

Multi-objective Design Space Exploration
of Multiprocessor SoC Architectures

Cristina Silvano • William Fornaciari
Eugenio Villar
Editors

Multi-objective Design
Space Exploration of
Multiprocessor SoC
Architectures

The MULTICUBE Approach

2123

Prof. Cristina Silvano Prof. Eugenio Villar
Dipartimento di Elettronica e Informazione Departamento de Tecnología Electrónica e
Politecnico di Milano, Via Ponzio 34/5, Ingeniería de Sistemas y Automática (TEISA)
20133 Milano, Italy University of Cantabria, Av. Los Castros s/n,
e-mail: silvano@elet.polimi.it 39005 Santander, Spain

e-mail: villar@teisa.unican.es
Prof. William Fornaciari
Dipartimento di Elettronica e Informazione
Politecnico di Milano, Via Ponzio 34/5,
20133 Milano, Italy
e-mail: fornacia@elet.polimi.it

ISBN 978-1-4419-8836-2 e-ISBN 978-1-4419-8837-9
DOI 10.1007/978-1-4419-8837-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011932796

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

“That is the exploration that awaits you!

Not mapping stars and studying nebula,

but charting the unknown possibilities of

existence.”

Q to Captain Jean Luc Picard
Star Trek: The Next Generation, 1994.

Foreword

The objective of the European research programme in Information and Communica-

tion Technologies (ICT) is to improve the competitiveness of European industry and

enable Europe to shape and master future developments in ICT. ICT is at the very core

of the knowledge based society. European research funding has as target to strengthen

Europe’s scientific and technology base and to ensure European leadership in ICT,

help drive and stimulate product, service and process innovation through ICT use

and value creation in Europe, and ensure that ICT progress is rapidly transformed

into benefits for Europe’s citizens, businesses, industry and governments.

Over the last years, the European Commission has constantly increased the amount

of funding going to research in computing architectures and tools with special em-

phasis on multicore computing. Typically, European research funding in a new area

(like multi/many core computing) starts with funding for a Network of Excellence.

Networks of Excellence are an instrument to overcome the fragmentation of the Eu-

ropean research landscape in a given area by bringing together around a common

research agenda the leading universities and research centers in Europe; their purpose

is to reach a durable restructuring/shaping and integration of efforts and institutions.

In the following years, a number of collaborative research projects may also be

funded to address specific, more industrially oriented, research challenges in the

same research area. It is important to note here that collaborative research projects

are the major route of funding in the European research landscape in a way that is

quite unique worldwide. In European collaborative research projects, international

consortia consisting of universities, companies and research centers, are working

together to advance the state of the art in a given area. The typical duration of such

a project is three years.

In 2004 the European Commission launched the HiPEAC Network of Excellence.

In 2006, the European Commission launched the Future and Emerging Technologies

initiative in Advanced Computing Architectures as well as a number of projects

covering Embedded Computing. In 2008, a new set of projects were launched to

address the challenges of the multi/many core transition—in embedded, mobile and

general-purpose computing—under the research headings “Computing Systems”

and “Embedded Systems”. These projects were complemented by a second wave

of projects that have started in 2010 under the same research headings together

vii

viii Foreword

with a new Future and Emerging Technologies initiative on “Concurrent Tera-device

Computing”. This effort continues in 2011 with two Calls for Proposals: one under

the heading “Computing Systems” with 45 million euro funding and the other under

the heading “Exascale Computing” with 25 million euro funding.

The MULTICUBE collaborative research project was funded to perform research

on multi-objective design space exploration of multicore architectures targeting em-

bedded applications. Results from MULTICUBE are presented in this book providing

a valuable reference point to researchers and engineers.

It has been a long way, but we now have an important computing research commu-

nity in Europe, both from industry and academia, engaging in collaborative research

projects that bring together strong European teams in cutting-edge technologies. The

book that you have in your hands is a clear demonstration of the breakthroughs that

can be obtained through European collaboration.

Dr. Panagiotis Tsarchopoulos

Project Officer

European Commission

Preface

The ever increasing complexity and integration densities of multiprocessor system-

on-chip (MPSoC) architectures, significantly enlarges the design space of embedded

computing systems. A wide range of design choices must be tuned from a multi-

objective perspective, mainly in terms of performance and energy consumption, to

find the most suitable system configuration for the target application. Given the huge

design space to be analysed, the exploration of tradeoffs between multiple competing

objectives cannot be anymore driven by a manual optimisation process based on the

intuition and past experience of the system architect. Multi-objective exploration

of the huge design space of next generation multi/many core architectures needs for

Automatic Design Space Exploration techniques to systematically explore the design

choices and to compare them in terms of multiple competing objectives (trade-offs

analysis). Ideally, a designer would try all possible design choices and choose the

most suitable according to the specific system requirements. Unfortunately, such

an exhaustive approach is often unfeasible because of the large number of design

choices to be simulated and analysed, in some cases showing some sophisticated

effects on system properties that rarely enable to easily and accurately model the

system behavior. Consequently, good search techniques are needed not only to find

design alternatives that best meet system constraints and cost criteria, but also to

prune the search space to crucial parameters to enable an effective and efficient

design space exploration.

In the age of multi/many core architectures, system optimization and exploration

definitely represent challenging research tasks. Although many point tools exist to

optimize particular aspects of embedded systems, an overall design space exploration

framework is needed to combine all the decisions into a global search space with a

common interface to the optimization and evaluation tools. The state-of-the art lacks

of a Design Space Exploration (DSE) framework to help the designer in the automatic

selection of the most suitable system configuration for a certain application given a

set of multiple competing objectives.

ix

x Preface

Based on the idea to provide an automatic DSE framework, we started thinking

about a proposal of an European project, namely MULTICUBE1, that was submitted

in May 2007 in the first call of the Seventh Framework Programme on ICT under

the Objective 3.3 on Embedded Systems Design. The proposal was accepted and the

project started on January 2008 under the coordination of Politecnico di Milano. This

book was mainly catalyzed by the main research outcomes and exploitable results

of the MULTICUBE European project, where the Editors have acted in 2008–2010

timeframe. The MULTICUBE project focused on the definition of an automatic

multi-objective Design Space Exploration (DSE) framework to be used to tune the

System-on-Chip architecture for the target application evaluating a set of metrics

(e.g. energy, latency, throughput, bandwidth, QoR, etc.) for the next generation

embedded multimedia platforms.

The project aimed at increasing the competitiveness of European industries by

optimizing the design of embedded computing systems while reducing design time

and costs. The project defined an automatic multi-objective DSE framework to be

used at design-time to find the best power/performance trade-offs while meeting

system-level constraints and speeding up the exploration process. A set of heuristic

optimization algorithms have been defined to reduce the exploration time, while a

set of response surface modeling techniques have been defined to further speed up

the process. Based on the results of the design-time multi-objective exploration, the

MULTICUBE project also defined a methodology to be used at run-time to optimize

the allocation and scheduling of different application tasks. The design exploration

flow results in a Pareto-optimal set of design alternatives in terms of power/per-

formance trade-offs. This set of operating points can then be used at run-time to

decide how the system resources should be distributed over different application

tasks running on the multiprocessor system on chip.

The MULTICUBE DSE framework leverages a set of open-source and proprietary

tools for the exploration, modeling and simulation to guarantee a wide exploitation

of the MULTICUBE project results in the embedded system design community. The

integration of different tools is ensured by a common XML-based tool interface spec-

ification, defined to enable the independent development of modules and a seamless

integration of the design tools and the data structures into a common design environ-

ment. Several industrial use cases (defined as combination of application and related

architecture) have been used to assess the capabilities of the MULTICUBE design

flow and tools in an industrial design process. The MULTICUBE project has been

strongly industry-driven: industrial partners (STMicroelectronics and DS2) as well

IMEC research center have defined the design techniques and tools requirements

and then validated them to design some industrial use cases. The benefits of the

introduction of the automatic DSE in the design phase of embedded computing sys-

tems (justifying its introduction in industrial design processes) have been assessed

through a procedure to assess the final objective design quality and the reduction

of design turnaround time by introducing such a technology on the entire design

1 The project acronym, MULTICUBE, stands for: “Multi-Objective design space exploration of

multi-processor SoC architectures for embedded multimedia applications”.

Preface xi

process. The benefits on the design process can be measurable and tangible like the

reduction of the overall design process lead time, and qualitative or intangible like

the streamlining and the reduction of human error prone repetitive operations. The

DSE assessment procedure was the basis for the validation of the industrial use cases

and demonstrators of the project. Validation results have been assessed based on a

set of common assessment criteria.

In the book, we have tried to provide a comprehensive understanding of several

facets of the problem of design space exploration for embedded on-chip architectures.

The book chapters are organized in two parts. In Part I, several methodologies and

tools to support automatic design space exploration are discussed. In Part II of the

book, the DSE methodologies and tools described in Part I have then been applied

to several application domains to discuss their applicability and to envision their

benefits. First, a high-level modeling and exploration approach has been applied for

a powerline communication network based on a SoC, then the application of the

automatic DSE flow to parallel on-chip architectures is discussed, and finally the

DSE for run-time management has been applied to a reconfigurable system for video

streaming.

Entering Part I on methodologies and tools, Chap. 1 introduces the MULTICUBE

design-flow to support the automatic multi-objective Design Space Exploration

(DSE) to tune the parameters of System-on-Chip architectures by considering sev-

eral metrics such as energy, latency and throughput. One of the important goals of

the DSE framework is to find design trade-offs that best meet the system constraints

and the cost criteria which are indeed strongly dependent on the target applica-

tion. The DSE flow is based on the interaction of two frameworks to be used at

design time: the Design Space Exploration Framework, a set of open-source and

proprietary architectural exploration tools, and the Power/Performance Estimation

Framework, a set of modeling and simulation tools (open-source and proprietary)

operating at several levels of abstraction. The DSE flow also includes the specifi-

cation of an XML integration interface to connect the exploration and estimation

frameworks and a Run-time Resource Manager that selects, at run-time, the best

software configuration alternatives to achieve a good power/performance trade-off.

Chapter 2 introduces M3-SCoPE, an open-source SystemC-based framework for

performance modeling of multi-processor embedded systems, software source code

behavioral simulation and performance estimation of multi-processor embedded sys-

tems. Using M3-SCoPE, the application software running on the different processors

of the platform can be simulated efficiently in close interaction with the rest of the

platform components. In this way, fast and accurate performance metrics of the sys-

tem are obtained. These metrics are then delivered to the DSE tools to evaluate the

quality of the different configurations in order to select the best power/performance

trade-offs.

Chapter 3 presents the optimization algorithms developed in the MULTICUBE

project for Design Space Exploration of embedded computing systems. Two software

DSE tools implement the optimization algorithms: M3Explorer and modeFRON-

TIER. The mathematical details of the given optimization problems are explained in

xii Preface

the chapter together with how the algorithms can exchange information with the sim-

ulators. The description of the proposed algorithms is the central part of the chapter.

The focus is posed on new algorithms and on “ad hoc” modifications implemented

in existing techniques to face with discrete and categorical variables, which are the

most relevant ones when dealing with embedded systems design. The strategy to test

the performance achieved by the optimization is another important topic treated in

the chapter. The aim is mainly to build confidence in optimization techniques, rather

than to simply compare one algorithm with respect to another one. The “no-free-

lunch theorem for optimization” has to be taken into consideration and therefore

the analysis will look forward to robustness and industrial reliability of the results.

The main contribution of MULTICUBE project in the research field of optimization

techniques for embedded systems design is indeed the high level of the obtained

compromise between specialization of the algorithms and concrete usability of the

DSE tools.

A typical design space exploration flow involves an event-based simulator in the

loop, often leading to an actual evaluation time that can exceed practical limits

for realistic applications. Chip multi-processor architectures further exacerbate this

problem given that the actual simulation speed decreases by increasing the number

of cores of the chip. Traditional design space exploration lacks of efficient techniques

that reduce the number of architectural alternatives to be analyzed. In Chap. 4, we

introduce a set of Response Surface Modeling (RSM) techniques that can be used to

predict system level metrics by using closed-form analytical expressions instead of

lengthy simulations. The principle of RSM is to exploit a set of simulations generated

by one or more Design of Experiments strategies to build a surrogate model to predict

the system-level metrics. The response model has the same input and output features

of the original simulation based model but offers significant speed-up by leveraging

analytical, closed-form functions which are tuned during a model training phase.

Running multiple applications optimally in terms of Quality of Service (e.g.,

performance and power consumption) on embedded multi-core platforms is a huge

challenge. Moreover, current applications exhibit unpredictable changes of the envi-

ronment and workload conditions which makes the task of running them optimally

even more difficult. Chapter 5 presents an automated tool flow which tackles this

challenge by a two-step approach: first at design-time, a Design Space Exploration

(DSE) tool is coupled with a platform simulator(s) to get optimum operating points

for the set of target applications. Secondly, at run-time, a lightweight Run-time

Resource Manager (RRM) leverages the design-time DSE results for deciding an

operating configuration to be loaded at run-time for each application. This decision

is taken dynamically, by considering the available platform resources and the QoS

requirements of the specific use-case. To keep RRM execution and resource overhead

at minimum, a very fast optimisation heuristic is integrated demonstrating a signif-

icant speedup in the optimisation process, while maintaining the desired Quality of

Service.

Emerging MPSoC platforms provide the applications with an extended set of

physical resources, as well as a well a defined set of power and performance opti-

mization mechanisms (i.e., hardware control knobs). The software stack, meanwhile,

Preface xiii

is responsible of taking directly advantage of these resources, in order to meet appli-

cation functional and non-functional requirements. The support from the Operating

System (OS) is of utmost importance, since it gives opportunity to optimize the

system as a whole. The main purpose of Chap. 6 is to introduce the reader to the

challenges of managing physical and logical resources in complex multi/many-core

architectures at the OS level.

Entering Part II on application domains, Chap. 7 presents the application of MUL-

TICUBE methodology to the design of an ITU G.hn compatible component for a

powerline communication network based on a SoC. Powerline communication is

an advanced telecommunication system enabling fast and reliable transfer of au-

dio, video and data information using the most ubiquitous transmission system: the

power lines. This transmission line is used to exchange information between dif-

ferent equipment connected to the network using the advanced coding techniques

like such as Orthogonal Frequency Division Multiplexing. The starting point of the

analysis is a high level SystemC-based virtual platform for which the chapter ana-

lyzes the effects of the variation of a pre-defined set of design parameters on a set of

pre-defined metrics. This automatic analysis will drive the design choices in order

to build an optimized industrial system. The chapter shows that the SystemC-based

virtual platform combined with the MULTICUBE design space exploration frame-

work can save up to 80% of designer’s work time, while achieving better results in

terms of performance.

Chapter 8 describes two significant applications of the automatic MULTICUBE

DSE flow to parallel on-chip architectures. The first part of the chapter presents the

design space exploration of a low power processor developed by STMicroelectronics

by using the modeFRONTIER tool to demonstrate the benefits DSE not only in

terms of objective quality, but also in terms of impact on the design process within

the corporate environment. The second part of the chapter describes the application

of Response Surface Models introduced in Chap. 4 to a tiled, multiple-instruction,

many-core architecture developed by the Chinese Academy of Sciences. Overall,

the results have showed that different models can present a trade-off of accuracy

versus computational effort. In fact, throughout the evaluation, we observed that

high accuracy models require high computational time (for both model construction

time and prediction time); vice-versa low model construction and prediction time

has led to low accuracy.

Chapter 9 reports a case study of DSE for supporting Run-time Resource Man-

agement (RRM). The management of system resources for an MPSoC dedicated to

multiple MPEG4 encoding is addressed in the context of an Automotive Cognitive

Safety System. The runtime management problem is defined as the minimization of

the platform power consumption under resource and Quality of Service (QoS) con-

straints. The chapter provides an insight of both, design-time and run-time aspects of

the problem. During the preliminary design-time DSE phase, the best configurations

of run-time tunable parameters are statically identified for providing the best trade-

offs in terms of run-time costs and application QoS. To speed up the optimization

process without reducing the quality of final results, a multi-simulator framework

is used for modeling platform performance. At run-time, the RRM exploits the

xiv Preface

design-time DSE results for deciding an operating configuration to be loaded for

each MPEG4 encoder. This operation is carried out dynamically, by following the

QoS requirements of the specific use-case.

Due to the large number of topics discussed in the book and their heterogeneity,

the background on system modeling, simulation and exploration is discussed chapter

by chapter with a separate reference set for each chapter. This choice also contributed

to make each chapter self-contained.

Overall, we believe that the book chapters cover a set of definitely important

and timely issues impacting the present and future research on automatic DSE for

embedded multi-core on-chip architectures. We sincerely hope that the book could

become a solid reference in the next years. In our vision, the authors put a big effort

in clearly presenting their technical contributions outlining the potential impact and

benefits of the proposed approach on same case studies. Our warmest gratitude

goes to the MULTICUBE team, for their continuous effort and dedication during

the project and for their contribution as authors of the chapters. We would like to

gratefully acknowledge our EC Project Officer, Panagiotis Tsarchopoulos and our

EC Project Reviewers: Alain Perbost, Andrzej Pulka and Kamiar Sehat for their

valuable comments and guidance during the MULTICUBE project. A special thanks

to Charles Glaser from Springer for encouraging us to write a single textbook on

the topic of design space exploration based on our experience of the MULTICUBE

project.

With our work on MULTICUBE project and this book, we have pushed towards

the adoption of automatic design space exploration for the design of multi-processor

architectures for embedded computing systems. This book is expected to be one of

the most important dissemination vehicles to spread out the knowledge developed

in the MULTICUBE project in the international community after the end of the

project.

Milano, Italy

Milano, Italy

Santander, Spain

March 2011

The Editors,

Cristina Silvano

William Fornaciari

Eugenio Villar

Contents

Part I Methodologies and Tools

1 The MULTICUBE Design Flow . 3

Cristina Silvano, William Fornaciari, Gianluca Palermo, Vittorio Zaccaria,

Fabrizio Castro, Marcos Martinez, Sara Bocchio, Roberto Zafalon,

Prabhat Avasare, Geert Vanmeerbeeck, Chantal Ykman-Couvreur,

Maryse Wouters, Carlos Kavka, Luka Onesti, Alessandro Turco,

Umberto Bondi, Giovanni Mariani, Hector Posadas, Eugenio Villar,

Chris Wu, Fan Dongrui, and Zhang Hao

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded

Systems for Fast Design Space Exploration . 19

Hector Posadas, Sara Real, and Eugenio Villar

3 Optimization Algorithms for Design Space Exploration

of Embedded Systems . 51

Enrico Rigoni, Carlos Kavka, Alessandro Turco, Gianluca Palermo,

Cristina Silvano, Vittorio Zaccaria, and Giovanni Mariani

4 Response Surface Modeling for Design Space Exploration

of Embedded System . 75

Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria, Enrico Rigoni,

Carlos Kavka, Alessandro Turco, and Giovanni Mariani

5 Design Space Exploration Supporting Run-Time Resource

Management . 93

Prabhat Avasare, Chantal Ykman-Couvreur, Geert Vanmeerbeeck,

Giovanni Mariani, Gianluca Palermo, Cristina Silvano,

and Vittorio Zaccaria

6 Run-Time Resource Management at the Operating System Level 109

Patrick Bellasi, Simone Corbetta, and William Fornaciari

xv

xvi Contents

Part II Application Domains

7 High-Level Modeling and Exploration of a Powerline

Communication Network Based on System-on-Chip 145

Marcos Martinez, David Ferruz, Hector Posadas, and Eugenio Villar

8 Design Space Exploration of Parallel Architectures 171

Carlos Kavka, Luka Onesti, Enrico Rigoni, Alessandro Turco,

Sara Bocchio, Fabrizio Castro, Gianluca Palermo, Cristina Silvano,

Vittorio Zaccaria, Giovanni Mariani, Fan Dongrui, Zhang Hao,

and Tang Shibin

9 Design Space Exploration for Run-Time Management 189

Giovanni Mariani, Chantal Ykman-Couvreur, Prabhat Avasare,

Geert Vanmeerbeeck, Gianluca Palermo, Cristina Silvano,

and Vittorio Zaccaria

Conclusions . 205

Index of Terms . 207

List of Contributors

Prabhat Avasare IMEC, Leuven, Belgium

e-mail: avasare@imec.be

Patrick Bellasi Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Milano, Italy

e-mail: bellasi@elet.polimi.it

Sara Bocchio STMicroelectronics, Agrate, Italy

e-mail: sara.bocchio@st.com

Umberto Bondi ALaRI, University of Lugano, Lugano, Switzerland

e-mail: umberto.bondi@usi.ch

Fabrizio Castro Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Milano, Italy

e-mail: castro@elet.polimi.it

Simone Corbetta Dipartimento di Elettronica e Informazione, Politecnico di

Milano, Milano, Italy

e-mail: scorbetta@elet.polimi.it

Fan Dongrui Institute of Computing Technology, Chinese Academy of Sciences,

Beijing, China

e-mail: fandr@ict.ac.cn

David Ferruz Design of Systems on Silicon (DS2), Valencia, Spain

e-mail: david.ferruz@ds2.es

William Fornaciari Dipartimento di Elettronica e Informazione, Politecnico di

Milano, Milano, Italy

e-mail: fornacia@elet.polimi.it

Zhang Hao Institute of Computing Technology, Chinese Academy of Sciences,

Beijing, China

e-mail: zhanghao@ict.ac.cn

xvii

xviii List of Contributors

Carlos Kavka ESTECO, Trieste, Italy

e-mail: carlos.kavka@esteco.com

Giovanni Mariani ALaRI, University of Lugano, Switzerland

e-mail: giovanni.mariani@usi.ch

Marcos Martinez Design of Systems on Silicon (DS2), Valencia, Spain

e-mail: marcos.martinez@ds2.es

Luka Onesti ESTECO, Trieste, Italy

e-mail: luka.onesti@esteco.com

Gianluca Palermo Dipartimento di Elettronica e Informazione, Politecnico di

Milano, Milano, Italy

e-mail: gpalermo@elet.polimi.it

Hector Posadas University of Cantabria, Santander, Spain

e-mail: posadash@teisa.unican.es

Sara Real University of Cantabria, Santander, Spain

e-mail: realsara@teisa.unican.es

Enrico Rigoni ESTECO, Trieste, Italy

e-mail: rigoni@esteco.it

Tang Shibin Institute of Computing Technology, Chinese Academy of Sciences,

Beijing, China

e-mail: tangshibin@ict.ac.cn

Cristina Silvano Dipartimento di Elettronica e Informazione, Politecnico di

Milano, Milano, Italy

e-mail: silvano@elet.polimi.it

Alessandro Turco ESTECO, Trieste, Italy

e-mail: alessandro.turco@esteco.it

Geert Vanmeerbeeck IMEC, Leuven, Belgium

e-mail: vanmeerb@imec.be

Eugenio Villar University of Cantabria, Santander, Spain

e-mail: villar@teisa.unican.es

Maryse Wouters IMEC, Leuven, Belgium

e-mail: woutersm@imec.be

Chris Wu STMicroelectronics, Beijing, China

e-mail: chris.wu@st.com

List of Contributors xix

Chantal Ykman-Couvreur IMEC, Leuven, Belgium

e-mail: ykman@imec.be

Vittorio Zaccaria Dipartimento di Elettronica e Informazione, Politecnico di

Milano, Milano, Italy

e-mail: zaccaria@elet.polimi.it

Roberto Zafalon STMicroelectronics, Agrate, Italy

e-mail: roberto.zafalon@st.com

Abbreviations

4CIF 4 × Common Intermediate Format

ACCS Automotive Cognitive Safety System

ADRES Architecture for Dynamically Reconfigurable Embedded System

ADRS Average Distance from Reference Set

API Application Programming Interface

APRS Adaptive-windows Pareto Random Search

BP Bitstream Packetizing

CMP Chip Multi Processor

CSU Central Safety Unit

DOE Design of Experiments

DSE Design Space Exploration

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EC Entropy Coding

ES Evolution Strategies

GA Genetic Algorithm

HW Hardware

ILP Integer Linear Programming

IP Intellectual Property

IPC Instruction per Cycle

MC Motion Compensation

ME Motion Estimation

MFGA Magnifying Front GA

MMKP Multi-dimension Multiple-choice Knapsack Problem

MOGA Multi Objective GA

MOO Multi-Objective Optimization

MOPSO Multi Objective Particle Swarm Optimization

MOSA Multi Objective Simulated Annealing

MPA MPSoC Parallelization Assist

MPEG4 Moving Picture Experts Group 4

MPSoC Multi-Processor Systems on Chip

NSGA-II Non-dominated Sorting Genetic Algorithm, second version

xxi

xxii Abbreviations

OS Operating System

QoS Quality of Service

RM Resource Manager

RRM Run-time Resource Management

RSM Response Surface Model

RTOS Run-Time Operating System

RTRM Run-Time Resource Manager

SoC System on Chip

STM STMicroelectronics

SW Software

TC Texture Coding

TCM Task Concurrency Management

TLM Transaction-Level Model

TU Texture Update

VLIW Very Long Instruction Word

XML eXtensible Markup Language

About the Editors

Cristina Silvano received the M.S. degree in Electronic Engineering from Politec-

nico di Milano, Milano, Italy, in 1987 and the Ph.D. degree in Computer Engineering

from the University of Brescia, Brescia, Italy, in 1999. From 1987 to 1996, she

was a Senior Design Engineer at R&D Labs, Groupe Bull, Pregnana, Italy. From

2000 to 2002, she was Assistant Professor at the Department of Computer Science,

University of Milan, Milano. She is currently Associate Professor (with tenure)

in Computer Engineering at the Dipartimento di Elettronica e Informazione, Po-

litecnico di Milano. She has published two scientific international books and more

than 90 papers in international journals and conference proceedings, and she is the

holder of several international patents. Her primary research interests are in the

area of computer architectures and computer-aided design of digital systems, with

particular emphasis on design space exploration and low-power design techniques

for multiprocessor systems-on-chip. She participated to several national and inter-

national research projects, some of them in collaboration with STMicrolectronics.

She is currently the European Coordinator of the project FP7-2PARMA-248716 on

“PARallel PAradigms and Run-time MAnagement techniques for Many-core Ar-

chitectures” (Jan. 2010–Dec. 2012). She was also the European Coordinator of

the FP7-MULTICUBE-216693 project on “Multi-objective design space exploration

of multi-processor SoC architectures for embedded multimedia applications” (Jan.

2008–June 2010). She served as member and/or co-chair in the technical committees

of several international conferences such as MICRO, DAC, DATE, NOCS, SASP,

ARCS and VLSI-SOC.

William Fornaciari is Associate Professor (with tenure) at Dipartimento di Elet-

tronica e Informazione, Politecnico di Milano, Italy. He received the Laurea (M.Sc.)

degree in Electronic Engineering and the Ph.D. degree in Automation Engineering

and Computer Sciences, both from the Politecnico di Milano in 1989 and 1993 re-

spectively. He has published five books and over 100 papers in international journals

and conference proceedings, collecting four best paper awards, one certification of

appreciation from IEEE and holds two international patents. Since 1993 he is mem-

ber of program and scientific committees and chair of international conferences in

the field of computer architectures, EDA and system-level design. He has been also

xxiii

xxiv About the Editors

involved in the faculty of a joint Master program between the Politecnico di Milano

and the University of Chicago at Illinois. Since 1997 has been involved in 11 EU-

funded international projects and has been part of the pool of experts of the Call

For Tender No. 964-2005 - WING - Watching IST INnovation and knowledGe. His

current research interest includes embedded systems design methodologies, real-

time operating systems, energy-aware design of SW and HW for multi-many core

systems, reconfigurable computing and wireless sensor networks. Recently his in-

volvement is manily releated to MULTICUBE, SMECY, 2PARMA and COMPLEX

european projects.

Eugenio Villar got his Ph.D. in Electronics from the University of Cantabria in

1984. Since 1992 is Full Professor at the Electronics Technology, Automatics and

Systems Engineering Department of the University of Cantabria where he is cur-

rently the responsible for the area of HW/SW Embedded Systems Design at the

Microelectronics Engineering Group. His research activity has been always related

with system specification and modeling. His current research interests cover sys-

tem specification and design, MPSoC modeling and performance estimation using

SystemC and UML/Marte. He is author of more than 100 papers in international

conferences, journals and books in the area of specification and design of electronic

systems. Prof. Villar served in several technical committees of international con-

ferences like the VHDL Forum, Euro-VHDL, EuroDAC, DATE, and FDL. He has

participated in several international projects in electronic system design under the

FP5, FP6 and FP7, Itea, Medea and Artemis programs. He is the representative of

the University of Cantabria in the ArtemisIA JU.

Part I

Methodologies and Tools

Chapter 1

The MULTICUBE Design Flow

Cristina Silvano,William Fornaciari, Gianluca Palermo, Vittorio Zaccaria,

Fabrizio Castro, Marcos Martinez, Sara Bocchio, Roberto Zafalon,

Prabhat Avasare, Geert Vanmeerbeeck, Chantal Ykman-Couvreur,

Maryse Wouters, Carlos Kavka, Luka Onesti, Alessandro Turco,

Umberto Bondi, Giovanni Mariani, Hector Posadas, Eugenio Villar,

Chris Wu, Fan Dongrui, and Zhang Hao

Abstract This chapter introduces the design-flow of the MULTICUBE project

whose main goal is the definition of an automatic multi-objective Design Space

Exploration (DSE) framework to be used to tune the parameters of System-on-Chip

architectures by taking into account the target set of metrics (e.g. energy, latency,

throughput, etc.). One of the important goals of the automatic multi-objective DSE

framework is to find design trade-offs that best meet system constraints and cost cri-

teria which are indeed strongly dependent on the target application. A set of heuristic

optimisation algorithms have been defined to reduce the overall optimization time

by identifying an approximated Pareto set of parameter configurations with respect

to a set of selected figures of merit. Once the approximated Pareto set is built, the

designer can quickly apply decision criteria to select the best configuration satisfy-

ing the constraints. The DSE flow is based on the interaction of two frameworks to

be used at design time: the Design Space Exploration Framework, a set of open-

source and proprietary architectural exploration tools, and the Power/Performance

Estimation Framework, a set of modeling and simulation tools (open-source and

proprietary) operating at several levels of abstraction. The DSE flow also includes

the specification of an XML integration interface to connect the exploration and es-

timation frameworks and a Run-time Resource Manager exploiting, at run-time, the

best software configuration alternatives derived at design-time to optimize the usage

of system resources.

1.1 Introduction

Many point tools exist to optimise particular aspects of embedded systems. However,

an overall design space exploration framework is needed to combine all the decisions

into a global search space, and a common interface to the optimisation and evaluation

C. Silvano (�)

Dipartimento di Elettronica e Informazione Politecnico di Milano, Milano, Italy

e-mail: silvano@elet.polimi.it

C. Silvano (eds.), Multi-objective Design Space Exploration of 3
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_1, © Springer Science+Business Media, LLC 2011

4 C. Silvano et al.

tools. The MULTICUBE project focused on the definition of an automatic multi-

objective Design Space Exploration (DSE) framework to be used to tune the System-

on-Chip architecture for the target application evaluating a set of metrics (e.g. energy,

latency, throughput, bandwidth, QoS, etc.) for the next generation of embedded

multimedia platforms.

On one side, the MULTICUBE project defined an automatic multi-objective DSE

framework to find design trade-offs that best meet system constraints and cost cri-

teria, strongly dependent on the target application, but also to restrict the search

space to crucial parameters to enable an efficient exploration. In the developed DSE

framework, a set of heuristic optimisation algorithms have been defined to reduce the

overall exploration time by computing an approximated Pareto set of configurations

with respect to the selected figures of merit. Once the approximated Pareto set has

been built, the designer can quickly select the best system configuration satisfying

the target constraints.

On the other side, the MULTICUBE project defined a run-time DSE framework

based on the results of the design-time exploration to optimise at run-time the alloca-

tion and scheduling of different application tasks. The design-time exploration flow

results in a Pareto-optimal set of design trade-offs with different speed, energy, mem-

ory and communication bandwidth parameters. This information is used at run-time

by a small OS kernel to make an informed decision about how the resources should

be distributed over different tasks running on the multi-processor system on-chip.

This resource distribution cannot be done during the design-time exploration itself,

since it depends on which tasks are active at that time.

The goal of MULTICUBE design flow is to cover the gap between the system-

level specification and the definition of the optimal application-specific architecture.

The MULTICUBE activities have been driven by targeting the construction of a set

of tools and accurate methodologies to support the design of application specific

multi-core architectures.

In this context, a SystemC-based multi-level modeling methodology for multi-

processors has been developed in the project. Once received the target architecture as

input, the system model is provided to the simulator to evaluate different architectural

trade-offs in terms of metrics. Then, the Design Space Exploration framework can

be used to evaluate candidate configurations based on several heuristic optimisation

algorithms. This step is implemented as an optimisation loop, where the selected ar-

chitecture instance generated by the DSE framework is given back to the estimation

framework for the metrics evaluation. The tool integration phase in MULTICUBE

enabled to implement an automatic system optimisation engine to generate, for the

target MPSoC architecture, either the best architectural alternative (if the exploration

is done at design-time) or the best tasks scheduling and allocation (if the exploration

is done at run-time).

To enable a widespread dissemination and use of the design flow in several ap-

plication contexts, the following pre-requirements are introduced. First, the design

flow aims at being independent from the particular language used for the description

of the use case simulator. The design flow and the associated design tools should

free the simulator provider from being tied to a specific programming language or

1 The MULTICUBE Design Flow 5

model. Second, the interface between the design tools and the use case simulators

should be specified and implemented by using a widely accepted and standardized

interface. Standard interfaces are characterized by being supported by a large number

of parsing and validation tools either in the public domain or commercially avail-

able while enabling a faster adoption of the design tool itself. Among the available

interface specification languages, the most widely accepted and flexible is XML.

XML enables to create efficient, customized data structures which are, at the same

time, supported by industrial and academic tools for parsing, semantic evaluation

and validation. These data structures can be used to facilitate the definition of tool

interfaces.

The Chapter is organized as follows. Section 1.2 provides an overview of the

MULTICUBE design flow, while Sect. 1.3 describes the design tools integration

based on a common interface. Finally, Sect. 1.4 presents the advantages in using the

automatic design space exploration approach.

1.2 Overview of the Design Flow

The MULTICUBE DSE flow (see Fig. 1.1) is based on the interaction of two frame-

works to be used at design time: the Design Space Exploration Framework, an

architecture exploration set of tools, and the Power/Performance Estimation Frame-

work, a set of modeling and simulation tools operating at several levels of abstraction.

The DSE flow also includes a Run-time Resource Manager to select at run-time the

best design alternatives in terms of power/performance trade-offs generated during

the design-time exploration phase.

According to the exploitation plan of the MULTICUBE project, both open-source

and the proprietary exploitation models and tools co-exist into a single coherent

view. This has been possible by making the design tools to adopt the same common

MULTICUBE XML-based interface described in Sect. 1.3.

1.2.1 The Design Space Exploration Framework

The MULTICUBE Design Space Exploration Framework (see Fig. 1.1) consists of

an architecture exploration set of tools providing the designers with the most appro-

priate optimisation of the multi-processor SoC considering several figures of merit

such as performance and energy consumption.

The Design Space Exploration tools can be used at design time to automatically

identify the Pareto optimal solutions of a multi-objective exploration given a set of

design space parameters. During the MULTICUBE project, two design space explo-

ration tools and some optimisation and analytical techniques have been developed

and validated.

6 C. Silvano et al.

Exploration

Architect

Exploration

Strategies

Design Space

Defination

Design Space

Instance

Use Case

and Simulator

Provider

Pareto Curve

System Metrics

Use Case

Open Source

- M3Explorer

Proprietary

- modeFRONTIER Open Source

- SCOPE

Power/Performance

Estimation Framework

Design Space

Exploration Framework
Proprietary

- ConvergenceSC

- IMEC HLSim

- STM Simulator

- ICT Simulator

Pareto Curve

Application

Working Point

Multi-Core

Architectural Instance

Run-Time

Design

Exploration

Architecture

Design and

Optimization

Fig. 1.1 Overview of the MULTICUBE design flow

• A new open source tool (Multicube Explorer available at http://www.

multicube.eu) suitable for automatic design space exploration of MPSoC archi-

tectures. The tool enables a fast optimisation of parameterized system architecture

towards a set of objective functions (e.g., energy, delay and area), by interacting

with a system-level simulator through an open XML-based interface. Multicube

Explorer provides a set of innovative sampling and optimisation techniques to

support the designer in finding the best objective functions trade-offs. It also

provides a set of Response Modeling Methods for speeding up the optimisation

phase.

• An existing commercial tool (modeFRONTIER from ESTECO), widely adopted

in other optimisation fields, has been re-targeted to support automatic DSE in the

embedded systems field. The tool includes the most recent optimisation techniques

available in literature, ranging from Design of Experiments to direct optimisers.

modeFRONTIER (see also http://www.esteco.com) also provides meta-modeling

support for the creation of interpolating surfaces from well statistically distributed

designs to be used to perform the optimisation without computing any further

analysis. The tool also supports multivariate statistical analysis and data mining

tools directly integrated in the exploration process to enable the user to easily

analyse complex data. The graphical user interface of modeFRONTIER provides

access to all features of design experiment definition, exploration and analysis in

a simple and intuitive way.

Both tools leverage a set of multi-objective optimisation algorithms that have been

validated on several industrial use cases. In multi-objective optimisation problems

1 The MULTICUBE Design Flow 7

there are more than one objective to be optimised (maximized or minimized), mean-

ing that the outcome of the optimisation process is not a single solution but a set

of solutions. This set of solutions, which is called the Pareto front, represents the

best trade-off between the different (and possibly contradictory) objectives. The set

of algorithms implemented includes state-of-the-art algorithms widely used in the

field of multi-objective optimisation (ranging from evolutionary and genetic algo-

rithms up to simulated annealing and particle swarm algorithms), enhanced versions

of algorithms that were specifically targeted in the project for the multi-core SoC

design, and new developed algorithms. The multi-objective optimisation algorithms

developed in the MULTICUBE project are described in more detail in Chap. 3 of

this book.

1.2.2 The Power/Performance Estimation Framework

The Power/Performance Estimation Framework (see Fig. 1.1) consists of a method-

ology and related tools that have been set up to provide accurate estimates for

complexity, timing and power consumption at different abstraction levels and for

different use cases. A set of tools has been used for the system modeling and estima-

tion of several metrics such as energy consumption and execution time of the target

MPSoC platforms among which:

• Multicube SCoPE: an extension of the open-source high-level SCoPE perfor-

mance and power evaluation framework [7] developed by University of Cantabria

for performing HW/SW co-simulation. Multicube SCoPE enables the definition

of SystemC platform template models to evaluate performance and power con-

sumption. Multicube SCoPE efficiency comes from the fact that performance and

power estimations of the software side are performed at the application source

code level by using back-annotation. The back-annotated software components

are then linked to the hardware components by using standard SystemC interfaces.

This modeling style is called Timing Approximate. Software back-annotation

avoids instruction set simulation therefore decreasing of several orders of mag-

nitude the simulation time and maintaining a fairly good accuracy with respect

to cycle-accurate simulation. Multicube SCoPE also provides some hooks for

enabling C/C++ software code to invoke operating system primitives compliant

with POSIX and MicroC/OS. Multicube SCoPE is described in more detail in

Chap. 2 of this book.

• A proprietary set of simulation tools developed by IMEC as SystemC-based

transaction-level multi-core simulator built on top of the CoWare virtual proto-

typing environment to support platform-based design approach. The TLM-based

prototype models an ADRES multi-core [6] and has been integrated with both

modeFRONTIER and Multicube Explorer tools. The platform is composed of

a variable number of processor nodes and memory nodes. All processor nodes

8 C. Silvano et al.

contain the IMEC proprietary ADRES VLIW processor and its scratch-pad local

data (L1) memory. The processing nodes are connected to the memory nodes by

a configurable communication infrastructure. It can be either a multi-layer AHB

bus, which provides a full point-to-point connectivity, or a NoC model built with

the CoWare AVF cross-connect IP.

• A High-Level time-annotated Simulator (HLSim, developed by IMEC) that pro-

vides a fast simulator of the ADRES platform at higher abstraction level to

estimate metrics like performance and power consumption for a given plat-

form architecture executing a parallelized version of the application. During the

MULTICUBE project, HLSim has been extended with metrics on energy con-

sumption derived from a multimedia use case for a relative comparison between

different architectures and parallelizations. The introduction of HLSim in the de-

sign flow has provided several benefits such as speeding up the simulation and

starting up the design exploration earlier than planned. HLSim-based explorations

are much faster than TLM-based ones so as more extensive DSE was done by using

HLSim to extract Pareto set information to be used at run-time.

• An instruction set simulator has been used for SP2 superscalar processor provided

by STMicroelectronics and one simulator for the many-core architecture provided

by ICT Chinese Academy of Science. Both simulators expose program execution

time and power consumption as system-level metrics. More in detail, the ICT

many-core architecture is a tiled MIMD machine composed of a bi-dimensional

grid of homogeneous, general-purpose compute elements, called tiles. A 2D-mesh

network architecture is used for connecting the cores to a non-shared memory

sub-system.

• The DS2’s STORM platform, a control-oriented architecture for powerline

communication. The platform is used to model a PLC (Programmable Logic

Controller) technology with several implementation choices. For this platform,

both Ethernet QoS and internal communication are considered as metrics.

Given these target simulators, the MULTICUBE project developed a methodology,

the multi-simulator based DSE approach shown in Fig. 1.2, to avoid potentially sub-

optimal DSE results and to speed up the DSE process by exploiting multiple platform

simulators to run the application at different abstraction levels.

The main idea is to get timing information (in terms of processor cycles) for

an application execution on an accurate simulator (e.g. TLM-based cycle-accurate

simulator) and feed this timing information back to a high-level timed simulator (e.g.

HLSim) to achieve validation across simulators. Then, the DSE is done with a large

number of application runs by using faster higher-level simulators (e.g. HLSim) and

then the derived interesting operating points (usually clusters of operating points) are

refined by using more accurate simulators (e.g. TLM-based and/or cycle-accurate

simulators). The proposed methodology exploiting the synergy of multiple simulators

at several abstraction level can be used to further speed up the DSE process while

guaranteeing good accuracy of the simulation results. The methodology has been vali-

dated for the MPEG4 encoder application provided by IMEC by using three different

1 The MULTICUBE Design Flow 9

Exploration

Architect

Design of

Experiments

DSE Kernel

and

Optimization

Algorithms

Response

Surface

Methods

(Analytic

Techniques)

Pareto Curve

Design Space

Definition
Use Case

and Simulator

Provider

Cycle

Accurate

Simulator

High Level

Simulator

Use Case

Objective

Functions

Objective

Functions

Evaluation

Exploration

Strategies
Initial Design

Space Instances

Design Space

Instance

Application

Working Point

Multi-Core

Architectural

Instance
Design Space Exploration Framework Power/Performance Estimation

Framework

System Metrics

Fig. 1.2 Overview of the multi-simulator based DSE design flow

simulators (Multicube SCoPE, HLSim and TLM-based simulator) interfaced with

the two available DSE tools (modeFRONTIER and Multicube Explorer). Overall,

an acceptable relative accuracy has been found [1] with a significant speed-up in

simulation time.

1.2.3 Response Surface Modeling Techniques

A set of analytical techniques (Response Surface Models, or RSMs) have been intro-

duced to further speed up the design space exploration process (see Fig. 1.2). These

techniques are key factors for developing a model of the system behavior without

requiring the simulation of all the possible design configurations. RSMs have been

proved to be an effective solution for analytically predicting the behavior of the

system in terms of the target metrics without resorting to the system simulation.

Response Surface Modeling (RSM) techniques leverage the analytical depen-

dence between several design parameters and one or more response variables by

adopting both interpolation and regression techniques. The basic principle is to use

a set of simulations either generated ad hoc by a Design of Experiment (DoE) phase

or obtained by an exploration strategy previously applied to the design space, in

order to obtain a response model of the system behavior. In the project, several RSM

techniques have been implemented, among them Radial Basis Functions [3], Linear

Regression [4, 5], Artificial Neural Networks [2] and Shepard’s Interpolation. Every

10 C. Silvano et al.

RSM presented dramatic speed-up in terms of evaluation. Besides, it has been found

that a peculiar mathematical transformation of input training set known as Box-Cox

λ transform [4] has a great impact on the prediction accuracy. A sub-set of the above

analytical techniques has been implemented and integrated in the MULTICUBE

open-source tool while another sub-set was already available in the modeFRON-

TIER tool. RSM techniques for DSE are described in more detail in Chap. 4 of this

book.

1.2.4 Run-Time Resource Management

The MULTICUBE design flow has been built to provide not only design-time support

but also run-time support. In this scenario, at design time, the multi-objective design

space exploration framework generates a set of Pareto-optimal operating points (for

each application) annotated with system metrics like energy consumption, execution

time, and memory and communication bandwidth values. The Pareto set can then be

exploited at run time (while the application(s) are running) to optimise the overall

system behavior (see Fig. 1.3). Specifically a separate Run-time Resource Manager

(RRM) has been developed to exploit the set of operating points derived at design-

time for all applications to steer the overall system behavior according to the imposed

user requirements (quality, power, performance, etc.). The goal of the RRM is to use

the Pareto information given by the design-time exploration on the operating points

(of all applications) to make at run-time a decision to allocate the system resources

to active applications based on the user requirements in terms of Quality of Service.

Run-time Resource Management techniques are described in Chap. 5, while some

more general concepts about resources management at the Operating System layer

are presented in Chap. 6.

Fig. 1.3 Overview of the
run-time support

Application designer

At run time

At design time

Design-time

design space

exploration

Application

configurations

Run-time Resource

Manager

(RRM)

MP-SoC

platform

simulator

1 The MULTICUBE Design Flow 11

1.3 Design Tool Integration based on the MULTICUBE XML

Interface

Strategic importance from the point of view of the MULTICUBE exploitation is

associated to the common XML Tool Interface Specification for the integration of

the different tools and use cases. The common interface enabled the independent

development of software modules and a seamless integration of design tools and

data structures into a common design environment. The specification is defined in

terms of XML, a widely used standard notation. To introduce the notation, let us

highlight that, in the MULTICUBE design flow, there are two types of user agents to

interact with the framework: the use case and simulator provider and the exploration

architect. The simulator is the executable model of the use case and it is a single

executable file (binary or script) which interacts with the DSE tool to provide the

value of the estimated metrics, given an input configuration. The MULTICUBE

project addressed the formalization of the interaction between the simulator and the

DSE tools, that is essentially an automatic program-to-program interaction (see Fig.

1.4):

1. The DSE tool generates one feasible system configuration whose system metrics

should be estimated by the simulator.

2. The simulator generates a set of system metrics to be fed back to the DSE tool.

To automatically link the use case simulator to the DSE tool, a design space defi-

nition file should be released by the use case and simulator provider together with

the executable model of the use case (simulator). This file describes the set of con-

figurable parameters of the simulator, their values range and the set of evaluation

metrics that can be estimated by the simulator. This file describes also how to invoke

the simulator as well as an optional set of rules with which the generated parameter

values should be compliant. The rules are only used by the exploration tool to avoid

the generation of invalid or unfeasible solutions during the automated exploration

Exploration

Architect

Human

Computer

Interaction

Design Space

Exploration

Tool

XML

Design

Space

XML

System

Config.

XML

System

Metrics

Use

Case

Simulator

Use Case

and Simulaton

Provider

Fig. 1.4 Overview of the tool interfaces via XML

12 C. Silvano et al.

process. The above interaction has been addressed by creating a specification based

on an XML based grammar for writing both the design space definition file and the

simulator interface files. The grammar is defined by using the XSD schema language.

1.3.1 Design Space Definition

The definition of the design space is done by using an XML file that is composed

of a preamble, which defines the name-space and supported version. The current

release of the MULTICUBE XML interface specification is R1.4 and it is available

on MULTICUBE web page (www.multicube.eu).

1 <?xml version="1.0" encoding="UTF -8"?>

2 <design_space xmlns="http ://www.multicube.eu/" version="1.4">

3 <simulator > ... </simulator >

4 <parameters > ... </parameters >

5 <system_metrics > ... </system_metrics >

6 <rules > ... </rules >

7 </design_space >

The remaining part of the file describes the simulator invocation method (<simulator>

tag), the set of parameters of the simulator which can be configured (<parameters>

tag), the system metrics which can be estimated by the simulator (<system_metrics>

tag) and the rules which have to be taken into account by the exploration engine to

generate the feasible configurations.

1.3.1.1 Simulator Invocation

The <simulator_executable> marker is used for specifying the complete path name

of the executable:

1 <simulator >

2 <simulator_executable path="/path/my_simulator_executable" />

3 </simulator >

1.3.1.2 Parameters Definition

The <parameters> tag is used by the use case and simulator provider to specify the

names, the types and the ranges of the parameters that can be explored by the DSE

tool. The section contains a list of <parameter> markers:

1 <parameter >

2 <parameter name="il1_cache_block_size_bytes"

3 description="..." type="exp2" min="8" max="64"/>

4 <parameter name="bpred" description="b.p. type" type="string">

5 <item value="nottaken"/>

6 <item value="taken"/>

7 <item value="perfect"/>

8 <item value="bimod"/>

1 The MULTICUBE Design Flow 13

9 <item value="2lev"/>

10 <item value="comb"/>

11 </parameter >

12 ...

13 </parameters >

For each parameter an unique name must be provided. The parameters types can be

divided into two categories: scalar types, variable vector types. Scalar types can be

integer, boolean (a subset of integers), exp2 (progression of power of 2) and string

(a type for defining categorical variables). Vector types can be used to describe

combination of boolean values (on-off-masks or permutations). In particular, on-off-

masks can be useful for describing the space of active processors while permutations

can be used to describe the mapping of tasks on the available processors.

1.3.1.3 System Metrics Definition

The <system_metrics> section is used by the use case and simulator provider to specify

the names, the types and the units of the system metrics that can be estimated by the

simulator:

1 <system_metrics >

2 <system_metric name="cycles" type="integer" unit="cycles" />

3 <system_metric name="instructions" type="integer" unit="insts"/>

4 <system_metric name="powerconsumption" type="float" unit="W" />

5 <system_metric name="area" type="float" unit="mm2" />

6 </system_metrics >

A complex expression of the system metrics can be defined as one of the objective

of the exploration algorithm.

1.3.2 Simulator Input/Output XML Interface

The simulator input file contains a preamble and a sequence of <parameter> sections

where, for each parameter, the name and the value is specified. The number of

<parameter> sections and the name of the parameters should be the same as defined in

the XML Design Space description file. Similarly the simulator output file contains

a preamble and a sequence of <system_metric> sections where, for each metric, the

name and the value is specified. Besides, an appropriate error reporting syntax has

been described in the specification.

1.4 Advantages of Automatic DSE

The procedure to assess the benefits of the introduction of an Automatic Design

Space Exploration (or Optimization Methodology) has to address, not only the final

objective quality and the improvement of the target design but also the impact of such

a technology on the entire design process of embedded computing platforms. The

14 C. Silvano et al.

benefits on the process can be measurable and tangible like the reduction of the overall

design process lead time, and qualitative or intangible like the streamlining and the

reduction of human error prone repetitive operations. These benefits are particularly

valuable for design problems where the number of configuration parameters to be

explored is quite large, like in MP-SoC designs.

The specific design process activities can be analyzed and classified to measure

the various performance indicators. In a general way, we can consider the following

steps as the basis for any manual design space exploration or optimization process:

• Model Setup: preparation of an initial model of the virtual platform;

• Simulation: execution of the simulation of the executable model with a single

configuration of parameters;

• Results Assessment: meaningful measures are extracted and compared with

historical and expected ones;

• Model Edit: the model is manually modified and resubmitted for a further analysis.

Figure 1.5 represents the steps of a typical manual exploration procedure. In a manual

approach, the exploration of the design space is done by subjective assumptions of

the human designer, who will modify at most one or two parameters per evaluation.

The model simulation corresponds to a minimal portion of the time of the whole

exploration procedure. A large amount of time is spent by the designer editing the

configuration parameters and analyzing the results. There is also an Idle Time (from

the point of view of the use of computational resources) that lasts from the end of

the simulation till the moment in which the human operator is informed about it

and handles the simulation tools to get the results. This idle time can be very short

if the designer is immediately informed about the end of the simulation or can be

significant if the designer is not on duty.

The automatic design space exploration process can be defined by identifying the

following basic steps:

• Model setup: the model must be correctly parameterized in order to be easily

managed by the automatic exploration tools;

Setup

Simulation Time

Results Assessment

Model Edit
Idle Time

Fig. 1.5 Manual exploration procedure

1 The MULTICUBE Design Flow 15

• Simulation time: the simulation of the executable model with a single configura-

tion of parameters is carried out (this phase is similar to the one that is performed

with the manual approach);

• Automatic DSE overhead: this step includes the automatic assessment of the

results, the automatic selection of the next configuration to be simulated (model

selection) and the data transfer operations between the simulator and the design

space exploration tool and its corresponding storage into the design database.

Figure 1.6 describes the automatic exploration procedure. The exploration of the

design space is done by numerical/objective criteria. The Design Space Exploration

tool (or “exploration engine”) will change systematically all the parameters for each

analysis and will evaluate the best result by adopting numerical formulas. The setup

phase can be considerably longer than the set up of a manual exploration, since it

usually requires an extended definition of the model to interact with the exploration

engine, the definition of the proper optimization strategy and the definition of the

multi-objective goals to be achieved. However, after that, the model evaluations

(Simulation Time) is similar to the simulation time required in the manual approach,

except for a further step (Automatic DSE overhead) that involves the automatic

assessment of the results, the automatic selection of the next configuration to be

simulated (model selection) and the time spent for data communication and storage.

Based on the past experience of ESTECO to deal with industrial customers, even

if a single evaluation takes just a few seconds, it is difficult that a designer using

a manual optimization procedure can evaluate more than seven designs of medium

complexity within one hour. The designer has to go through all steps described

before, editing the configuration parameters, running the analysis, reading and ana-

lyzing the results, etc. In this case, it is expected that in one person-day (10 h), the

designer can run at most 70 designs. For the same problem, experience shows that an

automatic approach can handle something like 600 designs per hour, which means

about 14,400 designs per day. Since the automatic procedure can work 24 four hours

a day, including weekends and holidays, the advantages of the automatic procedure

are very clear.

However, there are other advantages of the automatic exploration procedure. In the

automatic exploration, all data concerning previous evaluations are always stored in a

Simulation Time

Automatic DSE Overhead

Model Setup

Fig. 1.6 Automatic exploration procedure

16 C. Silvano et al.

structured database. The designer, not only will not be stuck on repetitive operations,

but can focus his/her attention (and profit from his/her experience) in analyzing the

designs database in a statistical manner.

Moreover, the automatic exploration is driven by an optimization engine based on

several optimization algorithms, whereas the manual exploration is based on designer

ability and experience to assess the results and to move towards the next instance of

the model to be simulated.

Figure 1.7 presents a direct comparison between manual and automatic optimiza-

tion. The global lead time (Tmo) of the manual design exploration is determined

by the number of manual iterations that are needed to reach the expected design

improvement. The global lead time (Tao) in the automatic procedure case is dom-

inated by the effective simulation time needed by the optimization strategy, given

the overhead due to the automatic extraction and processing of measures, and com-

munication latencies between the design exploration tool and the simulator. Another

difference concerns the type of results produced by both types of optimization: the

automatic optimization generates a set of designs that are likely to belong to the

Pareto front, while the manual optimization generates just a set of designs that the

designer found interesting. On the average, the manual approach suffers from the

fact that it is affected by personal views, experience and background. This decreases

the likelihood of finding points that belong to the Pareto front.

The reduction of the lead time of the design exploration phase is frequently re-

flected in the reduction of the overall time-to-market for the final product. The lead

time must be always considered as one of the objectives for the introduction of the

automatic exploration methodologies in industrial design processes, together with

the more specific product related ones.

The general automatic DSE procedure described in this Chapter represented the

common basis for the validation of each of the use cases of the MULTICUBE project.

In order to apply this procedure, the responsible for each of the use cases adapted

Design

Space

Setup

Setup

Tao

Automatic Optimization

Manual Optimization

Tmo

Pareto curve

Solutions set

Fig. 1.7 Comparison between manual and automatic exploration procedures

1 The MULTICUBE Design Flow 17

however the general procedure to the specificities of its particular application and

context, but without modifying the aim and the general steps described above.

1.5 Conclusions

In this chapter, the main structure of the MULTICUBE design flow has been intro-

duced to be detailed in the next chapters. The founding principles of the proposed

structure are meant to cover the gap between the system-level specification and the

definition of the optimal application-specific architecture. The flow is based on the in-

teraction of two frameworks to be used at design time: the Design Space Exploration

Framework, an architecture exploration set of tools, and the Power/Performance

Estimation Framework, a set of modeling and simulation tools operating at several

levels of abstraction. The DSE flow also includes a Run-time Resource Manager

able to select at run-time the best design alternatives in terms of power/performance

trade-offs generated during the design-time exploration phase.

References

1. Avasare, P., Vanmeerbeeck, G., Kavka, C., Mariani, G.: Practical approach to design space
explorations using simulators at multiple abstraction levels. In: Design Automation Conference
(DAC) User Track Sessions. Anaheim, USA (2010)

2. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press (2002)
3. Joseph, P., Vaswani, K., Thazhuthaveetil, M.: Construction and use of linear regression mod-

els for processor performance analysis. High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on pp. 99–108 (2006)

4. Joseph, P.J., Vaswani, K., Thazhuthaveetil, M.J.: A predictive performance model for super-
scalar processors. In: MICRO 39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 161–170. IEEE Computer Society, Washington, DC,
USA (2006). DOI http://dx.doi.org/10.1109/MICRO.2006.6

5. Lee, B.C., Brooks, D.M.: Accurate and efficient regression modeling for microarchitectural
performance and power prediction. Proceedings of the 12th international conference on Archi-
tectural support for programming languages and operating systems 40(5), 185–194 (2006). DOI
http://doi.acm.org/10.1145/1168917.1168881

6. Mei, B., Sutter, B., Aa, T., Wouters, M., Kanstein, A., Dupont, S.: Implementation of a coarse-
grained reconfigurable media processor for avc decoder. J. Signal Process. Syst. 51(3), 225–243
(2008). DOI http://dx.doi.org/10.1007/s11265-007-0152-8

7. Posadas, H., Castillo, J., Quijano, D., Fernandez, V., Villar, E., Martinez, M.: SystemC plat-
form modeling for behavioral simulation and performance estimation of embedded systems.
Behavioral Modeling for Embedded Systems and Technologies: Applications for Design and
Implementation pp. 219–243 (2010)

Chapter 2

M3-SCoPE: Performance Modeling
of Multi-Processor Embedded Systems
for Fast Design Space Exploration

Hector Posadas, Sara Real, and Eugenio Villar

Abstract Design Space Exploration for complex, multi-processor embedded sys-

tems demands new modeling, simulation, performance estimation tools and design

methodologies. Recently approved as IEEE 1666 standard, SystemC has proven to

be a powerful language for system modeling and simulation. In this chapter, M3-

SCoPE, a SystemC framework for platform modeling, SW source-code behavioral

simulation and performance estimation of multi-processor embedded systems is pre-

sented. Using M3-SCoPE, the application SW running on the different processors

of the platform can be simulated efficiently in close interaction with the rest of the

platform components. In this way, fast and sufficiently accurate performance met-

rics of the system are obtained. These metrics are then delivered to the DSE tools to

evaluate the quality of the different configurations in order to select the best ones.

2.1 Introduction

System exploration with an optimum trade-off between performance and cost re-

quires analyzing the performance of a large number of system configurations with a

wide set of parameters, such as number and type of processors, memory architecture

and sizing, mapping of SW tasks and suitability of communication infrastructure.

System simulation is a key design task widely used for design verification and

evaluation. The main role of system simulation in embedded system design is to

ensure the functional correctness of the design at the different abstraction levels. In

Design Space Exploration (DSE), system simulation is used for performance analy-

sis, providing to the exploration tool the required metrics such as delays, throughput,

utilization rates, bandwidths, etc. Power consumption is becoming an additional,

increasingly important metric to be estimated.

H. Posadas (�)

University of Cantabria, Santander, Spain

e-mail: posadash@teisa.unican.es

C. Silvano (eds.), Multi-objective Design Space Exploration of 19
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_2, © Springer Science+Business Media, LLC 2011

20 H. Posadas et al.

Design Space Exploration requires auxiliary tools to provide the exploration en-

gines with the metrics needed to evaluate the different system configurations. For

evaluating complex HW/SW MPSoC systems [30], very flexible evaluation mecha-

nisms are required. Static mechanisms are adequate to evaluate the effect of different

parameter values in well known architectures. The analysis of internal processor

components or cache configurations are examples in that context. However, to eval-

uate unknown or very flexible architectures, analysis methods based on mathematical

equations are not applicable. Evaluation mechanisms based on simulation are then

selected.

Simulation environments for DSE have to overcome several challenges. Mainly,

these simulations require very fast speeds, considering the large amount of points

to be simulated. Thus, modeling techniques need to evaluate all the configurations

selected by the DSE tools without provoking additional delays. While HW simulation

can be performed at different abstraction levels using appropriate languages such as

VHDL,Verilog, System-Verilog and SystemC [58], efficient and sufficiently accurate

SW simulation requires additional efforts. Electronic System Level (ESL) [4] has

been proposed as an adequate abstraction level for complete system simulations

[38]. At this level, there are three main methodologies used for SW simulation:

Instruction-Set Simulation (ISS), virtualization with binary translation and native

co-simulation.

The first solution, ISS-based HW/SW co-simulation, is the main industrial plat-

form simulation technology supported by mature commercial tools offered by all the

major vendors [40, 56]. Currently available commercial modeling and simulation

tools are based on previous research activity in academia. In [7] a generic design

environment for multiprocessor system modeling was proposed. The environment

enables transparent integration of ISSs and prototyping boards. As an evolution of

this work, in [8] a SystemC infrastructure was developed to model architectures with

multiple ARM cores. This approach provides a set of tools that enables designers to

efficiently design SW applications (OS ports, compilers, etc.). A fully operational

Linux version for embedded systems was ported on the platform. Software simu-

lation was based on an ISS for each processor, thus presenting the advantages and

disadvantages commented above. Moreover, it cannot be easily used to evaluate

platforms that do not contain ARM processors.

Several approaches have been proposed to improve the state-of-the-art of com-

mercial tools (Fig. 2.1). One of them is the modification of the OS running over the

ISS. As the OS is in fact the interface between SW applications and the rest of the

system, it can be used to save simulation time. In [62], a technique based on virtual

synchronization is presented to speed up execution of several SW tasks in the ISS.

Only the application tasks run over the ISS. The OS is modeled in the co-simulation

back-plane thus accelerating its simulation. As the OS execution time is only part of

the total execution time, the gain is limited.

A recent technology proposed for SW simulation is using virtualization with

binary translation. The most representative virtualization technology is QEMU [54].

SW emulation is based on virtualization. The binary code of the target processor is

dynamically translated to the host executing the same functionality. In its original

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 21

Fig. 2.1 Approximate
comparison of orders of
magnitude for the different
simulation mechanisms

Simulation type Speed Accuracy

Functional execution

ISS (cycle accurate)

Pin accurate

ISS (instructions)

Timed binary translation

Timed native co-simulation

100000

10000

1000

100

10

1

version, QEMU does not support execution time estimation for SW simulation, but

some works has covered this aspect [20]. Providing QEMU with the required SW

simulation capabilities is an active research area [6, 44]. Recently, Imperas has

released its SW emulation technology as Open-Source [26].

Native co-simulation is based on the direct execution of the source code on the

host. Simulation speed can be improved avoiding the use of processor models at the

expense of some estimation accuracy in order to enable an efficient system evalu-

ation [18]. Estimation errors of about 30–40% can be accepted for initial system

assessments [29]. Using either static [5, 9, 24] or dynamic techniques [11, 31, 46]

the SW execution times are estimated and annotated to obtain timed simulations of

the application SW. A simple version of this technique has been implemented in a

commercial tool [27]. This kind of analysis technique has proven to be useful for

power consumption estimation [10, 34, 48] as well. Native simulation has shown its

ability to estimate the number of cache misses together with execution time [14, 57].

An integral part of the embedded SW is the RTOS used. In the two binary simula-

tion technologies commented above (ISS and virtualization), the complete embedded

SW including the application SW and the RTOS are compiled together. In native sim-

ulation this is possible whenever appropriate modeling of the Hardware Abstraction

Layer (HAL) functions is made [44]. The main advantage of this technology comes

from the possibility to easily include all the Hardware-dependent Software (HdS),

such as RTOS, drivers, etc. Whereas the main disadvantage is that one needs to

develop, in advance, the complete embedded SW including the application SW, the

chosen RTOS, drivers, etc. An additional limitation is that each RTOS and each

microprocessor requires a specific HAL model.

An alternative for native SW simulation is based on using an abstract OS model.

As the RTOS functionality is abstracted, this approach is faster than the HAL-based

one. Several alternatives have been proposed, from generic [19, 22, 23, 63] to real OS

models [21, 47]. The former technology is currently supported by some commercial

tools [16, 17]. The latter approach has the advantage that, when efficiently exploited,

a more accurate model of the underlying RTOS can be achieved. This additional

efficiency is obtained by combining the source-code execution time estimation with

the OS model providing more accurate results. The work in [12] provides an analysis

of the impact of including the OS time in the overall system estimation.

22 H. Posadas et al.

These abstract RTOS techniques also dedicate a large effort to accurately integrate

time annotation and OS modeling with HW/SW communication, especially for HW

interrupt management. Very few of these approaches support a real OS Application

Programming Interface (API) such as TRON or POSIX [21, 47]. The idea of inte-

grating facilities for OS modeling in SystemC was proposed as a new version of the

language some years ago by the SystemC consortium. However, OS modeling at

system level proved to be a much more complex task than expected, becoming an

active research area.

However, none of these modeling methodologies are aimed at complex Multi-

Processor Systems-on-Chip (MPSoC) modeling. Current MPSoC modeling requires

dynamic task mapping, drivers and interrupt management which are not covered

by previous modeling techniques especially with the requirement of fast simula-

tion speed during performance estimations and system dimensioning. Moreover, a

framework is required that supports a complete model of the platform that can easily

integrate new components, either an application-specific HW or a programmable

processor. When the application SW code of each function has not yet been devel-

oped, the underlying simulation technology supporting native simulation can be used

for high-level performance analysis [16, 17, 36].

In this chapter, M3-SCoPE, a framework for performance modeling of multi-

processing embedded systems for fast DSE is described. The proposed system sim-

ulation technology includes abstract models of the RTOS and the multi-processing

architecture that can easily integrate the application SW through the RTOS API (i.e.

POSIX). The SW is annotated with estimations of the execution time and power

consumption. The multi-processing architecture is connected through an abstract

Transaction-Level Model (TLM) of the bus with the peripherals and application-

specific HW components. Different nodes in the system can be connected through

networks. The SW simulation technology includes novel features such as dynamic

time estimation and cache modeling.

Additionally, to allow evaluating complete, heterogeneous systems in an efficient

way, simulation tools require capabilities to automatically create the system models

for the different configurations. On one hand, DSE tools do not have the capability

to drive the creation of the platform models. On the other hand, need for manual

recoding for each evaluation point results in too long exploration times. Several

previous works have been proposed to solve or minimize the effort required for

platform model creation. Automatic generation of system models oriented to specific

target architectures has been proposed in [35, 60]. Other works have been focused

on automating the exploration of component interconnection [33, 42, 61]. However,

none of these approaches cover model generation for complete architectures in the

general case.

To provide more generic techniques, TLM techniques based on system-level de-

sign languages like SystemC have been proposed [13, 25, 43, 55]. Green-socks is

an open source infrastructure for distribution of TLM models [32]. In [45] a TLM

framework for automatic system model generation is proposed. The framework re-

ceives a fixed system description and generates the executable system model. In [39,

51] TLM infrastructures are used to accurately estimate SW performance.

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 23

Some commercial tools [3, 16] can model designs at TLM level. The schematic

entry tools simply provide a graphical interface for plugging existing database mod-

els together. These models are described and connected at the transaction-level. They

also provide shell interfaces which allow modifying the characteristics of the system

components. However, the system architecture is fixed and cannot be modified. An

alternative solution to schematic entries for system description and model generation

is using XML based descriptions. IP-XACT [28] standard describes an XML scheme

for meta-data documenting Intellectual Property (IP) used in the development, im-

plementation and verification of electronic systems. This scheme provides a standard

method to document IP that is compatible with automated integration techniques.

Several tools have been developed to support that integration [37, 41]. The resulting

models can only configure certain parameters on the system components. However,

modifiable platforms cannot be described through IP-XACT and modeled with these

tools. Thus, the exploration of the best platform architecture cannot be performed

with these tools.

In that context, the work presented here proposes a solution to describe modifiable

architectures and automatically generate the corresponding system models. These

models can be configured by modifying the parameters of the system components

and also modifying the system architecture itself. This modeling capability will allow

the DSE tools not only to find the optimal tuning of the system components, but also

to optimize the system itself. System descriptions will be performed in a simple

XML format, although the proposed solutions can be easily adapted to other XML

descriptions.

2.2 Native Co-Simulation Infrastructure for DSE

As stated above, SystemC has been widely adopted for system modeling during last

years. SystemC provides features to describe systems from RTL descriptions up to

system-level models, in order to enable its application during all the first steps of

the design flow. Furthermore, as SystemC is a library of C++, SW designers can

integrate their C/C++ codes together with the HW platform descriptions to create

models of the entire system. Then, the SW is compiled and executed natively in the

host computer without requiring slow ISS models. As a consequence, this solution

results in very fast simulation technology.

However, this solution, which can be used to verify the system functionality,

presents several limitations in terms of additional performance estimations. The

native execution of a SW code provides no information about the temporal behavior

of the code in the target platform. Furthermore, this kind of execution of the embedded

SW does not consider any kind of processor allocation nor the effects of an operating

system. Finally, the HW/SW interfaces are not adequately modeled, so the effects of

interrupts, device drivers or bus contentions are not taken into account.

SCoPE is a library that provides the extensions required by SystemC to enable

the use of native SW execution together with SystemC HW descriptions in order to

24 H. Posadas et al.

obtain performance estimation of the entire system. These extensions include facil-

ities to accurately estimate and model the temporal behavior of the application SW

[52], to emulate the behavior of the operating system [47] and to enable realistic

modeling of the HW/SW communication [50]. As a consequence, SCoPE is a pow-

erful infrastructure for high-level system modeling during early system performance

evaluation.

Nevertheless, an efficient modeling infrastructure for DSE requires additional fea-

tures. Exploring the effects of different component frequencies, variable number of

processors or different memory architectures also requires the capability to describe

and automatically build the system models during the exploration. Common DSE

tools are developed to select the experiments to be evaluated and to extract the best

points from the Pareto curves. However, these tools have no intelligence to create

the different system descriptions to be simulated. Current DSE tools are not capable

of selecting, instantiating and connecting the components of the SystemC model

depending on the selected configuration.

To solve this limitation, M3-SCoPE combines SCoPE features with an input/out-

put interface where XML-based descriptions of highly configurable systems can be

provided [49]. From these descriptions the library automatically creates the sys-

tem model by instantiating and connecting all the components with its selected

parameters. This capability avoids manual recoding during the exploration process,

increasing the overall exploration efficiency. Additionally, the use of XML files en-

ables run-time system modeling creation. Thus, no recompiling steps are required

during simulations.

Summarizing, the main benefits provided by M3-SCoPE for the designers are the

following:

• Capability of describing configurable system descriptions in XML format

• Automatic system model creation at run-time, avoiding recompiling steps

• Performance estimation (time and power) and annotation of the application SW

– Modeling cache effects

– Modeling compiler optimizations.

• Modeling the effects of the operating system and processor allocation

– Scheduling, synchronization and communication

– Memory space separation.

• HW/SW communication

– Using device drivers and interrupts

– Direct access to HW registers through pointers.

• Facilities to automatically estimate performance features from the HW compo-

nents, to be delivered to the DSE tools.

Considering all these features, M3-SCoPE can be easily integrated in the DSE flow

(introduced in Chap. 1) as shown in Fig. 2.2. For this integration two input XML files

are defined to provide the system description: one XML file describing the system

and its configuration options, called “System Description” file, and another XML file

of pairs identifier-value, fixing the selected configuration for each experiment, called

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 25

Exploration

Architect

Human

Computer

Interaction

Design Space

Exploration

Tool

XML

System

Config.

XML

System

Metrics

XML

System

Descr.

SystemC

Compon.

Models

SCoPE

Simulator

Use Case/Simulator Provider

Fig. 2.2 Integration of the M3-SCoPE Simulator in the exploration flow. The system designer
provides the configurable system description and the codes for all the system components. Then,
DSE tool starts selecting configurations and receiving performance estimations from M3-SCoPE

“Configuration” file. An XML output file has been defined to return the simulation

results. The external DSE explorer indicates the simulator which is the configuration

to be analyzed each time by generating the corresponding “Configuration” file.

The simulation tool interprets the file, builds the system model and performs the

simulation. This means that no user interaction or model recompiling is required

once the exploration process starts.

The tool generates an output file, when the simulation finishes. This file contains

the values of the metrics obtained during the simulation. The output information is

used by the DSE exploration architect to perform the search of the best solutions

applying the RSM techniques.

2.2.1 Configurable XML System Descriptions

The XML System Description file includes information about the HW components,

the HW architecture, and the SW tasks. A simple XML format has been developed to

easily describe highly configurable platforms. The language guarantees fast model

creation and efficient system simulation.

A simple example of an XML description using this language is shown in Fig. 2.3.

To keep it simple, no configurable options have been added. The example proposes

a system with a processor and a memory connected to a bus. A standard “hello

world” application has been selected to execute in the processor. To describe a

system with several platform architecture options and its configuration possibilities

three XML mechanisms are provided by M3-SCoPE. All three mechanisms can be

used simultaneously to describe highly configurable systems.

26 H. Posadas et al.

Fig. 2.3 Simple XML system
description containing
information about the HW
components, its instances, the
operating system, the SW
applications and the task
allocation. The description
represents a simple system
containing a processor, bus
and memory, running a
typical "Hello world"

application

2.2.1.1 Configuration of the System Components

The first configuration option is used to tune the characteristics of the system com-

ponents. The values of all parameters in the XML file can be replaced by identifiers

when the parameter is a configurable one. For example, the bus frequency that was

indicated in Fig. 2.3 (200 MHz) can be been replaced by the identifier "FREQ".

To select a configuration, the values of all identifiers must be assigned in the Sys-

tem Configuration File. Thus, to perform different simulations it is only required to

modify the value-identifier pairs in the System Configuration file (Fig. 2.2). Applying

this solution, the simulation of each experiment required by the DoE is performed

by substituting the identifiers of the configurable parameters by the selected values

and creating the corresponding system model.

2.2.1.2 Replication of System Components

The second configuration option is to indicate the number of times a system compo-

nent is replicated. To do so, a new XML "repeat" clause is provided. This clause

defines the number of times the element is repeated, an index identifier and the initial

index value. Figure 2.4 corresponds to an extension of the system description in Fig.

2.3 considering that the number of CPUs in the system can be set by the "CPUS"

parameter. This parameter must be assigned in the System Configuration file.

The "repeat" clause can be used to replicate both single components and groups

of components, copying complete parts of the system architecture. If the value is set

to ‘0’, the element is not placed in the system. This option is used to add or delete

different components within the system, including modifying SW components, HW

components and the communication infrastructures. As a consequence, different

platform architectures can be described.

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 27

Fig. 2.4 XML description
with configurable number of
processors. Depending on the
parameter “CPUS”, defined
for each simulation by the
DSE tool, the system model is
created. Task allocation is
modified depending on the
number of processors

Fig. 2.5 XML description
with configurable HW
architectures. The figure
shows a two possible
configurations for as an
interconnection component: a
bus or a Network-on-Chip
(NoC)

2.2.1.3 Selecting Complete Configurations

The third configuration option provided is to define several complete configurations

and select one on each simulation. For example, in Fig. 2.5, two different HW archi-

tectures are described ("arch1" and "arch2"). The one selected for each simulation

is defined in the"Implementation" clause. In this example, the architecture selected

depends on the "ARCH" identifier. Its value must be set in the System Configuration

file to "arch1" or to "arch2".

The system description mechanism allows dividing the system description in

parts and exploring different combinations. Multiple HW component lists, HW

architectures or SW allocations can be described to be explored by the DSE tool.

28 H. Posadas et al.

2.3 Modeling of SW Components through Native Simulation

2.3.1 Performance Modeling of Embedded SW

As mentioned before, native simulation is a very fast solution for functional modeling

of SW components. However, to obtain estimations of the system performance the

untimed functional executions must be transformed into timed SW models. To do so,

the technique applied in M3-SCoPE has two steps. First, performance estimations

of the SW code are done statically, adding time annotations to the SW code. Then,

the code is executed, and these times are applied to obtain a timed simulation.

The simulation time of the application SW is estimated depending on three ele-

ments: the code, the compiler modifications and the cache effects. Additional times

required by the processors accesses to the rest of the HW platform (memory or periph-

erals) are evaluated inside the HW platform models, and are not directly estimated

by the SW modeling.

To consider the three elements, the code annotation is based on a basic-block solu-

tion. For each basic block, the time required for its execution, the power consumption

and the required cache accesses are annotated. Using this basic-block information,

M3-SCoPE obtains, during simulation, the total time, power and cache accesses by

accumulating the values for all the basic blocks executed. Additionally, estimation

of basic block metrics from a cross-compiled binary code allows to account for the

compiler effects.

The estimated execution time is then applied to transform the native SW functional

execution into a timed simulation. SystemC time annotation is performed by means

of "wait (time)" sentences at communication and synchronization points, which

correspond to system calls and I/O accesses. However, the use of standard "wait"

clauses does not allow modeling preemption in the SW tasks, as the time is completely

applied independently of additional events in the system, as interrupts. To solve that,

the technique of pre-emptable waits is applied.

The application of this extra information involves a penalty in the simulation

performance. Additional instructions require additional simulation time, which is

opposite to the main requirement of DSE simulators: speed. As a consequence, these

annotations must be minimal. The solution of basic-block annotation minimizes the

problem. The use of global variables to accumulate time and power also helps to

reduce the overhead (Fig. 2.6). But probably the most important solution applied is

to move the cache address searches from the cache models to the code annotation,

as it will be presented later.

In parallel to time estimations, the proposed techniques are able to estimate the

power consumption required by the processor to execute the application software.

The approach consists of assigning an average value of energy to each machine

instruction. By analyzing the cross-compiled code, the library obtains the number

of instructions for each basic block, and this value is back-annotated in the original

source code along with time annotations.

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 29

Fig. 2.6 Example of extra
code for annotating delays. At
the end of each basic block
the global variable “segment
time” is increased with the
block delay. At system calls
the final time value is applied
to the simulation

When running the simulation, this extra code is executed so we can estimate the

number of machine instructions executed. By multiplying this value by the average

energy per instruction provided in the XML files, an estimation of the total energy

required by the processor is obtained. It should be noted that, while this approach is

valid for all processors, the accuracy of the technique depends on the stability of the

power consumption of the target core.

2.3.1.1 Basic-Block Time Estimation

The estimation of the cost of each basic block in terms of time and power requires

using cross-compiled code to take into account compiler optimizations. However,

these compiler optimizations make it very complex to associate source code and

generated binary code [1]. Complex reverse compilation techniques can be applied

to correlate assembly blocks to source blocks [15]. However, this challenge is not

always feasible due to advanced compiler optimizations.

In this work, a hybrid level technique for SW annotation is proposed: while basic

block identification is performed at source level, characterization is obtained from

assembly code. This strategy simplifies the characterization process and speeds up

the analysis time.

To apply this solution to the DSE flow, a minimum effort from the designer is

required. The cache model and its associated methods have been implemented as an

independent library. Additionally, an automated instrumentation process performs

all necessary annotations in source code to link software execution with the cache

model. Figure 2.7 shows an overview of the cache estimation process, including

basic block characterization.

Due to the rich syntax of source code, a C/C++ code parser has been developed in

order to identify declarations, statements and expressions during the code annotation.

The parser, based on a C/C++YACC grammar, dumps theAbstract Syntax Tree (AST)

to a file in XML format. This XML serves as input to the block identification and

instrumentation processes. With the information included in the XML, the original

C/C++ code is rebuilt adding time, power and cache information. Furthermore, this

XML can be considered as an intermediate representation, independent from the

source language. Any language could be estimated by simply creating a front-end

for that language.

30 H. Posadas et al.

Fig. 2.7 Complete
Annotation Process. The
original code is analyzed with
a C++ grammar. Then the
code is built adding marks to
identify the basic blocks and
cross-compiled. The resulting
code is analyzed to evaluate
the metrics of each basic
block, and the code is finally
rebuilt adding this
information

Source Code

Parser

XML Code

Basic Block

Identification

Target Assembly

Code

Cross-compiler

Basic Block Table

Cache Model

Executive

Native Compiler

Instrumented

Code

Cache Modelling

Instrumentation

To identify basic blocks at source level, the proposed solution is to insert specific

marks at the beginning and at the end of each basic block. This marked code is then

cross-compiled, so the marks introduced are preserved in the target assembly code.

The inserted marks looks like:

asm volatile("mark_xx:");

To prevent the compiler optimizations from deleting or moving such marks, they are

declared volatile. Additionally, to keep the behavior of the original code, the asm

instructions inserted consist simply of labels. This procedure guarantees that there

is always a direct correlation between source and assembly blocks. However, as the

effect of the compiler is constrained by the marks, the final binary code is not exactly

the target one, so some errors are generated.

Compiler optimizations might affect both intra-block and inter-block behavior.

Intra-block optimizations are considered in the characterization of the blocks from

assembly code. This assembly code already includes both front-end and back-end op-

timizations. Inter-block optimizations are considered by delimiting the basic blocks

at source level. Nevertheless, there are some compiler optimizations which cannot

be accurately considered with this technique. Loop unrolling replicates the body of

a loop statement in the assembly code, but from source point of view it is a unique

block.

Nevertheless, in processors with instruction cache, loop unrolling is rarely em-

ployed, since the miss cost for each iteration significantly exceeds the jump cost.

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 31

Calls to inline functions from different points in the code have a similar problem,

since the replicated code in the assembler file cannot be considered in the source

instrumentation. If function inlining does not require replication of code (i.e. within

a loop body), the technique works without limitations.

Summarizing, the error implied by this technique is minimal, and very adequate

considering the accuracy required at the abstraction level.

2.3.1.2 Cache Modeling

Cache memories have also a very important influence on SW performance. Thus,

cache modeling is required to obtain accurate estimations. As it is well-known,

cache memories consist of lines that are arranged in sets, depending on the degree

of associativity. This value determines how many lines are grouped in each set. As

an example, the ARM920T [2] instruction cache is 512-line size with a 64-degree of

associativity.

When the processor requires the information placed in a certain address, it is re-

quired to search in all the possible locations for that address. The number of locations

depends on the associativity degree. For high degrees, this task is a time-consuming

process, which is really critical in the abstraction level required for efficient DSE.

An example is shown in Fig. 2.8. While the overhead of the time annotation is only

one additional code line, the cache access requires a function call on each line to

check the instruction address, and a complex search within each call to check if the

values are in cache or not. This drawback is then the main focus of the cache model

to speed up simulation time.

The solution proposed to minimize the simulation overhead is based on three main

improvements: search cache lines instead of single instructions, replace a list search

by a static annotation and move the search from the cache model to the source code.

This is shown in Fig. 2.9.

As instructions within a basic block are sequential, it is not required to search

for each address in the cache. If one value (instruction or data) is in cache, all the

instructions/data in the same line will be also there. Thus, the number of checks

is extremely reduced. If a common cache line contains 8 values, cache checks are

performed only 1/8th of the times the actual cache is checked. In practice, lines

Fig. 2.8 Comparison
between the annotation for
modeling execution time and
instruction caches. The
different mechanisms result
in different simulation
overheads

Cache annotation

Original SW code

check_cache(addr); b= c+d[a];
c += 2;

a –= 1;

while (a){

total_time+=240;

Time annotation

}

32 H. Posadas et al.

Anotated SW code

Annotated SW code

Addresses

Addresses

Cache model

HW Platform model

HW Platform model

Cache model

Search in

the cache

Provoke

miss

Provoke

miss

Update

cache

Hit bit

checking

Update

cache

Fig. 2.9 The underlying concept applied to reduce of cache modeling overhead. The idea is to
reduce the overhead by removing the function calls and searches done in the cache that are required
when a new line is required. Instead, a bit checking is integrated in the software code annotation.
Thus the cache model is only accessed at cache misses

containing instructions of different basic blocks are checked in all the blocks, so the

reduction is slightly reduced.

The second improvement is even more important for complex caches. In order

to avoid time-consuming “tag” searches, the dynamic search is replaced by a static

“bit checking” solution. In the proposed model, a cache line is modeled as a structure

which includes the target set at which it may be allocated and a flag which determines

if a line is currently allocated in cache:

struct icache_line {

char num_set;

char hit;

}

The cache is modeled as a two-dimension array of pointers to cache line structures.

The dimensions of the array depend on the physical characteristics of the cache to be

considered (size, associativity and line size). All necessary methods for fetching or

replacing data are also provided with the model. The caching mechanism consists of

storing the addresses of the line structures in the array. An empty location in cache

is modeled as NULL value.

The struct for each cache line is declared statically inside the SW code as part of

the annotation, not in the cache model. This is done with the following line.

static icache_line line_124 = {0,0};

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 33

Thus, in order to check if the line is in cache or not it is enough to check the "hit"

bit.

if (line_124.hit == 0)

insert_line(&line_124);

This code is executed every time a basic block ends. The method used to model a

cache miss, insert_line(), takes the address of the miss line and allocates it in

cache. The allocation algorithm works as follows: the address of the line is used to

find the target index. If there are free locations for this index, the address is simply

recorded in the line pointers array and the hit flag of the line is set to true. If the

index lines are full, the victim selection algorithm selects the victim line that must

be expelled. The hit flag of the victim line is set to false through its pointer, and its

location in cache is replaced by the new one. This way, the next time the victim line

is required, the hit field will be false.

insert_line(icache_line *line) {

icache_line *victim;

victim = get_victim_line(line->set);

if (victim != NULL) victim->hit = 0;

line -> hit = 1;

victim = line;

}

As a consequence of the entire process, tag searches are eliminated, and the cache is

accessed only at misses, which is a small percentage of all the cache accesses. Thus,

the cache modeling overhead is minimized. For data caches the solution applied is

similar.

Note that no real caching of data is performed in our model during execution. As

the SW code is executed natively, its execution does not depend on the behavior of

the associated cache in the HW platform. Our cache modeling technique only models

performance effects, not the actual HW behavior. This makes the technique faster

than other cache simulation approaches.

2.3.2 RTOS Modeling

One of the most important points when transforming a high-level description into a

real SW implementation is the inclusion of the OS. The SW code is gradually refined,

mapping high-level facilities, such as communication and synchronization facilities,

to the target OS facilities. Thus, the development infrastructure has to support the

refined SW code, providing the target OS facilities inside the timed TLM model of

the application SW.

The OS model included in M3-SCoPE is divided in a similar way to real OSs.

An OS can be divided into several layers [59]. In the upper part, we can find the

system call handlers that support the API. In the middle, the layers for internal OS

management form what can be called the kernel core. At the lower level, there are

34 H. Posadas et al.

Fig. 2.10 Architecture of the
OS model. The model is
divided in three parts: the
upper part contains the
implementation of the
services directly called by the
application software. The
middle part contains the
model kernel, where all the
internal OS services are
implemented. Finally, the
lower part is in charge of
enabling the interconnection
of the software with the rest
of the simulation

Application
SW code

Application
SW code

Application
SW code

Hardware platform model

OS API (POSIX)

Scheduling

Scheduler IPC

HAL

InterruptionsI/O

...

...

...

Communic.

OS kernal OS

model

the layers oriented to hide the HW platform details (Hardware Abstraction Layer,

HAL) from the rest of the system, such as low-level functions to access the bus, the

interruption management or the context switch infrastructure. Thus, the proposed OS

model will provide support for all of these common OS sections, as can be seen in Fig.

2.10. In order to simplify the models, all the possible layers have been grouped into

three layers, following the classification above. To model the execution time of the

OS itself, a delay is associated to all system calls and some internal functionalities,

such as context switches or interrupt handlers.

The kernel core is mainly in charge of process and thread execution management,

memory management and task communication and synchronization. To model task

scheduling characteristics, a new scheduler is placed on top of the original SystemC

scheduler. The OS model scheduler controls task execution by maintaining only one

unblocked thread per processor. This scheduler manages the priorities and policies

as indicated in POSIX, integrating a two-level scheduler: process scheduling and

thread scheduling. The scheduler is called when a task is blocked or unblocked as an

effect of a system call, or when an interrupt resumes a task preempting the current

running task.

This functionality has been implemented with use of the SystemC features. Each

thread in the application SW is associated with a SystemC thread (SC_THREAD)

running the corresponding code. In this way, the SystemC scheduler is in charge

of managing the thread context switches. To model the OS thread scheduling the

SystemC scheduler is hidden. All the SystemC threads are suspended with SystemC

wait statements. When the scheduler selects one of these threads, a notify call

is performed to awake the corresponding thread. When the thread is preempted

or blocked, it returns to the wait statement and a new thread is scheduled. Thus,

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 35

the SystemC scheduler executes the only one runnable thread each time. This way

scheduling is completely managed by the OS model scheduler through wait and

notify statements. Note that SystemC wait statements are used for two purposes:

thread blocking for scheduling purposes, as explained here, and for time annotations

as explained in the previous section.

However, SW code refinement implies more than optimizing task scheduling

characteristics. The proposed OS model provides a wide set of OS facilities, in

order to allow the transformation of high-level descriptions into real executable SW

codes. High-level features for communication, synchronization or time management

have to be substituted by real OS features. In our proposal, a POSIX API has been

implemented for communication (e.g. message queues or sockets), synchronization

(e.g. semaphores, mutex or conditional variables), signals, timers, sleeps and many

other functionalities. Thus, the designer can simulate the real SW code together with

the rest of the system before moving to more accurate but time consuming simulation

infrastructures, such as ISS-based simulations.

To support several independent OS models the OS model information has been

encapsulated in a C++ class. Thus, modeling several OSs only require instantiating

an OS class several times. Multiprocessor management is supported by maintaining

as many running threads as processors. When a process is created or preempted, the

presence of an idle processor is verified. When a processor is delivered, a new thread

is scheduled to run on this processor. In this way, all processes are maintained active,

and tasks are scheduled as soon as a processor becomes empty.

As all threads are SystemC threads, and the SystemC kernel activates the threads

sequentially, there is no real parallelism during the simulation. Parallelism is only

emulated. As a consequence, no additional mechanism is required to ensure safe

concurrency inside the OS model, in contrast to real Symmetric Multi-Processing

(SMP) OSs, where mechanisms such as spinlocks are critical to handle concurrency

safety. Furthermore, the OS modeling technique is flexible enough to cover the most

usual OS architectures. Each OS is associated to a memory space independently

of the underlying processing architecture (bus or network). The complete MPSoC

may contain as many memory spaces as needed. The HW platform model creation

presented above easily enables that feature.

More complex is the modeling of memory space separation among processes of

the same OS. As the SystemC simulation is a single host process, the management of

memory spaces in the simulation requires additional mechanisms. Reusing names of

functions and global variables among component codes or loading several instances

of the same task is not possible without a memory space separation infrastructure.

Nevertheless, this problem is not limited to processes of the same OS. As the entire

simulation is a single host process, name duplication between SW process of differ-

ent nodes, running in different OS, or between SW and HW components provokes

the same error. A general solution has been implemented in M3-SCoPE. It will be

presented hereafter when describing how all the system components are integrated in

the SystemC model. Finally, the technology has also proven to be accurate enough to

model dual General-Purpose/Real-Time Operating Systems, such as RTLinux. More

information can be found in [52].

36 H. Posadas et al.

2.3.3 Modeling of SW/HW Communication

One of the most important features in native co-simulation is the interconnection

between the native SW execution and the HW platform model. All accesses from

the SW code to the HW platform must be detected and redirected, otherwise the SW

will attempt to access the host peripherals, provoking multiple failures.

2.3.3.1 HW/SW Communication Using Device Drivers

The OS kernel and the API presented above are not enough to provide a complete OS

model for software modeling and refinement. Although application code refinement

is mostly supported, Hardware dependent Software (HdS) (such as drivers) is not

supported. A more complete model, capable of managing interruption handlers and

drivers, is required. The HdS is usually critical in embedded systems and its analysis

at the early stages of embedded system development can provide large benefits during

the rest of the project.

In order to perform correct HW/SW interface modeling it is required to have an OS

model capable of managing the I/O accesses from the processor to the peripherals,

and the interrupts the peripherals send to the processor. To manage the I/O, Linux-

based driver support is provided. Linux standard functions for registering, accessing

and managing drivers are integrated in the OS model, allowing the creation and use

of Linux drivers.

Interrupts are generated from the HW platform model and received by the appli-

cation SW modeling infrastructure, as explained in the previous section. When the

timing effects have been established, the OS facilities for interrupt handling are called

by the SW modeling infrastructure, calling the corresponding "wait" and "notify"

statements. The standard or user-defined handlers associated with the interrupts are

executed, performing the proper operations, and calling the corresponding drivers.

The HW timer interrupt is of special interest. It is used to manage timers, sleeps,

alarms and time-based scheduling policies, such as Round-Robin.

That way, HW/SW communication explicitly indicated in the code can be mod-

eled. The I/O functions connect the native SW execution with the HW platform

model. However, in embedded systems, HW/SW communication is not always so

explicit. Peripherals can also be accessed by reading and writing directly the ad-

dresses of the peripheral registers. This communication is possible by using C/C++

pointers.

2.3.3.2 Modeling of Direct I/O Accesses Through Pointers

When the addresses of the peripherals are known by the SW developer and the OS

allows that, peripheral registers can be directly accessed. For example, a device

connected to a serial port can be accessed in the following way:

char *uart_addr = 0x80001004;

*uart_addr = A;

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 37

However, when the code is natively executed, this access will not work. Firstly, the

host computer does not physically contain the required peripheral. As these pointer

accesses cannot be easily detected statically, additional mechanisms are required to

detect and redirect these accesses to the HW platform model at run-time.

Secondly, in native co-simulations the operating system prevents the application

code to access specific HW addresses. When the SW code tries to access a fixed HW

address, the memory management unit (MMU) will raise an exception as there is

no physical address associated with the required virtual address. In an OS such as

UNIX, this will result in a segmentation fault. The way to solve this problem is to

force the operating system to create a page of virtual memory at the desired memory

address. Thus, when the SW under simulation wants to read or write the HW values,

values are correctly stored in the host memory.

To force the native operating system to create this memory page, the standard

POSIX "mmap" function can be used. The "mmap()" function shall establish a

mapping between a process address space and a file, shared memory object, or typed

memory object. The format of the call is as follows:

pa = mmap(addr, len, prot, flags, fildes, off);

The required code is shown in Fig. 2.11. In that code, a file is created to store the

information of the associated memory. It is important to note that the maximum

size of the mapped memory is equivalent to the size of the associated file. As a

consequence, if an empty file is used, no values can be read or written. The solution

applied is to assign a size of "len" to the file before calling "mmap". To do so, the

standard POSIX function "ftruncate" is used.

If the initial address does not correspond to the beginning of a memory page,

special management is required. Memory pages always start from an aligned position.

Thus the memory activated will start at the corresponding aligned address and will

cover "len" bytes. To adjust the addresses, there are two possibilities. First the

"offset" parameter can be used to indicate where exactly the mapped memory area

must start. The second solution is to increase "len" with the offset of "addr". In

the proposed code (Fig. 2.11) the second solution has been used. Furthermore, for

debugging purposes, it is interesting to note that the values stored in the scratch-pad

memory model can be shown by reading the associated file.

The solution is very effective when modeling scratch-pad memories in native co-

simulations. It automatically allows executing SW code using fixed HW addresses

with a negligible simulation overhead. As no cache misses or any other event is

provoked internally by scratch-pad memories, only the ability of reading and writing

values at these addresses is required. More specific details of internal scratch-pad

operations are not handled at high level.

Fig. 2.11 Code for mapping
the HW memory model

38 H. Posadas et al.

Mapping HW peripheral accesses to a created memory page in native memory

space results in another issue. These peripheral accesses from SW usually commu-

nicate particular event notification to the HW. Hence these HW peripherals must be

notified about these HW access events. HW Peripherals are not designed to make

polling of any variable. They react to read or write accesses from the system proces-

sors. Even in case of using a high-level model for the HW peripherals, it will also

be based on such event-based communication. Whereas in technique presented in

the previous section, the access is performed but the peripheral does not receive any

event informing that a read/write operation has been performed in their registers.

The only way to produce the event is not to map HW access to a created memory

page and let the simulation crash. When the simulation is going to crash due to the

segmentation fault, the error can be captured, solved and then the simulation can

continue. The advantage of this approach is that the HW access is detected and the

event can be sent to the peripheral model. When the SW tries to access an invalid

memory address, the native operating system raises a SIGSEGV signal. This signal

can be captured with an appropriate signal handler. This prevents the program to

terminate, but this solution creates another challenge. During the signal handler,

neither the access type (read/write) nor the value are known. Hence, the HW access

cannot be performed at the signal handler.

To obtain the data, the memory remapping technique presented in the previous

section is used. At the signal handler the memory mapping is activated and the code

returns to repeat the pointer access. To perform a correct read access, the read transfer

to the virtual platform is done first, updating the necessary memory address. Thus,

when retrying the pointer read, the value obtained is correct. To perform a correct

write access, the pointer access is performed first, and after that the new value is sent

to the virtual platform.

Performing an "mmap" allows retrying the instruction, but once an access has been

performed, the memory page is active and further accesses are not detected. To solve

that, the memory page must be unmapped. However, when the code returns from the

failed instruction, it continues normally without unpin the page. A possible solution

is to create a parallel thread that wait for a certain time and then unmaps the page.

However, this is an unsafe solution. There is no guarantee that there will be no more

accesses before the unmap step, and even there is no guarantee that the unmap is

done once the application SW code continue the native simulation.

To unmap the memory page properly, the SW code itself must do it. Just after the

memory access is performed, the page must be unmapped. To do that, the original SW

code must be modified. The solution applied is to dynamically inject code after the

load/store assembler instruction that provoked the error. This injected code disables

the memory page, re-establish original SW code and continues the execution. As a

consequence, when the HW access is performed, the peripheral model is informed

and the simulation status returns to the correct point to detect new accesses. Although

the memory page is unmapped the data stored are not lost. The values are saved in

the file associated to the memory page. The entire process is summarized in Fig.

2.12.

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 39

Fig. 2.12 Process for
complete handling of HW
accesses directly using
pointers Application

SW

...

...
*addr value;=

Native
Simulation

Peripheral
Access

SIGBUS raise
and capture

2

Code
injection

Peripheral
Access

Map memory
region

Start-transfer
event

Injected code
execution

Code
recovering

Unmap
memory area

End-transfer
event

Furthermore there is an another issue with the solution above. Detecting if a

pointer access is a reading or a writing one is also complex. A possible solution is to

disassemble the binary code of the instruction provoking the error, but this solution

is not portable. Moreover, in x86 processors both reading and writing accesses are

performed with "mov" instructions, so it is not easy to distinguish both. The portable

solution is to force the system to raise different signals for read and write accesses.

When executing an I/O pointer access, a SIGSEGV signal is obtained if the memory

address has not been mapped. If the address has been mapped but the associated

file has 0 size, a SIGBUS signal is raised. Thus at initialization the address is only

activated for reading accesses with an empty file. Thus, a SIGSEGV raises at writing

accesses (there is no writing permission) and a SIGBUS raises at reading accesses

(there is no area in the associated file). This way one can differentiate between read

and write HW peripheral accesses. More details on this scheme can be found in [50].

2.4 HW Platform Modeling

Once the software modeling has been defined, it needs to be connected to a HW

platform for HW/SW co-simulation. For this purpose, an intermediate infrastructure

is proposed. This infrastructure is placed in the OS model and in the target platform

modeling facilities.

The SW modeling facilities presented above in Sect. 2.3 require a bus and, some-

times, a network interface to simulate a real communication of the SW with the rest

of the platform. The bus model has to interact effectively and efficiently with the

HW, thus a simple and flexible HW interface is integrated. This interface allows

connection not only to generic HW components provided by the tool, but also to

user-provided HW modules written in SystemC. For that purpose, three auxiliary

HW models are needed to model a complete communication framework: a network

40 H. Posadas et al.

interface for node interconnection, a DMA for large data transfers and an abstract

model of the physical memory to exchange data with the rest of the platform.

2.4.1 Bus Modeling

The techniques explained for SW estimation are always focused on fast performance

estimation. TLM models are very efficient for this kind of applications. In order to

take advantage of the simulation performance that TLM can provide, Programmer

View with Timing (PVT) models are used instead of bus cycle-accurate models. These

PVT models use behavioral descriptions with simplified communication mechanisms

to perform fast simulations.

The bus model developed uses the TLM library for fast data transmission. In

this way, communications are modeled by considering complete payload transfers

instead of word-by-word transfers. The bus manages the simulation time of each

transfer by considering parameters such as bus bandwidth, packet priority and size.

However, the bus needs another component to complete its functionality – an arbiter.

This module performs the transfer scheduling based on packet priority and delivery

order. Therefore, the threads that try to access the bus and are not scheduled are

blocked in a queue.

Another feature to take into account is the possibility to create bus hierarchy to

cover more platform designs. The bus interface is able to connect not only buses

with HW models, but also with other buses. This is implemented making use of the

standard TLM interface to communicate different components. This interface can

interconnect several modules transparently to the users.

2.4.2 HW Interfaces

M3-SCoPE provides several generic HW components, such as memory, bus, net-

work or DMA. Additionally user-defined components can be integrated in the HW

platform. In order to facilitate the integration of these user defined components, a

base class is provided to be used as a wrapper. This wrapper base class is in charge

of handling the TLM2 bus protocol management. The user needs to implement only

the functionalities for read and write functions.

Additionally, the wrapper includes an automatic power estimation infrastructure.

For each component it is possible to define parameters for the static power consump-

tion and dynamic power consumption for read and write accesses. For read/write

accesses it is possible to define two energy consumption values, one dependent on

the number of accesses and the other one that considers the size of the data transfers.

Applying all these parameters, M3-SCoPE automatically obtains an estimation of

the component power consumption to be added to the consumption of the rest of

system components. As all the HW component models (user-defined models and

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 41

components provided by M3-SCoPE) inherits this base class, the XML interface

can automatically obtain power metrics of all the system components, and send that

information to the DSE tool without manual intervention.

2.5 Automatic Generation of System Models

To simulate each one of the configurations selected by the DSE tool, different sys-

tem models must be created. The model descriptions can be obtained by applying

the values of the XML System Configuration file to the XML System Description.

To generate the system model, the simulator dynamically creates instances of the

required models and builds a platform model by interconnecting them as specified in

the XML files. The complete process is shown in Fig. 2.13: first, the SW code of each

process and the SystemC HW descriptions are compiled creating dynamic libraries.

Then, the simulator loads these libraries and creates the system model. Finally, the

model is simulated and performance results are obtained.

2.5.1 HW Platform Creation

To dynamically create the HW platform model, it is required to instantiate first the

selected components, and then to create the interconnections between them. To do

so, configurable models of the HW components are required. Response times, de-

lays, area, mean power consumption, power for access, frequency, memory size,

Fig. 2.13 Flow proposed for
automatically creating the
design models. First the SW
codes and the codes
describing the functionality of
the HW components are
annotated and compiled
creating binary libraries. At
simulation time, the simulator
receives the system
description and uses the
corresponding codes from
that libraries to perform the
simulation

SW code

Task 1

Generic

HW models

App-spec

HW models

HW

library

SW

library

SW code

Task 2

XML

config.

files

XML

output

files

Simulator

42 H. Posadas et al.

IRQ or associated memory map addresses are some of the configuration possibili-

ties. To instantiate a component in the system model, all these parameters must be

set. Parameter values are obtained from the values indicated in the corresponding

HW_Instance clause of the XML System Description file (Fig. 2.3). These parame-

ters can be either defined as explicit values (“200MHz”, “500MB”) or identified as

configurable values.

To set the parameters which are not specified in the HW_Instance clause, the

simulator checks the HW_Component clause corresponding to the type of component

instantiated (Fig. 2.3). Similar to the previous ones, these parameters can be fixed or

configurable ones. Finally, if any of the parameters has not been fixed, the default

values for this component model are applied.

Additionally, both the generic models provided by M3-SCoPE and the models

provided by the users are provided as Dynamically-Linked Libraries (“.so” files).

Using the host functions for dynamic loading, the components can be instantiated

only requiring their names. After that, the instantiated HW components must be in-

terconnected to create an executable system model. To simplify the interconnection

work, TLM techniques have been used. TLM accurately describes the system com-

munication architecture down to the level of individual read and write transactions.

The use of transfers instead of signals reduces the complexity while automatically

interconnecting the system components. To allow easy automatic interconnection of

the system components, all component models have been created by using a generic

template provided by the simulation engine. This template is oriented to ensure in-

terface compatibility without limiting the component communication requirements.

Ensuring that both ends of each interconnect have compatible interfaces, an automatic

connection is possible.

Finally, to complete the HW platform generation, it is required to create the

memory maps and to ensure correct interrupt delivering. Each time a component is

connected to a bus, its associated memory area is integrated in the memory map,

ensuring that it has not been used before. The solution is similar for network com-

munication where network models require the node identifier in order to configure

the internal routing protocols properly.

2.5.2 SW Components Instantiation

To create the SW infrastructure, OS models and SW tasks are finally added to the

simulation as described in the XML files. OS models are provided by M3-SCoPE,

while the application SW code must be provided by the user. OSs are mapped to a

processor or group of processors (for SMP systems). SW tasks are associated to an

OS, and thus mapped to a processor.

To integrate SW tasks in the simulation, SW code is annotated and compiled

building a library which is added to the simulation. The annotated code provides

the performance information required by an external DSE tool to perform the explo-

ration.

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 43

Software tasks are defined in the XML System Description file indicating the

name of the main function of the task. To load the main function, dynamic library

management provided by OS is used, by calling the dlopen and dlsym function.

Additionally, other parameters like the OS where it will run, priority, policy and the

main function arguments can be defined. All these elements can be parametrized, so

the DSE flow can explore the best configuration for the SW tasks.

2.5.3 Integration of Independent Component Codes

During the system model creation, multiple HW and SW components are integrated

in a single SystemC simulation. When integrating different components in a system

model, the models of each component can be incompatible for simultaneous inte-

gration in a single executable. If component models contain global variables and

functions, name duplication problems can appear. This is especially important when

integrating SW codes or algorithmic codes, where global variables are really com-

mon. If two components contain elements with the same names or a component is

instantiated more than once, it will cause linking errors during compilation. Recod-

ing of the system components can solve the problem, but it results in a very costly

and error prone task.

To allow reusing names, two direct solutions have been considered in M3-SCoPE

[53], considering “direct” as solutions without requiring recoding or any additional

design effort. The first solution is to declare all functions and global variables as

static. That way, the names are local to the object “.o” files. Then, when linking

all the object files generated by applying this solution, the linkage is correct.

However, this solution presents four main limitations. These limitations will be

overcome during next sections applying different approaches. The main problems

are:

• First, it requires recoding, as it is required to add the static qualifier before the

declarations. Thus, it cannot be called a “direct” solution.

• Second problem is that this solution is only applicable if each component is

isolated in a single object file. If the system component description is divided in

several object files, the functions and variables are not visible by the rest of the

component object files. Considering that dividing functionality of SW processes

and algorithms in C/C++ in several object files is usually considered a good

programming practice, the solution is not recommended.

• Third problem appears when a component is instantiated several times. If a com-

ponent using global variables is instantiated more than once, all instances will

share global variables. This will generate interferences among the instances and

will end in wrong system operation.

• Fourth problem is that this solution can only be applicable to internal functions and

variables. For example, if we want to integrate several SW processes, all starting

44 H. Posadas et al.

with a main function, it is not possible to declare them static. Otherwise, the

functions are hidden to the simulation kernel, and cannot be called.

Thus, a different solution avoiding these problems has been implemented. The first

two problems can be solved by forcing separate visibility scopes for functions and

variables on each component. The third problem requires modeling different memory

spaces. Defining different scopes is not enough to share variables among different

instances. Finally, the fourth problem can be overcome by providing an automatic

way of defining and loading different entry points with the same names.

2.5.3.1 Achieving Separate Visibility Scopes

Visibility scopes can be defined by creating namespaces or classes in the code. How-

ever, these solutions are limited and require recoding. The solution recommended

to implement the separate visibility scopes is to create shared libraries with all the

application SW codes required for each SW process to be simulated. Shared libraries

are libraries that are loaded by programs at run time. As the library is not copied into

the executable file, the executable size is minimized.

Dynamic libraries can be created using the following commands. In the code, two

source code files are compiled to create the corresponding object files, and then both

object files are integrated to create a shared library file:

gcc -fPIC -c filea.c #create object file

gcc -fPIC -c fileb.c #create object file

gcc -shared -o libmylib.so filea.o fileb.o

Shared libraries can be used in a static or a dynamic way. When used statically, at

link time, the linker searches through available libraries to find modules that resolve

undefined external symbols. Then, the linker makes a list with the libraries required

by the executable. When the program is loaded, start-up code finds those libraries

and maps them into the program’s address space before the program starts. The

instruction used to create the executable is the following:

gcc main.c -o executable.x -L($Library_Path) -lmylib

When used dynamically, the library is unknown at link time. The library is se-

lected and opened during the execution of the program. As a consequence, the linker

command does not require a "-l" flag with the library names and paths.

To execute a program requiring shared libraries, the library must be in the library

path. When using a library created specifically for an example, it is expected not to

be in a standard library recognized directory. To add the library to the search list, the

environment variable LD_LIBRARY_PATH must be updated properly.

To create separate visibility scopes, shared libraries can be used in both ways.

The specific compiler options required for that purpose are related with the library

creation, not with its use. By default, a function of a shared library always calls the

symbol of the main program if it exists. To create separate scopes, the scope of all

library elements (functions and variables) must be defined as local to the library.

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 45

Thus, when a function in the library calls another function or global variable, it

uses the elements inside the library, instead of accessing the elements of the main

program. Only when a name is not resolved inside the library, the main program or

other shared libraries are accessed. To force the program to use the internal library

elements, the library visibility has to be declared as protected. To do so, when

creating the library, it is required to specify the compilation flag:

-fvisibility = protected

Using this flag, it is only required to indicate the entry points of each component

description in the XML files to enter the visibility scopes. Once the starting function

of the correct library is entered, all internal operations of the component descrip-

tion will be isolated within the library, and without having or producing external

interferences.

2.5.3.2 Modeling Separate Memory Spaces

Providing different visibility scopes guarantees integrating independent component

descriptions in a single executable. However, if a component is instantiated twice,

global variables are shared. In real SW implementations, the memory space separa-

tion provided by the OS for each process solves the problem. Thus, the simulation

framework must provide an equivalent solution.

Using different host processes to create the SystemC simulation is a possible

solution to achieve that. However, inter-process communication mechanisms, and

additional context switches required to perform the simulation makes the solution a

bit complex to use.

A more easy solution to solve the problem of multiple instances is to create a copy

of the shared library for each instance. It provides an automatic solution which is

easy to implement. Storage requirements are increased as several copies of the files

are created. Nevertheless, disk sizes of host computers are usually large enough.

Using dynamic links (ln -s) instead of copies is not a valid solution, as the linker

uses the final node directly.

2.6 Simulation Results

As a simulator oriented to evaluate different configurations of software centric

systems, the most important parameters required to demonstrate the validity of M3-

SCoPE are estimation accuracy and simulation time. The estimation accuracy of the

simulator covers two main aspects: the evaluation of the performance of the soft-

ware code and the modeling of the effect the software execution has in the rest of the

system. The first aspect can be checked by comparing the time estimated by the tool

and by an ISS (e.g. Skyeye [56]). The second aspect can be evaluated verifying the

amount of data injected by the software modeling in the system buses, which means

checking the number of cache misses estimated by the tool and by the ISS.

46 H. Posadas et al.

Instructions

Skyeye

Coder GSM

H264

Hanoi

Factorial

Bubble

SkyeyeM3SCoPE M3SCoPE Speed-up

Time

5200180007 5200180007

5m25,6s 3,92s

0,09s

0,11s

0,02s

3,76s

10,6s

11,15s

1,28s

4m45,53s0

5800347641

14066581

17695142

2996535

5601674012

13466069

18481575

2747041

x80

x117

x100

x64

x71

Error %

3,5

4,4

4,3

9,1

Fig. 2.14 Analysis of accuracy and speed of the estimation technique. The results obtained with
M3-SCoPE have been compared with SKyeye [56], a no cycle-accurate ISS; the faster type of
processor simulator

Example
Instruction Cache Misses

M3-SCoPE Error (%) Error (%)ISS (SkyEye) M3-SCoPE ISS (SkyEye)

Data Cache Misses

Bubble

GSM - 10 frames

GSM - 7 frames

GSM - 4 frames

GSM - 1 frame

Factorial

Hanoi

25 27

3.4

1.84

3.19

3.46

1.49

25

15.55

0.09

6026

4235

2452

670

375

38

5199772

5915

4104

2370

660

500

45

5204878

2.2

2.3

2

12

10

8

36624

25730

14814

3663

7

18

37425

26333

15324

3738

8

20

Fig. 2.15 Accuracy of the cache models. The error is more representative in large examples, since
in small examples, the number of errors is too small for comparisons

As can be shown (Fig. 2.14), the time estimation error of the native co-simulation

technique is lower than 10%. Regarding the errors in the estimation of the number

of misses, which has a high importance in bus and network modeling, the errors are

in a similar range (Fig. 2.15).

In benchmarks with a small number of function calls, (i.e the bubble) the miss

rate estimation errors is less than 1%, but when the number of calls to function is

increased the miss rate grows too. Hanoi benchmark has a large percent of function

calls in his instructions, his miss rate estimation error is 15% and in Factorial, which

is an extreme code that only has function calls, the miss rate estimation error is 25%.

This error is due to the big number of function calls, the difference in the compilers

for different architectures produces that the number of registers saved in a function

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 47

were different. This error is important in specific cases, but in a larger codes it is

minimized, as shown in the GSM coder example.

To demonstrate the modeling capabilities of all the presented features an the

integration of the tool in a complete DSE process, an entire chapter is provided (Chap.

7), where M3-SCoPE is used to model a Power-Line Communication infrastructure.

2.7 Conclusions

SystemC has proven to be a powerful language for platform modeling. Nevertheless,

its full exploitation for this purpose requires significant research activity in order

to cover all the modeling requirements. The SCoPE framework has been described

taking advantage of the language capabilities for system modeling and simulation.

A methodology and associated library has been developed providing a complete OS

functionality that can produce accurate timed simulations of the SW components.

Power and timing estimations of the application SW running on the multi-processing

platform in close interaction with the rest of the platform components can be obtained

from the system simulation.

This chapter shows that native co-simulation can be applied successfully to this

task. The performance analysis technology is fast enough to support efficiently the

multiple runs required by DSE processes. To achieve this goal, M3-SCoPE has

been developed with several improvements to SCoPE: cache modeling, direct I/O

communication through pointers, memory space separation and dynamic platform

creation from XML files.

This tool has been assessed on an industrial demonstrator, as shown in Chap. 7. The

results demonstrate that the native co-simulation techniques proposed constitute a

sufficiently accurate technique that is much faster than ISS-based simulation systems.

This speed increase makes the technique optimal for fast system evaluation, covering

the need to obtain effective metrics, which is necessary for efficient Design Space

Exploration.

References

1. Aho, A. V., Lam, M. S., Sethi, R. & Ullman, J. D.: Compilers: principles, techniques and tools.
ED Pearson, (2007).

2. ARM, Advanced RISC Machines Holdings. Retreived form www.arm.com
3. ARM Realview Development Suite (2005). Retreived form

www.arm.com/products/DevTools/RealViewDevSuite.html
4. Bailey, B., Martin, G., & Piziali, A.: ESL Design and Verification: A Prescription for Electronic

System Level Methodology. Morgan Kaufmann (2007).
5. Balarin, F., Giusto, P., Jurecska, A., Passerone, C., Sentovich, E., Tabbara, B., Chiodo,

M., Hsieh, H., Lavagno, L., Sangiovanni-Vincentelli, A. & Suzuki, K.: Hardware-Software
Codesign of Embedded Systems: The POLIS Approach. Springer (1997).

6. Becker, M. Di Guglielmo, G., Fummi, F., Mueller, W., Pravadelli, G. and Xie, T.: RTOS-Aware
Refinement for TLM2.0-based HW/SW Designs, Proc. of DATE, IEEE (2010).

48 H. Posadas et al.

7. Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F., & Poncino, M.: SystemC
cosimulation and emulation of multiprocessor SoC design, Computer, V.36, N.4, IEEE (2003).

8. Benini, L., Bogliolo, A., Menichelli, F. & Oliveri, M.: MPARM: Exploring the Multi-Processor
SoC Design Space with SystemC. Journal of VLSI Signal Processing, V.41, N.2: Springer.

9. Bouchhima, A. , Gerin, P. & F. Petrot: Automatic Instrumentation of Embedded Software for
High Level Hardware/Software Co-Simulation. Proc, of ASP-DAC. IEEE (2009).

10. Brandolese, C., Fornaciari, W. & Sciuto, D.: A Multi-level Strategy for Software Power
Estimation, Proc of ISSS, IEEE (2000).

11. Brandolese, C., Fornaciari, W., Salice, F., & Sciuto, D.: Source-level execution time estimation
of C programs. Proc. of CoDes, IEEE (2001).

12. Brandolese, C. & Fornaciari: Measurement, Analysis and Modeling of RTOS System Calls
Timing,11th EUROMICRO Conference on Digital System Design Architectures, Methods and
Tools, 2008.

13. Cai, L. and D. D. Gajski: Transaction Level Modeling: An Overview. In Proc. of CODES +
ISSS03 (2003).

14. Castillo, J., Posadas, H., Villar, E., & Martinez M.: “Fast Instruction Cache Modeling for
Approximate Timed HW/SW Co-Simulation”. Proc. of GSLVLSI, ACM (2010).

15. Cifuentes, C.: “Reverse Compilation Techniques”. PhD thesis, Queensland University of
Technology (1994).

16. CoWare: Task Modeling and Virtual Processing Unit User’s Guide (2009).

17. Cofluent: CoFluent Studio: System-Level Modeling and Simulation Environment (2009).

18. Gerin, P., Hamayun, M. and Petrot, F.: Native MPSoC Co-Simulation Environment for
Software Performance Estimation. Proc. CODES+ISSS. ACM (2009).

19. Gerstlauer, A., Yu, H. & Gajski, D. D.: RTOS Modeling for System Level Design, Proc. of
DATE, IEEE (2003).

20. Gligor, M., Fournel, N. & Petrot, F: Using Binary Translation in Event Driven Simulation for
Fast and Flexible MPSoC Simulation. Proc of Codes+ISSS, 2009.

21. Hassan, M. A., Yoshinori, S. K., Takeuchi, Y. & Imai, M. RTK-Spec TRON: A Simulation
Model of an ITRON Based RTOS Kernel in SystemC. Proc of DATE, IEEE (2005).

22. Hassan, M.A., Sakanushi, K., Takeuchi, Y. & Imai, M.: Enabling RTOS Simulation Modeling
in a System Level Design Language. Proc. of ASP-DAC, IEEE (2005).

23. He, Z., Mok, A. & Peng, C.: Timed RTOS modeling for embedded System Design, Proc. of
RTAS, IEEE (2005).

24. Hergenhan, A., Rosenstiel, W.: Static Timing Analysis of Embedded Software on Advanced
Processor Architectures. Proc. of DATE, IEEE (2000).

25. Hwang, Y. , Abdi,S. & Gajski D.: Cycle-approximate Retargetable Performance Estimation at
the Transaction Level, Proc. of DATE, 2008.

26. Imperas, http://www.ovpworld.org.

27. InterDesign Technologies, FastVeri (SystemC-based High-Speed Simulator) Product
Overview, http://www.interdesigntech.co.jp/english/.

28. IP-XACT. The P1685 IP-XACT IP Metadata Standard. Design & Test of Computers, IEEE,
Volume: 23, Issue: 4, On page(s): 316- 317, (2006).

29. ITRS - Design. International Technology Roadmap for Semiconductors. Retrieved from
http://www.itrs.net/Links/2007ITRS/Home2007.htm (2007).

30. Jerraya, A. & Wolf, W. (Ed.). (2005). Multi-Processor Systems on Chip. Morgan Kaufmann.

31. Kempf, T., Karur, K., Wallentowitz, S. & Meyr, H.: A SW Performance Estimation Framework
for Early SL Design using Fine-Grained Instrumentation, Prof. of DATE, IEEE (2006).

32. Klingauf, W., Gunzel, R., Bringmann, O., Parfuntseu, P. & Burton, M.: GreenBus - a generic
interconnect fabric for transaction level modelling, Proc. of DAC. ACM (2006).

33. Lahiri, K. A. Raghunathan, and S. Dey: Efficient exploration of the SoC communication
architecture design space. In Proc. ICCAD’00 (2000).

34. Laurent, J., Senn, E., Julien, N. & Martin, E.: Power Consumption Estimation of a C-algorithm:
A New Perspective for Software Design, Proc. of LCR, ACM (2002).

2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems 49

35. Lyonnard, D., Yoo, S., Baghdadi, A. and A. A. Jerraya: Automatic generation of application-
specific architectures for heterogeneous multiprocessor system-on-chip. DAC’01 (2001).

36. Madsen, J., Virk, K., and Gonzalez, M.: A SystemC abstract real-time operating system model
for multi-processing sytems-on-chip. In A. Jerraya and W. Wolf. Multiprocessor Systems-on-
Chip. Morgan Kaufmann (2005).

37. Magillem 4.0, http://www.magillem.org
38. Milligan, M.: The ESL Ecosystem - Ready for Deployment. Retrieved from

http://www.esl-now.com/pdfs\eco_presentation.pdf (2005).
39. Moussa, I., Grellier, T. & Nguyen, G.: Exploring SW performance using SoC transaction-level

modeling. Proc. of DATE. IEEE (2003).
40. Murray, B.: Virtual platforms - a reality check, part 2. SCD Source.

http://www.scdsource.com/article.php?id=66 (2007).
41. NAUET Design Assembler, http://www.mataitech.com
42. Ortega, R. B and G. Borriello: Communication synthesis for distributed embedded systems. In

Proc. of ICCAD’98 (1998).
43. Pasricha, S., Dutt, N. & Ben-Romdhane, M.: Fast exploration of bus-based on-chip

communication architectures, Proc. of CODES/ISSS. IEEE (2004).
44. Petrot, P.: Annotation within dynamic binary translation for fast and accurate system simulation.

10th International Forum on Embedded MPSoC and Multicore (2010).
45. Popovici, K., Guerin, X., Rousseau, F., Paolucci, and A.A. Jerraya: Platform-based Software

Design Flow for Heterogeneous MPSoC.ACM Transactions on Embedded Computing Systems
(2008).

46. Posadas, H., Herrera, F., Sanchez, P., Villar, E., & Blasco, F: System-Level Performance
Analysis in SystemC . Proc. of DATE. IEEE (2004).

47. Posadas, H., Adamez, J., Sanchez, P., Villar, E., & Blasco, P.: POSIX modeling in SystemC.
Proc. of ASP-DAC’06. IEEE (2006).

48. Posadas, H., Quijano, D., Villar, E. & Martinez M.: TLM interrupt modelling for HW/SW co-
simulation in SystemC. Conference on Design of Circuits and Integrated Systems, DCIS’07
(2007).

49. Posadas, H., De Miguel, G. & Villar, E.: “Automatic generation of modifiable platform models
in SystemC for Automatic System Architecture Exploration”. Proc. of DCIS’09 (2009).

50. Posadas, H. & Villar, E.: Automatic HW/SW interface modeling for scratch-pad & memory
mapped HW components in native source-code co-simulation. In the book, Rettberg, A. et all
(Eds.): Analysis, Architectures and Modelling of Embedded Systems, Springer (2009).

51. Posadas, H., Castillo, J., Quijano, D., Villar, E., Ragot, D. & Martinez M.: SystemC Platform
Modeling for Behavioral Simulation and Performance Estimation of Embedded Systems. In
the book L. Gomes & J. M. Fernandes (Eds.): Behavioral Modeling for Embedded Systems
and Technologies: Applications for Design and Implementation, IGI Global (2009).

52. Posadas, H., Villar, E., Ragot, D. & Martinez M.: Early Modeling of Linux-based RTOS
Platforms in a SystemC Time-Approximate Co-Simulation Environment. ISORC, IEEE (2010).

53. Posadas, H. & Villar, E.: Modeling Separate Memory Spaces in Native Co-simulation with
SystemC for Design Space Exploration. Proc. of ARCS, 2PARMA workshop (2010).

54. Qemu, http://wiki.qemu.org.
55. Schirner, G. & Domer, R.: Result Oriented Modeling, a Novel Technique for Fast and Accurate

TLM, Transactions on Computer-Aided Design of Integrated Circuits, V.26, IEEE (2007).
56. SkyEye User Manual. Retreived form http://www.skyeye.org (2005).
57. Schnerr, J., Bringmann, O., Viehl , A., Rosenstiel, W.: High-Performance Timing Simulation

of Embedded Software. Proc. of DAC, ACM (2008).
58. SystemC, IEEE 1666 -2005 Standard LRM, http://www.systemc.org/downloads/lrm.
59. Tanenbaum, A.: Modern Operating Systems, 2 ED: Prentice Hall (2001).
60. Viaud, E., Pecheux, F. & Greiner, A.: An Efficient TLM/T Modeling and Simulation

Environment Based on Conservative Parallel Discrete Event Principles, DATE, IEEE (2006).

50 H. Posadas et al.

61. Wieferink, A., Leupers, R., Ascheid, G., H. Meyer, T. Michiels, A. Nohl and T. Kogel:
Retargetable generation of TLM bus interfaces for MPSoC platforms. CODES+ISSS’05
(2005).

62. Yi, Y., Kim, D. & Ha, S.: Fast and time-accurate cosimulation with OS scheduler modeling.
Design Automation of Embedded Systems, V.8, N.2-3: Springer (2003).

63. Yoo, S., Nicolescu, G., Gauthier L.G. & Jerraya, A.A.: Automatic generation of fast timed
simulation models for operating systems in SoC design, Proc. of DATE, IEEE (2002).

Chapter 3

Optimization Algorithms for Design Space
Exploration of Embedded Systems

Enrico Rigoni, Carlos Kavka, Alessandro Turco, Gianluca Palermo,

Cristina Silvano, Vittorio Zaccaria, and Giovanni Mariani

Abstract This chapter is dedicated to the optimization algorithms developed in the

MULTICUBE project and to their surrounding environment. Two software design

space exploration (DSE) tools host the algorithms: Multicube Explorer and mod-

eFRONTIER. The description of the proposed algorithms is the central part of the

chapter. The focus will be on newly developed algorithms and on ad-hoc extensions

of existing techniques to face with discrete and categorical design space parameters

that are very common when dealing with embedded systems design. This chapter

will also provide some fundamental guidelines to build a strategy for testing the per-

formance and accuracy of such algorithms. The aim is mainly to build confidence in

optimization techniques, rather than to simply compare one algorithm versus another

one. The “no-free-lunch theorem for optimization” has to be taken into consideration

and therefore the analysis will look forward to robustness and industrial reliability

of the results.

3.1 Introduction

The optimization problems emerging in the design of embedded systems—and in

particular those addressed within the MULTICUBE project— are multi-objective and

characterized by the fact that all configuration parameters are discrete and possibly

categorical.

Having more than one objective to be optimized (maximized or minimized) im-

plies that the outcome of the optimization process is not a single solution but a set

of solutions. This set of solutions, which is called the Pareto front, represents the

trade-offs between the different (and possibly conflicting) objectives. A design is a

Pareto design (or point) if it is not possible to improve one of its objective values

without deteriorating at least another one, as in Fig. 3.1.

A. Turco (�)

ESTECO, Trieste, Italy

e-mail: alessandro.turco@esteco.com

C. Silvano (eds.), Multi-objective Design Space Exploration of 51
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_3, © Springer Science+Business Media, LLC 2011

52 E. Rigoni et al.

Fig. 3.1 An example of
Pareto-dominance in a
two-objective minimization
problem. The circles represent
non-dominated points, while
squares are dominated points

0.60

0.50

0.40

0.30

0.20
0.10 0.20 0.30 0.40

Minimize x

M
in

im
iz

e
 y

In problems with discrete categorical configuration parameters, the types of the

input variables are discrete ranges and might also be unordered collections, meaning

that optimization methods which assume an order relation cannot be used profitably.

For example, the number of processors on the platform is a discrete ordered variable

since it is a natural number. Instead, the type of branch predictor to be used (e.g.,

static, two-level adaptive, etc.) is a categorical variable since an ordering between

the different instances cannot be defined.

The evaluation of the objective values for the designs selected for exploration

is usually performed through a simulator during the optimization phase. Simulators

accuracy depends on their level of abstraction which is inversely proportional to their

computational complexity. A manual exploration procedure might include additional

delays to the already long simulation time.

Two examples of automatic optimization frameworks will be considered in this

chapter. The first framework is the open source Design Space Exploration (DSE)

Multicube Explorer. It has been initially conceived for the kind of problems dis-

cussed above. Throughout this chapter, a description of its optimization algorithms

introduced within the framework will be provided.

The second tool is modeFRONTIER, a commercial software which has been

widely used worldwide for more than ten years in different domains like aerospace,

appliances, pharmaceutics, civil engineering, manufacturing, marine multi-body de-

sign, crash, structural, vibro-acoustics and turbo-machinery. All these domains define

multi-objective optimization problems, but in continuous or mixed (continuous and

discrete) domains, not in complete discrete and possibly categorical domains like the

SoC design problems. Due to this reason, an initial re-target process to add support

for categorical variables to modeFRONTIER has been carried out and the actual

release of the software contains this work as well as the algorithms developed within

the project.

The automatic design space exploration performed by one of these two tools is

governed by an optimization algorithm. The algorithm is responsible for choosing the

new configurations which have to be simulated and for analyzing the results obtained.

The optimization phase can be preceded by a Design Of Experiments (DOE) study

and it can be followed by some Post Processing analysis.

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 53

The optimization algorithms implement the mathematical strategies, or heuristics,

which are designed in order to obtain a good approximation of the actual Pareto

frontier. Real-world optimization problems are solved through rigorously proven

converging methodologies only in an extremely few cases since the high number of

input parameters and the low smoothness of objective functions limit the possible

usage of classical algorithms. Therefore a wide catalogue of heuristics have been

designed trying to achieve a good balance between exploration of the design space

and exploitation of the information carried by the best solutions found so far.

The Design of Experiments (DOE) usually precedes the optimization stage. The

aim of a DOE is to test specific configurations regardless the objectives of the op-

timization run but rather considering their pattern in the input parameters space. It

provides an a priori exploration and analysis which is of primary importance when

a statistical analysis has to be performed: for example, a reduced factorial DOE can

be the basis for a principal components analysis, since it avoids correlations among

input parameters and therefore it highlights input-output relationships. Moreover,

almost all optimization algorithms require a starting population of designs to be con-

sidered first and the DOE can provide it, eventually generating random input values

if no other preference has emerged yet.

The Post Processing analysis could represent the starting point for a new attempt

of optimization, but at the same time it conveys a deep insight into the problem

structure. Starting from a correlation matrix, for example, it is possible to recognize

if some objectives are conflicting or if they are correlated and there is no need to

involve all of them in the optimization process.

A comprehensive list of publications on this topic is out of the aim of this introduc-

tion. The description of the algorithms listed in Sect. 3.3 will include the references

necessary to understand them. The theoretical structure of multi-objective optimiza-

tion as well as classical methods are deeply investigated in the book by Miettinen [10].

The paper by Erbas et al. [5] describes in details a MPSoC design problem solved

with genetic algorithms (GA) and it introduces important concepts like evaluation

metrics and repair mechanisms.

The innovation of the algorithms developed within the MULTICUBE project can-

not be correctly evaluated without considering the whole picture: it is mathematically

proven that it is not possible to rank optimization algorithms on the basis of their

performance over all possible problems. On the contrary, it is possible to specialize

an optimization strategy in order to solve “better” (later in this chapter the concept of

quality for a multi-objective solution set will be addressed more precisely) a defined

class of problems. The work done by MULTICUBE partners generated in a very sat-

isfactory trade-off between applicability and accuracy which is the true achievement

of the project. Not only algorithms contributed to this result and this is the reason

why this chapter also introduces some features of the software framework contain-

ing them and an anticipation of the validation procedure necessary for an industrial

knowledge transfer.

This chapter is organized as follows: Sect. 4.2 presents the problem description

and the software framework while Sect. 4.3 introduces the design space exploration

algorithms used throughout the project. Section 4.4 presents a detailed descriptions

of validation strategy while Sect. 4.5 summarizes the main content of this chapter.

54 E. Rigoni et al.

3.2 Problem Description and Software Framework

To define an optimization problem it is necessary to identify the input parameters of

the problem, which constitute the Design Space, and the output parameters, often

called metrics. Among the output parameters some objectives must be selected in

order to build the Objective Space. Other outputs can be considered as constraints,

but also input parameters can be combined in order to obtain the desired constraints.

A typical example is the pair of variables processor type-cache size: some processors

may support only certain values of cache size and a constraint must be added to the

problem to enforce this requirement.

The output values associated to a given configuration of input parameters are

obtained through a simulator. The choice of which designs have to be explored is

responsibility of the optimization algorithm and of the DOE designer for what con-

cerns the starting points. The whole structure comprising inputs, outputs, simulator,

algorithm is called workflow.

One of the first achievements of the MULTICUBE project is the definition of

a common framework for generating a complete workflow using a standard XML

format. Both DSE tools, Multicube Explorer and modeFRONTIER, can accept the

same configuration file and they are able to run optimization starting from the infor-

mation listed in it. Specific tags have been created in order to specify input and output

values, a precise syntax is used to define constraints and the path to the executable

simulator is included.

The communication between the optimization algorithm and the simulator is per-

formed through XML file as well. The DSE tool is also responsible for launching

parallel instances of the simulator, if the computational resources available allow

them.

From the strictly mathematical point of view, the problems addressed can be

characterized as follows. The vector of input variables x = (x1, . . . , xN) can take

values into different sets depending on the nature of its components. An integer

variable is usually comprised between a lower and an upper bound, xL
i ≤ xi ≤ xU

i ,

where i ∈ [1, N]. However it is possible that only some integer values might be

of interest, for example only the powers of 2. This kind of variables are similar to

categorical variables, but they maintain the notion of order. On the contrary, another

way of calling a categorical variable is discrete unordered variable since this is their

main feature. The list of admissible values is called catalogue. The optimization

problem is then

⎧

⎨

⎩

min f(x1, . . . , xN),

such that g(x1, . . . , xN) ≥ 0,

h(x1, . . . , xN) = 0.

(3.1)

The vector functions f , g and h can have arbitrary dimensions. It is not necessary that

all the functions involved in the problem are minimization targets. For example if a

function φ(x) has to be maximized and it should occupy the i-th component of f , a

simple change of sign can solve the problem defining fi := −φ. The same procedure

can be applied to “less or equal to” constraints.

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 55

A point is said to be feasible, if it satisfies all the constraints addressed in g and

h. If the number of objectives is M , then given two feasible points x and y, the point

x is said to dominate y if fi(x) ≤ fi(y) for i = 1, . . . , M and there exists at least one

index j ∈ [1, M] such that fi(x) < fi(y). Dominance induces a partial ordering onto

the design and the objective space.

A vector of input parameters x̄ is said to be a Pareto design if there is not any

other point dominating it. The corresponding point in the objective space f(x̄) is said

to be a Pareto point. The set containing all the Pareto points is the Pareto front and

it is the solution of problem 3.1.

3.3 Algorithms

This section presents a brief description of the multi-objective optimization algo-

rithms that have been tested within the project and implemented in the Design

Space Exploration tools, highlighting the algorithm characteristics that are related to

the specific properties of the optimization of an embedded system. The algorithms

presented in this section can be divided in three groups:

• Standard algorithms. This first group includes the algorithms that are well known

in the multi-objective optimization field and have been implemented in the De-

sign Space Exploration tools by following the models proposed by their original

designers with none or minimal enhancements. The algorithms NSGA–II and

MOGA–II belong to this group.

• Enhanced algorithms. This group includes all algorithms that are based on a

previously defined algorithm but include noticeable enhancements that make them

adequate for the specific problems addressed. The algorithms Enhanced-MOSA,

Enhanced-ES and Enhanced-MOPSO belong to this group.

• New algorithms. This group includes all algorithms that have been specifically

defined in the MULTICUBE project for multi-objective optimization in the context

of System-on-Chip (SoC) design optimization. The algorithms MFGA and APRS

belong to this group.

3.3.1 Standard Algorithms

The algorithms described in this section have been employed successfully in multi-

objective optimization for years. They were not precisely designed for categorical

variables, but they can treat them as simply discrete ones without excessively

deteriorating their performances.

3.3.1.1 NSGA–II

The Non-dominated Sorting Genetic Algorithm II (NSGA–II) was developed by

Prof. Deb et al. [3] at Kanpur Genetic Algorithms Laboratory (KanGAL). NSGA–II

56 E. Rigoni et al.

is a fast and elitist multi-objective evolutionary algorithm which shares the basic

structure with all genetic population-based algorithms.

The basic mechanism can be summarized as follows: starting from a parent popu-

lation, some individuals are selected for generating a child population. The algorithm

applies operators that work on the input variables of the selected individuals trying to

improve their outputs: mutation and crossover are the standard choices for NSGA–II.

This procedure is iterated for the requested number of generations.

This algorithm has some peculiar and powerful characteristics:

• It includes a fast non-dominated sorting procedure. Sorting the individuals of

a given population according to the level of non-domination is a complex task,

which makes in general non-dominated sorting algorithms computationally ex-

pensive for large population sizes. The adopted solution in NSGA–II performs a

clever sorting strategy.

• The multi-objective search includes elitism. NSGA–II implements the multi-

objective search using an elitism-preserving approach, which is introduced storing

all non-dominated solutions discovered so far, beginning from the initial popula-

tion. Elitism enhances the convergence properties towards the true Pareto-optimal

set.

• A parameter-less diversity preservation mechanism is adopted. Diversity and

spread of solutions is guaranteed without the use of extra parameters (like sharing

parameters for example). NSGA–II adopts a suitable parameter-less niching ap-

proach called crowding distance, which estimates the density of solutions in the

objective space, and a crowded comparison operator, which guides the selection

process towards a uniformly spread Pareto frontier.

• The constraint handling method does not make use of penalty parameters. The

algorithm implements a modified definition of dominance in order to solve con-

strained multi-objective problems efficiently: usual dominance is the criterion to

sort feasible points. A feasible point will be always preferred to an unfeasible

one. Unfeasible points are sorted looking at the (normalized, possibly) constraint

violations sum.

The NSGA–II procedure is described graphically in Fig. 3.2. The individuals of the

parent population Pt of size N and the new population Qt of the same size (created

by applying the variation operators crossover and mutation, to individuals in Pt

selected by binary tournament) are grouped together. The combined population Rt

is then sorted based on its non-domination level obtaining sets of non-dominated

solutions (F1, F2, . . .). The new population Pt+1 is created by selecting the best

non-dominated sets that can be completely inserted into the new population (with

a combined size smaller or equal than N) plus members from the last set (which

cannot be fully accommodated) selected using the crowded comparison operator.

NSGA–II allows both continuous (real-coded) and discrete (binary-coded) de-

sign variables. Specific mutation and crossover operators are applied to each kind of

variables. Categorical (non-ordered discrete) parameters are treated as simple dis-

crete ones. This drawback can be compensated by increasing the exploration

capabilities of the algorithm allowing a larger mutation probability. NSGA–II tests a

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 57

Pt

F1

Pt+1

F2

F3

Qt

Rt

Rejected

non-dominated sorting crowding distance sorting

Fig. 3.2 NSGA–II sorting procedure

wider range of candidate solutions (hence the fictitious locality is damped) and its ef-

ficient elitism and selection routines drive the optimization towards the Pareto front.

This algorithm has been implemented in Multicube Explorer while it was provided

by modeFRONTIER from early releases.

3.3.1.2 MOGA–II

MOGA–II (Multi-Objective Genetic Algorithm, with elitism) was originally formu-

lated by Poloni [11] and it reached the actual implementation with the introduction

of elitism. This second version is equipped also with an optional improved crossover

operator (directional crossover), but since it is not suited for discrete problems, its

description is omitted.

This algorithm accepts only discrete variables (possible continuous variables have

to be discretized with the desired accuracy), which are encoded as in classical genetic

algorithms. Three operators govern the reproduction phase: one-point crossover,

mutation and selection. The probabilities under which one of them is chosen are

user-defined parameters.

Elitism guarantees that the best points remain in the parent population and hence

hopefully their children will exhibit a similar behavior. MOGA–II achieves this result

keeping a record of all non-dominated points found up to the current generation. The

new population is created extracting randomly the requested number of new parents

from the union (without repetitions) of the elite set and the set of newly generated

children. This procedure gives to the algorithm a good balance between exploration

and exploitation phase. This balance is fundamental for the performance of a multi-

objective global search: the search space has to be sufficiently explored, but at the

58 E. Rigoni et al.

same time the number of evaluated points must be kept low and the algorithm has to

converge rapidly to the Pareto set.

Elitism in MOGA–II works in this direction. The elite set usually contains a few

points in early stages of the optimization. Moreover, these points belong to the last

generation with a high probability. Hence only a fraction of them will enter the next

parents population promoting exploration. As long as new generations are created,

the elite set grows and the probability of finding out a new elite point decreases.

Therefore in the updated population there will be many points coming from the elite

set exploiting their features.

In order to save simulation time, steady evolution was preferred against the clas-

sical generational evolution in MOGA–II. In almost any industrial application, the

computational time spent in evaluating a point is much larger than the time employed

by the optimization algorithm to prepare and request a new evaluation. A genera-

tional algorithm would keep a significant part of computational resources idle (in a

cluster or grid systems), since before every generation is created, the algorithm needs

to get the results of the evaluation of all the individuals of the previous generation.

Within a steady evolution, the child point replaces its parent immediately. Every

time an evaluation ends, a new one is requested choosing randomly a parent from

the actual population and applying the chosen operators. The elitism procedure is

scheduled with the same frequency as in the case of a generational evolution, but it

can be performed while some points are still being evaluated, using the information

stored so far. This introduces a little delay in the propagation of the information, but

it prevents delays in the computational grid or cluster system. The negative effects of

this issue increase with the dimension of the population, but decrease as the number

of requested generations increases. This algorithm is proprietary of ESTECO and it

was provided by modeFRONTIER from early releases.

3.3.2 Enhanced Algorithms

Literature reports a continuous improvement of available methods since multi-

objective optimization is a research field constantly pressed by new applications.

New applications require new and better answers. In this section we considered as

enhanced algorithms the implementations of well known algorithms which have

been rewritten within the MULTICUBE project in order to better adapt to the SoC

design problem. Indeed, specific operators have been designed for treating categori-

cal variables and a careful attention has been addressed to the problem of optimizing

also the computing resources needed for design evaluation.

3.3.2.1 Enhanced-MOSA

The Simulated Annealing (SA) method for optimization was introduced by Kirk-

patrick [6], on the basis of a thermo-dynamical analogy.

The evolution of such a system is controlled by an external parameter called

temperature. A related energy can be assigned to every possible configuration of the

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 59

system. When an initial configuration is perturbed, the difference in energy between

the two states is responsible for the evolution of the system: if the new state is

favorable, i.e. if it decreases the energy, then the new configuration is accepted. If

this is not the case, the new state is accepted or rejected according to a probability

distribution derived by Boltzmann. This distribution is a function of the temperature

and when the temperature is high, the probability of accepting an unfavorable state

is larger (see Metropolis et al. [9]).

The energy for the MOSA algorithm is (a suitable function of) the non-dominated

ranking already described for NSGA–II. Hence a new point is always accepted if

it is non-dominated by its parent. It will be also accepted in the opposite situation

depending on a temperature-based probability distribution.

Temperature is simply a parameter, initially user-defined, which evolves during

the optimization. MOSA starts with a hot phase accepting many points in order to

explore the design space. Afterwards, a cold phase, during which only the best points

survive, represents the exploitation part of the algorithm.

The creation of a child configuration from a parent one in the original formulation

of the algorithm is a directional perturbation. A random direction versor represents

the direction of the perturbation, while its length is predicted by a schedule similar

to the temperature one: starting from a specified upper bound, the value decreases

during the hot phase and it reaches the imposed lower bound in the cold phase. If the

perturbation vector brings the point out of variables space boundaries, a bouncing

routine will maintain the feasibility of the samples. This procedure also helps in

differentiating and enhancing the exploration and the exploitation capabilities of the

algorithm.

The concept of direction has no meaning working with categorical variables. The

enhanced version of MOSA takes in account this problem keeping at the same time

the idea of a tunable perturbation. Every categorical variable at each iteration has a

probability to change its value depending on a law similar to the one applied to the

temperature and perturbation length. If the value has to be changed, a new value is

chosen randomly from the available list.

A lifespan counter is introduced in order to compensate for the uncontrolled ran-

domness in the search for the best values for categorical variables. Especially during

the hot phase there could be sequences of parents and children moving towards dom-

inated regions of the objective space because of the Metropolis acceptance criterion.

If the number of subsequent unwanted increasing in energy exceeds a threshold,

Enhanced-MOSA replaces the child with its better-fitting parent.

A steady state evolution is a second enhancement of the algorithm. The procedure

is very similar to the evolution implemented in MOGA–II with the obvious change of

the updating schedule: there is no elite set to be updated, but instead Enhanced-MOSA

changes the value of the temperature, the perturbation length and the probability of

replacement for categorical variables.

The standard implementation of MOSA is available in modeFRONTIER from

early releases and it has also been implemented in Multicube Explorer. The described

enhancements were developed for the MULTICUBE project and were implemented

in modeFRONTIER.

60 E. Rigoni et al.

3.3.2.2 Enhanced-ES

Evolution Strategies (ES) is a multi-objective optimizer that is able to reproduce

different evolutionary algorithms. These algorithms share the selection operator and

the operators schedule, while they differ in the ratio between parents and children

points and in the definition of the set of points among which the new parents are

selected.

The ES approach was first used at the Technical University of Berlin. During

the search for the optimal shapes of bodies in a flow, the classical attempts with

the coordinate and the well-known gradient-based strategies were unsuccessful. So,

the idea was conceived of proceeding strategically. Rechenberg and Schwefel [14]

proposed the idea of trying random changes in the parameters defining the shape,

following the example of natural mutations.

Usually, there is a huge difference between mathematical optimization and opti-

mization in the real-world applications. Thus, ES were invented to solve technical

optimization problems where no analytical objective functions are usually available.

The general Evolutionary Strategy scheme is the following:

1. Initial population creation;

2. Individuals evaluation;

3. Selection of the best individual(s);

4. Recombination;

5. Mutation;

6. Individuals evaluation;

7. Return to step 3 until the required number of generation is achieved

Selection of the best results may be done only on the set of children or on the

combined set of parents and children. The first option, which is represented usually

with the notation (λ, μ)-ES, can “forget” some good results when all the children are

worse than their parents. The second option, which is represented by the notation

(λ + μ)-ES, applies a kind of elitist strategy for the selection.

The best solutions may be identified in different ways: the implementation of

ES provided in modeFRONTIER is capable of approximating the Pareto Set in

multi-objective optimization by using the Non-dominated/Crowding distance sorting

technique as done in NSGA–II.

The main source of variation is a mutation operator based on a normal distribution.

The standard deviation of this distribution changes during the generations in an

adaptive manner. Each input variable has its own deviation with an initial and a

minimal value that can be arbitrarily tuned.

A completely different operator has been introduced for categorical variables in

the context of MULTICUBE. If such a variable is selected for mutation, its value is

changed by following an uniform distribution (i.e. the choice is completely random),

since locality has no meaning. An adaptive strategy is performed over the probability

of mutating each variable.

A discrete recombination operator is a second source of variability. It resembles the

classical crossover operator, where information coming from two different parents

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 61

is exchanged producing a child. The value of each variable has the same probability

of coming from both parents.

The standard implementation of ES is available in modeFRONTIER from early

releases and it has also been implemented in Multicube Explorer. The described

enhancements were developed for the MULTICUBE project and were implemented

in modeFRONTIER.

3.3.2.3 Enhanced-MOPSO

Particle Swarm Optimization (PSO) is an optimization methodology that mimics

the movements of a flock of birds finding food [7]. PSO is based on a population of

particles moving through an hyper-dimensional search space. Each particle possesses

a position and a direction; both variables are changed to emulate a well known social-

psychological phenomenon: mimic the success of other individuals in the population

(also called swarm).

More formally, the position x for a single particle i is updated by means of a

velocity vector vecv by means of the following equation:

xi(t) = xi(t − 1) + δi(t) (3.2)

while the direction vector is updated with the following equation:

δi(t) = Wδi(t − 1) + C1r1(xpbesti − xi(t − 1))

+ C2r2(xgbest − xi(t − 1))

where W is called the inertia weight, C1 is the cognitive learning factor, C2 is the

social learning factor, r1, r2 are random numbers in the range [0, 1], xpbesti is the best

position of particle i with respect to the minimization problem, xgbest is the global

best found up to time t . The formulation of the problem leads to solutions which

try to ‘follow’ the leader’s xgbest position as well as attracting solutions versus the

personal best solution of the particle xpbesti .

Dealing with Multi-objective problems. So far, several approaches have been

proposed for extending the formulation of the PSO technique to the multi-objective

domain [2, 13]. The Enhanced-MOPSO technique is based on an “aggregating”

approach where the swarm is equally partitioned in n subswarms, each of which

uses a different cost-function which is the product of the objectives combined with

a set of exponents randomly chosen.

In other words, given the original set of objectives {f1 . . . fm}, each sub-swarm i

solves the following problem:

min
x∈X

∏

j=1...m

f
pi,j

j (x) (3.3)

where pi,j is a set of randomly chosen exponents. It can be shown that solutions

to Problem 3.3 lie on the Pareto surface of the original problem. This approach

62 E. Rigoni et al.

is different with respect to [2] because the latter uses a linear combination of cost

functions {f1 . . . fm}. Linear combination can be heavily biased on highly valued

cost-functions disregarding low-valued ones.

Dealing with the discrete design space. The essential nature of the solution

space of the problems faced with the MULTICUBE project is discrete, while the

PSO approaches presented so far deal with a continuous search space. Several pro-

posals have been made so far in the literature to extend classical PSO to the discrete

domain. One method for addressing the discrete design space exploration problem is

applying particle swarm optimization to binary-valued solution elements [8]. In this

case, while the velocity term is still real-valued, the position term is actually chosen

between 0 and 1 by means of a sigmoidal function. Another method leverages the

construction of a probability distribution for each value of the position vector [12].

The probability distribution is derived from the current value of the position vector

which, in turn, depends on the velocity vector. The probability distribution is then

transformed into a single integer number during fitness evaluation of each particle.

Enhanced-MOPSO is based on the concepts of random walk theory. A random

walk is a path with the following properties:

• It has a starting point.

• The distance from one point to the next is constant

• The direction from one point to the next is picked up at random.

The position of the particle is still updated with the traditional rule:

xi(t) = xi(t − 1) + δi(t) (3.4)

while each component k of the direction vector is updated with the following rule:

δi,k(t) =

{

sign(xgbest ,k − xi,k(t − 1)) if(rand() < p)

randint(− 1, 1) otherwise
(3.5)

where p ∈ [0, 1] is a parameter of the algorithm.

As can be noted, the direction of the particle is updated following two rules: rule 1

attracts the particle versus the leader of the swarm (gbest), rule 2 forces the particle

to follow a random walk. This ensures us to jump out from local minima in the

objective function shown in Eq. 3.3.

3.3.3 New Algorithms

The algorithms listed below can be considered as completely new proposal in the

scientific literature [17].

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 63

3.3.3.1 MFGA

The acronym of this new algorithm stands for Magnifying Front Genetic Algorithm

since its main purpose is to work on the local Pareto front in three directions: to-

wards (approaching the true front), laterally (obtaining a wider front) and internally

(enhancing the uniformity of the front samples).

With the introduction of elitism, genetic algorithms such as NSGA–II found a very

good answer to the problem of converging faster than previous implementations. The

question now is how to converge better, without slowing down.

Elitism is considered as the main reason of too concentrated Pareto fronts [1, 4].

If the optimization problem is difficult, only a few points will be non-dominated and

will become a sort of basin of attraction. Indeed, elitist strategies will keep these

points in the parent population and crowding distance or similar techniques are not

useful to “dilute” them until a large number of Pareto points are found. However

without elitism the request for quality cannot even be addressed, since the algorithm

would converge too slowly. Literature reports two promising ideas in order to modify

this operator without removing it.

Deb and Goel [4] proposed a controlled elitism approach. Their algorithm selects

the new parent population accepting also dominated points with a preference for

those points coming from less crowded regions. Computed points are ranked by

domination and ordered by crowding distance. An exponentially decreasing number

of points are selected from each rank starting from the top of the list. Figure 3.3

shows how a combined population Rt of size 2N (parents plus children) is reduced

Fig. 3.3 Controlled Elitism sorting procedure vs NSGA–II

64 E. Rigoni et al.

to a population Pt+1 of size N by selecting ni individuals from each non-dominated

front of size nt
i , using crowded tournament selection to reduce each front if necessary.

This choice helps in obtaining a more uniform front, filling possible gaps with

points coming from higher ranks. It is remarkable that slight improvements are

achieved also in convergence rate and in lateral spreading of the computed front, as

reported in the cited paper.

Aittokoski and Miettinen [1] studied a different strategy called variable size popu-

lation. Their idea is to transform all first-rank points into new parents regardless their

number. The result is an algorithm that cannot perform worse than a classical elitist

one considering convergence rate (since it does not waste any useful information)

and it guarantee a better diversity maintenance.

MFGA is an algorithm that tries to manage elitism mixing the two cited ideas in

an original scheme, including also a steady state evolution. The algorithm switches

automatically between the two approaches depending on the dimension of the local

Pareto front, allowing:

• wider exploration of the design space: new generations are created by following

the reduced elitism approach until the local Pareto front reaches one third of the

population size (fixed by the DOE size).

• better exploitation of the obtained information: the parents update is done by

following the variable size scheme, only for local fronts that contain a number of

points from one to two third of the population size.

• diversity preservation: the reduced elitism is reintroduced for larger fronts.

The steady state evolution implemented together with this mixed procedure is quite

demanding from the computational point of view, since every time the evaluation of

a new point is performed, the parent population is completely recomputed including

the new achieved information. This choice is well suited for problems involving long

simulation time.

Classical operators govern the parents-children recombination, but they are re-

built trying to enlarge the kind of problems treatable using them [17]. Mutation

and crossover operators act in MFGA variable-wise in order to treat easily mixed

problems involving real, integer and categorical variables. MFGA was completely de-

signed by ESTECO for the MULTICUBE project. Its inclusion in future commercial

releases of modeFRONTIER is planned.

3.3.3.2 APRS

The acronym of this new algorithm stands for Adaptive-windows Pareto Random

Search. It is an iterative optimization algorithm that tries to optimize locally each

Pareto solution found up to the previous iteration.

The main characteristics of the algorithm are represented by the three keywords:

adaptive-windows, Pareto and random search.

• Adaptive-windows: the APRS is an algorithm that has dynamic windows size

which is reduced with the time spent in the exploration and with the goodness of

the point found in current windows.

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 65

Objectives Space Design Space

Pareto

Solutions

Search

Windows

X1

F2

F1

X2

Fig. 3.4 Search windows idea in the APRS algorithm

• Pareto: the starting points of each iteration of the algorithm are the current Pareto

solutions (found up to previous iteration) where the search windows are centered

on.

• Random search: the new configurations to be evaluated are randomly selected

within those windows.

The idea behind the algorithm is simple and it is based on iterative local search in

the neighborhood of good points: the current Pareto set (see Fig. 3.4). Moreover,

as for temperature in Simulated-Annealing strategies, the algorithm has a parameter

represented by the search-window size that reduces the dynamism of the algorithm

during the optimization life-time. In particular, the search-window size centered on

each Pareto point is reduced whenever no better solutions are found in the iteration.

More in detail, the general structure of the algorithm is the following:

1. Creation of an initial set of solutions selected within the entire DS by using a DoE

2. Initial solutions evaluation (S)

3. Identification of the Pareto solutions (P ′ = ParetoF ilter(S))

4. While the termination condition is not met

(a) Use the Pareto set as initial set for each iteration S < −P ′

(b) For each point in the Pareto set (p ∈ P ′)

i) Randomly select a configuration within the reduced DS delimited by the

search window centered on the pareto point (W (p))

ii) Evaluate the selected configuration s (S = S + s)

(c) If the Pareto set is not changed from the previous iteration (i.e. if P ′ ==

ParetoF ilter(S)), reduce the search window (|W | = |W | ∗ α)

(d) Otherwise, Identification of the new Pareto set (P ′ = ParetoF ilter(S))

The algorithm exposes three parameters, the initial set |S| size, the initial size of

the windows |W | and the windows reduction coefficient α. APRS was completely

designed by POLIMI for the MULTICUBE project and has been implemented in

Multicube Explorer.

66 E. Rigoni et al.

3.4 Validation Strategies

The so called no-free-lunch theorem for optimization [18] is a rigorous mathematical

theorem which states the impossibility of ranking algorithms on the basis of their

performance: averaging on all possible problems, every algorithm will obtain results

exactly equal to all the others. A direct corollary is that if one algorithm appears better

than another one in solving a specific problem, there must exist another problem in

which the original algorithm appears worse than the other.

This theorem implies that an optimization algorithm is as important as the valida-

tion strategy which may reveal its ability in solving a specific set of problems. This

issue is not a mere academic question, but it has relevant effects on the industrial

exploitation of the achievement obtained. It is of primarily importance to build confi-

dence on the proposed algorithmic strategies and to prove their robustness. This is the

main achievement of the researches carried on by the MULTICUBE project, whose

partners agreed on the need of a validation step in order to transfer the (possibly

academic) high quality knowledge to the industrial world.

This section focuses on the first two steps performed in this direction within the

project. The first one consists in showing that all the algorithm described in Sect. 3.3

can solve a benchmark problem of SoC design in a satisfactory manner. The second

step is to show the advantages of an automatic optimization process with respect

to a traditional approach. The combination of these two results can guarantee the

reliability of the proposed approach. At the same time, the validation process must

be intended as an iterative process which follows but at the same time precede the

development of new optimization strategies.

3.4.1 Algorithm Comparison

The problem selected as benchmark for the algorithms validation is based on the

SP2 low-power processor use case delivered by STM-China described in Chap. 8. In

this paragraph, we compare the previously introduced algorithms to identify the most

suitable for the architecture under consideration. The executable model for the design

space exploration is the sp2sim simulator, which models the SP2 microprocessor

design. The benchmark application selected is the 164.gzip application, based on the

popular gzip application.

The design space consists of 11 configuration parameters, 7 system metrics

and 3 objectives. The configuration parameters are grouped in three categories:

out-of-order execution parameters, cache system parameters and branch prediction

parameters, as shown in Table 3.1. The system metrics are grouped in three cate-

gories: performance, power dissipation and area occupation metrics, as shown in

Table 3.2. The three objectives to be minimized have been selected from each one

of the metrics group: total_cycle, power_dissipation and area.

In order to compute optimization metrics that provide a reasonable measure of

quality of the algorithms, it is necessary to compare the Pareto fronts obtained by

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 67

Table 3.1 Input parameters for the benchmark problem

Category Parameter Description Values

Out of order execution rob_depth Reorder buffer depth 32, 48, 64, 80, 96, 112, 128
mreg_cnt Rename register number 16, 32, 48, 64
iw_width Instruction window width 4, 8, 16, 24, 32

Cache system icache_size Instruction cache size 16, 32, 64
dcache_size Data cache size 16, 32, 64
scache_size Secondary cache size 0, 256, 512, 1024
lq_size Load queue size 16, 24, 32
sq_size Store queue size 16, 24, 32
mshr_size Miss holding register size 4, 8

Branch prediction bht_size Branch history table size 512, 1024, 2048, 4096
btb_size Branch target buffer size 16, 32, 64, 128

Table 3.2 Output parameters for the benchmark problem

Category Metric Description

Performance total_cycle Total cycle number
total_instr Total instruction number
IPC Instruction per cycle

Power dissipation total_energy Total energy consumed
total_dissipation Average power dissipation
peak_power_dissipation Peak power dissipation

Area occupation Area Area occupied

the algorithms with a reference Pareto front, which should be the real Pareto front of

the optimization problem, or at least a good approximation of it. The design space of

the problem outlined above consists of 1,161,216 designs. Since the time required to

evaluate all these designs is too large to be considered as an option, a statistical study

of the configuration parameters was performed in order to try to identify parameters

which could be fixed to a constant value to reduce the size of the design space without

a significant reduction of the problem interest for SoC designers. A statistical study

was performed with random exploration using Multicube Explorer, exploring a set

of 5,000 randomly selected designs.

In order to reduce the size of the design space, the following parameters with low

contribution where identified: rob depth, lq size, sq size and mshr size. Adequate

constant values were selected for them, reducing the size of the design space to only

9,216 designs. The reduced problem was considered valid both from the point of

view of SoC designers and from the point of view of the mathematical properties of

the design space and its associated Pareto front. All designs in the reduced design

space were evaluated by performing a full factorial multi-level exploration obtaining

the real Pareto front in a few days of execution time. This Pareto front consists of 18

points. Figure 3.5 shows if and when the considered algorithms discover them.

The performance measures selected for the algorithms comparison concern both

time and quality. Since by far the most time consuming component of the optimization

procedure is the simulator execution, its number of evaluations has been selected as a

fair measure of the required algorithm execution time. Concerning the quality of the

68 E. Rigoni et al.

Fig. 3.5 Algorithms
performance comparison on
the reduced benchmark
problem

Percentage of evaluated points

N
u

m
b

e
r

o
f

P
a

re
to

 p
o

in
ts

 f
o

u
n

d

40% 50%30%20%10%5%2%

Es

MFGA

MOGA-II

MOSA

NSGA-II
MOPSO

APRS

18

16

14

12

10

8

6

4

2

solutions found by each algorithm, a set of four metrics has been selected considering

the following criteria:

• Accuracy: measured as the distance between the obtained Pareto front and the

reference (or real) front.

• Uniformity: measured as the distribution of the solution set in the trade-off curve.

• Extent: measured as the coverage of the objective space considering boundary

points.

The D-metric, �-metric and ∇-metric have been selected from [5], while the ADRS

(Average Distance from Reference Set) metric has been selected from [15]. Both

D-metric and ADRS provide indication of accuracy, �-metric of uniformity and

∇-metric of extent.

A fair evaluation of non-deterministic algorithms requires several repeated runs

without changing any parameter besides the random generator seed. Notwithstanding

the relative small search space consisting of only 9,216 designs, very large variations

can be observed in the algorithms behavior and a rigorous study needs to analyze also

this aspect. It was proved that 10 repetitions were a good trade off among statistical

issues, purposes of the evaluation and significance of the problem. Preliminary tests

were performed in order to estimate the best choices for the tunable parameters which

then have been kept fixed.

Algorithms parameters are usually problem-dependent. Some of them depend

also on the user expectations: the optimal choices (if any) for parameters controlling

the ratio between exploration and exploitation phase (like temperature schedule in

MOSA, for example) are strictly related to the number of evaluations the user can

afford. It was decided to tune these parameters considering the largest target (i.e.

50% of the design space, as described below) and accepting possible worse results

in the partial samples.

The evaluation process then proceeds checking at fixed numbers of explored

points the quality of the non-dominated front found so far. The steps selected for the

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 69

evaluation are: 184 designs (corresponding to about 2% of the design space), 461

(5%), 922 (10%), 1,843 (20%), 2,765 (30%), 3,686 (40%) and 4,608 (50%). Only the

requests of evaluation of new designs were counted, since sometimes the algorithms

request the evaluation of an already evaluated design due to the inherent behavior

of their random engines. In any practical application, the time needed to retrieve the

stored information is incomparably smaller than the time that would be spent by a

new evaluation. Besides the fact that in this experiment it is known in advance any

value thanks to the previous full factorial exploration, the real optimization process

was simulated by counting each design only once.

Some algorithms occasionally cannot generate new designs when working with

discrete problems if some parameters are not set properly. The chosen benchmark

problem has a small variable space and in the exploitation phase (where usually re-

combination is less effective than in the exploration one) the algorithms may get stuck

in the endless repeated evaluation of the same designs. This behavior was observed

and was overcame by increasing the exploration capabilities of the algorithms.

A last remark concerns the input variables nature. They are all discrete, but none

of them is categorical. This choice allows to test fairly a wider range of algorithms,

but on the other hand, the test cannot highlight completely the improvements gained

with the enhancements described above.

With a small variance, all algorithms reach an ADRS value below 2% evaluating

30% of the design space (see Fig. 3.6). This result can be considered very promising.

Variations in the slope of the lines for some algorithms are a consequence of possible

different behaviors in successive phases of the optimization process. The most clear

example is MOSA with its hot and cold phase. MOSA is tuned to reach the top of

the exploitation phase at 50% of evaluations and therefore its results are the worst up

to 20–30%, while at the end it is one of the most effective algorithms. APRS shows

a similar behavior.

It is very difficult to analyze the uniformity and the extent of the partial front

found by the algorithms during the optimization process. The true Pareto front is

Fig. 3.6 Algorithms
performance comparison on
the reduced benchmark
problem in terms of ADRS
metric [15]

Percentage of evaluated points

A
D

R
S

 v
a
lu

e
s

40% 50%30%20%10%5%2%

Es
MFGA
MOGA-II

MOSA

NSGA-II

MOPSO
APRS

0.14

0.12

0.10

0.08

0.06

0.04

0.02

70 E. Rigoni et al.

not uniform itself, since the problem is highly discrete both in the search space and

in the objective space: notwithstanding the real values achievable by the objective

functions, it is observed the formation of clusters of points with a cylindrical shape.

Only some tips belong to the Pareto front and the distance between two nearby

solution points is relatively large.

Extent metric gives some insight into the evolution of the non-dominated front.

Some algorithms (MOPSO, MOSA, and APRS) span a wider range than others. This

is due to a sharper division between exploration and exploitation phase. Indeed, the

higher values of ∇-metric are achieved when the local front contains points which

will be dominated by the following generations. These designs may span a wider

area in the objective space resulting in a higher value of the extent metric.

The analysis of the metrics values obtained offers a deep insight into the algorithms

structure in addition to the comparison information. Efficiency assessments can be

drawn in terms of ADRS metric and number of Pareto points found. Under this per-

spective, all algorithms behave in a satisfactory manner on the proposed benchmark

problem: as remarked before, starting from 30% of the design space exploration, all

scored less than 0.02 in ADRS metric. The worst score in the achievement of Pareto

points can be taken as an indicator of the reliability of the proposed algorithms: ES

found 15.6 points which however corresponds to 86.6% coverage of the true Pareto

front. Since in real-world problems the solution set is unknown, this percentage is

clearly a good guarantee that the algorithms will reach at least a significant part of

the Pareto front.

3.4.2 The Complete Optimization Problem

The problem proposed for algorithms comparison can be very useful for validating

the whole optimization process as well. The procedure followed for obtaining the

subspace of points for the comparison can be summarized as:

• simulate an initial set of 5,000 random points;

• perform statistical analysis on the sample in order to detect the most significant

variables and the most appropriate values for the remaining ones;

• simulate all the configurations (full factorial exploration, 9,216 points) obtained

varying the selected variables;

• extracting the non-dominated set.

The approximated Pareto set obtained counts 18 designs and it costs about 14,000

simulations. This procedure is similar to a manual optimization, which however in

most of the cases would have produced only a reduced number of pseudo-optimal

designs. The idea is to perform a first exploration in order to extract useful information

about the problem. The second step is the analysis of the data obtained and their

consequent exploitation through a second exploration phase, this time limited on a

restricted and affordable search space.

The sequence exploration-exploitation-exploration is exactly the same hypothe-

sized by the elitism operator of MFGA algorithm in Sect. 3.3. However that algorithm

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 71

AREA

T
O

T
A

L
_
C

Y
C

L
E

1.00

0.80

0.60

0.40

0.20

0.00
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 3.7 Pareto fronts obtained with the reduced (diamonds) and the complete problem (circles).
The Area and the Total Cycle objectives values are plotted on the horizontal and vertical axes,
respectively. The Power Dissipation objective is represented by the size of the points: a larger point
means an higher value. The highlighted points are non-dominated. The values of the metrics are
normalized since the model is proprietary of STM

shows to be able of much faster convergence. An optimization run of the original

problem, without the restriction introduced on the input variables, can support this ob-

servation. Indeed, MFGA after only 3,000 evaluation can produce a non-dominated

set which outperforms the one obtained by the procedure just described [16]. In

Fig. 3.7 the two sets are plotted on a 2D plot where the third object is represented by

the size of the points.

Moreover, the analysis of the input variable values producing this new and en-

hanced solution set contributes to the insight in the problem structures more than

the statistical calculation previously carried on. A better front is found violating the

prescription proposed by this latter one.

Notwithstanding these results, the validation process cannot be considered as

concluded. On the contrary, it must be a complementary tool to the research for new

and better algorithms. The two processes should provide new problems each other.

Once a detailed validation has stated the reliability of the optimization technique over

one applicative field, new fields could open and new algorithms become necessary.

Following these ideas, an industrial validation step will be described in Chap. 8.

3.5 Conclusions

The results described in the present chapter shows the expertise gained during

the MULTICUBE project in handling optimization problems arising in MP-SoC

architecture design. Two different but complementary meanings can be associated

72 E. Rigoni et al.

to the word “handling” in this context. First, the proposed methodologies can solve

the problems concretely and in a satisfactory manner: the Design Exploration tools

employed within the project can support all the phases of the process, since they pro-

vide appropriate solutions to define correctly the problem, they include algorithms

capable to optimize the selected metrics and they include many post-processing re-

sources. The second meaning refers to the validation path which builds the necessary

reliability to exploit the research results in an industrial context.

The definition of the problem is extremely flexible, but at the same time the

fixed XML vocabulary (described in Chap. 1) is universal in the sense that all the

components (tools and simulators) needed to work on the problem are able to speak

the same language. Different simulators with different level of abstraction can be

connected with the same optimization work-flow and the different optimization tools

can work with all the simulators without additional modifications.

The algorithms presented are obviously the central part of the process. Although

they follow different approaches, they all try to exploit the a priori knowledge of the

problem structure in order to better investigate the unknown objective space shape.

The presence of categorical variables is a first obstacle to overcome and indeed

many of the proposed algorithms implement particular strategies for handling this

kind of variables. Following this direction there is still room for improvements: is

it possible, for example, to design a categorical crossover operator? It should be

an operator which mixes information between the parent designs trying to maintain

possible structures or good combinations among their categorical variables.

The computational cost of the simulations is another important element to analyze.

The steady-state evolution implemented by some of the algorithm is a first answer.

However the final number of evaluations required to achieve an accurate and uniform

sample of the Pareto front is the key issue. Since all the MULTICUBE algorithms

seemed to perform equivalently well, the results obtained by MFGA on the complete

benchmark problem can represent a guarantee that also other algorithms can save

many simulations.

Other quality of the solution set have been considered besides accuracy. Unifor-

mity and extent are considered as complementary objectives. This opens a complete

new field of research: if the result of the optimization stage is a very detailed sample

of a large Pareto set, which are the points on the front that should be selected for

the prototyping stage? How is it possible to help the so called Decision Maker? This

stage has been considered as a separate step for long time, however recent research

results in optimization tries to combine the two steps. The objective is an algorithm

which returns a user-defined number of points taken from the Pareto set selecting

them for their diversity.

The validation strategy proposed has a twofold merit. On one hand, simply the fact

that a validation strategy has been addressed is relevant from the applicative point of

view, since this is the only way of building confidence on the proposed optimization

strategy. On the other hand, the validation procedure described in Sect. 3.4 contains

some elements that can constitute a paradigm for evaluating optimization algorithms.

A first element is to define a large set of indicators for the quality of the solution

sets: a single metric can hide more than what it shows, while a deep insight in the

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 73

problem and in the algorithms can be obtained combining the results of different

measurements. Another important suggestion is to check the chosen metric values

at previously defined fixed numbers of evaluations. Finally, the validation stage

can be considered concluded only when the new optimization algorithms have been

tested against other kind of approaches (classical algorithms, manual optimization

protocols, etc).

The algorithms and the procedure described in this chapter prove the overall

reliability of the Design Space exploration tools, modeFRONTIER and Multicube

Explorer in handling and in solving optimization problems in the field of Embedded

System Design. The peculiarities of such an environment have been sufficiently

recognized and exploited in order to provide solutions in affordable computational

time (considering also the high consuming simulators). The study has been enough

deep to open new questions for improving the capabilities of the algorithms in this

field as well as for opening new research directions.

References

1. Aittokoski, T., Miettinen, K.: Efficient evolutionary method to approximate the pareto opti-
mal set in multiobjective optimization. In: Proc. International Conference on Engineering
Optimization (EngOpt) (2008)

2. Baumgartner, U., Magele, C., Renhart, W.: Pareto optimality and particle swarm optimization.
IEEE Transactions on Magnetics 40(2), 1172–1175 (2004)

3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting ge-
netic algorithm for multi-objective optimization: Nsga–ii. IEEE Transactions on Evolutionary
Computation 6(2), 181–197 (2002)

4. Deb, K., Goel, T.: Controlled elitist non–dominated sorting genetic algorithm for better
convergence (2001). KanGal Report 200004

5. Erbas, C., Cerav–Erbas, S., Pimentel, A.: Multiobjective optimization and evolutionary algo-
rithms for the application mapping problem in multiprocessor system-on-chip design. IEEE
Transactions on Evolutionary Computation 10(3), 358–374 (2006)

6. Gelatt Jr., C.D., Vecchi, M., Kirkpatrik, S.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

7. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, pp. 1942–1948 (1995)

8. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In:
Proceedings of the Conference on Systems, Man and Cybernetics, pp. 4104–4109 (1997)

9. Metropolis, N., Rosenbluth, A., Teller, A., Teller, E.: Equation of state calculation by fast
computing machines. J. Chem. Phys. 21(1953), 1087–1092 (1953)

10. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publisher (1999)

11. Poloni, C., Pedirola, V.: Ga coupled with computationally expensive simulations: Tools to im-
prove efficiency. In: Genetic Algorithms and Evolution Strategy in Engineering and Computer
Science, chap. 13. John Wiley & Sons (1998)

12. Pugh, J., Martinoli, A.: Discrete multi-valued particle swarm optimization. In: Proceedings of
IEEE Swarm Intelligence Symposium, pp. 103–110 (2006)

13. Reyes-Sierra, M., Coello, C.A.: Multiple-objective particle swarm optimizers: A survey of the
state of the art. http://www.lania.mx/∼ccoello/EMOO/reyes06.pdf.gz (2006)

14. Schwefel, H.: Evolution and Optimum Seeking. Wiley & Sons (1995)

74 E. Rigoni et al.

15. Silvano, C., Zaccaria, V., Palermo, G.: ReSPIR: A response surface-based pareto iterative
refinement for application-specific design space exploration. IEEE Transactions on Computer-
Aided Design of Integrated Circuit and Systems 28(12) (2009)

16. Turco, A., Kavka, C., Bocchio, S.: Optimization of an embedded parallel system-on-chip
platform using modeFRONTIER. In: Poster Session at DATE’10 Conference (2010)

17. Turco, A., Kavka, C.: MFGA: a genetic algorithm for complex real-world optimization
problems. International Journal of Innovative Computing and Applications 3(1), 31–41 (2011)

18. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1(1), 67–82 (1997)

Chapter 4

Response Surface Modeling for Design Space
Exploration of Embedded Systems

Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria, Enrico Rigoni,

Carlos Kavka, Alessandro Turco, and Giovanni Mariani

Abstract A typical design space exploration flow involves an event-based simulator

in the loop, often leading to an actual evaluation time that can exceed practical limits

for realistic applications. Chip multi-processor architectures further exacerbate this

problem given that the actual simulation speed decreases by increasing the number

of cores of the chip. Traditional design space exploration lacks of efficient techniques

that reduce the number of architectural alternatives to be analyzed. In this chapter,

we introduce a set of statistical and machine learning techniques that can be used

to predict system level metrics by using closed-form analytical expressions instead

of lengthy simulations; the latter are called Response Surface Models (RSM). The

principle of RSM is to exploit a set of simulations generated by one or more De-

sign of Experiments strategies to build a surrogate model to predict the system-level

metrics. The response model has the same input and output features of the origi-

nal simulation-based model but offers significant speed-up by leveraging analytical,

closed-form functions which are tuned during model training. The techniques pre-

sented in this chapter can be used to improve the performance of traditional design

space exploration algorithms such as those presented in Chap. 3.

4.1 Introduction

Nowadays, Multi-Processor Systems-on-Chip (MPSoCs) and Chip-Multi-

Processors (CMPs) [5] represent the de facto standard for both embedded and

general-purpose architectures. In particular, programmable MPSoCs have become

the dominant computing paradigm for application-specific processors. In fact, they

represent the best compromise in terms of a stable hardware platform that is soft-

ware programmable, thus customizable, upgradable and extensible. In this sense,

the MPSoC paradigm minimizes the risk of missing the time-to-market deadline

V. Zaccaria (�)

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

e-mail: zaccaria@elet.polimi.it

C. Silvano (eds.), Multi-objective Design Space Exploration of 75
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_4, © Springer Science+Business Media, LLC 2011

76 G. Palermo et al.

while ensuring greater efficiency due to architecture customization and software

compilation techniques.

Design space exploration involves an event-based simulator in the loop. Event-

based simulation still represents a fundamental tool to predict performance of

candidate architectural design points. If we consider cycle-accurate system-level

simulation (where the event corresponds to the completion of a processor clock

cycle), we can have several high-complexity mathematical models to be evaluated

during each event (or clock cycle), leading to an actual evaluation time that can

exceed practical limits for realistic applications. Chip multi-processor architectures

further exacerbate this problem given that the actual simulation speed decreases by

increasing the number of cores of the chip (as shown in Fig. 4.1).

While statistical sampling techniques have already been proposed for a single

simulation [12], design space exploration still lacks of efficient techniques that re-

duce the number of architectural alternatives to be analyzed. To face this problem,

we decided to adopt statistical and machine learning techniques to create a prediction

of the system level metrics for the whole simulation by using closed-form analytical

expressions; the latter are called Response Surface Models (RSM) since they repre-

sent a suitable approximation of the system response under a specific instance of the

input set of parameters (e.g. the system configuration).

This chapter is organized as follows: Sect. 4.2 presents some background on

response surface models while Sect. 4.3 analyzes some of the very peculiar problems

that arise when modeling embedded design spaces. Section 4.4 presents a detailed

10000

1000

100

10

1

1 2 4 8 16 32 64

Number of MIPS Cores

S
im

u
la

ti
o

n
 S

p
e

e
d

 [
K

c
y

c
le

s
/s

]

Fig. 4.1 SESC [15] simulation speed when executing the FFT kernel from [18] by varying the
number of MIPS cores from 1 to 64 (Host machine: two Intel Xeons quad-core at 3 GHz)

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 77

descriptions of the RSM algorithms while Sect. 4.5 presents the general validation

flow. Section 4.6 summarizes the main content of this chapter.

4.2 Background on Response Surface Models

RSM techniques are typically introduced to decrease the time due to the evaluation of

a system-level metric f (x) for each architecture configuration x1. In fact, for appli-

cations of commercial interest, evaluating f (x) can involve one or more simulations

which can take several hours, depending on the platform complexity and the system

resources dedicated to the simulation.

The principle of RSM is to exploit a set of simulations generated by a Design of

Experiment strategy to build a surrogate model to predict the system-level metrics.

The response model has the same input and output features of the original simulation-

based model but offers dramatic speed-up in terms of evaluation since it consists of

an analytical, closed-form function.

A typical RSM-based flow involves a training phase, in which simulation data

(or training set) is used to tune the RSM, and a prediction phase in which the RSM

is used to forecast unknown system response (see Fig. 4.2).

Given a system-level metric f (x) associated with an architectural configuration

x, a response surface model ρ(x) is defined such that:

f (x) = ρ(x) + ε (4.1)

where ε is an ideally negligible estimation error. The prediction ρ(x) is a function of

the target architecture x.

In simple cases, ρ(x) may consists of a closure2 of a more general function 	(x, w)

where the vector of parameters w has been fixed to w0:

ρ(x) = 	(x, w0) (4.2)

Fig. 4.2 Typical usage of a
Response Surface Model

Design of Experiments Simulations

Prediction phase

Training phase

1 Each architecture configuration is seen as a vector of configuration parameters. We use bold font

to specify vector values.
2 A closure is a first-class function with free variables that are bound in the lexical environment.

Such a function is said to be “closed over” its free variables. (Source: Wikipedia).

78 G. Palermo et al.

The actual value of w0 is determined during the training phase by exploiting a set of

observations y(x) known as training set. The final value w0 is such that the estimation

error:

ε = 	(x, w0) − y(x) (4.3)

is minimized for both the known and future observations y(x).

In more sophisticated cases, the structure of the function ρ(x) is not defined a-

priori but it is built by either using neural-like processing elements or composing

elementary functions. In both cases, the training phase does not involve (only) the

selection of parameters w0 but the navigation through a function-space to identify the

optimal ρ(x) that minimizes error ε. Of course, while prolonging the overall training

process, these sophisticated model selection algorithms lend to better approximating

functions ρ(x).

4.2.1 RSM Categories

Response surface models are surrogate models which fit, within reasonable approx-

imation limits, the response curve of a system with respect to the configuration x.

Being a curve fitting tool, RSMs can be categorized as follows:

• Interpolation-based RSMs. This category of curve fitting expressions is built

with a constraint such that the curve ρ(x) is equal to f (x) for all the design points

x belonging to the training set T :

ρ(x) ≡ f (x), ∀x ∈ T (4.4)

while, for the remaining design points that still belong to the design space, w0 are

calibrated such that the estimated error ε is minimal.

• Regression-based RSMs. This category of curve fitting expressions is such that

the constraint in Eq. 4.4 does not hold; instead, the coefficients w0 are chosen such

that a general measure of error on known training set T and the future observations

is minimized.

Figure 4.3 shows a comparison between the two approaches when fitting a set of five

observations of the Energy-Delay Product when varying the system cache size. As

can be seen, the interpolation line (a spline function) passes through the observations

while the regression curve (a second order polynomial) does not. Interpolation ze-

roes the error on the training observations but it might present an over-fitting effect

that consists of a decreased prediction accuracy on the unknown observations. On

the other hand, regression techniques, albeit with some errors on known observa-

tions, may present a greater generalization power. Nevertheless, in this book we will

analyze both techniques in the domain of design space exploration.

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 79

Fig. 4.3 Typical usage of a
Response Surface Model

low

high

1K 2K 4K 8K 16K

E
n

e
rg

y
 D

e
la

y
 P

ro
d

u
c
t

(E
D

P
)

m
e

tr
ic

Cache size x

Observations

Interpolation

Regression

4.2.2 Design of Experiments

The training data used for identifying the parameters w is fundamental for creating

reasonably accurate prediction models. Of course, the set should be limited given the

simulation time needed to gather these data. The literature on RSM calls for a system-

atic Design of Experiments (DoE) [17] to identify the most suitable configurations

with which the RSM can be trained. Design of Experiments is a discipline that has

had a very broad application across natural and social sciences and encompassed a set

of techniques whose main goal is the screening and analysis of the system behavior

with a small number of simulations. Each DoE plan differs in terms of the layout of

the selected design points in the design space. Several design of experiments have

been proposed in the literature so far. Among the most used DoEs for training RSMs

we can find:

• Random DoE. Design space configurations are picked up randomly by following

a Probability Density Function (PDF).

• Full Factorial DoE. In statistics, a factorial experiment is an experiment whose

design consists of two or more parameters, each with discrete possible values or

“levels” and whose experimental units take on all possible combinations of these

levels across all such parameters. Such an experiment allows studying the effects

of each parameter on the response variable, as well as the effects of interactions

between parameters on the response variable. The most important full-factorial

DoE is called 2-level full factorial, where the only levels considered are the

minimum and maximum for each parameter.

• Central Composite DoE. A Central Composite Design is an experimental design

specifically targeted to the construction of response surfaces of the second order

(quadratic) without requiring a three-level factorial.

It is important to note that, while factorial and central composite DoE layouts require

a fixed number of points, the Random DoE can have a varying number of design

points. In this book, we will leverage Random DoE for validating the proposed RSMs.

80 G. Palermo et al.

4.2.3 Over-Fitting

In statistics, over-fitting occurs when a statistical model captures systematically

the random error (or noise) together with the underlying analytical relationship.

Over-fitting generally occurs when the model complexity is excessive. This happens

whenever the model has too many degrees of freedom (i.e., the size of vector w), in

relation to the amount of data available. An over-fitting model, has poor predictive

capabilities, as it can exaggerate minor sweeps in the data.

There are several methods to avoid the over-fitting risk; in the MULTICUBE

project we employed techniques such as model selection to identify the simplest

models (in terms of size of w) which can guarantee a reasonable error on the training

set, and the early stopping criterion. The early stopping criterion consists of splitting

the training data into two sets: a training set and a validation set. The samples in the

training set are used to train the model, by decreasing both the error on the training

data and on the validation data. The training algorithm stops as soon as the error on

the validation set starts to increase.

4.3 How to Manage the Design Space of Embedded Systems

Problems emerging in the design of embedded computing systems present some

characteristic features—such as the fact that all configuration parameters are discrete

and possibly categorical—that deserves further discussion.

4.3.1 Discrete and Categorical Variables

SoC design problems are characterized by the fact that all configuration parameters

are discrete and possibly categorical:

• Discrete variables quantify data with a finite number of values. There is a clear

order relation between different values.

• Categorical (or nominal) variables classify data into categories. These are qual-

itative variables, in which the order of different values (categories) is totally

irrelevant.

On the contrary, traditional RSM techniques usually deal with continuous de-

sign spaces. For this reasons, RSM algorithms simply ignore the discrete and/or

categorical nature of variables, treating them as continuous ones.

In general this is not a pressing problem as regards discrete variables, given the

order relation existing between different values. Even if the trained RSM would

be able to predict the model “in the middle”, this unrequested generalization will

never be implemented in practice, given the discrete nature of variables in evaluation

points.

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 81

Concerning categorical variables, the matter is not so simple. As a justification for

pragmatically treating these variables as continuous ones, there is the fact that in many

applications it is a common practice to treat categorical parameters as simple discrete

ones. So if discrete variables are treated as continuous ones, the same should apply for

categorical ones. But in this case there is a non-negligible difference: there is no order

relation between different variables values. For this reason, caution is requested: the

training database should be examined, in order to determine, from case to case, if it is

possible to treat categorical parameters as continuous ones. One criterion of decision

could be to consider if different subsets corresponding to different categories present

analogies (correlations) in response behavior. In case of positive answer, it probably

makes sense to train the RSM profitably on the full database, taking advantage of the

simple reduction to a continuous domain. If this is not the case, one possible solution

could be to treat these different categories as separate sub-problems: different RSMs

should be trained separately for each category.

As a final remark, in the design of embedded systems, many discrete input vari-

ables are power of two (e.g., memory size): x = 2m. In these cases, it is convenient to

perform a variable transformation, taking the exponent m as the actual input param-

eter, and considering x as a dependent (auxiliary) variable. In this way, the discrete

parameter presents two characteristics that are desirable from the point of view of any

RSM training algorithm: its values are equispaced and it is well scaled (as regards

its range of variation).

4.3.2 Optimal DoE

The following considerations are usually found when dealing with Radial Basis

Functions (where they have a straightforward formulation), but they can be general-

ized for all RSM algorithms. The generic application refers to multivariate scattered

training data in a continuous design space.

A generic set of scattered training points {xi , i = 1, . . . , n} is characterized by

two quantities: the fill distance h, and the separation distance q. These quantities,

defined in the followings, are shown in Fig. 4.4.

The fill distance h is defined as the radius of the largest inner empty disk:

h = max
x∈

min
1≤j≤n

‖x − xj‖, (4.5)

where
 ⊂ R
d is the domain of definition of f (x). In order to achieve better

approximation quality of the RSM one should minimize the fill distance: minh.

The separation distance q is defined as the minimum distance between two training

points:

q = min
i
=j

{

‖xi − xj‖
}

. (4.6)

In order to improve the numerical stability of the RSM training algorithm, one should

maximize the separation distance: maxq. Therefore, to improve both approximation

82 G. Palermo et al.

Fig. 4.4 Fill distance h and
separation distance q

h

q

quality and numerical stability, one should maximize the ratio max(q/h). Clearly this

objective is achieved for a well distributed, almost uniform, set of training points. But

in general, for scattered data, one deals with q ≪ h. In case of uniform distribution

of data, there is no way for further improving both objectives: there is a trade-off

situation between min h and max q. This fact explains the choice of Sect. 4.2.2:

Random DoE (i.e., a uniform Monte Carlo) is a good algorithm for generating points

to be used as training database by RSM, since it maximizes the ratio max(q/h). In

general any space filler DoE can be used.

Some enhanced techniques could be implemented in case a even more accurate

uniformity is necessary. E.g., Incremental Space Filler, for augmenting an existing

database in order to fill the space in a uniform way (filling the gaps), or Uniform

Latin Hypercube that uses Latin Hypercube - an advanced Monte Carlo which maps

better the marginal probability distribution of each single variable—for generating

random numbers conforming to a uniform distribution.

In case of discrete variables, the separation distance q has a lower bound, strictly

related to the variables resolution (number of levels). In general numerical stability

is not a pressing problem. On the contrary, in order to achieve approximation quality,

it is important to fill as uniformly as possible the gaps in the regular grid formed by

the set of all the combinations of admissible discrete variables values. Usually space

filling techniques, even though conceived for continuous design space, are able to

manage correctly also discrete variables. So in general neither approximation quality

is an insurmountable problem, given that the seek for uniformity in a discrete design

space is properly considered.

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 83

4.3.3 Pre-Processing and Scaling Data

Data used to derive analytical models, also if originated from the same source/mod-

eled architecture, due to different positions in the design space can have different

values distribution and orders of magnitudes. Especially when the case is the latter,

to create better prediction it is better to pre-process and/or scale data.

Data transformation is very important because in most of the cases the analytical

models used to predict the data work better when data distribution follows some rules.

As an example, if we consider an analytical model that uses the standard deviation

of the training data to predict unknown data, this standard deviation values can be

very high if the data distribution is skewed. In this case, it is highly recommended to

first transform the data to approach a better symmetry and then to perform the model

training and related prediction.

Box-Cox power transformation. A powerful transformation adopted in the

above-mentioned cases is called Box-Cox power transformation [4]. The Box-Cox

power transformation is a useful data pre-processing technique used to reduce data

variation, make the data more normal distribution-like and improve the correlation

between variables. The power transformation is defined as a continuously varying

function, with respect to the power parameter λ:

y
(λ)
k =

{

(yλ
k − 1)/λ, if λ
= 0

log yk , if λ = 0
(4.7)

In the validation results of the models that we adopted in this book, we considered a

family of transformations as potential candidates λ{1, 0.5, 0, −1}. All the Box-Cox

power transformations are only defined with positive values. In case of negative

values, a constant value has to be added in order to make them positive. To keep the

prediction consistent with the actual objective functions of the target problem, an

inverse Box-Cox transformation has been applied on the predicted data.

Some care has to be taken when performing the inverse Box-Cox transformation,

since the condition λ y
(λ)
k + 1 > 0 (when λ
= 0) has to be satisfied. Therefore

possible unfeasible outcomes has to be taken into account.

Centering and scaling data. Another pre-processing step that is usually applied

to the data after the data transformation is the centering and scaling step. The goal

of this step is to remove the bias from the input data (mean equal to zero) and to

standardize the variance (standard deviation equal to 1). This transformation is also

called “Autoscaling”. When the autoscaling transformation is applied to a set of data,

from each value the mean value is removed and it is scaled by the standard deviation:

yautoscaled = (yoriginal − μy)/σy . Another common alternative step is to normalize

data in the unitary interval [0, 1]: ynormalized = (yoriginal − miny)/(maxy − miny).

Usually this normalization step is performed on input variables too: in this way data

result to be well scaled, being perfectly comparable as regards range extensions. This

solution prevent numeric issues that usually arise during RSM training in presence

of different scaled variables.

84 G. Palermo et al.

4.4 Algorithms Description

This section describes the fundamental concepts of the RSMs used in the Multicube

design flow. All the presented RSMs have been integrated either in the Multicube

Explorer open source tool and/or in the modeFRONTIER design tool. The set of

RSMs consists of the following models:

• Linear regression (Regression-based).

• Splines (Regression-based).

• RBF (Interpolation-based).

• Neural Networks (Regression-based).

• Kriging (Interpolation/Regression-based).

• Evolutionary Design (Regression-based).

In the following paragraphs we will describe each model in detail, while some results

of the application of RSM techniques to some industrial case studies will be reported

in Chap. 8.

4.4.1 Linear Regression

Linear regression is a technique for building and tuning an analytic model ρ(x) as a

linear combination of x’s parameters in order to minimize the prediction residual ε.

We apply regression by taking into account also the interaction between the pa-

rameters and the quadratic behavior with respect to a single parameter. We thus

consider the following general model:

	(x, w = [a, b, c]) = a0 +

n
∑

j=1

ajx
2
j +

n
∑

l=1

n
∑

j=1,j
=l

bj ,kxlxj +

n
∑

j=1

cjxj (4.8)

where xj is the level (numerical representation) associated with the j -th parameter

of the system configuration, while a, b and c are a decomposition of the RSM family

parameters w and n is the number of parameters of the design space.

Least squares analysis can be used to determine a suitable approximation of w. The

least squares technique determines the values of unknown quantities in a statistical

model by minimizing the sum of the squared residuals (the difference between the

approximated and observed values).

A measure of the quality of fit associated with the resulting model is called

coefficient of determination and defined as follows:

R2 =

∑

k (yk − ȳ)2

∑

k (ρk − ȳ)2
. (4.9)

where yk is the k-th observation, ȳ is the average of the observations, and ρk is the

prediction for the yk observation. R2 corresponds to the ratio of variability in a data

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 85

set that is accounted for by the statistical model. Usually, the higher R2 the better is

the quality of fit (with 0 ≤ R2 ≤ 1).

Although adding parameters to the model can improve the R2, there is a risk

of exceeding the actual information content of the data, leading to arbitrariness in

the final model parameters (also called over-fitting). This reduces the capability of

the model to generalize beyond the fitting data, while giving very good results on

training-data. In particular, this phenomenon occurs when the model is excessively

complex in relation to the amount of data available. A model which has been over-fit,

generally has poor predictive performance, as it can exaggerate minor fluctuations

in the training data.

To this purpose, we introduce an ‘adjusted’definition of the R2. This terms adjusts

for the number of explanatory terms in a model; it increases only if the terms of the

model improve it more than expected by chance and will always be less than or equal

to R2; it is defined as:

1 − (1 − R2)
N − 1

N − p
(4.10)

where p is the total number of terms in the linear model (i.e., the set of coefficients

a, b, c), while N is sample set size. Adjusted R2 is particularly useful in the model

selection stage of model building.

Linear regression model selection. In order to understand the optimal number

of terms of the linear model and the corresponding model order, we analyzed the

behavior of the RSM cross-validation error and adjusted R2 by varying the number

of random training samples (derived from the simulations of the target applications).

Equation 4.10 represents an improved measure of the overall quality of fit of the

linear regression: it is inversely proportional to the model’s degrees of freedom (i.e.,

N − p) which, in turn, depend on the order of the chosen polynomial ρ(x). As a

matter of fact, higher degrees of freedom increase the chance of reduced variance

of the model coefficients thus improving model stability while avoiding over-fitting

[9, 10]. In this book, our heuristic model selection tries to maximize the number

of degrees of freedom and, at the same time, to minimize (in the order of 200) the

number of simulations needed to build the model. Thus, as a “rule of thumb”, we

set a maximum number of terms (to increase the chance of good quality of fit) and

eventually, we limit the set of considered models to the following configurations:

1. First order model, without any interaction between parameters.

2. First order model, with interaction between parameters.

3. Second order model, without any interaction between parameters.

4.4.2 Radial Basis Functions

Radial basis functions (RBF) represent a widely used interpolation/approximation

model [13]. The interpolation function is built on a set of training configurations xk

86 G. Palermo et al.

as follows:

	(x, w) =

N
∑

k=1

wk γ (‖x − xk‖) (4.11)

where γ is a scalar distance function, wk are the weights of the RBF and N is

the number of samples in the training set. In this paper, we consider the following

definitions for γ

γ (z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z linear

z2 log z thin plate spline

(1 + z2)
1/2

multiquadric

(1 + z2)
−1/2

inverse multiquadric

e−z2
gaussian

(4.12)

The weights wk are the solution of a matrix equation which is determined by the

training set of configurations xk and the associated observations yk:

⎡

⎢

⎢

⎢

⎣

A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

w1

w2

...

wN

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

y1

y2

...

yN

⎤

⎥

⎥

⎥

⎦

(4.13)

where:

Ajk = γ (‖xj − xk‖), j , k = 1, 2, . . . , N , (4.14)

4.4.3 Splines

Spline-based regression has been recently proposed by Lee and Brooks [7] as a

powerful method for the prediction of power consumption and performance metrics.

A spline RSM is composed of a number of piecewise polynomials σL associated with

each of the parameters xj of the architecture:

	(x, w = [a, b, k]) = a0 +

N
∑

j=1

ajσL(xj , b, k) (4.15)

The piece-wise polynomial σL is divided into L intervals defining multiple different

continuous polynomials with endpoints called knots. The number of knots L can

vary depending on the amount of available data for fitting the function and the

number of levels associated with parameter xj , but more knots generally lead to better

fits. In fact, relatively simple linear splines may be inadequate for complex, highly

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 87

non-linear relationships. In the context of the project, we exploited restricted cubic

splines (RCS) where the expressions associated with σ are third order polynomials.

Restricted cubic splines are such that the first and second order derivative at the knots

is the same for adjacent polynomials while they present a linear behavior on the tails.

As an example, a closed form expression of a RCS with three knots (L = 3) is

the following:

σ3(xj , b, k) = b0,j + b1,jxj + b2,jx
2
j + b3,jx

3
j + b4,j (xj − k1)3

+ b5,j (xj − k2)3 + b6,j (xj − k3)3

where kj are the knot points in the function domain.

To determine the number of knots, we started by considering that five knots or

fewer are generally sufficient for restricted cubic splines. While fewer knots may

be required for small data sets, with a large number of knots increases the risk of

over-fitting the data. In particular, we adopted the following policies for the selection

of the number of knots depending on the number of levels of the j -th parameter xj :

• If the number of levels is greater than 5, L = 5.

• If the number of levels is smaller than 3, L = 0 (the spline is a linear function of

the parameter).

• Otherwise, the number of knots is equal to the number of levels.

4.4.4 Neural Networks

For function approximation purposes, Feed-forward Neural Networks (also known

as Multilayer Perceptrons) are a very efficient and powerful tool. Feed-forward net-

works are organized in successive layers of neurons. The data flow is unidirectional:

the data pass from the first input layer to the last output layer, and are elaborated

incrementally by the intermediate hidden layers.

The model of each single neuron is straightforward:

u =

n
∑

i=1

wi xi + b y = f (u) = f

(

n
∑

i=1

wi xi + b

)

(4.16)

The net input u is a linear combination of the input values xi : the weights wi and the

bias b (or firing threshold) represent the free parameters of the model. The net input

is transformed by means of a transfer function f (or activation function)—that in

general is non linear—giving the neuron’s output y. The behavior and the complexity

of the network are defined by the way its neurons are connected: so in general the

model 	(x) is a complex recursive function that is usually regarded as a black-box,

with no given explicit analytical expression.

It has been shown in [3] that Neural Networks (NN) with one single non-linear

hidden layer and a linear output layer are sufficient for representing any arbitrary (but

88 G. Palermo et al.

sufficiently regular) function. The necessary condition is a sufficiently high number

of neurons in the hidden layer.

NNs learn by example: given a training data set of inputs and a set of targets

as outputs, the network’s weights and biases are adjusted in order to minimize er-

rors in its predictions on the training data. The best known training algorithm is

back-propagation: a very effective approach consists of the Levenberg–Marquardt

algorithm, as outlined in [2].

The initialization of the weights of NN for training is usually set at random small

values. However the Nguyen-Widrow initialization technique greatly reduces the

training time (see [11]).

In this book, we use classical Feed-forward NN with one hidden layer: this layer

has a sigmoid transfer function, while the output layer has a linear transfer function.

Back-propagation training algorithm is used, in particular the Levenberg–Marquardt

algorithm is implemented, with a fixed number of iterations. The Nguyen-Widrow

initialization technique is also implemented. The training data are internally normal-

ized, both in input and in output, in order to exploit the natural range of definition of

transfer functions.

In this context, there is only one free parameter to be set: the number of neurons

in the hidden layer. Automatic network sizing has been implemented, using the value

proposed in [16].

4.4.5 Kriging

Kriging is a very popular regression methodology based on Gaussian Processes [14].

This RSM algorithm can be interpolating or approximating, depending if a noise

parameter is set to zero or to nonzero values.

Kriging is a Bayesian methodology (named after professor Daniel Krige), used as a

main tool for making previsions employed in geostatistics, e.g., for soil permeability,

oil and other minerals extraction, etc. (originally it was developed for predicting

gold concentration at extraction sites). The formalization and dissemination of this

methodology is due to Professor Georges Matheron [8], who indicated the Krige’s

regression technique as krigeage.

The Kriging estimator is a linear estimator, i.e., the estimated value is expressed

as a linear combination of the training values, in other words:

	(x) =

N
∑

k=1

λk(x) yk (4.17)

where the weights λ1, . . . , λN , are obviously point-dependent.

Kriging can also produce an estimate of the error, i.e., a prediction value and an

expected deviation from the prediction.

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 89

The Kriging behavior (smoothness of the model) is controlled by a covariance

function, called the variogram function, which rules how varies the correlation be-

tween the response values in function of the distance between different points. A

function can be rougher or smoother, can exhibit large or small ranges of variation,

can be affected by a certain amount of noise, and all these features can be resumed

in a variogram model.

More precisely, the covariance function Cov(x1, x2) only depends on the distance

between two points:

Cov(x1, x2) = σ − γ (‖x1 − x2‖) (4.18)

where γ (h) is the variogram function, and σ is the sill, i.e., the asymptotic value of

γ .

There are several variogram types that can be employed: Gaussian, Exponen-

tial, Matèrn, Rational Quadratic. Usually Gaussian is the first (default) choice: the

generated metamodel is infinitely differentiable.

Each variogram function is characterized by three different parameters: range,

sill, and noise.

The variogram range of the covariance function corresponds to a characteristic

scale of the problem. If the distance between two points is larger than the range the

corresponding outcomes should not influence each other (completely uncorrelated).

Range is inversely related to the number of oscillations of the function. Small ranges

mean sudden variations, while large ranges mean very regular trends, with very few

oscillations.

The variogram sill corresponds to the overall variability of the function. The gap

between the values of very distant points should be of the same scale of magnitude

of the sill.

Variogram noise can also be tuned to fit the expected standard error in the obser-

vations. Larger amount of noise will result in smoother responses, while zero noise

means exact interpolation.

Parameters determination can be based on previous knowledge on similar prob-

lems, or may be guessed by following two automatic fitting strategies: maximizing

the Likelihood of the model given the training dataset or maximizing the Leave-One-

Out (LOO) Predictive Probability. The Likelihood of the variogram is the probability

that a statistical distribution associated to the variogram parameters could generate

the given dataset. Likelihood is larger for good fitting models, but penalizes un-

necessarily complex models. Maximum likelihood models are the smoothest models

with best agreement to the dataset. The Leave-One-Out Predictive Probability gives a

measure of the goodness of the model also removing one point at a time in the dataset

and estimating the value at the removed site on the basis of the remaining designs.

Models predicting the smallest errors at “difficult” points are rewarded with high

LOO Predictive Probability. Maximum LOO Predictive Probability privileges good

fitting models which do not loose prediction performance by removing some design.

However, computation of the LOO Predictive Probability can be quite intensive,

more than the computation of the Likelihood.

90 G. Palermo et al.

4.4.6 Evolutionary Design

Evolutionary Design (ED) [1] is an effective implementation of Genetic Program-

ming (GP) methodology [6] for symbolic regression.

In general the goal of the regression task is to discover the relationship between

a set of inputs, or independent variables x given an observable output, or dependent

variable y. In standard regression techniques the model functional form 	(x, w) is

known beforehand. The only unknown values are some coefficients w, i.e., the free

parameters of the model.

ED uses low-level primitive functions. These functions can be combined to spec-

ify the full function. Given a set of functions, the overall functional form induced

by genetic programming can take a variety of forms. The primitive functions are

usually standard arithmetical functions such as addition, subtraction, multiplication

and division but could also include trigonometric and transcendental functions. Any

legal combination of functions and variables can be obtained.

Each individual in GP corresponds to a given mathematical expression, and it is

represented by means of a parse tree. For example, the expression

f (x, y) = 2xy − (x + 1)2 (4.19)

is represented by the parse tree depicted in Fig. 4.5.

Symbolic regression is then a composition of input variables, coefficients and

primitive functions such that the error of the function with respect to the expected

output is minimized. Shape and size of the solution is not specified before the regres-

sion. Number of coefficients and their values are issues that are determined in the

search process itself. By the use of such primitive functions, genetic programming

is in principle capable of expressing any functional form that use the primitive func-

tions provided by the user. Unlike the traditional methods, the Evolutionary Design

process automatically optimizes both the functional form and the coefficient values.

ED is capable of providing answers in the symbolic language of mathematics,

while others methods only provide answers in the form of sets of numbers, weights,

valid in the context of a model defined beforehand. So, after the training, the explicit

formula of the regression model is promptly available.

Fig. 4.5 Parse tree
representing the mathematical
expression
f (x, y) = 2xy − (x + 1)2

-

+

x 1

*

+

x 1

*

x y

*

+

1 1

4 Response Surface Modeling for Design Space Exploration of Embedded Systems 91

4.5 General Validation Flow of RSMs

To verify the quality of the predictions generated by a RSM we will compare the

predicted metric values with the actually observed ones to obtain then a quality index

for the model. To do so, we introduce the average normalized error:

η =

∑

i∈�

⎛

⎜

⎜

⎝

∑

x∈�

∣

∣

∣

∣

ρ(x)i − y(x)i

y(x)i

∣

∣

∣

∣

|�|

⎞

⎟

⎟

⎠

|�|
(4.20)

where:

• � is the set of system metrics,

• � is the set containing all the design space points,

• y(x)i is the actual value of the metric i ∈ � for the design space point x ∈ �, and

• ρ(x)i is the estimated value of metric i ∈ � for the design space point x ∈ �.

An appropriate RSM should present a behavior where the greater is the training set

size, the better is the average normalized error. As a matter of fact, we will verify that

the error decreases growing the training set size, and this is done re-running the model

construction with a greater training sets and calculating the average normalized error.

If random processes are involved during the selection of the design space points

used as training set, the prediction results can present variability (especially for

training sets with small size with respect to the design space). To characterize this

effect, the validation methodology will be repeated to identify a set of stable statistical

properties.

4.6 Conclusions

In this chapter, we have introduced a set of statistical and machine learning tech-

niques that can be used to improve the performance and/or accuracy of design space

exploration techniques by predicting system level metrics without resorting to long

simulations. The presented techniques (called Response Surface Models) leverage

a set of closed-form analytical expressions to infer an approximation of the actual

system response by either exploiting regression or interpolation modeling. Results

of the validation of RSM algorithms will be described in Chap. 8.

References

1. Fillon, C.: New strategies for efficient and practical genetic programming. Ph.D. thesis,
Università degli Studi di Trieste (2008)

92 G. Palermo et al.

2. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the marquardt algorithm.
IEEE Trans. on Neural Networks 5(6) (1994)

3. Irie, B., Miyake, S.: Capabilities of three-layered perceptrons. In: Proceedings of the IEEE
International Conference on Neural Networks, pp. I–641 (1998)

4. Joseph, P., Vaswani, K., Thazhuthaveetil, M.: Construction and use of linear regression models
for processor performance analysis. High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on pp. 99– 108 (2006)

5. Keutzer, K., Malik, S., Newton, A.R., Rabaey, J., Sangiovanni-Vincentelli, A.: System level
design: Orthogonolization of concerns and platform-based design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 19(12), 1523–1543 (2000)

6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

7. Lee, B.C., Brooks, D.M.: Accurate and efficient regression modeling for microarchitectural
performance and power prediction. Proceedings of the 12th international conference on Ar-
chitectural support for programming languages and operating systems 40(5), 185–194 (2006).
DOI http://doi.acm.org/10.1145/1168917.1168881

8. Matheron, G.: Les variables régionalisées et leur estimation: une application de la théorie des
fonctions aléatoires aux sciences de la nature. Masson, Paris (1965)

9. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. Wiley
(2006)

10. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley and Sons (2005)
11. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing

initial values of the adaptive weights. In: Proceedings of IJCNN, vol. 3, pp. 21–96 (1990)
12. Perelman, E., Hamerly, G., Biesbrouck, M.V., Sherwood, T., Calder, B.: Using simpoint for

accurate and efficient simulation. In: ACM SIGMETRICS Performance Evaluation Review,
pp. 318–319 (2003)

13. Powell, M.J.D.: The theory of radial basis functions. In: Advances in Numerical Analysis II:
Wavelets, Subdivision, and Radial Basis Functions, W. Light (ed, pp. 105–210. University
Press (1992)

14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press
(2006)

15. Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze, L., Sarangi, S., Sack, P.,
Strauss, K., Montesinos, P.: SESC simulator (2005). Http://sesc.sourceforge.net

16. Rigoni, E., Lovison, A.: Automatic sizing of neural networks for function approximation. In:
SMC2007, pp. 2005–2010 (2007)

17. Santner, T.J., B., W., W., N.: The Design and Analysis of Computer Experiments. Springer-
Verlag (2003)

18. Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: Splash-2 programs: characterization and
methodological considerations. Proceedings of the 22th International Symposium on Computer
Architecture p. 2436 (1995)

Chapter 5

Design Space Exploration Supporting
Run-Time Resource Management

Prabhat Avasare, Chantal Ykman-Couvreur, Geert Vanmeerbeeck,

Giovanni Mariani, Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria

Abstract Running multiple applications optimally in terms of Quality of Service

(e.g. performance and power consumption) on embedded multi-core platforms is

a huge challenge. Moreover, current applications exhibit unpredictable changes of

the environment and workload conditions which makes the task of running them

optimally even more difficult. This dynamic trend in application runs will grow even

more in future applications.

This Chapter presents an automated tool flow which tackles this challenge by a

two-step approach: first at design-time, a Design Space Exploration (DSE) tool is

coupled with a platform simulator(s) to get optimum operating points for the set of

target applications. Secondly, at run-time, a lightweight Run-time Resource Manager

(RRM) leverages the design-time DSE results for deciding an operating configuration

to be loaded at run-time for each application. This decision is performed dynamically,

by taking into consideration available platform resources and the QoS requirements

of the specific use-case. To keep RRM execution and resource overhead at minimum,

a very fast optimisation heuristic is integrated.

Application of this tool-flow on a real-life multimedia use case (described in Chap.

9) will demonstrate a significant speedup in optimisation process while maintaining

desired Quality of Service.

5.1 Introduction

The future of embedded computing is shifting to multi-core designs due to handling

of simultaneous multiple applications and at the same time to boost performance

given the unacceptable power consumption and operating temperature increase of

fast single-core processors. This introduces new big challenges for application and

platform designers. The first challenge is the support for a variety of applications:

P. Avasare (�)

IMEC, Leuven, Belgium

e-mail: avasare@imec.be

C. Silvano (eds.), Multi-objective Design Space Exploration of 93
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_5, © Springer Science+Business Media, LLC 2011

94 P. Avasare et al.

mobile communications, networking, automotive and avionic applications, multi-

media. These applications may run concurrently, start, and stop at any time. There is

lot of dynamism in these applications which makes it challenging to run them opti-

mally. Each application may have multiple configurations, with different constraints

imposed by the external world or the user (deadlines and quality requirements, such

as audio and video quality, output accuracy), different usages of various types of

platform resources (processing elements, memories and communication), and dif-

ferent costs (performance, power consumption, bandwidth). The second challenge

is the platform heterogeneity, happening between platforms and within a platform.

Even for similar platforms, process variation endows them with different perfor-

mance characteristics. Furthermore the resource requirement for each application

may vary over time (by the time applications are put in the market for sell) due to

hardware adaptation to physical constraints (power, temperature, battery life, and

aging). Hence, it is untenable to ask software vendors to adapt or optimize their

applications for each platform. The third challenge is time to market, which makes

software development productivity of paramount importance. Designers are getting

much less time to design their application and platforms whereas the complexity of

the design and mapping is increasing. This can make it hard to perform exhaustive

design space explorations. At the same time, due to the increasing complexity of the

architecture, it is almost impossible for traditional design techniques to identify an

optimal static configuration matching the available architecture resources with the

dynamic requirements (i.e., performance and power consumption).

Given such tough challenges, one can design an embedded system by making

conservative worst-case assumptions, but that will not lead to an efficient design.

Especially in embedded system design, where there are very tight constraints (e.g.

cost of a device), it is not acceptable to have a device with large inefficiency. To

overcome these challenges, we have developed a methodology to enable efficient

running of multiple applications on multi-core platforms. Our approach uses a run-

time manager to control different possible application configurations [39]. Thus,

concerning all the parameters that can be changed at run-time (e.g. the number of

cores used to run an application and their operating frequencies), a run-time manager

layer is built to achieve desirable Quality of Service (QoS) for the applications.

Our run-time manager layer consists of a Run-time Resource Manager (RRM)

with following features:

• It supports a holistic view of the resources. This is needed for global resource

allocation decisions, arbitrating between all applications, and minimizing the

total costs.

• It transparently optimizes the resource usage and the application mapping on the

platform. This is needed to facilitate the application development and mapping

from diverse application domains.

• It dynamically adapts to changing environment. This is needed to enable the

best usage of resources and to achieve a high efficiency under changing environ-

ment and requirements. To that end, dynamic resource allocation and dynamic

reconfiguration of applications must be supported. Also, quality requirements

5 Design Space Exploration Supporting Run-Time Resource Management 95

and resources must be adapted dynamically (e.g. by adjusting the processor clock

frequency, or by switching off some processors) in order to control platform

performance (i.e., the power consumption and the heat dissipation of the platform).

• Such a resource management problem is a Multi-Objective Optimization (MOO)

problem (known as Multi-dimension Multiple-choice Knapsack Problem or

MMKP) falling into a complexity category of NP-Hard problems [11]. Since

our RRM is intended for embedded platforms, it is implemented as a lightweight

heuristic implementation which consumes during its execution as little platform

resources as possible and does not impact heavily execution time of the running

application.

With respect to discussions in this Chapter, run-time manager consists of only RRM.

Hence we have used term run-time manager and RRM interchangeably.

To alleviate run-time decision making (i.e., to reduce computational complex-

ity at run-time) and to avoid conservative worst-case assumptions, our run-time

management methodology consists of two phases:

• First, a design-time Design Space Exploration (DSE) per application derives

a multi-dimensional Pareto set of optimal configurations on a given multi-core

platform. During this phase, optimization and modeling techniques presented in

Chaps. 3 and 4 are adopted.

• Second, a low-complexity Run-time Resource Manager (RRM) is incorporated

on top of the basic services of the platform Operating System (OS) and is acting

as an exception handler at run-time to optimize the usage of resources.

In the first phase, at design time, each configuration is characterized by a code

version together with an optimal combination of constraints, used resources, and

costs. The different code versions refer to different parallelizations of the application

into parallel tasks and data transfers to shared and local memories. To enable the

design-time DSE phase, the methodology presented in this Chapter considers only

applications within a set defined at design-time. System-wide approaches, for re-

source management at coarse grain, considering software applications for which the

platform was not directly designed (as the approach proposed in [4]), are discussed in

Chap. 6.

In the second phase of run-time management presented in this Chapter, whenever

the environment is changing dynamically (e.g. when a new application or use case

starts, or when the user requirements change), RRM reacts as follows:

• It selects a configuration from the Pareto set of each active application, according

to the available resources, in order to minimize the costs, while satisfying the

constraints.

• Second, it reconfigures and maps the application on the platform i.e., it assigns

the platform resources, it adapts the platform parameters, it loads the application

tasks, and it issues the application executions according to the newly selected

configurations.

96 P. Avasare et al.

The remainder of this Chapter is organized as follows. Section 5.2 overviews the

state-of-the-art on RRM for embedded multi-core platforms and details RRM prob-

lem tackled in this Chapter. Section 5.3 formulates the RRM problem. Section 5.4

presents the exploration tool flow to solve this RRM problem. Conclusions are drawn

in Sect. 5.5.

5.2 Run-Time Resource Management in Embedded Systems

This section introduces state-of-the-art techniques on RRM and places our method-

ology in comparison to previous literature.

In the context of Run-time Resource Management (RRM), traditional approaches

can be roughly classified into either pure design-time approaches or pure run-time

approaches. Nevertheless, they suffer from the following drawbacks:

• First, some of them are applicable only for single-core platforms [32], or for

homogeneous multi-core platforms [42], but not for heterogeneous multi-core

platforms.

• Second, none of the existing approaches proposes a complete framework. They

are based only on task scheduling, i.e., on task ordering and assignment. A good

overview of available design-time algorithms can be found in [28]. Some others

are based only on slowing or shutting down the platform resources [5] and on

Dynamic Voltage and Frequency Scaling (DVFS) [9, 14, 19, 27].

• Third, the objective of the majority of these approaches is performance opti-

mization [3, 6, 8, 15, 18], and not together with power consumption optimiza-

tion.

• Finally, design-time approaches involve slow heuristics [27, 29, 30] using Integer

Linear Programming (ILP) and cannot be used at run time. On the other hand, to

reach a lightweight implementation, run-time approaches hide the specification

of the internal application tasks, and they do not fully exploit the task mapping

choices of the target platform. Hence these approaches are sub-optimal.

Hence neither the existing pure design-time approaches nor the existing pure run-time

approaches are efficient to solve this complex RRM problem. To alleviate the run-

time decision making and to avoid worst-case assumptions, new research directions

are ongoing and propose a mixed design-time and run-time approach:

• The Task Concurrency Management (TCM) methodology [34–36], explores the

energy-performance trade-offs at the system level. To reach an efficient usage of

the platform resources, this methodology models the application at a finer granu-

larity than traditional task graphs. It identifies the sub-tasks of the application that

can run in parallel on a heterogeneous multi-processor platform. It also includes

data access and memory management at the task level [20, 39].

• Scenario-based approaches [12, 23], which are based on the concept of application

scenarios identified at design time, operate as follows. First, a profiling-based

analysis of various run-time situations of the application is performed. Then,

5 Design Space Exploration Supporting Run-Time Resource Management 97

these run-time situations are clustered into a few dominant application scenarios

and a backup scenario. At run time, the actual scenario is detected with a simple

detector, and the application is executed with the configuration decided for that

scenario at design time.

• The task scheduling techniques [34, 35] schedule one task at a time, making use

of the entire platform for each task. This leads to inefficient usage of the platform.

The techniques in [31, 37] allow parallel execution of the tasks, while sharing

the platform resources. But they assume that all tasks start at the same time.

This assumption can lead to idle platform processors until the next RRM call.

These techniques are extended in [24], which allows overlapped sharing of the

platform resources. The latter technique considers the start time and the periodic

information present in applications such as frame processing in video decoding,

or packet processing in wireless applications.

• RRM for multi-core embedded platforms [16, 17] also exploits the number of

available cores, in addition to voltage and frequency. Different parallelized ver-

sions of a single application are used to trade-off the available platform resources

with the performance and the power consumption.

• The addition of the parallelism to the set of platform parameters significantly

increases the design space of operating modes. Innovative and efficient techniques

for RRM are needed to extend the traditional approaches for power consumption

optimization. Recent studies in this field address the problem by modeling it as

a Multi-dimension Multiple-choice Knapsack Problem (MMKP) and solving it

through dedicated heuristics [31, 37]. Another approach [22] proposes a run-

time management technique for task-level parallelism in order to optimize the

performance under a power consumption budget.

• Advanced technologies such as sub-45 nm CMOS and 3D integration are known

for the increased number of reliability failure mechanisms. Nevertheless, classi-

cal reliability-aware approaches are no longer viable, since they propose ad-hoc

failure or worst-case solutions, which incur a significant cost penalty. In [26],

the state-of-the-art in reliability management techniques is summarized, and a

new proactive energy management approach is proposed, which handles both

temperature and lifetime at run time.

To allow integration and collaboration of all these complementary techniques, a RRM

framework has been developed in [40], with the most relevant generic services.

This Chapter describes a tool flow (shown in Fig. 5.1), combining a design-time

exploration with a lightweight run-time manager for embedded multi-core platforms

[21]. The run-time manager leverages a set of pre-determined run-time configu-

rations (or operating points) identified at design-time (see Fig. 5.1) by analyzing

and exploring the architecture run-time parameters impact on the QoS through

an architecture simulator. The operating points consist of information/knowledge

about parameters (e.g. the power consumption, the throughput) that designers wish

to optimize and resource usage associated with each configuration of the run-time

parameters of the hardware/software infrastructure. The overall goal of the run-time

manager is to make a reasonable assignment of the run-time parameters to optimize

98 P. Avasare et al.

Fig. 5.1 Exploration
tool-flow for Run-time
Resource Management

Application designer

At run time

At design time

Design-time

design space

exploration

Application

configurations

Run-time Resource

Manager

(RRM)

MP-SoC

platform

simulator

desired output parameters (in our case execution time and power consumption)

while meeting output constraints (in our case throughput QoS).

For each application, a multi-dimension Pareto set of optimal configurations is

identified at design time, by analyzing and exploring several parallelizations and im-

pacts on the constraints, the platform resource usage, and the costs. This is automated

through a Design Space Exploration tool coupled with a platform simulator(s):

• The used design space explorers can be: either modeFRONTIER commercially

available, or Multicube Explorer [41] (being open-source, and being the target

of this Chapter). Typically in design space exploration for multi-core systems,

the number of possible application configurations can be huge. Hence these ex-

ploration tools with sophisticated analytical and modeling techniques are needed

within the embedded system design cycle. And as previously mentioned, they

also allow alleviating the run-time decision making.

• As pointed in [13], platform simulations can be done at many abstraction lev-

els: e.g. functional-level simulation, timed simulation, cycle-accurate simulation.

But the key problem is the following one: the more accurate the simulator, the

more time it takes to perform a simulation. Hence from the Design-Space Ex-

ploration point of view, which needs a large number of simulations, there is an

important trade-off between the result accuracy and the simulation time. In this

Chapter, used platform simulators are available at two abstraction levels [1]. In

our approach, we combine two simulators during the DSE as follows: first, an

extensive DSE is performed using the fast high-level timed and functional sim-

ulator HLSim [2] and derives a large set of optimal application configurations,

including execution time and power consumption estimations reported by HLSim;

then, only the interesting configurations are first verified and then explored further

using the more accurate simulator. TLMsim is a SystemC-based cycle-accurate

Transaction-Level Model (TLM) [7], built using the Synopsys virtual platform

prototyping tools [33]. This simulator consumes more time, but it reports more

accurate estimations. Recently, simulations based on a cycle-accurate TLM have

gained importance due to standardization efforts.

5 Design Space Exploration Supporting Run-Time Resource Management 99

In this Chapter we target both the number of cores and their frequency as a run-time

configurable parameter of an application. We thus assume that:

• The task-level parallelism of each application running on the system can be

changed through code versioning.

• The frequency associated with each core can be changed (or scaled) dynamically.

The overall goal of RRM is to make a reasonable assignment of the run-time pa-

rameters to reach pre-determined operating goals. Operating goals can be just one

(e.g. execution time) or multiple (e.g. power consumption, throughput QoS), as in

our case. In our tool flow, the RRM is incorporated on top of the basic services of

the platform OS and acts as an exception handler. Its implementation conforms to

the framework proposed in [40]. Its optimization strategy to globally select optimal

configurations for the active applications extends the fast MMKP heuristic for multi-

core run-time management [37]. In case of soft real-time applications, and when the

optimization strategy can find no solution, RRM also takes the application priori-

ties into account to relax the constraints and to reach a solution after all [21]. Also

to reduce execution overhead of the run-time selection heuristic, our methodology

performs initial filtering of optimal run-time parameter configurations. This allows

further alleviating the run-time selection heuristic.

5.3 Run-time Resource Management Problem Definition

As described above, the goal of the proposed methodology (Fig. 5.1) for our

case is to achieve, at deployment time, a desired QoS while minimizing power

consumption and maximizing the usage of multiple cores. Before describing our

methodology (Sect. 5.4), we formally define RRM problem. This section first de-

scribes terminologies used in this Chapter and then formally describes the RRM

problem.

5.3.1 Terminologies

In this Chapter we will assume that there are p active applications; we identify

each application with an identifier α ∈ A = {α1 . . . αp}. During its lifetime, each

application can be described as having a specific operating point which consists of

its actual cost, used resources and achieved QoS. A list of suitable operating points

is essential for the correct behavior of the run-time manager since it represents both

the goals to be optimized (cost, QoS and resources) as well as the independent

control parameters (the resources and their associated properties) with which the

optimization goal can be achieved.

100 P. Avasare et al.

More formally, for our optimisation problem, we can define the operating point

of application α with the following tuple:

cα = 〈ρ, φ, π , τ 〉 (5.1)

where:

• ρ is a scalar representing the resources associated with the operating point cα .

We assume that there exists an application binary version which has been paral-

lelized over ρ cores. In our case, ρ ∈ R = {1 . . . ρmax}, where ρmax = maximum

number of available cores. Given the features of the interconnection bus, we

assume homogeneity among the cores and a fixed mapping for each of the threads.

• φ corresponds to the frequency configuration for each of the ρ cores:

〈φ1 . . . φρ〉, φi ∈ 	 ∧ 1 ≤ i ≤ ρ.

• π is the actual cost associated with the current operating point cα . Here, we

consider the cost as the average power consumption of application α.

• τ is the average execution time needed by α for a single period1 of an application

(e.g. encoding a single frame in a multi-media application) when on the current

operating point cα .

In the following sections, we will use the notation cα[X] to access the element X of

the tuple defined in Eq. 5.1.

5.3.2 RRM Problem

We assume that for each application α, there is an available set of operating points

Cα whose size is Nα . The run-time manager has to select exactly one point from each

active set Cα , according to the available platform resources, in order to minimize the

total power consumption of the platform, while respecting all application deadlines.

Given a set of required application deadlines τα
max , our problem definition is to

identify, at run-time, a comprehensive set of operating points:

γ = 〈cα1 . . . cαp
〉, cαj

∈ Cαj
∧ 1 ≤ j ≤ p (5.2)

such that the following measure of power consumption is minimized:

∑

α∈A

cα[π] (5.3)

1 Note that in domains of multi-media and wireless applications, usually the applications are periodic

i.e., they do same task again and again but on different input data e.g. processing video frames or

wireless packets

5 Design Space Exploration Supporting Run-Time Resource Management 101

subject to the following QoS and resource constraints:

cα[τ] ≤ τα
max , ∀α ∈ A (5.4)

∑

α∈A

cα[ρ] ≤ ρmax (5.5)

where ρmax is the maximum number of resources (or cores) in the system, p is

number of active applications and A is a set of all active applications.

According to [38], the previous problem is a Multi-dimension Multiple-choice

Knapsack Problem (MMKP) whose complexity resides in the NP-hard space with

respect to p, Nα and ρmax . Moreover, depending on how tight τ α
max constraints have

been set, there may not be feasible solutions γ . However, in our case of embedded

systems for multi-media domain, usually applications do not have hard real-time

constraints. Instead, we address the design of a soft real-time system in which

deadlines can be missed with the lowest penalty possible and/or the lowest proba-

bility. We manage this possibility by introducing a priority ω(α) measure to be used

by the run-time manager to relax some τ α
max and reach a feasible solution.

In the following section we describe our proposed toolflow which consists of two

parts: one design-time analysis and other run-time heuristic.

5.4 Proposed Tool-Flow for RRM

This section describes our proposed tool-flow to solve Run-time Resource Manage-

ment (RRM) problem described above. Application of this tool-flow on a real-life

multimedia use case is described in Chap. 9. Our tool-flow solves RRM problem in

two steps:

1. A design-time heuristic methodology for reducing the average size Nα for each

α.

2. A run-time management layer consisting of a filtering algorithm for each Cα

and a greedy, prioritized heuristic for solving the MMKP.

5.4.1 Design-Time Heuristic Methodology

Our design-time methodology is shown in Fig. 5.1. At design time, we identify an

ordered list Cα of operating points:

Cα = 〈c1
α . . . cNα

α 〉 (5.6)

Cα is generated at design-time by analyzing and exploring the impact of the architec-

ture run-time parameters on the QoS through an architecture simulator(s). Optimal

Cα is derived from these design-time analysis by help of sophisticated optimization

102 P. Avasare et al.

Fig. 5.2 Design-time methodology for identifying the initial Cα , for each application α

and modeling techniques (see Chaps. 3 and 4) supported by DSE tool. The following

algorithm describes sequence of steps taken during our design-time methodology.

Algorithm in Fig. 5.2 shows the structure of adopted design-time methodology.

The algorithm mainly performs the minimization of the execution time and power

consumption for each application version (i.e., for each application α and each

available version of α which is parallelized over ρ resources).

Once all results are collected, these are sorted for obtaining a further speedup at

run-time. A more detailed step-by-step description follows:

• Steps 1, 2 and 3: The algorithm loops over the set of available applications A (Step

1) and the set of resources R (Step 2) by solving a multi-objective minimization

problem with respect to both Pα,ρ(φ) and Tα,ρ(φ) (Step 3). In our case, Pα,ρ(φ)

and Tα,ρ(φ) are, respectively, the average power consumption and the execution

time delay returned by the architectural simulator for a frequency configuration

vector φ. Note that the independent variable to be optimized is φ since ρ is set as

a constraint in the loop (Step 2).

Since the size of the design space increases rapidly with ρ, while for ρ ≤ 3 a

full search exploration is performed, for ρ ≥ 4 the problem is solved by using

the NSGA-II multi-objective genetic algorithm [10]. The genetic algorithm is run

with a population size |	| × ρ for 50 generations. The set 	p contains all the

Pareto configurations associated with the solution of the problem.

• Steps 5 and 6: The set 	p is used to construct the operating points and insert them

into the associated Cα .

• Step 10: It prunes Cα from all the configurations that do not represent an efficient

trade-off in terms of resources, energy and execution time.

• Step 11: It sorts the resulting Cα to improve the performance of the run-time

algorithm while finding an operating point with a lower resource usage while

achieving τα
max .

The proposed heuristic methodology is able to save a considerable number of simula-

tions. The exact amount of simulation time saving depends on the specific application

scenario as well as from the selected optimization algorithm used for solving the

5 Design Space Exploration Supporting Run-Time Resource Management 103

MOO problem in the Step 3. In particular, for the multimedia scenario proposed

in Chap. 9 the design-time DSE flow is able to solve the optimization problem

simulating less than the 1% of the overall run-time candidate configurations.

5.4.2 The Run-Time Management Methodology

We assume that a series of events change the application deadlines τ α
max and trigger

the RRM to identify a new cα for every active application α. The RRM layer is

invoked as an exception handler within the OS layer and elaborates the following

input information:

• Optimal application configurations Cα , for each α as determined by the design-

time methodology. This information is stored within the OS layer once at the

startup so there is no execution time overhead.

• QoS requirements τα
max for each α. In our case related to multi-media applications,

this is set to average time-per-frame.

• A priority ω(α) function which ranks each α (low ω(α) corresponds to low

priority).

We define, for each application α, the following input tuple:

ξα = 〈Cα , τα
max , ω(α)〉 (5.7)

The output of the run-time algorithm is a set of working operating points (γ) achiev-

ing QoS (cα[τ] ≤ τα
max) while meeting overall constraints: in our case resource

(
∑

α cα[ρ] ≤ ρmax) and power consumption (
∑

α cα[π]). The operating points are

then set by loading an appropriate application binary version (if the number of re-

sources was varied) or modifying the frequency of each core as dictated by the

frequency vector cα[φ].

The overall run-time management algorithm is shown in Fig. 5.3. Mainly the

algorithm starts trying to find a solution which satisfies all run-time QoS constraints

and then, if no solutions have been found, it iteratively relax the QoS constraint of

the lowest priority application until a feasible solution is identified. In particular the

algorithm consists of the following steps:

Fig. 5.3 Priority based
QoS-aware run-time
management

104 P. Avasare et al.

• Step 1: The algorithm invokes an allocate function which solves the actual MMKP

problem with the given constraints to produce a solution γ .

• Step 2 and 3: The invocation is performed iteratively until γ satisfies the given

constraints on the resources or all the application constraints have been relaxed

(
 = A).

• Steps 4, 5 and 6: Whenever the solution is unfeasible in terms of overall resources,

the deadline τ α
max of the lowest priority application α is relaxed (Step 6) reducing

it to the minimum possible among a reduced set of resources ρα .

• Step 7: allocate() algorithm is invoked.

• Step 8: The selected α is then put into a relaxed application set
.

The allocate function (see Fig. 5.4) actually solves the MMKP problem with a

light-weight algorithm as presented in [38].

• Step 2: Cα is pruned in order to have a single φ assignment for each ρ. This is

done by selecting only those configurations which meet τmax but have the lowest

power consumption for a unique ρ. The resulting set of operating points is put

in χα and actually reduces the amount of data to be elaborated by the MMKP

solver considerably. Note that the pre-filtering Step 2 has a linear complexity with

respect to the cardinality of Cα due to the sorting performed in Fig. 5.2, Step 11.

• Step 4: A unified knapsack vector � is created; this is a vector of c sorted by

prioritizing the improvement per single resource (normalized user value) u(cα):

u(cα) =
v(cα)

cα[ρ]
, v(cα) = max

∀c∈χα

c[π] − cα[π] (5.8)

In other words, v(cα) is the improvement in terms of power consumption with

respect to the maximum power consuming operating point in χα . u(cα) is v(cα)

per unitary resource.

• Step 5:A greedy linear-scan algorithm [38] is invoked on� for identifying the final

set of operating points γ . Given the sorting performed previously, the algorithm

has a worst case complexity of O(pN log(pN)), where N is the average size of

the operating point set per application.

It can be shown that the total worst-case complexity of our RRM scheme is

O(pNmax +pN log(pN)), where p is number of active applications, N is a set of all

active applications and Nmax is maximum number of configurations. This reduction

in complexity is achieved due to the adequate filtering and sorting done before the

greedy algorithm solving the knapsack problem. Running such an algorithm on a

Fig. 5.4 Allocate function

5 Design Space Exploration Supporting Run-Time Resource Management 105

host processor will not cause too much overhead in terms of resources and execution

time (Chap. 9).

5.5 Conclusions

In this Chapter, we presented an automated tool flow which tackles Run-time

Resource Management challenge for multi-core embedded systems by efficiently

combining a design space exploration tool coupled with platform simulator(s). This

tool flow consisted of two steps: first a design-time heuristic methodology was

described which reduces number of configurations that an application can be run

optimally. This first design-time phase leverages optimization algorithms described

in Chap. 3 for minimizing the amount of simulations to be performed. Second step

is a light-weight run-time manager which selects an optimal configuration for each

running application depending on demanded QoS requirement. Hence, at run-time,

run-time manager leverages the design-time DSE results for deciding an operating

configuration to be loaded for each application. This operation is performed dynam-

ically, by following the QoS requirements of the specific use-case. Application of

this tool-flow on a real-life multimedia use case is described in Chap. 9 while other

frameworks operating at the Operating System (OS) level are presented in Chap. 6.

References

1. Avasare, P., Vanmeerbeeck, G., Kavka, C., Mariani, G.: Practical approach for design space
explorations using simulators at multiple abstraction levels. In: DesignAutomation Conference
(DAC) Users’ Track (2010)

2. Baert, R., Brockmeyer, E., Wuytack, S., Ashby, T.: Exploring parallelizations of application
for mpsoc platforms using mpa. In: Proceedings of IEEE Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1148–1153. France (2009)

3. Baker, T.P.: An analysis of edf schedulability on a multiprocessor. IEEE Transactions on
Parallel and Distributed Systems 16, 760–768 (2005)

4. Ballesi, P., Fornaciari, W., Siorpaes, D.: A hierarchical distributed control for power and per-
formances optimization of embedded systems. In: Conference on Architecture of Computing
Systems (ARCS), pp. 37–48. Hannover (2010)

5. Benini, L., Bogliolo, R., De Micheli, G.: A survey of design techniques for system-level
dynamic power management. IEEE Transactions on VLSI Systems 8, 299–316 (2000)

6. Buchard, A.: Assigning real-time tasks to homogeneous multiprocessor systems. Technical
Report, University of Virginia (1994)

7. Cai, L., Gajski, D.: Transaction level modeling: an overview. In: Proceedings of CODES+ISSS
(2003)

8. Chan, H.L.: Non-migratory online deadline scheduling on multiprocessors. In: Proceedings
of SODA, pp. 970–979 (2004)

9. Chen, J.J., Yang, C.Y., Kuo, T.W., Shih, C.: Energy-efficient real-time task scheduling in
multiprocessor dvs systems. In: Design Automation Conference, 2007. ASP-DAC ’07. Asia
and South Pacific, pp. 342–349 (2007)

106 P. Avasare et al.

10. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast and Elitist Multi-Objective Genetic
Algorithm: NSGA-II. Proceedings of the Parallel Problem Solving from Nature VI Conference
pp. 849–858 (2000). URL citeseer.ist.psu.edu/article/deb00fast.html

11. Garey, M.R., Johnson, D.S.: Computers and Intractability : A Guide to the Theory of NP-
Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman (1979)

12. Gheorghita, S., Palkovic, M., Hamers, J., Vandecappelle, A., Mamagkakis, S., Basten, T.,
Eeckhout, L.: System-scenario-based design of dynamic embedded systems. ACM Trans. on
Design Automation of Electronic Systems 14, 1–45 (2009)

13. Gries, M.: Methods of evaluating and covering the design space during early design
development. Integration, the VLSI journal 38(2), 131–183 (2004)

14. Isci, C., Buyuktosunoglu, A., Cher, C., Bose, P., Martonosi, M.: An analysis of efficient multi-
core global power management policies: Maximizing performance for a given power budget.
In: Proceedings of the 39thAnnual IEEE/ACM International Symposium on Microarchitecture,
pp. 347–358 (2006)

15. Lauzac, s.: Comparison of global and partitioning schemes for scheduling rate monotonic tasks
on a multiprocessor. In: Proceedings of EUROMICRO, pp. 188–195 (1998)

16. Li, J., Marinez, J.: Power-performance implications of thread-level parallelism on chip multi-
processors. In: Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software, pp. 124–134 (2005)

17. Li, J., Marinez, J.: Dynamic power-performance adaptation of parallel computation on chip
multiprocessors. In: Proceedings of the International Symposium on High-Performance
Computer Architecture, pp. 77–87 (2006)

18. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20(1), 46–61 (1973)

19. Luo, J., Jha, N.K.: Static and dynamic variable voltage scheduling algorithms for real-time
heterogeneous distributed embedded systems. In: Proceedings of IEEEASP DAC, pp. 719–726
(2002)

20. Marchal, P., Jayapala, M., Souza, S., Yang, P., Catthoor, F., Deconinck, G.: Matador: an
exploration environment for system design. Journal of Circuits, Systems, and Computers
11(5), 503–535 (2002)

21. Mariani, G., Avasare, P., Vanmeerbeeck, G., Ykman-Couvreur, C., Palermo, G., Silvano,
C., Zaccaria, V.: An industrial design space exploration framework for supporting run-time
resource management on multi-core systems. In: DATE 2010 - International Conference on
Design, Automation and Test in Europe., pp. 196 –201. Dresden, Germany (2010)

22. Mariani, G., Palermo, G., Silvano, C., Zaccaria, V.: A design space exploration methodology
supporting run-time resource management for multi-processor systems-on-chip. In: Proceed-
ings of the IEEE Symposium on Application Specific Processors, pp. 21–28. San Fransisco,
USA (2009)

23. Miniskar, N., Hammari, E., Munaga, S., Mamagkakis, S., Kjeldsberg, P., Catthoor, F.: Scenario
based mapping of dynamic applications on mpsoc : A 3d graphics case study. In: Proceedings
of SAMOS Workshop, pp. 48–57 (2009)

24. Miniskar, N., Munaga, S., Wuyts, R., Catthoor, F.: Pareto based run-time manager for
overlapped resource sharing. In: Proceedings of the ECES Workshop. Belgium (2009)

25. modeFRONTIER DSE tool, http://www.esteco.com
26. Munaga, S., Catthoor, F.: Proactive reliability-aware energy management in hard real-time

systems - a motivational case study. In: Proceedings of the Workshop on Design for Reliability,
pp. 195–200. Cyprus (2009)

27. Prasanna, V.K.,Yu,Y.: Power-aware resource allocation for independent tasks in heterogeneous
real-time systems. In: Parallel and Distributed Systems, 2002. Proceedings. Ninth International
Conference on, pp. 341–348 (2002)

28. Ramamritham, K., Fohler, G., Adan, J.M.: Issues in the static allocation and scheduling of
complex periodic tasks. IEEE Real-Time Systems Newsletter 9, 11–16 (1993)

29. Schmitz, M., Al Hasimi, B., Eles, P.: Energy-efficient mapping and scheduling for dvs enabled
distributed embedded systems. In: Proceedings of IEEE Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 514–521 (2002)

5 Design Space Exploration Supporting Run-Time Resource Management 107

30. Shin, D., Kim, J.: Power-aware scheduling of conditional task graphs in real-time multipro-
cessor systems. In: Proceedings of ACM International Symposium on Low Power Electronics
and Design, pp. 408–413 (2003)

31. Shojaei, H., Ghamarian, A., Basten, T., Geilen, M., Stuijk, S., Hoes, R.: A parameter-
ized compositional multi-dimensional multiple-choice knapsack heuristic for cmp run-time
management. In: Design Automation Conference (DAC), pp. 917–922 (2009)

32. Sinha, A., Chandrakasan, A.: Jouletrack - a web based tool for software energy profiling. In:
Design Automation Conference (DAC), pp. 220–225 (2001)

33. Synopsys virtual platform prototyping tools. http://www.synopsys.com
34. Yang, P., Marchal, P., Wong, C., Himpe, S., Catthoor, F., David, P., Vounckx, J., Lauwereins,

R.: Multiprocessor Systems-on-Chip: Cost-Efficient Mapping of Dynamic Concurrent Tasks
in Embedded Real-Time Multimedia Systems, Eds W. Wolf and A. Jerraya. Morgan-Kaufman
(2004)

35. Yang, P., Wong, C., Marchal, P., Catthoor, F., Desmet, D., Verkest, D., Lauwereins, R.:
Energy-aware runtime scheduling for embedded multiprocessor socs. IEEE Design and Test
of Computers 18(5), 46–58 (2001)

36. Ykman-Couvreur, C., Catthoor, F., Vounckx, J., Folens, A., Louagie, F.: Energy-aware task
scheduling applied to a real-time multimedia application on an xscale board. Journal of Low
Power Electronics 1(3), 226–237 (2005)

37. Ykman-Couvreur, C., Nollet, V., Catthoor, F., Corporaal, H.: Fast multi-dimension multi-
choice knapsack heuristic for mp-soc run-time management. In: Proceedings of the
International Symposium on System-on-Chip, pp. 195–198. Tampere, Finland (2006)

38. Ykman-Couvreur, C., Nollet, V., Catthoor, F., Corporaal, H.: Fast multi-dimension multi-
choice knapsack heuristic for MP-SoC run-time management. In: Proceedings of International
Symposium on System-on-Chip, pp. 1–4 (2006).

39. Ykman-Couvreur, C., Nollet, V., Marescaux, T., Brockmeyer, E., Catthoor, F., Corporaal, H.:
Design-time application mapping and platform exploration for mp-soc customized run-time
management. IET Computers and Digital Techniques 1(2), 120–128 (2007)

40. Ykman-Couvreur, C., Obermaisser, R., El Salloum, C., Goedecke, M., Zafalon, R., Benini,
L.: Resource management for embedded multi-core platforms. In: Proceedings of DATE
Workshop on Designing for Embedded Parallel Computing Platforms. France (2009)

41. Zaccaria, V., Palermo, G., Mariani, G.: Multicube explorer (2008). http://www.multicube.eu
42. Zhang, Y., Hu, X., Chen, D.: Task scheduling and voltage selection for energy minimization.

In: Design Automation Conference (DAC), pp. 183–188 (2002)

Chapter 6

Run-Time Resource Management at the
Operating System Level

Patrick Bellasi, Simone Corbetta, and William Fornaciari

Abstract Current hardware platforms provide the applications with an extended

set of physical resources, as well as a well defined set of power and performance

optimization mechanisms (i.e., hardware control knobs). The software stack, mean-

while, is responsible of taking direct advantage of these resources, in order to

meet application functional and non-functional requirements. The support from the

Operating System (OS) is of utmost importance, since it gives opportunity to optimize

the system as a whole.

Purpose of this chapter is to introduce the reader to the challenge of manag-

ing physical and logical resources in complex multi- and many-core architectures,

focusing on emerging MPSoC platforms.

6.1 Introduction

Modern applications are of a wide variety, and they all have different requirements in

terms of hardware and software resources, performance goals, power and energy con-

straints. What we are experiencing in today’s electronics is a continuous convergence

of different application classes into the same environment: life-critical, real-time,

mobile and general processor power are converging to the same System-on-Chip

(refer to Fig. 6.1).

The increasing demand for applications and scenarios translates into an increasing

demand for processing power and integration, as it can be seen from Fig. 6.2. This

adds several challenges to the design of such applications. In addition, to cope with

design and implementation costs, a suitable design methodology should contemplate

the re-use of part of the subsystems. In this context, the Resource Manager (RM)

should be able to operate on slightly different applications, with different resources

and with as little as possible porting efforts.

P. Bellasi (�)

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

e-mail: bellasi@elet.polimi.it

C. Silvano (eds.), Multi-objective Design Space Exploration of 109
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_6, © Springer Science+Business Media, LLC 2011

110 P. Bellasi et al.

Mobile
Processing power

Life-critical

Multimedia

Fig. 6.1 Different applications scenarios are converging to the same SoC design paradigm

50

45

40

35

30

25

20

15

10

5

L
o

g
ic

,
M

e
m

o
ry

 S
iz

e
 (

N
o

rm
a

liz
e

d
 t

o
 2

0
0

7
)

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

2022202120202019201820172016201520142013201220112010200920082007

(Right Y Axis)
Number of Processing Engines Total Memory Size

(Normalized to 2007, Left Y Axis)
Total Logic Size
(Normalized to 2007,Left Y Axis)

126

1435

212

348

79584432

101
161

268

424

526

669

878

1023

#
 o

f
P

ro
c
e

s
s
in

g
 E

n
g

in
e

s

y

General Purpose

Core Host

Fig. 6.2 Increasing computing power density brings to ever more complex architectures with an
increasing count of per-chip functionality and resulting in more complex applications. The chart
represents the Processing Elements (PE) density per technology year [8]

6 Run-Time Resource Management at the Operating System Level 111

Large data centers, and

data intensive

Smartphones, and

mobile multimedia

General purpose, and

multimedia

Reliability, and

battery−supplied

Wireless Sensor Networks

High performance Low power

Low energy

Fig. 6.3 Application domains are mapped to their respective design requirements. According to the
required power/performance ratio, we can detect several application domains, in both the mobile
and non-mobile case

Without any loss in generality, we can point out two main broad classes: high

performance and low power. High performance encloses all applications for which

high operating frequency and high throughput are experienced, while low-power

applications are those for which energy budgeting is of major importance. Notice

that speaking of “power” or “energy” is not the same, and the use of one or other

term relies on the target application scenario. Refer to Sect. 6.4 for a more detailed

discussion on this distinction. In conjunction, technology and design advances lead to

a proliferation of mobile embedded systems, for which several additional challenges

raise up. The combination of the aforementioned requirements and the application

platforms (i.e., mobile against non-mobile), gives us free room for a simple yet

comprehensive classification of the interested scenarios in the MPSoC domain. This

fact is graphically shown in Fig. 6.3.

Five slightly different domains have been detected. General high-performance ap-

plications comprise both mobile and non-mobile domains. In the non-mobile case,

for instance, we can find desktop personal computers, where the user experience

from the performance view-point is of utmost importance; along with those require-

ments, such applications are mainly general purpose, meaning that they are designed

for a wide spectrum of jobs, without precise optimization of power or energy as-

pects. Nevertheless, it is true that there exist cases in which high performance and

low power are a common goal, as in systems collecting sensible data, such as large

data centers; in this case the peak power has to be minimized, in order to reduce

cooling costs, increase system reliability, and decrease device failure rate. General

low-power operations are required by almost all mobile embedded systems, but dif-

ferent approaches should be taken while considering high performance and energy

112 P. Bellasi et al.

savings domains. Mobile multimedia devices (e.g. Smartphones) fall in this cate-

gory. The effective trade-off between very high performance, for instance to ensure

audio and video capabilities, and ultra low-power operation is a challenging task.

Last, applications for which energy savings are of primarily relevance but in which

performance can be lower than in any other case exist: wireless nodes in a Wireless

Sensor Network belong to this set.

The remainder of the chapter is organized as follows: Section 6.2 gives an insight

of the problem of managing resources at run-time, while discussion on the support

from the OS is given in Sect. 6.3. A more detailed review of the existing Power

Management (PM) frameworks based on the Linux kernel is presented in Sect. 6.4.

Conclusions are given in Sect. 6.6.

6.2 Run-Time Resource Management (RTRM)

So far we have seen how modern MPSoC architectures provide an exceptional flex-

ibility, with a huge set of physical and logical resources. The presence of multiple

applications that can be potentially integrated within the same chip makes the prob-

lem of managing such resources a challenging problem. By “Run-Time Resource

Management” (briefly, RTRM) we hereby mean the set of processes, techniques,

methodologies and instruments that allow to use the available resources, provided

an objective function. Generally speaking, resource utilization is subject to specific

objectives and constraints, depending on both the effective hardware implementa-

tion and the considered application. One of the objectives of the Resource Manager

is thus to ensure that all such constraints and requirements are met, while satisfy-

ing the Quality-of-Service (QoS). A RTRM will perform this action dynamically,

because there will be no chance to know which will be the applications (and, as a

consequence, the requested resources) a priori.

Purpose of this section is to introduce in a more formal way the concepts related

to the problem of managing the resources, the run-time component and the role of

the Run-Time Manager.

6.2.1 Problem Overview

The concept of resource is at the same time enough general to hide some details

on its real nature (e.g., physical or logical implementation) and enough detailed

to allow us to employ it in a constrained optimization problem. Thus, a generic

resource can either refer to a processor, a memory subsystem in a memory hierarchy

or it can also refer to the computation time fraction assigned to a task. Either ways,

each resource has a precise meaning within its own context. The set of available

resources in a system can be defined as the set R = {r1, r2, ..., rN } of all those N

resources we have access to. Each resource rj in R can be of any kind, and we

6 Run-Time Resource Management at the Operating System Level 113

can further assume that there exist several types, that are clearly dependent on the

context. C = {c1, c2, ..., cM} is the set of M types (or classes) of resources. A static

mapping from the resources to the corresponding classes exist, and it can be meant

as being (quasi) independent on the target application. Such mapping M ⊆ R × C

is defined by an ad-hoc function map(ri , cj), taking as inputs a generic resource

ri ∈ R and a generic class cj ∈ C. At any instant of time, only a subset AR ⊂ R

of the resources is available, representing the resources that are not in use by any

other task in the system. Complementary, the set BR = ARc keeps track of the

used (busy) resources. Considering the set T = {t1, t2, ..., tP } of P tasks in the

system, there will exist a mapping from the system resources to the tasks: U =
{

u ∈ R × T and u = uses
(

ri , cj

)

, with ri ∈ R, cj ∈ C
}

. The obvious relation

U ⊥ R = BR holds, where the ⊥ operator is the projection operator, returning the

set of resources from a collection of pair-like sets.

The choice U of how to map resources to tasks, i.e. the implementation of the

uses function depends upon a specific objective function. Such objective function

gives priorities to specific resources for requesting tasks, and such priority changes

according to the objective function. Generally, the objective function can be mod-

eled through a set of metrics: performance, memory throughput, execution latency,

power consumption, and so on. Thus, roughly speaking, the role of the Resource

Manager is to fill in the set U with the appropriate entries, according to the current

implementation of the uses function. Such implementation can change at run-time,

for instance due to changing workloads or application requirements. Hence, there is a

need for a Run-Time Resource Manager component, that can cope with the changing

application scenario, resources availability and requirements.

6.2.2 Resource Manager Overview

Not every RTRM is suitable for each application/platform configuration. Several

differences are experienced passing from one application to one other, and so the

mapping would change. For this reason, a minimal set of requirements has to be

guaranteed from the RTRM view-point. The following presents a subset of such

requirements;

1. Flexibility, RTRM should be able to work with the expected specifications under

different scenarios. Flexibility ensures the reuse of the overall methodology, im-

pacting positively on the design and implementation costs of the entire project.

In addition, flexibility leads multiple applications to efficiently use the resources,

without incurring in unwanted overheads;

2. Scalability, RTRM should work well for an increasing number of cores and, in

general, of active resources. This is dictated by the growing and broad convergence

toward multi- and many-core architectures. Scalability is hereby intended from

two view-points: performance (latency, overhead) and energy efficiency (it should

not consume more power than required, otherwise benefits will be outperformed);

114 P. Bellasi et al.

3. System-wideness, decisions made by the manager should not interfere with other

decisions previously taken, i.e. assigning specific resources to a newly incoming

task should not impact negatively on the already running tasks. In order to ensure

this requirement, the RM should have system-wide perspective of what’s going

on in the system at any instant of time.

The previous list shows which are the main requirements for a Resource Manager to

be suitable for the job. The effective implementation of the RM depends on several

requirements related to the hardware and software architectures. Before giving an

overview of the main components defining the manager, we define which are the

classes of resource managers that can be found. This is just an adoption of the

work done in [16]. The various classes of resource management can be identified

according to the following metrics: static versus dynamic, hardware versus software

implementation, centralized versus distributed, adaptive versus static.

Static resource managers are somehow hard-coded in the system software, in

the sense that the decisions taken are defined in advance, according to a predefined

policy. Policies cannot be changed at run-time so no flexibility is achieved in this

case. In contrast, dynamic approaches let the managing process evolve according to

the needs. The policies as well as other useful parameters might be changed during

execution time, either explicitly (i.e., user-driven) or implicitly (i.e., guided by the

current scenario).

The implementation can be either hardware, software or a smart mix of the two.

Purely software approaches are very flexible, but they incur in high overhead; purely

hardware approaches, on the other hand, provide high performance at the cost of

flexibility. A mixed hardware/software co-design can optimize the performance and

the flexibility. The real challenge consists of finding which part will be in hard-

ware and which part will be in software. Examples of purely software or hardware

approaches are reported in [16].

Centralized approaches provide a single entity that gathers all the necessary in-

formation from the underlying hardware and from the upper software. Distributed

approaches, instead, provide multiple control points, that gather local information.

The former technique lacks of scalability as well as efficiency, since with a huge

amount of resources to handle, the number of information to be gathered would in-

crease exponentially. On the other hand, distributed approaches have only local view

of the problem, and thus do not provide a system-wide optimization point-of-view.

For these reasons, a more suitable approach should have a hierarchical control, i.e.

integrating both local- and system-wide views of the same problem.

Last, decisions should be taken with respect to an adaptive or non-adaptive mech-

anism. Adaptive mechanism can follow the workload changes in the system, and they

are clearly dynamic in nature. In contrast, non-adaptive (also called fixed) approaches

are of a static nature and do not adapt their behavior to the changing context.

The selection of the implementation details of the aforementioned design param-

eters affects how the manager will behave in the target system. The most interesting

approaches reported in [16] can thus be classified as shown in Fig. 6.4.

OMAP platform from Texas Instruments [4] provides a software and central-

ized/distributed implementation, in which a single master Resource Manager resides

6 Run-Time Resource Management at the Operating System Level 115

Fig. 6.4 Different
commercial approaches are
reported comparing different
features for a RTRM. Data is
taken from [16]. For each
interesting feature, a value of
0 stands for no support, a
value of 1 stands for full
support, while a value in
between (e.g., 0.5) means the
feature is only partially
supported. This is especially
useful while comparing
hardware and software
implementations

on the central general-purpose processor (the “host”), and a slave RM server resides

on each system co-processor, e.g. DSP. The role of the master RM is to manage and

allocate slave DSPs, create tasks and allocate communication resources.

The approach followed by RTXC RTOS is based on the replication of RTOS

kernel services on each core of the target platform containing MPSoC and multiple

DSP coprocessors. However, there is no actual RM as we might think, since it is in

charge of the designer to decide for the allocation of tasks. This happens through the

use of the RTLib, but no run-time adaptation is provided [16].

The ARM MPCore is a multiprocessor platform for general-purpose operating

systems like Linux. In this context, Linux would act in SMP fashion, hiding the fact

that multiple Processing Elements (PEs) are present. In this way, the RM is embedded

in the underlying OS, and transparently provides to the applications a multi-core

environment with several available resources to speed-up application execution.

Last, Multiflex from STMicroelectronics addresses Nomadik platforms [21] con-

taining multiple general purpose processors executing either Linux or Symbian in

SMP configuration, and several customized application processors (ASIP) for video,

audio and 3D processing. Resource management is performed through a master-

slave configuration, like the one presented for OMAP platforms. Coprocessors are

effectively seen as devices where to push tasks for execution.

6.2.3 Run-Time Manager Components

This section presents a bird’s-eye-view on the main components that a Resource

Manager is made by. This section provides a well-defined set of the components

specifying an RM, yet from a high-level perspective. This has been inspired by the

work in [16], presenting a valid, but yet incomplete, modeling of the RM components

and subsystems.

The core of an RTRM consists of the subsystem taking decisions about

the resource-to-task allocation problem; in other words, the core of an RTRM

116 P. Bellasi et al.

consists of the implementation of the uses function. Such implementation resides

in a separate component, that takes as input (also) the asserted constraints on the

platform. Those constraints come from the software applications, and represent the

“contract” between the software and the hardware. The effective allocation of the

resources happens according also to the (current) objective function in the system.

The objective function, as we said in Sect. 6.2.1, defines which are the candidate re-

sources for the requesting application. A QoS Estimator component is employed for

the sole purpose of estimating the potential resource allocation, so that to compare

it with the application requirements. If an appropriate resource-to-task mapping is

found, then the allocation is given back to the application, that can now begin the de-

sired execution. The concept of “resource configuration” conveys in a single entity

any kind of resources: physical resources (e.g., assigned cores), logical resources

(e.g., clock cycles) and non-functional aspects (e.g., voltage/frequency selection for

power-constrained systems). For this reason, we may want to call such configuration

an Operating Point. In this perspective, the selection is performed by an Operating

Point Selection module. Such module implements the core of the RM. It is based on

two entities: mechanisms and policies. Mechanisms represent the observation and

control knobs that the underlying hardware (or the HAL software) provides for the

desired purpose, while policies define how resources to be allocated are selected.

From the description above, it is clear how an RTRM stays in the middle: it

takes software-related and application-specific constraints and retrieves information

from the underlying hardware platform. An overview of the RTRM in a system-

wide perspective is shown in Fig. 6.5. Three different aspects are then taken into

Application aspects

SOFTWARE

APPLICATIONS

HARDWARE PLATFORM

RTRM
Constraints

assertion
Resources

allocation

HW HW HW HW

Platform Aspects

Non-functional aspects

Single

core

Homogeneous

multi-core

Heterogeneous

many-core

HP LE LP

Fig. 6.5 The RTRM takes into consideration application aspects, non-functional aspects and
platform aspects

6 Run-Time Resource Management at the Operating System Level 117

account: application, non-functional and platform aspects. Application aspects refer

to application requirements and constraints. Non-functional aspects collect those

QoS-related, such as power consumption, throughput, memory bandwidth; these

can be used directly to setup the objective functions. Last, platform aspects come

from the hardware: available resources, hardware architecture features, and so on.

6.3 Operating System Support

In single-user single-tasking systems, when all the available resources were under di-

rect control of the user, resource control was straightforward. Instead, with the advent

of multi-tasking systems, the need for more complex resource control mechanisms

raised. In these systems, one of the main goals is to control resources by sharing

them fairly among all concurrent tasks. This requires the implementation of suitable

“accounting mechanisms” and a “scheduling algorithm”. Accounting mechanisms

are used to keep track of the available resources and their allocation to requesting

clients. Instead, scheduling algorithms should support the contrasting requirements

of fairness and granted access to resources to all the clients.

This problem becomes particularly complex if we consider systems with a mix

of best-effort and critical workloads. Regardless of their nature, critical workloads

are characterized by the requirements of a certain number of resources to grant

their functionalities. Conversely, best-effort workloads could tread performance for

resources without compromising functionality. In this scenario, a properly designed

run-time resource manager should be aware of these differences and provide an

adequate support for priority access to available resources.

To tackle the resource management problem, different architectural alternatives

have been evaluated. Both middleware and native operating system support have

been developed and quantitatively evaluated, especially on the specific context of

multimedia applications [23]. In the rest of this section we focus on the native

operating system approach, highlighting its role on the resolution of the resource

management problem. Then we focus on the Linux kernel, which is a widely adopted

operating system for a broad range of application contexts, and we describe the main

mechanisms it offers to manage resources at run-time.

6.3.1 System-Wideness and the OS

The operating system support for resource management has changed significantly

in the course of the last decades. One can find in existing literature many studies

on resource control at operating system level started. Systems were mainly based

on mainframes, which have a central computation system and many users accessing

it remotely and competing to the usage of really limited resources. Thus, the basic

approach of dividing the available resources into several groups corresponding to

118 P. Bellasi et al.

different user profiles, e.g., gold, silver and iron, was pretty enough. For example,

resources were always granted to “gold users” and temporary given to “silver users”

once not needed by the first class. This simple approach allows to maximize the usage

of the limited resources without any adverse impact on the expected performance of

different users.

Nowadays we have multi-processor systems characterized by multiple CPUs and

high bandwidth network (that too getting faster and faster) and with cheaper memo-

ries. These systems have been adopted initially on data centers, which use clusters of

computation nodes, and the focus has moved on security and web based distributed

access. This application scenario raised the interest for the virtualization support.

Indeed, the business idea is to partition the resources of a big system (i.e., guest

system) into smaller pieces (i.e., host systems), each one dedicated to different cus-

tomers which actually pay for what they get in terms of resources. Thus, the new

requirement has become the possibility to run in isolation multiple virtual systems

on the same hardware resources.

The requirement to control the resources of a big system, in order to partition them

in smaller pieces, has been supported by three different design approaches (Fig. 6.6),

which rely on: virtual machine, OS containers or flexible resource control. The virtual

machine approach allows to run even a completely different OS on the same hardware

platform [15]. While this approach grants the maximum security [27], thanks to the

complete isolation of the host systems, it is also the one with higher maintenance

efforts and run-time overheads [9]. Moreover, running hosts on complete isolation

reduces also the run-time flexibility since it is practically impossible to share unused

resources with overloaded hosts. The container based is a better approach for the

performance and maintenance perspective. In this case the isolation is provided by

a single OS that has complete control over all the available resources and gives each

host system a partitioned view of them [12]. The Resource Control provided by a

single OS allows better performance and a more flexible run-time resource allocation,

thus maximizing their usage.

Being mainly addressed to resource isolation and security, these two approaches

are interesting for application contexts in which we are interested into running differ-

ent customers on the same hardware resources. This is the main case of web services,

Virtual Machine

OS1 OS2OS2

Operating System

Group2

Group1

Operating System

Isolation by
Control Groups

Isolation by
Containers

Isolation by
Virtual Machine

a b c

Fig. 6.6 The three different possible levels of resource control inside an OS

6 Run-Time Resource Management at the Operating System Level 119

Table 6.1 The main properties of three different design approaches for resource management

Virtual machine Container RC

Performance Not good Very good Good
Isolation/Security Very good Good Not good
Runtime flexibility Not good Good Very good
Maintenance Not good Good Good

where multiple customers, even belonging to different companies, buy the usage of

portions of the same physical resource. Of course this is not the only application sce-

nario. In many other scenarios, we are interested in optimizing the usage of available

resources by many tasks of the same system. This is the main case of mobile embed-

ded devices, such as smartphones and set-top-boxes. In these application contexts we

have a single user which runs multiple tasks corresponding to different workloads,

either critical or best-effort. In these scenarios, the entities are tasks, instead of users,

which compete to the usage of shared resources, instead of buying them. The re-

source management problem, in this specific scenario, can be efficiently solved by

using more flexible resource control systems. The latter approach is still based on

a Run-Time Manager running on a single OS which groups the available resources

and then maps tasks on these groups according to some usage policy.

The main properties of the three different approaches are summarized in Table

6.1. In the next subsection we concentrate on the third approach to investigate deeply

the support that a modern Linux kernel provides for the flexible control of resources.

6.3.2 OS Mechanisms Supporting RTRM

Almost all modern OSs provide resource management mechanisms to properly grant

shared resources access to multiple tasks. Linux is perhaps the OS that has devel-

oped the most advanced mechanisms to support run-time resource management for

a large number of resources. This is thanks to its wide adoption, on systems that

range from high-end servers in data centers down to multimedia mobile systems

in smartphones. As shown in Fig. 6.7 many Linux subsystems provide a Resource

Manager, most notably: CPU, memory and the I/O communication channels such as

disks and networks interfaces. Moreover, since power and energy consumption are

critical aspects, for both high-end servers and mobile devices, the power manage-

ment subsystem works parallel to the previous ones to manage properly electrical

consumptions.

Past proposals on resource management and task grouping were based on a basic

abstraction that allows to group together multiple processes in order to track and

limit the resources that they are allowed to access. To fulfill all these functionalities,

the Task Control Groups (TCG) framework is available since Linux kernel version

2.6.24, when it was first developed and merged by Paul Menage of Google Inc.

120 P. Bellasi et al.

CPU Memory

Memory
nodes bandwidth

I/O

Disks Networking

Linux kernel

Management
Power

Best−effort

tasks

Critical

tasks

CPU Time

Fig. 6.7 Linux provides RTRM support for different subsystems. Tasks can be grouped in classes
which correspond to different resources access priorities

When a task is associated to a particular cgroup (i.e., a control group), it will get

an access to a portion of the system resources, where we can specify how big or small

that share can be. These shares represent minimum values, not maximum. Thus, if

we give one group 10% of a resource and another 90%, then if the more privileged

group isn’t using its full 90%, the other group can have whatever is left over. This

borrowing mechanism allows to optimize resource usage while still granting each

group the resources defined at design time whenever required.

This low-level mechanism was added in Linux mainly for containers and virtual

machines. However, they are not restricted for that solely purpose. One of the most

interesting approaches nowadays is to employ it to manage resources—and therefore

performance—of ordinary processes in a multi-tasking single user system. The idea is

that other subsystems hook into the generic cgroup support to provide new attributes

for them. For example, this allows to account or limit the resources that the tasks in

a control group could access.

Like many other Linux frameworks, the TCG interface is organized as a virtual

file-system, which can be used both to inquire about resources partitioning and to

configure it by simply reading and writing files.

6.3.2.1 CPU Time Management

The CPU subsystem allows to manage the CPU time resource. Different cgroups can

be created and assigned to. The client of this subsystem is the Linux scheduler, which

recalculates the percentage of the total CPU each cgroup will get. For example, we

might create a cgroup for the background processes, another for the logged-in users

6 Run-Time Resource Management at the Operating System Level 121

and a third for root and daemons. If we gave them each one share, they would get a

guarantee of no less than 33% of the CPU time.

6.3.2.2 Memory Management

The next precious resource that can be managed is memory. The memory container

allows to put a memory limit on a cgroup, and if the group’s Resident Set Size (RSS)

exceeds that number, its least-recently-used pages are swapped out.

This is definitely excellent for managing tasks with memory leaks, thus improv-

ing system stability. Moreover this can also be used for less severe problems. For

example, tasks which use a lot of memory tend to push out pages of other tasks which

haven’t run lately, making them slow in restart. By putting a memory limit on the

cgroup of memory, hungry tasks will grant a more rapid restart of other tasks.

Unfortunately, at least at the moment of this writing, the cgroups memory limit

is a hard limit, and doesn’t allow overcommitment even when we have lots of free

memory. Thus, a natural extension to this container is the support for a soft limit,

which should guarantee an upper bound like CPU share does. Such a support should

allows a larger soft limit when there is plenty of free memory, but it reduces the limit

to the smaller hard ones when there is demand for memory.

6.3.2.3 I/O Management

A certain kind of abrupt slowdown is common to anything that can build up a queue,

such as a CPU, a disk or a network, as well as any program that uses these resources.

The queue network theory [13] shows that any open system with a service center s

that requires certain service time ts to process a job exhibits performance which has

the behavior represented in Fig. 6.8. This is the classic behavior of a disk, where

for example it can deliver 425 I/Os per second at 100% utilization. Thus, since we

Fig. 6.8 The asymptotic
system response time of an
open system

R min

Feasible

Response

Times

T max

R=NT max −ZR max =NRmin

T max

Z

M1 2 3 4

R(N)

Terminals(N)

saturation point

122 P. Bellasi et al.

can’t exceed 100% utilization, if we ask for 500 I/Os per second, only 425 are served

while 75 disk access requests have to sit in a queue and wait.

To keep a devices in the “good” part of their response curves is an excellent

reason to use resource limits, thus avoiding slowdowns. Four hundred requests at

40 ms is far better than 500 averaging more than 80 ms each. Some experiments

could give a rough estimate of the limit of a device, and we can use this value to

set a limit that keeps them from being driven into overload. The solution to this

problem is completed by limiting the I/Os that a task is allowed to issue. Thanks to

its I/O scheduler, which is the natural client of the block subsystem, Linux shines on

the management of resource such as disks and other input/output devices. The I/O

scheduler has been extended to understand cgroups, and can refrain from dispatching

I/Os if they will exceed the cgroup bandwidth ration. As usual, using the virtual file-

system interface, the blockio subsystem allows to define a [MB/s] bandwidth limit

of each char or block device node, by simply echoing that value within the provided

blockio.bandwidth attribute.

6.3.2.4 Network Management

The control of the network bandwidth resource is straightforward by using the cgroup

framework, but slightly different with respect to the previous subsystems. As in case

of previous subsystems, a specific subsystem is provided for the resources, i.e. tc,

which can be used to define classes of network traffic. However, the control groups

defined are used to associate a “class id” to every network packet generated by tasks

belonging to the corresponding group. The actual bandwidth control is in charge

of the Linux traffic shaping framework, which is the client for this control group

subsystem. A command line tool allows to associate bandwidth constraints to each

class id defined by control groups.

6.3.2.5 General Conclusion on Resource Management

The first observation is about usability of the task control group framework: resource

sharing is not easy to reason about. Task control group framework only guarantees

that when the machine is loaded you get a specific resources share. However, when

the system is not loaded a task could get more, but how much is probabilistic. It

depends on everything else that is running on the machine, and at the end this can

be confusing and also hard to handle for some tasks.

Because of the hard understanding of their behaviors, one could be tempted to

only use hard limits. Hard limits are trivial to reason about, and they are genuinely

useful for preventing catastrophes, such as a disk driven into infinite slowdown.

However, hard limits should not be used as a general tool: doing so means that the

tasks can never use any spare cycles that a system has. Instead any such spare cycles

will be wasted, which is the same as wasting resources.

6 Run-Time Resource Management at the Operating System Level 123

6.4 Power Management

Digital electronics gives enough opportunities to reduce power consumption at dif-

ferent abstraction levels, not only through silicon physical optimization [24, 25]. As

a matter of fact, power reduction opportunity increases with higher levels of abstrac-

tions, so that from architectural up to system software layer we have enough room

to address the power/performance challenging trade-offs.

The involved abstraction levels are shown in Fig. 6.9. We have to decouple the

SoC design in two planes: the software plane and the hardware plane. The former,

shown in Fig. 6.9a, relates to the different levels at which the software can operate

to effectively give contribution to power consumption reduction. The latter (Fig.

6.9b), on the other hand, refers to the design of the underlying hardware, providing

mechanisms to the upper levels of details.

From a software perspective, power reduction techniques can be employed both

statically and dynamically. Static strategies are generally addressed at compile-time

[7, 22], or at least through ad-hoc software architecture techniques at source-code

level. Static techniques are of great importance since they can be used to exploit as

much as possible the required power/performance requirements, but these techniques

lack of flexibility. This is much more true in those systems where the workload is

not known in advance. For this scenario, dynamic approaches should be employed,

for instance at the OS level (kernel) or at higher abstraction levels [2]. Applications

can directly impact on the power/performance trade-off, but a more sophisticated

mechanism can reside at the kernel level, where the OS is aware of the entire system

status. The most complete software frameworks for the Linux kernel are reviewed

in the next sections.

From a lower level perspective, hardware has to provide the software with control

and observation points in order to ensure that the desired goal is achieved. Thus,

the power/performance trade-off solution is searched in a hardware/software co-

design approach, as it has been previously stressed in Sect. 6.2. While conventional

Macro−blocks

Architecture

Silicon / Materials science

Device

Circuit

S
y
s
te

m
−

o
n
−

C
h
ip

E
le

c
tr

o
n
ic

s

Gates and interconnectionsFrameworks

Source code

Compilation

OS (kernel)

Applications

D
y
n
a
m

ic
S

ta
ti
c

S
ta

tic
/D

y
n
a
m

ic

a b

Fig. 6.9 Power reduction and optimization techniques cover a wide range of SoC design, from both
software and hardware planes. A holistic low-power design methodology, where applicable, should
consider crossing different abstraction levels for efficient and proficient power management and
optimization. a Software design and abstraction levels, b Hardware design and abstraction levels

124 P. Bellasi et al.

Table 6.2 Summary comparison among the presented software frameworks. The classification is

based on static or dynamic power consumption, clock gating, Multiple Voltage Scaling and power

gating

Power optimization Clock gating MVS Power gating

Static Dynamic

Pure OS CPUFreq • •
CPUIdle • • • •
S/R Fw • •
Clock Fw • •
V/I Fw • • •

Cross-Layer Centralized (DPM) • • • • •
Distributed (QoS) • •
Hierarchical (CPM) • •

low-power design methodologies define mechanisms to solve power issues from the

physical up to the gate and architectural levels of abstraction, such methodologies

are generally based on a precise hardware support, e.g. level shifters, PLL registers

for clock signal [10]. In parallel, there are several software frameworks that ad-

dress power management. Hereby, we will focus on those designed for Linux-based

systems, and which were originally designed for general purpose platforms. Never-

theless, their applicability is of (quite) general validity, also for mobile embedded

systems.

The available approaches can be conveniently grouped into two categories: pure-

OS and cross-layer. The distinction comes from the power optimization mechanisms

that are applied, and which kind of interaction is exposed to higher levels. A summary

of the presented approaches is given in Table 6.2.

The table reports the proposed classification in terms of pure-OS and cross-layer,

and for each entry a comparison is performed against the power optimization and

power optimization mechanisms involved: static versus dynamic, and clock gating

versus power gating or voltage selection. A bullet (•) suggests that the current entry

addresses that specific optimization, or supports that specific mechanism. Table 6.2

considers only three mechanisms for power management. Clock gating technique

aims at reducing the dynamic power consumption by disabling (i.e., gating) the input

clock signal. The frequency of the clock signal drops to zero, so that the switching

activity drops to zero, too. Multiple Voltage Scalings (MVS) refers to the use of

different power rails, providing different regions of the chip with an ad-hoc voltage

supply value. Last, power gating is the technique that cuts input voltage source, so

that reducing quadratically the consumption of dynamic power.

6.4.1 Pure-OS Techniques

Pure-OS techniques are completely implemented at the Operating System level;

they do not provide support for direct input from applications. They attempt to figure

out application requirements based on previously monitored behavior or current

activity, and enforce some control decision either on a single device or on an entire

subsystem. We can further divide these techniques in two groups, whether they tend to

6 Run-Time Resource Management at the Operating System Level 125

optimize static or dynamic power consumption. In the former case, namely resource

hibernation, they are generally based on the exploitation of ON/OFF states of the

peripherals. In the second case we refer to resource tuning techniques, since power

minimization is obtained by properly configuring available operational parameters

of the target platform, according to the changing run-time requirements. We have to

further distinguish between device-specific techniques and system-wide techniques.

The former class relates to those techniques addressing specific devices, while the

latter attempts to optimize the system as a whole, in a more abstract view of the

application.

6.4.1.1 Device Specific Techniques

Being one of the more power demanding device, power optimization of the system

processor is of major interest. There are two main frameworks available in a modern

Linux kernel: one is devoted to reduction of static power consumption while the

other addresses the optimization of dynamic power consumption.

CPUIdle

The CPUidle framework [18] focuses on power management of an idle CPU. We

refer to a CPU as being idle when it is doing nothing useful for the application

itself, there is no workload, and hence it can be turned off to prevent from unnec-

essary power consumption. We have several opportunities in this context, ranging

from clock gating or shutting down increasing portions of the circuitry, down to

completely power gating the processor. These different solutions correspond to a

well-defined set of idle states that modern high-performance processors exhibit. Idle

states are characterized by particular processor configurations, with precise power

consumption levels and wake-up latency. Moving from the simple approach of clock

gating to power gating, there are increasing penalties, mostly related to wake-up la-

tency. For instance, waking-up from an idle state requires just to re-enable the clock,

while waking-up from a deep idle state could require to re-initialize the CPU and

restore its registers from main memory too.

CPUidle addresses power/performance trade-offs from a software layer stand-

point, with the aim of exploiting all the available idle states of a processor without

impacting on the overall system performance. An effective solution to this problem

requires an adequate support to identify the real system requirements in terms of

CPU latency. The current Linux implementation defines a proper software design

which separates the low-level software mechanism from high level interface toward

the framework clients to simplify this. An overall view of the framework architecture

is given in Fig. 6.10.

The low-level interface [19] supports the definition and registration of processor-

specific drivers. Those drivers are required to define the set of idle states available on

the target CPU. Each state must be characterized by a set of attributes defining their

126 P. Bellasi et al.

Generic CPUidle Framework

Processor driver

acpi−cpuidle halt_idle

In−kernel

governors

User−level

interfaces

CPU−specific

drivers

ladder menu

/sys/devices/system/cpu/cpuidle

/sys/devices/system/cpu/cpuX/cpuidle

driver interface

governor interface

step–wise latency–based

populate supported

C–States

compile frequency

tables

decide the

target C–State

data structures

initialization and registration

idle handling

system state change handling

Fig. 6.10 A simple representation of the CPUidle framework

power contribution, exit latency and a target residency time which is considered as

necessary to get an advantage from entering that state. Every idle state could also be

associated to a specific callback function which implements all the required low-level

code needed to actually enter the state.

The high-level interface provides support for the definition of a governor, a

processor-independent algorithm for choosing the effective idle state to enter, ac-

cording to system constraints on maximum latency. There might be more than one

governors registered in the core, but just one can be used at any time. Widely used im-

plementations provide two governors, called ladder and menu. The ladder governor

adopts a step-wide policy: every time the CPU is idle, a deeper idle state is entered

only if we were previously able to remain in that state for a period greater than its

corresponding target residency. Instead of relying on a simple heuristic approach,

the policy implemented by the menu governor is latency-based. This policy exploits

the information on the maximum allowed system latency in order to identify the

idle state that should be reached every time there is an opportunity. This governor is

certainly more efficient but requires a closer collaboration among applications and

kernel drivers, to collect such requirements.

The core implementation is completely platform independent and provides the

glue code that defines the required data structures, support drivers, governors regis-

tration and run-time selection. A proper monitoring interface is also exported to the

collecting statistics on idle states usage.

CPUFreq

CPUfreq [20] focuses on the optimization of dynamic power consumption by ex-

ploiting DVFS mechanisms. A processor is in an active state when there is some

6 Run-Time Resource Management at the Operating System Level 127

workload ready to be executed. A workload can either be CPU-bounded or I/O-

bounded; the former requires intensive CPU computations on memory located data,

while the latter presents a more heavy information exchange toward relatively slow

peripherals such as disks or low-bandwidth buses. In general, a single task cannot

be exclusively classified in a single class; it happens that some portions are more

CPU-intensive, while others are more like I/O operations. This means that the nature

of a task could change during its execution; the combination of different workloads

is even more evident if we consider a multi-tasking system with many concurrent

applications running at the same time and sharing the few available processors.

The CPUfreq framework considers these combined behaviors in order to optimize

power against performance. The basic idea is to exploit the possibility to perform

computations at different operative frequencies. The set of available frequencies de-

fine the performance states of the platform; lower frequencies correspond to lower

voltages and thus also less performing states with reduced power consumption and

increased execution time. Switching from one performance state to an another one

inserts an overhead that must be kept into consideration. Moreover, there is a need

to identify efficiently the real system performance requirements. These observations

make the CPU frequency scaling a rather complex mechanism to exploit. The frame-

work available in Linux simplifies the implementation by a proper software design

which aims at decoupling low-level software mechanisms from high level policies.

An overall view of the software architecture is depicted in Fig. 6.11.

The low-level software mechanisms [11] are implemented by drivers, required to

define both platform specific information, and a set of control routines. The required

information is related to the available performance state and the corresponding transi-

tion overheads, while the platform specific hardware mechanism to actually perform

decide the
target P−State

define supported
policy values

data structures
initialization and registration
transition handling
policy and transition notifiersGeneric CPUfreq Framework

conservativeuserspaceon−demand

powersave conservative

Processor driver

acpi−cpufreq

driver interface

governor interface

In−kernel

governors

User−level

governors

CPU−specific

drivers

speedstep

aggressive battery–fair

compile frequency

tables

Fig. 6.11 A simple representation of the CPUfreq framework software design

128 P. Bellasi et al.

a transition must be wrapped by a set of properly defined callback functions. An

high-level interface allows to define a governor, which is the platform independent

algorithm for the evaluation of system performance requirements and of the selection

of the optimal performance state. At least one governor must be defined, and mul-

tiple governors enable adaptive and dynamic multiple optimization strategies. The

default framework implementation provides five governors, the more interesting and

widely used being the on-demand governor. It implements a scaling policy based on

the run-to-idle optimization. The CPU load is monitored in a periodic time frame,

and according to the load observed in the past time frame a scaling decision is taken

according to a simple rule: try to keep the CPU utilization around the 80% [20]. On

CPU utilization higher that that threshold, an immediate scaling up to the maximum

available frequency is required, to the contrary, on lower CPU utilization the scaling

down is required step-by-step but only after a preconfigured number of negligible

load time-frames are elapsed.

The core implementation provides the code to bind the platform independent gov-

ernors down to the architecture specific driver. Moreover, a proper notification API

is provided which allows other kernel components not only to be aware about CPU

scaling operations but also to somehow interact with those optimization decisions,

for example to assert a veto on some changes due to some contingent constraints.

6.4.1.2 System-Wide Techniques

The clock distribution tree and the power domains have some common character-

istics: they have system-wide view (i.e., they interact with all the available on-chip

devices) and they define a hierarchical dependency tree (i.e., a local power opti-

mization decision could impact on different devices). These two components require

system-wide optimization techniques which are able to collect information from

multiple devices in order to identify a proper optimization strategy.

Suspend/Resume

The Suspend/Resume Framework (S/R) provides the proper support for a complete

and efficient resource hibernation strategy. Linux supports three static-power sav-

ing states: standby, suspend-to-RAM, and hibernation. The main difference between

them stands on how the device state is preserved. In a standby state a device is not

functional, but it is still powered at least to grant the preservation of the content of its

configuration registers. This kind of power saving addresses static power optimiza-

tion, since the device logic is powered down and only a retention voltage is applied to

the configuration array. This state could be always entered whenever a device is not in

use since the recovery time is relatively short and practically negligible if compared

to the typical operating system reaction time. In suspend-to-RAM a device is com-

pletely powered off, the contents of the configuration array are moved backed up in a

secure area in main memory. Recovering from such a state is more time demanding

6 Run-Time Resource Management at the Operating System Level 129

since all the peripheral configurations must be recovered from main memory, and

sometime this is possible only after a proper cold-start device initialization procedure.

Hibernation is the more effective saving state: power consumption minimization is

at its optimal value, saving the system configuration in a persistent storage and pow-

ering off all devices (memory included in some cases). Unfortunately, as one can

argue, this last state is also the most expensive in terms of recovery time. A complete

system restart is generally required, and it is done during the boot-up procedure in

order to keep dynamic overhead at a minimum.

The main challenge for a successful implementation is the proper tracking of de-

vice functional dependencies. Different devices in a system could be interconnected

to form subsystems. For instance a USB device, such as a memory stick, is connected

to the port of an HUB which in turn connects to a port of a USB host controller. All

this chain define a USB subsystem. Finally the host controlled could be either a sys-

tem device or a gateway towards a PCI bus; which in turn defines another subsystem.

Considering all the devices within a system and their inter-dependencies with respect

to their functional dependencies what we get is logical dependency tree rooted at the

CPU and having a device at each end node. This tree specifies an implicit order that

must be respected both on suspend, starting the suspension from nodes and visiting

the tree up to the root, and on resume, by converse visiting it starting from the root

node down to the device nodes.

Clock Framework

The Clock Framework has been introduced in the Linux kernel to optimize the dy-

namic power consumption associated to the clock distribution tree. The proposed

framework is based on the management of the system clock signal. The hierarchical

generation and distribution of the clock signal opens several opportunities for engi-

neers to reduce power. The effective validity of the approach is driven by the fan-out

value and the switching activity of the clock signal.

Purpose of the framework is to export the programmability of such components

to the software level [26]. In this way, it is possible to cut-off some tree edges

according to the desired computational activity; this is actively done by switching

off a selected subset of LDO, PLLs or DIV modules. The approach takes even more

advantage in some partitioned systems, in which several independent subsystems

receive the clock from a common source, the top-level system clock, and scale the

input signal according to local optimization policies, using DIV modules. In this

way, individual operating requirements can be locally addressed with little silicon

cost.

There are two main mechanisms for clock management: clock stopping and clock

scaling. The former technique allows to disconnect the clock line from the associated

PLL, and to eventually power off the PLL. Such mechanism gates the clock to the

entire sub-tree controlled by the actual PLL that has been turned off. Clock scaling,

on the other hand, does not disable clocks, but it instead scales down the incoming

signal using physical dividers or reprogramming the top PLL for the current sub-tree.

130 P. Bellasi et al.

Voltage and Current Control Framework

The Voltage and Current Control Framework (V/I Framework) [5] is a quite specific

support focusing on the efficiency of voltage regulators. In the architecture explo-

ration, we highlighted how modern SoC architectures are composed of multiple

voltage domains to fit specific requirements of each hardware block. In general, the

voltage domains within a SoC could have some dependency relation between them.

Sometimes these voltage domains are directly controlled by a dedicated voltage

regulator usually provided by an external companion chip.

Each device in the system is powered by a certain voltage domain and, according

to the specific functionalities required by a device, the current drained from the

domain could also be very different. For instance, if we consider an audio-codec

controller, its current drain is very different if we are listening to some audio stream

via a loudspeaker or we are simply performing some digital audio mixing activities.

A physics study of the dynamics of a regulator device shows that its efficiency is

highly affected by the instantaneous current load. The Regulator Power Efficiency

(RPE) of a regulator is defined in Eq. 6.1.

RPE = Pout/Pin (6.1)

Equation 6.1 compares the amount of power Pin that is presented as input to the

regulator, and how much Pout we are able to derive from it; it is a direct measure of

how much energy is lost in the regulator itself.

It is known that when the regulator works in normal mode, it is able to efficiently

support only current loads over a certain threshold value. On the contrary, once the

current load on the corresponding voltage domain drops under this threshold, the

current requirement could be satisfied with a better efficiency only switching the

regulator to an idle operating mode. This kind of behavior of voltage regulators are

worth to be considered in order to implement a really holistic approach to power

management in a modern embedded system. The framework presented in this para-

graph has been introduced in the Linux framework quite recently, but provides a well

designed and mature support to simplify the exploitation of this kind of optimization.

The framework is composed of four separate interfaces:

• regulator, allows a regulator driver to register a set of required operations to the

core framework;

• consumer, allows a device to notify voltage and current requirements to the

regulator driver;

• platform, allows the system platform code to define the voltage domains, their

dependencies and thus the creation of the regulator tree;

• userspace, exports a lot of useful voltage/current data and operation mode statis-

tics via a sysfs interface to support device power consumption and status

monitoring.

6 Run-Time Resource Management at the Operating System Level 131

6.4.2 Cross-Layer Techniques

Mechanisms and techniques supporting power management can be implemented at

different abstraction levels; not only at architectural level but also at software level.

Applications are aware of their Quality-of-Service (QoS) expectations. For instance,

if we consider the playback of a network video stream: then we could easily identify

at the application level some of the requirements, e.g., in terms of network bandwidth

and decoding processing workload. Thus, the development of holistic approaches

should support the aggregation of data from multiple layers into power management

decisions. Cross-Layer techniques try to exploit mechanisms from different abstrac-

tion levels at the same time. The idea behind them is to provide properly defined

mechanisms to collect abstract information from the higher abstraction levels, i.e.,

user-space applications, and exploit them to give some useful hints to the lower

abstraction level techniques in order to improve the exploitation of the available ar-

chitectural mechanisms. Cross-layer techniques aggregate data from multiple layers

into power management decisions; indeed a properly defined interface allows the

user space to assert Quality-of-Service requirements and exploit these information

to support system-wide optimization. These techniques could be further grouped into

two categories, centralized and distributed. Centralized techniques have been devel-

oped mainly to support the power optimization of relatively simple and dedicated

embedded systems (e.g. personal media player), but these have some scalability

problems related to their complexity which impact on the implementation effort. On

the other hand, distributed techniques are designed to be more scalable to easily

address much more complex architectures (e.g. new generation smart-phones).

The power optimization techniques proposed in this class are essentially based

on the definition of a single coordination entity, which stands in between the user-

space applications and the available architectural mechanisms. However, we could

identify essentially two orthogonal approaches: centralized and distributed; the main

difference is in the role of the coordination entity. In centralized approaches the

coordination entity has a direct control on the available mechanisms which are used

to perform power management according to a single and system-wide optimization

policy driven by the requirements collected from user-space. Distributed approaches,

instead, not only implement a lightweight, single, and system-wide optimization

policy but also exploit many other devices and subsystem specific policies. The

idea is to implement a distributed control model where user-space requirements are

aggregated and used to feed some input to more specialized local controls.

6.4.2.1 Dynamic Power Management

The Dynamic Power Management software (and hardware, refer to architecture,

presented in [3]) is both an architectural and interface proposal for a centralized

cross-layer technique targeting high-performance embedded systems. Purpose of this

proposal is to exploit effective power management mechanisms from the architectural

view-point and from the management view-point at the OS level. This framework

132 P. Bellasi et al.

is neither a DVFS algorithm, nor a power-aware OS and even nor a mechanism

such as ACPI. Its relevance comes from the integrated engineering that has been

applied to provide a highly efficient power management solution. To this purpose,

the framework architecture is based on few abstraction objects: operating points,

task states and policies. Each one cooperates information for performance and power

management purposes. An overall representation of these abstractions is depicted in

Figure 6.12.

An Operating Point (OP) is the lowest level abstraction which encapsulates a

mixture of physical and logical parameters, representing a power-related sensible

characterization. Each OP is thus a specific set of 〈parameter , value〉 pairs corre-

sponding to a precise system power/performance configuration. At any given instant

of time, the system is allowed to execute in a specific OP. Examples of operating

points for a processor [17], as specified for the PowerPC architecture, are: core volt-

age, CPU operating frequency, bus frequency, and memory timing. The designer is

in charge of the choice and setting of the OPs, as many as required by the capabilities

of the target platform and the desired complexity of the framework implementation.

The framework allows also the definition of congruence classes (CCs) which are sets

of OPs that could be considered to be equivalent from certain power/performance

optimization strategy. A task state (TS) is the high-level abstraction corresponding to

a possible system operating state. In the control model defined by DPM, the system

is seen as a state machine defined on a limited and well defined set of states. Example

of states could be: idle, interrupt handling, CPU-bound process, I/O-bound process.

The definition of the actual set of TS is once again in charge of the integration en-

gineer. At run-time, each task could be associated with a task state. This mapping

allows to identify in which task state the system is by simply looking at what task

is scheduled to run at every time instant. Thus, switching from one task to another

could imply the switching of the system among different task states.

Since each task state might have its own power/performance profiles, it is worth

defining a mechanism to map task states to operating points, or more in general to a

congruence class. This is achieved through the introduction of the policy abstraction,

representing such mapping. According to the time of running task, the DPM core

Policy

Operating Points

Strategy
Power Management

OS

CC

OP

OP
OP

OP

OP

OP

OP

OP

Congruence
Class

State
Operating

Device
Constraints

Power
Considerations

OP

Fig. 6.12 The DPM architecture abstraction objects

6 Run-Time Resource Management at the Operating System Level 133

framework is able to automatically identify the current task state and accordingly

map this on a congruence class defining a limited set of eligible operating points.

Identifying a congruence class is not sufficient to actually select the best OP. To that

purpose two more concepts are considered in the framework: the constraints and the

optimization strategy. A constraint is a requirement on a specific OP value that could

be asserted by either applications or device drivers. The core framework collects

constraints asserted by all system entities and use them to invalidate the OPs that

are not compatible with them. This first mechanism could thus reduce the number of

eligible OPs available in the current congruence class. Finally, where more OPs that

are still valid after considering all the constraints, the optimization strategy defines

the ultimate rules to give each valid OP a relative preference value.

The framework is mostly an architectural proposal which requires customization

efforts for each specific platform in order to be effectively used. The core frame-

work provides just the glue code with the basic mechanisms to define the abstraction

objects, but their actual definition is entirely an effort of the platform engineer. Sec-

ondly, the definition of the abstraction objects is a rather complex problem by itself

since it requires a deep knowledge of a platform as a whole. Nevertheless, this re-

mains one of the more interesting proposal for a centralized cross-layer optimization

framework which is worth to consider especially in the case of relatively simple and

dedicated embedded systems that require fine grained and low-overhead control.

6.4.2.2 QoS-PM Framework

TheQoS-PM Framework has been the first attempt to implement a sufficiently generic

framework to support distributed cross-layer power management within the Linux

kernel. This kernel infrastructure has been proposed by Intel, essentially as an exten-

sion to the pre-existing Latency Framework, for optimizing the power consumption

of a WiFi network interface [6].

The basic idea of this framework is to define a set of QoS parameters which are

available to both applications and in-kernel code to assert requirements on them.

The parameters defined are sufficiently abstract not to reduce the portability of the

solution; in the current implementation they represent network throughput, network

time-out and system latency. Of course this initial set of parameters is quite lim-

ited, but could be easily extended provided that the new parameters are completely

platform independent. Well-defined and simple methods can be used to assert require-

ments on each of these parameters which are then aggregated by the core framework.

The requirements aggregation is performed using a simple boundary function, i.e.,

the maximum or the minimum of the requests is considered to be the more restrictive

value for the parameters. Drivers and other kernel code could declare their interest on

a particular parameter by simply subscribing the corresponding notification chain.

Once a new request on a parameter happens, the aggregated value is notified by the

core framework to each driver or subsystem which has registered to the notification

chain associated to that parameter.

134 P. Bellasi et al.

Once a driver is notified by a new aggregated value for a certain parameter of inter-

est, it could exploit that information in order to fine tune its local optimization policy.

For instance, in the current implementation of the CPUidle framework described so

far, when an idle state transition has to be decided, it takes into consideration the

system latency requirements. This information is valuable since we know that the

exit time from an idle state could be highly varying and thus could have also a great

impact on the experienced latency of the system. The behavior implemented in this

framework is thus that of a distributed control model. The framework core collects

requests from applications and provides a simple optimization policy, based on the

boundary aggregation, that deliver some tuning parameters to many other special-

ized policies. It is worth noticing that the current implementation of the notification

mechanism support only a best-effort approach. Once a driver receives a notifica-

tion of an update on a certain parameter, it could decide to do its best to satisfy the

requirements. But if that is not possible, there is no feedback delivered up to the

requesting user-space application.

The best-effort nature of the current implementation, along with the simple aggre-

gation functions supported, are justified by the need to keep the QoS framework as

simple as possible. By this design choice, the paradigm of a cross-layer distributed

approach to power management is easily exported to the Linux kernel. Nevertheless

these are also some of the main limitations of the current implementation and mo-

tivate the research interest in this specific area of power management at operating

system level.

6.4.2.3 Constrained Power Management

The CPM framework [1] is the first complete and comprehensive implementation

of the hierarchical power manager concept for the Linux kernel. This framework

is based on the design of a single coordination entity which allows both to exploit

a system-wide view of resources availability and to aggregate all the application

requirements.

Resource availability is defined by device drivers, in a platform independent

way, and this information is exploited by the framework to support the system-wide

optimization policy with fine-details and improved portability. The fine-details are

granted by the low-level information collected at run-time by drivers, thus improving

the portability of the control solution. By changing an architecture or even a single

device, the new information is automatically detected.

Application requirements are collected by a single and well defined user-space

interface. The framework aggregates all the requirements and translates them in a

set of constraints for the global policy.

At run-time, a global optimization policy could exploit all the information col-

lected either by drivers and applications: the former defining resource availability

while the latter asserting QoS requirements. This information could be used effec-

tively to solve a multi-objective optimization problem targeted to identify the best

system-wide configuration. For scalability reasons, this configuration could not be

6 Run-Time Resource Management at the Operating System Level 135

completely defined by the coordination entity. Instead, this entity will notify proper

constraints to drivers and let their local optimization policies to do the fine-tuning.

In order to efficiently support portability and scalability of the control policy, it

has been defined on the base of abstraction and modeling layers, as depicted in Fig.

6.13.

The abstraction layer grants portability without compromising the fine-details

requirement. Available resources and devices working modes are represented in

a platform independent way. Resources are abstracted using a set of metrics

(PSM/ASM) which can be used also to setup the multi-objective optimization

CPM Core:
 − FSC Identification

 − FSC Ordering

 − FSC Selection

HW Platform

Operating System

Optimal System−Wide

Configuration

PSM

ASM

FSC
Global Optimization

policies

Silicon and Architectural

mechanisms

Abstraction

Layer

Optimization

Layer

Local Optimization

policies

QoS

Requirements

Resource

Manager
Tasks

Drivers
Platform Code

Devices

Model Layer

DWR

Fig. 6.13 The CPM framework architecture is based on three layers: abstraction, modeling and
optimization

136 P. Bellasi et al.

problem. A working mode of a device can also be represented in the space of these

metrics by identifying a corresponding device working region (DWR).

The model layer exploit these abstraction information to automatically build a

representation of all the system-wide feasible configurations (FSCs), each one iden-

tifying a working points of the entire system where a certain QoS level can be

granted.

This model is suitable for supporting an efficient global optimization strategy

provided by the optimization layer. This policy could support a multi-objective

optimization strategy defined on the considered metrics.

The framework provides the implementation of a global optimization policy which

rely on Linear Programming to identify a solution-equivalent and efficient optimiza-

tion strategy. This strategy is based on three main tasks: FSC Identification, FSC

Ordering and FSC Selection.

The FSC Identification exploits the information provided by the abstraction layer.

This layer provides a multi-dimensional solution space, defined by the optimization

metrics (PSM/ASM), and the device working regions (DWR) defined by each device.

These information are used in the model layer to automatically identify the set of

Feasible System-Wide Configurations (FSC) that identifies a platform independent

representation of the system resources and capabilities.

In the FSC Ordering task, the global optimization policy exploits the FSC-based

abstract system view provided by the model layer, to order the FSC previously

identified according to the multi-objective optimization goal. Each time the system

use-case change, the optimization goal is updated, and thus the FSC should be

re-ordered.

Application requirements are collected and translated into constraints which inval-

idate unfeasible FSCs. The optimal FSC is selected, considering both the previously

identified ordering and their validity defined by the current constraints, by running

the FSC Selection task.

Each task has different run-time overhead and activation frequency. The FSC

identification is the more complex task, it is required just at system-boot. Instead,

FSC selection must run each time an application assert a requirement but it has a

negligible impact thanks to the support provided by the previous tasks.

6.5 Exploiting DSE to Support RTRM

The Design Space Exploration (DSE) techniques have been demonstrated to be a

valuable tool for the exploration and optimization of hardware platforms. However,

their usage at run-time for the optimization of software behaviors has been only

recently explored [14]. Even if the approach is promising, the integration of a DSE

based optimization policy for the power optimization of a computing platform could

exhibit less flexibilities. This is especially true if we consider the new generation

systems, based on a deep sub-micron production processes, which run multiple

applications on top of an Operating System.

6 Run-Time Resource Management at the Operating System Level 137

This section highlight the potential shortcomings and outline a possible strategy

for the integration of the DSE results with the Operating System and its Run-Time

Resource and Power Management frameworks. At the time of this writing, this

integration will be a part of future investigations, hence it is outside the scope of this

book on MULTICUBE project.

6.5.1 Integration Pitfalls

There are two main obstacles to exploit DSE results at system-level: the possibility

to have a mixed workload and the run-time phenomena. They are discussed below.

6.5.1.1 Mixed Workload: Critical and Best-Effort Applications

Modern mobile multimedia platforms are characterized by multiple applications,

which can be either critical or best-effort. The former are applications, generally

known at design time and provided by the device producer/integrator, which im-

plement fundamental tasks for the target device. The latter instead are applications

unknown at design time but that each user could add and use once the system is

already in production.

The critical applications could be off-line fine tuned to be highly efficient, for

example using DSE techniques, and their resource requirement are considered

mandatory for a proper functioning of the device. On the contrary, best-effort

applications could not be considered at design time, during the definition of the

optimization strategy, but their run-time effects could have an impact on the overall

system behavior that should be considered by the running optimization policy.

6.5.1.2 Run-Time Phenomena

Let us consider a context of a platform where we admit the presence of multiple

applications, running concurrently on the same shared resources, each one having its

own application-specific requirements. In such a context, the efficiency of managing

the available resources is a challenging goal. The mapping of applications onto the

available resources may change during the device life-time, and the current effective

mapping should be based on specific quantitative metrics, e.g., throughput, memory

bandwidth and execution latency. In parallel to the application-specific requirements,

we also experience other non-functional requirements such as power consumption,

energy efficiency and thermal profiles.

The presence of these two types of requirements makes the mapping decision even

more complex when we consider some characteristic run-time phenomena such as

production process-variation, hot-spots generation, resource failures and workload

fluctuation.

138 P. Bellasi et al.

6.5.2 Integration Requirements and Goals

The idea to integrate effectively the DSE techniques within an Operating System

cannot disregard the problems highlighted in the previous section. Moreover, to

provide a general control solution which is acceptable by the Linux community, it is

required to integrate the DSE control with the existing frameworks.

To satisfy all these goals, by providing a flexible and efficient OS integration of

the DSE control techniques, a hierarchical design should be considered. In such a

design, the monitoring, management, control and optimization strategy is operated at

different granularity levels. Each granularity level collects requirements from higher

level, runs a specific optimization policy, and finally identifies a set of constraints

delivered to lower levels.

Such a hierarchical approach requires the development of a new framework, in be-

tween the DSE control policy and the in-kernel existing frameworks, which allows to

collect application requirements and match them against resources availability. This

matching is performed based on a dynamic optimization policy to be developed at

different abstraction levels and according to different optimization goals. Run-time

optimization policies derived from DSE are considered as coarse grained configu-

ration points, related to the specific off-line profiled application. Nevertheless, such

information could be aggregated at run-time with other system requirements in order

to achieve a fine-grained and system-wide optimization.

The main abstraction levels are user-space, kernel-space and device-space. The

user-space level corresponds to the DSE control policy, which can be defined off-

line for the fine tuning of profiled critical applications. An example of those kind of

policies is presented in [14]. The kernel-level control policy is defined by the new

framework, which allows to collect and aggregate requirements from both critical and

best-effort applications. This level is somehow similar to the cross-layer frameworks

presented in Sect. 6.4.2. Finally, the device-space level is related to each pre-existing

subsystem specific control policy like those presented in Sect. 6.4.1.

Regarding the optimization goals, the definition of a new kernel-space frame-

work, which could have a system-wide view on run-time system state and resource

availability, allows more easily to develop a control policy which is aware of run-

time phenomena. This new framework could provide support for optimization goals

which are difficult to define off-line, such as resource usage fairness, application

performance, power consumption and thermal management.

The new RTRM kernel-space framework proposed for the integration of the DSE

defined control policies allows to effectively target two main goals: dynamic resource

partitioning and resource abstraction.

6.5.2.1 Dynamic Resource Partitioning

Each application could be associated to a certain “priority level” related to the differ-

ent impact that the application (either critical or best-effort) could have on the overall

user experience. Thus, the RTRM framework should provide a support to handle both:

6 Run-Time Resource Management at the Operating System Level 139

critical workloads, that have hard requirements in terms of resource usage along with

execution behaviors, and best-effort workloads, for which a penalty either does not

impact on perceived behaviors or produce a tolerated QoS degradation.

Both classes of applications should access the available resources through a single

run-time resource manager framework. Thus, the role of this framework is to account

for available resources, and grant access to these resources to demanding application

according to their priority level. To efficiently manage this scenario, the resources

could be dynamic partitioned, taking into consideration current QoS requirements

and resources availability. This dynamic partitioning will allow to grant resources to

critical workloads while dynamically yield these resources to best-effort workloads

when (and only while) they are not required by critical ones, thus optimize resource

usage and fairness.

6.5.2.2 Resource Abstraction

To suitably tackle the run-time phenomena problem, the RTRM kernel-space frame-

work should handle a decoupled perspective of the resources between the users and

the underlying hardware. The user applications will see virtual resources but they

will not be aware of which of the physical resources are effectively available. At

run-time the RTRM will perform the virtual-to-physical mapping according to the

current objective function (low power, high performance, etc.) and run-time phe-

nomena (process variation, temporal and spatial temperature gradients, hardware

failures and, above all, workload variation).

6.6 Conclusions

The aim of this chapter is to provide the overall picture of the components and

goals of a system-wide resource manager. The need for a Run-Time Resource Man-

ager(RTRM) is dictated by the non-deterministic nature of the complex modern

applications. This need, in addition, poses new challenges in finding out a low-

overhead solution that satisfies all the functional and non-functional requirements.

From a performance and QoS point of view, having multiple applications means

having at any point of time different perspectives of the entire system.

Our current research takes full advantages from the DSE-based design flow devel-

oped within the MULTICUBE project. The coarse grain analysis of the best operating

points to be used at run-time will be improved and integrated in a more comprehen-

sive framework, working at the level of the Operating System, capable to provide a

fine-grain tuning of the system configuration considering a system-wide optimization

perspective. Our research goal is to develop a hybrid centralized/distributed approach,

conveying into a hierarchical strategy for managing power consumption/energy re-

quirements. A hierarchical strategy has the benefits of gathering local control and

centralized optimal solution to the problem. In addition, such a hierarchical control

140 P. Bellasi et al.

will be based on a hardware/software co-design approach, where the solution is based

on hardware and software components.

References

1. Bellasi, P., Fornaciari, W., Siorpaes, D.: A Hierarchical Distributed Control for Power and
Performances Optimization of Embedded Systems, Lecture Notes in Computer Science, vol.
5974. Heidelberg, Springer Berlin, Berlin, Heidelberg (2010). DOI 10.1007/978-3-642-
11950-7.

2. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level
dynamic power management, vol. 8. Kluwer Academic Publishers, Norwell, MA, USA (2002)

3. Brock, B., Rajamani, K.: Dynamic power management for embedded systems. Proceedings on
IEEE International SoC Conference pp. 416–419 (2003). DOI 10.1109/SOC.2003.1241556

4. Cumming, P.: The TI OMAP Platform Approach to SoC, chap. 5. Kluwer Academic Publishers
(2003)

5. Girdwood, L.: Every Microamp is Sacred - A Dynamic Voltage and Current Control Interface
for the Linux Kernel. Tech. rep. (2008)

6. Gross, M.: The PM_QoS framework documentation. Proceedings of Linux Symposium (2008).

7. Hsu, C.H., Kremer, U., Hsiao, M.: Compiler-directed dynamic voltage/frequency scheduling
for energy reduction in microprocessors. In: ISLPED ’01: Proceedings of the 2001 international
symposium on Low power electronics and design, pp. 275–278. ACM, New York, NY, USA
(2001).

8. International Technology Roadmap for Semiconductors, 2009 Edition. Available at
http://www.itrs.net

9. Karger, P.A., Safford, D.R.: I/O for Virtual Machine Monitors: Security and Performance
Issues. IEEE Security & Privacy Magazine 6(5), 16–23 (2008). DOI 10.1109/MSP.2008.119.

10. Keating, M., Flynn, D., Aitken, R., Gibbons, A., Shi, K.: Low Power Methodology Manual:
For System-on-Chip Design. Springer Publishing Company, Incorporated (2007)

11. King, R.: The CPUfreq framework documentation (2001). URL http://lxr.linux.no/
linux+v2.6.34/Documentation/cpu-freq/

12. Lakshmanan, K., Rajkumar, R.: Distributed Resource Kernels: OS Support for End-To-End
Resource Isolation. IEEE (2008). DOI 10.1109/RTAS.2008.37.

13. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative system performance:
computer system analysis using queueing network models. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1984)

14. Mariani, G., Avasare, P., Vanmeerbeeck, G., Ykman-Couvreur, C., Palermo, G., Silvano, C.,
Zaccaria, V.:An industrial design space exploration framework for supporting run-time resource
management on multi-core systems. Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010 pp. 196–201.

15. Murphy, M., Fenn, M., Goasguen, S.: Virtual Organization Clusters. 17th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing pp. 401–408 (2009).
DOI 10.1109/PDP.2009.23.

16. Nollet, V., Verkest, D., Corporaal, H.: A Safari Through the MPSoC Run-Time Management
Jungle. Journal of Signal Processing Systems (2008). DOI 10.1007/s11265-008-0305-4.

17. Nowka, K.J., Carpenter, G.D., Brock, B.C.: The design and application of the PowerPC 405LP
energy-efficient system-on-a-chip. IBM J. Res. Dev. 47(5-6), 631–639 (2003)

18. Pallipadi, V.: cpuidle - Do nothing, efficiently... In: Proceedings of Linux Symposium (2007).

19. Pallipadi, V.: The CPUidle framework (2007).

20. Pallipadi, V., Starikovskiy, A.: The ondemand governor: past, present and future. In:
Proceedings of Linux Symposium, vol. 2, pp. 223-238 (2006).

6 Run-Time Resource Management at the Operating System Level 141

21. Paulin, P.: SoC platforms of the future: challenges and solutions. In: MPSoC Forum 2005
(2005)

22. Saputra, H., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Hu, J.S., Hsu, C.H., Kremer, U.:
Energy-conscious compilation based on voltage scaling. In: LCTES/SCOPES ’02: Proceedings
of the joint conference on Languages, compilers and tools for embedded systems, pp. 2–11.
ACM, New York, NY, USA (2002).

23. Shenoy, P., Hasan, S., Kulkarni, P., Ramamritham, K.: Middleware versus native OS support:
architectural considerations for supporting multimedia applications. IEEE Comput. Soc (2002).
DOI 10.1109/RTTAS.2002.1137378.

24. Unsal, O.S., Koren, I.: System-level power-aware design techniques in real-time systems.
Proceedings of the IEEE 91(7), 1055–1069 (2003). DOI 10.1109/JPROC.2003.814617

25. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems. ACM
Comput. Surv. 37(3), 195–237 (2005). DOI http://doi.acm.org/10.1145/1108956.1108957.

26. Yermalayeu, S., Vervoort, G., Mahadevan, S., Becking, B.: Linux clock management
framework (2007)

27. Zhao, S., Chen, K., Zheng, W.: The Application of Virtual Machines on System Security. IEEE
(2009). DOI 10.1109/ChinaGrid.2009.45.

Part II

Application Domains

Chapter 7

High-Level Modeling and Exploration
of a Powerline Communication Network Based
on System-on-Chip

Marcos Martinez, David Ferruz, Hector Posadas, and Eugenio Villar

Abstract This chapter will present the application of MULTICUBE methodology

to the design of a ITU G.hn compatible component for powerline communication.

Powerline communication is an advanced telecommunication system allowing fast

and reliable transfer of audio, video and data information using the most ubiquitous

transmission system: the power lines. This transmission line is used to exchange in-

formation between different equipments connected to the network by using advanced

coding techniques like such as Orthogonal Frequency Division Multiplexing. The

starting point of the analysis is a high level SystemC-based virtual platform where

we will study the effects of the variation of a pre-defined set of design parameters

on a set of pre-defined metrics. This automatic analysis will drive the design choices

in order to build an optimized industrial system. We will show that the SystemC-

based virtual platform combined with the MULTICUBE design space exploration

framework can save up to 80% of designer work time while achieving better results

in terms of performance.

7.1 Introduction

In this chapter we will focus on the application of MULTICUBE methodology to a

DS2 use case in order to stress the proposed design exploration flow in a real industrial

environment. This use case is based on the high-level modeling and analysis of an

in-home transmission system over powerline infrastructure based on the novel ITU-

G.hn standard. The model will be analyzed in order to optimize Quality of Service

and design parameters. The resulting automatic analysis flow will be compared to

current semi-automatic approaches based on scripting techniques.

The chosen use case shows the integration of MULTICUBE flow with a high

level modeling platform written in SystemC with TLM-based communications where

H. Posadas (�)

University of Cantabria, Santander, Spain

e-mail: posadash@teisa.unican.es

C. Silvano (eds.), Multi-objective Design Space Exploration of 145
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_7, © Springer Science+Business Media, LLC 2011

146 M. Martinez et al.

several parameters can be modified in order to optimize the performance of the overall

system and different design metrics.

The physical links between the different nodes of a powerline network present

different characteristics depending on factors like distance between the nodes, elec-

trical appliances connected to the network, quality of the infrastructure, etc. This

is translated to the fact that the transmission speed, latency and QoS can depend

heavily on the route selected to transmit information between two nodes.

Many of the design parameters of the system have to be dimensioned taking

into account the application, the physical effects, noise, etc. This requires many

simulations to be run in order to find the best value for each of these parameters.

However, these simulations require a long real time in order to make appear some of

the effects we want to investigate. This way, it is not possible to work at RTL level

and thus, the use of high level models is mandatory.

This virtual platform approach has been used in past company’s designs in a semi-

automatic optimization flow but, in this study, we will improve the system by applying

MULTICUBE fully automatic techniques. This way, we will be able to compare the

results that are obtained in both approaches in terms of performance (how good the

chosen metrics are) and process optimization (how fast we can converge towards an

optimum solution) while minimizing the human intervention in the process.

For that, the use case provided by DS2 will be run through MULTICUBE flow

described in Chap. 1. Chap. 2 introduced the use of MULTICUBE-SCoPE plug-in

from the University of Cantabria for modeling and integration of the platform. This

plug-in will be used in DS2 use case along with modeFRONTIER DSE tool (from

ESTECO) in order to optimize the above-mentioned parameters.

7.2 Design Case Study: High Level Modeling of a Powerline

Network Based on SoC

7.2.1 Application Description

7.2.1.1 Configuration of the System Components

Design of Systems on Silicon (DS2) is a fabless silicon design house and one of

the leading suppliers of silicon and software for Power line Communications (PLC).

Founded in 1998, DS2 produced first time working silicon and is currently marketing

chipsets with performance rates of up to 200 Mbps. DS2 technology converts the

existing electricity grid and domestic power lines into a high-speed communication

network supporting voice, video and data services, at low cost. DS2 technology not

only delivers high performance but it is also flexible and efficient supporting co-

existence between the PLC access and LAN markets. In the framework of the design

space exploration project MULTICUBE, as an industrial test case, DS2 has used a

complete model of its next generation Powerline communication system (DS2 assets

and technologies were recently bought by Marvell Technology Group).

7 High-Level Modeling and Exploration of a Powerline Communication 147

a b

Video +

Data

 Server

Powerline

modem

Powerline

Network

Powerline

modem

Powerline

modem

Laptop

IPTV

STB TV

Data Traffic

IPTV Traffic

Video distribution In-home, internal server, no external connection.

Fig. 7.1 Example of a typical PLC application (a) and PLC modem (b)

PLC stands for “Powerline Communication”, an advanced telecommunications

system allowing fast and reliable transfer of audio, video and data information using

the most ubiquitous transmission system: the power lines (Fig. 7.1). This transmis-

sion line is used to exchange information between different equipment connected to

the network using the most advanced coding techniques like OFDM (“Orthogonal

Frequency Division Multiplexing”).

PLC technology has different flavors and implementations, depending of the ap-

plication domain where it is used. For each of these domains, adapted PLC equipment

needs to be designed and deployed. The three most important applications domains

nowadays are:

• Automatic Meter Reading (AMR) / Automatic Metering Infrastructure

(AMI): These systems are used by the electrical utilities to monitor the real-time

evolution of the electrical demand in order to manage the electrical distribution

network in an efficient way. As the number of data to be transmitted is low, usually

narrow-band PLC systems are used in this context.

• Broadband Access PLC: Use of the electrical grid to connect the Internet back-

bone to the end user in order to provide broadband information through the

electrical wiring. This technology is mainly used by electrical utilities to pro-

vide cheap Internet access to their customers and for core applications for their

own telecommunications needs. Finally, this technology is also being deployed

in order to extend other access technologies (mainly fibers) inside buildings.

• In-Home PLC: Use of the domestic electrical grid to connect different au-

dio/video/data home equipment with a high speed, high quality link (up to

200 Mbps at the physical layer). The main use of this technology is the high qual-

ity Audio/Video distribution within the home for IPTV extensions (received by

any access technology (xDSL, cable, xPON, PLC, . . .) and home media servers.

In early 2010, a new technology has been standardized under ITU umbrella. This

new standard (“ITU G.hn”) allows the use of different physical media (powerline,

148 M. Martinez et al.

coaxial, phone line) over which we can achieve multiple parallel high definition video

transmissions through the houses. For each of the physical layers, an optimized set

of parameters will be used, demonstrating the necessity of a powerful optimization

tool for fine tuning the chipset for each application. The powerline use case described

in this chapter is based on a high level description of such new G.hn standard.

In MULTICUBE project, DS2 makes use of a virtual platform that describes at

a high level of abstraction both the hardware and software components of a G.hn

system. This platform, named STORM, models such a new system in high level

SystemC-TLM and making use of SCoPE technology for HW/SW integration. In

this model, all the parameters can be configured in order to stress them and find the

most suitable combination.

7.2.1.2 Description of the Use Case

The high level model of an “ITU G.hn” system used as test case implements a network

of several powerline nodes connected through a powerline channel. These PLC nodes

include the different layers that are described in the standard, focusing specially on

the MAC layer, where the main design decisions have to be taken.

The model is adapted to the future hardware platform that will be used in the real

platform-based ASIC implementation where an embedded microprocessor will run

a PLC SW stack code that will make use of different hardware resources, accessible

through a bus system. A simplified (with only four nodes) high level view of such a

platform is shown in Fig. 7.2 and can be described as follows:

• Ethernet traffic generators & monitors: These modules generate UDP/TCP

flows that will be injected through the Ethernet port of the corresponding PLC

En

Flow

En

Flow

En

Flow
En

Flow

En

Flow

En

Moni-

tor

En

Moni-

tor

En

Moni-

tor

En

Moni-

tor

En

Moni-

tor

En

Row

PIC NODE

SW Subsystem

Application SW

Component Component Component

ComponentComponent

Hds

OS model

SCoPE

HW Subsystem

Bus Infrastructure subsystem

HW model HW model HW model

PLC model

HW model

PLC Node PLC Node

En

Moni-

tor

Fig. 7.2 PLC system high level description

7 High-Level Modeling and Exploration of a Powerline Communication 149

node in order to model real traffic. Each generator is coupled with a traffic monitor.

The number and characteristics (UDP/TCP, traffic shape, etc.) can be configured

in the simulation.

• PLC channel: This module models the behavior of a real PLC channel, intro-

ducing link characteristics (noise, etc.) to each of the logic connections between

the different nodes of the system. The characteristics of the PLC channel can be

configured in the simulation.

• PLC Nodes: This module represents the part of the system that will be built over

a DS2 chipset. It is divided in the following components:

– HW models: High level model of hardware blocks in the final system. Each of

the modules is written in C and presents SystemC-TLM ports to be connected

to the bus and the rest of the modules. The model respects the timings of the

final implementation and has been annotated with important information for

the simulation (power consumption, resources, etc.)

– Bus interconnection infrastructure: SystemC/TLM model of the bus that will

be present within DS2’s digital circuit

– HdS: Hardware-dependent software is part of the overall software. This block

represents the lower levels of the software, making the interface with hardware

resources. As we can work at different levels of abstraction for the HW models

(TLM to RTL). The HdS has to be updated for each of the levels of abstraction

we are working with (register-level when working with RTL and transaction

level when working in SystemC). In the case of MULTICUBE, a simplified

version of the HdS is used since we only work at system level

– OS Model / SCoPE: Through the use of SCoPE tool, we can model our real time

Operating System (OS) in SystemC-TLM and make use of it in our platform.

This way, we can run application software directly in the platform without

having to adapt it and without making use of a slow ISS for the microprocessor

behavior. SCoPE also introduces an estimation of the timings of the software

and synchronizes SW timings and HW timings. MULTICUBE SCoPE plug-in

extends SCoPE functionalities that we will see later on.

– Application SW: Real application SW that will be run over the virtual platform,

the FPGA debugging prototypes and final ASIC products. In MULTICUBE,

the SW will be frozen

While other use cases of the project are focused on applications that look for the

highest computing power with the available resources, powerline use case is centered

in optimizing a medium-end platform that run a control-oriented complex protocol.

The overall goal is to optimize the cost of the overall solution while maintaining the

necessary performance for the specific application but with minimal changes in the

platform processing power. The main differences with the other use cases presented

in MULTICUBE project are listed in Table 7.1.

150 M. Martinez et al.

Table 7.1 Particularities of DS2 use case

Particularity Effect on the analysis

The platform is less computing-intensive than
the other use cases defined within the project

The metrics to analyze are different from the
other use case

The focus of the optimization phase is put on
cost-effectiveness of the final solution and
not really on its final performance

The metrics are more difficult to measure since
they can rely on subjective analysis

The structure of the use case is data flow
oriented. The optimization is done over
the control of this data flow

The simulation results rely strongly on the data
flow contents and behavior

Many parameters of the platform are fixed by
the standard or by legacy hardware

Less freedom to choose some of the parameters

The optimization procedure was already
semi-automatic in past designs

The evaluation procedure is different from
other use cases

7.2.2 Platform Description

7.2.2.1 STORM Platform Description

One of the applications that will be used for testing the new developments in MUL-

TICUBE will be a communication system based on the novel ITU-T G.hn wired

networking standard ratified early 2010. This effort is aimed to provide support for

networking over power lines, phone lines and coaxial cables using the same standard

and similar components. For each of the physical layers, an optimized set of param-

eters will be used, demonstrating the necessity of a powerful optimization tool for

fine tuning the chipset for each application. In MULTICUBE project, DS2 makes use

of a virtual platform that describes at a high level of abstraction both the hardware

and software components of a G.hn system. This platform, named STORM, models

such a new system in high level SystemC-TLM making use of SCoPE technology

for HW/SW integration. In this model, all the parameters can be configured in order

to stress them and find the most suitable combination.

The platform created is a fundamental step in the process of creating a new chipset

for powerline communication following ITU G.hn standard. In this sense, the goal

of this platform is multiple, considering the needs of all the persons that are using it.

These needs are listed in Table 7.2.

Each of these actors are looking for a different result from the platform opti-

mization, however, each of them can make use of the methodologies advancements

provided by MULTICUBE. In any case, for the purposes of this demonstration, we

only focus on the system designer’s perspective since they will benefit the most with

the metric optimization procedures provided by the project.

As mentioned before, G.hn layers are specified in the STORM platform with a

SystemC-TLM. The following rules have been followed in order to maximize the

7 High-Level Modeling and Exploration of a Powerline Communication 151

Table 7.2 Actors participating to virtual platform analysis

Actor Use Goal

SW designers Develop application Software over the
virtual platform instead of waiting for
the FPGA prototype or the ASIC
design

Speed up design process

HW designers Fine tune the hardware sub-system and
the interactions between the hardware
and the software. Proceed with the
refinement process

Optimize HW blocks and the interface
between HW and SW

System
designers

Explore architectural approaches and
freeze design parameters

Obtain the optimum design and
architecture

reuse of the different components, increase the flexibility of the platform and to

speed-up the learning-curve of the model.

• All the communication interfaces of the components of the model are described

in high level SystemC using TLM libraries

• All the behavior of the components of the model are described in plain C code in

order to facilitate HW/SW partitioning

• TLM libraries have been tuned by DS2 in order to monitor transactions, facilitate

the reuse of modules and reduce the learning curve of the model

• The platform has been designed to be highly configurable and in order to reuse

as many blocks as possible

In order to stress as many parameters as possible and to cope with all possible

situations, the current version of the platform is highly configurable by itself through

the use of proprietary ASCII configuration files that can modify the behavior of

the main components of the system, independently of their hardware or software

nature. In MULTICUBE flow, some of these parameters are overwritten directly by

MULTICUBE configuration files in order to automatically control the optimization

process. In the use case, and in order to make comparisons possible, we have modified

the platform to run either in stand-alone mode (using only ASCII configuration files

as input) or in MULTICUBE mode using the project configuration files in addition

to the ASCII configuration files.

STORM platform has been designed with the objective to be as general, flexible

and open as possible and do not rely on commercial tools for running. In this sense,

SystemC and TLM were chosen as the backbone of the platform but, thanks to the

flexibility of the platform, other languages (VHDL, Verilog, SystemVerilog, C, C++,

SCV, etc.) can be added when needed to investigate particular aspects of the flow or

different abstraction levels.

For the purposes of MULTICUBE project, we will focus on the system level for

optimizing the system parameters of the platform. This way, only SystemC-TLM

components have been considered and no RTL code has been included. How-

ever, it is interesting to mention that the whole process can be also run over other

152 M. Martinez et al.

implementations of the platform including low-level refined components written in

Verilog.

Thus, in addition to MULTICUBE tools that will be mentioned later in this study,

the relevant tools used in the platform and that have an impact on this study are the

following:

• SCoPE: SCoPE tool allows to model Real Time Operating Systems (RTOS)

into TLM and to describe the interface between hardware and software. Within

STORM, SCoPE is aimed to allow application SW and MicroC-OS II operating

system over the virtual platform

• DS2_SC: This library is the basis of the platform and contains both introspective

features and communication features. MULTICUBE interface (SCoPE plug-in)

makes use of the API provided by the library in order to inject the parameters

defined by MULTICUBE configuration file in the platform

7.2.2.2 Application of MULTICUBE Tools in the Platform

Figure 7.3 describes the interactions between the different elements that compose

the flow.

The three main entities that interact in DS2 use case are:

• STORM platform: Model of an ITU G.hn MAC level already described in

previous sections

• MULTICUBE SCoPE: Extension of SCoPE tool that has a double objective:

Describe the platform from an XML entry point and implement the interface

between the platform and MULTICUBE exploration tools

• modeFRONTIER: design exploration and analysis tool that controls the whole

process

In the following sections we will comment in detail on the role and particularities of

these tools.

Logs

Application SW

system_config.xml

output.xml

M3

SCoPE

PLUGIN

modeFrontier

STORM

SCoPE

Fig. 7.3 Interactions between the different use case actors

7 High-Level Modeling and Exploration of a Powerline Communication 153

7.2.2.3 modeFRONTIER: Analysis and Exploration Tool

modeFRONTIER tool from ESTECO acts as the control entity of the process.

Through the MULTICUBE-defined interface, it injects chosen combinations of

parameters in the platform. MULTICUBE SCoPE plug-in receives these combi-

nations and modifies the platform behavior. The results are transmitted back to

modeFRONTIER through another MULTICUBE-defined interface.

In order to define the whole process, modeFRONTIER needs to be informed about

the parameters and metrics that are being studied through a MULTICUBE-defined

XML file. In this use case, we have used the following file:

<?xml version="1.0" encoding="UTF-8"?>

<design_space xmlns="http://www.multicube.eu/" version="1.3">

<simulator>

<simulator_executable path="/local/projects/External/

Multi3/UseCase/v6_0/test/system/test1/run.sh" />

</simulator>

<parameters>

<parameter name="LOSS_value" description="% loss of

packets" type="integer" min="0" max="10000" step="50" />

<parameter name="MAX_CELLS_PKT_value" description="MAX

CELL PKT" type="integer" min="64" max="4096" step="32"/>

<parameter name="MAX_CELLS_FEC_value" description="MAX

CELL FEC" type="integer" min="64" max="4096" step="32"/>

<parameter name="FEC_LENGTH_value" description="FEC

LENGTH" type="integer" min="120" max="540" step="420"/>

<parameter name="ACK_value" description="ACK ACTIVE"

type="integer" min="0" max="1" step="1" />

</parameters>

<rules>

</rules>

<system_metrics>

<system_metric name="Power_Consumption" type="float"

unit="W"/>

<system_metric name="xput0_1" type="float"

unit="Bit/s"/>

<system_metric name="xput1_0" type="float"

unit="Bit/s"/>

<system_metric name="MaxJitter0_1" type="float"

unit="s" desired="small"/>

<system_metric name="LatencyMin0_1" type="float"

unit="s" desired="small"/>

<system_metric name="LatencyMax0_1" type="float"

unit="s" desired="small"/>

<system_metric name="LatencyMean0_1" type="float"

unit="s" desired="small"/>

<system_metric name="MaxJitter1_0" type="float"

unit="s" desired="small"/>

<system_metric name="LatencyMax1_0" type="float"

unit="s" desired="small"/>

<system_metric name="LatencyMin1_0" type="float"

unit="s" desired="small"/>

<system_metric name="LatencyMean1_0" type="float"

154 M. Martinez et al.

unit="s" desired="small"/>

</system_metrics>

</design_space>

All these parameters and metrics will be further explained in following sections of

this study.

As we can see in the dse.xml file, we explicitly specify to modeFRONTIER which

is the command that has to be launched by the tool in order to run a single simulation.

If we take a closer look to this file, we have:

#!

echo "---> Running simulation"

$EXAMPLE_PATH/storm -xml $EXAMPLE_PATH/platform.xml $1 \

-xmd $EXAMPLE_PATH/metrics.xml $2 \

mv output.xml system_metrics.xml

In this bash shell we can identify three types of information passed to the platform:

• The configuration files from the platform itself (which are implicit in the storm

executable)

• The configuration files that drive the behavior of M3SCoPE (platform.xml and

metrics.xml) and that are fixed for all the simulations

• The configuration files that are fixed by modeFRONTIER ($1 and $2). The first

parameter is the system configuration file (in this case system_config.xml) and the

name of the output file to be used by the platform (in this case system_metrics.xml)

The last line of the bash file makes only some adaptation in the output XML file to

be read by modeFRONTIER.

7.2.2.4 M3-SCoPE: Interface and Description Tool

Once the executable is run, we have still to inject the parameters extracted from

the interface file into the internals of the platform. This is done through the use of

MULTICUBE-SCoPE tool developed within the project. This tool has been built

as a plug-in of the above-mentioned tool SCoPE and its modeling capabilities are

described in Chap. 2 of the book.

M3-SCoPE needs different configuration files to run:

• platform.xml: This file describes in a proprietary format the parameters that have

to be read from the interface file created by modeFRONTIER. It may be used also

to describe the topology of the top level. However, for the purpose of this test, the

architectural description is already hard coded in the SystemC virtual platform

• metric.xml: This file describes the output metrics that M3-SCoPE will extract

at the end of each simulation and is included in the interface file that will be

sent towards modeFRONTIER. It is interesting to note that for the purposes of

this use case, the output metrics are either generated by M3-SCoPE or directly

created by the platform itself (using DS2_SC libraries). In the end, both results

are concatenated and passed to modeFRONTIER

7 High-Level Modeling and Exploration of a Powerline Communication 155

Fig. 7.4 Injection of
parameters in the virtual
platform

set_parameter (....)

I top

I PktQueueManager

I LLC

I Node[0]

MAX_CELLS

Table 7.3 Injection of parameters in the platform

cout < < “MULTI3 : Creating SCoPE XML plugin...” < < endl;
int status = uc_xml_init_plugin(argc, argv);

Get the parameters value using
MULTICUBE-SCoPE

I_top->I_Node[0]->I_LLC->i_PKTQueueManager-
>set_parameter(“MAX_CELLS”, ss_MAX_CELLS_PKT.str());

Use DS2_SC’s API to inject
parameter in the platform

Through MULTICUBE-SCoPE the platform first obtains its parameters to be read.

Then, the plug-in reads the configuration file from modeFRONTIER and associates

a value to the parameter.

Next step is then to use DS2_SC APIs in order to modify the value of the internals

of the platform as shown in Fig. 7.4.

To do so, the lines of code displayed in Table 7.3 are used.

Once a simulation finishes, the platform generates an XML file that is given as a

feedback to the modeFRONTIER tool. An example of such a file is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<simulator_output_interface xmlns="http://www.multicube.eu/"

version="1.3">

<system_metric name="Power_Consumption"

value="1.752689280e-01"/>

<system_metric name="xput0_1" value="4.05376e+07"/>

<system_metric name="LatencyMin0_1" value="822.944"/>

<system_metric name="LatencyMax0_1" value="7107.76"/>

<system_metric name="LatencyMean0_1" value="22104.8"/>

<system_metric name="MaxJitter0_1" value="6284.82"/>

<system_metric name="xput1_0" value="810158"/>

<system_metric name="LatencyMin1_0" value="4114.55"/>

<system_metric name="LatencyMax1_0" value="11745.5"/>

<system_metric name="LatencyMean1_0" value="17720"/>

<system_metric name="MaxJitter1_0" value="7630.98"/>

</simulator_output_interface>

Finally, the last step of the process is to analyze the results thanks to the analysis

facilities provided by modeFRONTIER. In later sections of this study we will show

the main results of the process.

156 M. Martinez et al.

7.2.2.5 Description of Parameters and Metrics

The use case platform has been configured in order to continuously transmit IP flows

between two of the nodes of the system (which is composed of up to 16 PLC nodes).

The configuration of this flow is the following:

• Simulation characteristics

– Simulation length is 0.5 s of real time

– The parameters that are not studied are kept constant and at a “normal” value

• Topology of the network

– Sixteen Nodes are active during the whole simulation (all the nodes are running

and listening)

– The communication is done only between two of the nodes of the system: Node

0 and Node 1

– Channel noise can be modified by MULTICUBE tools to be between 0 and

100% probability of loss

• Traffic shape

– Traffic type is multimedia (MPEG) generated by the platform traffic generators

– Traffic is monitored and the quality of the link is continuously checked

– The communication is bidirectional

– All the flows are UDP-based

– Flow rates are kept constant. No peaks in the flow have been configured

– The IP flow we inject in the network from Node 0 to Node 1 is 40 Mbps

– The IP flow we inject in the network from Node 1 to Node 0 is 1 Mbps

• Quality of Service

– No prioritization of traffic between nodes

– No prioritization of flows within a single node

With this setup, we have defined a set of parameters that have been analyzed during

this use case and are presented in Table 7.4.

It is interesting to note that four out of these five parameters are design parameters

while the fifth one (LOSS) is an ambient parameter. This means that while the first

four parameters have to be optimized, the fifth one is there to put the use case under

different situations for the analysis.

All these parameters are related to the main concepts we want to investigate in

the design: Memory length and QoS capabilities. None of these concepts is more

important than the other and these concepts will depend on the final application of the

integrated circuit (mainly because the optimization process was long and thus, there

was only time to optimize one of them). Till now, the procedure was to guarantee

a correct performance for all concepts. Thanks to MULTICUBE processes and the

automation of the procedure we can envision to design more adapted ICs for each

situation.

In addition to the parameters, a set of metrics have been used to evaluate the

performance of the system under different running conditions. These metrics are

presented in Table 7.5.

7 High-Level Modeling and Exploration of a Powerline Communication 157

Table 7.4 Design parameters analyzed in the use case

Parameter Value Unit Related
concept

Description

MAX_CELL (PKT) 64–4096 Cells Memory
(queue length)

Maximum number of
packets that are stored
in the modem internal
memory

MAX_CELL (FEC) 64–4096 Cells Memory
(queue length)

Maximum number of FEC
values that are stored in
the modem internal
memory

ACK ON/OFF ON/OFF Boolean QoS Policy Packet Acknowledgement
protocol activated or not

PHY_BLOCK_SIZE 120/540 Bytes Memory This parameter is called
FEC_LENGTH_value in
the dse.xml and describes
the length of the FEC
block in the physical
packet sent through
powerline channel

LOSS 0–100 % Channel
characteristics

Percentage of lost packets
while sent through the
physical medium

Table 7.5 Design metrics analyzed in the use case

Parameter Value Related Description
concept

xPut (Node 0 → Node 1) Bits/s Flow
bandwidth

Measured throughput between Node 0
and Node 1

xPut (Node 1 → Node 0) Bits/s Flow
bandwidth

Measured throughput between Node 1
and Node 0

Max latency
(Node 0 → Node 1)

ms QoS Maximum latency measured in the Node
0 to Node 1 transmission

Min latency
(Node 0 → Node 1)

ms QoS Minimum latency measured in the Node
0 to Node 1 transmission

Mean latency
(Node 0 → Node 1)

ms QoS Average latency measured in the Node
0 to Node 1 transmission

Max latency
(Node 1 → Node 0)

ms QoS Maximum latency measured in the Node
1 to Node 0 transmission

Min latency
(Node 1 → Node 0)

ms QoS Minimum latency measured in the
Node 1 to Node 0 transmission

Mean latency
(Node 1 → Node)

ms QoS Average latency measured in the
Node 1 to Node 0 transmission

The parameters are analyzed for the two directions of the traffic: from Node 0

to Node 1 and from Node 1 to Node 0 since no prioritization is done. Thanks to

MULTICUBE flow, we will try to minimize latencies while maintaining the

throughput and with as less resources as possible.

158 M. Martinez et al.

7.2.3 DSE Assessment Process

The general idea is to make use of the configuration files provided in STORM platform

and that parametrize almost all the possible parameters of the system. As shown in

Fig. 7.5, a set of parameters are selected to be optimized from the whole number of

possible parameters. In the same sense, a set of metrics is selected for the analysis.

These parameters and metrics are the ones presented in precedent sections of this

study.

The study presented in this chapter compares two optimization procedures that

can be used in order to freeze the design parameters: the traditional semi-automatic

procedure normally used in DS2 and the MULTICUBE optimization flow proposed

in the project. Both approaches will be presented and commented in the following

sections and are based on the common optimization flow that was defined by all the

partners in MULTICUBE (Fig. 7.6) as described in Chap. 1.

With this starting point, the optimization procedure has been adapted to DS2

specific context, obtaining the procedure shown in Fig. 7.7.

Configuration files

Parameter 1

Parameter 2

Parameter

Parameter N

Virtual platform

Output files

Metric 1

Metric 2

Metric M

Metric ...

Fig. 7.5 Relationship between parameters and metrics

Design

Space
Setup

Setup

Tao

Automatic Optimization

Manual Optimization

Tmo

Pareto curve

Solutions set

Fig. 7.6 Comparison between manual and automatic optimization

7 High-Level Modeling and Exploration of a Powerline Communication 159

A
u
to

m
a
ti
c
 o

p
ti
m

iz
a
ti
o
n
 f
lo

w

M
o

d
e

l
s

e
tu

p

D
e

s
ig

n

s
p

a
c

e

S
im

A
u

to
m

a
ti

c
 o

v
e
rh

e
a
d

 (
s
te

p
1
)

s
e
m

i-
a
u

to
m

a
ti

c
 o

v
e
rh

e
a
d

s
e
m

i-
a
u

to
m

a
ti

c
 o

v
e

rh
e

a
d

S
e
m

i-
a
u

to
m

a
ti

c
 o

p
ti

m
iz

a
ti

o
n

 f
lo

w

M
o

d
e

l
s

e
tu

p
s
te

p
 1

s
te

p
 2

s
te

p
 3

s
te

p
 5

s
te

p
 6

S
im

S
im

S
te

p
 7

S
te

p
 4

S
im

S
te

p
 8

S
li

m
S

li
m

S
li

m

S
im

S
im

S
im

s
te

p
 N

2

F
ig

.
7

.7
O

p
ti

m
iz

at
io

n
p

ro
ce

d
u

re
s

fo
ll

o
w

ed
in

th
e

p
ro

je
ct

b
y

D
S

2

160 M. Martinez et al.

Table 7.6 Semi-automated
procedure steps

STEP Description

Step 0 Build a configurable platform using ASCII files
(DS2 proprietary lan-guage) to configure the
platform. Prepare the platform to overwrite some
of these configurations by MULTICUBE own
tools

Step 1’ Automated parameter update procedure and metric
extraction

Step 2’ Final analysis of the solutions in order to select the
optimized combination of parameters

• Semi-automated procedure (or “traditional procedure”). In order to optimize

different chipsets, DS2 has developed an in-house semi-automated procedure.

This procedure is possible thanks to the high flexibility and configurability of the

STORM platform. Using this platform, the optimization procedure is performed

by following the steps shown in Table 7.6.

• Automated procedure (MULTICUBE flow). MULTICUBE procedure has been

applied to DS2 use case in order to optimize the above mentioned parameters.

As a consequence, the number of steps have been reduced significantly. The

resulting flow is presented in Table 7.7. The procedure has been run on a dual-

core desktop PC with Ubuntu 8.04 OS for 36 h under the supervision of a team of

two engineers. Thanks to MULTICUBE automation, up to 534 experiments have

been done without human intervention. In order to achieve this result we have

setup the experiments using the elements of the modeFRONTIER workflow (Fig.

7.8). In this workflow, we have selected the points to analyze in two ways: one by

choosing an initial Design of Experiments (DoE) composed of a random sampling

and another by using MOGA-II algorithm (Multi Object Generic Algorithm) as

Table 7.7 Automated procedures steps

STEP Description

Step 0 Build a configurable platform using ASCII files (DS2 proprietary lan-guage) to
configure the platform

Step 1 Select a subset of 2–3 parameters and 2–3 metrics
Step 2 For the non-selected metrics, fix the rules of what are the accepted boundaries
Step 3 Write automation scripts to generate all selected combinations and to filter the

requested metrics from the output files and facilitate manual in-spection
Step 4 Run simulations for all possible selected combinations with the automated script and

automatically extract metrics from the simulation results
Step 5 Manual inspection of metrics. Selection of a set of the parameter com-bination that

seems to be the better adapted. Selection is done through designer’s experience
Step 6 Generate new platforms with the selected combination of parameters and corner cases

for the non-selected parameters
Step 7 Run simulations with the new set of platforms
Step 8 Verify that the ALL the metrics meet the rules specified in step 2. If not, Investigate

causes. If the cause can be corrected by changing one of the selected parameters
select a new combination in step 5. If the cause cannot be corrected by changing one
of the selected parameters Change the selected combination of parameters (include
new ones) and come back to step 1

7 High-Level Modeling and Exploration of a Powerline Communication 161

F
ig

.
7

.8
m

o
d

eF
R

O
N

T
IE

R
w

o
rk

fl
o
w

162 M. Martinez et al.

F
ig

.
7

.9
P

o
w

er
li

n
e

u
se

ca
se

im
p

o
rt

ed
in

m
o

d
eF

R
O

N
T

IE
R

7 High-Level Modeling and Exploration of a Powerline Communication 163

optimization strategy. Once the optimization flow is run, we can see the results of

the different experiments implemented (Fig. 7.9). The first result is that out of all

534 designs, nine designs have failed because they drove the platform to corner

cases that made the virtual platform to an unstable state. This unforeseen result

is quite interesting since it demonstrates that the flow will also flag any possible

issues in the platform itself. Moreover, regarding the 525 completed experiments,

it is interesting to note that the analysis has helped the design team in two different

processes: to demonstrate the coherency of the results and to find the best point

for the design parameters.

7.2.3.1 Demonstrate the Coherency of the Results

The first thing to be analyzed with the procedure followed in MULTICUBE is the

coherency of the obtained results taking into account the real industrial application

and the expected theoretical results. The best way to proceed in the case of a powerline

multimedia transmission is to consider the diagrams of the loss in the path versus

the throughput and latency in each of the directions of the communication as shown

in Figs. 7.10–7.13.

Fig. 7.10 Loss vs throughput, from Node 0 to Node 1

164 M. Martinez et al.

Fig. 7.11 Loss vs throughput, from Node 1 to Node 0

L
a
te

n
c
y
M

e
a
n
_
1

Fig. 7.12 Loss vs Mean Latency, from Node 0 to Node 1

7 High-Level Modeling and Exploration of a Powerline Communication 165

154826.8

144826.8

134826.8

124826.8

114826.8

104826.8

94826.8

84826.8

74826.8

64826.8

54826.8

44826.8

34826.8

24826.8

14826.8
0 2000 4000 6000 8000

LOSS_value

L
a
te

n
c
y
M

e
a
n
1
_
0

Regression Line

Feasible

Feasible

Unfeasible

Unfeasible

Error

Error

Virtual

Real

Fig. 7.13 Loss vs Mean Latency, from Node 1 to Node 0

As we can see in Fig. 7.10, for a UDP application flow of 40 Mbps, the physical

flow is close to the application flow for low loss rates (with a small overhead). From

a loss rate of 20% on, we see that the transmission conditions start to degrade and

this is reflected in the fact that the physical throughput has to be increased in order to

cope with retransmissions of data. When the loss rate is bigger than 50%–60% even

the retransmissions and error corrections are not enough to keep the UDP throughput

and packets start to get lost.

In the opposite direction from Node 1 to Node 0 (Fig. 7.11), since the application

throughput is very low (around 1 Mbps) the impact of data loss is reduced.

Figure 7.12 shows how the average latency obtained in the communication from

Node 0 to Node 1 is kept constant with low loss rates. When loss rate achieves a

significant value (35%), we start to see an increasing of the average latency making

the multimedia transmission impossible.

In the opposite direction from Node 1 to Node 0, Fig. 7.13 shows that the average

measured latency is kept almost constant for low loss rates, becoming a problem as

soon as the channel degrades. These results are similar to Fig. 7.12.

As we can see, all the obtained figures are completely coherent with the expected

behavior of the system in real deployments based on previous generations of chipsets

and the theoretical analysis of the algorithms used. These figures can help us to

conclude some interesting data like the fact that the system can have a correct behavior

even under poor transmission conditions with a 40% of loss of packet. It is interesting

166 M. Martinez et al.

to note that this result that we have found in a theoretical approach has also been

tested on real powerline systems in field trials.

7.2.3.2 Find the Optimum Point for the Design Parameters

Once the correctness of the design has been verified using MULTICUBE proce-

dure, we can proceed to analyze the different results obtained through the automatic

simulations in order to find the correct optimum point for the design parameters

under study. As we mentioned at the beginning of this study, the objective is to

find the correct point where latency is minimized (the transmission of a UDP flow

takes minimum time), memory is minimized (since memory is expensive in an em-

bedded system) and throughput is maintained (no application data loss). In order

to achieve this ambitious objective, we will go through the database provided by

modeFRONTIER and analyze the different figures (Figs. 7.14–7.16).

284246.9

264246.9

244246.9

224246.9

204246.9

184246.9

164246.9

144246.9

124246.9

104246.9

84246.9

64246.9

44246.9

24246.9

4246.9

L
a
te

n
c
y
M

e
a
n
0
_
1

64 1064 2064 3064 4064

Real

Feasible
Unfeasible

Error

Feasible
Unfeasible

Regression Line

Error

Virtual

MAX_CELLS_FEC_value

Fig. 7.14 MAX_CELLS_FEC vs Mean Latency, from Node 0 to Node 1

7 High-Level Modeling and Exploration of a Powerline Communication 167

40000000.0

30000000.0

20000000.0

10000000.0

0.0
64 1064 2064 3064 4064

MAX_CELLS_FEC_value

x
p
u
to

_
1

Real

Virtual

Feasible
Unfeasible
Error

Feasible
Unfeasible
Error

Regression Line

Fig. 7.15 MAX_CELLS_FEC vs Throughput, from Node 0 to Node 1

40000000.0

30000000.0

20000000.0

10000000.0

x
p
u
t0

_
1

0.0
64 1064 2064 3064 4064

MAX_CELLS_PKT_value

Fig. 7.16 MAX_CELLS_PKT vs Throughput, from Node 0 to Node 1

168 M. Martinez et al.

In all the three figures, we can see that the points that guarantee minimum average

latency and minimum memory (translated in number of cells used in packet and FEC

memories), while maintaining the pre-set UDP throughput, are reached at around

1,064 cells for PKT and FEC memories. However, a more in depth study with

modeFRONTIER analysis tools is needed for deriving the exact figures.

7.2.3.3 Objective Assessment

From an objective point of view, after the assessment of the procedure proposed

in MULTICUBE project for system optimization, the overall conclusion is that the

proposed flow can save up to a 80% of designer time while achieving better results

in terms of performance since much more simulations can be run and analyzed

following this flow obtaining 10 times more possible combinations than with the

semi-automatic design flow. Also, with just one run we can already identify the

optimum for the design parameters. A second or third iteration would fine tune the

design in order to obtain the final parameters.

As an example, we have run a test case where we have tried to optimize the

parameters described in previous sections and we have measured the values presented

Fig. 7.17 (an estimation based on designer’s inputs has been made).

As we can clearly see from Fig. 7.17, the automated procedure provides:

• Higher number of points: The number of points that can be analyzed by follow-

ing MULTICUBE methodology is much higher than the ones obtained by using

the semi-automated procedure

• Better quality of the results: The quality of the results obtained through the use of

the automated procedure is higher since modeFRONTIER guarantees the correct

Fig. 7.17 Assessment procedures comparison (semi-automated vs automated)

7 High-Level Modeling and Exploration of a Powerline Communication 169

generation of experiments in order to maximize/minimize the metrics following

user guidelines

• Less complexity of the flow: The complexity of the flow is much less in the case

of the automated procedure. The number of steps to be accomplished is much

lower. In this sense, it is interesting to mention that a lower number of steps

represents a lower possibility of errors

• Faster convergence times: The convergence towards the optimum point is

achieved faster with the automated procedure rather than with the semi-automated

procedure

7.2.3.4 Subjective Assessment

In parallel with the objective assessment presented in the precedent paragraph, we

can mention some subjective facts that have been identified by the engineers that

have run the flow in the use case. The main conclusions of this subjective analysis

can be:

MULTICUBE design flow is also a perfect tool to guarantee the coherence and

correctness of the design as we have seen in our study. The analytical capacities

of modeFRONTIER allow to stress the model and to analyze its behavior under

different running conditions allowing investigating if the model behaves as expected

since we can analyze a larger number of operating conditions. As a simulator tool

alone, it adds value to the current simulation methodologies in place.

We can mention that the procedure proposed by MULTICUBE makes the work

of the embedded designer much easier by proposing an excellent front-end tool and

by automating all the processes necessary to update the platform in each simulation

cycle. The intervention of the designer is reduced to a minimum, minimizing also

the possibility of human errors.

MULTICUBE design flow can also benefit from the use of standardized interfaces.

It is possible then to envision the usage of other analysis tools quite easily. In addition

to powerful analysis tools from commercial suites like modeFRONTIER, that have

been proven in other technical domains, we can use other suites developed internally

in the company or to adapt it to future tools.

7.3 Conclusions

This chapter detailed the use of MULTICUBE design flow in the powerline multime-

dia transmission use case for system optimization. It shows that the proposed flow

can save up to a 80% of designer time while achieving better results in terms of per-

formance since much more simulations (up to ten times more possible combinations

than with the semi-automatic design flow) can be run and analyzed. Also, with just

one run we can already identify the optimum for the design parameters. A second or

third iteration would fine tune the design in order to obtain the final parameters.

170 M. Martinez et al.

In parallel, MULTICUBE design flow is also a perfect tool to guarantee the

coherence and correctness of the design as we have seen in our study.

Finally, from a subjective point of view, we can mention that the MULTICUBE

design flow makes the work of the embedded designer much easier by proposing an

excellent front-end tool and by automating all the processes necessary to update the

platform in each simulation cycle. Also, the designer can benefit from the powerful

analysis tools from commercial suites like modeFRONTIER, that have been proven

in other technical domains, in order to select the optimum solution.

The overall conclusion of the utilization of MULTICUBE design flow over a real

industrial use case discussed in this chapter is that the added value overcomes largely

the cost of setting up the whole process, converging much faster to the optimum

solution for a given technical problem.

Chapter 8

Design Space Exploration of Parallel
Architectures

Carlos Kavka, Luka Onesti, Enrico Rigoni, Alessandro Turco,

Sara Bocchio, Fabrizio Castro, Gianluca Palermo, Cristina Silvano,

Vittorio Zaccaria, Giovanni Mariani, Fan Dongrui, Zhang Hao,

and Tang Shibin

Abstract This chapter will present two significant applications of the MULTICUBE

design space exploration framework. The first part will present the design space ex-

ploration of a low power processor developed by STMicroelectronics by using the

modeFRONTIER tool to demonstrate the DSE benefits not only in terms of objective

quality, but also in terms of impact on the design process within the corporate en-

vironment. The second part will describe the application of RSM models developed

within MULTICUBE to a tiled, multiple-instruction, many-core architecture devel-

oped by ICT, Chinese Academy of Sciences, China. Overall, the results have showed

that different models can present a trade-off of accuracy versus computational effort.

In fact, throughout the evaluation, we observed that high accuracy models require

high computational time (for both model construction time and prediction time);

vice-versa low model construction and prediction time has led to low accuracy.

8.1 Introduction

The embedded systems industry faces today an always increasing demand to handle

complexity in the design process, which together with the usual strong time-to-

market pressure, make essential the use of an automatic tool-based design flow. The

use of an automatic tool for Design Space Exploration (DSE) directly impacts on

the entire design process within the corporate, with benefits that can be measurable

(or tangible), like the reduction of the overall design process lead time, and also

qualitative (or intangible) like the streamlining and the reduction of human error

prone repetitive operations.

DSE tools for the automation of the embedded system design process do exist

today. The MULTICUBE FP7 European Research project has contributed to the

C. Kavka (�)

ESTECO, Trieste, Italy

e-mail: carlos.kavka@esteco.com

C. Silvano (eds.), Multi-objective Design Space Exploration of 171
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_8, © Springer Science+Business Media, LLC 2011

172 C. Kavka et al.

development of an Open Source tool and to the re-targeting of a proprietary state-

of-the-art multi-disciplinary optimization tool that can be directly applied today to

embedded systems design. One of these tools is M3Explorer [6], an open source tool

developed from scratch in the MULTICUBE project, and the other is modeFRON-

TIER™ [2], an already existing proprietary tool widely used in multidisciplinary

optimization, which has been re-targeted to the domain of embedded systems.

This chapter presents two case studies of design space exploration in embedded

systems to illustrate the benefits of the use of automatic tools from an industrial

perspective. Section 8.2 describes a design space exploration study performed on

a low power processor design and Sect. 8.3 describes the application of response

surface models on a many-core architecture design.

8.2 Design Case Study: Design Space Exploration of the STM

Industrial SP2 Platform

This section describes the application of automatic design space exploration for the

design of a low-power processor developed by STMicroelectronics, using the mode-

FRONTIER multidisciplinary optimization tool. The objective is to demonstrate the

benefits of the introduction of an automatic design process not only by considering

the final objective quality, but also its effects on the entire design process within

the corporate. The experiment is an extension of the benchmark used in Chap. 3 to

analyze the behavior of the optimization algorithms proposed in the MULTICUBE

project [7].

8.2.1 Architectural Model Description

The SP2 processor from STMicroelectronics is a low power and high performance

microprocessor offering comparable performance to entry-level desktop micropro-

cessors. It is designed for both generic and mobile applications that need low power

dissipation and high peak performance. The presence of a SIMD coprocessor makes

it suitable for multimedia applications.

The main architectural features of the SP2 processor can be summarized as

follows:

• MIPSISA32 release2 compatible instruction set architecture (ISA) and privilege

resource architecture (PRA)

• 4-issue superscalar out-of-order execution

• Built-in 2 integer ALUs, 2 interleaved load-store units

• Split primary instruction and data cache

• 64-byte cache line, 4-way set associative primary caches

• 64-byte cache line, 8-way set associative unified exclusive secondary cache

8 Design Space Exploration of Parallel Architectures 173

• Configurable out-of-order parameters: renaming register number, instruction

issue window width, reorder buffer depth, etc

• Configurable cache parameters: cache size

• Runtime resizable secondary cache

The experiments presented in this section were performed using Sp2sim, a regis-

ter transfer level cycle accurate simulator, which runs its applications according to

SP2’s pipelines and configurations. Sp2sim models precisely the SP2 microproces-

sor design, which includes both the MIPSISA32r2 ISA and PRA [5]. It also embeds

a model of external memory controller, which can be configured to measure the

performance for different memory latencies and sizes. The interface between the

processor model and the memory controller model is a 64-bit AXI interface. Sp2sim

implements both an area and power consumption estimation algorithms. Sp2sim is

written in C++ language so as to achieve high simulation speed. It runs on Linux

x86 or x86_64 platforms.

8.2.2 Design Space and Application

The SP2 implementation provides eleven configurable parameters, which are clas-

sified into three categories: out-of-order execution engine, cache system and branch

prediction. By adjusting these parameters, the user can get different processor im-

plementations targeting to distinct application areas. The list of parameters together

with a description and their possible values is presented in Table 8.1.

The SP2 simulator produces seven system metrics, which are grouped in three

categories: performance, power dissipation and area occupation. Table 8.2 describes

the system metrics.

The selected application for the experiments presented in this section is gzip, a

popular data compression program written by Jean-Loup Gailly, which comes from

SPEC CPU2000 benchmark suite [8]. It has been selected since its size is relatively

small, and the program behavior is more regular than many other applications.

Table 8.1 The eleven configuration parameters

Category Parameter Description Values

Out of order execution rob_depth Reorder buffer depth 32, 48, 64, 80, 96, 112, 128
rmreg_cnt Rename register number 16, 32, 48, 64
iw_width Instruction window width 4, 8, 16, 24, 32

Cache system icache_size Instruction cache size 16, 32, 64
dcache_size Data cache size 16, 32, 64
scache_size Secondary cache size 0, 256, 512, 1024
lq_size Load queue size 16, 24, 32
sq_size Store queue size 16, 24, 32
msh_size Miss holding register size 4, 8

Branch prediction bht_size Branch history table size 512, 1024, 2048, 4096
btb_size Branch target buffer size 16, 32, 64, 128

174 C. Kavka et al.

Table 8.2 The system metrics generated by the simulator

Category Metric Description

Performance total_cycle Total cycle number
total_inst Total instruction number
ipc Instruction per cycle

Power dissipation total_energy Total energy consumed
power_dissipation Average power dissipation
peak_power_dissipation Peak power dissipation

Area area Area occupied

8.2.3 Design Space Exploration

The aim of the experiments presented in this section is to determine the set of designs

that minimize the total number of cycles, the power dissipation and the area occupa-

tion required to run the selected gzip application with the SP2 simulator. Since it is a

multi-objective problem, and since the three objectives can potentially be contradic-

tory, the result of the optimization process will not be a single design, but a Pareto

front, which corresponds to the set of designs that represents a trade-off between the

different objectives.

In real industrial applications, one of the hardest constraints that limits the ex-

ploration is determined by the computing resources available for simulation. In this

study, the complete design space consists of 1,161,216 designs by considering all

combinations of the configuration parameters. This space is clearly too large to

be explored exhaustively, making essential to perform a well defined exploration

strategy.

In this experiment, the time available for simulation limits the exploration to the

execution of at most 8,134 evaluations of the simulator. This information will guide

the selection of the algorithms for the different exploration phases. The rest of this

section illustrates the design space exploration process, starting with the creation

of the optimization workflow, the definition of the experiments, the optimization

process and the results assessment.

8.2.3.1 The Optimization Workflow

The optimization tool used in this experiments is modeFRONTIER, a multidisci-

plinary multi-objective optimization and design tool which is used world-wide in

many application fields like aerospace, appliances, pharmaceutics, civil engineer-

ing, manufacturing, marine multibody design, crash, structural, vibro-acoustics and

turbo-machinery. In the FP7 MULTICUBE project, modeFRONTIER has been en-

hanced to support categorical discrete domain optimization problems, like typical

problems faced in the SoC domain.

The design space exploration process starts with the definition of the optimization

workflow, which is presented in Fig. 8.1. The workflow can be graphically defined or

can be built automatically using the XML design space definition file (see Chap. 1).

8 Design Space Exploration of Parallel Architectures 175

Fig. 8.1 The modeFRONTIER optimization workflow

The worklow specifies both a data path and a process path, which represent respec-

tively, the data flow for the evaluation of a design and the optimization execution

flow as described below.

The data path, which flows vertically from the top to the bottom, contains one

input node for each configuration parameter and one output node for each metric

produced by the simulator. In this optimization task there are eleven input nodes

and seven output nodes. The System-on-Chip node (labeled as SoC) represents the

interaction with the simulator, and takes care of the interface between the exploration

tool and the simulator, passing values for the configuration parameters and getting

back the values of the metrics as produced by the simulator. The three objectives to

be minimized are represented with the arrow nodes.

The process path, which flows horizontally from left to right, starts with the Design

of Experiments node (DoE), which generates the initial set of configurations to be

evaluated. The optimization node (Optimization) guides the exploration of the design

space using an optimization algorithm to generate the subsequent configurations that

will be evaluated based on the performance of previous evaluations. The conditional

node (If) passes only feasible designs for evaluation to the System-on-Chip node.

Successful executions of the simulator will generate a valid design (Exit), and errors

will generate failed designs (Fail).

8.2.3.2 Design of Experiments

The Design of Experiments (DoE) technique is used to generate the initial set of

designs for evaluation. The aim is to define a limited number of test runs that allow

to maximize the knowledge gained by eliminating redundant observations, in such a

176 C. Kavka et al.

14

12

10

8

6

4

2

0
32 48 80 96 112 12864

ro
b
_
d
e
p
th

 P
ro

b
a
b
ili

ty
 D

e
n
s
it
y 8

6

4

2

0

ro
b
_
d
e
p
th

 P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

rob_depth

32 48 80 96 112 12864

rob_depth

Random Uniform Distribution Uniform Latin Hypercube Distributiona b

Fig. 8.2 The marginal distribution for the parameter rob_depth with a a “Uniform Random” and b

“Uniform Latin Hypercube” Design of Experiments with 60 designs. It can be appreciated that the
distribution of samples for each value is better in b, showing that the second approach has provided
a better sampling of this discrete design space

way, that the time and resources needed to make the experiments is reduced as much

as possible.

In these experiments, a Uniform Latin-Hypercube algorithm [4] is selected to

generate 60 initial designs. The selection of the DoE algorithm and the number

of designs are driven by the fact that only 8,134 designs can be evaluated and as

described in Chap. 3, this algorithm is preferred over the widely-used Uniform

Random algorithm, particularly due to the better mapping of the marginal distribution

functions with a small number of samples, as clearly shown in Fig. 8.2.

8.2.3.3 Optimization

The algorithm MFGA (Magnifying Front GeneticAlgorithm) [7], described in Chap.

3, has been selected by considering the characteristics of the optimization problem.

This algorithm has been developed in the MULTICUBE project to handle categorical

discrete optimization problems. A non-generational operation mode (steady state)

makes it well suited for problems involving long simulation time. This algorithm

has only two configuration parameters, which are set to default suggested values:

crossover probability to 0.9 and mutation probability to 0.15.

The optimization is performed by using this algorithm till the allowed number

of evaluations is reached without any manual intervention. Figure 8.3 shows the

design space evaluation, highlighting the Pareto front as obtained at the end of the

evolutionary process1. The values of the metrics (normalized due to confidentiality

reasons) are plotted for each evaluated design with a bubble which size is directly

1 Even if unusual, a bubble graph with the third dimension as the bubble size was preferred over a

typical 3D graph since the large number of points produces a difficult to understand 3D cloud-like

graph

8 Design Space Exploration of Parallel Architectures 177

Power Disspation (bubble size)

Pareto front

0.00

0.00

0.10

0.10

0.20

0.20

0.30

0.30

0.40

0.40

0.50

0.50

0.60

0.60

0.70

0.70

0.80

0.80

0.90

0.90

1.00

1.00

Area (normalized)

T
o
ta

l
C

y
c
le

 (
n
o
rm

a
liz

e
d
)

Fig. 8.3 The Pareto front in the design space

proportional to the Power Dissipation. The x and y axis correspond respectively to

the Area and the Total Cycle. Note that designs with lower Occupation Area, lower

Total Cycle and lower Power Dissipation are preferred. The set of Pareto designs is

represented with black bubbles.

Figure 8.4 presents a comparison between the Pareto front obtained in this ex-

periment and the Pareto front obtained by a semi-automatic approach guided by

statistical analysis, which was performed as described in Sect. 3.4.2. As the figure

clearly shows, the Pareto front obtained by the fully automatic procedure dominates

all points generated by the semi-automatic approach. This is an important result since

the automatic procedure was performed without any manual intervention, while the

semi-automatic procedure was based on the designer ability and experience to assess

the results and based on that, select the next instance of the model to be simulated.

Table 8.3 presents some quantitative results of the comparison between the Pareto

fronts obtained with the automatic optimization and the semi-automatic approach.

The enhancement on Area and Total Cycle metrics are displayed in percentage of

the whole design space grouped by their power dissipation characteristics. It can

be appreciated that more than interesting enhancements have been obtained by the

automatic procedure.

8.2.3.4 Other Studies

Once a well organized experiment provides enough data, it is possible to study some

properties of the design space. One of the most important analysis is the correlation

178 C. Kavka et al.

0.00

0.00

0.05

0.10

0.10

0.20

0.15

0.30

0.20

0.40

0.25

0.50

0.30

0.60

0.35

0.70

Power Dissipation (bubble size)

Pareto front MFGA

Original Pareto front

0.40 0.50

0.80

0.45

Area (normalized)

T
o
ta

l
C

y
c
le

 (
n
o
rm

a
liz

e
d
)

Fig. 8.4 A comparison between the Pareto front obtained with the automatic optimization and the
semi-automatic process based on statistical analysis

Table 8.3 Enhancement on Area and Total cycle metrics when compared with the statistically-

based approach grouping designs by Power dissipation

Power dissipation Area Total cycle %

Low power dissipation Comparable −7.71
Medium power dissipation −17.35% −18.42
High power dissipation Comparable −28.99

study, which allows to identify relations between parameters and metrics. There

are many tools that can be used, however, the Self Organizing Map (SOM) [3] is

particularly well suited for high dimensional spaces. Its main advantage compared

with other methods is that it allows to identify not only the global correlations between

the variables, but also highlights information about local correlations.The SOM is

a 2D map where the parameters and metrics are automatically mapped during the

learning process. Figure 8.5 shows the SOM obtained after the optimization process

described in the previous section.

Variables (parameters and metrics) that are correlated are mapped to nearby areas

of the map. The spatial location of the variables total energy (total_energy), power

dissipation (power_dissipation) and data cache size (dcache_size), which are all

mapped in the lower-right corner of the map, allows to conclude that there is a strong

correlation between them. There is also a large correlation between the occupation

area (area) and the secondary cache size (scache_size), and between total cycle

(total_cycle) and store queue size (sq_size).

8 Design Space Exploration of Parallel Architectures 179

icache_size btb_size area

Iq_size rmreg_cnt iw_width

scache_size

peak_power_dissipation

total_energy
bht_size_gen

total_cycle

mshr_size

rob_depth sq_size power_dissipation

dcache_size

Fig. 8.5 The Self Organizing Map describing correlations between parameters and metrics. Some
low correlations parameters and metrics have been removed from the diagram to enhance readability

The SOM provides also more information: the gray-scale patterns indicate the

locations where the values of the variables are mapped, with light gray corresponding

to low values and dark gray corresponding to large values. Just as an example,

the darker area in the upper-left corner of the pattern of total energy (total_energy)

indicates that higher values of this variable were mapped in the upper-left corner of the

map. In this way, similar patterns in grouped variables describe a direct correlation,

while inverted color patterns describe an inverse correlation. The analysis suggests

there is a direct correlation between occupation area (area) and static cache size

(scache_size), while there is an inverse correlation between total cycle (total_cycle)

and store queue size (sq_size). Local correlations can also be identified by studying

particular areas of the gray-scale patterns.

8.2.4 Conclusions

The automatic optimization process allowed to obtain a better Pareto front when

compared with equivalent experiments performed by a semi-automatic approach

guided by a statistical analysis. Not only the Pareto front was better at the end of

the optimization, but after the evaluation of only 3,000 designs, the obtained Pareto

180 C. Kavka et al.

front was better than the front obtained by the statistical analysis guided optimization

which consisted of 14,216 evaluations (see Chap. 3).

There are other advantages of the automatic exploration procedure. In the au-

tomatic exploration, all data concerning previous evaluations are always stored in

a structured database. The designer, not only will not be stuck on repetitive opera-

tions, but can focus his/her attention (and profit from his/her experience) in analyzing

the designs database in a statistical manner. In this way, analysis like clustering or

correlations can be performed in a more systematic and organized way.

Moreover, the automatic exploration is driven by an optimization engine based

on several optimization algorithms, whereas the manual exploration is based on

designer ability and experience to assess the results and to move towards the next

instance of the model to be simulated. In that particular case (see Chap. 3), wrong

assumptions on the statistical distributions of data reduced the possibility to obtain

better solutions.

8.3 Design Case Study: Analysis of Performance and Accuracy

of Response Surface Models for the Many-Core Architecture

Provided by ICT

This section describes an example application of response surface models on a many-

core architecture by describing how the models are selected, trained and validated

to provide the best accuracy without sacrificing performance.

8.3.1 Platform Description

The ICT many-core (named Transformer) is a tiled, multiple-instruction, multiple-

data (MIMD) machine consisting of a 2D grid of homogeneous, general-purpose

compute elements, called cores or tiles. Instead of using buses or rings to connect

the many on-chip cores, the transformer architecture combines its processors using

2D mesh networks, which provide the transport medium for off-chip memory access

and other communication activity.

By using mesh networks, the Transformer architecture can support anywhere

from a few to many processors without modifications to the communication fabric.

In fact, the amount of in-core (tile) communications infrastructure remains constant

as the number of cores grows. Although the in-core resources do not grow as tiles

are added, the bandwidth connecting the cores grows with the number of cores.

As Fig. 8.6 shows, the Transformer Processor Architecture consists of a config-

urable 2D grid of identical compute elements, called nodes. Each node is a powerful

computing system that can independently run an entire application. The perimeters

of the mesh networks in a Transformer Processor connect to memory controllers,

which in turn connect to the respective off-chip DRAMs through the chips pins.

Each node combines a processor and its associated cache hierarchy with a router,

8 Design Space Exploration of Parallel Architectures 181

MCU

MCU

node

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

node node node

nodenodenodenode

node node node node

nodenodenodenode

D
R

A
M

A
D

R
A

M
A

MCU

MCU

D
R

A
M

A
D

R
A

M
A

router

Fig. 8.6 The ICT Many-Core architecture (transformer)

which implements the interconnection network. Specifically, each node implements

a two-issue out-of-order pipelined processor architecture with an independent pro-

gram counter and a two-level cache hierarchy. The memory sub-system is distributed

(thus not shared among cores) to simplify the architecture of the system.

8.3.2 Node Architecture and Instruction Set

For each node there is a separate level 1 instruction/data cache and a unified level 2

cache in each node. As there is need for 64-bit computing in multimedia applications,

64-bit MIPS-III ISA is chosen for the node. Some MAC (Multiply-Accumulate)

instructions which need three source operands are also supported by node.

Each node implements a two-issue out-of-order pipelined processor architecture,

as shown in Fig. 8.7. The pipeline is divided into 6 stages: fetch, decode, map,

issue, execute and write back. For memory operations, there is one more stage data

cache between execute and write back. In order to achieve reasonable performance

and implement a low complexity node, a scoreboard-based out-of-order pipeline

based is used. The scoreboard unit in each node is responsible for accepting decoded

instructions from the map stage, and issuing them to the functional units (address

generators, ALUs and FPUs) satisfying dependencies among the instructions. To

achieve this goal the main element of the scoreboard is the instruction queue which

holds decoded instructions and issues them once the resources they require are free

and their dependencies have been cleared.

182 C. Kavka et al.

E W N S

router

L2Cache

Coprocessor 2

result bus

FPU

FPU

AGU

ALU

G

R

F

R

DCache

dcacheexecuteissuemap

branch bus

mapper score

board

M

R
decoderIRICache

P

C

fetch decode

Fig. 8.7 The ICT Many-Core pipelined architecture of a node

8.3.3 The Simulator

The NoC based many-core design transformer is implemented in C++ as a cycle-

accurate simulator. The simulator accepts the configuration as an input file, and

generates the system metrics as an output file. Both input and output files are defined

in XML format by following the rules described in the Design Space Definition file,

as described in Chap. 1.

Figure 8.8 shows the scheme of a single core. A core defines an instruction queue,

whose entry is allocated to the newly instructions fetched from instruction cache, and

released after the instruction was committed. In detail, an instruction fetched from

instruction cache (1) is allocated in the instruction queue (2), and at the same time,

the instruction dependency is built (3). Then, if the required logic unit is idle and the

necessary dependency is satisfied, the instruction is issued (4) to the corresponding

logic unit, and the state of the logic unit is changed to busy in order to block the

instructions using it (5). After the predefined latency and essential operations (e.g.

accessing the register file, accessing the local data cache, and routing message in the

mesh), the instruction is committed, and simultaneously those interrelated resources

and dependencies are released. In above mentioned process, the timing information

is accurately collected to implement a cycle-accurate simulator.

The power model is based on the Princeton University’s Wattch power model [1],

with all parameters updated accordingly to a 0.13 μm process.

8 Design Space Exploration of Parallel Architectures 183

Instruction queue

1

1

1

1

0

0

0

0

0

Full / Empty

L2 cache

I cache D cache

1 5

5

5

4

2

3

Functional Unit

Register file

P
o

rt

Fig. 8.8 The ICT Cycle-Accurate Simulator

8.3.4 Design Space and Application

One goal of the design of Transformer is to make a reconfigurable platform, allowing

further tuning as the evaluation works goes on. According to the system metrics, the

designers can tune the hardware arguments for higher performance. In the simulator,

all the tunable arguments are collected in a configuration file in XML style. When

the simulator is started, it reads the arguments from this configuration file. The

design space, which is shown in Table 8.4, is composed of 1,134 design points.

As an additional rule in the design space, the associativity of the level-2 cache

should be greater than the sum of the associativities of the level 1 instruction and

Table 8.4 Parameter space
for the ICT many-core
platform

Parameter Minimum Maximum

Mesh_order 2 8
Cache_block_size 32 64
ICache_ways 2 16
Icache_entries 128 512
DCache_ways 2 16
DCache_entries 128 512
L2Cache_ways 4 32
L2Cache_entries 128 512
L2Cache_access_latency 3 10
Memory_size 8 32
Memory_access_latency 30 100
Router_buffer_entries 2 8

184 C. Kavka et al.

A00

A10 A11 A12 A13

A23A22A21A20

A30 A31 A32 A33

A01 A03 A04 B00

B10 B11 B12 B13

B23B22B21B20

B30 B31 B32 B33

B01 B02 B03 C00

C10 C11 C12 C13

C23C22C21C20

C30 C31 C32 C33

C01 C02 C03

Fig. 8.9 Parallel multiplication of matrices

data caches. The system metrics associated with the architecture are the following:

cycles, instructions, power dissipation, peak power dissipation and area.

Application The application used for the following experimental results is a classic

implementation of partitioned matrix multiplication. Each matrix (both sources and

destination) is divided into an equal number of sub-matrices; each node works by

multiplying the rows and columns needed for a single partition of the destination

matrix. Figure 8.9 shows an example matrix multiplication (C = A × B) for two

squared matrices divided into 16 sub-matrices (Ai,j , Bi,j , Ci,j where i, j ∈ {0, 3}).

8.3.5 Response Surface Modeling of Many-Cores

This section presents the results of the validation of RSMs described in Chap. 4.

For the sake of synthesis, in this section the results related to the following RSM

configurations are reported:

• Linear regression

– Model order: first,

– Without any interaction between parameters,

– Excluding the following design space parameters from metric estimation:

• ICache_ways,

• DCache_ways,

• L2Cache_ways,

• L2Cache_access_latency,

• Memory_size,

• Memory_access_latency.

• Radial Basis Functions

– Distance function definition: thin plate spline.

• Splines

– No parameters.

• Kriging

8 Design Space Exploration of Parallel Architectures 185

– Variogram Type: Gaussian,

– Autofitting Type: Maximizing Likelihood,

• Evolutionary Design

– Crossover Depth: 10,

– Generations Number 1000,

– Population Size: 500,

• Neural Networks

– Network Size Policy: Automatic.

To enable the validation of the proposed RSMs, all the simulations associated with

the complete design space (1,134 design points) have been performed. The resulting

data have been used to train the RSMs and to validate the predictions. The chosen

sizes for the training sets are: 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1,000

design space points. For each training set size, 5 training sets have been generated

with a pseudo-random process from the simulation data, hence the total number

of training sets is 50. Given a trained RSM, the average normalized error of the

predictions over the complete design space (of 1,134 points) is computed. For each

RSM, the three values of the Box-Cox transform λ = {0, 0.5, 1} were evaluated.

Overall, for each RSM, 150 validation tests were performed.

Figure 8.10 reports ε versus the training set size, for all the experimented RSMs,

where:

ε =
η1 + η2 + η3 + η4 + η5

5
(8.1)

and ηi , with 1 ≤ i ≤ 5, is the average normalized error corresponding to the error

observed training the RSM with the i − th training set of the corresponding size. In

Fig. 8.10, ε is the average normalized error on the y-axis, while the x-axis shows

the training set size.

Linear Regression, Radial Basis Functions and Splines have been plotted with

a scale from 0 to 0.7 (equivalent to 70% error); Kriging, Neural Network and

Evolutionary Design have a scale ranging from 0 to 0.045 (equivalent to 4.5% error).

Overall, there is evidence that the Neural Network (Fig. 8.10f) allows for the best

error for a given training set size (less than 0.2% error after 100 training samples). On

the other hand, the Linear Regression RSM seems to be not appropriate for modeling

such type of use case (Fig. 8.10a) since it provides the highest error while not scaling

with the training set size.

As can be seen, the logarithmic box-cox transformation is crucial for reducing

the variance of the data and improves the model prediction. We further analyze the

behavior for this particular Box-Cox transform in Fig. 8.11. The Figure shows the

statistical behavior (computed over 5 runs on the same training set size for each of the

RSMs). As can be seen, Evolutionary Design, Kriging and Neural Network provide

a strong improvement with respect to Linear Regression and Splines (their scale has

been reformatted accordingly), while Radial Basis Functions are overall halfway.

However, for the ICT use case, Evolutionary Design and Neural Network have

revealed the highest execution times (the validation for Evolutionary Design lasted for

186 C. Kavka et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7
A

v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

100 200 300 400 500 600 700 800 900 1000

Training set size

100 200 300 400 500 600 700 800 900 1000

Training set size

100 200 300 400 500 600 700 800 900 1000

Training set size

100 200 300 400 500 600 700 800 900 1000

Training set size

100 200 300 400 500 600 700 800 900 1000

Training set size

100 200 300 400 500 600 700 800 900 1000

Training set size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

A
v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

"box-cox=log"
"box-cox=0.5"

"box-cox=1"

"box-cox=log"
"box-cox=0.5"

"box-cox=1"

"box-cox=log"
"box-cox=0.5"

"box-cox=1"

"box-cox=log"
"box-cox=0.5"

"box-cox=1"

"box-cox=log"
"box-cox=0.5"

"box-cox=1"

"box-cox=log"
"box-cox=0.5"

"box-cox=1"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

A
v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

A
v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

A
v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

A
v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

a b

c d

e f

Fig. 8.10 Average normalized error versus training set size for the experimented RSMs. a Linear
regression, b Splines, c Radial basis functions, d Kriging, e Evolutionary design, f Neural networks

several days, while Neural Network took few hours), Splines and Linear regression

have been the fastest RSMs (the validation time for both of them was few minutes),

while Radial Basis Functions and Kriging presented an intermediate behavior (the

overall validation time was several minutes).

Overall, the results have showed that different models can present a trade-off

of accuracy versus computational effort. In fact, throughout the evaluation, we ob-

served that high accuracy models require high computational time (for both model

construction time and prediction time); vice-versa low model construction and pre-

diction time has led to low accuracy. We can sum up by observing that the best choice

8 Design Space Exploration of Parallel Architectures 187

100 200 300 400 500 600 700 800 900 1000
 0

 0.01

 0.02

 0.03

 0.04

 0.05
A

v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

Training set size

100 200 300 400 500 600 700 800 900 1000
 0

 0.01

 0.02

 0.03

 0.04

 0.05

A
v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
rr

o
r

Training set size

100 200 300 400 500 600 700 800 900 1000
 0

 0.01

 0.02

 0.03

 0.04

 0.05

A
v
e
ra

g
e
 n

o
rm

a
liz

e
d
 e

rr
o
r

Training set size

100 200 300 400 500 600 700 800 900 1000
 0

 0.002

 0.004

 0.006

 0.008

 0.01

A
v
e
ra

g
e
 n

o
rm

a
liz

e
d
 e

rr
o
r

Training set size

100 200 300 400 500 600 700 800 900 1000
 0

 0.002

 0.004

 0.006

 0.008

 0.01

A
v
e
ra

g
e
 n

o
rm

a
liz

e
d
 e

rr
o
r

Training set size

 0

 0.002

 0.004

 0.006

 0.008

 0.01

A
v
e
ra

g
e
 n

o
rm

a
liz

e
d
 e

rr
o
r

100 200 300 400 500 600 700 800 900 1000

Training set size

Linear Regression Splinesa b

Radial Basis Functions Krigingc d

Evolutionary Design Neural Networkse f

Fig. 8.11 Box plots of average normalized error versus training set size for logarithmic box-cox
transformation. a Linear regression, b Splines, c Radial basis functions, d Kriging, e Evolutionary
design, f Neural networks

for a specific use case depends on the desired accuracy and the constraints on the

prediction time. Referring to the use-case addressed in this section, however, we

discovered an exception to the previous empiric rule when, for λ = 0, Kriging gave

a better accuracy than Evolutionary Design for every training set size, paired with a

lower computation time.

188 C. Kavka et al.

8.4 Conclusions

This chapter presented two significant applications of the MULTICUBE design space

exploration framework. While in the first part has been presented the design space

exploration of a low power processor developed by STMicroelectronics by using the

modeFRONTIER tool, the second part has described the application of RSM models

developed within MULTICUBE to a tiled, multiple-instruction, many-core architec-

ture developed by ICT China. The presented analysis refers to a direct application

of the methodology implemented in the project to real case studies.

References

1. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power anal-
ysis and optimizations. In: ISCA ’00: Proceedings of the 27th annual international symposium
on Computer architecture, pp. 83–94. ACM, New York, NY, USA (2000)

2. ESTECO: modeFRONTIER, Multi-Objective Optimization and Design Environment Software.
http://www.esteco.com

3. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological
Cybernetics 43(1), 59–69 (1982)

4. McKay M. D., C.W.J., J., B.R.: Latin hypercube sampling: A comparison of three methods for
selection values of input variables in the analysis of output from a computer code. Technometrics
22(2), 239–245 (1979)

5. MIPS Technologies: Architecture Programming Publications for MIPS32.
http://www.mips.com/products/product-materials/processor/mips-architecture

6. MULTICUBE: Final Prototype of the Open-Source MULTICUBE Exploration Framework.
Deliverable 3.1.2 (2009)

7. Turco, A., Kavka, C.: MFGA: a GA for complex real-world optimisation problems. International
Journal of Innovative Computing and Applications 3(1), 31–41 (2011)

8. Standard Performance Evaluation Corporation: SPEC CPU 2000. http://www.spec.org/
cpu2000

Chapter 9

Design Space Exploration for Run-Time
Management of a Reconfigurable System
for Video Streaming

Giovanni Mariani, Chantal Ykman-Couvreur, Prabhat Avasare,

Geert Vanmeerbeeck, Gianluca Palermo, Cristina Silvano,

and Vittorio Zaccaria

Abstract This Chapter reports a case study of Design Space Exploration for sup-

porting Run-time Resource Management (RRM). In particular the management of

system resources for an MPSoC dedicated to multiple MPEG4 encoding is addressed

in the context of an Automotive Cognitive Safety System (ACSS). The run-time man-

agement problem is defined as the minimization of the platform power consumption

under resource and Quality of Service (QoS) constraints.

The Chapter provides an insight of both, design-time and run-time aspects of

the problem. During the preliminary design-time Design Space Exploration (DSE)

phase, the best configurations of run-time tunable parameters are statically identified

for providing the best trade-offs in terms of run-time costs and application QoS. To

speed up the optimization process without reducing the quality of final results, a

multi-simulator framework is used for modeling platform performance.

At run-time, the RRM exploits the design-time DSE results for deciding an oper-

ating configuration to be loaded for each MPEG4 encoder. This operation is carried

out dynamically, by following the QoS requirements of the specific use-case.

9.1 Introduction

The amount of resources available on MPSoC platforms is growing following the

Moore’s law. To fully exploit the potential capabilities of future MPSoC, program-

mers need to split applications in multiple threads in such a way that these can be

allocated to different processors to be executed concurrently. There is not a unique

way to parallelize an application but different parallel versions of the same appli-

cation can be analyzed and used to trade off the application performance and the

number of threads in the application. If every thread needs a dedicated processor

to be executed, the availability of different parallelized versions can provide also

G. Mariani (�)

ALaRI, University of Lugano, Switzerland

e-mail: giovanni.mariani@usi.ch

C. Silvano (eds.), Multi-objective Design Space Exploration of 189
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_9, © Springer Science+Business Media, LLC 2011

190 G. Mariani et al.

a trade off between resources needed to execute the application and the application

performance.

In this context, a Run-time Resource Management layer (RRM), part of the Oper-

ating System (OS), is expected to dynamically decide which application version has

to be executed for each active application. In particular the design of future MPSoC

should consider a complex multi-programmed scenario where many applications,

each one composed of multiple parallel threads, are competing for accessing the

shared computing resources.

The RRM problem becomes more complex as the number of run-time tunable

parameters to be controlled by the OS increases; e.g., when operating frequencies

of processors executing different threads have to be set together with the application

parallelization. The RRM should set at run-time, for each active application, an op-

erating configuration to dynamically match the user requirements while minimizing

non-functional costs as energy or power consumption of the MPSoC platform.

Run-time decision making involves the solution of a combinatorial problem to

fit, with the lowest cost and highest QoS, a set of predetermined resources. In fact,

deciding which operating configuration has to be set for each application can be

modeled as a Multi-dimension Multiple-choice Knapsack Problem (MMKP) [9] and

belongs to the NP-hard class of problems [3].

Performing an exhaustive exploration of the possible candidate solutions at run-

time would be too slow and even a trial-and-error procedure, where the RRM

physically tries on the platform different operating configurations and then takes

decisions based on observed system behaviors, would be unacceptable. To cope

with this problem, in Chap. 5 we introduced a lightweight RRM exploiting design-

time knowledge for efficiently selecting at run-time a reasonable assignment of the

run-time tunable parameters while, in Chap. 6, we presented system-wide OS level

methodologies that can be applied when detailed design-time information are not

available.

The present Chapter demonstrates the effectiveness of the approach proposed in

Chap. 5 for an industrial scenario. In this context, we target both the number of

allocated cores and their operating frequencies as run-time configurable parameters

of an application. Our case study concerns the automotive field and the RRM is

responsible for allocating system resources to multiple instances of MPEG4 encoder

where each instance has a different QoS requirement in terms of frame rate. The

partitioning of system resources is here obtained by loading different parallel versions

of the MPEG4 encoder to the different application instances. Each MPEG4 parallel

version is composed of a different amount of threads and thus it needs for a different

number of cores to be executed.

This Chapter shows both design-time and run-time sides of the methodology.

During the design-time DSE phase, a multi-level simulation framework is used to

search for the Pareto optimal operating configurations within the space identified

by the run-time tunable parameters. Within the multi-level simulation framework a

detailed but slow cycle accurate simulator and an approximate but fast High Level

Simulator (HLSim) are available. This allows the quick exploration on HLSim of a

large amount of the design space while the accuracy of the final solution is obtained

9 Design Space Exploration for Run-Time Management 191

via validation on the cycle accurate simulator. This allows to speed up the exploration

without reducing the quality of the final results.

The Chapter is organized as follows. In Sect. 9.2 we present the use case scenario

introducing the MPEG4 application and its different parallel versions. Then, Sect.

9.3 gives an insight of the target MPSoC platform and the simulators used during

the design-time DSE. Section 9.4 reports the results obtained from the proposed

methodology during the design-time DSE phase first (Sect. 9.4.1) and, second, from

the RRM during the run-time execution (Sect. 9.4.2). The Chapter finally concludes

in Sect. 9.5 summarizing the most relevant results.

9.2 Case Study

The case study presented in this Chapter concerns the management of system

resources for a multiple-stream MPEG4 encoding chip dedicated to automotive cog-

nitive safety tasks. In particular we are targeting an MPEG4 encoding for a 4CIF

video resolution. The application code is specifically optimized for compilation on

the target MPSoC system in which the main computational element is the coarse-grain

reconfigurable ADRES processor [5].

9.2.1 Application Description

The MPEG4 encoder is an industry-standard, block-based, hybrid video encoder.

The structure of the MPEG4 encoder is shown in Fig. 9.1 and details can be found

in [7]. Mainly the MPEG4 encoder is composed of the following functional blocks:

• Motion Estimation (ME) compares the current frame with a reference frame

previously processed in order to estimate the motion within the frames.

• Motion Compensation (MC) compensates the estimated motion in the goal of

increasing the efficiency of the compression.

Current

Frame

Reference

Frame

Reconstr.

Frame

Motion

Estimation

Motion

Comp.

Texture

Coding

Texture

Update

Entropy

Coding

Bitstream

Packetizing

+

+

+

–

Fig. 9.1 Overview of the MPEG4 encoder application

192 G. Mariani et al.

• Texture Coding (TC) performs discrete cosine transform and quantization over

motion compensated residuals (‘texture’).

• Texture Update (TU) uses the output of TC in order to locally reconstruct the

original frame as it would appear after the decoding phase. This reconstructed

frame can be useful later on as reference frame.

• Entropy Coding (EC) encodes the motion vectors to produce a compressed

bitstream.

• Bitstream Packetizing (BP) prepares the packets containing the output data.

These functional blocks are implemented in application kernels (computational inten-

sive nested loops) which have been optimized for compilation onVLIW architectures,

in particular for the execution on an ADRES processor [5] used in our MPSoC

platform.

The RRM can generate a trade off between application performance and resource

usage by selecting a specific parallelization to be executed on the platform. To do

so, the RRM needs different parallel versions of the same application, i.e., different

binaries which perform the same functionalities while using a different amount of

computing elements.

A set of parallel versions has been generated starting from a sequential imple-

mentation based on the MPEG4 Simple Profile reference code. First of all, the initial

sequential version has been pruned and cleaned to set-up the parallelization proce-

dure. Then, the sequential application is parallelized using MPSoC Parallelization

Assist (MPA) tool [6].

MPA is a tool which supports MPSoC programmers on investigating different

parallelization alternatives for a given application. Once the MPSoC programmer

specifies a parallelization for the application, MPA is able to automatically insert

into the sequential code all program lines needed to spawn parallel threads and to

implement inter-thread communication. For generating different versions of the same

application, the programmer should profile the sequential application, understand

how kernels can be assigned to different threads and specify different parallelization

opportunities to MPA, without any further handmade modification to the application

code.

MPA is able to handle parallelizations either at functional or at data level (a com-

bination of both functional and data parallelism is also handled). In practice, different

functional kernels can be organized over different threads (functional parallelization)

or the same kernel(s) can be divided over different threads by dividing them w.r.t.

loop indices (data parallelization). In the second case, each thread performs the same

functionalities over a different part of the dataset.

Once different parallel versions are generated with MPA, the obtained codes

can be compiled and generated binaries can be executed on the target platform. In

particular, Fig. 9.2 shows the parallel versions of the MPEG4 encoder studied during

this Chapter. Within Fig. 9.2, the functional blocks are reported in solid boxes while

the thread partitioning is represented by dotted lines.

In this case study, every thread needs a computing element to be executed and a

computing element cannot execute more than one thread. Thus, the number of threads

9 Design Space Exploration for Run-Time Management 193

Fig. 9.2 MPEG4 encoder
versions parallelized over a
given number of threads (up
to 7)

ME

MC

TC

TU

EC

BP

ME

MC

TC

TU

EC

BP

ME

MC

TC

TU

EC

BP

ME

MC

TC

TU

EC

BP

ME

MC

TC

TU

EC

BP

ME

MC

TC

TU

EC

BP

1 Thread 3 Thread 4 Thread

5 Thread 6 Thread 7 Threadd e f

a b c

in an application version is equivalent to the resource cost ρ of the specific version.

The six available MPEG4 encoder versions are parallelized for the execution on 1, 3,

4, 5, 6 and 7 processors. Since every version is parallelized over a different number

of threads, in the following the resource cost ρ is also used to uniquely identify the

MPEG4 encoder version.

9.2.2 Automotive Cognitive Safety System

The use case studied in this Chapter is an Automotive Cognitive Safety System

(ACSS). In this context, a vehicle is equipped with a wide range of digital sensors

(such as cameras and radars) and it is able to identify emergency conditions. The

final goal of the ACSS is to keep passengers safer assisting the driver during emer-

gency situations. In particular, the ACSS is able to identify and actuating emergency

measures for the following scenarios:

• Forward collision warning.

• Automatic pre-crash emergency braking.

• Lane departure warning and guidance.

• Lane change and blind spot assist.

The vehicle is also provided with three digital cameras associated with left, right and

central mirrors respectively, as shown in Fig. 9.3.

194 G. Mariani et al.

Fig. 9.3 Mirror views of the
target vehicle

These cameras are connected to the target ADRES-based MPSoC platform which

performs the encoding of the three video streams by means of the MPEG4 encoder

presented in Sect. 9.2.1. For this purpose, an instance of the MPEG4 encoder is

executed for each of the three views. The encoded streams are then sent to an off-chip

Central Safety Unit (CSU), reducing the needs of on-board bus bandwidth.

Moreover, the dashboard has a set of displays that can be used to reproduce the

actual content of the video streams sent to the CSU. Thus, the driver can watch live-

views from the mirror cameras. The driver can independently switch on and off each

of the camera views via the steering wheel interface.

We assume that the minimum requirement needed to let the CSU operating cor-

rectly is 15 frame per second (fps) per each video stream. Since this requirement

is too low for providing the driver with a good video quality, the frame rate might

be increased when the mirror views are displayed on the dashboard. In fact, when

live-views are enabled, the CSU communicates new frame rate requirements to the

MPSoC platform performing the video encoding.

In particular, when some live-views are activated, the requirements are decided on

the basis of the vehicle speed and on the proximity of other vehicles. The following

criteria are used:

• Lateral cameras: 15 fps under 10 km/h, 25 fps for over 110 km/h, interpolated

linearly for intermediate speed. 30 fps when a vehicle is in proximity.

• Center camera: 15 fps under 20 km/h, 20 fps over 120 km/h, interpolated linearly

for intermediate speed.

9 Design Space Exploration for Run-Time Management 195

The frame rate requirements are not continuously updated but new requirements

are communicated only when the vehicle speed passes certain thresholds or when

another vehicle enters/exits the proximity areas. There is a threshold every 10 km/h

for the lateral cameras and every 20 km/h for the central camera.

We here recall from Chap. 5 that the RRM needs also application priorities to

decide which requirement should be relaxed when would be otherwise impossible

to solve the RRM problem matching all requirements given the limited amount of

system resources. The CSU communicates to the MPSoC platform also the priorities

of the multiple video streams together with the frame rate requirements. By default

the highest priorities are given to the central and left cameras. When a vehicle is in

proximity, then the lateral camera closer to the approaching vehicle and the central

camera get the highest priorities.

9.3 Platform Description

The industrial architecture studied is the 8-cores MPSoC shown in Fig. 9.4. The

platform is composed of seven ADRES (coarse-grain Architecture for Dynamically

Reconfigurable Embedded System) cores [5] and one StrongARM. TheADRES core

is a power-efficient flexible computing element which combines a coarse-grain array

with a VLIW DSP. The MPEG4 application has been optimized for compilation for

the ADRES core in such a way that the data-flow loops can be efficiently accelerated

by exploiting the coarse-grain array for loop level parallelization. The potentialities

of the ADRES cores are fully exploited by executing the MPEG4 encoder instances

while the RRM is executed on the StrongARM processor. The on-chip interconnect

consists of a 32-bit wide Network-on-Chip with two switches.

RRM MPEG4

MPEG4 MPEG4

Strong

ARM
ADRES ADRES ADRES

ADRESADRES ADRES ADRES

Fig. 9.4 Target MPSoC platform executing the RRM and the three MPEG4 encoder instances

196 G. Mariani et al.

The RRM can trade-off frame rate and power consumption of the multiple MPEG4

by acting on two parameters: the parallelizations of the MPEG4 instances and the fre-

quencies of the ADRES cores. In this sense the operating frequency of each ADRES

core can be dynamically modified independently by adopting Dynamic Voltage and

Frequency Scaling (DVFS) techniques. In particular the frequency range for the

ADRES cores is 	 = {20, 60, 100, 140, 180, 220} MHz, while the StrongARM is

operating at 206 MHz.

9.3.1 Simulation Tool-Chain

For evaluating performance values of the MPSoC platform, a multi-simulator frame-

work has been used [1]. More specifically, a Transaction-Level Model simulator

(TLMsim) built with CoWare platform design tools enables the cycle-accurate anal-

ysis of the multi ADRES system and the underlying communication infrastructure.

This cycle-accurate simulator is too slow for enabling the analysis of many oper-

ating configurations for the MPEG4 encoder application. To cope with this problem

a High Level Simulator (HLSim) has been used.

HLSim exploits back-annotated information of execution time derived from the

cycle-accurate simulator. Execution time figures for all the kernels are recorded

during cycle-accurate simulations and are fed back into HLSim as input while running

the application.

In practice, during a first recording phase, the sequential version of the application

is simulated on the cycle-accurate simulator; application kernels are profiled and

performance indices (e.g. processor execution cycles) are saved into a database.

Then, HLSim uses this profiled data library during its application simulation to

derive accurate timing for application execution. HLSim does timed simulation of

the application meaning that HLSim keeps track of local time in each thread and this

time is appropriately adjusted during thread synchronizations. Performance indices

are also scaled to the frequencies of the processors where kernels are executed.

Given an application version and the frequency of each thread, the timing feedback

mechanism let HLSim to provide a very fast but approximate evaluation of the

platform performance indices.

Comparing HLSim with the cycle accurate TLMsim on simulating the MPEG4

encoding of 10 frames in 4CIF resolution, we obtain that HLSim has an execution

time of 45 s with respect to TLMsim which requires 4 h. This simulation time saving

is obtained at the cost of the simulation accuracy, in fact HLSim has a simulation

error that is always lower than 20%.

The availability of HLSim enables the design-time DSE phase to quickly investi-

gate many frequency combinations for each application version. The results obtained

by HLSim for some simulations are then validated with the cycle accurate simulator.

Cycle-accurate simulator can also be used for DSE phase but within a small focused

interesting region obtained from HLSim-based DSE phase. This strategy of using

two simulators enables application designers to evaluate DSE phase efficiently [1].

9 Design Space Exploration for Run-Time Management 197

Finally, to complete the performance analysis of the simulation tool-chain, the perfor-

mance figures of the StrongARM executing RRM are obtained using the Simlt-ARM

simulator [8].

9.4 Experimental Results

This section presents the results obtained on applying the methodology proposed in

Chap. 5 to the ACSS use case. In particular, we start presenting the results of the

design-time DSE phase whose goal is the identification of the Pareto optimal oper-

ating points of the target application (Sect. 9.4.1). Then, behaviors of the proposed

RRM on the specific case study are presented in Sect. 9.4.2.

9.4.1 Design Space Explorations Using Multi-Simulator

Framework

In our use case, there are different versions of the MPEG4 encoder, each one identified

by a specific resource cost ρ.

An operating configuration of the MPEG4 encoder is:

c = 〈ρ, φ, π , τ 〉 (9.1)

where ρ is the resource cost, φ is the frequency vector containing an operating

frequency φ ∈ 	 for each of the ρ threads, while π and τ are power and performance

values obtained via simulation.

The design-time DSE phase has the goal of identifying the set of operating config-

urations C which are Pareto optimal considering resource cost, power consumption

and average frame execution time (i.e., c[ρ], c[π] and c[τ]). During this design-time

DSE phase, the frequency vector φ representing operating frequencies of platform

cores is independently optimized for each MPEG4 version. In fact an independent

optimization problem targeting minimization of power consumption c[π] and aver-

age frame execution time c[τ] is solved for each version presented in Fig. 9.2. Results

obtained from the different optimizations are then merged together and processed

as explained in Chap. 5 to obtain the Pareto optimal operating points C and a user

value v(c) for each configurations c ∈ C.

The design space of each optimization problem grows exponentially with the

number of threads ρ in the given application version. While the design space for the

sequential version (ρ = 1) is composed of |	| = 6 points only, the design space of

the version parallelized over 7 threads is composed of |	|7 = 279,936 points. Given

this difference in the design space dimensions, we use different algorithms to perform

different optimizations (see Chap. 3). In particular all optimizations are performed

with the Multicube Explorer tool [10]. Within this optimization environment we use a

198 G. Mariani et al.

Table 9.1 Design space size and simulations required for the optimization of each version of

the MPEG4 encoder. In the last column, a summary of the overall design space and number of

simulations needed for the optimization of all versions

ρ 1 3 4 5 6 7 Grand total

Design space 6 216 1,296 7,776 46,656 279,936 335,886
Simulations 6 216 309 567 694 1,077 2,869

full search optimization approach for the application versions where the design space

is small enough (i.e., for ρ ≤ 3); the Non-dominated Sorting Genetic Algorithm

(NSGA-II) [2] is used when the design space grows too much (i.e., for ρ > 3).

In particular the genetic algorithm is run with a population size |	| × ρ for 50

generations.

Table 9.1 reports for each parallelized version of the application the design space

size and the number of simulations needed to perform the optimization. Due to the

huge number of simulations needed to perform the overall exploration (i.e., 2,869),

only the HLSim is used within the optimization loop. Note that one simulation on

HLSim takes around 45 s whereas the same simulation takes around 4 h on cycle-

accurate simulator. Figure 9.5 shows the derived final Pareto configurations for the

MPEG4 encoder encoding 10 frames at 4CIF resolution.

The CoWare-based simulator (TLMsim) is built to model a Transaction Level

Model (TLM) of the platform at a cycle-accurate level. This simulator is used to

validate the results obtained by HLSim and also this simulator is used to do a local-

ized, focused explorations of the parameters not supported by HLSim. As explained

 0

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2 0.25

P
o

w
e
r

[m
W

]

Average time per frame [seconds]

1 resource
3 resources
4 resources
5 resources
6 resources
7 resources

Fig. 9.5 Pareto optimal operating configurations for the MPEG4 encoder (encoding 10 frames at
4CIF resolution) by varying the number of resources

9 Design Space Exploration for Run-Time Management 199

before, timing spent in different kernels during cycle-accurate simulations is profiled

and fed back to HLSim. By this timing back-annotation, we remain accurate enough

(< 20% error) between HLSim and cycle-accurate simulations w.r.t. execution time

and power consumption. Further, Pareto operating points obtained by HLSim are also

validated with cycle-accurate simulator. By using such a two-simulator approach,

DSE phase can be done efficiently and accurately to reach optimum operating points

in a short amount of time. Note that using such multi-level simulators to reduce

number of simulations is orthogonal to sophisticated modeling techniques (e.g., Re-

sponse Surface Modeling techniques presented in Chap. 4) supported by DSE tools

[1].

To give an idea of the time saved by the proposed methodology we obtain that:

• The exhaustive exploration (i.e., the simulation of all 335886 configurations) with

TLMsim would take 1,343,544 h; almost 153 years.

• Performing the NSGA-II optimizations using TLMsim would require 16 months.

• The exhaustive exploration with HLSim would take about 6 months.

• Performing the NSGA-II optimizations using HLSim requires about 36 h.

9.4.2 Run-Time Resource Management

9.4.2.1 Simulation of an Urban Environment

To generate dynamic QoS requirements for the RRM, the overall ACSS has been

simulated for several reasonable driving patterns and conditions [4]. Although we

simulated different patterns, for conciseness and clarity we will report results ob-

tained for a specific pattern reproducing an urban scenario. The car speed and the

frame rate requirements are shown in Fig. 9.6.

The vehicle, starting from a stationary position with speed equal to 0 km/h starts

to accelerate a few before the 35th second. The vehicle reaches a maximum speed

of 60 km/h around the 50th second and it keeps a constant speed for a while. Then,

at about the 60th second, the vehicle starts decelerating to reach again a stationary

condition at about the 70th second (Fig. 9.6a). All three live-views are active on the

dashboard at the beginning of the simulation. The live-view of the central camera is

deactivated from the driver at around 50 s and the frame rate of the corresponding

video stream is reduced to 15 fps as required from the CSU (Fig. 9.6c). During the

simulation two vehicles pass within the proximity area on the left side. The frame

rate requirement of the corresponding camera increases to 30 fps (Fig. 9.6b).

9.4.2.2 Run-Time Resource Management Behaviors

Whenever the CSU sets new frame rate requirements, the RRM is invoked to globally

select one operating configuration for each MPEG4 encoder with the goal of fitting

200 G. Mariani et al.

 0

 10

 20

 30

 40

 50

 60

 70

 30 35 40 45 50 55 60 65 70 75

S
p

e
e
d

 [
K

m
/h

]

Time [seconds]

 10

 15

 20

 25

 30

 35

 30 35 40 45 50 55 60 65 70 75

F
ra

m
e
 r

a
te

 [
fp

s
]

Time [seconds]

Vehicle approaching

 10

 15

 20

 25

 30

 35

 30 35 40 45 50 55 60 65 70 75

F
ra

m
e
 r

a
te

 [
fp

s
]

Time [seconds]

User deactivates the view

 10

 15

 20

 25

 30

 35

 30 35 40 45 50 55 60 65 70 75

F
ra

m
e
 r

a
te

 [
fp

s
]

Time [seconds]

a b

c d

Fig. 9.6 Car speed and QoS for the urban case-study. a Car Speed, b Left camera, c Center camera,
d Right camera

the QoS requirements while minimizing the power consumption without exceeding

the amount of computational resources physically available on the MPSoC platform.

Figure 9.7 shows the selected MPEG4 encoder configurations in terms of number

of allocated ADRESs and their average operating frequency set by the RRM for the

three video streams given the driving pattern presented in Fig. 9.6.

Figure 9.8 reports also the power consumption of the overall MPSoC platform

together with the penalties on the video stream requirements (i.e., the difference

between the required frame rates and the achieved ones).

When the frame rate requirement is 15 fps, the RRM can set either a three-

resources low frequency configuration or a one-resource high frequency configura-

tion. In a normal stationary situation, the RRM provides one resource to the left

camera and three resources to the central and right camera.

When a vehicle is in proximity of the left camera, the QoS requirement of this

camera is of 30 fps. To fit in this requirement, the RRM has to set the left cam-

era MPEG4 encoder in an operating configuration with many cores operating at

high frequency. For these cases, required resources are taken from other video-

streams which will move to a configuration with low resources and high frequency.

In the overall system there will be many cores operating at high frequency and these

situations are clearly characterized by peaks in the power consumption as visible in

Fig. 9.8a.

9 Design Space Exploration for Run-Time Management 201

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 30 35 40 45 50 55 60 65 70

R
e
s
o

u
rc

e
s
 [

#
c
o

re
s
]

Time [seconds]

 50

 100

 150

 200

 250

 30 35 40 45 50 55 60 65 70

F
re

q
u

e
n

c
y
 [

M
H

z
]

Time [seconds]

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 30 35 40 45 50 55 60 65 70

R
e
s
o

u
rc

e
s
 [

#
c
o

re
s
]

Time [seconds]

 50

 100

 150

 200

 250

 30 35 40 45 50 55 60 65 70

F
re

q
u

e
n

c
y
 [

M
H

z
]

Time [seconds]

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 30 35 40 45 50 55 60 65 70

R
e
s
o

u
rc

e
s
 [

#
c
o

re
s
]

Time [seconds]

 50

 100

 150

 200

 250

 30 35 40 45 50 55 60 65 70

F
re

q
u

e
n

c
y
 [

M
H

z
]

Time [seconds]

a

b

c

Fig. 9.7 Resource allocation and average operating frequency for the three MPEG4 instances.
a Left camera, b Center camera, c Right camera

As the car speed increases, the frame rate requirements for the lateral cameras

increase faster than the requirement for the central camera (Fig. 9.6). This brings

around the 40th second to a situation where all requirements can still be met reducing

the resources for the central camera while providing three cores to each lateral camera.

This situation stands until the requirements cannot be met anymore. In this last

situation, the requirement of the lowest priority application, i.e., the MPEG4 encoder

of the right camera, is relaxed and only one resource is assigned to it. This situation

is also visible in Fig. 9.8b, where the right camera frame rate is lower than the QoS

requirement by around 4 fps (QoS penalty of −4 fps).

202 G. Mariani et al.

 60

 65

 70

 75

 80

 30 35 40 45 50 55 60 65 70

P
o

w
e
r

[m
W

]

Time [seconds]

– 6

– 4

– 2

 0

 2

 4

 30 35 40 45 50 55 60 65 70

Q
o

S
 P

e
n

a
lt

y
 [

fp
s
]

Time [seconds]

Left
Center

Right

a b

Fig. 9.8 System power profile and QoS penalty for the three MPEG4 instances. a Power, b QoS
Penalty

During the simulations, the RRM routine (executed on StrongARM running at

206 MHz) for the operating point selection always found a solution within a com-

putation time of 1 ms. This run-time overhead is enough small to be considered

negligible in the given context.

To further clarify the advantage given by the availability of different parallelized

versions of the same application, Fig. 9.9 shows a bubble plot representing the oper-

ating configurations effectively used by the RRM within the proposed urban scenario.

A bubble plot is a way of representing the relationship between three or four variables

on a scatter-plot. Observations on two variables are plotted in the usual way on the

x and y axis using circles as symbols. The radii of the circles are made proportional

to the associated values for the third variable while different gray levels are used to

represent the fourth variable. In our specific case, the average operating frequency

and the power consumption of the operating configurations are respectively reported

on the x and y axis; frame rate supported from the configurations is proportional to

the circles dimensions while the gray level represents the amount of ADRES cores

needed to execute the configuration.

It is worth to note that among the configurations loaded by the RRM, only one

uses the sequential version of the MPEG4 encoder (i.e., the version running on one

Fig. 9.9 Bubble plot of
operating points loaded by the
Run-time Resource
Management

9 Design Space Exploration for Run-Time Management 203

single ADRES core). This particular configuration executes the MPEG4 encoder at

220 MHz and provides a frame rate of 15 fps.

The MPSoC platform with seven ADRES cores is over-dimensioned for the min-

imal requirement of 15 fps for each video stream needed by the CSU to operate

correctly. In fact for executing 3 MPEG4 encoders at 15 fpss, 3 ADRES cores would

be enough. The availability of different parallel versions provides to the RRM the

possibility to allocate the remaining resources to minimize the platform power con-

sumption. In particular, the RRM under the minimal requirements steadily selects

a configuration with 3 resources for the right and central cameras. The RRM takes

this decision since the MPEG4 encoder running on 3 cores can be executed at about

100 MHz, obtaining the same QoS and saving more than 5 mW of power consumption

(per 10 frames).

We can also observe that whenever a solution which matches all QoS requirements

exists, this is correctly identified by the priority-based RRM. In fact, from Figs. 9.8b

and 9.6 it is possible to notice that there is a QoS penalty only when all cameras

require more than 15 fps. In fact, providing more than 15 fps requires as least three

ADRES cores. Thus, due to resource constraints, when all video streams require

more than 15 fps, the frame rate of the lowest priority stream has to be relaxed.

9.5 Conclusions

In this Chapter we presented an application of the RRM to the management of

resources dedicated to a multiple-stream MPEG4 encoder chip within a Automotive

Cognitive Safety System scenario.

First of all the MPEG4 encoder application has been presented together with the

specific use case requirements. The design space identified by the run-time tunable

parameters has been considered to be too huge to be explored exhaustively during

the design time DSE phase. This is the reason for performing a heuristic optimization

within an integrated DSE framework which provides optimization algorithms and

RSM techniques as the ones described in Chaps. 3 and 4.

For enabling this design-time optimization phase, a multi-simulator framework

was adopted. We showed that a High Level Simulator (HLSim) can be used to

quickly evaluate performance indices of many candidate operating configurations.

These obtained performance results are validated with cycle accurate simulations.

Once the Pareto optimal operating configurations are identified, the RRM previ-

ously proposed in Chap. 5 has been proven to be effective at identifying an operating

configuration for each of the multiple video stream. In the experiments, the RRM

always identified a configuration which is able to satisfy all constraints when this

solution exists. When the QoS requirements are too high to be matched with the

available resources, the priority based algorithm can still identify a solution to the

problem by relaxing the constraint on the application having the lowest priority.

Note that the techniques for run-time resource management discussed in this

Chapter are valid when ample design time information of all the running applications

204 G. Mariani et al.

is available. When such a design-time information of different applications is not

available, system wide approaches for run-time management at the Operating System

(OS) level can be applied. Such OS level approaches are discussed in Chap. 6.

References

1. Avasare, P., Vanmeerbeeck, G., Kavka, C., Mariani, G.: Practical approach for design space
explorations using simulators at multiple abstraction levels. In: DesignAutomation Conference
(DAC) Users’ Track (2010)

2. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast and Elitist Multi-Objective Genetic
Algorithm: NSGA-II. Proceedings of the Parallel Problem Solving from Nature VI Conference
pp. 849–858 (2000). URL citeseer.ist.psu.edu/article/deb00fast.html

3. Garey, M.R., Johnson, D.S.: Computers and Intractability : A Guide to the Theory of NP-
Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman (1979)

4. Mariani, G., Avasare, P., Vanmeerbeeck, G., Ykman-Couvreur, C., Palermo, G., Silvano,
C., Zaccaria, V.: An industrial design space exploration framework for supporting run-time
resource management on multi-core systems. In: DATE 2010 - International Conference on
Design, Automation and Test in Europe., pp. 196 –201. Dresden, Germany (2010)

5. Mei, B., Sutter, B., Aa, T., Wouters, M., Kanstein, A., Dupont, S.: Implementation of a coarse-
grained reconfigurable media processor for avc decoder. Journal of Signal Processing Systems
51(3), 225–243 (2008). DOI http://dx.doi.org/10.1007/s11265-007-0152-8

6. Mignolet, J.Y., Baert, R., Ashby, T.J., Avasare, P., Jang, H.O., Son, J.C.: Mpa: Parallelizing
an application onto a multicore platform made easy. IEEE Micro 29, 31–39 (2009). DOI
http://doi.ieeecomputersociety.org/10.1109/MM.2009.46

7. Richardson, I.: H. 264 and Mpeg-4 Video Compression: Video Coding for Next-generation
Multimedia. John Wiley & Sons (2003)

8. Simlt-arm (2007). Http://simit-arm.sourceforge.net/
9. Ykman-Couvreur, C., Nollet, V., Catthoor, F., Corporaal, H.: Fast multi-dimension multi-

choice knapsack heuristic for MP-SoC run-time management. In: Proceedings of International
Symposium on System-on-Chip, pp. 1–4 (2006). DOI 10.1109/ISSOC.2006.321966

10. Zaccaria, V., Palermo, G., Mariani, G.: Multicube explorer (2008). Http://www.multicube.eu

Conclusions

With our work on MULTICUBE project and this book, we have pushed towards the

adoption of automatic design space exploration for the design of multi-processor

architectures for embedded computing systems. To demonstrate the effectiveness of

the design techniques developed in the MULTICUBE project, besides the results

already reported in Part II of the book, several assessment and validation activities

have been carried out on real industrial design vehicles defined as use cases. The as-

sessment has mainly been based on the application of the automatic DSE assessment

procedure as defined in Chap. 1. The procedure has then been adapted by the respon-

sible of each use case to comply with the specificities of its particular application

and context, but without modifying the aim and the general steps of the original one.

The main results of the comparison of the application of a manual or semi-automatic

optimisation flow with respect to an automatic optimisation flow can be summarized

by the following considerations.

DS2, the leading supplier of silicon and software for Powerline Communications

(recently DS2 assets and technologies were bought by Marvell Technology Group)

has applied the procedure to its Powerline use case described in Chap. 7 and suitable

for advanced communication system to enable a fast and reliable transfer of audio,

video and data information by using the most ubiquitous transmission system: the

power lines. The general DSE assessment procedure has then be adapted to the pecu-

liarities of the Powerline use case to test how the different methodologies and tools

developed in the MULTICUBE project can be effectively applied to this industrial

design flow. The advantages found by DS2 on the target use case can be summarized

as follows:

The proposed flow can save up to 80% of designer time while achieving better results in terms
of performance since much more simulations can be run and analyzed by following this flow
obtaining ten times more possible combinations than with the semi-automatic design flow.

STMicroelectronics, one of the world’s largest semiconductor companies, has ap-

plied the MULTICUBE design flow to design and optimize the SP2 low power

advanced computing processor developed by STM Beijing for generic computing

applications. The design space of the use case is very large including several architec-

tural parameters concerning out-of-order execution parameters, memory hierarchy

parameters and branch prediction parameters. To quantify the benefits of using the

C. Silvano (eds.), Multi-objective Design Space Exploration of 205
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9, © Springer Science+Business Media, LLC 2011

206 Conclusions

MULTICUBE design flow in an industrial practice, STM compared the traditional

optimization procedure used internally with respect to the automatic DSE procedure

proposed by MULTICUBE project. The benefits found from STM can be summarized

by the following statement:

The use of MULTICUBE optimization flow can save up to a 73% of the overall time while
achieving comparable results in terms of power/performance tradeoffs The overall con-
clusion of the utilization of MULTICUBE design flow over a real industrial use case like the
one just discussed is that the added value overcomes largely the cost of setting up the whole
process, converging much faster to the optimum solution for a given technical problem.

IMEC, the Europe’s leading independent research center for the development of mi-

croelectronics and ICT, was interested in evaluating the MULTICUBE DSE flow

to show proof-of-concept of its innovative research ideas. IMEC was interested in

evaluating the benefits of DSE flow not only considering the design-time tunable

parameters, but also using the exploitation of the approach at run-time. For proof-

of-concept of both design-time and run-time automatic DSE, IMEC used the same

MPSoC virtual platform based on ADRES core executing the MPEG4 encoder ap-

plication described in Chap. 9. The benefits of automated DSE with respect to the

manual approach can be summarized by the following statements:

Looking at the two design space exploration case-studies, it can be seen that using automatic
DSE over manual full-space exploration has large benefits in terms of time-to-market and
accuracy of exploration results. By using automatic DSE in dynamic runtime management
evaluation case-study, design space exploration time was reduced from 6 months (full-space)
to 36 h. In another case-study of MPSoC platform optimization, by using a simulator at higher
abstraction level coupled with automatic DSE, we could reduce design space exploration
time from worst case of 153 years (full-space) to 36 h The extra efforts required to build
automatic DSE procedure were minimal.

Besides these tangible benefits of using automated design exploration techniques

obtained by implementing a number of industrial use-cases, MULTICUBE project

demonstrated several achievements at the scientific/technical level. Based on the

opinion of the European reviewers of the project, these achievements can be

summarized by the following statements:

. . . Practical ways to trade off accuracy for speed through the use of multi-abstraction level
simulation thus enabling exploration of larger design spaces.
. . . The feasibility of automated parameter tuning at run-time using exploration data collected
at design-time. By implementing and applying a number of analytical and computational
multi-objective optimisation techniques the project has demonstrated the advantages (in
terms of design costs) of using automated architectural exploration at design-time and also
demonstrated the possibility of performance improvements for run-time.
. . . The effectiveness of using a common XML scheme to enable integration and inter-
operability of both propriety and open-source software tools in a coherent design tool-chain.

To conclude, in the age of multi/many-core architectures, we believe that system

optimization and exploration technologies and tools represent not only a challenging

research task to be further investigated in the next coming years, but could also

represent one of the potential research breakthroughs.

The Editors

Index of Terms

A

ADRES, 7, 8, 191, 192, 194–196, 200, 202,
203, 206

Application version, 102, 190, 193,
196–198

Application working mode (AWM),
135, 136

Automatic design space exploration, 5, 6, 13,
14, 52, 172

Automatic exploration, 14–16, 180
Automatic model generation, 22, 23
Automotive Cognitive Safety System, 189,

191, 193, 203
Auto-scaling, 83
Average normalized error, 91, 185

B

Benchmark problem, 66, 69, 70, 72
Box-Cox power transform, 83

C

Cache modeling, 21, 32, 33, 47
Categorical discrete optimization, 176
Categorical variables, 13, 52, 54, 55, 58–60,

64, 72, 80, 81
Central composite design of experiments, 79
Closed-form analytical expressions, 75, 76, 91
Co-design hardware/software, 114, 139
Core, 8, 29, 33, 53, 75, 76
Cross-layer RTRM techniques, 133

Constrained Power Management (CPM),
134

Dynamic Power Management (DPM),
131, 132

QoS-PM Framework, 133
Curve fitting, 78
Cycle-accurate system-level simulation, 76

Transaction-Level Model (TLM), 8, 40,
98, 196, 198

D

Data distribution, 83

Design flow, 3–5, 8, 10, 11, 17, 23, 84, 139,
168–170, 171

Design flow optimization, 146, 158, 163, 206

Design of Experiments, 6, 9, 52, 53, 57, 75, 77,
79, 160, 175

Design space definition, 11, 12, 174, 182

Design space exploration, 3–6, 9, 10, 13–15,
17, 19, 20, 47, 51–53, 55, 62, 66, 70, 73,
75, 76, 91, 93–95, 98, 105, 136, 145,
146, 171, 172, 174, 188, 189, 197

Design time heuristics, 53, 96, 97

Design tools, 4, 5, 11, 84, 174, 196

Designer time reduction, 168, 169

Design-time Design Space Exploration, 95,
189

Discrete variables, 57, 80–82

Dynamic Power Management (DPM), 132

Dynamic Voltage and Frequency Scaling, 96

E

Early-stop criterion, 80

Elitism, 56–58, 63, 64, 71

Embedded computing systems, 80

Embedded multimedia platforms, 4

Energy estimation, 29

Event-based simulator, 75, 76

Evolutionary Design, 84, 90, 185, 187

F

Feed-forward Neural Network, 87, 88

Full factorial design of experiments, 79

Functional-level simulation, 98

G

Gaussian process, 88

Genetic algorithms, 7, 53, 55, 57, 63, 102, 198

Genetic programming, 90

C. Silvano (eds.), Multi-objective Design Space Exploration of 207
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9, © Springer Science+Business Media, LLC 2011

208 Index of Terms

H

Hidden layer, 87, 88
High-level modeling, 145
HLSim, 8, 9, 98, 190, 196, 198, 199, 203

I

Industrial Design Space Exploration Data
Mining, 6

Interpolation, 9, 78, 84, 85, 89, 90

K

Kriging, 84, 88, 89, 184–186

L

Leave-one-out predictive probability, 89
Linear regression, 9, 84, 85, 184–186
Low power processor, 66, 171, 172, 188

M

Many-core architectures response surface
modeling, 172, 188

Memory Subsystem optimization, 112
Mixed-workload, 137
Model selection, 15, 78, 80, 85
Model training, 75, 83
Modeling tools, 3, 5–7, 17, 39, 45, 98,

102, 154
MPEG4, 8, 189–203
Multi/many-core architectures, 4, 8, 109, 113,

171, 172, 188, 206
Multi-dimension Multiple-choice Knapsack

Problem, 95, 97, 99, 101, 104, 190
Multi-layer perceptrons, 87
Multi-objective optimization, 52, 53, 55, 58,

60, 95, 103, 134–136, 174
Multi-processor SoC architectures, 5

N

Native co-simulation, 20, 21, 23, 36, 37,
46, 47

Network topology, 156
Network-on-Chip, 8, 182, 195
Neural Networks, 9, 84, 87, 185, 186
Noise parameters, 88
Non-dominated Sorting Genetic Algorithm,

55, 56, 59, 60, 63, 102, 198, 199
Numerical stability, 81, 82

O

Open-source design tools, 3, 5, 7, 10
Open-source frameworks, 3, 5, 7
Operating point (OP), 8, 10, 93, 97, 99–104,

116, 132, 133, 139, 197, 199, 202
OP selection, 116, 132, 133

Operating point of an application, 100
Operating system, 7, 10, 23, 24, 36–38, 95,

105, 109, 115, 117, 124, 128, 134,
136–139, 149, 190, 204

Operating system support, 117
Optimization workflow, 174
Optimization (multi-objective optimization),

52, 53, 55, 60, 95, 134–136, 174
Optimization algorithms, 16, 51–53, 55, 72,

73, 105, 172, 180, 203
OS mechanisms, 119
Over-fitting, 78, 80, 85, 87

P

Paramerizable architectures, 86, 101
Pareto domination, 63
Pareto front (Pareto set), 7, 17, 51, 53, 55, 56,

57, 63, 64, 66–70, 72, 176, 177, 179
Pareto set, 3, 4, 8, 10, 58, 60, 65, 70, 72, 95, 98
Performance evaluation, 24
Performance metric, 19, 86
Piecewise polynomials, 86
Platform-based design, 7
Polynomial, 78, 85–87
Post Processing, 52, 53, 72
Powerline-communication network, 8,

145–147, 150
Prediction error, 88
Processor architectures, 75, 76, 180, 181

QoS Estimator, 116
QoS-PM Framework, 133

Q

Quality of service requirement, 131
Quality-of-Service (QoS), 4, 8, 10, 93, 94,

97–99, 101, 103, 105, 112, 116, 117,
131, 133, 134, 136, 139, 145, 146, 156,
189, 190, 199, 200, 201, 203

R

Radial Basis Functions, 9, 81, 85, 184–186
Random design of experiments, 53, 79, 82
Regression, 9, 78, 84–86, 88, 90, 91, 184–186
Response surface model, 9, 75–78, 91, 172,

180, 184, 199
Response surface modeling techniques, 9, 179
Restricted cubic splines, 87
RSM, see Response surface model
RTOS modeling, 33
RTRM Linux Frameworks, 120, 130

Clock, 76, 95, 116, 124, 125, 128, 129
CPUFreq, 126, 127
CPUIdle, 125, 134
Suspend and Resume, 128
Voltage and Current Control, 130

Index of Terms 209

Run-time Design Space Exploration, 4, 117,
190

Run-time resource management (RTRM), 112
Adaptive RTRM, 114
Centralized RTRM, 114, 131, 139
Distributed RTRM, 114, 131, 139

S

Simulation speed, 21, 22, 75, 76, 173
Simulation Tools, 3, 5, 7, 14, 17, 20, 22, 25,

196, 197
Simulator, 4–13, 16, 25, 28, 41, 42, 45, 52,

54, 66, 67, 72, 73, 75, 76, 93, 96, 97,
101, 103, 105, 169, 173–175, 182, 183,
189–191, 196–199, 203

Soft real-time system, 101
Splines, 84, 86, 87, 184–186
Statistical sampling, 76
Steady state evolution, 59, 64, 72
Symbolic regression, 90
SystemC, 4, 7, 19, 20, 22–24, 28, 34, 35, 39,

41, 43, 45, 47, 98, 145, 148–151, 154
System-level Design, 22
System-level metrics, 8, 75, 77
System-level requirements, 114, 118, 125, 127,

128, 134, 138
System-level specification, 17
System-on-Chip architectures, 3
System-wide optimization, 114, 128, 131, 134,

138, 139

T

Time approximate, 4, 7, 190

Timing-annotated functional level simulation,
8, 21, 22, 196

TLMsim, 98, 196, 198, 199

Tool integration, 4, 11

Traffic shape, 149, 156

Training algorithm, 80, 81, 88

Training set, 10, 77, 78, 80, 86, 91, 185, 187

Transaction Level Modeling, 22, 33, 149, see

also TLM

U

Uniform Latin Hypercube, 82, 176

V

Validation, 5, 8, 16, 53, 66, 71–73, 77, 80, 83,
91, 184–186, 191

Validation set, 80

Variance, 69, 83, 85, 185

Variogram, 89, 185

Versioning, 99

Virtual platforms, 14, 38, 98, 145, 146,
148–150, 152, 154, 163, 206

VLIW processors, 8

X

XML interface, 11–13, 41

	Foreword
	Preface
	Contents
	List of Contributors
	Abbreviations
	About the Editors
	Part I Methodologies and Tools
	1 The MULTICUBE Design Flow
	1.1 Introduction
	1.2 Overview of the Design Flow
	1.2.1 The Design Space Exploration Framework
	1.2.2 The Power/Performance Estimation Framework
	1.2.3 Response Surface Modeling Techniques
	1.2.4 Run-Time Resource Management

	1.3 Design Tool Integration based on the MULTICUBE XML Interface
	1.3.1 Design Space Definition
	1.3.1.1 Simulator Invocation
	1.3.1.2 Parameters Definition
	1.3.1.3 System Metrics Definition

	1.3.2 Simulator Input/Output XML Interface

	1.4 Advantages of Automatic DSE
	1.5 Conclusions

	2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems
	2.1 Introduction
	2.2 Native Co-Simulation Infrastructure for DSE
	2.2.1 Configurable XML System Descriptions
	2.2.1.1 Configuration of the System Components
	2.2.1.2 Replication of System Components
	2.2.1.3 Selecting Complete Configurations

	2.3 Modeling of SW Components through Native Simulation
	2.3.1 Performance Modeling of Embedded SW
	2.3.1.1 Basic-Block Time Estimation
	2.3.1.2 Cache Modeling

	2.3.2 RTOS Modeling
	2.3.3 Modeling of SW/HW Communication
	2.3.3.1 HW/SW Communication Using Device Drivers
	2.3.3.2 Modeling of Direct I/O Accesses Through Pointers

	2.4 HW Platform Modeling
	2.4.1 Bus Modeling
	2.4.2 HW Interfaces

	2.5 Automatic Generation of System Models
	2.5.1 HW Platform Creation
	2.5.2 SW Components Instantiation
	2.5.3 Integration of Independent Component Codes
	2.5.3.1 Achieving Separate Visibility Scopes
	2.5.3.2 Modeling Separate Memory Spaces

	2.6 Simulation Results
	2.7 Conclusions

	3 Optimization Algorithms for Design Space Exploration of Embedded Systems
	3.1 Introduction
	3.2 Problem Description and Software Framework
	3.3 Algorithms
	3.3.1 Standard Algorithms
	3.3.1.1 NSGA--II
	3.3.1.2 MOGA--II

	3.3.2 Enhanced Algorithms
	3.3.2.1 Enhanced-MOSA
	3.3.2.2 Enhanced-ES
	3.3.2.3 Enhanced-MOPSO

	3.3.3 New Algorithms
	3.3.3.1 MFGA
	3.3.3.2 APRS

	3.4 Validation Strategies
	3.4.1 Algorithm Comparison
	3.4.2 The Complete Optimization Problem

	3.5 Conclusions

	4 Response Surface Modeling for Design Space Exploration of Embedded Systems
	4.1 Introduction
	4.2 Background on Response Surface Models
	4.2.1 RSM Categories
	4.2.2 Design of Experiments
	4.2.3 Over-Fitting

	4.3 How to Manage the Design Space of Embedded Systems
	4.3.1 Discrete and Categorical Variables
	4.3.2 Optimal DoE
	4.3.3 Pre-Processing and Scaling Data

	4.4 Algorithms Description
	4.4.1 Linear Regression
	4.4.2 Radial Basis Functions
	4.4.3 Splines
	4.4.4 Neural Networks
	4.4.5 Kriging
	4.4.6 Evolutionary Design

	4.5 General Validation Flow of RSMs
	4.6 Conclusions

	5 Design Space Exploration Supporting Run-Time Resource Management
	5.1 Introduction
	5.2 Run-Time Resource Management in Embedded Systems
	5.3 Run-time Resource Management Problem Definition
	5.3.1 Terminologies
	5.3.2 RRM Problem

	5.4 Proposed Tool-Flow for RRM
	5.4.1 Design-Time Heuristic Methodology
	5.4.2 The Run-Time Management Methodology

	5.5 Conclusions

	6 Run-Time Resource Management at the Operating System Level
	6.1 Introduction
	6.2 Run-Time Resource Management (RTRM)
	6.2.1 Problem Overview
	6.2.2 Resource Manager Overview
	6.2.3 Run-Time Manager Components

	6.3 Operating System Support
	6.3.1 System-Wideness and the OS
	6.3.2 OS Mechanisms Supporting RTRM
	6.3.2.1 CPU Time Management
	6.3.2.2 Memory Management
	6.3.2.3 I/O Management
	6.3.2.4 Network Management
	6.3.2.5 General Conclusion on Resource Management

	6.4 Power Management
	6.4.1 Pure-OS Techniques
	6.4.1.1 Device Specific Techniques
	6.4.1.2 System-Wide Techniques

	6.4.2 Cross-Layer Techniques
	6.4.2.1 Dynamic Power Management
	6.4.2.2 QoS-PM Framework
	6.4.2.3 Constrained Power Management

	6.5 Exploiting DSE to Support RTRM
	6.5.1 Integration Pitfalls
	6.5.1.1 Mixed Workload: Critical and Best-Effort Applications
	6.5.1.2 Run-Time Phenomena

	6.5.2 Integration Requirements and Goals
	6.5.2.1 Dynamic Resource Partitioning
	6.5.2.2 Resource Abstraction

	6.6 Conclusions

	Part II Application Domains
	7 High-Level Modeling and Exploration of a Powerline Communication
	7.1 Introduction
	7.2 Design Case Study: High Level Modeling of a Powerline Network Based on SoC
	7.2.1 Application Description
	7.2.1.1 Configuration of the System Components
	7.2.1.2 Description of the Use Case

	7.2.2 Platform Description
	7.2.2.1 STORM Platform Description
	7.2.2.2 Application of MULTICUBE Tools in the Platform
	7.2.2.3 modeFRONTIER: Analysis and Exploration Tool
	7.2.2.4 M3-SCoPE: Interface and Description Tool
	7.2.2.5 Description of Parameters and Metrics

	7.2.3 DSE Assessment Process
	7.2.3.1 Demonstrate the Coherency of the Results
	7.2.3.2 Find the Optimum Point for the Design Parameters
	7.2.3.3 Objective Assessment
	7.2.3.4 Subjective Assessment

	7.3 Conclusions

	8 Design Space Exploration of Parallel Architectures
	8.1 Introduction
	8.2 Design Case Study: Design Space Exploration of the STM Industrial SP2 Platform
	8.2.1 Architectural Model Description
	8.2.2 Design Space and Application
	8.2.3 Design Space Exploration
	8.2.3.1 The Optimization Workflow
	8.2.3.2 Design of Experiments
	8.2.3.3 Optimization
	8.2.3.4 Other Studies

	8.2.4 Conclusions

	8.3 Design Case Study: Analysis of Performance and Accuracy of Response Surface Models for the Many-Core Architecture Provided by ICT
	8.3.1 Platform Description
	8.3.2 Node Architecture and Instruction Set
	8.3.3 The Simulator
	8.3.4 Design Space and Application
	8.3.5 Response Surface Modeling of Many-Cores

	8.4 Conclusions

	9 Design Space Exploration for Run-Time Management
	9.1 Introduction
	9.2 Case Study
	9.2.1 Application Description
	9.2.2 Automotive Cognitive Safety System

	9.3 Platform Description
	9.3.1 Simulation Tool-Chain

	9.4 Experimental Results
	9.4.1 Design Space Explorations Using Multi-Simulator Framework
	9.4.2 Run-Time Resource Management
	9.4.2.1 Simulation of an Urban Environment
	9.4.2.2 Run-Time Resource Management Behaviors

	9.5 Conclusions

	Conclusions
	Index of Terms
	Cover
	Foreword
	Preface
	Contents
	List of Contributors
	Abbreviations
	About the Editors
	Part I Methodologies and Tools
	1 The MULTICUBE Design Flow
	1.1 Introduction
	1.2 Overview of the Design Flow
	1.2.1 The Design Space Exploration Framework
	1.2.2 The Power/Performance Estimation Framework
	1.2.3 Response Surface Modeling Techniques
	1.2.4 Run-Time Resource Management

	1.3 Design Tool Integration based on the MULTICUBE XML Interface
	1.3.1 Design Space Definition
	1.3.1.2 Parameters Definition
	1.3.1.1 Simulator Invocation

	1.4 Advantages of Automatic DSE
	1.3.2 Simulator Input/Output XML Interface
	1.3.1.3 System Metrics Definition

	1.5 Conclusions

	2 M3-SCoPE: Performance Modeling of Multi-Processor Embedded Systems
	2.1 Introduction
	2.2 Native Co-Simulation Infrastructure for DSE
	2.2.1 Configurable XML System Descriptions
	2.2.1.1 Configuration of the System Components
	2.2.1.2 Replication of System Components
	2.2.1.3 Selecting Complete Configurations

	2.3 Modeling of SW Components through Native Simulation
	2.3.1 Performance Modeling of Embedded SW
	2.3.1.1 Basic-Block Time Estimation
	2.3.1.2 Cache Modeling

	2.3.2 RTOS Modeling
	2.3.3 Modeling of SW/HW Communication
	2.3.3.2 Modeling of Direct I/O Accesses Through Pointers
	2.3.3.1 HW/SW Communication Using Device Drivers

	2.4 HW Platform Modeling
	2.4.2 HW Interfaces
	2.4.1 Bus Modeling

	2.5 Automatic Generation of System Models
	2.5.1 HW Platform Creation
	2.5.2 SW Components Instantiation
	2.5.3 Integration of Independent Component Codes
	2.5.3.1 Achieving Separate Visibility Scopes

	2.6 Simulation Results
	2.5.3.2 Modeling Separate Memory Spaces

	2.7 Conclusions

	3 Optimization Algorithms for Design Space Exploration of Embedded Systems
	3.1 Introduction
	3.2 Problem Description and Software Framework
	3.3 Algorithms
	3.3.1 Standard Algorithms
	3.3.1.1 NSGA--II
	3.3.1.2 MOGA--II

	3.3.2 Enhanced Algorithms
	3.3.2.1 Enhanced-MOSA
	3.3.2.2 Enhanced-ES
	3.3.2.3 Enhanced-MOPSO

	3.3.3 New Algorithms
	3.3.3.1 MFGA
	3.3.3.2 APRS

	3.4 Validation Strategies
	3.4.1 Algorithm Comparison
	3.4.2 The Complete Optimization Problem

	3.5 Conclusions

	4 Response Surface Modeling for Design Space Exploration of Embedded Systems
	4.1 Introduction
	4.2 Background on Response Surface Models
	4.2.1 RSM Categories
	4.2.2 Design of Experiments

	4.3 How to Manage the Design Space of Embedded Systems
	4.2.3 Over-Fitting
	4.3.1 Discrete and Categorical Variables
	4.3.2 Optimal DoE
	4.3.3 Pre-Processing and Scaling Data

	4.4 Algorithms Description
	4.4.1 Linear Regression
	4.4.2 Radial Basis Functions
	4.4.3 Splines
	4.4.4 Neural Networks
	4.4.5 Kriging
	4.4.6 Evolutionary Design

	4.5 General Validation Flow of RSMs
	4.6 Conclusions

	5 Design Space Exploration Supporting Run-Time Resource Management
	5.1 Introduction
	5.2 Run-Time Resource Management in Embedded Systems
	5.3 Run-time Resource Management Problem Definition
	5.3.1 Terminologies
	5.3.2 RRM Problem

	5.4 Proposed Tool-Flow for RRM
	5.4.1 Design-Time Heuristic Methodology
	5.4.2 The Run-Time Management Methodology

	5.5 Conclusions

	6 Run-Time Resource Management at the Operating System Level
	6.1 Introduction
	6.2 Run-Time Resource Management (RTRM)
	6.2.1 Problem Overview
	6.2.2 Resource Manager Overview
	6.2.3 Run-Time Manager Components

	6.3 Operating System Support
	6.3.1 System-Wideness and the OS
	6.3.2 OS Mechanisms Supporting RTRM
	6.3.2.1 CPU Time Management
	6.3.2.2 Memory Management
	6.3.2.3 I/O Management
	6.3.2.5 General Conclusion on Resource Management
	6.3.2.4 Network Management

	6.4 Power Management
	6.4.1 Pure-OS Techniques
	6.4.1.1 Device Specific Techniques
	6.4.1.2 System-Wide Techniques

	6.4.2 Cross-Layer Techniques
	6.4.2.1 Dynamic Power Management
	6.4.2.2 QoS-PM Framework
	6.4.2.3 Constrained Power Management

	6.5 Exploiting DSE to Support RTRM
	6.5.1 Integration Pitfalls
	6.5.1.1 Mixed Workload: Critical and Best-Effort Applications
	6.5.1.2 Run-Time Phenomena

	6.5.2 Integration Requirements and Goals
	6.5.2.1 Dynamic Resource Partitioning

	6.6 Conclusions
	6.5.2.2 Resource Abstraction

	Part II Application Domains
	7 High-Level Modeling and Exploration of a Powerline Communication
	7.1 Introduction
	7.2 Design Case Study: High Level Modeling of a Powerline Network Based on SoC
	7.2.1 Application Description
	7.2.1.1 Configuration of the System Components
	7.2.1.2 Description of the Use Case

	7.2.2 Platform Description
	7.2.2.1 STORM Platform Description
	7.2.2.2 Application of MULTICUBE Tools in the Platform
	7.2.2.3 modeFRONTIER: Analysis and Exploration Tool
	7.2.2.4 M3-SCoPE: Interface and Description Tool
	7.2.2.5 Description of Parameters and Metrics

	7.2.3 DSE Assessment Process
	7.2.3.1 Demonstrate the Coherency of the Results
	7.2.3.2 Find the Optimum Point for the Design Parameters
	7.2.3.3 Objective Assessment

	7.3 Conclusions
	7.2.3.4 Subjective Assessment

	8 Design Space Exploration of Parallel Architectures
	8.1 Introduction
	8.2 Design Case Study: Design Space Exploration of the STM Industrial SP2 Platform
	8.2.1 Architectural Model Description
	8.2.2 Design Space and Application
	8.2.3 Design Space Exploration
	8.2.3.1 The Optimization Workflow
	8.2.3.2 Design of Experiments
	8.2.3.3 Optimization
	8.2.3.4 Other Studies

	8.2.4 Conclusions

	8.3 Design Case Study: Analysis of Performance and Accuracy of Response Surface Models for the Many-Core Architecture Provided by ICT
	8.3.1 Platform Description
	8.3.2 Node Architecture and Instruction Set
	8.3.3 The Simulator
	8.3.4 Design Space and Application
	8.3.5 Response Surface Modeling of Many-Cores

	8.4 Conclusions

	9 Design Space Exploration for Run-Time Management
	9.1 Introduction
	9.2 Case Study
	9.2.1 Application Description
	9.2.2 Automotive Cognitive Safety System

	9.3 Platform Description
	9.3.1 Simulation Tool-Chain

	9.4 Experimental Results
	9.4.1 Design Space Explorations Using Multi-Simulator Framework
	9.4.2 Run-Time Resource Management
	9.4.2.1 Simulation of an Urban Environment
	9.4.2.2 Run-Time Resource Management Behaviors

	9.5 Conclusions

	Conclusions

	Index of Terms

