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Preface

Recent advances in the information and communication technologies are leading 

to an exponential growth in the amount of data stored in databases. It has been 

estimated that this amount doubles every 20 years. For some applications, this 

increase is even steeper. Databases storing DNA sequence, for example, are dou-

bling their size every 10 months. This growth is occurring in several applications 

areas besides bioinformatics, like financial transactions, government data, envi-

ronmental monitoring, satellite and medical images, security data and web. As 

large organizations recognize the high value of data stored in their databases and 

the importance of their data collection to support decision-making, there is a clear 

demand for sophisticated computational intelligence tools. Most of the current real 

world problems involve global optimization (or a search for optimal solutions), 

function approximation / machine learning and approximate reasoning.

Global optimization deals with the task of finding the absolutely best set of ad-

missible conditions to satisfy certain criteria / objective function(s), formulated in 

mathematical terms. Global optimization includes nonlinear, stochastic and com-

binatorial programming, multiobjective programming, control, games, geometry, 

approximation, algorithms for parallel architectures and so on. Due to its wide 

usage and applications, it has gained the attention of researchers and practitioners 

from a plethora of scientific domains. Global Optimization algorithms may be 

categorized into several types: Deterministic (example: branch and bound meth-

ods), Stochastic optimization (example: simulated annealing), Heuristics and 

meta-heuristics (example: evolutionary algorithms) etc. 

Learning methods and approximation algorithms are fundamental tools that 

deal with computationally hard problems and problems in which the input is 

gradually disclosed over time. Both kinds of problems have a large number of 

applications arising from a variety of fields. Machine Learning is concerned with 

the study of building computer programs that automatically improve and/or adapt 

their performance through experience. Machine learning can be thought of as 

“programming by example". Decision trees are suitable for scientific problems 

entail labeling data items with one of a given, finite set of classes based on fea-

tures of the data items. A decision-tree learning algorithm approximates a target 

concept using a tree representation, where each internal node corresponds to an 

attribute, and every terminal node corresponds to a class.  Artificial Neural Net-

works are inspired by the way biological neural system works, such as the brain 

process information. The information processing system is composed of a large 

number of highly interconnected processing elements (neurons) working together 

to solve specific problems. Neural networks, just like people, learn by example. 



VI Preface

Similar to learning in biological systems, neural network learning involves  

adjustments to the synaptic connections that exist between the neurons. 

Probabilistic models and fuzzy logic offer a very powerful framework for ap-

proximate reasoning as it attempts to model the human reasoning process at a 

cognitive level. Fuzzy systems acquire knowledge from domain experts and this is 

encoded within the algorithm in terms of the set of if-then rules. Fuzzy systems 

employ this rule based approach and interpolative reasoning to respond to new 

inputs. The incorporation and interpretation of knowledge is straight forward, 

whereas learning and adaptation constitute major problems. 

During the last two decades, several adaptive hybrid computational intelligence 

frameworks have been developed. Many of these approaches use a combination of 

different knowledge representation schemes, decision making models and learning 

strategies to solve a computational task. This integration aims at overcoming the 

limitations of individual techniques through hybridization or the fusion of various 

techniques. 

This book offers a step-by-step introduction (in a chronological order) to the 

various modern computational intelligence tools used in practical problem solving. 

Chapters 2-5 and 14-16 deal with different search techniques including informed 

and uninformed search, heuristic search, minmax, alpha-beta pruning methods, 

evolutionary algorithms and swarm intelligent techniques. Chapters 6-9 introduce 

knowledge-based systems and advanced expert systems, which incorporate uncer-

tainty and fuzziness. Chapters 10-13 illustrate different machine learning algo-

rithms including decision trees and artificial neural networks. Finally Chapter 17 

presents the fundamentals of hybrid intelligent systems with a focus on neuro-

fuzzy systems, evolutionary fuzzy systems and evolutionary neural networks. 

The authors would like to thank Springer - Verlag, Germany for the editorial 

assistance and excellent cooperative collaboration to produce this important scien-

tific work. Last but not the least, we would like to express our gratitude to our 

scientific collaborators, colleagues and students for their wholehearted support 

during the last several years. We hope that the reader will share our excitement to 

present this book and will find this very useful. 

Crina Grosan and Ajith Abraham*    March 15, 2011 

Department of Computer Science, 

Faculty of Mathematics and Computer Science 

Babes-Bolyai  University, Cluj-Napoca, 

Kogalniceanu 1, 400084 Cluj – Napoca, Romania 

Email: cgrosan@cs.ubbcluj.ro 

*Machine Intelligence Research Labs (MIR Labs) 

Scientific Network for Innovation and Research Excellence 

P.O. Box 2259, Auburn, Washington 98071, USA 

Email: ajith.abraham@ieee.org / WWW: http://www.softcomputing.net 
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Chapter 1 

Evolution of Modern Computational 
Intelligence 

1.1   Introduction 

A conventional computational intelligence book introduction starts, many a times, 

with a history of Artificial Intelligence (AI) and what has been done up to date. 

This book introduction will try to start with what can be envisaged as future Com-

puter Intelligence. 

It is important to have a common definition of AI. Although it might be possi-

ble to find many (somehow similar) definitions for artificial intelligence, probably 

the most appropriate one can be the one stating: creating machines which solve 

problems in a way which, done by humans, require intelligence. 

A question arises, which can be the interactive question open in any AI course: 

do we have artificial intelligence? The answer is not a simple one. There are at 

least two ways of seeing things. 

If we look around at the existing intelligent machines, we can tell (just to enu-

merate a few examples) that we have machines, which can interpret handwriting 

better than humans, we have machines which take decision better than humans do, 

we have machines which make calculation millions of times faster than humans, 

we have machines that interpret data, huge amount of data, much faster and accu-

rate than humans, machines which understand language and interpret and tran-

script it at least at the same level as humans and examples can continue. All these 

are just natural nowadays, but were hard to believe two decades ago.  

On the other hand, if we look at the existing machines from a human level in-

telligence point of view, it is hard to admit that we have a human level intelligent 

machine. Intelligence, on its own, has a broad interpretation sense. If we look at a 

very intelligent man (usually Einstein is given as reference for an intelligent man) 

and we look at a person from a remote place, with less or no contact with the civi-

lized world, we see a huge difference (in terms of intelligence) between the two. 

But if we look at the same person from the remote mountain and at a cockroach, 

we think that difference between Einstein and our mountain man is nothing com-

pared to difference between mountain man and cockroach.  From the evolution of 

human habilis (first human-like ancestors) 2 million years ago, to homo sapiens 

100 000 years ago, to agricultural revolution 10 000 years ago and then to the  
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industrial revolution, the human intelligence undergoes significant improvements. 

But nowadays scientists clearly state that, in a natural way, no improvement can 

be further performed to the human intelligence; thus, the need of an artificial, 

more powerful intelligence. 

Human level intelligence has not yet been reached if we measure this achieve-

ment as passing the Turing test. Turing test - proposed by Alan Turing, a British 

mathematician – also known as  “imitation game” is a simulation in which a judge 

attempts to distinguish which of two agents, in two separate rooms, is a human and 

which a computer imitating human from their responses in a wide-ranging conver-

sation of any topic. As a note to the Turing test, there is an annual competition 

known as Leobner Prize, which awards the best instantiation of the Turing Test. 

Nick Bostrom (Future of Humanity Institute, Oxford University) noted that for 

achieving artificial intelligence, three things are required:  hardware, software, and 

input/output mechanisms. The input/output mechanisms refer to the technology 

required by a machine to interact with its environment. This is already available in 

the form of cameras and sensors. We already see robots performing several human 

like tasks, etc. Thus, this is the simplest required part.  

For hardware, we really need to have human level speed and high memory ma-

chines. In terms of memory, things are promising.  For speed, we still have to 

wait. Human brain processing power ranges between 100 million MIPS to 100 

billion MIPS. (1 MIPS = 1 Million Instructions Per Second). Fastest supercom-

puter today (as of 2010) is Jaguar, built by the Cray Company and housed at the 

Oak Ridge National Laboratory in Tennessee; it has a top speed of 1.75 petaflops 

per second. This means we don’t have yet human level computer power even at 

the range of supercomputers. 

The other remaining problem is software. Once we get human intelligence level 

machines, software will be required. In doing so, one has to understand how hu-

man brain works. This is part of the current research these days and at least two 

main directions follow from there: computational neuroscience and molecular 

nanotechnologies. Neuroscience is concerned with how the individual components 

of the human brain work. Research up to date reports good computational models 

of primary visual cortex. But simulating the whole brain requires enormous com-

puting power.  Molecular nanotechnologies work at nanoscale level which is 1 to 

100 nanometers – from 1/1,000,000 to 1/10,000 of the thickness of an American 

dime.  Many of the key structures of human nervous systems exist at nanoscale. 

The major challenge is to use nanomachines to disassemble a frozen or a vitrified 

human brain. 

In parallel with getting the artificial intelligence or human level artificial intel-

ligence, small steps have been performed in terms of algorithms and methodolo-

gies, which can be applied to solve simple or more challenging real-world prob-

lems. Much of the current research focuses on the principles, theoretical aspects, 

and design methodology of algorithms gleaned from nature. Examples are artifi-

cial neural networks inspired by mammalian neural systems, evolutionary compu-

tation inspired by natural selection in biology, simulated annealing inspired by 

thermodynamics principles and swarm intelligence inspired by collective behavior 

of insects or micro-organisms etc. interacting locally with their environment  
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causing coherent functional global patterns to emerge. These techniques have 

found their way in solving real world problems in science, business, technology 

and commerce. Computational intelligence is a well-established paradigm, where 

new theories with a sound biological understanding have been evolving. The cur-

rent experimental systems have many of the characteristics of biological com-

puters (brains in other words) and are beginning to be built to perform a variety of 

tasks that are difficult or impossible to do with conventional computers. 

Although most of the AI related publications consider the birth of AI 15 years 

after the development of the first electronic computer (in 1941) and 7 years after 

the development of the invention of the first stored program computer (in 1949), 

evidences of artificial intelligence can be traced back in ancient Egypt and Greece. 

Most of AI scientists consider that the Dartmouth summer research project, organ-

ized in 1956 by John McCarthy (regarded as father of AI) at Dartmouth College in 

Hanover, New Hampshire, where the “artificial intelligence term has been coined” 

was the actual start of the AI as a science. 

1.2   Roots of Artificial Intelligence 

Logic is considered as being one of the main roots of AI. AI has been heavily in-

fluenced by logical ideas. Most members of the AI community would agree that 

logic has an important role to play in at least some central areas of AI research, 

and an influential minority considers logic to be the most important factor in de-

veloping strategic, fundamental advances. It started as long ago as in 5
th

 century 

B.C. when Aristotle invented syllogistic logic, the first formal deductive reasoning 

system.  The advances continued with small steps, with famous inventions of this 

millennium, examples like printing using movable type in the 15
th

 century, inven-

tion of clocks as measuring machines in the 15
th

 – 16
th

 century, extension of this 

mechanism for the creation of other moving objects in the 16
th

 century and so on. 

Pascal has invented the first mechanical digital calculating machine in 1642. This 

machine was an adding machine only, but later, in 1671, the German mathemati-

cian - philosopher Leibniz designed an improvement of the adding machine such 

as to incorporate multiplication and division. The machine – known as Step Reck-

oner – was built in 1973. The 19
th

 century brings the ingenious project of the first 

computing machine. Looking for a method, which can overcome the high error 

rate in the calculation of mathematical tables, English mathematician Charles 

Babbage wished to find a way by which they could be calculated mechanically, 

removing human sources of error. He began to build Difference Engine, a me-

chanical device that can perform simple mathematical calculations in 1820 and 

then the Analytical Engine, which was designed to carry out more complicated 

calculations. Both devices finally remain just as prototype computing machines. 

Babbage’s work has been later continued by Ada Augusta Lovelace, which re-

mains as the world’s first programmer. Babbage’s Difference Engine was the first 

successful automatic calculator. 

Another important contribution of 19
th

 century is George Boole’s logic theory, 

also known as Boolean logic or Boolean algebra. Even thought not much appreci-

ated at the time it has been proposed, later after the publication of Boole’s ideas, 
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an American logician Charles Sanders Peirce spent more than 20 years modifying 

and expanding them, realizing the potential for use in electronic circuitry and 

eventually designing a fundamental electrical logic circuit. Pierce never actually 

built his theoretical logic circuit, being himself more of a logician than an electri-

cian, but he did introduce Boolean algebra into his university logic philosophy 

courses. 

It was later when one of his students – Claude Shannon, one of the organizers 

of the Dartmouth conference and one of the pioneers of AI, a Nobel Prize winner 

among others – made full use of all these ideas.  

Gottlob Frege, a German mathematician, essentially reconceived the discipline 

of logic by constructing a formal system, which in effect, constituted the first 

predicate calculus (1893-1903). Frege's logic calculus system consisted of a lan-

guage and an apparatus for proving statements. Predicate calculus system con-

sisted of a set of logical axioms (statements considered to be truths of logic) and a 

set of rules of inference that lay out the conditions under which certain statements 

of the language may be correctly inferred from others. 

The 20
th

 century brings the most significant contributions to the AI field. If the 

first half of the century is not that remarkable, starting with the second half results 

will come in an impressive rhythm. Bertrand Russell, the British logician who 

pointed out some of the contradictions of Frege’s logic during their correspon-

dence and who refined the predicate calculus, revolutionizes formal logic with his 

three-volume work he co-authored with Alfred North Whitehead, Principia 

Mathematica (1910, 1912, 1913).  The mathematical logician Emil Post had his 

important contributions to computer science in the beginning of the 20
th

 century. 

In his later work during the early 1920s, Post developed his notion of production 

systems, developed a unification algorithm, and anticipated the later findings of 

Gödel, Church, and Turing. Post developed a programming language without 

thinking of a machine on which it could be implemented. Another important logi-

cian of the 20
th

 century is Kurt Gödel, who proved the incompleteness of axioms 

for arithmetic, as well as the relative consistency of the axiom of choice and con-

tinuum hypothesis with the other axioms of set theory.  

One of the most significant figures in the development of mathematical logic is 

Alonzo Church, A Princeton professor and Alan’s Turing’s supervisor. His book – 

Introduction to Mathematical Logic – published in 1944 comprises some of his 

earlier remarkable results. The Church-Turing Thesis, a controversial work, came 

to solve one of the important problems for logicians formulated in the 1930s 

by David Hilbert: Entscheidungsproblem. The problem asks if there was a me-

chanical procedure for separating mathematical truths from mathematical false-

hoods. Probably the most controversial figure among the mathematicians of the 

20
th

 century, the British mathematician Alan Turing is well known as the founder 

of some fundamental principles, which are required to prove the evidence of arti-

ficial intelligence. The famous Turing test remains until today the biggest chal-

lenge for the existence of artificial intelligence. His famous work Computing Ma-

chinery and Intelligence has been published in 1950, soon after the development 

of the first electronic digital computer and the first stored computer program.  
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Built in 1943-1945 at the Moore School of the University of Pennsylvania for 

the War effort by John Mauchly and J. Presper Eckert, the Electronic Numerical 

Integrator And Computer (ENIAC) was the first general-purpose electronic digital 

computer. It was 150 feet wide with 20 banks of flashing lights. Even thought it 

was meant to help in the WWII, ENIAC has not been delivered to the Army until 

just after the end of the war. 

The ENIAC was not a stored-program computer; it is described by David Alan 

Grier as a collection of electronic adding machines and other arithmetic units, 

which were originally controlled by a web of large electrical cables. ED-

VAC (Electronic Discrete Variable Automatic Computer) was the earli-

est electronic computer. Unlike its predecessor the ENIAC, it was binary rather 

than decimal, and was a stored program machine. 

The paper by Warren McCulloch, a neuroscientist, and Walter Pitts, a logician, 

“A logical calculus of the ideas immanent in nervous activity” published in 1943 is 

regarded as the start point of two fields of research: the theory of finite-state ma-

chines as a model of computation and the field of artificial neural networks. 

McCulloch and Pitts tried to understand how the brain could produce highly com-

plex patterns by using many basic cells that are connected together. They gave a 

highly simplified model of a brain cell – a neuron – in their paper. The McCulloch 

and Pitts model of a neuron has made an important contribution to the develop-

ment of artificial neural networks. But their neuron model had limitations. Addi-

tional features were added, which allowed the neuron to learn and one of the next 

major development in neural networks was the concept of a perceptron, which was 

introduced by Frank Rosenblatt in 1958. Another paper published in the same 

1943 – “Behavior, Purpose and Teleology” – by Arturo Rosenblueth, Norbert 

Wiener and Julian Bigelow set the bases for the new science of Cybernetics. 

The problem solving has been a central challenge for computer scientists and 

for the AI community too. AI scientists came with their own problems and with 

their own methods of solving them. George Polya, a Hungarian born American 

mathematician, suggests in his very famous book – How to solve it – four main 

steps to approach a problem: understand the problem, devise a plan, carry on with 

the plan and look back. Problem solving remains a central idea of AI and a How to 

solve it modern version using heuristics has been published in 2004 by Zbigniew 

Michalewicz and David Fogel. 

A few important scientific results preceded the Dartmouth Conference. Among 

them are the following: Norbert Wiener’s results in cybernetics (he is among the 

first scientists who coined the term cybernetics) and also in the feedback theory as 

if all intelligent behavior is the results of feedback mechanisms. This discovery 

had a huge influence on the initial development of AI. The logic theorist devel-

oped between 1955-1956 by Allen Newell (researcher in computer sci-

ence and cognitive psychology at Carnegie Mellon University), J. Clifford Shaw 

(a system programmer who is considered the father of the JOSS language) and 

Herbert Simon (originally a political scientist who also won the Nobel Prize in 

economics in 1978 and has been awarded the Turing Award along with Allen 

Newel in 1975 for their basic contributions to artificial intelligence and the psy-

chology of human cognition) is considered as being the first AI program. The 
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theorem proving can be reduced to search. The problem is represented as a tree 

model and the program will attempt to find a proof by searching the tree and by 

selecting the branch that will result in the correct proof. The program succeeded in 

proving thirty-eight of the first fifty-two theorems presented there, but much more 

importantly, the program found a proof for one theorem which was more elegant 

than the one provided by Russell and Whitehead (in Principia Mathematica). The 

impact of The Logic Theorist had in the development of AI made it a stepping-

stone in the evolution of the AI field. 

Although the enthusiasm of organizing the school at Dartmouth College was 

really huge and the expectations were great, as McCarthy he noted in the 1955 

announcement of the conference: 

“We propose that a 2 month, 10 man study of artificial intelligence be carried out 

during the summer of 1956 at Dartmouth College in Hanover, New Hampshire.  

The study is to proceed on the basis of the conjecture that every aspect of learning 

or any other feature of intelligence can in principle be so precisely described that 

a machine can be made to simulate it. An attempt will be made to find how to 

make machines use language, form abstractions and concepts, solve kinds of 

problems now reserved for humans, and improve themselves. We think that a sig-

nificant advance can be made in one or more of these problems if a carefully se-

lected group of scientists work on it together for a summer.” 

the results of the meeting were not really spectacular. The conference was organ-

ized by John McCarthy and formally proposed by John McCarthy, Marvin Min-

sky, Nathaniel Rochester and Claude Shannon with the scope of bringing together 

American scientists working on artificial intelligence. There were a total of 10 

participants at the Dartmouth Summer Research Conference on Artificial Intelli-

gence. John McCarthy (who was teaching at Dartmouth at that time and after 

moved to Stanford University; also won Turing Award in 1971), Marvin Minsky 

(who also won the Turing award in 1969), Trenchard More (from Princeton), Ray 

Solomonoff (the inventor of algorithmic probability and an originator of the 

branch of artificial intelligence based on machine learning, prediction and prob-

ability), Oliver Selfridge (graduate student of Norbert Wiener's at MIT, (but did 

not write up his doctoral research and never earned a Ph.D.) and a supervisor 

of Marvin Minsky), Claude Shannon (known for his contributions in information 

theory and cryptography during the World War II while he was at Bell Labs; 

among other contributions he made a chess playing computer program and made a 

fortune by applying game theory in Las Vegas games and in stock market), Na-

thaniel Rochester (who designed the IBM 701 the first general purpose, mass pro-

duced computer and wrote the first symbolic assembler), Arthur Samuel (who 

developed the alpha-beta tree idea and proposed a Checkers-playing program (on 

IBM's first commercial computer, the IBM 701) that appears to be the world's first 

self-learning program; 1962 his program beat a state champion), Herbert Simon 

and Allen Newell. 
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1.3   Modern Artificial Intelligence 

The Dartmouth Conference opened the era of new and most significant advances 

in the AI field. Advances continued in a much faster rhythm than before. Technol-

ogy was also advancing and this gave more room to more difficult and ambitious 

projects. AI research centers began forming at MIT and Carnegie Mellon Univer-

sity. The challenges were to create systems that could efficiently solve problems 

by limiting the search such as The Logic Theorist, and making systems that could 

learn by themselves. Newel, Shaw and Simon, the authors of The Logic Theorist, 

wanted programs that solved problems in the same ways as humans do. They de-

veloped the General Problem Solver (GPS) in 1957, which is basically 

 a computer program intended to work as a universal problem solver machine. 

Any formalized symbolic problem can be solved, in principle, by GPS, for in-

stance theorems proof, geometric problems and chess playing.  

Using a means-end-analysis approach, GPS would divide the overall goal into 

sub-goals and attempt to solve each of those. The program was implemented in the 

low-level IPL programming language. While GPS solved simple problems such as 

the Towers of Hanoi that could be sufficiently formalized, it could not solve any 

real-world problems because search was easily lost in the combinatorial explo-

sion of intermediate states. 

McCulloch and Pitts’ neuron was further developed in 1957 by Frank Rosen-

blatt at the Cornell Aeronautical Laboratory. Rosenblatt’s perceptron was able to 

recognize patterns of similarity between new data and data it has already seen in a 

feed-forward model that demonstrated a primitive type of learning or trainability. 

His work was highly influential in the development of later multi-layered neural 

networks. Soon after the development of the perceptron, many research groups in 

the United States were studying perceptrons. Essentially the perceptron is a 

McCulloch and Pitts neuron where the inputs are first passed through some "pre-

processors," which are called association units. These association units detect the 

presence of certain specific features in the inputs. In fact, as the name suggests, a 

perceptron was intended to be a pattern recognition device, and the association 

units correspond to feature or pattern detectors. 

In 1958, John McCarthy showed how, given a handful of simple operators and 

a notation for functions, someone can build a whole programming language. He 

called this language LISP, for "List Processing," because one of his key ideas was 

to use a simple data structure called a list for both code and data. LISP is the sec-

ond-oldest high-level programming language in widespread use today; 

only Fortran is older. LISP was heavy on computer power and it became more 

useful in 1970s with the existing technology. 

In the late 50's and early 60's Margaret Masterman and colleagues from Cam-

bridge design semantic nets for machine translation. A semantic net is a graph, 

which represents semantic relations among concepts. Silvio Ceccato also devel-

oped in 1961 correlational nets, which were based on 56 different relations, in-

cluding subtype, instance, part-whole, case relations, kinship relations, and various 

kinds of attributes. He used the correlations as patterns for guiding a parser and 

resolving syntactic ambiguities. Masterman and her team developed a list of 100 
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primitive concept types, such as Folk, Stuff, Thing, Do, and Be. In terms of those 

primitives, her group defined a conceptual dictionary of 15,000 entries. She organ-

ized the concept types into a lattice, which permits inheritance from multiple  

supertypes. 

The first industrial robot was installed at General Motors in 1961. It has been 

developed at Unimation Inc., the first robotic company founded in 1956 by Joseph 

F. Engelberger (a physicist, engineer and entrepreneur who is referred to as the 

"Father of Robotics”). Over the next two decades, the Japanese took the lead by 

investing heavily in robots to replace people performing certain tasks. 

In 1963, John Alan Robinson, philosopher, mathematician and computer scien-

tist invented resolution, a single inference method for first order logic. Resolution 

is a refutation method operating on clauses containing function symbols, univer-

sally quantified variables and constants. The essence of the resolution method is 

that it searches for local evidence of unsatisfiability in the form of a pair of 

clauses, one containing a literal and the other its complement (negation). Resolu-

tion and unification have since been incorporated in many automated theorem-

proving systems and are the basis for the inference mechanisms used in logic  

programming and the programming language Prolog. 

In 1963, DARPA (Defense Advanced Research Project Agency) and MIT 

signed a 2.2 million dollar grant to be used in researching artificial intelligence (to 

ensure that the US will stay ahead of the Soviet Union in technological advance-

ments).  

In 1966, Joseph Weizenbaum form MIT described in Communications of the 

ACM, ELIZA, one of the first programs that attempted to communicate in natural 

language. In only about 200 lines of computer code, Eliza models the behavior of 

a psychiatrist (the Rogerian therapist). ELIZA has almost no intelligence; it uses 

tricks like string substitution and canned responses based on keywords. The illu-

sion of intelligence works best, however, if you limit your conversation to talking 

about yourself and your life. 

Some of the more well-known AI projects that followed the General Problem 

Solver in the late 60’s included: STUDENT, by Daniel G. Bobrow, which could 

solve algebra word problems and reportedly did well on high school mach tests, 

ANALOGY, by Thomas G. Evans (written as part of his PhD work at MIT), 

which solved IQ-test geometric analogy problems, Bert Raphael’s MIT disserta-

tion on the SIT program that demonstrates the power of logical representation of 

knowledge for question-answering systems and Terry Winograd's SHRDLU, 

which demonstrated the ability of computers to understand English sentences in a 

restricted world of children’s blocks (such as a limited number of geometric 

shapes).  

Another advancement in the 1970's was the advent of the expert system. Expert 

systems predict the probability of a solution under set conditions. Due to the large 

storage capacity of computers at the time, expert systems had the potential to in-

terpret statistics, to formulate rules. The applications for real practical problems 

were extensive, and over the course of ten years, expert systems had been intro-

duced to forecast the stock market, medicine and pharmacy, aiding doctors with 

the ability to diagnose disease, and instruct miners to promising mineral locations. 
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This was made possible because of the systems ability to store conditional rules, 

and storage of information. 

One of the earliest expert systems was DENDRAL, developed at Stanford Uni-

versity. DENDRAL was designed to analyze mass spectra.  DENDRAL did con-

tain rules and consists of two sub-programs, Heuristic Dendral and Meta-Dendral 

and its developers believed that it can compete and experienced chemist (was 

marketed commercially in the United States). The program was used both in in-

dustry and academia. MYCIN, another expert system developed at Stanford Uni-

versity too has been used to diagnose blood infections and recommend treatments, 

given lab data about tests on cultures taken from the patient. Although never put to 

practical use, MYCIN showed to the world the possibility of replacement of a 

medical professional by an expert system. PROSPECTOR has been developed by 

NASA. It takes geological information about rock formations, chemical content, 

etc, and advises on whether there were likely to be exploitable mineral deposits 

nearby. Popular accounts of AI say that Prospector (in 1978-ish) discovered a 

hundred-million-dollar deposit of molybdenum. 

These are only some of the first expert systems. Many more have been pro-

posed, including applications in all major domains such as medicine, agriculture, 

engineering, etc. Rule-based systems are a relatively simple model that can be 

adapted to any number of problems. A general form of expert systems is an expert 

system shell. An expert system shell is actually an expert system whose knowl-

edge is removed. Thus, the user can just add its own knowledge in the form of 

rules and provide information to solve the problem. Expert system shells are 

commercial versions of the expert systems. 

The programming language PROLOG was born of a project aimed not at pro-

ducing a programming language but at processing natural languages; in this case, 

French. The project gave rise to a preliminary version of PROLOG at the end of 

1971 and a more definitive version at the end of 1972 at Marseille by Alain Col-

merauer and Philippe Roussel. The name Prolog stands for Progammation en 

Logique in French and was coined by Philippe Roussel. It can be said that Prolog 

was the result of a combination between natural language processing and auto-

mated theorem-proving. 

It was in 1964 when the new theory of fuzzy logic, a different kind of logic, has 

been proposed by Lotfi Zadeh at University of California (Berkeley). The concept 

was not much used at that time in the United States, but in the 70’s the Japanese 

started using fuzzy ideas incorporated in electronic devices. The fuzzy mecha-

nisms were first developed for years in Japan before the rest of the world started 

using them.   It took a long time until fuzzy logic got accepted even though it fas-

cinated some people right from the beginning. Besides engineers, philosophers, 

psychologists, and sociologists soon became interested in applying fuzzy logic 

into their sciences. In the year 1987, the first subway system was built which 

worked with a fuzzy logic-based automatic train operation control system in  

Japan. It was a big success and resulted in a fuzzy boom. Universities as well as 

industries got interested in developing the new ideas. Today, almost every intelli-

gent machine has fuzzy logic technology inside it. 
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Neural networks remained for years only at the stage of a single neuron (per-

ceptron) since their discoveries in the 60’s. Due to lack of machine power required 

for their computational tasks, neural network research didn’t progress much until 

in the mid 80’s. 

In the early 1980's, researchers showed renewed interest in neural networks. 

Recent work includes Boltzmann machines, Hopfield nets, competitive learning 

models, multilayer networks, and adaptive resonance theory models. With the 

backpropagation learning algorithm (and later on with other learning algorithms) 

neural networks became widely used. Neural networks are adequately used for 

data classification and modeling through a learning process. 

Another important milestone in the field of AI is the development of Evolu-

tionary Computation. Under the name evolutionary computation, four major  

domains are covered: genetic and evolutionary algorithms, evolution strategies, 

evolutionary programming and genetic programming. Although some work in this 

field can be traced back to the late 1950’s, the field remained relatively unknown 

to the broader scientific community for almost three decades. This was largely due 

to the lack of available powerful computer platforms at that time.  The fundamen-

tal work of John Holland, Ingo Rechenberg, Hans-Paul Schwefel, Laurence Fogel 

and John Koza represents the base of the evolutionary computation, as we know it 

today. Holland introduced genetic algorithms, probably the most studied and fur-

ther developed branch of evolutionary computation, with remarkable application 

in optimization and search problems. Ingo Rechenberg and Hans-Paul Schwefel 

contributed to the development of evolution strategies. Fogel proposed evolution-

ary programming and Koza is known for his contributions to the genetic pro-

gramming methods. All these methods have been (and still continue to be) further 

developed and improved, with hundreds of thousands of publications related to 

this subject.  

Swarm intelligence is a method, which allows decentralized, self-organized 

systems with relative simple single software agents to solve complex problems 

and tasks together, which neither agent could do alone. Examples include ants 

(from which the Ant Colony Optimization system has derived), which leave 

pheromone trails for others to follow, and go as far as swarm-robots being able to 

symbiotically share computing resources, birds and fish (from which the Particle 

Swarm Optimization algorithm developed), bacteria (which gave birth to Bacterial 

foraging optimization algorithm), Multi-Agent Systems  are systems of similar, 

possibly specialized entities, which are able to collectively solve problems and so 

on. Swarm robotics is a comparative young field of science, focusing on the de-

velopment of limited single robots which are able to perform direct and indirect 

communication with each other and to create dynamic horizontal systems with a 

collective behavior. 

Apart from all these, some progress has been registered in computer games 

playing. For checkers game, there exist Chinook. After 40-year-reign of human 

world champion Marion Tinsley, Chinook defeated it in 1994. Chinook used a 

pre-computed end game database defining perfect play for all positions involving 

8 or fewer pieces on the board, a total of 444 billion positions. For Chess game, 

there exists Deep Blue. Deep Blue defeated human world champion Garry  
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Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions 

per second, uses very sophisticated evaluation, and undisclosed methods for ex-

tending some lines of search up to 40 ply. In Othello game, human champions 

refuse to compete against computers, who are too good. Various kind of robots 

have been developed in the last century (and many continue to be developed to-

day) to help and replace human work in hard and improper conditions.  

1.4   Metamodern AI 

In the new millennium, the trends in AI remain almost the same but more coura-

geous, with more enthusiasm and by far with more advanced technologies. Apart 

from the new developments in terms of concepts and methods, ensembles of exist-

ing paradigms and hybrid intelligent approaches play an important role. Interdis-

ciplinary approaches towards problem solving are another key idea. But involving 

experts from multiple domains such as engineering, biology, computer science and 

cognitive sciences, the progress is much faster. For example, there is a specific 

interdisciplinary trend, NBIC, which stands for Nano-Bio-Info-Cogno, whose 

ideas and research plans sound very promising. Universal Artificial Intelligence, 

idea proposed by Juergen Schmidhuber, comes with universal reinforcement 

learners and decision makers.  

A more general Idea is that of Singularity, a concept originally coined by Ver-

nor Vinge and sustained by Ray Kurzweil and other researchers of the Singularity 

Institute for Artificial Intelligence. The Singularity is the technological creation of 

smarter-than-human intelligence and it is most likely to happen next the machine 

will reach human level artificial intelligence. 

The book offers a gentle introduction to modern computational intelligence 

field starting with the first and most simple ways to approach problem solving 

(some standard search techniques) and then continues with other methods in a 

chronological order of their development. The contents of this book would be 

beneficial for various disciplines and is structured for a larger audience, from 

medical doctors, researchers / scientists / students / academicians and engineers 

from the industry. 
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Chapter 2 

Problem Solving by Search 

2.1   Introduction 

An important aspect of intelligence is goal-based problem solving. Several prob-

lems can be formulated as finding a sequence of actions that lead to a desirable 

goal. Each action changes the state and the aim is to find the sequence of actions 

and states that lead from the initial state to a final (goal) state.  

Searching through a state space involves the following:  

- a set of states; 

- operators; 

- a start or initial state; 

- a test to check for goal state.  

A well-defined problem can be described by[1][2][3]: 

• Initial state;  

• Operator or successor function - for any state x returns s(x), the set of 

states reachable from x with one action; 

• State space - all states reachable from initial state by any sequence of  

actions; 

• Path - sequence through state space; 

• Path cost - function that assigns a cost to a path. Cost of a path is the sum 

of costs of individual actions along the path; 

• Goal test - test to determine if at goal state. 

2.2   What Is Search? 

Search is the systematic examination of states to find a path from the start state to 

the goal state. 

The search space consists of the set of possible states, together 

with operators defining their connectivity. 

The solution provided by a search algorithm is a path from the initial state to a 

state that satisfies the goal test[4][6][7][8][9][11][12][18][20]. 
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In real life situations search algorithms are usually employed when there is lack 

of knowledge and the problems cannot be solved in a better way. 

Search techniques fall into three groups: 

• methods which find any start - goal path; 

• methods which find the best path; 

• search methods in the face of adversaries. 
 

The hardship in problem solving is to decide the states and the operator or succes-

sor function. Figures 1-3 illustrate some examples depicting the different model-

ing aspects of the search process. 

 

Example 1: 8-puzzle 

In the 8-puzzle example depicted in Figure 2.1 we have[10][26][33]: 
 

States: location of blank and location of the 8 tiles 

Operator (successor): blank moves left, right, up and down 

Goal: match the state given by the Goal state 

Path Cost: each step has the cost 1; total cost is considered as being the length of 

path. 

 

 

Fig. 2.1 8-puzzle example. 

Example 2: N - Queens 

The N-Queens problem requires arranging N queens on an N × N (chess) board 

such as the queens do not attack each other. This problem may be defined as: 

 

States: 0 to N queens arranged on the chess board 

Operator (successor): place a queen on an empty square 
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Goal: match a state with N queens on the chess board and no attacks among them 

(an example of a 5-queen goal state is given in Figure 2.2). 

Path Cost: 0. 

 

 

Fig. 2.2 N-queen (N=5) problem example. 

Example 3 - Missionaries and Cannibals Problem 

The problem can be stated as follows: three missionaries and three cannibals are 

on the left bank of a river. They have to cross over to the right bank using a boat 

that can only carry two at a time. The number of cannibals must never exceed the 

number of missionaries on any of the banks. The problem is to find a way to get 

all missionaries and cannibals to the other side, without leaving at any time and 

place a group of missionaries outnumbered by the cannibals. 

For this problem we define: 

State: The state consists of: 

• the number of missionaries on the left bank, 

• the number of cannibals on the left bank, 

• the side of the bank the boat is on. 

Operator: A move is represented by the number of missionaries and the number of 

cannibals taken in the boat at one time. Since the boat can carry no more than two 

people at once, there are 5 possible combinations: 

 (2 Missionaries, 0 Cannibals) 

 (1 Missionary, 0 Cannibals) 

 (1 Missionary, 1 Cannibal) 

 (0 Missionary, 1 Cannibal) 

 (0 Missionary, 2 Cannibals) 
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Goal: (0, 0, right) 

Path cost: number of crossings. 

2.3   Tree Based Search 

The set of all paths within a state-space can be viewed as a graph of nodes, which 

are connected by links. If all possible paths are traced out through the graph, and 

the paths are terminated before they return to nodes already visited (cycles) on that 

path, a search tree is obtained. Like graphs, trees have nodes, but they are linked 

by branches. The start node is called the root and nodes at the other ends are 

leaves. Nodes have generations of descendents. The first generations are children. 

They have a single parent node, and the list of nodes back to the root is 

their ancestry. A node and its descendents form a subtree of the node's parent. If a 

node's subtrees are unexplored or only partially explored, the node is open, other-

wise it is closed. If all nodes have the same number of children, this number is 

the branching factor[27]. 

2.3.1   Terminology  

• Root node: represents the node the search starts from; 

• Leaf node: a terminal node in the search tree having no children; 

• Ancestor/descendant: node A is an ancestor of node B if either A is B’s 

parent or A is an ancestor of the parent of B. If A is an ancestor of B, B is 

said to be a descendant of A;  

• Branching factor: the maximum number of children of a non-leaf node in 

the search tree; 

• Path: a path in the search tree represents complete path if it begins with 

the start node and ends with a goal node. Otherwise it is a partial path. 
 

A node in the tree may be viewed as a data structure containing the following 

elements: 

• a state description;   

• a pointer to the parent of the node; 

• depth of the node;  

• the operator that generated this node; 

• cost of the path (sum of operator costs) obtained from the initial (start) 

state.  
 

It is advisable not to produce complete physical trees in memory, but rather ex-

plore as little of the virtual tree looking for root-goal paths [1][5]. 

State space is explored by generating successors of the already explored states. 

Every state is evaluated in order to see whether this is the goal state. A disadvan-

tage of the tree search is that it can end up repeatedly visiting the same node. A 

solution to this is to store all the visited nodes but this will require a lot of memory 

resources. A more general approach is the graph search. 
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The nodes that the algorithm has generated so far during the search process are 

kept in a data structure called OPEN or fringe. Initially only the start node (the 

initial state) is in OPEN.  

The search starts with the root node. The algorithm picks a node from OPEN 

for expanding and generates all the children of the node. Expanding a node from 

OPEN results in a closed node. Some search algorithms keep track of the closed 

nodes also in a data structure called CLOSED[29]. 

The search problem will return a solution or a path to a goal node. Finding a 

path is important in problems like path finding, n-puzzle problems, traveling sa-

lesman problem and other such problems. There are also problems like the N-

queens and cryptarithmetic problem for which the path to the solution is not im-

portant. For such problems the search problem needs to return the goal state only. 

An Example of search tree for the 8-puzzle problem is depicted in Figure 2.3. 

 
Fig. 2.3 Example of search tree for the 8-puzzle problem. 

2.4   Graph Search 

If the search space is not a tree, but a graph, the search tree may contain different 

nodes corresponding to the same state.  The state space can be considered a  graph 

G(V, E), where V is the set of nodes and E is a set of vertices, which are directed 

from a node to another node. Each node contains information including:  

- a state description; 

- node’s parent; 

- the operator that generated the node from that parent; 

- other information. 
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Each vertex corresponds to an instance of one of the operators. When the operator 

is applied to the state associated with the arc's source node, then the resulting state 

is the state associated with the vertex's destination node. Each vertex has a posi-

tive cost associated with it corresponding to the cost of the operator. 

Each node has a set of successor nodes corresponding to all of the operators 

that may be applied at the source node's state. Expanding a node means generating 

all the successor nodes of it and add them and their associated vertices to the state-

space graph. 

We have the following correspondence: 

• Initial state: One or more nodes are designated as start nodes. 

• State space – Initially, a starting node S is considered and V={S}. Then S 

is expanded and its generated successors (nodes and vertices) are added 

to V and E respectively. This process continues until a goal node is 

found; 

• Path - each node represents a partial solution path from the start node to 

the given node. In general, from this node there are many possible paths 

(and therefore solutions) that have this partial path as a prefix; 

• Path cost: the sum of the vertices costs on the solution path; 

• Goal test – test applied to a state to determine if its associated node is 

a goal node and satisfies all goal conditions; 

• Solution: a sequence of operators that is associated with a path in a state 

space from a start node to a goal node.  

 

Remarks 

(i) Search process constructs a search tree, where root is the initial state 

and all the leaf nodes are either nodes that have not yet been ex-

panded or nodes that have no successors.  

(ii) Because of loops, search tree may be infinite even for small search 

spaces. 

The general search structure is given in Algorithm 2.1. Problem describes the start 

state, operators, goal test and costs. Strategy is what differentiates different search 

algorithms; based on it, several search methods exist. The result of the algorithm 

is either a valid solution or failure. 

Algorithm 2.1 

General_search (problem, strategy) 

Use initial state of the problem to initialize the 

search tree 

Loop 

 If there are no nodes to expand  

 Then return failure; 

 Based on strategy select a node for extension; 

 Apply goal test; 
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 If the node is a goal state  

 then return the solution 

 Else expand the node and add the resulting 

nodes and vertices to the search tree. 

End; 

Remarks 

(i) It can be observed that the goal test is not done for each node when it is 

generated; 

(ii) The algorithm does not have any mechanism to detect loops. 

2.5   Search Methods Classification 

Search methods can be classified into two major categories: 

- uninformed (blind) search; 

- informed (heuristic) search. 

Some of the well known algorithms, which can be found under the umbrella of 

uninformed search are: 

- breadth-first; 

- depth-first; 

- iterative deepening depth-first; 

- bidirectional; 

- branch and bound (or uniform cost search).  

In the category of informed search we can find: 

- hill climbing; 

- beam search 

- greedy; 

- best first search 

- heuristics.  

This Chapter treats in detail some of the well known uniformed search methods. 

The following chapter deals with some of the most important informed search 

algorithms. 

2.6   Uninformed Search Methods 

In this section we will talk about blind search or uninformed search that does not 

use any extra information about the problem domain.  

 

 



20 2   Problem Solving by Search

 

2.6.1   Breadth First Search  

In the breadth first search (BFS) algorithm, each state at a given layer is expanded 

before moving to the next layer of states. This way always the node nearest the 

root can be cached. This is important if the tree is unbalanced, but is wasteful if all 

the goal nodes are at similar levels[11][12][13][17]. 

As observed from Figure 2.4, the root state is expanded to find the states L1, 

L2, and L3. Since there were no more states at this level, the state L1 is picked and 

expanded and the states L1.1, L1.2 and L1.3 were produced. There are still two 

states remaining – L2 and L3 – before expanding the states L1.1-L1.3. So, L2 and 

L3 are expanded next. If there are no more states at the current level to expand, the 

first node from the next level is expanded and this is carried on until a solution is 

found. The process is described in detail in Figure 2.5 for the first 4 steps (a)-(d) 

and the final configuration obtained at the end of the search process is provided in 

(e). The colored node is the one that is expanded next. The breath first search al-

gorithm is presented in Algorithm 2.2.  

Algorithm 2.2. Breadth first search 

Step 1. Form a queue Q and set it to the initial state 

(for example, the Root). 

Step 2. Until the Q is empty or the goal state is found 

do:  

Step 2.1 Determine if the first element in 

the Q is the goal. 

            Step 2.2 If it is not 

Step 2.2.1 remove the first element in Q. 

Step 2.2.2 Apply the rule to generate 

new state(s) (successor states). 

Step 2.2.3 If the new state is the 

goal state quit and return this state 

Step 2.2.4 Otherwise add the new 

state to the end of the queue. 

Step 3. If the goal is reached, success; else failure. 

 

The breadth first search algorithm has exponential time and space complexity. The 

memory requirements are actually one of the biggest problems. Russel and Norvig 

[2] illustrate an interesting example: consider a complete search tree of depth d 

varying from 0 to 14 and the branching factor 10. The complexity is O(10
d+1

)) 

nodes. If breadth first search expands 10,000 nodes per second and each node uses 

100 bytes of storage, then this will only take 11 seconds for depth 4 but this will 

increase to 31 hours for depth 8, 35 years for the depth 12 and will take 3,500 

years to run in the worst case for depth 14 using 11,100 terabytes of memory.  
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Fig. 2.4 Example of states layers in breadth first search.  

 

Fig. 2.5 Example of states expansion using breadth first search. 
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Hence, the conclusion is that the breadth first search algorithm cannot be effec-

tively used unless the search space is quite small. The advantage of the breadth 

first search is that it finds the path of minimal length to the goal, but it has the dis-

advantage of requiring the generation and storage of a tree whose size is exponen-

tial to the depth of the shallowest goal node. 

Example 1: Breadth First Search for 8-puzzle 

A simple 8-puzzle example for which the goal state is reached in the third layer of 

expanded states is presented in Figure 2.6. The goal state is the one in which the 

blank is on the upper lest corner and the tails are arranged in ascending order.  

 

Fig. 2.6 Example of breadth first search for the 8-puzzle problem. 

Example 2: Breadth First Search for Missionaries and Cannibals Problem 

In order to simplify the explanations, the following notations are used: M for mis-

sionaries, C for cannibals and L and R representing the left or right side the boat is 

in. A graphical illustration of the problem is given in Figure 2.7. 

A state can be represented in the following form: 

(Left (#M, #C), Boat, Right(#M, #C), 

which represents the number of missionaries and cannibals on the left side, the 

side the boat is, and the number of missionaries and cannibals on the right side 

respectively. Since the number of missionaries and cannibals should always be 3 

on both river banks, we can simplify the notation of the state: (#M, #C, L/R). So,  
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Fig. 2.7 The missionaries and cannibals problem illustration. 

the state represents how many people are on the left side of the river and whether 

the boat is on the left or right side. 

There are five possible actions from any state: 

- one missionary moves to the right bank; 

- two missionaries move to the right bank; 

- one cannibal moves to the right bank; 

- two cannibals move to the right bank; 

- one cannibal and one missionary move to the right bank. 

The two important things to note are that each action results in a boat movement 

and there are at most five actions. Note that, starting from the initial state, 2 of the 

5 actions violate the constraints of the problem (the cannibals outnumber the mis-

sionaries as in the case of the first two actions). 

The search space for this problem consists on 32 states, which are represented 

in Figure 2.8. The shadowed states correspond to situations in which the problems 

constraints are violated.  

 

 

Fig. 2.8 The State-space for the missionaries and cannibals problem. 

An Example of a solution for this problem is presented in Figure 2.9. It is evi-

dent how the situation changes on both sides and also it may be also used to de-

duce what the boat will be carrying on both directions. 
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Fig. 2.9 A solution for the missionaries and cannibals problem. 

2.6.2   Depth First Search 

The depth first search algorithm is almost identical with the breadth first search 

algorithm with the main difference in Step 2.2.4 where the children is placed in 

the beginning of the queue compared to the end of the queue in the case of breadth 

first search (see Algorithm 2.3).  

The queue here may be replaced with a stack. Nodes are popped from the front 

of the queue and new nodes are pushed to the front. The strategy always chooses 

to expand one of the nodes that is at the deepest level on the search tree. It only 

expands nodes on the queue that are at the shallower level if the search has 

reached a dead-end at the deepest level[14][16][19][35].  

A path is expanded as much as possible until it reaches a goal node or can be 

expanded no more prior to expanding other paths.  
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Algorithm 2.3. Depth first search 

Step 1. Form a queue Q and set it to the initial state 

(for example, the Root). 

Step 2. Until the Q is empty or the goal state is found 

do:  

Step 2.1 Determine if the first element in 

the Q is the goal. 

            Step 2.2 If it is not 

Step 2.2.1 Remove the first element 

in Q. 

Step 2.2.2 Apply the rule to generate 

new state(s) (successor states). 

Step 2.2.3 If the new state is the 

goal state quit and return this state 

Step 2.2.4 Otherwise add the new 

state to the beginning of the queue. 

Step 3. If the goal is reached, success; else failure. 
 

The difference between the way in which breadth first search and depth first 

search expansion can be observed by comparing Figures 2.4 and 2.10.  The search 

performed by breadth first search in Figure 2.5 can be compared with the search 

performed for the same data by depth first search in Figure 2.11. 
 

 

Fig. 2.10 Example of depth first search expansion. 

Depth first search algorithm takes exponential time. If d is the maximum depth 

of a node in the search space, the worst case algorithm’s time complexity is O(b
d
). 

However the space taken is linear for the depth of the search tree and is given by 

O(bd).   

The time taken by the algorithm is related to the maximum depth of the search 

tree. If the search tree has infinite depth, the algorithm may not terminate. This 

can happen in situations where the search space is infinite or if the search space  
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Fig. 2.11 An example of the application of depth first search for reaching a goal state. 

contains cycles. The latter case can be handled by checking for cycles in the algo-

rithm. This makes depth first search not to be complete.   

 
Example: Depth first search for the 8- puzzle problem 

 

Figure 2.12 presents the application of depth first search for the 8-puzzle problem 

(same example as in the breadth first search). 

2.6.3   Backtracking Search 

Backtracking search is a depth-first search that chooses values for one variable at 

a time and backtracks when a variable has no legal values left to assign. It uses 

less memory than depth first search because only one successor is generated at a 

time but is still not an optimal search technique. 

The backtracking search applied for the same 8-puzzle problem given above is 

presented in Figure 2.13. It is to be noted that Figure 2.13 only presents the way in 

which a (first) solution is obtained, but the backtracking search algorithm will 

continue to investigate all other possible situations and will return all the solutions 

(in case there are more than one).  
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Fig. 2.12 Example of depth first search for the 8-puzzle problem. 

The arrows in Figure 2.13 show the order in which states are explored and  

expanded.  

2.6.4   Depth Bounded (Limited) Depth First Search 

Depth bounded depth first search (also referred as depth bounded search or depth 

limited search) is similar with depth first search but paths whose length has 

reached some limit, l, are not extended further. This can be implemented by consi-

dering a stack (or a queue but in which nodes are added in the front) but any node 

whose depth in the tree is greater than l is not added. 

Figure 2.14 presents the same example as in Figure 2.11. Please refer to Figure 

2.14 (a) for l= 2 and Figure 2.14 (b) for l=4). Depth limited search is similar to 

standard depth first search but the tree is not explored below some depth-limit l.   

Depth bounded search solves problem of infinitely deep paths with no solutions 

but will be incomplete if solution is below depth-limit. Depth limit l can be se-

lected based on the problem knowledge (e.g., diameter of state-space). 

Figure 2.15 presents an example of depth limited search with limit 3 for the 8-

puzzle problem. 
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Fig. 2.13 Backtracking search applied for the 8-puzzle problem. 

 

Fig. 2.14 Example of depth bounded search with l=2 – left (a) and l=4 – right (b). 
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Fig. 2.15 Example of depth limited search for the 8 puzzle problem 

2.6.5   Iterative Deepening Depth First Search 

Iterative deepening dept bounded depth first search (also referred to as iterative 

deepening search) consists of repeated depth bounded searches using successive 

greater depth limits. The Algorithm first attempts a depth bounded search with a 

depth bound (or limit) 0, then it tries a dept bounded search with a depth limit of 

1, then of 2 and so on. Since the search strategy is based on depth bounded search 

the implementation does not require anything new. The depth bounded searches 

are repeated until a solution is found[15][28][34][37][38][39].  

An example of iterative deepening search with limits from 0 to 3 is depicted in 

Figures 2.15-2.18. 

The iterative deepening search algorithm is simply described in Algorithm 2.4. 
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Algorithm 2.4. Iterative deepening search 

Returns a solution or failure; 

Input problem; 

l = 0 

While no solution, do 

Apply depth first search(problem, depth) from in-

itial state with cutoff l   

If matched the goal 

Then stop and return solution,  

Else increment depth limit l=l+1   

End. 

 

 

Fig. 2.15 Iterative deepening search for limit l=0. 

 

Fig. 2.16 Iterative deepening search for limit l=1. 

The advantage of the iterative deepening search is that it requires linear memo-

ry and it guarantees for goal node of minimal depth. For large depth d, the ratio of 

the number of nodes expanded by iterative deepening search compared to that of 

depth first search or breadth first search is given by b/(b-1). This implies that for 

higher values of the branching factor the overhead of repeated expanded states 

will be smaller. For a branching factor of 10 and deep goals, there will be 11% 

(10/9) more nodes expanded in iterative deepening search than the breadth first 

search.   

Iterative deepening search combines the advantage of completeness from 

breadth first search with that of limited space and ability to find longer paths more 

quickly of the depth first search. This algorithm is generally preferred for large 

state spaces where the solution depth is unknown. There is a related technique 
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called iterative broadening, which works by first constructing a search tree by 

expanding only one child per node. This algorithm is useful when there are many 

goal nodes.  

 
 

Fig. 2.17 Iterative deepening search for limit l=2. 

 

 

Fig. 2.18 Iterative deepening search for limit l=3. 



32 2   Problem Solving by Search

 

2.6.6   Branch and Bound (or Uniform Cost Search) 

With the branch and bound search, the node with the minimum cost is always ex-

panded. Once a path to the goal is found, it is likely that this path is optimal. In 

order to guarantee this, it is important to continue generating partial paths until 

each of them has a cost greater than or equal to the path found to the goal. The 

branch and bound algorithm is presented in Algorithm 2.5. 

Algorithm 2.5. Branch and bound (uniform cost) search 

Return a solution or failure 

Q is a priority queue sorted on the current cost from 

the start to the goal 

Step 1. Add the initial state (or root) to the queue. 

Step 2. Until the goal is reached or the queue is empty 

do 

Step 2.1 Remove the first path from the queue; 

Step 2.2. Create new paths by extending the first 

path to all the neighbors of the terminal node. 

Step 2.3. Remove all new paths with loops. 

Step 2.4. Add the remaining new paths, if any, to 

the queue. 

Step 2.5.  Sort the entire queue such as the 

least-cost paths are in front. 

End 

Given that every step will cost more than 0, and assuming a finite branching fac-

tor, there is a finite number of expansions required before the total path cost is 

equal to the path cost of the goal state. Hence, the goal is reached within a finite 

number of steps. 

The proof of optimality for the branch and bound search can be done by con-

tradiction. If the solution found is not the optimal one, then there must be a goal 

state with path cost smaller than the goal state which was found which is actually 

impossible because branch and bound would have expanded that node first by 

definition. 

Example 

Consider the graph given in Figure 2.19 with the initial node S and the goal node 

G and the cost associated to each edge. Te problem is to find the shortest path (or 

the path with the lowest cost) from S to G. 

The way in which uniform cost search is applied to obtain the optimal solution 

for this problem is presented in Figure 2.20 and described as follows. 

Consider S as the initial state and S is expanded into A and C (Figure 2.20 (a)).  

Since the path S – C has the lowest cost until now, C is the next expanded node. 

C is expanded into B and D.  
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Fig. 2.19 An example of a graph with the cost associated to each edge. 

 

Fig. 2.20 Branch and bound applied for the graph given in Figure 2.19. 

At this stage, there are three paths: S – A with cost 3, S – C – B with cost 7 and 

S – C – D with cost 8 (Figure 2.20 (b)).  

Since the path S – A had the lowest cost as of now, A is the next expanded 

node. A is expanded into B and D. Now there are 4 paths: S – A – B of cost 4, S – 

A – D of cost 6, S – C – B of cost 7 and S – C – D of cost 8 (Figure 2.20 (c)). 
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The path S – A – B has the lowest cost, thus B is the next expanded node. B 

expands to G, which is the goal state and thus, a first solution is obtained. This 

solution has the cost 11 (Figure 2.20 (d)). 

Even though the goal has been reached, it is important to expand the other 

branches as well to see whether another path exists with a lower cost. 

Hence node D is expanded to form the path S – A – D. The goal is reached 

again and the total cost of this path is 7, which indicates that this as the best solu-

tion until now (Figure 2.20 (e)).  

There are still two more nodes to be expanded. But it is meaningless to expand 

any of them because the cost of their paths until now is at least equal or greater 

than the cost of the best solution obtained until now. 

Consequently, the optimal solution found for the graph given in Figure 2.18 is 

S- A – D – G with a cost of 7. 

2.6.7   Bidirectional Search 

There are three main known and used search directions: 

- forward; 

- backward; 

- bidirectional. 
 

The forward search starts from the current state and finds the goal, trying all pos-

sibilities one by one. The backward search starts from the goal and find current 

state. This is possible if goal is known. In the bidirectional search, nodes are ex-

panded from the start and goal state simultaneously[21][23]. At each stage it is 

checked whether the nodes of one have been generated by the other.  If so, then 

the path concatenation is the solution. Instead of searching from the start to the 

finish, two searches may be performed in parallel: one from start to finish, and one 

from finish to start. When they meet, a good path should be obtained. The search 

needs to keep track of the intersection of 2 open sets of nodes. 

Suppose that the search problem is such that the arcs are bidirectional. That is, 

if there is an operator that maps from State A to State B, there is another operator 

that maps from State B to State A. Many search problems have reversible arcs 

such as n-puzzle, path finding, path planning etc. However there are other state 

space search formulations, which do not have this property. If the arcs are reversi-

ble then instead of starting from the start state and searching for the goal, one may 

start from a goal state and try reaching the start state. If there is a single state that 

satisfies the goal property, the search problems are identical.   

The idea behind bidirectional searches is that searching results in a tree that 

fans out over the map. A big tree is much worse than two small trees, so it's better 

to have two small search trees.  

Sometimes it might be hard to perform backward search from the goal because 

of the following situations: 

- specify the predecessors of the goal; 

- deal with situations where there are multiple goals. 
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The retargeting approach abandons simultaneous searches in the forward and 

backward directions. Instead, it performs a forward search for a short time, choos-

es the best forward candidate, and then performs a backward search not to the 

starting point, but to that candidate. After a while, it chooses a best backward can-

didate and performs a forward search from the best forward candidate to the best 

backward candidate. This process continues until the two candidates are the same 

point. 

Example 

Consider the graph given in Figure 2.19. Figure 2.21 shows an example on how 

bidirectional search may be applied. Depth first search is used as search algorithm. 

Two depth first searches are performed in parallel, one starting from S and one 

starting from G (see Figure 2.21 (a)). In level 2 of expansions from the initial node 

and first level of expanded nodes from the goal node one of the paths meets the 

other one (see Figure 2.21 (b)). 

 

Fig. 2.21 Example of bidirectional search (depth first search is the search technique used) 

for the graph depicted in Figure 2.19. 
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2.7   Performance Evaluation of the Uninformed Search 

Strategies 

The different search strategies can be compared in terms of: 

(i) completeness: guarantees finding a solution whenever one exists; 

(ii) time complexity: it measures how long it takes to find a solution; 

(iii) space complexity: it measures how much space is used by the algo-

rithm. This measure is usually done in terms of the maximum size of 

the nodes list expanded during the search. 

(iv) optimality (quality of solution): it reflects what is the guarantee of a 

solution once find to be optimal; whether it is or not the one with 

minimum cost.  

Time and space complexity are measured in terms of:  

- b: maximum branching factor of the search tree; 

- d: depth of the least-cost solution; 

- m: maximum depth of the state space (which may be also ∞); 

- l: depth limit for the depth limited search. 

A comparison of all the six main uninformed search techniques described in the 

previous Sections (breadth first search, depth first search, depth limited search, 

iterative deepening search, uniform search and bidirectional search) in terms of 

completeness, time complexity, space complexity and optimality is illustrated in 

Table 2.1. 

2.7.1   Remarks and Discussions 

Depth first search possesses the benefit of lower space complexity. Breadth first 

search is guaranteed to find an optimal path. A combination of these two search 

techniques is the iterative deepening search. Iterative deepening search involves 

trying all possible depths in turn and stopping once a goal state is reached. The 

benefits are that it is complete and optimal like Breadth First Search, but has the 

modest memory requirements of depth first search. Like depth-first search, its 

memory requirements are O(bd)[36][40] 

Like breadth-first search, it is complete when the branching factor is finite and 

optimal when the path cost is a non-decreasing function of the depth of the node. 

If the path cost limit is increased instead of the search depth the phenomenon is 

called iterative lengthening. However, this has more overheads and does not inhe-

rit all advantages of iterative deepening search. 

The depth first search is appropriate when: 

- the space is restricted; 

- the solutions tend to occur at the same depth in the tree; 

- there is a known way to order nodes in the list of neighbors so that solu-

tions will be found relatively quickly. 
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Table 2.1 Comparison of some of the most important uninformed search techniques in 

terms of completeness, time complexity, space complexity and optimality. 

Search 

method 

Completeness Time complexity Space 

complexity 

Optimality 

Breadth first 
search 

It is complete if b 
is finite 

1+b+b
2
+b

3
+  +b

d
 + b(b

d
-

1) = O(b
d
+1) 

O(b
d
+1) – 

keeps every 
node in 
memory 

Optimal if all operators 
have the same cost.  

Otherwise it finds a 
solution with the 
shortest path length. 

 

Depth first 
search 

No: fails in 
infinite-depth 
spaces, spaces 
with loops  

O(b
m
) 

Not a good situation when 

m is much higher than d. 

If solutions are dense, 
may be much faster than 
breadth first search. 

O(bm) – linear 
space 

No 

 

Depth limited 
search 

Complete if 
solution is at 

depth < l  

 

O(b
l
) O(bl) No 

 

Iterative 
deepening 
search 

Yes (d+1)b
0
 + d b

1
 + (d-1)b

2
 + 

  + b
d
 = O(b

d
) 

O(bd) Optimal if the cost is a 
constant 

 

Uniform 
search 

Yes O( b 
floor(Cost/

ε
)
 ) 

where Cost is the cost of 

the optimal solution, ε is a 
positive constant and it is 
assumed that every step 

costs at lest ε. 

floor(x) is the 
largest integer not greater 

than x 

floor(Cost/ε) ∼ depth of 
solution if all costs are     
approximately equal 

O( b 
floor(Cost/

ε
)
 ) 

 

Yes 

 

Bidirectional 
search 

It is complete if b 
is finite 

O(b
d/2

) O(b
d/2

) Yes 

 

 
The depth first search is inappropriate when: 

- some paths have infinite length; 

- the graph contains cycles; 

- some solutions are very deep, while others are very shallow. 

Complexity is a motivation for the bidirectional search: it is obvious that b
d/2 

+ b
d/2

 

<< b
d
 

For example, by starting the search from both direction (intial state and goal) 

using the breadth first search and considering d=6 and b=10, only 22,200 nodes 

will be generated by the bidirectional search compared to 11,110,000 nodes  
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generated by a standard application of the breadth first search from a single direc-

tion. There are various trade-offs among these algorithms; best algorithm will de-

pend on the nature of the search problem 

2.7.2   Repeated States 

Repeated states can be the source of great inefficiency: identical sub-trees will be 

explored many times. 

In many search problems, one can adopt some less computationally intense 

strategies. Such strategies do not stop duplicate states from being generated, but 

are able to reduce many of such cases. Some of such strategies are as follows:   

1. Not to return to the state the algorithm just came from (prevents cycles of 

length one). This simple strategy avoids many node re-expansions in n-

puzzle like problems. 

2. Check that paths with cycles in them are not constructed. This strategy 

only needs to check the nodes in the current path so is much more effi-

cient than the full checking algorithm. This strategy can be employed 

successfully with depth first search and not require additional storage.   

3. Do not generate any state that was ever created before.  

4. Avoid infinite-depth trees (for finite-state problems) but do not avoid vi-

siting the same states again in other branches 

5. Maintain Close-List beside Open-List (fringe). If current node is on the 

closed-list, it is discarded, not expanded 
 

The user should decide which strategy to be employed by considering the frequen-

cy of loops in the state space. Failure to detect repeated states can turn a linear 

problem into an exponential one. However, for dealing with problems with many 

repeated states (but small state-space), graph-search can be much more efficient 

than tree-search. 

Summary 

This Chapter outlined the basic search algorithm and the various variations of this 

algorithm.  A search space consists of states and operators and it can be easily 

seen as a graph. Corresponding to a search algorithm, we get a search tree which 

contains the generated and the explored nodes. A search tree represents a particu-

lar exploration of search space. The search tree may be unbounded. This may hap-

pen if the state space is infinite. This can also happen if there are loops in the 

search space. 

Search techniques are used in artificial intelligence to find a sequence of steps 

that will get us from some initial state to some goal state (or multiple goal states). 

Search can be forward, from the initial state or backwards, from the goal state and 

sometimes can be from both directions (bidirectional). Whichever direction is 

chosen, various search algorithms can be employed to do the search. The  
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appropriate direction of search and the appropriate algorithm depend on the nature 

of the problem to be solved, and in particular the properties of the search space. 

There are different search strategies:  

• Blind search strategies or uninformed search, which include: 

o Breadth first search 

o Depth first search  

o Depth limited search 

o Iterative deepening search  

o Uniform cost search 

o Bidirectional search 

• Informed Search  

• Constraint Satisfaction Search  

• Adversary Search. 

This chapter mainly focused on the uninformed search techniques. Breadth first 

search technique was introduced first. The next one is the depth first search fol-

lowed by a short description of backtracking search as a particular case of it and 

the by depth bounded (limited) search as a variant of depth first search. Iterative 

deepening search is the fifth method presented followed by uniform cost search 

and ending with the bidirectional search. A comparison of all these techniques in 

terms of completeness, optimality, time and space complexity was also illustrated.  

Some important ideas, which can be derived from this Chapter, are summarized 

below[22][24][25][30][31][32]: 

• Breadth first search algorithm is optimal if all operators have the same 

cost. Otherwise, breadth first search finds a solution with the shortest 

path length. The algorithm has exponential time and space complexity 

and for a search tree of depth 15 and branch factor 10 it takes thousands 

of years to find the solution.   

• Depth first search is exponential in time but linear in search space. The 

time taken by the algorithm is related to the maximum depth of the 

search tree. Note that if the search tree has infinite depth, the algorithm 

may not terminate. This can also happen if the search space is infinite or 

contains cycles. 

• Depth first and breadth first search both have some advantages. Which is 

best depends on properties of the problem you are solving. For tree 

search at least, depth first search tends to require less memory. If there 

are lots of solutions, but all at a comparable depth in the tree, then a solu-

tion can be reached just by exploring a very small part of the tree. On the 

other hand, that may not be the best solution. Depth first search may get 

stuck exploring long (and sometimes infinite) paths, when there is a solu-

tion path of only one or two steps. This can be prevented by setting the 

depth limit. 

• Depth first is good when there are many possible solutions and we are 

only looking for one solution. It is less suitable when there is only one 

solution or we are looking for the shortest one. 
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• Breadth first search may use more memory, but will never get stuck and 

will always find the shortest path first or at least the path that involves the 

least number of steps. It may be more appropriate when exploring very 

large search spaces where there is an expected solution which takes a rel-

atively small number of steps, or when we are interested in finding all the 

solutions. 

• Iterative deepening search uses only linear space and not much more time 

than other uninformed search algorithms. 

• Uniform cost search is complete and optimal but exponential in time and 

search space. 

• Forward search builds a tree from the initial state until the goal set is 

reached or the termination condition is satisfied. Backward search builds 

a tree from the goal state until the initial state is reached. Bidirectional 

search performs forward and backward search simultaneously until the 

trees meet. So, a breadth first search can be forward, backward, or bidi-

rectional, for example. 

Problem formulation and representation is the key in solving many real world 

problems. Implementation as expanding directed graph of states and transitions is 

appropriate for problems where no solution is known and many combinations 

must be tried. Problem space is of exponential size in the number of world states 

(NP-hard problems). The failures occur due to lack of space and/or time. 
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Verification Questions 

1. Briefly discuss the advantages and disadvantages of depth and breadth first 

search. What sort of problem is each appropriate for? 

 

2. How does the use of a closed node list reduce the amount of search required in 

graph search? 

 

3. What are the main advantages and what are the disadvantages of the breadth 

first search technique? 

 

4. What are the main advantages and what are the disadvantages of the depth first 

search technique? 

 

5. How does the iterative deepening search behave while compared to depth first 

search? 

 

6. What is the advantage of depth limited search compared to depth first search 

and what are the inconveniences of this technique? 

 

7. What is the time complexity of breadth first search and how you calculate it? 

 

8. What is the time and space complexity of depth first search and how you obtain 

them? 

 

9. What is the time and space complexity of iterative deepening search and how 

you calculate them? 
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10. What is the complexity of bidirectional search? Explain. 

 

11. Give an example of a state space in which iterative deepening search performs 

much worse than depth first search.  

 

12. Suppose that we are searching a tree with a branching factor b and depth d. 

There is a single goal state located at depth g (0 ≤ g ≤  d). 

 

a) In the worst case, how many nodes are explored by breadth first search?  

b) In the best case, how many nodes are explored by breadth first search?  

c) In the worst case, how many nodes are explored by depth first search?  

d) In the best case, how many nodes are explored by depth first search?  

Exercises 

2.1 Consider the n-queens problem. 

a) Define the search elements: states space, initial state, operators, and goal state. 

b) Solve the problem for n=5 and n= 8 using breadth first search and depth first 

search and compare the results. 

2.2 Given the search tree bellow (Figure 1), state the order in which the nodes will 

be searched for breadth first search, depth first search, depth limited search (for 

l=1, 2, 3) and iterative deepening search. 

 

Fig. 1 Search tree example fir problem 2.2 

2.3. Let us consider a Sudoku game. This game is a logic puzzle whose idea is to 

take a partially-filled n × n square and fill in the missing cells with numbers which  
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are assigned uniquely for, each row, each column, and each of the n squares of 

size nn ×  (as shown in Figure 2 (a) and (b) for a puzzle of size 4 × 4 and one 

of size 9 × 9 respectively). 

A well-formed Sudoku puzzle is one where there exists a unique solution to 

these constraints. 
 

a) Apply any of the uninformed search methods you like to find a solution 

for the 4 × 4 puzzle given in Figure 2 (a). At each step in the game, you 

can fill in the empty positions with a number from 1 to 4. A solution to 

the puzzle is a fully filled in game board in which each number from 1 

to 4 appears exactly once in each row, column and block.  

b) What is the number of search states for the problem considered at a)?  

c) What can you tell about time and space complexity of this problem (the 

one at a))? 

d) How will the time and space complexity increase if you remove the 

numbers from the cells (3, 4) and (4, 2) of the initial configuration? 

e) Consider the 9 × 9 Sudoku given in Figure 2 (b). Try to solve it using 

the same search algorithm as for the 4 × 4 one and compare the com-

plexity. 

f) Pick one of the uninformed search algorithms which will reach the so-

lution in the shortest time (if this is not the one you already used). 

 
Fig. 2 Example for the problem 2.3. 

2.4. Develop a general uninformed search algorithm, which can efficiently solve 

any of the cryptarithmetic problems given in Figure 3.  
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Fig. 3. Examples for the problem 2.4. 

The following are known: 

• Each letter represents only one digit throughout the problem; 

• When letters are replaced by their digits, the resultant arithmetical opera-

tion must be correct; 

• The numerical base, unless specifically stated, is 10; 

• Numbers must not begin with a zero; 

• There must be only one solution to the problem. 

2.5 Consider the geometric shapes given in Figure 4. Find a way to arrange them 

into the 5 × 4 rectangular area given on the left side such as the area will be entire-

ly filled, all the shapes will be used and none of the shapes overlap. Use breadth 

first search, iterative deepening search and backtracking for this problem and 

compare the results (in terms of completeness, optimality, time and space com-

plexity). 

 

Fig. 4 Example for the problem 2.5. 

2.6 Sort a list of objects (for instance, a list of integers) using as operator swap-

ping of two objects in the list. Use bidirectional search technique for this. 
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2.7 Consider the graph in Figure 5 which represents some of the European cities 

and distances between them (Figure 6). The problem requires finding the shortest 

path from Madrid to Bucharest. 
 

a) What is the state space for this problem and what is its size? 

b) Draw the search tree resulting from breadth first search. How many nodes 

are expanded?  

c) Draw the search tree resulting from depth first search. How many nodes are 

expanded? 

c) Draw the search tree resulting from uniform cost search. How many nodes 

are expanded?  

d) Use backtracking; 

e) Use iterative deepening search; 

g) Explain each of the techniques used above gives the best result. Explain 

which of the techniques might get stuck into loops and will not reach a solu-

tion in reasonable time. 

 

Fig. 5 Example for the problem 2.7 
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Fig. 6 Edge cost for the graph in Figure 5 (for the problem 2.7). 

 
 

Fig. 7 Direct distances to Bucharest from any node (city) of the graph depicted in Figure 5 

(for problem 2.7). 

 
2.8 Implement the missionaries and cannibals problem described in this Chapter 

using any of the uninformed search techniques you prefer. 

 

2.9 On the bank of a river are 1 adult, 2 children and a small boat. The people 

have to cross the river. The boat can only carry: 
 

• 2 children or  

• a single child or  

• a single adult. 

a) What is the search space for this problem? 

b) Draw the search tree using any of the uninformed search techniques. 
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c) How will the complexity be improved if reduce de branching factor by con-

sider that logically both children are same? Explain. 

2.10 Consider the 3 – puzzle and 8 – puzzle given in Figure 8 a) and b). 

a) Draw the tree searched obtained by breadth first search for the 3 - puzzle.  

b) Draw the tree searched obtained by depth first search for the 3 – puzzle. 

c) What is the branching factor for the 3- puzzle problem?  

d) What is the solution depth for the 3-puzzle? 

e) How the branching factor and depth modify for the 8 – puzzle problem  

(Figure 8 b) ? 

 

 

Fig. 8 Puzzle example for problem 2.10. 

2.11 Consider the breadth first search algorithm. Given a branching factor b of 

size 10, the depth d, knowing that 1,000 nodes can be checked and expanded per 

second and that a node requires 100 bytes of storage, calculate the time and mem-

ory requirement for a depth d varying from 0 to 20. 
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2.12 Use any of the uninformed search techniques for solving the following prob-

lem such as the solution is obtained in optimal time. Motivate your choice. 

 

A farmer, a goat, a wolf and a bag of cabbage are on the left side of a river. 

They all need to get to the other side of the river. The following constrains hold: 

• Only 2 can cross at a time (here cabbage is also considered as an item); 

• The wolf and the goat cannot be left together on the same side; 

• The cabbage and the goat cannot be left together on the same side. 

 

2.13 Find a way (using an uninformed search technique) to get down from the top 

of the pyramid depicted in Figure 9 with a maximum score cumulated. Each cube 

stands on top of 4 other cubes. Each cube has a score associated (this you can as-

sign by yourself). Getting down from one cube can be only made by stepping on 

one of the 4 cubes the cube stands on (so, at each step there are 4 possibilities). 

 

Fig. 9 Example for the problem 2.13. 

2.14. Find a way the get down from the top of the pyramid such as the sum of cu-

mulated points (each cell has a number of points associated) is maximal. From a 

cell only three movements are allowed: down, left and right (this means each state 

can expand into three new states). Employ an uninformed search technique which 

will provide the optimal solution. Which algorithm is this?  
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Fig. 10 Example for the problem 2.14. 

2.15 Consider the labyrinth given in Figure 11. The dark cells represent walls, the 

white cells represent alleys and the cell in the middle marked with two “*” 

represents the starting point. Each light cell has a number associated which 

represents the cost of using it (in the path). The only possible directions to follow 

when at a point are any of the following: 

 
- North-West, North, North-East or 

- North-East, East, South-East or 

- South-West, West, North-West or 

-South-East, South, South-West; 

 

 

Fig. 11 Example for the problem 2.15. 
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which means at one point can only go into 3 directions following any of the four 

groups.  

a) Use an uninformed search technique which returns all the possible ways 

to get out of the labyrinth.  

b) Use an uninformed search technique which finds the cheapest way to get 

out of the labyrinth.  

 

2.16. In an office building with 5 floors and 8 office rooms which a number of 

people occupying each room (as shown in Figure 12) at each floor and internet 

cable should be installed. The cable cannot pass through all rooms and it has a 

given length. Find a way to distribute this cable and to use as less length of it ass 

possible such as the number of people which will benefit from internet is  

maximum.  

The cable starts in the upper left corner and has to ends in the lower right cor-

ner and can only be transferred from the current room in the up, down, left and 

right neighboring rooms. Employ an uninformed search technique for solving it. 

 

 

Fig. 12 Example for the problem 2.16. 

2.17 In an airport, 9 watches showing the time in different cities in the world  

are placed on a big wall. The time shown by the watches is the one given in  

Figure 13 a).  

But the time shown is not the real one and it should be modified. There are 2 

buttons which allow modifications as follows: 

- Button 1: If moved up, will increase the time with one hour for all the 

watches in a selected row. If moved down, it will decrease the time with 

one hour for all the watches on that row. 

- Button 2: If moved up, will increase the time with one hour for all the 

watches in a selected column. If moved down, it will decrease the time 

with one hour for all the watches on that column. We have to notices that 

no matter which button is used, it cannot act only on a single watch but 

on 3 at a time. 
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Use an uninformed search algorithm that is able to set the correct time (the one 

given in Figure 13 b)) by using the buttons as less as possible. 

 

 

Fig. 13 Example for the problem 2.17. 
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Chapter 3 

Informed (Heuristic) Search 

3.1   Introduction 

In the previous Chapter, we have presented several blind search or uninformed 

search techniques. Uninformed search methods systematically explore the search 

space until the goal is reached. As evident, uninformed search methods pursue 

options that many times lead away from the goal. Even for some small problems 

the search can take unacceptable amounts of time and/or space.  The blind search 

techniques lack knowledge about the problem to solve and this makes them ineffi-

cient in many cases. Using problem specific knowledge can significantly improve 

the search speed.  

Informed search (also called directed search and heuristic search), tries to re-

duce the amount of search that must be done by making intelligent choices for the 

nodes that are selected for expansion. The nodes, which are likely to lead to a 

good solution, are placed towards the front. This implies the existence of some 

way of evaluating the likelihood that a given node is on the solution path. In gen-

eral this is done by using a heuristic function. Informed search strategies use prob-

lem-specific knowledge to find solution faster. The concept of heuristic function is 

an important component of the informed search techniques. 

The uninformed search techniques keep a priority ordered queue. By always 

taking nodes from the front of the queue, the path selected to be extended is al-

ways the shortest (or cheapest if there is a cost associated) so far.  In informed 

search, the priority ordered queue is still preserved. The ordering in this case is 

determined by an evaluation function, which for each node on the fringe returns a 

number that signifies the promise or the potential of that node. One of the most 

important kinds of knowledge to use when constructing an evaluation function is 

an estimate of the cost of the cheapest path from the (current) state to a goal state. 

Functions that calculate such estimates are called heuristic functions. We should 

note that in the AI field the word ‘heuristic’ is not only in the context of ‘heuristic 

functions’ but also used for any techniques that might improve the average case 

performance but does not necessarily improve worst-case performance. 

A heuristic function is used to evaluate the promise of a state. We choose, 

which node to expand next using the heuristic value of its state. Heuristic func-

tions do not evaluate operators, i.e. if several operators can be used to expand a 
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node, heuristic functions do not say which operator is the most promising one 

[11][13][14][15][16][17]. 

Heuristic functions are problem-specific. We usually design (or learn) different 

functions for different problem domains. There are a variety of search techniques 

that rely on the estimate provided by a heuristic function. In all cases - the quality 

(accuracy) of the heuristic is important for the real-life application of the  

technique. 

The following Section presents the most important aspects of heuristics. Gen-

eral presentation of the heuristics is then followed with the description of some of 

the most important informed search techniques namely: 
 

• Best-first search 

• Greedy best-first search 

• A* search 

• IDA* search 

3.2   Heuristics 

Heuristics (Greek heuriskein = find, discover) can be defined as "the study of the 

methods and rules of discovery and invention". Some snapshots about heuristics 

from Judea Pearl’s book – Heuristics: Intelligent Search Strategies for Computer 

Problem Solving [1] are quoted below: 

“…popularly known as rules of thumb, educated guesses, intuitive judg-

ments or simply common sense. In more precise terms, heuristics stand for 

strategies using readily accessible though loosely applicable information to 

control problem-solving processes in human beings and machine[s]." 

“The study of heuristics draws its inspiration from the ever-amazing obser-

vation of how much people can accomplish with that simplistic, unreliable 

information source known as intuition...” 

“Heuristics are criteria, methods, or principles for deciding which among 

several alternative courses of action promises to be the most effective in or-

der to achieve some goal. They represent compromises between two re-

quirements: the need to make criteria simple and, at the same time, the de-

sire to see them discriminate correctly between good and bad choices. 

A heuristic may be a rule of thumb that is used to guide one's actions." 

The principal advantage of using a heuristic function is the reduction of the state 

space. For example, the full tree for Tic-Tac-Toe has 9! leaves. If we consider 

symmetries, the tree becomes six times smaller. 

Consider some examples of heuristic functions for the 8-tiles puzzle. Please 

consider the puzzle given in Figure 3.1 (the initial state (or a current state) on the 

left and the goal state in the right). 
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Fig. 3.1 Current (initial) and goal state for an 8-puzzle example. 

We can define a first heuristic h1(n) (where n refers to n-th node) as follows: 

h1(n) = the number of misplaced tiles in the current state relative to the goal 

state. 

For the example given in Figure 3.1, h1(n)= 4 because tiles 1, 4, 7 and 6 are out of 

place. Obviously, lower values for h1 are preferred. Another heuristic function 

example – h2 – which can be defined for the puzzle problem is Manhattan dis-

tance. This heuristic sums the Manhattan distance for each tile in the puzzle 

(Manhattan distance of a tile represents the number of squares from desired  

location) 

For the 8-puzzle given in Figure 3.1 we have: 

 

h2(n) = 1+0+0+1+0+0+1+0 = 3.   

 

Both functions estimate the number of moves we’ll have to make to modify the 

current state into a goal state. In fact, both h1 and h2 underestimate the costs of the 

cheapest paths in this state space, and this turns out to be a significant property. It 

is obvious for any heuristic h that h(n) = 0 if n is a goal. 

 

Definition 1 

A heuristic function h(n) is called admissible if for all nodes one has h(n) < 

k(n) where k(n) is the actual distance to the goal from n.  

An admissible heuristic never overestimates the cost to reach the goal, i.e., it is 

optimistic. 

Remark: Both the heuristics given above are admissible. 

Definition 2 
Let h1(n) and h2(n) be two heuristic functions, both admissible. If h2(n) ≥ h1(n) for 

all n then h2(n) dominates h1(n) and is better for search. 
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If we have k non-overestimating heuristics for a problem h1(n), h2(n), . . . , hk(n), 

then maxi≤k hi(n) is a more powerful non-overestimating heuristic [22][23][24][25] 

[28]. 

3.3   Best First Search 

Best first search uses an evaluation function and always chooses the next node to 

be that with the best score. However, it is exhaustive, in that it should eventually 

try all possible paths. It uses a queue as in breadth/depth first search, but instead of 

taking the first node off the agenda (and generating its successors) it will take 

the best node (or will arrange ascending the queue and then will take the first 

node). The successors of the best node will be evaluated (a score will be assigned 

to them) and added to the list. A cost function f(n) is applied to each node. The 

nodes are put in OPEN in the order of their f values. Nodes with smaller f(n) val-

ues are expanded earlier. 

The standard best first search algorithm is outlined in Algorithm 3.1. 

 

 
Algorithm 3.1 Best first search 

Step 1. Let Q be a priority queue containing the  

initial state (starting state). 

Step 2. Until Q is empty or failure 

Step 2.1 if queue is empty return failure 

Step 2.2 Remove the first node from the queue 

(take it from the OPEN list and move it 

into the CLOSED list) 

 Step 2.3 If the first node is the goal  

   then return the path to it from the 

initial state 

Else generate all successors of the 

node and put them   into the queue ac-

cording to their score (f(n) value) 

(best ones in the front). 

Step 3. If a solution is found return it, else return 

failure. 

 

 
There are different ways of defining the function f. This leads to different 

search algorithms. There are two basic categories of approaches: 

 

- one which tries to expand the node closest to the goal; 

- another one, which tries to expand the node on the least-cost solution 

path. 
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3.4   Greedy Search 

In greedy search, the idea is to expand the node with the smallest estimated cost to 

reach the goal (or the node which appears to be closest to the goal). In an informal 

way, an algorithm follows the Greedy search if it makes a series of choices, and 

each choice is locally optimized, or, in other words, when viewed in isolation, that 

step is performed optimally. Similar to depth first search, Greedy search tends to 

follow a single path to the goal. The heuristic function is: 

f(n) = h(n)  

where h(n) estimates the remaining distance to a goal. Greedy algorithms often 

perform very well. They tend to find good solutions quickly, although not always 

the optimal ones. The heuristics usually perform well on typical problems (ones 

that arise in practice). So, with a well-chosen heuristic function, greedy search 

might perform well on the problems we place in front of it. The time and space 

demands might be quite reasonable on these problems.  

Example 1: 8-puzzle  

Let us start with a simple example to illustrate how Greedy search works. Con-

sider the 8-puzzle example for which we will take two heuristic functions: number 

of misplaces tiles and Manhattan distance. For the first heuristic function, the path 

to the solution obtained by Greedy search is depicted in Figure 3.2. We can ob-

serve that there are three possibilities to move from the initial state: 

 

- blank moves left; 

- blank moves right and 

- blank moves up. 

 

When blank moves left, the newly obtained state will have 4 misplaced tiles (1, 4, 

6 and 7). It is same situation for the state obtained where the blank moves right, 

with the tiles 1, 4, 7, and 8 misplaced.  When the blank is moved up, the new ob-

tained state will only have 2 misplaced tiles: 1 and 4. The Greedy algorithm will 

decide to follow this path since this seems to be the closest one to the final state. 

From this new state, blank can be again moved left, right and up. By moving 

the blank up, the number of misplaced tiles will be 1 (only the tile 1 is misplaced). 

By moving the blank either left or right, the number of misplaced tiles will be 3 

(tiles 1, 4, 3 and 1, 4, 5 respectively will be misplaced). So, the first state will be 

chosen to expand further. From this new state, there are two possible new states 

which can be obtained by moving the blank left or right. It can be observed that by 

moving the blank left the goal state it reached (for this state the heuristic function 

value is 0).  This is actually the shortest path to the solution in this case and 

Greedy search is able to find it. 
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Fig. 3.2 Greedy search applied for the 8-puzzle problem using the heuristic function as the 

number of misplaced tiles. 

Let us now consider using Manhattan distance as the heuristic function. The 

path to the solution in this case is depicted in Figure 3.3. The Manhattan distance 

represents the number of tiles from the desired location of each tail. We compare 

at each step the current state with the goal state to calculate this. 

Once the initial state is expanded three new states are obtained (by moving the 

blank left, right and up). By applying the Manhattan distance, the value of the heu-

ristic function for each new state is given by: 
 

o blank moves left: the heuristic function value is 4 (1+0+0+1+0+1+1+0) 

because:  

• number of states from the location of tile 1 to its desired location 

is 1; 

• number of states from the location of tile 4 to its desired location 

is 1;  

• number of states from the location of tile 7 to its desired location 

is 1;  
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Fig. 3.3 Greedy search applied for the 8-puzzle example using the heuristic function as 

Manhattan distance. 

 
• number of states from the location of tile 6 to its desired location 

is 1;  

• number of states from the location of tiles 2, 3, 5 and 7 to their 

desired location is 0; 

o blank moves right: the heuristic function value is 4 (1+0+0+1+0+0+1+1) 

because:  

• number of states from the location of tile 1 to its desired location 

is 1; 

• number of states from the location of tile 4 to its desired location 

is 1;  

• number of states from the location of tile 7 to its desired location 

is 1;  

• number of states from the location of tile 8 to its desired location 

is 1;  

• number of states from the location of tiles 2, 3, 5 and 6 to their 

desired location is 0; 



60 3   Informed (Heuristic) Search

 

o blank moves up: the heuristic function value is 2 (1+0+0+1+0+0+0+0) 

because:  

• number of states from the location of tile 1 to its desired location 

is 1; 

• number of states from the location of tile 4 to its desired location 

is 1;  

• number of states from the location of tiles 2, 3, 5, 6, 7 and 8 to 

their desired location is 0; 

 

Consequently, the state obtained by moving the blank up is chosen to be expanded 

next. Here, 3 situations arise: blank moves up, blank moves left and blank moves 

right. The heuristic functions values (obtained as explained above) are 1, 3 and 3 

respectively. The first node will be expanded further. There are two possibilities: 

blank moves left or blank moves right. The heuristic functions values are 0 and 2 

respectively, so the goal state is reached. We can observe that for both heuristic 

functions used, the goal state is reached in the optimal way. 

 
Remarks 

(i) Greedy algorithm does not always produce the optimal results. The ques-

tion which arises is when this strategy which looks at each step individu-

ally and ignores the global aspects can still lead to globally optimal  

solutions.  

(ii) In fact, when a greedy strategy leads to an optimal solution, it says some-

thing interesting about the nature of the problem itself.  

(iii) In several cases, even if Greedy approach does not give the optimal solu-

tion, in many cases it leads to provably good solution (not too far from 

the optimum). 
 

In what follows, we will consider two very simple examples for which Greedy 

search does not provide the best solution.  

 
Example 3: Shortest path 

 

Consider the graph given in Figure 3.4. The nodes in the graph represent some 

European cities. Some of the nodes are connected and the distances between any 

two connected cities are known. The problem is related to finding the shortest path 

from Barcelona to Bucharest. The direct distances from each city (node in the 

graph) to Bucharest are also given. 

Let us consider Greedy search for this problem with the heuristic h giving the 

straight line distance from the current state to Bucharest. The initial state is Barce-

lona and the goal state is Bucharest. The solution obtained by the Greedy  

algorithm is presented in Figure 3.5.  
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Fig. 3.4 A graph example containing some European cities with distances between them 

(corresponding to the arcs between the given pair of connected cities) and with the direct 

distance to Bucharest from each city. 

Starting from Barcelona, we can expand this node into two new states: Rome 

and Lyon. The straight line distance from Lyon to Bucharest is 1660 while the 

straight line distance from Rome to Bucharest is 1140. This means that the node 

Rome will be expanded next. 

As of now we have the path Barcelona – Rome of cost 1471. 

Rome is to be further expanded and the two new states obtained are Milan and 

Palermo. The straight line distance from Palermo to Bucharest is 1280 and the 

straight line distance from Milan to Bucharest is 1750. Greedy search will chose to 

expand the node Palermo. 

The path at this moment is Barcelona – Rome – Palermo of cost 1471+1043. 

The result of Palermo node expansion is the unique node, Athens, which will be 

the next state.  

The path until now is Barcelona – Rome – Palermo – Athens of cost 

1471+1043+907. 
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Fig. 3.5 (a)-(d): Solution obtained by Greedy search using straight line distance heuristic 

function for Example 3. (e): The direct distances to the goal state from the expanded nodes. 

Athens is directly linked to the goal state so the path is complete and the final 

solution is: 
 

Barcelona – Rome – Palermo – Athens – Bucharest of cost 

1471+1043+907+1300 = 4,721. 
 

But this is not the shortest path from Barcelona to Bucharest in the given graph. 

The shortest path has the cost 3,510 (as obtained by A* algorithm in the following 

section 
 

Example 4: Coin Changing 
 

Let C = {c1, c2, …, ck} be a finite set of distinct coin denominations. We make the 

following assumptions: 

each ci, i=1,.., k is an integer and c1 > c2 > ... > ck; 

each denomination is available in unlimited quantity. 

 

The problem is to make change for the sum N, using a minimum total number of 

coins. 
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Remark 

There is always a solution if ck=1. 

The Greedy search method has been widely applied for solving these type of 

problems. The basic heuristic function use is: repeatedly choose the largest coin 

less than or equal to the remaining sum, until the desired sum is obtained. 

For the coin set {25, 10, 5, 1} and sum 30, the greedy method always finds the 

optimal solution. But if we have the sum 30 and the coins {25, 10, 1} then Greedy 

will return:  

1 × 25 + 0 ×10 + 5 × 1 (6 coins) 

While the optimum is: 

 

0 × 25 +3 × 10 + 0 × 1 (3 coins).  

 

Again, Greedy search will not get the optimal solution for the case C= {12, 5, 1} 

and N = 15. Greedy search obtains 1 × 12 + 0 × 5 + 3 × 1, while the optimum is 0 

× 12 + 3 × 3 + 0 × 1 (a total of 3 coins instead of 4 obtained by greedy). 

Some facts about the Greedy search technique, which can be derived from the 

above examples: 
 

• tend to find good solutions quickly, although not always optimal ones ; 

• they can get into loops, so they are not complete;  

• they are not admissible; sometimes heuristics may underestimate;  

• if there are too many nodes, the search may be exponential; 

• worst case time complexity is same as for depth first search; 

• worst case space complexity is same as breadth first search; 

• a good heuristic can give significant improvement; 

• Greedy search is used for small problems to have quick answers. 

3.5   A* Search 

The A* algorithm combines the uniform cost search and the Greedy search in the 

sense that it uses a priority (or cost) ordered queue (like uniform cost) and it uses 

an evaluation function (like Greedy) to determinate the ordering [5]. The evalua-

tion function f is given by: 

 

F(n)= h(n) + g(n) 

 

where: 
 

o h(n) is a heuristic function that estimates the cost from n to goal and 

o g(n) is the cost so far to reach n. 
 

Therefore, f(n) estimates total cost of path through n to goal. 

The queue will be then sort based on estimates of full path costs (not just the 

cost so far, and not just the estimated remaining cost, but the two together). 
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It can be proven that if h(n) is admissible, then A* search will find an optimal 

solution. 

A* is optimally efficient, i.e. there is no other optimal algorithm guaranteed to 

expand fewer nodes than A*. But it is not the answer to all path search problems 

as it still requires exponential time and space in general 

 

Theorem 1 

If h(n) is admissible then A* using tree search is optimal. 

 

Proof 

Suppose the goal is G and some suboptimal goal G’ has been generated and is in 

the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest 

path to an optimal goal G. 

Since G’ is a (suboptimal) goal, then h(G’) = 0. This implies f(G’)=g(G’). 

Since G is a goal, then h(G’) = 0. This implies f(G)=g(G). 

Since G’ is suboptimal then g(G’) > g(G). 

This implies f(G’)  > f(G). 

Since h is admissible h(n)≤ h*(n) 

Thus g(n) + h(n)≤ g(n) + h*(n)  

Then f(n) ≤ f(G). 

Hence f(G’) > f(n) (and from the above) A* will never select G’ for expansion. 

  

Definition 3 

A heuristic h is consistent (or monotone) if, for every node n and every successor 

n’ of n generated by any operator (action) a, the estimated cost of reaching the 

goal from n is no greater than the step cost of getting to p plus the estimated cost 

of reaching the goal from p (see Figure 3.6). In other words: 

h(n) ≤ c(n, n’)+h(n’) and 

h(g)=0 

where: 

̇ h is the consistent heuristic function; 

̇ n refers to any node in the graph; 

̇ n’ is any child of n; 

̇ G is any goal node. 
 

If h is consistent, we have: 

f(n') = g(n') + h(n') = g(n) + c(n, n') + h(n') ≥ g(n) + h(n) = f(n) 

This shows that f(n) is non-decreasing along any path. 

 

Theorem 2  

If h(n) is consistent, A* using graph search is optimal. 

There are two useful properties of a consistent heuristic: 
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1) Any consistent heuristic is also admissible.  

2) There are some specific benefits for graph search: in situations where we 

encounter a state we have already seen before, if we are using a consis-

tent heuristic we can be sure that the second time we encounter the state 

it will be via a path which is at least as costly as the path we have already 

found to this state, and therefore that the search will remain optimal if we 

just throw away the second state. 
 

 
Fig. 3.6 Consistent heuristic. 

 
The A* algorithm is outlined in Algorithm 3.2. 

 

 

Algorithm 3.2. A* search 

Step 1. Let Q be a queue of partial paths (initially 

root to root, length 0); 

Step 2. While Q is not empty or failure 

Step 2.1 if the first path P reaches the goal 

node then return success 

Step 2.2.remove path P from the queue; 

Step 2.3 extend P in all possible ways and add 

the new paths to the queue 

Step 2.4 sort the queue by the sum of two values: 

the real cost of P until now (g) and an estimate 

of the remaining distance (h); 

Step 2.5 prune the queue by leaving only the 

shortest path for each node reached so far; 

Step 3. Return the shortest path (if success) or  

failure. 
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Example 1: Shortest path 

Let us consider the same example as we used for Greedy search given in Figure 

3.4. The goal is the same: finding the shortest path from Barcelona to Bucharest. 

In what follows we describe in detail how A* works for this example. Barcelona is 

the starting point, so Barcelona will expand into 3 nodes: Madrid, Lyon and Roma 

(see Figure 3.7 (a)). 

 

 

Fig. 3.7 First and second steps obtained by applying A* for Example 3.4. 

 

Fig. 3.8 Third step in the application of A* for Example 3.4. 
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For each node n we have to calculate 3 entities: h(n) – which is the direct dis-
tance to Bucharest from the node n, g(n), which represents the cost of the path so 
far (i.e. the sum of all costs in the path from Barcelona to the current node) and 
f(n) which is g(n)+h(n). 

For Madrid, we obtain:  
 

o g = 628 (distance from Barcelona to Madrid) 

o h=3,300 (straight line distance from Madrid to Bucharest) 

o f= 3,300+628=3,928 

Similarly, we obtain g=644, h=1,660 and f=2,304 for Lyon and g=1,471, h=1,140 
and f=2,611 for Rome respectively. 

Since Lyon is the node with the lowest f value among all possible to expand 
nodes, Lyon will be expanded next (Figure 3.7 (b)). 

Lyon expands and 3 new nodes are obtained:  
 

o Munich (with g=1,397 (obtained from summing the distances Barcelona 
– Lyon (644) and Lyon – Munich (753), h=1,600 (straight line distance 
from Munich to Bucharest and f=2,997); 

o Paris (with g=644+481)=1,125, h=2,970 and f= 4,095) and 
o Bordeaux (with g=644+542=1,186, h=2,100 and f= 3,286) 

 

The lowest f value in the whole tree is the one of Rome’s node which is expanded 
next (see Figure 3.8). 

 

Fig. 3.9 Forth step in the application of A* for Example 3.4 
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Fig. 3.10 Fifth step in the application of A* for Example 3.4 

 

Rome expands into 2 new nodes: 

o Milan (whose g is 2,152 (Barcelona – Rome (1,471) + Rome – Milan 

(681), h=1,140 and f=2,611) and 

o Palermo (for which g = 2,514, h=1,280, f=3,794) 
 

Munich is having the lowest value for f at this step so it will be the next expanded 
node (Figure 3.9). 

Munich has only one successor: Vienna. For this node the value of g is 1,855 
obtained by summing Barcelona – Lyon (644) + Lyon – Munich (753) + Munich – 
Vienna (458). h is 1,150 and f is 3,005. This is the lowest value of f in the whole 
tree obtained until now, thus Vienna will expand next (Figure 3.10). 

By expanding Vienna, a new node Prague (with g=2,167, h=1,490 and f= 3,657) 
is obtained. The lowest value of f is now the one of Bordeaux’s node. But Bor-
deaux can only expand to Paris and the new values which will be obtained for the 
node Paris in the path Barcelona – Lyon – Bordeaux – Paris will be: g= 
644+542+579 = 1,765, h = 2,970, f = 4,735, which is higher that the information 
already contained in the node Paris. Thus, Bordeaux is not expanded and the next 
one with lowest f is Prague which is expanded at this step (see Figure 3.11). Two 
new nodes – Berlin and Budapest – are added to the current tree for which we 
have the following data: 

Berlin: g = 1,125, h = 2,970, f = 4,095 and 

Budapest: g = 2,610, h = 900 and f = 3,510. 
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Fig. 3.11 Sixth step in the application of A* for Example 3.4 

 

 

Fig. 3.12 The optimal path between Barcelona and Bucharest obtained by A* search. 
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As evident from the new obtained tree, Budapest node is having the smallest f 

and is further expanded. It is directly connected to the goal node – Bucharest. So 

the obtained path from Barcelona to Bucharest is depicted in Figure 3.12. This is 

actually the shortest path (its cost is 3510) and is evident that A* is able to find the 

optimal path while compared to the Greedy search.  

3.6   Comparisons and Remarks 

As in the case of uninformed search techniques, it would be interesting to compare 

the Greedy and A* search in terms on completeness, optimality, time complexity 

and space complexity [10]. Table 3.1 summarizes the behavior of these two algo-

rithms with respect to the four attributes mentioned above.  

We use the following notations: 
 

- b: maximum branching factor of the search tree; 

- m: maximum depth of the state space 

Table 3.1 Comparison of Greedy search and A* search in terms of completeness, optimal-

ity, time and space complexity. 
 

 Greedy search A* search 

Complete No Yes 

Time Complexity O(b
m
) O(b

m
) 

Space Complexity O(b
m
) O(b

m
) 

Optimal No Yes 

 
As evident from Table 3.1, both Greedy search and A* search have the same 

space and time complexity, but compared to Greedy, A* is optimal and complete. 

The worst-case time complexity is O(b
m
), the same as uniform cost search (and for 

similar reasons), but a good heuristic can give dramatic improvement.  Since both 

approaches have to hold on to all unfinished paths (keep all nodes in memory) in 

case they later wish to explore them further, their space requirements are therefore 

again similar to uniform cost search: O(b
m
). For really big search spaces, both 

algorithms will run out of memory. 

3.7   A* Variants 

If all the costs are positive and the heuristic is admissible then A* terminates and 

finds the shortest path. Like breadth first search, A* can use a lot of memory. The 

memory usage is one of A*’s biggest issues. In the worst case, it must also re-

member an exponential number of nodes. Several variants of A* [9] have been 

developed to cope with this, including: 

o iterative deepening A* (IDA*), 

o memory-bounded A* (MA*), 
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o simplified memory bounded A* (SMA*),  

o recursive best-first search (RBFS) and 

o Dynamic A* (D*). 

3.7.1   Iterative Deepening A* (IDA*) 

If the idea of iterative deepening search is combined with A*, an algorithm called 

IDA* (for iterative deepening A*) is obtained [7]. The space is searched depth 

first for successively larger bounds on the heuristic function f(n). 

Like iterative deepening, it is complete and optimal but it has linear space re-

quirements while compared to A*. It does repeated depth-first searches but the 

searches are not limited by a simple depth bound. Instead, a path in one of these 

depth first searches is discontinued if its f value exceeds some cut-off value. In the 

first search, the cut-off is the heuristic value of the start node. In subsequent 

searches, the cut-off is the lowest f(n) for nodes n that were visited but not ex-

panded in the previous search. 

With an admissible heuristic estimate function h, IDA* is guaranteed to find an 

optimal (shortest) solution path [1819]. Moreover, IDA* obeys the same asymp-

totic branching factor as A* [2], if the number of newly expanded nodes grows 

exponentially with the search depth [6][18][19]20][21]. The growth rate, (heuristic 

branching factor), depends on the average number of applicable operators per 

node and the discrimination power of the heuristic estimate h. 

The IDA* procedure (pseudo code) is described bellow: 
 

Function depth_first_search(n, limit) 

If f(n) > limit 

Then Return f(n) 

If h(n) = 0 

Then successful 

Return lowest value of depth_first_search(ni, 

limit) for all successors ni of n 

end 

 

Procedure IDA*(n) 

limit=h(n) 

repeat 

   limit=depth_first_search(n, limit) 

until successful 

end 

3.7.2   Simplified Memory Bounded A* (SMA*) 

Simplified memory-bounded A* places a size limit on the queue. SMA* makes 

full use of memory to avoid expanding previously expanded nodes. It discards the  
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least-promising nodes from the queue, if it needs to, in order to keep the queue 

within the size limit. However, it keeps enough information to allow these dis-

carded paths to be quickly re-generated should they ever be needed [8][12][26][27]. 

It works as follows: if memory is full and we need to generate an extra node 

then: 
 

o Remove the highest f-value leaf from the queue; 

o Remember the f-value of the best ‘forgotten’ child in each parent node.  

 
Simplified Memory-Bounded A* 

 

if (the initial state is a goal state), then return it 

Step 1. Add the root node to the queue. 

Step 2. While queue is not empty or failure do 

 Step 2.1 If the queue is empty return failure 

 Step 2.2.Take the top priority node from the 

queue as current node 

 Step 2.3 If this is a goal state then return it 

 Step 2.4 Take a successor of the current node 

 Step 2.5 If the successor is not a goal state 

and it reached the depth-limit  

  then set f(successor) to INFINITE 

   else f(successor) = MAX(f(current), 

f(successor)) 

 Step 2.6 If the successor is the last one  

 then update the ancestors' f-cost to be 

the minimum of their successors's f-cost 

 Step 2.7 If no more memory for the successor  

 then delete the shallowest highest-f-

cost node and remember the best forgot-

ten f-cost 

 Step 2.8 Insert the child into the queue 

end 

 

Example 1 

Consider the tree given in Figure 3.13 with 6 nodes (node 1 is the initial state and 

nodes 5 and 6 are both goal states) and with the known values of f function for 

each node. The problem is to find the shortest path to a goal using SMA* with a 

memory of maximum 3 nodes. 

We first expand node 1 and we obtain node 2, whose f value is 12. There is still 

memory for one node and we expand node 1 to obtain node 3. Now the memory is 

full and none of the children is the goal (see Figure 3.14 (a) and (b). We proceed 

as follows: 
 

• update f of the node 1 with minimun f of the children (which is 12 for the 

node 2) 

• expand node 2 
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• drop the higher f-cost leaf (node 3) 

• Memorize the f of the node 3 (13). 
 

We are now in the situation depicted in Figure 3.14 (c). The node 4 is further ex-

panded. This is not a goal node so we will do the following: 

• memorize node 3 into the node 1 

• memory is full 

• node 4 is not a goal node, mark it  to infinite 
 

 
Fig. 3.13 The graph used for exemplifying SMA*. 

 
Now we are in the situation (d) of Figure 3.14. Here we will do the following: 

 

• drop node 4 and add node 5 

•  node 2 memorizes node 5 

•  update f of node 2 with the minimum  f of the children 

•  update f for the node 1 

 

Node 5 is a goal node. But since we still have in the memory a value of 13 for an 

unexpanded node which is lower than the f of the obtained goal, we continue to 

expand the memorized node. 
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Fig. 3.14 Example of SMA* behavior for Example 1 

 
Thus, node 2 is again expanded (situation depicted in Figure 3.14 (e)). The 

steps given below are followed: 
 

• drop node 2 and add node 6 

• memorize node 6 into the node 1 

• node 6 is a goal node and it is lowest f-cost node 

• terminate. 
 

Some facts about SMA*: 

• utilizes all memory available; 

• it has the ability to avoid repeated states; 

• is complete if enough memory is available: to store the shallowest solution 

path; 
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• Is optimal if enough memory is available: to store the shallowest solution 

path. Otherwise it returns the best solution that can be reached given the 

available memory. 

• It is optimally efficient if enough memory is available for the entire search 

tree. 

3.7.3   Recursive Best-First Search (RBFS) 

Recursive best-first search (RBFS) is a linear-space algorithm that expands nodes 

in best-first order even with a non-monotonic cost function and generates fewer 

nodes than iterative deepening with a monotonic cost function. RBFS is similar to 

depth first search but keeps track of the f-value of the best alternative path avail-

able from any ancestor of the current node. If current node exceeds this limit, re-

cursion unwinds back to the alternative path, replacing the f-value of each node 

along the path with the best f-value of its children. RBFS also remembers the f-

value of the best leaf in the forgotten subtree. 

The RBSF procedure is presented below. 
 

RBFS (node: n ,limit l) 

if f( n) > l return f(n) 

if n is a goal, then exit 

if n has no children, return infinity 

else for each child ni of n, set fi  = f(ni) 

sort ni and fi (ascending based on fi value)  

if there is only one child then f2 = infinity 

while f1 ≤ l and f1 < infinity 

  f1 = RBFS (n1, min(l, f2)) 

  insert n1 and f1 in sorted list 

return f1 

3.7.4   D* Algorithm 

D* is a provably optimal and efficient path planning algorithm and have been pro-

posed for sensor-equipped robots [3]. D*, resembles A* [2], but it is dynamic in 

the sense that arc cost parameters can change during the problem solving process. 

Like A*, D* maintains an OPEN list of states. The OPEN list is used to propagate 

information about changes to the arc cost function and to calculate path costs to 

states in the space. Every state n has an associated tag t(n) which is “new” if n has 

never been on the OPEN list, “open” if n is currently on the OPEN list, and 

“closed” if n is no longer in the OPEN list.  

For each state n, D* maintains an estimate of the sum of the arc costs given by 

the path cost function h(n). This estimate is equivalent to the optimal (minimal) 

cost from state n to G. For each state n on the OPEN list, the key function k(n) is 

defined to be equal to the minimum of h(n) before modification and all values 

assumed by since was placed on the list. The key function classifies a state n on  

 



76 3   Informed (Heuristic) Search

 

the list into one of two types: a raise state if k(n) < h(n) and a lower state if 

k(n)=h(n). D* uses raise states on the OPEN list to propagate information about 

path cost increases and lower states to propagate information about path cost re-

ductions. The propagation takes place through the repeated removal of states from 

the list. Each time a state is removed from the list, it is expanded to pass cost 

changes to its neighbors. These neighbors are in turn placed on the list to continue 

the process. 

States on the OPEN list are sorted by their key function value. The parameter 

kmin is defined to be min(k(n)) for all n in the OPEN list. The parameter kmin  

represents an important threshold in D*: path costs less than or equal to kmin are 

optimal, and those greater than kmin may not be optimal. The parameter kold is de-

fined to be equal to kmin prior to most recent removal of a state from the OPEN 

list. If no states have been removed, kold is undefined [3]. 

The D* algorithm consists primarily of two functions: Process_state and Mod-

ify_cost. Process_state is used to compute optimal path costs to the goal and Mod-

ify_cost is used to change the arc cost function and enter affected states on the 

OPEN list. Initially, t is set to new for all states, h is set to zero, and G is placed on 

the OPEN list. Process_state is repeated until the state n is removed from the OPEN 

or a value of -1 is returned. The second function Modify_cost is then used to cor-

rect the arc cost function and place affected states on the OPEN list. 

D* can handle any path cost optimization problem where the cost parameters 

change during the search for the solution. D* is most efficient when these changes 

are detected near the current starting point in the search space. More applications 

of D* can be found in [4]. D* is intended for use when you don't have complete 

information. If you don't have all the information, A* can make mistakes; D*'s 

contribution is that it can correct those mistakes without taking much time.  

3.7.5   Beam Search 

In the main A* loop, the OPEN set stores all the nodes that may need to be 

searched to find a path. The Beam Search is a variation of A* that places a limit 

on the size of the OPEN set. If the set becomes too large, the node with the worst 

chances of giving a good path is dropped. One drawback is that you have to keep 

your set sorted to do this, which limits the kinds of data structures you'd choose. 

Beam search may be also uses as any heuristic search f(n) = g(n) + h(n). How-

ever, it is parameterized by a positive integer k (like depth limited search is pa-

rameterized by a positive integer l).  Once the successors of a node are computed, 

it only places onto the agenda the best k of those children (those k children have 

the lowest f(n) values). 

Beam search is not complete and not optimal. 

Summary 

Informed search makes use of problem-specific knowledge to guide progress of 

search and this can lead to a significant improvement in the performance of 
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search. This chapter presented informed search; concepts of heuristic functions 

and some of the well known search approaches using them such as Greedy search 

and A* (including some of its variants). 

In practice we often wish the goal with the minimum cost path, which can be 

accomplished by exhaustive search for small problems but it is practically impos-

sible for other problems. Heuristic estimates of the path cost from a node to the 

goal can be efficient in reducing the search space. Heuristics can help speed up 

exhaustive, blind search, such as depth first search and breadth first search. Com-

ing up with a good heuristic is a challenging task: the better the heuristic function, 

the better the resulting search method will be. 

Two main heuristic search algorithms were presented in this chapter: Greedy 

search and A* search. Greedy search minimizes the estimated cost to the goal, 

f(n), and it usually decreases the search time but is neither complete nor optimal. If 

h(n) is an admissible heuristic function, A* search is complete and optimal. How-

ever for most of the problems, the number of nodes within the search space is ex-

ponential in the length of the solution. 

Memory space is the main drawback of A* search (rather than time complex-

ity) because it keeps all the generated nodes in memory. It usually runs out of 

space long before it runs out of time. Several variants of the A* search have been 

proposed to overcome some of the A* drawbacks. This chapter presents some of 

them such as: iterative deepening A* (IDA*), memory-bounded A* (MA*), sim-

plified memory bounded A* (SMA*), recursive best-first search (RBFS) and Dy-

namic A* (D*). 

Admissible heuristics are optimistic: they think the cost of solving the problem 

is less than it actually is. The depths of the solutions found can be different with 

different search algorithms and/or heuristics. Quality of a heuristic may be meas-

ured by the effective branching factor. Well designed heuristic would have a value 

of the branching factor close to 1. 
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Verification Questions 

1. Are there any similarities between Greedy search and uninformed search 

techniques? 

2. How can we compare the complexity (time and space) of Greedy search 

with the ones of depth first search and breadth first search? 

3. How can we compare breadth first search and A* search? 

4. How can we compare uniform cost search and A* search? 

5. What are the variants of A*? 

6. Which of the A* variants perform the best? 

7. Which type of applications is D* meant for? 

8. How SMA* improves the performance of A*? 

9. Which of the heuristic search methods are optimal and complete? 

10. When a heuristic function does dominate another one? Give an example. 

11. What are the strengths and weaknesses of Greedy search? 

12. What are the strengths and weaknesses of A* search? 

13. How is IDA* memory complexity and time complexity? 

14. What are the proprieties of heuristics? 

15. Out of a set of k non-overestimating heuristics which is the most power-

ful one? 

Exercises 

3.1. Frobenius Problem. 

Let N = ∑
i

iicx denote the sum of money that can be represented with coins 

c1, c2, ..., cn. 

If c1 = 1, then obviously any quantity of money N can be represented. 

Suppose coins are 2, 5 and 10. Then N=1 and N=3 cannot be represented. All 

other N can be represented. Given coins of denomination c1, c2, ..., cn, so that no 

two have a common factor, find the largest integer N that cannot be changed using 

these coins. 

 

3.2. A* search uses an evaluation function f: 

f(n)=g(n) + h(n) 
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where g(n) is the cost of the path from the start node to node n and h(n) is an 

estimate of the cost of the cheapest path from node n to a goal node. 

 

1. Define g and h so that the search will be the one performed by breadth-first 

search. 

2. Define g and h so that the search will be the one performed by uniform cost 

search.  

 

3.3. Represent a state space and apply an admissible heuristic to get a solution 

path, but give a value for k for which beam search would fail to find that solution 

path. 

 

3.4. Represent a state space and show how an admissible heuristic will find the 

solutions (consider two solution paths), but give a value for k for which beam 

search on your state space would only find the more costly of the two solution 

paths. 

 

3.5. Consider the 8 puzzle presented in the beginning of the chapter.  

a)    Define two heuristics h1 and h2 different from the ones used in this 

chapter. 

b) Solve the puzzle using your heuristics with both Greedy and A* search 

algorithms and see if you getting a better solution (less number of 

moves). 

c) Take another puzzle (can be 8-puzzle or bigger) and apply Greedy and 

A* with your heuristics for it. Compare the results with the ones ob-

tained by using the heuristics presented in the chapter (number of mis-

placed tiles and Manhattan distance). Evaluate the methods by using 

effective branching factor. 

d) Analyze whether any of the heuristics proposed by you is providing 

better results than using Manhattan distance. If so, explain why. 

 

3.6. Consider an 8-puzzle example as in the case of problem 3.6 (the one you 

picked, different from the one presented in this chapter).  

a) Take the heuristic proposed by you for which you obtained the best re-

sults.  

b) Implement at least 3 variants of A* with this heuristic function and com-

pare the results. 

 

3.7. Dating game 

The dating game consists of three males (M), three females (F), and an empty 

chair. 

The initial configuration is in Figure 3.16 (a). 

The game has two legal moves with associated costs: 

a) A person (male or female) may move into an adjacent empty chair. This 

has a cost of 1. 
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b) A person can jump over one or two other persons into the empty chair. 

This has a cost equal to the number of persons jumped over. 

The goal is to pair each male with some female. There are several ways to get a 

final configuration. But in this case consider as goal state the state depicted in 

Figure 3.15 (b).  

 

 

Fig. 3.15 The configuration for the problem 3.7. 

Requirements 

1) Defining initial state, operators, goal-test, and the path-cost function. 

2) Find and define an appropriate heuristic. Specify whether it is admissible or 

not. 

3) Implement greedy and A* search algorithms and compare them. 

4) Compare the best from the above algorithms which one of the uninformed 

search techniques (say depth first search). 

 

3. 8. Suppose we have an admissible heuristic function h for a state space and all 

action costs are positive. 

State which of the following is true and justify your answer. 

a) If n is a goal state, then h(n) = 0. 

b) If h(n) = 0, then n is a goal state. 

c) If n is a ‘dead-end’ (i.e. it is a non-goal state from which a goal state can-

not be reached), then h(n) = 1. 

d) If h(n) = 1, then n is a dead-end. 

 

3.9. Consider the problem of coloring a map using 3 colors such as no neighboring 

countries on the map have the same color. 

a) Define a heuristic function for this problem. 

b) Apply A* search and IDA* search using this heuristic. 

c) Compare and explain the results. 
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Chapter 4 

Iterative Search 

4.1   Introduction 

This chapter continues with the presentation of other informed search strategies 
(which are heuristics). They appear to be very useful for certain kind of problems 
even tough for certain categories of problems the quality of solution(s) provided 
may be unsatisfactory.  

These strategies try to improve space and time complexity but are sacrificing 
completeness and optimality. In many optimization problems, path to the solution 
is irrelevant; the goal state itself is a solution. Then the state space is a set of com-
plete configurations and the task of the algorithm is to find the optimal configura-
tion or the configuration which satisfies the constraints. So, these kinds of  
approaches are suitable when the solutions are states not paths. 

Iterative refinement algorithms keep just a single (current) state and try to im-
prove it and usually do not need to keep track of an agenda. Only the current state 
is kept track of. When the current state is expanded, one of its successors is se-
lected and made the new current state. All other successor states are discarded. 
They are not placed on an agenda and there is no intention of visiting these unex-
plored states later. In effect, one path is pursued relentlessly, to the exclusion of all 
other paths. The idea is to start with a state configuration that violates some of the 
constraints for being a solution, and make gradual modifications to eliminate the 
violations. One way to visualize iterative improvement algorithms is to imagine 
every possible state laid out on a landscape with the height of each state corre-
sponding to its goodness. Optimal solutions will appear as the highest points. It-
erative improvement works by moving around on the landscape seeking out the 
peaks by looking only at the local vicinity. Obviously, the lack of systematic 
search means that local search is neither complete nor optimal in general. Its suc-
cess in practice depends crucially on the function used to pick the most promising 
successor. The very basic iterative search algorithm is given in Algorithm 4.1. It is 
assumed that the search starts from an initial state, which will be the first current 
state for the local search algorithm. 
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Algorithm 4.1 Iterative search 

Step 1. Current_state = initial state 

Step 2. while current state does not satisfy goal test 

 and time limit is not exceeded 

  Step 2.1 generate the successors of the  

        current_state 

  Step 2.3 set as new current_state the successor  

 with highest  promise (i.e. its heuristic  

 value is lowest) 

Step 3. if current_state satisfies goal test 

  then return path of actions that led to the  

        current_state 

  else return failure 

end 

 

 
In the search algorithms that we have looked at so far, what was important was 

finding a solution path, i.e. a sequence of actions that transforms the initial state to 
the goal state. However, sometimes we are not interested in this path of actions. 
Sometimes we are interested only in finding the goal state itself. Local search is 
often used for such problems. The method used by local search can be seen as a 
variation of problem solving by search and we can observe the following analogy: 

• Start (initial) state: is a complete configuration in the case of local search 
compared with a single node on a path (which is a solution); 

• Operators: Changes applied to the current state to (heuristically) improve 
quality 

• Evaluation function: Instead of a goal state or goal test, an evaluation 
function is used.  The problem to solve may not have sometimes an exact 
goal (for instance we are looking for the minimum or maximum value 
(which is unknown) of a function to optimize);  

• Search: Consists on improving the quality of current state until some num-
ber of iterations of algorithm has been reached or some other termination 
condition has fulfilled. Typically does not keep track of repeated states. 

 

Iterative search algorithms discussed in this Chapter are: 
 

• Hill-climbing search (ascent/descent search); 
• Simulated annealing search; 
• Local beam search. 

4.2   Hill Climbing 

In the hill climbing algorithm (also known as gradient ascent or gradient descent) 
the idea is to keep improving current state, and stop when we can’t improve any  
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Fig. 4.1 Hill climbing.  
 

 
more. Hill -climbing is analogous to the way one might set out to climb a moun-
tain in the absence of a map: always move in the direction of increasing altitude 
(see Figure 4.1). This is especially useful if we don't know ahead of time what the 
final outcome will be, and want to find the highest ground.  Like real-world hill 
climbing, it suffers from the problems of false peaks: one can reach a non-goal 
node from which there is no way to go but down. 

The hill-climbing algorithm is illustrated in Algorithm 4.2. 
 
 

Algorithm 4.2. Hill-climbing 

Step 1. Set current_state to take initial state (starting  
        state). 

Step 2.   loop  

Step 2.1 Generate successors of current_state; 

Step 2.2 Get the successor with the highest value; 
Step 2.3 if value(successor) < value(current_state) 

  then Return current_state 

  else currenst_state = successor 

   end 

 
 
Depending on the initial state, hill-climbing may get stuck into local optima. 

Once it reaches a hill the algorithm will stop since any new successor will be 
down the hill. Figure 4.2 presents two different initial states situation; the one on 
the left will lead the search process to a local optimum (maximum in this case) 
and the one on the right will reach the global maximum. 
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Fig. 4.2 Example of different starting states for the hill-climbing search leading to a local 
maximum (left) and global maximum respectively (right). 

There are some potential dangerous situations for hill-climbing: 

• plateau: successor states have same values, no way to choose; 
• foothill: local maximum, can get stuck on minor peak; 
• ridge: foothill where N-step look ahead might help. 

 
Example 1 

We illustrate a very simple practical example for which hill-climbing gets stuck in 
a local optimum. Consider the 5 geometric figures of sizes 1, 2, 3, 4 and 5 as given 
in Figure 4.3.  

The goal state and the initial state are also given. Just one piece (the top most 
piece) can be moved at one time and only 2 additional stacks can be used to ar-
range the pieces.  

For simplifying the explanations, let us denote each figure with a number corre-
sponding to its size (piece of size 1 will be 1, piece of size 2 will be 2 and so on). 

 

 

Fig. 4.3 Geometric figures used in Example 1 for hill-climbing. 

Let us analyze the behavior of hill climbing using two heuristics. First heuristic 
will lead to a local solution and is as follows: 
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• count +1 for every figure that sits on the correct figure. The goal state has 
the value +5; 

• count -1 for every figure that sits on an incorrect figure.  
 

In the initial state (which is the current state) figures 1, 2 and 3 are correctly situ-
ated and figures 4 and 5 are wrong situated. This gives the value +3-2=1 for this 
state. 

Since only one piece can be moved at a time, a single successor can be obtained 
at this step (see figure 4.4 move 1). 

The value of this new successor is +4-1 = 3 (the figures 1, 2, 3 and 5 are sitting 
correctly while 4 is wrong). 

The value of this successor is better than the value of the initial state, so the 
current state will be replaced by the successor. 

There are now two possible moves which will conduct to 2 different successors 
(see figure 4.4 move 2a and move 2b). 

The value of the first successor (move 2a) is +3 -2 = 1 (2, 3 and 5 are sitting on 
correct pieces while 1 and 4 not) and the value of the second successor (move 2b) 
is again +3-2=1, same like for the first successor. 

Both successors have lower values than their parent (the current state) which 
has the value 3. This leads us to the conclusion that move 1 is the optimum. As 
evident, this is just a local optimum, not the global solution. So, hill-climbing fails 
to find the solution in this case.  

 

 
 

Fig. 4.4 Hill-climbing behavior using heuristic h1 for Example 1. 

 
Let us now use another heuristic, h2, which is going to be a global heuristic. 

This heuristic is defined as follows: 
 

• count +n for every piece that sits on a correct stack of n pieces. The goal 
state has the value +10. 

• count -n for every block that sits on an incorrect stack of n.  
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This heuristic applies a higher penalty for geometric figures placed in a wrong 
way. 

Initial state has the value (-1)+(-2)+(-3)+(-4) for the figures 3 sitting on top of 
one wrong piece, figure 2 sitting on top of 2 wrong pieces, figure 1 sitting on top 
of 3 wrong pieces and figure 5 sitting on top of 4 wrong pieces. 

The successor obtained by move 1 has the value -6 (same as for the initial state 
but piece 5 sits now correctly, so we only have (-1)+(-2)+(-3)). 

The move 2 generates two successors with values (-1)+(-2) for move 2a (piece 
3 sits on top of one wrong piece and piece 2 sits on top of 2 wrong pieces) and  
(-1)+(-2)+(-1) from the penalty of the pieces 3, 2 and 1 in the move 2b. 

As evident, the local optimum is avoided using this second heuristic. 
 
Example 2: Missionaries and cannibals 
 
Let us consider again the missionaries and cannibals problem. 3 missionaries and 
3 cannibals are on the left bank of a river. They have to cross the river to the right 
bank. A small boat is available but this boat can only carry 2 people at a time. Al-
so, the missionaries should not be outnumbered by the cannibals at any time and 
on any of the river sides. 

A straight forward heuristics which comes to anyone’s mind first is that of 
evaluation the number of people on the left bank: on the initial state there are 6 
people and the goal state should contain 0 people.  

At the first step, there are 3 possible moves (which also respects the problem 
constraints): 

- 2 cannibals cross the river; 
- one cannibal and one missionary cross the river; 
- one cannibal crosses the river.    

By using any of the first 2 moves, the situation on the left bank will get closer to 
the goal state, so hill-climbing will prefer one of these moves.  

However, by doing so, hill-climbing will reach a false optimum (a local opti-
mum). At least one person who already crossed the river has to bring the boat back 
and this will increase again the number of people on the left side. Hill-climbing 
will not accept such a solution and will report as final solution the one with 4 peo-
ple remaining on the left bank and 2 and the right bank. Hill climbing approach 
stops whenever it can find no move that improves the situation.  In this case, it 
will stop after the first move.   

A heuristic which might guide hill-climbing to a better solution for this prob-
lem (which we will see it is again a local optimum) is to consider a goal state for 
each of the river sides and to compare the successors of a state to the goal state of 
the side they are in at that moment. 

For instance, the current state and goal state on the both sides is as follows (1 or 
0 on the third position refers to whether the boat is on that side or not): 

 
Left side       Right side 
(3, 3, 1)   current state   (0, 0, 0) 
(0, 0, 0)   goal state   (3, 3, 1) 



4.2   Hill Climbing 89
 

We first start from the left side and obtain 3 successors. We compare these succes-
sors with respect to the goal situation and we expect to reach on the right side. 
Again, one of the moves where 2 people reach the right bank is preferred to the 
one in which just one person crosses the river. Thus, we can get in any of the  
situations: 

 
Left side                Right side 
(2, 2, 0)                (1, 1, 1)     or 
 
Left side                Right side 
(3, 1, 0)                (0, 2, 1)   
 

Any of these situations is better than the initial state we had on the right side. Sup-
pose the second one is chosen. Now, one or two persons have to return with the 
boat. There are two possible moves (without violating problem’s restrictions), 
which will lead to the following two situations: 

 
Left side                Right side 
(3, 2, 1)                (0, 1, 0)     or 
 
Left side                 Right side 
(3, 3, 1)                 (0, 0, 0)   
 

We now compare the new states with the state of the left river side. Always the 
comparison and evaluation is made with respect to the goal and current state of the 
side the boat is. First state is better than the previous state on the left side (when 
the boat was there). So, this will be preferred and the search will continue getting 
the situations below: 

 
Left side               Right side 
(3, 2, 1)               (0, 1, 0) 
 
Left side               Right side 
(3, 0, 0)               (0, 3, 1) 
 
Left side               Right side 
(3, 1, 1)               (0, 2, 0) 
 
Left side               Right side 
(1, 1, 0)               (2, 2, 1) 
 
Left side               Right side 
(2, 2, 1)               (1, 1, 0) 
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At this stage, 2 people have to go back with the boat (otherwise the missionaries 
will be outnumbered) and the goodness of the new state is same as the one of the 
current state ((3, 1, 1) and (2, 2, 1)). So, we are again in a local optimum, but this 
time the solution is closer to the goal state (the state (2, 2, 1) on the right side and 
(1, 1, 0) on the left side will be reported as final solution). 

 
Example 3: 8-puzzle 
 

We consider a simple example for which hill-climbing works. The result is de-
picted in Figure 4.5. Heuristic used is the number of misplaced tails, which has to 
be 0. 

For this example hill climbing – like other heuristic search based methods – is 
able to obtain the global optimum and in a shortest number of steps (which is ac-
tually not taken into account by the hill-climbing). 

 
 

Fig. 4.5 Hill-Climbing for the 8-puzzle problem. 
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Example 4: Traveling Salesman problem (TSP) 
 

Traveling salesman problem (TSP) is one of the most intensively studied  
problems. 

It can be stated as follows: Given a set of n cities and the cost of travel between 
each pair of them, the problem is to find the cheapest way of visiting all of the 
cities and returning to the starting city. For this problem, Hill-climbing starts with 
a configuration, which is a permutation of the n cities representing the order they 
are visited. In order to get to a better configuration (or to the optimal one) several 
operators may be used. The simplest one consists on swapping (or changing) the 
order two cities are visited. This can be generalized to more changes: 2, 3 or k. 
This is usually referred to as k-opt, k representing the number of changing or 
swaps.   

Please consider the graph given in Figure 4.6 with nodes A, B, C, D, E and F 
and with the given cost for each edge. Let us suppose that the starting city is A. 
Hill-climbing will start with a random state and then will try to optimize it. 

 

 
Fig. 4.6 The graph for the TSP example. 

Let us consider that the starting configuration is A B C D E F (and suppose 
from F we will return to A). The solution obtained by hill-climbing when just a 
consecutive pair of cities is swapped at a time has the cost 15 and is depicted in 
Figure 4.7. 

 
Fig. 4.7 The (local) solution obtained by hill-climbing for TSP. 
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This solution is just a local optimum. If we consider that any pair of cities can 
be swapped at a time, then hill-climbing is able to obtain a better solution (see 
Figure 4.8, with a cost of 10). 

 

 

Fig. 4.8 The global solution obtained by hill-climbing for TSP. 

There are some advantages as well as some disadvantages of using hill-
climbing. 

Advantages:  

1. easy to implement; the algorithm is very simple and easy to reproduce; 
• requires no memory (since there is no backtracking); 
• since it is very simple, can be easily used to get an approximate solution 

when the exact one is hard or almost impossible to find (for instance, for 
very large TSP instances (or other similar NP Complete problems), an 
approximate solution may be satisfactory when the exact one is not 
known and difficult to find). 

 
Disadvantages:  

• the evaluation function may be sometimes difficult to design; 
• if the number of moves is enormous, the algorithm may be inefficient; 
• by contrary, if the number of moves is less, the algorithm can get stuck 

easily; 
• it’s often cheaper to evaluate an incremental change of a previously eva-

luated object than to evaluate from scratch; 
• inner-loop optimization often possible. 

4.3   Simulated Annealing 

The hill-climbing search gets stuck, whenever the best of the current’s state suc-
cessors is not better than the parent. The search process stops and many a times 
only a local solution is found. While compared to hill-climbing, simulated anneal-
ing allows moves in the wrong direction on a probabilistic basis; the probability of 
a backward move decrease as the search continues. The idea is as follows: early in 
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the search, when far from the goal, heuristic may not be good heuristic and it 
should improve as it gets closer to the goal. The base of simulated annealing is an 
analogy with thermodynamics, mainly with the way that liquids freeze and crystal-
lize, or metals cool and anneal. At high temperatures, the molecules of a liquid 
move freely with respect to one another. If the liquid is cooled slowly, thermal 
mobility is lost. The atoms are able to line themselves up and form a pure crystal 
that is completely ordered over a distance up to billions of times the size of an 
individual atom in all directions. 

This crystal is the state of minimum energy for this system. It is interesting that, 
for slowly cooled systems, nature is able to find this minimum energy state. In 
fact, if a liquid metal is cooled quickly or “quenched”, it does not reach this state 
but rather ends up in a polycrystalline or amorphous state having somewhat higher 
energy. So the essence of the process is slow cooling, allowing ample time for 
redistribution of the atoms as they lose mobility. This is the technical definition of 
annealing, and it is essential for ensuring that a low energy state will be achieved 
[ 12]. 

For a better understanding of Simulated Annealing (SA) technique, we will 
start with the description of Monte Carlo simulation. A Monte Carlo simulation 
represents a large number of random trials. Information is obtained by tabulating 
the results of these trials. 

For example, we want to determine the probability of a coin to flip on heads if 
the coin initially starts with the heads-face showing. In the Monte Carlo simula-
tion, we flip the coin a large number of times, each time with heads showing be-
fore you flip, and recording the number of times the coin lands on heads. The 
probability of getting heads if we start from heads will be given by the number of 
times it lands on heads divided by the total number of times the coin is flipped. 

Monte Carlo simulations use random moves to explore the search space to find 
out some information about the space. In a simple Monte Carlo simulation, all 
random moves are accepted such that a different region of search space is sampled 
at each step. In 1953, Nicholas Metropolis [ 4] proposed a new sampling procedure, 
which incorporates a temperature of the system. In contrast with the simple Monte 
Carlo simulation, a new point in the search space is sampled by making a slight 
change to the current point. In 1983, Kirkpatrick [ 6] proposed a method of using a 
Metropolis Monte Carlo simulation to find the lowest energy (most stable) orienta-
tion of a system. Their method is based upon the procedure used to make the 
strongest possible glass. This procedure heats the glass to a high temperature so 
that the glass is a liquid and the atoms can move relatively freely. The temperature 
of the glass is slowly lowered so that at each temperature the atoms can move 
enough to begin adopting the most stable orientation. If the glass is cooled slowly 
enough, the atoms are able to "relax" into the most stable orientation. This slow 
cooling process is known as annealing, and so their method is known as Simulated 
Annealing. 

A Simulated Annealing search starts with a Metropolis Monte Carlo simulation 
at a high temperature. This means that a relatively large percentage of the random 
steps that result in an increase in the energy will be accepted. After a sufficient 
number of Monte Carlo steps, or attempts, the temperature is decreased. The  
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Metropolis Monte Carlo simulation is then continued. This process is repeated 
until the final temperature is reached [ 5]. A Simulated Annealing search starts 
with an initial solution to the problem, which is also the best solution so far, and 
the temperature set at the initial, high temperature Ti. This solution becomes the 
current state. The number of Monte Carlo attempts is set to 0. It is incremented by 
1 and is tested to see if it has reached the maximum number of attempts at this 
temperature. If so, the current temperature is checked. If it is equal to the final 
temperature, Tf, the simulation is finished and both the final solution and the best 
solution found during the simulation are stored. If the current temperature is above 
the final temperature, it is reduced using a cooling schedule. The number of Monte 
Carlo attempts is reset to 1 [ 5]. 

If the number of attempts at this temperature has not been reached, or the tem-
perature has been decreased, the current solution is modified to generate a new 
solution. This constitutes the Monte Carlo step. If the energy of the new solution is 
lower than that of the current solution, it is checked to see if it is the best solution 
found to date. If it is, it is stored separately. Whether or not it is the best, it be-
comes the new current solution for the next Monte Carlo step.  If the energy of the 
new solution is higher than the parent's by an amount dE, the Boltzmann probabil-

ity ( kT

dE

e
−

, where k is Boltzmann's constant and T is the current temperature) is 

calculated. If this probability is greater than a random number between 0 and 1, 
this new solution is accepted and becomes the parent solution for the next itera-
tion, and the current solution. Conversely, if the Boltzmann probability is less than 
the random number, the new solution is rejected and the current/parent solution 
stays the same and is used in the next iteration [ 5]. 

The algorithm employs a random search, which not only accepts changes that 
decrease the evaluation function f, but also some changes that increase it. The lat-

ter are accepted with a probability T

f

ep

Δ
−

= , where Δf is the increase in objective 

function, and f and T are control parameters.  
The simulated annealing algorithm is outlined in Algorithm 4.3. 
 
 

Algorithm 4.3. Simulated Annealing 

Step 1. Pick a temperature from a sequence (schedule) 

of temperatures. 

(Start with hotter temperatures, then 

gradually cool it.) 

Step 2. Set t (time)=0 

Step 3. While temperature is not 0 do 

Step 3.1. t=t+1; 

Step 3.2 If schedule(t) = 0 (temperature is 0)  

Then return the current solution and 

exit the algorithm. 

Step 3.3 Apply a random operator from set of  

operators to current state 
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Step 3.4 if new state is better than old state  

   then decrease and use this new state 

           if new state is worse than old state  

           then use worse state with some probability  

           else stick with previous better state 

end. 

 

 
Remark 
As evident, there is an annealing schedule; this means that there is an initial tem-
perature and rules for lowering it as the search progresses. When Δf is negative 
then large T’s increase the probability to take a bad move. Large Δf’s reduce 
probability to take worse move. There are several ways to set the probability of 
accepting a worsening move, for instance: 

• Probability is 0.1; 
• Probability decreases with time; 
• Probability decreases with time, and also as ΔE increases. 

 

The Metropolis algorithm can be used in other systems than thermodynamic sys-
tems by identifying the following elements: 

• system configurations; 
• a random changes generator (in the configuration);  
• an objective function E (analog of energy) whose minimization is the 

goal of the algorithm; 
• a control parameter T (analog of temperature); 
• an annealing schedule which tells how the temperature it is lowered from 

high to low values, e.g., after how many random changes in configuration 
is each downward step in T taken, and how large is that step. The high 
and low values can be determined using some physical insight and/or tri-
al-and-error experiments [ 12]. 

 

The way in which physical annealing can be mapped to simulated annealing is 
presented below (as given in [ 16]): 

 
Thermodynamic Simulation Combinatorial Optimization 

System States Feasible Solutions 
Energy Cost 
Change of State Neighbouring Solutions 
Temperature Control Parameter 
Frozen State Heuristic Solution 
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Using these mappings any combinatorial optimisation problem can be con-
verted into an annealing algorithm [ 6][ 14]. There are a few natural questions that 
may arise while trying to implement simulated annealing for a particular problem. 
These questions are related to the settings of the parameters involved, but mostly 
referring to the temperature. For instance, it is important to know how to set the 
initial temperature, how high it should be (of course, there is no generic value, it 
depends very much on the problem and many a times can be fixed only by some 
experiments). Another question is related to the final temperature, whether we 
should let the algorithm run until it reaches temperature 0 (this may take really 
long time in certain situations) or another low value will be enough (but this “low” 
should also be set somehow). It is then naturally to set a temperature decrement; 
again, there is no general rule, but many algorithms use a high decrement in the 
beginning and a lower one once the search process advances. Finally, it is impor-
tant to know how much iterations are to be performed with a temperature, before 
decreasing it. 

 

Initial temperature. The initial temperature must be hot enough to allow a move 
to almost any neighbouring state.  If this is not high enough then the ending solu-
tion will be the same or very similar to the initial state and will play the role of a 
hill-climbing algorithm. 

On the other hand, if the temperature starts at a too high value then the search 
can move to any neighbour and thus transform the search into a random search. 
The search will be random until the temperature is cool enough to start acting as a 
simulated annealing algorithm. The problem is finding the correct starting tem-
perature. There is no known method for finding a suitable starting temperature for 
a whole range of problems. But this has been suggested in different ways: if the 
maximum distance (cost function difference) between one neighbour and another 
is known then this information can be used to calculate a starting temperature. 

Some of the proposed methods are similar to how physical annealing works in 
that the material is heated until it is liquid and then cooling begins. The method 
suggested in [ 21] starts with a very high temperature and cools it rapidly until 
about 60% of worst solutions are being accepted. After this, the temperature will 
be cooled more slowly. 

Dowsland suggested [ 16] to rapidly heat the system until a certain proportion of 
worse solutions are accepted and then slow cooling can start. In the beginning a 
higher number of worse solutions are accepted and in the final cooling stages, this 
number is dramatically decreased. We can then say that simulated annealing does 
most of its work during the middle stages of the cooling schedule. Connolly [ 15] 
even suggests annealing at a constant temperature. As a conclusion, we cannot set 
the temperature once for all. This can be done experimentally for a certain class of 
problems only, not in general, and it is better to be particularly set for each prob-
lem (or even for each different instances of the same problem). 

 

Final temperature. The usual final temperature (as state in the algorithm also) is 
that of value 0. But this can make the algorithm run for a very long time. In prac-
tice, it is not necessary to let the temperature reach zero because as it approaches 
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zero the chances of accepting a worse move are almost the same as the tempera-
ture being equal to zero. 

Therefore, the stopping criteria can either be a suitably low temperature or 
when the system is frozen at the current temperature (i.e. no better or worse moves 
are being accepted). 

 

Decrement step. Once the initial and final temperature is set, a step to reach from 
start to end should be defined. The temperature should be decremented with this 
step at each time until it will reach the final temperature (if this is the stopping 
criterion of the algorithm). The way in which the temperature is decremented is 
critical. Enough iterations are to be allowed at each temperature so that the system 
stabilises at that temperature. But this can be sometimes exponential to the prob-
lem size. We can then either allow a large number of iterations at a few tempera-
tures and a small number of iterations at many temperatures or a balance between 
the two. The temperature can be decremented linear (T=T+α) or geometric 
(T=T⋅α; In this case α should be between 0 and 1. Experimentally, it was shown 
that values of α between 0.8 and 0.99 are satisfactory, with preference given to 
higher values. The higher the value of α, the longer it will take to decrement the 
temperature to the stopping criterion [ 13]). 

 
Number of iterations at each temperature. There are several ways to set the num-
ber of iterations which are to be performed at a temperature. Of course, none of 
them is proven to be optimal, but any of them can be considered as an alternative. 
Some of the possibilities are: 

• A constant number of iterations at each temperature; 
• A dynamic change of the number of iterations as the algorithm pro-

gresses: less iterations at high temperature and large number of iterations 
at low temperature (so that the local optimum can be fully explored). At 
higher temperatures, the number of iterations can be less. 

• One iteration at each temperature but decrease the temperature very 
slowly (suggested by [ 19]) so that you can play around with the parame-
ters, if you are interested. 

It has been proved that by carefully controlling the rate of cooling the temperature, 
SA can find the global optimum[7]. However, this requires infinite time. Several 
simulated annealing variants have been developed with annealing schedule in-
versely linear in time (fast simulated annealing), exponential function of time 
(very fast simulated re-annealing)[9]. There are a couple of advantages and disad-
vantages of simulated annealing method: 

Advantages:  

• it is a general technique and can deal with highly nonlinear models, cha-
otic and noisy data and many constraints; 

• its advantages over other local search methods (such as hill climbing for 
instance) is the ability to approach global optimum[8]; 

• simple to implement and adapt the code to various problems (even 
thought it is a bit more complicated than hill-climbing for instance). 
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Disadvantages: 

• there is a clear tradeoff between the quality of the solutions and the time 
required to compute them; 

• it is not easy to design the annealing schedule; 
• the precision of the numbers used in implementation is of SA can have a 

significant effect upon the quality of the outcome. 

4.4   Tabu Search 

Tabu search (TS) was proposed by Glover [ 25] (see also [ 24 ], [26]-[ 36]) as an 
iterative procedure designed for the solution of optimization problems. "Taboo" 
refers to a strong social prohibition relating to any area of human activity or social 
custom declared as sacred and forbidden. Breaking of the taboo is usually consid-
ered objectionable or abhorrent by society. The word comes from Tongan  
language and appears in many Polynesian cultures [ 23]. The most important asso-
ciation with traditional usage, however, stems from the fact that tabus as normally 
conceived are transmitted by means of a social memory which is subject to modi-
fication over time. This creates the fundamental link to the meaning of “tabu" in 
tabu search. The forbidden elements of tabu search receive their status by reliance 
on an evolving memory, which allows this status to shift according to time and 
circumstance. As Glover noted in [ 28], the origins of TS are in the late 1970s, in 
combinatorial procedures applied to nonlinear covering problems. There are two 
important elements in the TS procedure:  
 

(i) tabu moves: determined  by a non-Markovian function that uses informa-
tion from the search process, taking into account last t generations; 

(ii) tabu conditions: can be linear inequalities or logical relationships ex-
pressed directly in terms of current trial solution. Their role is in choos-
ing the tabu moves (elements which violate the tabu conditions). 

 
If we consider the single optimization problem and the following notations: 

 
(i) S the search space 

(ii) N the neighborhood 
(iii) T - the set of tabu moves 
(iv) f - the evaluation function 
(v) x* - optimal solution found so far 

(vi) k - number of iterations 
 

then the TS algorithm can be simply described as illustrated in Algorithm 4.4 [ 28]: 
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Algorithm 4.4. tabu search 

Step1. Select x∈S and set x*=x. 

           Set k=0. 

           Set T=∅. 

Step2. Set k=k+1 

       Generate a subset of solutions in the neighbor-

hood N-T of x. 

Step 3. Choose the best solution s from this neighbor-

hood and set x=s. 

Step 4. if f(x)<f(x*) 

         then x*=x. 

Step 5. if termination criteria 

        then stop 

      else 

            Update T. 

      Go to step 2. 

end 

 
 
 

Remarks 

(i) Termination criteria used in the algorithm is a fixed number of genera-
tions. Once this number is reached, the search process will stop. But there 
are several other stopping criteria, which may be taken into account:  

a. a number of iterations when no improvements occur.; 
b. if the solution is known, then the algorithm may stop if the solu-

tion has been approximated well enough; 
c. there are no more solutions to check in the neighborhood which 

are not in the tabu list.  
(ii) In cases where exclusion from T can be expressed as a requirement to sa-

tisfy a set of inequality constraints and the set S can be similarly charac-
terized, the solution s obtained by defining f in this manner represents the 
outcome obtained by solving an auxiliary optimization problem [ 28]. 

(iii) If S-T is large and processed by itemization rather than auxiliary solution, 
the function f may be based on a strategy for sampling this region, 
shrinking this set for identifying the minimum f(s). 

 
The usage of a tabu list may prevent cycles of size at most |T|, but, one the other 
hand, keeping this list in memory may be extremely impractical. Some variants 
have been proposed to overcome some of the drawbacks. The usage of a moves 
list instead of a tabu list is one of them.  
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For each solution i in the search space S, a set M(i) of moves which can be ap-
plied to i in order to obtain a new solution j is kept (for simplification, we will use 
the notation: j=i⊕ m as in [ 22]). Then neighborhood of i can be defined as N(i)={j 
/ ∃ m∈M(i) with j=i⊕m}.  

So instead of keeping a list T of the last |T| solutions visited, it can simply kept 
track of the last |T| moves or of the last |T| reverse moves associated with the 
moves actually performed.  For efficiency purposes, it may be convenient to use 
several lists Tr at a time. Then some constituents tr (of i or of m) will be given a 
tabu status to indicate that these constituents are currently not allowed to be in-
volved in a move.  Generally the tabu status of a move is a function of the tabu 
status of its constituents, which may change at each iteration. A move m (applied 
to a solution i) will be a tabu move if all conditions are satisfied. 

By replacing the solutions by moves in the tabu list, solutions, which may be 
unvisited so far may be given a tabu status. Since the list of visited moves can 
grow very much, there should be a way to restrict it. An improvement, which may 
help is the one of keeping only the most recent visited states in the memory. A 
recency function may be used to restrict the size of the list in some way; it keeps 
the most recently visited states in the list - discarding the others. 

The easiest (and most usual) implementation of this function is to simply keep 
the list at a fixed size and use a queue working as FIFO (First-In, First-Out) to 
maintain the list. 

The list-size parameter may be dynamic and change as the algorithm runs. One 
method of doing this is to keep the list small when states are not being repeated 
very often but, when repeated states keep being generated the list is made larger so 
that the search is forced to explore new areas. Another concept is further used: 
aspiration level. A tabu move m may appear attractive because it gives a solution 
better than the best found so far. m can be then accepted in spite of its status if it 
has an aspiration level which is better than a threshold given value. The objective 
function can be modified by introducing two more terms – intensification and di-
versification – which will penalize certain solutions: 

• By introducing the intensification term in the objective function priority 
will be given to the solutions which have common features with the cur-
rent solution and solutions far from the current one will be penalized. 

• By introducing the diversification term in the priority function diversifi-
cation of the exploration will try to spread over different regions of the 
search space. This term will penalize (at some stage) solutions which are 
close to the current one. 

 
Example: 0/1 Knapsack problem 

 
The 0/1 knapsack problem is a widely studied NP-Complete problem and can be 
stated as follows: a set of n items is given and for each item i its utility ui and its 
weight wi is known. A knapsack of capacity C is also given.  

The problem is to find a subset of the items set which can be taken into the 
knapsack such as the following constraints hold: 
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- the knapsack capacity is not overloaded; 
- the total utility of the items taken is maximum. 

 

We illustrate how to apply tabu search for this problem. Consider a tabu list of 
moves and also take into account the aspirations conditions (a move from the tabu 
list can be re-considered if no better solution can be obtained in 3 consecutive tri-
als). At each step, consider a neighborhood of the current solution consisting of 6 
neighbors.  

 

Consider the following data: 
Knapsack capacity: C= 50; 
Number of items n= 7 (each item will be identified by its number) 
The weight and utility for each of the items are provided below: 
Item 1:     weight 10,    utility 2 
Item 2:     weight 12,    utility 1 
Item 3:     weight 15,    utility 3 
Item 4:     weight 27,    utility 4 
Item 5:     weight 30,    utility 1 
Item 6:     weight 20,    utility 3 
Item 7:     weight 7,      utility 1 
 

For simplicity, a state will be denoted by a binary array of size 7 (the number of 
items). 0 or 1 on a position has the meaning that that item is not considered (if 0) 
or considered (if 1) to be taken into the backpack. 

For instance, the solution 0 1 1 0 1 0 0 corresponds to the items 2, 3, and 5 to be 
considered. We now revise the basic elements requited by tabu search for this 
problem: 

 
- Initial solution: we will just consider a random starting state. 
- Possible moves: we consider the moves which allow deleting as well as 

adding an item to the current configuration (just one move at a time). 
We will thus have the moves addi and deletei for i=1 to 7. 

- Evaluation function: in order to evaluate a solution we will first check 
whether the problem constraints are satisfied. In this case, the knapsack 
capacity should not be overloaded. We will penalize any overload of 
the knapsack capacity with an amount of 50. Thus, we have a first cri-
terion f1 which is the difference (in absolute value) between the total 
weight of the selected items and the knapsack capacity + the penalty 
(50) in case the capacity is overloaded (and this criterion is to be mi-
nimized). But we have to take into account the utility of the selected 
objects which should be as high as possible (so this has to be maxi-
mized). Let us denote this by f2. Naturally, one will tell that the overall 
evaluation function f will be f1+f2. This is not possible in our case be-
cause f1 is to be minimized and f2 is to be maximized. We can then 
consider f=f1+(-f2) and we wish to minimize it. 
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The reader may observe how tabu search will work for a couple of iterations. 
 

Iteration 1 

Initial state: 1 0 1 0 0 1 1 
The value of f for the initial state is 52-9=43. 
The tabu list is the empty set. 
Let us randomly generate the following solutions in the neighborhood of the initial 
state: 
 

Solution Move f 
1 1 1 0 0 1 1 Add2 54 
1 0 1 1 0 1 1  Add4 66 
1 0 1 0 1 1 1 Add5 72 
0 0 1 0 0 1 1 Delete1 1 
1 0 0 0 0 1 1  Delete3 7 
1 0 1 0 0 0 1 Delete6 12 

 
The solution with minimum f is 0 0 1 0 0 1 1 which is better than the initial 

state, so this solution will be the new current state. 
The tabu list is now {1} 
 

Iteration 2 
We will now generate successors in the neighborhood of this new state. 

 
Solution Move f 
0 1 1 0 0 1 1 Add2 46 
0 0 1 1 0 1 1 Add4 58 
0 0 1 0 1 1 1 Add5 64 
0 0 1 0 0 1 0 Delete7 9 
0 0 0 0 0 1 1 Delete3 23 
0 0 1 0 0 0 1 Delete6 24 

 
There is no solution obtaining a better value for f at this step. Thus, a new set of 

neighboring solutions will be generated. The process will iterate this way (and we 
leave the remaining as an exercise). The solution with the optimal value is 0 0 1 1 
0 1 0, with items 3, 4 and 6 considered and with a value f = -7.  It might take quite 
a lot time to reach this solution by allowing only one move at a time. If we will 
allow at least two moves to be performed at a step, the solution will be reached 
much faster. 

Let us start with the same initial state 1 0 1 0 0 1 1 (f=43) and consider a maxi-
mum of two moves at a time. 
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At the first iteration we might get the following set of neighboring solutions: 
 

Solution Move f 
0 1 1 0 0 1 1 Add2 Delete1 46 
1 0 1 1 0 0 1  Add4 Delete6 49 
1 0 1 1 0 1 0 Add4 Delete7 60 
1 0 1 0 0 0 1 Delete6 12 
1 1 1 0 0 1 0 Add2 Delete7 48 
1 0 1 0 1 1 1 Add5 72 

 
The best solution obtained now is 1 0 1 0 0 1 0 whose f is 12. This solution is 

better than the current solution thus this will be the new current solution in the 
next iteration.  

 
Iteration 2 

Current solution: 1 0 1 0 0 0 1 
Tabu list: {6} 

 
Solution Move f 
0 0 1 0 1 0 1 Add5 Delete1 44 
0 0 1 1 0 0 1 Add4 Delete1 -7 
1 0 0 1 0 0 1 Add4 Delete3 -1 
1 1 1 0 0 0 1 Add2 -1 
0 1 1 0 0 0 1 Add2 Delete1 11 
1 0 0 0 0 0 1 Delete3 30 

 
The best solution among all the successors is 0 0 1 1 0 0 1 with the value -7 for f. 
This will be the next current solution. 
The tabu list is updated and will be {6, 4, 1}.  
This solution is actually the final solution and it is easy to observe that no im-

provements will occur if the iterations are continued. 
 

Remarks 
• a good starting (non-optimal solution) can be found quickly using a gree-

dy approach and then the tabu search can be applied; 
• number of iterations could be sometimes very large even for simple prob-

lems; 
• in certain situation, the global optimum may not be found, depends on 

parameter settings. 

4.5   Means Ends  

The idea of this algorithm belongs to Newell and Simon [ 37]. It is very similar 
with hill-climbing and it works by reducing the difference between states, and so 
approaching the goal state. The algorithm is summarized in Algorithm 4.5: 



104 4   Iterative Search
 
 

 
Algorithm 4.5 Means ends search 

set the current_state node to initial state; 

loop 

if the goal state has been reached 

then return success and exit the algorithm 

else find the difference between the  

current_state and the goal   state; 

choose a procedure that reduces this  

difference  

     apply it to the current_state to produce the 

new current state;  

end 

 

 
Means-Ends Analysis has some disadvantages such as: 

• failure to find an operator to reduce a difference; 
• sometimes must return to the initial state. 

4.6   Summary 

This chapter presented a number of heuristic search methods. The distinction be-
tween search techniques is related to the distinction between weak and strong me-
thods of problem solving. A weak method uses blind search or a heuristic that is 
broadly applicable to many kinds of problems - e.g. means-ends-analysis as used 
with GPS. 

A strong method uses a heuristic that incorporates significant knowledge about 
the specific problem - e.g. the examples we will look at in conjunction with using 
heuristic search with the 8 puzzle shortly. Three important methods are presented 
in this chapter: hill-climbing, simulated annealing and tabu search. 

Hill-climbing only works if the heuristic is accurate (i.e., distinguishes "closer" 
states) and if the path to the goal is direct (i.e., state improves on every move). 
There are ways to generalize hill-climbing to continue even if the successor states 
look worse. For instance, always choose best successor and don't stop unless 
reaches the goal or there are no successors; dead-ends are still possible (and likely 
if the heuristic is not perfect). 

Simulated annealing is a random-search technique, which exploits an analogy 
between the way in which a metal cools and freezes into a minimum energy crys-
talline structure (the annealing process) and the search for a minimum in a more 
general system.  Simulated annealing has the advantage (over other search meth-
ods) to avoid becoming trapped in local minima. The algorithm employs a random 
search which not only accepts changes that decrease the objective function f (as-
suming a minimization problem), but also some changes that increase it (which 
are accepted with a probability). 



References 105
 

It is an optimization technique for combinatorial and other problems[7][8][9]. 
A disadvantage of the simulated annealing is that the methods are computation-

intensive. There exists faster variants of basic simulated annealing, but these ap-
parently are not as quite easily coded and so they are not widely used.  Simulated 
Annealing guarantees a convergence upon running sufficiently large number of 
iterations. 

Hill climbing suffers from problems in getting stuck at local minima (or 
maxima). Several ways can be tried to overcome these problems but none of them 
have proved satisfactory in practice when using a simple hill climbing algorithm. 

Simulated annealing solves this problem by allowing worse moves (lesser qual-
ity) to be taken some of the time. That is, it allows some uphill steps so that it can 
escape from local minima. Unlike hill climbing, simulated annealing chooses a 
random move from the neighbourhood (recall that hill climbing chooses the best 
move from all those available – at least when using steepest descent (or ascent)).  

Simulated annealing has been proved to converge to the best solution but it 
might take (in the worse case) more time than exhaustive search. Although it may 
not be practical to find the best solution using simulated annealing, simulated an-
nealing does have this important property which is being used as the basis for fu-
ture research. The efficiency of iterative solution methods depends mostly on the 
modeling. A fine tuning of parameters will never balance a bad choice of the 
neighborhood structure or of the objective function. On the opposite, an effective 
modeling should lead to robust techniques that are not too sensitive to different 
parameter settings [ 22]. 

Tabu search allows non-improving solution to be accepted in order to escape 
from a local optimum. Often it gives the global optimum, if correctly imple-
mented, in a very short time. Tabu search obtains solutions that rival and often 
surpass the best solutions previously found by other approaches but there are too 
many parameters to be determined and also the number of iterations could be very 
large in several situations. Depending on the parameter settings, the global opti-
mum may not always be reached. An important thing to notice in all these tech-
niques is that only one solution is kept and tried to improve all the way during the 
search process. We will see in some of the forth coming chapters that there are 
several other heuristics which play not only with a single starting (and current 
solution) but with a whole set of solutions. 
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Verification Questions 

1. What are the issues with hill-climbing? 
2. Which are the three dangerous situations of hill climbing? 
3. What are the advantages and disadvantages of hill climbing? 
4. Describe the analogy between simulated annealing and metal cooling (or 

annealing) in physics.  
5. What are the main parameters of simulated annealing? 
6. How you define a neighborhood for a current state in simulated  

annealing? 
7. What are the main steps in the cooling process) in the case of simulated 

annealing)? 
8.  How can a high initial temperature influence the search process? 
9. How can a low initial temperature influence the search process? 
10. Is there an optimal way to decrease the temperature? 
11. Define at least two stopping criteria for the simulated annealing algo-

rithm. 
12. Will simulated annealing always reach the optimum? 
13. How you compare simulated annealing and hill-climbing? 
14. What are the advantages and disadvantages of simulated annealing? 
15. Which type of problems is simulated annealing fit for? 
16. Define the main parameters of tabu search 
17. Explain the differences between tabu search and hill climbing. 
18. What is the meaning of a tabu list? 
19. How can the search re-visit some of the states which are in the tabu list? 
20. What are the advantages and disadvantages of tabu search? 



108 4   Iterative Search
 

Exercises 

4.1 Describe the way hill-climbing can be used to solve n-queens problem.  

4.2. Consider the simple TSP instance with 4 nodes given in Figure 1. Apply hill-
climbing, tabu search and simulated annealing. Compare the results and the  
performances. 

 
Fig. 1 Graph for the problem 4.2. 

 
4.3 Find a simple problem for which hill-climbing works better (faster) than simu-
lated annealing (and give explanations).  

 
4.4 Find an example for which simulated annealing works better than hill climbing 
(or build such an example and explain the process). 

 
4.4 Consider the following problem: 

A set of n jobs and a set of m machines are given. Each job is composed on a 

number of units and for each machine the capacity is known (the number of job 

units processed in a time unit). A machine can only process a single job at a time. 

The task is to allocate each job to a single machine such as the total time required 

to process all the jobs is minimal. 
 

a) design a simulated annealing algorithm to solve it; 
b) change the annealing schedule defined above; 
c) use a different stopping criterion from the one defined initially; 
d) change the initial starting point; 
e) design a tabu search algorithm to solve it; 
f) compare the results of simulated annealing and tabu search. 

 

4.5. Consider the optimization problem f(x)=x2, x∈[-2, 2]. The graphic of this 
function is depicted in Figure 2 (left). 

a) Apply hill climbing for finding the minimum of this function; 
b) Apply simulated annealing for finding the minimum of f; 
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c) Apply tabu search for optimizing the function. 
d) Compare the results; 
e) Consider the function f(x)= 5+0.5⋅x2-5⋅cos(3⋅x) (the graphic is 

depicted in Figure 2 (right).  

1. Apply again hill-climbing and simulated annealing 
for the optimization (minimization of this problem). 
In case hill-climbing fails, explain why it happens 
like that and try with several other starting points.  

2. Try simulated annealing with different starting point, 
different temperature schedules, different initial tem-
perature and different stopping criteria. 

3. Report the values of the parameters required by si-
mulated annealing to approximate the solution with 
an error of 0.0001. 

(Minimum for both test functions is reached at x=0, and the value of f in this 
point is also 0 in both cases.) 

 

 

Fig. 2 Illustration of the functions for Exercise 4.5 
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Chapter 5 

Adversarial Search 

5.1   Introduction 

In the Chapters 2-4, we presented single agent search methods, that is, we only 

have one player, which has to move, without depending on the moves of another 

player (or players) and without competing or collaborating with any other players. 

This type of search is single agent search, and, naturally, multi-agent search is 

there in its turn.  

In this chapter we formulate a multi-player game as a search problem[9][13][14] 

[17][19] and also illustrate how multi-agent search works. We then consider 

games in which the players alternatively making moves. The goal is to maximize 

and respectively minimize a scoring function (also called utility function). We 

only consider the following type of games:  

• two player games;  

• zero sum - one player's win is the other's loss; there are no cooperative 

victories. 

We also focus on games of perfect information. A perfect game is a game with the 

following characteristics: 

• deterministic and fully observable; 

• turn taking: the actions of two players alternate; 

• zero sum: the utilities values at the end of the game are equal and  

opposite. 

Examples of perfect games are chess, checkers, go, Othello. As in the case of un-

informed and informed search, we can define the problem by its four basic  

elements: 
 

• Initial state: the initial board (or position); 

• Successor function (or operators): defines the set of legal moves from any 

position; 

• Goal test: determines when the game is over; 

• Utility function (or evaluation function): gives a numeric outcome for the 

game. 
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Adversarial search is used in games where one player (or multiple players) tries 

to maximize its score but it is opposed by another player (or players). 

5.2   MIN-MAX Algorithm 

Proposed by John von Neumann in 1944, the search method called minimax max-

imizes your position whilst minimizing your opponent’s position. The search tree 

in adversarial games consists of alternating levels where the moving player tries to 

maximize the score (or fitness) and this player it is called MAX and then the op-

posing player tries to minimize it (this player is called MIN). MAX always moves 

first and MIN is the opponent. An action by one player is called a ply, two ply (an 

action and a counter action) is called a move. 

Remark 

The utility function has a similar role as the heuristic function (as illustrated in the 

previous chapters), but it evaluates a node in terms of how good it is for each 

player. Figure 5.1 shows an example of utility function for tic-tac-toe. Positive 

values indicate states advantageous for MAX and negative values indicate states 

advantageous for MIN. 

 

Fig. 5.1 Example of utility function for tic-tac-toe. Positive values indicate states advanta-

geous for MAX and negative values indicate states advantageous for MIN. 
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To find the best move, the system first generates all possible legal moves, and 

applies them to the current board. In a simple game this process is repeated for 

each possible move until the game is won, lost, or drawn. The fitness of a top-

level move is determined by whether it eventually leads to a win. The generation 

of all moves is possible in simple games such as tic-tac-toe, but for complex 

games (such as chess) it is impossible to generate all the moves in reasonable 

time. In this case only the state within a few steps ahead may be generated. 

In its simplest form, the MIN-MAX algorithm is outlined as Algorithm 5.1: 

 
Algorithm 5.1 MIN-MAX Algorithm 

Step 1. Expand the entire tree below the root. 

Step 2. Using the utility (evaluation) function,  

evaluate the terminal nodes as wins for the mi-

nimizer or maximizer. 

Step 3. Select a node all of whose children have been 

assigned values.  

Step 3.1. if there is no such node 

then the search process is finished. 

Return the value assigned to the root. 

Step 3.2 if the node is a minimizer move 

then assign it a value that is the  

minimum of the values of its children.  

Step 3.3 if the node is a maximizer move assign 

it a value that   is the maximum of the 

values of its children.  

Step 4. Return to Step 3. 

end. 

 

5.2.1   Designing the Utility Function 

A suitable design for the utility function will influence the final result of the 

search process. Thus, it is not an easy task to design an adequate utility function. 

We provide  few examples to illustrate the ways the utility functions may be de-

signed for a couple of problems. The utility function is applied at the leaves of the 

tree. In what follows, we refer to a node n for which we calculate the utility  

function. 

Utility function for tic-tac-toe 

Let us suppose MAX is using X and MIN is using 0.  

The utility function can be defined as: 

• if n is win for MAX then f(n)= + ∞ 

• if n is win for MIN then f(n) - ∞ 

• else count how many rows, columns and diagonals are occupied by each 

player and subtract. 
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Let us consider the states given in Figure 5.2. For simplicity denote by the trip-

let (r, c, d) the number of rows, columns and diagonals respectively occupied by 

either X or 0.  

For the state in Figure 5.2 (a), we have (1, 1, 2) for X which means X is occu-

pying 1 row (the middle row), one column (the middle column) and 2 diagonals. 

For 0 we have (1, 1, 0). Thus the utility function for this state will have the value 

1-1 + 1-1 +2-0 =2. 

For the state in Figure 5.2 (b) we have (1, 2, 2) for X and (1, 1, 0) for 0. The 

value of f in this case is 3. The value of f for the state in Figure 5.2 (c) is 1+1+2 = 

4; we have (2, 2, 2) for X and (1, 1, 0) for 0. The values of f for the cases in Figure 

5.2 (d), (e), (f) and (g) are 1, 1, 2 and 1 respectively. 

For the cases depicted in Figure 5.2 (i)-(l) we obtain +∞ for (i) (X is the winner 

with 3 on a row), and the values 3, 3, and 1 for (j), (k) and (l) respectively. For the 

case (m) the value of f is -∞ (0 is the winner with 3 on a row). For the case (n) the 

utility function value is 1 (we have the values (2, 3, 2) for X and (2, 3, 1) for 0). 

 

 
Fig. 5.2 Different utility function values corresponding to different states for the tic tac toe 

game. 
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Utility function for Othello  

Othello game (also known as reverse) consists on an 8 × 8 board (like chess 

board) and 64 pawns (32 black and 32 white). There are two players which move 

alternately, by placing their pawns on the board. The pawns placed on the board 

are not allowed to be moved. The only thing players can do is to change their col-

or. The board starts with the configuration given in Figure 5.3 and the black 

moves first.  When the player's pawn lies near the enemy one, and the player puts 

a new pawn behind the enemy one, it will change its color into the player's color. 

It is called capturing. A player can capture any number of enemy pawns provided 

that the pawns are in one row between the two player's pawns. Furthermore cap-

turing during making a move is absolutely obligatory. Actually, when a player 

cannot capture during his move, he must resign from the move and the other play-

er will move.  

At a time, one player can have more than one possibility of capturing the ene-

my pawns and he can freely choose any of them. The objective of the game is to 

cover all squares on the board and have more pawns in your color than the  

opponent. 

 

Fig. 5.3 Initial board configuration for Othello game. 

The utility function for the Othello game can be defined by calculating the 

number of black pawns and the number of white pawns on the board and then sub-

tracting them. 

 

Utility function for chess game 
 

For the chess game, and example of utility function may be build as follows: 
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each piece on the board is assigned a value; for instance: 

pawn  = 1; 

bishop = 3; 

knight = 5; 

rook  = 7; 

queen = 9; 

 

Then the total value of all black pieces and the total value of all white pieces on 

the board are calculated and then subtracted. 

MIN-Max Example 1: NIM game 

In the NIM game several piles of sticks are given. A player may remove, in one 

turn, any number of sticks from one pile of his/her choice. The player who takes 

the last stick loses. 

For instance, if we have 4 piles with 1, 2, 3 and 5 sticks respectively, we can 

denote a state by (1 2 3 5). After a move (for instance one player is taking 2 sticks 

from the third pile), the configuration can be expressed as (1 2 1 5) or (1 1 2 5). 

Let us consider the very simple NIM game (1 1 2). The tree is depicted in Fig-

ure 5.4 (look just at the figures inside the squares, ignore the digit above each 

square at this step).  

Suppose MAX is the player who makes the first move. MAX takes one or two 

sticks. After this, it is MIN’s turn to move. Then the opponent moves one or two 

sticks and the status is shown in the next nodes and so on until there is one stick 

left.  

The MAX nodes represent the configuration before MAX makes a move and 

the MIN nodes represent the position of the opponent. Since the goal of this game 

is that the player who removes the last stick loses, the scores are assigned to 0 if 

the leaves are at MAX nodes and the scores are assigned to 1 if the leaves 

are MIN.  

Then we back up the scores to assign the internal nodes from the bottom nodes. 

At MAX nodes we take the maximum score of the children and at MIN nodes the 

minimum score of the children respectively. In this manner, the scores (or utility) 

of non leaf nodes are computed from the bottom up. If we analyze the Figure 5.4, 

the root node is 1, and thus corresponds to a win for the MAX player. The first 

player should pick a child position that corresponds to a 1.  

For real games, search trees are much bigger and deeper than NIM and one 

cannot possibly evaluate the entire tree; there is a need to put a bound on the depth 

of the search. 

 

MIN-MAX Example 2 
 

For the tree in Figure 5.5 the utility values of the leaves nodes are known. Use 

MIN-MAX search to assign utility values for each internal node and indicate 

which path is the optimal solution for the MAX node at the root of the tree.  
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Fig. 5.4 Game tree for the (1 1 2) NIM. 

 

 

Fig. 5.5 The tree for the MIN-MAX search example. 
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The solution is depicted in Figure 5.6 with the heavy black line showing the 

path. The node’s values are written for each internal node. 

 

 

Fig. 5.6 Solution for the tree depicted in Figure 5.5. 

 
If the terminal states are not definite win, loss or draw, or they actually are but 

with reasonable computer resources we cannot determine this, we have to heuristi-

cally/approximately evaluate the quality of the positions of the states. 

Evaluation of the utility function is expensive if it is not a clear win or loss. 

One possible solution is to do depth limited Minimax search. 

•  search the game tree as deep as possible can in the given time; 

•  evaluate the fringe nodes with the utility function; 

•  back up the values to the root; 

•  choose best move, repeat. 
 

This optimization is known as alpha-beta cutoffs and the algorithm in presented in 

the next Section. 

 

Remarks 
 

(i) alpha-beta principle: If you know it’s bad, don’t waste time find-

ing out HOW bad; 

(ii) may eliminate some static evaluations; 

(iii) may eliminate some node expansions. 
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5.3   Alpha-beta Pruning 

One of the most elegant of AI search algorithms is alpha-beta pruning. Apparently 

Jon McCarthy came up with the original idea in 1956 but didn’t publish it. It first 

appeared in print in an MIT technical report and a thorough treatment of the algo-

rithm can be found in [ 12].  

The idea, similar to branch and bound, is that the minimax value of the root of 

the game tree can be determined without examining all the nodes at the search 

frontier. 

Why the algorithm is called alpha-beta? Alpha is the value of the best (i.e., 

highest-value) choice found so far at any choice point along the path for MAX. If 

there is a value worse than alpha, MAX will avoid it and will prune that branch. 

Beta is defined similarly but for MIN (or the opponent). 

Shortly, we can express alpha and beta as: 

• Alpha: value of the best (highest value) choice for MAX 

• Beta: value of the best (lowest value) choice for min 

If we are at MIN node and the value is less than or equal to alpha, then we can 

stop looking further at the children because MAX node will ignore. If we are at 

MAX node and value is greater or equal than beta we can stop looking further at 

the children because MIN node will ignore. The alpha-beta pruning algorithm is 

provided in Algorithm 5.2. 

 
Algorithm 5.2 Alpha-beta pruning 

Step 1. Have two values passed around the tree nodes: 

– the alpha value which holds the best MAX value 

found (set to -∞ at the beginning); 

– the beta value which holds the best MIN value 

found (set to +∞ at the beginning);. 

Step 2. If terminal state, compute the utility function 

and return the result; 

Step 3. Otherwise: 

At MAX level: 

Repeat 

Step 3.1 Use the alpha-beta procedure, with 

the current alpha and beta value, on a 

child and note the value obtained. 

Step 3.2 Compare the value reported with 

the alpha value; 

if the obtained value is larger, reset 

alpha to the new value. 

Until all children are examined with alpha-beta 

or alpha is equal to or greater than beta 

 

At MIN level: 

 



120 5   Adversarial Search

 

Repeat 

Step 3.1 Use the alpha procedure, with the 

current alpha and beta value, on a child 

and note the value obtained. 

Step 3.2 Compare the value reported with 

the beta value; 

if the obtained value is smaller, reset be-

ta to the new value. 

Until all children are examined with alpha-beta 

or beta is equal to or lesser than alpha. 

 

Step 4. Go to step 2. 

end. 

 
Remarks 

(i) At MAX level, before evaluating each child path, compare the returned 

value of the previous path with the beta value. If the value is greater than 

it, abort the search for the current node; 

(ii) At MIN level, before evaluating each child path, compare the returned 

value of the previous path with the alpha value. If the value is lesser than 

it, abort the search for the current node. 

Alpha- beta pruning Example 1 

Consider the tree given in Figure 5.5. For simplicity, we have assigned a label to 

each node as it can be seen in Figure 5.7 which represents the result of alpha-beta 

pruning for this tree. 

First, the nodes E, F and G are evaluated and their minimum value (2) is backed 

up to their parent node B. Node H is then evaluated at 6 and since there are more 

nodes to evaluate the nodes N, O and P are the next ones to be evaluated.  Node N 

is evaluated. Its value is 1. Node O is evaluated and its value is -2. We still need to 

have some information for the node P (it is of interest whether the value of node I 

is less than 6 and greater than what we already have, 2). It is enough to analyze Q 

since P is at a MIN level and we obtain a value ≤ -1. We can now label the node I 

with 1.  Since the value of node A will be maximum between B, C and D and we 

already have the value 2 for the node B, it is meaningless to search further for the 

node C because the value we already have (<=1) is lower than 2. Then the backed 

up value for the node C is <=1. Thus, we can abort searching the children R and S 

of node P and node J and we have the first cutoffs. 

Node K is further evaluated. Its value is 1 which is again less than the minmax 

value of node B. We ca then back up the value <=1 for the node D because it is 

meaningless to search further for values lower than 1 in the children of D. A lower 

value for this node will not change the situation. The portions of the tree, which 

are pruned are shown with heavy black lines in Figure 5.7.   
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Fig. 5.7 Alpha-beta pruning for the tree depicted in Figure 5.5. 

Alpha- beta pruning Example 2 

Let us consider a second example for which we show how alpha-beta search 

works. The tree structure is given in Figure 5.8. 

 

 
Fig. 5.8 Tree for the alpha-beta example 2. 
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We now follow the way in which alpha-beta pruning works in Figure 5.9. First, 

nodes H1 and H2 are evaluated and their minimum value – 4 – is backed up to the 

parent node H. 

Node I1 is then evaluated at 2 and its parent node I must be less than or equal to 

2 since it is the minimum of 2 and an unknown value (on its right child). Thus, we 

label node I by <=2. The value of node D is then 4 (as maximum between 4 and 

something less or equal than 2). Since we can determine the value of node D from 

what we have until now, there is no need to further evaluate the other child of 

node I (which is I2). We further evaluate nodes J1 and J2. The node J will get the 

minimum of J1 and J2 which is 5. This tells us that the minimax value of the node 

E must be greater or equal than 5 since it is the maximum of 5 and an unknown 

value for its right child. Thus, the value of node B is 4 as the minimum between 4 

and a value greater of equal to 5.  We got another cutoff for the right child of E.  

We have examined half of the tree at this stage and we know that the value of the 

root is greater than or equal to 4. 

After evaluating the node L1, the value of its parent is less than or equal to 1. 

Since the value of the root node is greater than or equal to 4, the value of node L 

cannot propagate to the root. After evaluation of node M1, the value of M is less 

than or equal to 0 and hence the backed up value for node F is less than or equal to 

1. Since the value of node C is minimum between the values of nodes F and G and 

node F has a value less of equal than 1, node C will also have less than or equal to 

1. This means the right child of C can be pruned. Thus, the minimax value of the 

root is 4.  

 

 
 

Fig. 5.9 Alpha-beta pruning results for Example 2.   



5.4   Comparisons and Discussions 123

 

5.4   Comparisons and Discussions 

As we used to do for the other uninformed and informed search techniques, we 

will also compare MIN-MAX search and alpha-beta pruning. The results of com-

parison in terms of completeness, time complexity, space complexity and optimal-

ity are given in Table 1 where: 

- b: maximum branching factor of the search tree; 

- d: number of ply; 

- m: maximum depth of the state space. 

 MIN-MAX Alpha-beta 

Complete Yes Yes 

Time complexity O(b
m
) With perfect ordering O(b

m/2
) 

Space complexity O(b
m
) Best case O(2b

d/2
) 

Worse case O(b
d
) 

Optimal yes Yes 

 
Alpha-Beta is guaranteed to compute the same minimax value for the root node 

as computed by MIN-MAX. In the worst case alpha-beta does no pruning, ex-

amining b
d
 leaf nodes (where each node has b children and a d-ply search is per-

formed). In the best case, alpha-beta will examine only 2b
d/2

 leaf nodes. Hence if 

the number of leaf nodes is fixed then one can search twice as deep as MIN-MAX.  

The best case occurs when each player's best move is the leftmost alternative (i.e., 

the first child generated). So, at MAX nodes the child with the largest value is 

generated first, and at MIN nodes the child with the smallest value is generated 

first[8][9][10][11][15].  

MIN-MAX performs a depth first search exploration. For instance, for the 

chess game, if the branching factor b is approximately 35 and m is approximately 

100, this gives a complexity of 35
100

 which is about 10
154

. Thus, the exact solution 

is completely infeasible. 

Summary 

This chapter presented another kind of search – adversarial search –that is of great 

interest in game playing. Two well-known algorithms are presented for one player 

and two-player games: MIN-MAX search and alpha-beta pruning. Although the 

MIN-MAX algorithm is optimal, the time complexity is O(b
m
) where b is the ef-

fective branching factor and m is the depth of the terminal states. (Space com-

plexity is only linear in b and m, because we can do depth first search). 

Alpha-beta pruning brings an improvement for the MIN-MAX search. 

The basic idea of alpha-beta pruning is that is possible to compute the correct 

minimax decision without looking at every node in the search tree pruning (allows 

us to ignore portions of the search tree that make no difference to the final choice)  
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The pruning does not affect final result. Also, it is important to note that a good 

move ordering improves effectiveness of pruning. With perfect ordering, time 

complexity is O(b
m/2

). In games theory there is a huge need for effective and effi-

cient searching techniques due to the complexity of these problems. Some of the 

well known games have the following complexity: 
 

• Chess[6] 

� b~35(average branching factor) 

� d~100(depth of game tree for typical game) 

� b
d
~35

100
~10

154
 nodes 

• Tic-Tac-Toe 

� ~5 legal moves, total of 9 moves 

� 5
9
=1,953,125 

� 9!=362,880 (Computer goes first) 

� 8!=40,320 (Computer goes second) 

• Go  

� b starts at 361 (19 x 19 board) 
 

The line of perfect play leads to a terminal node with the same value as the root 

node. All intermediate nodes also have that same value. Essentially, this is the 

meaning of the value at the root node. 

Adversary modeling is of general importance and some of the application do-

mains including certain economical situations and military operations[2][3][4][5]. 

In practice, there are a few important situations where “machines” were able to 

compete (and defeat) world champions for certain well known games. 
 

• For checkers game, there exist Chinook. After 40-year-reign of human 

world champion Marion Tinsley, Chinook defeated it in 1994. Chinook 

used a pre-computed end game database defining perfect play for all posi-

tions involving 8 or fewer pieces on the board, a total of 444 billion  

positions. 

• For Chess game, there exists Deep Blue. Deep Blue defeated human world 

champion Garry Kasparov in a six-game match in 1997. Deep Blue 

searches 200 million positions per second, uses very sophisticated evalua-

tion, and undisclosed methods for extending some lines of search up to 40 

ply. In the chess program Deep Blue, they found empirically that alpha-

beta pruning meant that the average branching factor at each node was 

about 6 instead of about 35-40[16].  

• Othello game: human champions refuse to compete against computers, 

who are too good. 

• Go game: human champions refuse to compete against computers, who are 

too bad. In Go, the branching factor b is greater than 300, so most pro-

grams use pattern knowledge bases to suggest plausible moves. 

• Backgammon game: program has beaten the world champion, but was 

lucky. 
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Verification Questions 

1. What is the importance of adversarial game and what are the practical 

applications of it? 

2. Name some problems for which MIN-MAX search is optimal. 

3. What are the advantages of alpha-beta pruning while compared to MIN-

MAX search? 
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4. Find an example for which both alpha-beta pruning and MIN-MAX per-

form same. In which situations is alpha-beta better? 

5. Find some examples (other than the ones given in this chapter) in which 

machines can beat humans for different games. 

Exercises 

5.1 For the tree in Figure 2 use MIN-MAX search to assign utility values for each 

internal node (i.e., non-leaf node) and indicate which path is the optimal solution 

for the MAX node at the root of the tree.  

 

 
 

Fig. 1 Tree for the problem 5.1. 

 
5.2 Use alpha-beta pruning for the (1 1 2) NIM game. How you compare with 

MIN-MAX search? Now consider the (1 2 2) NIM and apply both alpha-beta 

pruning and MIN-MAX search. Does alpha-beta reduces more the search in this 

case while compared with the previous one? 

 

5.3 Use alpha-beta pruning and MIN-MAX search for each of the trees given in 

Figures 2-4. 
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Fig. 2 First tree example for the problem 5.2. 

 
Fig. 3 Second tree example for the problem 5.2. 
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Fig. 4 Third tree example for the problem 5.2. 

 
5.4. Use both alpha-beta pruning and MIX_MAX for the tic-tac-toe problem and 

compare the results. Consider starting with the empty board but also analyze the 

behavior of the two techniques on a given non-empty board configuration. 

 

5.5 Consider the connect-4 game (also known as 4 in a line) which is a two player 

game stated as follows:  

 

A 7x6 (7 rows and 6 columns) rectangular board placed vertically is given. 21 red 

and 21 yellow tokens are to be placed on this board by two players which alter-

nate their moves by dropping a token into one of the seven columns. The token 

falls down to the lowest unoccupied square. A player wins if connects four token 

vertically, horizontally or diagonally. If the board is filled and no player has 

aligned four tokens the game ends in a draw (see Figure 1 for example). 

 

a) Design the min-max-search algorithm for connect-4 game; 

b) Design a proper utility function for connect-4; 
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c) Design and implement a game playing program for the deterministic two 

player game Connect-4 

 

This game is centuries old, Captain James Cook used to play it with his fellow 

officers on his long voyages, and so it has also been called "Captain's Mistress". 

 

 
Fig. 5 Connect-4 example: (a) red won, (b) yellow won, (c) draw. 

 
5.6. Design an implement and alpha-beta pruning for the Othello game.  
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Chapter 6 

Knowledge Representation and Reasoning 

6.1   Introduction 

What is knowledge? 

In a very generic way, knowledge can be defined as information (which can be 

expressed in the form of propositions) from the environment. 
 

What is knowledge representation? 

Again, in simple words, can be defined as symbols used to represent the proposi-

tions. 

 

What is knowledge representation and reasoning? 

One way to define it is as the manipulation of symbols encoding propositions to 

produce representations of new propositions. 

 

The question of representing knowledge is a key issue in artificial intelligence: 

how can human knowledge of all kinds be represented by a computer language, 

and in such a way that computers can use this knowledge for purposes of reason-

ing? Modern computer applications have led to generalized use of knowledge re-

presentations in various contexts, including information search, simulation, web 

semantic ontology description. 

Knowledge representation is of immense importance in the field of Artificial 

Intelligence. An intelligent agent should be able to acquire information (or know-

ledge) from environment, to represent and understand it, and to be able of reason-

ing, that is to infer the implications of what it knows and of the choices it has.   

The main component of a knowledge-based agent is its knowledge-base. A 

knowledge-base is a set of sentences, each of them being expressed in a language 

called the knowledge representation language. Sentences represent some asser-

tions about the world. The mechanism for deriving new sentences from old ones is 

known as inferencing or reasoning. Inference must obey the primary requirement 

that the new sentences should follow logically from the previous ones. 

Logic is widely used in Artificial Intelligence as a representational method. The 

advantage of using formal logic as a language of AI is that it is precise and defi-

nite and allows reason about negatives and disjunctions. 
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This allows programs to be written which are declarative - they describe what is 

true and not how to solve problems. This is of importance for automated reasoning 

techniques for general purpose inferencing.   A large amount of the reasoning car-

ried out by humans depends on handling knowledge that is uncertain. Logic can-

not represent this uncertainty well. Similarly, natural language reasoning requires 

inferring hidden state, namely, the intention of the speaker. Humans can cope with 

virtually infinite variety of utterances using a finite store of commonsense know-

ledge. Formal logic has difficulty with this kind of ambiguity[3][4][5].   

Facts are claims about the world and can be true or false. A representation is an 

expression (sentence) in some language that can be encoded in a computer pro-

gram and stands for the objects and relations in the world. The representation has 

to be consistent with reality. 

A logic consists of two parts:  

• language: has two aspects: syntax and semantics. 

o Syntax represents the atomic symbols of the logical language, 

and the rules for constructing well formed, non-atomic expres-

sions (symbol structures) of the logic. Syntax specifies the  

symbols in the language and how they can be combined to form 

sentences. Hence facts about the world are represented as sen-

tences in logic. 

o Semantics gives meanings to the atomic symbols of the logic. It 

specifies what facts in the world a sentence refers to. Hence, al-

so specifies how you assign a truth value to a sentence based on 

its meaning in the world. 

• method of reasoning: consists of the rules for determining a subset of log-

ical expressions, called theorems of the logic. It refers to mechanical me-

thod for deriving new sentences from existing sentences[7][8][9][11]. 

There are a number of logical systems with different syntax and semantics. In 

what follows we will refer to two of them: 

• propositional logic; 

• first order predicate logic. 

6.1   Propositional Logic 

Propositional logic is the simplest logical system. In propositional logic the user 

defines a set of propositional symbols, like P and Q. User defines the semantics of 

each of these symbols.  For example: 

P means “Sunday is a holiday”. 

Q means “Today is Sunday”.  

In reasoning about truth values we have to use a set of operators which can be 

applied to truth values. We will present in what follows some of them. 
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6.2.1   Logical Operators 

Any of us is familiar with these operators from our everyday language: 

“I am going for shopping and for a walk”. 

“John likes apples or oranges”. 

“Mary is not slim”. etc. 

We will use the following operator’s symbols even tough sometimes some other 

symbols may be used: 

And ∧ 

Or ∨ 

Not¬ 

Implies⇒ 

Iff (if and only if) ⇔ 

It is first necessary to convert facts and rules about the real world into logical ex-

pressions using the logical operators. For more details on how to translate logical 

propositions into English and vice versa, see [1]. 

Let us consider the following logical propositions: 
 

R: It is raining 

D: It is dark 

C: It is cold. 
 

Then a sentence (which is also called a formula) can be defined by: 

a) A symbol (any of ∧, ∨, ¬, ⇒, ⇔);  

b) If P is a sentence, then ¬P is also a sentence;  

c) If P and Q are sentences, then P∧Q, P∨Q, P⇒Q and P⇔Q are also  

sentences; 

d) A sentence contains a finite number of applications of (a)-(c). 

Examples: 

R∧C – It is raining and it is cold. 

R⇒C – If it is raining then it is cold. 

(R∧D) ⇒C – If it is raining and it is dark then it is cold. 

The behavior of the logical operators is usually represented using truth tables. A 

truth table shows the possible values that can be generated by applying an operator 

to truth values. 

In what follows we will show the truth tables for the five logical operators we 

presented above. 
 

Not Operator (¬) 
Not is a unary operator, which means it is applied only to one variable (all other 

operators above are binary operators). Its behavior is very simple: 

¬true is false 

¬false is true 
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For a given variable P we then have the truth table: 
 

P ¬P 

true false 

false true 

And Operator (∧) 

And is a binary operator (it acts on two variables). It is also called the conjunctive 

operator and P ∧ Q is the conjunction of P and Q. The truth table of and op-

erator is given below. 

P Q P ∧ Q 

true true true 

true false false 

false true false 

false false false 

We can observe that P ∧ Q is true only if both P and Q are true. If one or tem is 

false or if both are false then P ∧ Q is also false. 

Or Operator (∨) 

Or is another binary operator. It is also called the disjunctive operator and P ∧ Q 

is the disjunction of P and Q. The truth table of or operator is given below. 

P Q P ∨ Q 

true true true 

true false true 

false true true 

false false false 

We can observe that P ∨ Q is true if either P or Q are true and it is false only if 

both P and Q are false. 

Implies operator (⇒) 

This form of implication is also known as material implication. In a P⇒Q state-

ment, P is the antecedent, and Q is the consequent.  

P⇒Q it usually reads as “P implies Q” but can also be read as “If P then Q” or 

“If P is true then Q is true”. Hence, if P is false, the statement is not really saying 

anything about the value of Q, so Q can take on any value (true or false). 

The truth table is given below: 
 

P Q P ⇒ Q 

true true true 

true false false 

false true true 

false false true 
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For example, if P is “I like chocolate” and Q is “I eat chocolate”, then if P is 

true and Q is true, P⇒Q is also true (If I like chocolate then I eat chocolate). If P 

is true and Q is false then P⇒Q is also false (If I like chocolate then I don’t eat 

chocolate). A natural implication is the one where P and Q are false and P⇒Q is 

true: (If I don’t like chocolate then I don’t eat chocolate). 

Iff Operator (⇔) 

Iff operator takes true values if both variables are true or if both are false and takes 

false values otherwise as it can be see in the truth table below: 

 
P Q P ⇔ Q 

true true true 

true false false 

false true false 

false false true 

 
In the truth tables we have seen until now only the values of applying a single 

operator are presented. But truth tables can display the values of expressions hav-

ing more variables and more operators.  The truth table for a complex expression 

given by (¬P∧Q)∨R is given in the table below. Instead of displaying only the 

value of the final expression we are also presenting the values of all sub-

expressions which are ¬P and ¬P∧Q.  

 
P Q R ¬P ¬P∧Q (¬P∧Q)∨R 

true true True false false true 

true true False false false false 

true false False false false false 

true false True false false true 

false true True true true true 

false true False true true true 

false false True true false true 

false false False true false false 

6.2.2   Terminology 

A tautology is an expression whose value is true regardless of the value of the 

variables. For instance, P∨¬P is a tautology.  

If P is a tautology then it is denoted by |=. 

A valid expression is an expression that is true under any interpretation. No 

matter what meanings and values we assign to the variables in a valid expression, 

it will still be true.  
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If an expression is false in any interpretation, it is described as being contradic-

tory (also called inconsistent sentence or unsatisfiable). 

Two expressions that always have the same value for given values of their va-

riables and logically equivalent. 

For instance, the expressions: 
 

P ∧ Q 

Q ∧ P 

are equivalent and we denote this by P ∧ Q ≡ Q ∧ P. 

Going back to the syntax of logical systems, this can be defined using the  

alphabet: 

{¬, ∧, ∨, ⇒, ⇔, (, ), true, false, P, Q, …R,..} 

We should note that any number of propositional symbols (like P, Q, R) can be 

allowed. 

An expression is referred to as a well-formed formula or a sentence if it is con-

structed correctly, according to the rules of the syntax of propositional calculus. 

For example, if we have: 

P, Q, R,… 

¬P 

P∧Q 

P∨Q 

P⇒Q 

P⇔Q 
 

Thus: 
 

(P∧Q) ∨ (¬R⇒P) ⇔ (P∨Q) ∧(R∨Q) 
 

is a well-formed formula. A sentence is defined recursively, in terms of other sen-

tences. 

If we have a set of assumptions {P1, P2, …, Pk}, and from those assumptions a 

conclusion C can be derived, then we say that we have deduced C  from the as-

sumptions and this can be written as: 

{P1, P2, …Pk}├ C 

If C can be concluded without any assumptions, then we write: 

├ C 

To derive a conclusion from a set of assumptions, a set of inference rules are  

applied.  

Sentence P entails sentence Q, written P |= Q, means that whenever P is True, 

Q is also true. In other words, all models of P are also models of Q.   
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6.2.3   Inference 

To derive a conclusion from a set of assumptions, a set of inference rules are  

applied. Instead of using the formula P ├ C we can simply use C

P
. 

Given two sentences P and Q we say Q is inferred from P (P ├ Q) if there is a 

sequence of rules of inference that apply to P and allow Q to be added. 

Inference is not directly related to truth; i.e. we can infer a sentence provided 

we have rules of inference that produce the sentence from the original sentences.   

However, if rules of inference are to be useful we wish them to be related to en-

tailment. Thus, would be ideal that: 
 

  P ├ Q ⇔ P |= Q. 
 

Remarks 

(i) If Q was inferred by applying rules of inference to P but there is some 

model in which P holds but Q does not hold then the rules of inference 

have inferred too much and we have: 

P ├ Q but P |≠ Q 

(ii) If Q is a sentence which holds in all models in which P holds but we can-

not find rules of inference that will infer Q from P then the rules of infe-

rence are insufficient to infer the things we wish and we have: 

P |= Q but P├ Q. 
 

In inference procedure ├ is sound if whenever P ├ Q then also P |= Q. A sound 

inference procedure infers things that are valid consequences. 

An inference procedure ├ is complete if whenever P |= Q then it is also the case 

that P├ Q. A complete inference procedure is able to infer anything that is a valid 

consequence. 

The best inference procedures are both sound and complete but this is computa-

tionally expensive (especially the completeness part). Even if an inference is not 

complete it is desirable that it is sound. 

A logical system is decidable if there is a procedure that is guaranteed to termi-

nate having determinate whether the logical expressions in that system are valid or 

not (will determine whether any well-formed formula is a theorem). 

Propositional logic is decidable; propositional logic is complete and we can 

prove that any well-formed formula is a theorem by showing that it is a tautology 

(and this can be deduced from the truth tables). 

A logical system is monotonic if a valid proof in the system cannot be made 

invalid by adding additional premises or assumptions.  

For example, if we have proved a conclusion C by applying rules of deduction 

to a premise Q with assumptions P, by adding additional assumptions and premis-

es will not stop us from being able to deduce C. 

Propositional logic is monotonic. 
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Some of the most useful inference rules for propositional logic are presented 

below. In these rules, P, Q, R and C stand for any logical expressions. 

6.2.3.1   Introduction 

Example:  And (∧) Introduction 

QP

QP

∧
 

This rule says that given P and Q we can deduce P∧Q. 

Example Or (∨) Introduction 

QP

P

∨
, 

QP

Q

∨
 

This rule says that from P we can deduce the disjunction of P with any expression 

(P ∨ Q is true for any value of Q). 

Example: Implies (⇒) Introduction 

CP

C

P

⇒
M

 

This rule says that if we start from an assumption P and derive a conclusion C, 

then we can conclude that P⇒C. 

6.2.3.1   Elimination 

Example:  And (∧) Elimination 

P

QP ∧
, 

Q

QP ∧
 

These rules say that given P∧Q , we can deduce P and we can also deduce Q sepa-

rately.  

Example: Implies (⇒) Elimination 

Q

QP ⇒P
 

This rule says that if P is true and P implies Q is true, then we know that Q is true. 

This rule is usually known as modus ponens and is one of the most commonly 

used rules in logical deduction. This kind of reasoning is clearly valid. 
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For instance, if we have: 

P: I like chocolate. 

Q. I eat chocolate. 

If we replace in the expression above we get: I like chocolate. If I like chocolate I 

eat chocolate. Thus, I eat chocolate.  

Example: Not Not (¬¬) Elimination 

P

P¬¬
 

This rule says that if we have a sentence that is negated twice, we can conclude 

the sentence itself, without the negation.  

An important inference rule is known as the deduction theorem and is stated as: 

if P ∪{Q}├ C then P├(Q⇒C) 

  

The reverse also holds: 

if P├(Q⇒C) then P ∪{Q}├ C  

6.3   First Order Predicate Logic (FOPL) 

6.3.1   Predicate Calculus 

In predicate calculus, we use predicates to express properties of objects. Predicate 

calculus allows us to reason about the object’s proprieties and the relationships 

between them. In propositional calculus, we can express sentence “I like choco-

late” by P. We can also construct ¬ P from here which means “I do not like  

chocolate”. 

But the thing is this does not allow us to extract any information about me, or I 

like or chocolate. 

In predicate logic, we can express the sentence P by  

L(me, chocolate)  

where L is a predicate that represents ǲliking.ǳ This statement also expresses a relationship between me and chocolate.  
Predicate calculus can be generalized and used for more general statements. For 

instance, we can extend the statement “I like chocolate” to “Everyone likes choco-

late” and we might express this as: 

∀x P(x)⇒L(x, c) 

where ∀ means “for all” and it is called universal quantifier.  
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This can be read as “for every x it is true that if P holds for x then the relation-

ship L holds between x and c.  

We can also make another statement using another quantifier, ∃, to express that 

only some values have a certain propriety, not all of them. 

For instance: 

∃x L(x, c)  

Can be read as “there exists an x such as x likes chocolate”. The quantifier ∃ is 

called existential quantifier and in the example above can be interpreted as there is 

at least one value of x for which L(x, c) holds. 

Remarks 

(i) ∀x L(x, c)⇒∃x L(x, c) is true; 

(ii) ∃x L(x, c) ⇒∀x L(x, c) is false. 

We can express an object that relates to another object in a specific way using 

functions with the same meaning they have in mathematics. For example, to 

represent the statement “My brother likes chocolate,” we might use: 

L(B(me), chocolate) 

where the function b(x) means the brother of x. Functions can take more than one 

argument. A general function with n arguments is represented as in mathematics 

by f(x1, x2, …, xn). 

A first-order logic is one in which the quantifiers ∀ and ∃ can be applied to 

objects or terms, but not to predicates or functions.   

6.3.2   FOPL Alphabet 

FOPL alphabet is a bit more complex than the alphabet used by propositional log-

ic. It consists of: 

• Logical Symbols: ∧, ∨, ¬, ⇒, ⇔, ∀, ∃, true, false;  

• Non-Logical Symbols which can be variables and constants: 

o Any identifier might be considered as a variable; 

o Constants can be predicates and functions. 0-ary functions are 

also called individual constants. 

The identifiers used for predicates, functions, and variables must be easily distin-

guishable by using some appropriate convention.   

A term is any of the following: 

• a constant; 

• a variable;  

• a function f (x1, x2, …, xk) where x1, x2, …, xk are all terms. 

An atomic formula is either false or an n-ary predicate applied to n terms: P(x1, x2, 

…, xn).  
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A literal can be defined as:  

• positive literal: an atomic formula; 

• negative literal: the negation of an atomic formula; 

• ground literal: a variable-free literal. 

A clause is a disjunction of literals. There are a few types of closes:  

• ground clause: is a variable-free clause; 

• Horn clause:  is a clause with at most one positive literal;  

• definite clause: is a Horn Clause with exactly one positive literal. 

Depending on the logical operators used, a formula can be: 

• an atomic formula; 

• negation (the NOT of a formula);   

• conjunctive formula (the AND of formulae); 

• disjunctive formula (the OR of formulae); 

• an implication (a formula of the form formula1 ⇒ formula2);  

• an equivalence (a formula of the form formula1 ⇔ formula2);  

• universally quantified formula (∀ variable formula; occurrences of varia-

ble are bound in formula);  

• existentially quantified formula (∃ variable formula; occurrences of vari-

able are bound in formula).  

A formula that is the disjunction of clauses is said to be in clausal form. For con-

venience, the terms and formulae are referred as form or expression.   

Substitution can be seen as a map from terms to terms and from formulae to 

formulae. 

Given a term s, the substitution of a term t in s for a variable x, denoted by 

s[t/x], is:   

• t, if s is the variable x;   

• y, if s is the variable y different from x;   

• F(s1[t/x] s2[t/x] .. sn[t/x]), if s is F(s1 s2 .. sn).   

Given a formula P, substitution of a term t in P for a variable x, denoted P[t/x],  

is:   

false, if P is false;   

• F(t1[t/x] t2[t/x] .. tn[t/x]), if P is F(t1 t2 .. tn);  

• (Q[t/x] ∧ R[t/x]) if P is (Q ∧R), and similarly for the other relationships;   

• (∀ x Q) if P is (∀ x Q), (similarly for ∃),   

• (∀ y Q[t/x]), if P is (∀ y Q) and y is different from x (similarly for ∃).   

 

Given two substitutions S = [t1/x1 .. tn/xn] and V = [u1/y1 .. um/ym], the composi-

tion of S and V – denoted S.V – is the substitution obtained by:   

Applying V to t1, …, tn (this is called concatenation), and   

adding any pair uj/yj such that yj is not in {x1 .. xn}.   
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For example [2]:  

 

[G(x y)/z].[A/x B/y C/w D/z]  

 

is  

 

[G(A B)/z A/x B/y C/w].   

Remark 

Composition is an operation that is associative and non commutative.   

 
A set of forms f1,f2, ..., fn is unifiable iff there is a substitution S such that: 

 

f1.S = f2.S = ... = fn.S.  

 

S is said to be a unifier of the set.  

 

For example:  

 

{P(x F(y) B) P(x F(B) B)}  

 

is unified by  

 

[A/x B/y]  

 

and also unified by [B/y].    

 

A Most General Unifier (MGU) of a set of forms f1, f2, ... fn is a substitution S 

that unifies this set and such that for any other substitution T that unifies the set 

there is a substitution V such that S.V = T. The result of applying the MGU to the 

forms is called a Most General Instance (MGI).   

Facts about FOPL: 

(i) FOPL is not decidable (while compared to propositional logic which is). 

It is not possible to develop an algorithm that will determine whether an 

arbitrary well-formed formula in FOPL is logically valid. 

(ii) FOPL is monotonic. 

6.4   Resolution in Propositional Logic and FOPL 

We have introduced above the inference rule modus ponens. Resolution is another 

important inference rule. 
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6.4.1   Resolution in Propositional Logic 

Resolution inference rule can be stated as follows: 

given the clauses C1 and C2 as premises, where C1 contains the literal L and C2 

contains the literal (¬L), infer the clause C, where C is the union of (C1 - {L}) 

∪(C2 -{¬L}).   

This is also called the resolvent of C1 and C2.  

In other words, two clauses can be combined together, and L and ¬ L can be 

removed from those clauses. 

This can be written as: 

L}){(C2{L})(C1

C2}{C1,

¬−∪−
 

A simple example is: 

R)(P,

R)}Q,(Q){(P, ¬
 

Another example: 

( ) ( ) ( ){ }
( ) ( ){ }

( ){ }

( ){ }

:toberesolvedcan

:toresolvedfurtherbecan

V,TS,R,P,

orS,VT,R,P,

VS,S,,TS,R,P,

VS,,TS,Q,S,,RQ,P,

      

      

  ¬

¬¬

 

We also have one more choice at the first step (involving S and ¬S). But we 

leave this resolution as an exercise.  

 

If the resolution of a set of clauses leads to falsum means that the closes are incon-

sistent. The original closes are refuted using resolution refutation. 

 

For instance, if we have the original clauses: 
 

{(P, Q), (¬P, ¬S), S, ¬Q} 
 

By elimination P and ¬P we obtain: 
 

{(Q, ¬S), S, ¬Q} 
 

And by eliminating Q and ¬Q we obtain: 
 

{S, ¬S} 
 

⊥ (falsum). 
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6.4.2   Resolution in FOPL 

Given clauses C1 and C2, a clause C is a resolvent of C1 and C2 if the following 

conditions are fulfilled:  
 

1) There is a subset C1' = {P1, .., Pm} of C1 of literals of the same sign, say 

positive, and a subset C2' = {Q1, .., Qn} of C2 of literals of the opposite 

sign, say negative,   

2) There are substitutions s1 and s2 that replace variables in C1' and C2' so 

as to have new variables,   

3) C2'' is obtained from C2 removing the negative signs from P1, P2, …, Pn   

4) There is an Most General Unifier s for the union of C1'.s1 and C2''.s2  

and C is: 

((C1 - C1').s1 ∪ (C2 - C2').s2).s  

 

Example [2]:  

C1 = {(P z (F z)) (P z A)}   

C2 = {(NOT (P z A)) (NOT (P z x)) (NOT (P x z))   

C1' = {(P z A)}   

C2' = {(NOT (P z A)) (NOT (P z x))}   

C2'' = {(P z A) (P z x)}  

s1 = [z1/z]  s2 = [z2/z]   

C1'.s1 UNION  

C2'.s2 = {(P z1 A) (P z2 A) (P z2 x)}   

s = [z1/z2 A/x]   

C = {(NOT (P A z1)) (P z1 (F z1))}    

 

This application of Resolution has eliminated more than one literal from C2, i.e. it 

is not a binary resolution. 

To apply resolution to FOPL expressions, we first need to deal with the quan-

tifiers ∀ and ∃. The method that is used is to move these quantifiers to the begin-

ning of the expression, resulting in an expression that is in prenex normal form. 

The following rules to move the quantifiers to the front [1]: 

1. ¬(∀x)P(x) ≡ (∃x)¬P(x) 

2. ¬(∃x)P(x) ≡ (∀x)¬P(x) 

3. (∀x)P(x) ∧ Q ≡ (∀x)(P(x)∧Q) 

4. (∀x)P(x) ∨ Q ≡ (∀x)(P(x)∨Q) 

5. (∃x)P(x) ∧ Q ≡ (∃x)(P(x)∧Q) 

6. (∃x)P(x) ∨ Q ≡ (∃x)(P(x)∨Q) 

7. (∀x)P(x) ∧ (∀y)Q(y) ≡ (∀x) (∀y) (P(x)∧Q(y)) 

8. (∀x)P(x) ∧ (∃y)Q(y) ≡ (∀x) (∃y) (P(x)∧Q(y)) 

9. (∃x)P(x) ∧ (∀y)Q(y) ≡ (∃x) (∀y) (P(x)∧Q(y)) 

10. (∃x)P(x) ∧ (∃y)Q(y) ≡ (∃x) (∃y) (P(x)∧Q(y)) 
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In converting a well-formed formula to prenex normal form, we use the rules [1]: 

1. P⇔Q ≡ (P⇒Q) ∧ (Q⇒P) 

2. (P⇒Q) ≡ ¬P∨Q 

3. ¬(P∧Q) ≡ ¬P∨¬Q 

4. ¬(P∨Q) ≡ ¬P∧¬Q 

5. ¬¬P ≡ P 

6. P∨(Q∧R) ≡ (P∨Q) ∧ (P∨R) 

Before resolution can be carried out on a well-formed formula, we need to elimi-

nate all the existential quantifiers (∃). 

This is done by replacing a variable that is existentially quantified by a con-

stant, for instance: 
 

∃ (x) P(x)  
 

would be converted to: 
 

P(c) 
 

where c is a constant that has not been used elsewhere in the well-formed formula. 

Although P(c) is not logically equivalent to ∃ (x) P(x), we are able to make this 

substitution in the process of resolution because we are interested in seeing wheth-

er a solution exists. If there exists some x for which P(x) holds, then we may as 

well select such an x and name it c.  

This process is called skolemization, and the variable c is called a skolem constant. 

In order to produce an automated system for generating proofs using resolution on 

FOPL expressions, we can prove (given a set of assumptions and a conclusion) 

whether the assumption logically follows from the assumptions as in the steps 

below: 

1. negate the conclusion and add it to the list of assumptions. 

2. convert the assumptions into prenex normal form. 

3. skolemize the resulting expression. 

4. convert the expression into a set of clauses. 

Summaries 

This chapter presented the fundamentals of two logical systems: propositional 

logic and first-order predicative logic. Operators, syntax and semantics were in-

troduced for both systems as well as the inference and resolution.  

The behavior of the logical operators can be expressed in truth tables. Truth 

tables can also be used to solve complex problems. Propositional logic deals with 

simple propositions while first-order predicate logic allows us to reason about 

more complex statements using the quantifiers ∀ and ∃ (for all, and there exists). 
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Propositional logic is sound, complete, and decidable while first-order predicate 

logic is sound and complete, but not decidable. Resolution can be applied to a set 

of clauses that have been skolemized. This process can be automated because each 

step can be expressed algorithmically. Resolution can be used to automate the 

process of proving whether a conclusion can be derived in a valid way from a set 

of premises or not. Resolution may help in telling us whether a solution exists or 

not for combinatorial optimization problems. 
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Verification Questions 

1. Explain the meaning of the following terms: validity, truth, equivalent, tautol-

ogy, satisfiable, sound, complete, decidable.  

2. What are the components of the propositional logic alphabet? 

3. What type of inferences can be performed? Explain each of them. 

4. What are the elements of the first-order predicative logic alphabet? 

5. Explain the role of the quantifiers ∃ and ∀ for the predicative calculus. 

6. What does it means that logic is monotonic? Which of the propositional logic 

and first-order predicative logic is monotone? 

7. What does it means that logic is decidable? Why first-order predicative logic 

is not decidable? 

8. Which is the most famous inference rule? Explain it and give an example. 

9. What entailment means? 
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10. What is the meaning of equivalence? Give an example. 

11. Explain the algorithm for resolution in first-order predicate logic. 

Exercises 

6.1 Prove the following: 

a) {P∧Q}├ P∨Q 

b) ├ (¬P⇒Q) ⇒(¬Q⇒P) 

6.2 Construct the truth table for the expression: 

(P∧Q)∨(¬Q∨R)⇒(P∧R) 

6.3 Prove the following: 

├(P ⇒ Q) ⇒ ((Q ⇒ R) ⇒ ((R ⇒ S) ⇒ (P ⇒ S))) 

6.4 Write expressions in first-order predicate logic to represent the following 

statements: 

1. All computer science students love artificial intelligence. 

2. Everyone who knows programming loves artificial intelligence. 

3. Therefore, all computer science students know programming. 

Prove whether the conclusion follows from the premises or not. 

6.5 Convert the following English statements in first-order logic: 

1. Every apple or pear is a fruit. 

2. Every fruit has a yellow or a green or a red color. 

3. No pear has red color. 

4. No fruit which is sweet is green. 

5. Pear is a fruit. 

Construct a proof of the statement: 

If pear is not yellow then it is not sweet. 

6.6 Determine whether each of the following are valid, satisfiable (but not valid), 

or unsatisfiable. 

1. (rich ⇒ happy) ∧ rich ∧ ¬happy  

2. (rich ⇒ happy) ∧ rich ∧ unhappy  

3. ¬P∧ (¬(Q ⇒ P) ∨ (¬P∧ Q))) ∨ (¬Q∧ ¬P)|¬(¬P∧ ¬Q)  

4. ¬(¬R ∨ T∨ ¬S) ∨ ¬(R ⇒ S) ∨ (R ⇒ T)  

5. (e) (¬R ∧ (S ⇔ ¬(Q ∨ R))) ⇔(¬S∨ ¬( (R ∧ Q)⇒T)) 

6.7 Using propositional linear resolution, show the following propositional sen-

tence is unsatisfiable. Convert this sentence to clausal form and derive the empty 

clause using resolution: 

(P∨ Q ∨ ¬R) ∨ ((¬R ∨ Q ∨ P) ⇒ ((R ∨ Q) ∧ ¬Q ∧ ¬P)) 
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Chapter 7 

Rule-Based Expert Systems 

7.1   Introduction 

Rule-based systems (also known as production systems or expert systems) are the 

simplest form of artificial intelligence. A rule based system uses rules as the 

knowledge representation for knowledge coded into the system [1][3][4] 

[13][14][16][17][18][20]. The definitions of rule-based system depend almost 

entirely on expert systems, which are system that mimic the reasoning of human 

expert in solving a knowledge intensive problem. Instead of representing know-

ledge in a declarative, static way as a set of things which are true, rule-based sys-

tem represent knowledge in terms of a set of rules that tells what to do or what to 

conclude in different situations.  

A rule-based system is a way of encoding a human expert's knowledge in a fair-

ly narrow area into an automated system. A rule-based system can be simply 

created by using a set of assertions and a set of rules that specify how to act on the 

assertion set. Rules are expressed as a set of if-then statements (called IF-THEN 

rules or production rules): 

IF P THEN Q 

which is also equivalent to: 

P⇒Q. 

A rule-based system consists of a set of IF-THEN rules, a set of facts and 

some interpreter controlling the application of the rules, given the facts. The idea 

of an expert system is to use the knowledge from an expert system and to encode 

it into a set of rules. When exposed to the same data, the expert system will  

perform (or is expected to perform) in a similar manner to the expert. Rule-based 

systems are very simple models and can be adapted and applied for a large kind  

of problems. The requirement is that the knowledge on the problem area can  

be expressed in the form of if-then rules. The area should also not be that large 

because a high number of rules can make the problem solver (the expert system) 

inefficient.   
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7.2   Elements of a Rule-Based System 

Any rule-based system consists of a few basic and simple elements as follows: 

1. A set of facts. These facts are actually the assertions and should be any-

thing relevant to the beginning state of the system. 

2. A set of rules. This contains all actions that should be taken within the 

scope of a problem specify how to act on the assertion set. A rule relates 

the facts in the IF part to some action in the THEN part. The system 

should contain only relevant rules and avoid the irrelevant ones because 

the number of rules in the system will affect its performance. 

3. A termination criterion. This is a condition that determines that a solution 

has been found or that none exists. This is necessary to terminate some 

rule-based systems that find themselves in infinite loops otherwise. 

Facts can be seen as a collection of data and conditions. Data associates the 

value of characteristics with a thing and conditions perform tests of the values of 

characteristics to determine if something is of interest, perhaps the correct classifi-

cation of something or whether an event has taken place.  

For instance, if we have the fact:  

temperature <0 

then temperature is the data and the condition is <0. 

Rules do not interact directly with data, but only with conditions either singly or 

multiple (joined by logical operators as shown below). Figure 7.1 contains an ex-

ample showing the parts of a rule based systems and the interactions between 

them. 

 

Fig. 7.1 An example showing the parts of a rule based systems and the interactions between 

them. 

There are two ways for a rule to set new values for the data [2]:   

• by assignment, where the value is directly set, and 

• by assertion. The assertion does not in itself assign a value to the data, 

but the condition acts like a constraint upon the data value, saying it must 

be the value specified by the condition. 
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7.2.1   Rules 

A rule consists of two parts: the IF part and the THEN part. The IF part is called 

antecedent or premise (or condition) and the THEN part is called consequent or 

conclusion (or action).  

Thus, a simple rule can be expressed as: 
 

IF antecedent 

THEN consequent. 
 

Example: 

IF the season is winter 

THEN it is cold. 
 

The rule tests the logical expression in the premise, and, if the expres-

sion evaluates to true, it then asserts that a fact about a thing or a class of things is 

true. 

A general rule can have multiple antecedents joined by any of the logical opera-

tors AND, OR (or by a mixture of both of them). 

 

Example 1 (multiple antecedents combined by AND) 

 

IF         antecedent1 

AND    antecedent2 

 

 M  

AND    antecedentN 

THEN  consequent 

 

 

IF        the season is winter 

AND the temperature is <0 degrees 

AND  it is windy 

THEN  the weather is cold  

 

 

Example 2 (multiple antecedents combined by OR) 

 

IF        antecedent1 

OR      antecedent2 

 

 M  

OR       antecedentN 

THEN  consequent 

 

 

IF          the season is winter 

OR        the temperature is <0 degrees 

OR        it is windy 

THEN   it is cold 

 

 

Example 3 (multiple antecedents combined by AND and OR) 

 

IF       antecedent1 

AND  antecedent 2 

 M  

OR      antecedentN 

THEN consequent 

 

IF         the season is winter 

AND    the temperature is <0 degrees 

OR       the weather is windy 

THEN  it is cold 
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The consequent can also have multiple clauses, for instance: 

IF        antecedent 

THEN consequent1 

   consequent2 

  M  

  consequentN 

Example: 

IF the season is winter 

THEN the temperature is low 

 the road is slippery 

 the forecast is snow 

The antecedent of a rule has two parts: 

• an object (also called a linguistic object); 

• the value of the linguistic object. 

The object and its value are linked by an operator (like, for example, is, are or 

mathematical operators) which identifies the object and assigns the value.  

Examples: 

IF        x>0 

THEN x is positive 

IF        the temperature is high 

THEN the weather is hot 

A consequent also combines an object and a value connected by an operator. 

The operator assigns a value to the linguistic object. Numerical objects as well as 

arithmetical expressions can be used as rule consequent. 

7.2.1.1   Rules Classification 

There are several ways to classy the rules. Some of them are based on their: 

• function,  

• structure and  

• behavior. 

Functional classifications are the easiest to use and understand.  Often, in practice, 

rules can be associated with a single subject. Functional categorization often re-

mains the default classification scheme for rules. 

Behavioral classification of rules can be complex and is often encountered 

more in the implementation and debugging of rules rather than their specification. 

Behavioral classification and rule behavior in general can be a very complex top-

ic.  Rule behavior can arise either from interactions between rules or between the 

values of the data being used to test conditions within a rule. 



7.2   Elements of a Rule-Based System 153

 

Structural classification of rules has the advantage of classifying rules precisely 

and unambiguously.  However, the structural classification of a rule will not de-

scribe important aspects of that rule, unlike functional classification.  Structural 

rules can be in their turn classified into three groups: 

• logic rules,  

• definitions and  

• constraints. 

Logic rules have a standard IF-THEN structure that is easy to follow and under-

stand.  If the conditions of the premise are met, then the conclusion about relation-

ships between data entities must be true.  The value of some data element is set 

according to the conclusion of the rule.    

From a structural standpoint, a logic rule in the restricted sense has a distinct 

test condition in the IF clause and a conclusion that changes something in the 

THEN clause [2]. 

Example: 

IF         x=1      Test 

AND    y=2 

THEN  z=3      Assign 

Only a logic rule has a clearly recognizable IF condition and a THEN conclusion. 

The conclusion changes the value of something in the system.  

Definition is a THEN conclusion with no IF condition. It is unconditional, ex-

cept for trivial validations of variable bindings and divides by zero conditions. 

A definition constructs values from other values. Values may be the result of the 

application of previous definitions, or they may be the result of executing the con-

clusions of logic rules [2]. 

Example: 

IF            P (something which is always true) 

THEN     Q=x     Assign or compute a value 

Definitions often comprise the majority of rule entities in most applications. Defi-

nitions are unconditional so they are often implemented as procedural code or log-

ical view of the database. 

Constraints are IF conditions with no THEN conclusion.  A constraint de-

scribes a violation of a relationship between data entities.  There is no change of 

value within the data.  A constraint will often trigger an exception, such as sending 

a message (for instance “x should be a positive number”). There is no change in 

the value or state of the any entity.  

Example: 

IF         x= -1         

AND    y=2 

THEN  Raise an exception – such as sending the message “x should be a 

positive value” (Do not allow a change to a value). 
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The exception referred to in the example is usually an error process. The process 

will either prompt the user that there is an error condition or log the error condi-

tion to an error file. The exception may alter or interrupt the flow of process steps 

or of the rule engine itself [2]. 

Based on the conclusion or the consequent of a rule, rules can express: 

• Relation 

IF        x >0 

THEN x is positive 

• Recommendation 

IF        it is rainy 

THEN take an umbrella 

• Directive 

IF         Phone battery signal  

AND    phone battery empty 

THEN  charge the phone 

• Heuristic 

IF        phone light is off 

THEN battery is flat 

7.3   Structure of a Rule-Based Expert System 

A rule-based expert systems has the structure given in diagram in Figure 7.2 and 

consists of the following main elements (the five most important ones are marked 

in bold in the figure): 

• Knowledge base 
Contains the domain knowledge which is represented as rules (IF-THEN 

rules) about subject at hand [5][19]. 

• Database 

Consists of predicate calculus facts that match against the IF parts of the rules 

in the knowledge base. 

• Inference Engine 
Consists of all the processes that manipulate the knowledge base to deduce in-

formation requested by the user and carries the reasoning required by the ex-

pert system to reach a solution. 

• Explanation subsystem 

Analyzes the structure of the reasoning performed by the system and explains 

it to the user, giving the user the possibility to enquire the systems about the 

way in which a conclusion has been reached or about the facts used. 

• User interface 

Refers to the communication between a user looking for a solution and the 

expert system and consists of some kind of natural language processing sys-

tem or graphical user interfaces with menus. 
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• Knowledge engineer 

Is usually a computer scientist with AI training which works with an expert in 

the field of application in order to represent the relevant knowledge of the ex-

pert in a forms that can be entered into the knowledge base. 

• Knowledge acquisition subsystem 
Checks and updates the growing knowledge base for possible inconsistencies 

and incomplete information. 

 

Fig. 7.2 The structure of a rule-based expert system 

The rule-based system works in a very simple way: it starts with a rule-base, 

which contains all of the appropriate knowledge encoded into IF-THEN rules, and 

a working memory, which may or may not initially contain any data, assertions or 

initially known information. The system examines all the rule conditions (IF) and 

determines a subset, the conflict set, of the rules whose conditions are satisfied 

based on the working memory. Of this conflict set, one of those rules is triggered 
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(fired). Which one is chosen is based on a conflict resolution strategy. When the 

rule is fired, any actions specified in its THEN clause are carried out. These ac-

tions can modify the working memory, the rule-base itself, or do just about any-

thing else the system programmer decides to include. This loop of firing rules and 

performing actions continues until a termination criterion is met. This termination 

criterion can be given by the fact that there are no more rules whose conditions are 

satisfied or a rule is fired whose action specifies the program should terminate. 

Reasoning is the way in which rules are combined to derive new knowledge. 

Reasoning is how humans work with knowledge, facts and problem solving strat-

egies to draw conclusions. There are a few types of reasoning: 

• inductive reasoning; 

• deductive reasoning; 

• abductive reasoning; 

• analogical reasoning; 

• common-sense reasoning; 

• non-monotonic reasoning. 

7.4   Types of Rule-Based Expert Systems 

A rule-based expert system works as follows: the inference engine compares each 

rule in the knowledge base with facts in the database. If the IF part of a rule 

matches a fact then the THEN part is executed and the rule fires. By firing a rule a 

new result (a new fact) may be obtained and this will be added to the database. By 

firing rules inference chains are obtained. An inference chain indicates how an 

expert system applies the rules to reach the conclusion or the goal.  

There are two main ways in which rules are executed and this conducts to the 

existence of two main rule systems:  

• forward chaining systems. A forward chaining system starts with the ini-

tial facts and keep using the rules to draw new conclusions (or take cer-

tain actions) given those facts. 

• backward chaining systems. A backward chaining system starts with 

some hypothesis (or goal) to prove, and keep looking for rules that would 

allow concluding that hypothesis, by setting new subgoals to prove as the 

process advances.  

Forward chaining systems are primarily data-driven, while backward chaining 

systems are goal-driven. 

Example 

Consider the following expert systems whose database consists of the facts A, B, 

C, D, E and whose knowledge base is given by the rules below: 

Rule 1: IF     A is true 

 AND   C is true 

 THEN B is true 
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Rule 2: IF     C is true 

 AND   D is true 

 THEN F is true 

Rule 3: IF      C is true 

 AND   D is true 

 AND   E is true 

 THEN X is true 

Rule 4: IF      A is true 

 AND   B is true 

 AND   X is true 

 THEN Y is true 

Rule 5: IF      D is true 

 AND   Y is true 

 THEN  Z is true 

The inference chain for this example is given in Figure 7.3. 

 

Fig. 7.3 An inference chain example. 

Rule-based systems differ from standard procedural or object-oriented pro-
grams in that there is no clear order in which code executes. The knowledge of the 
expert is captured in a set of rules, each of which encodes a small piece of the ex-
pert's knowledge. Each rule has a left hand side and a right hand side (IF part and 
THEN part respectively).  

The IF part contains information about certain facts and objects which must be 
true in order for the rule to potentially fire (or execute). Any rules whose IF part 
match in this manner at a given time are placed on an agenda. One of the rules on 
the agenda is picked (there is no way of predicting which one), and its THEN part 
is executed, and then it is removed from the agenda.  

The agenda is then updated (generally using a special algorithm called the Rete 

algorithm which helps in reducing the number of comparisons that need to be 
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made between rules and facts in the database), and a new rule is picked to execute. 

This continues until there are no more rules on the agenda. The Rete is a directed, 

acyclic, rooted graph (or a search tree). Each path from the root node to a leaf in 

the tree represents the left-hand side of a rule (IF part). Each node stores details of 

which facts have been matched by the rules at that point in the path. 

As facts are changed, the new facts are propagated through the Rete from the 

root node to the leaves, changing the information stored at nodes appropriately. 

This means either adding a new fact or deleting an old fact, or changing informa-

tion about an old fact. In this way, the system only needs to test each new fact 

against the rules, and only against those rules to which the new fact is relevant, 

instead of checking each fact against each rule [12]. A general form of expert sys-

tems is an expert system shell. An expert system shell is actually and expert sys-

tem whose knowledge is removed. Thus, the user can just add its own knowledge 

in the form of rules and provide information to solve the problem. Expert system 

shells are commercial versions of the expert systems. 

7.4.1   Forward Chaining Systems 

The forward chaining works as follow: given a certain set of facts in the working 

memory, use the rules to generate new facts until the desired goal is reached. The 

steps below are followed (see Figure 7.4 for the illustration of forward chaining): 

1. Match the IF part of each rule against facts in working memory. 

2. If there is more than one rule that could be used (more than one rule 

which fires), select which one to apply by using conflict resolution (de-

scribed in the following section). 

3. Apply the rule. If new facts are obtained add them to working memory. 

4. Stop (or exit) when the conclusion is added to the working memory or if 

there is a rule which specifies to end the process. 

 

Fig. 7.4 Forward chaining diagram. 
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Example 1 

Let us consider the example given in Section 7.4 with the database consisting of 

facts A, B, C, D and E and with the knowledge base consisting of the 5 given 

rules. We will now show how forward chaining can be applied to this system to 

reach the conclusion Z. If multiple rules can fire at a time then we will choose to 

fire the first of the rules, which was not fired before. 

Let us now follow step by step the forward chaining as presented above. 

1. Match the IF part of each rule against facts in working memory. 

The following rules can be selected: 

Rule 1: IF A AND C THEN B (since both A and C are in the database); 

Rule 2: IF C AND D THEN F (since both C and D are in the database); 

Rule 3: IF C AND D AND E THEN X (since all C, D and E are in the database) 

Rules 4 and 5 cannot be selected because their IF part cannot be matched (X in the 

case of Rule 4 and Y in the case of Rule 5 respectively are not in the database at 

this moment). 

2. If there is more than one rule that could be used (more than one rule which 

fires), select which one to apply. 

As we can see, there are 3 rules that can be used: Rule 1, Rule 2 and Rule 3. And 

we will always select the first one, which can be applied and was not applied ear-

lier. Thus, Rule 1 will be the rule fired first. 

3. Apply the rule. If new facts are obtained add them to working memory. 

At this step we are applying the Rule 1: 

Rule 1: IF A AND C THEN B 

The consequent of this rule is B is true. But B is already in the database, so no new 

facts are obtained by applying this rule. 

4. Stop (or exit) when the conclusion is added to the working memory or if there is 

a rule which specifies to end the process. 

Our conclusion is Z and was not reached yet, so we will go again to the first step. 

1. At this time, the rules which can be selected are the same: Rule 1, Rule 2 and 

Rule 3.  

2. Since Rule 1 already fired, the next selected rule is Rule 2. 

3. Rule 2 is fired: Rule 2: IF C AND D THEN F. 

A new fact if obtained, F, which is not already in the database, so F will be added 

to the database which is now: A, B, C, D, E, F. 
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4. Conclusion Z was not reached yet, so we will start the process again. 

1. Rules which can fire now are still the same: Rule 1, Rule 2, Rule 3. 

2. Since rules Rule 1 and Rule 2 have been already used, the only remaining one 

to be selected is Rule 3: 

Rule 3:  

3. Rule 3 is fired and a new fact is obtained, X, which is not in the database, so 

will be added. 

4. X is not the conclusion, so we should still restart the process. 

1. The database contains now the facts A, B, C, D, E, F, and X. Thus, the first 4 

rules can be matched at this point. 

2. Since the first 3 rules have been already used, the only one which can be se-

lected to fire is Rule 4: 

Rule 4: IF A AND B AND X THEN Y. 

3. Rule 4 is fired and a new term, Y, is added to the database. 

4. Still, Y is not the conclusion, so we have to continue. 

1. All the 5 rules match the IF condition.  

2. The only remaining rule to use is Rule 5: 

Rule 5: IF D AND Y THEN Z. 

3. Rule 5 is fired and a new fact, Z, is obtained. 

4. Z represents our conclusion so the process may stop here. 

The diagram showing the whole forward chaining process to obtain the conclusion 

Z is depicted in Figure 5.   

Example 2 

Let us now consider a practical example. Given a set of facts containing various 

information about flowers and given a set of rules, the task is to produce the solu-

tion, which indicates which flower is a white lily. The linguistic variables (objects) 

and their possible values allowed by the experts systems and contained into the 

database are given in Table 1. The knowledge base consists of the following rules: 

Rule 1: IF       size > 10 

 AND    size <50 

 THEN height is small 

 

Rule 2: IF     size > 50 

 AND   size <150 

 THEN height is medium 

 

Rule 4: IF     size > 150 

 THEN height is tall 
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Rule 5: IF      life cycle is one year 

 THEN life type is annual 

 

Rule 6: IF      life cycle is more than one year 

 THEN life type is perennial 

 

Rule 7: IF     season is summer 

AND   color is blue  

OR      color is purple  

OR      color is yellow 

AND   life type is perennial 

AND   root type is bulb 

THEN flower name is iris 

 

Rule 8: IF      season is autumn  

AND   color is white 

OR      color is pink 

OR      color is pinkish-red 

THEN flower name is anemone 

 

Rule 9: IF      season is autumn 

AND   height is medium  

AND   color is yellow 

OR      color is while 

OR      color is purple 

OR      color is red 

THEN flower name is Chrysanthemum 

 

Rule 10: IF     season is spring 

  AND   root type is bulbs 

  AND   color is white 

  OR      color is yellow 

  OR      color is orange 

  OR      color is purple 

  OR      color is red 

  OR      color is blue  

  AND   perfumed is true 

  THEN flower is Freesia 

 

Rule 11: IF     life type is perennial 

  AND   height is tall 

  AND   root type is bulbs 

  AND   season is summer 

   THEN flower name is Dahlia 

 



162 Rule-Based Expert Systems

 

Rule 12: IF     season is spring 

  AND   root type is bulbs 

  AND   color is yellow 

  OR      color is white  

  THEN flower name is Narcissus 

 

Rule 13: IF      soil is acidic 

            AND    color is white 

            OR       color is pink 

            OR       color is red 

            AND    life type is perennial 

            AND    root type is roots 

   THEN  flower name is Camellia 

 

Rule 14: IF     season is spring 

  AND   root type is bulbs 

            AND   perfumed is true  

  AND   height is small  

  AND   life type is perennial 

  THEN flower name is Lily 

 

Rule 15: IF     height is small 

  AND   life type is annual 

  AND   soil is rich 

  OR      soil is loose  

  OR      soil is fertile  

  THEN flower name is Begonia 

 

Rule 16: IF       season is winter  

              AND   color is white 

              OR      color is pink 

              OR      color is red 

              THEN flower name is Azalea 

 

Rule 17: IF       life type is perennial 

              AND   root type is root 

              AND   color is white 

              OR      color is red 

              OR      color is blue  

              OR      color is yellow  

              THEN flower is Anemone 

 

Rule 18: IF     life type is perennial 

            AND   root type is roots 

            AND   color is white 

            OR      color is pink 
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            OR      color is red 

            OR      color is yellow 

            AND   perfumed is true  

            AND   soil is well-drained  

   THEN flower is rose 

 

Rule 19: IF    flower name is Lily 

 AND    perfumed is true 

 THEN  flower name is White lily 

Table 1 The objects (linguistic variables) and their values are used in Example 2. 

Object Value Object Value 

Flower name Iris 

Anemone  

Chrysanthemums 

Freesia 

Dahlia 

Narcissus 

Camellias 

Lily 

Begonia  

Azaleas  

Anemone 

Roses 

White lily 

color blue  

purple  

yellow 

red 

white 

pink 

orange 

violet 

pinkish-red 

 

Season  Autumn 

Summer 

Spring 

winter 

Size 10-50 cm 

50-150 cm 

>150 cm 

 

Root type Bulb 

root 

Perfume True 

False 

 

Life type Perennial 

Annual 

Soil Acidic 

Loose 

Fertile 

Rich 

Well-drained 

    

Life cycle One year 

More than one year 

Height Small 

Medium 

Tall 
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Suppose we have the following facts in the database: season: spring, root type: 

bulbs, perfumed: true, size: 16-18 cm, life cycle more than one year, color: orange, 

red, white, pink. We wish to infer the white lily flower. The forward reasoning 

process is carried out as follows: 

Cycle 1 

Matching: Rule 1 and Rule 6 are applicable. 

Rule selection: Select Rule 1 

Rule application: height is small will be added to the working memory. 

 

Matching: Rule 1 and Rule 6 are applicable. 

Rule selection: Can only select Rule 6 since Rule 1 already fired. 

Rule application: Life type perennial will be added to the working memory. 

 

Working memory consists now of: season: spring, root type: bulbs, perfumed: 

true, size: 16-18 cm, life cycle more than one year, color: orange, red, white, pink, 

height: small, life type: perennial. 

Cycle 2 

Matching: Rule 1, Rule 6, Rule 10, Rule 12 and Rule 14 are applicable. 

Rule selection: Can only select Rule 10 Rule 12 or Rule 14 since Rule 1 and Rule 

6 already fired. Select Rule 10. 

Rule application: Flower name is Freesia will be added to the working memory. 

 

Matching: Rule 1, Rule 6, Rule 10, Rule 12 and Rule 14 are applicable. 

Rule selection: Can only select Rule 12 or Rule 14 since Rule 1, Rule 6 and Rule 

10 already fired. Select Rule 12. 

Rule application: Flower name is Narcissus will be added to the working memory. 

 

Matching: Rule 1, Rule 6, Rule 10, Rule 12 and Rule 14 are applicable. 

Rule selection: Can only select Rule 14 since the other rules already fired. Select 

Rule 14. 

Rule application: Flower name is Lily will be added to the working memory. 

 

Working memory consists now of: season: spring, root type: bulbs, perfumed: 

true, size: 16-18 cm, life cycle more than one year, color: orange, red, white, pink, 

height: small, life type: perennial, flower name: freesia, narcissus, lily. 

Cycle 3 

Matching: Rule 1, Rule 6, Rule 10, Rule 12, Rule 14 and Rule 19 are applicable. 

Rule selection: Can only select Rule 19 since the others already fired. Select Rule 

19. 

Rule application: Flower name is White lily be added to the working memory and 

this is also the goal and the inference process will stop.  
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Fig. 7.5 Forward chaining for the example considered. The goal is to reach Z. 

7.4.2   Backward Chaining Systems 

In the backward chaining we first state a hypothesis. Then, the inference engine 

tries to find evidence to prove it. If the evidence doesn't match then we have to  
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start over with a new hypothesis. If the evidence matches then the correct hypo-

thesis has been made. Figure 7.6 presents the diagram and the working model of a 

backward chaining system. 

 
Fig. 7.6 Backward chaining diagram. 

The backward chaining systems work backwards from a hypothesized goal, at-

tempting to prove it by linking the goal to the initial facts. To backward chain 

from a goal in the working memory the inference engine must follow the steps: 

1. Select rules with conclusions matching the goal. 

2. Replace the goal by the rule's premises. These become sub-goals. 

3. Work backwards until all sub-goals are known to be true. This can be 

achieved either:  

• they are facts (in the working memory) or 

• the user provides the information. 



7.4   Types of Rule-Based Expert Systems 167

 

Example 1 

Let us now consider the same example as for forward chaining: the database con-

sists of the facts A, B, C, D, E and whose knowledge base is given by the rules 

below: 

 

Rule 1: IF       A is true 

            AND   C is true 

            THEN B is true 

 

Rule 2: IF       C is true 

 AND   D is true 

 THEN F is true 

 

Rule 3: IF       C is true 

 AND   D is true 

 AND   E is true 

 THEN X is true 

 

Rule 4: IF       A is true 

 AND   B is true 

 AND   X is true 

 THEN Y is true 

 

Rule 5: IF       D is true 

 AND   Y is true 

 THEN Z is true 

 

The goal of the system is Z. 

 

For this example, backward chaining works as follows: 

Step 1 

1. Select rules with conclusions matching the goal. 

The only rule with conclusion matching the goal is Rule 5. 

2. Replace the goal by the rule's premises. These become sub-goals. 

D is in the database but we don’t have Y. So, the first sub-goal is Y. 

3. Work backwards until all sub-goals are known to be true. 
 

We don’t have all sub-goals as true, so we back-chain again. 
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Step 2 

1. Select rules with conclusions matching the goal. 

Our goal is Z but our sub-goal is Y. Rule 4 has Y as conclusion. 

2. Replace the goal by the rule's premises. These become sub-goals. 

Among the Rule’s 4 premises we have A and B in the database but we don’t have 

X. Thus, our current sub-goal is X 

3. Work backwards until all sub-goals are known to be true. 

 

We don’t have all sub-goals as true, so we back-chain again. 

 

Step 3 

 

1. Select rules with conclusions matching the goal. 

Our goal is Z but our sub-goals are Y and X. Most recent one is X. Rule 3 has 

X as conclusion. 

2. Replace the goal by the rule's premises. These become sub-goals. 

Rule’s 3 premises are C, D and E and we can find all of them in the database. 

Thus, our sub-goal X can be obtained by first firing Rule 3. 

3. Work backwards until all sub-goals are known to be true. 

 

We obtained one of the sub-goals. We don’t have all sub-goals as true, so we re-

cursively back-chain to obtain the other sub-goals. First on the agenda is Y. 

 

Going back to Step 2, we now have all the premises for Rule 4. Thus, rule 4 can 

fire and Y is obtained and added to the database. 

 

Going back to Step 1, we now have all the premises for Rule 5 whose conclusion 

is our desired goal. Thus, we can fire Rule 5 and obtain the goal Z. 

 

The diagram of the backward chaining for this example is depicted in Figure 7.7. 
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Fig. 7.7 Backward chaining diagram. 

Example 2 

Consider now the same example as the one used for forward chaining in Example 

2. The initial facts in the database are: season: spring, root type: bulbs, perfumed: 

true, size: 16-18 cm, life cycle more than one year, color: orange, red, white, pink. 

We wish to infer the white lily flower. 
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Step 1 

1. Select rules with conclusions matching the goal. 

The only rule with conclusion matching the goal is Rule 19. 

2. Replace the goal by the rule's premises. These become sub-goals. 

The premise “perfumed is true” is in the database but the premise “flower name 

is Lily” is not. The conclusion “flower name is Lily” is our sub-goal and this is the 

consequent of Rule 14. 

3. Work backwards until all sub-goals are known to be true. 

We don’t have all sub-goals as true, so we back-chain again. 

Step 2 

1. Select rules with conclusions matching the goal. 

Our goal is “flower name is white lily” (the conclusion of Rule 19) and our 

sub-goal is “flower name is lily” the conclusion of Rule 14. 

2. Replace the goal by the rule's premises. These become sub-goals. 

Among the premises of Rule 14, the following are already in the database: 

“season is spring”, “root type is bulbs”, “perfumed is true”. 

We need to get two more premises: “height is small” and “life type is perennial”. 

We consider now “height is small” “life type is perennial” as the following sub-

goals. 

3. Work backwards until all sub-goals are known to be true. 

We don’t have all sub-goals as true, so we back-chain again. 

Step 3 

1. Select rules with conclusions matching the goal. 

Our goal is “flower name is white lily” (the conclusion of Rule 19) and our 

sub-goals are “flower name is lily” the conclusion of Rule 14, “height is 

small”, the conclusion of Rule 1 and “life type is perennial” the conclu-

sion of Rule 6. 

2. Replace the goal by the rule's premises. These become sub-goals. 

All the premises of Rule 1 are already in the database. Thus, Rule 1 can fire and 

the fact “height is small” will be added to the database. 

3. Work backwards until all sub-goals are known to be true. 

We don’t have all sub-goals as true, so we back-chain again. 
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Step 4 

1. Select rules with conclusions matching the goal. 

Our goal is “flower name is white lily” the conclusion of Rule 19 and our sub-

goals are “flower name is lily” the conclusion of Rule 14 and “life type is 

perennial” the conclusion of Rule 6. 

2. Replace the goal by the rule's premises. These become sub-goals. 

The premise of Rule 1 is in the database. Thus, Rule 6 can fire and the fact “life 

type is perennial” will be added to the database. 

3. Work backwards until all sub-goals are known to be true. 

We don’t have all sub-goals as true, so we back-chain again. 

Step 4 

1. Select rules with conclusions matching the goal. 

Our goal is “flower name is white lily” the conclusion of Rule 19 and our sub-

goal is “flower name is lily” the conclusion of Rule 14. 

2. Replace the goal by the rule's premises. These become sub-goals. 

We now have all the premises to fire Rule 14. The fact “flower name is lily” is 

obtained and introduced in the database. 

3. Work backwards until all sub-goals are known to be true. 

We don’t have yet the goals so we continue to back-chain. 

Step 4 

1. Select rules with conclusions matching the goal. 

Our goal is “flower name is white lily” the conclusion of Rule 19. There are no 

subgoals at this stage and all the premises of Rule 19 are true. Thus, Rule 19 can 

now fire and the final goal is obtained. 

Remark 

As we can observe from our particular examples, the backward chaining reaches 

the goal in fewer steps than forward chaining does. The semantics of creating a 

backward-chaining expert system can be very similar to the forward-chaining sys-

tems. It's the engine that handles the systems differently. Some engines do both 

forward and backward chaining with the same expert system. The benefit of a 

backward-chaining inference engine is that it doesn't have to evaluate all of the 

evidence to arrive at a conclusion. If your expert system contains a huge number 

of possible hypothesis, it may perform substantially better using backward chain-

ing, than having to evaluate all of the evidence sequentially, essentially having to 

process all of the cases. 
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7.4.3   Forward Chaining or Backward Chaining? Which One 

Should Apply? 

In order to choose one of the forward chaining or backward chaining, we should 

observe how a domain expert solves the problem. If the expert need to first cumu-

late all the possible information and infer from there whatever can be inferred, 

then the forward chaining is suggested. If the expert starts with a hypothetical so-

lution and then tries to find facts to prove it then the backward chaining system is 

suitable. 

Forward chaining is generally suggested if: 

• All or most of the data is given in the problem statement; 

• There exist a large number of potential goals but only a few of them are 

achievable in a particular problem instance; 

• It is difficult to formulate a goal or hypothesis. 

Generally, backward chaining is suggested in the flowing situations: 

• A goal or hypothesis is given in the problem statement or can be easily for-

mulated; 

• There are a large number of rules that match the facts, producing a large 

number of conclusions - choosing a goal prunes the search space; 

• Problem data are not given (or easily available) but must be acquired as ne-

cessary (in certain systems). 

Forward chaining (data-driven) search can appear aimless but produces all solu-

tions to a problem (if desired). 

Mixed reasoning is also possible - facts get added to the working memory and 

sub-goals get created until all the sub-goals are present as facts. 

7.5   Conflict Resolution 

It is important to define a way or an order in which rules are firing during the infe-

rence process. There are several different strategies such as [2][11]: 

• First applicable: If the rules are in a specified order, firing the first appli-

cable one is the easiest way to control the order in which rules fire. From a 

practical perspective the order can be established by ordering the rules in 

the knowledge base by placing them in the preferred order (but this only 

works for small systems of up to 100 rules).  

This is the simplest strategy and has a potential for a large problem: that of 

an infinite loop on the same rule. If the database remains unchanged (noth-

ing new is introduces or nothing is removed), as does the rule-base, then the 
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conditions of the first rule have not changed and it will fire again and again. 

To solve this, it is a common practice to suspend a fired rule and prevent it 

from re-firing until the data that satisfied the rule’s conditions, has changed. 

Example 

Suppose we have the following rules in the knowledge base: 

 

Rule 1: IF        color is yellow 

 THEN fruit is apple; 

 

Rule 2: IF       color is yellow  

            AND   shape is long 

            THEN fruit is banana 

 

Rule 3: IF       shape is round 

            THEN fruit is apple. 

 

And the data base consisting of yellow (color) and round (shape). Then two rules 

can fire: Rule 1 and Rule 3 and the order will be Rule 1 first and then Rule 3. 

Random: A random strategy simply chooses a single random rule to fire from the 

conflict set. It is also advantageous even though it doesn’t provide the predictabili-

ty or control of the first-applicable strategy.  

Example 

If we consider the same example as above, then one of the rules Rule 1 and Rule 3 

will be chosen at random to fire first.  

Most Specific: This strategy is based on the number of conditions of the rules. 

From the conflict set, the rule with the most conditions is chosen. This is based on 

the assumption that if it has the most conditions then it has the most relevance to 

the existing data. It can also be called longest matching strategy and it is based on 

the assumption that a specific rule process more information than a general one. 

Example 

Rule 1: IF       the weather is cold 

 THEN the season is winter 

Rule 2: 

 IF        the weather is cold 

 AND   the temperature is low 

 AND   the wind is blushing 

 AND   the forecast is snow 

 THEN the season is winter. 
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Among the two rules, most significant one is Rule 2. Thus, Rule 2 is selected if 

the most specific strategy is used. 

• Least Recently Used: Each of the rules has a time or step stamp (or time 

and date) associated, which marks the last time it was used. This maximiz-

es the number of individual rules that are fired at least once. If all rules are 

needed for the solution of a given problem, this is a perfect strategy.  

There might also be situations that the new rules have been added by an expert 

whose opinion is less trusted than that of the expert who added the earlier rules. In 

this case, it clearly makes more sense to allow the earlier rules priority. 

Example: 

Rule 1: IF        color is yellow  [28.02.2009, 13:45] 

 THEN fruit is apple; 

 

Rule 2: IF       color is yellow   [01.03.2009, 12:00] 

            AND   shape is long 

            THEN fruit is banana 

 

Rule 3: IF       shape is round  [05.03.2009, 20:00] 

            THEN fruit is apple. 

In this example, the Rule 1 is the least recently introduces, thus this will be the one 

selected to fire. 

• "Best" rule: In the case of this strategy, each rule is given a ‘weight,’ which 

specifies how much it should be considered over the alternatives. The rule with 

the most preferable outcomes is chosen based on this weight. 

Example: 

Rule 1: IF        color is yellow  30% 

            THEN fruit is apple; 
 

Rule 2: IF       color is yellow   30% 

            AND   shape is long 

            THEN fruit is banana 
 

Rule 3: IF       shape is round  40% 

            THEN fruit is apple. 

In this example Rule 3 will be selected because it is having the highest weight 

among all the three rules. 
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In many expert systems, the order in which rules are used affects the conclu-

sion. But there's no explicit knowledge saying why the rules are in that order. 

Maybe the author ordered them in order of specificity, or execution time. As of 

Goodall [8], the conflict-resolution strategy is not explicit. 

To improve the performance of a knowledge system, the system may be sup-

plied some extra knowledge about the knowledge is posses. This kind of know-

ledge is called meta knowledge—knowledge about knowledge. The rules that  

define how conflict resolution will be used, and how other aspects of the system 

itself will run, are called meta rules. 

7.6   Benefits and Capabilities of Rule Based Expert Systems  

One of the advantages of the rule based expert systems is their ability to automati-

cally generate explanations suitable for novices, without any extra work by the 

knowledge engineer. 

We will outline below some of the main advantages of rule based expert sys-

tems as well as their disadvantages. 

Advantages 

• Allows the organizations to replicate their very best people. Expert systems 

carry the intelligence and information found in the intellect of experts and 

provides this knowledge to other members of the organization. 

• Reduce the error due to automation of tedious, repetitive or critical tasks 

• Reduce the manpower and time required for system testing and data analy-

sis 

• Reduce the costs through acceleration of fault observations 

• Eliminate the work that people should not do (such as difficult, time-

consuming or error prone tasks, jobs where training needs are large or cost-

ly). 

• Eliminates work that people would rather not do (such as jobs involving 

decision making, which does not satisfy everyone; expert systems ensure 

fair decisions without favoritism in such cases). 

• Expert systems perform better than humans in certain situations. 

• Perform knowledge acquisition, process analysis, data analysis, system ve-

rification 

• Increased visibility into the state of the managed system 

• Develop functional system requirements 

• Coordinate software development 

• For simple domains, the rule-base might be simple and easy to verify and 

validate. 

• Expert system shells provide a means to build simple systems without  

programming. 

• Provide consistent answers for repetitive decisions, processes and tasks  
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• Hold and maintain significant levels of information  

• Reduces creating entry barriers to competitors. 

Disadvantages 

• Expert knowledge is not usually easily codified into rules. 

• Experts often lack access to their own analysis mechanisms. 

• Validation/Verification of large systems is very difficult. 

• When the number of rules is large, the effect of adding new rules can be 

difficult to assess. 

• There is a lack of human common sense needed in some decision makings  

• The creative responses human experts can respond to in unusual circums-

tances cannot be incorporated in an expert system.  

• Domain experts are not always being able to explain their logic and  

reasoning  

• There is a lack of flexibility and ability to adapt to changing environments 

as questions are standard and cannot be changed  

• The expert system is not able to recognize when no answer is available  

7.7   Types of Expert Systems 

We can distinguish several types of expert systems or we can classify the expert 

systems based on several aspects [21]: 

• Nature of task to be done by and expert system. From this aspect we can 

distinguish four classes: 

o Diagnosis (or classification): medical diagnosis expert systems 

are included into this category.  

o Design: The system has to build a solution to a given problem 

while satisfying certain constraints. The solution space is un-

known and must be generated based on the given constraints. 

o Monitoring: The system starts with a given (known) space of so-

lutions and iteratively analysis the behavior in order to detect 

possible failures. One iteration influences the following  

iteration(s).  

o Prediction (or simulation): the solutions space is unknown in the 

beginning and the system has to predict the changes due to some 

initial perturbations. 

• Role of the system in interaction with the user. From this aspect we can 

distinguish three classes: 

o Advisory systems: which let the user themselves to make the fi-

nal decision. 

o Dictatorial systems: which make decisions without consulting 

the user. 
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o Critical systems: which evaluate alternatives given by the user 

and give an opinion. 

• Time limitations. There are two straightforward classes: 

o Systems with limited time (such us real-time systems). 

o Systems with unlimited time. 

• Nature of knowledge. There are many types of knowledge. Most important 

ones are: 

o Knowledge based on experience: human experts know the expe-

riments and their outcomes (the knowledge is contained in them) 

but they do not know the exact causes of the outcomes. 

o Causal knowledge: A classical logic analysis is possible in this 

case. 

• Temporary nature of knowledge. Based on this aspect we can distinguish 

two classes: 

o Static: the knowledge base is not altered during the expert sys-

tem session. 

o Dynamic: the knowledge base is altered during the expert sys-

tem session. The changes include: 

̇ Predictable 

̇ Unpredictable 

̇ Increasing information 

̇ Change of information. 

• Certainty of information. The degree of completeness or certainty of in-

formation involves a classification. Information can be: 

o Incomplete: it is not sufficient for the expert system to make a 

decision. 

o Imprecise: different terms are used with the same meaning or 

the same term has multiple meanings. 

7.8   Examples of Expert Systems 

One of the earliest expert systems was DENDRAL [7]. Developed at Stanford 

University, DENDRAL was designed to analyze mass spectra. A mass spectrum is 

a particular trace or analytical record formed when a molecule is bombarded with 

electrons. Each molecule has its own spectrum, determined by the way it breaks 

into fragments when hit. Chemists have charts of mass spectra for some common 

molecules. And they know some general rules that determine how a given type of 

molecule will break up, and what kind of spectrum it will give. But identifying a 

new molecule from its spectrum is not easy [6].  DENDRAL did contain rules, but 

it worked differently from most expert systems. It consists of two sub-

programs, Heuristic Dendral and Meta-Dendral and its developers believed that it 
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can compete and experienced chemist (was marketed commercially in the United 

States) [9].  

One of the first expert systems about which the scientists spent a lot of discus-

sions is MYCIN [7][8][15]. The system was developed at Stanford University too 

to diagnose blood infections and recommend treatments, given lab data about tests 

on cultures taken from the patient. Although never put to practical use, MYCIN 

showed to the world the possibility of replacement of a medical professional by an 

expert system. 

PROSPECTOR has been developed by NASA. It takes geological information 

about rock formations, chemical content, etc, and advises on whether there were 

likely to be exploitable mineral deposits nearby. Popular accounts of AI say that 

Prospector (in 1978-ish) discovered a hundred-million-dollar deposit of molybde-

num [6].  

XCON it is often mentioned because it was one of the most successful expert 

systems: it performed a task that couldn't be done manually or with a conventional 

computer program. It helped ``configure'' computer systems for DEC (who make 

VAXes amongst other things) [6][10]. XCON took about 3 years to get the job 

done, but Crevier joke that XCON may have replaced 75 people, but 150 were 

needed to keep it running.  

PROSPECTOR and XCON/R1 are two literature examples of commercially 

systems. MYCIN has never been used for real diagnosis, perhaps partly because of 

fears over who'd be legally responsible for mistakes. 

DENDRAL and XCON/R are data driven reasoning models (they use forward 

chaining) while MYCIN is a goal driven model (using backward chaining). For-

ward chaining is less efficient since we need to assume the disease and match their 

cause. Hence backward chaining is used in diagnosis expert systems.     

These expert systems are the first ones and ones of the most important and most 

discussed. But there are several others which we will just enumerate: 

• DELTA, a system for diagnosing electric loco repair problems [6][10].  

• Tax Advisor: asks questions about its users' financial state and advises on 

how to minimize tax while maximizing investment [6][8]. 

• GASOIL: designing gas-oil separation systems for offshore oil platforms 

• A program that planned where to site transistors on silicon chips so as to 

achieve the most compact and easy to fabricate layout. 

• PATHFINDER IV: lymph node pathology 

• Loan Probe is a microcomputer based expert system that evaluates a 

commercial loan, recommending the amount of reserves the bank should 

keep in case the borrower does not pay the loan. 

• OncoLogic - A Computer System to Evaluate the Carcinogenic Potential 

of Chemicals 

• Motorola’s Helpdesk: Learns the general nature of the caller’s problem. 

If can be addressed by some expert system component, it routes the call 

to that system. If cannot be routed, it logs the caller’s problem, its charac-

teristics, and its probable causes and solutions.  
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• Federal Express Corporation: helps customers weigh, label and document 

their own shipments. Decides which parts to stock by considering cost, 

importance and other such issues. 

• Puff: diagnoses the results of pulmonary function tests. It is one of the 

very earliest medical expert systems in use. 

• SETH: gives specific advice concerning the treatment and monitoring of 

drug poisoning. 

• Building code checking 

• Detecting credit card fraud 

• AGREX: helps the Agricultural field personnel to give timely and correct 

advice to the farmers. Finds extensive use in the areas of fertilizer appli-

cation, crop protection, irrigation scheduling, and diagnosis of diseases 

etc.  

• Rice-Crop Doctor: expert system to diagnose pests and diseases for rice 

crop and suggest preventive/curative measures. 

• Air craft design 

• … 

Summaries 

Expert systems are a class of computer programs that can advise, analyze, categor-
ize, communicate, consult, design, diagnose, explain, explore, forecast, form con-
cepts, identify, interpret, justify, learn, manage, monitor, plan, present, retrieve, 
schedule, test, and tutor.  They address problems normally thought to require hu-
man specialist for their solution. 

Rule-based systems are a relatively simple model that can be adapted to any 

number of problems. As with any AI model, a rule-based system has its strengths 
as well as limitations that must be considered before deciding if it’s the right tech-
nique to use for a given problem. Overall, rule-based systems are really only feas-
ible for problems for which any and all knowledge in the problem area can be 
written in the form of if-then rules and for which this problem area is not large. If 
there are too many rules, the system can become difficult to maintain and can suf-
fer a performance hit. 

There are a couple of advantages in using expert systems. One is that the hu-
man expert's knowledge then becomes available to a very large range of people. 
Another advantage is that if you can capture the expertise of an expert in a field, 
then any knowledge, which they might have is not lost when they retire or leave 
the firm. 

There are two main methods for rule-based expert systems: forward chaining or 
data driven and backward chaining or goal driven systems. The question is which 
one of the forward chaining or backward chaining we should use for a given prob-
lem. A simple answer is: 

• If we are trying to prove a particular hypothesis then we should use 

backward chaining.  

• If we are trying to find all possible conclusions then we should use for-

ward chaining. 
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There are a couple of advantages and disadvantages in using rule based expert 

systems. Even thought the rule-based expert systems do not represent a main cur-

rent research direction, rule-based expert systems are the most widely used and 

accepted AI in the world outside of games and there are still some more ideas to 

explore and exploit such as: systems that consult each other and maintain them-

selves or systems that do many things at once, or expert systems with eyes, ears 

and all the rest (Robot cooking or bringing things) or systems that already know 

the facts 
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Verification Questions 

1. How is knowledge represented in a rule-based expert system? 

2. What is a production rule? What is rule matching? When will a rule fire? 

3. What are the main components of an expert system? 

4. What is knowledge base and what is database? 

5. Which type of relations rules can represents? 

6. What do meta-rules represent? 

7. What is Rete algorithm used for? 

8. What does the working memory contains? 

9. Explain how forward chaining works. 

10. Explain how backward chaining works. 

11. Give an example for which forward chaining is better than backward  

chaining. 

12. Give an example for which backward chaining is better than forward  

chaining. 

13. What is conflict resolution and which are the main strategies? 

14. When we should use forward chaining and when backward chaining? 

15. List some of the first expert systems. 

16. What is an expert system shell? 

17. What are the advantages and disadvantages of the rule-based expert systems? 

18. Give some future rule-based expert systems ideas. 

Exercises 

7.1 The following knowledge may be used for recommending you to buy a car: 

You should get a car of suitable size for your garage, and one that is suitable 

for your family. If your garage is small then small cars are of suitable size. If you 

have children then a 4 doors car is appropriate. VW polo, Renault Clio, Peougeot 

206 are small while Ford Mondeo, BMW 3 series and Audi A4 are medium.  

Represent the above knowledge as a set of production rules (and possibly initial 

facts). Briefly describe how the rules might be used to check on the suitability of a 

car - say Audi A4 using backward chaining.  

 

7.2 Consider the following production system which identifies pets: 

Rule 1 IF the pet has hair 

 THEN  it is a mammal 

Rule 2 IF the pet gives birth 

 THEN  it is a mammal 
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Rule 3 IF the pet has feathers 

 THEN the pet is it is a bird 

Rule 4 IF the pet flies 

 AND the animal lays eggs 

 THEN the pet is it is a bird 

Rule 5 IF the pet is a mammal 

 AND the pet eats meat 

 THEN it is a carnivore 

Rule 6 IF the pet is a mammal 

 AND the pet has pointed teeth 

 AND the pet has claws 

 AND the pet's eyes point forward 

 THEN it is a carnivore 

Rule 7 IF the height is <10 cm 

 THEN the size is small 

Rule 8 IF the height is >10 cm 

 AND the height is < 30 cm 

 THEN the size is medium 

Rule 9 IF the height is >50 cm 

 THEN the size is big 

Rule 10 IF the pet is a carnivore 

 AND the pet barks 

 AND the pet has long legs 

 AND the animal is big size 

 THEN the pet is a dog. 

R11 IF the pet is a carnivore 

 AND the pet has soft hair 

 AND the pet size is medium 

 THEN the pet is a cat 

R12 IF the pet is small 

 AND the pet has short legs 

 AND the pet has soft hair 

 THEN the pet is a mouse 

R13 IF the pet has light hair 

 AND the pet size is medium  

 AND the pet is not carnivore 

 THEN then the pet is Guinea pig 

1) Given these facts in working memory initially: 

the pet gives birth 

the pet has long legs 

the pet size is 70 cm 
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the pet eats meat 

the pet barks 

Establish by forward chaining that the pet is a dog. 

2) Given the facts that: 

the pet has soft hair 

the pet has claws 

the pet has pointed teeth 

the pet's eyes point forward 

the pet’s height is 25 cm 

the animal has dark spots 

      Establish by backward chaining that the animal is a cat. 

7.3 Consider the following production system which identifies a treatment: 

Rule 1 IF temperature <37 

 THEN  no fever 

Rule 2 IF temperature >37 

 AND temperature <38 

 THEN  low fever 

Rule 3 IF if temperature > 38 

 THEN high fever 

Rule 4 IF light nasal breathing 

 THEN nasal discharge 

Rule 5 IF heavy nasal breathing 

 THEN sinus membranes swelling 

Rule 6 IF low fever 

 AND headache 

 AND nasal discharge 

 AND cough 

 THEN cold 

Rule 7 IF cold 

 AND not soar throat 

 THEN don’t treat 

Rule 8 IF cold 

 AND soar throat 

 THEN treat 

Rule 9 IF don’t treat 

 THEN don’t give medication 

Rule 10 IF treat 

 THEN give medication 
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Rule 11 IF give medication 

 AND antibiotics allergy 

 THEN give Tylenol 

 

Rule 12 IF give medication 

 AND not antibiotics allergy 

 THEN give antibiotics 

Given these facts: 

The patient has headache and nasal breathing. His fever is 37.5 and he is cough-

ing. The patient denies that he is having allergy to antibiotics. Laboratory experi-

ments show that he is also having soar throat.  

1) Establish by forward chaining that the patient has to take antibiotics.  

2) Use the backward chaining to show the things back (if the treatment is 

antibiotics then the patient has the given symptoms). 

7.4. Consider the following production system: 

Rule 1 IF shape is long 

 AND color is yellow 

 THEN  fruit is banana 

Rule 2 IF shape is round 

 AND color is red 

 AND size is medium 

 THEN  then fruit is apple 

Rule 3 IF shape is round 

 AND color is red 

 AND size is small 

 THEN  then fruit is cherry 

Rule 4 IF skin smell 

 THEN  perfumed 

Rule 5 IF fruit is lemon 

 OR  fruit is orange 

 OR  fruit is pomelo 

 OR  fruit is grapefruit 

 THEN citrus fruit 

Rule 6 IF size is medium 

 AND color is yellow 

 AND  perfumed 

 THEN then fruit is lemon 

Rule 7 IF size is medium 

 AND color is green 

 THEN fruit is kiwi 
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Rule 8 IF size is big 

 AND perfumed 

 AND color is orange 

 AND citrus fruit 

 THEN fruit is grapefruit 

Rule 9 IF perfumed 

 AND color is orange 

 AND size is medium 

 THEN fruit is orange 

 

Rule 10 IF perfumed 

 AND color is red 

 AND size is small 

 AND no seeds 

 THEN fruit is strawberry 

Rule 11  IF diameter <2 cm 

 THEN  size is small 

Rule 12  IF diameter >10 cm 

 THEN  size is big 

Rule 13  IF diameter >2 cm 

 AND diameter <10 cm 

 THEN  size is medium 

The fruit has no seed, a 7 cm diameter, smelling skin, orange color  

 

1) Establish by forward chaining that the fruit is a citrus fruit.  

2) Use the backward chaining to show the things back.  

 

7.5. Build a knowledge database with around 10 rules and 15 facts.  

  

1) Perform a forward chaining 

2) Perform a backward chaining 

3) Create an inference chain. 

4) Draw the chaining in a diagram.  

5) Use your own creativity and expert knowledge in your chosen domain. 

 

7.6. Implement an expert system shell at your choice and test it on any two of the 

examples given in this chapter or any of the exercises.  
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Chapter 8 

Managing Uncertainty in Rule Based Expert 
Systems 

8.1   What Is Uncertainty and How to Deal With It? 

Uncertainty is essentially lack of information to formulate a decision. The pres-

ence of uncertainty may result in making poor or bad decisions. In our daily life, 

as human beings, we are accustomed to dealing with uncertainty – that’s how we 

survive. 

Dealing with uncertainty requires reasoning under uncertainty along with pos-

sessing a lot of common sense. 

There are several sources of uncertainty [1][2][3][4][5][6][15]: 

• Imprecise language: our (or expert’s) natural language has to be transposed 

into IF-THEN rules. But sometimes our language is ambiguous and  

imprecise. 

• Data (or information or knowledge) can be: 

o Incomplete 

o Incorrect 

o Missing 

o Unreliable 

o Imprecise 

• Uncertain terminology 

• Uncertain knowledge 

• Incomplete information: Information is not sufficient for the expert system 

to make a decision. 

• Imprecise data: different terms are used with the same meaning or a term 

has multiple (different) meanings. 

• Many types of errors contribute to uncertainty: 

o Errors related to hypothesis 

̇ Type I Error – accepting a hypothesis when it is not 

true – False Positive. 

̇ Type II Error – Rejecting a hypothesis when it is true – 

False Negative 
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o Errors related to measurement 

̇ Errors of precision – how well the truth is known 

̇ Errors of accuracy – whether something is true or not 

̇ Unreliability stems from faulty measurement of data – 

results in erratic data. 

̇ Random fluctuations – termed random error 

̇ Systematic errors result from bias 

o Errors in induction. Induction proceeds from specific to general 

(while compared to deduction which proceeds from general to 

specific). Expert systems may consist of both deductive and in-

ductive rules based on heuristic information. When rules are 

based on heuristics, there will be uncertainty. Inductive argu-

ments can never be proven correct (except in mathematical in-

duction). 

• Combination of different expert views: When huge expert systems re-

quire the presence of multiple experts, there is a low probability that all 

the experts will reach the same conclusion. They might have contradicto-

ry opinions and this will involve the production of conflicting rules. 
 

Thus, uncertainty may be induces by the degree of validity of facts, rule condi-

tions and rules themselves.  

When dealing with uncertainty, we should be satisfied just with getting a good 

solution. There are a number of methods to pick the best solution in light of  

uncertainty. 

General methods for dealing with uncertainty are: 

• Probability-based methods which include: 

o objective probability 

o experimental probability 

o subjective probability 

•  Heuristic methods which include: 

o certainty factors 

o  fuzzy logic 
 

Since the Boolean approach to reasoning does not solve the problems in domains 

involving uncertainty, a number of theories have been developed. Some known 

theories to deal with uncertainty are: 

• Bayesian Probability 

• Hartley Theory 

• Shannon Theory 

• Dempster-Shafer Theory 

• Markov Models 

• Fuzzy Theory 
 

In these theories, a scheme on how to introduce measure which numerically quan-

tifies uncertainties and how to propagate and combine these measures of uncer-

tainty during reasoning is usually proposed. 
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8.2   Bayesian Theory 

Before explaining Bayesian reasoning, we will first review the classical probabili-

ty theory, which will help to better understand the Bayesian reasoning concepts. 

8.2.1   Classical Probability Theory 

Classical probability has been proposed by Pascal and Fermat in 1654. It is also 

called a priori probability because it deals with ideal games or systems: 
 

• assumes all possible events are known 

• each event is equally likely to happen. 
 

In propositional logic, primitives are propositions. In probabilistic reasoning, pri-

mitives are random variables. A random variable is not in fact a variable, but a 

function from a sample space to another space (often the real numbers). A proba-

bility of an event is the proportion of the cases this event occurs [ 15][19]. Mathe-

matically, the probability is expressed as a real number between [0, 1], 0 

representing absolute impossibility and 1 representing absolute certainty. Proba-

bilistic information systems represent information with variables and their proba-

bility distributions. The value of a particular attribute A for a specific tuple t is a 

variable A(t) and this variable has an associated probability distribution P(A(t)).  

P(A(t)) assigns values in the range [0, 1] to the elements of the domain of attribute 

A, with the provision that the sum of all values assigned is 1. 

For example, if t is rain and A is forecast, then we can write: 
 

P(forecast(rain)) = ⎩⎨
⎧

7.0,

3.0,

false

true
 

 

The interpretation is that it will rain with a probability of 0.3 and it will not rain 

with a probability of 0.7. 

Each event has at least two possible outcomes: success and failure. The proba-

bility of success is given by: 
 

P(success) =  
outcomespossibleofnumbertotalthe

successesofnumberthe
 

 

while the probability of failure is given by: 
 

P(failure) =  
outcomespossibleofnumbertotalthe

failuresofnumberthe
. 

 

We have: 
 

P(success) + P(failure) = 1. 
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Example: dice 

If we consider the classical dice example, then for each of the sides 1 to 6 we will 

have: 

P(success(1)) = P(success(2)) = …= P(success(6)) = 
6

1
 

and 

P(failure(1)) = P(failure(2)) = …= P(failure(6)) = 
6

5
. 

There are two simple situations which can occur in our discussions and must be 

taken into account: 

• Events are independent and mutually exclusive: this means that events 

cannot happen simultaneous (for instance, in the dice example, we cannot 

get a 6 and a 5 simultaneously).  

• Events that are not independent: this means that one event (or multiple 

events) may affect the occurrence of the other event (events). 
 

We have the following three axioms of formal theory of probability: 
 

1. 1)(0 ≤≤ EP  

2. ∑ =

i

iEP 1)(  

3. P(E1∪E2)=P(E1) + P(E2) 
 

where E1 and E2 are mutually exclusive events. 

For pairwise independent events: 

 

P(A∩B) = P(A) P(B) 

 

The additive low states as: 

 

P(A∪B) = P(A) +P(B) - P(A∩B) 

 

P(A∪B∪C) = P(A) + P(B) + P(C)  

- P(A∩B) - P(A∩C) - P(B∩C)  

+ P(A∩B∩C). 

 

Suppose A and B are two events which are not mutually independent. We can then 

define a conditional probability that event A occurs if event B occurs P(A|B). 

P(A|B) can be interpreted as the conditional probability of event A occurring giv-

en that event B has occurred and it is given by: 
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P(A|B) = 
occur can B times of number the

occur can B and A both times of number the
. 

 

The number of times both A and B can occur is called joint probability (or 

compound probability) of A and B and it is given by P(A∩B). 

8.2.2   Bayes’ Rules 

We can write: 

 

P(A|B) = 
)(

)(

BP

BAP ∩
 

From the above we can deduce: 

 

P(A∩B) = P(A|B) P(B). 

 

Joint probability is commutative, thus we have: 

 

P(A∩B) = P(B∩A) 

 

and from  

 

P(B∩A) = P(B|A) P(A) 

 

we obtain: 

 

P(A|B) = 
)(

)()|(

BP

APABP
  (1) 

 

This equation is known as Bayesian rule where: 
 

• P(A|B) is the probability that event A occurs given that event B has oc-

curred; 

• P(B|A) is the probability that event B occurs given that event A has oc-

curred; 

• P(A) is the probability that event A occurs; 

• P(B) is the probability that event B occurs. 

 

The sum rule is given by: 

 

P(A|B) + P(¬A|B) = 1. 
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The Bayesian rule above has been only presented for two dependent events A 

and B but it can be further extended and generalized. We have three generaliza-

tions as given below. 

 

1) An event A is depended on a set of events B1, B2, …, Bn which are mutually 

exclusive.  

 

We can thus derive generalized formula as follows:  

 

)(

)(
)|(

1

1
1

BP

BAP
BAP

∩
=  

 

)(

)(
)|(

2

2
2

BP

BAP
BAP

∩
=  

M  

 

)(

)(
)|(

n

n

n
BP

BAP
BAP

∩
=  

 

Thus, by summing the above, we obtain: 

 

∑ ∑
∑

=

=

=

∩

=
n

i
n

i

i

n

i

i

i

BP

BAP

BAP
1

1

1

)(

)(

)|( . 

 

From  

 

)()(
1

APBAP
n

i

i =∩∑
=

 

 

we obtain: 

 

∑
=

=
n

i

ii BPBAPAP
1

)()|()( . 

 

In the particular situation when we have the event A and two mutually exclusive 

events B and ¬B we obtain: 

 

P(A) = P(A|B) P(B) + P(A|¬B) P(¬B) 
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and similarly: 

 

P(B) = P(B|A) P(A) + P(B|¬A) P(¬A) 

 

And from the above we get: 
 

P(A|B) = 
)()|()()|(

)()|(

APABPAPABP

APABP

¬¬+
                            (2)  

2) A set of mutually exclusive events A1, A2, …, An  is depended on an event B.  

 

In this situation, for each event Ai, the equation (2) becomes: 

 

∑
=

=
n

k

kk

ii

i

APABP

APABP
BAP

1

)()|(

)()|(
)|( . 

 

3) A set of mutually exclusive events A1, A2, …, Am  is depended on a set B1, B2, 

…, Bn which are mutually exclusive.  

 

In this case, for each event Ai we have: 

 

∑
=

=
m

k

kkn

iin

ni

APABBBP

APABBBP
BBBAP

1

21

21

21

)()|(

)()|(
)|(

K

K
K  

 

which can be also written as: 

 

∑
=

=
m

k

kknkk

iinii

ni

APABPABPABP

APABPABPABP
BBBAP

1

21

21

21

)()|()|()|(

)()|()|()|(
)|(

K

K
K  

8.2.3   Bayesian Reasoning 

Consider the expert system whose rules in the knowledge base are represented in 

the following IF-THEN form: 

 

IF        A is true 

THEN B is true [with probability P] 
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where A represents hypothesis and B represents evidences to support the hypo-

theses. In an expert system the probabilities required to solve the problem are pro-

vided by the experts which will determine (specify) right form the beginning the 

probabilities of all hypotheses as well all of their negations. Also, the expert will 

provide all the conditional probabilities for observing an evidence (or multiple 

evidences) if a hypotheses (or multiple hypothesis) is true and false respectively.  

Users provide information about the evidence (evidences) observed and the ex-

pert system computes the conditional probabilities for the hypothesis using the 

evidences provided by the user. This probability is called posterior probability. 

 

Example 
 

Let us consider a simple expert system whose task is to see which of the three hy-

potheses will be finally considered say for a diagnosis problem. 

The experts create three hypotheses A1, A2, A3 (mutually exclusive) based on 

three independent evidences B1, B2, B3. The experts also provide the conditional 

probabilities of observing each evidence for all the considered hypotheses.  Sup-

pose the ranking given to the hypotheses is in the order A1, A2, A3, with A1 having 

the highest probability (being the most trustful). We will now apply Bayesian rea-

soning to see if the order will be kept the same at the end of the process. Consider 

the data provided by the experts as given in Table 8.1. 

 
Table 8.1 Prior probabilities and conditional probabilities for the example. 

 

PROBABILITY 

P(A1)                           0.5 P(A2)                           0.3 P(A3)                           0.2 

P(B1|A1)                       0.6 P(B1|A2)                       0.7 P(B1|A3)                       0.1 

P(B2|A1)                       0.3 P(B2|A2)                       0.3 P(B2|A3)                       0.9 

P(B3|A1)                       0.0 P(B3|A2)                       0.5 P(B3|A3)                       0.4 

 
We will now calculate the posterior probabilities observing the evidences in the 

order B1, B2 and B3. 

We will first calculate P(Ai|B1), i= 1, 2, 3, using the formula: 

 

∑
=

=
3

1

1

1

1

)()|(

)()|(
)|(

k

kk

ii

i

APABP

APABP
BAP  

 

56.0
53.0

3.0

02.021.03.0

3.0

2.01.03.07.05.06.0

5.06.0
)|( 11 ==

++
=

⋅+⋅+⋅

⋅
=BAP  
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39.0
53.0

21.0

02.021.03.0

21.0

2.01.03.07.05.06.0

3.07.0
)|( 12 ==

++
=

⋅+⋅+⋅

⋅
=BAP  

 

037.0
53.0

02.0

02.021.03.0

02.0

2.01.03.07.05.06.0

2.01.0
)|( 13 ==

++
=

⋅+⋅+⋅

⋅
=BAP  

 

We now calculate P(Ai|B2B1), i=1, 2, 3, using the formula: 

 

∑
=

=
3

1

12

12

12

)()|()|(

)()|()|(
)|(

k

kkk

iii

i

APABPABP

APABPABP
BBAP  

 

52.0
171.0

09.0

018.0063.009.0

09.0

2.01.09.03.07.03.05.06.03.0

5.06.03.0
)|( 121 ==

++
=

⋅⋅+⋅⋅+⋅⋅

⋅⋅
=BBAP  

 

36.0
171.0

063.0

018.0063.009.0

063.0

2.01.09.03.07.03.05.06.03.0

3.07.03.0
)|( 122 ==

++
=

⋅⋅+⋅⋅+⋅⋅

⋅⋅
=BBAP

 

 

10.0
171.0

018.0

018.0063.009.0

018.0

2.01.09.03.07.03.05.06.03.0

2.01.09.0
)|( 123 ==

++
=

⋅⋅+⋅⋅+⋅⋅

⋅⋅
=BBAP

 

 

We now observe the last evidence, B3, and we calculate P(Ai|B3B2B1), i=1, 2, 3, 

using the formula:  
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=
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1

321
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123
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k
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0072.00315.00

0
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=
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=

=
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814.0
0387.0

0315.0

0072.00315.00

0315.0
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=
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186.0
0387.0

0072.0

0072.00315.00

0072.0

2.01.09.04.03.07.03.05.05.06.03.00.0

2.01.09.04.0
)|( 1233

==
++

=

=
⋅⋅⋅+⋅⋅⋅+⋅⋅⋅

⋅⋅⋅
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Although the initial ranking of hypotheses was A1, A2, A3, only the hypotheses A1 

and A2 remain under consideration after all the evidences B1, B2 B3 have been 

observed. The hypotheses A1 which was the first one is not even under considera-

tion after calculating the posteriori probabilities and the second hypothesis is now 

having a high credibility (and the highest one among the hypotheses). 

8.2.4   Bayesian Networks 

In real learning problems, we are typically interested in looking for relationships 

among a large number of variables. Bayesian networks are an ideal tool for doing 

it. Bayesian nets (BN) (also referred to as Probabilistic Graphical Models or Baye-

sian Belief Networks)[16][17][18][21] are directed acyclic graphs where each node 

represents a random variable. The meaning of an arrow from a parent to a child is 

that the parent directly influences the child. These influences are quantified by con-

ditional probabilities.  BNs are graphical representations of joint distributions.  

A Bayesian network for a set of variables consists of the following elements 

(see Figure 8.1): 

1) a network structure that encodes a set of conditional independence asser-

tions about variables; 

2) a set of local probability distributions associated with each variable.  
 

Together, these components define the joint probability distribution for the set of 

given variables. 
 

The probabilities encoded by a Bayesian network may be Bayesian or physical:  

• when building Bayesian networks from prior knowledge alone, the prob-

abilities will be Bayesian; 

• when learning these networks from data, the probabilities will be physi-

cal (and their values may be uncertain). 
 

Each node in a Bayesian network has an associated conditional probability table or 

CPT. This gives the probability values for the random variable at the node condi-

tional on values for its parents.  All the random variables are supposed to have 

only a finite number of possible values. If a node has no parents, then the CPT 

reduces to a table giving the probability of that random variable [7].   
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Example 1 

The following example taken from [7] [8] is a very significant one. In Figure 8.1, 

the nodes are binary and have two possible values – true and false – denoted by T 

and F. 

 

Given that it is cloudy with a probability of 0.5 and the conditional probabilities 

for: 

• sprinkler being on (respectively off) given that it is cloudy (or being true 

or false) 

• raining (or not) given that it is cloudy (also true or false) 
 

we are getting the conditional probabilities for the grass being wet given that: 

• it is raining (Rain is true) and the sprinkler is on (sprinkler on true); 

• it is raining (Raining true) and the sprinkler is off (sprinkler on false); 

• sprinkler is on (sprinkler on true) and it is not raining (raining false); 

• sprinkler is off (sprinkler on false) and it is not raining (raining false). 
 

The highest probability of the grass to be wet is in the given conditions that both 

sprinkler is on and it is raining. The probability is lower (and has the same value) 

when only one of the evidences sprinkler on true and raining true is observed. 

The strength of these relationships is shown in the corresponding tables in  

Figure 8.1.  

 
Fig. 8.1 The Bayesian network and the conditional probability tables for the example 1. 
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The conditional independence relationship encoded in a Bayesian network can 

be stated as follows: a node is independent of its ancestors given its parents, where 

the ancestor/parent relationship is with respect to some fixed topological ordering 

of the nodes [8]. 

By the chain rule of probability, the joint probability of all the nodes in the 

graph above is: 
 

P(Cloudy, Sprinkler_on, Rain, Grass_wet) = P(Cloudy) * 

P(Sprinkler_on|Cloudy) * P(Rain|Cloudy,Sprinkler_on) * 

P(Grass_wet|Cloudy,Sprinkler_on,Rain) 

 

By using conditional independence relationships, we can rewrite this as 

 

P(Cloudy, Sprinkler_on, Rain, Grass_wet) = P(Cloudy) * 

P(Sprinkler_on|Cloudy) * P(Rain|Cloudy) * P(Grass_wet| Sprinkler_on, Rain) 

 

where we were allowed to simplify the third term because R is independent of S 

given its parent C, and the forth term because W is independent of C given its par-

ents S and R. 

We can see that the conditional independence relationships allow us 

to represent the joint more compactly. Here the savings are minimal, but in gener-

al, if we had n binary nodes, the full joint would require O(2
n
) space to represent, 

but the factored form would require O(n 2
k
) space to represent, where k is the 

maximum fan-in of a node. And fewer parameters make learning easier. 

8.2.4.1   Inference in Bayesian Networks 

Given what we do know in the form of evidences, the distribution over what we 

do not know can be computed. For this, there exist a few types of inferencing in 

Bayesian networks:  

• Diagnostic Inferences: infer from effects to causes.  

• Causal Inferences: infer from causes to effects. 

• Intercausal Inferences: between causes of a common event. 

• Mixed Inferences: some causes and some effects known.   
 

In the example given above, suppose we had evidence of an effect (that grass is 

wet), and inferred the most likely cause. This is called diagnostic, or bottom up, 

reasoning, since it goes from effects to causes; it is a common task in expert sys-

tems.  Bayesian networks can also be used for causal, or top down, reasoning.  

Once we have constructed a Bayesian network (from prior knowledge, data, or 

a combination), we usually need to determine various probabilities of interest from 

the model. For example, in our example above, we want to know the probability 

of wet grass given observations of the other variables. This probability is not 

stored directly in the model, and hence needs to be computed. In general, the 

computation of a probability of interest given a model is known as probabilistic 

inference.  
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Example 2 (taken from [10]) 

Consider the problem of detecting credit-card fraud and the following variables 

(together with the shortcut used in what follows): Fraud (F), Gas (G), Jewelry (J), 

Age (A), and Sex (S), representing whether or not the current purchase is fraudu-

lent, whether or not there was a gas purchase in the last 24 hours, whether or not 

there was a jewelry purchase in the last 24 hours, and the age and sex of the card 

holder, respectively (represented in Figure 8.2; Y and N refers to true and false 

respectively (yes and no). Arcs are drawn from cause to effect. The local probabil-

ity distribution(s) associated with a node are shown adjacent to the node. 
 

 

Fig. 8.2 Bayesian network for Example 2. 

Using the ordering (F; A; S; G; J), we have the conditional independencies: 

 

P(A| F) = P(A) 

P(S| F; A) = P(S)                                                                                              (2) 

P(G| F; A; S) = P(GJF) 

P(J| F; A; S; G) = P(JJF; A; S) 

 

Because a Bayesian network for the set of all variables determines a joint prob-

ability distribution for the set of variables, we can use the Bayesian network to 

compute any probability of interest. For example, the probability of fraud given 

observations of the other variables can be computed as follows [10]: 
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This direct approach is not practical for high number of variables. In the case 

that all variables are discrete, we can exploit the conditional independencies en-

coded in a Bayesian network to make this computation more efficient. In our ex-

ample, given the conditional independencies in equations (2), we can re-write eq-

uation (3) as: 
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Several probabilistic inference algorithms for Bayesian networks with discrete 

variables that exploit conditional independence roughly have been proposed (see 

[10] for a description of them). 

When a Bayesian-network structure contains many undirected cycles, inference 

is intractable. For many applications, however, structures are simple enough (or 

can be simplified sufficiently without sacrificing much accuracy) so that inference 

is efficient. For those applications where generic inference methods are impractic-

al, researchers are developing techniques that are custom tailored to particular 

network topologies or to particular inference queries [10]. 

Although we use conditional independence to simplify probabilistic inference, 

exact inference in an arbitrary Bayesian network for discrete variables is NP-hard 

[11]. 

8.2.4.2   Variable Ordering in Bayesian Networks 

The conditional independence assumptions expressed by a Bayesian network al-

low a compact representation of the joint distribution. Bayes network imposes a 

partial order of nodes. We can always break down the joint so that the conditional 

probability factor for a node only has non-descendants in the condition. 

If we choose the variable order carelessly, the resulting network structure may 

fail to reveal many conditional independencies among the variables. 

In the worst case, we have to explore n! variables orderings to find the best one.  

There is another technique for constructing Bayesian networks that does not re-

quire an ordering. The approach is based on two observations:  

(1) people can often readily assert causal relationships among variables; 

(2) causal relationships typically correspond to assertions of conditional de-

pendence. 
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In particular, to construct a Bayesian network for a given set of variables, we 

simply draw arcs from cause variables to their immediate effects. In almost all 

cases, doing so results in a network structure that satisfies the definition of the 

joint probability distribution. 

Still, in practice there might be some problems. For example, judgments of 

conditional independence and/or cause and effect can influence problem formula-

tion. Also, assessments of probability can lead to changes in the network structure. 

8.2.4.3   Facts about Bayesian Networks 

Bayesian networks can readily handle incomplete data sets. When one of the in-

puts is not observed, most models will produce an inaccurate prediction, because 

they do not encode the correlation between the input variables. Bayesian networks 

offer a natural way to encode such dependencies. Bayesian networks allow and 

facilitate learning about causal relationships. The process is useful when we are 

trying to gain understanding about a problem domain, and also, knowledge of 

causal relationships allows us to make predictions in the presence of interventions. 

Bayesian networks have several issues, among others [12]: 
 

• Require the knowledge of a large number of probabilities (for the hypo-

theses and then the conditional probabilities) which may not always be 

easy to estimate. 

• The probabilistic approach assumes that the presence of evidence also af-

fects the negation of a conclusion (for example, if P(A|B) = 0.6, then this 

implies that P(¬A|B)=0.4). But this is not necessary true in all domains. 

• If the prior and posterior probabilities are based on frequency counts and 

statistics, then the samples must be of large enough size to derive accurate 

probabilities. If the probabilities are not based on frequencies, but are esti-

mated by human domain experts, they may be inconsistent. They might not 

sum up to 1 for instance even if cases are exhaustive. 
 

Bayesian networks in conjunction with Bayesian statistical techniques facilitate 

the combination of domain knowledge and data. Bayesian methods together with 

Bayesian networks and other types of models offers an efficient and principled 

approach for avoiding the over fitting of data. There is no need to hold out some 

of the available data for testing. Using the Bayesian approach, models can be 

smoothed in such a way that all available data can be used for training [10]. 

 

Remarks 

Allan L. Yuille [9] has made a few interesting remarks about the Bayes theorem 

which we are reproducing below: 

“ Bayes Theorem is commonly ascribed to the Reverent Thomas Bayes (1701-

1761) who left one hundred pounds in his will to Richard Price ``now I suppose 

Preacher at Newington Green.'' Price discovered two unpublished essays among 

Bayes's papers which he forwarded to the Royal Society. This work made little 

impact, however, until it was independently discovered a few years later by the 
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great French mathematician Laplace. English mathematicians then quickly redis-

covered Bayes' work. 

Little is known about Bayes and he is considered an enigmatic figure. One leading 

historian of statistics, Stephen Stigler, has even suggested that Bayes Theorem 

was really discovered by Nicolas Saunderson, a blind mathematician who was the 

fourth Lucasian Professor of Mathematics at Cambridge University. (Saunderson 

was recommended to this chair by Isaac Netwon, the second Lucasian Professor. 

Recent holders of the chair include the great physicist Paul Dirac and Stephen 

Hawking). 

Bayes theorem and, in particular, its emphasis on prior probabilities has caused 

considerable controversy. The great statistician Ronald Fisher was very critical of 

the ``subjectivist'' aspects of priors. By contrast, a leading proponent I.J. Good 

argued persuasively that ``the subjectivist (i.e. Bayesian) states his judgements, 

whereas the objectivist sweeps them under the carpet by calling assumptions 

knowledge, and he basks in the glorious objectivity of science''.” 

8.3   Certainty Factors 

The MYCIN developers realized that a Bayesian approach was intractable, as too 

much data and/or estimates from the experts are required. Also, medical diagnosis 

systems based on Bayesian methods were not accepted due to lack of explanation 

facilities (the systems did not provide simple explanations of how it has reached 

its conclusion). 

Doctors reason more in terms of gathering evidences that supports or contra-

dicts a particular hypothesis. The MYCIN developers thus developed a logic 

which worked this way and this conducted to the raise of certainty factors theory. 

Certainty factors theory is an alternative to Bayesian reasoning. Certainty theory is 

an attempt to formalise the heuristic approach to reasoning with uncertainty. Hu-

man experts weight the confidence in their conclusions and reasoning steps in 

term of “unlikely”, “almost certain”, “highly probable”, “possible”. These are not 

probabilities but heuristics derived from experience. 

A certainty factor is used to express how accurate, truthful, or reliable one 

judges a predicate to be. This judgment reflects how good the evidence is. A cer-

tainty factor is neither a probability nor a truth value.  Certainty factors have been 

quantified using various different systems, including linguistics ones (certain, fair-

ly certain, likely, unlikely, highly unlikely, definitely not) and various numeric 

scales, such as 0-1, 0-10, and -1 to 1.  

Certainty factors may apply to: 

• facts; 

• rules (conclusion(s) of rules); 

• both to facts and to rules. 
 

When certainty factors apply to facts (evidences, premises) this represents the de-

gree of belief (disbelief) associated to a given piece of evidence. When certainty 
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factors apply to rules this represents the degree of confirmation (or disconfirma-

tion) of a hypothesis given concrete evidence. A certainty factor value reflects 

confidence in given data, inferred data or hypothesis. The meaning of a certainty 

factor (CF) between -1 and 1 is: 
 

• As the CF approaches 1 the evidence is stronger for a hypothesis.  

• As the CF approaches -1 the confidence against the hypothesis gets 

stronger.  

• A CF around 0 indicates that there is little evidence either for or against the 

hypothesis.  
 

There is a similarity between certainty factors and conditional probabilities: 

 

Certainty factors Conditional probabilities 

represent a measure of belief in the 

outcome 

represent the degree of probability 

of the outcome 

range from -1 (believed not to be the 

case) to 1 (believed to be the case) 

range from 0 (false) to 1 (true) 

 

Two examples of uncertain terms and their interpretation is given in Figure 8.3 

[ 15]. 

In an expert system with certainty factors, the knowledge base consists of rule 

of the following form: 
 

IF           evidence 

THEN    hypothesis {CF} 
 

where CF represents believe in the hypothesis given that the evidence occurs. We 

denote in what follows hypothesis by H (or H1, H2, … in case of multiple hypothes-

es) and evidence by E (respectively E1, E2, … in the case of multiple evidences). 

 

 

Fig. 8.3 Two examples of uncertain terms and their representations (a general one on the 

left and a more specific one on the right [ 15]. 
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8.3.1   Calculating Certainty Factors 

Two measures are used to calculate the certainty factors: measure of belief and 

measure of disbelief. 

8.3.1.1   Measure of Belief 

For a hypothesis H and an evidence E, the measure of belief – denoted MB(H, E) 

– represents the degree to which belief in the hypothesis H is supported by observ-

ing evidence E. MB(H, E) takes a value between 0 and 1. 

MB(H, E) is given by: 
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where: 
 

P(H) is the prior probability of hypothesis H being true; 

P(H|E) is the probability that hypothesis H is true given the evidence E. 
 

The above formula is not theoretically derived and it is intended to capture the 

degree to which the evidence increases probability: p(H|E)-p(H) in proportion to 

the maximum possible increase in probability: 1-p(H). 

To avoid negative values, the following modification is used: 

8.3.1.2   Measure of Disbelief 

For a hypothesis H and an evidence E, the measure of disbelief – denoted MD(H, 

E) – represents the degree to which disbelief in the hypothesis H is supported by 

observing evidence E. MD(H, E) takes a value between 0 and 1. 

MD(H, E) is given by: 
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where: 

P(H) is the prior probability of hypothesis H being true; 

P(H|E) is the probability that hypothesis H is true given the evidence E. 
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To avoid negative values the following modification can be used: 
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Certainty factor is calculated in terms of the difference between MB and MD: 
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The range of certainty factors values is [-1, 1]. 

8.3.2   Combining Certainty Factors 

8.3.2.1   Multiple Rules Providing Evidence for the Same Conclusion 

There are situations when multiple sources of evidence produce CFs for the same 

fact. 

For instance, two (or more) rules may provide evidence for the same  

conclusion: 

 

IF        E1  

THEN H {CF=0.5} 

 

IF        E2  

THEN H {CF=0.6} 

 

In such situations we need to combine the CFs. If two rules both support the same 

hypothesis, then that should increase our belief in the hypothesis. 

The combination of the CFs is given by the formula: 
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Example 1 

Suppose we have the following two rules: 

 

IF        E1  

THEN H {CF=0.6} 
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IF        E2  

THEN H {CF= -0.3} 
 

Then: 
 

CF(H, E1∧E2) = 42.0
7.0

3.0

3.01

)3.0(6.0
==

−

−+
 

8.3.2.2   Multiple Rules with Uncertain Evidence for the Same Conclusion 

In the previous case, we saw that if the evidence E is observed, then we can con-

clude H with a CF. However, there are situations where the evidence E itself is 

uncertain. 

For instance, in the rule: 

 

IF        E  

THEN H {CF=0.5} 

 

evidence E also has a certainty factor associated, say 0.9 (we are not 100% sure 

about this evidence).  

Evidence may also be uncertain when it itself is gained from applying a rule: 

 

Rule 1:  

IF          A  

THEN   B {CF=0.4} 
 

Rule 2: 

IF          B 

THEN   C {CF=0.3} 
 

If we know absolutely that A is true, then the fact B is estimated with a CF of 

0.4. 

So, when we go to apply the second rule, we need to take into account that the 

premise is not certain. 

8.3.2.2.1   Rule with Uncertain Evidence: One Premise 

When a rule has a single premise, the certainty of the conclusion is the product of 

the certainty of the premise multiplied by the certainty of the rule: 
 

Rule 1:  

IF          A  

THEN   B {CF=0.4} 
 

Rule 2: 

IF          B 

THEN   C {CF=0.3} 

CF(C) = CF(B) * CF(Rule 1) 
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If the CF of A is true is 0.9 then: 

 

CF(B) = CF(A)*CF(Rule 1) = 0.9*0.4 = 0.36 

 

and 

 

CF(C) = CF(B)*CF(Rule 2) = 0.36*0.3 = 0.108 

8.3.2.2.2   Rule with Uncertain Evidence: Negative Evidence 

A rule is only applicable if one believes the premise to be true. If the CF of the 

premises is negative (one does not believe them) then the rule does not apply. 

 

IF          E 

THEN   H {CF=0.6} 

 

But, if CF(E)=-0.2, then we cannot say anything about E being true. 

Thus: 
 

⎩⎨
⎧ >⋅

=
otherwise

ECFifRuleCFECF
HCF

,0

0)(),()(
)(  

 

A value of 0 for CF indicates that we know nothing as the result of applying the 

rule (we neither believe nor disbelieve). Thus, our knowledge does not change. 

8.3.2.2.3   Rule with Uncertain Evidence: Multiple Premises 
If the rule has multiple premises joined by AND: 

 

IF           E1 

AND      E2 

M  

AND      En 

THEN    H  {CF} 

 

then CF(H) is calculated as: 
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If the CF of any one premise is ≤ 0 then the CF of the set is ≤ 0 and the rule 

does not apply. Thus, when evaluating the premises of a rule, one can stop 

processing if a premise has CF ≤ 0. 
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Example 1 

Consider the following rule with the CFs for each of the premises and the CF of 

the rule: 

 

IF           E1  {CF = 0.8} 

AND      E2  {CF = 0.7} 

AND      E3  {CF = 0.5} 

AND      E4  {CF = 0.3} 

AND      E5  {CF = 0.9} 

THEN    H    {CF = 0.65} 

 

Then the CF of the conclusion is given by (see also Figure 8.4): 

 

CF(H) = min{CF(E1), CF(E2), CF(E3), CF(E4), CF(E5)} * CF(Rule) = 

0.3*0.65 = 0.195. 

 

 

Fig. 8.4 Certainty factor calculation for rules with multiple premises joined by AND. 

If the rule has multiple premises joined by OR: 

 

IF           E1 

OR         E2 

M  

OR         En 

THEN    H  {CF} 
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then CF(H) is calculated as: 

 

CF(H) = max{CF(E1), CF(E2), …, CF(En)} * CF(Rule) 

 

Example 2 

Consider the same example as above: with the following rules and the CFs for 

each of the premises and the CF of the rule: 

 

IF           E1  {CF = 0.8} 

OR         E2  {CF = 0.7} 

OR         E3  {CF = 0.5} 

OR         E4  {CF = 0.3} 

OR         E5  {CF = 0.9} 

THEN    H    {CF = 0.65} 

 

Then the CF of the conclusion is given by (see also Figure 8.5): 

 

CF(H) = max{CF(E1), CF(E2), CF(E3), CF(E4), CF(E5)} * CF(Rule) = 

0.9*0.65 = 0.585. 

 

As we can see, firing a rule involves the use of two different CFs: 

• the CF associated to the antecedent of the rule (premises); 

• the CF associated to the rule. 

 

 

Fig. 8.5 Certainty factor calculation for rules with multiple premises joined by OR. 
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Example 3 

Let us consider the following expert system for diagnosing a cold. The database 

consists of the following facts: the patient’s fever is 37.4, is coughing since less 

than 24 hours, is sneezing, is having headache with a CF = 0.4 and is having nasal 

congestion with CF = 0.5 

The rule base consists of the following rules: 

 

Rule 1 

IF             fever < 37.5 

THEN      Cold symptoms = true {CF = 0.5} 

 

Rule 2 

IF             fever > 37.5 

THEN      Cold symptoms = true {CF = 0.9} 

 

Rule 3 

IF             cough for more than 24 hours 

THEN      soar troth = true {CF = 0.5} 

 

Rule 4 

IF             cough for more than 48 hours 

THEN      soar troth = true {CF = 1} 

 

Rule 5 

IF             Cold symptoms 

AND        not sneezing 

THEN      having cold {CF = -0.2} 

 

Rule 6 

IF             soar troth 

THEN      having cold {CF = 0.5} 

 

Rule 7 

IF             headache 

AND       nasal congestion 

THEN      having cold {CF = 0.7} 
 

In order to find the CF of the patient having a cold, we will first draw the infe-

rence tree (see Figure 8.6) and the associated CFs for each rule. 

Let us now see how the certainty factors are calculated. 

The patient has fever less than 37.5, thus the CF of the fact fever <37.5 is 1.0 

and the CF of the fact fever >37.5 is -1.0. 

The patient is coughing since less that 24 hours, thus both facts cough > 24 h 

and cough > 48 h have the Cf = -1.0. 

The CF of cold symptom as conclusion of Rule 1 is calculated as CF of Rule’s 

1 premise (which is 1.0) multiplied with the CF of the rule. Thus, we obtain: 

1.0*0.5 = 0.5. 
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Fig. 8.6 The inference tree for Example 3. 

Since the premise of Rule 2 is negative, Rule 2 is not contributing to the CF of 

cold symptom fact. 

Similarly, since the premise of Rule 3 and the premise of Rule 4 are both nega-

tive, the CF of soar troth is 0. 

The CF of having cold as conclusion of Rule 5 is calculated using the formula 

for a rule having two evidences joined by AND. Thus, minimum among CF of 

cold symptom (which is 0.5) and sneezing CF (which is 1.0) is multiplied with 

Rule’s 5 CF; 

 

CF1 = min{0.5, 1.0}*(-0.2) = 0.5*(-0.2)= -0.1 

 

A similar situation is encountered in the case of Rule 7 which has two premises. 

The CF of having cold implied by Rule 7 is calculated as minimum among 

headache’s CF and nasal congestion’s CF multiplied with Rule 7 CF; 

 

CF2 = min{0.4, 0.5}*0.7 = ).4*0.7 = 0.28. 

 

Rules 5, 6 and 7 all affect the same hypothesis: having cold. Among them, only 

Rule 5 and Rule 6 have a CF different from 0. Thus, using the formula for calcu-

lating the CF of a consequent obtained as results of execution of two rules, we 

obtain (see Figure 8.7): 
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Fig. 8.7 The inference tree with the corresponding CFs for Example 3. 

Summaries 

This chapter presents various alternatives for the expert systems to deal with un-

certain information or in uncertain situations. 

Numerous uncertainty theories have been developed. Two main theories are 

presented in this chapter: Bayesian theory and certainty factors theory. 

In Bayesian theory, the probability is interpreted as a degree of belief. Beliefs 

are always subjective, and therefore all the probabilities appearing in Bayesian 

probability theory are conditional. In particular, under the belief interpretation 

probability is not an objective property of some physical setting, but is conditional 

to the prior assumptions and experience of the learning system. 

Bayesian formulas are complex enough and not adequate to human’s brain rea-

soning. Reliable statistical information is not available or the independence of 

evidences cannot be assumed.  

Although conditional independences are used to simplify probabilistic infe-

rence, exact inference in an arbitrary Bayesian network for discrete variables is 

NP-hard [ 20]. 

Certainty factors theory is an alternative to Bayesian reasoning and introduces a 

certainty factors calculus based on the human expert heuristics [ 13]. 

CF is more flexible and intuitive for the experts than probability. 
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A certainty factor is used to express how accurate, truthful, or reliable you 

judge a predicate to be. It is your judgment of how good your evidence is. The 

issue is how to combine various judgments.  

Certainty factors are guesses by an expert about the relevance of evidence; they 

are ad hoc and are tuned by trial and error.  

Certainty Factors do adhere to the rules of Bayesian statistics, but it can 

represent tractable knowledge systems: 

• individual rules contribute belief in a hypothesis - basically a conditional 

probability; 

• the formulae for combination of evidence / hypotheses basically assume 

that all rules are independent ruling out the need for joint probabilities. 
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Verification Questions 

1. What is uncertainty? What are the main sources of uncertainty in an ex-

pert system? 

2. Write Bayes’ rule and explain the terms. 

3. What is Bayesian reasoning?  

4. What does a Bayesian net represent? 

5. Explain the variable ordering in a Bayesian inference. 

6. What is a prior and a posterior probability? 

7. How does a rule based expert system propagate uncertainties using Baye-

sian reasoning? 

8. What is the role of certainty factors? 

9. How you define measure of belief and measure of disbelief? 

10. How do you compare certainty factors and conditional probabilities? 

11. Explain how does an expert system deals in the following situations: 

a. Multiple rules provide evidence for the same conclusion 

b. Multiple rules with uncertain evidence in the cases: 

i. One premise 

ii. One negative premise 

iii. Multiple premises joint by AND 

iv. Multiple premises joint by OR. 

Exercises 

1. Consider the following example [ 14]:  

• Premises (or evidences) and their CFs: 

o A, B, C, D, E, F, G; 

o CF(A)= 0.3, CF(B)= 0.0, CF(C)= 0.0, CF(D)= 0.4, CF(E)= 0.0, 

CF(F)= -0.5, CF(G)= 0.8. 

• Rules: 

IF          A 

THEN   C {CF = 0.2} 
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IF          B 

THEN   C {CF = 1.0} 

 

IF          D 

THEN   E {CF = 0.6} 

 

IF          E 

THEN   C {CF = 1.0} 

 

IF          F 

THEN   B {CF = 0.9} 

 

IF          G 

THEN   E {CF = -0.7} 

 

The problem is to find the final CFs for C and B. 

 

2. (Taken from [ 15]). Knowing that the weather today is rain, the rainfall today is 

low (with a CF of 0.8), the temperature today is cold (with a Cf of 0.9), the expert 

system has to predict the weather tomorrow. 

The knowledge base consists of the following rules: 

 

Rule 1: 

IF           today is rain 

THEN    tomorrow is rain {CF=0.5} 

 

Rule 2: 

IF           today is dry 

THEN    tomorrow is dry {CF=0.5} 

 

Rule 3: 

IF           today is rain 

AND      rainfall is low 

THEN    tomorrow is dry {CF=0.6} 

 

Rule 4: 

IF           today is rain 

AND      rainfall is low 

AND      temperature is cold 

THEN    tomorrow is dry {CF=0.7} 
 

Rule 5: 

IF           today is dry 

AND      temperature is warm 

THEN    tomorrow is rain {CF=0.65} 

 

 



216 Managing Uncertainty in Rule Based Expert Systems

 

Rule 6: 

IF           today is rain 

AND      temperature is warm 

AND      sky is overcast 

THEN    tomorrow is rain {CF=0.55} 

 

3. Given the following set of rules: 

 

Rule 1:       IF            A  

       OR           B   

       THEN      F  {CF = 0.3} 

 

Rule 2:       IF            not C  

      THEN      E  {CF = 0.6} 

 

Rule 3:       IF           D  

      THEN      G  {CF = 0.75} 

            

Rule 4:       IF            A  

       OR           (F AND G)   

       THEN      H  {CF = 0.9} 

(i)       Draw an inference net from the above set of rules. 

(ii)      Given  CF(A) = 0.5, CF(B) = 0.8, CF(C) = 0.5, CF(D) = -0.3,  

CF(E) = 0, CF(F) = 0, CF(G) = 0, and CF(H) = 0.2, what is certainty 

of H after updating?           

 

4. (From [ 7]). Consider the following probability distribution over 6 variables 

A,B,C,D,E, and F for which the factorization as stated below holds. Find and draw 

a Bayesian network that for which this factorization is true, but for which no addi-

tional factorizations or any fewer factorizations are true. 

 

P(A, B, C, D, E, F) = P(A) P(B) P(C|A, B) P(D| B) P(E| C, D) P(F| E). 

 

5. (From [ 7]). Consider a situation in which we want to reason about the relation-

ship between smoking and lung cancer. We’ll use 5 Boolean random variables 

representing "has lung cancer" (C), "smokes" (S), "has a reduced life expectancy" 

(RLE), "exposed to secondhand smoke" (SHS), and "at least one parent smokes" 

(PS). Intuitively, we know that whether or not a person has cancer is directly  

influenced by whether he or she is exposed to second-hand smoke and whether he 

or she smokes. Both of these things are affected by whether the parents smoke. 

Cancer reduces a person’s life expectancy.  
 

1) Draw the network (nodes and arcs only)  

2) How many independent values are required to specify all the conditional 

probability tables (CPTs) for your network?  

3) How many independent values are in the full joint probability distribution 

for this problem domain?   
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6. (From [ 7]). Let A, B, C, D be Boolean random variables. Given that:    

• A and B are (absolutely) independent.   

• C is independent of B given A.   

• D is independent of C given A and B.   

• P(A=T) = 0.3   

• P(B=T) = 0.6   

• P(C=T|A=T) = 0.8   

• P(C=T|A=F) = 0.4   

• P(D=T|A=T,B=T) = 0.7   

• P(D=T|A=T,B=F) = 0.8   

• P(D=T|A=F,B=T) = 0.1   

• P(D=T|A=F,B=F) = 0.2    

 

Compute the following quantities:   

 

1) P(D=T)   

2) P(D=F,C=T)   

3) P(A=T|C=T)   

4) P(A=T|D=F)   

5) P(A=T,D=T|B=F).   
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Chapter 9 

Fuzzy Expert Systems 

9.1   Introduction 

One of the imprecision types of information encountered in an expert system is 

due to the (natural) language used to express information. If knowledge is not ex-

pressed in some formal language, the meaning cannot be interpreted exactly. Since 

there is no such universal scheme for formal representation language, a particular 

knowledge representation scheme must be chosen to adequately capture the in-

formation about the domain. Many a times the scheme chosen will not provide an 

exact match with the expert’s knowledge. Thus, imprecision will occur. 

We saw in the previous chapter that there are several theories which can help 

the expert system deal with imprecision. Most of them model imprecision using 

probabilities. But there are situations which do not lead to cases easily modeled by 

probabilities. Like for instance, when we tell the speed of the car is about 65 

miles.  Similar fuzzy words are the ones used in the following examples too:  

 
John is tall or 

Weather is warm. 

 

Both tall and warm are fuzzy terms. 

Such statements are difficult to translate into more precise language without 

losing some of their semantic value.  

The expert system has to reason with such imprecise information and this will 

lead to fuzzy reasoning. The expert systems using fuzzy knowledge and fuzzy rea-

soning are known as fuzzy expert systems[1][10][11][12][17][20]. While some of 

the decisions and calculations could be done using traditional logic, fuzzy systems 

affords a broader, richer field of data and the manipulation of that data than do 

more traditional methods. 

The theory of logic is one of the oldest ones and lasts thousands of years ago 

when Aristotle and the philosophers who preceded him were trying to devise a 

concise theory of logic: "Laws of Thought". The "Law of the Excluded Middle," 

states that every proposition must either be true or false. Even when Parminedes 

proposed the first version of this law (around 400 B.C.) there were strong and  
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immediate objections: for example, Heraclitus proposed that things could be si-

multaneously true and not true [2].    

Plato indicated that there was a third region beyond true and false and Luka-

siewicz was the one who first proposed a systematic alternative to the bivalued 

logic of Aristotle [3]. 

In the early 90’s, Lukasiewicz described a three-valued or trivalent logic; the 

third value proposed can be translated as the term "possible," and he assigned it a 

numeric value between true and false. The three-valued logic does not assume 

the law of the excluded middle; three truth values are possible: true, false, or un-

decided. As of [5], there are 3072 such logics now. Later, he explored four-valued 

logics, five-valued logics, and then declared that in principle there was nothing to 

prevent the derivation of an infinite-valued logic. From an algebraic point of view, 

the number of truth values is unlimited. One can build logics with four, five, etc. 

truth values. From the point of view of logical interpretation, such formalisms 

present serious deficiencies, even in the three valued case. 

Lukasiewicz felt that three and infinite valued logics were the most intriguing, 

but he ultimately settled on a four-valued logic because it seemed to be the most 

easily adaptable to Aristotelian logic [4] [2].  The logic of probabilities developed 

by the German logician H. Reichenbach replaces the true-false pair by a conti-

nuous scale of values interpreted as probabilities. It was not until relatively recent-

ly that the notion of an infinite-valued logic took hold.  

In 1965, Lotfi A. Zadeh described the mathematics of fuzzy set theory, and by 

extension fuzzy logic [18][19]. This theory proposed making the membership 

function (or the values False and True) operate over the range of real numbers 

[0.0, 1.0]. New operations for the calculus of logic were proposed, and showed to 

be in principle at least a generalization of classic logic. In order to better under-

stand how fuzzy expert systems work, we introduce the concept of fuzzy logic, 

fuzzy rules and fuzzy reasoning.  

9.2   Fuzzy Sets 

Let us consider X a set and x∈X an element of X. 

In classical logic, x either belongs to X (x∈X) or does not belongs to X (x∉X).   

A fuzzy set A ⊂ X is characterized by a membership function (or characteristic 

function) fA(x) : X → [0, 1] which associates each point in X a real number in the 

interval [0, 1] [6]. X is called the universe and A is a fuzzy subset of X. 

fA(x) represents the grade of membership of x in A. 

The value 0 represents false (or non- membership), and the value 1 represents 

true (or membership). The closer the value of fA(x) to 1, the higher the grade of 

membership of x in A. 

In classical logic (or ordinary logic), the membership function fA(x) can only 

take the values 0 and 1: 

 

fA(x) : X → {0, 1} 
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fA(x) = 1 corresponds to the case that x belongs to A, and fA(x) = 0 corresponds 

to the situation that x does not belong to A, respectively.  

 

⎩⎨
⎧

∈

∉
=

Axif

Axif
xf A

,1

,0
)( . 

 

In the case of fuzzy logic, a fuzzy set A is defined by a membership function 

µA(x),  

 
µA(x): X →[0, 1] 
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Example 1 

Let us consider the example of old people. Consider the age varying between 30 

and 80 years old. Table 9.1 presents the degree of membership in both classical 

and fuzzy logic and the graphical representation is given in Figure 9.1. 

 
Table 9.1 Degree of membership in fuzzy logic and ordinary logic for Example 1. 

 

Age Degree of membership 

 Fuzzy logic Ordinary logic 

30 0.0 0.0 

35 0.1 0.0 

40 0.2 0.0 

45 0.3 0.0 

50 0.4 1.0 

55 0.5 1.0 

60 0.6 1.0 

65 0.7 1.0 

70 0.8 1.0 

75 0.9 1.0 

80 1.0 1.0 
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Fig. 9.1 Sets of old people in fuzzy logic (a) and ordinary logic (b) for Example 1. 

 
In ordinary logic, the degree of membership is either 0 or one, the elements be-

long or not to that set. In fuzzy logic, the degree of membership is a real number 

between 0 and 1 with the interpretation that a person is partially young or partially 

old. A person’s membership degree of 0.7 means that the person is 0.7 old (or 
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70% old). There is also a semantic difference between the two types of logic (or-

dinary and fuzzy): the first logic supposes that a person is or is not old (still caught 

in the Law of the Excluded Middle). By contrast, fuzzy terminology supposes that 

a person is "more or less" old, or some other term (corresponding to the value of 

0.70 for instance). 

9.2.1   Representing Fuzzy Sets 

Venn diagrams used for representing ordinary sets cannot be used (are not appro-

priate) for representing fuzzy sets. Ordinary sets use clear cut on the boundaries 

and fuzzy sets use grades. The difference is shown in Figure 9.2. 

 

 

Fig. 9.2 Fuzzy subset and ordinary subset for average age. 

As we can see from Figure 9.2, in the ordinary logic, an age of 44 is young and 

an age of 46 is average, while in fuzzy logic the age 44 is average with a member-

ship degree of 0.2 and the age 46 is average with a membership degree of 0.3. 

An important step in solving a problem using a fuzzy system is representing the 

problem in fuzzy terms (known as conceptualization in fuzzy terms). Linguistic 

variables such as low, below average, average, above average, high, are fuzzy 

concepts which may be represented as fuzzy sets.  

The process of representing a linguistic variable into a set of linguistic values is 

called fuzzy quantization. The linguistic variables can be quantized into some lin-

guistic labels that can be (graphically) represented by standard functional  

representations.  
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There exist several types of standard membership functions used by fuzzy ex-

pert systems. Some of the most used are [7]: 
 

• Singleton (or single valued): 

x = a, where a is a scalar. 

• Triangular: 
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If the triangular membership functions µ1, µ2, …µn, representing a fuzzy variable 

are uniformly distributed over the universe of discourse X, then the following pro-
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• Trapezoidal 

• Sigmoid function (S-function) 

This membership function is defined as: 
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• Z-function: 

 

Z(x) = 1-S(x) 

 

• Bell function (Π - function) 
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Figure 9.3 presents 4 types of such functions: triangular (Figure 9.3 (a)), trape-

zoidal (Figure 9.3 (b)), Gaussian (Figure 9.3 (c)), and generalized bell (Figure 9.3 

(d)). 
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For the quantization process, two parameters must be defined: 

• the number of fuzzy labels 

• the form of the membership function for each fuzzy label. 
 

A fuzzy subset A of a finite reference superset X can be expressed as: 

 

A = {x1, µA(x1)}, {x2, µA(x2)}, …, {xn, µA(xn)} 

 

or as: 

 

A = {x1/µA(x1)}, {x2/µA(x2)}, …, {xn/µA(xn)}. 

 

An example of fuzzy sets and ordinary set for our age example is given in Figure 

9.4. Three sets are considered: young, average and old. 
 

 
 

Fig. 9.3 Examples of membership functions: triangular (a), trapezoidal (b), Gaussian (c) 

and generalized bell (d). 

 
Definition 

The support of a fuzzy A set can be defined as the subset of the universe who’s all 

elements have a membership degree to A different from 0 (see Figure 9.5): 
 

Supp(A)={x | x∈X,  µA(x)>0}. 
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Fig. 9.4 Example of fuzzy sets using curves (a), straight lines (b) and ordinary sets. 
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In our age example, the support of the fuzzy set average is the interval [39, 71]. 
 

Definition 

Cardinality of a fuzzy set A is defined by [7]: 
 ∑

∈

=
Xx

A xAyCardinalit )()( µ  

 

For ordinary sets, cardinality is the number of elements in the set. 

 

Definition 

The power set of a fuzzy set A consists of all fuzzy subsets of A. 

 

Definition 

A fuzzy set A is a normal fuzzy set if its membership function has a grade 1 for at 

least one element of the universe. 

 

 
 

Fig. 9.5 Support of the fuzzy set average. 

 
Definition 

The x-cut of a fuzzy set A is a subset Aa of the universe which consists of values 

that belong to the fuzzy set A with a membership degree greater (weak cut) or 

greater or equal (strong cut) than a given value x∈[0, 1].  

Every fuzzy set can be represented by its x-cut. An example is given in Figure 

9.6 [7]. 
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Fig. 9.6 Example of x-cut for a fuzzy set A. 

9.2.2   Operations with Fuzzy Sets 

Since fuzzy logic can be seen as an extension of ordinary logic, the operations 

used for dealing with ordinary sets can be employed for dealing with fuzzy sets 

too. 

9.2.2.1   Complement 

The complement of a set is the opposite of this set. For the set A, the complement 

is the set Not A (¬A). For a fuzzy set A, the complement ¬A is defined by: 

 

µ¬A(x) = 1-µA(x) 

 

For example, if we have the set old people, then we can obtain the set of not old 

people as follows: 

 

Old people = {0, 30}, {0.2, 40}, {0.4, 50}, {0.6, 60}, {0.8, 70}, {1, 80} 

Not Old people = {1, 30}, {0.8, 40}, {0.6, 50}, {0.4, 60}, {0.2, 70}, {0, 80} 

 

A graphical representation of a fuzzy set A and the corresponding fuzzy set ¬A 

is depicted in Figure 9.7. 
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Fig. 9.7 A fuzzy set A and its fuzzy complement ¬A. 

9.2.2.2   Containment 

A fuzzy set A is a subset of a fuzzy set B if: 

 

µA(x) ≤ µB(x), for all x ∈ X. 

 

For example, the set of very old people is included in the set of old people as 

shown below: 

 

Old people =         {0.6, 60},   {0.7, 65},   {0.8, 70}, {0.9, 75}, {1, 80} 

Very  Old people =  {0.6, 60}, {0.67, 65}, {0.7, 70}, {0.8, 75}, {0.95, 80} 

 

The graphical representation of two sets inclusion A and B (B ⊆ A) is presented 

in Figure 9.8. 

 

 
Fig. 9.8 Example of two fuzzy sets inclusion (B ⊆ A). 
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9.2.2.3   Intersection 

In the ordinary logic, the intersection of two sets contains the elements shared by 

these sets. In the fuzzy logic, an element partially belongs to the two sets with 

different membership grades. Thus, the intersection of two fuzzy sets is given by: 

 

µA∩B(x) = min{µA(x), µB(x)} = µA(x) ∩ µB(x), for all x∈X. 

 

If we have the sets of old people and average people as below: 

 
Old people =         {0, 30}, {0.1, 40}, {0.2, 50}, {0.6, 60}, {0.7, 65}, {0.8, 70}, 

{0.9, 75}, {1, 80} 

Average people=     {0.1, 30}, {0.2, 40}, {0.6, 50}, {0.5, 60}, {0.2, 65}, {0.1, 70}, 

{0, 75}, {0, 80} 

 

then the intersection Old people ∩ Average people is given by: 

 
Old people ∩ Average = {0, 30}, {0.1, 40}, {0.2, 50}, {0.5, 60}, {0.2, 65}, {0.1, 

70}, {0.75}, {0, 80}. 
 

The intersection of two sets A and B is represented graphically in Figure 9.9. 

 

 
Fig. 9.9 Intersection of two fuzzy sets A and B. 

9.2.2.4   Union 

In the ordinary logic, the union of two sets contains the elements that fall into ei-

ther set.  

In fuzzy logic, the union of two fuzzy sets A and B is the largest membership 

value of the element in either set. The union is the opposite of intersection.  

The union of two fuzzy sets A and B is given by: 

 

µA∪B(x) = max{µA(x), µB(x)} = µA(x) ∪ µB(x), for all x∈X. 
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If we have the sets of old people and average people as below: 
 

Old people =         {0, 30}, {0.1, 40}, {0.2, 50}, {0.6, 60}, {0.7, 65}, {0.8, 70}, 

{0.9, 75}, {1, 80} 

Average people=     {0.1, 30}, {0.2, 40}, {0.6, 50}, {0.5, 60}, {0.2, 65}, {0.1, 70}, 

{0, 75}, {0, 80} 
 

Then the union Old people ∪ Average people is given by: 
 

Old people ∪ Average = {0.1, 30}, {0.2, 40}, {0.6, 50}, {0.6, 60}, {0.7, 65}, {0.8, 

70}, {0.9, 75}, {1, 80}. 

 

The union of two sets A and B is represented graphically in Figure 9.10. 

 

 

Fig. 9.10 Union of two fuzzy sets A and B. 

9.2.2.5   Equality 

Two fuzzy sets A and B are equal if: 
 

µA(x) = µB(x), for all x∈X. 

9.2.2.6   Algebraic Product 

The algebraic product of two fuzzy sets A and B is given by: 
 

µAB(x) = µA(x)⋅µB(x), for all x∈X. 

9.2.2.6   Algebraic Sum 

The algebraic sum of two fuzzy sets A and B is given by: 
 

µA+B(x) = µA(x)+µB(x), for all x∈X. 

9.2.3   Proprieties of Fuzzy Sets 

The operations over the fuzzy sets have same proprieties as in the case of ordinary 

sets (associative, commutative, distributive, transitive, etc). 
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9.2.3.1   Associativity 

The associativity propriety of three fuzzy sets A, B and C using AND and OR 

logical operators is given by: 

 

A∪(B∪C) = (A∪B)∪C 

A∩(B∩C) = (A∩B)∩C 

 
Example 
 

A = set of young people 

B = set of average people 

C = set of old people. 

 
young people ∪ (average people ∪ old people) =  

(young people ∪ average people)∪ old people 

 

young people ∩ (average people ∩ old people) =  

(young people ∩ average people) ∩ old people 

9.2.3.2   Distributivity 

The distributivity propriety of three fuzzy sets A, B and C using AND (AND dis-

tributivity) and OR (OR distributivity) logical operators is given by: 

 

A∪(B∩C) = (A∪B) ∩(A∪C) 

A∩(B∪C) = (A∩B) ∪(A∩C) 

 
Example 
 

A = set of young people 

B = set of average people 

C = set of old people. 
 

young people ∪ (average people ∩ old people) =  

(young people ∪ average people) ∩(young people ∪ old people) 
 

young people ∩ (average people ∪ old people) =  

(young people ∩ average people) ∪(young people ∩ old people) 

9.2.3.3   Commutativity 

The commutativity propriety of two fuzzy sets A and B using logical operators 

AND and OR is given by: 
 

A∪B = B∪A 

A∩B = B∩A 
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Example 
 

A = set of young people 

B = set of old people. 
 

young people ∪ old people = old people ∪ young people 

young people ∩  old people = old people ∩ young people 

9.2.3.4   Transitivity 

The transitivity propriety of three fuzzy sets A, B and C can be written as: 

 

IF (A ⊂ B) AND (B ⊂ C) THEN (A⊂ C) 

 
Example 

 

A = set of old people 

B = set of very old people 

C = set of extremely old people. 

 
IF (old people ⊂ very old people) AND  (very old people ⊂ extremely old  

people) 

THEN (old people ⊂ extremely old people) 

9.2.3.5   Idempotency 

The idempotency propriety of a fuzzy set A with respect to logical operators AND 

and OR is given by: 
 

A∪A = A 

A∩A = A 

 
Example 
 

A = set of young people 

young people ∪ young people = young people 

young people ∩  young people = young people 

9.2.3.6   Identity 

The identity propriety of a fuzzy set A with respect to logical operators AND and 

OR and given the empty (or null) set ∅ - having all degrees of membership equal 

to 0 and the general set X - having all degrees of membership equal to 1, is  

defined as: 
 

A∪∅ = A 

A∩∅ = ∅ 
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A∪X = X 

A∩X = A 

 
Example 

 

A = set of young people 

∅ = empty set 

X = general set 

 
young people ∪ empty set = young people 

young people ∩  empty set = empty set 

 

young people ∪ general set = general set  

young people ∩  general set = young people 

9.2.3.7   Involution 

The involution propriety represents the negation of negation and for a fuzzy set A 

is given by: 

 

¬(¬A) = A 

 
Example 

 

A = set of young people 

 
NOT (NOT young people) = young people 

9.2.3.7   De Morgan’s Laws 

De Morgan’s laws also apply in the case of fuzzy sets. Thus, given two fuzzy sets 

A and B, De Morgan’s laws state as: 

 
¬(A∩B) = ¬A ∪ ¬B 

¬(A∪B) = ¬A ∩ ¬B 

 
Example 

 

A = set of young people 

B = set of tall people 

 

¬(young people ∩ tall people) = ¬young people ∪ ¬tall people 

¬( young people ∪ tall people) = ¬young people ∩ ¬tall people 
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9.2.4   Hedges 

Hedges are modifiers, adjectives, or adverbs, which change the truth values. 

Hedges modify the shape of a fuzzy set and include terms such as very, more or 

less, somewhat, about, nearly, etc. 

One type of hedges apply to fuzzy numbers and the second type to truth values. 

Hedges can operate on membership functions as well as on fuzzy rules. We will 

presents in what follows some examples from the following categories: 
 

• Hedges which reduce the original truths value (produce a concentration) 

o “very” reduces the truth value of the term it is applied for. It 

produces a concentration effect and thus reduces the degree of 

membership of the fuzzy element it is applied for. The original 

truth value is raised to square power: 

µA_very(x)= µA(x)
2
 

If a person has a 0.6 degree of membership to the set of old 

people, then the same person will have a degree of membership 

of 0.36 in the set of very old people. 

o “extremely” reduces the truth value. It has a similar influence as 

very but with a greater extend.  The original truth value is raised 

to cube power: 
 

µA_extremely(x)= µA(x)
3
 

 

A person with a 0.6 degree of membership to the set of old 

people will have 0.21 degree of membership in the set of ex-

tremely old people. 

o “very very”reduces the truth value. It is similar to very and it 

raises very to square: 
 

µA_veryvery(x)= µA_very(x)
2 
= µA(x)

4
 

 

A person with a 0.6 degree of membership to the set of old 

people will have 0.12 degree of membership in the set of very 

very old people. 

• Hedges which increase the original truth value (produce a dilatation) 

o “somewhat” increases the truth value. The new value will be 

the square root of the original truth value: 
 

µA_somewhat(x) = )(xAµ  

 

A person having a 0.6 degree of membership in the set of old 

people will have a degree of membership of 0.77 in the set of 

somewhat old people. 

o “slightly” increases the truth value. The new value will be the 

cube root of the original truth value: 
 

µA_slightly(x) = 3 )(xAµ  
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A person having a 0.6 degree of membership in the set of old 

people will have a degree of membership of 0.84 in the set of 

slightly old people. 

• Hedges which intensify the original truth value 

o “indeed” has the effect of intensifying the meaning of the sen-

tence. If the actual value of the degree of membership is greater 

than 0.5 then it will be increased and if the actual value is less 

than 0.5 it will be decreased. It is given by: 
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Thus, a person having a degree of membership 0.6 to the set of 

old people will have a degree of membership 0.68 to the set of 

indeed old people. 

A person having a degree of membership 0.3 to the set of old 

people will have a degree of membership 0.18 to the set of in-

deed old people. 

 

 
Fig. 9.11 Example of membership function modified by hedges. 
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Fig. 9.12 Examples of different hedges in fuzzy logic.  

Usually, the original truth value is raised to a power greater than 1 for terms that 
reduce truth values and less than 1 for terms that increase truth values. Figures 
9.11 and 9.12 give a sample membership function modified by hedges. 
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9.3   Fuzzy Rules 

Fuzzy rules are linguistic IF-THEN constructions that have the general form:  

 

IF          A  

THEN    B  

 

where A and B are (collections of) propositions containing linguistic variables. A 

is called the premise and B is the consequence of the rule. 

In the case of fuzzy rules, A and B are linguistic values determined by the 

fuzzy sets on two universes of discourses, X and Y, corresponding to A and B 

respectively. 

 
Example 
 

The following set of rules in ordinary logic: 

 

Rule 1: 

IF          temperature is -5 

THEN   the weather is cold 

 

Rule 2: 

IF          temperature is 15 

THEN   the weather is warm 

 

Rule 3: 

IF          temperature is 35 

THEN   the weather is hot 

 

may be written in fuzzy logic as: 

 

Rule 1: 

IF          temperature is low 

THEN   the weather is cold 

 

Rule 2: 

IF          temperature is average 

THEN   the weather is warm 

 

Rule 3: 

IF          temperature is high 

THEN   the weather is hot 
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A nice example of graphical representation of fuzzy rules is given in [8]. Using a 

similar model, our three rules above are depicted in Figure 9.13. 

 

 
Fig. 9.13 Example of fuzzy rules. 

9.4   Fuzzy Inference 

The process of fuzzy reasoning is incorporated into what is called a Fuzzy Infe-

rencing System (FIS). It is comprised of several steps (see Figure 9.14): 

 

Step 1 - Define Fuzzy Sets 

Step 2 - Relate Observations to Fuzzy Sets 

Step 3 - Define Fuzzy Rules 

Step 4 - Evaluate Each Case for all Fuzzy Rules 

Step 5 - Combine Information from Rules 

Step 6 - Defuzzify Results 

 

Three steps are of interest at this stage: 
 

1) Fuzzification  

2) Rule Evaluation 

3) Defuzzification. 
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Fig. 9.14 The scheme of a fuzzy inference system. 

9.4.1   Fuzzyfication 

The first step in the fuzzy inference process is fuzzification. During this step, the 

standard (ordinary inputs) are transformed into fuzzy inputs. Each ordinary (crisp) 

input has its own group of membership functions or sets to which they are trans-

formed. This group of membership functions exists within a universe of discourse 

that holds all relevant values that the crisp input can possess. Figure 9.15 shows an 

example of membership functions within a universe of discourse for an ordinary 

input. The universe of discourse is divided into five fuzzy sets and the associated 

membership function (triangular or trapezoidal form) are depicted. 
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Fig. 9.15 Example of membership functions. 

When designing the number of membership functions for an input variable, la-

bels must initially be determined for the membership functions. The number of 

labels correspond to the number of regions that the universe should be divided, 

such that each label describes a region of behavior. A scope must be assigned to 

each membership function that numerically identifies the range of input values 

that correspond to a label. Choosing the number of labels is an important point for 

a fuzzy system. If the fuzzy labels are correctly chosen, then the fuzzy discretiza-

tion does not lead to loose of information.  

Fuzzy quantization is possible not only for numerical variables but for qualita-

tive variables such as truth values. In this case, fuzzy membership functions will 

be represented on a scale of truthfulness. In order to represent a single real value, 

or a function or a set by a corresponding fuzzy membership function, the follow-

ing relation is used: if we have a function f : X → Y between two crisp sets X and Y 

and if we know the membership function µA of a subset A⊆X, then the fuzzy re-

presentation of f(A) in Y is given by [7]: 

 

µf(A)(f(x)) = µA(x). 

 

The scope or domain of a membership function represents the width of the  

membership function, the range of concepts, usually numbers, over which a mem-

bership function is mapped. The shape of the membership function should be rep-

resentative of the variable. However this shape is also restricted by the computing 
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resources available. Complicated shapes require more complex descriptive equa-

tions or large lookup tables. Choosing a standard type of membership function 

resembles choosing the Gaussian probability distribution for the conditional prob-

abilities in the Bayesian theory [7].  

When considering the number of membership functions within the universe of 

discourse, the following should be taken into account [2]: 

i) too few membership functions for a given application will cause the re-

sponse of the system to be too slow and fail to provide sufficient output 

control in time to recover from a small input change. This may also 

cause oscillation in the system.   

ii) too many membership functions may cause rapid firing of different rule 

consequents for small changes in input, resulting in large output 

changes, which may cause instability in the system.   
 

The membership functions should also be overlapped. No overlap reduces the sys-

tem to a system based on Boolean logic.  

Marsh [9] noted some interesting points which should be taken into account 

while defining the domain of membership functions: 
 

• Every point in the universe of discourse should belong to the domain of 

at least one membership function. 

• Two membership functions can not have the same point of maximal 

meaningfulness (1). 

• When two membership functions overlap, the sum of membership grades 

for any point in the overlap should be less than or equal to 1. 

• When two membership functions overlap, the overlap should not cross 

the point of maximal meaningfulness of either membership function. 
 

Marsh has proposed two indices to describe the overlap of membership functions 

quantitatively. These are overlap ratio and overlap robustness as illustrated (to-

gether with their meaning) in Figure 9.16. 

 

scopefunctionmembershipadjacent

scopeoverlap
ratioOverlap =  

 

( )

( )LU

dx

overlapsummedofareaimummax
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L

−⋅

+
==
∫

2

21 µµ
 

 

The fuzzification process maps each crisp input on the universe of discourse, and 

its intersection with each membership function is transposed onto the µ (degree of 

membership) axis. The µ values are the degrees of truth for each crisp input and 

are associated with each label as fuzzy inputs. These fuzzy inputs are then passed 

on to the next step, Rule Evaluation. 
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Fig. 9.16 Example of overlap indices. 

9.4.2   Rule Evaluation and Inference 

A fuzzy rule is expressed as: 

 

IF          antecedent 

THEN   consequent 

 

The antecedent consists of input variable label and is equal to its associated fuzzy 

input or truth value µ(x).  The consequent consists of output variable label. 

As in the case of rule based expert systems, a fuzzy rule can have multiple an-

tecedents joined by logical operators AND or OR. 

The logical operator AND represents the intersection or minimum between the 

two sets, expressed as: 
 

µA∩B(x)= min{µA(x), µB(x)} 
 

The logical operator OR represents the union or maximum between the two sets, 

expressed as:   
 

µA∪B(x)= max{µA(x), µB(x)} 
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Negation, or the logical operator NOT represents the opposite of the set, expressed 

as:   

 

µ¬A(x) = 1 - µA(x) 

 

Fuzzy relations link two fuzzy sets in a predefined manner. If A is a fuzzy set de-

fined over the universe X and B is a fuzzy set defined over the universe Y, then a 

fuzzy relation R(A, B) is a fuzzy set defined on X × Y = {(x, y) / x∈X, y∈Y}.  

A fuzzy relation is characterized by a membership function [7]: 

 

µR(x, y) : X × Y → [0, 1]. 

 

Fuzzy implication denoted as A → B is an important fuzzy relation. In fuzzy logic 

there are different ways to define an implication while compared to propositional 

logic where the implication is defined by a single truth table. 

For example, the rule: 

 

IF          x is A  

THEN   y is B  

 

can be described as a relation by: 

 

R(x, y) = 
( )∑

ii yx ii

ii

yx

yx
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R(x, y) = 
( )

( )∫
ii yx ii

ii

yx

yx

,
,

,µ
 

 

where µ(x,y) is the relation we want to discover.  

There are over 40 implication relations reported in the literature. 

There are two ways of interpreting the implication P → Q: 
 

(i) P is coupled to Q and the implication is a T-norm operator 

  

• Examples: 

o Mamdani 

 

R(xi, yi) = ∑ ∧
ii yx

iiiBiA yxyx
,

),/()()( µµ  

 

o Larson 

R(xi, yi) = ∑ ×
ii yx

iiiBiA yxyx
,

),/()()( µµ  
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o Bounded Difference 

 

R(xi, yi) = ( )∑ −+∨
ii yx

iiiBiA yxyx
,

),/(1)()(0 µµ  

 

(ii) P entails Q and implications are generalizations of the material implica-

tions in two-valued logic as in: 

 
• a → b = ¬a ∨ b 

 

R(xi, yi) = ( )∑ ∨−
ii yx

iiiBiA yxyx
,

),/()()(1 µµ  

• a → b = ¬a ∨(a ∧ b) 

R(xi, yi) = ( ) ( )∑ ∧∨−
ii yx

iiiBiAiA yxyxx
,

),/()()()(1 µµµ  

 
• Examples: 

o Goguen 
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o Kurt Godel 

 

R(x, y) = ⎩⎨
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>

≤
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Fuzzy inference refers to computational procedures used for evaluating fuzzy  

rules of the form:  

 
IF          x is A  

THEN   y is B 

 
There are two important inferencing procedures 
 

• Generalized modus ponens (GMP) – mode that affirms 

• Generalized modus tollens (GMT) – mode that denies 
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There are a few well known inference systems (we will give some examples later 

in this section): 

• Mamdani Fuzzy models 

• Sugeno Fuzzy models 

• Tsukamoto Fuzzy models 

9.4.3   Defuzzyfication 

During the deffuzification process, the fuzzy output of the inference engine is 

converted to crisp values using membership functions analogous to the ones used 

by the fuzzifier. 

In the case of crisp inputs and outputs, a fuzzy inference system implements a 

nonlinear mapping from its input space to output space. 

There are five commonly used defuzzifying methods (the meaning of A and Z 

in the formulas below are considered as given in Figure 9.17): 

• Centroid of area (COA): 
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If Z is limited by a and b, then COA can be written as: 
 

∫
∫ ⋅

=
b

a

A

b

a

A

dzz

dzzz

COA

)(

)(

µ

µ

 

 

which can be further expressed as: 
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• Bisector of area (BOA) 
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• Mean of maximum (MOM) 
 

∫
∫

=

'

'

Z

Z

dz

dzz

MOM  

 where Z’ = {z / µA(z) = µ*)  
 

• Smallest of maximum (SOM) 

• Largest of maximum (LOM) 

 

µ* 

 
Fig. 9.17 Deffuzification examples. 

9.4.4   Mamdani Fuzzy Model 

Mamdani fuzzy model has been proposed in 1975 by E. Mamdani [14]. It is one of 

the first fuzzy systems and one of the most used ones.  

In order to see how Mamdani method works, we consider a simple example: a 

system consisting of the three rules below: 
 

Rule1:  

IF          temperature is low 

AND     wind blowing is strongly 

THEN   weather is cold  
 

Rule2:  

IF          temperature is medium 

OR        wind blowing is gentle 

THEN   weather is average 
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Rule3:  

IF          temperature is high 

OR        wind blowing is gentle 

THEN   weather is hot  

  

Mamdani fuzzy inference process consists on the four standard steps: fuzzyfication 

of input variables, rule evaluation, aggregation of the results and defuzyfication. 

We have three linguistic variables: temperature, wind and weather. The linguis-

tic values determined by the fuzzy sets of the variable temperature are low, me-

dium and high. Similarly, the linguistic values determined by the fuzzy sets of the 

variable wind are strongly and gentle and for the variable weather are cold, aver-

age and hot. 

In order to simplify the representation let us use the following notations: 

• temperature : x 

fuzzy sets low, medium, high: A1, A2, A3 

universe of discourse: X 

• wind: y 

fuzzy sets strongly and gentle: B1, B2 

universe of discourse: Y 

• weather: z 

fuzzy sets cold, average and hot: C1, C2, C3 

universe of discourse: Z 
 

Thus, the rules above can be simply rewritten as: 

 

Rule1:  

IF          x is A1 

AND     y is B1 

THEN   z is C1  

 

Rule2:  

IF          x is A2 

OR        y is B2 

THEN   z is C2 

 

Rule3:  

IF          x is A3 

OR        y is B2 

THEN   z is C3  

 

The input data are: temperature value is 25 degrees and the wind speed is 35 

km/h.  

Step 1. Fuzzyfication 
 

The graphical representation of the fuzzy sets is given in Figure 9.18. 
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Fig. 9.18 Fuzzy sets for the Mamdani example. 

For the input variables, we obtain the following membership values: 

µA1(x)=0; 

µA2(x)=0.4; 

µA3(x)=0.15; 

 

µB1(y)=0.8; 

µB2(y)=0; 

 

Step 2. Rules evaluation 
 

We have three rules; all of them will be fired. The order is Rule 1, then Rule 2 and 

in the end Rule 3. Rule evaluation and the results obtained are depicted in Figure 

9.19. 

 

Step 3. Results aggregation 
 

We have obtained the following results: 

µC1(z)=0; 

µC2(z)=0.4; 

µC3(x)=0.15. 

 

By aggregating these we obtain the results given in Figure 9.20. 
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Fig. 9.19 Rule evaluation following Mandani fuzzy model. 

 



9.4   Fuzzy Inference 251

 

 

Fig. 9.20 Results aggregation. 

Step 4. Defuzzyfication 
 

We have now obtained the fuzzy results and have to defuzzyfy them to get a crisp 

output. Using the COG formula, the crisp output is calculated as (see Figure 9.21): 

 

68.62
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The interpretation of the output may be that the weather is hot with a 62.68%. 

9.4.5   Sugeno Fuzzy Model 

Sugeno (or Takagi-Sugeno-Kang) method of fuzzy inference has been introduced 

in 1985 [15][16][21][22][25] and it is similar to the Mamdani method in many 

respects. The first two parts of the fuzzy inference process, fuzzifying the inputs 

and applying the fuzzy operator, are exactly the same. The main difference be-

tween Mamdani and Sugeno is that the Sugeno output membership functions are 

either linear or constant. 
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Fig. 9.21 Defuzzyfication. 

 
Fig. 9.22 A rule in a Sugeno fuzzy model. 

A typical rule in a Sugeno fuzzy model has the form given in Figure 9.22, 

where the crisp function f(x, y) is a polynomial function of x and y.  

If f is of the form: 

 ax+by+c  

then we have a first order Sugeno model.  

If the output z is a constant then we have a zero-order Sugeno model. In this 

case, all the membership functions corresponding to the consequent are 

represented by singletons. Mandani and Sugeno fuzzy models are very similar, 
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with just a small difference regarding the consequent. The reasoning process is 

also very similar for both methods.  

In order to show how Sugeno model works, we consider the same example as 

in the case of Mandani style.  

Step 1 (Fuzzyfication) and Step 2 (Rule evaluation) of the Mandani model are 

same for Sugeno model, with a different style for output representation as it can be 

seen from Figure 9.23). The output representation also induces differences in the 

Rule aggregation (Step 3, depicted in Figure 9.24) and Defuzzyfication (Step 4) 

steps. 

 

 

Fig. 9.23 Rule evaluation in Sugeno fuzzy model. 

Rule aggregation consists in simply summing z1 (which is 0 for this example), 

z2 and z3 as it can be seen in Figure 9.24. 
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Fig. 9.24 Agregation of the results for Sugeno model. 

For defuzzyfying the results and obtaining the crisp output, the weighted aver-

age of the singletons is considered: 
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9.4.6   Tsukamoto Fuzzy Model 

In Tsukamoto fuzzy model, the consequent of each fuzzy IF-THEN rule is 

represented by a fuzzy set with a monotonic membership function fuzzy set. 
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As a result, the inferred output is a crisp value induced by the rule’s firing 

strength. The overall (final) output is obtained by taking the weighted average of 

each rule’s output. 

This fuzzy model spends less time for defuzzyfication (same like Sugeno mod-

el) but it is less transparent compared to Mandani or Sugeno models and also not 

so popular [23] [24]. 

We consider the same example as in the case of Mandani and Sugeno models 

and show how Tsukamoto model works.  

Fuzzyfication and defuzzyfication steps are similar to Sugeno model. Rules 

evaluation and aggregation of the results are presented in Figure 9.25 and Figure 

9.26 respectively. 

 

 

Fig. 9.25 Rule evaluation in Tsukamoto fuzzy model. 
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Fig. 9.26 Agregation of the results for Tsukamoto model. 

Summaries 

This chapter introduces fuzzy logic and all its elements and then fuzzy expert  

systems. 

Fuzzy logic is a superset of Boolean logic and has been introduced by Lotfi Za-

deh in the 1960s for the purpose of modeling the uncertainty inherent in natural 

language. In fuzzy logic, it is possible to have partial truth-values. 

A fuzzy expert system is an expert system that uses fuzzy logic instead of Boo-

lean logic. Fuzzy logic is used to define rules of inference, and membership func-

tions that allow a expert system to draw conclusions. In other words, a fuzzy  

expert system is a collection of membership functions and rules that are used to 

reason about data. Unlike conventional expert systems, which are mainly symbolic 

reasoning engines, fuzzy expert systems are oriented toward numerical processing.  

Even thought proposed in 1965, fuzzy sets were for a long time not accepted by 

the AI community. Now they have become highly evolved and their techniques 

are well established.  Inference process in fuzzy expert systems has four steps: 

fuzzyfication, rule evaluation, aggregation of the results and defuzzyfication. 

Several methods of inferencing in fuzzy systems have been proposed. In this 

chapter three of them are presented: Mamdani model, Sugeno model and Tsuka-

moto model. 

In fuzzy inference systems, rules can be viewed as a set of fuzzy points, which 

as a whole approximate the compatibility relation. 
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Zero-order polynomial function in the case of Sugeno model can be viewed ei-

ther as a special case of Mamdani model in which each rule’s consequent is speci-

fied by a fuzzy singleton or a special case of Tsukamoto model, in which each 

rule’s consequent, is specified by a membership function of a step function cross-

ing at the constant. Experts rely on common sense when they solve problems. 

Fuzzy logic reflects how people think. It attempts to model our decision making, 

and our common sense and thus it leads to new, more human, intelligent systems. 

Fuzzy expert systems are the most common use of fuzzy logic. They are used in 

several wide-ranging fields, including: 

• Linear and nonlinear control; 

• Pattern recognition; 

• Financial systems; 

• Operations research; 

• Data analysis. 
 

There are several practical applications of fuzzy control systems, among them: 
 

• Fuzzy car; 

• Fuzzy logic chips and fuzzy computers; 

• Fuzzy washing machine; 

• Fuzzy vacuum cleaner; 

• Fuzzy air conditioner; 

• Fuzzy camcorder; 

• Fuzzy Automatic Train Operation systems; 

• Fuzzy automatic container crane operations; 

• Etc. 
 

Some of the advantages of using fuzzy systems are: 
 

• easy to develop and debug 

• easy to understand 

• easy and cheap to maintain 
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Verification Questions 

1. How does fuzzy logic differ from classical logic? 

2. How to represent fuzzy sets? 

3. What are the proprieties of fuzzy logic operators? 

4. What are the main operations which can be performed with fuzzy sets? 
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5. What do hedges represent? Give some examples. 

6. What are the main steps of fuzzy inference process? 

7. Give examples of fuzzyfication methods. 

8. Give examples of defuzzyfication methods. 

9. Explain Mandani, Sugeno and Tsukamoto inference models and specify the 

main differences between them. 

10. Give examples of practical applications of fuzzy systems. 

11. What are the advantages and disadvantages of fuzzy expert systems. 

Exercises 

1. Given the variable weight (of a person), create 3 fuzzy sets – underweighted, 

normal, overweighted – corresponding to it. Then, given a person’s weight, calcu-

late the degree of membership to each of the fuzzy sets. 

 

2. Given the variables weight and height, define three fuzzy sets for each of them. 

Then, knowing that a person is overweight to a degree of 0.6 and tall to a de-

gree of 0.3, calculate the degrees that the person is: 

1) overweight and tall 

2) overweight or tall 

3) normal and short 

4) normal and tall 

5) normal or tall 

6) not overweight 

7) not tall 

8) not (overweight and tall) 

 

3. Fuzzy controller for setting a thermostat value: 

Given the linguistic variables “outside temperature, amount of time spent at 

home, thermostat value”:  
 

1) Determine by fuzzy sets on universe of discourse for each variable their 

linguistic values  

2) Use a Mamdani-style fuzzy inference (you may consider some crisp in-

puts as of your choice) 

a. Mention all the steps required and the operations performed at 

each step 

b. Use diagrams to show the rules inferences. 

3) Explain the results 

4. Fuzzy controller for setting the speed of a car: 
 

Given the linguistic variables “weather condition, car type, car speed, road  

quality”: 
 

1) Determine by fuzzy sets on universe of discourse for each variable their 

linguistic values  
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2) Use a Sugeno-style fuzzy inference (you may consider some crisp inputs 

as of your choice) 

a. Mention all the steps required and the operations performed at 

each step 

b. Use diagrams to show the rules inferences. 

3) Explain the results. 

 

5. Fuzzy controller for setting the final grade of a student giving admission to a 

college based on his overall high school results and on the results of two given 

exam: 
 

Given the linguistic variables “overall high school results, exam1 result, exam 2 

result, final grade”  

 

1) Determine by fuzzy sets on universe of discourse for each variable their 

linguistic values  

2) Use a Tsukamoto-style fuzzy inference (you may consider some crisp in-

puts as of your choice) 

a. Mention all the steps required and the operations performed at 

each step 

b. Use diagrams to show the rules inferences. 

3) Explain the results. 

 

6. Fuzzy controlled for defining the number of professors required for dealing 

with students for their high school graduation exam: 
 

Given the linguistic variables “number of students, number of different exams, 

professional quality (of the professor, in general), number of professors”  
 

1. Determine by fuzzy sets on universe of discourse for each variable their 

linguistic values  

2. Use a Sugeno-style fuzzy inference and a Mandani –style fuzzy inference 

(you may consider some crisp inputs as of your choice) 

2.1 Mention all the steps required and the operations performed at each 

step 

2.2 Use diagrams to show the rules inferences. 

2.3 Use at lest two deffuzyfication methods for each of the Mamdani and 

Sugeno models.  

3. Compare and explain the results. 
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Chapter 10 

Machine Learning 

10.1   Introduction 

Machine Learning[6][8][12] is concerned with the study of building computer 

programs that automatically improve and/or adapt their performance through ex-

perience. Machine learning can be thought of as “programming by example" [11]. 

Machine learning has many common things with other domains such as statistics 

and probability theory (understanding the phenomena that have generated the da-

ta), data mining (finding patterns in the data that are understandable by people) 

and cognitive sciences (human learning aspire to understand the mechanisms un-

derlying the various learning behaviors exhibited by people such as concept learn-

ing, skill acquisition, strategy change, etc.) [1].  

The goal of machine learning is to devise learning algorithms that do the learn-

ing automatically without human intervention or assistance. Rather than program 

the computer to solve the task directly, in machine learning, we seek methods by 

which the computer will come up with its own program based on examples that 

we provide [11]. 

Dietterich [1] mentioned 4 situations in which it is not easy for software engi-

neers to design the software for solving a problem, but there are more similar situ-

ations: 
 

• problems for which there exist no human experts. As an example, the 

need to predict machine failures before they occur in modern automated 

manufacturing facilities. This can be performed by analyzing sensor read-

ings. There are no human experts who can be interviewed by a program-

mer to provide the knowledge necessary to build a computer system. A 

machine learning system can study recorded data and subsequent ma-

chine failures and learn prediction rules. 

• problems where human experts exist, but where they are unable to ex-

plain their expertise. This in domains such as speech recognition, hand-

writing recognition, and natural language understanding. Experts cannot 

describe the detailed steps that they follow as they perform them.  

Humans can provide machines with examples of the inputs and correct 



262 10   Machine Learning

 

outputs for these tasks, so machine learning algorithms can learn to map 

the inputs to the outputs. 

• dynamic problems where phenomena are changing rapidly. Many a 

times, people would like to be able predict the future behavior of certain 

phenomena such as the stock market, exchange rates or even weather 

forecast. These behaviors change frequently, so that even if a program-

mer could construct a good predictive computer program, it would need 

to be rewritten frequently. A learning program can relieve the program-

mer of this burden by constantly modifying and tuning a set of learned 

prediction rules. 

• applications that need to be customized for each computer user sepa-

rately. For instance, a program to filter unwanted electronic mail mes-

sages. Different users will need different filters. A machine learning  

system can learn which mail messages the user rejects and maintain the 

filtering rules automatically. 
 

Some examples of machine learning problems are [3][4][5][9][10][11]: 
 

• character (including digit) recognition 

• handwriting recognition 

• face detection 

• spam filtering 

• sound recognition 

• spoken language understanding 

• stock market prediction 

• weather prediction 

• medical diagnosis 

• fraud detection 

• fingerprint matching 

• etc. 
 

A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as meas-

ured by P, improves with experience E [2].    

A learning system is characterized by the following elements:   

• task (or tasks) T 

• experience E 

• performance measure P. 
 

For example, a learning system for playing tic-tac-toe game (or nuggets and 

crosses) will have the following corresponding elements: 
 

• T: Play tic-tac-toe;  

• P: Percentage of games won (and eventually drawn); 

• E: Playing against itself (can also be playing against others).  
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Thus, a generic learning system can be defined by the following components 

[2] (see Figure 10.1): 
 

• Goal: Defined with respect to the task to be performed by the system; 

• Model: A mathematical function which maps perception to actions; 

• Learning rules: Used to update the model parameters with new experi-

ence in a way which optimizes the performance measures with respect to 

the goals. Learning rules help the algorithm search for the best model; 

• Experience: A set of perception (and possibly the corresponding actions). 

 

 

Fig. 10.1 Generic scheme of a learning system 

10.2   Terminology 

Before getting into the core of a learning system, we first need to define the basic 

notions [11].  
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An example (sometimes also called an instance) is the object that is being clas-

sified. For instance, if we consider the cancer tumor patients classification, then 

the patients are the examples. 

An example is described by a set of attributes, also known as features or  

variables. 

For instance, the cancer tumor patients classification, a patient might be de-

scribed by attributes such as gender, age, weight, tumor size, tumor shape, blood 

pressure, etc. 

The label is the category that we are trying to predict. For instance, in the can-

cer patient classification, the labels can be “avascular”, “vascular” and “angio-

genesis”.  

During training, the learning algorithm is supplied with labeled examples, 

while during testing, only unlabeled examples are provided. 

In certain situation we can assume that only two labels are possible that we 

might as well call 0 and 1 (for instance, cancer or not cancer). This will make the 

things much simple.  

We will also make the simplifying assumption that there is a mapping from ex-

amples to labels. This mapping is called a concept. Thus, a concept is a function of 

the form  

 

c : X → {0, 1}   

 

where X is the space of all possible examples called the domain or instance space.  

A collection of concepts is called a concept class. We will often assume that the 

examples have been labeled by an unknown concept from a known concept class. 

10.3   Learning Steps 

The main steps in a learning process are as follows: 
 

• data and assumptions 

Data refers to the data available for the learning task and assumptions 

represent what we can assume about the problem. 

• representation 

We should define how to represent the examples to be classified. 

There are many representation methods for the same data. The choice of 

representation may determine whether the learning task is very easy or 

very difficult. 

• method and estimation 

Method takes into account what are the possible hypotheses and esti-

mation helps to adjust the predictions based on the feedback (such as up-

dating the parameters when there is a mistake, etc).  

• evaluation 

This evaluates how well the method is working (for instance, consider-

ing the ratio of wrong classified data and the whole dataset). 
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• model selection 

It tells us whether we can rethink the approach to do even better or to 

make it more flexible, or, whether we should choose an entirely different 

model that would be more suitable. 

10.4   Learning Systems Classification 

Learning systems can be classified based on their components.  

10.4.1   Classification Based on Goal, Tasks, Target Function  

Based on the goals of a learning system, we can have the following classification 

[2]: 
 

• Prediction: the system predicts the desired output for a given input based 

on previous input/output pairs.  

Example: prediction of a stock value given other (input) parameters val-

ues like market index, interest rates, currency conversion, etc.   

• Regression: the system estimates a function of
 
many variables (multivari-

ate) or single variable (univariate) from scattered data. 

Example: a simple univariate regression problem is x
4
+ x

3
+ x

2
+x+1 

• Classification (categorization): the system classifies an object into one of 

several categories (or classes) based on features of the object. 

Example: A diagnosis system which has to classify a patient’s cancer tu-

mor into one of the three categories: avascular, vascular, angiogenesis. 

• Clustering: the system task is to organize a group of objects into homo-

geneous segments.  

Example: a satellite image analysis system which groups land areas into 

forest, urban and water body, for better utilization of natural resources.    

• Planning: the system has to generate an optimal sequence of actions to 

solve a particular problem.  

Example: robot path planning (to perform a certain task or to move from 

one place to another, etc). 

Learning tasks can be classified (among others) in [1]: 

• empirical learning and  

• analytical learning.  
 

Empirical learning is learning that relies on some form of external experience (the 

program cannot infer the rules of the game analytically - it must interact with a 

teacher to learn them), while analytical learning requires no external inputs (the 

program is able to improve its performance just by analyzing the problem). 
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10.4.2   Classification Based on the Model  

The model is actually the algorithm used and there are several learning models: 
 

• Decision trees  

• Linear separators (perceptron model) 

• Neural networks  

• Genetic programming 

• Evolutionary algorithms 

• Graphical models  

• Support vector machines 

• Hidden Markov models 

10.4.3   Classification Based on the Learning Rules  

Learning rules are usually related with the model of learning used. Some common 

rules are:  

• gradient descent 

• least square error 

• expectation maximization  

• margin maximization.   

10.4.4   Classification Based on Experience 

The nature of experiences available varies with applications. Some common situa-

tions are [2] [7].   
 

• Supervised learning:  

In supervised learning, the machine is given the desired outputs and its 

goal is to learn to produce the correct output given a new input. 

In supervised learning a teacher or oracle is available which provides 

the desired action corresponding to a perception. A set of perception ac-

tion pair provides what is called a training set. Examples include an au-

tomated vehicle where a set of vision inputs and the corresponding steer-

ing actions are available to the learner.   
 

• Unsupervised learning:  

In unsupervised learning the goal of the machine is to build a model of 

input that can be used for reasoning, decision making, predicting things, 

and communicating. 

In unsupervised learning no teacher is available. The learner only dis-

covers persistent patterns in the data consisting of a collection of percep-

tions. This is also called exploratory learning. Finding out malicious net-

work attacks from a sequence of anomalous data packets is an example of 

unsupervised learning.   
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• Active learning:  

Here not only a teacher is available, the learner has the freedom to ask 

the teacher for suitable perception-action example pairs which will help 

the learner to improve its performance. Consider a news recommender 

system which tries to learn a user’s preference and categorize news arti-

cles as interesting or uninteresting to the user. The system may present a 

particular article (of which it is not sure) to the user and ask whether it is 

interesting or not.    

 

• Reinforcement learning:  

In reinforcement learning, the machine can also produce actions which 

affect the state of the world, and receive rewards (or punishments). The 

goal is to learn to act in a way that maximizes rewards in the long term. 

In reinforcement learning a teacher is available, but the teacher instead 

of directly providing the desired action corresponding to a perception, re-

turn reward and punishment to the learner for its action corresponding to 

a perception. Examples include a robot in an unknown terrain where its 

get a punishment when its hits an obstacle and reward when it moves 

smoothly. 

10.5   Machine Learning Example 

Consider the data given in Table 10.1. 

 

 INPUT OUTPUT 

Nr. x1 x2 x3 x4 x5 x6 Y 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

1 

0 

1 

0 

4 

1 

3 

2 

1 

1 

0 

1 

0 

0 

2 

0 

2 

1 

0 

0 

1 

2 

1 

1 

1 

6 

0 

0 

3 

0 

2 

0 

0 

3 

0 

2 

5 

0 

1 

2 

1 

0 

3 

1 

1 

0 

2 

3 

1 

1 

3 

0 

0 

0 

1 

1 

2 

3 

1 

1 

1 

3 

0 

0 

0 

0 

1 

2 

2 

2 

1 

0 

3 

1 

0 

1 

0 

0 

1 

0 

0 

3 

3 

2 

1 

3 

0 

0 

0 

1 

0 

1 

0 

0 

1 

1 

1 

1 

0 

0 

0 

1 

0 

1 

0 

16 1 2 1 1 0 0 ? 
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For this example we have: 
 

• Space of all possible examples: X = (x1, x2, x3, x4, x5, x6) 

• Instance space = |{X}| = 15 

• Concept learning/regression: we have to find f such as Y=f(X) 

• Prediction: f(1, 2, 1, 1, 0, 0) =? 

• Evaluation: 

Error (f) = 
{ }

15

)(/ YXfX ≠
 

The following chapters will cover various topics of machine learning such as 

learning decision trees, neural network learning, statistical learning methods, evo-

lutionary computation and reinforcement learning. 
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Chapter 11 

Decision Trees 

11.1   Introduction 

Decision trees are suitable for scientific problems entail labeling data items with 

one of a given, finite set of classes based on features of the data items. Decision 

Trees are classifiers that predict class labels for data items [3]. A decision tree 

learning algorithm approximates a target concept using a tree representation, 

where each internal node corresponds to an attribute, and every terminal node cor-

responds to a class[5][6][10].    
 

There are two types of nodes in the tree:  

• Internal node: splits into different branches according to the different 

values the corresponding attribute can take. Example: fever < 37 or fever 

> 37, cough weak or cough strong in the example below. 

• Terminal Node: decides the class assigned. 
 

A decision tree is a branching structure, which consists of nodes and leafs. The 

root node is at the top and leafs at the bottom. Each node tests the value of some 

feature of an example, and each leaf assigns a class label to the example. Consider 

a simple example of classifying a patient’s symptoms into two classes – class1  

and class2 – corresponding to whether the patient has or has not a cold (see  

Figure 11.1).  

The elements of a decision tree representation have the following meaning: 
 

• each internal node tests an attribute; 

• each branch corresponds to an attribute value; 

• each leaf node assigns a classification. 
 

One can also use a re-representation as if-then rules: disjunction of conjunctions of 

constraints on the attribute value instances. 

To classify an example X we start at the root of the tree, and check the value of 

that attribute on X. We follow the branch corresponding to that value and jump to 

the next node. We continue until we reach a terminal node and take that class as 

our best prediction [1].   
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Fig. 11.1 Decision tree for classifying whether a patient has cold (class1) or not (class2). 

 
Fig. 11.2 Example of assigning a class to a patient based on the symptoms. 
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In our example, if we have for instance  

 

X = (Symptoms: fever; fever >37.5) 

 

then the assigned class is represented in Figure 11.2 

11.2   Building a Decision Tree 

Decision trees are constructed by analyzing a set of training examples for which 

the class labels are known. They are then applied to classify previously unseen 

examples. 

There are different ways to construct trees from data. In what follows we will 

present the top-down approach. 

11.2.1   Top-Down Induction of Decision Tree 

The algorithm is presented below: 
 

Step 1. Create a root for the tree  

Step 2.  
Step 2.1. If all examples are of the same class 

or the number of examples is below a threshold  
Then return that class  
Step 2.2. If no attributes available return  
majority class  

Step 3.  
Step 3.1. Let A be the best attribute for the 
next node 
Step 3.2. Assign A as decision attribute for 
node 

Step 4. For each possible value v of A  

Create a new descendant of node. Add a branch 
below A labeled “A = v”  

Step 5. Let Sv be the subsets of example where attribute 
A=v  
Recursively apply the algorithm to Sv   

Step 6. If training examples are perfectly classified  
Then Stop 
Else iterate over new leaf nodes. 

End 

 

The algorithm terminates either when all the attributes have been exhausted, or the 

decision tree perfectly classifies the examples. 
 

Example 

Let us illustrate this using the following example (adapted from [1]) for classify-

ing a patient with cold symptoms into one of the two classes: cold or not-cold. 

The graphical representation of the initial data is given in Figure 11.3. 

We can observe we have two attributes: fever and cough. 
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Fever has three values: 

• < 37; 

• >37 and < 38; 

• >38. 

 

 
Fig. 11.3 Graphical representation of the initial data. 

 

 

Fig. 11.4 Decision tree construction after considering the first attribute: cough. 
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Cough attribute has two values: 

• weak; 

• strong. 
 

Suppose we have cough as best attribute. The decision tree obtained until now 

is depicted in Figure 11.4. 

By considering the first attribute – cough – we can now have the root of the tree 

and two branches corresponding to the two values – weak and strong. 

The right branch – strong – leads to a class (which is class1 - cold), but we still 

don’t have a final classification on the left branch. We should now consider the 

next best attribute – which is the only remaining one: fever. The decision tree ob-

tained is depicted in Figure 11.5. 

 

 

Fig. 11.5 Constructed decision tree. 

11.2.2   How to Chose the Best Attribute? 

Putting together a decision tree is all a matter of choosing which attribute to test at 

each node in the tree. We shall define a measure called information gain which 

will be used to decide which attribute to test at each node. Information gain is it-

self calculated using a measure called entropy, which we first define for the case 

of a binary decision problem and then define it for the general case. 

In the example above we considered cough as the best attribute. But how to 

chose this or how to define this in a consequent manner?  
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In order to choose an attribute to best split the data we will use entropy based 

splitting function.    

Let us use the following notations: 

• S – sample of training data 

• p+– the proportion of positive examples in S 

• p-– the proportion of negative examples in S  
 

Entropy measures the impurity in S and it is given by: 

Entropy (S) = - p+log2 p+ - p-log2 p- 
 

Entropy (S) is the expected number of bits needed to encode the class (+ or -) 

of randomly drawn member of S under the optimal, shortest length code [2]. 

As known from information theory, the optimal length code assigns - log2 p bits 

to message having probability p. 

Thus, the expected number of bits to encode + or – random member of S is: 

 

( )∑
−+∈

−
},{

2log
ppp

pp  

 

And thus: 

Entropy(S) = ( )∑
−+∈

−
},{

2log
ppp

pp  

 

Coming back to our example, the attribute cough divides the sample set into 

two subsets S1 and S2 (as shown in Figure 11.6): 
 

• S1 = {5 +, 9 -} 

• S2 = {11 +, 0 -}. 
 

Then we have: 

Entropy(S1) = ⎟⎠
⎞⎜⎝

⎛
−⎟⎠
⎞⎜⎝

⎛
−

14

9
log

14

9

14

5
log

14

5
22  

Entropy(S2) = 0 

The attribute fever divides the sample set into three subsets S1, S2 and S3 (as 

shown in Figure 11.8): 

 

• S1 = {9 +, 0 -} 

• S2 = {3 +, 4 -}. 

• S3 = {4+, 5-} 
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Fig. 11.6 The split of data into two subsets S1 and S2 using the attribute cough. 

 

 

 
Fig. 11.7 The split of data into three subsets S1, S2 and S3 using the attribute fever. 
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In this case we have: 

Entropy(S1) = 0 

Entropy(S2) = ⎟⎠
⎞⎜⎝

⎛
−⎟⎠
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−

7

4
log

7

4

7

3
log

7

3
22  
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Information gain gives the expected reduction in entropy due to sorting on A. 

Information gain is given by the formula: 

∑
∈

⋅−=

)(

)()(),(
Avaluesv

SvEntropy
S

Sv
SEntropyASgain  

where Entropy(Sv) is the entropy of one sub-sample after partitioning S based on 

all possible values of attribute A.    

For the example considered in Figure 11.6 we have: 
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Entropy(S2) = 0 
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11.3   Overfitting in Decision Trees 

Overfitting is a common problem in machine learning. Decision trees suffer from 

this, because they are trained to stop when they have perfectly classified all the 

training data, i.e., each branch is extended just far enough to correctly categorize 

the examples relevant to that branch. Many approaches to overcoming overfitting 

in decision trees have been attempted. 
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In order to define overfitting consider an hypothesis h and errortrain(h) the error 

of hypothesis h over training data and errorD(h) the error of hypothesis h over the 

entire distribution D of data.  

Hypothesis h overfits training data if there is an alternative hypothesis h’ such 

that [2]: 

 

(i) errortrain(h) < errortrain(h’)  

and 

(ii) errorD(h) > errorD(h’). 

 

The depth of the tree is related to the generalization capability of the tree. If not 

carefully chosen it may lead to overfitting.  A tree overfits the data if we let it 

grow deep enough so that it begins to capture “aberrations” in the data that harm 

the predictive power on unseen examples [1].   

If we add some noise in our example given in Figure 11.3, the tree will grow 

deeper to capture this noise (as it can be observed in Figure 11.8). 

 

 

Fig. 11.8 Example from figure 11.3 modified by adding some noise which increases the 

tree size. 

 
There are two main ways to avoid overfitting [1][2]: 

 

1) Stop growing the tree when data split is not statistically significant. 

This is hard to implement in practice because it is not clear what a good 

stopping point is. 

2) Grow the full tree and then post-prune. 
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11.3.1   Pruning a Decision Tree 

The algorithm below describes the main steps required to prune a decision tree 

[1][2]: 
 

Step 1. Split data into training and validation set. 
Step 2. Consider all internal nodes in the tree. 
Step 3. Do  

Step 3.1 For each node in the tree evaluate im-
pact on validation set of pruning it (plus those 
nodes below it) and assign it to the most common 
class. 

 
Step 3.2 In a Greedy way remove the one (and its 
sub-tree) that most improves validation set accu-
racy (yields the best performance). 

Until further pruning is harmful (or no more improve-

ments are possible): 
end 

 

Approaches for extracting decision rules from decision trees have also been  

successful.  

Post-pruning of rules follows the steps [2]: 
 

1) Convert the tree to an equivalent set of rules; 

2) Prune each rule independently of others; 

3) Sort the final rules into a desired sequence for use. 

11.4   Decision Trees Variants 

Although single decision trees can be excellent classifiers, increased accuracy 

often can be achieved by combining the results of a collection of decision trees. 

This forms ensembles of decision trees and are sometimes among the best per-

forming types of classifiers [3] [7] [8] [9].  

Two of the strategies for combining decision trees are: 

• random forests and 

• boosting. 
 

Random forests is a machine learning ensemble classifier in which many different 

decision trees are grown by a randomized tree-building algorithm. The training set 

is sampled with replacement to produce a modified training set of equal size to the 

original but with some training items included more than once. In addition, when 

choosing the question at each node, only a small, random subset of the features is 

considered. With these two modifications, each run may result in a slightly differ-

ent tree. The predictions of the resulting ensemble of decision trees are combined 

by taking the most common prediction [3]. 

One of the random forests disadvantages is that does not handle large numbers 

of irrelevant features as well as ensembles of entropy-reducing decision trees. 
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Maintaining a collection of good hypotheses, rather than committing to a single 

tree, reduces the chance that a new example will be misclassified by being as-

signed the wrong class by many of the trees. 

Boosting is a machine-learning method used to combine multiple classifiers in-

to a stronger classifier by repeatedly re-weighting training examples to focus on 

the most problematic.  

In practice, boosting is often applied to combine decision trees [3]. Although it 

is usually applied to decision tree models, it can be used with any type of model 

and it is a special case of the model averaging approach. 

Alternating decision trees are a generalization of decision trees that result from 

applying a variant of boosting to combine weak classifiers based on decision 

stumps, which are decision trees that consist of a single question. In alternating 

decision trees, the levels of the tree alternate between standard question nodes and 

nodes that contain weights and have an arbitrary number of children. In contrast to 

standard decision trees, items can take multiple paths and are assigned classes 

based on the weights that the paths encounter. 

Alternating decision trees can produce smaller and more interpretable classifi-

ers than those obtained from applying boosting directly to standard decision trees 

[3]. 

Summaries 

There are many different learning algorithms that have been developed for super-

vised classification and regression. These can be grouped according to the formal-

ism they employ for representing the learned classifier or predictor: decision trees, 

decision rules, neural networks, linear discriminant functions, Bayesian networks, 

support vector machines, etc. [4]. 

A decision tree is a branching structure, which consists of nodes and leafs. The 

root node is at the top and leafs are at the bottom. Each node tests the value of 

some feature of an example, and each leaf assigns a class label to the example. 

This chapter presented a top-down algorithm for learning decision trees.  

Decision tree learning provides a practical method for concept learning/learning 

discrete-valued functions. Decision trees are sometimes more interpretable than 

other classifiers such as neural networks and support vector machines because 

they combine simple questions about the data in an understandable way [3]. 
This algorithm gets into trouble overfitting the data. This occurs with noise and 

correlations in the training set that are not reflected in the data as a whole. In order 

to deal with overfitting, one can restrict the splitting, so that it splits only when the 

split is useful or can allow unrestricted splitting and prune the resulting tree where 

it makes unwarranted distinctions. One of the advantages of using decision trees is 

that, if they are not too large, they can be interpreted by humans. This can be use-

ful both for gaining insight into the data and also for validating the reasonableness 

of the learned tree [4]. 
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We should consider decision trees in the following situations [2]: 
 

• instances can be described by attribute-value pairs; 

• attributes are both numeric and nominal.   

• target function is discrete valued; 

• disjunctive hypothesis may be required; 

• possibly noisy training data; 

• data may have errors. 
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Verification Questions 

1) What are the steps required to build a decision tree? 

2) Explain some ways to choose the best attribute 

3) What is overfitting? 

4) Enumerate the steps for pruning a decision tree. 

5) Nominate some decision trees variants. 
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Chapter 12 

Artificial Neural Networks 

12.1   Introduction 

Artificial Neural Networks (ANN) are inspired by the way biological neural sys-

tem works, such as the brain process information. The information processing 

system is composed of a large number of highly interconnected processing ele-

ments (neurons) working together to solve specific problems. ANNs, just like 

people, learn by example. Similar to learning in biological systems, ANN learning 

involves adjustments to the synaptic connections that exist between the neurons. 

The first artificial neuron was produced in 1943 by the neurophysiologist War-

ren McCulloch and the logician Walter Pits. But the technology available at that 

time did not allow them to do too much. There is a significant difference between 

the ways neural networks solve a problem while compared to a standard algo-

rithm. In a conventional algorithmic approach the computer follows a set of in-

structions in order to solve a problem. The specific steps that the computer needs 

to follow are known and without this the computer cannot solve the problem. But 

computers would be so much more useful if they could do things that we don't 

exactly know how to do. The way the problem is to be solved must be known and 

stated in small unambiguous instructions. These instructions are then converted to 

a high level language program and then into machine code that the computer can 

understand. These machines are totally predictable; if anything goes wrong is due 

to a software or hardware fault [3]. 

Neural networks learn by example. They cannot be programmed to perform a 

specific task. The examples must be selected carefully otherwise useful time is 

wasted or even worse the network might be functioning incorrectly. Since the 

network finds out how to solve the problem by itself, its operation can be  

unpredictable[5][8][9][12][14]. 

Neural networks and conventional algorithms do not compete but complement 

each other. There are tasks ,which are more suited to an algorithmic approach and 

tasks that are more suitable to neural networks approach. And, more than this, a 

large number of tasks require systems that combine the two approaches (such as, 

for example, a conventional computer is used to supervise the neural network) in 

order to perform at maximum efficiency [3]. 
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12.2   Similarities between Biological and Artificial Neural 

Networks 

The human brain contains about 100 billions of nervous cells. The brain's billions 

of neurons connect with one another in complex networks. Total number of neu-

rons in human cerebral cortex is about 10 billion and the total number of synapses 

in cerebral cortex is about 60 trillion [7]. C. Koch [8] lists the total number of neu-

rons in the cerebral cortex at 20 billion and the total synapses in the cerebral cor-

tex at 240 trillion.  

The mass of a large sensory neuron is about 10
-6

gram [6] and the number of 

synapses for a typical neuron varies between 1,000 and 10,000. 

All physical and mental functioning depends on the establishment and mainten-

ance of neuron networks. Connections the brain finds useful become permanent; 

those not useful are eliminated as the brain selectively strengthens and prunes 

connections based on experience. A person's habits and skills - such as nail-biting 

or playing a musical instrument - become embedded within the brain in frequently 

activated neuron networks. When a person stops performing an activity, the neural 

networks for the activity fall into disuse and eventually may disappear [4].  

A neuron consists of (see Figure 12.1) a soma (cell body), axon (a long fiber) 

and dendrites. The axon sends signals and the dendrites receive signals. A synapse 

connects an axon to a dendrite. Given a signal, a synapse might increase (excite) 

or decrease (inhibit) electrical potential. A neuron fires when its electrical poten-

tial reaches a threshold.  

 

 

Fig. 12.1 Structure of a biological neuron. 

An artificial neural network consists of a number of neurons (units) similar to 

the biological neurons in the brain (often arranged in layers), a number of connec-

tions which are performed by weighted links and whose role is to transmit signals 
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from one neuron to another, and weights. The output signal is transmitted through 

the neuron’s outgoing connection (analogue to the axon in the biological neurons).  

The outgoing connection splits into a number of branches that transmit the same 

signal.  The outgoing branches terminate at the incoming connections of other 

neurons in the network.  

Inputs and outputs are numeric. 

The correspondence between a biological and an artificial neural network is 

given in Figure 12.2. 

 

 
 

Fig. 12.2 Correspondence between biological and artificial neural network. 

 
The neuron is the simplest component of an artificial neural network. The dia-

gram of an artificial neuron is depicted in Figure 12.3. 
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Fig. 12.3 Diagram of an artificial neuron. 

 
The main components of a neural network (or a parallel distributed model) are 

[20] [21] [22]: 

• a set of processing units (called neurons or cells); 

• a state of activation Yi for every unit, which is equivalent to the output of 

the unit; 
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• connections between the units; each connection is defined by a weight wjk 

which determines the effect which the signal of unit j has on unit k. The 

contribution for positive wjk is considered as an excitation and for nega-

tive wjk as inhibition. 

• a propagation rule, which determines the effective input Xi of a unit from 

its external inputs; 

• an activation function f, which determines the new level of activation 

based on the effective input Xi(t) and the current activation Yi(t); 

• an external input (also know as bias, offset) θi for each unit; 

• a method for information gathering (the learning rule); 

• an environment within which the system must operate, providing input 

signals and / if necessary / error signals. 
 

Te neurons or input units are of 3 types: 
 

• input units; 

• hidden units; 

• output units. 
 

The neurons receive input from their neighbors or external sources and use this to 

compute an output signal which is propagated to other units. Apart from this 

processing, a second task is the adjustment of the weights. The system is inherent-

ly parallel in the sense that many units can carry out their computations at the 

same time [20]. 

The aim of a neural network is to train the network to achieve a balance be-

tween the ability to respond correctly to the input patterns that are used for train-

ing and the ability to give reasonable responses to a new input which is similar but 

not identical to those used for training. 

12.3   Neural Networks Types 

The neural networks can be classified depending on: 

• the nature of information processing carried out at individual nodes: 

o single layer network (perceptron); 

o multi-layer network; 

• the connection geometries: 

o feedforward network; 

o backpropagation network; 

• the algorithm for adaptation of link weights.  

12.3.1   Layered Feed-Forward Network 

A layered feed-forward network is characterized by a collection of input neurons 

whose role is to supply input signals from the outside world into the rest of the  
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network. Following this can come one or more intermediate layers of neurons and 

finally an output layer where the output of the computation can be communicated 

to the outside world. The intermediate – also known as hidden layers – have no 

direct contact with the outside world.  

For this class of networks, there are no connections from a neuron-to-neuron (s) 

in previous layer, other neurons in the same layer or to neurons more than one 

layer ahead. 

Every neuron in a given layer receives inputs from layers below its own and 

sends output to layers above its own. Thus, given a set of inputs from the neurons 

in the input layer, the output vector is computed by a succession of forward 

passes, which compute the intermediate output vectors of each layer in turn using 

the previously computed signal values in the earlier layers. One of the simplest 

such networks consists of a single layer and is called a perceptron. 

12.3.2   The Perceptron 

This consists of a single neuron with multiple inputs and a single output. It has 

restricted information processing capability. The information processing is done 

through a transfer function, which is either linear or non-linear. 

12.3.3   Feedforward Radial Basis Function (RBF) Network  

Feed-forward radial basis function network is a feed-forward network with an 

input layer, output layer and a hidden layer. The hidden layer is based on a radial 

basis function. The RBF generally used is the Gaussian function. Several RBF's in 

the hidden layer allow the RBF network to approximate a more complex activa-

tion function than a typical feed-forward neural network. RBF networks are used 

for pattern recognition. They can be trained using genetic, annealing or one of the 

propagation techniques. Other means must be employed to determine the structure 

of the RBF's used in the hidden layer. 

12.3.4   Recurrent Networks 

Some networks allow the output signal of each neuron in a given layer to be con-

nected not only to the layer ahead but also to that same neuron as an input signal. 

Such networks are called associative recurrent networks. Backpropagation net-

works not only have feed-forward connections but each hidden layer also receives 

an error feedback connection from each of the neurons above it.  

 
12.3.4.1   Hopfield Neural Network 

 

This network is a simple single layer recurrent neural network. The Hopfield neural 

network is trained with a special algorithm that teaches it to learn to recognize  

 

 



286 12   Artificial Neural Networks

 

patterns. The Hopfield network will indicate that the pattern is recognized by 

echoing it back. Hopfield neural networks are typically used for pattern recognition. 

 

12.3.4.2   Simple Recurrent Network (SRN) Elman Style  
 

This network is a recurrent neural network that has a context layer. The context 

layer holds the previous output from the hidden layer and then echos that value 

back to the hidden layer's input. The hidden layer then always receives input from 

its previous iteration's output. Elman neural networks are generally trained using 

genetic algorithm, simulated annealing, or one of the propagation techniques. El-

man neural networks are typically used for prediction. 

 

12.3.4.3   Simple Recurrent Network (SRN) Jordan Style  
 

This network is a recurrent neural network that has a context layer. The context 

layer holds the previous output from the output layer and then echos that value 

back to the hidden layer's input. The hidden layer then always receives input from 

the previous iteration's output layer. Jordan neural networks are generally trained 

using genetic algorithm, simulated annealing, or one of the propagation tech-

niques. Jordan neural networks are typically used for prediction. 

12.3.5   Self-Organizing Maps 

Self Organizing Maps[16][17][18][19] (or Kohonen networks) have a grid topology, 

with unequal grid weights. The topology of the grid provides a low dimensional 

visualization of the data distribution. These are thus used in applications which  

typically involve organization and human browsing of a large volume of data. 

Learning is performed using a winner take all strategy in an unsupervised mode. 

12.4   The Perceptron 

The simplest model of a neural network consists of a single neuron[23]. The neu-

ron can be trained to learn different simple tasks by modifying its threshold and 

input weights. Inputs are presented to the neuron and each input has a desired out-

put. If the neuron doesn't give the desired output, then it has made a mistake. To 

rectify this, its threshold and/or input weights must be changed. A learning algo-

rithm determines how to change the weights and threshold.  

The output of the perceptron is usually constrained to boolean values – which 

can be interpreted as true and false, 0 and 1 or -1 and 1.  

The architecture of a simple perceptron is depicted in Figure 12.4 where: 

• X1, X2, ..., Xi, …, XN are inputs. These could be real numbers or boolean 

values depending on the problem. 

• Y is the output and is boolean. 

• w1, w2, ..., wi, …, wN are weights of the edges and are real value. 

• θ is the threshold and is a real value. 
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Fig. 12.4 Architecture of a simple perceptron. 

The role of the perceptron is to classify a set of stimuli into one of the two 

available classes. The decision regions are separated by a hyperplane whose equa-

tion is given by: 

0
1

=−∑
=

θ

N

i

ii Xw  

Thus, the perceptron can be successfully applied only in the particular case of li-

nearly separable data, which means the data are situated on one side and the other 

of a hyperplane.  

The neuron computes the weighted sum of the input signals and compares the 

result with a threshold value, θ.  If the net input is less than the threshold, the neu-

ron output is 0.  But if the net input is greater than or equal to the threshold, the 

neuron becomes activated and its output attains a value +1. 

In this case, the neuron uses the following activation function (sign function): 
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12.4.1   Activation Functions 

There are several activation functions which can be used for neural networks. 

Some of them are as follows (see Figure 12.5 where some models are depicted): 
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• Sign: 

Activation(X) = ⎩⎨
⎧

≥

<

θ

θ

Xif

Xif

,1

,0
 

• Step: 

Activation(X) = ⎩⎨
⎧

≥

<−

θ

θ

Xif

Xif

,1

,1
 

• Sigmoid (logistic): 

 

Activation (X) = 
X

e
−+1

1
 

 

• Identity (linear): 

 

Activation (X) = X 

 

• Than: 

Activation(X) = 
X

X

e

e
2

2

1

1
−

−

+

−
  

• Arctan: 

 

Activation(X) = 
π

)arctan(
2

X
⋅   

 

• Exponential: 

 

Activation(X) = 
X

e  

 

• Reciprocal 

 

Activation(X) =
X

1
 

 

• Gaussian 

 

Activation(X) =
2

2

σ
X

e
−

 

 

• Sine 

 

Activation(X) = sin(X) 
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• Cosine 

 

Activation(X) = cos(X) 

 

• Elliott 

 

Activation(X) = 
X

X

+1
 

 

where X is given by the equation (1). 

 

 

Fig. 12.5 Examples of activation functions. 

 
All activation functions enumerated above use a linear combination of weights 

and input activations. There is also another category which computes Euclidean 

distance between weights and input activations (outputs of other neurons).  The 

only activation function in this category is radial Basis and is given by: 
 

Activation (X) =  
Xaltitudef

e
−⋅ )log(
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where: 

• f is the fan-in of each unit in the layer, that is the number of other units 

feeding into that unit, and  

• altitude is a positive number stored in the neuron (or neural layer or neur-

al network). The default is altitude = 1.0, for that value the activation 

function reduces to the simple
X

e
−

. 

12.4.2   How the Perceptron Learns a Task? 

The perceptron is a sign (or step) function based on a linear combination of real-

valued inputs. If the combination is above a threshold it outputs a 1, otherwise it 

outputs a 0 (1 and -1 respectively in the case of sign activation function). 

As depicted in Figure 12.6, the output is: 
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A perceptron draws a hyperplane as the decision boundary over the (n-

dimensional) input space (see Figure 12.7 for 2-dimensional and 3-dimesional 

case respectively).     
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Fig. 12.6 Learning perceptron. 

A perceptron can learn only examples that are called linearly separable. These 

are examples that can be perfectly separated by a hyperplane.      

Learning a perceptron means finding the right values for w. The hypothesis 

space of a perceptron is the space of all weight vectors.  
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Fig. 12.7 Perceptron separation hyperplane for 2 and 3 dimensions. 

In order to train the perceptron, a series of inputs are presented to the percep-

tron - each of the form (X1, X2, ..., XN). For each such input, there is a desired out-

put - either 0 or 1. The actual output is determined by the net input which is: 

w1 X1 + w2 X2 + ... + wn XN. 

If the net input is less than threshold then the output is 0, otherwise output is 1. If 

the perceptron gives a wrong (undesirable) output, then one of two things could 

have happened: 

• The desired output is 0, but the net input is above threshold. So the actual 

output becomes 1. In such a case we should decrease the weights.  

• The desired output is 1, but the net input is below threshold. We 

should now increase the weights.  

There are two popular weight update rules which will be described in what  

follows.  

1) The perceptron rule, and  

2) Delta rule   

 

Let us use the following notations: 

 

X(t) = [X1(t), X2(t), …, XN(t)]
T
 – input vector ; 

w(t) = [w1(t), w2(t), …, wN(t)]
T
 – synaptic weigths vector; 0≤ wi ≤ 1, i=1, ..., N 

θ(t) – threshold ; 

Y(t) – actual output; 

Yd(t) – desired output; 

α(t) – learning rate; 0 < α < 1; 
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12.4.2.1   The Perceptron Rule 

In 1958, Frank Rosenblatt [10] introduced a training algorithm that provided the 

first procedure for training a simple perceptron. 

The algorithm starts with a random hyperplane and incrementally modifies the 

hyperplane such that points that are misclassified move closer to the correct side 

of the boundary. The algorithm stops when all learning examples are correctly 

classified. 

With the above notations, the steps of Rosenblatt perceptron learning algorithm 

are as follows: 

 

Step 1: Set t = 1. 

Initialize the weights w1, w2,…, wN to random numbers in the range [−0.5, 0.5].  

Initialize the threshold θ (with a value between [-0.5, 0.5]). 

Repeat 
Step 2: Activate the perceptron.  

The inputs are X1(t), X2(t),…, XN(t) and desired output Yd (t).   

The actual output is: 

⎥⎦
⎤⎢⎣

⎡
θ−= ∑

=

N

i

ii twtXsteptY
1

)( )()(  

  

Step 3: Calculate the error: 

 e(t) = Yd(t)-Y(t) 

Step 4: Update the weights of the perceptron: 

)()()1( teXtwtw iii ⋅⋅+=+ α   

Step 5: t = t+1 

 Go to Step 2. 

Until convergence. 

 
Remarks 

 

(i) If we use the notation: 

 

Δwi = α⋅Xi⋅e(t) 

 

Then the weight update rule can be simple expressed as: 

 

wi(t+1) = wi(t) + Δwi. 

 

(ii) Provided the examples are linearly separable and a small value for α is 

used, the rule is proved to classify all training examples correctly (i.e. is 

consistent with the training data).   
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(iii) An epoch is the presentation of the entire training set to the neural net-

work. In the case of the AND (OR, XOR) function an epoch consists of 

four sets of inputs being presented to the network 

Perceptron Convergence Theorem 

The Perceptron convergence theorem states that for any data set which is linearly 

separable the Perceptron learning rule is guaranteed to find a solution in a finite 

number of steps. 

In other words, the perceptron learning rule is guaranteed to converge to a 

weight vector that correctly classifies the examples provided the training examples 

are linearly separable. 

A function is said to be linearly separable when its outputs can be discriminated 

by a function which is a linear combination of features that is we can discriminate 

its outputs by a line or a hyperplane. 

12.4.2.2   Delta Rule 

An important generalization of the perceptron training algorithm was presented by 

Widrow and Hoff[13] as the least mean square (LMS) learning procedure, also 

known as the delta rule. The main functional difference with the perceptron train-

ing rule is the way the output of the system is used in the learning rule: 

• the perceptron learning rule uses the output of the threshold function for 

learning; 

• the delta-rule uses the net output without further mapping into output 

values. 
 

When the data are not linearly separable we try to approximate the real concept 

using the delta rule.  The key idea is to use a gradient descent search. We will try 

to minimize the following error: 
 

( )∑ −=
i

iid YYe
2

 

where: 

- the sum goes over all training examples; 

- Yi is the inner product wX and not sign(wX) as in the case of perceptron 

rule. 
 

The idea is to find a minimum in the space of weights and the error function e.  

The delta rule works as follows: 

For a new training example X = (X1, X2,…, XN) the weights are updated accord-

ing to the rule: 

 

wi = wi + Δwi 
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where Δwi = 

iw

We )('
⋅−α  
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XYY
w
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α denotes the learning rate. 

Thus, we obtain the following equation [1]: 

( )∑ ⋅−⋅=
i

iidi XYYw
i

α  

There are two differences between the perceptron and the delta rule [1]:  

1) the perceptron is based on an output from a step function whereas the 

delta rule uses the linear combination of inputs directly;  

2) the perceptron is guaranteed to converge to a consistent  hypothesis as-

suming the data is linearly separable.  The delta rule converges in the 

limit but it does not need the condition of linearly separable data.    
 

There are two main difficulties with the gradient descent method:   

1) convergence to a minimum may take a long time; 

2) there is no guarantee we will find the global minimum.   

 

These are handled by using momentum terms and random perturbations to the 

weight vectors. 

12.4.3   Example: Perceptron for OR Function 

With a function such as OR (with only two inputs) we can easily decide what 

weights to use to give us the required output from the neuron.  

For OR function, the truth table and the graphical representation are given in 

Figure 12.8. 

The initial perceptron (the initial values for weights w1 and w2, the threshold θ 

and the learning rate α  are provided in Figure 12.9. 

With the initial configuration, the equation of the separator is: 

 

w1X1 + w2X2 - θ = 0 
 

which is: 
 

-0.4X1 + 0.1⋅X2 – 0.2 = 0 
 

or: 

4X1 - X2 +2 = 0 



12.4   The Perceptron 295

 

 
Fig. 12.8 Truth table and graphical representation for OR function. 
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Fig. 12.9 The initial perceptron for OR function. 

 

Fig. 12.10 The initial separator given by the equation 4X1 - X2 +2 = 0. 
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whose graphical representation is given in Figure 12.10 (we can observe all the 

points belong to the same plane). 

In what follows we will use the perceptron rule to adapt the weights in order to 

obtain a correct classification (separation). 

Table 12.1 presents the percepton training process for OR function during 6 

epochs. At the end of the 6
th

 epoch the error is 0 for each of the input data. 

 
Table 12.1 Perceptron learning model for OR function. 

 
Input Desired 

output 

Initial weights Obtained 

output 

error Updated 

weights 

Epoch 

X1 X2 Yd w1 w2 Y e w1 w2 
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1 

0 

1 

 

 

0 

0 

1 

1 

 

0 

1 

1 

1 
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0.1 

0.1 

0.1 

 

0 

0 

0 

0 

 

 

0 

1 

1 

1 
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-0.2 

 

0.1 

0.1 

0.2 

0.3 

1 

 

0 

1 

0 
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0 

0 

1 

1 

 

0 

1 

1 
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0 

0 

1 
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0 

1 

0 
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-0.2 
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0 
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1 
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0 
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-0.1 

0 

0 
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1 

 

 

0 
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1 
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0 
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The error in all the 6 epochs is presented in Figure 12.11. 

The separator obtained at the end of each epoch is depicted in Figure 12.12. 
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Fig. 12.11 Perceptron error for the 6 epochs in OR example. 

 
Let us shortly describe the process during the first epoch (rest are all similar). 

We consider the first training data with values 0 for all X1, X2 and Yd. Initial 

weights values are -0.4 and 0.1. We activate the perceptron using step activation 

function. The value of the threshold is 0.2.  

The obtained output is: 

 

Y = step[0⋅(-0.4)+0⋅0.1 – 0.2] = step [-0.2] =0 

 

The obtained output is 0 which coincides with the desired output. Thus, the er-

ror in this case is 0 and the weights remain unchanged. 

Consider the second training data, X1 = 1, X2 = 0 and Yd = 1. 

The obtained output is: 

 

Y = step[1⋅(-0.4)+0⋅0.1 – 0.2] = step [-0.6] =0 

 

The obtained output is different from the desired output. In this case the error  

is 1. 

We now have to update the weights: 

 

w1 = w1 + α⋅X1⋅e 

 

The learning rate value is 0.1 in our example. 

 

w1 = -0.4 + 0.1⋅1⋅1 = -0.3 

w2 = 0.1 + 0.1⋅0⋅1 = 0.1 
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Fig. 12.12 Separator obtained at the end of each of the 6 epochs. 
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We present the third training data (X1 = 0, X2 = 1 and Yd = 1) to the perceptron 

with the new updated weights w1 = -0.3 and w2 = 0.1. 

The obtained output is: 
 

 Y = step[0⋅(-0.3)+1⋅0.1 – 0.2] = step [-0.1] =0 
 

Again, we have an error 1 as difference between the desired and the obtained 

output. We update again the weights and the new weights are w1 = -0.3 and w2 = 

0.2. 

We present the forth data to the perceptron: X1 = 1, X2 = 1 and Yd = 1. 

The obtained output is 0 and the desired one is 1. We have again a difference of 

1. By updating the weights we obtain the values: w1 = -0.2 and w2 = 0.3. 

With this, the first epoch ends – we have presented all the 4 sets of data to the 

perceptron. The total error is 3 for all the data which means 3 data were incorrect 

classified. We have to continue until all the data are correctly classified. The sepa-

rator obtained at the end of this epoch is depicted in Figure 12.12 (a).  

At the end of the 6
th

 epoch all the data are correctly classified (the sum of errors 

is 0) and the linear separator is depicted in Figure 12.12 (f). 

12.4.4   Limitations of the Perceptron 

Single perceptron can only model functions whose graphical models are linearly 

separable. If there is no line (or, in the general sense, no hyperplane) that divides 

the data, then it impossible for the perceptron to learn to behave with that data.  

For instance, the boolean function XOR is not linearly separable, so you this 

cannot be modeled with only one perceptron. The weight values just keep on shift-

ing, and the perceptron never actually converges to one value. 

The perceptron has several limitations which restrict it to certain classes of 

problems: 

• learning is efficient if weights are not very large; 

• attributes are weighted independently; 

• can only learn lines-hyperplanes (cannot learn exclusive OR for  

example). 
 

Perceptrons enable a pattern to be broken up into simpler parts that can each be 

modeled by a separate perceptron in a network. So, even though perceptrons are 

limited, they can be combined into one powerful network that can model a wide 

variety of patterns, such as XOR and many complex boolean expressions of more 

than one variable. These algorithms, however, are more complex in arrangement, 

and thus the learning function is slightly more complicated. 

12.5   Multi-layer Perceptron 

As we could see in the previous sections, the perceptron can be successfully used 

for AND and OR logical functions. But a simple perceptron cannot decide in the 

case of XOR function (see Figure 12.13). 
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Fig. 12.13 Graphical representation of separation in case of logical AND, OR and XOR. 

 
In all the tree situations, the input space consists of four points. In the XOR 

case, the solid circles cannot be separated by a straight line from the two empty 

circles. But this can be overcome and Minsky and Papert [15] show that for binary 

inputs any transformation can be carried out by adding a layer of predicates which 

are connected to all inputs. 

Thus, the XOR problem can be solved by introducing hidden units which in-

volves extension of the network to a multi-layered perceptron (see Figure 12.14).  
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Fig. 12.14 The hidden layer for the Exclusive OR problem. 

 
A feed-forward network has a layered structure. Each layer consists of units 

which receive their input from units from a layer directly below and send their 

output to units in a layer directly above the unit. There are no connections within a 

layer.  

No processing takes place in the input neurons. The activation of a hidden neu-

ron is a function of the weighted inputs plus a bias (threshold). 

By contrast to perceptrons, multilayer networks can learn not only multiple de-

cision boundaries, but the boundaries may be nonlinear. The typical architecture 

of a multi-layer perceptron (MLP) is shown in Figure 12.15 (with one hidden 

layer) and Figure 12.16 (with M hidden layers). 
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A standard multilayer perceptron contains: 

• an input layer; 

• one or more hidden layers; 

• an output layer. 
 

A feedforward network is an acyclic directed graph of units. The input units pro-

vide the input values. All other units compute an output value from their inputs. 

Hidden units are internal.  

If the hidden units compute a linear function, the network is equivalent to one 

without hidden units. Thus, the output of hidden units is produced by a nonlinear 

activation function. This is optional for output units. 

 

 
Fig. 12.15 The architecture of a multi layer perceptron containing one hidden layer. 

 
There are three important characteristics of a multilayer perceptron: 

1) the neurons in the input, hidden and output layer use, in their mathemati-

cal model, activation functions which are nonlinear and which are diffe-

rentiable at any point;  

2) the multilayer perceptron contains one or more hidden layers used for 

complex tasks; 

3) have a high connectivity. 
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Fig. 12.16 The architecture of a multi layer perceptron containing M hidden layers. 

To make nonlinear partitions on the space each unit has to be defined as a non-

linear function (unlike the perceptron). One solution is to use the sigmoid unit. 

Another reason for using sigmoids are that they are continuous unlike linear thre-

sholds and are thus differentiable at all points.  Figure 12.16 shows the activation 

of a multilayer perceptron by contrast with a single perceptron in the sense of acti-

vation function used.  
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Fig. 12.17 Activation function in the case of MLP. 

 
A multi layer network (with one or more hidden layers) can learn any conti-

nuous mapping with an arbitrary accuracy. For some applications more than one 

hidden layer might be useful, but, in general, one hidden layer is sufficient. 
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For learning a multilayer neural network, several learning algorithms have been 

proposed. The backpropagation learning algorithm is one of the most common 

training methods. We will discuss the backpropagation learning in this chapter. 

The central idea behind this solution is that the errors for the units of the hidden 

layer are determined by back-propagating the errors of the units of the output 

layer. For this reason the method is often called the back-propagation learning 

rule. Back-propagation can also be considered as a generalization of the delta rule 

for non-linear activation functions and multilayer networks [20]. 

12.5.1   Backpropagation Learning Algorithm 

The training of a network by backpropagation involves three stages [11]: 
 

(i) the feedforward of the input training patterns; 

(ii) the calculation and backpropagation of the associated error; 

(iii) the adjustment of the weights. 

 

In what follows we present the backpropagation learning algorithm for a neural 

network with one hidden layer. 

 
12.5.1.1   Backpropagation Learning: Network with One Hidden Layer 
 

Consider the network in Figure 12.17 with the following notations: 
 

- x = (x1, x2, …, xi, …, xn) - input training vector; 

- t=(t1, t2, …, tk, …, tm) – output target vector; 

 

- X1, X2, …, Xi, …, Xn -  neurons in the input layer; 

- Z1, Z2, …, Zj, …, Zp -  neurons in the hidden layer; 

- Y1, Y2, …, Yk, …, Ym -  neurons in the output layer; 

 

- θhid_j, j=1,…, p – threshold of each neuron in the hidden layer; 

- θout_k, k=1,…, m – threshold of each neuron in the output layer; 

 

- vij, i=1,…,n, j=1,…,p – weights between neurons in the input 

layer and neurons in the hidden layer 

- wjk, j=1,…,p, k=1,…,m – weights between neurons in the hidden 

layer and neurons in the output layer 

 

- net input for neurons in the hidden layer: ∑+=
i

ijijhidj vxinputz __ θ , j=1, 2, …, p 

- net input for neurons in the output layer: ∑+=
j

jkjkoutk wzinputy __ θ , k=1, 2,…,m 
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- output signal (activation) of neurons in the hidden layer: 

zj = f(z_inputj), j=1, 2, …, p 

 

- output signal (activation) of neurons in the output layer: 

yk = f(y_inputk), k=1, 2, …, m 

 

- δk , k = 1, 2, …, m - portion of error correction weight adjust-

ment for weights between neurons in the hidden layer and 

output layer wjk, due to an error at neurons in the output 

layer (Yk for the weight wjk). The error at neuron Yk is prop-

agated back to the neurons in the hidden layer that feed into 

neuron Yk. 

- δj , j=1, 2, …, p – portion of error correction weight adjustment 

for weights between neurons in the input layer and hidden 

layer vij, due to the backpropagation of error from the output 

layer to the hidden neuron. 

  

- α - learning rate. 

 
 

 

Fig. 12.18 Neural network with one hidden layer for backpropagation. 

The activation function for backpropagation network should be continuous, dif-

ferentiable and monotonically non-decreasing. Its derivative should be easy to 

compute. 

One of the most general used functions is sigmoid function: 
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whose derivative is: 

 

 f ’(x) = f(x)[1- f(x)]. 

 

Other two common used activation functions are bipolar sigmoid: 
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and hypertangent: 
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12.5.1.1.1   Backpropagation Learning: Main Steps 

The main steps of the backpropagation algorithm are: 
 

1) Randomly initialize the weights 

The weights initialization influences the speed of the network in reaching 

the goal. It is important to avoid choices of initial weights that will make 

either activation functions or their derivatives to be zero.  

    There are two situations which should be avoided: 

(i) Too large values for the initial weights will make the initial in-

put signals to each neuron in the hidden layer and output layer 

respectively fall in the region where the derivative of the sigmo-

id function has a very small value. 

(ii) Too small values for the initial weights will make the net input 

to a hidden or output neuron be close to zero which causes slow 

learning. 

A standard way to initialize the weights is to use random values between 

[-0.5, 0.5]. The weights values can be either positive or negative [11]. 

Haykin [2][26] suggests initial random values for weights within the 

range ⎟⎟⎠
⎞⎜⎜⎝

⎛
−

ii FF

4.2
,

4.2
, where Fi is the total number of inputs of neuron i 

in the network. 

 

2) Feedforward 
During the feedforward, each input unit Xi receives an input signal and 

broadcasts this signal to each of the neurons Z1, Z2, …, Zp in the hidden 

layer. Each output neuron Yk computes its activation to produce the re-

sponse of the network to the given input pattern. 
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Each output neuron compares its computed activation yk with the cor-

responding target value tk to determine the associated error for that pat-

tern with that neuron.  

Once the error is calculated for each neuron, it backpropagates from 

layer to layer [11].  

 

3) Backpropagation of the error 

The backpropagation starts from the output layer and influence all the 

neurons in the hidden layers. In our case with just one hidden layer we 

have the following steps: 

(i) For each neuron Yk in the output layer, the term δk is computed 

based on the associated error. δk is used to distribute the error at 

output neuron Yk back to all the neurons in the hidden layer 

which are connected with the neuron Yk. It is also used to update 

the weights between the hidden layer and the output layer.   

(ii) For each neuron Zj in the hidden layer, the term δj is computed. 

δj is used to update the weights between the neuron in the input 

and hidden layer. In our case, since we only have one hidden 

layer, it is not necessary to propagate the error back to the input 

layer [11]. 

 

4) Weights update 

Once all the δ terms have been computed, the weights for all layers can 

be adjusted. This is also done in two steps: 

(i) The adjustment of the weights wjk, j = 1, 2, …, p, k = 1, 2, …, m 

between neurons in the hidden layer and output layer are mod-

ified based on the term δk and the activation zj, j = 1, 2, …, m of 

the neurons in the hidden layer.  

(ii) The adjustment of the weights vij, i = 1, 2, …, n, j = 1, 2, …, p, 

between neurons in the input layer and neurons in the hidden 

layer are modified based on the term δj  and the activation xj, i = 

1, 2, …, n of the neurons in the input layer [11]. 

 
12.5.1.1.2   Backpropagation Learning: The Algorithm 
The main steps of the backpropagation algorithm are presented in detail below 

[11]: 

 

Step1. Randomly initialize the weights: vij, i = 1, 2, …, n, j = 1, 2, …, p; 

          wjk, j =1,…,p, k=1,…,m; 

and thresholds:  θhid_j, j=1,…, p; 

             θout_k, k=1,…, m 

Repeat 

Step 2. Feedforward 
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Step 2.1. Each neuron Xi, i = 1, 2,…,n in the input layer receives 

input      signal xi and broadcasts this signal to all neurons in the 

hidden layer. 

 

Step 2.2. Neurons in the hidden layer 

Each neuron Zi, j = 1, 2,…,p  in the hidden layer: 

 

1. sums its weighted input signals: 
 

∑
=

⋅+=
n

i

ihihhidh uxinputz
1

_1_ θ  

 

2. applies its activation function to compute its output 

signal: 

 

zj = f(z_inputj) 

 

3. sends a signal to all the neurons in the layer above 

(output layer) with whom it is connected. 

 

Step 2.3. Neurons in the output layer 

Each neuron Yk, k = 1, 2,…,m  in the output layer: 

 

1. sums its weighted input signals: 
 

∑
=

+=
p

j

jkoutk wjkzinputy
1

__ θ  

 

2. applies its activation function to compute its output 

signal: 
 

yk = f(y_inputk) 

 

Step 3. Backpropagation 

 

Step 3.1. Neurons in the output layer 

Each neuron Yk, k = 1, 2,…,m  in the output layer receives a 

target pattern corresponding to the input training pattern.  

 

1. If the output of the neuron is different for the target, 

then the error term is computed: 

 

δk = (tk – yk)⋅f ‘(y_inputk)  
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2. Calculate the weights correction term used for updating 

the weights: 

 

Δwjk = α ⋅ δk ⋅ zj 

 

3. Calculate the threshold correction term used for updat-

ing the threshold: 

 

Δθout_k = α ⋅ δk 

 

4. Send δk to units in the layer below (hidden layer in our 

case) to which it is connected. 

 

Step 3.2. Neurons in the hidden layer 

Each neuron Zj, j = 1, 2,…,p  in the hidden layer: 

 

1. Sums its delta inputs from neurons in the layer above 

(output layer): 

 

∑
=

=
m

k

jkkj winputs
1

_ δδ  

 

2. Multiplies this term with the derivative of its activation 

function to calculate its error information term: 

 

δj = δ_inputsj⋅f ‘(z_inputj) 

 

3. Calculates its weight correction term used to update vij: 

 

Δvjk = α ⋅ δ j ⋅ xi 

 

4. Calculates the threshold correction term used to update 

θhid_j: 

 

Δθhid_j = α ⋅ δ j 

 

Step 4. Weights and thresholds update  

 

Step 4.1. Neurons in the output layer 

Each neuron Yk, k = 1, 2,…,m  in the output layer updates its 

thresholds and weights: 

 

  wjk = wjk + Δwjk, j = 1, 2, …, p 

  θout_k  = θout_k + Δθout_k 
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Step 4.2. Neurons in the hidden layer 

Each neuron Zj, j = 1, 2,…,p  in the hidden layer updates its 

thresholds and weights: 

 

  vij = vij + Δ vij, i = 1, 2, …, n 

  θhid_j  = θhid_j + Δθhid_j 

 

Until stopping condition. 

 
Remarks 

 

(i) One cycle through the entire set of training vectors is known as an epoch. 

Usually, several epochs are required to train a backpropagation neural 

network. In the algorithm above, the weights are updated after each train-

ing pattern is presented. Another common approach is to update the 

weights cumulated oven an entire epoch. 

(ii) A common stopping condition for ending the training algorithm is when 

the total squared error reaches a minimum. But there are certain situations 

in which it is not efficient to continue training until the error reaches its 

minimum. Hecht – Nielsen [24] suggests using two sets of disjoint data 

during training: a set of training patterns and a set of training-testing pat-

terns. Weights adjustment is based on the training data but at certain inter-

vals during training the error is computed using the training –testing  

patterns. Training continues as long as the error for the training-testing 

patterns decreases and it stops when this error starts increasing. 

 
12.5.1.1.3   Application of a Backpropagation Neural Network 

After training, a backpropagation neural network is applied by using only the 

feedforward phase of the training algorithm.  

The algorithm is [11]: 
 

Step 1. Initialize the weights and thresholds from the training algorithm 

 

Step 2. Set activation of input unit xi, i = 1, 2, …, n; 

 

Step 3. For all neurons in the hidden layer calculate: 

 

∑
=

⋅+=
n

i

ijijhidj vxinputz
1

__ θ  

 

zj = f(z_inputj) 

 

   j = 1, 2, …, p 
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Step 4. For all neurons in the output layer calculate: 

 ∑+=
j

jkjkoutk wzinputy __ θ  

 

yk = f(y_inputk) 

   

   k = 1, 2, …, m 

 
12.5.1.2   Backpropagation Learning: Network with Two Hidden Layers 
 

Consider the multilayer network with two hidden layers given in Figure 12.19. 

The hidden layers are Z and ZZ. We use the following notations: 

 

- x = (x1, x2, …, xi, …, xn) - input training vector; 

- t=(t1, t2, …, tk, …, tm) – output target vector; 

 

- X1, X2, …, Xi, …, Xn -  neurons in the input layer; 

- Z1, Z2, …, Zh, …, Zq -  neurons in the first hidden layer; 

- ZZ1, ZZ2, …, ZZj, …, ZZq -  neurons in the second hidden layer; 

- Y1, Y2, …, Yk, …, Ym -  neurons in the output layer; 

 

- θhid1_h,  h=1,…, q – threshold of each neuron in the first hidden 

layer; 

 

- θhid2_j, j=1,…, p – threshold of each neuron in the second hidden 

layer; 

- θout_k, k=1,…, m – threshold of each neuron in the output layer; 

 

- uih, i=1,…,n, h=1,…,q - weights between neurons in the input 

layer and neurons in the first hidden 

layer   

- vhj, h=1,…,q, j=1,…,p – weights between neurons in the first 

hidden layer and neurons in the 

second hidden layer 

- wjk, j=1,…,p, k=1,…,m – weights between neurons in the second 

hidden layer and neurons in the out-

put layer 

 

- net input for neurons in the first hidden layer: ∑+=
i

ihihhidh uxinputz _1_ θ , h=1, 2, …, q 

- net input for neurons in the second hidden layer: ∑+=
h

hjhjhidj vzinputzz _2_ θ , j=1, 2, …, p 
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- net input for neurons in the output layer: ∑+=
j

jkjkoutk wzzinputy __ θ , k=1, 2,…,m 

 

- output signal (activation) of neurons in the first hidden layer: 

zh = f(z_inputh), h=1, 2, …, q 

 

- output signal (activation) of neurons in the second hidden layer: 

zzj = f(zz_inputj), j=1, 2, …, p 

 

- output signal (activation) of neurons in the hidden layer: 

yk = f(y_inputk), k=1, 2, …, m 

 

- δk, k = 1, 2, …, m - portion of error correction weight adjustment 

for weights between neurons in the hidden layer and output 

layer wjk, due to an error at neurons in the output layer (Yk 

for the weight wjk). The error at neuron Yk is propagated 

back to the neurons in the second hidden layer that feed into 

neuron Yk. 

- δj, j=1, 2, …, p – portion of error correction weight adjustment 

for weights between neurons in the first hidden layer and 

second hidden layer vhj, due to the backpropagation of error 

from the output layer to the hidden neuron. 

- δh, h=1, 2, …, q – portion of error correction weight adjustment 

for weights between neurons in the input layer and first hid-

den layer uih, due to the backpropagation of error from the 

output layer to the hidden neuron. 

  

- α - learning rate. 

 

Fig. 12.19 Multilayer network with two hidden layers. 
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12.5.1.2.2   Backpropagation Learning – Two Hidden Layers: Main Steps 

The main steps are same as in the case of a network with a single hidden layer: 

1) Weights and thresholds initialization; 

2) Feedforward; 

3) Backpropagation of error; 

4) Weights and thresholds update. 

Weights and thresholds are initialized in the same manner as in the case of back-

propagation learning for a network with one hidden layer described in the previous 

sections. 

During feedforward, the process works as follows [11]: 
 

1) During the feedforward, each input unit receives an input signal and 

broadcasts it to each of the hidden units (with whom it is connected) in 

the first hidden layer.  

2) Each of the neurons Zh, h = 1, 2, …, q in the first hidden layer computes 

their activation and sends its signal to the neurons ZZj, j = 1, 2, …, p in 

the second hidden layer. 

3) Each neuron ZZj, j = 1, 2, …, p in the second hidden layer computes its 

activation and sends its signal to the neurons in the output layer. 

4) Each neuron Yk, k= 1, 2, …, m of the output layer computes its activation 

to get the response of the network to the given input pattern. 

During the backpropagation, the following steps are performed [11]: 

1) Each output neuron compares its computed activation with the target val-

ue to determine the error: ek = tk - yk. Based on the error, the term δk, k=1, 

2, …, m is computed. δk is used to distribute the error at the output layer 

back to all the neurons in the previous layer (which is the second hidden 

layer in our case) and to update the weights wjk between the second hid-

den layer and the output layer. 

2) The term δj, j=1, 2, …, p is computed for all the neurons ZZj, j = 1, 2, …, 

p in the second hidden layer. δj is used to distribute the error back to all 

neurons in the next lower layer (which is the first hidden layer in our 

case) and to update the weights between the first hidden layer and the 

second hidden layer. 

3) The term δh, h=1, 2, …, q is computed for all the neurons Zh, h = 1, 2, …, 

q in the first hidden layer. Since there is no need to propagate the error 

back to the input layer, δh is used to update the weights between the input 

layer and the first hidden layer. 
 

The last step of the algorithm, weights and thresholds update, starts when all the δ 

terms have been computed. The weights for all the layers are adjusted simulta-

neously [11].  

1) The adjustment of weight wjk, between neuron ZZj in the second hidden 

layer and the neuron Yk in the output layer is adjusted based on the factor 

δk and the activation of neuron ZZj. 
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2) The adjustment of weight vhj, between neuron Zh in the first hidden layer 

and the neuron ZZj in the second hidden layer is adjusted based on the 

factor δj and the activation of neuron Zh. 

3) The adjustment of weight uih, between neuron Xi in the input layer and 

the neuron  Zh in the first hidden layer is adjusted based on the factor δh 

and the activation of neuron Xi. 

 

12.5.1.2.2   Backpropagation Learning – Two Hidden Layers: The Algorithm 
The main steps of the backpropagation algorithm for network having two hidden 

layers are presented in detail below [11]: 

 

Step1. Randomly initialize the weights: uih, i = 1, 2, …, n, h = 1, 2, …, q; 

                         vhj, h = 1, 2, …, q, j = 1, 2, …, p; 

           wjk, j =1,…,p, k=1,…,m; 

and thresholds:  θhid1_h, h=1,…, q; 

         θhid2_j,  j=1,…, p; 

              θout_k,  k=1,…, m 

Repeat 
Step 2. Feedforward 

 

Step 2.1. Each neuron Xi, i = 1, 2,…,n in the input layer receives 

input signal xi and broadcasts this signal to all neurons in the 

hidden layer. 

 

Step 2.2. Neurons in the first hidden layer 

Each neuron Zh, h = 1, 2,…,q  in the first hidden layer: 

 

1. sums its weighted input signals: 

 

∑
=

⋅+=
n

i

ihihhidh uxinputz
1

_1_ θ  

 

2. applies its activation function to compute its output 

signal: 

 

zh = f(z_inputh) 

 

3. sends a signal to all the neurons in the layer above 

(second hidden layer) with whom it is connected. 

 

Step 2.3. Neurons in the second hidden layer 

Each neuron ZZj, j = 1, 2,…,p  in the second hidden layer: 
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1. sums its weighted input signals: 
 

∑
=

⋅+=
q

h

hjhjhidj vzinputzz
1

_2_ θ  

 

2. applies its activation function to compute its output 

signal: 

 

zzj = f(zz_inputj) 

 

3. sends a signal to all the neurons in the layer above 

(output layer) with whom it is connected. 

 

Step 2.4. Neurons in the output layer 

Each neuron Yk, k = 1, 2,…,m  in the output layer: 

 

1. sums its weighted input signals: 

 

∑
=

+=
p

j

jkjkoutk wzzinputy
1

__ θ  

 

2. applies its activation function to compute its output 

signal: 

 

yk = f(y_inputk) 

 

Step 3. Backpropagation 
 

Step 3.1. Neurons in the output layer 

Each neuron Yk, k = 1, 2,…,m  in the output layer receives a  

target pattern corresponding to the input training pattern.  

 

1. If the output of the neuron is different for the target, 

then the error term is computed: 
 

δk = (tk – yk)⋅f ‘(y_inputk)  
 

2. Calculate the weights correction term used for updating 

the weights: 
 

Δwjk = α ⋅ δk ⋅ zzj 
 

3. Calculate the threshold correction term used for updat-

ing the threshold: 
 

Δθout_k = α ⋅ δk 
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4. Send δk to units in the layer below (second hidden layer 

in our case) to which it is connected. 

 

Step 3.2. Neurons in the second hidden layer 

Each neuron ZZj, j = 1, 2,…,p  in the second hidden layer: 

 

1. Sums its delta inputs from neurons in the layer above 

(output layer): 

 

∑
=

=
m

k

jkkj winputs
1

_ δδ  

 

2. Multiplies this term with the derivative of its activation 

function to calculate its error information term: 

 

δj = δ_inputsj⋅f ‘(zz_inputj) 

 

3. Calculates its weight correction term used to update vhj: 

 

Δvhj = α ⋅ δ j ⋅ zh 

 

4. Calculates the threshold correction term used to update 

θhid2_j: 

 

Δθhid2_j = α ⋅ δ j 
 

Step 3.3. Neurons in the first hidden layer 

Each neuron Zj, j = 1, 2,…,q  in the first hidden layer: 

 

1. Sums its delta inputs from neurons in the layer above 

(output layer): 

 

∑
=

=
p

j

hjjh vinputs
1

_ δδ  

 

2. Multiplies this term with the derivative of its activation 

function to calculate its error information term: 

 

δh = δ_inputsh⋅f ‘(z_inputh) 

 

3. Calculates its weight correction term used to update uih: 

 

Δuih = α ⋅ δ h ⋅ xi 
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4.    Calculates the threshold correction term used to update θhid1_h: 

 

Δθhid1_h = α ⋅ δ h 

 

Step 4. Weights and thresholds update  

 

Step 4.1. Neurons in the output layer 

Each neuron Yk, k = 1, 2,…,m  in the output layer updates its 

thresholds and weights: 

 

  wjk = wjk + Δwjk, j = 1, 2, …, p 

  θout_k  = θout_k + Δθout_k 

 

Step 4.2. Neurons in the second hidden layer 

Each neuron ZZj, j = 1, 2,…,p  in the second hidden layer up-

dates its thresholds and weights: 

 

  vhj = vhj + Δ vhj, h = 1, 2, …, q 

  θhid2_j  = θhid2_j + Δθhid2_j 

 

Step 4.3. Neurons in the first hidden layer 

Each neuron Zh, h = 1, 2,…,q  in the first hidden layer updates 

its thresholds and weights: 

 

  uhj = uih + Δ uih, i = 1, 2, …, n 

  θhid1_j  = θhid1_j + Δθhid1_j 

 

Until stopping condition. 

12.5.2    Relationship between Dataset, Number of Weights and 

Classification Accuracy 

The relationship between the dataset (number of training patterns) and the number 

of weights to be trained influences the accuracy of the results. This has been prov-

en by Baum and Haussler [25]. 

Let us use the following notations: 
 

- P – number of patterns; 

- W – number of weights to be trained; 

- A – accuracy of classification expected. 
 

If there are enough training patterns the network will be able to classify unknown 

training patterns correctly. The number of training patterns is given by: 
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A

W
P =  

 

For instance, if we expect accuracy 0.1, a network with 10 weights will require 

100 training patterns.  

12.5.3   Improving Efficiency of Backpropagation Learning 

There are several deficiencies of the backpropagation learning algorithm which 

make it inefficient for certain classes of applications. 

Some of them are related to the weights update procedure.  

If the weights are adjusted to very large values, the total input of a hidden neu-

ron or output neuron can reach very high (either positive or negative) values, and 

because of the sigmoid activation function the neuron will have an activation very 

close to zero or very close to one [20]. 

The error surface of a complex network is not al all uniform and it is full of 

hills and valleys. Because of the gradient descent, the network can get trapped in a 

local minimum when there is a much deeper minimum nearby. Probabilistic me-

thods can help to avoid this trap, but they tend to be slow. Another suggested pos-

sibility is to increase the number of hidden units. Although this will work because 

of the higher dimensionality of the error space, and the chance to get trapped is 

smaller, it appears that there is some upper limit of the number of hidden units 

which, when exceeded, again results in the system being trapped in local minima 

[20]. 

Some of the improvements which can help the backpropagation learning work 

better refer to: 

• procedure for updating the weights; 

• alternatives to the sigmoid activation function. 
 

One improved variant includes momentum. In the backpropagation learning with 

momentum, the weight change is in a direction that is a combination of the current 

gradient and previous gradient. The advantage of modifying the gradient descent 

arises when some training data are very different from the majority of the data. It 

is advisable to use a small learning rate to avoid a major disruption in the direction 

of learning when a very unusual pair of training patterns is presented. 

In the backpropagation with momentum, the weights from one or more pre-

vious training patterns must be saved.  

For instance, if the weights at training step t + 1 are based on the weights at 

steps t and t – 1, then the formula of backpropagation with momentum for a net-

work with one hidden layer is [11]: 
 

wjk(t+1) = wjk(t) + α⋅δk⋅zj +µ[wjk(t)-wjk(t-1)] 

and 

vij(t+1) = vij (t) + α⋅δj⋅xi +µ[ vij (t)- vij (t-1)] 
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or 

 Δwjk(t+1) = α⋅δk⋅zj + µ⋅Δwjk(t) 

 

 Δvij(t+1) = α⋅δj⋅xi + µ⋅Δvij(t) 

 

where µ is the momentum parameter and it is a strict positive value between (0, 1). 

Momentum allows the network to make large weight adjustments as long as the 

corrections are in the same general direction for several patterns, while using a 

smaller learning rate to prevent a large response to the error from any one training 

pattern. The network with momentum proceeds in the direction of a combination 

of the current gradient and the previous direction of the weight correction, instead 

of only proceeding in the direction of the gradient. Momentum forms an exponen-

tially weighted sum with µ as a base and time t as an exponent of the past and 

present weight changes [11]. 

Another situation consists on using the delta-bar-delta update. The delta-bar-

delta algorithm allows each weight to have its own learning rate. The learning 

rates also vary with time as training progresses.  

Two heuristics are used to determine the appropriate change in the learning rate 

for each weight: 

• If the weight change is in the same direction – increase or decrease – for 

several time steps then the learning rate for that weight should be  

increased; 

• If the direction of the weight change alternates, the learning rate should 

be decreased.  

The weight change will be in the same direction if the partial derivative of the 

error with respect to that weight has the same sign for several time steps [11]. 

Summaries 

In this chapter we presented artificial neural networks. Most of the chapter con-

centrates on feedforward neural networks with emphasize on single layer percep-

tron and multilayer perceptron. The representational power of single layer  

feedforward networks was discussed and two learning algorithms for finding the 

optimal weights – perceptron learning rule and delta rule – were presented. The 

disadvantage of the single layer network is the limited representational power: 

only linear classifiers can be constructed and in case of function approximation, 

only linear functions can be represented. The advantage, however, is that because 

of the linearity of the system, the training algorithm will converge to the optimal 

solution which is not true in the case multi layer networks. 

A multilayer perceptron is a feedforward neural network with one or more hid-

den layers.   

The network consists of an input layer of source neurons, at least one middle or 

hidden layer of computational neurons, and an output layer of computational  

neurons.   
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The input signals are propagated in a forward direction on a layer-by-layer  

basis. 

Learning in a multilayer network proceeds the same way as for a perceptron: a 

training set of input patterns is presented to the network.  The network computes 

its output pattern, and if there is an error − a difference between actual and desired 

output patterns − the weights are adjusted to reduce this error. 

A hidden layer hides its desired output.  Neurons in the hidden layer cannot be 

observed through the input/output behaviour of the network.  There is no obvious 

way to know what the desired output of the hidden layer should be [2].  

The multi layer perceptron and many other neural networks learn using an algo-

rithm called backpropagation. With backpropagation, the input data is repeatedly 

presented to the neural network. With each presentation the output of the neural 

network is compared to the desired output and an error is computed. This error is 

then fed back (backpropagated) to the neural network and used to adjust the neu-

ron’s weights such that the error decreases with each iteration and the neural mod-

el gets closer and closer to producing the desired output. This process is known as 

training. 

An ANN is designed for a specific application, such as a data classification, 

through a learning process. 

Multi-layered perceptrons have high representational power. They can 

represent the following [1]:   

• boolean functions: every boolean function can be represented with a net-

work having two layers of units.  

• continuous functions: all bounded continuous functions can also be ap-

proximated with a network having two layers of units.   

• arbitrary functions: any arbitrary function can be approximated with a 

network with three layers of units.   
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Verification Questions 

1. How can you define the perceptron? 

2. What the perceptron can be used for? 

3. What are the limitations of the perceptron? 

4. What is the difference between single layer perceptron and multilayer 

perceptron? 

5. What kind of problems can be solved using a multilayer perceptron? 

6. How does a multilayer neural network learn? 
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Exercises 

1. Consider two 2-dimensional problems to be solved. Use 2000 data for training 

and 500 data for test (generate the data by yourself). Each data consists of 2 inputs 

and 1 output. 

Implement a 2-layer MLNN (MLNN with 1 hidden layer) 

Specifications are as follows: 

Network structure: 2-N-1 

Activation function of the hidden layer: 
2

( ) 1
1 exp( 2 )

f x
x

= −
+ −

 (tangent 

sigmoid) 

Activation function of the output layer: linear 

Termination condition: RMSE ≤ 0.02 (root mean square error) 

Initial weights: uniformly random within [-0.5, 0.5]  

You should determine the number of hidden neurons (N) for each function. How 

many hidden neurons are required for good performance? 

The functions are: 
 

• F1 (sine function) 

1 1 2 1 2 1 2( , ) sin(4 ), , [ 1,1]f x x x x x x= ∈ −  

• F3 (Mexican hat) 

                    ( ) ]1,1[,,2sin),( 21

2

2

2

1212 −∈+= xxxxxxf π  

      

2. Solve the parity 4 problem using minimum number of neurons of layered feed 

forward network. Use bipolar activation function. Parity problem means that out-

put must be +1 if there is odd number of +1s on inputs and output should be -1 

when there is even number of +1s on inputs. In the case of parity 4 you have four 

inputs, one output and 16 possible input patterns. 

[0 0 0 0] ==> -1 [0 0 0 1] ==> +1 

[0 0 1 0] ==> +1 [0 0 1 1] ==> -1 

[0 1 0 0] ==> +1  [0 1 0 1] ==> -1 

[0 1 1 0] ==> -1  [0 1 1 1] ==> +1 

[1 0 0 0] ==> +1  [1 0 0 1] ==> -1 

[1 0 1 0] ==> -1  [1 0 1 1] ==> +1 

[1 1 0 0] ==> -1  [1 1 0 1] ==> +1 

[1 1 1 0] ==> +1 [1 1 1 1] ==> -1 
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Design a neural network for printed digit recognition. Each character is 

represented by a m X n matrix having elements from {0; 1}. For instance, for di-

gits 1 and 3 the representation on a 5 X 5 matrix is: 

 

0 0 1 0 0  1 1 1 1 1  

0 1 1 0 0  0 0 0 0 1 

1 0 1 0 0  1 1 1 1 1  

0 0 1 0 0  0 0 0 0 1  

0 1 1 1 0  1 1 1 1 1  

 

If the digits are represented by m X n matrices and there are M classes (digits) to 

be identified the network architecture will consist of: 

• an input level consisting of N = n * m + 1 units (including the ficti-

tious one - for activation threshold) 

• a level of M functional units (which are also output units). 

The input and output levels are fully connected. The activation function for the 

output units can be linear or logistic. 

The network will be trained starting from a set of digits for which the class la-

bel is known. The training set will contain pairs containing the digit matrix and the 

class label. 

 

3. Consider the following sequence of equations: 

 

n = 1:  1
2
+ 1 = 2 

n = 2:  2
2
+ 2 = 6 

n = 3:  3
2
+ 3 = 12 

n = 4   4
2
+ 4 = 20 

Implement a neural network to provide a result for n=5 and n=6. 

 

4. For the following training samples: 

 x1 = (0, 0) 

 x2 = (0, 1) 

 x3 = (1, 0) 

 x4 = (1, 1) 

Apply the perceptron learning rule to the above samples one-at-a-time to obtain 

weights that separate the training samples. Set θ to 0.2. Write the expression for 

the resulting decision boundary. 

 

5. Consider a two-layer feedforward artificial neural network with two inputs a 

and b, one hidden unit c, and one output unit d. This network has three weights 

(wac,wbc,wcd), and two thresholds θc and θd.  

Assume that these weights are initialized to (0.1, 0.1, 0.1)  and the thresholds 

have the value 0.2.  

Assume a learning rate of 0.3. Also assume a sigmoid threshold function f. 
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Use the following approximate values for f where necessary below: 

    x     f(x) 

__________________ 

−5.0 ≤ x < −2.5    0.001 

−2.5 ≤ x < −0.05  0.20 

−0.05 ≤ x < 0       0.49 

0                            0.5 

0 < x ≤ 0.05          0.51 

0.05 < x ≤ 2.5      0.80 

2.5 < x ≤ 5.0        0.999 

 

Consider the following training example for the network described above: a = 1, b 

= 0, d = 1. 

(a) Show the output for each node during the feedforward pass. 

(b) Show the error for each node as it would be computed using the Backpro-

pagation algorithm. 

 

 



C. Grosan and A. Abraham: Intelligent Systems, ISRL 17, pp. 325–344. 

springerlink.com                   © Springer-Verlag Berlin Heidelberg 2011 

Chapter 13 

Advanced Artificial Neural Networks  

13.1   Introduction 

The networks discussed in the previous Chapter – perceptron and multilayer per-

ceptron – are feedforward networks in the sense that the information is processed 

forward from layer to layer and no cycles are presented in the network. Recurrent 

(or feedback) networks contain cycles which can connect neurons in the hidden 

layers with neurons in the input layers, hidden neurons between them or, in the 

most general case, all the neurons between them. A network may be fully recur-

rent, i.e., all units are connected back to each other and to themselves, or some 

part of the network may be fed back in recurrent links. 

One of the earliest recurrent neural networks is the auto-associative neural net-

work proposed by Hopfield in 1982 [12] and known as Hopfield network. Stan-

dard feedforward networks are appropriate for mapping where the output is  

dependent only on the current input. They are not able to encode mappings, which 

are depending not only on the current input but on the previous ones. Feedforward 

networks have no memory. Jordan [10] [11] and Elman [9] proved that by adding 

further neurons to encode context with feedback links from either the output  

neurons or the hidden neurons to these context neurons such mappings can be  

performed [8].  

These context neurons (units) act as a memory for the network’s state and allow 

the output of the network to be sensitive to its state on the previous input cycle [8].  

This Chapter presents recurrent networks, which are extensions of the feedfor-

ward networks presented in the Chapter12. 

13.2   Jordan Network 

The Jordan neural network has been proposed by Jordan in 1986 [10] [11]. In this 

type of network the context neurons receive a copy from the output neurons and 

from themselves. In the Jordan network, the set of extra input neurons (units) is 

called the state units. There are as many state units as there are output units in the 

network. The connections between the output and state units have a fixed weight 

of +1; learning takes place only in the connections between input and hidden units 
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as well as hidden and output units. Thus all the learning rules derived for the mul-

ti-layer perceptron can be used to train this network [7]. An example of Jordan 

network is depicted in Figure 13.1. 

 

 
Fig. 13.1 The Jordan network 
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13.3   Elman Network 

The Elman network was introduced by Elman [9]. In this network a set of context 

neurons are introduced and they represent extra input units whose activation val-

ues are fed back from the hidden units. The network is very similar to the Jordan 

network, except that the hidden neurons instead of the output units are fed back. 

 
Fig. 13.2 The Elman network 
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The training mechanism is as follows: 
 

Step 1. The activations of the context neurons are initialized to zero at the initial 

instant. 

Step 2. The pattern x(t) at instant t is presented and the network and the calcula-

tions are propagated towards the output of the network, obtaining there-

fore the prediction at instant t+1. 

Step 3. The back propagation algorithm is applied to modify the weights of the 

network 

Step 4. The time variable is increased in one unit and the procedure goes to step 2. 
 

The schematic structure of this network is shown in Figure 13.2. 

13.4   Hopfield Network 

The Hopfield network consists of a set of N interconnected neurons which update 

their activation values asynchronously and independently of other neurons. All 

neurons are both input and output neurons, i.e., a pattern is clamped, the network 

iterates to a stable state, and the output of the network consists of the new activa-

tion values of the neurons. The activation values are binary. Originally, Hopfield 

chose activation values of 1 and 0, but using values +1 and -1 presents some  

advantages [7]. 

The structure of a Hopfield network is given in Figure 13.3. 

 

 

Fig. 13.3 The Hopfield network 
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The connections between neurons are bidirectional: the connection between 

neuron i and neuron j (the weight wij) is same as the connection from neuron j to 

neuron i.  

Let us use the following notations [2]: 

 

• ui – internal activity of neuron i; 

• vi = g(ui) – output signal;  

• wjk - connection weight between neurons j and k; 

 

The energy function is defined by: 
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The network will converge to a stable configuration (that is the minimum of the 

energy function) as long as [2]: 
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13.5   Self Organizing Networks 

In the previous sections we have presented networks which learn with the help of 

an external teacher (supervised learning). In contrast to supervised learning, unsu-

pervised or self-organised learning does not require an external teacher.  During 

the training session, the neural network receives a number of different input pat-

terns, discovers significant features in these patterns and learns how to classify 

input data into appropriate categories.   

Unsupervised learning algorithms aim to learn rapidly and can be used in real-

time [2]. 

For certain problems, the training data consisting of input and desired output 

pairs are not available, the only information is provided by a set of input patterns. 

In these cases the relevant information has to be found within the (redundant) 

training samples. 

In this chapter we describe Hebb networks and self organizing maps. 

13.5.1   Hebb Networks 

The earliest and simplest learning rule for a neural network has been proposed by 

Hebb in 1949 and it is known as Hebb’s law or Hebb’s rule. Hebb’s law states that 

“When the axon of cell A is near enough to excite a cell B and repeatedly or per-

sistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A's efficiency, as one of the cells firing B, is 
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increased[13]”. This means that learning occurs by modification of weights in 

such a way that if two interconnected neurons are both on at the same time then 

the weight between those neurons should be increased.   

If neuron i is near enough to excite neuron j and repeatedly increses its activa-

tion, the weight between these two neurons is strengthen and the neuron j becomes 

more sensitive to slimuli from neuron i [1]. In its initial form, the rule only talks 

about neurons firing at the same time and do not state anything about neurons that 

do not fire at the same time.  

McClelland and Rumelhart[14] extended the rule such as the weights are also 

increased if the neurons are both off in the same time.  

Hebb’s law can be described as [1]: 
 

(i) If two neurons on either side of a connection are activated synchronously 

(or deactivated synchronously) then the weight of that connection is  

increased; 

(ii) If two neurons on either side of a connection are activated asynchro-

nously then the weight of that connection is decreased. 
 

The hebbian learning in a neural network is presented in Figure 13.22.  

 

 
Fig. 13.4 Hebbian learning. 

 
Using Hebb’s law we can express the adjustment applied to the weight wij at it-

eration t in the following form [1]: 
 

][ )( ),()( txyyFtw ijij =∆  

 

where F[yj(t), xi(t)] is a function of both postsynaptic and presynaptic activities. 

As a special case, Hebb’s Law can be represented as: 

)(  )(  )( pxpypw ijij α=∆  

where α is the learning rate parameter. 
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This equation is referred to as the activity product rule [1]. 

Hebbian learning implies that weights can only increase. To resolve this prob-

lem, a limit on the growth of synaptic weights can be imposed. This can be done 

by introducing a non-linear forgetting factor into Hebb’s Law [5]: 

 

)(  )(  )(  )(  )( twtytxtytw ijjijij ϕ−α=∆  

 

where ϕ is the forgetting factor. 

Forgetting factor usually falls in the interval between 0 and 1, typically between 

0.01 and 0.1, to allow only a little “forgetting” while limiting the weight growth. If 

the forgetting factor is 0, the network is capable only of strengthening its synaptic 

weights (which grow towards infinity). If the forgetting factor is 1 or close to 1, 

the network remembers very little of what it learns. The above equation may also 

be written in the generalized activity product rule form: 

[ ])()(  )(  )( twtxtytw ijijij −=∆ λφ  

where  
φ

α
λ = . 

The steps of the generalized Hebbian learning algorithm are [1]: 

 

Step 1: Initialisation.  

Set initial synaptic weights and thresholds to small random values, in 

the interval [0, 1]. 

 

Step 2: Activation. 

 Compute the neuron output at iteration t 

 

j

n

i

ijij twtxty θ−=∑
=1

)()()(  

 

where n is the number of neuron inputs, and θj is the threshold value of neuron j. 

 

Step 3: Learning.   

 Update the weights in the network: 

  

 wij(t+1)=wij(t)+∆wij(t) 

 

 where ∆wij(t) is the weight correction at iteration t. 

 The weight correction is determined by the generalised activity product 

rule: 

 [ ])()(  )(  )( twtxtytw ijijij −=∆ λφ  
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Step 4: Iteration.  

 Increase iteration t by one and go to Step 2. 

13.5.2   Self Organizing Maps 

Self Organizing Maps (SOM) fall into category of competitive learning. In com-

petitive learning, neurons compete among themselves to be activated.  The basic 

idea of competitive learning was introduced in the early 1970s.  In the late 1980s, 

Teuvo Kohonen introduced a special class of artificial neural networks called self-

organising feature maps [3][4][5][6]. These maps are based on competitive  

learning [1]. 

The map consists of a regular grid of neurons. A simple example of a Kohonen 

network is depicted in Figure 13.5. The network is a 2D lattice of nodes each of 

which is fully connected to the input layer.  Figure 13.5 shows a very small Koho-

nen network of 5 × 6 nodes connected to the input layer represented by a two  

dimensional vector. 

 

 

Fig. 13.5 Kohonen network. 

 
A model of some multidimensional observation, eventually a vector consisting 

of features, is associated with each unit. The map attempts to represent all the 

available observations with optimal accuracy using a restricted set of models. At 

the same time the models become ordered on the grid so that similar models are 

close to each other and dissimilar models far from each other. 
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The objective of a Kohonen network is to map input vectors (patterns) of arbi-

trary dimension N onto a discrete map with 1 or 2 dimensions. Patterns close to 

one another in the input space should be close to one another in the map: they 

should be topologically ordered. A Kohonen network is composed of a grid of 

output units and N input units. The input pattern is fed to each output unit. The 

input lines to each output unit are weighted. These weights are initialized to small 

random numbers. 

In a Kohonen network, the neurons are presented with the inputs, which calcu-

late their net (weighted sum) and neuron with the closest output magnitude is cho-

sen to receive additional training. Training, though, does not just affect the one 

neuron but also its neighbors. Each node has a set of neighbors. Examples of 

neighborhoods with radii 0, 1, 2, and 3 for a two-dimensional grid and 0, 1 and 2 

for a one-dimensional grid are depicted in Figure 13.6. 

 

Fig. 13.6 Example of neighborhoods with radii 0, 1, 2, and 3 for a two-dimensional grid (a) 

and (b) and 0, 1 and 2 for a one dimensional grid (c). 

The learning process has the following main steps: 

1) initialise the weights for each output unit 

2) repeat  
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o for each input pattern: 

̇ present the input pattern 

̇ find the winning output unit 

̇ find all units in the neighborhood of the winner 

̇ update the weight vectors for all those units 

o reduce the size of neighborhood if required 

until weight changes are negligible 

The winning output neuron is the unit with the weight vector that has the smallest 

Euclidean distance to the input pattern.  

13.5.2.1   Kohonen Self Organizing Maps: The Algorithm 

Let us use the following notations: 

- x = (x1, x2, …, xn) – input vector; 

- wij – weight between i-th input and the j-th node (neuron) in the network; 

- α - learning rate 

 

The main steps of the algorithm are [2]: 

 

Step 1. Initialize the weights wij. 

 Set the learning rate. 

 Set the neighborhood. 

Repeat 

Step 2. For each input vector do 

 Step 2.1. For each node j calculate: 

  

  ( )∑
=

−=
n

i

iij xwjD
1

2
)(  

 

 Step 2.2. Find J for which D(J) is minimum. 

 Step 2.3. Update the weights: 

     For all units j within the neighborhood and for all i: 

 

   wij = wij +α(xi – wij) 

 

Step 3. Update learning rate 

Step 4. Reduce the neighborhood. 

Until stopping condition. 

 

When a node wins a competition not only are its weights adjusted, but those of the 

neighbors are also changed. The weight of the neighbors are not changed that 

much and the changes are based on the distance to the winning neuron: the further 

the neighbor is from the winner, the smaller its weight change. As training goes 

on, the neighborhood gradually shrinks. At the end of training, the neighborhoods 
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have shrunk to zero size. The learning rate α is also a function slowly decreasing 

with time. Kohonen [2] [4] indicates that a linearly decreasing function is satisfac-

tory for practical computations. A geometric decrease will produce similar results. 

13.6   Neocognitron 

The neocognitron [15] [16] is a hierarchical network, which has many layers with 

sparse and localized pattern of connectivity between layers. 

Hierarchical feature extraction is the basic principle of the neocognitron. Hie-

rarchical feature extraction consists in distribution of extracted features to several 

stages. The simplest features (usually only rotated lines) are extracted in the first 

stage and in each of the following stages the more complex features are extracted. 

In this process it is important fact that only information obtained in the previous 

stage are used for feature extraction in the certain stage. An example is given in 

Figure 13.7. 

 

Fig. 13.7 Hierarchical feature extraction 

A good description of the neocognitron including applets can be found in [17]. 

In what follows we will also present the architecture of the neocognitron for the 

above example. Structure of the neocognitron arises from a hierarchy of ex-

tracted features. One appropriate stage of the neocognitron is created for each 

stage of the hierarchy of extracted features. The network contains one additional 

stage, stage 0, which is not used, in contrast to higher stages, for feature extraction. 
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All the stages of the neocognitron and a part of features extracted by them, cor-

responding to the hierarchy in Figure 13.7 are shown in Figure 13.8. Total number 

of stages of the neocognitron depends on the complexity of recognized patterns. 

The more complex recognized patterns are, the more stages of hierarchy of ex-

tracted features we need and the higher number of stages of the neocognitron is. 

 

Fig. 13.8 Stages corresponding to the hierarchy in Figure 13.7. 

Each stage of the neocognitron consists of certain number of layers of given 

type. For the example considered above, four types of layers exist in the neocogni-

tron. Stage 0 always consists of only one input layer. All higher stages consist of 

one S-layer, one V-layer and one C-layer. 

Let us use the following notations: 
 

• Si - S-layer in the i-th stage of the network; 

• Vi - V-layer in the i-th stage of the network; 

• Ci - C-layer in the i-th stage of the network. 

With these notations, the layers for the example are depicted in Figure 13.9.  

Each layer in the neocognitron consists of certain number of cell planes of the 

same type except from the input layer. Number of cell planes in each S-

layer and C-layer depends on the number of features extracted in corresponding 

stage of the network. Each V-layer always consists of only one cell plane. Struc-

ture of the network in our example after drawing of cell planes is presented in  
 



13.6   Neocognitron 337

 

 

Fig. 13.9 Layers corresponding to the hierarchy in Figure 13.7 

Figure 13.9. The basic component of the neocognitron is the cell. The neocogni-

tron is made of large amount of cells of several distinct types. There are 4 types of 

cells: 

• Receptor cell; 

• S cell; 

• V cell; 

• C cell. 

The cells are organized in cell planes, layers and stages. All the cells, regardless of 

their type, process and generate analog values. Figure 13.10 presents the cells in 

the network structure for our example. 

Size of cell arrays is the same for all cell planes in one layer and it decreases 

with increasing of the network stage. Each C-plane in the highest stage of the net-

work contains only one cell. Its output value indicates a measure of belonging of 

presented pattern into the category represented by this cell. Size of cell array in 

each V-plane is the same as size of cell arrays in S-planes in the same stage of the 

network. 

Each V-cell in the neocognitron evaluates outputs of C-cells (or receptor cells) 

from the certain connection areas from previous C-layer (or input layer). Size of 

connection areas is the same for all V-cells and S-cells in one stage of the network 

and it is determined at construction of the network. 

V-cell output value represents average activity of cells from connection 

areas and it is used for inhibition of corresponding S-cell activity. Exact specifica-

tion of V-cell function is described in mathematical description of its behavior. 

Each S-cell in the neocognitron evaluates outputs of C-cells (or receptor cells)  
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Fig. 13.10 Cell planes corresponding to the hierarchy in Figure 13.7. 

from the certain connection areas from previous C-layer (or input layer). Size of 

connection areas is the same for all S-cells in one S-layer and it is determined at 

construction of the network. Function of each S-cell is to extract the cer-

tain feature at the certain position in the input layer. For extraction of this feature 

S-cell uses only information obtained from its connection areas and information 

about average activity in these areas obtained from corresponding V-cell. All S-

cells in one S-plane always extract the same feature. 

 

 

Fig. 13.11 Cells corresponding to the hierarchy in Figure 13.7 
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The feature extracted by S-cell is determined by weights for this cell. The 

meaning of weights is best for cells from layer S1. Each S-cell in this layer has 

only one connection area and this area is S-cell's receptive field at the same time. 

Weights contain directly representation of the certain feature. In higher S-

layers correspondence between extracted feature and its representation by the 

weights is already not so obvious. S-cell is activated only if this feature is present 

in S-cell's receptive field (it is identical with connection area here). When incor-

rect feature is presented the cell becomes inactive. 

S-cell output value is determined exactly by the equation described 

in mathematical description: 

⎥⎦
⎤⎢⎣

⎡
=

),,(
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outputbrI
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where: 

 

outputS : S cell output value; 

ϕ*: nonlinear function; 

E: excitatory part; 

a, b: weights; 

outputC : output values of C cells from connection areas; 

outputS : V cell output value; 

I: inhibitory part; 

r: selectivity. 

 

The S-cells ability to extract not only learned features but also deformed represen-

tations of these features is influenced by the choice of parameter denoted 

as selectivity to a great extent. 

The process of feature extraction is influenced by selectivity to a great extent. 

For each S-layer in the neocognitron we can set different amount of selectivity at 

construction of the network. By the change of selectivity we change the effect of 

inhibitory part on the S-cell output value. Decreasing of selectivity involves de-

creasing of effect of inhibition part. Decreased S-cell ability to distinguish 

learned feature exactly is the result of it. In other words it means that S-

cell considers also more deformed features to be correct. 

Each C-cell in the neocognitron evaluates outputs of S-cells from the cer-

tain connection area from one of S-planes from previous S-layer. Number of S-

planes, however, can be greater in some cases. Size of connection areas is the 

same for all C-cells in one C-layer and it is determined at construction of the  

network 

C-cell output value depends on activity of S-cells from connection area. The 

greater number of active S-cells is or the greater their activities are the greater C-

cell output value is. C-cell function is exactly described in mathematical descrip-

tion. For C-cell to be active it is sufficient that at least one active S-cell is present 

in its connection area. With regard to overlapping of neighboring C-cell connec-

tion areas activity of one S-cell affects activity of greater number of C-cells. 
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Ability of C-cell to compress content of connection area in the certain way is 

the next consequence of C-cell function. Hence we can decrease the density of 

cells in C-layer to the half of density of cells in previous S-layer in some cases. 

The neocognitron is characteristic not only by large number of cells but also by 

large number of connections. These connections serve for transfer of information 

between cells in adjoining layers. Particular cell obtains by means of connections 

information from all cells, which are located in its connection areas. 

For each connection there is a weight by means of it we can affect amount of 

transferred information. If we imagine a connection as a pipeline with a valve we 

can compare weight assigned to the connection to a degree of opening of this 

valve. Four types of weights (a-weights, b-weights, c-weights and d-weights) exist 

in the neocognitron. Each of these types of weights is used for connections be-

tween two layers of different types (see Figure 13.12). 

 

 

Fig. 13.12 The four type of weights. 

Some of the weights will be adjusted by learning and some of the weights will 

remain fixed. a and b weight modify by learning while c and d are fixed. The 

reader is advised to consult [17] which is a very good source of examples and de-

tailed explanations of the neocognitron. The main advantage of neocognitron is its 

ability to recognize correctly not only learned patterns but also patterns, which are 

produced from them by using of partial shift, rotation or another type of distortion. 

13.7   Application of Neural Networks 

Neural networks have been applied in almost all-important domains. A list of  

domains and possible applications is listed below [19]: 

• Data mining 

o Prediction 

o Classification 
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o Knowledge discovery 

o Time series analysis 

• Medical domain 

o Diagnosis 

o Detection and evaluation of medical phenomena 

• Industry 

o Process control 

o Quality control 

o Electric Power 

o VLSI 

• Finance 

o Stock Market Prediction 

o Credit Worthiness 

o Credit Rating 

o Bankruptcy Prediction 

o Property Appraisal 

o Fraud Detection 

o Price Forecasts 

o Economic Indicator Forecasts 

• Science 

o Pattern Recognition 

o Chemical Compound Identification 

o Physical System Modeling 

o Ecosystem Evaluation 

o Polymer Identification 

o Recognizing Genes 

o Signal Processing: Neural Filtering 

o Biological Systems Analysis 

• Operational analysis 

o Scheduling optimization 

o Managerial decision making 

• Criminology 

• Games 

o Backgammon 

o Bridge 

o Checkers 

o Go 

o Go-Moku 

o Othello 

o Tic-Tac-Toe 

• Sports 

• Gambling 

 

Hopfield neural networks have been used for a large number of optimization prob-

lems from object recognition to graph planarization. However, the fact that the 

Hopfield energy function is of quadratic order limits the problems to which it can 
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be applied. Some objective functions that cannot be reduced to Hopfield’s qua-

dratic energy function can still be reasonable approximated by a quadratic energy 

function. For other problems the objective function must be modeled by a higher 

order energy function [38].  

Summaries 

In this chapter we presented recurrent networks – Jordan network, Elman network 

and Hopfield network – and self organizing networks – Hebb network, Kohonen 

self organizing maps and neocognitron. 

A feedforward network does not maintain a short-term memory. Any memory 

effects are due to the way past inputs are re-presented to the network. A simple 

recurrent network has activation feedback, which embodies short-term memory. A 

state layer is updated not only with the external input of the network but also with 

activation from the previous forward propagation. The feedback is modified by a 

set of weights as to enable automatic adaptation through learning.  

Two fundamental ways can be used to add feedback into feedforward multilay-

er neural network: Elman introduced feedback from the hidden layer to the context 

portion of the input layer while Jordan uses feedback from the output layer to the 

context nodes of the input layer. The Hopfield network represents an autoassocia-

tive type of memory. The network has two phases: storage and retrieval. In the 

first phase the network is required to store a set of states determined by the current 

outputs of the neurons. In the second phase, an unknown, incomplete or corrupted 

version of the fundamental memory is presented to the network. The network out-

put is calculated and fed back to adjust the input and the process is repeated until 

the output becomes constant [1]. 

Hebb network is a feedforward neural network trained using the Hebb rule. The 

network can learn (without a teacher) to associate stimuli commonly presented 

together. 

Kohonen self organizing map consists of a single layer of computation neurons 

but has two types of connections: forward connections from the neurons in the 

input layer to the neurons in the output layer and lateral connections between neu-

rons in the output layer. The lateral connections are used to create a competition 

between the neurons. In a Kohonen self organizing map, a neuron learns by shift-

ing its weights from inactive connections to active ones. Only the winning neuron 

and a defined neighborhood of it are allowed to learn.  

The neocognitron was designed to recognize handwritten characters – specifi-

cally the Arabic numerals 0, 1, …, 9. The purpose of the network is to make its 

response insensitive to variations in the position and style in which the digit is 

written [2].  

The advantage of neural networks lies in their ability to represent both linear 

and non-linear relationships and in their ability to learn these relationships directly 

from the data being modeled. Traditional linear models are simply inadequate 

when it comes to modeling data that contains non-linear characteristics. 
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Verification Questions 

1. What are recurrent neural networks? 

2. What is the difference between different types of recurrent neural  

networks? 
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3. What does Hebb law represents? 

4. How a Hebb network works? 

5. How does a Kohonen self organizing map learn? 

6. For what task has been the neocognitron proposed? 

7. What is the main advantage of the neocognitron? 

8. What is the basic principle of the neocognitron? 

9. Mention all the types of cells used in the neocognitron. 
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Chapter 14 

Evolutionary Algorithms 

14.1   Introduction 

In nature, evolution is mostly determined by natural selection of different individu-

als competing for resources in the environment. Those individuals that are better 

are more likely to survive and propagate their genetic material. The encoding  

for genetic information (genome) is done in a way that admits asexual reproduc-

tion, which results in offspring that are genetically identical to the parent.  

Sexual reproduction allows some exchange and re-ordering of chromosomes, pro-

ducing offspring that contain a combination of information from each parent. This 

is the recombination operation, which is often referred to as crossover because of 

the way strands of chromosomes cross over during the exchange. The diversity in 

the population is achieved by mutation operation. 

Usually grouped under the term evolutionary computation or evolutionary al-

gorithms [1][4], we find the domains of genetic algorithms [9], evolution strate-

gies [26][27], evolutionary programming [28] and genetic programming [29]. 

They all share a common conceptual base of simulating the evolution of individual 

structures via processes of selection, recombination and mutation reproduction and 

thereby producing better solutions. The processes depend on the perceived per-

formance of the individual structures as defined by the problem. The procedure is 

then iterated as illustrated in Figure 14.1. 

Darwinian evolutionary theory principles of reproduction and natural selection 

(survival of the fittest) are the base of the evolutionary theory: 

• individuals who survive are the ones best adapted to exist in their envi-

ronment due to the possession of variations; 

• individuals that survive will reproduce and transmit these variations to 

their offspring; 

• as time and generations continue, many adaptations are perpetuated in 

individuals until new species evolve in forms different from the common 

ancestor; 

• traits which are beneficial to the survival of an organism in a particular 

environment tend to be retained and passed on, increasing in frequency 

within the population; 
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• trait which have low survival tend to decrease in frequency; 

• when environmental conditions change, traits that were formally associ-

ated with low survival may have greater survival. 
 

The correspondence between natural evolution and problem solving inspired by it 

is given in Figure 14.2. 

 

 

Fig. 14.1 Evolutionary scheme. 

 

 

Fig. 14.2 Correspondence between natural evolution principles and problem solving. 

 
The basic evolutionary algorithm is described below.  

 

Evolutionary Algorithm  

Step 1. Set t= 0; 

 

Step 2. Randomly initialize the population P(t). 

Repeat 

Step 3.1. Evaluate individuals from P(t); 

Step 3.2. Selection on P(t) 

 Let P’(t) be the set of selected individuals. 
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Step 3.3. Crossover on P’(t); 

Step 3.4. Mutation on P’(t). 

Step 3.5. Survival on P’(t). 

Step 3.6. t=t+1. 

Until t=number of iterations 

14.2   How to Build an Evolutionary Algorithm? 

In order to build an evolutionary algorithm there are a number of steps that we 

have to perform: 

• design a representation; 

• find a way to initialize the population; 

• design a way of mapping a genotype to a phenotype; 

• design a way of evaluating an individual; 

• decide how to select individuals to be parents (design a selection  

mechanism); 

• design suitable mutation operators; 

• design suitable recombination operators; 

• decide how to select individuals to be replaced; 

• decide when to stop the algorithm. 
 

There are many different variants of evolutionary algorithms, but they all share the 

same evolutionary structure: given a population of individuals (candidate solu-

tions), the natural selection will influence the survival of the fittest. Based on the 

fitness (or an evaluation function), the best individuals (candidate solutions) will 

be selected to seed the population of the next generation. Recombination and/or 

mutation operators are applied to them. The new obtained candidate solutions 

(offspring) will compete with the old ones (based on their fitness) to be part of the 

next generation.  

The process will be iterated until a candidate solution with sufficient quality is 

found or until the available resources are finished. 

The variants of evolutionary algorithms differ only in technical details 

[2][4][5]:  

• in the case of Genetic Algorithms (GAs) the solutions are represented as 

strings over a finite alphabet; 

• solutions are represented as real-valued vectors in Evolutionary (Evolu-

tion) Strategies (ES); 

• in the case of Evolutionary Programming (EP), solutions are finite state 

machines; 

• Genetic Programming (GP) uses trees for solution representation. 

 

Genetic Algorithms, Evolution Strategies, Evolutionary programming and Genetic 

Programming are the four main classes of Evolutionary Algorithms and will be 

independently presented in the following sections. 



348 14   Evolutionary Algorithms

 

14.2.1   Designing a Representation 

Representation here refers to a way of representing an individual as a genotype. 

An individual is also known as chromosome and it is composed of a set of genes. 

Objects forming the original problem context are referred to as phenotypes and 

their encoding (which are the individuals in the evolutionary algorithm) are called 

genotypes.  

Let us consider the problem of minimizing the function (x-2)
2
, x∈{-5, -4, -3, -2, 

-1, 0, 1, 2, 3, 4, 5}. 

The set of integers represents the set of phenotypes. If we use a binary code to 

represent them, then 1 can be seen as a phenotype and 000001 as the genotype 

representing it (in this case we used a string of size 6 to represent it). The pheno-

type space can be different from the genotype space but the whole search process 

takes place in the genotype space. 

There are many ways to design a representation and the way we choose must be 

relevant to the problem that we are solving. When choosing a representation, we 

have to bear in mind how the genotypes will be evaluated and what the genetic 

operators might be. For one problem, there can be multiple representations which 

can fit. We should also be careful to select the most efficient one (in terms of re-

sources consuming). 

There are a few standard representations: 

• binary representation; 

• real representation; 

• order based representation (permutations); 

• tree representation. 

14.2.2   Initializing the Population 

A population is a set of genotypes (some of the population’s members can have 

multiple copies). Initializing the population means specifying the number of indi-

viduals in it (which is given by population size). 

Each member of the population represents a possible solution for the problem 

to solve. The diversity of a population is measured as the number of different solu-

tions of that population. During the search process, the algorithm should be able to 

preserve diversity in the population. If the problem has multiple solutions (for 

example, the n-queens problem) then the final population should contain as many 

different solutions as possible. 

If the problem has just a single solution, then the final population’s individuals 

should be as similar among them as possible. 

The population should be initialized (if possible) uniformly on the search space.  

Each individual of the population is (unless otherwise mentioned) randomly 

initialized (defined) over the given domain (or search space). 
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14.2.3   Evaluating an Individual 

In order to evaluate an individual, a fitness function – also called evaluation func-

tion or quality function – is employed.  

The role of the evaluation function represents the requirements to adapt to [2]. 

Evaluation function is required for the selection process.  

From the problem solving perspective it represents the task to solve in evolu-

tionary context. This function actually assigns a quality measure to the genotypes.  

For our example – minimization of (x-2)
2
 – the fitness of the genotype 000001 

is (1-2)
2
 = 1.  

 

Example 

Let us consider the 8-Queens problem. The problem requires arranging 8 queens 

on an 8 × 8 chess board such as there will be no attacks among the queens. 

The representation used is order-based representation, which is a vector of size 

8 containing a permutation of the numbers 1 to 8 (whose meaning is: the value of 

position i in the vector represents the column of queen in line i).  

If our representation is (graphically depicted in Figure 14.3): 

(2 4 1 6 7 8 3 5) 

then the fitness function’s value can be calculated as:0+3+0+3+3+3+1+0=13 be-

cause first queen does not attack any other queen, second queen attacks three other 

queens on the diagonal, third queen attacks no queens and so on.  

 

 
Fig. 14.3 Graphical representation of the solution (2 4 1 6 7 8 3 5) for the 8-queens  

problem. 
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14.2.4   Selection Mechanism 

The role of selection mechanism is to distinguish among individuals based on their 

fitness in order to allow better individuals to become parents of the next genera-

tion. In evolutionary computation, parent selection is probabilistic: high quality 

individuals get higher chance to become parents. Low quality individual are also 

given a low change to become parents in order to avoid getting stuck in a local 

optima. There are several selection mechanisms, which will be discussed in detail 

in the following sections. 

 

Remark 

If, in the beginning of the evolutionary algorithms, the highest chances were given 

to best individuals, nowadays approaches also give chances to individuals, which 

do not have a high quality.  

14.2.5   Designing Suitable Variation Operators 

The role of variation operators is to create new individuals from the existing ones. 

The new created individuals should represent candidate solutions in the corre-

sponding phenotype space. There are several known variation operators, which 

can be applied to individuals of an evolutionary algorithm population, but two of 

them are the most important and widely used:  

• mutation operator and 

• recombination or crossover operator. 

14.2.5.1   Mutation Operator 

Mutation operator is a unary operator (applied to one individual only) and it usu-

ally affects (or slightly modify) one genotype. The child obtain by applying muta-

tion operator to his parent is only slightly different from it.  Mutation can affect 

one or multiple alleles depending on the size of the candidate solution. The af-

fected alleles will be chosen in a random manner.It has been proved that, given 

sufficient time, an evolutionary algorithm can reach the global optimum relying on 

the propriety that each genotype representing a possible solution can be reached 

by variation operators [2][3].  

14.2.5.2   Crossover (Recombination) Operator 

Crossover or recombination operator is a binary operator (there are some rare situ-

ations where more than two individuals are combined; this is sound mathemati-

cally but it has no biologically correspondence). Crossover merges information  

from two parent genotypes into one or two offspring genotypes. The operator 

chooses what parts of each parent are combined and the way in which these  

are combined in a random manner. Recombination operator is never used in evo-

lutionary programming algorithms. The reason behind recombination is that by  
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mating two individuals with different features the offspring will combine both of 

these features (which is very successful in nature, especially for plants and  

livestock). 

Variation operators are representation dependant: for various representations 

different variation operators have to be designed [2]. 

14.2.6   Designing a Replacement Scheme 

Survivor selection mechanism or replacement has the role to distinguish among 

individuals, which will be kept for the next generation based on their quality. 

Since the size of the population is usually kept constant during the evolution proc-

ess, there should exist a way to select among the existing and new obtained (by 

applying variation operators) candidate solutions. 

The survivor selection process takes place after having created the offspring of 

the selected parents. This selection is based on the candidate solutions’ quality (or 

fitness). 

14.2.7   Designing a Way to Stop the Algorithm 

There are two main cases of a suitable termination condition or stopping criterion 

for an evolutionary algorithm [2]: 

(i) If the problem has a known optimal fitness level (for example, the opti-

mum of an optimization problem is known, or the value of the fitness 

function for the expected solution is known) then reaching this level 

(with a given sufficiently small positive precision ε >0) should be used as 

termination condition. 

(ii) If the problem to solve doest not has a known optimum then the previous 

stopping condition cannot be used. In this case the termination condition 

may be one of the following: 

a. a given number of generations is reached; 

b. a given number of fitness evaluations is reached; 

c. the available resources are overloaded (the maximally allowed 

CPU time elapses); 

d. there is no improvement for the fitness function for a given 

number of consecutive generations or fitness evaluations; 

e. the population diversity drops under a given threshold. 
 

In these situations the termination condition may consists of two criteria: either the 

optimum was reach or one of the conditions above was satisfied.   

14.3   Genetic Algorithms 

The most widely known type of evolutionary algorithms and probable the most 

used are genetic algorithms. Simple to implement and use, genetic algorithms are 
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one of the most suitable techniques for any kind of optimization problem. The 

chapter presents the most important ways to design a representation, selection me-

chanisms, variation operators – recombination and mutation, survival schemes and 

population models.  

14.3.1   Representing the Individuals 

Representation of individuals is one of the most important steps in designing a 

genetic algorithm. Representation should be adequate for the problem to solve and 

should consume as less resources as possible. For one problem there can be multi-

ple possible representations; thus, we have to be able to decide which one is more 

adequate to satisfy our needs and requirements. 

There are some standard types of representing an individual, which have the 

same form for different problems but might have a different interpretation. Some 

of the most important ones are presented in what follows: 

• binary representation; 

• integer representation; 

• real valued or floating- point representation; 

• order based or permutation representation. 

14.3.1.1   Binary Representation 

Probable the most common type of representations used by the evolutionary algo-

rithms is the binary representation. An example of a binary individual (chromo-

some) of size 8 is depicted in Figure 14.4. 
 

 

Fig. 14.4 Binary representation. 

A binary individual can have different meanings depending on the problem it is 

used for. 

Some of the possible meanings for certain problems are as follows (but the list 

is not limited to this): 

• A real (or integer) number represented over the alphabet 2 (or using the 

base 2). In our example we have the number: 
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1*2
7
+1*2

6
+0*2

5
+1*2

4
+0*2

3
+0*2

2
+1*2

1
+0 = 128+64+0+16+0+0+2+0=210 

 

This integer number can be scaled to any interval or can be trans-

formed into a real number in any given interval. 

For instance, if we wish to have the real representation within [-1, 1] 

of the binary number in Figure 14.3, this is given by (we take into ac-

count that our binary number is a real number between 0 and 2
8
 = 256): 

( ) 64.0)1(1
256

210
1 =−−+−  

Note. We use here the formula of transforming a number x from the in-

terval [0, Max] to the interval [min, max] which is (Max and max are  

different): 

 

min)(maxmin −+
Max

x
 

 

• A solution for the 0-1 knapsack problem: the values of 1 represent the se-

lected items and the values of 0 the items which are not selected. For in-

stance, the chromosome in Figure 14.2 will select the items 1, 2, 4 and 7. 

• A solution for the graph partitioning problem (partition of the nodes into 

two sets with various proprieties): the values of zero represent the nodes 

belonging to the first set and the values of one represent the nodes be-

longing to the second set. In our example in Figure 14.3, nodes 3, 5, 6 

and 8 belong to the first set while the nodes 1, 2, 4 and 7 belong to the 

second set. 

14.3.1.2   Real Representation 

Real representation is mostly used for real function optimization. The size of the 

chromosome will be equal to the number of dimensions (variables). 

An example of real representation for n variables is given in Figure 14.5. 

 

 
Fig. 14.5 Real representation. 
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14.3.1.3   Integer Representation 

Sometimes real or binary representation is not suitable for a certain problem. For 

instance, in the case of map coloring problem
1
, none of these representations 

might be used. For this problem the representation is a string of integers, having 

the size equal to the number of countries and taking values form {1, 2, …, k}. 

An example of integer representation for the map-coloring problem with 10 

countries and 6 available colors (denoted {1, 2, 3, 4, 5, 6}) is given in Figure 14.6 

(it can be observed that only 5 of the 6 available colors are used for encoding the 

individual). In the case of integer representation, the individual is a string of inte-

gers whose values can be restricted to a given domain or set of possible values or 

unrestricted. 
 

 

Fig. 14.6 Integer representation. 

14.3.1.4   Order-Based Representation 

In this case, the individuals are represented as permutations. This kind of represen-

tation is mostly used for ordering/sequencing problems. An example of chromo-

some using order-based representation is given in Figure 14.7. 

Some famous example of problems which use permutation representation are: 

• Traveling Salesman Problem (TSP): in this problem, every city gets as-

signed a unique number from 1 to n. A solution is a permutation of the 

numbers 1, 2, …, n representing the order in which the salesman visits 

the cities. 

• n-Queens problem: a solution is a permutation of size n. The indices rep-

resent the queen on each row and the values represent the column each 

queen belongs to (we know that we cannot have two queens on the same 

row or column and by using this representation this is avoided; the only 

remaining attacks should be checked on the diagonals) 

• Quadratic Assignment Problem; 

                                                           
1 The map coloring problem we refer to states as follows: given a set of n countries and a 

set of k available colors, color each country with one of the k colors such as no neighbor-

ing countries will have the same color and the number of colors used is minimal (we con-

sider the general case with k colors but it has been proven that 4 colors are enough to  

color any map). 
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Fig. 14.7 Order-based representation. 

14.3.2   Initializing the Population 

Population initialization is the next step in developing a genetic algorithm once the 

representation has been decided. Initialization means (randomly) seeding a set 

with a given number of individuals having the chosen encoding/representation. 

While seeding the population, there are chances that some of the individuals might 

have multiple copies (the population is a multiset): 
 

• For binary representation: an individual is a string of {0, 1}. The genes 

may be initialized with the values 0 or 1 with the probability 0.5. 

• For real representation: an individual is a vector of real numbers. The 

genes can be initialized with random real values within the given domain 

(if the domain is finite), or they can be initialized using a distribution: 

Gaussian, Cauchy, etc. 

• For order based representation: the individual is a permutation. Suppose 

the permutation has the size n. Each gene i will be initialized with a value 

between {1, …, n} which does not occur on the previous i-1 already ini-

tialized positions. 

• For tree based representation: the individual is a tree. We have a set of 

terminals and a set of functions. Each node of the tree is randomly  

initialized: 

o if the node is a terminal then a random value from the terminals 

set will be taken (certain terminals can be used multiple times 

while others might not be used at all); 

o if the node is not a terminal, then a random function from the set 

of functions will be selected. 

 

Examples 

 

Binary representation: vector of size 10 

 

0 1 1 0 0 0 1 1 0 1 
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Real representation: vector of size 10 on the domain [0, 1] 
 

{0.004, 0.92, 0.34, 0.11, 0.26. 0.63, 0.0001, 0.019, 0.82, 0.0056} 
 

Order based representation: vector of size 10 
 

4 9 3 1 6 2 8 10 5 7  

14.3.3   Selection Mechanisms 

Selection process in a genetic algorithm occurs when parents who will be further 

used for crossover are to be selected. In a standard way, high priority and chances 

are given to fittest individuals. 

Some of the most used selection mechanisms are: 

• tournament selection; 

• fitness proportional selection; 

• roulette wheel selection; 

• rank based selection. 

14.3.3.1   Tournament Selection 

Tournament selection is one of the simplest selection schemes. It is suitable when 

the population size is very large and it is not practical to compare or rank all the 

individuals at a time. Thus, this selection does not require any global knowledge 

of the population. 

It relies on an ordering relation that can rank any two individuals.  

There are two known versions of the tournament selection: 

(i) binary tournament 

(ii) k-tournir (or k-tournament). 
 

In the case of binary tournament, two individuals are randomly selected from the 

population and the best among them (in terms of fitness value) is kept in a sepa-

rate set. The procedure is repeated until the number of selected individuals equals 

the required number of individuals, which are to be selected.  

The k - tournament is a generalization of the binary tournament in the sense 

that k individuals are randomly selected from the population and the best individ-

ual among all of them is kept in a separate set. The process is then again repeated 

until the required number of parents is selected from the whole population. 

The probability that an individual will be selected as a result of a tournament 

depends on four factors [2][6][7][8]: 

(i) its rank in the population: this is estimated without the need for sorting 

the whole population; 

(ii) the tournament size k: the larger the tournament the more chance that it 

will contain members whose fitness is above average and the less that it 

will consist entirely of low-fitness members; 
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(iii) the probability that the most fit member of the tournament is selected; 

usually this probability is 1 (deterministic tournament) but there are sto-

chastic versions which use a probability less than 1;  

(iv) whether the individuals are chosen with or without replacement. In the 

second case, with deterministic tournaments, the k-1 least fit members of 

the population can never be selected. If the tournament candidates are 

picked with replacement, it is always possible for even the least-fit mem-

ber of the population to be selected.  

14.3.3.2   Fitness Proportional Selection 

This selection mechanism was introduced in [9] (see also [10]). Let us denote by fi 

the fitness of the i-th individual in the population and by N the population size 

(number of individuals in the population). Thus, the probability pi that individual i 

is selected for mating (for recombination) is given by: 
 

∑
=

=
N

i

i

i

i

f

f
p

1

 

 

This means that the selection probability depends on the absolute fitness  

value of the individual compared to the absolute fitness values of the rest of the 

population.  

There are some problems with this selection mechanism [2]: 

• individuals that are much better than the rest take over the entire popula-

tion very quickly and this leads to premature convergence; 

• when fitness values are very close there is almost no selection pressure; 

• the mechanism behaves differently on transposed versions of the same 

fitness function.  

14.3.3.3   Roulette Wheel Selection 

The roulette-wheel selection is also called stochastic sampling with replace-

ment and has been introduced in [11]. This is a stochastic algorithm and involves 

the following technique: the individuals are mapped to contiguous segments of a 

line, such that each individual's segment is equal in size to its fitness. A random 

number is generated and the individual whose segment spans the random number 

is selected. The process is repeated until the desired number of individuals is ob-

tained. This technique is analogous to a roulette wheel with each slice proportional 

in size to the fitness. Figure 14.8 shows an example containing 9 individuals for 

which the fitness value and the selection probability is displayed.  Individual 1 is 

the fittest individual and occupies the largest interval, whereas individual 9 as the 

least fit individual has the smallest interval on the line.  
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Fig. 14.8 Example of individuals, their fitness values and the corresponding selection  

probability. 

The line segment and the roulette wheel corresponding to this example are 

shown in Figures 14.9 and 14.10. 

 

 
Fig. 14.9 Line segment corresponding to the example. 
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Fig. 14.10 Roulette wheel corresponding to the example. 

 
For selecting the mating population the appropriate number of uniformly dis-

tributed random numbers (uniform distributed between 0.0 and 1.0) is independ-

ently generated. 

For example, if the following 5 random numbers are generated: 

0.61, 0.33, 0.95, 0.11, 0.45 
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the resulting selected individuals at each trial can be observed in Figure 14.11 

which shows the selection process of the individuals for the example in table to-

gether with the above sample trials. 

 
Fig. 14.11 Selection process of individuals for the example. 

After selection the chosen individuals are: 

4, 2, 8, 1, 3. 

The roulette-wheel selection algorithm provides a zero bias but does not guarantee 

minimum spread. 

14.3.3.4   Stochastic Universal Sampling 

Stochastic universal sampling [11] provides zero bias and minimum spread. The 

individuals are mapped to contiguous segments of a line, such that each individ-

ual's segment is equal in size to its fitness exactly as in roulette-wheel selection.  

Equally spaced pointers are placed over the line as many as there are individu-

als to be selected. Consider NP the number of individuals to be selected, then the 

distance between the pointers is 1/NP and the position of the first pointer is given 

by a randomly generated number in the range [0, 1/NP]. 

For 5 individuals to be selected, the distance between the pointers is 1/5=0.2. 

Figure 14.12 shows the selection for the above example with the random starting 

point 0.1. 

 

 
 

Fig. 14.12 Stochastic universal sampling. 

 
After selection the mating population consists of the individuals: 

1, 2, 3, 5, 7. 
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Stochastic universal sampling ensures a selection of offspring which is closer to 

what is deserved then roulette wheel selection. 

14.3.3.5   Rank Based Selection 

In rank-based fitness assignment, the population is sorted according to the fitness 

(quality) values. The fitness assigned to each individual depends only on its posi-

tion in the individual’s rank and not on the actual fitness value. 

Rank-based fitness assignment overcomes the scaling problems of the propor-

tional fitness assignment. (Stagnation in the case where the selective pressure is 

too small or premature convergence where selection has caused the search to nar-

row down too quickly.) The reproductive range is limited, so that no individuals 

generate an excessive number of offspring. Ranking introduces a uniform scaling 

across the population and provides a simple and effective way of controlling selec-

tive pressure [12]. Rank-based fitness assignment behaves in a more robust man-

ner than proportional fitness assignment and, thus, is the method of choice 

[12][13][14].  

Linear Ranking 

Consider N the number of individuals in the population, i the position of an indi-

vidual in this population (least fit individual has i =1, the fittest individual i =N) 

and SP the selective pressure. The fitness value for an individual is calculated as: 

( )
( )1

1
)1(22)(

−

−
⋅−⋅+−=

N

i
SPSPifitness  

Linear ranking allows values of selective pressure in [1.0, 2.0]. 

Non-linear ranking 

A new method for ranking using a non-linear distribution was introduced in [15]. 

The use of non-linear ranking permits higher selective pressures than the linear 

ranking method. 
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X is computed as the root of the polynomial: 
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−− …21)(0 . 

Non-linear ranking allows values of selective pressure in the interval [1, N - 2]. 
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14.3.3.6   Local Selection 

In local selection every individual resides inside a constrained environment called 

the local neighborhood. In the other selection methods the whole population or 

subpopulation is the selection pool or neighborhood.  Individuals interact only 

with individuals inside this region. The neighborhood is defined by the structure in 

which the population is distributed. The neighborhood can be seen as the group of 

potential mating partners. The first step is the selection of the first half of the mat-

ing population uniform at random (or using one of the other mentioned selection 

algorithms, for example, stochastic universal sampling or truncation selection). 

Now a local neighborhood is defined for every selected individual. Inside this 

neighborhood the mating partner is selected (best, fitness proportional, or uniform 

at random) [12]. 

The structure of the neighborhood can be: 

• linear: 

o full ring 

o half ring (see Figure 14.13) 

• two-dimensional 

o full cross 

o half cross (see Figure 14.14, top) 

o full star  

o half star (see Figure 14.14, bottom) 

• three-dimensional and more complex with any combination of the above 

structures [12]. 
 

The distance between possible neighbors together with the structure determines 

the size of the neighborhood.  

 

 
Fig. 14.13 Linear neighborhood: full and half rings.  
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Fig. 14.14 Two-dimensional neighborhood: full and half cross (top); full and half star  

(bottom). 

 
Between individuals of a population isolation by distance exists. The smaller 

the neighborhood, the bigger the isolation distances. However, because of over-

lapping neighborhoods, propagation of new variants takes place. This assures the 

exchange of information between all individuals. 

The size of the neighborhood determines the speed of propagation of informa-

tion between the individuals of a population, thus deciding between rapid propaga-

tion and maintenance of a high diversity/variability in the population. A higher 

variability is often desired, thus preventing problems such as premature conver-

gence to a local minimum. Local selection in a small neighborhood performed  
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better than local selection in a bigger neighborhood. Nevertheless, the intercon-

nection of the whole population must still be provided. Two-dimensional neigh-

borhood with structure half star using a distance of 1 is recommended for local 

selection. However, if the population is bigger (>100 individuals) a greater dis-

tance and/or another two-dimensional neighborhood should be used [12]. 

14.3.4   Variation Operators 

The main variation operators are recombination or crossover and mutation. Each 

of them has specific forms for different individual representations and will be pre-

sented in what follows.  

14.3.4.1   Crossover or Recombination 

The role of recombination operator is to produces new individuals by combining 

the information contained in two or more parents. This is done by combining the 

variable values of the parents. Depending on the representation of the variables 

different methods must be used. 

14.3.4.1.1   Recombination for Binary Representation 

This section describes recombination methods for individuals with binary vari-

ables. During the recombination of binary variables only parts of the individuals 

are exchanged between the individuals. Depending on the number of parts, the 

individuals are divided before the exchange of variables (the number of cross 

points).  

Single point crossover 

Let us denote by nrvar the length of the binary string used to encode an individual 

(the number of variables). In single-point crossover [9] one crossover position 

(cutting point) k ∈ [1, 2, ..., nrvar-1], is selected uniformly at random. Two new 

offspring are produced by exchanging variables between the individuals about this 

point.  

Consider the following two individuals of size (length) 10: 
 

parent 1     1  1  1  0  0  0  1  1  0  1   

parent 2     1  0  0  0  1  1  0  1  1  0   

and the chosen crossover position 4. 

After crossover the two new individuals created are (see Figure 14.15): 
 

offspring 1      1  1  1  0  1  1  0  1  1  0   

offspring 2      1  0  0  0  0  0  1  1  0  1   
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Fig. 14.15 Single point crossover 

Double  point / multi point crossover 

In the case of double-point crossover two crossover positions are selected uni-

formly at random and the variables are exchanged between the individuals be-

tween these points. Two new offspring are produced. An example of double point 

crossover is shown in Figure 14.16. 

Single-point and double-point crossover are special cases of the general method 

multi-point crossover. 

For multi-point crossover, m crossover positions ki∈[1, 2 ,..., nrvar-

1], i=1,…,m, are chosen at random with no duplicates and sorted into ascending 

order. Then, the variables between successive crossover points are exchanged be-

tween the two parents to produce two new offspring.  

Consider the following two individuals with 15 binary variables each: 
 

parent 1     1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

parent 2     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

 

We choose 5 crossover points; the chosen crossover positions are 2, 5, 8, 11, 

13.  
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After crossover the two new individuals created are (see Figure 14.17): 
 

offspring 1     1  1  0  0  0  1  1  1  0  0  0  1  1  0  0    

offspring 2     0  0  1  1  1  0  0  0  1  1  1  0  0  1  1  

 

Fig. 14.16 Double point crossover. 

Uniform crossover 

Uniform crossover [16] generalizes the multi point crossover to make every locus 

a potential crossover point. For each variable the parent who contributes its vari-

able to the offspring is chosen randomly with equal probability. Uniform cross-

over works by treating each gene independently and making a random choice as to 

which parent it should be inherited.  

This is implemented by generating a string of random variables from a uniform 

distribution over [0, 1] whose size is equal to the size of an individual from the 

population. In each position, if the value is below a parameter p (usually 0.5), the 

gene is inherited from the first parent; otherwise from the second. The second off-

spring is created using the inverse mapping. 
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Fig. 14.17 Multi point crossover (5 cutting points on the positions 2, 5, 8, 11 and 13). 

 
If we have the parents of size 10: 
 

parent 1     1  1  1  1  1  1  1  1  1  1  1 

parent 2     0  0  0  0  0  0  0  0  0  0  0 

 

and the string of random variables: 

[0.17, 0.80, 0.33, 0.45, 0.51, 0.97, 0.12, 0.66, 0.73, 0.23] 

then the offspring obtained after crossover are: 

 
offspring 1      1  0  1  1  0  0  1  0  0  1 

offspring 2      0  1  0  0  1  1  0  1  1  0 

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias 

associated with the length of the binary representation used and the particular cod-

ing for a given parameter set. This helps to overcome the bias in single-point cros-

sover towards short substrings without requiring precise understanding of the  
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significance of the individual bits in the individual’s representation. In [17] it is 

demonstrated how uniform crossover may be parameterized by applying a prob-

ability to the swapping of bits. This extra parameter can be used to control the 

amount of disruption during recombination without introducing a bias towards the 

length of the representation used [12]. 

14.3.4.1.2   Recombination for Real Representation 

There are two ways to perform recombination for real values representation [2]: 

 

(i) Using an operator similar to the one used for binary representation. This 

has the disadvantage that only mutation can insert new values in the pop-

ulation since the recombination only gives new combinations of the exist-

ing floats. Recombination operators of this type are known as discrete re-

combination. 

(ii) Using an operator that, in each gene position, creates a new value in the 

offspring that lies between those of the parents. If we have the parents x 

and y and the offspring z, then we have zi = αxi + (1-α)yi, α∈[0, 1].  

Operators for this type are known as arithmetic or intermediate  

recombination. 

Arithmetic recombination 

There are three types of arithmetic recombination [2][18]: simple, single arithme-

tic and whole arithmetic. The choice of parameter α is made at random between 

[0, 1] but in practice it is common to use the value 0.5 for it (in this case we have 

uniform arithmetic recombination). 

 
Simple recombination 

 

In this case a crossover position k is randomly selected between {1, 2, …, nrvar-

1}. For the first child, the first k floats of the first parent are taken. The rest is the 

arithmetic average of parent 1 and 2. Child 2 is analogue with the parents  

reversed. 

 
parent 1: x1, x2, …, xk, xk+1 …, xnrvar

 

parent 2: y1, y2, …, yk, yk+1 …, ynrvar 

 

offspring 1: x1, x2, …, xk, α⋅xk+1+(1-α)⋅yk+1 …, α⋅xnrvar+(1-α)⋅ynrvar
 

offspring 2: y1, y2, …, yk, α⋅yk+1+(1-α)⋅xk+1 …, α⋅ynrvar+(1-α)⋅xnrvar
 

 

An example of simple recombination is shown in Figure 14.18. The value of k is 5 

and the value of α is 0.5. The size of the individual (chromosomes) is 8. 
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Fig. 14.18 Simple arithmetic recombination. 

Single arithmetic recombination 
 

In this case one gene k of the chromosome is picked at random. At that position, 

the arithmetic average of the two parents is taken. Rest of the chromosome  

remains the same. The second child is created in the same way with the parents 

reversed. 

 
parent 1: x1, x2, …, xk, …, xnrvar

 

parent 2: y1, y2, …, yk, …, ynrvar 

 

offspring 1: x1, x2, …, α⋅xk+(1-α)⋅yk …, xnrvar
 

offspring 2: y1, y2, …, α⋅yk+(1-α)⋅xk …, ynrvar
 

 
An example for k = 5 and α = 0.5 is shown in Figure 14.19. 
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Fig. 14.19 Single arithmetic crossover. 

Whole arithmetic recombination 
 

This is the most common used recombination operator for real representation and 

works by taking the weighted average sum of the two parents for each gene: 

 
parent 1: x1, x2, …, xk, …, xnrvar

 

parent 2: y1, y2, …, yk, …, ynrvar 

 

offspring 1: α⋅x1+(1-α)⋅y1, α⋅x2+(1-α)⋅y2,…, α⋅xnrvar+(1-

α)⋅ynrvar offspring 2: α⋅y1+(1-α)⋅x1, α⋅y2+(1-α)⋅x2,…, 

α⋅ynrvar+(1-α)⋅xnrvar
 

 

An example for α = 0.5 is shown in Figure 14.20. 

14.3.4.1.3   Recombination for Order-Based Representation 

For order based representation it is difficult to apply any of the operators dis-

cussed above suitable for binary and real value encodings due to the fact that the 

new individuals obtained will not remain a permutation. There are some specific 

recombination operators for permutations, which will be discussed in what  

follows. 
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Fig. 14.20 Whole arithmetic recombination. 

Partially mapped crossover 

Partially mapped crossover (PMX) has been proposed in [19] as a recombination 

operator for the TSP. There exist now several variants of it. The steps of PMX are 

as follows [2][20]: 

1) Choose two crossover points at random and copy the segment between 

them from the first parent into the first offspring. 

2) Starting from the first crossover point, look for elements in that segment 

of the second parents that have not been copied. 

3) For each i of these, look in the offspring to see what element (j) has been 

copied in its place from the first parent. 

4) Place i into the position occupied by j in the second parent. 

5) If the place occupied by j in the second parent has already been filled in 

the offspring by another element k, put i in the position occupied by k in 

the second parent.  

6) Once the elements from the crossover segment have been dealt with, the 

rest of the offspring can be filled from the second parent. 

7) The second offspring is created in a similar manner with the parents  

reversed. 
 

A graphical illustration of the PMX operator is presented in Figure 14.21. 
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Fig. 14.21 PMX operator. 

Order crossover 

The order crossover operator [21] is in a way similar to PMX and has the follow-

ing steps [2]: 

1) Choose two crossover points at random and copy the segment between 

them from the first parent into the first offspring. 

2) Starting from the second crossover point in the second parent, copy the 

remaining unused elements into the first offspring in the order that they 

appear in the second parent, wrapping around at the end of the list (treat-

ing string as toroidal). 

3) Create the second offspring in an analogous manner, reversing the  

parents. 
 

An example of the order crossover operator is shown in Figure 14.22.  
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Fig. 14.22 Order crossover. 

Cycle crossover 

Cycle crossover [22] is concerned with preserving as much information as possi-

ble about the absolute position in which elements occur. The operator works by 

dividing the elements into cycles. A cycle is a subset of elements that has the pro-

priety that each element always occurs paired with another element of the same 

cycle when the two parents are aligned. Once the permutations are divided in cy-

cles, the offspring are created by selecting alternate cycles from each parent. The 

steps of the procedure are [2]: 

1) Start with the first unused position of the first parent. 

2) Look at the allele in the same position in the second parent. 

3) Go to the position with the same allele in the first parent. 

4) Add this allele to the cycle. 

5) Repeat the steps 2-4 until you arrive at the first allele of the first parent. 

An example of Cycle crossover is presented in: 

- Figure 14.23 – identifying the cycles; 

- Figure 14.24 – building the offspring. 
 

Cycle 1: 2, 9, 8, 4 in the first parent (8, 2, 9, 4  

respectively in the second parent) 

 

Cycle 2: 3, 7, 1, 5 in the first parent (1, 5, 7, 3  

respectively in the second parent). 

 

Cycle 3: 6. 
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Fig. 14.23 Cycle crossover: identifying the cycles. 

  

 
 

Fig. 14.24 Cycle crossover: building the offspring. 
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Edge crossover 

Edge recombination uses the idea that an offspring should be created as far as pos-

sible using only edges that are present in one or both parents. For this, an edge 

table (adjacent list) is constructed which, for each element, lists the other elements 

that are linked to it in the two parents. A “+” in the table indicates that the edge is 

present in both parents. The steps of the procedure are as follows [2]: 

1) Construct edge table. 

2) Pick an initial element at random and put it in the offspring. 

3) Set the variable current_elem = entry. 

4) Remove all references to current_elem from the table. 

5) Examine the list of current_elem: 

a. If there is a common edge, pick that to be the next element. 

b. Otherwise pick the entry in the list which itself has the shortest 

list. 

c. Ties are split at random. 

6) In the case of reaching an empty list, the other end of the offspring is ex-

amined for extension. Otherwise a new element is chosen at random. 

 

Figure 14.25 illustrates an example taken from [2] for which the parents are: 

 
parent 1: 1 2 3 4 5 6 7 8 9 

parent 2: 9 3 7 8 2 6 5 1 4. 

14.3.4.1.4   Recombination for Integer Representation 
For integer representation, one can apply the same operators as in the case of bi-

nary representation (the operators used for real representation might yield to non-

integer values). 

14.3.4.2   Mutation 

By mutation individuals are randomly altered. These variations (mutation steps) 

are mostly small. Mutation is only applied to one individual and will produce one 

offspring. They will be applied to the variables of the individuals with a low prob-

ability (mutation probability or mutation rate). Normally, offspring are mutated 

after being created by recombination. 

As in the case of recombination, mutation operator takes various forms depend-

ing on the individual’s representation used. 

14.3.4.2.1   Mutation for Binary Representation 

For binary valued individuals mutation means the flipping of variable values, be-

cause every variable has only two states. Thus, the size of the mutation step is 

always 1. For every individual the variable value to change is chosen (mostly uni-

form at random). Figure 14.26 shows an example of a binary mutation for an indi-

vidual with 10 variables, where variable 4 is mutated. 
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Fig. 14.25 Edge crossover. 

 

 

Fig. 23.26 One bit mutation example. 
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The most common mutation operator considers each gene separately and allows 

each bit to flip with a small probability. The actual number of values changed is 

thus not fixed but depends on the sequence of random numbers drawn. Let us con-

sider the probability 0.5 for a bit to flip and the string of probabilities for the ex-

ample above as being: 

0.2, 0.35, 0.17, 0.76, 0.52, 0.27, 0.13, 0.88, 0.95, 0.12 

Thus, the offspring obtained after mutation is depicted in Figure 14.27 (the 

genes 1, 2, 3, 6, 7 and 10 are flipped). 

 

 

Fig. 14.27 Mutation for binary representation. 

14.3.4.2.2   Mutation for Real Representation 

Mutation of real variables means that randomly created values are added to the 

variables with a low probability. Thus, the probability of mutating a variable (mu-

tation rate) and the size of the changes for each mutated variable (mutation step) 

must be defined. 

The probability of mutating a variable is inversely proportional to the number 

of variables (dimensions). The more dimensions one individual has, the smaller is 

the mutation probability. Different papers reported results for the optimal mutation 

rate. In [23] it is mentioned that a mutation rate of 1/nrvar (nrvar represents the 

number of variables of an individual) produced good results for a wide variety of 

test functions. That means that only one variable per individual is mutated. Thus, 

the mutation rate is independent of the size of the population. 

Two types of mutation can be distinguished according to the probability distri-

bution from which the new gene values are drawn [2]: 
 

• uniform mutation and 

• non-uniform mutation. 

Uniform Mutation 

In this case the values of the genes in the offspring are drawn uniformly randomly 

from the definition domain. This option is analogue to bit-flipping for binary rep-

resentation and the random resetting for integer representation. It is normally used 

with a position-wise mutation probability. 
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Nonuniform Mutation with a Fixed Distribution 

This form of mutation is designed so that the amount of change introduced is 

small. This is achieved by adding to the current gene value an amount drawn ran-

domly from a Gaussian (or normal) distribution with mean zero and user specified 

standard deviation. The obtained value is then scaled to the definition domain if 

necessarily. The Gaussian distribution has the propriety that approximately two 

thirds of the samples drawn lie within one standard deviation. This means that 

most of the changes made will be small but there is nonzero probability of gener-

ating very large changes since the tail of the distribution never reaches zero. This 

operator is usually applied with probability one per gene. An alternative to Gaus-

sian distribution is to use the Cauchy distribution. The probability of generating 

larger values is slightly bigger than for Gaussian distribution with the same stan-

dard deviation [2][24].  

14.3.4.2.3   Mutation for Order-Based Representation 

For permutations it is not possible to use any of the forms of the mutation opera-

tors presented above. There are four common forms of the mutation operator for 

order-based representation [2][25]: 
 

(i) swap mutation; 

(ii) insert mutation; 

(iii) scramble mutation; 

(iv) inversion mutation. 

Swap mutation 

This form of mutation works by randomly picking two genes in the string and 

swapping their allele values. Figure 14.28 shows an example of this mutation. 
 

 

Fig. 14.28 Swap mutation. 

Insert Mutation 

This operator works by picking two alleles at random and moving one so that it is 

next to the other, shuffling along the others to make room.  

An example of insert mutation is illustrated in Figure 14.29. 
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Fig. 14.29 Insert mutation. 

Scramble Mutation 

In this case the entire string or a subset of it (randomly chosen) has their values 

scrambled. An example is shown in Figure 14.30 where the selected subset is be-

tween positions 2 and 5. 

 

 

Fig. 14.30 Scramble mutation. 

Inversion Mutation 

This mutation operator works by randomly selecting two positions in the string 

and reversing the order in which the values appear between these positions. It 

breaks the string into three parts with all links inside a part being preserved and 

only the two links between the parts being broken. The inversion of a randomly 

chosen substring is the smallest change that can be made to an adjacency based 

problem.  

An example is shown in Figure 14.31 with the selected positions 2 and 7. 

14.3.4.2.4   Mutation for Integer Representation 

There are two main forms of mutation used for integer representation; both mutate 

each gene independently with a defined probability: 

- random resetting and 

- creep mutation [2]. 
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Fig. 14.31 Inversion mutation. 

Random Resetting 

The bit-flipping mutation of binary representation is extended to random resetting 

so that with a probability a new value is chosen at random from the set of permis-

sible values in each position.  

Creep Mutation 

This type of mutation works by adding – with a given probability – a small (posi-

tive or negative) value to each gene. Usually, these values are sampled randomly 

for each gene from a distribution that is symmetric about zero and it is more likely 

to generate small changes than big ones.  

14.3.5   Population Models 

There are two main population models used by genetic algorithms: 

1) Generational model and 

2) Steady state model. 

Generational Model 

The generational model works as follows: in each generation the algorithm starts 

with a population of size N. A mating pool of size N is selected from this (some 

individuals will have multiple copies while other will not be selected at all). N 

offspring are further created by applying the variation operators. After each gen-

eration the whole population is replaced by the offspring population which will be 

the population of the next generation. 

Steady-state model 

In the steady-state model the population is not changed at once. In this case M 

(M<N) old individuals are replaced by M new individuals (from the offspring). 

The percentage of the population that is replaced is called generational gap and it 
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is equal to M/N. The steady state algorithm has been widely applied especially 

with M=1 and the corresponding generational gap 1/N [2]. 

14.3.6   Survivor Selection and Reinsertion 

Once the offspring have been produced by selection, recombination and mutation 

of individuals from the old population, the fitness of the offspring may be deter-

mined. If less offspring are produced than the size of the original population then 

to maintain the size of the original population, the offspring have to be reinserted 

into the old population. Similarly, if not all offspring are to be used at each gen-

eration or if more offspring are generated than the size of the old population then a 

reinsertion scheme must be used to determine which individuals are to exist in the 

new population [12]. 

There are two main reinsertion strategies:  

1) local reinsertion and  

2) global reinsertion. 

14.3.6.1   Local Reinsertion 

In local selection, individuals are selected in a bounded neighborhood. The rein-

sertion of offspring takes place in exactly the same neighborhood. Thus, the local-

ity of the information is preserved. The parent of an individual is the first selected 

parent in this neighborhood. 

For the selection of parents to be replaced and for selection of offspring to rein-

sert the following schemes are possible [12]: 

• insert every offspring and replace individuals in neighborhood uniformly 

at random; 

• insert every offspring and replace weakest individuals in neighborhood; 

• insert offspring fitter than weakest individual in neighborhood and re-

place weakest individuals in neighborhood; 

• insert offspring fitter than weakest individual in neighborhood and re-

place parent; 

• insert offspring fitter than weakest individual in neighborhood and re-

place individuals in neighborhood uniformly at random; 

• insert offspring fitter than parent and replace parent. 

14.3.6.2   Global Reinsertion 

Different schemes of global reinsertion exist: 

• produce as many offspring as parents and replace all parents by the off-

spring (pure reinsertion); 

• produce less offspring than parents and replace parents uniformly at ran-

dom (uniform reinsertion); 
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• produce less offspring than parents and replace the worst parents (elitist 

reinsertion); 

• produce more offspring than needed for reinsertion and reinsert only the 

best offspring (fitness-based reinsertion). 

Pure reinsertion is the simplest reinsertion scheme. Every individual lives one 

generation only. This scheme is used in the simple genetic algorithm. However, it 

is very likely, that very good individuals are replaced without producing better 

offspring and thus, good information is lost. 

The elitist combined with fitness-based reinsertion prevents losing of informa-

tion and is the recommended method. At each generation, a given number of the 

least fit parents are replaced by the same number of the most fit offspring. The fit-

ness-based reinsertion scheme implements a truncation selection between offspring 

before inserting them into the population (i.e. before they can participate in the re-

production process). On the other hand, the best individuals can live for many gen-

erations. However, with every generation some new individuals are inserted. It is 

not checked whether the parents are replaced by better or worse offspring. 

Because parents may be replaced by offspring with a lower fitness, the average 

fitness of the population can decrease. However, if the inserted offspring are ex-

tremely bad, they will be replaced with new offspring in the next generation [12]. 

14.3.7   The Basic Genetic Algorithm 

The basic form of a general genetic algorithm is: 

Step 1 Generate random population of N chromosomes.  

Step 2  Evaluate each chromosome in the population using the fitness function 

Step 3 Create a new population by repeating following steps until the new 

population is complete  

Step 3.1 Selection  

Select two parent chromosomes from a population according to their 

fitness (the better fitness, the higher the chance to be selected)  

Step 3.2 Crossover  

With a crossover probability cross over the parents to form new off-

spring (children). If no crossover was performed, offspring is the ex-

act copy of parents.  

Step 3.3 Mutation  

With a mutation probability mutate new offspring at each locus (po-

sition in chromosome).  

Step 3.4 replacement  

Place new offspring in the new population  
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Step 4 Use new generated population for a further generation (iteration) of the 

algorithm  

Step 5 If the termination condition is satisfied, stop, and return the best solu-

tion in current population  

Step 6 Go to Step 2  

Summaries 

This chapter presented an evolutionary computation method with a focus on ge-

netic algorithms. Genetic algorithms represent the most used techniques in prac-

tice among all of them. They can work with any representation and can be applied 

for a large variety of problems. There are any ways to speed up and improve a 

GA-based application as knowledge about problem domain is gained. 

Some of the GAs advantages are (and these are also valid for the other EAs): 
 

• concept is easy to understand and implement; 

• modular, separate from application; 

• supports multi-objective optimization; 

• can be easily adapted for parallel machines; 

• good for noisy and dynamic environments; 

• easy to exploit previous or alternate solutions; 

• flexible building blocks for hybrid applications. 

 

When to use GAs: 
 

• alternate solutions are too slow or overly complicated; 

• need an exploratory tool to examine new approaches; 

• problem is similar to one that has already been successfully solved by us-

ing a GA; 

• want to hybridize with an existing solution; 

• benefits of the GA technology meet key problem requirements. 
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Verification Questions 

1. What are the main steps in building an evolutionary algorithm? 

2. Enumerate a few standard representations. 

3. Enumerate and explain the selection mechanisms 

4. Define the main variants of crossover operators for different representa-

tions. 

5. Explain the crossover operators for permutations. 

6. Define the main variants of the mutation operator. 

7. Explain the mutation operator for permutations. 

8. Explain the main population models which can be used by a generic algo-

rithm. 

9. Explain survival selection and reinsertion mechanisms. 

10. Explain local and global reinsertion. 

11. Present and explain the main structure of a genetic algorithm. 

 
 

Exercises 

We propose a list of problems, which can be easily approached with GA. 

 

1. Vertex Coloring 

Given a graph G(V, E), with n vertex and the connections between them and a set 

of k colors, color the vertices of a graph such that no two adjacent vertices share 

the same color. 

 

2. Edge Coloring 

Given a graph G(V, E), with n vertex and the connections between them and a set 

of k colors, color the edges of a graph such that no two adjacent edges share the 

same color. 
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3. Monochromatic triangle  

Given a graph G(V, E), with n vertex and the connections between them partition 

it into two disjoint sets E1 and E2, such that neither of the two graphs G1(V,E1) 

and G2(V,E2) contain a triangle. That is: for all nodes in E1 or E2 there does not 

exist a set {u, v, w} such that {u, v}, {u, w}, {v, w} are all edges. 

 

4. Graph partitioning problem 

Given a graph G(V, E) and an integer k >1, partition V into k parts (subsets) V1, V2, 

... Vk such that the parts are disjoint and have equal size, and the number of edges 

with endpoints in different parts is minimized. 

 

5. Traveling salesman problem (TSP) 

Given a list of cities and their pairwise distances, find a shortest possible tour that 

visits each city exactly once. 

 

6. Quadratic Assignment Problem (QAP) 

There are a set of n facilities and a set of n locations. For each pair of locations, 

a distance is specified and for each pair of facilities a weight or flow is specified 

(e.g., the amount of supplies transported between the two facilities). The problem 

is to assign all facilities to different locations with the goal of minimizing the sum 

of the distances multiplied by the corresponding flows. 

 

Given two sets, P (facilities) and L (locations), of equal size, together with 

a weight function w : P × P → R and a distance function d : L × L → R. Find 

the bijection f : P → L ("assignment") such that the cost function: 
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is minimized. 

 

7. Subset sum problem 

Given a set of n integers, find a subset whose sum equals S (for S given). 

 

8. Knapsack problem (one of the variants) 

Given a set of items, each with a weight and a value, determine the number of 

each item to include in a collection so that the total weight is less than a given 

limit and the total value is as large as possible. 

 

9. Partition problem 

Given a multiset S of integers, find a way to partition S into two sub-

sets S1 and S2 such that the sum of the numbers in S1 equals the sum of the num-

bers in S2. The subsets S1 and S2 must form a partition in the sense that they 

are disjoint and they cover S. 
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10. Shortest common supersequence 

Given two sequences X = < x1,...,xm > and Y = < y1,...,yn >, a sequence U = < 

u1,...,uk > is a common supersequence of X and Y if U is a supersequence of 

both X and Y. 

The shortest common supersequence is a common supersequence of minimal 

length. For X and Y given find the shortest common supersequence. 

 
11. Evolutionary algorithm for sudoku game. 

 

12. Evolutionary algorithm for magic squares. 

 

13. Crossword puzzle 

Given a crossword square and an alphabet which can be used (whose size is much 

higher that the number of words to be filled in the puzzle), find a valid solution for 

the crossword. 

 

14. n-Queens problem 

Given an n × n chess board, place n queens on it so that none of them can hit any 

other. 

 

15. Coin Problem 

Let there be  n ≥ 0 integers 0< a1 < …<an. The values ai represent the denomina-

tions of n different coins, where these denominations have greatest common  

divisor of 1. Find a way to pay the sum S by using the smallest number of coins.  
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Chapter 15 

Evolutionary Metaheuristics 

15.1   Introduction 

Evolution Strategies (ES) were developed in [3][4]. ES tend to be used for empiri-

cal experiments that are difficult to model mathematically. The system to be  

optimized is actually constructed and ES are used to find the optimal parameter 

settings. Evolution strategies merely concentrate on translating the fundamental 

mechanisms of biological evolution for technical optimization problems. The pa-

rameters to be optimized are often represented by a vector of real numbers. An-

other vector of real numbers defines the strategy parameters, which controls the 

mutation of the objective parameters. Both object and strategic parameters form 

the data-structure for a single individual. 

The classical ES works as follows: a single parent produces a single child by 

mutation.  

The child is compared with parent and the better survives. This is a local search 

procedure, which is essentially hill-climbing. However, the mutation rate is part of 

the chromosome and the update strategy for the standard deviation of the mutation 

distribution is updated too. Recombination was also introduces in the ES and sev-

eral variants were produced. 

Given a current solution x
t
 in the form of a vector of length n, a new candidate 

solution x
t+1

 is created by adding a random number to each of the n components. A 

Gaussian distribution is used with mean zero and standard deviationσ. σ is a pa-

rameter of the algorithms that determines the extend to which, given values xi are 

perturbed by the mutation operator. σ is called mutation step size. Theoretical re-

sults motivated the adjustment of σ by using the 1/5 success rule, which states as 

follows: 
 

• Determine percentage ps of successful mutations in past k iterations. 

• Update σ after every k iterations by: 

σ = σ / c if ps > 1/5 

σ = σ ⋅ c if ps < 1/5 

σ = σ  if ps = 1/5 
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15.2   Representation 

Since ES are typically used for continuous parameter optimization, standard repre-

sentation of the object variables x1, x2, …, xn is straightforward, each xi represent-

ing a floating point variable. The vector x is only a part of the ES genotype. Indi-

viduals also contain some strategy parameters, which are parameters of the muta-

tion operator. Strategy parameters can be divided into two sets: 

- σ parameters: represent the mutation step size and their number nσ is ei-

ther 1 or n. For any reasonable self-adaptation mechanism at least one σ 

should be considered. 

- α values: represent interaction between step sizes used for different vari-

ables and are not always used [1]. 
 

The general form of an individual in ES is: 
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15.3   Mutation 

The mutation operator in ES is based on Gaussian distribution requiring two pa-

rameters: the mean ξ and the standard deviationσ. Mutations are then realized by 

adding Δxi to each xi, where the Δxi values are randomly drawn using the given 

Gaussian N(ξ, σ) with the corresponding probability density function (p.d.f): 
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In practice, the mean ξ is always set to zero and the vector x is mutated by re-

placing xi values by: 

 

xi’ = xi + N(0, σ) 

 

where N(0, σ) denotes a random number drawn from Gaussian distribution with 

zero mean and standard deviation σ. 
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15.3.1   Uncorrelated Mutation with One σ 

In this case the individual has the form: 

 

x1, x2, …, xn, σ  
 

Mutation occurs in the following steps: 

 

• σ’ = σ ⋅ exp(τ ⋅ N(0,1)) 

•  xi’ = xi + σ’ ⋅ N(0,1) 

 

where τ is the learning rate and τ ≅ 1/ n½ 

There is also a boundary rule to force the step size to be no smaller than a thre-

shold: 

σ’ < ε0 ⇒ σ’ = ε0 

15.3.2   Uncorrelated Mutation with n σ’s 

The structure of the chromosome in this case is: 

 

x1, x2, …,xn, σ1, σ2…, σn 

 

The mutation works as follows: 

 

• σi’ = σi ⋅ exp(τ’ ⋅ N(0,1) + τ ⋅ Ni (0,1)) 

• xi’ = xi + σi’ ⋅ Ni (0,1) 

 

where we have two learning rates: 

– τ’ overall learning rate 

–  τ coordinate-wise learning rate 

 

with:  

− τ’ ≅ 1/(2 n)½ and  

− τ ≅ 1/(2 n½) ½ 

 

 and the boundary rule: 

σi’ < ε0 ⇒ σi’ = ε0, i=1, 2, …, n 
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15.3.3   Correlated Mutation 

The chromosome has the most general form in this case: 

x1, x2…, xn, σ1, σ2…, σn ,α1, α2…, αk 

The covariance matrix C is defined as: 

• cii = σi 

• cij = 0 if i and j are not correlated 

• ( ) )2tan(
2

1 22

ijjiijc ασσ ⋅⋅−=  if i and j are correlated. 

The mutation mechanism is then: 

– σi'= σi  exp(τ’ ⋅ N(0,1) + τ ⋅ Ni (0,1)) 

– αj’ = αj + β ⋅ N (0,1) 

– x’ = x + N(0,C’) 

where: 

• x stands for the vector x1, x2…,xn 

• C’ is the covariance matrix C after mutation of the α values 

• τ’ ≅1/(2n)½ and τ ≅ 1/(2n½) ½  

• β ≈ 5° 

• σi’ < ε0 ⇒ σi’ = ε0  
• |αj’| > π ⇒ αj’ = αj’ - 2π ⋅sign(αj’) (boundary rule for αj values). 

15.4   Recombination 

The basic recombination scheme in ES involves two parents that create one child. 

To obtain N offspring the recombination operator is applied N times. There are 

two recombination variants: 

(i) discrete recombination: one of the parent alleles is randomly chosen with 

equal chance for either parents; 

(ii) intermediate recombination: the values of the parent alleles are averaged. 

 

Given two parents x and y, the child z is created where: 
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An extension of this scheme allows the use of more than two recombinants be-

cause the two parents x and y are drawn randomly for each position i in the off-

spring. This multiparent variant is called global recombination. The original vari-

ant is called local recombination. 

15.5   Controlling the Evolution: Survival Selection 

Let P be the number of parents in generation i and let C be the number of children 

in generation i. There are basically four different types of evolution strategies: 

1) P, C; 

2) P+C; 

3) P/R, C; 

4) P/R+C. 
 

They mainly differ in how the parents for the next generation are selected and the 

usage of crossover operators. 

15.5.1   P, C Strategy 

The P parents produce C children using mutation. Fitness values are calculated for 

each of the C children and the best P children become next generation parents. 

The best individuals of C children are sorted by their fitness value and the first P 

individuals are selected to be next generation parents (C ≥ P).  

15.5.2   P + C Strategy 

The P parents produce C children using mutation. Fitness values are calculated for 

each of the C children and the best P individuals of both parents and children be-

come next generation parents. Children and parents are sorted by their fitness val-

ue and the first P individuals are selected to be next generation parents. 

15.5.3   P/R, C Strategy 

The P parents produce C children using mutation and crossover. Fitness values are 

calculated for each of the C children and the best P children become next genera-

tion parents. The best individuals of C children are sorted by their fitness value 

and the first P individuals are selected to be next generation parents (C ≥ P). Ex-

cept the usage of recombination (crossover) operator this is exactly the same as P, 

C strategy.  
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15.5.4   P/R + C Strategy 

The P parents produce C children using mutation and recombination. Fitness val-

ues are calculated for each of the C children and the best P individuals of both 

parents and children become next generation parents. Children and parents are 

sorted by their fitness value and the first P individuals are selected to be next  

generation parents. Except the usage of crossover operator, this is exactly the same 

as P + C strategy. 

15.6   Evolutionary Programming 

Evolutionary programming (EP) [2][5] was originally developed to stimulate  

evolution as a learning process with the aim of generating artificial intelligence. 

Traditional EP is typically applied to machine learning tasks by finite state ma-

chines while contemporary EP can be also applied for (numerical) optimization. 

Classical EP use real value representation, Gaussian mutation and no recombina-

tion. Modern EP have predefined representation in general, thus no predefined 

mutation (must match representation). It often applies self-adaptation of mutation 

parameters. 

15.6.1   Representation 

In a similar manner to ES, the EP’s chromosomes consist of two parts: 

• Object variables: x1, x2…,xn 

• Mutation step sizes: σ1, σ2…,σn 

 

Thus, the general form of an EP individual is given by: 
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15.6.2   Mutation 

Having the chromosome: 

 〈 x1, x2…,xn, σ1, σ2…,σn 〉  
 

we have to obtain, by mutation, the chromosome: 

 〈 x1’, x2
’
…,xn

’
, σ1’, σ2’…,σn’ 〉  
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This is achieved in the following manner: 

 

• σi’ = σi ⋅ (1 + α ⋅ N(0,1)) 

• xi’ = xi + σi’ ⋅ Ni(0,1) 

 

with: 

• α ≈ 0.2 

• and the boundary rule: σ’ < ε0 ⇒ σ’ = ε0  

 

There exist several other variants of EPs whose difference consists in one of the 

following: 

• using lognormal scheme as in ES; 

• using variance instead of standard deviation; 

• mutate σ-last; 

• using other distributions, e.g, Cauchy instead of Gaussian. 

15.6.3   Survival Selection 

Each individual produces one offspring by mutation.  

If P(t) is the parents population containing N parents and P’(t) is offspring pop-

ulation of size N,  the survival is done by pairwise competitions in round-robin 

format: 

• Each solution x from P(t) ∪ P’(t) is evaluated against q other randomly 

chosen solutions.  

• For each comparison, a "win" is assigned if x is better than its opponent. 

• The N solutions with the greatest number of wins are retained to be par-

ents of the next generation. 

• Parameter q allows tuning selection pressure. 

• Typically q = 10. 

15.7   Genetic Programming 

Genetic programming (GP) [6][7] is an evolutionary technique used for breeding a 

population of computer programs. If GA wants to evolve only solutions for par-

ticular problems GP evolves complex computer programs. GP individuals are rep-

resented and manipulated as nonlinear entities, usually trees in the standard ap-

proach. Nowadays at least 10 different representations have been developed  

so far. 
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15.7.1   Representation 

GP individuals (chromosomes) are represented by trees. Any expression can be 

drawn as a tree of functions and terminals. Depending on the problem to solve, a 

GP chromosome can be the syntax of an arithmetic expression, formulas in first 

order predicate logic or code written in a programming language. Some examples 

of such types of expressions: 

• an arithmetic formula: 
 

π2
 + (2*y - x) 

 

• a logical formula: 

 

(x ∨ true) → (y ∧ true) ∨ (z ∧ true) 

 

• a program (in C++ programming language): 

i=1; 
while (i<n) 
i=i+1; 

 

The trees corresponding to these expressions are presented in Figures 15.32-34. 

 

 
 

Fig. 15.32 Tree representation of the expression π2 + 2*y-x. 
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Fig. 15.33 Tree representation of the expression (x∨true) → (y∧true) ∨ (z∧true). 

 

 
Fig. 15.34 Tree representation of the C++ source code: i=1; while (i<n) i=i+1. 

 
The representation of a GP individual uses a defined set of function and a set of 

terminals. Elements of the terminal set are allowed as leaves while symbols from 

the functions set are internal nodes. These functions and terminals can be any-

thing. Example: 

• functions: {+, -, *, /, sine, cosine, ln, log, tan, If-Then-Else, Turn...} 

• terminals: {x, y, 1, 2, 3 (constants), true, false, …} 
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Fig. 15.35 GP mutation. 

 

 

 

Fig. 15.37 GP Crossover. 
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15.7.2   Variation Operators 

As in the case of GAs, the variation operators used by GP are mutation and re-

combination. Another operator, which is less used is branch duplication. 

15.7.2.1   Mutation 

The most common form of the mutation operator works by replacing a subtree of 

the tree (of the chromosome) starting at a randomly selected node by a randomly 

generated subtree. The new created subtree is usually generated in the same way 

as the tree in the population. The size of the offspring can exceed the size of the 

parent tree. 

An example of the mutation operator is presented in Figure 15.35. The expres-

sion π2
 + (2*y - x) is modified by mutation and the new expression: π2

 + (2*y / 

(1+x)) is obtained. 

15.7.2.2   Recombination 

Recombination in GP works by swapping subtrees among the parents. The opera-

tion is done by interchanging the subtrees starting at two randomly selected nodes 

in the given parents. The size of the offspring can exceed the size of the parents. 

An illustration of the crossover operator in GP is shown in Figure 15.36. 

15.7.2.3   Branch Duplication 

This operator works by simply duplicating a subtree of the GP chromosome as 

shown in Figure 15.38. This operator is not used very often.  
 

 

Fig. 15.38 GP branch duplication. 

15.7.3   Fitness Function 

Fitness of a GP chromosome is calculated in a slightly different way while com-

pared to the other evolutionary techniques presented above. The general procedure 

for calculating the fitness is: 
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First, a training set is required.  

Apply GP chromosome to each training data. 

Compute the difference between what you want to obtain and what you have 

actually obtained. 

Fitness should be minimized. 

 

Let us consider as an example a regression problem. 

We have the following data: 
 
x f(x) 

0 0 
1 1 
2 4 
3 9 
4 16 
5 25 
 
 

And we wish to find the expression of f(x). 

Let us consider the GP chromosome for which we calculate the fitness is x+1. 

Thus, for the given data we have: 

 
x = 0 f(x) = 1 
x = 1 f(x) = 2 
x = 2 f(x) = 3 
x = 3 f(x) = 4 
x = 4 f(x) = 5 
x = 5 f(x) = 6 

 
And the fitness is: |0 – 1| + |1 – 2| + |4 – 3| + |9 – 4| +|16 – 5| + |25 – 6| = 38. 

The aim is to minimize this value (make it as close to zero as possible). 

15.7.4   Parent Selection 

Selection of parents for recombination can be performed using any of the selection 

mechanisms described for the selection of parents in genetic algorithms. 

15.7.5   Survival Selection 

Both generational and steady-state GP (same as in the case of genetic algorithms) 

can be implemented and used in practice. 
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15.7.6   GP Variants 

There are several variants of the GP which differ among them mainly from the 

way they represent the individuals and calculate the fitness function. We present 

four of them in the following subsections. 

15.7.6.1   Linear Genetic Programming 

Linear Genetic Programming (LGP) [9][10] uses a specific linear representation of 

computer programs. Instead of the tree-based GP expressions of a functional  

programming language (like LISP) programs of an imperative language (like C) 

are evolved. A LGP individual is represented by a variable-length sequence of 

simple C language instructions. Instructions operate on one or two indexed vari-

ables (registers) r, or on constants c from predefined sets. The result is assigned to 

a destination register, for example, ri= rj* c [8].  

An example LGP program is: 

 
void LGP(double v [8 ])  
{  
v [0 ] = v [5 ] + 73;  
v [7 ] = v [3 ] – 59;  
if (v [1 ] > 0)  
if (v [5 ] > 21)  
v [4 ] = v [2 ] * v [1 ]; 
v [2 ] = v [5 ] + v [4 ];  
v [6 ] = v [7 ] * 25;  
v [6 ] = v [4 ] – 4; 
v [1 ] = sin(v [6 ]);  
if (v [0 ] >v[1 ])  
v [3 ] = v [5 ] * v [5 ];  
v [7 ] = v [6 ] * 2;  
v [5 ] = v [7 ] + 115;  
if (v [1 ] < = v [6 ])  
v [1 ] = sin(v [7 ]);  
} 
 

A LGP individual can be turned into a functional representation by successive 

replacements of variables starting with the last effective instruction. The maxi-

mum number of symbols in a LGP chromosome is four times the number of in-

structions. LGP uses two-point string crossover. A segment of random position 

and random length is selected in both parents and exchanged between them. If one 

of the resulting children would exceed the maximum length, crossover is aban-

doned and restarted by exchanging equally sized segments. An operand or an op-

erator of an instruction is changed by mutation into another symbol over the same 

set. LGP also employs a special kind of mutation (called macro mutation), which 

deletes or inserts an entire instruction. 
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The fitness of a LGP individual is calculated using the formula: 
 

∑
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where Nr is the number of data, Oj is the value returned by a chromosome for the 

fitness case j ,and Ej  is the expected value for the fitness case j. 

15.7.6.2   Multi-expression Programming 

Multi-Expression Programming MEP [11] uses a representation similar to the way 

in which C and Pascal compilers translate mathematical expressions into machine 

code. MEP genes are substrings of a variable length. The chromosome length is 

constant and equal to the number of genes in that chromosome. Each gene encodes 

a terminal or a function symbol. A gene encoding a function includes pointers 

towards the function arguments. Function parameters always have indices of low-

er values than the position of that function in the chromosome. According to this 

representation scheme, the first symbol of the chromosome must be a terminal 

symbol. 

An example of a chromosome is given below. Numbers to the left stand for 

gene labels, or memory addresses. Labels do not belong to the chromosome.  
 

1:    a  
2:    b  
3:    +1, 2  
4:    c  
5:    d   
6:    +4, 5 
 

When MEP individuals are translated into computer programs (expressions) they 

are read top-down starting with the first position. A terminal symbol specifies a 

simple expression. A function symbol specifies a complex expression (made up by 

linking the operands specified by the argument positions with the current function 

symbol). 

For instance, genes 1, 2, 4, and 5 in the previous example encode simple ex-

pressions composed of a single terminal symbol. The expressions associated with 

genes 1, 2, 4, and 5 are [31]: 
 

E1 = a  
E2 = b  
E4 = c  
E5 = d.  
 

Gene 3 indicates the operation + on the operands located in positions 1 and 2 of 

the chromosome. Therefore gene 3 encodes the expression: 
 

E3 = a +b.  



15.7   Genetic Programming 401

 

Gene 6 indicates the operation + on the operands located in positions 4 and 5. 

Therefore gene 6 encodes the expression:  
 

E6 = c +d. 
 

The expression associated with each position is obtained by reading the chro-

mosome bottom-up from the current position and following the links provided by 

the function pointers. 

The maximum number of symbols in a MEP chromosome is given by the  

formula: 
 

Number of Symbols = (N +1)Number of Genes- N,  
 

where N is the number of arguments of the function symbol with the greatest 

number of arguments. 

Recombination and mutation are the two variation operators used by MEP. By 

recombination, two parents exchange genetic materials in order to obtain two off-

spring. Several variants of recombination have been considered and tested within 

MEP implementation: one-point recombination, two-point recombination, and 

uniform recombination.  

Every MEP gene may be subject to mutation. The first gene of a chromosome 

must encode a terminal symbol in order to preserve the consistency of the chro-

mosome. There is no restriction in symbols changing for other genes. If the cur-

rent gene encodes a terminal symbol it may be changed into another terminal 

symbol or into a function symbol. In the last case, the positions indicating the 

function arguments are also generated by mutation. If the current gene encodes a 

function, the former may be mutated into a terminal symbol or into another func-

tion (function symbol and pointers towards arguments). 

MEP uses a special kind of fitness assignment. The value of each expression 

encoded in a chromosome is computed during the individual evaluation (a MEP 

individual encodes a number of expressions equal to the number of its genes). This 

evaluation is performed by reading the chromosome only once and storing partial 

results by using dynamic programming. The best expression is chosen to represent 

the chromosome. Thus, the fitness of a MEP individual is computed using the 

formula: 
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where Nr is the number of fitness cases, 
k

jO is the value returned (for j-th data) by 

the k-th expression encoded in the chromosome, L is the number of chromosome 

genes and Ej is the expected value for that data. 
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15.7.6.3   Gene Expression Programming 

Gene Expression Programming (GEP) [13] uses linear chromosomes that store 

expressions in breadth first form. A GEP gene is a string of terminal and function 

symbols. GEP genes are composed of a head and a tail. The head contains both 

function and terminal symbols. The tail may contain terminal symbols only. 

For each problem the head length (denoted h) is chosen by the user. The tail 

length (denoted by t) is evaluated by: 

 

t =(n - 1)h +1, 

 

where n is the number of arguments of the function with more arguments. Let us 

consider a gene made up of symbols in the set S: 

 

S = {*, /, +, - , a, b}. 

 

In this case n = 2. If we choose h = 10, then we get t = 11, and the length of the 

gene is 10+11 = 21. Such a gene is given below:  

 
+* ab - +aab +ababbbababb. 

 

The expression encoded by the gene is:  

 
E = a +b * ((a +b )- a ). 

 

Chromosomes are modified by mutation, transposition, root transposition, gene 

transposition, gene recombination, one-point recombination, and two-point  

recombination.  

The fitness of a GEP individual is calculated using the formula: 
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where M is the selection range, Nr is the number of data, Oj is the value returned 

by a chromosome for the fitness case j ,and Ej  is the expected value for the fitness 

case j. 

 

15.7.6.4   Grammatical Evolution 

Grammatical Evolution GE [12] uses the Backus–Naur form (BNF) to express 

computer programs. BNF is a notation that allows a computer program to be ex-

pressed as a grammar. A BNF grammar consists of terminal and non-terminal 
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symbols. Grammar symbols may be rewritten in other terminal and non-terminal 

symbols. 

Each GE individual is a variable-length binary string that contains the neces-

sary information for selecting a production rule from a BNF grammar in its co-

dons (groups of eight bits). An example from a BNF grammar is given by the fol-

lowing production rules: 
 
S ::= expr| (0) 
if-stmt| (1)  
loop. (2) 
 

These production rules state that the start symbol S can be replaced (rewritten) 

either by one of the non-terminals (expr or if-stmt), or by loop. The grammar is 

used in a generative process to construct a program by applying production rules, 

selected by the genome, beginning with the start symbol of the grammar. In order 

to select a GE production rule, the next codon value on the genome is generated 

and placed in the following formula: 

 
Rule = Codon Value MOD Num Rules.  
 

If the next Codon integer value is four, knowing that we have three rules to se-

lect from, as in the example above, we get 4 MOD 3=1. Therefore, S will be re-

placed with the non-terminal if-stmt, corresponding to the second production rule. 

Beginning from the left side of the genome codon, integer values are generated 

and used for selecting rules from the BNF grammar, until one of the following 

situations arises. 

 

1) A complete program is generated. This occurs when all the non-terminals 

in the expression being mapped are turned into elements from the termi-

nal set of the BNF grammar. 

2) The end of the genome is reached, in which case the wrapping operator is 

invoked. This results in the return of the genome reading frame to the left 

side of the genome once again. The reading of the codons will then con-

tinue unless a higher threshold representing the maximum number of 

wrapping events has occurred during this individual mapping process. 

 

In the case that a threshold on the number of wrapping events is exceeded and the 

individual is still incompletely mapped, the mapping process is halted, and the 

individual is assigned the lowest possible fitness value. 

 

Example 
 

Consider the grammar:  
 

G = {N, T , S, P }, 
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where the terminal set is:  
 

T = { +, - , * ,/,sin, exp, (, )} , 

and the nonterminal symbols are:  
 

N = {expr, op, pre op} . 
 

The start symbol is: S = <expr>. 

 

The production rules P are:  

 
< expr> :: <expr>< op><expr> | (0) 
(< expr><op><expr>)| (1)  
< pre op>(< expr> )| (2)  
< var>. (3)  
< op> ::= +| (0)  
-| (1)  
| (2)  
/ (3)  
< pre op> ::= sin| (0)  
exp. (1) 

Here is an example of a GE chromosome:  

 

000000000000001000000001000000110000001000000011.  

 

Translated into GE codons, the chromosome is: 

 

0, 2, 1, 3, 2, 3.  

 

This chromosome is translated into the expression: 

 

E =exp(x)* x. 

 

Standard binary genetic operators are used with GE. GE also makes use of a du-

plication operator that duplicates a random number of codons and inserts them 

into the penultimate codon position on the genome. 

The fitness of a GE chromosome is calculated using the formula: 
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where Nr is the number of data, Oj is the value returned by a chromosome for the 

fitness case j ,and Ej  is the expected value for the fitness case j. 
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15.7.7   GP Applications 

GP can be applied for any kind of problem where we have some inputs and we 

want some outputs. There must be a relationship between inputs and outputs. 

Some of the main domains of application are: 
 

• regression problems; 

• classification problems; 

• prediction and forecast; 

• computing primitives for a given function; 

• evolving digital circuits, etc. 

Summaries 

This chapter presented three evolutionary metaheuristics namely evolution strate-

gies, evolutionary programming and genetic programming. The techniques pre-

sented all share the same structure and evolutionary scheme. Still, there are some 

noticeable differences among them, most important being the representation used, 

the variation operators employed and the way of calculating the fitness function. 

ES have their origins in numerical optimisation problems. Some of the features 

are: 

• typically work with real valued vectors; 

• mutation taken from a Gaussian (normal) distribution; 

• evolution of evolutionary parameters (e.g. mutation rate); 

• a wide variety of evolutionary strategies are available, in some cases a 

population size of 1 is adopted. 

Some essential characteristics of the ES are [2]: 

• ES are typically used for continuous parameter optimization; 

• there is a strong emphasis on mutation for creating offspring; 

• mutation is implemented by adding some random noise drawn from a 

Gaussian distribution; 

• mutation parameters are changed during a run of the algorithm. 

 

Evolutionary programming is restricted to certain applications such as machine 

learning tasks by finite state machines while contemporary EP can be also applied 

for (numerical) optimization. Classical EP use real value representation, Gaussian 

mutation and no recombination. Modern EP have predefined representation in 

general, thus no predefined mutation (must match representation). 

Genetic programming is an evolutionary technique used for breeding a popula-

tion of computer programs. GP individuals are represented and manipulated as 
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nonlinear entities, usually trees. GP approaches and variants are suitable for sev-

eral applications such as classification, regression, predictions which make them 

useful in several domains from engineering to medicine. A particular GP subdo-

main consists of evolving mathematical expressions. In that case the evolved  

program is a mathematical expression, program execution means evaluating that 

expression, and the output of the program is usually the value of the expression. 
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Verification Questions 

1. Explain the main process of ES. 

2. What is the general form of an ES individual? 

3. Define and explain the four types of ES. 
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4. Define the main components of an EP chromosome. 

5. Enumerate EP variants. 

6. Explain the differences between GP and other evolutionary algorithms. 

7. Enumerate and explain some of GP variants. 

8. Enumerate the advantages and disadvantages of each of the four evolution-

ary computation techniques. 

9. Present some of the applications domains of the evolutionary computation. 
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Chapter 16 

Swarm Intelligence 

16.1   Introduction 

Swarm behavior can be seen in bird flocks, fish schools, as well as in insects like 

mosquitoes and midges. Many animal groups such as fish schools and bird flocks 

clearly display structural order, with the behavior of the organisms so integrated 

that even though they may change shape and direction, they appear to move as a 

single coherent entity [6]. The main principles of the collective behavior are: 

• homogeneity: every bird in flock has the same behavior model. The 

flock moves without a leader, even though temporary leaders seem to 

appear. 

• locality: the motion of each bird is only influenced by its nearest flock 

mates. Vision is considered to be the most important senses for flock 

organization. 

• collision avoidance: avoid collision with nearby flock mates.  

• velocity matching: attempt to match velocity with nearby flock mates.  

• flock centering: attempt to stay close to nearby flock mates. 

 

Individuals attempt to maintain a minimum distance between themselves and oth-

ers at all times. This rule has the highest priority and corresponds to a frequently 

observed behavior of animals in nature [12]. If individuals are not performing an 

avoidance manoeuvre, they tend to be attracted towards other individuals (to avoid 

being isolated) and to align themselves with neighbors [9], [10]. 

Couzin et al. [6] identified four collective dynamical behaviors as illustrated in 

Figure 16.1: 

• torus: individuals perpetually rotate around an empty core (milling). 

The direction of rotation is random. 

• dynamic parallel group: the individuals are polarized and move as a 

coherent group, but individuals can move throughout the group and 

density and group form can fluctuate [11], [9]. 

• swarm : an aggregate with cohesion, but a low level of polarization 

(parallel alignment) among members 
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• highly parallel group: much more static in terms of exchange of spa-

tial positions within the group than the dynamic parallel group and 

the variation in density and form is minimal. 

 

As mentioned in [7], at a high-level, a swarm can be viewed as a group of agents 

cooperating to achieve some purposeful behavior and achieve some goal. This 

collective intelligence seems to emerge from what are often large groups of rela-

tively simple agents. The agents use simple local rules to govern their actions and 

via the interactions of the entire group, the swarm achieves its objectives. A type 

of self-organization emerges from the collection of actions of the group. 

 

 

Fig. 16.1 Several models of collective behavior: torus (top-left) dynamic parallel group 

(top-right), swarm (bottom-left), and highly parallel group (bottom-right). 

 
An autonomous agent is a subsystem that interacts with its environment, which 

probably consists of other agents, but acts relatively independently from all other 

agents [7]. The autonomous agent does not follow commands from a leader, or 

some global plan [8]. For example, for a bird to participate in a flock, it only  

 



16.2   Particle Swarm Optimization 411

 

adjusts its movements to coordinate with the movements of its flock mates, typi-

cally its neighbors that are close to it in the flock. A bird in a flock simply tries to 

stay close to its neighbors, but avoid collisions with them. Each bird does not take 

commands from any leader bird since there is no lead bird. Any bird can be in the 

front, center and back of the swarm. Swarm behavior helps birds take advantage 

of several things including protection from predators (especially for birds in the 

middle of the flock), and searching for food (essentially each bird is exploiting the 

eyes of every other bird) [7]. 

Since 1990, several collective behavior (like social insects, bird flocking) in-

spired algorithms have been proposed. The application areas of these algorithms 

refer to well studied optimization problems like NP-hard problems (Traveling Sa-

lesman Problem, Quadratic Assignment Problem, Graph problems), network 

routing, clustering, data mining, job scheduling, bioinformatics, etc. [1][2][3][4]. 

Particle Swarm Optimization (PSO) and Ant Colonies Optimization (ACO) are 

currently the most popular algorithms in the swarm intelligence domain. 

16.2   Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) model [13][14] consists of a swarm of 

particles, which are initialized with a population of random candidate solutions. 

They move iteratively through the d-dimension problem space to search the new 

solutions, where the fitness, f, can be calculated as the certain qualities measure. 

Each particle has a position represented by a position-vector xi (i is the index of 

the particle), and a velocity represented by a velocity-vector vj. . Each particle 

remembers its own best position so far in a vector 
#x i , and its j-th dimensional 

value is 
#x ij . The best position-vector among the swarm so far is then stored in a 

vector x*, and its j-th dimensional value is xj
*
. 

During the iteration time t, the update of the velocity from the previous velocity 

to the new velocity is determined by equation (16.1). The new position is then 

determined by the sum of the previous position and the new velocity by equation 

(16.2). 

 

( ) ( ))()()()()()1( *
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xij(t+1) = xij(t)+vij(t+1)              (16.2) 

 

where w is called as the inertia factor, r1 and r2 are the random numbers which are 

used to maintain the diversity of the population, and are uniformly distributed in 

the interval [0,1] for the j-th dimension of the i-th particle. c1 is a positive con-

stant, called as coefficient of the self-recognition component, c2 is a positive con-

stant, called as coefficient of the social component.  A large inertia weight (w)  
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facilitates a global search while a small inertia weight facilitates a local search. By  

linearly decreasing the inertia weight from a relatively large value to a small value 

through the course of the PSO run gives the best PSO performance compared with 

fixed inertia weight settings. 

From equation (16.1), a particle decides where to move next, considering its 

own experience, which is the memory of its best past position, and the experience 

of its most successful particle in the swarm. In the particle swarm model, the par-

ticle searches the solutions in the problem space with a range [-s; s] (if the range is 

not symmetrical, it can be translated to the corresponding symmetrical range.) In 

order to guide the particles effectively in the search space, the maximum moving 

distance during one iteration must be clamped in between the maximum velocity 

[- vmax, vmax] given in equation (16.3): 

 

vij = sign (vij) min(|vij|, vmax)                                 (16.3) 

 

The value of vmax is p× s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be s, i.e. p 

= 1. The pseudo-code for particle swarm optimization algorithm is illustrated  

below: 

 

) 

  

 

  

The end criteria are usually one of the following:  

• maximum number of iterations: the optimization process is termi-

nated after a fixed number of iterations, for example, 1000 iterations; 

• number of iterations without improvement: the optimization process 

is terminated after some fixed number of iterations without any im-

provement; 

• minimum objective function error: the error between the obtained ob-

jective function value and the best fitness value is less than a pre-

fixed anticipated threshold. 
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There are 3 terms that contribute to creating the new velocity: 

1) inertia term: 

• this term forces the particle to move in the same direction; 

• audacious tendency, following own way using old velocity. 

2) cognitive term 

• this term forces the particle to go back to the previous best  

position; 

• conservative tendency. 

3) social learning term 

• this term forces the particle to move to the best previous posi-

tion of its neighbors; 

• sheep like tendency, be a follower. 

16.2.1   Parameters of PSO  

The role of inertia weight w in equation (16.1) is considered critical for the con-

vergence behavior of PSO. The inertia weight is employed to control the impact of 

the previous history of velocities on the current one. Accordingly, the parameter w 

regulates the trade-off between the global (wide-ranging) and local (nearby) ex-

ploration abilities of the swarm. A large inertia weight facilitates global explora-

tion (searching new areas), while a small one tends to facilitate local exploration, 

i.e. fine-tuning the current search area. A suitable value for the inertia weight w 

usually provides balance between global and local exploration abilities and conse-

quently results in a reduction of the number of iterations required to locate the 

optimum solution. Initially, the inertia weight is set as a constant. However, some 

experiment results indicates that it is better to initially set the inertia to a large 

value, in order to promote global exploration of the search space, and gradually 

decrease it to get more refined solutions [11]. Thus, an initial value around 1.2 and 

gradually reducing towards 0 can be considered as a good choice for w. A better 

method is to use some adaptive approaches (example: fuzzy controller), in which 

the parameters can be adaptively fine tuned according to the problems under con-

sideration [5]. 

The parameters c1 and c2 in equation (16.1) are not critical for the convergence 

of PSO. However, proper fine-tuning may result in faster convergence and allevia-

tion of local minima. As default values, usually, c1 = c2 = 2 are used, but some 

experiment results indicate that c1 = c2 = 1.49 might provide even better results. 

Recent work reports that it might be even better to choose a larger cognitive para-

meter, c1, than a social parameter, c2, but with c1+c2 ≤  4 [16]. 

The particle swarm algorithm can be described generally as a population of 

vectors whose trajectories oscillate around a region which is defined by each indi-

vidual’s previous best success and the success of some other particle. Various me-

thods have been used to identify some other particle to influence the individual. 

Eberhart and Kennedy called the two basic methods as “gbest model” and “lbest 

model” [13]. In the lbest model, particles have information only of their own and 

their nearest array neighbors’ best (lbest), rather than that of the entire group. 
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Namely, in Eq.(16.4), gbest is replaced by lbest in the model. So a new neighbor-

hood relation is defined for the swarm: 
 

( ) ( ))()()()()()1( 2211 txtprctxtprctvwtv idldidididid −+−+⋅=+   (16.4) 

xid(t+1) = xid(t)+ vid(t+1)            (16.5) 

 

In the gbest model, the trajectory for each particle’s search is influenced by the 

best point found by any member of the entire population. The best particle acts as 

an attractor, pulling all the particles towards it. Eventually all particles will con-

verge to this position. The lbest model allows each individual to be influenced by 

some smaller number of adjacent members of the population array. The particles 

selected to be in one subset of the swarm have no direct relationship to the other 

particles in the other neighborhood. Typically lbest neighborhoods comprise ex-

actly two neighbors. When the number of neighbors increases to all but itself in 

the lbest model, the case is equivalent to the gbest model. Some experiment results 

testified that gbest model converges quickly on problem solutions but has a weak-

ness for becoming trapped in local optima, while lbest model converges slowly on 

problem solutions but is able to “flow around” local optima, as the individuals 

explore different regions. The gbest model is recommended strongly for unimodal 

objective functions, while a variable neighborhood model is recommended for 

multimodal objective functions. 

Kennedy and Mendes [15] studied the various population topologies on the 

PSO performance. Different concepts for neighborhoods could be envisaged. It 

can be observed as a spatial neighborhood when it is determined by the Euclidean 

distance between the positions of two particles, or as a sociometric neighborhood 

(e.g. the index position in the storing array). The different concepts for neighbor-

hood leads to different neighborhood topologies. Different topologies primarily 

affect the communication abilities and thus the group’s performance. Different 

topologies are illustrated in Fig. 16.2. In the case of a global neighborhood, the 

structure is a fully connected network where every particle has access to the oth-

ers’ best position (Figure 16.2 (a)). But in local neighborhoods there are more 

possible variants. In the von Neumann topology (Figure 16.2 (b)), neighbors 

above, below, and each side on a two dimensional lattice are connected. Figure 

16.2 (e) illustrates the von Neumann topology with one section flattened out. In a 

pyramid topology, three dimensional wire frame triangles are formulated as illu-

strated in Figure 16.2 (c). As shown in Figure 16.2 (d), one common structure for 

a local neighborhood is the circle topology where individuals are far away from 

others (in terms of graph structure, not necessarily distance) and are independent 

of each other but neighbors are closely connected. Another structure is called 

wheel (star) topology and has a more hierarchical structure, because all members 

of the neighborhood are connected to a ‘leader’ individual as shown in Fig. 16.2 

(f). Thus, all information has to be communicated though this ‘leader’, which then 

compares the performances of all others. 
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Fig. 16.2 Some neighborhood topologies (adapted from [15]). 

16.3   Ant Colonies Optimization 

When searching for food, ants initially explore the area surrounding their nest in a 

random manner. While moving, ants leave a chemical pheromone trail on the 

ground. Ants are guided by pheromone smell. Ants tend to choose the paths 

marked by the strongest pheromone concentration. When an ant finds a food 

source, it evaluates the quantity and the quality of the food and carries some of it 

back to the nest. During the return trip, the quantity of pheromone that an ant 

leaves on the ground may depend on the quantity and quality of the food. The phe-

romone trails will guide other ants to the food source. 

The indirect communication between the ants via pheromone trails enables 

them to find shortest paths between their nest and food sources as illustrated in 

Figure 16.3. 
Ants’ ability to collectively find the shortest path to the best food source was 

studied by Jean-Louis Deneubourg [18][19][20]. He demonstrated how the Argen-

tine ant was able to successfully choose the shortest between the two paths to a 

food source. Deneubourg was initially interested in self organization, a concept 

which until then had been the fare of chemists and physicists seeking to explain 

the natural order occurring in physical structures such as sand dunes and animal 

patterns. Deneubourg saw the potential for this concept, which by 1989 had turned 

into a sizeable research project amongst Physicists, to be applied to Biology. In his 

experiments, a group of ants are offered two branches leading to the same food 

source, one longer than the other. Initially, there is a 50% chance of an ant choos-

ing either branch, but gradually more and more journeys are completed on the 

shorter branch than the longer one, causing a denser pheromone trail to be laid. 

This consequently tips the balance and the ants begin to concentrate on the shorter  
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Fig. 16.3 The ants taking the shortest path can perform a greater number of trips between 

nest and food; implicitly the pheromone trail will be more than the one released by the ants 

following the longest path. 

 
route, discarding the longer one. This is precisely the mechanism underpinning an 

ant colony’s ability to efficiently exploit food sources in sequential order: strong 

trails will be established to the nearest source first, and then when it is depleted 

and the ants lose interest, the trails leading to the next nearest source will build  

up [4]. 

16.3.1   Ant System 

Although an individual ant is quite small (measuring only 2.2 to 2.6 mm in length) 

and wanders quite aimlessly in isolation, a group of many ants exhibits extraordi-

narily intelligent behavior, recognizable to humans as meaningful pathways to 

food sources. This emergent intelligence can be summarized as: 

1) At the outset of the foraging process, the ants move more or less 

randomly – this “random” movement is actually executed such that 

a considerable amount of surface area is covered, emanating out-

ward from the nest. 

2) If it is not carrying food, the ant “deposits” a nest pheromone and 

will prefer to walk in the direction of sensed food pheromone. 

3) If it is carrying food, the ant deposits a food pheromone and will 

prefer to walk in the direction of sensed nest pheromone. 

4) The ant will transport food from the source to the nest.  
 

As a pheromone “trail” becomes stronger, the more ants follow it, leaving more 

pheromone along the way, which makes more ants follow it, and so on. ACO is 
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implemented as a team of intelligent agents which simulate the ants’ behavior, 

walking around the graph representing the problem to solve using mechanisms of 

cooperation and adaptation. ACO algorithm requires defining the following [23]: 

• The problem needs to be represented appropriately, which would al-

low the ants to incrementally update the solutions through the use of a 

probabilistic transition rules, based on the amount of pheromone in 

the trail and other problem specific knowledge. It is also important to 

enforce a strategy to construct only valid solutions corresponding to 

the problem definition. 

• A problem-dependent heuristic function h that measures the quality of 

components that can be added to the current partial solution. 

• A rule set for pheromone updating, which specifies how to modify the 

pheromone value t. 

• A probabilistic transition rule based on the value of the heuristic func-

tion h and the pheromone value t that is used to iteratively construct a 

solution. 
 

According to [22], the main steps of the ACO algorithm are given below: 

1) pheromone trail initialization;  

2) solution construction using pheromone trail; 

Each ant constructs a complete solution to the problem according to 

a probabilistic rule; 

3) state transition rule;  

The state transition rule depends mainly on the state of the  

pheromone; 

4) pheromone trail update;  

A global pheromone updating rule is applied in two phases. First, an 

evaporation phase where a fraction of the pheromone evaporates, 

and then a reinforcement phase where each ant deposits an amount 

of pheromone which is proportional to the fitness of its solution 

[21]. This process is iterated until a termination condition is 

reached.  
 

ACO was first introduced using the Traveling Salesman Problem. Starting from its 

start node, an ant iteratively moves from one node to another. When being at a 

node, an ant chooses to go to an unvisited node at time t with a probability given 

by: 
 

[ ] [ ]
[ ] [ ]

⎪⎪⎩
⎪⎪⎨
⎧

∈
= ∑

∈

otherwise0

f,
)()(

)()(

)( ,,

,,

,

k

i

Nk

kiki

jiji

k

ji

Nji
tt

tt

tp
k
i

βα

βα

ητ

ητ

                  (16.6) 

where 
k

iN is the feasible neighborhood of the antk, that is, the set of cities which 

antk has not yet visited; τi,j(t) is the pheromone value on the edge (i, j) at the time t, 
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α is the weight of pheromone; ηi,j(t) is a priori available heuristic information on 

the edge (i, j) at the time t, β is the weight of heuristic information. Two parame-

ters α and β determine the relative influence of pheromone trail and heuristic in-

formation. τi,j (t) is determined by: 
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where ρ is the pheromone trail evaporation rate (0 < ρ < 1), n is the number of 

ants, Q is a constant for pheromone updating, Lk is the length of that path. A gene-

ralized version of the pseudocode for the ACO algorithm with reference to the 

TSP is illustrated below: 

 
 

 

Other applications of the ACO algorithm include: sequential ordering problem, 

quadratic assignment problem, vehicle routing problem, scheduling problems, 

graph coloring, partitioning problems, timetabling, shortest subsequence problem, 

constraint satisfaction problems, maximum clique problem, edge-disjoint paths 

problem. 

Summaries 

This chapter introduced some of the theoretical foundations of swarm intelligence. 

We focus on the design and implementation of the Particle Swarm Optimization 

and Ant Colony Optimization algorithms. PSO is a population-based search  
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algorithm and is initialized with a population of random solutions, called particles. 

Unlike in the other evolutionary computation techniques, each particle in PSO is 

also associated with a velocity. Particles fly through the search space with veloci-

ties, which are dynamically adjusted according to their historical behaviors. There-

fore, the particles have the tendency to fly towards the better and better search 

area over the course of search process. The PSO was first designed to simulate 

birds seeking food, which is defined as a ‘cornfield vector’. 

In PSO, each single solution is like a ‘bird’ in the search space, which is called 

‘particle’. All particles have fitness values, which are evaluated by the fitness 

function to be optimized, and have velocities, which direct the flying of the par-

ticles. (The particles fly through the problem space by following the particles with 

the best solutions so far). PSO is initialized with a group of random particles (so-

lutions) and then searches for optima by updating each generation. 

There are some drawbacks, which the standard PSO algorithm encounters: 

• particles tend to cluster, i.e., converge too fast and get stuck at local 

optimum; 

• movement of particle carried it into infeasible region; 

• inappropriate mapping of particle space into solution space. 

Some of them are overcome by newer versions of PSO: 

• PSO with multiple social learning terms; 

• Measurement Indices for PSO: 

o Two measurement indices are defined for observing the dynam-

ic behavior of the swarm:  

̇ dispersion index: It measures how particles are spread-

ing around the best particle in the swarm, and is de-

fined as the average absolute distance of each dimen-

sion from the best particle.  

It explains the coverage searching area of the 

swarm. A swarm with higher dispersion index has rela-

tively wider coverage of searching area than the one 

with lower dispersion index.  

̇ velocity index: It measures how fast the swarm moves 

in certain iteration, and is defined as the average of ab-

solute velocity.  

It shows the moving behavior of the swarm: higher 

index means the swarm move more aggressively in 

moving through the problem space than the swarm with 

lower index.  

• Heterogeneous Particles; 

• Hierarchical PSO. 

 

ACO algorithms were inspired by the behavior of ant colonies. Ants are social 

insects, being interested mainly in the colony survival rather than individual  
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survival. Of interests is ants’ ability to find the shortest path from their nest to 

food. This idea was the source of the algorithms inspired from ants’ behavior. 

When searching for food, ants initially explore the area surrounding their nest 

in a random manner. While moving, ants leave a chemical pheromone trail on the 

ground. Ants are guided by pheromone smell and tend to choose the paths marked 

by the strongest pheromone concentration. When an ant finds a food source, it 

evaluates the quantity and the quality of the food and carries some of it back to the 

nest. During the return trip, the quantity of pheromone that an ant leaves on the 

ground may depend on the quantity and quality of the food. The pheromone trails 

will guide other ants to the food source. The indirect communication between the 

ants via pheromone trails enables them to find shortest paths between their nest 

and food sources.  

Some advantages and disadvantages of the ACO system are: 

• Advantages: 

o positive feedback accounts for rapid discovery of good solu-

tions; 

o distributed computation avoids premature convergence; 

o the greedy heuristic helps find acceptable solution in the early 

solution in the early stages of the search process; 

o the collective interaction of a population of agents. 

• Disadvantages: 

o it has a slower convergence than other heuristics; 

o it performed poorly for TSP problems larger than 75 cities; 

o no centralized processor to guide the AS towards good  

solutions. 
 

The subject of copying, imitating, and learning from biology was coined Biomi-

metics by Otto H. Schmitt in 1969 [17]. This field is increasingly involved with 

emerging subjects of science and engineering and it represents the studies and 

imitation of nature’s methods, designs and processes. Nature has produced effec-

tive solutions to innumerable complex real-world problems. Even though there are 

several computational nature inspired models, there is still a lot of room for more 

research, at least in the form of finding some collaborations and interactions be-

tween the existing systems as well as developing new systems by borrowing ideas 

from nature. Butler [16] suggests some potential research areas: 

1) Spiders spin silk that is stronger than synthetic substances devel-

oped by man but require only insects as inputs. 

2) Diatoms, microscopic phytoplankton responsible for a quarter of 

all the photosynthesis on Earth, make glass using silicon dissolved 

in seawater. 

3) Abalone, a type of shellfish, produces a crack-resistant shell twice 

as tough as ceramic from calcium found in seawater using a 

process known as biomineralization. 

4) Trees ”turn sunlight, water, and air into cellulose, a sugar stiffer 

and stronger than nylon, and bind it into wood, a natural compo-
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site with a higher bending strength and stiffness than concrete or 

steel,” as noted by Paul Hawken, Amory and L. Hunter Lovins in 

Natural Capitalism. 

5) Countless plants generate compounds that fight off infection from 

fungi, insects, and other pests [4]. 

References 

1. Grosan, C., Abraham, A., Chis, M.: Swarm intelligence in data mining, Swarm Intelli-

gence and Data Mining. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Studies in 

Computational Intelligence, vol. 34, pp. 1–20. Springer, Germany (2006) 

2. Das, S., Abraham, A., Konar, A.: Swarm Intelligence Algorithms in Bioinformatics. 

In: Kelemen, A., et al. (eds.) Computational Intelligence in Bioinformatics, pp. 113–

147. Springer, Germany (2008) 

3. Abraham, A., Das, S., Roy, S.: Swarm Intelligence Algorithms for Data Clustering. In: 

Maimon, O., Rokach, L. (eds.) Soft Computing for Knowledge Discovery and Data 

Mining, pp. 279–313. Springer, Heidelberg (2007) 

4. Grosan, C., Abraham, A.: Stigmergic Optimization: Inspiration, Technologies and  

Perspectives. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Studies in Computational 

Intelligence, pp. 1–24. Springer, Germany (2006) 

5. Abraham, A., Guo, H.: H. Liu, Swarm Intelligence: Foundations, Perspectives and Ap-

plications. In: Nedjah, N., Mourelle, L. (eds.) Swarm Intelligent Systems, pp. 3–25. 

Springer, Germany (2006) 

6. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective Memory 

and Spatial Sorting in Animal Groups. Journal of Theoretical Biology 218, 1–11 

(2002) 

7. Fayyad, U., Piatestku-Shapio, G., Smyth, P., Uthurusamy, R.: Advances in knowledge 

discovery and data mining. AAAI/MIT Press (1996) 

8. Flake, G.: The computational beauty of nature. MIT Press, Cambridge (1999) 

9. Partridge, B.L., Pitcher, T.J.: The sensory basis of fish schools: relative role of lateral 

line and vision. Journal of Comparative Physiology 135, 315–325 (1980) 

10. Partridge, B.L.: The structure and function of fish schools. Science American 245,  

90–99 (1982) 

11. Major, P.F., Dill, L.M.: The three-dimensional structure of airborne bird flocks. Beha-

vioral Ecology and Sociobiology 4, 111–122 (1978) 

12. Krause, J., Ruxton, G.D.: Living in groups. Oxford University Press, Oxford (2002) 

13. Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann, Academic Press 

(2001) 

14. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a 

multidimensional complex space. IEEE Transactions on Evolutionary Computa-

tion 6(1), 58–73 (2002) 

15. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: 

Proceeding of IEEE Conference on Evolutionary Computation, pp. 1671–1676 (2002) 

16. Butler, R.: Biomimetics, technology that mimics nature, available online at  

http://mongabay.com 

17. Cohen, Y.B.: Biomimetics: Biologically Inspired Technologies. CRC Press, Boca Ra-

ton (2005) 



422 16   Swarm Intelligence

 

18. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M., Duerinck, G.: Random behaviour, 

amplification processes and number of participants: how they contribute to the forag-

ing properties of ants. Physica D 22, 176–186 (1986) 

19. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: Error, communication and learn-

ing in ant societies. European Journal of Operational Research 30, 168–172 (1987) 

20. Deneubourg, L.J., Goss, S., Pasteels, J.M., Fresneau, D., Lachaud, J.P.: Self-

organization mechanisms in ant societies (II): learning in foraging and division of la-

bor. In: From Individual to Collective Behavior in Social Insects. Experientia Supple-

mentum, vol. 54, pp. 177–196 (1984) 

21. Toksari, M.D.: Ant colony optimization for finding the global minimum. Applied Ma-

thematics and Computation 176(1), 308–316 (2006) 

22. Dorigo, M., Gambardella, L.M.: Ant Colonies for the Traveling Salesman Problem. 

BioSystems 43, 73–81 (1997) 

23. Dorigo, M., Bonaneau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Gen-

eration Computer Systems 16, 851–871 (2000) 

Verification Questions 

1. Present some models of collective behavior. 

2. What are the main principles of collective behavior? 

3. Explain in detail the mechanism behind PSO. 

4. How to set inertia weight in PSO? 

5. How is the new velocity created? 

6. Explain the main PSO models and the differences between them. 

7. Define and explain neighborhood topologies in PSO. 

8. What is the nature association with the artificial Ant Colonies Systems? 

9. What are the main steps of ACO Algorithm? 

10. Which problems are suitable to be approached with ACO? 

11. Enumerate known ones or find by yourself some possible nature inspired 

research ideas. 

Exercises 

Use PSO for all the optimization problems given in Chapter 13. Some of them 

might not have a direct real representation; thus, try to adapt PSO (whenever it is 

possible) for these problems. 
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Chapter 17 

Hybrid Intelligent Systems 

17.1   Introduction 

Computational intelligence is an innovative framework for constructing intelligent 

hybrid architectures involving Neural Networks (NN), Fuzzy Inference Systems 

(FIS), Probabilistic Reasoning (PR), Evolutionary Computation (EC) and Swarm 

Intelligence (SI). Most of these hybridization approaches, however, follow an ad 

hoc design methodology, justified by success in certain application domains. Due 

to the lack of a common framework it often remains difficult to compare the vari-

ous hybrid systems conceptually and to evaluate their performance comparatively. 

Several adaptive hybrid computational intelligence frameworks have been de-

veloped. Many of these approaches use a combination of different knowledge re-

presentation schemes, decision making models and learning strategies to solve a 

computational task. This integration aims at overcoming the limitations of indi-

vidual techniques through hybridization or the fusion of various techniques. 

To achieve a highly intelligent system, a synthesis of various techniques is re-

quired. Figure 17.1 shows the synthesis of NN, FIS and EC and their mutual inte-

ractions leading to different architectures. Each technique plays a very important 

role in the development of different hybrid soft computing architectures. Expe-

rience has shown that it is crucial, in the design of hybrid systems, to focus pri-

marily on the integration and interaction of different techniques rather than to 

merge different methods to create ever-new techniques. Techniques already well 

understood should be applied to solve specific domain problems within the sys-

tem. Their weaknesses must be addressed by combining them with complementa-

ry methods [1]. 

Neural networks offer a highly structured architecture with learning and gene-

ralization capabilities, which attempts to mimic the neurological mechanisms of 

the brain. NN stores knowledge in a distributive manner within its weights, which 

have been determined by learning from known samples. The generalization ability 

of new inputs is then based on the inherent algebraic structure of the NN. Howev-

er it is very hard to incorporate human a priori knowledge into a NN mainly be-

cause the connectionist paradigm gains most of its strength from a distributed 

knowledge representation. 
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By contrast, fuzzy inference systems exhibit complementary characteristics, of-

fering a very powerful framework for approximate reasoning, which attempts to 

model the human reasoning process at a cognitive level [8]. FIS acquires know-

ledge from domain experts which is encoded within the algorithm in terms of the 

set of if-then rules. FIS employ this rule-based approach and interpolative reason-

ing to respond to new inputs [5]. The incorporation and interpretation of knowledge 

is straightforward, whereas learning and adaptation constitute major problems.   

Probabilistic reasoning such as Bayesian belief networks gives us a mechanism 

for evaluating the outcome of systems affected by randomness or other types of 

probabilistic uncertainty. An important advantage of probabilistic reasoning is its 

ability to update previous outcome estimates by conditioning them with newly 

available evidence [7].  

Global optimization involves finding the absolutely best set of parameters to 

optimize an objective function. In general, it may be possible to have solutions 

that are locally but not globally optimal. Consequently, global optimization prob-

lems are typically quite difficult to solve exactly: in the context of combinatorial 

problems, they are often NP-hard. Evolutionary Computation works by simulating 

evolution on a computer by iterative generations and alteration processes operat-

ing on a set of candidate solutions that form a population. The entire population 

evolves towards better candidate solutions via the selection operation and genetic 

operators such as crossover and mutation. The selection operator decides which 

candidate solutions move on into the next generation and thus limits the search 

space [1][6]. 

 

Fig. 17.1 General framework for hybrid architectures 
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17.2   Models of Hybrid Computational Intelligence 

Architectures 

The hybrid intelligent architectures can be classified into 4 different categories 

based on the system’s overall architecture [1]:  
 

1) Stand-alone  

2) Transformational  

3) Hierarchical hybrid  

4) Integrated hybrid.  

The following sections discuss each of these strategies. 

17.2.1   Stand-Alone Systems 

Stand-alone models consist of independent software components, which do not 

interact in any way. Developing stand-alone systems can have several purposes: 

first, they provide a direct means of comparing the problem solving capabilities of 

different techniques with reference to a certain application [1]. Running different 

techniques in a parallel environment permits a loose approximation of integration. 

Stand-alone models are often used to develop a quick initial prototype, while a 

more time-consuming application is developed. Figure 17.2 displays a stand-alone 

system where a neural network and a fuzzy system are used separately. 

Some of the benefits are simplicity and ease of development by using commer-

cially available software packages. On the other hand, stand-alone techniques are 

not transferable: neither can support the weakness of the other technique. 

 

 

Fig. 17.2 Stand-alone system. 

17.2.2   Transformational Hybrid Intelligent System 

In a transformational hybrid model, the system begins as one type and ends up as 

the other. Determining, which technique is used for development and which is 

used for delivery is based on the desirable features that the technique offers.  

Figure 17.3 shows the interaction between a neural network and an expert system 

in a transformational hybrid model [9]. Obviously, either the expert system is  

incapable of adequately solving the problem, or the speed, adaptability, and  
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robustness of neural network is required. Knowledge from the expert system is 

used to determine the initial conditions and the training set for the artificial neural 

network.    
 

Fig. 17.3 Transformational hybrid architecture. 

 
Transformational hybrid models are often quick to develop and ultimately re-

quire maintenance on only one system. They can be developed to suit the envi-

ronment and offer many operational benefits. Unfortunately, transformational 

models are significantly limited: most are just application-oriented. For a different 

application, a totally new development effort might be required such as a fully 

automated means of transforming an expert system to a neural network and vice 

versa. 

17.2.3   Hierarchical Hybrid Intelligent System 

This architecture is built in a hierarchical fashion, associating a different functio-

nality with each layer. The overall functioning of the model depends on the correct 

functioning of all the layers. Figure 17.4 demonstrates a hierarchical hybrid archi-

tecture involving a neural network, an evolutionary algorithm and a fuzzy system. 

The neural network uses an evolutionary algorithm to optimize its performance 

and the network output acts as a pre-processor to a fuzzy system, which then pro-

duces the final output. Poor performance in one of the layers directly affects the 

final output. 

 

 

Fig. 17.4 Hierarchical hybrid architectures.  
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17.2.4   Integrated Intelligent System 

Fused architectures are the first true form of integrated intelligent systems. They 

include systems, which combine different techniques into one single computation-

al model. They share data structures and knowledge representations. Another ap-

proach is to put the various techniques side-by-side and focus on their interaction 

in a problem-solving task. This method can allow for integrating alternative tech-

niques and exploiting their mutuality. Furthermore, the conceptual view of the 

agent allows one to abstract from the individual techniques and focus on the glob-

al system behavior, as well as to study the individual contribution of each compo-

nent [10].  

The benefits of integrated models include robustness, improved performance 

and increased problem-solving capabilities. Finally, fully integrated models can 

provide a full range of capabilities such as adaptation, generalization, noise toler-

ance and justification. Fused systems have limitations caused by the increased 

complexity of the inter-module interactions and specifying, designing, and build-

ing fully integrated models is complex. Some examples are neuro-fuzzy systems, 

evolutionary neural networks, evolutionary fuzzy systems etc. 

17.3   Neuro-fuzzy Systems 

A feedforward neural network could approximate any fuzzy-rule-based system 

and any feedforward neural network may be approximated by a rule-based fuzzy 

inference system [12]. A fusion of artificial neural networks and fuzzy inference 

systems has attracted growing interest among researchers in various scientific and 

engineering areas due to the growing need for adaptive intelligent systems to solve 

real world problems. The advantages of a combination of neural networks and 

fuzzy inference systems are obvious. An analysis reveals that the drawbacks per-

taining to these approaches seem complementary and therefore, it is natural to 

consider building an integrated system combining the concepts. While the learning 

capability is an advantage from the viewpoint of a fuzzy inference system, the 

automatic formation of a linguistic rule base is an advantage from the viewpoint of 

neural networks. Neural network learning techniques could be used to learn the 

fuzzy inference system in a cooperative and an integrated environment [1].  

17.3.1   Cooperative and Concurrent Neuro-fuzzy Systems 

In the simplest way, a cooperative model can be considered as a preprocessor 

wherein ANN learning mechanism determines the FIS membership functions or 

fuzzy rules from the training data. Once the FIS parameters are determined, ANN 

goes to the background. The rule based is usually determined by a clustering ap-

proach (self organizing maps) or fuzzy clustering algorithms. Membership func-

tions are usually approximated by neural network from the training data.  
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Kosko’s fuzzy associative memories [11], Pedryz’s (et al) fuzzy rule extraction 

using self organizing maps [14] and Nomura’s. (et al) systems capable of learning 

of fuzzy set parameters [13] are some good examples of cooperative neuro-fuzzy 

systems. 

In a concurrent model, ANN assists the FIS continuously to determine the re-

quired parameters especially if the input variables of the controller cannot be 

measured directly. In some cases the FIS outputs might not be directly applicable 

to the process. In that case ANN can act as a postprocessor of FIS outputs. Figures 

17.5 -6 depict the cooperative and concurrent NF models. 

  

  
  

Fig. 17.5 Cooperative NF model 

  

  

Fig. 17.6 Concurrent NF model 

17.3.2   Fused Neuro Fuzzy Systems 

In a fused NF architecture, ANN learning algorithms are used to determine  

the parameters of FIS. Fused NF systems share data structures and knowledge 
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representations. A common way to apply a learning algorithm to a fuzzy system is 

to represent it in a special ANN like architecture. However the conventional ANN 

learning algorithms (gradient descent) cannot be applied directly to such a system 

as the functions used in the inference process are usually non differentiable. This 

problem can be tackled by using differentiable functions in the inference system or 

by not using the standard neural learning algorithm. Some of the major woks in 

this area are GARIC [27], FALCON [26], ANFIS [19], NEFCON [25], FUN [21], 

SONFIN [20], FINEST [22], EFuNN [23], dmEFuNN [23] and many others[24]. 

• Fuzzy Adaptive learning Control Network (FALCON) 

FALCON [26] has a five-layered architecture as shown in Figure 17.7. There 

are two linguistic nodes for each output variable. One is for training data (desired 

output) and the other is for the actual output of FALCON. The first hidden layer is 

responsible for the fuzzification of each input variable. Each node can be a single 

node representing a simple membership function (MF) or composed of multilayer 

nodes that compute a complex MF. The Second hidden layer defines the precondi-

tions of the rule followed by rule consequents in the third hidden layer. FALCON 

uses a hybrid-learning algorithm comprising of unsupervised learning to locate 

initial membership functions/ rule base and a gradient descent learning to optimal-

ly adjust the parameters of the MF to produce the desired outputs. 

 

R1 R2 R3

x1 xn

R1

y1 y'1 ym y'm

 
 

Fig. 17.7 Architecture of FALCON 
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Fig. 17.8 Structure of ANFIS 

 

• Adaptive Neuro Fuzzy Inference System (ANFIS) 

ANFIS [19] implements a Takagi Sugeno FIS and has a five layered architecture 

as shown in Figure 17.8. The first hidden layer is for fuzzification of the input 

variables and T-norm operators are deployed in the second hidden layer to com-

pute the rule antecedent part. The third hidden layer normalizes the rule strengths 

followed by the fourth hidden layer where the consequent parameters of the rule 

are determined. Output layer computes the overall input as the summation of all 

incoming signals. ANFIS uses backpropagation learning to determine premise 

parameters (to learn the parameters related to membership functions) and least 

mean square estimation to determine the consequent parameters. A step in the 

learning procedure has got two parts: In the first part the input patterns are propa-

gated, and the optimal consequent parameters are estimated by an iterative least 

mean square procedure, while the premise parameters are assumed to be fixed for 

the current cycle through the training set. In the second part the patterns are prop-

agated again, and in this epoch, backpropagation is used to modify the premise 

parameters, while the consequent parameters remain fixed. This procedure is then 

iterated. 
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Fig. 17.9 ASN of GARIC 

 

 

Fig. 17.10 Architecture of NEFCON 
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• Generalized Approximate Reasoning based Intelligent Control (GARIC) 

GARIC [27] implements a neuro-fuzzy controller by using two neural network 

modules, the ASN (Action Selection Network) and the AEN (Action State Evalua-

tion Network). The AEN is an adaptive critic that evaluates the actions of the 

ASN. ASN of GARIC is feedforward network with five layers. Figure 17.9 illu-

strates the structure of GARIC – ASN. The connections between layers are not 

weighted. The first hidden layer stores the linguistic values of all the input va-

riables. Each input unit is only connected to those units of the first hidden layer, 

which represent its associated linguistic values. The second hidden layer 

represents the fuzzy rules nodes, which determine the degree of fulfillment of a 

rule using a softmin operation. The third hidden layer represents the linguistic  

values of the control output variable η. Conclusions of the rule are computed de-

pending on the strength of the rule antecedents computed by the rule node layer. 

GARIC makes use of local mean-of-maximum method for computing the rule 

outputs. This method needs a crisp output value from each rule. Therefore the 

conclusions must be defuzzified before they are accumulated to the final output 

value of the controller. GARIC uses a mixture of gradient descent and reinforce-

ment learning to fine-tune the node parameters. 

•    Neuro-Fuzzy Control (NEFCON) 

NEFCON [25] is designed to implement Mamdani type FIS and is illustrated in 

Figure 6. Connections in NEFCON are weighted with fuzzy sets and rules (ȝr, Ȟr 

are the fuzzy sets describing the antecedents and consequents) with the same ante-

cedent use so-called shared weights, which are represented by ellipses drawn 

around the connections. They ensure the integrity of the rule base. The input units 

assume the task of fuzzification interface, the inference logic is represented by the 

propagation functions, and the output unit is the defuzzification interface. The 

learning process of the NEFCON model is based on a mixture of reinforcement 

and backpropagation learning. NEFCON can be used to learn an initial rule base, 

if no prior knowledge about the system is available or even to optimize a manually 

defined rule base. NEFCON has two variants: NEFPROX (for function approxi-

mation) and NEFCLASS (for classification tasks) [25]. 

• Fuzzy Inference and Neural Network in Fuzzy Inference Software  

    (FINEST) 

FINEST [22] is capable of two kinds of tuning process, the tuning of fuzzy predi-

cates, combination functions and the tuning of an implication function. The gene-

ralized modus ponens is improved in the following four ways (1) Aggregation 

operators that have synergy and cancellation nature (2) A parameterized implica-

tion function (3) A combination function that can reduce fuzziness (4) Backward 

chaining based on generalized modus ponens. FINEST make use of a backpropa-

gation algorithm for the fine-tuning of the parameters. Figure 17.11 shows the 

layered architecture of FINEST and the calculation process of the fuzzy inference. 

FINEST provides a framework to tune any parameter, which appears in the nodes 

of the network representing the calculation process of the fuzzy data if the deriva-

tive function with respect to the parameters is given.  
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Fig. 17.11 Architecture of FINEST 

 

Steering

      Left      Forward     Right

      Rule 1        Rule 2

Defuzzification

OR

AND

    Left      Far    Near   Right Forward

   Goal   Sensor

Fuzzification

Input

 
 

Fig. 17.12. Architecture of FUN 
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Fig. 17.13 Architecture of EFuNN 

 

• FUzzy Net (FUN) 

In FUN [21] the neurons in the first hidden layer contain the membership func-

tions and this performs a fuzzification of the input values. In the second hidden 

layer, the conjunctions (fuzzy-AND) are calculated. Membership functions of the 

output variables are stored in the third hidden layer. Their activation function is a 

fuzzy-OR. Finally the output neuron performs the defuzzification. The network is 

initialized with a fuzzy rule base and the corresponding membership functions and 

there after uses a stochastic learning technique that randomly changes parameters 

of membership functions and connections within the network structure. The learn-

ing process is driven by a cost function, which is evaluated after the random mod-

ification. If the modification resulted in an improved performance the modification 

is kept, otherwise it is undone. The architecture is illustrated in Figure 17.12. 

 

• Evolving Fuzzy Neural Network (EFuNN) 

In EFuNN [23] all nodes are created during learning (Figure 17.13). The input layer 

passes the data to the second layer, which calculates the fuzzy membership de-

grees to which the input values belong to predefined fuzzy membership functions.  

The third layer contains fuzzy rule nodes representing prototypes of input-output 

data as an association of hyper-spheres from the fuzzy input and fuzzy output 

spaces. Each rule node is defined by 2 vectors of connection weights, which are 

adjusted through the hybrid learning technique. The fourth layer calculates the  
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Fig. 17.14 Architecture of SONFIN 

 
degrees to which output membership functions are matched by the input data, and 

the fifth layer does defuzzification and calculates exact values for the output va-

riables. Dynamic Evolving Fuzzy Neural Network (dmEFuNN) [23] is a modified 

version of EFuNN with the idea that not just the winning rule node's activation is 

propagated but a group of rule nodes is dynamically selected for every new input 

vector and their activation values are used to calculate the dynamical parameters 

of the output function. While EFuNN implements fuzzy rules of Mamdani type, 

dmEFuNN estimates the Takagi-Sugeno fuzzy rules based on a least squares  

algorithm. 

• Self Constructing Neural Fuzzy Inference Network (SONFIN) 

SONFIN [20] implements a modified Takagi-Sugeno FIS and is illustrated in  

Figure 17.14. In the structure identification of the precondition part, the input 

space is partitioned in a flexible way according to an aligned clustering based al-

gorithm. As to the structure identification of the consequent part, only a singleton 

value selected by a clustering method is assigned to each rule initially. Afterwards,  

some additional significant terms (input variables) selected via a projection-based 
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correlation measure for each rule are added to the consequent part (forming a li-

near equation of input variables) incrementally as learning proceeds. For parame-

ter identification, the consequent parameters are tuned optimally by either least 

mean squares or recursive least squares algorithms and the precondition parame-

ters are tuned by backpropagation algorithm.  

17.3.3   Discussions 

As evident, both cooperative and concurrent models are not fully interpretable due 

to the presence of ANN (black box concept), whereas a fused NF model is inter-

pretable and capable of learning in a supervised mode. In FALCON, GARIC, 

ANFIS, NEFCON, SONFIN, FINEST and FUN the learning process is only con-

cerned with parameter level adaptation within fixed structures. For large-scale 

problems, it will be too complicated to determine the optimal premise-consequent 

structures, rule numbers etc. User has to provide the architecture details (type and 

quantity of MF's for input and output variables), type of fuzzy operators etc. FIN-

EST provides a mechanism based on the improved generalized modus ponens for 

fine tuning of fuzzy predicates & combination functions and tuning of an implica-

tion function. An important feature of EFuNN and dmEFuNN is the one pass 

(epoch) training, which is highly capable for online learning. Since FUN system 

uses a stochastic learning procedure, it is questionable to call FUN a NF system. 

Table 17.1 provides a comparative performance of some neuro fuzzy systems for 

predicting the Mackey-Glass chaotic time series. Training was done using 500 

data sets and NF models were tested with another 500 data sets. 

Table 17.1 Performance of NF systems and ANN 

System Epochs RMSE  

ANFIS 75 0.0017 

NEFPROX 216 0.0332 

EFuNN 1 0.0140 

dmEFuNN 1 0.0042 

SONFIN - 0.0180 

17.4   Evolutionary Fuzzy Systems 

Fuzzy logic has been successfully used to capture heuristic control laws obtained 

from human experience or engineering practice in automated algorithm. These 

control laws are defined by means of linguistic rules. As man-machine interaction 

increases, the need to find a common framework to represent key elements in 

these two worlds becomes essential. Adaptive fuzzy systems provide such a 

framework. For the fuzzy controller to be fully adaptive, shape of membership 

functions, number of rules, reasoning method used to aggregate multiple actions, 

output actions associated with each partition etc. are to be decided automatically. 
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It is known that the performance of a fuzzy control system may be significantly 

improved if the fuzzy reasoning model is supplemented by a evolutionary learning 

mechanism. 

Several researchers are busy exploring the integration of evolutionary algo-

rithms with fuzzy logic. Majority of the works are concerned with the automatic 

design or optimization of fuzzy logic controllers either by adapting the fuzzy 

membership functions or by learning the fuzzy if-then rules. The first method re-

sults in a self-tuning controller in which an evolutionary algorithm adapts the 

fuzzy membership functions. The genome encodes parameters of trapezoidal, tri-

angle, logistic, Laplace, hyperbolic-tangent or Gaussian membership functions etc. 

This approach requires a previous defined rule base and is primarily useful in or-

der to optimize the performance of an already existing controller.  

Evolutionary search of fuzzy rules can be implemented using two approaches. 

In the first approach the fuzzy knowledge base is adapted as a result of antagonis-

tic roles of competition and cooperation of fuzzy rules. Each genotype represents a 

single fuzzy rule and the entire population represents a solution. A classifier rule 

triggers whenever its condition part matches the current input, in which case the 

proposed action is sent to the process to be controlled. Referring to Figure 17.15, a 

Mamdani or TSK rule may be formed as: 

If input-1 is medium and input-2 is large then rule R8 is fired. 
  

 
 

Fig. 17.15 Two-dimensional space partitioned using 3 trapezoidal membership functions. 
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The evolutionary algorithm generates new classifier rules based on the rule 

strengths acquired during the entire process. The fuzzy behavior is created by an 

activation sequence of mutually collaborating fuzzy rules. The entire knowledge 

base is build up by a cooperation of competing multiple fuzzy rules. The second 

approach evolves a population of knowledge bases rather than individual fuzzy 

rules. The disadvantage is the increased complexity of search space and additional 

computational burden especially for online learning. The size of the genotype de-

pends on the number of input/output variables and fuzzy sets. 
 

 

 
 

Fig. 17.16 Adaptive fuzzy control system architecture. 

 
Figure 17.16 shows the architecture of the adaptive fuzzy control system 

wherein the fuzzy membership functions and the rule bases are optimized using an 

evolutionary algorithm (or any hybrid global search procedure). An optimal de-

sign of an adaptive fuzzy control system can only be achieved by the adaptive 

evolution of membership functions and the learning rules that progress on differ-

ent time scales.  

17.4.1   Evolutionary – Neuro – Fuzzy (EvoNF) Systems 

In an integrated neuro-fuzzy model, there is no guarantee that the neural network 

learning algorithm will converge and the tuning of fuzzy inference system is suc-

cessful. Optimization of fuzzy inference systems could be further improved using 

neural network learning algorithm and evolutionary algorithms. This could be 

considered as a methodology to integrate neural networks, fuzzy inference sys-

tems and evolutionary search procedures [2] [3] [4]. 
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The EvoNF framework could adapt to Mamdani, Takagi-Sugeno or other fuzzy 

inference systems. The architecture and the evolving mechanism could be consi-

dered as a general framework for adaptive fuzzy systems that is a fuzzy model that 

can change membership functions (quantity and shape), rule base (architecture), 

fuzzy operators and learning parameters according to different environments 

without human intervention. Solving multi-objective scientific and engineering 

problems is, generally, a very difficult goal. In these particular optimization prob-

lems, the objectives often conflict across a high-dimension problem space and 

may also require extensive computational resources.  

Figure 17.17 illustrates the interaction of various evolutionary search proce-

dures and shows that for every fuzzy inference system, there exists a global search 

of learning algorithm parameters, an inference mechanism, a rule base and mem-

bership functions in an environment decided by the problem. Thus, the evolution 

of the fuzzy inference system evolves at the slowest time scale while the evolution 

of the quantity and type of membership functions evolves at the fastest rate. The 

function of the other layers could be derived similarly [1].   

 

 
 

Fig. 17.17 General computational framework for EvoNF 

17.5   Evolutionary Neural Networks (EANN) 

Even though artificial neural networks are capable of performing a wide variety of 

tasks, yet in practice sometimes they deliver only marginal performance. Inappro-

priate topology selection and learning algorithm are frequently blamed. There is 

little reason to expect that one can find a uniformly best algorithm for selecting the 

weights in a feed-forward artificial neural network [31][32]. This is in accordance 

with the no free lunch theorem, which explains that for any algorithm, any elevated 

performance over one class of problems is exactly paid for in performance over 

another class. In sum, one should be skeptical of claims in the literature on training 

algorithms that one being proposed is substantially better than most others. Such 

claims are often defended through some simulations based on applications in which 

the proposed algorithm performed better than some familiar alternative.  
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At present, neural network design relies heavily on human experts who have 

sufficient knowledge about the different aspects of the network and the problem 

domain. As the complexity of the problem domain increases, manual design  

becomes more difficult and unmanageable. Evolutionary design of artificial neural 

networks has been widely explored. Evolutionary algorithms are used to adapt the 

connection weights, network architecture and learning rules according to the  

problem environment. A distinct feature of evolutionary neural networks is their 

adaptability to a dynamic environment. In other words, such neural networks can 

adapt to an environment as well as changes in the environment. The two forms of 

adaptation: evolution and learning in evolutionary artificial neural networks make 

their adaptation to a dynamic environment much more effective and efficient than 

the conventional learning approach. 

Many of the conventional ANNs now being designed are statistically quite ac-

curate but they still leave a bad taste with users who expect computers to solve 

their problems accurately. The important drawback is that the designer has to  

specify the number of neurons, their distribution over several layers and intercon-

nection between them. Several methods have been proposed to automatically  

construct ANNs for reduction in network complexity that is to determine the ap-

propriate number of hidden units, layers, etc.  

The interest in evolutionary search procedures for designing ANN architecture 

has been growing in recent years as they can evolve towards the optimal architec-

ture without outside interference, thus eliminating the tedious trial and error work 

of manually finding an optimal network [28], [29]. The advantage of the automatic 

design over the manual design becomes clearer as the complexity of ANN in-

creases. EANNs provide a general framework for investigating various aspects of 

simulated evolution and learning[30]. 

17.5.1   General Framework for Evolutionary Neural Networks 

In an Evolutionary Artificial Neural Network (EANN), evolution can be intro-

duced at various levels. At the lowest level, evolution can be introduced into 

weight training, where ANN weights are evolved. At the next higher level, evolu-

tion can be introduced into neural network architecture adaptation, where the  

architecture (number of hidden layers, no of hidden neurons and node transfer 

functions) is evolved. At the highest level, evolution can be introduced into the 

learning mechanism. A general framework of EANNs which includes the above 

three levels of evolution is given in Figure 17.18. 

From the point of view of engineering, the decision on the level of evolution 

depends on what kind of prior knowledge is available. If there is more prior know-

ledge about EANN's architectures than that about their learning rules or a particu-

lar class of architectures is pursued, it is better to implement the evolution of ar-

chitectures at the highest level because such knowledge can be used to reduce the 

search space and the lower level evolution of learning rules can be more biased 

towards this kind of architectures. On the other hand, the evolution of learning 

rules should be at the highest level if there is more prior knowledge about them 

available or there is a special interest in certain type of learning rules. 
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Evolutionary Search of learning rules

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

  Slow

Fast

  

Fig. 17.18 A General Framework for EANNs 

17.5.2   Evolutionary Search of Connection Weights 

The shortcomings of the backpropagation algorithm could be overcome if the 

training process is formulated as a global search of connection weights towards an 

optimal set defined by the evolutionary algorithm.. Optimal connection weights 

can be formulated as a global search problem wherein the architecture of the neur-

al network is pre-defined and fixed during the evolution. Connection weights may 

be represented as binary strings represented by a certain length. The whole net-

work is encoded by concatenation of all the connection weights of the network in 

the chromosome. A heuristic concerning the order of the concatenation is to put 

connection weights to the same node together. Figure 17.19 illustrates the binary 

representation of connection weights wherein each weight is represented by 4 bits. 
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Fig. 17.19 Connection weight chromosome encoding using binary representation 

 
Real numbers have been proposed to represent connection weights directly. A 

representation of the ANN could be (2.0, 6.0, 5.0, 1.0, 4.0, 10.0). However proper 

genetic operators are to be chosen depending upon the representation used. 

Evolutionary search of connection weights can be formulated as follows: 

1) Generate an initial population of N weight chromosomes. Evaluate the 

fitness of each EANN depending on the problem. 
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2) Depending on the fitness and using suitable selection methods reproduce 

a number of children for each individual in the current generation. 

3) Apply genetic operators to each child individual generated above and ob-

tain the next generation.  

4) Check whether the network has achieved the required error rate or the 

specified number of generations has been reached. Go to Step 2. 

5) End 

While gradient based techniques are very much dependant on the initial setting of 

weights, this algorithm can be considered generally much less sensitive to initial 

conditions. When compared to any gradient descent or second order optimization 

technique that can only find local optimum in a neighborhood of the initial solu-

tion, evolutionary algorithms always try to search for a global optimal solution. 

Performance by using the above approach will directly depend on the problem. 

17.5.3   Evolutionary Search of Architectures 

Evolutionary architecture adaptation can be achieved by constructive and destruc-

tive algorithms. Constructive algorithms, add complexity to the network starting 

from a very simple architecture until the entire network is able to learn the task. 

Destructive algorithms start with large architectures and remove nodes and inter-

connections until the ANN is no longer able to perform its task. Then the last re-

moval is undone. Figure 17.20 demonstrates how typical neural network architec-

ture could be directly encoded and how the genotype is represented. For an optim-

al network, the required node transfer function (Gaussian, sigmoidal, etc.) can be 

formulated as a global search problem, which is evolved simultaneously with the 

search for architectures. 

To minimize the size of the genotype string and improve scalability, when pri-

ori knowledge of the architecture is known it will be efficient to use some indirect 

coding (high level) schemes. For example, if two neighboring layers are fully con-

nected then the architecture can be coded by simply using the number of layers 

and nodes. The blueprint representation is a popular indirect coding scheme where 

it assumes architecture consists of various segments or areas. Each segment or 

area will define a set of neurons, their spatial arrangement and their efferent  

connectivity.  

Global search of transfer function and the connectivity of the ANN using evo-

lutionary algorithms can be formulated as follows: 

1) The evolution of architectures has to be implemented such that the evolu-

tion of weight chromosomes are evolved at a faster rate i.e. for every archi-

tecture chromosome, there will be several weight chromosomes evolving at 

a faster time scale. 
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Fig. 17.20 Architecture chromosome using binary coding 

2) Generate an initial population of N architecture chromosomes. Evaluate 

the fitness of each EANN depending on the problem. 

3) Depending on the fitness and using suitable selection methods reproduce a 

number of children for each individual in the current generation. 

4) Apply genetic operators to each child individual generated above and ob-

tain the next generation.  

5) Check whether the network has achieved the required error rate or the 

specified number of generations has been reached. Go to Step 3. 

6) End 

17.5.4   Evolutionary Search of Learning Rules 

For the neural network to be fully optimal the learning rules are to be adapted dy-

namically according to its architecture and the given problem. Deciding the learn-

ing rate and momentum can be considered as the first attempt of learning rules. 

The basic learning rule can be generalized by the function 
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where t is the time, ∆w is the weight change, x1, x2,….. xn are local variables and 

the θ’s are the real values coefficients which will be determined by the global 

search algorithm. In the above equation different values of θ’s determine different 

learning rules. The above equation is arrived based on the assumption that the 

same rule is applicable at every node of the network and the weight updating is 

only dependent on the input/output activations and the connection weights on a 

particular node. Genotypes (θ’s) can be encoded as real-valued coefficients and 

the global search for learning rules using the hybrid algorithm can be formulated 

as follows: 
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1. The evolution of learning rules has to be implemented such that the evolution 

of architecture chromosomes are evolved at a faster rate i.e. for every learn-

ing rule chromosome, there will be several architecture chromosomes evolv-

ing at a faster time scale  

2. Generate an initial population of N learning rules. Evaluate the fitness of 

each EANN depending on the problem. 

3. Depending on the fitness and using suitable selection methods reproduce a 

number of children for each individual in the current generation. 

4. Apply genetic operators to each child individual generated above and obtain 

the next generation.  

5. Check whether the network has achieved the required error rate or the speci-

fied number of generations has been reached. Go to Step 3. 

6. End 

17.5.5   Meta Learning Evolutionary Artificial Neural Networks  

Experimental evidence had indicated cases where evolutionary algorithms are 

inefficient at fine tuning solutions, but better at finding global basins of attraction 

[28]. The efficiency of evolutionary training can be improved significantly by in-

corporating a local search procedure into the evolution. Evolutionary algorithms 

are used to first locate a good region in the space and then a local search procedure 

is used to find a near optimal solution in this region. It is interesting to consider 

finding good initial weights as locating a good region in the space.  Defining that 

the basin of attraction of a local minimum is composed of all the points, sets of 

weights in this case, which can converge to the local minimum through a local 

search algorithm, then a global minimum can easily be found by the local search 

algorithm if the evolutionary algorithm can locate any point, i.e, a set of initial 

weights, in the basin of attraction of the global minimum. Referring to Figure 

17.21, G1 and G2 could be considered as the initial weights as located by the evo-

lutionary search and WA and WB the corresponding final weights fine-tuned by the 

meta-learning technique. 
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Fig. 17. 21 Fine tuning of weights using meta-learning  
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Figure 17.22 illustrates the general interaction mechanism with the learning 

mechanism of the EANN evolving at the highest level on the slowest time scale. 

All the randomly generated architecture of the initial population are trained by 

four different learning algorithms (backpropagation-BP, scaled conjugate gra-

dient-SCG, quasi-Newton algorithm-QNA and Levenberg-Marquardt-LM) and 

evolved in a parallel environment. Parameters controlling the performance of the 

learning algorithm are adapted (example, learning rate and momentum for BP) 

according to the problem [31]. Figure 17.23 depicts the basic algorithm of  

proposed meta-learning EANN. Architecture of the chromosome is depicted in 

Figure 17.24. 
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Scaled Conjugate

Gradient
Quasi- Newton
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Evolutionary search  of learning algorithms and its parameters

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

  

Fig. 17. 22 Interaction of various evolutionary search mechanisms 

  

  
  

Fig. 17.23 Meta-learning algorithm for EANNs 

1. Set t=0 and randomly generate an initial population of neural net-

works with architectures, node transfer functions and connection 

weights assigned at random. 

2. In a parallel mode, evaluate fitness of each ANN using BP/SCG/QNA 

and LM 

3. Based on fitness value, select parents for reproduction 

4. Apply mutation to the parents and produce offspring (s) for next gen-

eration. Refill the population back to the defined size. 

5. Repeat step 2 

6. STOP when the required solution is found or number of iterations 

has reached the required limit. 
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Fig. 17.24 Chromosome representation of the proposed MLEANN framework 

17.6   Hybrid Evolutionary Algorithms 

As reported in the literature, several techniques and heuristics/metaheuristics have 

been used to improve the general efficiency of the evolutionary algorithms. Some 

of most used hybrid architectures are summarized as follows: 

 

1) hybridization between an evolutionary algorithm and another evolutio-

nary algorithm (example: a genetic programming technique is used to 

improve the performance of a genetic algorithm); 

2) Neural network assisted evolutionary algorithm;  

3) Fuzzy logic assisted evolutionary algorithm;  

4) Particle swarm optimization (PSO) assisted evolutionary algorithm;  

5) Ant colony optimization (ACO) assisted evolutionary algorithm;  

6) Bacterial foraging optimization assisted evolutionary algorithm;  

7) hybridization between evolutionary algorithm and other heuristics (such 

as local search, tabu search, simulated annealing, hill climbing, dynamic 

programming, greedy random adaptive search procedure, etc). 
 

Figure 17.25 represents a concurrent architecture where all the components are 

required for the proper functioning of the model.  As depicted in Figure17.25 (a), 

evolutionary algorithm acts as a preprocessor and the intelligent paradigm is used 

to fine tune the solutions formulated by the evolutionary algorithm.  

In Figure 17.25 (b), intelligent paradigm acts as a preprocessor and the evolu-

tionary algorithm is used to fine tune the solutions formulated by the intelligent 

paradigm.  

Figure 17.25 (c), represents a transformational hybrid system in which the evo-

lutionary algorithm is used to fine tune the performance of the intelligent para-

digm and at the same time, the intelligent paradigm is used to optimize the  

performance of the evolutionary algorithm. Required information is exchanged 

between the two techniques during the search (problem solving) process. In a co-

operative model the intelligent paradigm is used only for initialization or for  
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determining some parameters of the evolutionary algorithm. As depicted in  

Figure17.25 (d), thereafter, the intelligent paradigm is not required for the proper 

functioning of the system. Also, there are several ways to hybridize two or more 

techniques [15]. 

 

 

Fig. 17.25 Hybrid evolutionary algorithms: generic architecture. 

 
The integration of different learning and adaptation techniques, to overcome 

individual limitations and achieve synergetic effects through hybridization or fu-

sion of these techniques, has in recent years contributed to a large number of new 

hybrid evolutionary systems. Most of these approaches, however, follow an ad hoc 

design methodology, further justified by success in certain application domains. 

Due to the lack of a common framework it remains often difficult to compare the 

various hybrid systems conceptually and evaluate their performance comparative-

ly. There are several ways to hybridize a conventional evolutionary algorithm for 

solving optimization problems. Some of them are summarized below [15][18]: 

̇ The solutions of the initial population of EA may be created by problem-

specific heuristics; 

̇ Some or all the solutions obtained by the EA may be improved by local 

search. These kinds of algorithms are known as memetic algorithms 

[16][17]. 

̇ Solutions may be represented in an indirect way and a decoding algo-

rithm maps any genotype to a corresponding phenotypic solution. In this 

mapping, the decoder can exploit problem-specific characteristics and 

apply heuristics etc. 

̇ Variation operators may exploit problem knowledge. For example, in re-

combination more promising properties of one parent solution may be in-

herited with higher probabilities than the corresponding properties of the 

other parent(s). Also mutation may be biased to include in solutions 

promising properties with higher probabilities than others. 
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Summaries 

The integration of different learning and adaptation techniques to overcome indi-

vidual limitations and to achieve synergetic effects through the hybridization or 

fusion of these techniques has, in recent years, contributed to a large number of 

new intelligent system designs. Computational intelligence is an innovative 

framework for constructing intelligent hybrid architectures involving Neural Net-

works (NN), Fuzzy Inference Systems (FIS), Probabilistic Reasoning (PR) and 

Evolutionary Computation (EC) 

Different generic architectures for integrating intelligent systems can be found 

in the literature such as: NN-FIS, EC-FIS, EC-NN, FIS-PR and NN-FIS-EC.  

The hybrid soft computing approach has many important practical applications 

in science, technology, business and commercial. Compared to the individual con-

stituents (NN, FIS, EC and PR) hybrid approaches are relatively young. As the 

strengths and weakness of different hybrid architectures are understood, it will be 

possible to use them more efficiently to solve real world problems.   

The integration of different intelligent technologies is the most exciting fruit of 

modern artificial intelligence and is an active area of research. 
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Verification Questions 

1. Why do we need to hybridize intelligent techniques? 

2. What are the main hybrid architectures? Describe each of them with an 

example. 

3. What is a neuro-fuzzy system? What are the different types of neuro-

fuzzy systems? 

4. Describe with illustrative diagrams how to design an evolutionary neural 

network involving architecture and weight adaptation? 

5. Describe with illustrative diagrams how to design an evolutionary fuzzy 

system involving tuning the membership functions and learning the 

rules? 

6. What are hybrid evolutionary algorithms? How they are useful in  

practice?  

Exercises 

Find a problem (or more) for which a couple of techniques do not work very well, 

Try to find a hybridization between two or more of them in such a way that the 

hybrid works better than each of the techniques independently.  
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