involving 

high school or middle school (e.g., Stahl 2006; Hurme and Jarvela 2005; Jarvela 

and Hakkinen 2002) or elementary students (e.g., Beatty and Moss 2006; Nason 

and Woodruff 2003) there was minimal or no teacher or researcher voice in the 

database, and yet students were similarly able to successfully moderate their own 

discussions. It is important to remember, however, that in these latter studies, the 

online discussions took place as part of a broader instructional initiative. Online 

interaction does not evolve towards higher levels of discussion without proper 

grounding, monitoring, modeling, coaching, or contributing on the part of the 

instructor, particularly at the onset of instruction (Resta and Laferriere 2007). (For 

more on technology and teaching mathematics, please see Sect. 3 of this volume).

11.4.3 New Forms of Voice and Discourse

Technology facilitates new kinds of communication and there is a need to examine 

more closely this instrumented discourse, how different forms of discourse are 

engendered by different forms of technology, and how this in turn is linked to new 

kinds of mathematical understandings. Researchers also need to develop a way of 

communicating about instrumented discourse, and start to define a meta-discourse 

to look at its development across studies.

When considering face-to-face interaction mediated through technology, or 

studies in which technology is the catalyst around which discussion occurs, often 

the utterances of participants are incomprehensible in themselves, since they are 

bound with the on-screen images as an integral component of the discourse (e.g., 

Lavy and Leron 2004; Olive 2000).

Researchers have written about the differences in problem solving that occur 

when participants communicate online, and concluded that human knowledge is 

bound with the media of expression, and therefore new modalities of language that 
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emerge from computer technology alter the kinds of participation and communication 

(and therefore cognitive) opportunities available (Borba 2005; Stahl 2006; Moss 

and Beatty, in press).

Beyond an examination of how technological communication modifies verbal or 

text-based discussion, researchers have also begun to examine the development of 

entirely new forms of communication. For instance in programmable microworlds, 

the programs themselves are designed to “allow users to express their own mathe-

matical ideas” (Balacheff 1993) thus adding to the modes of communication 

traditionally available to students (text, symbols, tables, and graphs). Examples are 

the Playground and WebLabs Projects conducted by Noss et al (2002), where elements 

of the computer program, pieces of the models that students create, were the mode 

of communication.

11.4.4 Other Issues

11.4.4.1 The Case of Marginalised Members of a Community

Technology can foster peer interactions either face-to-face or online, by connecting 

learners. However, collaboration will not automatically occur simply because peer-

to-peer interaction is supported and facilitated. Connectivity in itself does not nec-

essarily entail collaboration. Some students will continue to opt out of the 

collaborative process. For instance, Geiger’s (2006) paper describes a series of 

episodes in a secondary mathematics classroom in which a learner, who initially 

rejects his teacher’s attempts to conduct his mathematics classroom according to 

socio-cultural principles, is eventually attracted to participate in the community of 

learners via experiences in which he is encouraged to pursue an interest in designing 

mathematics-based videos through the programming of his calculator. The technology 

in this instance is viewed as catalyzing the student’s participation in collaborative 

practice during this incident and then into the future. Consistent with this finding, 

Goos (2004) also acknowledges that the nature of engagement and the extent of 

participation varied between students. While this is consistent with Lave’s idea of 

becoming within a community of practice, Goos concedes that a small number of students 

remained resistant to the adoption of this specific community of learner’s modes of 

knowledge creation and validation, and reminds us that inclusion does not neces-

sarily guarantee participation or the appropriation of teacher’s aspirations for the 

way in which the community of inquiry should manage itself.

11.4.4.2 Emergent Uses of Technology

Research has focused on studies in which the technologies used are designed to 

engender or enhance processes of collaboration, usually task-based and incorporating 

specific planning of how students will interact. Ramsden (1997) has argued that 



11 Technology, Communication and Collaboration 277

while it is not possible for a technology to be used for a purpose for which it is 

patently unsuited, emergent, or unexpected uses of technology are a territory that 

should be pursued, as it is often the divergent uses of technology by students and 

teachers that provide the most exciting outcomes. Thus, researchers must also 

accept and actively become aware of emergent uses of technology. For instance, 

Sinclair’s (2005) study of high school students’ use of Geometer’s Sketchpad/Java 

Sketchpad to examine geometric concepts found that the pair interactions had 

greater impact on the collaborative learning environment than the researcher had 

expected. In another case, Lavy and Leron (2004) reported on how software that 

allows for dynamic interactions with mathematical artifacts can lead to unanticipated 

shared constructions of mathematical concepts. More documentation of uses of 

technology that are not necessarily part of the original design will be a necessary 

condition for progress of research in this area.

11.4.4.3 Unit of Analysis

The conceptualization of technology as an agent which is more that a simple tool 

that amplifies human capabilities brings into question the unit of analysis that 

should be employed when engaging in research based in technologically rich 

environments. Borba and Villarreal (2006) have referred to such a unit as humans-

with-media, although his construct does not fully recognize the range of diversity 

of the relationships which develop in technologically enhanced communities of 

practice. Lavy and Leon (2004) refer to technology integrated with student discussion 

as a “super entity” that combines the effective attributes of each member – the individual 

learners and the computer environment act in synergy to contribute to a shared 

learning process. A review of current research with focus on collaboration reveals 

the need to expand this notion, as the unit of analysis becomes the interplay 

between “humans-with-media-with-many”. There is a need to extend the discussion 

to include multiple media used in different contexts, and how these alter the way 

students collaborate. The unit of analysis ranges from individual + technology, 

small group + technology, whole class + technology and then to the communication 

of online virtual communities.

11.5 Conclusion and Final Remarks

Our central question was to examine increases in socially oriented theoretical 

frameworks in relation to the use of digital technologies, and how these technologies 

have been used to enhance the teaching and learning of mathematics by supporting 

the social aspects of knowledge building and meaning-making. As socio-cultural 

learning paradigms have evolved in the study of mathematics teaching and learning, 

there has been a corresponding increase in research into the ways in which didgital 

technologies can re-shape the way we conceptualize “communities of learners”, 

and the kinds of mathematics understanding that these communities formulate.
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Studies within the four typologies include a wide range of methodologies, 

perspectives, and parameters. Some look at the discourse between two or three 

learners in front of a desktop computer, others the interaction of many users con-

tributing to an online database. In all studies, the underlying theoretical frameworks 

emphasized the importance of discourse and collaboration as essential to the process 

of learning mathematics. All used rich open-ended tasks, and all specified the 

affordances of the particular kind of technology used for engendering collaborative 

communities of practice – whether based around aggregated dynamic representa-

tions, or archiving threads of discussion in student-managed discussion platforms. 

And in all studies, technology was viewed as a means of mediating social interac-

tion “not by constraining action, but by providing a medium through which shared 

mathematical expression can be constructed” (Healy et al. 1995).

The theories of intellectual development that have had greatest influence on teaching 

and learning since the beginning of the last century all were initially conceptualized 

before digital technologies (in the forms we understand them today) were available. 

There is a great deal of research that still needs to be carried out that considers the 

interplay between the developing role of technology and social theories of learning.

Finally, the authors would like to acknowledge that this paper could not have 

been written without internet based ICT – specifically email – which allowed us to 

collaborate while we were literally half a world away from one another.
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Chapter 12

Introduction to Section 3

Lulu Healy and Jean-Baptiste Lagrange

Abstract In this text, we present the aims that motivated the theme entitled 

“Teachers and Technology”. The theme was organised to consider a variety of issues 

related to preparing teachers to teach mathematics in the digital age and to the 

challenges of appropriating and integrating technologies into pedagogical practices. 

Discussion during the conference gave rise to the structuring of the three chapters 

that compose this section of the book. The questions considered within these chapters 

and the relationships between them are briefly introduced.

Keywords Teachers • Pre-service and in-service teacher education • Classroom 

implementation

12.1 Introduction

Despite the fact that teachers have a central role in the mathematics classroom, they 

have been somewhat neglected players in research considering the relations between 

digital technologies and mathematics education. As noted by Healy (2008), in early 

research in this field the focus was largely directed towards the individual doing 

mathematics with software, and this is only gradually giving way to research which 

attempts to recognize and understand the role of the teacher and the challenge of 

teaching mathematics in the presence of digital technologies. Lagrange et al. (2003), 

in their review of research literature in this field, reached a similar conclusion, point-

ing to the relative paucity of systematic studies investigating the appropriation by 

mathematics teachers of digital technologies into their classroom practices. Those 
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studies that do exist indicate that modifying teaching practices to include new tools is 

no mean feat for teachers. In addition to mastering the various possibilities for doing 

mathematics offered by different digital tools, they also are faced with the need to 

rethink a number of classroom management issues, adapt their teaching styles to 

include new forms of interactions – with students, between students and between 

students and mathematical ideas – take a more prominent role in designing learning 

activities for their students and confront a range of epistemic issues related to the 

acceptance and legitimization of unfamiliar or even completely new mathematical 

practices (see Laborde 2008). Not surprising then that the process of orchestrating 

technology-integrated mathematics learning is neither a spontaneous nor rapid one.

It was with this context in mind that the theme “Teachers and technology” was dis-

tinguished for inclusion within the study conference. The purposes of this theme were 

to document and to address issues related to the preparation of mathematics teachers in 

the face of ever-evolving resources and to consider complementarities and contrasts in 

the frameworks currently being employed in attempts to understand the role of the 

teacher. Prior to the conference, the following seven questions were formulated to serve 

as guides to those wishing to participate in the discussion related to this theme:

1. What theoretical frameworks and methodologies illuminate the teacher’s role in 

technology-integrated environments for mathematics learning?

2. What kinds of pedagogical approaches and classroom organisations can be 

employed in technology-integrated environments including distance teaching 

and how can they be evaluated?

3. How can a focus on technological tools help us understand the ways in which 

mathematical practices and the roles of the teacher vary across settings?

4. How can teachers be supported in deciding why, when and how to implement 

technological resources into their teaching practices?

5. What kinds of pre-service education and professional development programmes 

are appropriate to prepare teachers to use technology in their mathematics class-

rooms and to help them to sustain ongoing use?

6. What can we learn from teachers who use, or who have tried to use, digital 

technologies for mathematics teaching?

7. How do teachers’ beliefs, attitudes, mathematical and pedagogical knowledge 

shape and become shaped by their use of digital technologies in mathematics 

teaching and how are these issues influenced by access to resources and by 

 differences in culture?

A total of seventeen papers were selected from those submitted for inclusion in this 

theme. These are available in the conference proceedings (Son et al. 2006). An 

initial analysis of the papers submitted suggested that in terms of the issues raised 

and the questions addressed, they could be grouped in three sub-themes: discussions 

of collaborations between researchers and teachers in in-service education scenarios, 

articles concerned with understanding issues related to classroom implementation 

and papers concerned with pre-service education of mathematics teachers in the 

digital age. These three sub-themes evolved into the three chapters which compose 

this section of the book.
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The introduction of digital technologies into schools, and particularly mathematics 

classrooms, across the world, has been accompanied by a demand for in-service 

education courses to prepare practising teachers to make use of these new resources. 

Initial visions of the outcomes that might be expected of these courses were often 

extremely ambitious. In Brazil, for example, in the 1980s, the computer was to serve 

as a catalyst for pedagogical change (Valente and Almeida 1997), enabling innovative 

approaches to education and helping to form reflective citizens who would use 

exploit technology in the construction of knowledge which would empower them to 

better understand and transform their own socio-historical context. A huge, and 

essentially unsuccessful, challenge given that the dominant pedagogical approach of 

the time almost exclusively focused on teaching as transmission of ideas. As it turns 

out, the pedagogical aspects associated with the use of digital tool in mathematics 

teachers are rather more complex than originally imagined and the need to involve 

teachers as partners rather than students has become increasingly evident. This com-

plexity stems, according to the authors of Chapter 13, from the fact that tools are a 

constituent part of culture, hence the introduction of new artefact necessarily 

involves the establishment of new cultural practices. The central argument permeat-

ing this chapter, which has its roots in the principles behind in-services courses such 

as those described by Hoyles et al. (1991), is the importance of forging partnerships 

with practicing mathematics teachers focused on the design of learning activities 

involving the use of digital tools and/or the design of the digital tools themselves.

The chapter revolves around cases studies from three different countries, 

Norway, Greece and Brazil, interpreted in terms of two different theoretical frame-

works. According to the first, the process of communal design can be treated as a 

means through which to create boundary objects, objects intended to have utilities 

in the practices of different communities – in this case the teacher education com-

munity and the community of the mathematics classroom – and to permit the emer-

gence of a common language, equally meaningful to participants on either side of 

the boundary. A goal of creating new artefacts is established as a central part of the 

in-service course in order to emphasis the role of all participants in the design proc-

ess as agents of cultural change, which in turn necessitate the recognition and 

embracing of the complexity of including new artefacts into any community of 

practice. The second theoretical tool discussed in the chapter concerns the instru-

mental approach of Rabardel and Vérillon. This framework is in fact mentioned in 

all three of the chapters in this section, as well as in various other chapters in the 

book (see in particular Chap. 7 in Sect. 2). In this chapter, instrumentation is 

described as the shaping of thinking by the tool in the construction of mental 

schemes and instrumentalisation is considered as analogous to activities that 

involve the shaping of the tool by users (in the terms discussed by Noss and Hoyles 

1996, for example). Given their strong emphasis on design, the authors take a rather 

particular stance in relation to instrumentalisation, arguing that while this seems 

usually to be perceived in terms of the way the tool is used by different individuals 

in different activities, involving teachers in the process of shaping the tool in ways 

that also influence their potential – built-in – uses may be particularly important for 

understanding the relationships between tools and mathematics learning.
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Chapter 14 addresses the challenges associated with understanding the various 

facets that influence the use of technology (or not) by teachers in their own mathe-

matics classrooms. As the authors point out, in contrast to the rather optimistic 

vision for the future of technology integration in mathematics education of the first 

ICMI study conference on technology (Churchhouse et al. 1986), the actual take up 

of technology within mathematics classrooms across the world has progressed 

rather slowly. Given this scenario, the chapter focuses on the search for theoretical 

frameworks that might illuminate the teacher’s role in technology-integrated learning 

environments and clarify the factors that mediate teachers’ use of digital technologies. 

In the first part of the chapter, various different theoretical frameworks for interpreting 

the teacher’s role in technology-integrated learning environments are analysed and 

compared, by applying each in turn to data from two different research projects, one 

involving the use of Cabri-géomètre and the second a graphics calculator activity.

Of the frameworks considered, particular attention is centred around two. The first 

of these is the instrumental approach. In contrast to the previous chapter, where the process 

of instrumentalisation was given centre stage, here the material part of the artefact 

seems to be taken as given, and instrumentalisation is described as the learning of 

various uses of the tool – the example given in the text is that of learning to drag 

points. According to the authors, in this example, the complementary process of 

instrumentation involves aspects of the mental scheme concerned with why points 

are dragged, which will be related to the learner’s conceptualisation of the geo-

metrical properties associated with the tasks in hand. However, the authors are not 

mainly concerned with documenting the genesis of artefact into instrument, but 

how the teacher organises the conditions for instrumental genesis of the technology 

proposed to the students and the extent to which mathematics learning is fostered 

through instrumental genesis. They call this the process of ‘instrumental integration’.

The second framework emphasised draws strongly from Valsiner’s (1997) zone 

theory. This theory suggests that the developing structure of an individual’s environ-

ment and his or her relationships with others in this environment can be described 

in terms of three zones: Vygotsky’s Zone of Proximal Development (ZPD) is joined 

by the Zone of Free Movement (access to the various components of the environ-

ment and means or interacting with them) and the Zone of Promoted Action (activities 

promoted in the environment). In the development of the chapter, this framework is 

applied not only to interpreting the role of the teacher, but also to delineating the 

various factors that intervene in the process of implementing digital tools in the 

mathematics classroom. By applying different frameworks to the same classroom 

episodes, the authors are able to highlight the aspects most supported by each – for 

example, they suggest micro-level analysis emphasised in the instrumental approach 

might be complemented by zone theory where the lens is focused on the macro-level.

In the final chapter contained within this section, attention turns to teacher 

education. The authors of Chap. 15 are concerned that, despite the fact that teacher 

development courses increasingly consider the use of digital technology in the 

teaching and learning of mathematics, course developers do not yet have access to 

a robust corpus of literature documenting strategies already tried and tested by others. 
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In this chapter, they offer a number of dimensions by which teacher education 

courses, be they pre-service or in-service, might be characterised. Specifically, they 

focus on the implementation of technology in these courses, on attention to the 

changes in the teachers’ role, activity and practices, and on the adaptation of teaching 

practices with regard to time and professional proficiency. In order to develop tools 

by which to classify these different aspects of teacher development programmes, 

five different courses, each of which was presented in some detail in the conference 

proceedings, are subjected to analysis.

In terms of classifying the beliefs underpinning the courses analysed, three areas 

are considered: views related to the implementation of technology into teaching 

(both teaching mathematics and teaching mathematics teachers); beliefs associated 

with the impact on technology on teaching practices, the teacher’s role and teaching 

activities; and views on how to prepare teachers. In each case, the authors devise a 

graphical means of illustrating where each course is positioned in relation to each 

of the dimensions explored, allowing also a means of representing proximities and 

distances in the approaches adopted in each course. In relation to the question of 

identifying the practical decisions regarding course design, the authors discuss two 

areas: how technology is addressed in the course curricula and the teaching strategies 

utilized. Radar charts are used to contrast the treatment in the courses of six possible 

issues related to technology use that might be discussed. Finally, four strategies 

used by teacher educators across the five courses are identified and described. It is 

perhaps worth noting that the only strategy common in all five courses was that of 

demonstrating good practice, the other three strategies being that of involving 

future teachers in role playing activities where they are invited to assume initially 

the role of students, reflection on action in the sense of Schön (1983) and learning 

in communities – a strategy perhaps motivated by theories such as those described 

in Chap. 11.
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Chapter 13

Working with Teachers: Context and Culture

Anne Berit Fuglestad, Lulu Healy, Chronis Kynigos and John Monaghan

Abstract This chapter concerns collaborations between teacher educators and 

teachers in activities involving digital technologies in the teaching and learning of 

mathematics. In light of the complexity involved in introducing new artefacts into 

existing cultures of practices, we focus on our attempts to develop ways of working 

with teachers so that they can become active participants in designing practices 

and routines appropriate for the particularities of their own classrooms. Three case  

studies are presented, from three different countries, Norway, Greece and Brazil, each  

of which describes the participation of teachers in a process of communal design of  

mathematical tools and activities. Two theoretical notions, boundary objects and 

instrumental genesis, are employed in order interpret the case studies and to illuminate 

the challenges associated with involving teachers in considering when, how and 

why digital technologies might be used fruitfully in the teaching of mathematics.
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13.1 Introduction

In this chapter, we look at ways that mathematics educators who are not school 

teachers can work with teachers on the integration of digital technologies into their 

teaching. Our starting points are threefold: that working with school teachers is not 

telling school teachers what to do but requires that a dialogue be established in 

which different views are respected; that considerations of the context and culture 

of school teaching are paramount to establishing such a dialogue; that teaching is a 

complex undertaking and introducing digital technologies into teachers’ classrooms 

adds to this complexity regardless of whether teachers find this an easy or a difficult 

thing to do. We restrict attention to in-service secondary school teachers because of 

a belief that issues with the integration of digital technologies into primary, secondary 

and university teaching, and of novice and established teachers, whilst having some 

commonalities, vary and the case studies we present focus on serving secondary 

teachers. This chapter is organized in five sections. The next section considers 

issues of context, culture and teachers’ practices and sets the scene for three case 

studies of working with teachers in Brazil, Greece and Norway. The final section 

draws lessons from these case studies.

13.2 Context, Culture and Teachers’ Practices

“Context” and “culture” appear unproblematic in their everyday use. As teacher 

educators, we can go into schools in our respective countries and speak of the 

“context of teaching and learning” and the “classroom culture”. But when we attempt 

to transcend specific schools in specific countries the terms become problematic. 

Cole (1996) describes context as “perhaps the most prevalent term used to index the 

circumstances of behavior” (p. 132) and presents two metaphors for context: that 

which surrounds and that which weaves together. With regard to secondary teaching, 

context is that which surrounds and situates a teacher in a class, with resources, in 

a school, in an educational sector and in a country. Cole views the relationship 

between activity in surrounding layers dialectically. The metaphor, however useful, 

has its limitations. At the heart of what teaching and learning are about is what 

teachers ask students to do but “the boundaries between “task and its context” are 

not clear-cut and static but ambiguous and dynamic” (p. 135). It really just depends 

on what we, as analysts, focus on – our unit of analysis – and trying to focus on 

everything at once leads to empty generalities. Viewed in this way, context weaves 

together rather than surrounds and teaching can be seen as a thread winding 

between other peopled and institutional threads.

It is common to think of culture in terms of the customs of people of other 

nations or ethnicities but this can be somewhat vague and relativistic. We turn again 

to Cole for clarification, “artifacts are the fundamental constituents of culture” 

(1996, p. 144). Cole’s argument, very briefly, is that the things people do in their 

everyday settings involve a multitude of coordinated artefacts which mediate their 

attitudes and beliefs, their social interactions and their actions on the nonhuman world. 
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In teaching, if new artefacts such as digital technologies are to enter the classroom 

in other than a peripheral form, then a new culture needs to be established in which 

digital practices are coordinated with established artefacts and routines.

Pedagogy is a central consideration in working with teachers using digital 

technologies. Pedagogy, “the fundamental social context through which cultural 

reproduction-production takes place” (Daniels 2001, p. 69), concerns why and how 

teachers do things with artefacts around them. There are many pedagogies, many 

things a teacher can do and many things a teacher can use, but what they do, what 

resources they use and how they use them are intrinsically bound up with context 

and culture. The coupling of culture and context allows us to retain a focus on 

pedagogies in practice, to retain a focus on commonalities across education systems 

and across countries, whilst recognizing the dangers of imposing approaches that 

may be inappropriate or unviable given the specificities of the system in question 

(Nkhoma 2002). It is also critical that the complexity of introducing digital 

technologies into teachers’ practice and how it affects all levels of classroom activity 

is recognized. Monaghan’s (2004) study of the activities of teachers attempting to 

make sustained use of digital technologies in their mathematics classroom shows 

how a stated goal of, for example, providing a rich spreadsheet activity for one’s 

students can become overshadowed in practice by emergent goals (in the sense of 

Saxe 1991) such as managing the printer queue and the behaviour of students 

waiting for work to be printed.

It is our aim to keep in mind, as we present the case studies in this chapter, that 

the material conditions that teachers work with and under, their established practice, 

their classroom routines, prior to the introduction of digital technologies must be 

appreciated if we are to work with them to develop appropriate practices which 

exploit the potential of digital technologies. As we hope the case studies will show, 

we do believe that digital technologies can allow teachers to reflect critically upon 

existing practices, but this can only occur if we are sensitive to the fact that digital 

technologies do not enter a teaching void, but enter into existing cultures of 

practice. Teachers need to make sense of the entrance of this new artefact into 

their practice. This sense making is unlikely to happen by others telling teachers 

what to do, it needs to occur in situations within which teachers themselves  

are active participants in designing the practices and routines appropriate for the 

particularities of their own classrooms.

In this vein, Korthagen and Kessels (1999) discuss Aristotle’s notion of episteme 

versus phronesis, i.e. theoretical de-contextualized knowledge applicable to a wide 

spectrum of situations versus situation-specific knowledge derived directly from 

experience within that situation and aimed at meeting a problem within the situation 

itself. In arguing for a realistic teacher education pedagogy, they suggest that building 

on teachers’ phronesis is critical to their understanding a theory and most 

importantly in building a constructively reflective habit of mind in the teachers, 

helping them perceive their profession as a developing one.

In seeking frameworks which help illuminate the challenges associated with 

working with teachers and involving them in considering when, how and why digital 

technologies might be employed fruitfully in the teaching of mathematics, we identify 

two in particular that we will use when interpreting the case studies. The first 
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theoretical notion to which we turn is that of “boundary objects”. Boundary objects 

“inhabit several intersecting social worlds… They are weakly structured in common 

use, and become strongly structured in individual use.” (Star and Griesemer 1989, 

p. 393). Their importance has been noted by researchers concerned with interaction 

between communities (Wenger 1998; Hoyles et al. 2004; Kynigos 2002, 2007a). 

Certainly an issue in working with teachers is to develop practices in which artefacts 

introduced within teacher education courses, softwares, microworlds, suggested 

activities, worksheets, etc., come to have utility beyond this context, traversing the 

boundary between practices associated with the community of teacher educators 

and entering into those of the teachers and their students. Boundary objects do not 

carry meaning with them, instead meaning is recreated, in action, that is, when we 

present, say, a microworld to a teacher. So we cannot assume that the meanings that 

we build in to the microworld (or any other artefact) are transparent to the teacher. 

Teachers will construct their own meanings, which will be influenced by their past 

experiences and beliefs as well as their interactions with these objects. As Hoyles 

et al. (2004) point out, this implies mutual negotiation and meaning-construction 

should be established “as the norm for both sides of the boundary, rather than the 

preserve of one protagonist.” (Hoyles et al., p. 321). An activity conducive to such 

negotiation and that may place the artefacts in the role of boundary objects is that 

of communal design of artefacts by researchers and teachers (Kynigos 2007b; 

Healy 2006a, b). Communal design can generate the need to be explicit, to reflect 

and to express meanings through argumentation and result in objects that are both 

the centre of the activity and also function as communicational tools, shaping a 

common language within (and between) communities.

A second theoretical notion that informs the analyses presented in this chapter 

is the notion of instrumental genesis, the process by which artefacts become 

transformed into instruments. Vérillon and Rabardel (1995) use the term artefact 

to describe a given human-made object. Its appropriation as an instrument proceeds 

in two directions: towards the self and towards the context in which it is employed. 

The first direction, instrumentation, involves the shaping of thinking by the tool and 

its integration, through the construction of schemes of instrumented actions, into 

the individual’s own cognitive structure. The second, instrumentalisation, refers to the 

shaping of the tool, of how its functionalities and affordances are adjusted and 

transformed for specific uses. Hence, for any individual person, the artefact 

becomes an instrument as he or she develops a set of schemes associated with its 

use, allowing the artefact to be appropriated and integrated into his or her practices. 

Like the debate surrounding boundary objects, this perspective too emphasises how 

the potential role of digital tools cannot be expected to be transparent – neither to 

teachers nor to learners – and if they are to be integrated in a significant form into 

mathematics classrooms, an understanding of how to engender the process of 

instrumental genesis is crucial. In the case of working with teachers, the instrumental 

genesis process is particularly complex since artefacts become instruments not only 

in the mathematical practices of teachers but also in their didactical practices.

We now turn more specifically to examples of work involving collaborations 

between teachers and teacher educators in three different parts of the world, 
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Norway, Greece and Brazil, and to how the notions of boundary objects and the 

reciprocal shaping of tools and thinking might contribute to building an understanding 

of developing technology-integrated teaching practices. Each example focuses on 

the activities of participants in teacher education courses or developmental projects, 

themselves components of research projects aimed at investigating the use and 

implementation of digital tools in mathematics learning. Describing the context in 

which projects like these are situated is a complex thing to do, since one can select 

a large variety of contextual characteristics, from the macro-level of the educational 

system and the cultural-historical and political time in which the course took place, to 

the specifics of the institutional dynamics and the roles of the actors engaged in the 

course. Although the specific aims of the three projects varied, as did the mathe-

matical ideas under study, all three courses can be considered at least to some extent 

innovations within the education systems of the countries in which they concerned 

– more precise details as to how are included in the examples themselves.

13.3 Case 1: Using Inquiry Cycles in Activity Design

The first example is situated within the Norwegian project Information and 

Communication Technologies and Mathematics Learning (ICTML). The founding 

ideas for the project are learning community and inquiry, or the idea of building com-

munities of inquiry in which teacher educators and teachers work together to develop 

teaching with digital tools as a support for students’ mathematical learning. The ICTML 

project is run in close collaboration with the project Learning Communities in 

Mathematics (LCM) with the same fundamental ideas and mode of working with teach-

ers (Jaworski 2007). Inquiry is a central concept in the work, as an approach to the work 

on mathematics, digital tools and teaching, and for the teachers’ collaboration. This 

implies the building of a culture of asking questions, conjecturing, investigating, experi-

menting and seeking answers both in school-based teams of teachers and in their class-

rooms. Furthermore, inquiry is seen as an attitude, a willingness to wonder and seek to 

understand and developing into “inquiry as a way of being” (Jaworski 2004).

The activities in the project encompass workshops in which teachers and teacher 

educators work together on mathematics, inquiring into the mathematics involved, 

the possible ways of using the actual tasks or problems and the implementation in 

the classroom. Alongside these workshops, in each school that takes part in the 

project, a team of teachers meet to discuss their work on implementing digital tools 

with mathematical tasks or problems in their classes.

In working with the implementation of inquiry approaches related to the use of 

digital tools, one aim was to follow what in the project is named an inquiry cycle. 

This is a cycle similar to other models for development of teaching, an action research 

cycle, design cycle or cycle for learning studies or lesson studies (Jaworski 2004). 

The cycle is seen as consisting of the main steps: plan, act, observe, reflect and 

feedback. It starts with a teaching plan, which is then acted out as it is implemented 

in practice. The teaching and the pupils’ work in class are observed by teacher 
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educators and/or teacher colleagues and later all those involved reflect upon and 

discuss the work. The discussions include feedback and further planning for a 

new cycle. In the following, an example from a lower secondary school with 

students in grade eight will be described.

The teachers in the school, Richard, Victor and Otto, had set their own goal for 

their participation in the ICTML project. They aimed to develop Excel activities 

which would support pupils’ learning of specific topics, such as fractions, percentages, 

area and volume and the like, by using inquiry approaches, experimenting and 

investigating connections for the topic. They wanted to build up an electronic 

library of Excel activities connected to the textbook they used and involving various 

mathematical topics. Two teacher educators had been visiting their classes and had 

also attended some of the school team meetings. The impending visit of one of the 

teacher educators, Aud, to Richard’s class motivated him to develop a new Excel 

activity for the topic he was just about to teach. His aim was that this would serve as 

a new item for the school’s electronic library. Richard carried through his planning 

just in time, the night before the first lesson on fractions, percentages and decimal 

numbers. The first task was about comparing and finding connections between 

fractions and corresponding percentages and decimal numbers (see Fig. 13.1).

In the phase of implementing the plan in his class, Richard gave an introduction 

to the task using a computer with a projector and explaining how to locate and load 

the file and open the first task, on Sheet 1 in the Excel-file. The activity involved 

choosing four numbers that sum to 100 and entering these into the first column. 

The numbers in the second and third columns were generated automatically and the 

task for the students was to find connections between the three columns and to 

record their observations and possible explanations in a textbox in Excel. After the 

introduction, the class moved over to the computer lab next door. The lesson was 

observed by Aud, but also by Richards’ two teacher colleagues, Victor and Otto, 

Fig. 13.1 Excel activity on percentages, fractions and decimals
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who came in during the lesson, observed and to some extent discussed with and 

supported the students in their work.

After the lesson, the school team including the teacher educators, held a summary 

and reflection meeting to discuss observations and experiences from the class and to 

decide how to proceed with the topic. It had become evident during the observations 

that several students had problems in expressing themselves in written form and a first 

reaction from Otto was that the task was too complicated. It appeared too difficult to 

compare many items at one time. Other ways of setting the task were discussed, like, 

for example, exploring what percentage leads to four parts, five parts or eight parts in 

the fraction (denominator) and so on. Affordances and constraints of Excel concerning 

use the of fractions, presentations of equal valued fractions, use of diagrams and other 

features were discussed together with possible solutions to facilitate the kind of tasks 

and illustrations wanted. Hence the school team inquired into both pedagogical and 

mathematical issues alongside of technical aspects associated with Excel. Richard was 

also able to capitalise on some of the issues raised in the team discussion in planning 

his next meeting with the students. Following the work in the computer lab, Richard 

conducted a class discussion to sum up and reflect on the students’ experiences. He 

challenged them to describe their thinking, using as a starting point the observations and 

explanations they had written in their Excel file. This gave an opportunity to address 

some of the difficulties that had been observed in the session in the computer lab.

As a result of his participation in the various loops of the inquiry cycle, Richard 

became motivated to prepare a new collection of Excel tasks to be used in the lessons 

which followed shortly after the team meeting, his increasing enthusiasm evident:

This is great fun. I will enjoy working more on it. I will make something; it is always 

difficult in the start.

Preparing the new tasks involved him in successfully negotiating, with the help of 

one of his colleagues, the technical challenges of constructing Excel files that 

behaved as he wanted and enabled, in turn, the next cycle of the inquiry cycle, as 

Aud, along with Richard’s school colleagues, observed this new lesson (Fuglestad 

2008). In this way, the school team meeting, which represents both the reflection 

and the feedback in the inquiry cycle, contributed both to the process of designing 

the Excel activity and to the process of instrumental genesis by which Excel was 

being appropriated as an instrument in Richard’s teaching practices. Both aspects 

of the genesis process can be identified: Richard makes modifications and 

adjustments to specific aspects of the Excel tools presented in the original activity 

(instrumentalisation) while, at the same time building an extended repertoire of 

schemes of instrumented action (instrumentation).

It is important to stress how these developments in Richard’s practices were associ-

ated with his participation in the inquiry cycle. The opportunities for reflection and 

feedback provided motivation for development and the mutual help between partici-

pants also indicates the development of a learning community within the school involv-

ing the teacher educators and the school team. Possibilities to extend this learning 

community occurred later as experiences from this cycle of work were shared amongst 

the other participants in the ICTML project during a workshop held at the university.
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From the point of view of the teacher educators, the cycle brought evidence of 

the successful building of an inquiry community focussed on the teaching and 

learning of mathematics with digital tools. The problems and questions raised in the 

reflection and planning steps of the cycles themselves had some characteristics of 

inquiry: asking new questions, conjecturing, willingness to modify approaches to 

investigate new tasks. The students’ difficulties with mathematics revealed in the 

work posed challenges for the team to work on in further planning. The school team 

discussed how to meet the challenges by providing suitable investigative tasks 

for exploring the concepts further. The software became a tool for inquiry into 

mathematics, providing opportunities to experiment and investigate and the school 

team, together with the teacher educator, developed a culture for inquiry approaches.

13.4  Case 2: Half-Baked Microworlds  

as Catalysts for Instrumentalisation

This second case study focuses on the ways in which teachers working within the 

Greek education system used mathematical exploratory software during an in-service 

professional development course aiming to prepare them to engage in school-based 

teacher education themselves on the subject of using technology in the mathematics 

classroom (Kynigos 2007b). The context of the Greek system is characterized by a 

centralized nationwide administration coupled with a single national curriculum. 

In this sense, the teacher is placed in the role of the technical implementer of this 

curriculum rather than in the role of a professional implementing a developing 

personal pedagogy. With such constraints, it is very hard to distinguish innovation 

from systemic reform, and it is difficult to imagine individual teachers involved in 

curriculum design and in trying out alternative teaching methods, both of which 

were central to the aims of the course. In this kind of context, it was unlikely that 

teachers would start constructing things with a piece of educational technology 

unless this was done through starting up a program for teacher education that aimed 

to institutionalize not only the use of technology in schools, but also the idea of 

teacher professional development supported by the system.

The course was a constituent element of a middle-scale initiative from the 

Ministry of Education involving the installation and use of digital technologies in 

10% of secondary schools (“Odysseia” project1). The objective of the teacher 

education course described here was to train experienced teachers, selected by 

the Ministry of Education, to become teacher educators in the use of digital 

technologies for teaching and learning in their respective subjects. During and after 

completion of the course, these teacher educators were relieved from their school 

duties and given the task of engaging in in-service teacher education programs in 

3-5 schools neighbouring their own. The aim of the course was (a) to provide the 

teachers with methods, knowledge and experience in in-service school-based 

1 http://odysseia.cti.gr/English/ODYSSEIANEW.
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teacher education, and (b) to educate them in the pedagogical characteristics and 

uses of exploratory software and communication technologies.

The following snapshot from the course (Kynigos 2007b) illustrates how what is 

termed a half baked microworld was used as a boundary object for negotiations between 

the teacher educator and the teachers. The microworld consisted of a procedure in 

Turtleworlds,2 a Logo-based turtle geometry program with variation tools allowing the 

user to dynamically manipulate the values of procedure variables and to observe continu-

ous changes to the corresponding figures in the same style as dynamic geometry software 

(Kynigos et al. 1997). The procedure was designed so that a right-angled triangle would 

be formed only when the relationship between the value of two variables (:x for the angle 

and :a for one of the perpendicular sides) corresponded to the sine function, i.e. sin a = 

x when the hypotenuse is equal to 1. The students would need to investigate many values 

and make a conjecture about the kind of relationship between the variables. The micro-

world thus consisted of a buggy procedure in the sense that a mathematical relationship 

necessary to create a right-angled triangle was missing.

Five teacher educators-to-be were given the microworld and its design was explained 

to them. They were then requested to design another one using the same design princi-

ples. The result was a procedure for constructing an arc and a chord with one input, the 

length of the arc in degrees. The teachers seemed to have missed the point, creating a 

program containing all the necessary mathematics to create the arc and chord. Their 

instructor then initiated a debate questioning the teachers on what kind of mathematics 

they thought that their students could do if they were given this model. The teachers were 

challenged to reflect on the kind of mathematics they themselves engaged in while con-

structing the model and to think of re-designing it so that the students would be engaged 

in some similar kind of mathematics. Reference was made again to the design idea of the 

half-baked “right-triangle” microworld. The teachers subsequently changed from a mode 

of working which had focused primarily on the construction of a working model without 

really reflecting on how their students could use what they would create. Their new activ-

ity involved an explicit design agenda to transform their construction from that of a 

model serving demonstration purposes, to that of a mathematically incomplete model 

inviting students to engage with experiential mathematics of conjecturing, measuring, 

observing and forming theorems. As in the Norwegian case, the iterative process of 

design, and the teachers’ reflection on the first version of their microworld tool, provided 

opportunities to reflect upon the possible uses of the artefact they were creating and to 

extend their repertoire of instrumented action schemes.

During the episode, this change of perspective on what people could do with 

the software and on how they might use it to generate some mathematical meaning 

became apparent. During a subsequent interview, George made a distinction 

between the use of computers as teacher demonstration tools and tools for student 

learning through personal use.

George (interview): Proper use (of software) is not as a means for demonstration of the 

teacher’s abilities but how the student will use it as a tool for learning.

2  “Turtleworlds” is an E-slate Logo microworld combining turtle graphics with dynamic manipulation 

of variable values (Kynigos, 2002). It can be downloaded from http://etl.ppp.uoa.gr.
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Furthermore, he provided some insightful comments about learning and pedagogy, 

showing some rather deeply thought-out constructivist-oriented ideas, which, again in com-

mon with the Norwegian case, associate mathematics learning with an inquiry process.

Questioner (interview): With respect to what can this tool overturn traditional education? 

George: In that student and teacher are both stakeholders in a research process.

George (interview): Now when I work with students I will operate totally differently. I will 

let the student create and participate in his/her difficulties.

Nick referred to his experience of co-teaching in the classroom, pointing out that 

“weaker students become more responsible and active” something corroborated by 

Kostas. The views expressed by all three of these teachers, rather than resulting 

from theoretical knowledge and beliefs, seemed instead to emerge from experience 

with the course. It cannot be said that the teachers directly projected their own 

experiences on their students. However, activities such as the one described in this 

section, where the teachers were immersed in explicitly constructing tools and 

microworlds for student engagement were crucial.

As the process of design continued, the teachers subsequently engaged in discussing 

the mathematics behind its construction in order to design a tool for others to experiment 

with. Their new focus was on which mathematics to “take away” from the model, in 

order to give the students the opportunity to carry out an experiment and complete the 

building of the model by inserting a mathematical relation they worked out for them-

selves. Within this situation, the way in which they seemed to address the role of the 

teacher, and the use of the software reflected the views expressed in the interviews: atten-

tion was given to Nick and Kostas’s concern about the under participation of struggling 

students and to George’s desire to involve students in working through their own difficul-

ties. Rather than trying to create a working model for the user to manipulate, they began 

to think about designing an incomplete model so that the user would join in the construc-

tion process. The user-student’s role would be to experiment with the incomplete model 

in the attempt to work out the type of relation required for it to work properly. The task 

then turned into trying to establish what mathematics to remove and what to leave in so 

that the experiment would be interesting and encourage focus on the mathematics 

intended by the designers. The decisions taken are shown through comparison of the two 

sets of code for the complete and the incomplete model (Fig. 13.2).

In the procedure mystery, the length of the chord has been substituted by an 

independent variable. Execution of the program creates an arc and a segment 

Fig. 13.2 Logo code for the arc procedures
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which, although has the right orientation and one end on the edge of the arc, it is 

not necessarily the right size to be the corresponding chord (Figs. 13.3 and 13.4). 

So the mathematics which was taken away from the correct arc and chord model 

was the relationship between number of degrees and length of corresponding chord, 

which was exactly the idea which the students were intended to work with. The students 

can thus begin by trying out different values and writing them down to look for 

relations between degrees and segment size (an example is presented in Fig. 13.3).

They can then use the two-dimensional variation tool to find the locus of points 

for which the segment becomes the chord (Fig. 13.4) and hence discuss the curve 

resulting from the locus of points and think about what type of relationship it might 

represent between the two parameters.

This example shows how the generation of these instruments was a process which 

challenged teachers’ knowing with respect to teaching and learning mathematics, 

but also regarding their view of the nature of mathematics itself. In a sense, it was 

the instrumentalisation process which seemed to play a critical role in bringing 

genuine mathematical discussion and activity into the context of professional practice. 

In parallel, the same process encouraged reflection on mathematical teaching and 

learning issues. Up till now, instrumentalisation has mainly been perceived as a 

process to study the kinds of uses of technological artefacts within educational practice. 

What this study suggests is that it might be worthwhile to consider this perspective 

as a design factor for teacher educator development contexts.

Fig. 13.3 Inputting values to the mystery procedure
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13.5  Case 3: Communal Design of a Tool  

for Statistical Explorations

The third case study presents snapshots from a project in which teachers working 

within the Brazilian educational system were joined by teacher educators and 

computer programmers from a research group of a post-graduate research program 

for mathematics education. The activities of this research group are aimed at 

investigating the processes by which mathematical knowledge is constructed in 

the presence of digital technologies, and at supporting teachers in integrating 

learning activities that support engagement in these processes into their teaching 

practices (Healy 2006b).

This case study presents a brief synopsis of the mathematical strategies and the 

pedagogical reflections that emerged as some of the members of this group 

attempted to develop, collaboratively, one such environment: a computational 

microworld in which ideas related to random processes in the context of average 

and spread could be explored and expressed. This choice in itself brought an added 

complication to the scenario: for most of the teachers involved in the project, the 

arithmetic mean is a familiar statistical measure (perhaps even the only familiar 

measure for some), however, as Stella (2003) reports, the dominant view in 

Fig. 13.4 Locus of points for which the segment becomes the chord
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Brazilian mathematics classrooms is that of mean as algorithm, its meaning 

synonymous with the mathematical operations used for its computation. To encourage 

reflections on this initial point of view, the challenge became to design a digital tool 

which, instead of calculating the mean for a given data set, given the size of a data 

set and its mean, could calculate possible data-sets.3 The data-sets were to consist 

only of positive whole numbers. Eleven members of the research group expressed 

an interest in working on this challenge, along with one teacher educator. Eight of 

the eleven were school mathematics teachers, four working in the public school 

system only, two who taught in schools from both the public and private sectors 

and two who worked exclusively in private schools. Only one of the teachers had 

extensive experience with the use of computers (and this included computer 

programming) prior to participating in the project. The remaining three members 

all worked in areas involving computer programming. The group of eleven split 

into four smaller groups, each with an assigned programmer whose role was to 

coordinate the formalisation of the ideas expressed.

It is important to be clear that the ostensive aim for those working on the challenge 

was not about the learning of particular mathematical content, nor was it to come up 

with some activity that could be directly transported into the mathematics classroom. 

The immediate aim was the construction of a tool that worked, making this study a 

little different from the previous two cases where the emphasis on building teaching 

activities was explicit throughout. However, in all four groups, the strategies developed 

involved the designers as mathematics learners in reflecting upon statistical concepts 

incorporated in the tools under development and especially on random processes 

and, at the same time, participating in the design process also involved them in 

reflecting on possible pedagogical practices that might be incorporated into their 

own classroom work. Episodes from one of the group’s design attempts show 

some of the issues related to the building of meanings for random which emerged 

(for a more details of the development of strategies, see Healy 2006a).

13.5.1  Designing as Learning: From Means and Spread  

to Distribution as a Space of Possible Values

At first, the four members of this group were very unsure as to how to start. They 

experimented with the random tool of Imagine Logo and while Lise, the group’s 

programmer, seemed prepared to think about the problem completely in abstract 

terms, for the others it was important to ground the challenge in a particular situation. 

The problem was hence rephrased: the challenge became to generate possible sets 

of eight families with a mean size of 4. This problem (also in Mokros and Russell 

1995) became the reference for much of the subsequent discussions. The first tool 

created by this group drew, not surprising, on their knowledge of the algorithm for 

calculating the arithmetic mean. It was summarised by Lise as follows:

3 A digital version of a problem originally proposed by Mokros and Russell (1995).
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For the first seven families, use random to choose a value between one and eight.4 Add the 

seven values and take away from thirty-two for the last family.

There are two problems with this strategy. The first has to do with the random tool. 

There was an initial tendency among participants to forget that the command ran-

dom 8 generates the numbers 0, 1, 2, 3, 4, 5, 6, 7. The number 8 is not a member 

of the list of numbers produced, while 0 does appear. This problem was relatively 

easy to debug, perhaps particularly because of the family context (you can’t have a 

family with no people). The second problem, which led the group to baptise the 

strategy “too random”, is that when formalised into a procedure, this strategy frequently 

results in a last value for the data set that is “illegal”. For example, if the first seven 

numbers were, 4, 7, 2, 8, 7, 3, 5, the last number in the set would be −4. Explorations 

of this “broken tool” opened a window onto the functioning of the random tool used 

in its construction, allowing its designers to explain that, since each of the numbers 

within the defined range had an equiprobable chance of being selected, the mean 

value of the n − 1 randomly chosen values tended to the midpoint of the range. 

The larger the data set, the greater this tendency and the more “equal” (uniform) the 

spread of numbers selected. Furthermore, if the mean value was less than the 

midpoint, the last value tended to be negative and vice versa.

The discussion of the equiprobable nature of the random tool’s output, led the 

group to express another concern: they began to think that the distributions that they 

were seeking to construct were not uniform. This problem seemed especially 

evident to them because of the way the challenge was originally expressed in 

terms of distributions of family sizes. While at the moment of programming 

this context may have been left completely aside, at the point of assessing the 

procedures that were constructed, it came back to the forefront creating a conflict 

between distributions that did not correspond to their expectations, but were 

mathematically valid in terms of the constraints of the challenge. Elza expressed 

her problem with the random tool thus:

I don’t know if this is right, but with random, the more we picked the more equal the 

spread of numbers and I don’t think we want an equal spread. It should depend, depend 

on … on the situation, yes, but on the mean as well. If we find all the right lists and 

then choose from them, not like at random, well maybe a different random, the set might 

be more realistic.

She conjectured that the “ideal” shape of a distribution could be found by con-

structing a list which contains all the possible data sets for a given mean and range, 

then plotting all the values in this list – setting off a new cycle in the design process 

as Gustavo (both teacher and programmer), a member of another group, eagerly 

took on the challenge of designing this new tool. It is interesting to note that this 

groups’ broken tool, functioned in a similar manner as the half-baked microworld 

tool in the example from Greece – one difference being was that in this case the tool 

was not intentionally buggy.

4 Use of the random tool necessitated the explicit choice of maximum and minimum values.
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13.5.2 Distributing the Instrumental Genesis Process?

The challenge of simulating data sets given the mean and the range of possible 

values certainly appeared to involve the designers as mathematics learners in 

deep thinking about random processes and permutations and in making various 

generalisations about how the shape of a distribution is related to these properties. 

As they created this new instrument, they also embarked on a shared process during 

which the random tool, originally only an artefact (in the sense used by Vérrilon 

and Rabardel) for the majority of the school teachers, also began the process of 

transformation into an instrument, with attention given to both technical aspects 

associated with its use (subject-instrument relations), as well as the relations 

between the instrument and the statistical concepts that were the object of study for 

the participants (instrument-object and subject-instrument-object relations).

A particular feature of this case study is the bringing of participants from quite 

different communities to a new practice. The presence of computer programmers 

alongside the teacher educator and teachers distinguishes this example from the 

previous two cases. Communication between those with and without programming 

experience varied, some of those without were keen to make sense of the formalisms 

produced by their more fluent working partners, others were more interested in 

seeing their strategy played out on screen than in appropriating the details of the 

language. But did the fact that the group was composed of intersecting communities 

mean that the objects constructed had legitimacy beyond the particular challenge 

for which they were created?

In one sense, the answer will always be yes – the nature of tools, generally speaking 

at least, is that they are reusable. All those who participated in this challenge, even 

those who talked more or less exclusively about the family problem, accepted that 

their tool should work regardless of the number of elements in the set, or the values 

of the mean and the interval. This is only part of the answer, however. A bigger 

question is whether the tool, or the experience of designing a tool, was associated 

with reflections about practices outside of those associated with the project 

itself – whether it could be legitimately considered as a boundary object. Following 

the participants into their other worlds was not part of this project, however, during 

the final session, as the four groups were reporting back on the strategies they had 

devised, there was talk about the pedagogical opportunities that might cross the 

frontier between university and school.

Feelings were mixed, especially perhaps of because the different realities and 

possibilities in the schools within which the teachers worked. All of the mathematics 

teachers judged the experience as valid, but some, like Leo, felt that the constraints 

associated with teaching school mathematics mean that experiences such as this 

are luxuries associated with university life that would be difficult to imagine in 

their own classes.

The problem that I see is that I just don’t have enough time to spend exploring the concept 

like this… I am not sure that, well it’s important to know how to calculate means, that is 

coming up more frequently now, but we don’t have much time to spend on “the why’s”..
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Other teachers were keen to use the tool they had created with their own students, 

but in a rather different manner: to aid exploration but not expression of the math-

ematical ideas.

With my students, they could use the tool that we built to see that different data sets can 

have the same mean. They could generate ‘legal’ data-sets quickly and observe what 

happens when you change the mean, with data-sets of different sizes also and …. help them 

see mean as more than just a calculation.

The third opinion expressed in the discussion suggests that for a small group of the 

teachers the design experience led to a more radical reflection on teaching mathe-

matics. For these teachers it was not the tool as product that was important, it was 

the process of tool design. Maria expressed this thus:

What was most important for me was not the final tool, it was thinking about how to 

create the tool. I, because of this, I feel I really understood the different explanations, 

the mathematics in the tools… I’m thinking, maybe not exactly this problem, but this 

process. It’s important. It’s this that… that… I would like to do something like this with 

my students too…

13.6 Reflections on the Case Studies

Although conducted under different conditions, with somewhat different aims, in 

different locations, with different kinds of participants and in different countries, there 

are a number of striking similarities between the case studies we have presented in 

this chapter. First and foremost, the emphasis on design is central to each story. 

In attempting to establish a dialogue to which all participants of the respective projects 

could contribute, the strategy chosen was to centre activities around the process of 

elaborating and experimenting with new instruments aimed to support new mediations 

of mathematical and/or teaching practices. This strategy differs from one in which 

different communities take on different aspects of the integration of technology, with 

computer programmers largely responsible for tool design, university-based researchers, 

curriculum developers and teacher educators for task design and school-based teachers 

for subsequently delivering the products in their mathematics classroom. In such an 

approach, teachers bypass completely the design phase, with the result that they may 

not feel ready to come up with new activities of their own or even to adapt existing 

activities according to the particular needs of their students. Where the distance 

between the affordances and pedagogies incorporated in the tools and tasks of others 

and the existing routines and culture of the teachers’ is very large, it may be that for 

the teachers epistemic issues are so far detached from their phronesis, that there is 

little motivation to negotiate the challenge of instrumental genesis.

This problem can be understood in terms of the notion of boundary objects 

introduced above. When tasks and tools are presented wholesale to teachers, the 

meanings built into them by the designers are not transparent on at least two levels: 

the presence of technology brings epistemological changes to the mathematical 

content involved and the pedagogical assumptions made by the designers may be 
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quite different to those underlying the teacher’s usual practices. With the aim of 

creating learning activities that serve our intersecting worlds, crossing the boundary 

between university-based research and school-based teaching, a strategy that we argue 

is worth investigating is to involve all group members not only in the design of activities 

to support mathematical reasoning, but also in the design of the computational 

environments which form the context in which this reasoning is to take place.

Another factor common to the three stories is that, while design is central, the 

products of the design process were not intended to be well polished “finished” 

softwares – indeed the second two studies stress the potential of working with 

broken or half-baked tools. Rather, all three projects engaged their participants in what 

the Norwegian example terms inquiry cycles during which tools and activities were 

created that represented the participants’ tinkering and which could be subsequently 

tinkered with by others – an approach highly reminiscent of the constructionist 

agenda of Papert (1980, 1991). In such a strategy, the process of instrumental genesis 

begins with the genesis of an artefact itself – since it could be said that, for the 

designer, the artefact comes into the world already as an instrument – moreover, the 

emphasis on design moves this process from the individual plane to the social. 

The evidence suggested in the three examples indicated that the building of artefacts 

that might serve as boundary objects will involve participants (from both sides of 

the boundary) in making explicit their own knowledge about the mathematical 

issues concerned, their beliefs about the learning trajectories that students follow 

and their thinking about how best to mediate between their students’ (and perhaps 

their own) personal knowledge and the mathematics they are aiming to teach. This 

brings us full circle to considerations of culture and context. Since we view artefacts 

as fundamental constituents of culture, their successful insertion into any new 

practice necessarily implies cultural change. Perhaps by involving teacher in all 

stages of the design process, the full extent of the repercussions involved in using 

digital tools in the classroom – their impact on not only students’ learning and 

teachers’ didactic approaches but also on classroom management, on teaching time, 

and on mathematical knowledge itself – becomes more apparent. And by increasing 

the sense of ownership that teachers feel for the tools and tasks to be implemented, 

perhaps it also becomes more natural for them to accept the challenges of becoming 

active agents in the process of creating new cultures of practices which capitalise 

on the possibilities of digital tools.
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Teachers and Teaching: Theoretical 
Perspectives and Issues Concerning  
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Abstract This chapter analyses and compares various theoretical frameworks that 

illuminate the teacher’s role in technology-integrated learning environments and the 

inter-relationship between factors influencing teachers’ use of digital technologies. The 

first section of the chapter considers three frameworks drawing on instrumental genesis, 

zone theory, and complexity theory, and examines their relevance by interpreting lesson 

excerpts from alternative theoretical perspectives. This section also outlines research 

on relationships between teachers’ beliefs, attitudes, mathematical and pedagogical 

knowledge, and institutional contexts and their use of digital technologies in school and 

university mathematics education. The second section considers classroom implemen-

tation issues by asking what we can learn from teachers who use, or have tried to use, 

digital technologies for mathematics teaching. Issues arising here concern criteria for 

effective use and the nature of what counts as “progress” in technology integration. The 

final section of the chapter identifies work that needs to be done to further develop, test, 

and apply useful theoretical frameworks and methodologies.

Keywords Theoretical frameworks • Teachers and teaching • Instrumental genesis 
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In 1985 the first ever ICMI Study undertook a critical review of the influence, poten-

tial, and constraints in using computers in mathematics teaching and learning, pre-

senting an optimistic vision for the future of technology integration in mathematics 

education (Churchhouse et al. 1986). Only a few years later, Kaput (1992) predicted 

that technology would become rapidly integrated into every level of education. He 

also claimed that the challenges of describing “the roles of technology in mathematics 
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education [are] akin to describing a newly active volcano – the mathematical moun-

tain is changing before our eyes” (p. 515). While researchers in this field would prob-

ably agree that Kaput’s analogy captures the fast pace of technological change, 

evidence accumulated over the last 15 years indicates that the predicted integration of 

digital technologies into mathematics teaching and learning has proceeded much 

more slowly (e.g., Cuban et al. 2001; Ruthven and Hennessy 2002). Many of the 

authors who contributed to this part of the ICMI-17 Study referred to possible reasons 

why technology still plays a marginal role in mathematics classrooms, noting that 

access to technology resources, institutional support, and educational policies are 

insufficient conditions for ensuring effective integration of technology into teachers’ 

everyday practice (Son et al. 2006). Taken together, these findings suggest that more 

sophisticated theoretical frameworks are needed to understand the teacher’s role in 

technology-integrated learning environments and the inter-relationship between fac-

tors influencing teachers’ use of digital technologies, as well as what counts as “effec-

tive” use and how progress in technology integration might be identified.

This chapter draws on contributions to Theme B of the ICMI-17 Study to 

address the following questions:

1. What theoretical frameworks illuminate the teacher’s role in technology-integrated 

environments for mathematics learning?

2. How do teachers’ beliefs, attitudes, mathematical and pedagogical knowledge 

shape (and how are they shaped by) their use of digital technologies in mathematics 

teaching and how are these issues influenced by access to resources and by dif-

ferences in culture?

3. What can we learn from teachers who use, or have tried to use, digital technologies 

for mathematics teaching?

The chapter is organised in three main sections. The first section considers the origin 

and relevance of various theoretical frameworks for analysing the role of the teacher and 

the influence on technology integration of a range of personal, contextual and profes-

sional factors (questions 1 and 2 above). Research on classroom implementation issues 

is presented in the second section of the chapter (question 3). In the final section we 

ask how these theories might help us to develop visions of the future use of digital 

technologies and new approaches to pre-service and in-service teacher education.

14.1 Theoretical Perspectives

What theoretical frameworks illuminate the teacher’s role in technology-integrated 

environments for mathematics learning?

This section draws on papers contributed by Assude, Grugeon, Laborde and 

Soury-Lavergne, Brown, and Sinclair1 to consider three theoretical frameworks for 

examining the role of the teacher in technology integration.

1The contributions cited in this chapter are all available in Son et al. (2006)
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14.1.1 Instrumental Genesis

Artigue (2002) points out the unexpected complexity of the instrumental genesis 

regarding the introduction of technology into mathematic teaching and learning.

According to the instrumental approach developed by Vérillon and Rabardel 

(1995), the individual must learn how to use a tool for carrying out a task by means 

of the tool. When the tool is complex and offers the possibility of performing operations 

referring to theoretical domains, this process of instrumental genesis may be long 

and may need the help or intervention of a more expert person. As technology 

involved in mathematics education embodies mathematics, the technical and the 

conceptual parts are intrinsically intertwined (Artigue 2002): the use of technology 

shapes the knowledge constructed by students (Hoyles et al. 2004).

The main idea of this approach is to consider that an instrument is a complex 

entity combining a material or symbolic object with structures that organise the 

subject’s actions. The part of the instrument which is external to the subject is 

called the artefact. The internal part is constituted by the schemes of use and results 

from both a subject’s personal construction about the way to use the artefact and an 

appropriation of social pre-existing schemes. The process of constructing schemes, 

the instrumental genesis, is a two sided process. On the one side, the construction 

of schemes is oriented toward the use of the artefact: the instrumentalisation. 

On the other side, the construction of schemes is oriented toward the task to be 

achieved: the instrumentation. For instance, in a dynamic geometry environment, 

the drag mode can be seen as an instrument to identify geometrical properties of a 

figure. The pupil must learn how to drag points (instrumentalisation), which is 

rather easy, but also why to drag points (instrumentation), which is strongly related 

to his/her conceptualisation of geometrical properties. Classroom observations have 

revealed that several weeks are needed until pupils decide to drag points on their 

own with a mathematical intention and not only to see objects moving. This gives 

evidence of the instrumental genesis and the need for the teacher to support it.

The contribution of Assude, Grugeon, Laborde and Soury-Lavergne to the ICMI-

17 Study draws on the instrumental approach to propose the idea of instrumental 

integration. Instrumental integration is a means to describe how the teacher organizes 

the conditions for instrumental genesis of the technology proposed to the students and 

to what extent (s)he fosters mathematics learning through instrumental genesis. It rests 

on two main characteristics of the teaching situation. The first is the know-how of the 

pupils regarding the artefact. The second is the didactical aim of the tasks given to the 

pupils. It is drawn from indicators like: the focus of the task, the solving techniques, 

the content of the teacher interaction with the pupils, the links with paper and pencil 

activities. The combination of the two characteristics produces four different modes 

of technology integration into mathematical teaching, described below in order from 

lowest to highest level of instrumental integration.

If pupils are beginners:

• Instrumental initiation occurs when the teacher’s aim is mainly that the pupils 

learn how to use the technology. The given tasks focus on the way to use the 
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technology. The relation between know-how and mathematical knowledge, thus 

the level of instrumental integration, is minimal.

• Instrumental exploration occurs when the teacher aims at improving both some 

know-how and some mathematical knowledge. Pupils explore the technology 

through mathematical tasks. The relationship between know-how and mathematical 

knowledge can vary according to the mathematical task and to the content of the 

teacher interventions: the teacher may just give information on how to use a 

specific facility of the artefact or (s)he may express links with mathematical 

knowledge.

If pupils are already introduced to handling the artefact:

• Instrumental reinforcement occurs when pupils are faced with instrumental 

difficulties while solving a mathematical task. The teacher gives them information 

about how to use a specific item of the artefact to allow them to overcome the 

technical difficulties. But the teacher’s aim is improving mathematical knowledge. 

The relationship between know-how and mathematical knowledge varies 

according to the way the teacher formulates his/her help for using the artefact.

• Instrumental symbiosis occurs when pupils are faced with mathematical tasks 

that allow them to improve both their know-how and mathematical knowledge 

because these are connected. The relation between know-how and mathematical 

knowledge is therefore maximal, thus so is the instrumental integration.

The example below shows the use of modes of integration to design a task with 

dynamic geometry. The mathematical learning objective is the counter-example 

principle. Four diagrams are displayed in Cabri. They have not been obtained by 

the same construction process but they all look like a triangle and an inscribed 

quadrilateral in the triangle (Fig. 14.1). The pupils are asked to answer questions 

about parallel or perpendicular lines: are lines BC and GF perpendicular? Are lines 

GF and DE parallel? Are lines EG and DF parallel? To answer, the pupils are supposed 

to move every free point of the diagram and to observe whether the property is 

preserved or not (Figs. 14.2 and 14.3). This kind of task is possible only after significant 

work about moving objects and interpreting mathematically what happens on the screen. 

A

B C
D F

E G

Fig. 14.1 The initial state of all four diagrams
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A

B C
D F

E G

Fig. 14.2 Dragging D

A

B C
D F

E

G

Fig. 14.3 Dragging A, B or C

With pupils already introduced to Cabri, this task can be considered as coming 

within instrumental symbiosis. The task is of instrumental and mathematical nature: 

pupils need to decide (1) to drag elements (2) to drag enough points elements in order 

to decide about the validity of mathematical properties.

Because the lines ED and GF always look parallel when A, B or C are dragged, 

pupils must find a mathematical reason in the construction program (obtained in 

Cabri with the facility Replay construction): ED and GF were both constructed as 

perpendicular to line BC and dragging D has no influence on the quadrilateral 

because F is the reflected point of D with respect to the midpoint of segment BC. 

However the relationship between dragging and mathematics may strongly vary 

according to the prior knowledge of pupils. Pupils may be attracted by only the fact 

that “it moves” once they drag points but do not pay attention in a more precise way 

to what happens while dragging or misinterpret the phenomenon because they do 

not relate it to geometrical properties. In this case, the expected instrumental symbiosis 

turns into instrumental exploration since the pupils may be considered as beginners 

with respect to the interpretation of drag mode and the aim of the teacher becomes 

to reintroduce dragging as a tool for checking properties. In the same vein, the 

activity may turn into instrumental reinforcement: if pupils do not know how to get 
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information on the construction program of the diagram, the teacher may give 

information about the existence and use of the tool “Replay construction” and 

extend the instrumental abilities of the pupils.

Beyond this example, modes of integration are also planned to describe actual 

practices. When the gap between the planned mode of integration and its actualisation 

in the classroom is important, it reveals the incomplete instrumental genesis of the 

pupils and thus may be a research tool for analysing the integration of technology.

Conceptualising these modes of integration allows us to point out two more 

things. First, the integration of technology depends not only on the teacher but also 

on pupils’ knowledge, regarding the technology as well as the mathematics. 

Second, there is a possible evolution of the instrumental integration by the teacher, 

which characterizes an increasing interdependency between the know-how and the 

mathematical knowledge into the management of the teaching.

14.1.2 Zones and Affordances 

The work of Assude and colleagues is representative of a theoretical tradition that 

has developed specific tools for studying the process through which a material or 

symbolic object, or “artefact”, becomes an “instrument” through construction of 

personal schemes of use. The theoretical focus is on this process of instrumental 

genesis and on studying the interplay between the pragmatic and epistemic value of 

instrumented techniques – between technical work and construction of conceptual 

understanding of the mathematics. Other researchers have found it useful to adapt 

more general educational theories in order to study the role of the teacher in tech-

nology-rich classroom environments.

Brown’s contribution to the ICMI-17 Study draws on Valsiner’s (1997) zone 

theory from the field of developmental psychology to elucidate the teacher’s role in 

technology-rich teaching and learning environments (which she labels as TRTLEs). 

Valsiner expanded on Vygotsky’s Zone of Proximal Development (ZPD) and 

proposed two additional zones that describe the structure of the developing child’s 

environment and relationships between the child and other people in the environ-

ment. He describes the Zone of Free Movement as structuring “the child’s access 

to different areas of the environment, to different objects within these areas, and to 

different ways of acting upon these objects” (pp. 67–68), noting that internalised 

ZFMs regulate relationships between person and environment. The counterpart of 

the ZFM is the Zone of Promoted Action – the “set of activities, objects, or areas 

in the environment, in which the person’s actions are promoted” (p. 192). Valsiner 

argues that these two zone concepts should not be separated; rather they should be 

considered as a ZFM/ZPA complex that “canalises” the child’s development.

In conjunction with zone theory, Brown uses the construct of affordances 

(Gibson 1979; see also Scarantino 2003) to describe the offerings of the TRTLE – 

the potential relationships between the teacher and/or students and the environment 

that facilitate or impede teaching and learning. To take advantage of opportunities 
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arising, teachers and students need to perceive affordances and act on them 

(Drijvers 2003). Affordance bearers are defined as specific objects within the 

environment, such as forms of technology, that enable an affordance to be enacted. 

Table 14.1 shows an example for the affordance that Brown calls “function view-ability” 

when students are using graphics calculators. The second column describes 

conditions enabling perception, or circumstances where a teacher or student action 

allows a particular affordance to be perceived. Conditions enabling perception 

include those where a learning experience is provided during which the student 

experiences a particular affordance, for example, where students are expected to 

follow instructions and experience the particular affordance, thus facilitating future 

enactment. The third column describes conditions promoting enactment, that is, 

circumstances where a teacher or student action promotes enactment of a particular 

affordance. For example, through the wording of a task the teacher promotes the 

direct setting of the viewing domain of the graphics calculator. Affordances are thus 

linked with zone theory in two ways: (1) they help define the Zone of Free 

Movement, and (2) teachers can organise a ZPA that promotes their enactment.

Brown provides an example of a teacher (James), who observed that his students 

experienced difficulties in determining settings for the graphics calculator allowing 

particular views of a function to be observed:

James:  Interestingly, a lot of kids find the notion of setting a WINDOW to a 

particular graph [difficult], especially if you are doing real, in inverted 

commas, applications where you do some linear modelling and you 

might have so many books sold for so many dollars which … is a 

problem that kids can relate to. And inevitably [you] see them with a 

graph with the four quadrants. And when you say to them, ‘Now is it 

Table 14.1 Affordances of TRTLEs allowing particular views of functions to be observed

Manifestations of  

the affordance

Conditions enabling  

perception

Conditions promoting  

enactment (ZPA)

Using current settings Serendipity Task: find graph of data/function

Task: identify model of physical curve

Setting viewing 

window to given 

values

Lesson element, window 

settings given

Quadratic function test, sketch function 

over a specified domain

Edit viewing window 

to include key  

feature, get a  

better/global view

Lesson element focused 

on setting of a ‘good’ 

window

Teacher promotion: can you show me a 

bit more of your graph?

Contextualised task requiring a suitable 

WINDOW

Functions task requiring students to 

explore graphs of families of functions

Functions task requiring 

exploration of graphs of 

families of functions

Editing viewing 

window to allow 

key features to be 

clearly visible

Teacher scaffolding – 

understanding of the 

effect of c in the  

function f(x) = x2 + c

Lesson element, adjusting WINDOW  

settings to view key features

Contextualised task requiring a suitable 

WINDOW

Functions task requiring exploration of 

graphs of families of functions
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realistic to have a negative number of books?’ ‘No’, or ‘A negative 

amount of dollars?’ and, ‘No’. ‘Well then, are those values realistic to 

have on your graph?’ ‘No’. ‘Well, you would have more efficient use 

of your graph if you deleted those bits and use your WINDOWs’. ‘But 

I don’t know how to use WINDOWs, I don’t understand.

This teacher sees function view-ability – focusing on the section of the function that 

is relevant to the modelling context – as an essential affordance for his students to 

enact. Brown describes an occasion where he was observed promoting use of context 

(finding the biggest box volume) to select an appropriate viewing domain:

James:  When you do those cut-outs, of x, what is the biggest value of x that 

you can cut-out? If you have a look at your picture, what did you put for 

your diagram? If you started to make those corner cut-outs bigger, what 

would be the biggest cut-out that you could make?

Cam: Five.

James:  Five. That is right. So for your WINDOW, you would set Xmin to be 

zero. And Xmax to [pause]?

Cam: So that, is that [wrong]?

James: No, you are right up to there.

Cam: So we didn’t have to do that much?

James:  But, beyond here [x = 5] it is not a realistic part of the problem. 

Because the biggest value of x you could ever cut out is 5. Okay?

Cam: Yeah.

James: So you would set your WINDOW to?

Here James had deliberately organised the learning experience so as to promote 

this particular manifestation of the affordance function view-ability. This ZFM/ZPA 

complex is also intended to orient students’ ZPDs towards possible futures where they 

will be able to independently perceive and enact this affordance where appropriate.

We have so far presented two contrasting theoretical frameworks for analysing 

the teacher’s role in technology-integrated learning environments: one based on 

the technology-specific theory of instrumental genesis and another that has applied 

the more general concepts of zones and affordances to technology contexts. To examine 

the relevance of these frameworks it is instructive to re-interpret some of the lesson 

excerpts within each study from the perspective of the alternative theory.

14.1.3  Instrumentation Theory Applied  

to a Zone/Affordances Excerpt

In the teacher–student dialogue from the function view-ability excerpt above we 

observe instrumental reinforcement from the teacher when he provides information 

about how to use the WINDOW to view the graph appropriately: his aim is to 

improve the students’ ability to relate mathematical knowledge to the problem 
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context. Instrumental initiation is suggested in the segment of Table 14.1 that refers 

to “Setting viewing window to given values” for the purpose of sketching a function 

over a specified domain, as this implies that the aim is to teach students how to use 

an aspect of the technology. On the other hand, a lesson element that focuses on 

setting a “good” window that includes key features of the graph, together with a 

task requiring exploration of graphs of families of functions, is consistent with 

instrumental exploration because students explore the technology through a math-

ematical task, or with instrumental symbiosis when they explore specific window 

settings to visualize properties they conjecture about a function.

14.1.4  Zone Theory and Affordances Applied  

to an Instrumental Genesis Excerpt

Now let us return to the Cabri example involving triangles and inscribed quadrilat-

erals. Whether this activity becomes one of instrumental exploration, reinforcement, 

or symbiosis depends on the conditions enabling perception and promoting enactment 

of the affordances carried by “dragging points” and “Replay construction”; that is, 

by the ZFM/ZPA complex organised by the teacher and learning environment. 

Conditions enabling perception might be established through previous lessons in 

which students experienced the particular affordance; conditions promoting enactment 

would include the wording of the task (whether specific instructions were given 

regarding use of Cabri features) and the teacher’s promotion via questioning about 

the mathematical or technical aspects of the task.

While both these theoretical frameworks can be applied to lesson events to analyse 

the teacher’s role in integrating technology into the mathematical practices of the 

classroom, looking through alternative lenses brings different issues to the foreground. 

We might say that the theory of instrumental genesis proceeds from a micro-level 

analysis of interactions between mathematical tasks and instrumented techniques to 

pose questions about pedagogy; while zone theory is primarily concerned with 

macro-level issues of learning through interaction with other people and the material 

and representational tools offered by the learning environment, where technology is 

one such tool.

14.1.5 Complexity Theory

The third theoretical framework is illustrated by Sinclair’s reflections on her own 

practice as a teacher educator, looking through the lens of complexity theory to 

analyse how teachers can nurture development of a learning system in a technology-

supported environment. Here the focus is on the classroom as a whole rather than 

on the teacher, students, and technology. Sinclair argues that complexity theory – 

the study of adaptive and self-organising systems – “challenges us to see the whole 

system in a new way”.
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Davis and Simmt (2003) were the first to apply complexity theory to the teaching 

of mathematics, evoking the conceptual shift, described by Cobb (1999), “away 

from mathematics as content and toward emergent terms” (Davis and Simmt 2003, 

p. 144, original emphasis). They propose five conditions for emergence of a math-

ematical community as a learning system:

1. Internal diversity: but not the kind of diversity achieved by structured group 

work or other formal classroom organization strategies, because “diversity cannot 

be assigned or legislated, it must be assumed – and it must be flexible” (Davis 

and Simmt 2003, p. 149)

2. Redundancy: which provides the necessary degree of sameness to allow people 

to interact while compensating for each other’s weaknesses

3. Distributed control: acknowledging that the locus of learning is in the collective 

rather than the individual

4. Organised randomness: establishing the enabling constraints necessary for generative 

activity

5. Neighbour interactions: providing sufficient density of interactions between 

agents to open up new conceptual possibilities

Sinclair first examined three mathematics activities she had used with high school 

students with respect to the five conditions listed above: a linear transformations 

project using a spreadsheet; a set of proof tasks with JavaSketchpad; and an inde-

pendent study that made use of a variety of technological applications. In only the 

latter activity was she satisfied that all the conditions were met for development of a 

learning system.

To bring Sinclair’s use of complexity theory into our broader discussion of theo-

retical frameworks for studying technology integration, we take two insights arising 

from her analysis and consider these from alternative theoretical perspectives. The first 

insight is related to Davis and Simmt’s (2003) argument that “emergent events 

[such as the emergence of mathematical ideas in the collective practices of the 

classroom] cannot be caused, but they might be occasioned” (p. 147). The difference 

here is between tasks that are prescriptive (specifying what is permitted; everything 

else is forbidden) versus proscriptive (specifying what is forbidden; everything else 

is allowed); in other words, emergence requires enabling constraints. One reason 

for the success of Sinclair’s independent study task was that it was proscriptive, 

providing “a structure for sharing, play, and individual choice”. The notion of enabling 

constraints is thus reminiscent of zone theory’s ZFM/ZPA complex, which provides 

freedom to explore within limits set by the teacher (although Brown would argue 

that, in a TRTLE, secondary students can often move beyond these limits).

A second insight came from Sinclair’s reflection on her practice as a teacher 

educator and the realisation that she was not using technology with her pre-service 

students in a natural, spontaneous way as she did in her own mathematical work. 

“Instead, I was teaching applications of technology” – an approach to task design 

that Assude and colleagues might describe as instrumental initiation. Sinclair 

therefore set out to make technology an integral part of her teaching, shifting the 

focus from how to use the technology towards how technology can be used to 
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explore mathematics – that is, towards instrumental exploration or even symbiosis, 

improving both instrumental abilities and mathematical knowledge.

14.1.6  Theoretical Perspectives: What Is the Teacher’s  

Role in Technology Integration?

Table 14.2 summarises three complementary interpretations of the teacher’s role in 

technology integration, each corresponding to a different view of technology 

itself.

How do teachers’ beliefs, attitudes, mathematical and pedagogical knowledge 

shape (and how are they shaped by) their use of digital technologies in mathematics 

teaching and how are these issues influenced by access to resources and by differ-

ences in culture?

Each of the papers discussed in the previous section implicitly drew attention to 

the mathematical and pedagogical content knowledge (Shulman 1987) that teachers 

require in order to integrate technology into their classroom practice. However, it is 

well known that many other factors influence the extent and manner of classroom 

integration in school mathematics.

14.1.7 Factors Influencing Technology Integration in Schools

Goos’s contribution to the ICMI-17 Study adapted Valsiner’s concepts of the Zone 

of Proximal Development, Zone of Free Movement and Zone of Promoted Action 

to devise a theoretical framework for analysing relationships between factors influ-

encing secondary school mathematics teachers’ use of technology. In this research, 

the zone concepts are used to theorise teachers’, rather than students’, learning 

(cf Brown’s research discussed above). Previous research on technology use by 

mathematics teachers has identified a range of influences related to teacher knowl-

edge and beliefs, school structures and institutional constraints, and professional 

learning opportunities (e.g., Fine and Fleener 1994; Manoucherhri 1999; Simonsen 

Table 14.2 Theoretical interpretations of the teacher’s role in technology integration

Author Theory View of technology Teacher’s role

Assude  

et al.

Instrumental  

genesis

From artefact to  

instrument

Organise conditions for  

instrumental genesis

Brown Zone theory Offering affordances  

in relationship with 

the user

Organise conditions (ZFM/ZPA 

complex) for student perception 

and enactment of affordance

Theory of 

affordances

Sinclair Complexity 

theory

Element of a learning 

system

Organise conditions for emergence 

of a mathematical community
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and Dick 1997; Walen et al. 2003). Goos proposes that these influences represent 

elements of a teacher’s ZPD, ZFM and ZPA, as shown in Table 14.3.

Goos illustrated how the zone framework may be used by analysing case studies 

of a novice teacher and an experienced teacher in different school settings.

Vignette #1: Novice (Pre-service) Teacher

In her university pre-service course Sandra gained experience in integrating technology 

(computer software, Internet, graphics calculators) into mathematics teaching and 

learning and she developed a strong commitment to using technology in ways con-

sistent with a student-centred teaching approach. Her practicum school had many 

computer laboratories but had only recently purchased its first class set of graphics 

calculators. Sandra had not observed other mathematics teachers use any kind of 

technology with their classes. Because none of these teachers knew how to use the 

graphics calculators, it was easy for Sandra to borrow the sole class set for her own 

teaching. She decided to use the graphics calculators with her senior secondary 

class for solving linear programming problems. The students had never used graphics 

calculators before, so Sandra devised a worksheet with keystroke instructions and 

encouraged students to work and help each other in groups. She was surprised to 

encounter strong resistance from the students, which seemed to stem from their 

previous experiences of mathematics lessons. Other teachers focused on covering 

the content in preparation for pen and paper tests and did not allow the students to 

work in groups. The students were not interested in helping each other or in learning 

how to use technology if this would be disallowed in assessment situations. Sandra was 

not discouraged by this experience and continued to seek ways of integrating tech-

nology into her teaching of mathematics.

Sandra experienced tensions and contradictions within her ZFM/ZPA complex 

and its relationship with her own ZPD. Some elements of her ZFM, such as her easy 

access to calculators that no other teacher wanted to use, presented favourable 

opportunities to use technology; however, her students’ negative attitudes and lack of 

motivation, together with an assessment regime that excluded technology, represented 

Table 14.3 Factors affecting technolo\gy usage

Valsiner’s zones Elements of the zones

Zone of Proximal Development Skill/experience in working with technology

Pedagogical knowledge (technology integration)

General pedagogical beliefs

Zone of Free Movement Access to hardware, software, teaching materials

Support from colleagues (including technical support)

Curriculum and assessment requirements

Students (perceived abilities, motivation, behaviour)

Zone of Promoted Action Pre-service education (university program)

Practicum and beginning teaching experience

Professional development
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potential constraints. Further tensions arose from inconsistency between the pedagogical 

actions promoted by teachers in the school (school ZPA) and the technology emphasis 

in her pre-service course (pre-service ZPA). Sandra’s willingness to persist with 

technology integration suggests that she was able to re-interpret her professional 

environment in the light of her own goals and beliefs regarding technology – that is, 

she attended to only those elements of her ZFM/ZPA complex that engaged productively 

with her ZPD and would thus “canalise” her development as a teacher committed to 

student-centred learning with technology.

Vignette #2: Experienced Teacher

Lisa gained little benefit from her initial experiences of professional development 

involving graphics calculators. These sessions emphasised procedural aspects of 

operating the calculators and the mathematics presented was too difficult for 

participants to engage meaningfully with the technology. After several workshops 

she felt confident enough to use graphics calculators in her teaching, but only as a 

tool for graphing and statistical calculations. Lisa later volunteered to participate in 

a research-based professional development program that demonstrated the impact 

of technology in developing students’ understanding of mathematical concepts and 

in facilitating classroom discussion. She began to see different ways of using graphics 

calculators that she hadn’t thought of before, commenting that “It really enhanced 

group work, we were really starting to think when we were fitting functions to the 

data, we had to really understand what the intercept and gradient mean: we weren’t 

just doing, we were really understanding at a higher level”.

In contrast with the case of Sandra, institutional constraints (ZFM) seemed to 

play little part in Lisa’s learning, possibly because she was Head of her school’s 

Mathematics Department and therefore in charge of obtaining resources and writing 

curriculum and assessment programs. In this case, the research-based professional 

development program created a ZFM/ZPA complex that met Lisa’s need to focus 

on pedagogical, rather than procedural, aspects of using technology.

14.1.8  Factors Influencing Technology Integration  

in University Mathematics Departments

Compared with the wealth of research on technology integration in school mathe-

matics, much less is known about factors influencing use of technology for mathematics 

teaching and learning in universities. Drawing on school-level research in this area, 

Lavicza has designed a study investigating the extent to which Computer Algebra 

Systems (CAS) are used in university mathematics departments in Hungary, the UK 

and the USA and factors that influence the integration of CAS into university 

mathematics education. In the first, qualitative, phase of the study, he interviewed 

22 mathematicians, observed classes, and collected course materials from these 
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countries as a prelude to a larger scale quantitative study. Analysis of this qualitative 

data identified three clusters of issues related to the participants’ personal characteristics, 

institutional and technology factors, and conceptions of mathematics, mathematics 

teaching and learning, and the role of CAS. Academics’ conceptions appeared to 

be a crucial factor influencing technology integration, more so than for school 

teachers, possibly because the greater academic freedoms of university life tend to 

lessen the impact of curriculum and other policy pressures.

In the quantitative phase of Lavicza’s study, 1,103 questionnaires were completed 

by mathematicians in the three participating countries (24.6% response rate). 

Although the responses are yet to be analysed in detail, preliminary findings indicate 

that current use of CAS is much higher in universities than in schools and that CAS 

technology, support and computer laboratories are readily available to university 

mathematicians for teaching purposes. Further analysis is expected to identify rela-

tionships between mathematicians’ personal characteristics and institutional settings, 

their CAS use in teaching and research, their conceptions of mathematics, and their 

CAS-related conceptions. This work has the potential to highlight similarities and 

differences between technology integration in schools and universities, especially 

if a common theoretical framework is used to compare research at the different 

levels of education. For example, the zone theory framework developed by Goos 

may provide a means of analysing technology integration across diverse curricular 

organizations and educational levels.

14.2 Classroom Implementation

What can we learn from teachers who use, or have tried to use, digital technologies 

for mathematics teaching?

Asking what we can learn from teachers who use digital technologies raises 

questions concerning criteria for effective use and the nature of “progress” in tech-

nology integration. These are the classroom implementation issues upon which we 

focus in this section.

14.2.1 Defining Criteria for Effective Use

What counts as “success” in technology integration can be evaluated either theoreti-

cally or empirically. Assude et al.’s notion of instrumental integration, explained 

earlier in this chapter, is a tool for theoretical evaluation that can identify different 

modes of integration by teachers. Using this tool, “progress” would be represented 

by increasingly sophisticated modes of integration, such as when teachers design 

tasks that increase the relationship between students’ instrumental abilities and 

their mathematical knowledge.

However, Ruthven and Hennessy (2002) have argued that there are limitations 

in using preconceived theoretical models if the goal is to capture teachers’ perspectives 
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on effective practice. Instead, they collected empirical evidence to develop a model 

“of what practitioners conceive as the successful use of computer tools and 

resources to support mathematics teaching and learning” (p. 51). From group inter-

views conducted with the mathematics departments in seven UK schools they 

identified well developed themes that ran across transcripts. Success themes explicit 

or implicit in teachers’ accounts reflected teaching aspirations concerned with gaining 

students’ participation in classroom work, the pace and productivity of this work, 

and the resultant progression in learning that occurred. Further analysis yielded ten 

operational themes describing the affordances and mediating processes that teachers 

associated with success. These in turn were linked to broader pedagogical themes 

concerned with promoting investigation and supporting consolidation. While inves-

tigation and consolidation were viewed as complementary rather than oppositional 

aspects of teaching and learning, computer use was particularly important in making 

investigative activities accessible to students and viable in the classroom.

It may be that neither theoretical nor empirical criteria on their own are sufficient 

for defining what counts as effective use of digital technologies if we are genuinely 

interested in learning from teachers who are incorporating such technologies into 

their practice. Bringing together theoretical and empirical accounts may give rise to 

richer interpretations of teachers’ practice and highlight similarities and differences 

between teacher and researcher views on the nature of “progress”.

14.2.2 Identifying Change

Research that investigates the impact of digital technologies on classroom practice 

is moving towards more mature analysis of teacher learning by asking how technology 

is used and how this changes the teacher’s role rather than by simply contrasting 

the teaching of particular mathematical topics with and without technology. Some 

examples of such research already exist in the literature. For example, Farrell 

(1996) studied classroom interactions in technology-integrated pre-calculus class-

rooms and observed a shift in both teachers’ and students’ roles towards that of 

consultant and fellow investigator, accompanied by a similar movement away from 

teacher exposition towards planned or informal group work. Goos et al. (2003) 

developed four metaphors in order to theorise the varying degrees of sophistication 

with which teachers and students work with technology: technology as “master”, 

“servant”, “partner”, and “extension of self”. These metaphors can be used to charac-

terise particular classroom episodes as well as to analyse changes in technology use 

over time.

Contributions to the ICMI-17 Study raised several issues around classroom 

implementation and identifying change in teachers’ practices. Chow reported on his 

plans to conduct a study of Singapore’s junior college teachers at a time of transition 

to a new mathematics curriculum that expects use of graphics calculators in all 

advanced level courses. This study provides a rare opportunity to investigate how 

the concerns of teachers, their teaching strategies and their roles change when they 

attempt to integrate graphics calculators into teaching and learning. Chow also aims 
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to identify common features among teachers who are successful in integrating 

graphics calculators into the curriculum, thus raising again the need for clear criteria 

– whether theoretically or empirically determined – that define “success”.

Miller and Glover described how they have studied UK teachers’ changing peda-

gogical strategies as they become more confident in using interactive whiteboards 

(IWBs) to teach mathematics. Along with other contributors to the ICMI-17 Study, 

they noted that availability of digital resources alone does not guarantee enhancement 

of teaching and learning, and they emphasised the importance of professional 

development that fosters both technological competence and pedagogic flexibility. 

Drawing on analysis of over 100 video-recorded mathematics lessons in 25 schools 

(pupils aged 11–14 years), Miller and Glover identified three stages of development 

in teachers’ use of IWBs, outlined below.

• Supported didactic: the teacher makes some use of the IWB but only as a visual 

support to the lesson and not as an integral tool to conceptual development; there 

is little interactivity, pupil involvement or discussion.

• Interactive: the teacher makes some use of the potential of the IWB to stimulate 

pupil’s responses from time to time in the lesson and to demonstrate some concepts; 

elements of lessons challenge pupils to think by using a variety of verbal, visual 

and aesthetic stimuli.

• Enhanced interactive: this approach is a progression from the previous stage 

marked by a change of thinking on the part of the teacher who seeks to use the 

technology as an integral part of most teaching in most lessons and who looks 

to integrate concept and cognitive development in a way that exploits the inter-

active capacity of the technology.

To sum up, studying “progress” in technology integration requires researchers to 

keep in mind the following questions:

• Howis“progress”defined?(theoreticallyorempiricallydefinedcriteria)

• Whatchanges,orgetsbetter?(teacherroles,mathematicalpractices,taskdesign,

teaching strategies, classroom interactions, teacher knowledge and beliefs)

• Whatdowemeanby“better”,andforwhom?(teacher,student)

• Howdoweknow(methodology),andwhatbywhatmeansdowe“measure”

change?

• Howcanweexplainit?(theory)

14.3 Future Visions

We began this chapter by looking back at the first ICMI Study on technology in 

mathematics education and reflecting on the gap between aspirations and reality 

regarding the pace and scope of integration of digital technologies into mathematics 

classroom practice. To conclude it we now look forward into the future to identify 

work that needs to be done to further advance the field in terms of theoretical perspec-

tives and classroom implementation.
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Taken together, the contributions to the ICMI-17 Study reviewed in this chapter 

present a consistent argument that (1) teacher characteristics (their mathematical 

and pedagogical knowledge, beliefs and attitudes, skill and comfort in using digital 

technologies), (2) institutional contexts (access to resources, policy pressures, curricu-

lum change), and (3) professional learning and development influence the integration 

of digital technologies into mathematics teaching. To create future-oriented visions 

of technology integration, we propose the following lines of inquiry:

• Continuetodeveloptheoriesthattargeteachofthesethreefactorsseparately

• Furtherinvestigatetheoriesthatseektoexplainrelationshipsbetweenthesefactors

on a broader scale

• Developtheoriesofpracticetoinformpre-serviceandin-serviceteachereducation,

in order to strengthen recommendations about what counts as “progress” or 

“success” in technology integration

• Conductresearchthatmakesuseofthesetheoriestotesttheiroperationalvalue

and domain of validity
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Chapter 15

Teacher Education Courses in Mathematics  
and Technology: Analyzing Views and Options

Brigitte Grugeon, Jean-Baptiste Lagrange and Daniel Jarvis,  

with Mara Alagic, Mili Das and Diana Hunscheidt

Abstract Research in the field of teacher development courses in mathematics 

and technology is still in its infancy. In order to offer reference marks for this field, 

this chapter explores the variety of views and options that underpin such courses. 

The investigation considers the views and options provided by five contributions 

to the ICMI study conference from three different continents, each based on a 

specific teacher education course. The authors propose to characterize the views 

with regard to three aspects: implementation of technology in the classroom and in 

teacher education, changes in teachers’ role, activity and practices, and adaptation 

of teaching practices with regard to time and professional proficiency. They also 

propose to classify the options first with regard to the content, and secondly with 

regard to teaching strategies. Six types of content – curriculum, potential of  

software, instrumental genesis, new and old tasks, new teaching abilities, 

professional context – and four main strategies – demonstration, role playing, “in 

practice”, and learning communities – are identified.

Keywords Mathematics • Technology • Teaching • Teacher education • Professional 

development • Pre-service • In-service • Course design

15.1 Introduction

The integration of a new artefact into a teaching situation necessarily alters existing 

stability and requires teachers to undergo a complex process of adaptation. In the 

case of digital technologies, the modifications required in routine practices are likely 

to be particularly pronounced. The teacher also needs to consider how the new 
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artefacts, the new representations and alternative learning strategies made available 

by technology depend on the various factors of a teaching situation: content to be 

taught, curriculum, specificities of students and more generally of the learning context. 

These complex issues have huge implications for pre-service and in-service teacher 

professional development. As Musley et al. (2003, p. 396) have argued in their 

international study into technology use within teacher education programs, there 

are a variety of different ways in which technology may be used. They distinguish 

between three different types of uses:

1. Creating and using videotape, videodisc and multimedia resources in order to 

make a wide range of pedagogical interactions available for analysis

2. Using the Internet and communication software packages to enable and facilitate 

information and communication in professional development

3. Using computers, calculators and other electronic resources for doing 

mathematics

In this chapter, we focus on the third of these different purposes as an important 

aspect of preparing teachers for work in technology-rich classrooms. Research 

studies in this domain are in short supply. The literature consists mainly of reports 

on how specific tools were used, or on how specific programs were designed, rather 

than on what learning took place, or on the broader question of how teachers learn 

(Musley et al. 2003, p. 425). There is, in particular, a need to compare and share 

experiences from different countries and contexts and to seek frameworks which 

allow us to pinpoint the commonalities and differences in the approaches currently 

being adopted. This arose as a major concern in the study conference working 

group that dealt with teacher education. Five examples of teacher development 

courses, each developed in a different country were presented and discussed, and 

the working group participants felt the need for guidelines and reference marks 

to make sense of their commonalities and differences. It appeared first that 

each course was based on assumptions or beliefs about technology in mathematics 

education related to classroom implementation of technology and teacher 

preparation. This chapter uses the word ‘views’ to denote these assumptions or 

beliefs. Then, practical choices and decisions in the implementation of courses 

were identified as possible reference marks. This chapter uses the word ‘options’ to 

denote these choices and decisions.

The aim of this chapter is then twofold: to investigate the various views which 

underpin approaches adopted in courses aiming to support teachers taking up the 

challenge of using technology for mathematic education; and, to examine the 

various options that inform the practical decisions adopted by those designing, 

organising and implementing such courses. To this end, we focus our analysis on 

five examples of teacher development programmes, each developed in a different 

country that were presented and discussed during the study conference. The first part 

of the chapter consists of a very brief description of the aims and the organization of 

each of the development programmes (for more details, the reader is referred to the 

respective papers in the conference proceedings). In the second part, we offer a series 

of frameworks by which to characterize the different views that underpin the five 
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examples. These views deal with the relationship between technology and teaching/

learning, with related changes in teaching practices, and with the teaching strategies 

the five examples aim to promote. Finally, drawing again from these five examples, 

we identify core components related to the practical decisions concerning the con-

tent proposed in the courses and the strategies by which the teachers participating 

in the courses are to access this content.

15.2 Examples of Teacher Development Courses

The papers presented at the study conference offered an interesting diversity of 

teacher development courses. Within the five courses, three are aimed at pre-service  

teachers, and two others at in-service teachers. Two are prepared for work 

especially in primary school and two for the secondary sector. Two of the courses 

include substantial online activity; the others were more concerned with the 

integration of technological tools in the ordinary classroom. The period of time 

dedicated to teacher preparation also varies. This diversity is also reflected in 

the geographical location of the courses in three different continents.

We refer in the texts and tables to each course using short acronyms, and name 

authors when referring to their specific views as expressed in their papers.

15.2.1 In Service Teacher Development Course “Mathematics 

Investigations” (MathInquiry) (Based on Alagic 2006)

The course “Mathematics Investigations” is designed for pre-service teachers  

in the USA and aims to address current demands to integrate both digital tech-

nologies and inquiry-based approaches into the teaching and learning of 

mathematics. The course has five components, each weighted differently: problem 

sets, reflections, self-evaluations, readings, and a final presentation. At the end of a 

problem set, the students are required to produce a metacognitive reflection report, 

which describes their thinking during the process of problem set design. Weekly 

discussions are carried out through the use of online courseware, as the classroom 

learning network includes discussion groups. As a final product, each student compiles 

a Digital Resource File that consists of five problem sets, a final presentation, and 

additional resources relevant to their future work. Students are guided and encouraged 

to develop their fluency in dynamic geometry, spreadsheets, selection and use of 

virtual manipulatives, and other Web resources. Furthermore, they are required to 

design Problem sets so that these digital tools are implemented in a meaningful way 

for different grade levels of mathematics learning and teaching. University-wide 

available courseware is used to support complementary online activities, group 

discussions, and the virtual classroom.
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15.2.2  A Bachelor of Education Course at the Institute  

of Education for Women in India (BecIEW)  

(Based on Das 2006)

In this course, trainee teachers practice teaching skills in a classroom environment 

in which peers play the role of students or observers. After practicing five or six 

teaching skills, trainee teachers take part in actual practice teaching sessions for 

3–4 weeks in secondary schools. Regarding technology use, the course specifically 

targets the following abilities:

• Usingtechnologycomfortablyintheclassroom

• Integratingtechnologyasacomplementarytoolintheclassroom

• Providingstudentswithavarietyofexperiencesthroughdynamicapproaches

• Motivatingstudentstowardslearningmathematics

15.2.3  Mieux Apprendre la Géométrie avec l’Informatique1 

(MAGI) (Based on Assude et al. 2006)

This paper is about in-service primary teacher professional development courses 

carried out in France within the national project MAGI. This research and 

development project involves twenty researchers, teacher educators and teachers 

divided into groups located in different places in France. The project specifically 

focuses on the integration of the dynamic geometry environment, Cabri-Geometry, 

into ordinary classrooms at the primary level. There are two main parts, or stages, 

of this project: a 3-week long primary school teacher professional development 

course, and, a documentation of teachers’ practices involving the evolution of their 

instrumental integration modes (see Chap. 14) as observed 1 or 2 years after the 

3-week course is completed.

15.2.4  A Teacher Development Course for Prospective  

Primary Mathematics Teachers (TdcPt)  

(Based on Hunscheidt and Peter-Koop 2006)

This teacher preparation program offered at the University of Oldenburg in 

Germany is aimed at future primary mathematics teachers and involves a 4-h 

compulsory module on the use of digital and electronic technologies in the 

mathematics classroom. Two learning environments have been developed in 

1 English translation: improving geometry learning with computers.



15 Teacher Education Courses in Mathematics and Technology 333

the context of a university methods course, and these have then been replicated 

in the form of teaching experiments in Grade 4 classrooms by pre-service teachers. 

The two learning environments go beyond the use of special software designed for 

(primary) mathematics classrooms and involve a robot and a monitoring device. 

The development of the learning environments is guided by the paradigm that  

ICT-related objects serve as “tools, not toys” within a classroom that fosters the 

extension of mathematical understanding and the introduction of new content areas.

15.2.5  The Bachelor of Education “ITeach Laptop Learning 

Program” (BEdITeach) (Based on Jarvis 2006)

The Faculty of Education at Nipissing University in North Bay, Ontario is among 

the first in Canada to adopt a laptop program for all teacher candidates enrolled in 

the Bachelor of Education program. Since 2001, teacher candidates in the “ITeach 

Laptop Learning Program” have been required to purchase and use a portable lap-

top computer for all courses offered in the Bachelor of Education (BEd) program. 

Course instructors are encouraged to make use of this technology by way of pre-

loaded, discipline-based software applications, Internet-based resources, and infor-

mation/links housed on their own instructor websites.

15.3  Characterizing the Varied Views that Underpin  

Teacher Development Programs in Technology

15.3.1  Views Concerning the Implementation of Technology  

in the Classroom and in Teacher Education

All of the programs mentioned above have in common the aim of motivating and 

supporting teachers for using technology, but they differ in terms of the related 

views on technology use and the modes of use supported within the implementation. 

We have classified these views and modes of use along two axes.

The first axis (horizontal in Fig. 15.1) refers to classroom use of technology. It 

separates those courses underpinned by the idea that technology will necessarily 

improve learning from those courses that consider a more problematic contribution 

to mathematics learning. Courses assuming improvements, like Das’ BecIEW, are 

characterized by the view that technology will make teaching more dynamic, interesting, 

and effective as compared with a chalk-and-talk method. Teachers are portrayed as 

being able to explain, interact, and illustrate based on student learning needs, and 

the appropriate use of technology enables the visualization of mathematical 

concepts and applications, minimizing the abstractness of the topic and thereby 

reducing instances of math-phobia. The goal of these courses is then to acquaint 
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teachers with, and inspire teachers to adopt, the implementation of technology in 

their classes on the basis of these improvements. Courses that consider a more 

problematic contribution, like in Grugeon’s MAGI, stress the complexity of the 

classroom integration of technology, and the necessity of introducing a reflection 

on the instrumental dimension whose importance with regard to teacher issues is 

stressed by Chap. 13. Courses like MAGI also considers an anthropological didactic 

perspective as explained in Chap. 23, especially questioning the way technology 

changes mathematical techniques and the interactions between new digital techniques 

and old paper/pencil techniques.

Courses positioned more towards the middle of this axis – the BEdITeach and 

MathInquiry, for example – assume a relatively neutral position. While aware of 

technological challenges in implementation, the instructors remain optimistic about 

technology advantages for teaching. In these courses, technology is treated as a 

creative and complementary teaching resource but not necessarily as a definite 

improvement in itself.

The second axis (vertical in Fig. 15.1) deals with the relationship with technology 

within the training courses. It distinguishes between courses taking advantage of 

technology for communicating, collaborating, accessing and sharing resources, and 

courses aiming more explicitly to prepare trainees for classroom implementation. 

Along this axis, the question of the transfer from training to classroom is critical.

Courses based on the potential of technology for communicating and collaborating, 

like Jarvis’ BEdITeach, require extensive use of technological means by both the 

teacher educator and the student teachers. They are based on the assumption that 

expertise in the use of digital technology in education is better acquired through 
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ongoing, “hands-on” exposure than through specific computer sessions. Within this 

perspective, the transfer to the classroom is seen as a kind of by-product, that is, as 

technology use becomes an integral part of their practices, it will make sense for 

them to extend these practices from the university to the school classroom. In 

Jarvis’s BEdITeach, the student teachers were required to have a laptop and course 

instructors were encouraged to make use of this technology by way of pre-loaded, 

discipline-based software applications and Internet-based resources. He observed 

that student teachers often used their laptops in their BEd classes, along with a 

digital projector, to demonstrate software applications and slideshow presentations. 

On some occasions, these presentations took the form of the teacher introducing a 

new mathematics problem or concept. At other times, the presentations served as a 

precursor to a classroom exploration with technology.

At the other end of this axis, the other four courses all aimed at preparing teachers 

to specifically use technology within their classrooms. Here, the practices emphasized 

within the courses aimed at enabling trainees to transfer their learning to new settings 

and events: Alagic’s MathInquiry provides a strong case in point. This course featured 

built-in requirements for sense-making, self-assessment, and reflection as to what 

worked and what still needed improvement, as teachers employed teaching practices 

congruent with metacognitive approaches to learning.

15.3.2  Views About Changes in Teachers’ Role, Activity  

and Practices Underpinning a Course

Technology impacts upon classroom teaching practices and this impact is central in 

teacher development courses. Our five example courses are all based on the 

assumption that technology has a deep impact, but they tend to differ regarding the 

aspects of this impact which they each arguably privilege. We have distinguished 

three poles which help to characterize these differences (Fig. 15.2).

The first pole is about the new role of the teacher, when using technology. 

For instance, Das (BecIEW) considers that the function of a teacher is to facilitate, 

communicate and mediate among students. She expects that technology will help 

him/her and that he/she will therefore become friendlier, more dynamic, and 

interactive. Alagic (MathInquiry) also believes that a major change associated with 

the use of technology in the mathematics classroom is that teachers come to adopt 

the role of facilitators of learning. She adds that this change should result in 

classrooms becoming more learner-centred and less knowledge-centred.

The second pole is about the new kinds of activities that a teacher will develop 

in the presence of digital technologies. Jarvis (BEdITeach) developed the use of 

web resources for those who participated in his course, intending that they would 

transfer this new activity into their classes. He maintained a Course Schedule 

webpage on which the required readings for each session were listed, along with 

topics for discussion, and related websites. He also used the Course Schedule webpage 

to support the trainee teachers in software explorations during the actual workshops 
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and assembled a website featuring mathematics-related links organized by categories. 

Obviously this new kind of activity is conceived to help the learner to learn more 

autonomously, yet also collaboratively, as well as through exploration. Hence, this 

conception relates well to the role which the teacher is expected to adopt within the 

technology-integrated classroom. Indeed, Jarvis (BEdITeach) notes that managing this 

new activity is not obvious for the teacher. He/she must be diligent in enforcing some 

kind of accountability mechanism to assist students in staying on-task during 

classroom workshops because there are so many interesting/distracting web spaces 

available that students are often prone to distraction.

This places BEdITeach close also to the third pole, which is based on the idea 

that technology brings a new complexity into teaching practices that may not be 

captured by a focus that privileges just one aspect of the teaching situation. MAGI 

(Grugeon) particularly exemplifies this pole, characterizing the process of changing 

practices by several degrees of instrumental integration.

15.3.3 Views About How to Prepare Teachers

Courses about the use of technology aim to prepare teachers to adapt their practices, 

while taking into account the actual circumstances and contexts of the trainees’ 

practices. In relation to the set of views associated with this challenge, we organize 

the five example courses along two axes (Fig. 15.3). A temporal axis distinguishes 

short and long-term integration while the other axis deals with teachers’ professional 

proficiency.

The temporal axis (horizontal in the figure) separates courses that privilege 

trainees’ short-term entry into the new practice of using technology and courses that 
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try to take long-term integration into account. For instance, Jarvis (BEdITeach) 

stresses that of the brevity of practice teaching sessions for his teacher candidates 

often makes it difficult for them to implement an ambitious software-based activity 

in the classroom, and concludes that the most common and competent use by the 

trainees of the laptops during mathematics classes was in presenting mathematics 

problems or new mathematics learning using digital slideshow software. For him, 

therefore, while using slideshow software brings perhaps not the best contribution 

to math teaching/learning, it is nevertheless an effective use for his trainees in the 

concrete context of their teaching.

At the other end of this axis, courses considered by MAGI try to go further and 

to create conditions for more ambitious uses of technology. It is worth noting 

that BEdITeach is for pre-service training while MAGI deals with in-service. It is 

also important to stress the interdependence of this view with the second axis 

in Fig. 15.1. The ubiquitous use of technology in BEdITeach suggests a view in 

which technology is expected to permeate practice; those who begin to use technology 

in relation to short-term learning aims are seen as beginning on the path that will 

gradually lead into an approach which more fully integrates technology. By means 

of a contrast, the approach adopted by Grugeon and her colleagues (MAGI) 

stresses the challenge of long-term integration from the very start. This said, in the 

analysis of teachers’ practice, the levels of what they describe as instrumental 

implementation also seem to pass from a more peripheral to a more central use: from 

instrumental initiation, where the emphasis is more on learning to use technological 

than on new approaches to mathematical knowledge, through instrumental 

exploration and reinforcement, to the level of instrumental symbiosis, an approach 

which takes advantage of specific affordances of the technology to enable new 

relationships with mathematical objects.
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The professional proficiency axis (vertical in the figure) distinguishes between 

classroom teaching skills and professional content-related knowledge. Technology 

impacts upon both of these aspects of the organization of teaching practices.

Das (BecIEW) chooses in her course to privilege the first aspect, aiming to support 

her student teaching in managing the classroom, playing the roles of facilitator, 

communicator, and mediator. She specifically trained teachers to minimize their 

use of blackboard work while explaining critical steps, thereby reducing the abstract 

nature of the topic by repeating explanations and giving examples. This served to 

provide quality teaching for every learner so that no one in the class felt neglected 

and so that teachers were able to interact, gather feedback, and evaluate pupils’ 

level of achievement through supplied worksheets. She also saw the management 

of time as an important factor. This choice is consistent with constraints within 

actual teaching: size of the class is sometimes very big; prescribed textbooks are 

not compatible with technology; the number of computers is insufficient; and 

40-min classes are considered too short.

At the other end of the axis, following Ball (2000, p. 244), Alagic (MathInquiry) 

aims “to prepare teachers to know and to be able to use subject matter knowledge 

effectively in their work as teachers.” She chose to concentrate on the design of 

relevant tasks for students. In her course, each trainee had to compile a Digital 

Resource File that consisted of five problem sets, a final presentation, and possible 

additional resources relevant for their future work. Each problem set utilized 

technology tools in an essential way and demonstrated a gradual development of 

selected concepts through a sequence of rich problems. Reflection is crucial in this 

approach and at the end of the problem set the trainees are requested to report about 

their thinking during the process of design.

15.4  Identifying the Various Practical Decisions  

Related to Course Organisation

This section concentrates on the various options that can be chosen in relation to 

the organisation of teacher professional development courses incorporating digital 

technologies. We categorize these options by referring to two core components of 

teacher education courses: the contents proposed in the course, and the strategies 

that teacher educators develop in order to help teachers to access this content.

15.4.1 Contents Proposed in the Courses

Drawing from the five cases of teacher development courses, this section 

identifies and presents six types of content that can be taught in pre- or in-service 

courses. The five cases do not privilege the same content. Figure 15.4 displays 
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radar charts showing how each one can be located on a scale for each of the six 

aspects of learning content presented above.

15.4.1.1  Content 1: The Impact of Technology on Mathematics  

and the Resulting Evolution of the Curriculum

This type of content appears more or less in all five courses. This basic information 

can certainly not be left out in a teacher development course.

Fig. 15.4 Contents in teacher development courses
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15.4.1.2  Content 2: The Potential of Computer Applications  

for New Alternatives in Mathematics Learning

There is a wide range of potentialities from research and innovation that can be 

presented to teachers. For instance, in both Grugeon’s MAGI and Das’ BecIEW, 

the teacher educators demonstrate and explain the potentialities of the integration 

and the use of dynamic geometry, e.g., the “drag” mode that provides a means of 

distinguishing between properties that are valid only for a specific drawing and 

geometrical properties of a figure (Laborde and Capponi 1994). The potentialities 

of technology for changing lessons are also highlighted: conjecture and inquiry 

become major aspects of the lesson, theorems are illustrated, and meaningful proofs 

can be constructed.

15.4.1.3  Content 3: The Ideas of Instrumental Genesis and  

Intertwined Mathematical and Instrumental Knowledge

These ideas are receiving increasing attention in research into teaching and learning 

mathematics with technology (Guin et al. 2004). In teacher development courses, 

discussion of these notions with teachers represents an important means by which 

to help pre-service and in-service teachers consider how to organize a series of 

sessions so as to take into account students’ instrumental genesis. Perhaps because 

the notion of instrumental approach initially appeared in the French literature, from 

among the five courses it is Grugeon’s MAGI which includes explicit opportunities 

for this discussion while introducing students to dynamic geometry use. In lessons 

involving dynamic geometry, the school students might learn, for example, to create  

and drag a point, to create lines, etc. Teachers have to identify the underlying 

instrumental abilities. They can also become aware that such abilities can be 

institutionalized as a new instrumental knowledge. The teacher educator offers then 

teachers a chance to reflect on tasks intertwining mathematical and instrumental 

knowledge as a support for students’ conceptualization.

15.4.1.4  Content 4: Creating New Tasks and Making  

Them Work Together with Older Tasks

In all the teacher development courses described herein, new tasks integrating 

technological artifacts are introduced. If a teacher wants that students’ conceptuali-

zation following these tasks really contribute to their mathematical understanding, 

he (she) has to highlight explicitly the links with existing paper/pencil tasks. 

Making student teachers reflect on new tasks and how to make them work together 

with older tasks may then represent one strategy useful in preparing to this important 

aspect of classroom implementation of technology.

For instance, Grugeon (MAGI) proposes to base courses on reflections upon 

dynamic geometry tasks for students, by analyzing figures and conjecturing  
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geometrical properties. She also asks the teachers to build paper/pencil tasks for 

which students could use the properties conjectured within a dynamic geometry 

environment. Das (BecIEW) adopted a similar approach in order to help the trainee 

teachers taking her course to reflect on tasks involving the invariance of a variable 

triangle area with fixed base and elevation. In the MathInquiry course (Alagic), 

the problem set devoted to geometrical thinking challenges pre-service students to 

compare and contrast, via metacognitive reflection, what they can learn with 

dynamic geometry that was not available in traditional approaches, providing some 

hints about the dialectic between new and old tasks.

15.4.1.5 Content 5: New Teaching Abilities

The integration of a new artefact into a teaching situation modifies the professional 

practices and requires teachers to undergo a complex process of adaptation. In some 

stages of a lesson, students work alone or in groups to solve a problem with 

technology or paper-and-pencil. In others, the teacher orchestrates collective 

discussions. Teachers have to learn to identify new teaching roles brought about by 

technology at different stages. Most courses described in this chapter take into 

account this dimension. For instance, a particular ability is stressed in MAGI, based 

on the fact that the instrumental language can play an important role in students’ 

verbalization, lessening the use of mathematical language. Teachers have to learn 

to organize the connection between these languages and to take greater advantage 

of this connection for students’ learning.

15.4.1.6 Content 6: Introducing Technology into a Professional Context

Teachers have to learn to make the best of the context in which they will have to 

use technology. For instance, BecIEW takes into account:

1. Differences between schools’ equipment that make things possible in some 

schools but not in others

2. Differences between topics – some are more easily taught with technology than 

others

3. Differences between institutional contexts – in some contexts technology will be 

more easily accepted

15.4.2 Teacher Educator Strategies

Besides deciding upon the contents they aim to make their student teachers access, 

teacher educators have to choose the strategies by which they will undertake to 

reach these aims. We identified four possible strategies used within the five courses 
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described in this chapter. The table in Fig. 15.5 summarizes the different strategies 

used in the cases of teacher development courses. The ideas underlying the first 

two strategies (‘demonstration’ and ‘role playing’) are inspired by the notions of 

‘monstration’ and ‘homology’ (Houdement and Kuzniak 1996).

15.4.2.1  Strategy 1: Demonstration (Showing How to Achieve  

a Specific Goal)

With this strategy, the educator shows how to use the digital artefact and illustrates 

particular activities with it. This strategy doesn’t emphasise discussion about 

conditions and constraints of technology integration. Every course uses this 

training strategy to some extent. The main aspect here is immediate efficiency: 

in a short time, student teachers are introduced to a practical classroom imple-

mentation of technology. However the effectiveness is far from guaranteed 

when this strategy is used alone because student teachers have little opportunity 

for reflecting and discussion on the rationales for the implementation and the 

adaptation to their teaching context.

15.4.2.2 Strategy 2: Role Playing (Teacher as a Student)

In this strategy, the educator organises a course session in two steps. In the first 

step, he/she asks the course participants to resolve a task as if they were students; 

in a second step, he/she orchestrates a discussion, highlighting the aims of the 

activities and the decisions that a teacher has to take. This strategy is also used in 

many courses. Student teachers can reflect on cognitive issues related to the task 

from their own experience. The main advantage is then that student teachers can 

enter into a reflection about technology use, even when they had little previous 

experience in this field. The limitation is that the reflection is introspection into the 

relationship of an adult already educated in mathematics and technology, more than 

really an opportunity for thinking about classroom situations involving students 

with little mathematical knowledge.
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15.4.2.3 Strategy 3: In Practice (Teacher as Reflective Practitioners)

In courses based on this strategy, participants design a teaching situation with the 

help of the educator at the university. then they put it into operation during 

classroom sessions. Finally, they analyze the sessions with the educator back the 

university. As an example, in TdcPt (Hunscheidt) prospective primary teachers 

experiment with selected situations in their classrooms involving a robot and a 

monitoring device. Following this, they analyze selected tasks using classroom 

observations and extracts of pupils’ work. Since Schön (1983) the idea of reflection 

in action turned out to be a central feature in professional education and it was 

implemented in a variety of strategies, involving various teaching contexts and 

means of observation. It seems that when classroom technology use is concerned 

this idea is relatively new and that few strategies based on this idea have been thus 

far conceived and experimented.

15.4.2.4 Strategy 4: Learning in Communities

Courses like BEdITeach (Jarvis) are based on virtual networks as means to build 

on-line communities sharing information, resources and expertise. BEdITeach is 

for prospective teachers and it focuses on mathematical knowledge rather than 

directly on professional development. It nevertheless assumes that the experience 

of learning in a community will impact on future teaching practices: course 

participants regularly share their new findings and ideas relating to online resources 

and mathematics computer software with the instructor who functions as a co-learner. 

This instructor/student relationship reinforces the problem-based approach in 

accordance with the international reform movement in mathematics education. 

In MathInquiry (Alagic) course, learning in communities is seen as a means to 

share knowledge and reflection within a group of peers. It should help to initiate 

communities of teachers, exchanging useful information on different systems 

and cultural practices, thinking about specific learning experiences, sharing and 

discussing content as well as views about students’ learning.

15.5 Conclusion

As we noted at the beginning of this chapter, research about teacher development 

courses in technology and mathematics is still in its infancy. We felt that investigating 

the variety of views and options that underpin such courses could represent a useful 

contribution to the development of this research field. We classified the views with 

regard to three aspects: implementation of technology, changes in teachers’ role, and 

adaptation of teaching practices. We classified the options first with regard to the 

content, and secondly with regard to teaching strategies. We draw these classifications 

from the exploration of five cases of teacher development courses provided by 
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ICMI study conference participants. Although they come from three continents and 

involve very different contexts, they certainly cannot be considered as representing 

the whole diversity of possible options and views. Nevertheless we notice that the 

classifications presented within this chapter provide informative and helpful 

insight. In each of Figs. 15.1–15.5, the courses are positioned at various places 

along the given continua, with the proximity among, or distance between, the 

courses made visually apparent. The figures also give a clear account of each of the 

five course’s ambitions, content/strategy privileging, and options.

• MathInquiryfocusesonmathematicalknowledgeandontheteacherasatask

designer. Its aim is to prepare teachers to know and to use knowledge effectively 

in their work. This “metacognitive” approach is consistent with the potentialities 

of technology and its impact on mathematics. In this course, communities of 

learning favour human interaction as well as virtual communication.

• InBecIEW,thecontextinwhichtechnologycanbeimplementedisimportant.

Assuming that technology will improve teaching, the author chooses to focus on 

teaching skills and to develop these by way of “in-practice” strategies.

• TdcPt considers the use of a specific technology (robot and sensor) and its

potentialities. It assumes the creation and evaluation of classroom situations 

taking advantage of these potentialities as a good strategy for teacher education.

• BEdITeachdoesnotdirectlyaimatprofessionaldevelopment. Itnevertheless

assumes effects of learning “in communities” with technology on future teaching 

practices. This strategy heavily relies on virtual communication and resources.

• ForMAGI,thepotentialoftechnologytoimprovelearningisbalancedbythe

necessities like students’ instrumental genesis. A course should help teachers to 

achieve a better degree of integration of technology in their classrooms by 

considering this genesis and the dialectic between old and new tasks. This can 

be done only on a long-term basis and through the use of varied strategies.

Each course, then, has its own idiosyncratic consistency, yet the reasons behind 

specific options are not always easy to determine. This could be characteristic of 

teacher development courses, especially within a new domain such as technology 

for teaching/learning. While it is widely acknowledged that teacher development is 

crucial for the successful integration of technology in the mathematics classroom, 

there is very little presently available to guide policy makers, researchers and 

teacher educators regarding the relevance of different viewpoints, content selection, 

or the actual effectiveness of various teaching and learning strategies involving 

technology. We hope that the classifications that this chapter provides will assist in 

the posing of appropriate questions for future development and research studies.
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Chapter 16

Introduction to Section 4

Colleen Vale and Cyril Julie, with Chantal Buteau and Jim Ridgway

Abstract The nature and extent of the implementation of digital technology in 

mathematics curricula along with issues of access and equity were the issues 

considered by one working group of this ICMI study. A summary of the discussion 

conducted by the working group and the findings reported in the following chapters 

on this theme are presented. It is clear that widespread and sustained use of digital 

technology is not common and that where digital technology is used there are 

complex and confounding equity issues.

Keywords Intended curricula • Implemented curricula • Access • Equity  

• Curriculum reform

16.1 Introduction

Since the first ICMI Study, “The Influence of Computers and Informatics on 

Mathematics and its Teaching” (Churchhouse et al. 1986) more than 20 years 

ago, developments in digital technology have resulted in the emergence of a range 

of applications for mathematics and mathematics teaching and learning. 

Furthermore, governments have developed policies to promote the learning and 

use of digital technologies throughout education systems in general as well as for 

mathematics learning in particular. Thus there has been some systemic imple-

mentation of digital technologies in mathematics education as a result of policy 

initiatives, alongside more scattered implementation as a result of specific inno-

vations and initiatives.
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In designing the current ICMI study the members of the International Planning 

Committee (IPC) were aware that neither centralised nor local initiatives have 

tended to result in widespread and sustained use of digital technologies in math-

ematics curricula and in mathematics teaching (Artigue 2000, cited in Hoyles et 

al. 2004; Wong 2003). One of the main objectives of this study was to understand 

the nature and extent of the integration of digital technologies in mathematics 

curricula and to consider the factors influencing integration in different countries 

and education sectors and the implications for reform and change. Moreover, 

“cultural diversity and how this diversity impinges on the use of digital technol-

ogy, particularly in developing countries” was also a major focus of the study 

(Hoyles and Lagrange 2005, p. 1). Likewise we were aware that access to, and 

use of, digital technologies for mathematics learning differ within countries 

according to socio-economic, gender and cultural factors (Hoyles 1998). Again 

we were interested in understanding the extent and implications of these differ-

ences and to discern the factors influencing equity with respect to technology and 

mathematics.

A set of key questions framed the inquiry into the nature, extent and equity of 

the technology-rich mathematics curricula (IPC 2005). In this chapter we provide 

some background regarding the impact of digital technologies on mathematics 

curricula and introduce the chapters included in this section. We conclude this 

chapter with a discussion of the emerging issues and consider their implication for 

reform and change in mathematics curricula.

16.2 Mathematics Curricula

16.2.1 Intended, Implemented and Attained Curricula

We agreed that in order to investigate the integration of digital technology in 

mathematics curricula, the outcomes regarding access and equity and the implications 

for reform and change we needed to consider three aspects of curriculum: the 

intended curriculum, the implemented curriculum and the attained curriculum 

(Robitaille and Garden 1989).

By intended curriculum we mean the planned curriculum that is normally 

documented and considered the formal curriculum for mathematics learning for a 

level or sector of education. The intended curriculum may be a national or local 

document and records the intended learning for students in the educational setting 

or sector. Hence it is a statement of policy regarding mathematics learning regardless 

of whether it has been prepared by a government or ‘authorized’ educational body, 

or the teachers who will implement it. The integration of digital technologies in 

intended mathematics curricula is therefore subject to political, social and cultural 

forces concerning the place of digital technology in education, in mathematics and 

in mathematics education. Wong (2003) pointed out in his analysis of the influence of 
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information and communication technology on mathematics curricula in countries 

from the ‘west’ and ‘far east’ that the intended curriculum can take many forms. It can 

be a checklist of attainment targets or standards, a program of studies, a framework 

for curriculum writers, “codes of practice”, general principles and directions for 

teachers or an examination syllabi. In some countries the intended curriculum is 

mandatory, in others not. Wong also found that in some countries the role of 

information and communication technology is located elsewhere in education or 

curricula and not explicitly stated in the mathematics curriculum.

The implemented curriculum, on the other hand, is the curriculum of the mathemat-

ics classroom. It is mathematics curriculum that actually happens and may therefore 

vary significantly from the intended curriculum. It is constituted in the practices of 

teachers and learners in classrooms or learning environments. Since classrooms or 

learning environments are communities, ‘orchestration’ or integration of digital tech-

nology into classroom practice is also subject to political, social and cultural factors 

related to mathematics, digital technologies and to teaching and learning. Furthermore 

different students in the system or classroom may experience the intended or imple-

mented curriculum differently giving rise to questions regarding access and equity in 

mathematics learning.

The attained curriculum is the mathematics achieved by the learners and is iden-

tified through the assessment of mathematics learning and may be substantially 

different from both the intended curriculum and the implemented curriculum.

16.2.2 The Mathematics Curricula of Different Countries

Two questions formed the basis of the inquiry with respect to the nature and extent 

of integration of digital technology in mathematics curricula:

How have mathematics curricula and values changed to reflect developments in mathematical 

knowledge and practices afforded by digital technologies?

How have countries with different economic capacity or with different cultural heritage and 

practices implemented digital technologies in mathematics education?

In the period since the 1980s, Wong (2003) found that information technology 

received increasing attention in the intended school mathematics curriculum of 

countries in the ‘west’ and the ‘east’. He observed that mathematics curricula allowed 

students to use calculators and computers, made provision for the necessary facilities, 

encouraged student use of information technology and called on teachers to actively 

incorporate information technology in mathematics teaching. Moreover the changes 

with respect to the integration of information technology in mathematics curricula 

over the past 20 years represented a shift “from students (in the passive sense: 

permission) to teachers and probably back to students (teachers facilitating active use 

among students in learning mathematics)” (Wong 2003, p. 297). Wong cautioned 

against making assumptions about the more explicit reference to information 

technology in the intended curricula of western nations compared to nations in the 
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far east, and argued that the way in which information technology is positioned in 

the mathematics curriculum is more important than the amount.

Wong observed three ways in which information technology was positioned in 

mathematics curricula. In some curricula information technology was regarded as 

integral to the effective teaching and learning of mathematics. In other curricula 

information technology was positioned as an enhancement to learning which could 

enrich the learning experience of students. Thirdly, in some curricula mathematics 

appeared to carry the responsibility of developing information technology literacies 

among students. With regard to this third position, he found that in some curricula 

the development of information technology skills in a mathematics context were 

evident, while in other curricula there was caution not to confuse the teaching of 

computer skills with the teaching of mathematics. According to Wong, the kinds of 

digital technology that may be effective or enhance mathematics learning, and the 

relative emphasis on content and processes in mathematics curricula underpinned 

the positioning of information technology in mathematics curricula. These issues, 

Wong argued, are questions about mathematics itself and the value and purpose of 

learning mathematics. The ways in which information technology is positioned 

and questions concerning mathematics itself and the value and purpose of learning 

mathematics are illuminated in Chaps. 17 and 19 regarding the intended and 

implemented curriculum in this section.

Posadas (2006) explained the ways in which the integration of digital technologies 

in mathematics education may be related to the policies of the United Nations 

Educational, Scientific and Cultural Organisation (UNESCO), in particular “Education 

for Sustainable Development” (UNESCO n.d.) and “Education for All” (UNESCO 

1990). The relationship between the use of digital technologies in mathematics 

education and UNESCO’s goals for the enhancement of the human condition in the 

interest of sustainable development, especially as they apply to late developing 

countries, are discussed in Chap. 17.

In Chap. 17 Julie, Leung, Nguyen, Posadas, Sacristán and Semenov describe the 

intended and implemented curricula of culturally diverse nations including Russia, 

South Africa, China, Vietnam and several Latin-American nations. The influence 

of social, economic, political and cultural factors for these countries of differing 

economic capacity and cultural heritage are analysed. Similar to Wong (2003) the 

positioning of digital technology in the intended mathematics curricula in these 

countries reflected an emphasis on enhancement of mathematics learning and/or 

developing information literacies. The Russian mathematics curriculum is a 

contrasting example wherein the nature of mathematics in the digital age appears to 

have been more explicitly identified resulting in a “new mathematics” curriculum.

Julie and co-authors also discuss the significance of integrating digital technology 

in mathematics curricula for the enhancement of the human condition and sustainable 

development. Not surprisingly, the authors of Chap. 17 show how economic 

incapacity has severely hampered the implementation of information and digital 

technologies in late developing countries and especially in low socio-economic 

communities within these countries that are often located in rural or geographically 

isolated regions with inadequate infrastructure.
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In Chap. 19, Assude, Buteau and Forgasz include examples of intended mathemat-

ics curricula and discuss the factors affecting the implementation of technology-rich 

mathematics curricula in western, eastern and late developing countries. They too 

show that the political, social and cultural factors influencing intended curricula are 

concerned with either the development of ICT literacies and/or the capacity of digital 

technologies to support or enhance mathematics teaching and learning. Their typology 

of factors influencing both intended and implemented curricula, as Wong (2003) 

argued, also concerns the nature of mathematics and mathematics epistemology.

Economic, political and social factors have resulted in the integration of digital technologies 

in the intended mathematics curricula of countries irrespective of the cultural background 

or economic capacity. However as we explain in the following sections of this chapter, 

economic capacity, cultural heritage and a number of other factors have impeded the wide 

spread integration of digital technologies in implemented mathematics curricula.

16.2.3 The Mathematics Curricula of Different Sectors

In contrast to the first ICMI study which mainly reported developments in the western 

world and the potential to use technology to model mathematical ideas, the papers 

prepared for the current ICMI study were largely concerned with curriculum, teaching, 

learning and design at the school level, especially secondary. The nature and extent 

of the integration of digital technology in mathematics curricula indicated above 

and discussed in more detail in the following chapters, result from an analysis 

primarily of school mathematics curricula.

A small number of papers prepared for the study conference of ICMI Study 17 

reported on the integration of digital technologies in tertiary mathematics education 

(for example, Andresen 2006; Buteau and Muller 2006; Dana-Picard and Kidron 

2006; Lavicza 2006; Makar and Confrey 2006). Lavicza (2006) noted the absence 

of evidence of widespread and imbedded use of digital technologies in tertiary 

mathematics curricula reported by ICMI Study 11: “The Teaching and Learning of 

Mathematics at University Level” (Holton 2001). However a substantial number of 

mathematicians use CAS for teaching at some level (Lavicza 2007). The mathemat-

ical and epistemological factors influencing the implementation of Computer 

Algebra Systems (CAS) in tertiary mathematics education emerging from Lavicza’s 

(2006) international comparative study contribute to the typology of factors dis-

cussed by Assude, Buteau and Forgasz in Chap. 19. Interestingly, researchers 

examining curriculum, teaching and learning of tertiary students studying to 

become teachers of mathematics authored most of the ICMI Study 17 conference 

papers about tertiary mathematics. Perhaps this indicates that pedagogical and 

didactic factors as well as epistemological factors are critical for implementation in 

tertiary settings.

The Mathematics Integrated with Computers and Applications undergraduate 

program (MICA) at Brock University in Canada (Buteau and Muller 2006) provides 

a case in point. MICA grew out of an evolution of technological use in mathematics 
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courses at Brock University (Muller 2001) that started in the 1970s. Pead and Ralph 

with Muller (2007) reported that

During the two years intensive development of MICA, faculty sought to create a modern 

mathematics program that would foster creativity, and the mastery of mathematical concepts 

and their applications, while making the best possible use of modern technologies. (p. 135)

In addition to a revision of traditional courses, innovative core project-based 

courses, also called MICA, were introduced in which, among other things, students 

select a mathematics topic of their choice, research it, develop an interactive 

computer environment to further research their topic, and repeat this development 

until they are ready to communicate their findings and understandings through their 

own interactive computer environment; see MICA Student Projects web-site (n.d.) 

for examples of student work. Buteau and Muller (2006) reported,

We have found that the approaches, activities, and experiences in the MICA courses are 

able to harness the students’ motivations thereby empowering them to become their own 

mediators in the development of their mathematical knowledge and understanding. (p. 8)

In other words, by involving tertiary students early in a rich technology environment, 

student abilities, interests, engagement in mathematics may be different from those 

shown in traditional programs.

The use of digital technology to engage very young, and even pre-school 

learners in mathematics experiences were not reported in the current ICMI study, 

though Yelland (2007), for example, shows how young children play and use 

technology to develop mathematical ideas. Clearly more research about the 

integration of digital technology in the learning environments of pre-school children 

and children in the early years of schooling is required.

Also absent from the study were reports on the place of digital technologies in 

mathematics curricula within vocational education settings. Yet it would appear that 

the implementation of digital technologies in vocational mathematics education is 

consistent with political reforms in vocational education that advocate greater flexi-

bility in delivery of these courses and the economic imperatives of information litera-

cies and the vocational application of mathematics. Research about the use of digital 

technologies in this sector of education is available, see for example Javed and Vale 

(2006) and Noss et al. (2002), but clearly more studies of this sector are needed.

16.2.4 Factors Influencing Implemented Curricula

Two further questions regarding the implementation of digital technology in 

mathematics curricula provided a focus for chapters in this section:

What approaches, strategies or factors foster or impede the implementation of technology-rich 

mathematics education? What issues are involved for policy-makers, administrators and 

teachers in the organisation of technology resources in educational settings?

What have we learned about the process of change and reform in mathematics education 

through our successful and unsuccessful experiences of implementing digital technologies 

in mathematics education?
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As discussed in the following chapters the implementation of technology-rich 

mathematics curricula has occurred through the system-wide initiatives or evolved 

through local innovation or research activity. In most countries governments have 

provided infrastructure for schools and teachers, ranging from hardware such as 

computers and electronic interactive whiteboards, to computer network access 

and to network supported teaching materials or software. In some countries or 

jurisdictions, the implementation of technology-rich mathematics curriculum has 

been supported by large-scale professional development projects as in Mexico 

(Chap. 17; Ursini and Sacristán 2006), and TELMA in Europe (Artigue et al. 2006). 

Elsewhere, smaller-scale innovation or professional development projects are intended 

to provide exemplars that others will follow through the provision of appropriate 

teaching and curricula materials. Through the description and analysis of the various 

initiatives and projects of the vastly different countries reported on in Chap. 17, 

Julie and co-authors show that implementation of digital technology in mathematics 

classrooms is dependent upon well-funded large or system-wide projects that pro-

vide not only infrastructure and digital technology resources but also incorporate 

well planned and structured professional development and training for teachers and the 

provision of ready-to-use digital tools, learning objects and teaching materials.

According to Artigue (2000) the slow progress in the integration of digital 

technologies for mathematics learning in school classrooms is due to an invariance 

of values and norms in mathematics education, an underestimation of both the 

complex process of transforming mathematics with technology in the classroom and 

the mathematical demands placed on learners, and a dissonance between technical 

and conceptual aspects of mathematical activity (cited in Hoyles et al. 2004).

In Chap. 19, Assude, Buteau and Forgasz provide a typology to analyse the factors 

influencing implementation and consider resistances and change factors. The typology 

and factors influencing implementation embrace primary, secondary and tertiary 

mathematics, though the strength and influence of particular factors may vary 

between the sectors due to cultural differences (see for example Assude et al. 2006; 

Trigueros et al. 2006). At the tertiary level the factors influencing implementation 

are different in character from those in the school sector because they arise in 

educational systems that have radically different responsibility structures; see for 

example Kozma (1985). Assude, Buteau and Forgasz argue that the resistances to 

the implementation of digital technology in mathematics curricula are personal, 

epistemological, ethical, economic, symbolic and institutional. Julie and co-authors 

agree with Wong (2003) since they report that the dissonance between the intended 

and implemented curriculum in various countries arises because the integration of 

technology is positioned according to whether it enhances mathematics learning and 

whether mathematics should carry responsibility for developing information literacy. 

Though cultural heritage may appear to explain resistance and some differences in 

implemented curricula between countries, the factors concerning pedagogy, didactics 

and epistemology as argued by Assude et al. (Chap. 19) and Artigue (2000) is more 

likely to explain the resistance of teachers.

We observed that system level curricula change that involved the integration of 

digital technologies in high-stakes assessment, that is the attained curriculum, was 

more likely to result in widespread implementation for particular school-level 
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mathematics courses, for example the Victorian Certificate of Education, Australia 

(Forgasz et al. 2006) the International Baccalaureate (Leng 2006), and the two 

major standard tests, the Scholastic Assessment Test (College Board n.d.) and 

American College Testing (ACT n.d.), for admission in most American universities. 

In Chap. 10, Cazes, Lee, Perrusquia, Rojano, Sangwin and Wong discuss the 

relationship between assessment practices and the implementation of digital 

technology in mathematics curriculum.

16.3 Access and Equity

UNESCO’s policy of “Education for All” (UNESCO 1990) guided our consideration 

of implementation of digital technologies for this ICMI study. Furthermore the IPC 

recognized that the implementation of digital technologies in mathematics curricula 

did not affect the learning of students equally. Hence two key questions concerning 

access and equity guided the inquiry reported in this section:

How and to what extent has the use of digital technologies in mathematics education 

enabled, or eroded, equity and agency in mathematics education?

How and to what extent has technology-integrated mathematics contributed to, or reduced, 

differences between countries in participation and achievement in mathematics?

Findings emerging from these inquiries are reported in Chap. 18 by Forgasz, Vale 

and Ursini. Prior to discussing the findings of a range of studies concerned with 

equity issues, the authors begin the chapter by defining equity and agency in 

the context of digital technology and mathematics education. They discuss the 

meaning of equity as access to digital technology for mathematics learning and to 

technology-rich mathematics curricula, equitable distribution of resources, equitable 

pedagogies and equitable learning outcomes. This framework of analysis draws 

upon the literature and the categories used by UNESCO in their evaluation of 

educational policy regarding “Education for All” (Sherman and Poirier 2007). For the 

studies discussed in this chapter, the findings with respect to gender differences are 

not conclusive. In some countries the use of digital technologies in mathematics has 

enabled a gender gap in achievement or affect to close while in other countries the gender 

gap has widened. Socio-economic differences in access to, and learning outcomes 

of technology-rich mathematics within and between countries are also complex.

The authors of Chap. 18 also considered:

How can digital technologies be used in mathematics learning to respond to the diverse 

needs of all learners, regardless of mathematics achievement, sex, class, ethnicity or 

cultural background?

What can students and teachers with limited access to digital technologies, or access to 

modest technologies for mathematics learning do with technology that is empowering for 

students?

How can the use of digital technologies in mathematics education support the learning of 

students with special needs?
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The authors present some principles regarding equitable pedagogies with respect to the 

use of digital technologies in mathematics in Chap. 18 but they note a scarcity of stud-

ies that focus on the development of agency for mathematical learners with technol-

ogy. Furthermore, while we know that schools servicing students with special needs 

are using technology there appears to be a gap in the literature in this field. One study 

conference paper by Healy (2006) described a research program aiming to design and 

evaluate digitally based learning environments for deaf students and blind students in 

Brazil. Multi-media involving video and audio will provide opportunities to explore 

mathematical expressions in diverse ways to engage these learners. Clearly more stud-

ies involving students with special needs are needed if we are to understand how digital 

technologies may support the diverse needs of all learners of mathematics.

16.4 Conclusion

Finally we comment on the visions and possibilities of mathematics curricula both 

idealistic and realistic about how mathematics curricula should be changed in 

response to technology mediated knowledge, the diverse needs of all learners and 

for countries of different economic capacity and cultural heritage.

Mathematics, a human construction and practice with a variety of purposes, is in 

constant change and dialectically entwined with technology. Education systems and 

curriculum designers and mathematics teachers make decisions about the nature of 

the “new mathematics” and how it is integrated and positioned in the intended 

mathematics curricula and implemented and attained in classrooms. While we 

may imagine the possibilities that rapidly emerging digital and communication 

technologies affords for mathematics, its application and for learning, the evidence 

suggests that there will always be a lag between the development of “new mathematics” 

and its implementation in education systems. The lag is not just because it takes 

time and resources to change education systems but because teaching and learning 

are cultural practices with embedded assumptions and values. Implementation of 

mathematics afforded by digital technologies is more likely to occur when and where 

there is a shared vision among political leaders, education authorities, mathematicians 

and mathematics teachers.

The potential exists for late but fast developing countries to by-pass the curriculum 

experiments and out-dated technologies (PCs, land-lines, computer laboratories) of 

the early but slow developing countries in the manner envisaged by Papert (2006) 

where there is the political will and the drive for sustainable development, equity 

and improvement of the human condition. To do otherwise runs the risk of widening 

the gap between countries of differing economic capacities and threatening the 

place of mathematics in our cultures. As Conway (1997) implored when reflecting 

on the integration of digital technology in undergraduate mathematics:

We have to embrace technology, I don’t mean just tolerate it; embrace it and celebrate it. 

The professional mathematics community must adapt and learn how to best incorporate 

technology into instruction. With the existence of powerful, inexpensive computers,  
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I see mathematics departments rethinking their entire curriculum. Otherwise, we are out 

of business.

The same applies to school mathematics. The chapters that follow in this section 

and others in this volume enable us to feel optimistic about mathematics and the 

possibilities to enhance the mathematics learning of students with diverse needs 

and cultural heritage.
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Chapter 17

Some Regional Developments  
in Access and Implementation of Digital 
Technologies and ICT

Cyril Julie, Allen Leung, Nguyen Chi Thanh, Linda S. Posadas,  

Ana Isabel Sacristán and Alexei Semenov

Abstract Access to and implementation of digital technologies for mathematics 

teaching and learning across and within countries and regions display similarities 

and differences. This chapter is derived from regional presentations made at the 

ICMI Study 17 Conference held in Vietnam in December 2006. The descriptions 

of the situations in four countries (Russia, Hong Kong, Vietnam, South Africa) and 

one region (Latin-America) give a sense of the similarities against the general back-

ground of a global goal for schooling in the twenty-first century. The complex issue 

of universal access to digital technologies for meaningful mathematics learning, it 

is suggested, requires concerted efforts to address a host of mitigating factors.
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17.1 Introduction

Access to and use of technology for mathematics teaching and learning is now 

more or less universally accepted. However, this ideal manifests itself differentially 

across different regions in the world. Additionally, the use of digital technologies 

needs to take cognizance of larger global imperatives regarding the aims and goals 

of education. This chapter draws together reports – presented at the ICMI 17 Study 

Conference – on policies, directions and initiatives regarding access and implementa-

tion from various countries and regions: Russia, Hong Kong (A Special Administrative 

Region of China), Vietnam, South Africa, and several countries in Latin-America. 

The regional reports are set against the background of UNESCO’s imperative for 

sustainable development to which technology-driven mathematical education should 

contribute. The descriptions in the reports show that there has been definite progress 

since the first ICMI study on technology use in mathematics teaching (Churchhouse 

et al. 1986) regarding late developing countries but that much needs still to be done 

for equitable universal access to be realized.

17.2  Macro Perspective on Education for the Twenty-First 

Century by Linda S. Posadas

Macro perspectives refer to the desires expressed by countries across the world 

regarding access. Here we present these perspectives from the point of view of the 

United Nations Educational, Scientific and Cultural Organisation (UNESCO).

UNESCO’s perspectives on access are underpinned by the concept of sustain-

able development seen as “Development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs 

and a process of change in which exploitation of resources, the direction of 

investments, the orientation of technology development, and institutional change 

are all in harmony and enhance both current and future potential to meet human 

needs and aspirations.” A further complementary definition is “improving the 

quality of human life while living within the carrying capacity of supporting 

ecosystems” (UNEP 1991). Thus the emphases are on the inter-generational 

responsibility in meeting human needs and the protection of the Earth’s capacity 

for regeneration.

Sustainable development is concerned with benefiting both people and ecosystems 

and this requires people who are able to think in terms of systems, having the skills 

of understanding complexity, finding and identifying linkages and relationships, 

doing quantitative and qualitative analysis, and presenting data in formats that are 

comprehensible and useful to non-specialists who have policy and decision-making 

authority.

Agenda 21 was adopted in 1992 as the guide to implementation of the sus-

tainable development agenda. Chapter 36 of Agenda 21 emphasizes the critical 
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role of education in improving the capacity of the people to address environ-

ment and development issues. It called for the key action of re-orienting educa-

tion towards sustainable development, by integrating environment and 

development as a cross-cutting issue into education at all levels, introducing 

new courses, revising and upgrading curricula, introducing innovative teaching 

methods, re-training teachers, as may be needed. To further bolster the sustain-

able development agenda, the United Nations General Assembly at its 57th 

session in December 2002 declared the period 2005–2014 as the Decade of 

Education for Sustainable Development, with UNESCO as the lead agency for 

its implementation. This is accompanied by the Education for All (EFA) Goals 

that, amongst other issues, call for universal primary education by 2015 and 

improving the quality of education. Within these parameters it is conceivable to 

think about “Mathematics education for all” with “Mathematics Literacy for 

Sustainable Development” and to ponder the use of technology in mathematics 

teaching in such an agenda. In the context of providing mathematics education 

for all, in a manner that would develop citizens who can thrive and contribute 

to sustainable development, information and communications technologies 

have become a useful tool. In this regard technology

• Increases the educational options for the marginalized sectors of society

(e.g. distance learning);

• Introducesnewapproachestopedagogy/coursematerialsdevelopment;

• Introducesnewsocial/culturalopportunitiesforinteractionamongpeers;

• Enhances the efficiency and effectiveness of educational administration

(at classroom, school and system levels).

But the realization of the above will require that the challenges below be faced 

and addressed.

• Reformulation of current mathematics education approaches (e.g. through

the exercises and homework problems, examples) to bring in the sustainable 

development concept and build awareness;

• Developingtheabilitytoapplymathematicalconceptsandprocessestothelife,

work and culture of one’s own society, an appreciation of the contributions of 

mathematics, and awareness of its limits;

• Developingtheattitude,valueandskilltodistinguishbetweenuseandmisuse

of mathematics (e.g. misuse of statistics, probability concepts).

Thus at the macro level, access to technology is not merely regarded as some 

technical solution to problems facing mathematical teaching and learning, nor 

is it a mere “shift in parameters” due to its availability and power. Rather 

mathematical technologies and their use should, in a considered way, take 

cognizance of the global thrust to enhance the human condition in the interest of 

sustainable development.

The wide goal for provision of access plays itself out within specific local 

contexts as can be seen in the five cases from different regions of the world which 

are now discussed.
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17.3 Regional Reports

17.3.1 Case 1: Russia by Alexei Semenov

One of the issues that has been deliberated upon for some time is what the 

nature of mathematical content should be, given the availability of information 

communication technologies. There seems to be consensus that this availability calls 

for a change of content. In the Soviet Union attempts were made to bring about a 

change in content by considering informatics as a new mathematics. In offering 

informatics as new mathematics, consideration was given to the nature of current content. 

This was viewed as ad hoc comprising different kinds of content at an epistemic 

level. Some of these kinds of content are meta-content (discovery, collabo-

ration, project, etc.), technology-content, application-content, generalization- and 

transfer-content, mathematics-content (activity-content), and mathematics-in-other-

school-subjects. In line with informatics as content, it was proposed that “programming 

is the second literacy.” Textbooks dealing with informatics appeared in the mid-1980s. 

One such textbook was used by 2.5 million students in the final years of schooling. 

The introduction of informatics was accompanied by appropriate software, teacher 

training and the design of personal computers focusing on school applications.

A major motivation for propagating the introduction of informatics was the virtual 

disappearance of the primary goals – development of the child’s communication and 

reasoning abilities, understanding of the world and being an independent learner and a 

creative artist. Informatics afforded the opportunity for the re-insertion of the primary 

goals around the rubric of a “New School for the society of information age.” 

Furthermore, technology can substitute for the technical mathematical skills that are the 

focus of so much time in mathematics. It is not the case that technical skills are not 

needed. Rather, the issue is that a new set of technical skills should be introduced and 

this is now happening in Russia. Fundamentals of Informatics deals with discrete math-

ematical objects and processes. The relevant constructs are explored by students in 

visual and playable ways in both real and computer-based microworlds. As such the 

basis is laid for modern computer mathematics and classical continuous mathematics.

Thus for the local intended curriculum in Russia, access and implementation are 

linked to Informatics strongly supported by technology with the intention to change 

mathematics to serve both some neglected goals of schooling and affording the 

opportunity for engaging students in mathematics relevant for the information age.

17.3.2  Case 2: Hong Kong (A Special Administrative Region  

of China) by Allen Leung

When Hong Kong returned to the People’s Republic of China in 1997, the newly 

established Hong Kong SAR Government made a decision to transform the school 

educational environment into a technology-rich setting to meet the need of a fast 

changing society. A 5-year ICT education strategy was announced in the first policy 
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address of HKSAR in 1998 and was evaluated in 2004 (Education and Manpower 

Bureau, Hong Kong SAR 1998, 2005). One of the targets of the policy was to have 

teaching in at least 25% of the curriculum supported through IT within 5 years. These 

policy and evaluation initiatives were further reviewed in 2004 in the hope of mapping 

out future strategies (Education and Manpower Bureau Hong Kong SAR 2004a, b).

Within all these initiatives to change to an ICT-rich curriculum, mathematics 

was regarded as a “Key Learning Area” and the most natural for ICT implementa-

tion. The core of the major curriculum reform was a set of generic skills and ICT 

skills. Regarding the latter, the capacity to seek, absorb, analyse, manage and present 

information critically and intelligently in an information age and a digitised world 

was the major objective. Information Technology for Interactive Learning was a 

vehicle for realizing the policy intention.

The policy intention was supported by various mechanisms via teacher enable-

ment, curriculum and software, hardware provision and network infrastructure. In 

this regard most schools became well-equipped and installed Intranet and Internet 

access, with a computer and data projector in each classroom. Each school has at 

least one multi-media laboratory and some schools provided every teacher with a 

laptop computer. To further bolster and promote the use of ICT, exemplary teaching 

materials and ready-made ICT applets were available through dedicated websites. 

Detailed instructions for using specific tools (e.g. Sketchpad, Excel) to complete a 

teaching or learning task were also provided. Other resources included individual 

mathematics teachers’ websites; schools and professional bodies sharing their self-

developed teaching materials through the Internet; projects funded through the 

government; and ready-made spreadsheets, PowerPoint presentation slides and 

dynamic geometry files provided by mathematics textbook publishers.

Teachers were inducted into the use of ICT through continuous development 

programmes. These include seminars and workshops (half or 1 day) and longer 

(4–5 weekly 3-hour session) programmes. A typical 3-hour seminar usually con-

sisted of sharing first-hand experience from a frontline teacher’s perspective on the 

effective use of IT resources. Domains covered included dynamic geometry, algebraic 

graphing and data analysis, e-Learning platform and assessment. The emphasis was 

usually on techniques and presentation. A longer 15-hour workshop would be more 

comprehensive in introducing ways to use tools like Geometer’s  Sketchpad, Geogebra, 

Cabri-Géomètre (2D and 3D), Excel, Fathom, and Web-based inquiry-oriented 

learning approaches to design teaching and learning materials. Resource materials 

in these types of courses were usually ready-made for teachers to adopt as they 

designed their own materials. In some workshops, there was a Web-based forum for 

teachers to share their experiences in implementing ICT in their mathematics teach-

ing. At the level of initial professional education of teachers, ICT is integrated in 

mathematics teacher training programmes at tertiary institutes like the University of 

Hong Kong where prospective teachers were motivated to use different types of ICT 

environments in their mathematics teaching.

Regarding implementation there seems to be a disparity between common usage 

of ICT in local mathematics classrooms and the pedagogical strategies proposed in 

the policy, such as learner-centered approaches and exploratory or investigative 

work as suggested in the curriculum documents. An evaluation study indicated that 
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actual classroom use of ICT tended to be more teacher-centered than student-

centered learning, involving predominantly didactic expository teaching such as 

explanation and demonstration. Some teachers also expressed a preference for 

working out ways of using ICT in their own classrooms rather than importing the 

exploratory examples from overseas. They preferred a more teacher-centered approach 

since they believe that this would work better in the local context. This approach, 

however, does not necessarily imply a purely transmission mode of teaching, as 

skillful uses of ICT can encourage students’ active learning. An example of this is 

a lesson where a teacher used ICT in a demonstration manner and led the discussion. 

While the teacher was in control of the computer during a mathematical investigation 

in a classroom where students had no other computer access, he also saw evidence 

of students’ hypothesis making and testing. His earlier attempts of explorations in 

the computer room with less teacher guidance, by contrast, did not lead to such 

fruitful discussion and investigation (Lee et al. 2003). Despite some successful 

examples of using ICT in lessons, most school teachers were willing to consider 

using ICT in their teaching only if they were given ready-made ICT resources that 

fit their teaching – an indication of the very realistic fact that teachers did not have 

the time or the motivation to prepare their own ICT teaching materials.

The skill- and teacher-oriented use of ICT in classroom probably reflects the fact that 

East-Asian teaching is deeply ingrained in the Confucian Heritage Culture (CHC) (Wong 

2000). Amongst other things in this tradition, the teacher is the respected master and the 

source of knowledge, and students are apprentices and reflective practitioners. Teaching 

is viewed as the effective performance of well-structured and well-implemented lessons. 

Teaching and learning stress both fundamental techniques (via repeated practice) and 

fundamental knowledge (established as a strong foundation for further conceptual devel-

opment). This is embedded in a cultural belief that skillfulness (ability to do certain things 

well) can bring about cleverness and creativity. Hong Kong is a place where East meets 

West. The constant tension and fusion among different cultural artifacts often brings about 

innovative perspectives of seeing and doing things. Hence using the Hong Kong context 

to do comparative studies on ICT in teaching and learning mathematics should be a fruit-

ful research area in exploring the not yet known pedagogical potential of ICT.

17.3.3 Case 3: Vietnam by Nguyen Chi Thanh

Vietnam has an extensive state-controlled network of schools, colleges and universities 

but the number of privately-run and mixed public and private institutions is also 

growing. There has been an increase in the number of students completing general 

education and the limited number of universities makes it difficult for them, after 

completing school, to continue further education. The secondary school ends with 

a national examination for which the success rate was 80.38% in 2007. Students 

also need to pass competitive examinations to enter universities and the success rate 

is about 25%. These examinations are content-driven and have a high level of 

difficulty. In order to prepare students for these examinations, supplementary courses 
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are given by teachers at universities. Figure 17.1 shows an extract of items from the 

mathematics examination for entry into universities in 2006.

The competitive nature of these examinations and the emphasis on manipulative 

skills of complexly composed problems requiring “exact” rather than approximate 

answers, mitigate against the use of calculators.

The system of education in Vietnam underwent reforms in 1990, in 2000 and in 2005. 

“These reforms [however] seem to focus more on teaching content and organisation 

than on the transformations of teaching practices” (Bessot and Comiti 2006). Content 

such as vectors in geometry, computational science, basics of combinatorics, integral 

calculus and mathematical statistics were introduced. One of the aims of theses reforms 

was to reduce the highly theoretical nature of the curriculum and introduce aspects 

of applications of mathematics to practical real life problems. This is captured in 

the teacher’s guide book for Mathematics at Grade 10 as “Learning mathematics at 

secondary schools should help pupils in training skills regarding solving mathematical 

Fig. 17.1 Sample items from the 2006 Vietnamese university-entry mathematics examination
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problems and applying mathematics in the life.” The number of problems to the appli-

cation of mathematics to real life situations is, however, still very small. For example, an 

analysis of the mathematics text book at Grade 10 reveals that in algebra there are 

only 5.4% and in geometry 2.5% of the problems are of an applications nature.

The Ministry of Education and Training of Vietnam (MOET) pays a lot of attention 

on using new technologies for teaching and learning. At the end of 2003, about 96% 

of the upper secondary schools in Vietnam were connected to the Internet, large 

budgets were available for equipment and national conferences about using tech-

nology in education were regularly held.

In mathematics, new technologies used are essentially non-graphic calculator 

and geometry software. For example, there is the introduction of using calculators 

such as the Casio Fx 500MS in the mathematics text book at Grade 10. Since 

2005, there are three sessions of 45 min each at the end of the school year on 

using calculators. The general aims of using the calculator are to verify results 

and to aid calculations (Nguyen Thi Nhu 2004). In co-operation with the Casio 

calculator company,1 the MOET organizes a national competition on using the 

Casio calculator for “talented” students.

Geometry software has been introduced in classrooms in some urban regions of 

Vietnam since around 2000. This is encouraged and in 2005, a mathematics teacher 

has been awarded a national prize (“knight in information and communication 

technology”) for using Cabri-Géomètre in his teaching. The geometry content of 

the university entrance examination deals with analytical geometry so the use 

of geometry software remains optional during mathematical activities. Geometry 

software packages are essentially used by teachers to illustrate properties and demon-

strations in geometry (Nguyen 2006).

The above narrative indicates that much needs to be done to realise some of the 

possibilities information communication technologies of mathematics teaching 

and learning. Some of the issues needing attention are: the incorporation of digital 

technologies for mathematics teaching and learning in pre-service teacher education 

courses at universities; mathematics curriculum changes which take due cognizance 

of digital technologies, change in assessment practices, awareness-building and sen-

sitization of practising teachers and educational decision-makers of the benefits of 

digital technologies for teaching and learning mathematics and researchers to connect 

with researchers and research activities across the world. Last, but not least, much 

effort should be expanded to make both hardware and software more affordable.

17.3.4  Case 4: South Africa (and Some Developments  

in Sub-Saharan Africa) by Cyril Julie

Within most Sub-Saharan countries there are explicit statements in curriculum 

and accompanying documents favouring the use of calculators and computers in 

1 Binh Tay Company at Ho Chi Minh City.
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school-going mathematics. This is the case for Botswana; Namibia; Ghana; South 

Africa; Uganda and Zimbabwe. For the South African situation it is, for example, 

stated that:

Every South African learner in the general and further education and training bands will be 

ICT capable (that is, use ICT’s confidently and creatively to help develop the skills and 

knowledge they need to achieve personal goals and to be full participants in the global 

community) by 2013. (Department of Education 2004, p. 17)

This is a major task given that physical access to ICT is available to less than 

50% of schools in South Africa as can be seen from Table 17.1 below.

The envisaged use of ICT for teaching and learning is in line with those proffered 

in most countries. For example statements such as “Create knowledge and new 

information by adapting, applying, designing, inventing and authoring information” 

and the creation of “A learning environment that advances creativity, communication, 

collaboration and engagement” (Department of Education 2004, p. 14) are found in 

these policy documents.

With respect to provisioning it is stated that “The [South African] Department 

of Education supports the development of refurbished facilities for second hand 

computers.” (Department of Education 2004, p. 30). There is thus no aversion to 

refurbishment given the overall budgetary demands and constraints in late developing 

countries.

For school mathematics there is a deep realization that the implementation of an 

ICT-driven curriculum will be hampered by resource constraints. Thus some of the 

stated goals are:

• Proper conceptual understanding will be required to enable learners to use

calculators appropriately and effectively.

• Wherepossible,learnersshouldgetopportunitiestousespreadsheetsandother

computer tools. (Department of Education 2003, pp. 11–12)

Clearly these are guarded statements with riders indicative of a mindfulness 

of the exacerbation of disparities between schools populated by learners from 

high and low socio-economic backgrounds. The guardedness is also linked to the 

fact that the state can be legally challenged to concretely support her policies. 

This guarded position is also evident in the regulations for school examinations 

where only non-programmable and non-graphic calculators are permissible. As 

an aside in a country such as Uganda logarithmic tables are still used (Opolot-

Okurut 2004).

The TIMSS report (Mullis et al. 2004) indicates that availability of computers in 

some Sub-Saharan African countries is still severely limited both at school and at 

home as reported by the Grade 8 sample for the countries listed in Table 17.2 below.

Table 17.1 Availability of computers in South African schools (Department of 

Education 2004, p. 12)

Schools with computers Schools with computers for teaching and learning

39.2% 26.5%
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Regarding the nature of use, it is also evident that the usage of computers in the 

curriculum is still extremely limited (see Table 17.3). Furthermore, with those who 

use computers in more than 50% of their lessons, the usage tends to be in the direction 

of high-order cognitive skills.

Despite the situation described above, there are large scale and state-supported 

projects to enhance the use of computers in mathematics teaching and learning. 

In South Africa, for example, the Dinaledi project is such a project. Its major goal 

is to increase the supply of learners to pursue science and technology-related 

careers requiring mathematics for access into these fields of study at higher educa-

tion institutions through the establishment of specialist mathematics and science 

secondary schools across the country. Schools in low socio-economic status (LSES) 

environments are targeted and these schools have fully-equipped computer labora-

tories with access to the Internet. Support is provided to schools through specialist 

teacher-advisors. They generally run school-based workshops on the use of computers 

in mathematics teaching and are general resource persons on which teachers in 

these specialist schools can draw. In addition they search for appropriate software 

to present to teachers. An example of such a search is making teachers aware of 

the availability of open-source software such as GeoGebra and its possible use in the 

teaching of transformation geometry. The expected outcome of computer integration 

in mathematics teaching and learning is, however, aimed at the improvement of 

Table 17.3 Nature of use of computers in some Sub-Saharan countries (% of students) (Mullis 

et al. 2004, p. 296)

Computers  

are not  

available

Computer used for half or more of the lessons

Discovering principles 

and concepts

Practicing skills  

and procedures

Looking up ideas  

and information

Processing and  

analyzing data

Botswana 93 0 0 0 1

Ghana 85 0 1 1 2

South Africa 83 3 3 3 2

Table 17.2 Availability and use of computers in some Sub-Saharan countries (%) (Mullis et al. 

2004, pp. 140–142)

Availability of computers

Have computer Do not have computer

Botswana 16 84

Ghana 24 76

South Africa 37 63

Use computer

Home and school Home only School only

Other than home  

and school Not at all

Botswana 5 6 23 5 61

Ghana 9 9 21 26 34

South Africa 16 11 18 27 28
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mathematics achievement results and thus drill-and-practice programmes underpinned 

by the corrective feedback paradigm is still in vogue as is evident from Fig. 17.2.

Given the interest in improvement, research revolves basically around the question 

“Does the use of computers improve mathematics achievement scores?” and modalities 

of student use of computers. As is the case generally with the use of computers and 

improvement of achievement scores, the tentative results point in the direction of 

the use of computers not negatively impacting on achievement. Regarding use and 

research at the tertiary level the emphasis is on the use of mathematics-dedicated 

package such as Mathematica (Engelbrecht and Harding 2005). De Villiers (2004) 

reports on a similar use of Sketchpad for geometry teaching and learning.

Generally access to appropriate software is influenced by a time lag between 

frontier development of this software and release for experimentation in late devel-

oping countries. This has the effect that for such countries there is a lack of sustained 

developmental research to work out optimal ways to implement ICT in mathematics 

teaching and learning in their context. Thus the “problem” manifested starkly in ICT 

as the “technology gap” is not only an issue of research, discussion and deliberation 

in mathematics education. These are necessary but not sufficient. The “problem” is 

within the broader political realm and starting points should also be sought within 

this realm; this was the case with the issue regarding the adoption of the Hindu-Arabic 

calculation technology as a replacement for the counting-table technology, which 

was resolved politically and economically.

17.3.5 Case 5: Latin-America by Ana Isabel Sacristán

Latin-America is one of the most homogeneous regions of the world, in that most 

of its countries have very similar cultures (even language: except for Brazil, all of 

the countries are Spanish-speaking) and they also share similar problems. It is 

therefore pertinent to discuss the issues of this region as a whole.

The Latin-American countries are developing ones with problems of strong 

socio-economic inequalities and often very diverse geographical territories (that are 

often vast with hard-to-reach and isolated areas). Within each one, there tend to be 

also many regional disparities.

All of these issues imply that access to digital technologies is very inconsistent 

(Tedesco 2005). For example, there is much difference between urban and rural areas; 

Fig. 17.2 Sample computer drill-and-practice sequence

Computer- 

generated problem

It costs R1.75 to send an SMS for a competition. Zinele sends  

8 SMS’s. How much will she have to pay?

Student Computer response

1st response 8 × 1.75 1st feedback Type a number

2nd response 12.8 2nd feedback Try 8 × 1.75
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and the strong socio-economic disparities, entail profound differences between 

privileged private schools and the public school systems; the quality of teacher 

preparation is also generally very unequal.

There are three types of integration of digital technologies into the school systems 

of this sub-continent; these are due to:

• Theinitiativeofindividualteachersand/orschools,

• Privately-fundedprojects(e.g.byIBM,Microsoft,Intel,etc.),and

• Government-sponsoredprojects.

General Latin-American overviews of some projects involving the use of digital 

technologies for education in general, are given by Fonseca (2005) and in the report 

by Universidad de La Frontera (2005), Chile, entitled Experiencias Innovadoras en 

Informática Educativa.

Besides small- or large-scale endeavors for incorporating digital technologies to 

schools, in most countries there are research projects being carried out in universities 

into the use (and development) of a variety of digital and ICT tools for mathematics 

education, and their integration into schools. In the next sections, a summary of the 

efforts that have been done in selected countries is given.

17.3.5.1  Latin-American Countries with Mainly Small-Scale Efforts  

of Integration of Digital Technologies Due to Individual  

Initiatives by Teachers or Schools

There are many Latin-American countries where there are few, if any, large-scale 

programmes for incorporating digital technologies into the educational area; in 

those countries only projects by individual teachers or smaller institutions are carried 

out, although sometimes there are regional or local efforts as well. Some of the countries 

(at least until 2006) in this category include Argentina, Ecuador, Guatemala, Honduras, 

Panama, and Uruguay.

In those countries, most efforts generally take place at the tertiary education 

level (i.e. university level), where the use is mainly of Computer Algebra Systems 

(CAS) such as Derive, Matlab or Mathematica (although this one to a lesser extent 

due to its cost) – and sometimes also of Spreadsheets (Excel) – in selected mathematics 

courses or programmes; or for research purposes. Statistics software and equation 

plotters (e.g. Graphmatica) are also common, although not in classrooms. Dynamic 

Geometry systems like the Geometer’s Sketchpad,Cabri-Géomètre or Cinderella 

are used by some university teachers and researchers, but their use is very limited 

and they are not well-known in many of these countries. More recently in some 

countries (e.g. Panama) there is some interest in Descartes as a means to create 

interactive web activities, but its use is very restricted, if at all. But even at this tertiary 

level, there generally seems to be a lack of investment in the use of digital technologies 

in these countries, so interested individuals do as best they can.

At primary and secondary levels, the lack of hardware has hindered widespread 

integration (in many countries, such as Guatemala, the only schools that use ICT are 
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private ones). Despite a rising consciousness of the potential of digital tools for 

mathematics teaching and learning, there seems to be little action. There are also very 

big differences between regions, and in some places teacher-training institutions do 

not provide courses on the use of digital technologies until the very end. In some of 

these countries (e.g. Uruguay) it also seems that mathematics teachers are still very 

resistant to change and to the inclusion of digital tools into their practice. In Argentina, 

Giuliano et al. (2006) observe that teachers have little knowledge of the possibilities 

offered by new technologies, and when they do use digital tools, they select their 

activities, contents and teaching strategies according to traditional teaching stances.

The use of the Internet by primary and secondary teachers also remains limited; 

in Uruguay, an attempt in 2001–2002 of a distance virtual education mathematics 

course financed by private foreign investment, failed due to lack of users (Bermúdez 

2006, personal communication). Nevertheless, there are efforts by private institutions 

(e.g. Centro Babbage, http://www.centrobabbage.com, in Argentina) to train teachers 

in the use of new technologies for mathematics and present them with tools (e.g. 

Dynamic Geometry) that still lack widespread use in that particular country; other 

groups, many of them in Argentina, promote the use of digital technologies and 

constructionist approaches like Logo (e.g. FUNDAUSTRAL, http://www.fundaustral.

com.ar; Rosa Kaufman’s Laboratorio de Computación, etc.).

Interestingly, in many countries across the sub-continent, presentation and word-

processing tools like Powerpoint,Word (and its equation editor) – as well as LaTex 

and PDF files – are frequently cited as among the most-used tools for mathematics 

teaching and course management at all levels.

17.3.5.2  Latin-American Countries with Large-Scale,  

Either Government-, or Privately-Sponsored, Projects

There are countries in Latin-America where there have been large-scale efforts for 

integrating ICT and digital technologies into mathematics teaching and learning, at 

primary and secondary levels. These include Brazil, Costa Rica, Chile, Mexico, 

Colombia, Cuba, and Venezuela. We will summarize the information of each of 

these (except Cuba) in turn. It is also worth noting that both Brazil and Mexico have 

had, for several decades, important government distance education programmes, 

via television (de Moura Castro 2005) that can be thought of as precedents for the 

incorporation of more modern digital technologies into the school systems.

Brazil

The case of Brazil is summarized by Healy (2004, 2006). She recounts how digital 

technologies began to be introduced in Brazil in the late 1970s and early 1980s when 

university researchers developed studies on the use of the computer inspired by the 

constructionist perspective of Papert (1980, cited by Healy 2006) and the “Logo 

methodology” (with emphasis on programming languages and the Logo experimental 
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approach). By the late 1980s, insertion of digital technologies into the public education 

system, began through government investment with five centers in universities2 

throughout Brazil (e.g. through projects such as EDUCOM and FORMAR). 

The computer was then seen as a catalyst for and instrument of didactic and 

pedagogic change; this was “a huge challenge given that the dominant pedagogical 

approach of the time almost exclusively focused on teaching as transmission of 

ideas” (Healy 2006).

The use of technologies was seen as an innovative and motivating pedagogic 

approach. However, more than 20 years later, none of the government-funded 

programs seem to have yet resulted in the intended transformations to the educational 

system. There has been also no impact on official forms of assessment, access to 

technological resources remains sporadic and unevenly distributed (with calculators 

being more prevalent than computers), and teachers are more resistant to change than 

originally anticipated, having insecurities about their own mathematical practices. 

In that sense, Healy (2004) explains that CAS-type software is more easily inserted 

(though not integrated) into classroom practice than programmable tools; there 

seems to be the perception that the more “recognisable” the mathematics, the more 

“legitimate” the software (and perhaps also less challenging to existing practices).

One important result, however, has been the recognition of the importance of the 

role of the teacher at each step of the integration process. Until now, for example in 

teacher training programmes on the use of digital technologies, there has been emphasis 

on how learning can be supported but much less on what can be learnt either in 

terms of the mathematical topics involved or the kinds of meanings constructed by 

learners. Furthermore the reciprocal relationship between tools and thinking is not 

taken into account. Teacher-training is now to be carried out as distance-learning; 

the impact this will have, remains to be seen.

Costa Rica

The case of Costa Rica is unique among Latin-American countries. In Costa Rica 

there have been massive continuous efforts to incorporate digital tools and ICT into 

schools since 1987. The first efforts (focused on the teaching and learning of the Spanish 

language and mathematics) began with the introduction of Logo programming 

(first using Logowriter and later Microworlds Logo) as well as robotics. This was 

done through agreements between the government (the Ministry of Education) and 

the “Omar Dengo” Foundation, with funding by Intel (and IBM) and support from the 

MIT media lab and other national and international institutions and universities 

(FOD 2004). The collaboration between the Ministry of Education and the Omar 

Dengo Foundation continues to this day. It is estimated that 50% of primary level 

school children has had access to these programmes, although priority is given to 

low-income or rural children and/or schools in order to promote equality.

2 It is worth noting that although research in mathematics education has been a part of the insertion 

process in Brazil, its role has not been central.
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This programme has been considered innovative, has increased the motivation 

of teachers and students and has received favourable and positive reviews despite 

its lack of measurable impact (e.g. through traditional assessment). It is also a 

programme that provides multimedia facilities, access to Internet and local networks 

(de Faria Campos 2006).

Despite criticism of discontinuity between the primary and secondary school 

level programmes, there is a smaller similar project (PRIES) for secondary schools, 

which incorporates Microworlds Logo.

However, nowadays there are other projects in place in Costa Rica, that support the 

use of digital technologies, such as PROMECE (the Program for the Improvement 

of Education in Costa Rica), also promoted by the Ministry of Education, which is 

in place in approximately 20% of secondary schools (1,500 teachers and over 25,000 

students). This programme equips schools with all types of multimedia hardware 

and software (including Microworlds, Geometer’s Sketchpad, virtual encyclopaedias, 

music software, and other video, web and office tools), as well as Internet access 

and promotes a holistic approach to education aimed to develop creativity and 

collaborative projects.

In general, as stated in the Ministry’s official documents, digital technologies are 

seen as tools, that can promote collaboration and assist in computations so that 

attention can be placed on the reasoning processes involved in problem-solving 

activities (MEP 2005a, cited by de Faria Campos 2006).

Another project, begun in 2002, promoted by the Omar Dengo Foundation in 

Costa Rica, and also implemented in the Universidad de San Pablo University in Peru, 

and the ESPOL Centre for Information Technology in Ecuador, is the Ciberaprendiz 

project. This project, funded by the Inter-American Development Bank, and in 

collaboration with several US institutions, promotes the use of the Internet for 

activities of communication and collaboration with students all over the world, in 

order to improve the learning of science and mathematics (de Faria Campos 2006).

Costa Rica also has strong teacher training programmes – as well as research 

projects – in the use of digital technologies for mathematics teaching in learning, 

that are in place in several universities.

Mexico

In Mexico, one of the first large scale projects to incorporate digital technologies 

into classroom was a badly thought-out government initiative which, in 1989, shipped 

custom-made computers to schools without giving proper training to teachers on 

their use or developing an integration programme. This initiative was thus a total 

failure, and the Logo programming language, which came in the ROM memory of 

those computers, was partly blamed. This failure hindered many future initiatives 

for almost a decade.

In 1997, however, the Mexican Ministry of Education took the initiative to 

incorporate computational technologies into the primary and secondary (middle-school) 

levels. For secondary schools (children aged 12–15 years old) the initiative began 
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with the EMAT (Teaching Mathematics with Technology) programme, and a parallel 

one for Physics (EFIT); in a later phase, the ECAMM project (Teaching Science through 

Mathematical Modelling) was added, and more recently one for Sciences (ECIT).

The conception and design of EMAT, as well as the choice of tools, was led by 

a group of national and international researchers in mathematics education and took 

into account results of previous studies in computer-based mathematics education 

around the world. EMAT provides activities and a pedagogical model for incorpo-

rating the use of technological tools in mathematics classrooms, in a constructionist 

way, aimed to enrich the teaching and improve learning (Ursini and Rojano 2000). 

The pedagogical model emphasizes changes in the classroom structure such as the 

requirement of a different teaching approach and the way the classroom needs to be 

set up. In particular, the pedagogical model emphasizes a collaborative model of 

learning, and a role of the teacher as guide, mediator and promoter of the exchange 

of ideas and collective discussion. A study carried out in Mexico and England 

(Rojano et al. 1996) revealed that in Mexico few students were able to close the gap 

between the formal treatment of the curricular topics and their possible applications. 

This suggested that it was necessary to replace the formal approach of the official 

curriculum of 1997, with a “down-up” approach capable of fostering the students’ 

explorative, manipulative, and communication skills. EMAT was seen as a catalyst 

for changing classroom practices.

In its first phase (1997–2000), the project researched the use of Spreadsheets 

(Excel), Cabri-Géomètre, SimCalc, Stella and CAS activities with the TI-92 calculator. 

These tools were piloted with nearly 90 teachers and 10,000 students at the secondary 

school level, which allowed for changes before massive implementation. In the second 

phase (2001–2007) the use of some of the tools3 used in the first phase (Spreadsheets, 

Cabri-Géomètre, and the TI-92 calculator) continued and was expanded gradually in 

the national public school system, with local regional authorities assuming respon-

sibility. In that phase, the Logo programming language was also added as another one 

of the tools; this decision was taken at the suggestion of both national and international 

advisors who evaluated the first phase and pointed out that there was still the need 

for more expressive activities (such as programming), on the part of the students.

In the academic year 2002–2003, the EMAT project had been implemented in 

731 schools in 17 states, with 2,283 participating teachers and close to 200,000 

students (out of a population of over 5.7 million lower secondary school registered 

students); since then, many more states have joined the programme, although the 

incorporation remains very uneven from one region or school district to another.

During the pilot stages, teacher training was done directly by the national and 

international experts, and there was continuous support of the teachers. In the 

expansion phase, however, due to the immensity of the scale of the programme, this 

was no longer possible. A cascading model was implemented: the experts trained 

trainers who in turn trained teachers and/or head-teachers, who in turn were sup-

3 Simcalc and Stella were dropped because it was hard to fit these tools into the curriculum without 

more extensive teacher-training that was hard to achieve.
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posed to support other teachers. The problem is that this has a “faulty line effect” 

and the quality of the training has been diluted (particularly in reference to the 

understanding of the pedagogical model). But this is an unavoidable problem.

Diverse evaluations of the EMAT programme (e.g. Trigueros and Sacristán 2008) 

have highlighted the complexity of the implementation of projects such as this 

one: there are many difficulties that were not foreseen (particularly technical and 

administrative). There is still a lack of resources and time for a widespread use of 

digital tools in classrooms; and teacher preparation, both technical and mathematical, 

as well as continuous support, remain insufficient, which leads to insecurities. All of 

the above issues imply that the use of digital technologies is inconsistent and often 

sporadic. Teachers also have difficulties in integrating the pedagogical model, as 

well as to technology-based activities, to their mathematics teaching practice. Not 

surprisingly, results showing the impact of the use of digital tools on students’ 

learning are also inconsistent. Thus, this project put into evidence the importance 

of the role of the teacher in the use and integration of digital technologies to the 

mathematics classroom.

On the other hand, after a decade, there are many teachers who have successfully 

changed their practice to incorporate the proposed pedagogical model not only 

when using the digital tools, but also in their regular practice. In these cases, positive 

benefits of the use of digital technologies on students’ learning and attitudes have 

been observed (Trigueros and Sacristán 2008), which show successful implementations 

of the digital tools. However the changes are gradual and do take time.

Nevertheless, the EMAT project was groundbreaking in changing the role of the 

teacher and the traditional passive attitude of children (as well as their attitudes towards 

mathematics) and opened the door for richer ways of incorporating technologies in 

schools. In fact, the use of digital technologies and of the EMAT materials is now 

suggested in the new national curriculum of 2006.

In other projects, ways to incorporate EMAT activities into the established 

distance education (via television) Telesecundaria programme that exists in Mexico 

since the 1960s, has been researched since 2001. More recently, electronic whiteboard 

activities for this Telesecundaria programme have also been developed, primarily 

as teaching aids.

Another important project in Mexico that began in 2004 is theEnciclomedia 

programme for primary schools. Enciclomedia, has been massively implemented 

in all primary schools in Mexico; it aims to help teachers by providing resources, 

computer interactive activities and strategies (mainly designed to be used on electronic 

whiteboards), through links in an enhanced electronic version of the mandatory 

textbooks (Lozano et al. 2006).

Colombia

In Colombia, the project “Implementing new technologies in the secondary school 

mathematics curriculum” was sponsored by the government from 1998 to 2004, for 

the country’s public schools. International experts from the UK, Mexico, and Chile 
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acted as consultants, and the model was very similar to the Mexican model EMAT. 

It had as main tools Cabri- Géomètre and CAS (often using calculators). The project 

began in 1998, with an exploratory phase. In the year 2000, a pilot phase was 

carried out in collaboration with 17 universities, where 60 schools were provided 

with graphic calculators, and there was a programme of continuous teacher training. 

In 2002 the project expanded to include 121 public schools and the support of 24 

universities. From 2004 onwards, the responsibility of the project was delegated 

to local governments. Several regions have purchased Cabri-Géomètre, and some 

also Derive, to complement the use of the calculators with computers.

Castiblanco Paiba (2002) mentions that at a local level there has been progress in 

the development of a pedagogical model for the teaching and learning of mathematics 

with computational tools that integrates insights onto the nature of mathematics and 

the cognitive aspects involved in learning. There has also been progress in identifying 

which processes are involved when students work with calculators in the classrooms 

that could lead to new strategies and mathematical content. But she also recognizes 

that the development of a project such as this is a slow and complex process that 

can only have a noticeable impact for education if it involves a permanent plan of 

teacher-training, the cooperation and collective work of institutions, the compromise 

and motivation of teachers and authorities; and provides support materials and the 

continuing equipment in DT for school infrastructures.

Chile

In Chile, a large government-sponsored project, the Enlaces Project, began in 1995. 

This project promotes the use of the Internet and office tools  (word processing, 

Excel, Powerpoint) for primary and secondary schools. It is meant to be “a support for 

learning” (Mineduc 2002a) – and is used mainly for Mathematics, as well as History 

and Geography, teaching – and is also meant to be associated with university projects. 

By 2002, Enlaces was incorporated in more than 500 schools in the country. Over 

75% of teachers in Chile have been trained in the technical use of the technological 

tools, and 85% of them use the Internet regularly (Mineduc/DESUC 2005). This 

places Chile as the top Latin-American country in terms of the number of teachers 

trained and also in the use of the Internet (Mineduc 2002b).

However, there seems to be a lack of an accompanying pedagogical model 

or theoretical framework. The uses of Enlaces are mainly for information-

seeking in the Internet, and many users use the system for instant messaging 

and email. For mathematics teaching, the use of the electronic whiteboard is 

promoted (Villarreal and Marinkovic 2005). There have also been some efforts 

(Galaz 2005) to use dynamic geometry (with Cabri-Géomètre). Some institu-

tions, like the Centro Comenius of the University of Santiago, have made 

attempts to develop a mathematics curriculum with Enlaces (Oteiza and 

Villarreal 2005), and some positive results have been observed, particularly in 

terms of promoting a cultural change for the acceptance and integration of dig-

ital tools in the mathematics classroom, and improved motivation. In spite of 
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these, however, there doesn’t seem to be a general integration of the program 

for mathematical learning. Critics claim that there is still a lack of generalised 

use (or even knowledge by teachers) of useful software or DT tools for math-

ematics lessons (even the use of spreadsheets doesn’t seem to be common-

place). In fact, the knowledge that teachers tend to have is technical and 

superficial, so they still lack confidence in the use of digital technologies, and 

there are few links made with classroom work.

Venezuela

The Venezuelan experience is not as important as those in other countries with 

large-scale implementations but it is still worth noting. During the early 1980s, the 

Ministry of Education of Venezuela started to develop programmes for improving 

education in schools (Cabanzo et al. 1997). One of its strategies was to introduce 

computers into schools; this was begun in 1985 with an agreement with Epson who 

aimed to develop software and created a computer laboratory in one primary school 

where teachers and students were trained in the use of commercial software for 

mathematics (and language). But it is not until 1992 that the first large-scale project 

began, the “Proyecto Simón”. This project funded through agreements with IBM 

and Epson, aimed, not only to provide computers for schools but also to incorporate 

a pedagogical approach. The part funded by IBM, following the company’s com-

mitment in Costa Rica, promoted Papert’s constructionist approach through Logo 

programming activities (using Logowriter); whereas the part sponsored by Epson 

fostered a behaviourist approach and Computer-Assisted Teaching. This led to the 

creation of two types of laboratories, but the Epson part was dropped in 1993. 

Almost simultaneously (beginning in 1989) the government launched the “Computer 

in the school” program through which it created links with university and other 

research groups for the creation of pilot centers. However, apparently this initiative 

was more political, lacking clear aims and funding (Hernández 1993, cited by 

Cabanzo et al. 1997). In 1997, the Simon Project was abandoned (despite increasing 

interest and demands from children) when IBM closed its office of Educational 

Informatics that coordinated the project; there had also been problems with teachers 

who needed broader training in order to cope with children’s demands but the 

pyramidal structure of teacher training that was in place did not work very well. 

Nevertheless, individual teachers and schools continued the project at much smaller 

scales – until even today – such as through the regional project “Francisco de Miranda”, 

or the Fe y Alegría schools, both of which focus on a constructionist approach and 

used Microworlds Logo.

In a separate line of efforts and pedagogic approach, the National Centre for the 

Improvement of the Teaching of Science (CENAMEC) has been involved in 

the development of educational software, tutorial systems, as well as pedagogic 

materials, such as those for the use of Cabri-Géomètre in primary schools. However, 

these efforts are limited. Presently, the current government of Venezuela wants to 

promote the use of freeware tools.
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17.4 Conclusions

The above narratives indicate that there are similarities and differences with regard 

to access and implementation of digital technologies across and within the respective 

countries and regions. The outstanding similarity is the acceptance at political and 

bureaucratic level of the use of digital technologies for mathematics teaching 

and learning in all the countries. However, the translation of policy into practice is a 

much more daunting task. Both human and physical, for example, resource constraints, 

given the differential economic realities of the respective countries, partly account 

for this phenomenon. This differential realization of access is nothing new but in 

terms of quality mathematics education for and by all, it is brought to the fore much 

more starkly. The experiences from Latin-American countries, for example, show 

that initiatives for implementation are carried out, at different times and places, in 

different levels: from individual teachers and/or schools, to privately-funded projects, 

to government-sponsored projects; and they highlight the difficulties of large-scale 

implementations. In general, even under massive government implementation, there 

remain unequal access, unequal resources, and sporadic use of the digital technologies 

in schools.

Political decisions and administrative issues also affect the implementations, the 

quality of the training of teachers as well as its continuity and that of the projects 

themselves.

A second issue that is illuminative, is the expression, in most of the above countries, 

for a form of access to the epistemic machinery of mathematics through the use of 

digital technologies. Although the use that is made of these technologies tends to 

vary at different levels of schooling (e.g. with a predominance of CAS-style tools 

used at tertiary level compared with more “exploratory” tools at lower school-levels) 

and there is still a dominance in the use of these technologies as ICT (i.e. for 

purposes of information and communication), an emphasis on problem-solving, 

exploration and inquiry, is being placed and prioritised and mere drill-and-practice 

uses are de-emphasised.

A further common theme is the use of open source software and packages. 

This has opened accessibility to resources with which to do mathematics but how 

things are played out in spaces of teaching and learning is still in need of in-depth 

investigation.

Also, as is made evident from several implementation projects of digital 

technologies, the role of the teacher is very important, and his/her beliefs, insecurities 

and lack of mathematical and technical preparation affect the possible impact that 

the use in the classroom of these technologies can have on students’ learning and 

even attitudes. The need for careful, considered and continuous work with teachers 

is thus extremely important. A priority in this kind of work should be the integration 

of digital technologies with the work that teachers are required to do, to take them 

into account at all steps of the implementation process, and to assist them in developing 

pedagogical strategies. The most successful implementations of digital technologies 

for mathematical teaching and learning seem to be those where teachers are able 

not only to add, but to fully integrate and articulate the use of digital technologies 
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into their wider lesson plans and teaching (Trigueros and Sacristán 2008). A lesson 

from all the reviewed projects is that changes are gradual, take time and effort, and 

that there is still much that needs to be done.

In the last ICMI study related to computers and informatics in teaching 

and learning (Churchhouse et al. 1986) there was one chapter dealing with the 

then-called Third World situation. The thrust of the chapter was on the inequitable 

distribution of computers for mathematics teaching and learning between economically 

differentially positioned nations. This situation has not changed in a substantive way. 

Neither did it stay the same. There are developments such as the lowering costs of 

computers and programs such as the “One Laptop per Child” project, which could 

ease physical access. Advances in communication technologies as well as in inter-

national networking make it possible for the lag time between frontier developments 

and local implementations to be diminished. However, conditions of schooling, 

social stratification, even within early developing countries, and political conditions 

mitigate strongly against all students benefiting from the possibilities for meaningful 

learning of mathematics which digital technologies have to offer. Despite the 

possibilities offered by technology, as perceived by the UNESCO agenda described in 

Sect. 2, such as increasing the educational options for the marginalized sectors of 

society, many of these are not yet widely seen, and there is still a need to reformulate 

the educational approaches when using new technologies. To realise this ideal will 

require thoughtful navigation, action and support, in the first instance, from the 

global mathematics education community.

Acknowledgements The following individuals in Latin-America are acknowledged for providing 

information for the writing of the Sect. 17.2: from Argentina, Alicia Noemí Fayó, Liliana Homilka 

and Ignacio Luppi; from Brazil, Lulu Healy; from Chile, Juan J. Paredes; from Colombia, Ana 

Celia Castiblanco and Leonor Camargo; from Cuba, Paul Torres; from Costa Rica, Mario Marín 

and Edison de Faria (as well as the “Omar Dengo” Foundation); from Ecuador, Daniel Ajoy; from 

Guatemala, Claudia Lara; from Honduras: María Magdalena Alvarado; from Panamá, Analida 

Ardila; from the Dominican Republic, Miledys T. Tavárez; from Uruguay, Gustavo Bermudez; 

and from Venezuela, Alejandro del Mar.

References

Bermúdez, G. (2006). Breve resumen, basado en impresiones personales y en conversaciones con 

colegas del Uruguay acerca del uso de las tecnologías digitales. Personal Communication.

Bessot, A., & Comiti, C. (2006). Some comparative studies between France and Vietnam 

Curriculums. In F. K. S. Leung, K.-D. Graf, & F. J. Lopez-Real (Eds.), Mathematics Education 

in Different Cultural Traditions – A Comparative Study of East Asia and the West: The 13th 

ICMI Study. New York: Springer.

Cabanzo, C., Zambrano, B., & Zavala, V. (1997). Representación social de la informática educativa 

en docentes de educación básica incorporados al Proyecto Simón. Caracas, Venezuela: 

Facultad de Humanidades y Educación, Universidad Central de Venezuela.

Castiblanco Paiba, A. C. (2002). El Proyecto de ‘Incorporación de Nuevas Tecnologías al currículo 

de Matemáticas de la Educación Media’ y sus avances. Congreso Internacional Tecnologías 

Computacionales en el Currículo de Matemáticas. Colombia, May 2002.



382 C. Julie et al.

Churchhouse, R. F. et al. (Eds.) (1986). The Influence of Computers and Informaticson 

Mathematics and Its Teaching (ICMI Study Series). Cambridge: Cambridge University Press.

de Faria Campos, E. (2006). Uso de tecnologías digitales para la enseñanza y el aprendizaje de 

las matemáticas. El caso de Costa Rica.

de Moura Castro, C. (2005). Tecnologia e Educação: como combinar os ingredientes? Tercer 

Seminario CEDI/OCDE ‘Las Tecnologías de Información y Comunicación y los Desafíos del 

Aprendizaje en la Sociedad del Conocimiento’. Santiago de Chile.

Department of Education. (2003). National Curriculum Statement Grades 10–12 (Schools): 

Mathematical Literacy. Pretoria, South Africa: Department of Education.

Department of Education. (2004). White Paper on e-Education: Transforming Learning and 

Teaching Through Information and Communication Technologies (ICTs). Pretoria, South 

Africa: Department of Education.

De Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers’ understanding 

of proof. International Journal of Mathematical Education in Science and Technology, 35(5), 

703–724.

Education and Manpower Bureau, Hong Kong SAR. (1998).IT for Learning in a New Era: Five-

year Strategy – 1998/99 to 2002/03. Consultation Document.

Education and Manpower Bureau, Hong Kong SAR. (2004a).IT in Education – Way Forward; 

Outlined Proposals on Next IT in Education Strategy. Consultation Document.

Education and Manpower Bureau Hong Kong SAR. (2004b).Empowering Learning and Teaching 

with Information Technology. Policy Document.

Education and Manpower Bureau, Hong Kong SAR. (2005). Overall Study on Reviewing the Progress 

and Evaluating the Information Technology in Education Projects 1998/2003. Final Report.

Engelbrecht, J., & Harding, A. (2005). Teaching undergraduate Mathematics on the internet: Part 1, 

Educational Studies in Mathematics, 58(2), 235–252.

FOD. (2004). Programa de Informática Educativa MEP-FOD: Un aporte al desarrollo de Costa 

Rica. San José, Costa Rica: Fundación Omar Dengo.

Fonseca, C. (2005) Educación, tecnologías digitales y poblaciones vulnerables: Una aproximación 

a la realidad de América Latina y el Caribe. Consulta Regional del Programa Pan Américas 

IDRC. Montevideo.

Galaz, M. (2005). La enseñanza y aprendizaje de la Geometría en enseñanza media. Un procesador 

geométrico como medio didáctico. Seminario de Innovación en Informática Educativa ENLACES, 

October 2005. Santiago, Chile: MINEDUC. http://www.comenius.usach.cl/enlacesmat.

Giuliano, M., Rueda, V., Gallinal, P., Franco, A., Bermúdez, M., & Perrone, G. (2006). Relevancia 

asignada por profesores de matemática a la inclusión de problemas y tecnología en el aula. Paper 

presented at the VI Conferencia Argentina de Educación Matemática, Buenos Aires, Argentina.

Healy, L. (2004). Technology Revisited: Some Reflections on the Brazilian Experience. Unpublished 

presentation made to the International Programme Committee of the ICMI Study 17, London, 

April 2004.

Healy, L. (2006). A developing agenda for research into digital technologies and mathematics 

education: a view from Brazil. In C. Hoyles, J.-B. Lagrange, L. H. Son, & N. Sinclair (Eds.), 

Proceedings of the Seventeenth Study Conference of the International Commission on 

Mathematical Instruction. Hanoi Institute of Technology and Didirem Université Paris 7.

Juan Silva, J., Cerda, F., & Molina, O. (2001). Matemática y uso de TIC: Navegando entre 

Números y Planos. Santiago, Chile: Proyecto Enlaces.

Lee, A. M. S., Wong, K. L., & Mok, I. A. C. (2003). Implementation of ICT in the mathematics 

teaching in Hong Kong: teacher conceptions and evolving classroom practices. Information 

Technology, Education and Society, 4(1), 117–133.

Lozano, M., Sandoval, I., & Trigueros, M. (2006). Investigating mathematics learning with the 

use of computer programmes in primary schools. In J. Novotná, H. Moraová, M. Krátká, & N. 

Stehlíková (Eds.), Proceedings 30th Conference of the International Group for the Psychology 

of Mathematics Education (Vol. 4, pp. 89–96). Prague: PME.

Mineduc. (2002a). Nuevas Tecnologías para apoyar el Aprender. Santiago, Chile: Proyecto Enlaces.



17 Some Regional Developments in Access and Implementation 383

Mineduc. (2002b). Estudio Internacional Tecnologías de Información en el Sistema Escolar SITES: 

El Caso de Chile. Síntesis de Resultados. Santiago, Chile: Proyecto Enlaces.

Mineduc/DESUC. (2005). Uso de Recursos Informáticos por parte de los docentes: Resumen 

Ejecutivo. Chile: Red Enlaces, Ministerio de Educación/Dirección de Estudios Sociológicos, 

Universidad Católica de Chile.

Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 International 

Mathematics Report. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.

Nguyen, C. T. (2006). Integrate the dynamic geometry software Cabri in to the practices of teachers: 

a didactical perspective. Workshop at the Seventeenth ICMI Study Digital Technologies and 

Mathematics Teaching and Learning: Rethinking The Terrain. Hanoi, Vietnam.

Nguyen Thi Nhu, H. (2004). La calculatrice de poche dans l’enseignement – apprentissage des 

mathématiques au Viêt-nam – Le cas du système d’équations du premier degré à deux incon-

nues en classe de 10e. Unpublished Master Thesis in Didactic of Mathematics, Ho Chi Minh 

City, Vietnam: Pedagogic University at Ho Chi Minh City.

Opolot-Okurut, C. (2004).Attitudes Towards Mathematics, Achievement in Mathematics Aptitude 

Problems and Concomitant Teacher Practices in Ugandan Secondary Schools. Unpublished 

Doctoral Dissertation, Bellville, South Africa: University of the Western Cape.

Oteiza, F., & Villarreal, G. (2005). Enlaces Matemática. Seminario de Innovación en Informática 

Educativa ENLACES, October 2005. Santiago, Chile: MINEDUC. http://www.comenius.

usach.cl/enlacesmat.

Rojano, T., Sutherland, R., Ursini, S., Molyneux, S., & Jinich, E. (1996). Ways of solving algebra 

problems: the influence of school culture. Proceedings 20th Conference of the International 

Group for the Psychology of Mathematics Education, Valencia, Spain (vol. 4, pp. 219–226).

Tedesco, J. C. (2005). Las TICs y la desigualdad educativa en América Latina. Tercer Seminario 

CEDI/OCDE ‘Las Tecnologías de Información y Comunicación y los Desafíos del Aprendizaje 

en la Sociedad del Conocimiento’, Santiago de Chile.

Trigueros, M., & Sacristán, A. I. (2008). Teachers’ practice and students’ learning in the Mexican 

programme for teaching mathematics with technology. International Journal of Continuing 

Engineering Education and Life-Long Learning, 18(5/6), 678–697.

UNEP. (1991). Caring for the Earth: A Strategy for Sustainable Living. Gland, Switzerland: 

Published in partnership by IUCN, UNEP, WWF.

Universidad de la Frontera. (2005). Experiencias innovadoras en Informática Educativa. Temuco, 

Chile: Instituto de Informática Educativa, Universidad de La Frontera. http://www.enlaces.cl/

archivos/doc/200604052152310.Informe_Experiencias_TIC.doc.

Ursini, S., & Rojano, T. (2000). Guía para Integrar los Talleres de Capacitación EMAT. Mexico: 

SEP-ILCE.

Villarreal, G., & Marinkovic, J. (2005). Uso de la Pizarra Interactiva en salas de clases como apoyo 

a la Enseñanza y Aprendizaje de la Matemática. Seminario de Innovación en Informática 

Educativa ENLACES, October 2005. Santiago, Chile: MINEDUC. http://www.comenius.usach.

cl/enlacesmat.

Wong, N. Y. (2000). Mathematics education and culture: the “CHC” learner phenomenon. Paper 

presented at the Topic Study Group 22: Topics in Mathematics Education in Asian Countries, 

ICME 9, Tokyo, Japan, July 2000.



Chapter 18

Technology for Mathematics Education:  

Equity, Access and Agency

Helen J. Forgasz, Colleen Vale and Sonia Ursini

Abstract In this chapter, issues of equity – including gender, access, and agency 

– with respect to the learning of mathematics with technology are examined. 

Research findings are not equivocal. Compared to late developing countries, where 

issues of access to technology can be complicated by educational and cultural values 

and beliefs, there seems to be greater access to technology to be used for the learning 

of mathematics in developed nations. There also appears to be some disparity in findings 

on the relationship between technology use and gender differences in mathematics 

achievement; in some countries the gender gap favoring males may be closing, 

while in other countries, where there have been little or no gender differences in 

the past, the gap may be widening. Areas in which more research is needed have 

been identified.

Keywords Technology • Gender •  Access •  Equity •  Agency

18.1 Introduction

Skovsmose and Valero (2002) argued that the rhetoric of western countries is that math-

ematics prepares students for active citizenship while the reality is that mathematics 

maintains the social order. They observed that some students gain access to the power 

that knowledge of mathematics affords while others do not, and that the demarcation 

between these two groups matches the differences in economic and political power of 

different social groups. International studies of mathematical performance, such as the 

H.J. Forgasz ()
Monash University, VIC, Australia

C. Vale
Victoria University, Melbourne, VIC, Australia

S. Ursini
Departamento de Matemática Educativa, Centro de Investigación y de Estudios Avanzados del 
IPN (Cinvestav), Mexico, Mexico

C. Hoyles and J.-B. Lagrange (eds.), Mathematics Education  385 

and Technology-Rethinking the Terrain, DOI 10.1007/978-1-4419-0146-0_18,
© Springer Science + Business Media, LLC 2010



386 H.J. Forgasz et al.

Third International Mathematics and Science Study (TIMSS) and Program for 

International Student Assessment (PISA), provide evidence of social inequity and gen-

der inequity in mathematics achievement within, as well as between, countries around 

the world (Mullins et al. 2000; OECD 2004). While studies such as these clearly iden-

tify differences in achievement that provide evidence of inequity in mathematical out-

comes, defining equity is a more complex task (Bishop and Forgasz 2007).

Apple (1989) stressed that in spite of experts’ efforts, mathematics and science cur-

ricula very often contribute to the reproduction of gender differences. He argued that 

the situation might get worse with the introduction of technology to support mathemat-

ics and science teaching. This concern was put forward again in the ICMI Study 

“Gender and Mathematics Education” where it was reported that the use of technol-

ogy in mathematics might erode the advances made towards gender equity in mathe-

matics (Hanna and Nyhof-Young 1995); this view was re-iterated by Hoyles (1998) at 

the ICMI Study, “The teaching and learning of mathematics at university level”.

Issues of equity, access, and agency, as they pertain to mathematics teaching and learn-

ing with technology, are discussed in this chapter. Commencing with definitions of the 

terms, a range of research findings from a number of countries are then presented. To close 

the chapter, summaries of the findings and conclusions based on them are accompanied 

by a discussion of the implications and perspectives on future directions in the field.

18.2 Definitions of Equity Including Access and Agency

Many theoretical perspectives have been used to define equity. At the ICMI study 

conference on gender and mathematics education in Sweden in 1993, Fenemma  

(1995) defined three aspects of equity which had been the subject of research in the 

field: equal opportunity, equal treatment, and equal outcomes. However, she observed 

that in many studies it had been shown that equal opportunity and equal treatment in 

mathematics classrooms were insufficient to achieve equal outcomes. In the literature 

and research concerning other socio-cultural factors and education it has been argued 

that equity is also about fairness and justice (e.g., Gewitz 1998), and that a commit-

ment to “closing the gap” between the achievement of people of different socio-

economic and cultural groups, including females and males, is at the heart of equity 

(Secada et al. 1995). Definitions of equity that include fairness and achieving justice 

reveal that equity is different from equality, and that there is the need to include 

notions of equitable pedagogies (Hart 2003). Furthermore, enhancing the human condi-

tion and building capacity so that individuals become agents in their own lives and 

make a difference in society are central to UNESCO’s goals of “Education for All” 

and the Decade of Education for Sustainable Development (UNESCO 1990, n.d.).

In considering equity, four student characteristics are of interest: gender, socio-

economic status, race or ethnicity, and disability. Sherman and Poirier (2007) also 

felt that educational equity within countries should be considered by regional 

characteristics such as urbanity and wealth. In their evaluation of educational policy 

of sixteen countries concerning the agreed international objective of “education for 
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all” (UNESCO 1990), they used three categories of indicators of educational equity: 

access and progression, resources, and outcomes. These categories are helpful in 

reporting on equity with respect to digital technology and mathematics education. 

Consideration is also needed of how fairness and justice can be identified, described, 

and defined when students and teachers use digital technologies in mathematics 

classrooms. Definitions are now presented of the various dimensions of equity for 

mathematics education with digital technologies that are examined in this chapter, 

as well as the ways in which these dimensions can be measured or identified.

18.2.1 Access

Access to mathematics education, and hence opportunity to learn, is fundamental 

to equity. Enrolment is an indicator of access to, and progression in, education. But, in 

which mathematics courses are students from the various equity categories enrolled? 

Policy makers concerned with equity have described equitable mathematics curricula 

as “mathematics for all” (Bishop and Forgasz 2007). Notions of “mathematical literacy” 

that prescribe the mathematical requirements for active citizenship, or agency, have 

underpinned these mathematics curricula. In the digital age, mathematical literacy 

involves the facility to use digital technology in a range of contexts in which mathe-

matical thinking and problem solving skills are needed to solve problems and 

interpret information (Keitel et al. 1993). Skovsmose and Valero (2002) argued that 

students need access to the powerful ideas of mathematics. In their view, knowledge 

of mathematics is not only needed for active citizenship and for professional careers 

dependent on mathematics, but also enables people to have a sense of control over 

their own lives within society. Students in the digital age therefore need access to 

digital technology for mathematics learning and problem solving.

It cannot be assumed that all students are enrolled in the same intended mathematics 

curriculum. There is a lot of evidence to suggest that the mathematics curriculum 

is defined differently for different groups of students within countries, and that these 

curricula do not result in equitable outcomes (Bishop and Forgasz 2007). In Chap. 16, 

Vale and Julie with Buteau and Ridgway discussed the extent to which the facility to 

use technology in a range of mathematical contexts is included in the intended and 

the implemented curriculum. The enrolment and progression of different categories 

of students in mathematics subjects in which students have the opportunity to 

develop facility with digital technologies are therefore equity-related issues.

18.2.2 Resources for Equity

The provision of educational resources including facilities, equipment, learning 

materials, and teachers is also fundamental to equity. Sherman and Poirier (2007) 

used government expenditure per pupil and pupil-teacher ratios as measures of equity 

with respect to resources. However, these measures are insufficient as the quality of 
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resources is also important and includes, for example, class sizes, the quality of 

materials and equipment, and the quality of teachers that can be measured by their 

qualifications, knowledge, and experience.

Also of interest are measures associated with the digital resources for mathematics 

education (both hardware and software), as well as the infrastructure (buildings, 

electricity, and telecommunications) needed to run these tools. Computer to student 

ratios, and student ownership of computers and hand-held technologies are therefore 

pertinent to a study of equity. The term, “digital divide”, is used to describe the 

marked difference in access to digital technologies between developed and late 

developing countries, and between high and low socio-economic communities. 

However, Setati (2003) warned that these measures of resources might not be 

adequate indicators of equity with respect to access. In late developing countries 

that have poor schools, the availability of computer technology does not necessarily 

translate into classroom use. Setati (2003) argued that in these schools administrators’ 

and teachers’ conceptions of resources as possessions needed to be considered. 

In these contexts, consideration for the care, protection, and security of resources 

often limited teacher and student access to them for learning purposes.

In many studies it has been shown that the quality of teaching is critical for 

student learning and hence equity, and that inexperienced teachers and teachers 

with limited qualifications are often employed in schools located in socially and 

culturally disadvantaged communities (Bishop and Forgasz 2007). Teachers’ qualifi-

cations, training, knowledge, beliefs, and experience with respect to using digital 

technologies for mathematics learning and teaching are therefore important indicators 

of equity with respect to the allocation of resources. Further discussion of teachers 

and teaching as critical factors in mathematics learning with digital technology is 

included in Sect. 3 of this book.

18.2.3 Equitable Pedagogies

Equitable access to mathematical learning with digital technology is non-trivial. 

However, the classroom learning environment and the pedagogical approaches adopted 

by teachers also need to be considered. Equity for students in schools that are poorly 

resourced with digital technologies, or who are from poor family backgrounds with 

limited access to digital technologies, means that access to mathematical learning 

with technology extends beyond the inclusion of learning activities using digital 

technologies and beyond ensuring that particular groups of students have equal 

“hands on” time with materials and digital technologies in classrooms. The quality 

of these students’ mathematical learning experiences needs to include: high expec-

tations of the students; that the content and purpose of the mathematical learning 

activities connect socially, culturally, and politically with the students’ lives; and that 

teachers support the students in the development of mathematical thinking and 

practices with digital technologies (Boaler 2002; Gutstein 2003; Vale 2003). Equity 

involves paying attention to diversity in the classroom, and to providing for different 
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needs arising from the different positions and identities of the students in the class-

room. Hence equitable pedagogical practices are situated, that is, they relate to the 

learners in given settings and are respectful of diverse cultural realities (Anthony 

and Walshaw 2007; Cobb and Hodge 2002; Quiroz and Secada 2003).

Digital tools are cultural artifacts, and teachers need to be aware of the different 

needs, positions, and identities that students may have with respect to these tools 

(Vale 2002). Moreover, teachers and students may find themselves on different 

sides of another digital divide, the different experiences of technology arising from 

the different ages and exposure to digital technology of teachers and students, and 

hence the different expectations and beliefs about using technology for mathematics 

learning. The cultural and pedagogical practices with regard to the various digital 

tools are therefore important considerations for equity. There is also the need to 

reflect on the ways in which digital technology can be used in mathematics teaching 

and learning to disrupt the social reproduction that Skovsmose and Valero (2002) 

observed, and to “close the (equity) gap”.

18.2.4 Equitable Outcomes

As indicated above, achievement and performance data are used to measure equity 

with respect to mathematical learning outcomes. The Program for International Student 

Assessment (PISA), conducted by the Organisation for Economic Cooperation and 

Development (OECD), is designed to find out how well 15-year-old students are 

prepared for the “challenges of today’s knowledge societies” (OECD 2004, p. 20). 

Literacies are the focus of the PISA study and mathematical literacy is defined as 

students’ ability to “apply mathematical knowledge and skills and to analyse, reason 

and communicate their ideas effectively as they pose, solve and interpret problems 

in a variety of situations” (OECD 2004, p. 23). The PISA study assesses students’ 

familiarity with mathematical concepts and processes, and their capacity to make 

decisions related to their lives or understanding of world affairs.

Not surprisingly, the findings from the PISA study conducted in 2003 showed 

that countries with higher levels of income and expenditure on education recorded 

higher levels of mathematical literacy. However, variation within countries was greater 

than the variation between countries (OECD 2004). These variations occurred between 

education systems and programs, between schools, and between groups of students 

within schools. Mathematical literacy was positively correlated with socio-economic 

status, with the relationship stronger in some countries (e.g., Australia) than in others 

(e.g., Germany) (McGaw 2004). Gender differences favoring boys were not as great 

as differences by other factors, but they were most clearly observed among the 

highest achievers. In 27 of the 40 countries for which gender analyses for PISA 2003 

were reported (OECD 2004) there were statistically significant gender differences 

favoring males; in 12 countries there were no statistically significant gender differences, 

and only in Iceland was there evidence of girls outperforming boys in mathematical 

literacy (OECD 2004). The instrument used by PISA to measure mathematical literacy 
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was a pen and paper test that was conducted without the aid or use of digital tech-

nologies. There is therefore a need to consider equity of outcomes with respect to 

students’ technical knowledge of digital tools in a mathematics context, and students’ 

mathematical knowledge in a digital context.

Attitudes towards mathematics are indicators of students’ dispositions to use 

mathematics, and are outcomes of mathematics learning. Hence students’ attitudes 

towards the use of technologies for learning mathematics and for solving mathe-

matical problems are important outcomes of mathematics education in the digital 

age. Further, a number of affective factors have consistently been strongly associated 

with participation and progress in mathematics (see for example, Watt et al. 2006) 

and hence are important indicators of equity in mathematics education. Researchers 

have also explored the relationship between attitudes to technology and the use of 

digital technologies in mathematics. In studies of the attitudes of tertiary mathematics 

students and of secondary students, stronger correlations have been reported between 

attitudes to the use of digital technologies and attitude to computers than between 

attitudes to digital technologies and attitudes to mathematics (Forgasz 2004; Galbraith 

et al. 2001; Pierce et al. 2007). Due consideration of equity issues with respect to 

attitudes towards the use of digital technologies for mathematics and the relationships 

to other outcomes is warranted.

18.2.5 Agency

Mathematical literacy also involves the disposition to use mathematics and digital 

technologies to meet social demands and to participate actively in society. Teaching 

mathematics well gives students access to mathematical knowledge and skills, and 

hence power in society. The idea of empowering students to act in, and on, their 

world is central to the notion of agency. Gutstein (2003), drawing on the work of 

Friere (1992), described agency as being able to “read the world” with mathematics, 

and for people to believe that they themselves can make a difference in the world. 

Agency therefore is concerned with both the capacity and the disposition to use 

mathematics to effect change in one’s personal life or in the lives of others. A definition 

of mathematical literacy for which the objective is citizenship (e.g., Jablonka 2003) 

could be interpreted as contributing to social reproduction. Mathematical agency, 

on the other hand, encompasses a disposition for social action. Gutstein (2003) 

and others (e.g., Burton 1996) have argued that mathematics is not context-free, and 

that pedagogy for social justice needs to engage students in mathematical inquiry 

of the social and political phenomena in their communities and societies. Through 

these activities students develop skills in critical mathematical literacy, that is, the 

capacity to critique the mathematical models used in the political process and for 

solving social problems (Jablonka 2003; Skovsmose 1994). In this sense, mathe-

matical agency is an equity and social justice issue. Of interest, therefore, is how 

teachers and students have used digital technologies to understand mathematics and 

the natural world, as well as their social and political worlds, and to develop the 
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belief that their knowledge of mathematics equips them with the power to provide 

justice in their own communities.

In the following sections research findings from studies focusing on the various 

aspects of equity with respect to digital technologies in mathematics education are 

presented and discussed. The research findings are drawn from studies conducted 

in different countries, regions, schools, and classrooms.

18.3 Research Studies

18.3.1 Equity and Mathematics Learning with Technology

In 1995, Fennema (1995) argued that there had been little progress towards gender 

equity for lower achieving girls. With a focus on preferred learning styles and the 

needs of the most successful and socially advantaged mathematics students, Hoyles 

(1998) signalled that the use of technology for mathematics learning could be a 

factor promoting increased gender inequity. There is recent evidence that technology 

may actually accentuate gender inequities in the mathematics classroom. For example, 

in Victoria, Australia, where the great majority of people are familiar with technology, 

Vale (2002, 2003) studied grade 8 and 9 students using technology in the mathematics 

classroom. The findings were summarised by Vale (2006) as follows:

While the behaviours and attitudes of girls and boys were similar in many respects, the 
classrooms were masculine domains since the behaviours and interests of the boys defined 
the cultural norms of the classroom. The boys were louder… more demonstrative and 
public about their computer knowledge and competitive about their achievements in mathe-
matics and with computers… Boys benefited… because they took control of their own 
learning to learn more about computers… Girls and their needs and interests were on the 
periphery…; they did not participate in general classroom discussions, males denigrated 
their achievement and the teachers were generally ignorant of their computer skills, espe-
cially girls with lower math achievement. Some high achieving girls worked individually 
as silent participants. (p. 2)

Vale (2006) added that “without adequate support from their peers or teacher, students 

who were not computer literate were excluded from the mathematical learning” (p. 4).

The teachers in Forgasz’ (2006a) study believed that boys and girls worked 

differently with computers in the classroom. Forgasz (2006a) summarised as follows:

…boys’ competence, confidence, and interest in computers generally, appear to advantage 
them over girls when computers are used in the mathematics classroom. It seems that 
teachers feel the need to focus boys’ attention to the task at hand and encourage and sup-
port girls to engage with the technology. It would appear that without positive intervention 
with girls, it is more likely that boys will gain more from their interactions with computers 
in the mathematics classroom. (pp. 459–460)

In Mexico where, in contrast to Australia, the great majority of people are not 

familiar with technology and the great majority of students only infrequently use 

computers at school, Ursini et al. (2004b) found that when technology was introduced 
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into mathematics classrooms it seemed to lead to improved gender equity with 

respect to students’ behaviors. In the study, 24 teachers were asked about the 

behavioral changes of 1,113 12–15 year old students when using technology for 

mathematics. The teachers believed that the use of technology modified the girls’ 

and the boys’ behaviors, but in different ways. For example, boys with 3 years 

experience in using computers at school were less keen to work individually than 

their peers with less experience in using technology, while computers did not influence 

the girls’ preference for almost always wanting to work in collaborative teams. 

The use of technology did not influence the boys’ reticence to ask for help, but pushed 

the girls into being more participative and less inhibited in asking for help than in 

classes without technology. After using technology in the mathematics classroom 

for 3 years, the teachers felt that there were no longer major differences between 

boys’ and girls’ behaviors. These findings suggest that the use of technology was 

promoting gender equity in these dimensions of behavior. The teachers, however, 

stressed that the more the boys used technology, the more they tended to abandon 

the mathematics task and focus on learning more about computers, while girls 

always tried to complete the assigned tasks.

The Mexican findings described above might be strongly culturally dependent. 

In fact, the Mexican teachers explained that boys rarely asked for help in order to 

avoid others making fun of them, and that boys usually participate when they are 

confident that they have the correct answer. In contrast, girls are not expected to 

know much, and it is very acceptable for them to participate less and ask for help. 

When technology was introduced into the classroom, however, the vast majority of 

girls and boys had no experience using them; this seemed to have inhibited the boys 

and led the girls to participate more. The teachers explained that in order to be 

equitable in the mathematics classroom, they always try to help girls more than 

boys, arguably exhibiting their gendered perceptions of girls being less capable 

than boys. Teachers’ gendered perceptions of girls and boys were also reported in 

another Mexican study (Ramirez Mercado 2006) in which primary teachers clearly 

expressed beliefs that boys were “naturally” talented in mathematics, although their 

views on what denoted intelligence varied widely. Girls were considered obedient, 

following rules, and achieving good marks because they worked hard.

Forgasz and Griffith (2006) compared the Victorian (Australia) Certificate of 

Education (VCE) results of students in two parallel (Mathematical Methods) 

courses, one in which graphics calculators were used and the other in which 

CAS calculators were used. (It should be noted that the Mathematical Methods CAS 

program was a pilot study and the enrolment numbers were relatively small.) At 

the highest levels of achievement in both courses there was an achievement gap 

favoring males. However, the gap was wider in the course in which CAS calculators 

were used and the pattern was consistent over the 3 years (2002–2004) for which 

the data were examined. In the next few years, all students in Victoria taking 

Mathematical Methods will be using CAS calculators. Forgasz and Griffith (2006) 

noted that while teachers were generally optimistic about the introduction of the 

CAS calculators into the Mathematical Methods course, there was the potential that 

males may be advantaged over females in using CAS calculators in these high 
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stakes examinations (results are used for university entry), and that this warranted 

careful future monitoring.

In an earlier study, Forster (2002) explored gender-related effects in the Western 

Australian Calculus Examinations from 1995 to 2000, 3 years before and 3 years after 

graphics calculators were introduced. There were many more boys than girls enrolled 

in this subject, and no clear-cut patterns were evident with respect to gender differ-

ences in achievement along a number of dimensions. Forster (2002) was cautious 

in her conclusions and recommended further study. However, there were some data 

on actual calculator use from sample data for a rectilinear motion application. These 

data indicated that most boys and girls “chose to use the technology when it was an 

option and scored better than students not choosing it; and a greater percentage of 

boys than girls chose it and scored better than the girls” (Forster 2002, p. 816).

In a recent study, Ursini et al. (2007) found that using technology to support 

mathematics learning benefited only a small group of high achievers, and girls 

benefited more than did boys. The mathematics topics that were learnt better with 

the support of digital software (spreadsheets and Cabri Géomètre) were: ratio and 

proportion, perimeter and area of simple geometric figures, calculating percentages 

of numbers, pre-algebra, very simple linear equations, and linear graphs. However, 

the researchers believed that further research was needed to identify the areas of 

mathematics in which the use of technology would improve students’ learning.

Yerushalmy (2006) discussed the need to study changes in cognitive hierarchies 

when learning with technology from the perspective that “computational technolo-

gies allow us to improve the design of mathematical learning environments” 

(Yerushalmy 2006, p. 6). Findings from various studies were described, including 

some involving a Visual Math curriculum, described by Yerushalmy (2006) to be:

an algebra, pre-calculus and calculus curriculum where technology is being used to help 
learners develop knowledge from their perceptions of the world and to develop conceptual 
understanding of symbols. (p. 2)

From one study, it was reported that compared to traditional algebra students adopting 

an equations-based approach, those using the Visual Math curriculum provided a 

wider range of solutions and were more likely to get the correct answer. An implication 

of these findings is that using this technology might widen the achievement gap between 

students using the technology and those, including students from late developing 

countries, who do not have access to it.

The research findings discussed in this section provide evidence that the 

introduction of technology into the mathematics classroom has had mixed 

outcomes with respect to some equity dimensions. The findings from Australia and 

from Mexico were not consistent; in Australia there was evidence that there was a 

widening of the gender gap when computers and sophisticated hand-held technologies 

were brought into the mathematics classroom, supporting the predictions of Hoyles 

(1998) and Hanna and Nyhof-Young (1995). In Mexico, however, classroom 

behaviors in response to the novelty of technology introduced into the classroom 

appeared to challenge the strong gender stereotyped behavioral expectations that 

teachers had of their students.
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18.3.2  Equity and Attitudes, Beliefs, and Values Associated  

with Technology Use for Mathematics Learning

In general, the use of computational tools has had a positive impact on children’s 

attitudes towards mathematics. However, in studies of computer use in education it 

has been commonly found that males, compared to females, hold more positive 

attitudes to computers e.g., grade 8 students’ mathematics learning with Geometer’s 

Sketchpad (Dix 1999).

Forgasz (2002a) examined various equity groups’ gender-stereotyping of computer 

use for mathematics learning. Traditionally, mathematics and computers have been 

considered male domains. Forgasz (2002a) found that socio-economic status mediated 

gender differences in attitudes to computers for mathematics learning. Students of 

high socio-economic status, that is those most likely to have greatest access to 

computers, were found to hold the strongest traditional gender-stereotyped views; 

and Australian Aboriginal students, considered to be at the lowest socio-economic 

level in the country, held the least stereotyped views.

In a study in which three groups of grade 7 students (64 students in all) were 

taught mathematics differently – two groups used technology and the third did not 

– Isiksal and Askar (2005) found no significant gender differences with respect to 

mathematics achievement and mathematics self-efficacy, but that the boys had 

significantly higher mean scores than girls for computer self–efficacy. Significant 

correlations were found between the self-efficacy scores and achievement.

Forgasz (2002b) compared a large sample of Australian grade 7–10 students’ 

gender-stereotyped views of mathematics, of computers, and of computer use for 

mathematics learning. It was found that students no longer appeared to stereotype 

mathematics as a male domain but clearly considered computing to be a male 

enclave. With respect to computer use for learning of mathematics, they were more 

ambivalent, with their views sitting between those for mathematics and those for 

computing. The gendered directions of the views of male and female students were 

remarkably similar, and although the strengths of males’ and females’ views varied, 

there was no clear pattern evident. Vale and Leder (2004) found that attitudes to the 

use of computers for learning mathematics were more strongly correlated with 

attitudes to computers than to mathematics, and that the relationship was stronger 

for boys than for girls.

Pierce et al. (2007) described the development of a new scale entitled Mathematics 

and Technology Attitudes Scale (MTAS) that had five subscales – (affective engagement 

AE, behavioral engagement BE, confidence with technology TC, mathematics 

confidence MC, and attitude to learning mathematics with technology MT). Findings 

from the administration of the scale to a sample of 350 grade 8–10 students in six 

schools revealed that boys had significantly higher scores than girls on all scales 

except BE. Most bi-variate pairs had significant positive correlations. Interestingly, 

MT was positively correlated with TC for boys and negatively with MC for girls. 

It was also found that most students in each school agreed that it was better to learn 

mathematics with technology.
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In Mexico Ursini et al. (2004a) developed the AMMEC (Actitudes hacia las 

Matemáticas y las Matemáticas Enseñada con Computadora) scale. The results of 

administering the scale revealed that boys tended to be more positive than girls 

towards mathematics and towards mathematics taught with computers. Comparing 

the attitudes towards mathematics of two groups (458 using spreadsheets or 

Cabri, and 221 not using technology), Ursini et al. (2007) found attitudes to be 

more positive among those using technology, although this was not true of all 

students. After 2 years using computers, a sizable percentage of students retained 

a negative or neutral attitude toward mathematics, with more girls than boys feeling 

this way. It was also found that the great majority of students, whether they used 

technology or not, were positive towards technology use for mathematics learn-

ing (more boys than girls), although a huge percentage remained neutral (more 

girls than boys).

Alajääski (2006) used the differences in pre- and post-test scores to determine 

53 (43F, 10M) Finnish polytechnic students’ attitudes towards a Web-based approach 

to the learning of mathematics/statistics. The attitudes of females, students with 

higher ICT-orientations, and students with stronger mathematical backgrounds 

were found to be less favorable at the end of the course, while males, students with 

lower ICT-orientations, and students with weaker mathematical backgrounds had 

more positive attitudes. Alajääski (2006) concluded that it “seems that the students 

with better overall motivation to study mathematics/statistics are most critical of 

the Web technology based studying platform.” (p. 78)

There are some research findings in which the anticipated benefits to all students 

of using computers for mathematics learning have been challenged and which 

revealed gender differences in related beliefs. Forgasz et al. (2006) discussed findings 

from a 3-year study in which data were gathered on teachers’ and their students’ 

views on whether computers assisted students’ understanding of mathematics. About 

60% of the teachers believed that computers aided students’ mathematical under-

standings, with a higher proportion of male than female teachers believing this to 

be the case. With only about 30% agreeing, the students were less convinced than 

their teachers of the positive impact of computers on their learning; there was also 

a higher proportion of male than female students in support. The findings of the 

reported study appear to provide further evidence of a “digital divide” between 

teachers and students in regard to their perceptions of the effects of technology use 

on mathematics learning and also, perhaps, on the potential the technology might 

have to promote the mathematics learning of some students.

The research studies reported in this section reveal mixed findings on students’ 

perceptions of the benefits of computer use on their mathematics learning. 

With the exception of the findings from Mexico, it would appear that male students 

and male teachers are more positive than their female counterparts about the 

benefits of technology use for mathematics learning. Further research is needed 

to explain the reported findings that students from high socio-economic back-

grounds held the most gender-stereotyped views of the effects of computer use 

for mathematics learning.
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18.3.3 Resources for Mathematics Learning with Technology

When looking at differences in ownership of computers, Instituto Nacional de 

Estadïstica Geografia e Informatics (INEGI) (2007) reported that in 2004 there 

were between 40.8 and 138.7 per 1,000 inhabitants in Latin America, China and 

Russia who owned computers, while in Europe (except Spain and Italy), the United 

States, Canada, Asia (except China and Malaysia), and Oceania there were between 

486.6 and 762.2 per 1,0002007 inhabitants owning computers. (It should be noted 

that Africa and India were not mentioned.) These figures are strong indicators of 

the differences in access to technology for people around the world. In Mexico in 

2005, for example, INEGI (2007) data revealed that only 19.4% of the population 

had a computer at home. The main reason for not having computers was economic, 

but there was also nearly 16% who had no idea about the possible advantages that 

a computer could offer. Only about 30.4% of the Mexican population aged over six 

had used a computer, and the great majority used them about once a week. 

Computers are used at home (43.3%), at school (31.6%), in public places (27.6%), 

and at work (27.9%). There were no significant gender differences in access to 

computers. Mexicans use computers mainly as word processors but, interestingly, 

they are also being used for educational purposes, with 58.9% using computers to 

support school teaching or learning. In 2006, most users (63.1%) were younger 

than 24 years of age; only 34.3% were between 25 and 55 years of age. These 

official data (INEGI 2007) suggest a generational gap in access to computers which 

may partly explain teachers’ resistance to incorporate the technology into their 

daily mathematics classes, as found by Ursini et al. (2005) who worked with 12 

teachers participating in a pilot study aimed at incorporating technology in rural 

and semi-rural schools.

In Australia in 2004/2005, computers were found in 67% of all homes, and the 

Internet was connected in 56% of all homes (Australian Bureau of Statistics 2006). 

Forgasz (2006a) reported findings from repeated surveys about the technology use 

for mathematics teaching of secondary school mathematics teachers from 29 

schools (2001: 95 respondents; 2003: 75 respondents). In both years well over 90% 

of the teachers rated their computer skills as average or better and were at least 

willing to have a go at using them in their mathematics teaching. All of the schools 

they worked in had computers available, with all, except one, having computer 

laboratories. In 2001 and 2003, about 2/3 of the teachers said they had used 

computers in their mathematics teaching. In both years, 39% of the teachers said 

they had used computers for “just one topic”, about 10% said they used them at 

least once a week, with the rest indicating they had used them less frequently.

In order to enrich and improve the current teaching and learning of the standard 

secondary level mathematics curriculum for children aged 12–15, the Mexican 

Ministry of Education has, since 1997, promoted the EMAT (Mathematics Teaching 

with Technology) project. The aim of the project is to integrate computer technology 

into public secondary schools throughout the country using specially designed 

materials (worksheets with curriculum based activities to be solved using computer 



18 Technology for Mathematics Education 397

software, mainly Excel or Cabri Géomètre) based on a constructivist approach 

(Ursini and Sacristán 2006). Taking into account teachers’ lack of familiarity with 

technology and to help them to gradually adopt the tool for teaching mathematics, 

the teachers were offered a 1-week workshop in which they were taught basic 

computer skills and how to use the EMAT materials. Although they were free to 

modify the worksheets, their general lack of experience did not allow them to do so. 

At the end of 2002, there were nearly 730 schools equipped with 15 or more 

computers using EMAT, that is, 2,280 teachers representing about 200,000 

students. Most of these students are from low economic backgrounds, they do not 

have computers at home, and their access to technology is limited to a few hours a 

month at school. The vast majority of teachers cannot afford their own computers, 

so they have no easy way to familiarise themselves with the technology out of 

school, or to explore and prepare their lessons to incorporate technology. Moreover, 

computers are usually in the media-room and a technician is in charge of determining 

when teachers or student groups can use the computers.

18.3.4 Access to Mathematical Learning with Technology

Even in well-resourced schools, however, access to technology for mathematics 

learning is not guaranteed. Thomas (2006) revealed that while in New Zealand the 

number of computers in schools had increased, as too had the frequency of their 

use, access to them was still a major obstacle for use in mathematics learning. 

Forgasz (2006b) reported similar findings for Victorian (Australia) secondary 

schools. As discussed in more detail in another chapter in this book, access to 

computer hardware has been found to be a major obstacle for some mathematics 

teachers, while simultaneously for other teachers it is a major facilitator to their use 

of technology for mathematics teaching.

Exploring the potential for technology to enhance access to mathematics for 

students living in rural and economically stagnant areas, Sloan and Olive (2006) 

highlighted the opportunities afforded through Distance Learning and web-based 

instruction. However, they signaled that it is not enough to have technological tools, 

but that it is also necessary for a conscientious effort to be made by educators to 

embrace the technology, and that a multitude of issues needed to be addressed 

including: professional development, equitable access to appropriate hardware and 

software, Internet access and controls, and out-of-class availability of computers.

Focusing on late developing countries, Gray (2006) signaled that computers were 

not as rare as might be thought, and that there has been rapid, superficial growth in 

the Internet. However, she maintained that educational use of the Internet was very 

limited outside developed countries. She argued that while most universities in late 

developing countries have Internet access, a single terminal may serve as many as 

a thousand students, and that while secondary schools may have computers, they 

seldom had Internet access. She added that at the primary level, the use of computers 

for educational or administrative purposes is rare in most late developing countries. 
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On the other hand, business use, including commercial cyber-cafes, had expanded 

greatly, revealing the potential for broader application of the technology. Gray (2006) 

claimed that the data reflected inequities between countries, but also revealed within 

country inequities with city-dwelling, prosperous citizens having access to the 

information and skills available via the Internet. Even in developed countries, rural 

areas or depressed urban areas there may be difficulty in securing access to qualified 

teachers and material. Gray (2006), as Sloan and Olive (2006), considered distance 

learning applications via the Internet to have great potential, especially in reaching 

rural areas and in maximizing the use of scarce teaching resources. In particular, 

Gray (2006) stressed that girls clearly did not have equal access to education in many 

late developing countries. For example, in sub-Sahara Africa only six of every ten girls 

attended primary school (compared to eight of every ten boys), with the situation 

becoming even more disparate beyond the primary school level. She maintained 

that vast distances, lack of sanitary facilities, and sexual harassment problems can 

be overcome through distance learning. Setting up Internet access points, particularly 

in rural areas, had the potential to transform girls’ educational prospects.

In summary, access to technology for mathematics learning varies, with late 

developing countries clearly having fewer resources than in the developed nations. 

Several researchers, however, hold high hopes that the Internet has the potential, 

when coupled with appropriate pedagogical developments, to enhance the learning 

opportunities for those in more remote regions and, in particular, to girls who are 

denied educational opportunities because of their sex.

18.3.5  Agency as an Outcome of Mathematical  

Learning with Technology

Research findings and examples of approaches for achieving agency as an outcome 

of mathematics learning have been documented in the literature (see for example, 

Gutstein 2003; Gutstein and Peterson 2006). However explicit reference to the 

involvement of digital technologies in that mathematics learning are rarely reported 

or analysed. Three examples were identified in the ICMI study – one at the tertiary 

level, and two others at the secondary level. It was suggested that agency ought to 

be a goal for mathematical learning with technology.

At the tertiary level, Muller (2001) differentiates between flexibility of student 

access to mathematics and flexibility of student action in mathematics. In mathematics 

service courses (designed for students who are not majoring in mathematics), tech-

nology enhances flexibility of student access to mathematics. In these courses, the 

emphasis is on developing an understanding of the role of mathematics and its uses 

in other disciplines. Students are expected to understand the mathematical methods 

and models that are applied in their disciplines. However, they are not expected to 

know the mathematics necessary to develop the models themselves. For example 

students in Data Analysis courses should develop a conceptual understanding of 

the linear regression model and they can do this by experimenting with a graphical 
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model without being expected to be able to derive the formulae for the coefficients of 

the line. Through the MICA (Mathematics Integrating Computers and Applications) 

program in a tertiary setting, Buteau and Muller (2006) have found that:

The approaches, activities and experiences in the MICA courses are able to harness 
the students’ motivations thereby empowering them to become their own mediators in the 
development of mathematical knowledge and understanding. (p. 8).

In a study of secondary teachers’ equitable practices with digital technologies (Vale 

2006), integrated projects that were socially and culturally relevant to students were 

used. The projects were usually open-ended and aspects of the tasks were negoti-

ated with students. Using mathematical or statistical software applications, the 

students explored mathematical concepts, or a problem or issue of social or cultural 

relevance (such as the status of women). They presented their findings using a 

range of digital technologies and media. Interviews and workshop presentations 

were used to explore the teachers’ equity objectives, beliefs, and practices associated 

with the use of digital technologies. While making mathematics relevant was clearly 

a goal for the teachers, the mathematical concepts and skills that were empowering 

for students were not examined and remain to be established.

Using examples of their work with teachers of mathematics, citizenship and geo-

graphy, Ridgway et al. (2006) illustrated the potential for the development of reasoning 

from evidence through the use of appropriate computer interfaces for multivariate 

data analysis. These kinds of mathematical activities provide opportunities for 

students to understand important social issues and to make informed decisions about 

their own well being and suggest that the use of appropriate digital technologies may 

enable students to be agents for their own learning and social action.

18.4 Conclusion

Not surprisingly the availability of resources for mathematical learning with digital 

technology has been shown to vary according to the economic status of countries 

and regions within countries. The extent of access to mathematics learning with 

digital technologies is more complex, involving cultural and educational values and 

beliefs, however the evidence from some studies shows that even when schools are 

resourced with digital technologies some students are denied access. There are no 

reports from large international studies on students’ facility to use digital technologies 

in contexts involving mathematical thinking and problem solving. Such studies 

would have the potential to identify the implications of limited resources and 

restricted access to resources with respect to equitable outcomes, and may provide 

some clarification of the conflicting results with respect to gender equity reported 

in this chapter. International studies of classroom practices would also have the 

potential to resolve the disparity of results showing that in some countries the use 

of digital technologies may be closing the gender gap, while in other countries, where 

there have been little or no gender differences in the past, the gap may be widening. 



400 H.J. Forgasz et al.

More studies are needed to provide information about the gap between low and high 

achievers in relation to the use of digital technologies. Further research on the rela-

tionship between mathematics learning with digital technologies and agency is also 

needed, since the development of agency as a consequence of mathematics learning 

is an important dimension of national and international human capacity building.
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Chapter 19

Factors Influencing Implementation  

of Technology-Rich Mathematics  

Curriculum and Practices

Teresa Assude, Chantal Buteau and Helen Forgasz

Abstract Using different levels of analysis, we identify some factors influenc-

ing the integration of digital technology in mathematics and we try to explain the 

contradiction between the strong political will for this integration and the weak 

implementation in mathematics classrooms. When one wants to change something, 

resistances often arise; we have identified some of them, for example, personal, 

institutional, symbolic and didactical resistances.

Keywords Typology of factors • Changes and resistances • Levels of analysis  

• Mathematics curriculum • Mathematical practices • Digital technology

19.1 Introduction

In this chapter, we will answer the question: What approaches, strategies or factors 

foster or impede the implementation of technology-rich mathematics education? 

We have organized our chapter in two sections. In the first section, we are interested 

in identifying a typology of factors that foster or impede this implementation, and 

in the second section we try to explain why we can observe a strong political will 

about digital technology integration and a weak implementation in mathematics 

classrooms at all levels of schooling and education.
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19.2 Typology of Factors

In our attempt to identify some factors influencing the integration of digital 

technologies in the mathematics curriculum we will choose different levels of analysis:

• Thesocial,political,economicalandculturallevel

• Themathematicalandepistemologicallevel

• Theschoolandinstitutionallevel

• Theclassroomanddidacticallevel

These levels are not independent and there are many intersections. An element 

belonging to the school level can also be relevant on a social level and an element 

belonging to the mathematical sphere may also be part of the social and cultural 

sphere, but our aim in separating these levels is to draw attention to some specific 

functions of each one. For example, with respect to the epistemological level we 

want to point out the role of the specific mathematical knowledge for teaching and 

learning mathematics in the classroom (Fig. 19.1).

19.2.1 The Social, Political, Economical and Cultural Level

There is a growing expectation that mathematical education uses digital technology. 

There is a strong political will for integrating digital technologies in the official, 

that is planned, curriculum for secondary and primary schools. We can observe 

these political, social, economic and cultural factors in different national curricula 

or in local curricula, and in the financing and development of research projects. In the 

USA, for example, technology is one of the six principles underpinning the Principles 

and Standards for School Mathematics (NCTM 2000). In the French curriculum, 

The Common Base of Knowledge and Skills (MENESR 2006), one of the seven 

Fig. 19.1 Different levels of analysis
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competencies is “mastering common information and communication technologies” 

and this competency is on the same level of importance as “mastering the French 

language”. In Mexico, the Mexican Ministry of Education sponsored a national project 

called EMAT (Teaching Mathematics with Technology) and “there is a large 

government-sponsored campaign, that includes many advertisements on radio and 

television, claiming that computers (without any reference to the way they are 

used) improve children’s learning” (Ursini and Sacristán 2006, p. 2).

In most countries, the official curriculum presents rhetoric about different factors fos-

tering the integration of information and communication technology (ICT) in the teaching 

and learning of mathematics. For example, in the UK’s National Numeracy Strategy, 

Framework for teaching mathematics from Reception to year 6 (NNS), we can read:

ICT includes the calculator (…) and extends to the whole range of audiovisual aids, including 

audio tape, video film and educational broadcasts. You can use ICT in various ways to 

support your teaching and motivate children’s learning. (DfEE 1999, p. 31)

ICT is presented here as a tool for the teachers to support their teaching, and a tool to 

motivate children’s learning. Calculators are presented in the UK NNS as powerful and 

efficient tools that have a role to play in subjects including geography, history and sci-

ence, allowing primary aged children to use real data. Here the rhetoric is based essen-

tially on the usefulness and the power of calculators; they are tools for working with 

real data and for making relations with other domains. Other elements of the rhetoric 

include dealing with pupils’ activities including: “explore, describe and explain 

number patterns”; “practice and consolidate their number skills”; “explore and explain 

patterns in data”; “estimate and compare measures of length or distance, angle, time 

and so on”; “experiment with and discuss properties in shape and space”; “develop 

their mathematical vocabulary, logical thinking and problem-solving skills”.

In the French curriculum, The Common Base of Knowledge and Skills, social 

and cultural factors are pointed out:

Digital culture involves the safe and critical use of technology of the information society. 

This include IT, multimedia and the Internet, which now permeate economic and social 

fields. This technology is often learnt by experimenting outside of school. Nevertheless, 

schools must allow each pupil to acquire a set of skills that will allow him/her to use 

technology in a more thought-out and effective manner. (MENESR 2006, p. 35)

The numerical culture is an international culture and schools must prepare pupils 

for it. The use of ICT is social and the integration of ICT in school is initially an 

answer to these social needs. Other arguments can appear in the official curriculum, 

for example the benefits of ICT for learning, but these rationales are not the primary 

motivation for integrating ICT. Such educational justifications are a way to implicate 

the education community even if some researchers have raised doubts

a) whether computers have any real value in learning (Cuban 2001), and b) whether current 

teacher use is qualitatively and quantitatively sufficient to promote any benefits that might 

exist. (Thomas 2006, p. 1)

In most countries, school and tertiary educational systems have evolved with diverse 

traditions, are faced with different constraints and challenges, and operate differently. 

In the section on “Effecting Curriculum Change” in their paper, Hodgson and Muller 

(1992) pointed out that school mathematics curricula are normally developed by a 
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small group of experts in Ministries or Boards and are then implemented by a very 

large population of teachers. At the tertiary level the mathematics curriculum is 

developed by the professors in the departments of mathematics who will be teaching 

it; the decisions and implementations in classrooms are taken by the same 

actors. At this level of education it is easier to see the “transnational” aspects of the 

numerical culture. In a study involving universities from Hungary, UK and USA, 

Lavicza (2006) mentioned that:

no distinctive teaching traditions of technology use at the university-level were identified…. 

This result accords with Atweh, Clarkson, and Nebres’ (2003) idea that mathematics 

research and mathematics education have become an international enterprise, particularly 

at the university level. (p. 4)

Compared to the school level, there are no social or cultural factors to impede, 

or foster, the integration of digital technology in university mathematics 

education.

These social and cultural factors are very important in fostering the implementation 

of digital technologies because they legitimate what we do in mathematics classrooms. 

In spite of any political support, the implementation of digital technologies in 

mathematics classrooms in different countries is different (see Sect. 1, Chap. 1), but 

everywhere it is difficult. Why is there such a distance between the planned curriculum 

and the implemented curriculum? We must examine other levels to identify factors 

that may explain this difference.

19.2.2 The Mathematical and Epistemological Level

Starting in the 1960s more and more mathematicians have made use of digital 

technology in their research. New research areas such as Discrete Mathematics, 

Simulation, Theoretical Computer Science, and others have been developed. Some 

areas such as Applied Mathematics naturally embraced technology. Even some 

mathematicians whose research focus is Pure Mathematics have introduced an 

experimental approach to their research using technology to explore conjectures but 

always with the aim of developing a proof. According to Lavicza (2007) a substantial 

number of mathematicians use CAS (computer algebra systems) for teaching at 

some level. Based on the questionnaire responses of 1,103 mathematicians (24.62% 

response rate), 67% of them use CAS for their own research and 55% integrate 

CAS into their teaching at least on an occasional basis.

How does the teaching of mathematics take into account these changes in 

mathematicians’ practices? These epistemological factors are important in the consid-

eration of the “reference” for the teaching of mathematics. What is the mathematics 

reference for teaching? We have a new historical and cultural situation because the 

“reference” of mathematical knowledge with digital technologies is very young.

At the university level, the department is not only the environment of the imple-

mented curriculum, but also the decision maker for curriculum development. 
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One may think that this could easily foster technology innovation in curricula, yet the 

reality is that evolution and innovation in university mathematics education are slow 

processes. There is in fact a strong internationally uniform “mathematics university 

department culture”. Traditionally, mathematicians view doing mathematics as an 

individual activity. There is a strong focus on proofs. Teaching is usually valued as 

secondary and way behind research, which may reinforce a common attitude towards 

teaching to copy one’s own personal, traditionally abstract oriented, experience 

since one’s success supports it, although the vast majority of undergraduate 

mathematics students do not become mathematics academics. Lavicza (2006) 

argued that, due to academic freedom:

Mathematicians have better opportunities than school teachers to experiment with technology 

integration in their teaching. However, academics are frequently more concerned with 

research than teaching and so experiments with technology in their teaching may be seen 

counterproductive. (p. 4)

There is a need for a radical change in teaching approach by faculty and teaching 

assistants in a technology rich undergraduate mathematics curriculum of the 

Mathematics Integrated with Computers and Applications (MICA) type (Ben-El-

Mechaiekh et al. 2007) described in the introduction to this section. Anguelov et al. 

(2001) wrote:

Courses which focus on exploration within the topical content, practical experience, 

self-discovery, exposure to the problems which led to the development of the theory, and 

applications which are the reasons for its continued existence, can immediately make use 

of computer-based mathematical tools. (p. 154)

In our view the traditional role of the faculty as exhibiter of knowledge needs to 

shift to become more of a facilitator role.

At the secondary or primary school level, mathematics knowledge takes as reference 

“old” mathematics, and the integration of digital technologies is a professional 

problem for the teachers (see Sect. 2). Secondary or primary teachers have less 

knowledge of new mathematics, of how mathematical knowledge is changing and 

how the mathematicians’ practices are changing. For example, some teachers are 

not aware of the role of multiple representations of mathematical concepts (Laborde 

2007; Hoyles and Noss 2003) or the development of an experimental approach to 

mathematics. Laborde (2007) said:

These two features of technologies, their embodiment of mathematical knowledge and the 

range of computing and graphical capabilities they offer, contribute to their usefulness for 

experimenting and change the very nature of mathematical activity by shifting the balance 

in favor of an experimental approach in a broad sense, including activities such as 

modeling, simulation, and trials on a large scale. (p. 72–73)

Our question is: How can we reconcile the old and the new if we don’t know very 

well the practices of reference? We can investigate factors at other levels to 

reflect on this problem. For example, the existence of resources or teachers’ pro-

fessional development appear to be conditions for fostering the use of digital 

technologies in classrooms.



410 T. Assude et al.

19.2.3 A School or an Institutional Level

Integration of digital technologies in the teaching of mathematics is legitimated at 

the social and epistemological levels and some mathematical practices of reference 

are indicated at the epistemological level. The school or institutional level is the 

“environment” of the implemented curriculum. We can find different factors in 

this level because educational organizations vary in function by country or region 

or institutional level. Monaghan (2006; see Sect. 3 in this book) focused on cultural 

factors and provided a particularly useful theoretical framework. Let us examine 

some of them.

The material factors in a school are an essential condition for using digital 

technologies: computers, accessibility to the computer lab (if it exists), money to 

buy software, technical assistance, encouragement of the school and so on. Most 

schools and tertiary institutions are constrained by funding from governments (or 

communities) and by the social and economic infrastructure (e.g., availability of 

electricity, digital networks). The political will in some countries is not followed by 

economic possibilities and realities or economic decision making. Even in the 

USA, some rural schools do not have good material conditions but according to 

Sloan and Olive (2006):

There is one technological resource that can provide students in almost any location with 

the very best learning opportunities available anywhere in the world. This technology is 

known as Distance Learning, and even at its most basic level, any school with Internet 

access can open new doors of opportunity for its students… Some schools have found that 

distance learning can provide a virtual schooling alternative across the curriculum. (p. 1)

There are also cultural factors in schools or institutions concerning the different 

ways of working together in schools or in communities of practices or in-service 

training. The relationships with technologies are fostered if the teacher is not 

isolated but a member of a community in technology.

The availability or the conception of resources (pedagogical material) is one 

factor for using technologies but it is not a sufficient condition. In some countries 

(such as France) the official curriculum requires use of technology but there is (in 

general) no material prepared for teachers, but in other countries there is pedagogical 

material ready for teachers but still there is no use of technology (Thomas 2006).

The assessment practices and requirements in schools or educational systems are 

important factors in fostering the uses of technology. Forgasz et al. (2006), for 

example, reported on two studies in which teachers’ views of graphics calculator 

use were examined. In one study, Victorian (Australia) and Singaporean teachers’ 

views were compared. The findings suggested that:

Mandating technology tool use in an assessment program, as was the case in Victoria, plays 

an important part in explaining the extent of their use by teachers, and may also account 

for the Victorian teachers’ preference for graphics calculators over computers. (p. 4)

Findings from the second study revealed that, in general, teachers in Victoria 

“believed that graphics calculators have had a positive impact on their teaching 

and on students’ learning outcomes, and that the curriculum has been enriched” 
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(p. 5. See Sect. 3 of this book for a more detailed discussion of assessment issues 

related to technology use).

The development and implementation of the university mathematics program 

(MICA) described in Chap. 16 had to overcome many institutional factors. Because 

faculty members have the final say on the mathematics curriculum they are teaching, 

most of the effort was directed at exposing the faculty to situations that involved 

the teaching and learning of mathematics using technology. This was achieved 

through many years of sustained technology development and implementation in 

traditional mathematics courses. In the early days the Department had to work hard 

to get the necessary laboratory and software facilities and had to provide different 

training to its Teaching Assistants. Muller (2001) presented a brief history of these 

developments. It may be surprising that although this paper was written only 2 

years before the introduction of the MICA program, the author did not predict the 

Department’s radical curriculum change.

19.2.4 The Classroom and Didactical Level

At this level, we consider a classroom as a didactical system constituted by the 

teacher, the students and the mathematical knowledge. We distinguish some 

personal or human factors and some didactical factors that can foster or impede the 

use of digital technologies in the classroom. Some teacher factors can be identified, 

such as teachers’ conceptions about the technology itself or its place or role in the 

classroom, professional development in the use of digital technology, familiarity 

with software, professional identity and so one. These teachers factors are dis-

cussed in the chapters of Sect. 3.

In the section “Technology and Modeling in a University Mathematics Program”, 

Pead et al. (2007) raised a number of human factors arising for both faculty and 

students in the undergraduate MICA program.

From a faculty point of view, the MICA courses require a very different teaching 

approach, which cannot be communicated by simply passing teaching notes from 

one faculty member to another, but require extensive discussions on how to develop 

an open teaching environment in which students are constantly urged to raise ques-

tions and to propose their own conjectures. The MICA course environment is very 

different from that of a traditional mathematics lecture course, and faculty must be 

willing to move from the role of “knowledge provider” to a less secure role of 

facilitator. Pesonen and Malvela (2000) suggested that:

As the students become more familiar with computers and the programming environments 

get more flexible, we could give the students more freedom to do the learning wherever and 

whenever they want. This would require very different kinds of guidance facilities from the 

teacher’s side, but it would also mean very different but exciting experiences for the 

students. (p. 122)

According to Ben-el-Mechaiekh et al. (2007), most high school graduates see 

mathematics as a set of rules and procedures and have little experience using 
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technology to support and enhance their own learning of mathematics. Many of the 

students in the MICA program were reluctant to get involved with computer pro-

gramming. However, results of an internal survey showed that when students were 

asked how beneficial technology was in their learning of mathematics, 91% indi-

cated technology to be positively beneficial in MICA courses (Ben-El-Mechaiekh  

et al. 2007) and, in all first year courses, 76% indicated technology to be positively 

beneficial in all mathematics courses.

Some didactical factors that foster digital technology integration can be identified. 

One of these factors concerns the didactical transposition: what kind of transformation 

is required to adapt mathematical knowledge when using technology in a classroom? 

The problem of designing these transformations is discussed in Sect. 1. One 

other factor concerns the problem of management in the classroom: how does the 

teacher orchestrate the work in the classroom? How does the teacher organize 

the mathematical work for pupils? What kind of tasks does he/she propose? What 

are the available techniques? What is the relationship between the paper and pencil 

work and the instrumented work? What about the assessment? The answers to these 

questions are not evident, and the role of research is very important to disseminate 

some well-worked solutions (see contributions in Sect. 3).

The instrumental factors concerned with learning about the use of the tool 

and the relationship between technical and conceptual mathematics must be 

taken into account (see contributions in Sect. 2). For example, the first year 

university students in the MICA program were progressively introduced to 

computer programming as a means to explore their own mathematical conjec-

tures and to communicate interactively their results (Ben-El-Mechaiekh et al. 

2007). Initially, for these students computer programming is a means to an end, 

but in the upper years it evolves to be a natural component of their learning of 

mathematics.

Assude and Gélis (2002) pointed out the role of the dialectic between old 

and new practices for fostering the implementation of digital technologies in 

mathematics: if the distance between old and new is significant teachers change 

less than if this distance is not significant. In the following section we discuss the 

degree of change required and it appears necessary to define some indicators for 

clarifying this degree.

19.2.5 Multi-level Factors

Many teachers indicate that time is a problem for integrating digital technology. 

For example, Thomas (2006) cites a typical teacher’s comment about this problem: 

“Access to computers at required time (of year and within school timetable blocks)”. 

He also noted as problematic

… the time and effort needed by both students and teachers in order to become familiar 

with the technology. It appears that some teachers are concerned that this instrumentation 

phase would impact on time available for learning mathematics. (p. 7)
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Assude (2005) identified different kinds of time: didactical time, capital-time, the 

pace of a session, and some economical temporal strategies fostering ICT integra-

tion. For example,

One of the conditions of integration is the teacher’s command of the didactic time, which 

allows the teacher to have a global view of how the teaching of certain content is progressing, 

and to have an idea of what has to come after an activity. This condition allows teachers to 

know where they are and where they are going. This condition cannot necessarily be satisfied 

in the first year of integration of new technologies. We think that even experienced teachers 

(the teachers participating in our research had each been teaching for more than 15 years) 

are not necessarily ready to face time management difficulties when the way of working 

with the class changes and when ready-made outlines are not available. (p. 200)

19.3 Explaining the Problem

In this section we point out that this typology is a way to explain why we can 

observe a strong political will about digital technology integration and a weak 

implementation in the classroom.

Foundations and legitimacy are a “problematique” in the integration of digital 

technologies: some factors can explain why it is important to implement technology-

rich mathematics in the classroom. Why is it worth changing? What’s the economic 

and symbolic value of changes?

One set of factors shows that the political decisions are necessary but they are 

not sufficient because the problem of implementation in classrooms is complex. 

Some factors can foster this implementation in some situations yet impede imple-

mentation in others. Are some factors more determinant than others? What about 

resistances? What kinds of resistance exist in these different levels? Investigating 

the issues about the use of calculators in primary school, Assude (2007) identified 

the role of resistances in relation to changes. When we want to change something, 

resistances always arise, so we must insert these resistances in our model just as we 

must insert an electrical resistance of a substance (passing through an electric 

current). We can identify several types of resistances: personal, institutional, social, 

economic, symbolic, ethical, epistemological and temporal, as shown in Fig. 19.2.

Fig. 19.2 Changes and resistances (Assude 2007)
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In this section we present some examples of the institutional and personal resistances. 

The worth of change is a very important factor in the teachers’ representations.

There are a number of possible reasons for a low level of computer use in mathematics 

teaching and learning, including teacher inability to focus on the mathematics and its 

implications rather than the computer and many teachers not believing that the computer 

has a real value in student learning. (Thomas 2006, p. 1)

Computers can challenge teachers’ technical knowledge and place demands on 

their time and energy; teaching strategies also need to be modified (Goodson and 

Mangan 1995). Barriers to the implementation of computers in classrooms that 

have been reported include: lack of time release to learn how to use computers and 

insufficient class time available for students to use computers (Smerdon et al. 2000); 

not enough computers (Hadley and Sheingold 1993; Smerdon et al. 2000); insufficient 

appropriate software and related information (Hadley and Sheingold 1993); teachers’ 

self-doubt, lack of interest, and lack of knowledge about computers (Hadley and 

Sheingold 1993); lack of technical support, maintenance, and advice (Finger et al. 

1999; Hadley and Sheingold 1993); and the high costs associated with hardware 

and software (Finger et al. 1999).

Many of the obstacles to computer use for the teaching of mathematics are similar 

to those for computer use in classrooms more generally. Manoucherhri (1999) 

reported that U.S secondary mathematics teachers who did not use computers said 

they lacked experience and access to educational software, lacked knowledge 

about how to use computers to improve learning, and had not been trained to use 

computers in their mathematics teaching. Andrews (1999) found that school 

mathematics departments in the UK did not have well-developed policies on 

computer use, that strategies for professional development were inadequate, 

information technology coordinators were unable to help other colleagues, and 

there was a lack of technical support. In an Australian study, Norton (1999) found 

that computer coordinators believed that mathematics teachers under used available 

computer resources, claiming difficulty of access as an excuse to mask other reasons 

such as computer phobia, a lack of software knowledge, concerns about changing 

teaching roles and not covering the curriculum, and lack of planning time for 

computer based mathematics learning. In the early years of schooling, Travers 

(2001) claimed, there had been relatively little impact of ICT. Some of the reasons 

for this included: the provision of only one computer per room; limited high quality 

open-ended software; and that many early childhood teachers were negative about 

computers, seeing them as providing only passive experiences and believing that 

students should be actively engaged in discovery.

In a survey of 485 secondary mathematics teachers in Queensland, Goos and 

Bennison (2004) found that there appeared to be access to software and graphics 

calculators in schools but there were access problems that did not guarantee that 

teachers and students were able to use them when needed or appropriate. Teachers 

reported difficulty in getting classes into computer laboratories and said that the 

lack of time and relevant professional development were obstacles. While generally 

supportive of the potential offered by technology, doubt was expressed about its use 

in helping students’ mathematical learning – a finding opposite to that reported by 
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Forgasz (2006a) but similar to that reported by Thomas (2006) – and that those 

lacking professional development on graphics calculators were more likely to hold 

this view. Goos and Bennison (2004) reported that teachers identified professional 

development on the integration of digital technology into classroom teaching to 

improve students’ mathematical understandings as a pressing need.

In a study of 12 teachers teaching 300 students in the educational subsystem 

known as “Telesecundaria” (Distance High School Program using TV) used in rural 

and suburban areas in Mexico, Ursini et al. (2005) explored teachers’ resistance to 

the of use computers in the classroom for the teaching of mathematics as part of the 

EMAT Project (Mathematics Teaching with Technology). They found that teachers’ 

resistance may be due to technical problems when using technology and the digital 

divide between teachers and students when students know more about computers 

than the teacher. Further, in accordance with Thompson (1992), they identified 

that teachers resist change if they question the relevance and benefit of computer 

use for themselves or their students. Lack of preparation time to explore EMAT 

activities due to teachers’ administrative workload was another contributing 

factor. They concluded that:

The results demonstrate a certain level of resistance by teachers to change and, on the other 

hand, the enthusiasm of students in relation to a different pedagogical focus in which they play 

a more participatory role and can use their knowledge. The huge shortcomings surrounding 

this educational system are also clear, ranging from teachers’ lack of preparation to the 

difficulties of many students to attend school on a regular basis, to understand the content 

of materials and to carry out activities. (p. 193)

As early as 1992, Zammit (1992) identified factors that served to encourage or 

discourage computer use by mathematics teachers in Victoria, Australia. Using a 

limited, but appropriate for the period, definition of classroom computer users as 

those who used them at least once a term, 102 teachers were identified as users and 

250 as non-users. The mathematics teachers were asked to rank a set of factors that 

had encouraged or hindered their use of computers. Access to computers and the 

availability of software were the strongest encouragers for users, followed by self-

motivation to keep up to date, the need for students to learn to use technology, and a 

supportive computer coordinator. Users and non-users also ranked seven factors that 

discouraged them from using computers. For users, difficulty accessing the computer 

room and too few computers were the major obstacles; for non-users lack of confidence 

and skill with computers, insufficient time to review software adequately and 

computers not being a priority in the subject were identified as the key hindrances.

Forgasz (2006b) more recently explored the factors that 96 Victorian (Australia) 

secondary mathematics teachers in 2001 and 75 in 2003 from the same schools 

identified as encouraging or inhibiting their computer use in classrooms. Teachers 

were asked to list factors that had encouraged and discouraged their use of computers 

in their mathematics classrooms. The three most frequently cited encouraging 

factors were the same in 2001 and 2003, only the order changed. In 2001, they were 

appropriate software (mentioned by 41% of respondents), access to computers 

(37%), and personal confidence and relevant skills (32%); in 2003 the order was 

access to computers (40%), personal confidence and relevant skills (37%) and 
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lastly appropriate software (29%), the most common response in 2001. Access to 

computers was the most commonly cited discouraging factor in 2001 (60%) and 

2003 (67%). The perceived need for professional development, and technical issues 

were equally the next most frequently cited (31%) obstacles. In 2003, professional 

development issues, and time related issues were equally the next most commonly 

mentioned inhibitors (22%). Thomas (2006) surveyed teachers in New Zealand 

about access to and use of computers for mathematics learning. While the number 

of computers in schools had increased over time, access to them was a key obstacle 

to their use as mathematical learning tools.

19.4 Conclusion

It is interesting to note that across the many studies reported above from different 

national and international settings spanning more than a decade, similar factors 

were identified as encouraging or inhibiting mathematics teachers’ use of technology 

for mathematics learning. Access to technology was a notable factor that served to 

encourage many mathematics teachers and also appeared to act as a barrier to others. 

It seems, too, that institutional or didactical factors – access to hardware, software 

issues, professional development needs, technical support and resources – appear 

to outweigh personal factors, such as confidence, in preventing teachers from using 

technology in their mathematics teaching. But some teachers are not persuaded of 

the value of technological changes for mathematics learning.

Many changes are necessary to integrate digital technologies into the teaching 

of mathematics, and we may not see their effects for some years. The scale of time 

for social change is not the same as may be desired. We now see some changes 

(personal and institutional) but they are only “little changes” when practices are 

compared to the aims and political imperatives. Perhaps in the next 30 years we will 

see more substantial change in the nature of mathematics and mathematics learning 

in digital technology learning environments. We can hypothesize that changes are 

at first general (such as the motivation for learning) and that specific changes in 

mathematics knowledge appear in a second phase. For example, when discussing 

the outcomes of the Mexican national project called EMAT (Teaching Mathematics 

with Technology), Ursini and Sacristán (2006) argued that:

We do know that the use of technological tools does develop motivation, a more positive 

attitude towards mathematics, an increase in student participation, in student abilities to 

defend their ideas; that the technology-based environments allow students to generate and 

test conjectures and to go from particular to the general. (p. 6)

The changes in mathematics knowledge and mathematical practices that are emerg-

ing in the digital age are more difficult to implement in school classrooms because this 

mathematical “reference” is not yet clearly established or understood by teachers. 

More research is needed on the emerging mathematical reference and its didactical 

transposition. We conclude this chapter by stressing the role of the epistemological 

dimension in furthering the implementation of technology-rich mathematics.
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Chapter 20

Introduction to Section 5

Celia Hoyles and Jean-Baptiste Lagrange

Abstract This last section consists of three chapters reflecting the plenary panels 

and lecture at the Study conference. The authors look at the overall landscape con-

cerning the potential and impact of digital technologies on mathematics teaching 

and learning, and consider future prospects and challenges.

Chapter 21 comes back to the issue of design already addressed in Sect. 1, stressing 

that software design is a crucial dimension in the educational use of technology 

and the key to transformative practices. While the authors of Sect. 1 were primarily 

researchers, the choice for this chapter has been to ask creators and designers of 

well established and widely used environments to contribute from their own unique 

expertise. They participated in a plenary panel on this topic at the Study Conference. 

This chapter helps readers to understand better what design decisions consist of, 

how they are connected with visions of teaching and learning, and how they can 

give rise to evolutions in practice and future designs.

Chapter 22 takes up the challenge of the development of networks and of the 

World Wide Web. Although it is hypothesized that connectivity will strongly 

impact mathematics education, at the time of the Study conference, research on this 

topic was in its infancy. A group of researchers in this field was therefore invited to 

participate in a plenary panel at the Study Conference - either at the meeting 

itself or through a video link, and to write their contributions in this chapter. Some 

contributions describe experiments that take advantage of connectivity within one 

classroom, while others focus on between-classroom interactivity. In both scenar-

ios, teachers’ actions in supporting new communities of practice are recognised as 

crucial, and new roles for the teacher noted, although it is acknowledged that these 

roles have as yet been undertheorised.
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Chapter 23 is written by M. Artigue from her plenary closing address. She first 

takes advantage of her personal experience for analyzing the evolution of the relation-

ship between digital technologies and mathematics education over the last two decades, 

and for situating the reflection about the future into a historical dynamic. Then, she 

focuses on dimensions crucial for thinking about the future: the theoretical, teacher, 

curricular, design, equity and access dimensions, and she stresses how the whole 

reflection in the study helps to think about what educators can do in order to make 

digital technologies better serve the cause of mathematics education.



Chapter 21

Design for Transformative Practices

Douglas Butler, Nicholas Jackiw, Jean-Marie Laborde,  

Jean-Baptiste Lagrange and Michal Yerushalmy

Abstract Software design is a crucial dimension in the educational use of  

technology and a key for transformative practices. The choice for this chapter, 

issued of a plenary panel at the study conference, has been to ask creators and 

designers of well established and widely used environments to contribute from 

his/her own unique expertise. After introductory remarks by the coordinator of the 

panel, each contributor exposes what visions drive his/her work and how.

Keywords Software design • Software designers • Exploration • Transformative 

practices • Dynamic Environments • Computer Algebra

21.1 Introduction

Jean-Baptiste Lagrange Software design is a crucial dimension in the educational use 

of technology and a key for transformative practices. This chapter, complementary with 

Sect. 1, will try to tackle this dimension by considering dynamic educational environ-

ments that today attract most attention. Creators and designers of the best established 

and more widely used of these dynamic environments will expose what visions drive 

their work and how.
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Part of the goal is to measure the path since the first ICMI study. At this time dynamic 

environments did not exist, and Computer Algebra was the technology that attracted 

attention. It was introduced in the seventies and eighties as means to ease the work of 

mathematicians, but also with a vision of the whole mathematical practices, including 

teaching and learning. It seemed that, because it takes in charge up to a certain point 

algebraic manipulations, it should reorient practices towards more conceptual issues. In 

a book following the study, Hodgson and Muller (1992) declared “there is no doubt that 

Symbolic Manipulation Systems must be introduced into the Mathematics curriculum”. 

They saw Computer algebra systems as the “single most powerful tool for compelling 

change in secondary and university math education in the near future…”

Efforts have been made for 30 years by CAS designers to provide capabilities 

and user friendly interface. Fifteen years ago, a great improvement was the 

availability of CAS handheld calculators making possible to use CAS at any 

moment in the classroom mathematical activity. In spite of the great potential of 

Computer Algebra and of the designers’ efforts, the impact of this technology on 

most curricula is weak today. Hoyles and Noss (2003) see this phenomenon as a 

“marginalization of technology” and they think that it “points, in part, to a failure 

to theorize adequately the complexity of supporting learners to develop a fluent and 

effective relationship with technology in the classroom”.

Designers contributing to this chapter open new paths to get technology out of 

marginalization, the first one by emphasizing opportunities brought by dynamic 

technology for teaching challenging but difficult topics and the second by explaining 

why and how dynamic software should support a visible curricular agenda. The third 

and fourth authors tackle the necessity of theorizing the learners’ relationship with 

technology especially geometrical environments.

21.2  Potentialities of Dynamic Software for Teaching 

Challenging But Difficult Topics

Douglas Butler is the conceptor of Autograph, often regarded as a leading dynamic 

software for teaching mathematics at secondary level, especially in the UK and 

making progress overseas. Douglas’ concerns as a teacher are deeply reflected in 

Autograph’s design: care is taken to make an efficient tool for classroom use espe-

cially by helping students keep the focus on mathematics; topics that Douglas found 

difficult to teach without technology were specially addressed.

21.2.1  Making Traditionally Difficult Topics  

Appear More Straightforward

21.2.1.1 Calculus: Illustrating Integrals, Areas and Volumes

Being able to zoom in on 500 rectangles, under the curve y = x2 from x = 2 to 4, 

illustrates a principle that can be very hard to get across by traditional means. 

Extend this to 3D and a whole new world opens up.
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21.2.1.2 Data Treatment: Understanding the Central Limit Theorem

With so much data readily available, it is important therefore to be able to manage 

it in the classroom, and to inspire the young to take an interest in how data sets can 

be interpreted, and how essential they are in everyday decision making.

The basis of a large proportion of data sets is the normal distribution. Why for 

example, on check-in at the airport, do they weigh our luggage, but not us? The best 

way to illustrate this is to use the Central Limit Theorem – a nasty theorem to prove, 

but perfectly understandable if you present it graphically.

21.2.2  Topics That Could be Re-introduced  

to Mainstream Post-16 Teaching

21.2.2.1 Differential Equations: Seeing What’s Going On

Differential equations are usually regarded as the province of only the brightest in 

high schools. Once the principle of a rate of change of one variable with another has 

been grasped, together with Newton’s First Law, there is no reason why a graphical 

approach should not be used to bring this topic to life for even modest pupils.
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Fascinating applications include falling out of an aeroplane, and predator-prey 

situations. If they can’t solve the equations they can certainly see what’s going on 

– and this is surely the equivalent to the numerical approach that is widely adopted 

by problem solvers in the ‘real’ world.

21.2.2.2 Bringing Back the Study of 3D Lines and Planes

The world the students are learning about is 3D, so why not bring the study of 3D 

lines and planes back? It is very likely that this important topic was lifted up to 

the advanced levels because it is so difficult to visualise. Not so with the new 

generation of 3D software such as Autograph and Cabri.

The link with 2D can be enhanced: areas become volumes, arcs become surfaces, 

reflection in a line becomes reflection in a plane, rotation about a point become 

rotation about a line, and vectors and matrices simply add a further element.

21.2.3 Making Teaching More Effective and More Fun

We have all watched the phenomenal growth in computer based mathematical 

technology over the past few years, but the time has surely come for a reassessment 

of what we teach in secondary mathematics and how we teach it. Up until now the 

only technology that could be assumed was handheld, and that too is continuing 

to make strong advances.

With computer hardware becoming more affordable and the opportunities more 

engaging and exciting, there is a golden chance to save the subject from oblivion: 

using dynamic software and the Internet can make the teaching far more effective 

and definitely more fun!

Related web resources:http://www.tsm-resources.com

21.3  Software for Mathematical Explorations: Attempting  

to Make a Curricular Agenda Visible

Michal Yerushalmy developed with Judah Schwartz the Geometric Supposer in the 

mid 1980s. It provided solid evidence that it is possible to organize and teach 

school mathematics in such a way that math students can learn it as they adopt a 

mathematician’s habits of mind. Inspired by this cycle of research and development, 

her more recent work has been directed towards inventing, designing, teaching and 

studying the “VisualMath” curriculum1 (1995/2003) which offers new forms of 

learning algebra and calculus with technology.

1 http://www.cet.ac.il/math-international/first.htm.
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A major goal of VisualMath is to help students develop strong modelling and 

algebraic abilities, learn a variety of standard techniques, develop meaning to signs 

used and an understanding of the graphical meanings of these techniques, as well 

as a sense of the purposes for which such techniques are useful. The art and craft of 

this technology-intensive guided-inquiry curriculum was based on the assumption 

that any curriculum represents a point of view and that this view could be amplified 

by especially designed software tools.

An important purpose of the tools was in-line with what Goldenberg (1999) 

defined as “habits-of-mind orientation” where “a primary purpose of technology 

will be to help students formulate, express and reason about mathematical ideas;” 

(p. 212). The orientation of the learning tools was neither to make complex algorithms 

easy nor to make it serve to reduce the knowledge one needs for manipulating using 

sophisticated procedures. It does not make solution the central feature and it often 

provides tools that are explicitly trivial for professionals. The design of the software 

tools meant to support the design of long-term sequence of learning activities in which 

the learner jump into what Schwartz (1995) calls the “interesting middle.” To do 

that, the building blocks (the major options offered by the tool) are mathematical 

objects and processes that are primitive enough to allow construction of new objects 

by the given processes, but interesting enough to promote uses of higher-order 

mathematical language, argumentation, and proof.

21.3.1  Clearing the Confusion Regarding  

the Role of Technology

Many misunderstand curriculum reform with respect to the use of symbol manipulators 

in teaching algebra and eventually there is still confusion about the role of the 

four-operation calculator in teaching arithmetic. While CAS just as numerical 

calculator can support explorations, the design of CAS often delivers the opposite 

message. Clearing the confusion regarding the role of technology and proficiency 

in manipulations of equations and inequalities was my major concern.

A central decision of function-based algebra curricula designers is to view any 

equation and inequality as a comparison of two functions. Numerical (almost-correct) 

solutions can be read on a graphing screen by reading intersecting points of two 

graphs or by reading values of zeros of the difference function of the two expressions. 

However, the major strength of 2D graphing of the two sides of the equation as two 

functions is its support in viewing the processes involved rather than viewing the 

solution (Yerushalmy 1999). In the VisualMath curriculum resources and occurrences 

are designed so that students come to understand what operations on equations are 

legal ones, and which operations on equations are not mathematically sound and do that 

while performing manipulations themselves as a way to conjecture and understand 

“on screen” results. Students are asked to explain how the effect of algebraic operations 

on the solutions of a comparison depends on the type of comparison (equation, 

inequality), the type of operation applied to the side/s of the comparison. Software that 

provides a vertical “rulers” at intersection points, that graphically trace the change of 

the x-values of the solutions and restricts the free input to well defined algebraic and 
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graphical (e.g. translations and stretch of each or both graphs) operations on the 

comparison is used to enable explorations of operations on both functions. This design 

could well be interpreted as awkward and restrictive in comparison to the slick, 

transparent, and quick operation favoured by “solution tools”. But this design is meant 

to support the construction of a visible map of the point of view of the curriculum.

Several studies of the VisualMath students have been carried out. They suggest 

that the use of multiple representation technology does not at all omit the structural 

ideas of expressions from the study of algebra but rather introduces a new style of 

activities that have a chance at introducing important ideas. A special attention was 

given to the ways that the tools for explorations may support less successful mathe-

matics students learn inquiry-based curriculum that demand creativity and flexibility. 

We found differences between the work of these less successful students and the tradi-

tional problem-solving patterns of less successful students. The less successful students 

used the graphing software to obtain a broader view, to confirm conjectures, and to 

complete difficult operations. However, their process of reaching a solution was found 

to be relatively long and they delayed using symbolic formalism, and most of their solu-

tion attempts focused on numeric and graphic representations. Comparing VisualMath 

students and equations based algebra students solving algebra problems in context, it was 

found that the students who were successful students of a traditional algebra sequence 

which focus on unknowns and stress paper and pencil manipulations procedures were 

substantially less capable than the function-based students to solve these problems.

21.3.2  From Bodily Actions to Symbolizing  

and Meaning Production

Going beyond the work in multiple representation systems, technology has proved 

to be a powerful tool for physical interaction. Thus, another important goal of 

the design was to emphasize relation between bodily actions, artifact mediated 

activities and the processes of symbolizing and meaning production. The capability 

of artifacts to be part of semiotic mediations, support experimentation with temporal 

processes by means of embodied actions, and turning these processes to produce 

mathematical symbols of space and motion has played a major role in various stages 

of learning in technology-intensive reform curricula. Using Microcomputer-based 

laboratory software (MBL), students study the graphs of the process as it changes 

in time and develop narrative to connect the actions of the situation with the features 

of the graphs. A planar movement of the hand motion, a motion of an object or an 

operation of pre-designed simulation provides the input that appears on the screen 

as a graph of one or two-dimensional path. In order to abstract the data plotted by 

the software but to still reflect the essential physical actions of the learner, a set of 

graphical icons is designed in the Function Sketcher environment. The different 

components of the lexical system (a set of seven icons and a limited verbal list of 

function properties is designed) are eventually adopted as manipulable objects that 

support students when solving problems that are too complicated for them to describe 

symbolically. This intermediate bridging language helped to form a mathematical 
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construction with language that developed from acquaintance with physical scenarios. 

It supported the abstraction of everyday phenomena into a smaller set of mathematical 

signs that are manipulated with software tools as “semi-concrete” objects. The tools 

were designed based on Vygotskian’s notion of semiotic mediation, according to 

which cognitive functioning is intimately linked to the use of signs and tools, and 

affected by it. Algebra beginners, advanced algebra students and calculus students 

(Botzer and Yerushalmy 2006) all benefited from the perceptual and visual 

resources and from the direct and sensual manipulations of graphs.

21.4 Attention to Detail: Broadening Our Design Language

Nicholas Jackiw is the original designer and developer of The Geometer’s Sketchpad, 

an educational software environment for the creation, visualization, exploration, 

and analysis of mathematical models. Sketchpad is an example of effective software, 

which has made a successful transition from academic research lab to a wide 

commercial impact. In his contribution he looks at how different perspectives shed 

specific light on technology design in the field of mathematics education and calls 

for conceptualization that could help practical decisions in design.

The perspectives that have dominated the past 30 years’ discussion of educational 

technology design – are largely either of curriculum design and learning science. 

In curriculum design, technology artifacts – software, devices, and so forth – are 

seen as relatively thin wrappers around some essentially curricular innovation, and 

the task of designing them is accounted for by (traditional or novel) practices of 

curriculum materials development. We celebrate, for example, the return of Euclidean 

construction to curricular prominence through the vehicles of Dynamic Geometry 

Environments, and read the latter as a tool for accomplishing the former. From 

perspectives of the learning sciences, technology concepts, for example programming, 

debugging, recursive language constructs, are first metaphors for cognitive proc-

esses and mathematical practices such as mathematical modeling, problem solving 

and metacognition. The work of design is to transform these metaphors into actual 

laboratories for culturing those processes and practices with students. But attention 

to technology here remains focused less on details and particulars of software packages 

than on the generalized perspective of an entire technology milieu’s potential to 

enable broad and significant new forms of epistemological activity, such as student 

programming in LOGO (Papert 1980), or direct manipulation of mathematical 

constructions through the unbounded parameter space of Dynamic Geometry 

Environments (Jackiw 1991; Laborde et al. 1990).

21.4.1 Design Detail Counts

While in no way desiring to sleight the importance of these perspectives to our 

collective effort’s past and future, in 20 years ongoing work designing The Geometer’s 

Sketchpad, I confess that I find their insights more useful at macroscopic and 
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generalized levels than I do in their contribution to countless specific and practical 

design considerations that I – and I assume most other designers – encounter every 

day. And their common tendency toward generalization often passes over interesting 

– and to my eye, important – design detail. In the hundreds of articles on Dynamic 

Geometry Systems that claim to scope both Sketchpad and Cabri, where is the 

analysis of how these two programs’ differ absolutely in the most basic mathematical 

language they offer for summoning objects into existence – of how the grammar 

and syntax of their respective user interfaces are almost conceptual mirror images? 

In lumping Maple and NuCalc under the common label of Computer Algebra 

Systems, do we erase the cognitive difference between, on one hand, the transformation 

of inputs to outputs by writing computer programs (Maple’s interface for factoring), 

and on the other, the embodied, direct manipulation of mathematical expressions 

(NuCalc’s interface for the same)?

From a mathematical perspective, the constructed triangle or factored quadratic 

is the same at the end of these separate technological trajectories; but from a 

learning perspective, certainly how we construct, or how we factor, matters.  

In seeking always to generalize, to identify the deep structure and the common 

DNA, our analyses risk mistaking marmots for mammoths. Even if we hesitate to 

sign on to the creed that design is everything, design certainly acts as the first 

doorway and first doorkeeper to any deeper curricular or epistemological innovation 

an educational technology might offer. For it is not at the structural level, but rather 

on the surface – at the designed interface – that users interact with technologies; 

that meanings are negotiated; that cognitive, psychological, educational, and social 

transformation may, or may not, occur.

At a deep structural level, for example, a world wide web browser is no differ-

ent than a Gopher agent or a humble FTP client: all are software programs allow-

ing users to browse resources made available by others within a community 

united by a network whose basic infrastructure has been unchanged for 25 years. 

But of course, such a summary perspective fails to account for why the first of 

these technologies has transformed the world, where the others remain only niche 

tools for a tiny population of techno-cognoscenti. We can only understand that 

phenomenon by inspecting how they are different, rather than how they are the 

same. To the degree our work in mathematics technology aspires to educational 

influence at significant scale, rather than just to the pleasure of small, pre-quali-

fied technological elites, we have first to admit that design matters – that specific 

design matters, specifically – and, second, to develop a much richer discourse for 

design analysis.

21.4.2 Well-Developed Design Discourses from Which to Draw

The good news is that beyond our own field there are many well-developed 

design discourses from which to draw. The industrial and graphic design com-

munities have perhaps the strongest emphasis on the use value of design, on the 
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means by which design limits and enables interpretation and consumption of 

objects, and on the procedures and techniques for shaping design contours 

toward intentional effects. All of course are relevant to any educational design 

enterprise. There is also the long-standing tradition of viewing design in rela-

tion to craft, where design is seen as the domain less of trained engineers than 

of skilled artisans and inspired artists. Here theories of the nature, purpose, and 

execution of design point toward (encultured or ahistorical) theories of aes-

thetic and emotional response. Any of us who has delighted in a new program 

feature or cursed the obtuse logic of an operating system must concede the 

irresponsibility of ignoring aesthetic relevance. Finally, the recent field of 

human computer interaction, and within it, the study of interaction design, 

focuses precisely on the way in which software signifiers are consumed by 

users, and on how users’ conceptual models of technology artifacts grow and 

change in response to interaction. These design discourses are of course wildly 

heterogeneous: they both come from, and lead in, different directions. But they 

unite, in contrast to our own field’s traditional analyses, in their willingness to 

engage with the specifics of a particular object’s design, with its appearance and 

form, its motivations and mechanics. It is from them that we learn design is first 

and foremost in the details.

21.4.3 Paradigms of Embodied Interaction

Such insights are beginning to find root in our own critical discourse. As one prom-

ising recent example, Sedig and Sumner (2006) develop a detailed taxonomy of 

specific techniques for interacting with visual mathematical representations, drawn 

from an analysis of several dozen educational and professional software packages. 

They consider less the higher-level purposes of these programs (“manipulate a 

construction interactively,” “solve an ODE graphically”) than the intentionally 

designed surfaces and affordances of them as physical artifacts (the actual language 

of menu commands, the specific behavioral response of an object to dragging, the 

deliberate choice between an iconic and verbal representation of potential action). 

From this survey, and drawing on literature from both computer-human interaction 

and design psychology, they argue convincingly that all such techniques fall within 

three basic paradigms of embodied interaction: conversing (the metaphor of the 

mouth and speaking); manipulating (the metaphor of the hand and grasping); and 

navigating (the metaphor of the feet and walking). Such a framework lets us use-

fully “read” a new mathematics technology in terms of its interaction paradigms, 

and quickly see, where our traditional epistemological and curriculum perspectives 

might view two technologies as generically similar if not the same, how from the 

semiotic perspectives of learners and users they may function entirely differently. I 

look forward to the growth of this type of detailed design critique and argument in 

our field, both for its analytic value and for its ultimate impact on the tools we find 

ourselves creating.
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21.5 Designing a 3D Dynamic and Interactive Environment

Jean-Marie Laborde started in 1985 the creation of a rough book for geometry: 

“Cabri-géomètre”. Since then, he brought together researchers in computer sci-

ence, didactics of mathematics, mathematics, and psychology, and several very suc-

cessful versions of Cabri were released. In September 2004, at Cabriworld in 

Roma, he presented, a completely new product Cabri 3D. Drawing on this recent 

experience as a designer, he focuses on the specifics of direct manipulation and 

direct engagement in a 3D environment supporting mathematics learning.

The problem of direct manipulation and direct engagement in a 3D environment 

arose probably soon in the head of people having started developing dynamic 

interactive environments in the early 1990s. I applied at my university for a grant 

to support Research and Development for a 3D type of Cabri. The proposal was 

rejected because being perceived as too “trivial”. For the mathematicians who 

evaluated the proposal, there was essentially no issue, because designing a 3D 

Cabri would simply be adding a coordinate to an existing system and going back to 

an already solved problem… In contrast for people interested in developing new tools, 

not already existing, in the spirit of direct manipulation and direct engagement, it 

was an exciting domain with so many new issues to explore. I will look at some of 

these issues from different points of view.

From a mathematical point of view: 2D environments raise mathematical 

questions partially solved, although yet no entirely satisfactory, for instance the 

intrinsic numbering of multiple intersections or the actual implementation of 

the reversibility principle.

Intrinsic numbering, e.g. of two conics in the same plane, consists in finding a 

way to attach labels to the various intersections in such a way that the labels do not 

“jump” among the various intersections, i.e. such a way that a given label is all the 

time attached to the “same” intersection point, when the configuration of the curves 

change following the movement of parent objects (actually many “free” or low-cost 

dynamic Geometry Software do not handle this problem properly even for simple 

cases as line/circle intersections).

Among the very universal design principles for Machine/Person interface there 

is one stating that any action should be reversible, allowing the user to take back 

her/his last mouse action in executing it in the reverse direction and then getting 

back to the preceding system status. At the same time it is desired that the system 

changes “continuously” in respect to the mouse moves, in other words that the 

system does not “jump” from one state to another substantially different. It can be 

shown that reversibility and continuity cannot coexist globally on the input domain, 

say the plane of the mouse. So any actual system has to “compromise”, in favoring, 

according to some more or less external cognitive (or ideological…) principles 

what will be its behavior (Laborde 1999, 2001). Theses questions are harder and 

thus more challenging in 3D. Along the history of mathematics, mathematicians 

(e.g. H. Poincaré) already noticed that, beyond regularities, many mathematical 

questions become more complex when passing from 2D to higher dimensions.
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From a user point of view: The challenge is to find the right metaphors to help 

people reinvest their existing body of knowledge in order that they feel familiar with 

the new environment. Obviously choosing the mode of perspective representation 

to adopt is important. Many modes exist and, depending on the culture, some are 

mode familiar to the user. In Eastern culture Cavalier perspective is extensively 

used compared to the so-called Western culture. Cavalier perspective, forcing the user 

to see at a scene from two points a view at the same type (a frontal and an oblique) 

suffers a clear handicap especially when non static scene are to be represented: an 

ordinary cube represented in Cavalier perspective (something easy to draw) does 

not keep, apparently, its cubical shape when rotating around its vertical axis of 

symmetry. In contrast the “same” cube rotates comfortably when represented in 

conic perspective (I would love to say “per definition”). In Cabri 3D we decided to 

use conic perspective as default perspective. Precisely, objects are represented as 

they would be seen in the hands of the user at a distance of 40 or 50 cm from his/

her eyes. We call this perspective “natural”; it is very different from the perspective 

often used by 3D software - like graphical spreadsheets - where the perspective is 

exaggerated for questionable aesthetic reasons.

Since 3D movements are to be performed by way of a 2D pointing device, 

non-trivial decisions have also to be taken relatively to how a user can drive points 

in space. He or she must feel “at home” while moving objects within the scene. 

Most of the pointing devices are 2D devices… Pointing device is evidently a key to 

direct manipulation. For direct manipulation, as introduced by the engineers at the 

Rank Xerox Research Park in the late 1970s essentially for their desktop metaphor, 

an ordinary mouse is OK. For 3D one could think of 3D pointing device; they exist 

and are still quite expensive; one could also think of user full immersion in a 3D 

virtual reality environment. To keep technology affordable and widely available, we 

decided for Cabri 3D to stick with ordinary 2D pointing devices and make use of 

the old typewriter metaphor: pressing the Shift key actually causes a vertical motion 

of the carriage. In Cabri 3D moving the mouse normally produces a movement of 

the dragged object in a horizontal plane while pressing the Shift key changes this 

into a movement along the vertical axis.

From a computer science point of view: Designing a 3D environment brings 

issues also for a work in Computer Science. The first one is the rendering of 

objects, an issue already raised by Hilbert and Cohn-Vossen in their book 

“Geometry and the Imagination” around 1922. In Hilbert and Cohn-Vossen’s book, 

points or lines are far from being “ideal” infinitely thin objects: they are depicted 

as serious spheres and solids rods, actually shown as slightly converging lines, due 

to conic perspective. Adding fog in the scene in order to increase the depth perception 

has also been for Cabri 3D an innovative idea. Finally I will only mention here the 

particular issue about decisions to be taken with regard to infinite objects: how to 

dynamically represent a plane. Because a plane is infinite and in most cases covers 

the domain view (the screen) some 3D environments decided no to limit the 

representation and then, practically, do not display any representation for planes. 

It does not seem to me, from an educational point of view, very reasonable.
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21.5.1  A Vision: Technology to Operate  

an Epistemological Shift

Until the seventeenth century Geometry has been the queen of sciences and then 

decayed. Why this decay? It might be because of the too poor quality of drawing at 

that time, making “formal” approaches more efficient. For instance, although he 

used methods for reporting on a front plane the intersection of a circle based cone 

and a plane, Dürer saw this intersection as some kind of egg rather than as an 

ellipse. With new computer based tools geometrical thinking can return to be a 

central source of insights when exploring new domains of knowledge and modelling. 

This movement is already visible in the way engineers not only use computer aided 

design to conceive their systems but also heavily rely on software environments 

where geometry modeling is central.

I would then favor the idea of technology tools as directly impacting knowledge 

contents and shaping them backwards. For me, Maths is a multiformed body of 

knowledge and culture. Current Technology Environments like Cabri and others are 

making easier to widely share this math culture.
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Chapter 22

Connectivity and Virtual Networks  

for Learning

Celia Hoyles, Ivan Kalas, Luc Trouche, Laurent Hivon, Richard Noss  

and Uri Wilensky

Abstract We present papers that indicate the potential and challenge of connectiv-

ity within or between mathematics classroms.

Keywords Collaboration • Virtual networks

22.1 Introduction

Celia Hoyles Digital technologies are already changing the ways we think about 

interacting with mathematical objects, especially in terms of dynamic visualiza-

tions and the multiple connections that can be made between different kinds of 

symbolic representation. At the same time, we are seeing rapid developments in the 

ways that it is possible for students to share resources and ideas and to collaborate 

through technological devices both in the same physical space and at a distance. 

Given that these developments are becoming more and more available to all 

 students as the Web becomes increasingly accessible across the world, ICMI Study 

17 was keen to explore the potential and challenges for mathematics education of 

these new levels of connectivity, both within and between classrooms. It was envis-

aged that there would be considerable impact on teaching and learning in the short, 
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medium, and long term. A theme of  connectivity and virtual networks was there-

fore set out in the original plans for the Study and the following questions presented 

as guides to the submission of proposals within this theme:

• Howcantheoreticalframeworksandmethodologiesdevelopedforinterpreting

activity, learning, and teaching in technology-integrated classrooms be extended 

to assist in understanding the distance-learning context? What kinds of changes 

and refinements are needed?

• Whatisthepotentialcontributiontomathematicslearningofdifferentlevelsofinterac-

tivity and different modalities of interaction, and how might this potential be realized?

• Whatisspecialaboutthepotentialofphysicallyseparatedcollaborativestudy

of mathematics, and how might this potential be harnessed so as to support 

mathematics learning?

• Whatisthepotentialforcreatingvirtualcommunitiesformathematicslearningand

permitting communication between individuals from different educational settings?

In the event, there were rather few papers submitted to this theme, no doubt due to the 

fact that rather little research had been completed at that time around the impact of con-

nectivity on mathematics teaching and learning. But rather than drop the theme, a group 

of researchers in this field was invited to participate in a plenary panel at the Study 

Conference – either at the meeting itself or through a video link: as mentioned in the 

introduction to this volume this latter mode was considered to be particularly appropri-

ate for this panel as an illustration of the potential of this form of communication.

This chapter comprises the papers written by the four panelists following from 

their contributions to the plenary panel. There are common threads running through 

the papers. All point to the importance of design: of the technical aspects that shape 

what students can do with the technology, what they can share and how they can 

interact; and of the activities themselves, how they exploit connectivity and stimulate 

student participation. Some contributions describe experiments that take advantage 

of connectivity within one classroom while others focus on between-classroom 

interactivity. In both scenarios, teachers’ actions in supporting new communities of 

practice are recognized as crucial, and new roles for the teacher are noted while 

acknowledging that these roles had as yet been under theorized.

To complete this summary, we note that other ongoing research in this area (see for 

example Hegedus and Penuel 2008) supports some of the ideas presented in this chapter, 

most notably in suggesting how “networks can link private cognitive efforts to public 

social displays thus – potentially at least – enhancing students’ metacognitive ability to 

reflect upon their own work in reference to others” (Moreno-Armella et al. 2008). More 

radically, these authors argue in a similar way to panel members that this type of con-

nectivity means that the introduction of technology will lead – at last – to a real transfor-

mation of practice in classrooms. This remains to be seen. There is no doubt that 

connectivity will transform how students interact with each other – simply consider the 

widespread ownership and use of the mobile phone – a technology that is truly personal 

for a rapidly increasing number of students. Yet if and how connectivity, in whatever 

form, transforms mathematical practices in school is a matter of future investigation. It 

is clear from the papers in this chapter that design will continue to be a crucial research 

theme in the future, as it will be design decisions that will shape what can be shared in 
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terms of resources, information, student solutions, or part-solutions. But an even more 

fundamental theme emerges that concerns how the technology, activities, and teacher 

strategies together can motivate students to engage in and take responsibility for mathe-

matical discussion of the process by which they construct their own knowledge and the 

justifications they propose for solutions to mathematical conjectures.

22.2  Developing Microworlds for On-Line 

Collaborative Learning

Ivan Kalas

22.2.1 Background Issues

In our department we have considerable experience in developing flexible software 

platforms for learning, such as Super Logo, Thomas the Clown, Imagine Logo and 

others, and in the process of their development we have tried to create effective 

opportunities for communication including being able to work in a common learning 

space. Such spaces have different forms: a physically common learning space in one 

place like an interactive smart board; a virtual common learning space within one 

classroom, such as several computers within one classroom with groups of learners 

collaborating with and between groups, and a virtual common learning space shared 

over the network. In our research projects we are trying to address questions like:

• Whatarethepropertiesofaflexiblesoftwareplatformthatsupportthedevelop-

ment of microworlds for effective collaboration?

• Whataretheimportantcriteriafordevelopingcollaborativemicroworlds?1

The aim of our CoLabs project (see http://matchsz.inf.elte.hu/Colabs/) was to 

examine obstacles that obstruct collaborative learning, see for example Turcsanyi-

Szabo and Kalas (2005). In CoLabs, we used Imagine Logo as a platform for 

developing and exploring collaborative microworlds – called collaboratories – 

which would allow children to communicate and cooperate – either locally in one 

place or through the network among different schools, towns, or even among 

different countries in spite of the many technical, linguistic, and cultural obstacles.

As one such collaboratory we created Visual Fractions – a complex dynamic interac-

tive computer environment, which allowed groups of children to explore and discover 

fractions and fractional relations, see Fig. 22.1. Visual Fractions provides dynamic jigsaw 

puzzle pieces for children to build their own understanding of the topic, see Lehotska and 

Kalas, 2005. The evaluation of the Visual Fractions environment by a group of future 

teachers suggested that building and exploring these dynamic playgrounds of dependent 

1 In Kalas and Winczer 2006, we presented our attempt to summarize all known aspects in a 

framework for the development of collaborative microworlds. We do however accept the argument 

presented in the panel by Hivon and Trouche that a complete list is probably impossible to generate.
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visual and interactive representations of fraction objects and relations required (and further 

developed) the same competencies as programming, see Lehotska (2006).2

22.2.2 A Further Example

Since the CoLabs project, we have concentrated mainly on how to provide support 

for collaboration, again within an Imagine Logo environment. Our ambition is to 

build an environment that could be offered to teachers, researchers, and enthusiastic 

amateur developers who want small, immersive, open, interactive, flexible, and 

collaborative microworlds developed for everyday learning situations.

During this process, we distinguished four dimensions that each needed to be 

addressed: the technicalities, the connection interface, the aspects to be shared and 

the features of the activities. We were particularly interested in building proper 

metaphors that would mediate computational support for collaboration among 

teachers and learners in the most intuitive and inspiring ways.

Figure 22.2 illustrates an experimental microworld in which several connected users 

(here represented by letters A, B, C…) own their personal technical panels in which they 

are given several visually represented parts of a whole, that is a selection of fractions. All 

users additionally share a common workspace in which they are expected to piece 

together a given quantity, expressed in shaded circles as an improper fraction. In the exam-

ple shown in Fig. 22.2, the goal is produce 2 and ¼. The users (in this case four users A, 

B, C, and D) can bring their own pieces into the common workspace by dragging them 

into their local representation of that space, or by manipulating the pieces of other children 

(comparing them, rearranging, or rotating them etc.). However, only a user’s own pieces 

can be dragged back to his/her personal technical panel or individual workspace, to be 

“weighted” there3 or divided into smaller pieces and then reused in the common space.

2 Other researchers (Pratt and his colleagues) used Visual Fractions for other kind of observations 

more closely related to mathematics education (see, for example, Jones and Pratt 2006).
3  When a child drags a piece or several pieces one by one (i.e. the visual representations of 

fractions), into the dark area of his/her technical panel, the environment “weighs” or “measures” 

them all together and shows the total sum (value) for example 5/12 or 1/6 or 1/6.

Fig. 22.1 Visual fractions: dynamic environment for discovering fractions and fractional relations
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Based on this work, we conjecture that an approach to collaboration that involves 

constructing common spaces in which children can compose together, explore, construct, 

communicate, pose, or solve problems can be employed successfully with children from 

preschool to upper secondary stages; and not only in mathematics learning but also in the 

development for example of language skills, in art and design, science, and citizenship.

22.2.3 Some Reflections and Observations

In our research on developing microworlds for on-line collaborative learning 

we have also examined whether digital technologies can motivate children to 

collaborate and communicate and how specifically designed microworlds support 

these phenomena. Most of all, we want to identify the critical factors for efficient 

collaboration, motivation, and engagement in the learning process. Below is a 

summary of our observations distinguished by some widely held claims (for more 

detail see Kalas and Winczer 2006):

Claim 1 “Our interfaces for collaborative learning always have an amateur look 

and are therefore far less attractive than the professional activities and games that 

many children know and use elsewhere”. Although this claim is probably more true 

for boys than for girls, I wanted to say that we conducted a survey and we found fol-

lowing that children were asked to rate the importance of several aspects of collabora-

tive environments that a clear and intuitive interface scored more highly than the 

Fig. 22.2 A common virtual learning space (the rectangle in the top middle) shared by four 

collaborating distant learners, A, B, C, and D
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professional look of the environment. We thus concluded that an intuitive interface 

was the key factor in the children’s motivation and engagement in the cooperation.

Claim 2 “The intensity of communication increases during an activity as does 

its efficiency”. We found on the contrary that the number of brief interchanges of 

information communicated between the children was high at the beginning of an 

activity but decreases considerably during the activity, and finally reaches nearly 

minimal, yet optimal, flow. This can be explained since initially children always 

explored all the possible communication channels of the environment and exploited 

them heavily – even without any obvious reason. For example when they discovered 

that it was possible “to chat” in the environment, they immediately paused their 

main activity to exchange messages with nearly no content with each participant. 

Only after these phases did they resume the primary tasks.

Claim 3 “Competition is important for motivation”. Perhaps surprisingly, we found 

that competitiveness was not in conflict with collaboration. Rather both phenomena 

could be stimulated in parallel in activities with two or more competing teams.

22.2.4 Some Concluding Remarks

Although we are rather successful in overcoming a range of technical, linguistic, and 

cultural obstacles in our experimental collaborative microworlds, we have to admit we 

still need to find ways to face the hardest obstacle of all, namely the educational obsta-

cles to implementation. It seems to us that our formal educational systems are not yet 

quite prepared to assimilate computational support for effective on-line collaboration.

22.3  Connectivity: New Challenges for the Ideas  

of Webbing and Orchestrations

Luc Trouche and Laurent Hivon

22.3.1 Introduction

It is not easy to speak about the implications of connectivity since the word itself 

calls up a set of connected questions for research:

• WhatispossibletodoformathematicslearningwithICTeitherface-to-faceor

through distance learning that transcends just the ability to communicate?

• Whataretheimplicationsforeachlearnerofthepotentialof“cognitiveconnec-

tivity,” that is being able to establish links between a situation and an idea and 

being able to move more or less easily from one mathematical frame to another?

And more generally:

• Whataretherelationshipsbetweenwhatwecallorchestrations (Trouche 2004; 

Drijvers and Trouche 2008) – the intentional organization by the teacher of the 
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various tools available in a learning environment, and creativity of the learners 

who form part in this situation?

In this short contribution, we focus on an environment dedicated to a particular type 

of connectivity, namely the TI Navigator, providing wireless communication 

between students’ TI graphing calculators and the teacher’s personal computer 

(Fig. 22.3), with activities designed following the collaborative work of a team of 

teachers and tried out in ordinary classrooms.

We introduce the following questions that guided the investigation:

• Howshouldorchestrationsbeconceivedinordertooptimizethechancesthat

the tools serve as efficient instruments for mathematics learning?

• Whatnewdifficultiesandopportunitiesbecomeevidentforstudents,usingthe

technology to interact each other, and with the teacher?

• Whatnewdifficultiesandopportunitiesbecomeevidentforteachers,andwhat

new professional practices are necessary?

Finally, from a theoretical point of view:

• Whatare thechallenges thatneedtobeaddressedinnewformulationsof the

two theoretical concepts: of webbing – “a structure that learners can draw upon 

Fig. 22.3 TI Navigator system
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and reconstruct for support – in ways that they choose as appropriate for their 

struggle to construct meaning for some mathematics” (Noss and Hoyles 1996; 

p. 108) – and of orchestrations?

22.3.2 Some Elements on the Experiment

Working with INRP and IREM,4 a team of six high-school teachers near Orleans, 

France, studied how to introduce and work with the TI Navigator System in their 

classrooms. The team had two main hypotheses; namely that the integration of this 

new device into classrooms:

• Would lead toneworientation tomathematics teaching,particularly from the

point of view of orchestrations

• Wouldfosterinteractionsbetweenstudents,andmotivatepeerdebate

The research began with studying the device and its integration into the French 

school system (10th grade), sorting out issues of installation and familiarization with 

the device, and then the design of some specific activities. The research focused also 

on the development of collaborative work that integrated the new technological 

tools. The device incorporates many new technical developments, allowing three 

main configurations:

• Displaying all (or some) of the pupils’ calculator screens in quasi-real time

(screen mosaic configuration)

• Displaying all of the pupils’ data, for example, points or curves, in a single

coordinate system (common coordinate system configuration)

• Displaying immediately the results of a class vote between two (or more)

contradictory proposals (consultation configuration)

These three configurations have the common property of establishing a common 

workspace on the class screen. The teacher can choose between several ways of 

using these configurations such as:

• Forthescreenmosaicconfiguration,he/shecanchoosewhetherornottodisplay

the name of the corresponding pupil on each screen (Fig. 22.4).

• Forthecommoncoordinatesystemconfigurationtheteachercandecidewhether

or not to give the pupils the option to change their answer, make one or more uploads 

and whether or not to perform these uploads simultaneously (Fig. 22.5).

To test the two hypotheses of the research, some specific activities (mathematical 

problems and orchestrations) were designed and tested in five classrooms (Hivon 

et al. 2008).

4 INRP: National Institute for Pedagogical Research; IREM: Research Institutes on Mathematics 

Teaching.
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22.3.3 Some Results

The work with the TI Navigator was found to foster an emergent real community 

of practice (Wenger 1998) in the classroom in which we could distinguish three 

fundamental aspects, participation, reification, and the existence of shared 

resources, whose major elements are summarized below:

• Participationwiththeengagementofstudentsinthemathematicalactivityand

debate

• Reificationwiththecollaborativecreationofmathematicalobjects(agoodexample

being the collective creation of the graph of a function that gradually becomes 

an easily identifiable object, cf. Figure 22.6, see also Wilensky in this chapter)

• Sharedresourcesmostnotablythepublicsharedboard,whichisaplacewhere

every student can show her/his mathematical creation. Each student is confronted 

with her/his production and those of other pupils

In traditional classrooms, speech or writing on the board are the ways students 

can express themselves and share with others, at the request of the teacher. With TI 

Navigator, the situation is very different, for two main reasons:

Fig. 22.4 Screen mosaic sent to the common workspace by different students

Fig. 22.5 Example of common screen configuration
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• Anewinteractivityisfosteredbetweentheartefactandthestudent,andbetween

students themselves: students convey their messages through the artefact, the 

artefact acts on the students enabling them to distance themselves from their 

productions thus freeing them to become more easily involved in peer exchanges. 

Thus the common space becomes a space of debate and exchange that aims to 

elaborate a “social mathematical truth”.

• Eachstudentbecomesdetachedfromhis/herproductionasadistanceiscreated

between student and the expression of her/his creation and this distance seemed 

to improve collective reflection on practice. The student becomes involved in 

the class activity in a different way as the tool maintains this distance between 

a student and the results proposed to the class and to the teacher.

Thus our first conclusions point to the renewal of relationships and exchanges 

inside the class. However, other elements must be borne in mind:

(a) Daily use of the device is difficult due to the complex equipment. Thus the 

device was not often used which has two contradictory consequences. On the one 

hand each new usage of TI Navigator needs time for re-appropriation, and on 

the other, these rare moments of use tend to be remembered by all students.

(b) As the responses proposed by the students were often very different and there 

were many solution processes opened up for discussion, not just the one used 

in a traditional course, the students often tried to produce the most sophisticated 

solution they could possibly find.

(c) The use of the devices deeply changed the way of the class had to be managed, 

that is the way the class mathematical activity was orchestrated. This added a 

Fig. 22.6 Points sent by every student as a result of a modeling problem, collected in one space
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new complexity to the teacher’s work. The complexity of facing the integration 

of ICT in mathematics education is well known (see Guin et al. 2004), but the 

necessity to manage both students’ tools and the collective tool (the calculator 

network) makes this integration much more complex. For example, students’ 

activity is deeply sensitive to the organization of the classroom space, for example 

where teachers change the orientation of the students’ desks (Fig. 22.7).

(d) The collaborative work of the teachers involved in this experiment seemed 

absolutely necessary to face all this complexity and to produce the design of 

appropriate mathematical situations.

(e) The cross-observations of teachers in their own classes helped them to create a 

distance from their own practice and to develop a reflexive attitude to the 

orchestration of students’ activity.

22.3.4 Questions to Be Considered in More Depth

In the future, when students will be used to working with the system, we intend to 

undertake a deeper analysis of students’ learning processes in this environment 

although we recognize the difficulties in doing this for three major reasons:

• The complexity of the orchestrations: as a lesson is made up of many stages 

(personal work, interactions within each group, interactions in the whole classroom 

and debates), it is not easy to observe the way a single student changes her/

his mind.

• The multiple instruments used in the students’ work: the students use paper, 

screen calculator, public screens, so it is difficult to know what they do and in 

which order they do it.

• The interaction between the phases of classroom work: we could classify the 

students’ work in the classroom into three stages: first, they expressed their 

Fig. 22.7 From the intended configuration by the manufacturer to the configuration chosen by 

the teachers
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personal point of view (especially at the beginning of the lesson); second, they 

expressed themselves as members of their group (they worked in groups of 

four); and third, they expressed themselves as members of the class. Of course, 

the three ways are mixed, which adds to the complexity of analysis.

Other questions arose for future investigation are:

(a) The teacher’s behavior and professional development. S/he created the 

conditions for students to build a mathematical object, but this object would, 

partly, be built by the community of students. Thus a student does no longer only 

plays the music written by the conductor, rather s/he is writing part of the music. 

The question then has to be faced as to how the teacher can create conditions to 

make the music not too different from what s/he wanted it to be, or to enrich 

his/her own partition with the – sometimes – unexpected students’ improvizations.

(b) The teachers’ use of the computer. A recent report of the European Commission5 

showed that French teachers “do not use computers and the internet very 

frequently and intensively in schools.” Could connectivity tools like the 

Navigator change this situation?

(c) The sharing of students’ conceptions. In a situation of connectivity, a student 

constructs her/his knowledge in collaboration with other students. As everyone 

takes part in this construction, will the others’ conceptions help her/him to build 

her/his own knowledge? How will the students learn to manage this new situation? 

What influence will it have on the way they build their conceptions of an object?

(d) The influence of the private practice of connectivity (blogs, chat, MSN) on how 

connectivity is used inside the classroom? For example, will this private practice 

of connectivity make the instrumentalization processes (the way a user 

appropriates, modifies, a given artefact) more important than in a nonconnectivity 

activity in the school?

All these questions need to be addressed in new experiments.

22.3.5 Some More General Considerations

This first experiment was derived from a particular context (a classroom in a high 

school, in a given technological environment), but our conviction, based on other 

experimentation (Guin and Trouche 2005) is that several elements of this context 

are more generally relevant, such as to distance learning. These elements are:

(a) The idea of a common workspace, for the pupils as well as for the teacher, in which 

each learner has to orchestrate the part of the game over which s/he is in charge 

(see also Kalas this chapter). This part is much more important than in an ordinary 

classroom given there are many results, many mathematical objects and semiotic 

registers all appearing at the same time on her/his own machine and in the common 

work place. As we know from students, such an approach appears to motivate, 

5  http://ec.europa.eu/information_society/newsroom/cf/itemlongdetail.cfm?item_id =2888
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with mathematics appearing like a game. But of course it must be recognized that 

this is not the case for all the pupils, as some will remain passive. Also the teacher’s 

role is complex as s/he has to manage the different instruments used in the classroom, 

as well as the collective instruments (in our experiment the network of calculators). 

The question of time is crucial: many results appear very quickly and the teacher 

has to make didactical choices swiftly and all the time. We have thus observed, 

as also noted by Noss and Hoyles, this chapter, in most of our experiments, that 

successful knowledge construction is critically dependent on teacher intervention 

directly to facilitate, encourage, and foster interactions.

(b) The idea of collaboratories. Connectivity and collaborative work are strongly 

connected. Connectivity enriches and is enriched by collaborative work, both 

among learners and among teachers: that is to say, the emergence of a community 

of practice is a condition for connectivity to work, while connectivity in turn 

facilitates such communities to emerge.

(c) The possibility of building a detailed map of all aspects important for developing 

collaborative microworlds (as suggested by Kalas in this chapter). It is certainly 

possible to suggest some features for developing collaborative microworlds, but 

agreeing on all aspects is certainly impossible. Rather it must be recognized 

that some aspects are necessarily dependent on the community using them and 

many are simply not predictable. Therefore, there is a necessity for flexible 

adaptive environments. Behind this, there are ideas of distributed design, between 

designers themselves and users, what Rabardel (1995), French ergonomist, 

calls conceptions in use; the need to rethink the notion of orchestration and the 

notion of webbing (see Noss and Hoyles 1996). As Hoyles et al. (2004) point 

out, these two metaphors are not referring to the same thing and are not exactly 

at the same level. On the one hand, it is important to have in mind a necessary 

assistance (the notion of orchestration) of students’ mathematical activity, and on 

the other, it is crucial to let the students free to think and establish connections 

(the idea of webbing): Hadamard (1954), a French mathematician put in evi-

dence some extraordinary moments of illumination, based on very quick inter-

nal and external connections. For example, the image of the concept of function, 

as a teacher said, appears, for each student, at once, as the result of the sum of 

the contributions of the whole class. It is a sort of depersonalization: the object 

is no more on my screen; it is in the common work place, enriched by all the 

community. But it is certainly the result of a given mathematical situation and 

of a particular orchestration by the teacher, which makes necessary new 

processes of documentation (Gueudet and Trouche, online) for teachers.

In this sense and as a summary of our work, connectivity raises many new didactical 

challenges for the teaching of mathematics.
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22.4  Concurrent Connectivity: Using Netlogo’s Hubnet 

Module to Enact Classroom Participatory Simulations

Uri Wilensky

In the panel, I presented an outline of our 20 years of work with agent-based 

modeling and NetLogo (Fig. 22.8) (Wilensky 1999) and described how this work 

can be enhanced though classroom connectivity.

Much of the discussion of connectivity in education has focused on the potential 

of asynchronous collaboration and distance learning. Moreover, the vision for 

connectivity is usually about connecting people who are geographically separated 

and need such connectivity in order to work together. But, there is another, more 

neglected affordance of connectivity: the ability to give people a shared interactive 

experience in a classroom context. This use builds on gamelike scenarios wherein 

players interact with each other in a simulated world. Such games have great 

holding power for children and that same holding power can be leveraged for 

educational benefits in the classroom.

In our many years of working with NetLogo in middle and secondary classrooms, 

we have endeavored to bring to students descriptions of complex systems at a 

micro-level and connect those micro-level descriptions to macro-level and 

observable phenomena. Typically when we have taught students about systems that 

can be construed as complex, we have concentrated on aggregate equations 

that summarize system behavior. For example, to describe the behavior of ideal 

gases, we rely on equations such as PV = nRT. But agent-based modeling enables 

students to more directly control and examine the behavior of elements of the 

system and connect this behavior to the system emergent behavior. Thus in 

NetLogo’s GasLab model suite, students come to understand the ideal gas as 

composed of myriad interacting gas molecules and see that PV = nRT is an 

emergent result of these interactions.

Fig. 22.8 NetLogo models of predator and prey, electricity, and ideal gases
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There are hundreds of NetLogo models we have used in classrooms. Students 

examine a wide range of phenomena such as the spread of a disease through a 

population, or the interactions of predator and prey in an ecosystem or the flow of 

electricity through a circuit or traffic on a highway, etc. There is considerable 

research that shows that it is hard for students (and people in general) to reason 

about such systems (Centola et al. 2000; Penner 2000; Wilensky and Reisman 

2006; Wilensky and Resnick 1999). We have argued that this is largely 

because the aggregate descriptions do not shed light on the mechanisms of action 

and, conversely, it has been impractical to have students do the extensive computa-

tions required for the micro-level approach.

The use of agent-based modeling (ABM) has changed the terms of use – both 

in scientific practice and for classrooms. ABM languages and environments 

enable students to focus on the systems parts and their interactions and to rapidly 

compute the emergent results and experiment with a host of alternative scenarios. 

In recent years, a number of ABM-based curricula have been developed that 

have been quite successful in classrooms, especially at the secondary school and 

university levels (Abrahamson and Wilensky 2002; Blikstein and Wilensky 2005; 

Levy et al. in press; Sengupta and Wilensky 2005; Stieff and Wilensky 2003; 

Wilensky et al. 2006).

However, despite considerable efforts to “lower the threshold” of entry into 

agent-based modeling, it remains difficult for elementary students to master both 

the programming and modeling skills needed. A remedy for this that we and others 

have tried is to have the teacher present and explore a model with the entire class. 

This approach has considerable merits, but it leaves the student somewhat passive 

as only a few can be engaged at any one time and they are limited to discussion of 

model behaviour.

One possible solution to this dilemma is to enable students to collectively 

participate within the simulation, controlling elements of it and collectively 

observing and discussing the results of their actions. This approach enables all 

classroom students to be simultaneously active while giving them an experience of 

a complex system that they all share. It also empowers them to try to change the 

system by their actions and to see how much they can affect the system and how 

much they are constrained by it.

To accomplish this aim, we added a networked architecture to the NetLogo 

software. This added module, HubNet (Fig. 22.9) (Wilensky and Stroup 1999a), 

enables a host of devices to connect to a NetLogo simulation and control agents 

within that simulation. We designed HubNet to be able to accept a range of client 

devices, including computers, graphing calculators, handheld devices and phones. 

All of these devices have bee implemented with HubNet, but the two most robust 

client devices are full computers, which use the computer-HubNet interface and TI 

graphing calculators, which use the Calc-HubNet interface. We worked with Texas 

Instruments for many years on networked calculator products which has led to the 

current TI-Navigator interface which includes HubNet activities.

By adding synchronous connectivity to NetLogo, the modeling activity is 

transformed into a participatory simulation (Wilensky and Stroup 1999b). This 
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transformation has several important benefits for learning. For example the 

modeling activity:

• Becomesmoreengaging–especiallyforyoungerlearners.Itbecomesasocial

activity and captures much of the same draw as online games.

• Promotesgreaterstudentparticipation.Everystudentcanbeactivelyinvolvedat

the same time. Because they often require continuous action on the part of the 

students, they are “in-the moment” motivated to participate. Such universal 

participation is very hard to achieve in a traditional classroom.

• Enablesasharedexperienceofacomplexsystem.Thereareveryfewopportunities,

in the classroom or in life, for students to collectively witness the same complex 

system unfolding. Focal attention to such a system is hard to achieve outside of 

the virtual and, even when achieved, if the viewing does not connect the micro-level 

behavior to the macro-level outcomes, then only the appearance is shared, not 

the mechanisms of action.

• Facilitatesclassroomdiscussionof thesystemandexaminationof“what-ifs.”

Student can suggest experiments with varying critical system parameters and/or 

agent-rules, hypothesize the observed behavioral change, run the simulation and 

refine the experiment.

• Scaffolds individual modeling and analysis. Once students have experienced

several opportunities to collectively model and analyze complex systems, they 

become much better prepared (and motivated) to conduct such inquiry on their 

own. Often students have suggestions for model experiments that are not 

Fig. 22.9 The HubNet architecture
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explored in class. These questions are potent seeds of further student inquiry, 

experimentation, and model revision.

NetLogo comes with a bundle of HubNet activities. At Northwestern’s Center for 

Connected Learning and Computer-Based Modeling (CCL), we have authored 

many of these and tested them in classrooms. We have explored a wide range 

of content domains and simulation forms including simulations of ecologies, 

economies, disease transmission, traffic patterns, and many more. Some of these 

activities can be freely downloaded with NetLogo from ccl.northwestern.edu/netlogo. 

Many more are in classroom tests and in development.

22.5 Designing for Exploiting Connectivity Across Classrooms

Richard Noss and Celia Hoyles

This section is based around two large-scale projects that have occupied us for much 

of the last decade: the Playground project and the WebLabs project, both funded by 

the European Union, and co-directed by ourselves. Both projects set out to investigate 

ways that students could be motivated to collaborate while physically separated.

22.5.1 The Playground Project

In the Playground project (Noss et al. 2002), we attempted to tap in to children’s 

games culture by adding a new dimension whereby they built their own games. 

The central idea was to design and try out computational worlds – playgrounds – in 

which the objects in a game and the means for expressing them are engaging; where the 

programming of a game is itself a game (we used ToonTalk6 as the major programming 

environment, and we also created an icon-based language of our own, called Pathways7). 

Fig. 22.10 The stones combined into rules for a monster

6 See http://www.toontalk.com
7This prototype system was subsequently published as Magic Forest. See http”//www.logo.com/

cat/view/magicforest.html
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We set ourselves the task of working with young children (aged as young as 4 and 

at most 8) where it was obvious that we could not rely on the written word as a means 

of communication. This challenged us considerably and forced us to take seriously 

other modalities of interaction, such as speech as well as direct manipulation.

Children populated their games with objects which had “behaviors” – sets of 

rules that determined their actions. Behaviors were defined using collections of 

iconic rules, which could be viewed by opening a “scroll of paper” attached to the 

object. Each rule was expressed as a visible “sentence” or string of graphic icons which 

combined a condition and a series of actions to be executed whenever the condition 

was true. The icons representing the conditions and actions were represented as 

“stones,” small concrete manifestations of the concepts that could be strung 

together to constitute a rule (see Fig. 22.10). Action stones had a convex left side 

so that conditions with their concave right sides could naturally fit to their left. 

Any object could accept any number of these iconic rules, all of which would be 

executed in parallel whenever the conditions for their execution were satisfied. 

Figure 22.1, for example, illustrates three rules for a “monster.” Pathways provided 

13 conditions and 25 actions, together with a wide range of object parameters 

(such as speed and heading) that could be set by using sliders and other manipulable 

tools. Pathways also included predrawn objects, backgrounds and – in the final 

version – a mobile phone icon that allowed players to send messages to each other. 

Objects could be edited (e.g. size and color changed), copied, deleted, and pasted. 

For examples of children’s activities with these rules, see Hoyles et al. (2002).

We gave the children the opportunity to construct creative and fun games (see 

Fig. 22.11), and at the same time, offered them an appreciation of – and a language 

for – the rules which underpin them, and the mathematical structures that they had 

to engage with in order to make their games function. The motor for this latter stage 

was that one group of children would share their games either face-to-face in their 

own classroom, or with another group in a remote classroom, either synchronously 

or asynchronously using the Web. In this latter scenario, the remote group could 

comment on the game, and amend and extend it as they saw fit by changing the 

Fig. 22.11 A space game built by children, involving the monsters from Fig. 22.10, together 

with new elements (spaceship, scoring – see top left and right – and a space background)
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rules, introducing new ones, and typically, merging existing objects (and their 

corresponding behaviors) into the games to add complexity and interest.

Our findings confirmed that while working both face-to-face and remotely on 

their games, children could collaboratively explain phenomena arising from rules 

we characterized as either player rules (an agreed regulation), or system rules 

(a formal condition and action for the behavior of the game). We found that in 

face-to-face collaboration, the children centered their attention on narrative, and 

addressed the problem of translating the narrative into system rules which can be 

programmed into the computer. This allowed the children to debug any conflicts 

between system rules in order to maintain the flow of the game narrative.

When we added remote communication to the system by enabling the sending and 

receiving of games from within the Playground system – we found that children were 

encouraged to add complexity and innovative elements to their games, not by the 

addition of socially-constructed or “player” rules but rather through additional system 

rules which elaborate the formalism (games were created using two different kinds 

of programming system, neither of which employed textual modality. This shift of 

attention to system rules occurs at the same time, and perhaps as a result of, a loosening 

of the game narrative that is a consequence of the remoteness of the interaction.

This phenomenon was particularly evident in the case of asynchronous interaction 

where, stripped of even the semantics of gestures, our extremely young students found 

it increasingly natural to try to communicate meaning via the various formalisms we 

provided. Thus a key historical claim for programming, that it offers a key motivation 

and model for immersion in a formal system, came to life as children struggled to 

modify and add rules of their programs that achieved the effects they desired. And it 

is worth stressing that asynchronous communication, while somewhat less attractive to 

the students at the time (we should not underestimate the impact of online synchronous 

video communication, in 2000, with children in other countries), allowed students to 

reflect on, and therefore use more effectively, the formal rules of their games.

The Playground project left us with a modest set of corroborative data that leads 

to the general conclusion that online collaboration catalyzed some interesting 

outcomes. The shift from narrative to system/formal rules does, in fact, seem to be 

a direct result of the necessity to formalize in the absence of all the normal richness 

of interaction that characterizes face-to-face collaboration. Moreover, the contrast 

was all the more vivid when we compared the children’s later work with their initial 

constructions, in which the narrative was clearly foregrounded, and the focus of 

attention was necessarily the translation of the narrative into a form that the 

computer could accept. This initial form of engagement made it possible to debug 

the system rule conflict that occurred. There were, inevitably, some difficulties. 

First, we noted that harder games did not necessarily mean harder mathematics – 

sometimes the games simply became more complicated rather than more complex. 

Second, peer-to-peer connectivity was severely limited in scope for knowledge 

building and sharing (the project began in the previous century!).
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22.5.2 The Weblabs Project

In a second project, we decided to address these issues directly. The WebLabs 

Project (http://www.weblabs.eu.com, European Union, Grant # IST-2001–32200), 

aimed to explore new ways of constructing, expressing, and sharing mathematical 

and scientific knowledge in communities of young learners. Some of the ideas 

we asked students to engage with were indeed sophisticated (for example, the 

convergence of infinite sequences and the properties of infinite decimals). Once 

again, we used ToonTalk as our primary platform for construction, building open 

toolsets for students to construct models, and supplementing these with other 

appropriate tools as necessary (for example, Excel). From the point of view of the 

panel and this chapter, a key focus was our ambition to design and build a web-based 

collaboration system for sharing and discussing student constructions. This was 

Fig. 22.12 A WebReport. Rita (in Portugal) has challenged other students to find the mathemati-

cal function that generates her sequence. Nasko (in Bulgaria) answers in an interesting – and 

surprising – way
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considerably more sophisticated than the primitive system of sending files back 

and forth as in Playground, and consisted of a set of functionalities – named Web 

Reports (http://www.weblabs.org.uk/wlplone) – that allowed models to be shared 

and included prompts for students to add comments, conjecture about the best 

approaches, and most efficient models (see Fig. 22.12 for an example). It is worth 

noting that this project was ahead of its time: had we engaged in this a few 

years later, we would have been able to tap into web 2.0 applications that are 

now taken for granted: essentially we had to invent a genre of mathematical social 

software! (While we were constructing WebReports, we became aware of 

Knowledge Forum, and drew inspiration from this work: for recent work, see, for 

example, Scardamalia and Bereiter 2006).

WebReports allowed students to embed seamlessly their models in free-form 

text documents and publish them on the web. Thus the central tenet of the approach 

was that students simultaneously build and share models of their emerging 

mathematical knowledge.

Our pedagogical approach was based on encouraging students to propose 

conjectures or derive concrete questions to explore (real, and complex ones: e.g. are 

there more integers than even integers?), which were then formulated by us into 

modeling/programming tasks.

Students completed these tasks individually or in pairs and published their 

individual models (ToonTalk programs) along with their observations about them, 

in their personal webreports, commenting on each other’s models, which were then 

used as input to an instructor-led group discussion. The product of this discussion 

was a group webreport which represented the shared understandings of the group, 

a process that we intended would encourage students to reflect on their work, to 

acknowledge the need to construct rigorous arguments for their claims, and to 

negotiate socio-mathematical and socio-technical norms within the (international) 

community (in the sense of Cobb et al. 2002). As an (ideal) final step, Web report 

would be reviewed by another group, perhaps in another country, and an inter-group 

online discussion would ensue: (we would now probably call this a math-blog and 

the students would need little, if any, tutoring on how to use it!).

Once again, we found that collaboration and discussion played a central role in 

the construction of individual and group knowledge. The need to publish their 

thoughts in writing, and in a public medium, provoked students to reflect on their 

experiences and intuitions. The process of writing a joint report required that they 

find a shared mathematical language, and revisit their arguments. Reading others’ 

reports critically, encouraged attention to detail. Yet all these results were contingent 

on two major facets: that the students had something engaging to talk about, and 

that they had a reason to talk about it. In our case, the former consisted of their 

models and conjectures, and the latter was built into the activity structure.

In fact, we rather seldom succeeded in orchestrating lively discussion, largely 

due to pragmatic limitations but also because of the difficulty in establishing a 

distributed community of practice. The modal thread length of interaction when 

building a webreport was 1, and the average only slightly greater than one. However, 

we had some outstanding successes – for example, “Guess my Robot” (in which 
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the challenge is to write the program/robot/function that generates a given sequence 

of numbers) had a modal thread length of more than 20. In considering why we 

achieved this kind of success, we identified the teacher as critical: as a facilitator 

who maintained and supported the interaction, and as a mechanism for validating 

what did and did not make sense in terms of knowledge building.

22.5.3 Concluding Remarks

Alongside overcoming not inconsiderable technical challenges, establishing an 

appropriate set of socio-technical/mathematical norms that prioritized collaboration 

was crucial in exploiting connectivity. We found that the school culture – with 

its relative lack of expectation to reuse knowledge, and the difficulty, in assessment-

heavy systems, of simply “being wrong” – was a formidable challenge. Here again, 

the teacher could play a crucial role. And finally, the role of the teacher was 

essential in finding ways to exploit connectivity to encourage students to permeate 

the layers of our system: to move, for example, from running models to writing or 

modifying the programs that generated them.

We knew already, of course, that the teacher is crucial. But here we are delineating 

new, even more demanding roles for the teacher, to be aware – across not only her 

own classroom but those in remote locations – of the evolution of discussion, the 

mathematical substance of what is and what is not discussed, and the need all the 

while to find ways to keep students on task without removing the exploratory and 

fun elements of the work. This is, surely, a demanding set of roles for the teacher! 

And it is with this in mind that we have begun new research, in which we are 

exploring the extent to which the technical system may be able to assist in helping 

teachers in these roles, by working on building intelligence into the system to 

achieve this. See www.migen.org and for some early results, see Pearce et al. 

(2008a, b), Noss (2008).
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Chapter 23

The Future of Teaching and Learning 
Mathematics with Digital Technologies

Michèle Artigue

Abstract In this text, directly inspired by my closing lecture at the ICMI Study 

Conference in Hanoi, I use first my personal experience for analyzing the evolution 

of relationship with digital technologies in mathematics education along the last 

two decades, and for situating the reflection about the future into an historical 

dynamics. Then, I focus on some dimensions that I consider crucial for thinking the 

future of teaching and learning with digital technologies: the theoretical, teacher, 

curricular, design, equity and access dimensions. These have been extensively 

addressed during the ICMI Study Conference and I use the perception I have of its 

outcomes for thinking about the challenges we have to face, and about what we 

can do in order to make digital technologies better serve the cause of mathematics 

education.

Keywords Theories • Teacher • Curriculum • Design • Equity

23.1 Introduction

In 1985, ICMI launched a first Study on technology entitled “The influence of 

computers and informatics on mathematics and its teaching”. As explained by Jean 

Pierre Kahane who was the President of ICMI in 1985 in a recent interview in a 

series that was done for the ICMI 100th anniversary,1 the choice of this title was 

motivated by the following reason: at that time it seemed evident that informatics 

was likely to have an important influence on mathematics education but many 

professional mathematicians were not already convinced that informatics would 
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1 This interview can be downloaded on the historical website of ICMI: http://www.icmihistory.
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have a substantial influence on their mathematical practices. As was also pointed 

out by Jean Pierre Kahane in the same interview, 20 years after this first Study, the 

situation is quite different: no one would deny the influence of informatics and 

digital technologies on the professional practices and life of mathematicians and on 

the mathematical sciences themselves, but regarding the influence on mathematics 

education, the situation is not so brilliant and no one would claim that the expectations 

expressed at the time of the first study have been fulfilled.

Having this in mind, there is no doubt that Seymour Papert was perfectly right 

when, in his opening lecture at the ICMI Study 17 Conference, he said: “We need a 

vision!” The day after, we were sat at the same table for dinner and he asked me: 

“Do you think that a vision will emerge from this ICMI Study?” I answered him that 

I was rather optimistic about our collective ability at expressing such a vision about 

the future of teaching and learning mathematics with digital technologies, and in my 

closing lecture I tried to show how the week of collaborative work in Hanoi had 

reinforced my optimism, through a diversity of resonances and insights.

This contribution is directly inspired by this lecture and reproduces its structure. 

In the first part, I briefly evoke the main episodes of my research life with technology, 

using this personal example for reflecting on the evolution of our relationship with 

digital technologies in mathematics education along the last decades. I focus then 

on some evolutions and ideas I see especially promising for the future, evolutions 

and ideas that, in my opinion, can help us develop the vision that Papert was asking 

for in his lecture. My personal history will make understandable I hope why I privilege 

some perspectives, some issues among the diversity of those evoked and worked in 

this Study, and which certainly are not so less important.

23.2 A Personal Journey with Digital Technologies

As many of those involved in this ICMI Study, I have had a long story with technology, 

and I will focus here just on some episodes of this story, some milestones along a 

personal journey.

23.2.1  From Programming to Visualization  

and Experimentation: A First University Experience

I began to work in that area as a young university teacher in the early eighties, using 

technology, mainly through programming activities, in an experimental mathematics-

physics course for first year university students (Artigue 1981). At that time, the 

graphical capabilities offered by technology where still quite limited, and the idea 

of enhanced technology learning in mathematics was mainly attached to the 

programming affordances of technology. From an educational point of view, such 

uses were supported by the increasing interest induced by technological evolution 
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on algorithmic and constructive mathematics on the one hand, and also by emerging 

theoretical approaches such as APOS and more generally the so-called theories of 

reification (Dubinsky 1991). Programming activities were expected to favour the 

building of processes and their encapsulation into objects. The book resulting from 

the first ICMI Study re-edited by UNESCO in 1992 well reflects this state of the 

art (Cornu and Ralston 1992).

Very quickly, the improvement of computer graphical capabilities increased the 

affordances of technology, and I saw in this technological improvement an oppor-

tunity for making accessible to students in their first university year a qualitative 

approach to the study of differential equations. I was using such capabilities in my 

personal research but they were reserved at that time to master and doctoral courses. 

A first research project was implemented in an experimental course at the University 

of Lille and resulted quite successful (Artigue 1989, 1992). We proved that, thanks 

to technology, a new balance could be found in elementary ODE courses between 

the qualitative, algebraic, and numerical solving of differential equations. This made 

possible to design and implement courses more respectful of the epistemology of 

the field. Design required a non trivial transpositive work as the qualitative approach 

had to be adapted to the limited familiarity of first year students with Analysis 

concepts and techniques, but such a transpositive work was proved to be possible. 

In this project, programming facilities were no longer the main affordance of 

technology; its potential for visualization, for supporting the articulation of conjectures 

and their test, for supporting reasoning and interaction between settings and semiotic 

registers was much more essential. As reported above, the experiment reproduced 

several years, was successful, but I soon understood that it would not be easily up-scaled. 

Success required a radical change in the institutional status given to the graphical 

semiotic register in university courses. This register could no longer be limited to 

its function of representation; it had to be acknowledged as a legitimate register for 

mathematical reasoning. In the experimental setting, we had experienced the 

strength of the cultural resistance to this change, all the more as for coherence reason 

change could not be limited to the sole topic of differential equations. We had used 

our quality of expert mathematicians in that area for legitimating the change of 

status among our colleagues but this was only a strategy of local value. We had also 

discovered that most of our university colleagues were themselves poorly familiar 

with the qualitative solving of ODE, and that this new course put them in a situation 

quite new and destabilizing: facing open problems when teaching beginners. 

A cultural and systemic change was needed that certainly would need time, and 

much more than what our isolated piece of research could allow.

23.2.2  Working with Low Achievers in Geometry  

with Logo Technology

Soon after, as a member of the IREM Paris 7, I was engaged in another research 

project, that time with low achievers in grade 8. In this project, the software 
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Euclide, a software derived from Logo with specific geometric macro constructions 

was used for reconciling students with mathematics, and for supporting the 

development of mathematical rationality (Artigue et al. 1989). Students for instance 

were asked to reproduce a given figure with Euclide, infer from the program of 

their construction the geometrical properties used in the construction, and list 

properties conjectured as true (using the software) but not used. The comparison of 

the different constructions was expected help distinguish between what Duval calls 

the epistemic and the logic status of properties (Duval 1995) and after a collective 

discussion, students organized in small groups were asked to produce different 

exercises based on the same figure, and propose them to other groups. Problems 

and strategies for solving these were then collectively discussed. As one can easily 

imagine, such mathematical activities are rather ambitious and are not generally 

proposed to low achievers, but once more the project was a very successful project, 

and the majority of these students entered high school after the two experimental 

years. Nevertheless, the software Euclide used had evident limitations when 

compared with DGS such as Cabri-Géomètre just entering the scene. Euclide in 

some sense had no educational future, and I experienced with this project the 

pressure put by technological evolution on didactic research for the first time. 

Moreover this experiment made me sensitive to the changes in teachers’ practices 

required by technological integration, especially in terms of management of the 

classroom and role, in the words of today the new orchestration needs (Trouche 

2004) and on the inadequacy of the ordinary militant discourse developed in 

teacher training courses. This discourse obviously underestimated the required 

changes and could not support the building of the new competences needed from 

teachers (Artigue 1998).

23.2.3 The CAS Experience

At the beginning of the nineties, I was asked by the Ministry of Education to join, 

as a didactic expert a group of teachers, experts in digital technology, working at 

identifying the potential offered by Computer Algebra Systems (CAS) for the teaching 

and learning of mathematics at secondary level, and at planning the curricular changes 

that the integration of CAS at senior high school level would require. This was a 

new kind of technology for secondary schools, much more disturbing than the 

graphical calculators compulsory at that time for the ordinary norms and values of 

secondary mathematics education, much more complex too. This was also a new 

kind of technology for me.

The contrast between the idealistic discourse of the experts of the group, totally 

coherent with the literature on the educational use of CAS at that time and what was 

revealed by observations made in their classrooms, turned for us quickly into a 

research question: how to understand such a gap?
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A first research project carried out with DERIVE in computer labs, allowed us 

to detect some possible sources (Artigue 1997):

• Thenegativeeffectsoftheconceptual/technicaloppositionpermeatingthelitera-

ture and the experts’ discourse

• Apoorsensitivitytothechangesintheeconomyofmathematicalpracticesinduced

by the use of CAS

• Andtheunderestimationofinstrumentalissues

A second research project, involving several teams in France was then carried out 

with the first symbolic calculator: the TI92 from Texas just coming out. It allowed 

us to test our conjectures, deepen and structure our reflection.

This work led to the development of an instrumental approach integrating the 

affordances of the instrumental perspective developed in cognitive ergonomy, and today 

associated with Rabardel’s name (Vérillon and Rabardel 1995), and the anthropo-

logical didactic perspective developed by Chevallard (1992).

The connection between these two complementary perspectives and the reflection 

it supported had two important consequences:

• First, theanthropologicalapproachhelpedusovercometheproblemposedby

the conceptual/technical dichotomy by making clear that mathematical techniques 

have both an epistemic value and a pragmatic value. As a consequence, we were 

obliged to seriously consider the change in the balance between these two values 

induced by the use of CAS, which was especially insightful

• Simultaneously, the instrumental approach by the distinction it introduces

between an artefact and the instrument it can become for an individual, a group or 

an institution, made us aware of the complexity of instrumental genesis processes, 

and of the personal and the institutional dimension of these. It led us to put at 

the right place in the research agenda the determination of the mathematical and 

technological needs of such processes; to investigate how these were taken into 

account in curricular choices and teacher training programs, and understand the 

impact this had on the technological integration

I cannot enter here in the details of this theoretical elaboration and its outcomes 

(Artigue 2002; Guin et al. 2004) but I would like to stress that the change in 

perspective regarding technological issues that resulted from the development of 

this approach was for me a very strong experience. I could no longer see the question 

posed by the integration of digital technologies as I did before. The resistance to 

digital technologies, the incredible recurrence of debates on topics such as the 

famous long division quoted by Papert in his lecture, could be re-interpreted in 

terms of balance between epistemic and pragmatic values. Let us me elaborate this 

point. Digital technologies boil over the traditional balance between the pragmatic 

and the epistemic value of techniques which was built within a paper and pencil 

culture. An essential reason for that is the way educational systems tend to adapt 

to digital technologies, without reconsidering their fundamental values, treating 

technology as simple pedagogical adjuvant. Such an adaptation leads to play on the 

pragmatic power of technology at the expense of its epistemic power. But what 
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makes legitimate a technique at school cannot only be its pragmatic power, and 

this makes an essential difference between school and the outside world. Making 

technology legitimate and mathematically useful requires modes of integration 

allowing a reasonable balance between the pragmatic and the epistemic power of 

instrumented techniques. This, as shown by research (Guin et al. 2004; Laborde 

2001), if one correctly reads its results, requires tasks and situations that are not 

simple adaptation of paper and pencil tasks, often tasks without equivalent in the 

paper and pencil environment, thus tasks not so easy to design when you enter in 

the technological world with your paper and pencil culture. Comparing with an 

example given by Papert in his lecture, you are more or less in the same situation 

as a Greek or Roman who cannot imagine what could be counting with Arabic 

numbers and numeration system.

This is just one particular example but I hope to have shown that thinking in such 

terms changes one’s mind, obliges to look at educational resistances differently, and 

obliges also to question the resources that, as researchers, we provide to teachers 

and institutions for overcoming these difficulties.

23.2.4  From Microworlds and Open Software to Tutorial  

and on Line Resources

This is not the end of the story. In the recent years, my life with technology has 

taken new ways, due to the technological evolution. I have indeed been asked to 

pilot a regional project involving more than 5,000 students and 100 teachers, and 

using on-line resources (Artigue and Groupe TICE IREM Paris 7 2008). In France, 

regions are in charge of senior high schools. They pay for the buildings, for the 

computers, for the textbooks. Three years ago, the region Ile-de-France, the biggest 

in the country decided to launch a new project, paying the access to on-line 

mathematics resources to grade ten students living in poor social areas in order to 

try to compensate the little access these students have to the existing services for 

accompanying personal school work and improving academic results. The region 

also decided that this project would be evaluated by a university team and our 

IREM was proposed. Both free and commercial resources were used, built with the 

teacher or the student mainly in mind.

This project was challenging for us for at least two reasons: its size and the kind 

of technology used. Passing from open software to on line resources as those used in 

this project, one can have the impression of a dramatic didactic regression, due to the 

didactic strategies implemented and the poor quality of interaction. We nevertheless 

accepted this challenge considering that, as researchers, we could not avoid to consider 

technologies that are more and more pervasive in our societies, and risk in a near 

future to influence more the learning and teaching of mathematics than micro-world 

technologies have been able to do in more than 20 years.

This project made us face another important and different change in the economy 

and ecology of learning processes. It also obliged us to adapt the instrumental 
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approach to this new context: what does it mean for a student to instrumentalize 

such a technology as a learning tool? What does it mean for a teacher to turn it into 

a professional instrument? As you can imagine, the answers here are not the same as 

they could be considering open technologies such as CAS, spreadsheets, DGS or 

graphic calculators. And once more the contrast between the two categories of 

answers is for a researcher something really insightful, raising a lot of interrogations, 

showing that there is there a wide technological space that is nearly terra incognita.

23.2.5 European Cooperation and Theoretical Connections

The last experience I would like to mention is still on-going. It began in 2003 in the 

frame of the European network of excellence Kaleidoscope, and more specifically 

of a European research team of this network called TELMA (Technology Enhanced 

Learning in Mathematics) which led more recently to a STREP called ReMath.2 

Kaleidoscope has among its main aims to provide tools for improving the exchange 

and mutualization of knowledge between teams working in technology enhanced 

learning. The research team TELMA, involving six different teams from four 

different countries is the sole structure of this network focused on mathematics. 

One hypothesis we made in TELMA was that the multiplicity and fragmented 

character of theoretical approaches used in that area is an obstacle to communication 

and productive collaboration and, beyond that, to the necessary capitalization of 

knowledge. We thus decide to look for possible networking between theories and 

approaches, and to develop specific methodologies and constructs for doing so:

• Thenotionofdidacticalfunctionalityenablingustoconnecttheoreticalapproaches

and practice

• Themeta-languageofconcernsenablingustoorganizethenetworkingefforts

around shared sensitivities

• The cross-experiment methodology enabling us to confront and compare our

respective ways of identifying didactical functionalities, designing scenarios of 

use, analyzing and interpreting experimental data, through the experimentation 

by each team of an alien technology, that is to say a technology developed by 

another team in another educational context and under a different theoretical 

approach (Artigue 2006, 2007)

This networking work was really a fascinating experience, and it deeply influenced my 

vision of theoretical issues, and of the ways these can be fruitfully approached today.

This personal story with technology is the background with which I attended the 

Study Conference, with which I perceived its possible outcomes, and the vision that 

could emerge from it.

2 All documents related to these projects are accessible on the associated websites:  

http://telma.noe-kaleidoscope.org and www.remath.cti.gr.



470 M. Artigue

In the next part of this contribution, I would like to point out now some directions 

in the work carried out that, in my opinion, are crucial for such a vision. I have 

selected five different dimensions: the theoretical perspective, the teacher perspective, 

the institutional and curricular perspective, the design perspective, equity and 

access issues.

23.3 Towards a Vision: Some Crucial Directions

23.3.1 The Theoretical Perspective

I have the feeling, certainly reinforced by my recent experience within TELMA and 

ReMath, that as a community we are more mature today for facing the challenge of 

theoretical diversity. The educational field we work with, even restricted to mathe-

matics, has so many different facets, is so dependent on contexts and cultures that 

theoretical diversity, even if it has to be controlled, imposes to us as an evidence. 

Building or choosing some theoretical approach is choosing some coherent lens for 

looking at this field, and theories are powerful because they renounce to be holistic. 

The different groups and individuals that constitute our community have different 

sensitivities shaped by the social, cultural and educational contexts they live in, as 

well as by their particular history. At the same time nevertheless, they face also 

common problems, educational dynamics and phenomena that are not so different, 

they are subjected to similar global influences. They share thus some common 

concerns, even if they approach these differently, building on the approaches and 

constructs they are familiar with.

I will illustrate this point with two examples. In the last decades, instrumental 

issues have become a more and more common concern in this area of research. This 

does not mean that we all approach these issues in the same way. As evidenced by 

TELMA work already mentioned, those whose main theoretical reference is 

Activity Theory do not integrate this concern in the same way as those as myself 

which have grown up under the influence of Brousseau’s and Chevallard’s theories. 

Nevertheless, we all share this common concern, we also often share some common 

external references as for instance that to Rabardel’s (1995) work, and with some 

effort, we can communicate more than at a superficial level. Several of us, coming 

from very different countries have already this experience here.

A second example, not completely independent from the first one is that of semiotics. 

Globally the field of mathematics education is more and more influenced by semiotic 

perspectives (Saenz-Ludlow and Presmeg 2006). This increasing attention paid to 

the semiotic dimension of mathematics activity also expresses in different ways 

according to our respective didactic cultures. In many cases, it is integrated in more 

general perspectives but, in some others, it constitutes a full theoretical approach by 

itself. But whatever be the conceptual tools we use for approaching this common 

concern, and the importance we give to it with respect to others, we are all enriched 
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by the research work of those who focus on this perspective. They oblige us to 

consider the diversity and richness of the semiotic systems and mediations involved 

in mathematical activity and learning processes, beyond the standard semiotic 

registers, and offer us new ways for connecting the perceptive-sensorial world and 

the symbolic world.

These are just two examples but they show that we have now the means and 

maturity for better controlling theoretical diversity, benefiting from the richness it 

can offer and overcoming the fragmentation it tends to generate. This is of course 

not a personal task; it is a collective task that has to be taken in charge at an inter-

national level, and I hope that this ICMI Study will offer a decisive contribution.

23.3.2 The Teacher Perspective

As stressed in the discussion document associated with this ICMI Study, at the time 

of the first ICMI Study, research and reflection focused on the technology itself and 

its mathematical potential, and on the student seen as a cognitive entity. This is no 

longer the case, and following a general trend in mathematics education (Sfard 

2005), teachers’ practices in technological environments have become an object of 

systematic enquiry (Monaghan 2004). This evolution has been very well repre-

sented at the Conference Study, which has clearly shown up to what point knowledge 

had progressed in the last two decades, allowing us to understand better how digital 

technologies modify teacher professional work, requiring new competences, up to 

what point too the usual discourse accompanying the promotion of technology has 

been misleading and counterproductive, the educational resources and training 

strategies poorly appropriate.

But we find also in the different contributions some evidence that we are now ready 

to enter a new phase, and that the Study can efficiently contribute to this new phase 

through the analysis it provides of current practices and of their resulting effects, 

through the methodological and conceptual tools it proposes, through the positive and 

substantial examples it presents of teacher preparation and professional development 

programs. These examples moreover show that the technology itself offers now new 

and powerful tools for supporting and accompanying the professional development 

of teachers in that area, seen as a collective and collaborative enterprise within 

communities of practice (Wenger 1998). I am convinced that from this point of view 

this Study will be especially insightful, at a time when everyone acknowledges that 

the quality of teacher preparation and teacher professional development are the key 

of any possible evolution of our educational systems.
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23.3.3 The Institutional and Curricular Perspectives

The introduction to the second edition by UNESCO of the first ICMI Study book on 

computers in mathematics and mathematics education stressed the point that, at that 

time, in spite of the existence of a number of interesting and successful experiments, the 

proof of the potential of technology for improving at large mathematics teaching 

and learning remained to be done. Up-scaling the results obtained in experimental 

environments was pointed out as a major challenge to be faced.

More than 20 years later, we cannot say that we have successfully faced this 

challenge. Contributions to this Study include some very interesting large scale 

studies which all confirm what we intimately know: successful technological 

integration at large scale level is still a major problem, and this seems to be a general 

phenomenon. But we neither can say that we are regarding this challenge in the 

same state where we were two decades ago. Two decades years ago we were very 

naïve. We understand better now the reasons for such a difficulty, and the theoreti-

cal frames we have developed for approaching technological issues allow us today 

to take into account the socio-cultural and institutional dimensions of integration 

that have shown to be so important.

In his plenary lecture, Seymour Papert stressed one important reason of the 

observed failure: the fact that technology has been put at the service of mathematics 

curricula thought in a paper and pencil culture and he suggested to turning down 

them. I agree with the diagnostic. I do not fully agree with the suggestion. 

Educational systems are complex systems, with the scientific acceptance given to 

the notion of complexity today. Educational research shows that radical curricular 

changes produce generally results that are far from those expected. There is no 

doubt that institutional decisions that encourage or even require the introduction of 

digital technologies in the curriculum, without paying attention to the needs of an 

effective technological integration beyond the material needs, that remain blind to 

the fact that technology both affects what is learnt and the form in which it is learnt, 

have a heavy responsibility in the failure generally observed. From this point of 

view, the term itself of integration can be considered a misleading term inducing 

that there is some permanent entity to which technology has to be integrated. There 

is no doubt also that minimal curricular changes favor assimilation processes where 

accommodation is at least required. But we all know today that radical changes 

imposed in a top-bottom process (I do not say that Seymour had this in mind when 

using the expression “turn down”) are far from being a solution. We need to build 

adequate synergies between top-down and bottom-up processes, and imagine 

dynamics that preserve all along the way an acceptable distance between the new and 

the old in order to be acceptable, to be viable, not to collapse or deviate (Assude 

and Gelis 2002; Haspekian and Artigue 2007).

We need also to take seriously into account the complexity metaphor, and the 

capacity that complex systems have to auto-organize and structure in bottom-

up processes under favorable conditions. Some contributions to this conference 

especially those related to design (Sect. 1 and Chap. 21) beautifully illustrate this 

point, showing us that patient and coherent evolutions in the long run can be 
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achieved. Also with regard to complexity, the recent technological evolution brings 

new challenges related to collaboration and connectivity that I will outline in the 

next section.

23.3.4 Collaboration and Connectivity

From the time of the first ICMI Study, digital technologies have tremendously 

evolved. Beyond the reification of mathematical objects and relationships between 

these, beyond the potential for direct manipulation on these, what they offer us 

today are reifications of the social dimension of learning processes (Wilensky 

2003), and this is not by chance that, going from one discussion group to another one 

all during the Conference, I have regularly heard the word “collaborative”. The way 

digital technologies can support and foster today collaborative work, at the distance 

or not, between students or between teachers, and also between teachers and 

researchers, and the consequences that this can have on students’ learning processes, on 

the evolution of teachers’ practices is certainly one essential technological evolution 

that educational research has to systematically explore in the future. As mentioned 

above, most of this space is still for us nearly terra incognita. We observe an intense 

creativity which very often develops independently of research and this is a very 

stimulating situation. But we also have to be careful. As stressed by Richard Noss 

in the panel on connectivity (Chap. 22), connectivity does not necessarily imply 

collaborative work and collaborative work does not necessarily imply better mathe-

matics learning, or I would add, better mathematics teaching. We are submerged by 

an avalanche of information, data and possibilities of connections and the way this 

avalanche can be organized, treated and transformed into knowledge or means for 

productive action is an open problem.

23.3.5 Equity and Accessibility

The last point I would like to evoke, not the least for me, far from it, it that of equity 

and accessibility, and that of technology in developing countries. The Study 

Conference has taken place in Vietnam, and at the opening ceremony I pointed out 

that this choice had for ICMI a high symbolic value. At the end of the Conference, 

we all had understood up to what point such a choice was important. The ICMI 

Study book certainly reflects this experience. Those who as myself come from 

developed countries (I use this word even if I don’t like it), often tend to think that 

the normal way of development, including technological development, is more or 

less to copy our development, and are prompt to export our educational technologies. 

In terms of digital technology and mathematics education, I am personally convinced 

that other ways have to be explored and are currently explored. The emphasis that 

many emerging countries put today in the development of distance education for 
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instance through a mixture of digital technologies and more classical ones, or in the 

development of internet resources for supporting teachers’ professional develop-

ment, make me think that in a not too far future we will learn from their advances 

in that area, as we are now learning from colleagues from Latino-America and 

Africa how we can approach the socio-cultural and linguistic heterogeneity which 

is quickly increasing in the suburb classrooms of our rich countries. From this point 

of view, the regional panel at the conference was especially insightful (Chap. 17).

23.4 Some Concluding Comments

In this conclusion I would like to come back to the Seymour Papert lecture. Seymour 

Papert ended his talk asking us to spend reasonable part of our time and energy 

thinking about possible futures, freeing our minds of the current constraints. I fully 

support his demand. This is an important role of research, whatever be the area it deals 

with, to explore avenues beyond those already possible, but in the precise case of 

technology and mathematics education, this is an imperative necessity. Several examples 

in the contributions to this Study show how fascinating can be the results of taking 

such a position both for the design of digital media and the design of their use. They 

are part of the vision that this ICMI Study has to built, as are part of it all the other facets 

of our research and design work contributing to our understanding of learning and 

teaching processes with digital technologies, and designing realistic strategies for 

the evolution of mathematics education at the light of this understanding.

I would like to add that for this ICMI Study it is not enough to propose a critical 

and insightful reflection analyzing what has been achieved in the last two decades and 

what has failed, to develop a vision and show possible ways for making it reality. 

The Study has also to make this reflection, this vision widely accessible beyond the 

sole community of researchers to all those who are professionally interested and 

whose contribution and support is needed. An ICMI Study book does not aim to be 

only a handbook of research more in a given area. Its aims also at making possible 

productive exchanges and collaborations between all those who are part of the 

community of mathematics education, with the richness and diversity of expertise this 

community reflects. It aims at being a source of insights for this wide community. 

This is all the more important regarding the theme of this study for which competences 

and creativity are so much distributed. I am confident that the Study Book will face 

this challenge successfully.
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