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Preface

Motivated by the Human Genome Project, a new view of biology, called systems
biology, is emerging [5]. Systems biology does not investigate individual genes,
proteins or cells in isolation. Rather, it studies the behavior and relationships of
all of the cells, proteins, DNA and RNA in a biological system called a cellular
network. The most active networks may be those associated with genetic regulation,
which regulate the growth, replication, and death of cells in response to changes in
the environment.

How do these genetic regulatory networks function? In the early 1960s Jacob
and Monod showed that any cell contains a number of “regulatory” genes that act
as switches and which can turn each another on and off. This shows that a genetic
network is of “on–off” type [7].

Boolean networks, first introduced by Kauffman, have become powerful tools
for describing, analyzing, and simulating cellular networks [2, 3]. Hence, they have
received much attention, not only from the biology community, but also from re-
searchers with backgrounds in physics, systems science, etc.

The purpose of this book is to present a new approach to the investigation of
Boolean (control) networks. In this new approach, a logical relation is expressed as
an algebraic equation, and a logical dynamical system, such as a Boolean network,
is converted into a standard discrete-time linear system. Similarly, a Boolean con-
trol network is converted into a discrete-time bilinear system. In this way, various
tools for solving conventional algebraic equations and dealing with difference or
differential equations can be used to solve logic-based problems. Under this frame-
work, the topological structures of Boolean networks are revealed via the structures
of their network transition matrices. The state space, subspaces, etc., are then de-
fined as sets of logical functions. This framework makes the state-space approach
to dynamical (control) systems applicable to Boolean (control) networks. Using
this new technique, we investigate the properties and control design of Boolean
networks. Many basic problems in control theory are studied, such as controlla-
bility, observability, realization, stabilization, disturbance decoupling and optimal
control.

The fundamental tool in this approach is a new matrix product, called the semi-
tensor product (STP). The STP of matrices is a generalization of the conventional

v



vi Preface

matrix product to the case where the dimension-matching condition is not satisfied.
That is, we extend the matrix product AB to the case where the column number of
A and the row number of B are different. This generalization preserves all the major
properties of the conventional matrix product.

Using the STP, a logical function can be converted into a multilinear mapping,
called the matrix expression of logical relations. Under this construction, the dy-
namics of a Boolean network can be expressed as a conventional discrete-time linear
system. In the light of this linear expression, certain major features of the topology
of a Boolean network, such as fixed points, cycles, transient time, and basins of
attractors, can be easily revealed via a set of formulas.

When the control of a Boolean network is considered, the bilinear system repre-
sentation of a Boolean control network makes it possible to apply most techniques
developed in modern control theory to the analysis and synthesis of a Boolean con-
trol network.

The main contents of this book are as follows.
Chapter 1 consists of a brief introduction to propositional logic. This is very

elementary and involves only the propositional logic required in this book. A reader
who is familiar with mathematical logic can skip it.

In Chap. 2 we introduce some basic concepts and properties of the STP, which is
the principal tool used in this book. The STP is a generalization of the conventional
matrix product in cases where the dimension-matching requirement for the factor
matrices fails. This generalization preserves the major properties of the conventional
matrix product.

In Chap. 3 we consider the matrix expression of logical relations. Identifying
T (true) and F (false) with vectors [1,0]T and [0,1]T, respectively, a logical vari-
able becomes a 2-dimensional vector variable. Using the STP, a logical function
can be expressed as a multilinear mapping with respect to its logical arguments so
that each logical function is uniquely determined by a matrix, called its structure
matrix.

Chapter 4 is devoted to solving logical equations. Using the matrix expression of
logic a system of logical equations can be converted into a linear algebraic equation.
Ignoring the complexity of computation, the solution of systems of logical equations
becomes theoretically equivalent to the solution of algebraic equations, which can
be achieved with straightforward computation.

Chapter 5 considers the linear expression of Boolean networks. Using the tech-
nique developed in previous chapters, the dynamics of a Boolean network is con-
verted into a conventional discrete-time linear system. In the light of this linear
expression, the topological structures of Boolean networks are investigated via their
transition matrices. Formulas are obtained to calculate the fixed points, cycles of
different lengths, transient period, and the basin of each attractor.

The input-state structures of Boolean control networks are studied in Chap. 6.
The compounded structure of cycles in input-state space is obtained. This approach
is applied to the analysis of Boolean networks with cascading structure. The “rolling
gear” structure of cycles is revealed, which explains the phenomenon that tiny at-
tractors can determine the vast order of the network [4].
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Chapter 7 presents a technique to build the dynamic model of a Boolean network
via observed data. Instead of building the logical dynamics of a Boolean network,
we first identify its algebraic form, so the conversion of the algebraic form of a
Boolean network back to its logical form is first investigated. After a general model
construction technique is introduced, several special cases are studied, including the
known network graph case, the least in-degree model, the uniform model, etc. The
problem of dealing with data containing errors is also discussed.

In Chap. 8 a systematic state-space description is developed. The state space
(and its subspaces) of a Boolean (control) network are defined in a dual way, i.e.,
they are defined as sets of logical functions. It is shown that this description is very
convenient in revealing the properties of Boolean networks and in the control design
of Boolean control networks.

Chapter 9 is devoted to Boolean control networks. Using linear expressions, it is
shown that Boolean control networks can be converted into linear control systems.
Some basic control problems such as controllability and observability of Boolean
control networks are then investigated via their equivalent forms for linear control
systems.

Chapter 10 considers the realization problem of Boolean control networks. First,
coordinate transformations are considered, and then the Kalman decomposition of
Boolean input–output networks is proposed. Using the Kalman decomposition, the
minimum realization of a Boolean input–output mapping is obtained.

The stability and stabilization problem is discussed in Chap. 11. The applicable
set from metric-based convergence analysis [6] is enlarged by the use of coordinate
transformations. Based on the analysis of the network transition matrix, necessary
and sufficient conditions are then obtained for stability and stabilization by either
open-loop control or closed-loop control. Several examples are included.

Chapter 12 considers the disturbance decoupling problem. First, the output-
friendly subspace is introduced. Formulas and algorithms are provided to construct
a minimum regular subspace, which is called the “friend” of output y. The de-
sign technique for constructing the feedback and solving the disturbance decoupling
problem is presented. To construct a constant stabilizing control, the canalizing map-
ping, which is a generalization of the canalizing function, is proposed and its main
properties are revealed.

In Chap. 13 we consider the coordinate-independent geometric structure of
Boolean (control) networks. Based on this structure, the feedback decomposition
of Boolean control networks is studied. The input-state decomposition, including
cascading and parallel decompositions, and input–output decomposition of Boolean
control networks are investigated, and necessary and sufficient conditions are pre-
sented.

Chapter 14 deals with the multivalued logic which could provide a more precise
description for real networks such as gene regulation networks, etc. The structure
of k-valued logical networks is first investigated. Controllability and observabil-
ity of k-valued logical networks are then considered. In fact, almost all the argu-
ments and results about Boolean networks can be extended to the k-valued logic
setting.
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Chapter 15 considers the optimal control of Boolean control networks. To deal
with Boolean (or k-valued) games with s-memory, higher-order Boolean (control)
networks are introduced, and their algebraic forms are also presented. The one-to-
one correspondence between the cycles of the original network and the cycles of its
algebraic form is established. The optimal control problem is then investigated and
the optimal control is designed.

Chapter 16 introduces a useful tool, called the input-state incidence matrix, which
is an algebraic description of the input-state transfer graph. Controllability and ob-
servability of Boolean control networks are revisited and some further results are
presented. The topological structures of Boolean control networks with free con-
trols are also investigated. Finally, the results are extended to mix-valued logical
dynamical systems.

Chapter 17 investigates the identification of Boolean control networks. First, a
new observability condition is obtained which provides a way to construct the initial
state of a trajectory from its input–output data. A necessary and sufficient condition
for identifiability is then presented. A numerical algorithm is proposed for practical
application.

Chapter 18 considers an application to game theory. We consider a game with
finitely many players and where each player has finitely many possible actions.
When the game is infinitely repeated, a strategy using finite memory becomes a
logical dynamical system. Hence, the results obtained for Boolean or logical net-
works are applicable to finding Nash or sub-Nash solutions for the infinitely re-
peated games.

The primary objects of this book are deterministic Boolean networks, but in
Chap. 19 we provide a brief introduction to random Boolean networks. Basic con-
cepts are presented and then the steady-state distribution of a random Boolean net-
work is investigated. Finally, the stabilization of a random Boolean network is stud-
ied. Recently, random Boolean networks have been the subject of much research,
and so a detailed discussion is beyond the scope of this work.

Appendix A explains relevant numerical calculations. A software toolbox for the
algorithms is available at http://lsc.amss.ac.cn/~dcheng/.

Appendix B contains proofs of some key properties of the semi-tensor product,
which are translated from [1], with the permission of Science Press.

This book is self-contained. The prerequisites for its use are linear algebra and
some basic knowledge of the control theory of linear systems. The manuscript was
originally prepared when the first author was visiting Kyoto University. The first
author would like to express his hearty thanks to Professor Yutaka Takahashi for his
proof-reading and useful suggestions for parts of the manuscript. The manuscript
has been used as lecture notes in a series of seminars organized jointly by the
Academy of Mathematics and Systems Science, Tsinghua University, and Peking
University. Many colleagues and students attending these seminars have contributed
to this book via useful discussions, suggestions, and corrections. Particularly, Dr.
Yin Zhao helped in the preparation of Chaps. 15–17. Dr. Yifen Mu, Dr. Zhenning
Zhang, Dr. Yin Zhao, Dr. Xiangru Xu, and Dr. Jiangbo Zhang helped with the final
galley proof of the manuscript. The authors are also indebted to Mr. Oliver Jackson
for his warmhearted support.

http://lsc.amss.ac.cn/~dcheng/
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Notation

C set of complex numbers
R set of real numbers
Q set of rational numbers
Z set of integers
N set of natural numbers
Zn finite group {1, . . . , n} equipped with +(mod n)

:= “is defined as”
Mm×n set of m × n real matrices
Mn set of n × n real matrices
|S| cardinal number of set S

Id(i1, . . . , ik;n1, . . . , nk) ordered multi-index
A ≻t B column number of A is t times the row number of B

A ≺t B row number of B is t times the column number of A

¬ negation
∨ disjunction
∧ conjunction
→ conditional
↔ biconditional
∨̄ exclusive or (EOR)
↑ not and (NAND)
↓ not or (NOR)
⊘k rotator in k-valued logic
▽i,k i-confirmor in k-valued logic
[a] largest integer less than or equal to a

lcm(p, q) least common multiple of p and q

⇒ implication
⇔ equivalence
δk
n kth column of In

D set {T ,F } or {1,0}

Dk set {0, 1
k−1 , . . . , k−2

k−1 ,1}

Df set {r ∈ R |0 ≤ r ≤ 1}

Δ set {δ1
2, δ2

2}

xv



xvi Notation

Δk set {δi
k |1 ≤ i ≤ k}

R(x0) reachable set from x0

Rs(x0) reachable set from x0 at the sth step
⊗ tensor (or Kronecker) product
⋉ left semi-tensor product
⋊ right semi-tensor product
L(U,V ) set of linear mappings from U to V

T s
t set of tensors with covariant order s and contravariant

order t

Lm×n set of m × n logical matrices

δk[i1 · · · is] logical matrix with δ
ij
k as its j th column

δk{i1, . . . , is} {δ
i1
k , . . . , δ

is
k } ⊂ Δk

Col(A) set of columns of matrix A

Coli(A) ith column of matrix A

Row(A) set of rows of matrix A

Rowi(A) ith row of matrix A

Blki(A) ith block of matrix A

diag(A1, . . . ,Ak) block diagonal matrix whose diagonal blocks are Ai ,
i = 1, . . . , k

Vc(A) column-stacking form of matrix A

Vr(A) row-stacking form of matrix A

det(t) determinant of A

tr(A) trace of A

P(k) set of proper factors of k

Sk permutation group of k elements
W[m,n] swap matrix with index (m,n)

Tt transient period
1k [1,1, . . . ,1

︸ ︷︷ ︸

k

]T

Ω limit set
Bm×n set of m × n Boolean matrices
+

B
Boolean addition for Boolean matrices

∑

B
Boolean sum for Boolean matrices

⋉
B

Boolean product for Boolean matrices

A(k) Boolean power of Boolean matrix A

Dv(A,B) vector distance of A,B ∈ Bm×n

X state space
Fℓ{· · · } subspace generated by · · ·

I (Σ) incidence matrix of Σ

wt(·) weight function of a Boolean matrix
wb(·) Boolean weight function of a Boolean matrix



Chapter 1

Propositional Logic

1.1 Statements

Mathematical logic uses mathematical methods to perform logical deduction and
logical reasoning. It is now the subject of a fundamental course for students of
pure mathematics, computer science, etc., and there are many standard textbooks
on the topic. We will use [2] as one of our main references. The use of mathematical
methods means that concepts are expressed through mathematical symbols, and that
reasoning and deduction are performed by means of mathematical calculations. The
objects studied in propositional logic are statements. A simple statement is a simple
sentence which could be either “true” or “false”. Such statements are also called
propositions. We give some examples.

Example 1.1

1. The Earth is round.
2. The Earth is square.
3. If n > 2, then xn + yn = zn has no integer solutions (x, y, z).
4. There are beings in outer space.
5. Bridge, stream, village.

It is easy to see that statement 1 is “true” and statement 2 is “false”. Statement 3
is Fermat’s Last Theorem, which was proven by Andrew Wiles in 1995, so we now
know that it is “true”. For statement 4, the answer could be “true” or “false”, al-
though we still do not know which. Hence statements 1–4 are all propositions. State-
ment 5 is not a proposition because neither “true” nor “false” can be meaningfully
applied to it.

We now consider some other examples.

Example 1.2

1. Mr. Martin is an old man.
2. Today is hot.

D. Cheng et al., Analysis and Control of Boolean Networks,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_1, © Springer-Verlag London Limited 2011
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First, we would like to emphasize that these two statements are well-defined
propositions because “Is the statement true?” is a logically meaningful question in
both cases. However, it is also worth noting that this does not mean the answer is
obvious. Consider statement 1. If this man is in his eighties or nineties, the answer
is obviously “true”. If he is a teenager, the statement is “false”. But what if he is
in his forties or fifties? The answer is not clear. An analogous argument shows that
the second statement has a similar status. Hence, we may need a value between 0
(“false”) and 1 (“true”) to describe such propositions. This is a topic discussed in
the study of multivalued logic or fuzzy logic.

In classical logic we make the basic assumption that a proposition must be either
“true” or “false”. For compactness we use “T” or “1” for “true”, and “F” or “0”
for “false”. We use capital letters A,B,C, . . . to represent simple statements. In the
following example all the statements are propositions.

Example 1.3 Consider the following statements: A. Beijing is a city in China;
B . Beijing is a city in Europe; C. Beijing is a city in Asia; D. Beijing is a city
outside China; E. Either Beijing or Moscow is in Europe.

In Example 1.3 the propositions seem to be related. For instance, if A is “T” then
B is “F” and vice versa. Similarly, A is “T” if and only if D is “F”. We now introduce
some symbols, called connectives, to express relationships between propositions.

The following are five commonly used connectives:

• Negation. The negation of proposition A is denoted by ¬A and is its opposite.
A is true if and only if ¬A is false and vice versa.

• Conjunction. The conjunction of A and B , denoted by A ∧ B , is a proposition
which is true only if both A and B are true.

• Disjunction. The disjunction of A and B , denoted by A ∨ B , is a proposition
which is true if either A or B or both A and B are true.

• Conditional. The conditional of A to B , denoted by A → B , means that A implies
B (equivalently, if A then B).

• Biconditional. The biconditional of A and B , denoted by A ↔ B , means that A

is true if and only if B is true.

A connective is also called a logical operator.

Example 1.4 Recall Example 1.3. One sees easily that the following relations are
true:

1.

A → (¬B), B → (¬A).

2.

A → C, (¬C) → D.

3.

A ↔ (¬D), B → E.
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Simple statements can be compounded by connectives to form compound state-
ments. To investigate general relationships between propositions with connectives,
we may use logical variables to replace particular statements. This is the same as
in simple algebra where we use letters x, y, . . . or a, b, . . . to replace particular
numbers. Logical variables are also called statement variables. Statement variables
are denoted by p,q, r, . . . or x1, x2, . . . . A valid logical relation (logical identity)
for some logical variables is true when the variables are replaced by any partic-
ular propositions. This is the same as in simple algebra: for example, if we have
x2 − y2 = (x + y)(x − y), then no matter what values x and y are replaced with,
the equality is always true. It is easy to check that

p ∨ (¬p) = T , (1.1)

p ∧ (¬p) = F. (1.2)

That is, no matter what logical value p takes, logical equations (1.1) and (1.2) al-
ways hold.

Consider the set

D = {T ,F }
(

equivalently,D = {1,0}
)

. (1.3)

Definition 1.1

1. A logical variable is a variable which can take values from D .
2. A set of logical variables x1, . . . , xn are independent if, for any fixed values xj ,

j �= i, the logical variable xi can still take value either 1 or 0.
3. A logical function of logical variables, x1, . . . , xn is a logical expression involv-

ing x1, . . . , xn and some possible statements (called constants), joined by con-
nectives. Hence a logical function is a mapping f : Dn → D . It is also called an
n-ary operator [1].

Example 1.5

y = (p ∧ q) ↔ (T ∧ r) (1.4)

is a logical function of p,q, r . Using conventional notation we have y = f (p,q, r),
p,q, r ∈ D . The only difference is that here, f is a logical function.

In general, a known constant can be removed from the function. For example,
(1.4) is equivalent to

y = (p ∧ q) ↔ r. (1.5)

Remark 1.1 Let x1, . . . , xn be logical variables.

1. y is said to be independent of x1, . . . , xn if y can take either F or T as its value,
regardless of what values the x1, . . . , xn take.

2. It is said that y depends on x1, . . . , xn (completely) if, as long as the values of
x1, . . . , xn are fixed, y can take only a unique value. In this case, y is a logical
function of x1, . . . , xn. Alternatively, y : Dn → D is a logical mapping.
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Table 1.1 Truth table for
negation p ¬p

1 0

0 1

Table 1.2 Truth table for ∧,
∨, →, ↔, ∨̄, ↑, ↓ p q p ∧ q p ∨ q p → q p ↔ q p ∨̄q p ↑ q p ↓ q

1 1 1 1 1 1 0 0 0

1 0 0 1 0 0 1 1 0

0 1 0 1 1 0 1 1 0

0 0 0 0 1 1 0 1 1

3. y can be neither independent of x1, . . . , xn nor dependent on x1, . . . , xn. For
example, y = x1 ∧ x2 is neither independent of x1 nor dependent on x1 because
when x1 = F , y = F , but when x1 = T , we can say nothing about y.

Note that an operator is also a logical function. Recall the basic connectives de-
fined earlier. It is clear that negation, ¬, is a 1-ary operator and that conjunction, ∧,
disjunction, ∨, conditional, →, and biconditional, ↔, are all 2-ary operators.

Remark 1.2 Operating priority is defined such that 1-ary operators take priority over
2-ary operators. So (1.1) and (1.2) can be expressed respectively as

p ∨ ¬p = T (1.6)

and

p ∧ ¬p = F. (1.7)

A connective or a logical operator can easily be expressed by a table, called a
truth table. For instance, for negation, we have Table 1.1.

Similarly, we can give truth tables for conjunction, disjunction, conditional, bi-
conditional, and three others, as in Table 1.2.

The truth value of a logical function can easily be obtained from the truth tables
of basic connectives. We use an example to illustrate this point.

Example 1.6

1. Let x = p ∧ (¬q). The truth table of x is shown in Table 1.3.
2. Let y = (¬p) → (q ∨ r). The truth table of y is shown in Table 1.4.
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Table 1.3 Truth table for x
p q ¬q x = p ∧ (¬q)

1 1 0 0

1 0 1 1

0 1 0 0

0 0 1 0

Table 1.4 Truth table for y
p q r ¬p q ∨ r y = (¬p) → (q ∨ r)

1 1 1 0 1 1

1 1 0 0 1 1

1 0 1 0 1 1

1 0 0 0 0 1

0 1 1 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1

0 0 0 1 0 0

1.2 Implication and Equivalence

Definition 1.2

1. A logical function involving certain logical variables is said to be a tautology if
it is always true no matter what values the logical variables take.

2. A logical function involving certain logical variables is said to be a contradiction
if it is always false no matter what values the logical variables take.

From (1.1) we know p ∨ ¬p is a tautology, and from (1.2) we know p ∧ ¬p is a
contradiction. According to the definition, it is clear that if x is a tautology, then ¬x

is a contradiction. Conversely, if x is a contradiction, then ¬x is a tautology. Both
tautology and contradiction are extreme cases. A logical expression which is neither
tautology nor contradiction is called a possibly true form.

In the following example we give some useful tautologies and contradictions.

Example 1.7

1. (Law of excluded middle) p ∨ ¬p is a tautology.
2. (Law of contradiction) p ∧ ¬p is a contradiction.
3. (Law of negation of negation) p ↔ ¬(¬p) is a tautology.
4. (p → (q → r)) → ((p → q) → (p → r)) is a tautology.

To prove a tautology or a contradiction, we simply use a truth table. For example,
if we set x = (p → (q → r)) → ((p → q) → (p → r)), then the truth table for x is
shown in Table 1.5.
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Table 1.5 Truth table for x

p q r q → r p → (q → r) p → q p → r (p → q) → (p → r) x

1 1 1 1 1 1 1 1 1

1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 1 1 1

1 0 0 1 1 0 0 1 1

0 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

Definition 1.3 Let x, y be two logical variables.

• x is said to logically imply y if x → y is a tautology. Logical implication is
denoted by ⇒, as in x ⇒ y.

• x and y are logically equivalent if x ↔ y is a tautology. Logical equivalence is
denoted by ⇔, as in x ⇔ y (or x = y).

In the following example we give some useful laws involving logical implication.

Example 1.8

1.
(

(p → q) ∧ ¬q
)

⇒ ¬p. (1.8)

2.

(

(p ∨ q) ∧ ¬p
)

⇒ q, (1.9)
(

(p ∨ q) ∧ ¬q
)

⇒ p. (1.10)

3.

(p ∧ q) ⇒ p, (1.11)

(p ∧ q) ⇒ q. (1.12)

4.
(

(p → q) ∧ (q → r)
)

⇒ (p → r). (1.13)

5.
(

p → (r ∧ ¬r)
)

⇒ ¬p. (1.14)

6.

p ⇒ (p ∨ q). (1.15)
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We leave the proofs to the reader.
In the following example some useful laws involving logical equivalence are

presented.

Example 1.9

1. (De Morgan’s law)

¬

(
n
∧

i=1

pi

)

⇔

n
∨

i=1

(¬pi), (1.16)

¬

(
n
∨

i=1

pi

)

⇔

n
∧

i=1

(¬pi). (1.17)

2. (Commutativity)

(p ∧ q) ⇔ (q ∧ p), (1.18)

(p ∨ q) ⇔ (q ∨ p). (1.19)

3. (Distributive law)
(

p ∧ (q ∨ r)
)

⇔
(

(p ∧ q) ∨
(

p ∧ r)
)

, (1.20)
(

p ∨ (q ∧ r)
)

⇔
(

(p ∨ q) ∧ (p ∨ r)
)

. (1.21)

4.

(p → q) ⇔ (¬p ∨ q). (1.22)

5.

p ⇔
(

p ∧ (q ∨ ¬q)
)

, (1.23)

p ⇔
(

p ∨ (q ∧ ¬q)
)

. (1.24)

6.

(p ↔ q) ⇔
(

(p → q) ∧ (q → p)
)

, (1.25)

(p ↔ q) ⇔
(

(p ∧ q) ∨ (¬p ∧ ¬q)
)

. (1.26)

7.

(p ∨ p) ⇔ p, (1.27)

(p ∧ p) ⇔ p. (1.28)

We give one more example, which is useful in normal form deduction.

Example 1.10

(a ∧ p) ∨ (¬a ∧ q) = (a ∨ q) ∧ (¬a ∨ p). (1.29)
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Table 1.6 Truth table for (1.29)

a p q ¬a a ∧ p ¬a ∧ q LHS a ∨ q ¬a ∨ p RHS

1 1 1 0 1 0 1 1 1 1

1 1 0 0 1 0 1 1 1 1

1 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0

0 1 1 1 0 1 1 1 1 1

0 1 0 1 0 0 0 0 1 0

0 0 1 1 0 1 1 1 1 1

0 0 0 1 0 0 0 0 1 0

Table 1.7 Truth table for binary operators

p q σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15 σ16

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Note that we have here used equality (“=”), which is an alternative expression
of logical equivalence. That is, two logical expressions are equal if and only if they
are logically equivalent.

We use a truth table to prove (1.29). Denote the left- (resp., right-) hand side of
(1.29) by LHS (resp., RHS).

From Table 1.6 it is clear that LHS = RHS.

1.3 Adequate Sets of Connectives

In the previous section a 1-ary (unary) connective, ¬, and some 2-ary (binary) con-
nectives, ∧, ∨, →, ↔, etc. were discussed. Note that for an n-ary connective there
are n logical variables and each variable can take two possible values, so an n-ary
operator is a mapping from a set (domain) of 2n different elements to a set (region)
of two elements. Hence there are 22n

different connectives. When n = 2, we know
that there are 222

= 16 different binary connectives. We list them all in Table 1.7,
where they are denoted by σ1, σ2, . . . , σ16.

Remark 1.3

1. σ8 is ∧, σ2 is ∨, σ5 is →, and σ7 is ↔.
2. σ1(p, q) = T and σ16(p, q) = F . They are 0-ary connectives (constant opera-

tors).
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3. σ13(p, q) = ¬p and σ11(p, q) = ¬q . They are 1-ary connectives.
4. In general, a k-ary (k < s) connective can be formally expressed as an s-ary

connective. The above two operators, σ13 and σ11, are such examples.
5. σ10 is called the “exclusive or” (EOR), denoted by “∨̄” [4]:

σ10(p, q) = p ∨̄q = ¬(p ↔ q).

6. σ9 is called the “not and” (NAND), denoted by “↑”:

σ9(p, q) = p ↑ q = ¬(p ∧ q).

7. σ15 is called the “not or” (NOR), denoted by “↓”:

σ15(p, q) = p ↓ q = ¬(p ∨ q).

The following proposition provides two important tautologies. They may be used
as alternative definitions of the conditional and biconditional, respectively.

Proposition 1.1

1.

p → q ⇔ (¬p) ∨ q. (1.30)

2.

p ↔ q ⇔ (p → q) ∧ (q → p). (1.31)

Definition 1.4 A set of connectives is called an adequate set if any connective can
be expressed in terms of its elements.

Proposition 1.2 The following four sets are all adequate sets: (i) {¬,∧}, (ii) {¬,∨},
(iii) {¬,∧,∨}, (iv) {¬,∧,∨,→,↔}.

Proof Since (iii) is a subset of (iv), if (iii) is adequate then so is (iv).
According to De Morgan’s law, we have

x ∨ y ⇔ ¬
(

(¬x) ∧ (¬y)
)

,

x ∧ y ⇔ ¬
(

(¬x) ∨ (¬y)
)

.

Hence if (iii) is adequate, so are (i) and (ii). Therefore, it is enough to prove that (iii)
is adequate.

Note that it is easy to check that Table 1.7 is “antisymmetric”, meaning that
σ1 ⇔ ¬σ16, σ2 ⇔ ¬σ15, etc. In general,

σi ⇔ ¬σ17−i, i = 1, . . . ,8.

Hence it is enough to prove that σi , i = 1, . . . ,8, can be expressed in terms of
{¬,∧,∨}. Since σ2(p, q) = p ∨ q and σ8(p, q) = p ∧ q , these do not need proof.
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Table 1.8 Truth value to logical form

σ(p,q) σ σ(p,q) σ

1111 T 0000 F

1110 p ∨ q 0001 ¬(p ∨ q) or ¬p ∧ ¬q or p ↓ q

1101 q → p 0010 ¬(q → p) or ¬p ∧ q

1100 p 0011 ¬p

1011 p → q 0100 ¬(p → q) or p ∧ ¬q

1010 q 0101 ¬q

1001 p ↔ q 0110 ¬(p ↔ q) or (p ∧ ¬q) ∨ (q ∧ ¬p) or p ∨̄q

1000 p ∧ q 0111 ¬(p ∧ q) or ¬p ∨ ¬q or p ↑ q

We also have σ5(p, q) = p → q and so, using Proposition 1.1, σ5 can be expressed
in terms of them. Furthermore, since σ7(p, q) ⇔ (p ↔ q), the second identity in
Proposition 1.1 ensures that σ7 can be expressed in terms of them as

(p ↔ q) ⇔
(

(p → q) ∧ (q → p)
)

.

We still need to prove σ1, σ3, σ4, σ6. In fact we have

σ1(p, q) ⇔ (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q),

σ3(p, q) ⇔ (p ∨ ¬q) or σ3(p, q) ⇔ q → p,

σ4(p, q) ⇔ p,

σ6(p, q) ⇔ q. �

In the sequel it will be very useful to find a logical operator from its truth values
in a truth table. We use four {0,1} numbers to denote the truth values of a binary
operator. For instance, referring to Table 1.8, p ∧ q takes four values: (1,0,0,0)T.
(We use superscript T for transpose.) We then use “1000” to denote its truth values.
The following table shows the mapping from the four numerical truth values to their
corresponding logical operators, which may have several equivalent forms.

A single connective can form an adequate set, as we will see in the following
example.

Example 1.11

1. If we define

σ9(p, q) := p|q,

then {|} is an adequate set. First, we have

(¬p) ⇔ (p|p);
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second, we have

(p ∨ q) ⇔
(

(p|p)|(q|q)
)

.

According to Proposition 1.2, the conclusion follows.
2. If we define

σ15(p, q) := p ↓ q,

then {↓} is an adequate set. Note that

(¬p) ⇔ (p ↓ p).

We also have

(p ∧ q) ⇔
(

(p ↓ p) ↓ (q ↓ q)
)

.

The conclusion then follows.

Remark 1.4 In the study of Boolean networks, mod 2 addition “+(mod 2)” and
mod 2 multiplication “×(mod 2)” are commonly used as logical operators. It is
obvious that “×(mod 2)” is the same as conjunction, “∧”, and that “+(mod 2)” is
the same as EOR, “∨̄”. They form an adequate set, so they are sufficient to describe
all logical expressions.

1.4 Normal Form

Definition 1.5 Let {p1,p2, . . . , pn} be a set of logical variables. Define a set of
logical variables by also including their negations, as follows:

P := {p1,¬p1,p2,¬p2, . . . , pn,¬pn}.

1. If

c :=

s
∧

i=1

ai, ai ∈ P,

then c is called a basic conjunctive form.
2. If

d :=

s
∨

i=1

ai, ai ∈ P,

then d is called a basic disjunctive form.
3. If

ℓ :=

s
∨

i=1

ci,

where ci are basic conjunctive forms, then ℓ is called a disjunctive normal form.
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4. If

ℓ :=

s
∧

i=1

di,

where di are basic disjunctive forms, then ℓ is called a conjunctive normal form.

We give some examples.

Example 1.12

Let p,q, r be three logical variables. Then:

1. p, ¬p, and p ∧ (¬q) ∧ (¬r) are basic conjunctive forms.
2. (¬p) ∨ r , p ∨ (¬p), and (¬q) ∨ p ∨ (¬r) are basic disjunctive forms.
3. p ∧ q , p ∨ q , and (¬p) ∨ (p ∧ q) ∨ ((¬q) ∧ p ∧ (¬r)) are disjunctive normal

forms.
4. p∧q , p∨q , and (¬p)∧ (p∨q)∧ ((¬q)∨ (¬q)∨ (¬r)) are conjunctive normal

forms.

Proposition 1.3 Any logical expression can be expressed in disjunctive normal form

as well as conjunctive normal form.

Proof Let ℓ be a logical expression with p1,p2, . . . , pn as its logical variables. We
first prove that it can be expressed as a disjunctive normal form. If, for any i and any
value of pi , it is always F , then it is a contradiction. Hence it can be expressed as

ℓ = p1 ∧ (¬p1) ∧ p2 ∧ · · · ∧ pn.

Assume that when (p1, . . . , pn) = α := (α1, . . . , αn) (i.e., pi = αi , i = 1, . . . , n), ℓ

is T . We construct a basic conjunctive form as

bα := c1 ∧ c2 ∧ · · · ∧ cn,

where

ci :=

{

pi, αi = T ,

¬pi, αi = F.

Now assume the set of values of logical variables for which ℓ is T to be αi =

(αi
1, α

i
2, . . . , α

i
n), i = 1,2, . . . , s. Using the above method, we can construct for each

αi a corresponding bαi
. It is obvious that

ℓ =

s
∨

i=1

bαi
. (1.32)

This is a disjunctive normal form.
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Table 1.9 Truth table of ℓ
p q r (p ∨ q) → ¬r (r → p) ∧ (r ∨ q) ℓ

1 1 1 0 1 1

1 1 0 1 1 1

1 0 1 0 1 1

1 0 0 1 0 0

0 1 1 0 0 1

0 1 0 1 1 1

0 0 1 1 0 0

0 0 0 1 0 0

Next, we construct a conjunctive normal form. Because of the existence of a
disjunctive normal form of ¬ℓ, we have

¬ℓ =

s
∨

i=1

bi,

where bi = ci
1 ∧ · · · ∧ ci

ni
are basic conjunctive forms. Using De Morgan’s law,

ℓ = (¬b1) ∧ (¬b2) ∧ · · · ∧ (¬bk). (1.33)

Note that ¬bi = ¬ci
1 ∨ · · · ∨ ¬ci

ni
is a basic disjunctive form. It follows that (1.33)

is a conjunctive normal form. �

The proof of the above proposition is constructive, so we can use it to construct
normal forms. We show this by means of the following example.

Example 1.13 Consider

ℓ :=
(

(p ∨ q) → ¬r
)

→
(

(r → p) ∧ (r ∨ q)
)

. (1.34)

We will convert this into a disjunctive normal form and a conjunctive normal form.
We give the truth table of ℓ in Table 1.9.

When p,q , and r take values from rows 1,2,3,5, and 6, ℓ is true. According
to the values of the variables in each row, we can construct a basic conjunctive
form. Then, the disjunction of all such terms yields the disjunctive normal form, as
follows:

ℓ = (p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r).

When p,q , and r take values from rows 4,7, and 8, ¬ℓ is true. As before, the
disjunctive form of ¬ℓ can be constructed as

¬ℓ = (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r).

Using De Morgan’s law, the conjunctive normal form of ℓ is obtained as

ℓ = (¬p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ q ∨ r).
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According to Definition 1.5, neither the disjunctive normal form nor the con-
junctive normal form is unique. To get unique expressions, we give the following
definition.

Definition 1.6

1. A disjunctive normal form is said to be optimized if it satisfies the following
conditions:

• If a variable appears in the normal form, then it appears in all basic conjunctive
forms.

• There is no basic conjunctive form that is a contradiction.
• There are no identical variables in each basic conjunctive form.
• There are no identical basic conjunctive forms.
• In the normal form, the variables, their negations, and basic conjunctive forms

are all arranged in alphabetical order.

2. A conjunctive normal form is said to be optimized if it satisfies the following
conditions:

• If a variable appears in the normal form, then it appears in all basic disjunctive
forms.

• There is no basic disjunctive form that is a tautology.
• There are no identical variables in each basic disjunctive form.
• There are no identical basic disjunctive forms.
• In the normal form, the variables, their negations, and basic disjunctive forms

are all arranged in alphabetical order.

Theorem 1.1 For each logical expression there exist a unique optimized disjunctive

normal form and a unique optimized conjunctive normal form.

Proof In fact the constructive proof of Proposition 1.3 provides a way to construct
the optimal normal forms. For instance, in Example 1.13, the disjunctive normal
form and conjunctive normal form obtained there are optimal, as long as we reorder
the variables in alphabetical order, i.e.,

(p ∧ q)σ1(p ∧ ¬q)σ2(¬p ∧ q)σ3(¬p ∧ ¬q),

where σi , i = 1,2,3, are connectives. From the construction it is clear that the opti-
mized normal forms are unique. �

1.5 Multivalued Logic

Hereafter, two-valued logic will be called Boolean logic. It was mentioned earlier
that in the real world, “true” and “false” may not be sufficient to describe a state-
ment. We give some additional simple examples.



1.5 Multivalued Logic 15

Table 1.10 Logical values with respect to age

a ≥70 [60,70) [40,60) [30,40) [20,30) <20

A 1 0.8 0.6 0.4 0.2 0

Example 1.14 Consider the following statements:

1. The temperature in the stove is high.
2. The air pollution is severe.
3. Smith’s family is rich.
4. She is an old lady.

All the statements are propositions, but “true” or “false” may not be enough to
characterize them. For instance, in a chemical factory the stove temperature may be
classified as “very high”, “high”, “average”, “low”, or “very low”. Here, we could
use “true” or “1” for the first case, and “false” or “0” for the fifth case. But what of
the intermediate cases? It would be natural to define some logical values between 1
and 0 to describe them, e.g., “0.75” for “high”, “0.5” for “average”, and “0.25” for
“low”.

In Beijing, the television broadcast uses “clean”, “mildly polluted”, and “severely
polluted” to describe the air quality. The broadcasters thus provide three values
(which we could label “0”, “0.5”, and “1”) to classify statement 2.

For wealth, “below the poverty line”, “low income”, “middle class”, “high in-
come”, etc. may be used to describe statement 3.

Finally, we consider the last statement. According to the person’s age, we may
assign a logical value to it. We refer to Table 1.10 for this.

In this way, we need six different values to describe a statement. This yields
multivalued logic. If we allow the values to be anything between 1 and 0, we have
fuzzy logical values.

Next, we define multivalued logic and fuzzy logic rigorously.
Define

Dk =

{

T = 1,
k − 2

k − 1
,
k − 3

k − 1
, . . . ,F = 0

}

and

Df = {r |0 ≤ r ≤ 1}.

Note that D2 = D is what we defined before for Boolean logic.

Definition 1.7

1. A logical system is called a k-valued logic if its logical variables may take any
values from Dk .

2. A logical system is called a fuzzy logic if its logical variables may take any
values from Df .
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Table 1.11 k-valued unary operators

p ¬p ⊘k(p) ▽i,k(p)

1 0 (k − 2)/(k − 1) 0

(k − 2)/(k − 1) 1/(k − 1) (k − 3)/(k − 1) 0
.
.
.

.

.

.
.
.
.

.

.

.

(i − 1)/(k − 1) (k − i)/(k − 1) (i − 2)/(k − 1) 1
.
.
.

.

.

.
.
.
.

.

.

.

2/(k − 1) (k − 3)/(k − 1) 1/(k − 1) 0

1/(k − 1) (k − 2)/(k − 1) 0 0

0 1 1 0

3. A logical operator σ : D s
k → Dk is an s-ary k-valued logical operator; a logical

operator σ : D s
f → Df is an s-ary fuzzy logical operator.

For the remainder of this section we mainly consider k-valued logic.
First, we define some unary operators. It is easy to see that there are kk unary

operators. We define some which will be useful in the sequel: (1) “negation”, ¬,
(2) “rotator”, ⊘k , (3) “i-confirmer”, ▽i,k , i = 1,2, . . . , k.

Definition 1.8

1. Let p = i
k−1 . Then

¬p =
(k − 1) − i

k − 1
. (1.35)

2. Let p = i
k−1 . Then

⊘kp =

{
i−1
k−1 , i > 0,

1, i = 0.
(1.36)

3.

▽i,kp =

{

p, p = k−i
k−1 ,

0, p �= k−i
k−1 .

(1.37)

Table 1.11 shows the truth values of these unary operators.
Next, we define some binary operators.

Definition 1.9 Let p and q be two k-valued logical variables. Define their disjunc-
tion as

p ∨ q = max(p, q) (1.38)
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Table 1.12 3-valued extended logic

p q ¬p p → q ¬q q → p p ↔ q

1 1 0 1 0 1 1

1 0.5 0 0.5 0.5 1 0.5

1 0 0 0 1 1 0

0.5 1 0.5 1 0 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0 0.5 0.5 1 1 0.5

0 1 1 1 0 0 0

0 0.5 1 1 0.5 0.5 0.5

0 0 1 1 1 1 1

Table 1.13 Some other 3-valued logics

p q KD L B

→ ↔ → ↔ → ↔

1 1 1 1 1 1 1 1

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0 0 0 0 0 0 0

0.5 1 1 0.5 1 0.5 0.5 0.5

0.5 0.5 0.5 0.5 1 1 0.5 0.5

0.5 0 0.5 0.5 0.5 0.5 0.5 0.5

0 1 1 0 1 0 1 0

0 0.5 1 0.5 1 0.5 0.5 0.5

0 0 1 1 1 1 1 1

and their conjunction as

p ∧ q = min(p, q). (1.39)

Definition 1.9 is a natural generalization of Boolean logic. When k = 2, it is
obvious that these definitions of disjunction and conjunction coincide with those in
Boolean logic. Definition 1.9 is widely accepted, but others exist. For implication,
there are many different definitions.

A natural way to define the “conditional” and “biconditional” is by using equa-
tions (1.30) and (1.31) of Proposition 1.1, respectively. We call this the extended
logic. Using (1.30), (1.31), (1.38), and (1.39), the truth table for the conditional
and biconditional in the 3-valued extended logic can be easily calculated, as in Ta-
ble 1.12.

There are several other types of 3-valued logic. They may have different “con-
ditionals”, but the “biconditional” is usually defined by (1.31). In the follow-
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ing table we give three different 3-valued logics: (1) Kleene–Dienes type (KD),
(2) Łukasiewicz type (L), (3) Bochvar type (B), as in Table 1.13 of [3].

From Tables 1.12 and 1.13, one easily sees that the Kleene–Dienes logic is the
same as the extended logic. Throughout this book, our default multivalued logic is
the extended logic, unless otherwise stated.
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Chapter 2

Semi-tensor Product of Matrices

2.1 Multiple-Dimensional Data

Roughly speaking, linear algebra mainly concerns two kinds of objects: vectors and
matrices. An n-dimensional vector is expressed as X = (x1, x2, . . . , xn). Its ele-
ments are labeled by one index, i, where xi is the ith element of X. For an m × n

matrix

A =

⎡

⎢
⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...

am1 am2 · · · amn

⎤

⎥
⎥
⎥
⎥
⎦

,

elements are labeled by two indices, i and j , where ai,j is the element of A located
in the ith row and j th column. In this way, it is easy to connect the dimension of a
set of data with the number of indices. We define the dimension of a set of data as
follows.

Definition 2.1 A set of data, labeled by k indices, is called a set of k-dimensional
data. Precisely,

X = {xi1,i2,...,ik | 1 ≤ ij ≤ nj , j = 1,2, . . . , k} (2.1)

is a set of k-dimensional data. The cardinal number of X, denoted by |X|, is |X| =
n1n2 · · ·nk .

In the following example we give an example of 3-dimensional data.

Example 2.1 Consider R3, with its canonical basis {e1, e2, e3}. Any vector X ∈ R3

may then be expressed as X = x1e1 + x2e2 + x3e3. When the basis is fixed, we
simply use X = (x1, x2, x3)

T to represent it. From simple vector algebra we know
that in R3 there is a cross product, ×, such that for any two vectors X,Y ∈ R3 we
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have X × Y ∈ R3, defined as follows:

X × Y = det

⎛

⎝

⎡

⎣

e1 e2 e3

x1 x2 x3

y1 y2 y3

⎤

⎦

⎞

⎠ . (2.2)

Since the cross product is linear with respect to X as well as Y , it is a bilinear
mapping. The value of the cross product is thus uniquely determined by its value on
the basis. Write

ei × ej = c1
ije1 + c2

ije2 + c3
ije3, i, j = 1,2,3.

The coefficients form a set of 3-dimensional data,

{

ck
ij

∣
∣ i, j, k = 1,2,3

}

,

which are called the structure constants. Structure constants are easily computable.
For instance,

e1 × e2 = det

⎛

⎝

⎡

⎣

e1 e2 e3

1 0 0
0 1 0

⎤

⎦

⎞

⎠= e3,

which means that c1
12 = c2

12 = 0, c3
12 = 1. Similarly, we can determine all the struc-

ture constants:

c1
11 = 0, c2

11 = 0, c3
11 = 0, c1

12 = 0, c2
12 = 0, c3

12 = 1,

c1
13 = 0, c2

13 = −1, c3
13 = 0, c1

21 = 0, c2
21 = 0, c3

21 = −1,

c1
22 = 0, c2

22 = 0, c3
22 = 0, c1

23 = 1, c2
23 = 0, c3

23 = 0,

c1
31 = 0, c2

31 = 1, c3
31 = 0, c1

32 = −1, c2
32 = 0, c3

32 = 0,

c1
33 = 0, c2

33 = 0, c3
33 = 0.

Since the cross product is linear with respect to the coefficients of each vec-
tor, the structure constants uniquely determine the cross product. For instance, let
X = 3e1 − e3 and Y = 2e2 + 3e3. Then

X × Y = 6e1 × e2 + 9e1 × e3 − 2e3 × e2 − 3e3 × e3

= 6
(

c1
12e1 + c2

12e2 + c3
12e3

)

+ 9
(

c1
13e1 + c2

13e2 + c3
13e3

)

− 2
(

c1
32e1 + c2

32e2 + c3
32e3

)

− 3
(

e1
33e1 + c2

33e2 + c3
33e3

)

= 2e1 − 9e2 + 6e3.

It is obvious that using structure constants to calculate the cross product in this
way is very inconvenient, but the example shows that the cross product is uniquely
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determined by structure constants. So, in general, to define a multilinear mapping it
is enough to give its structure constants.

Using structure constants to describe an algebraic structure is a powerful method.

Definition 2.2 [6] Let V be an n-dimensional vector space with coefficients in R.
If there is a mapping ∗ : V × V → V , called the product of two vectors, satisfying

{

(αX + βY) ∗ Z = α(X ∗ Z) + β(Y ∗ Z),

X ∗ (αY + βZ) = α(X ∗ Y) + β(X ∗ Z)
(2.3)

(where α,β ∈ R, X,Y,Z ∈ V ), then (V ,∗) is called an algebra.
Let (V ,∗) be an algebra. If the product satisfies associative law, i.e.,

(X ∗ Y) ∗ Z = X ∗ (Y ∗ Z), X,Y,Z ∈ V, (2.4)

then it is called an associative algebra.

R3 with the cross product is obviously an algebra. It is also easy to check that it
is not an associative algebra.

Let V be an n-dimensional vector space and (V ,∗) an algebra. Choosing a basis
{e1, e2, . . . , en}, the structure constants can be obtained as

ei ∗ ej =
n
∑

k=1

ck
ijek, i, j = 1,2, . . . , n.

Although the structure constants {ck
ij | i, j, k = 1,2, . . . , n} depend on the choice of

basis, they uniquely determine the structure of the algebra. It is also easy to convert
a set of structure constants, which correspond to a basis, to another set of structure
constants, which correspond to another basis. For an algebra, the structure constants
are always a set of 3-dimensional data.

Next, we consider an s-linear mapping on an n-dimensional vector space. Let V

be an n-dimensional vector space and let φ : V × V × · · · × V
︸ ︷︷ ︸

s

→ R, satisfying (for

any 1 ≤ i ≤ s, α,β ∈ R)

φ(X1,X2, . . . , αXi + βYi, . . . ,Xs−1,Xs)

= αφ(X1,X2, . . . ,Xi, . . . ,Xs−1,Xs) + βφ(X1,X2, . . . , Yi, . . . ,Xs−1,Xs).

(2.5)

Equation (2.5) shows the linearity of φ with respect to each vector argument. Choos-
ing a basis of V , {e1, e2, . . . , en}, the structure constants of φ are defined as

φ(ei1 , ei2, . . . , eis ) = ci1,i2,...,is , ij = 1,2, . . . , n, j = 1,2, . . . , s.

Similarly, the structure constants, {ci1,i2,...,is | i1, . . . , is = 1,2, . . . , n}, uniquely de-
termine φ. Conventionally, φ is called a tensor, where s is called its covariant degree.
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It is clear that for a tensor with covariant degree s, its structure constants form a set
of s-dimensional data.

Example 2.2

1. In R3 we define a three linear mapping as

φ(X,Y,Z) = 〈X × Y,Z〉, X,Y,Z ∈ R3,

where 〈·, ·〉 denotes the inner product. Its geometric interpretation is the volume
of the parallelogram with X, Y , Z as three adjacent edges [when (X,Y,Z) form
a right-hand system, the volume is positive, otherwise, the volume is negative].
It is obvious that φ is a tensor with covariant degree 3.

2. In R3 we can define a four linear mapping as

ψ(X,Y,Z,W) = 〈X × Y,Z × W 〉, X,Y,Z,W ∈ R3.

Obviously, ψ is a tensor of covariant degree 4.

Next, we consider a more general case. Let μ : V → R be a linear mapping on V ,

μ(ei) = ci, i = 1, . . . , n.

Then, μ can be expressed as

μ = c1e
∗
1 + c2e

∗
2 + · · · + cne

∗
n,

where e∗
i : V → R satisfies

e∗
i (ej ) = δi,j =

{

1, i = j,

0, i �= j.

It can be seen easily that the set of linear mappings on V forms a vector space, called
the dual space of V and denoted by V ∗.

Let X = x1e1 + x2e2 +· · ·+ xnen ∈ V and μ = μ1e
∗
1 +μ2e

∗
2 +· · ·+μne

∗
n ∈ V ∗.

When the basis and the dual basis are fixed, X ∈ V can be expressed as a column
vector and μ ∈ V ∗ can be expressed as a row vector, i.e.,

X = (a1, a2, . . . , an)
T, μ = (c1, c2, . . . , cn).

Using these vector forms, the action of μ on X can be expressed as their matrix
product:

μ(X) = μX =
n
∑

i=1

aici, μ ∈ V ∗,X ∈ V.

Let φ : V ∗ × · · · × V ∗
︸ ︷︷ ︸

t

×V × · · · × V
︸ ︷︷ ︸

s

→ R be an (s + t)-fold multilinear map-

ping. Then, φ is said to be a tensor on V with covariant degree s and contravariant
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degree t . Denote by T s
t the set of tensors on V with covariant degree s and con-

travariant degree t .
If we define

c
i1,i2,...,is
j1,j2,...,jt

:= φ
(

ei1 , ei2 , . . . , eis , e
∗
j1

, e∗
j2

, . . . , e∗
jt

)

,

then
{

c
i1,i2,...,is
j1,j2,...,jt

∣
∣1 ≤ i1, . . . , is, j1, . . . , jt ≤ n

}

is the set of structure constants of φ. Structure constants of φ ∈ T s
t form a set of

(s + t)-dimensional data.
Next, we consider how to arrange higher-dimensional data. In linear algebra one-

dimensional data are arranged as a column or a row, called a vector, while two-
dimensional data are arranged as a rectangle, called a matrix. In these forms matrix
computation becomes a very convenient and powerful tool for dealing with one-
or two-dimensional data. A question which then naturally arises is how to arrange
three-dimensional data. A cubic matrix approach has been proposed for this pur-
pose [1, 2] and has been used in some statistics problems [8–10], but, in general,
has not been very successful. The problem is: (1) cubic matrices cannot be clearly
expressed in a plane (i.e., on paper), (2) the conventional matrix product does not
apply, hence some new product rules have to be produced, (3) it is very difficult to
generalize this approach to even higher-dimensional cases.

The basic idea concerning the semi-tensor product of matrices is that no matter
what the dimension of the data, they are arranged in one- or two-dimensional form.
By then properly defining the product, the hierarchy structure of the data can be
automatically determined. Hence the data arrangement is important for the semi-
tensor product of data.

Definition 2.3 Suppose we are given a set of data S with
∏k

i=1 ni elements and, as
in (2.1), the elements of x are labeled by k indices. Moreover, suppose the elements
of x are arranged in a row (or a column). It is said that the data are labeled by indices
i1, . . . , ik according to an ordered multi-index, denoted by Id or, more precisely,

Id(i1, . . . , ik;n1, . . . , nk),

if the elements are labeled by i1, . . . , ik and arranged as follows: Let it , t = 1, . . . , k,
run from 1 to nt with the order that t = k first, then t = k − 1, and so on, until t = 1.
Hence, xα1,...,αk

is ahead of xβ1,...,βk
if and only if there exists 1 ≤ j ≤ k such that

αi = βi, i = 1, . . . , j − 1, αj < βj .

If the numbers n1, . . . , nk of i1, . . . , ik are equal, we may use

Id(i1, . . . , ik;n) := Id(i1, . . . , ik;n, . . . , n).

If ni are obviously known, the expression of Id can be simplified as

Id(i1, . . . , ik) := Id(i1, . . . , ik;n1, . . . , nk).
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Example 2.3

1. Assume x = {xijk | i = 1,2,3; j = 1,2; k = 1,2}. If we arrange the data accord-
ing to the ordered multi-index Id(i, j, k), they are

x111, x112, x121, x122, x211, x212, x221, x222, x311, x312, x321, x322.

If they are arranged by Id(j, k, i), they become

x111, x211, x311, x112, x212, x312, x121, x221, x321, x122, x222, x322.

2. Let x = {x1, x2, . . . , x24}. If we use λ1, λ2, λ3 to express the data in the form
ai = aλ1,λ2,λ3 , then under different Id’s they have different arrangements:
(a) Using the ordered multi-index Id(λ1, λ2, λ3;2,3,4), the elements are ar-

ranged as

x111 x112 x113 x114

x121 x122 x123 x124

x131 x132 x133 x134
...

x231 x232 x233 x234.

(b) Using the ordered multi-index Id(λ1, λ2, λ3;3,2,4), the elements are ar-
ranged as

x111 x112 x113 x114

x121 x122 x123 x124

x211 x212 x213 x214
...

x321 x322 x323 x324.

(c) Using the ordered multi-index Id(λ1, λ2, λ3;4,2,3), the elements are ar-
ranged as

x111 x112 x113

x121 x122 x123

x211 x212 x213
...

x421 x422 x423.

Note that in the above arrangements the data are divided into several rows, but
this is simply because of spatial restrictions. Also, in this arrangement the hierarchy
structure of the data is clear. In fact, the data should be arranged into one row.

Different Id’s, corresponding to certain index permutations, cause certain per-
mutations of the data. For convenience, we now present a brief introduction to the
permutation group. Denote by Sk the permutations of k elements, which form a
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group called the kth order permutation group. We use 1, . . . , k to denote the k ele-
ments. If we suppose that k = 5, then S5 consists of all possible permutations of five
elements: {1,2,3,4,5}. An element σ ∈ S5 can be expressed as

σ =

⎡

⎣

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
2 3 1 5 4

⎤

⎦ ∈ S5.

That is, σ changes 1 to 2, 2 to 3, 3 to 1, 4 to 5, and 5 to 4. σ can also be simply
expressed in a rotational form as

σ = (1,2,3)(4,5).

Let μ ∈ S5 and

μ =

⎡

⎣

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
4 3 2 1 5

⎤

⎦ .

The product (group operation) on S5 is then defined as

μσ =

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
2 3 1 5 4
↓ ↓ ↓ ↓ ↓
3 2 4 5 1

⎤

⎥
⎥
⎥
⎥
⎦

,

that is, μσ = (1,3,4,5).
If, in (2.1), the data x are arranged according to the ordered multi-index

Id(i1, . . . , ik), it is said that the data are arranged in a natural order. Of course, they
may be arranged in the order of (iσ(1), . . . , iσ(k)), that is, letting index iσ(k) run from
1 to nσ(k) first, then letting iσ(k−1) run from 1 to nσ(k−1), and so on. It is obvious
that a different Id corresponds to a different data arrangement.

Definition 2.4 Let σ ∈ Sk and x be a set of data with
∏k

i=1 ni elements. Arrange
x in a row or a column. It is said that x is arranged by the ordered multi-index
Id(iσ(1), . . . , iσ(k);nσ(1), . . . , nσ(k)) if the indices i1, . . . , ik in the sequence are run-
ning in the following order: first, iσ(k) runs from 1 to nσ(k), then iσ(k−1) runs from
1 to nσ(k−1), and so on, until, finally, iσ(1) runs from 1 to nσ(1).

We now introduce some notation. Let a ∈ Z and b ∈ Z+. As in the programming
language C, we use a%b to denote the remainder of a/b, which is always nonnega-
tive, and [t] for the largest integer that is less than or equal to t . For instance,

100%3 = 1, 100%7 = 2, (−7)%3 = 2,
[

7

3

]

= 2, [−1.25] = −2.
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It is easy to see that

a =
[a

b

]

b + a%b. (2.6)

Next, we consider the index-conversion problem. That is, we sometimes need
to convert a single index into a multi-index, or vice versa. Particularly, when we
need to deform a matrix into a designed form using computer, index conversion is
necessary. The following conversion formulas can easily be proven by mathematical
induction.

Proposition 2.1 Let S be a set of data with n =
∏k

i=1 ni elements. The data are

labeled by single index as {xi} and by k-fold index, by the ordered multi-index

Id(λ1, . . . , λk;n1, . . . , nk), as

S = {sp | p = 1, . . . , n} = {sλ1,...,λk
| 1 ≤ λi ≤ ni; i = 1, . . . , k}.

We then have the following conversion formulas:

1. Single index to multi-index. Defining pk := p − 1, the single index p can be

converted into the order of the ordered multi-index Id(i1, . . . , ik;n1, . . . , nk) as

(λ1, . . . , λk), where λi can be calculated recursively as

⎧

⎨

⎩

λk = pk%nk + 1,

pj = [pj+1
nj+1

], λj = pj %nj + 1, j = k − 1, . . . ,1.
(2.7)

2. Multi-index to single index. From multi-index (λ1, . . . , λk) in the order of

Id(i1, . . . , ik;n1, . . . , nk) back to the single index, we have

p =
k−1
∑

j=1

(λj − 1)nj+1nj+2 · · ·nk + λk. (2.8)

The following example illustrates the conversion between different types of in-
dices.

Example 2.4 Recalling the second part of Example 2.3, we may use different types
of indices to label the elements.

1. Consider an element which is x11 in single-index form. Converting it into the
order of Id(λ1, λ2, λ3;2,3,4) by using (2.7), we have

p3 = p − 1 = 10,

λ3 = p3%n3 + 1 = 10%4 + 1 = 2 + 1 = 3,

p2 =
[
p3

n3

]

=
[

10

2

]

= 2,

λ2 = p2%n2 + 1 = 2%3 + 1 = 2 + 1 = 3,
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p1 =
[
p2

n2

]

=
[

2

4

]

= 0,

λ1 = p1%n1 + 1 = 0%2 + 1 = 1.

Hence x11 = x133.
2. Consider the element x214 in the order of Id(λ1, λ2, λ3;2,3,4). Using (2.8), we

have

p = (λ1 − 1)n2n3 + (λ2 − 1)n3 + λ3 = 1 · 3 · 4 + 0 + 4 = 16.

Hence x214 = x16.
3. In the order of Id(λ2, λ3, λ1;3,4,2), the data are arranged as

x111 x211 x112 x212

x113 x213 x114 x214
...

x131 x231 x132 x232

x133 x233 x134 x234.

For this index, if we want to use the formulas for conversion between nat-
ural multi-index and single index, we can construct an auxiliary natural multi-
index yΛ1,Λ2,Λ3 , where Λ1 = λ2, Λ2 = λ3, Λ3 = λ1 and N1 = n2 = 3, N2 =
n3 = 4, N3 = n1 = 2. Then, bi,j,k is indexed by (Λ1,Λ2,Λ3) in the order of
Id(Λ1,Λ2,Λ3;N1,N2,N3). In this way, we can use (2.7) and (2.8) to convert
the indices.

For instance, consider x124. Let x124 = y241. For y241, using (2.7), we have

p = (Λ1 − 1)N2N3 + (Λ2 − 1)N3 + Λ3

= (2 − 1) × 4 × 2 + (4 − 1) × 2 + 1 = 8 + 6 + 1 = 15.

Hence

x124 = y241 = y15 = x15.

Consider x17 again. Since x17 = y17, using (2.6), we have

p3 = p − 1 = 16, Λ3 = p3%N3 + 1 = 1,

p2 = [p3/N3] = 8, Λ2 = p2%N2 + 1 = 1,

p1 = [p2/N2] = 2, Λ1 = p1%N1 + 1 = 3.

Hence x17 = y17 = y311 = x131.

From the above argument one sees that a set of higher-dimensional data, labeled
by a multi-index, can be converted into a set of 1-dimensional data, labeled by
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Table 2.1 The prisoner’s
dilemma P1\P2 A1 A2

A1 −1, −1 −9, 0

A2 0, −9 −6, −6

single-index. A matrix, as a set of 2-dimensional data, can certainly be converted
into a set of 1-dimensional data. Consider a matrix

A =

⎡

⎢
⎣

a11 a12 · · · a1n

...
...

...

am1 am2 · · · amn

⎤

⎥
⎦ .

The row-stacking form of A, denoted by Vr(A), is a row-by-row arranged nm-
vector, i.e.,

Vr(A) = (a11, a12, . . . , a1n, . . . , am1, am2, . . . , amn)
T. (2.9)

The column-stacking form of A, denoted by Vc(A), is the following nm-vector:

Vc(A) = (a11, a21, . . . , am1, . . . , a1n, a2n, . . . , amn)
T. (2.10)

From the definition it is clear that we have the following result.

Proposition 2.2

Vc(A) = Vr
(

AT), Vr(A) = Vc
(

AT). (2.11)

Finally, we give an example for multidimensional data labeled by an ordered
multi-index.

Example 2.5

1. Consider the so-called prisoner’s dilemma [5]. Two suspects are arrested and
charged with a crime and each prisoner has two possible strategies:

A1: not confess (or be mum); A2: confess (or fink).

The payoffs are described by a payoff bi-matrix, given in Table 2.1.
For instance, if prisoner P1 chooses “mum” (A1) and P2 chooses “fink” (A2),

P1 will be sentenced to jail for nine months and P2 will be released. Now, if we
denote by

r i
j,k, i = 1,2, j = 1,2, k = 1,2,

the payoff of Pi as P1 takes strategy j and P2 takes strategy k, then {r i
j,k} is a set

of 3-dimensional data. We may arrange it into a payoff matrix as

Mp =
[

r1
11 r1

12 r1
21 r1

22

r2
11 r2

12 r2
21 r2

22

]

=
[

−1 −9 0 −6

−1 0 −9 −6

]

. (2.12)
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2. Consider a game with n players. Player Pi has ki strategies and the payoff of Pi

as Pj takes strategy sj , j = 1, . . . , n, is

r i
s1,...,sn

, i = 1, . . . , n; sj = 1, . . . , kj , j = 1, . . . , n.

Then, {r i
s1,...,sn

} is a set of (n + 1)-dimensional data. Arranging it with i as the
row index and its column by the ordered multi-index Id(s1, . . . , sn; k1, . . . , kn),
we have

Mg =

⎡

⎢
⎣

r1
11···1 · · · r1

11···kn
· · · r1

1k2···kn
· · · r1

k1k2···kn

...

rn
11···1 · · · rn

11···kn
· · · rn

1k2···kn
· · · rn

k1k2···kn

⎤

⎥
⎦ . (2.13)

Mg is called the payoff matrix of game g.

2.2 Semi-tensor Product of Matrices

We consider the conventional matrix product first.

Example 2.6 Let U and V be m- and n-dimensional vector spaces, respectively.
Assume F ∈ L(U × V,R), that is, F is a bilinear mapping from U × V to R.
Denote by {u1, . . . , um} and {v1, . . . , vn} the bases of U and V , respectively. We
call S = (sij ) the structure matrix of F , where

sij = F(ui, vj ), i = 1, . . . ,m, j = 1, . . . , n.

If we let X =
∑m

i=1 xiui ∈ U , otherwise written as X = (x1, . . . , xm)T ∈ U , and
Y =

∑n
i=1 yivi ∈ V , otherwise written as Y = (y1, . . . , yn)

T ∈ V , then

F(X,Y ) = XTSY. (2.14)

Denoting the rows of S by S1, . . . , Sm, we can alternatively calculate F in two
steps.

Step 1: Calculate x1S
1, x2S

2, . . . , xmSm and take their sum.
Step 2: Multiply

∑m
i=1 xiS

i by Y (which is a standard inner product).

It is easy to check that this algorithm produces the same result. Now, in the first
step it seems that we have (S1 · · ·Sn) × X. This calculation motivates a new algo-
rithm, which is defined as follows.

Definition 2.5 Let T be an np-dimensional row vector and X a p-dimensional
column vector. Split T into p equal blocks, named T 1, . . . , T p , which are 1 × n

matrices. Define a left semi-tensor product, denoted by ⋉, as

T ⋉ X =
p
∑

i=1

T ixi ∈ Rn. (2.15)
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Using this new product, we reconsider Example 2.6 and propose another algo-
rithm.

Example 2.7 (Example 2.6 continued) We rearrange the structure constants of F

into a row as

T : Vr(S) = (s11, . . . , s1n, . . . , sm1, . . . , smn),

called the structure matrix of F . This is a row vector of dimension mn, labeled by
the ordered multi-index Id(i, j ;m,n). The following algorithm provides the same
result as (2.14):

F(X,Y ) = T ⋉ X ⋉ Y. (2.16)

It is easy to check the correctness of (2.16), but what is its advantage? Note
that (2.16) realized the product of 2-dimensional data (a matrix) with 1-dimensional
data by using the product of two sets of 1-dimensional data. If, in this product,
2-dimensional data can be converted into 1-dimensional data, we would expect that
the same thing can be done for higher-dimensional data. If this is true, then (2.16)
is superior to (2.14) because it allows the product of higher-dimensional data to be
taken. Let us see one more example.

Example 2.8 Let U , V , and W be m-, n-, and t-dimensional vector spaces, re-
spectively, and let F ∈ L(U × V × W,R). Assume {u1, . . . , um}, {v1, . . . , vn}, and
{w1, . . . ,wt } are the bases of U , V , and W , respectively. We define the structure
constants as

sijk = F(ui, vj ,wk), i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , t.

The structure matrix S of F can be constructed as follows. Its data are labeled by
the ordered multi-index Id(i, j, k;m,n, t) to form an mnt-dimensional row vector
as

S = (s111, . . . , s11t , . . . , s1n1, . . . , s1nt , . . . , smn1, . . . , smnt ).

Then, for X ∈ U , Y ∈ V , Z ∈ W , it is easy to verify that

F(X,Y,Z) = S ⋉ X ⋉ Y ⋉ Z.

Observe that in a semi-tensor product, ⋉ can automatically find the “pointer” of
different hierarchies and then perform the required computation.

It is obvious that the structure and algorithm developed in Example 2.8 can be
used for any multilinear mapping. Unlike the conventional matrix product, which
can generally treat only one- or two-dimensional data, the semi-tensor product of
matrices can be used to deal with any finite-dimensional data.

Next, we give a general definition of semi-tensor product.
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Definition 2.6

(1) Let X = (x1, . . . , xs) be a row vector, Y = (y1, . . . , yt )
T a column vector.

Case 1: If t is a factor of s, say, s = t ×n, then the n-dimensional row vector
defined as

X ⋉ Y :=
t
∑

k=1

Xkyk ∈ Rn (2.17)

is called the left semi-tensor inner product of X and Y , where

X =
(

X1, . . . ,Xt
)

, Xi ∈ Rn, i = 1, . . . , t.

Case 2: If s is a factor of t , say, t = s × n, then the n-dimensional column
vector defined as

X ⋉ Y :=
t
∑

k=1

xkY
k ∈ Rn (2.18)

is called the left semi-tensor inner product of X and Y , where

Y =
((

Y 1)T
, . . . ,

(

Y t
)T)T

, Y i ∈ Rn, i = 1, . . . , t.

(2) Let M ∈ Mm×n and N ∈ Mp×q . If n is a factor of p or p is a factor of n, then
C = M ⋉N is called the left semi-tensor product of M and N , where C consists
of m × q blocks as C = (Cij ), and

Cij = M i ⋉ Nj , i = 1, . . . ,m, j = 1, . . . , q,

where M i = Rowi(M) and Nj = Colj (N).

Remark 2.1

1. In the first item of Definition 2.6, if t = s, the left semi-tensor inner product be-
comes the conventional inner product. Hence, in the second item of Definition
2.6, if n = p, the left semi-tensor product becomes the conventional matrix prod-
uct. Therefore, the left semi-tensor product is a generalization of the conventional
matrix product. Equivalently, the conventional matrix product is a special case of
the left semi-tensor product.

2. Throughout this book, the default matrix product is the left semi-tensor product,
so we simply call it the “semi-tensor product” (or just “product”).

3. Let A ∈ Mm×n and B ∈ Mp×q . For convenience, when n = p, A and B are said
to satisfy the “equal dimension” condition, and when n = tp or p = tn, A and B

are said to satisfy the “multiple dimension” condition.
4. When n = tp, we write A ≻t B; when p = tn, we write A ≺t B .
5. So far, the semi-tensor product is a generalization of the matrix product from the

equal dimension case to the multiple dimension case.
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Example 2.9

1. Let X = [2 −1 1 2], Y = [−2 1]T. Then

X ⋉ Y =
[

2 −1
]

× (−2) +
[

1 2
]

× 1 =
[

−3 4
]

.

2. Let

X =

⎡

⎣

2 1 −1 3
0 1 2 −1
2 −1 1 1

⎤

⎦ , Y =
[

−1 2
3 2

]

.

Then

X ⋉ Y =

⎡

⎣

(21) × (−1) + (−13) × 3 (21) × 2 + (−13) × 2
(01) × (−1) + (2 − 1) × 3 (01) × 2 + (2 − 1) × 2
(2 − 1) × (−1) + (11) × 3 (2 − 1) × 2 + (11) × 2

⎤

⎦

=

⎡

⎣

−5 8 2 8
6 −4 4 0
1 4 6 0

⎤

⎦ .

Remark 2.2

1. The dimension of the semi-tensor product of two matrices can be determined by
deleting the largest common factor of the dimensions of the two factor matrices.
For instance,

Ap×qr ⋉ Br×s ⋉ Cqst×l = (A ⋉ B)p×qs ⋉ Cqst×l = (A ⋉ B ⋉ C)pt×l .

In the first product, r is deleted, and in the second product, qs is deleted.
This is a generalization of the conventional matrix product: for the conventional
matrix product, Ap×sBs×q = (AB)p×q , where s is deleted.

2. Unlike the conventional matrix product, for the semi-tensor product even A ⋉ B

and B ⋉ C are well defined, but A ⋉ B ⋉ C = (A ⋉ B) ⋉ C may not be well
defined. For instance, A ∈ M3×4, B ∈ M2×3, C ∈ M9×1.

In the conventional matrix product the equal dimension condition has certain
physical interpretation. For instance, inner product, linear mapping, or differential
of compound multiple variable function, etc. Similarly, the multiple dimension con-
dition has its physical interpretation, e.g., the product of different-dimensional data,
tensor product, etc.

We give one more example.

Example 2.10 Denote by Δk the set of columns of the identity matrix Ik , i.e.,

Δk = Col{Ik} =
{

δi
k

∣
∣ i = 1,2, . . . , k

}

.

Define

L =
{

B ∈ M2m×2n

∣
∣m ≥ 1, n ≥ 0,Col(B) ⊂ Δ2m

}

. (2.19)
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The elements of L are called logical matrices. It is easy to verify that the semi-
tensor product ⋉ : L ×L → L is always well defined. So, when we are consider-
ing matrices in L , we have full freedom to use the semi-tensor product. (The formal
definition of a logical matrix is given in the next chapter.)

Comparing the conventional matrix product, the tensor product, and the semi-
tensor product of matrices, it is easily seen that there are significant differences be-
tween them. For the conventional matrix product, the product is element-to-element,
for the tensor product, it is a product of one element to a whole matrix, while for the
semi-tensor product, it is one element times a block of the other matrix. This is one
reason why we call this new product the “semi-tensor product”.

The following example shows that in the conventional matrix product, an illegal
term may appear after some legal computations. This introduces some confusion
into the otherwise seemingly perfect matrix theory. However, if we extend the con-
ventional matrix product to the semi-tensor product, it becomes consistent again.
This may give some support to the necessity of introducing the semi-tensor product.

Example 2.11 Let X,Y,Z,W ∈ Rn be column vectors. Since Y TZ is a scalar, we
have

(

XY T)(ZWT)= X
(

Y TZ
)

WT =
(

Y TZ
)(

XWT) ∈ Mn. (2.20)

Again using the associative law, we have

(

Y TZ
)(

XWT)= Y T(ZX)WT. (2.21)

A problem now arises: What is ZX? It seems that the conventional matrix product
is flawed.

If we consider the conventional matrix product as a particular case of the semi-
tensor product, then we have

(

XY T)(ZWT)= Y T ⋉ (Z ⋉ X) ⋉ WT. (2.22)

It is easy to prove that (2.22) holds. Hence, when the conventional matrix product is
extended to the semi-tensor product, the previous inconsistency disappears.

The following two examples show how to use the semi-tensor product to perform
multilinear computations.

Example 2.12

1. Let (V ,∗) be an algebra (refer to Definition 2.2) and {e1, e2, . . . , en} a basis of V .
For any two elements in this basis we calculate the product as

ei ∗ ej =
n
∑

k=1

ck
ijek, i, j, k = 1,2, . . . , n. (2.23)
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We then have the structure constants {ck
ij }. We arrange the constants into a matrix

as follows:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1
11 c1

12 · · · c1
1n · · · c1

nn

c2
11 c2

12 · · · c2
1n · · · c2

nn

...

cn
11 cn

12 · · · cn
1n · · · cn

nn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.24)

M is called the structure matrix of the algebra.
Let X,Y ∈ V be given as

X =
n
∑

i=1

aiei, Y =
n
∑

i=1

biei .

If we fix the basis, then X,Y can be expressed in vector form as

X = (a1, a2, . . . , an)
T, Y = (b1, b2, . . . , bn)

T.

In vector form, the vector product of X and Y can be simply calculated as

X ∗ Y = M ⋉ X ⋉ Y. (2.25)

2. Consider the cross product on R3. Its structure constants were obtained in Ex-
ample 2.1. We can arrange them into a matrix as

Mc =

⎡

⎣

0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎤

⎦ . (2.26)

Now, if

X =
1

√
3

⎡

⎣

1
−1
1

⎤

⎦ , Y =
1

√
2

⎡

⎣

1
0

−1

⎤

⎦ ,

then we have

X × Y = McXY =

⎡

⎣

0.4082
0.8165
0.4082

⎤

⎦ .

When a multifold cross product is considered, this form becomes very conve-
nient. For instance,

X × Y × · · · × Y
︸ ︷︷ ︸

100

= M100
c XY 100 =

⎡

⎣

0.5774
−0.5774
0.5774

⎤

⎦ .
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Example 2.13 Let φ ∈ T s
t (V ). That is, φ is a tensor on V with covariant order s and

contra-variant order t . Suppose that its structure constants are {ci1,i2,...,is
j1,j2,...,jt

}. Arrange
it into a matrix by using the ordered multi-index Id(i1, i2, . . . , is;n) for columns and
the ordered multi-index Id(j1, j2, . . . , jt ;n) for rows. The matrix turns out to be

Mφ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c11···1
11···1 · · · c11···n

11···1 · · · cnn···n
11···1

c11···1
11···2 · · · c11···n

11···2 · · · cnn···n
11···2

...

c11···1
nn···n · · · c11···n

nn···n · · · cnn···n
nn···n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.27)

It is the structure matrix of the tensor φ. Now, assume ωi ∈ V ∗, i = 1,2, . . . , t , and
Xj ∈ V , j = 1,2, . . . , s, where ωi are expressed as rows, and Xj are expressed as
columns. Then

φ(ω1, . . . ,ωt ,X1, . . . ,Xs) = ωtωt−1 · · ·ω1MφX1X2 · · ·Xs, (2.28)

where the product symbol ⋉ is omitted.

Next, we define the power of a matrix. The definition is natural and was used in
the previous example.

Definition 2.7 Given a matrix A ∈ Mp×q such that p%q = 0 or q%p = 0, we
define An, n > 0, inductively as

{

A1 = A,

Ak+1 = Ak ⋉ A, k = 1,2, . . . .

Remark 2.3 It is easy to verify that the above An is well defined. Moreover, if p =
sq , where s ∈ N, then the dimension of Ak is skq ×q; if q = sp, then the dimension
of Ak is p × skp.

Example 2.14

1. If X is a row or a column, then according to Definition 2.7, Xn is always well
defined. Particularly, when X,Y are columns, we have

X ⋉ Y = X ⊗ Y. (2.29)

When X,Y are rows,

X ⋉ Y = Y ⊗ X. (2.30)

In both cases,

Xk = X ⊗ · · · ⊗ X
︸ ︷︷ ︸

k

. (2.31)
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2. Let X ∈ Rn, Y ∈ Rq be column vectors and A ∈ Mm×n, B ∈ Mp×q . Then,

(AX) ⋉ (BY ) = (A ⊗ B)(X ⋉ Y). (2.32)

Particularly,

(AX)k = (A ⊗ · · · ⊗ A
︸ ︷︷ ︸

k

)Xk. (2.33)

3. Let X ∈ Rm, Y ∈ Rp be row vectors and A,B be matrices (as in 2. above). Then

(XA) ⋉ (YB) = (X ⋉ Y)(B ⊗ A). (2.34)

Hence,

(XA)k = Xk(A ⊗ · · · ⊗ A
︸ ︷︷ ︸

k

). (2.35)

4. Consider the set of real kth order homogeneous polynomials of x ∈ Rn and de-
note it by Bk

n . Under conventional addition and real number multiplication, Bk
n

is a vector space. It is obvious that xk contains a basis (xk itself is not a basis be-
cause it contains redundant elements). Hence, every p(x) ∈ Bk

n can be expressed

as p(x) = Cxk , where the coefficients C ∈ Rnk
are not unique. Note that here

x = (x1, x2, . . . , xn)
T is a column vector.

In the rest of this section we describe some basic properties of the semi-tensor
product.

Theorem 2.1 As long as ⋉ is well defined, i.e., the factor matrices have proper

dimensions, then ⋉ satisfies the following laws:

1. Distributive law:
{

F ⋉ (aG ± bH) = aF ⋉ G ± bF ⋉ H,

(aF ± bG) ⋉ H = aF ⋉ H ± bG ⋉ H, a,b ∈ R.
(2.36)

2. Associative law:

(F ⋉ G) ⋉ H = F ⋉ (G ⋉ H). (2.37)

(We refer to Appendix B for the proof.)
The block multiplication law also holds for the semi-tensor product.

Proposition 2.3 Assume A ≻t B (or A ≺t B ). Split A and B into blockwise forms

as

A =

⎡

⎢
⎣

A11 · · · A1s

...
...

Ar1 · · · Ars

⎤

⎥
⎦ , B =

⎡

⎢
⎣

B11 · · · B1t

...
...

Bs1 · · · Bst

⎤

⎥
⎦ .
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If we assume Aik ≻t Bkj ,∀ i, j, k (correspondingly, Aik ≺t Bkj ,∀ i, j, k ), then

A ⋉ B =

⎡

⎢
⎣

C11 · · · C1t

...
...

Cr1 · · · Crt

⎤

⎥
⎦ , (2.38)

where

Cij =
s
∑

k=1

Aik ⋉ Bkj .

Remark 2.4 We have mentioned that the semi-tensor product of matrices is a gen-
eralization of the conventional matrix product. That is, if we assume A ∈ Mm×n,
B ∈ Mp×q , and n = p, then

A ⋉ B = AB.

Hence, in the following discussion the symbol ⋉ will be omitted, unless we want
to emphasize it. Throughout this book, unless otherwise stated, the matrix product
will be the semi-tensor product, and the conventional matrix product is its particular
case.

As a simple application of the semi-tensor product, we recall an earlier example.

Example 2.15 Recall Example 2.5. To use a matrix expression, we introduce the
following notation. Let δi

n be the ith column of the identity matrix In. Denote by P

the variable of players, where P = δi
n means P = Pi , i.e., the player under consid-

eration is Pi . Similarly, denote by xi the strategy chosen by the ith player, where
xi = δ

j
ki

means that the j th strategy of player i is chosen.

1. Consider the prisoner’s dilemma. The payoff function can then be expressed as

rp(P, x1, x2) = P T ⋉ Mp ⋉ x1 ⋉ x2, (2.39)

where Mp is the payoff matrix, as defined in (2.12).
2. Consider the general case. The payoff function is then

rg(P, x1, x2, . . . , xm) = P T ⋉ Mg ⋉n
i=1 xi, (2.40)

where Mg is defined in (2.13).

2.3 Swap Matrix

One of the major differences between the matrix product and the scalar product is
that the scalar (number) product is commutative but the matrix product is not. That
is, in general,

AB �= BA.
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Since the semi-tensor product is a generalization of the conventional matrix product,
it would be absurd to expect it to be commutative. Fortunately, with some auxiliary
tools, the semi-tensor product has some “commutative” properties, called pseudo-
commutative properties. In the sequel, we will see that the pseudo-commutative
properties play important roles, such as separating coefficients from the variables,
which makes it possible for the calculation of polynomials of multiple variables to
be treated in a similar way as the calculation of polynomials of a single variable. The
swap matrix is the key tool for pseudo-commutativity of the semi-tensor product.

Definition 2.8 A swap matrix W[m,n] is an mn × mn matrix, defined as follows.
Its rows and columns are labeled by double index (i, j), the columns are arranged
by the ordered multi-index Id(i, j ;m,n), and the rows are arranged by the ordered
multi-index Id(j, i;n,m). The element at position [(I, J ), (i, j)] is then

w(IJ ),(ij) = δ
I,J
i,j =

{

1, I = i and J = j,

0, otherwise.
(2.41)

Example 2.16

1. Letting m = 2, n = 3, the swap matrix W[m,n] can be constructed as follows.
Using double index (i, j) to label its columns and rows, the columns of W are
labeled by Id(i, j ;2,3), that is, (11,12,13,21,22,23), and the rows of W are
labeled by Id(j, i;3,2), that is, (11,21,12,22,13,23). According to (2.41), we
have

(11) (12) (13) (21) (22) (23)

W[2,3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

(21)

(12)

(22)

(13)

(23)

.

2. Consider W[3,2]. Its columns are labeled by Id(i, j ;3,2), and its rows are labeled
by Id(j, i;2,3). We then have

(11) (12) (21) (22) (31) (32)

W[3,2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

(21)

(31)

(12)

(22)

(32)

.

The swap matrix is a special orthogonal matrix. A straightforward computation
shows the following properties.
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Proposition 2.4

1. The inverse and the transpose of a swap matrix are also swap matrices. That is,

WT
[m,n] = W−1

[m,n] = W[n,m]. (2.42)

2. When m = n, (2.42) becomes

W[n,n] = WT
[n,n] = W−1

[n,n]. (2.43)

3.

W[1,n] = W[n,1] = In. (2.44)

Since the case of m = n is particularly important, for compactness, we denote it
as

W[n] := W[n,n].

From (2.42) it is clear that W[m,n] is an orthogonal matrix. This is because, when
used as a linear mapping from Rmn to Rmn, it changes only the positions of the
elements but not the values.

A swap matrix can be used to convert the matrix stacking forms, as described in
the following result.

Proposition 2.5 Let A ∈ Mm×n. Then

⎧

⎨

⎩

W[m,n]Vr(A) = Vc(A),

W[n,m]Vc(A) = Vr(A).
(2.45)

For double-index-labeled data {aij }, if it is arranged by Id(i, j ;m,n), then the
swap matrix W[m,n] can convert its arrangement to the order of Id(j, i;n,m) and
vice versa. This is what the “swap” refers to. This property can also be extended to
the multiple index-case. We give a rigorous statement for this.

Corollary 2.1 Let the data {aij | 1 ≤ i ≤ m,1 ≤ j ≤ n} be arranged by the ordered

multi-index Id(i, j ;m,n) as a column X. Then

Y = W[m,n]X

is the same data {aij } arranged in the order of Id(j, i;n,m).
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Example 2.17

1. Let X = (x11, x12, x13, x21, x22, x23). That is, {xij } is arranged by the ordered
multi-index Id(i, j ;2,3). A straightforward computation shows

Y = W[23]X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11

x12

x13

x21

x22

x23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11

x21

x12

x22

x13

x23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

That is, Y is the rearrangement of the elements xij in the order of Id(j, i;3,2).
2. Let X = (x1, x2, . . . , xm)T ∈ Rm, Y = (y1, y2, . . . , yn)

T ∈ Rn. We then have

X ⊗ Y = (x1y1, x1y2, . . . , x1yn, . . . , xmy1, xmy2, . . . , xmyn)
T,

Y ⊗ X = (y1x1, y1x2, . . . , y1xm, . . . , ynx1, ynx2, . . . , ynxm)T

= (x1y1, x2y1, . . . , xmy1, . . . , x1yn, x2yn, . . . , xmyn)
T.

They both consist of {xiyj }. However, in X ⊗ Y the elements are arranged in the
order of Id(i, j ;m,n), while in Y ⊗ X the elements are arranged in the order of
Id(j, i;n,m). According to Corollary 2.1 we have

Y ⊗ X = W[m,n](X ⊗ Y). (2.46)

It is easy to check that XY = X ⊗ Y , so we have

YX = W[m,n]XY. (2.47)

The following proposition comes from the definition.

Proposition 2.6

1. Let X = (xij ) be a set of data arranged as a column vector by the ordered multi-

index Id(i, j ;m,n). Then W[m,n]X is a column with the same data, arranged by

the ordered multi-index Id(j, i;n,m).
2. Let ω = (ωij ) be a set of data arranged by the ordered multi-index Id(i, j ;m,n).

Then ωW[n,m] is a row with the same set of data, arranged by the ordered multi-

index Id(j, i;n,m).

A swap matrix can be used for multiple-index-labeled data and can swap two
special indices. This allows a very useful generalization of the previous proposition,
which we now state as a theorem.
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Theorem 2.2

1. Let X = (xi1,...,ik ) be a column vector with its elements arranged by the ordered

multi-index Id(i1, . . . , ik ; n1, . . . , nk). Then

[In1+···+nt−1 ⊗ W[nt ,nt+1] ⊗ Int+2+···+nk
]X

is a column vector consisting of the same elements, arranged by the ordered

multi-index Id(i1, . . . , it+1, it , . . . , tk;n1, . . . , nt+1, nt , . . . , nk).
2. Let ω = (ωi1,...,ik ) be a row vector with its elements arranged by the ordered

multi-index Id(i1, . . . , ik;n1, . . . , nk). Then

ω[In1+···+nt−1 ⊗ W[nt+1,nt ] ⊗ Int+2+···+nk
]

is a row vector consisting of the same elements, arranged by the ordered multi-

index Id(i1, . . . , it+1, it , . . . , tk;n1, . . . , nt+1, nt , . . . , nk).

W[m,n] can be constructed in an alternative way which is convenient in some
applications. Denoting by δi

n the ith column of the identity matrix In, we have the
following.

Proposition 2.7

W[m,n] =
[

δ1
n ⋉ δ1

m · · · δn
n ⋉ δ1

m · · · δ1
n ⋉ δm

m · · · δn
n ⋉ δm

m

]

. (2.48)

For convenience, we provide two more forms of swap matrix:

W[m,n] =

⎡

⎢
⎣

Im ⊗ δ1
n

T

...

Im ⊗ δn
n

T

⎤

⎥
⎦ (2.49)

and, similarly,

W[m,n] =
[

In ⊗ δ1
m, . . . , In ⊗ δm

m

]

. (2.50)

The following factorization properties reflect the blockwise permutation property
of the swap matrix.

Proposition 2.8 The swap matrix has the following factorization properties:

W[p,qr] = (Iq ⊗ W[p,r])(W[p,q] ⊗ Ir) = (Ir ⊗ W[p,q])(W[p,r] ⊗ Iq), (2.51)

W[pq,r] = (W[p,r] ⊗ Iq)(Ip ⊗ W[q,r]) = (W[q,r] ⊗ Ip)(Iq ⊗ W[p,r]). (2.52)

2.4 Properties of the Semi-tensor Product

In this section some fundamental properties of the semi-tensor product of matrices
are introduced. Throughout, it is easily seen that when the conventional matrix prod-
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uct is extended to the semi-tensor product, almost all its properties continue to hold.
This is a significant advantage of the semi-tensor product.

Proposition 2.9 Assuming that A and B have proper dimensions such that ⋉ is

well defined, then

(A ⋉ B)T = BT ⋉ AT. (2.53)

The following property shows that the semi-tensor product can be expressed by
the conventional matrix product plus the Kronecker product.

Proposition 2.10

1. If A ∈ Mm×np , B ∈ Mp×q , then

A ⋉ B = A(B ⊗ In). (2.54)

2. If A ∈ Mm×n, B ∈ Mnp×q , then

A ⋉ B = (A ⊗ Ip)B. (2.55)

(We refer to Appendix B for the proof.)
Proposition 2.10 is a fundamental result. Many properties of the semi-tensor

product can be obtained through it. We may consider equations (2.54) and (2.55)
as providing an alternative definition of the semi-tensor product. In fact, the name
“semi-tensor product” comes from this proposition. Recall that for A ∈ Mm×n and
B ∈ Mp×q , their tensor product satisfies

A ⊗ B = (A ⊗ Ip)(In ⊗ B). (2.56)

Intuitively, it seems that the semi-tensor product takes the “left half” of the product
in the right-hand side of (2.56) to form the product.

The following property may be considered as a direct corollary of Proposi-
tion 2.10.

Proposition 2.11 Let A and B be matrices with proper dimensions such that A⋉B

is well defined. Then:

1. A ⋉ B and B ⋉ A have the same characteristic functions.
2. tr(A ⋉ B) = tr(B ⋉ A).
3. If A and B are invertible, then A ⋉ B ∼ B ⋉ A, where “∼” stands for matrix

similarity.
4. If both A and B are upper triangular (resp., lower triangular, diagonal, orthog-

onal) matrices, then A ⋉ B is also an upper triangular (resp., lower triangular,
diagonal, orthogonal) matrix.

5. If both A and B are invertible, then A ⋉ B is also invertible. Moreover,

(A ⋉ B)−1 = B−1 ⋉ A−1. (2.57)
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6. If A ≺t B , then

det(A ⋉ B) =
[

det(A)
]t

det(B). (2.58)

If A ≻t B , then

det(A ⋉ B) = det(A)
[

det(B)
]t

. (2.59)

The following proposition shows that the swap matrix can also perform the swap
of blocks in a matrix.

Proposition 2.12

1. Assume

A = (A11, . . . ,A1n, . . . ,Am1, . . . ,Amn),

where each block has the same dimension and the blocks are labeled by double

index {i, j} and arranged by the ordered multi-index Id(i, j ;m,n). Then

AW[n,m] = (A11, . . . ,Am1, . . . ,A1n, . . . ,Amn)

consists of the same set of blocks, which are arranged by the ordered multi-index

Id(j, i;n,m).
2. Let

B =
(

BT
11, . . . ,B

T
1n, . . . ,B

T
m1, . . . ,B

T
mn

)T
,

where each block has the same dimension and the blocks are labeled by double

index {i, j} and arranged by the ordered multi-index Id(i, j ;m,n). Then

W[m,n]B =
(

BT
11, . . . ,B

T
m1, . . . ,B

T
1n, . . . ,M

T
mn

)T

consists of the same set of blocks, which are arranged by the ordered multi-index

Id(j, i;n,m).

The product of a matrix with an identity matrix I has some special properties.

Proposition 2.13

1. Let M ∈ Mm×pn. Then

M ⋉ In = M. (2.60)

2. Let M ∈ Mm×n. Then

M ⋉ Ipn = M ⊗ Ip. (2.61)

3. Let M ∈ Mpm×n. Then

Ip ⋉ M = M. (2.62)
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4. Let M ∈ Mm×n. Then

Ipm ⋉ M = M ⊗ Ip. (2.63)

In the following, some linear mappings of matrices are expressed in their stacking
form via the semi-tensor product.

Proposition 2.14 Let A ∈ Mm×n, X ∈ Mn×q , Y ∈ Mp×m. Then

Vr(AX) = A ⋉ Vr(X), (2.64)

Vc(YA) = AT ⋉ Vc(Y ). (2.65)

Note that (2.64) is similar to a linear mapping over a linear space (e.g., Rn). In
fact, as X is a vector, (2.64) becomes a standard linear mapping.

Using (2.64) and (2.65), the stacking expression of a matrix polynomial may also
be obtained.

Corollary 2.2 Let X be a square matrix and p(x) be a polynomial, expressible as

p(x) = q(x)x + p0. Then

Vr
(

p(X)
)

= q(X)Vr(X) + p0Vr(I ). (2.66)

Using linear mappings on matrices, some other useful formulas may be ob-
tained [4].

Proposition 2.15 Let A ∈ Mm×n and B ∈ Mp×q . Then

(Ip ⊗ A)W[n,p] = W[m,p](A ⊗ Ip), (2.67)

W[m,p](A ⊗ B)W[q,n] = (B ⊗ A). (2.68)

In fact, (2.67) can be obtained from (2.68).

Proposition 2.16 Let X ∈ Mm×n and A ∈ Mn×s . Then

XA =
(

Im ⊗ V T
r (Is)

)

W[s,m]A
TVc(X). (2.69)

Roughly speaking, a swap matrix can swap a matrix with a vector. This is some-
times useful.

Proposition 2.17

1. Let Z be a t-dimensional row vector and A ∈ Mm×n. Then

ZW[m,t]A = AZW[n,t] = A ⊗ Z. (2.70)

2. Let Y be a t-dimensional column vector and A ∈ Mm×n. Then

AW[t,n]Y = W[t,m]YA = A ⊗ Y. (2.71)
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The following lemma is useful for simplifying some expressions.

Lemma 2.1 Let A ∈ Mm×n. Then

W[m,q] ⋉ A ⋉ W[q,n] = Iq ⊗ A. (2.72)

The semi-tensor product has some pseudo-commutative properties. The follow-
ing are some useful pseudo-commutative properties. Their usefulness will become
apparent later.

Proposition 2.18 Suppose we are given a matrix A ∈ Mm×n.

1. Let Z ∈ Rt be a column vector. Then

AZT = ZTW[m,t]AW[t,n] = ZT(It ⊗ A). (2.73)

2. Let Z ∈ Rt be a column vector. Then

ZA = W[m,t]AW[t,n]Z = (It ⊗ A)Z. (2.74)

3. Let X ∈ Rm be a row vector. Then

XTA =
[

Vr(A)
]T

X. (2.75)

4. Let Y ∈ Rn be a row vector. Then

AY = Y TVc(A). (2.76)

5. Let X ∈ Rm be a column vector and Y ∈ Rn a row vector. Then

XY = YW[m,n]X. (2.77)

Proposition 2.19 Let A ∈ Mm×n and B ∈ Ms×t . Then

A ⊗ B = W[s,m] ⋉ B ⋉ W[m,t] ⋉ A = (Im ⊗ B) ⋉ A. (2.78)

Example 2.18 Assume

A =
[

a11 a12

a21 a22

]

, B =

⎡

⎣

b11 b12

b21 b22

b31 b32

⎤

⎦ ,

where m = n = 2, s = 3 and t = 2. Then

W[3,2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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W[2,2] =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦

,

W[3,2] ⋉ B ⋉ W[2,2] ⋉ A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11 b12 0 0
b21 b22 0 0
b31 b32 0 0
0 0 b11 b12

0 0 b21 b22

0 0 b31 b32

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋉

[

a11 a12

a21 a22

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a11b31 a11b32 a12b31 a12b32

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

a21b31 a21b32 a22b31 a22b32

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= A ⊗ B.

As a corollary of the previous proposition, we have the following.

Corollary 2.3 Let C ∈ Ms×t . Then, for any integer m > 0, we have

W[s,m] ⋉ C ⋉ W[m,t] = Im ⊗ C. (2.79)

Finally, we consider how to express a matrix in stacking form and vice versa, via
the semi-tensor product.

Proposition 2.20 Let A ∈ Mm×n. Then

Vr(A) = A ⋉ Vr(In), (2.80)

Vc(A) = W[m,n] ⋉ A ⋉ Vc(In). (2.81)

Conversely, we can retrieve A from its row- or column-stacking form.

Proposition 2.21 Let A ∈ Mm×n. Then

A =
[

Im ⊗ V T
r (In)

]

⋉ Vr(A) =
[

Im ⊗ V T
r (In)

]

⋉ W[n,m] ⋉ Vc(A). (2.82)

As an elementary application of semi-tensor product, we consider the following
example.

Example 2.19 In mechanics, it is well known that the angular momentum of a rigid
body about its mass center is

H =
∫

r × (ω × r)dm, (2.83)
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Fig. 2.1 Rotation

where r = (x, y, z) is the position vector, starting from the mass center, and ω =
(ωx,ωy,ωz)

T is the angular speed. We want to prove the following equation for
angular momentum (2.84), which often appears in the literature:

⎡

⎣

Hx

Hy

Hz

⎤

⎦=

⎡

⎣

Ix −Ixy −Izx

−Ixy Iy −Iyz

Izx −Iyz Iz

⎤

⎦

⎡

⎣

ωx

ωy

ωz

⎤

⎦ , (2.84)

where

Ix =
∫
(

y2 + z2)dm, Iy =
∫
(

z2 + x2)dm, Iz =
∫
(

x2 + y2)dm,

Ixy =
∫

xy dm, Iyz =
∫

yzdm, Izx =
∫

zx dm.

Let M be the moment of the force acting on the rigid body. We first prove that
the dynamic equation of a rotating solid body is

dH

dt
= M. (2.85)

Consider a mass dm, with O as its rotating center, r as the position vector (from
O to dm) and df the force acting on it (see Fig. 2.1). From Newton’s second law,

df = a dm =
dv

dt
dm

=
d

dt
(ω × r)dm.

Now, consider the moment of force on it, which is

dM = r × df = r ×
d

dt
(ω × r)dm.

Integrating this over the solid body, we have

M =
∫

r ×
d

dt
(ω × r)dm. (2.86)
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We claim that

r ×
d

dt
(ω × r) =

d

dt

[

r × (ω × r)
]

,

RHS =
d

dt
(r) × (ω × r) + r ×

d

dt
(ω × r)

= (ω × r) × (ω × r) + r ×
d

dt
(ω × r)

= 0 + r ×
d

dt
(ω × r) = LHS.

(2.87)

Applying this to (2.86), we have

M =
∫

d

dt

[

r × (ω × r)
]

dm

=
d

dt

∫

r × (ω × r)dm

=
d

dt
H.

Next, we prove the angular momentum equation (2.84). Recall that the structure
matrix of the cross product (2.26) is

Mc =

⎡

⎣

0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎤

⎦ ,

and for any two vectors X,Y ∈ R3, their cross product is

X × Y = McXY. (2.88)

Using this, we have

H =
∫

r × (ω × r)dm

=
∫

McrMcωr dm

=
∫

Mc(I3 ⊗ Mc)rωr dm

=
∫

Mc(I3 ⊗ Mc)W[3,9]r
2ω dm

=
∫

Mc(I3 ⊗ Mc)W[3,9]r
2 dmω

:=
∫

Ψ r2 dmω,



2.5 General Semi-tensor Product 49

where

Ψ = Mc(I3 ⊗ Mc)W[3,9]

=
⎡

⎣

0 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 0

⎤

⎦.

We then have

Ψ r2 =

⎡

⎣

y2 + z2 xy −xz

−xy x2 + z2 −yz

−xz −yz x2 + y2

⎤

⎦ .

Equation (2.84) follows immediately.

2.5 General Semi-tensor Product

In previous sections of this chapter the semi-tensor product considered was the left
semi-tensor product of matrices. Throughout this book the default semi-tensor prod-
uct is the left semi-tensor product, unless otherwise stated. In this section we will
discuss some other kinds of semi-tensor products.

According to Proposition 2.10, an alternative definition of the left semi-tensor
product is

A ⋉ B =
{

(A ⊗ It )B, A ≺t B,

A(B ⊗ It ), A ≻t B.
(2.89)

This proceeds as follows. For a smaller-dimensional factor matrix, we match it
on the right with an identity matrix of proper dimension such that the conventional
matrix product is possible. The following definition then becomes natural.

Definition 2.9 Suppose we are given matrices A and B . Assuming A ≺t B or A ≻t

B , we define the right semi-tensor product of A and B as

A ⋊ B =
{

(It ⊗ A)B, A ≺t B,

A(It ⊗ B), A ≻t B.
(2.90)

Most properties of the left semi-tensor product hold for the right semi-tensor
product. In Proposition 2.22 we assume the matrices have proper dimensions such
the product ⋊ is defined. In addition, for items 5–10 A and B are assumed to be two
square matrices.

Proposition 2.22

1. Associative law:

(mA ⋊ B) ⋊ C = A ⋊ (B ⋊ C). (2.91)
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Distributive law:

(A + B) ⋊ C = A ⋊ C + B ⋊ C, C ⋊ (A + B) = C ⋊ A + C ⋊ B. (2.92)

2. Let X and Y be column vectors. Then,

X ⋊ Y = Y ⊗ X. (2.93)

Let X and Y be row vectors. Then,

X ⋊ Y = X ⊗ Y. (2.94)

3.

(A ⋊ B)T = BT ⋊ AT. (2.95)

4. Let M ∈ Mm×pn. Then,

M ⋊ In = M. (2.96)

Let M ∈ Mm×n. Then,

M ⋊ Ipn = Ip ⊗ M. (2.97)

Let M ∈ Mpm×n. Then,

Ip ⋊ M = M. (2.98)

Let M ∈ Mm×n. Then,

Ipm ⋊ M = Ip ⊗ M. (2.99)

5. A ⋊ B and B ⋊ A have the same characteristic function.
6.

tr(A ⋊ B) = tr(B ⋊ A). (2.100)

7. If A and B are orthogonal (upper triangular, lower triangular) matrices, then so

is A ⋊ B .
8. If A and B are invertible, then A ⋊ B ∼ B ⋊ A.
9. If A and B are invertible, then

(A ⋊ B)−1 = B−1 ⋊ A−1. (2.101)

10. If A ≺t B , then

det(A ⋊ B) =
[

det(A)
]t

det(B). (2.102)

If A ≻t B , then

det(A ⋊ B) = det(A)
[

det(B)
]t

. (2.103)
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A question which naturally arises is whether we can define the right semi-tensor
product in a similar way as in Definition 2.6, i.e., in a “row-times-column” way. The
answer is that we cannot. In fact, a basic difference between the right and the left
semi-tensor products is that the right semi-tensor product does not satisfy the block
product law. The row-times-column rule is ensured by the block product law. This
difference makes the left semi-tensor product more useful. However, it is sometimes
convenient to use the right semi-tensor product.

We now consider some relationships between left and right semi-tensor products.

Proposition 2.23 Let X be a row vector of dimension np, Y a column vector of

dimension p. Then,

X ⋊ Y = XW[p,n] ⋉ Y. (2.104)

Conversely, we also have

X ⋉ Y = XW[n,p] ⋊ Y. (2.105)

If dim(X) = p and dim(Y ) = pn, then

X ⋊ Y = X ⋉ W[n,p]Y. (2.106)

Conversely, we also have

X ⋉ Y = X ⋊ W[p,n]Y. (2.107)

In the following, we introduce the left and right semi-tensor products of matrices
of arbitrary dimensions. This will not be discussed beyond this section since we have
not found any meaningful use for semi-tensor products of arbitrary dimensions.

Definition 2.10 Let A ∈ Mm×n, B ∈ Mp×q , and α = lcm(n,p) be the least com-
mon multiple of n and p. The left semi-tensor product of A and B is defined as

A ⋉ B = (A ⊗ I α
n
)(B ⊗ I α

p
). (2.108)

The right semi-tensor product of A and B is defined as

A ⋊ B = (I α
n

⊗ A)(I α
p

⊗ B). (2.109)

Note that if n = p, then both the left and right semi-tensor products of arbitrary
matrices become the conventional matrix product. When the dimensions of the two
factor matrices satisfy the multiple dimension condition, they become the multiple
dimension semi-tensor products, as defined earlier.

Proposition 2.24 The semi-tensor products of arbitrary matrices satisfy the follow-

ing laws:
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1. Distributive law:

(A + B) ⋉ C = (A ⋉ C) + (B ⋉ C), (2.110)

(A + B) ⋊ C = (A ⋊ C) + (B ⋊ C), (2.111)

C ⋉ (A + B) = (C ⋉ A) + (C ⋉ B), (2.112)

C ⋊ (A + B) = (C ⋊ A) + (C ⋊ B). (2.113)

2. Associative law:

(A ⋉ B) ⋉ C = A ⋉ (B ⋉ C), (2.114)

(A ⋊ B) ⋊ C = A ⋊ (B ⋊ C). (2.115)

Almost all of the properties of the conventional matrix product hold for the left or
right semi-tensor product of arbitrary matrices. For instance, we have the following.

Proposition 2.25

1.
{

(A ⋉ B)T = BT ⋉ AT,

(A ⋊ B)T = BT ⋊ AT.
(2.116)

2. If M ∈ Mm×pn, then
{

M ⋉ In = M,

M ⋊ In = M.
(2.117)

If M ∈ Mpm×n, then
{

Im ⋉ M = M,

Im ⋊ M = M.
(2.118)

In the following, A and B are square matrices.
3. A ⋉ B and B ⋉ A (A ⋊ B and B ⋊ A) have the same characteristic function.
4.

{

tr(A ⋉ B) = tr(B ⋉ A),

tr(A ⋊ B) = tr(B ⋊ A).
(2.119)

5. If both A and B are orthogonal (resp., upper triangular, lower triangular, diago-

nal) matrices, then A ⋉ B (A ⋊ B) is orthogonal (resp., upper triangular, lower

triangular, diagonal).
6. If both A and B are invertible, then A ⋉ B ∼ B ⋉ A ( A ⋊ B ∼ B ⋊ A ).
7. If both A and B are invertible, then

{

(A ⋉ B)−1 = B−1 ⋉ A−1,

(A ⋊ B)−1 = B−1 ⋊ A−1.
(2.120)
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8. The determinant of the product satisfies

{

det(A ⋉ B) = [det(A)] α
n [det(B)]

α
p ,

det(A ⋊ B) = [det(A)]
α
n [det(B)]

α
p .

(2.121)

Corollary 2.4 Let A ∈ Mm×n, B ∈ Mp×q . Then

C = A ⋉ B =
(

Cij
)

, i = 1, . . . ,m, j = 1, . . . , q, (2.122)

where

Cij = Ai ⋉ Bj ,

Ai = Rowi(A), and Bj = Colj (B).
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Chapter 3

Matrix Expression of Logic

3.1 Structure Matrix of a Logical Operator

Recall that a logical variable takes value from D = {T ,F } or, equivalently, D =
{1,0}. To obtain a matrix expression we identify “T ” and “F ”, respectively, with
the vectors

T := 1 ∼

[

1
0

]

, F := 0 ∼

[

0
1

]

. (3.1)

To describe the vector form of logic we first recall some notation:

• δi
k is the ith column of the identity matrix Ik ,

• Δk := {δi
k | i = 1,2, . . . , k}.

For notational ease, let Δ := Δ2. Then,

Δ =
{

δ1
2, δ2

2

}

=

{[

1
0

]

,

[

0
1

]}

,

and an r-ary logical operator is a mapping σ : Δr → Δ.

Definition 3.1 A matrix L ∈ Mn×m is called a logical matrix if Col(L) ⊂ Δn. The
set of n × m logical matrices is denoted by Ln×m.

If L ∈ Ln×m, then it has the form

L =
[

δi1
n δi2

n · · · δim
n

]

.

For notational compactness we write this as

L = δn[i1 i2 · · · im].

Definition 3.2 A 2 × 2r matrix Mσ is said to be the structure matrix of the r-ary
logical operator σ if

σ(p1, . . . , pr) = Mσ ⋉ p1 ⋉ · · · ⋉ pr := Mσ ⋉r
i=1 pi . (3.2)
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Note that throughout this book we assume the matrix product is the (left) semi-
tensor product, and hereafter the symbol ⋉ will be omitted in most cases. However,
we use

⋉r
i=1pi := p1 ⋉ p2 ⋉ · · · ⋉ pr .

We start by constructing the structure matrices for some fundamental logical op-
erators. We define the structure matrix for negation, ¬, denoted by Mn, as

Mn =
[

0 1
1 0

]

= δ2[2 1]. (3.3)

It is then easy to check that when a logical variable p is expressed in vector form,
we have

¬p = Mnp. (3.4)

To see this, when p = T ,

p = T ∼ δ1
2 =⇒ Mnp = δ2

2 ∼ F,

and when p = F ,

p = F ∼ δ2
2 =⇒ Mnp = δ1

2 ∼ T .

Similarly, for conjunction, ∧, disjunction, ∨, conditional, →, and biconditional,
↔, we define their corresponding structure matrices, denoted by Mc , Md , Mi , and
Me, respectively, as follows:

Mc = δ2[1 2 2 2], (3.5)

Md = δ2[1 1 1 2], (3.6)

Mi = δ2[1 2 1 1], (3.7)

Me = δ2[1 2 2 1]. (3.8)

A straightforward computation then shows that for any two logical variables p and
q , we have

p ∧ q = Mcpq, (3.9)

p ∨ q = Mdpq, (3.10)

p → q = Mipq, (3.11)

p ↔ q = Mepq. (3.12)

In the following we will show that for any logical function, f , there exists a
unique structure matrix Mf of f such that (3.2) holds.

We need an auxiliary tool.
Define a matrix, Mr , called the power-reducing matrix, as

Mr = δ4[1 4]. (3.13)
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Proposition 3.1 Let p ∈ Δ. Then

p2 = Mrp. (3.14)

Proof Let p = [t,1 − t]T. Then,

p2 =
[

t2, t (1 − t), (1 − t)t, (1 − t)2]T
.

Since t ∈ {0,1} it is clear that t2 = t , (1 − t)2 = 1 − t , and t (1 − t) = 0. Then,

p2 = [t,0,0,1 − t]T = Mrp. �

Lemma 3.1 Let f (p1,p2, . . . , pr) be a logical function with logical variables (ar-

guments) p1,p2, . . . , pr . Then, f can be expressed as

f (p1,p2, . . . , pr) = ⋉iξi, (3.15)

where

ξi ∈ {Mn,Md ,Mc,p1,p2, . . . , pr}.

Proof Using the disjunctive (or conjunctive) normal form, f (p1,p2, . . . , pr) can
be written as a logical expression involving only ∧, ∨, ¬, and pi , i = 1,2, . . . , r .
Using the corresponding structure matrices, the semi-tensor product form (3.15) can
be obtained. �

We now give an example to illustrate this.

Example 3.1 Consider

f (p,q, r) = (p ∧ ¬q) ∨ (r ∧ p).

This can be expressed as

f (p,q, r) = (p ∧ ¬q) ∨ (r ∧ p)

= Md(p ∧ ¬q)(r ∧ p)

= Md

(

Mcp(Mnq)
)

(Mcrp)

= MdMcpMnqMcrp.

We are now ready to present a general result.

Theorem 3.1 Given a logical function f (p1,p2, . . . , pr) with logical variables

p1,p2, . . . , pr , there exists a unique 2 × 2r matrix Mf , called the structure ma-

trix of f , such that

f (p1,p2, . . . , pr) = Mf p1p2 · · ·pr . (3.16)

Moreover, Mf ∈ L2×2r .
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Proof We first prove the existence of Mf . Using Lemma 3.1 we only have to prove
that ⋉iξi can be expressed as the right-hand side of (3.16). This can be done in three
steps.

• Step 1. Using the fact that

pM = (I2 ⊗ M)p (3.17)

we can move all factors of structure matrices, such as Mj or I2 ⊗Mj , to the front
and move all variables, pi , to the rear of the product:

⋉iξi = ⋉jNj ⋉k pik ,

where

Nj ∈ {I2s ⊗ Mn, I2s ⊗ Md , I2s ⊗ Mc | s = 0,1,2, . . . } , ik ∈ {1,2, . . . , r}.

• Step 2. Using a swap matrix we can change the order of two logical variables:

W[2]pipj = pjpi .

Using (3.17) it is easy to obtain the following form:

⋉kpik = Mp
k1
1 p

k2
2 · · ·pkr

r .

• Step 3. Using a power-reducing matrix, the powers of the pi ’s can all be reduced
to 1. Again using (3.17), the coefficient matrices, generated by reducing orders,
can be moved to the front part.

Following this procedure, a structure matrix will be produced.
To prove uniqueness, assume there are two structure matrices, Mf �= M ′

f . These
must differ in at least one column, say the ith column, ci �= c′

i . Choose p1, . . . , pr

such that ⋉r
i=1pi = δi

2r . We then have

f (p1, . . . , pr) = Mf ⋉r
i=1 pi = ci .

Meanwhile,

f (p1, . . . , pr) = M ′
f ⋉r

i=1 pi = c′
i .

This then leads to a contradiction.
As for Mf ∈ L2×2r , this follows from the properties of logical matrices (we refer

to Sect. 3.3 for details). �

We now reconsider Example 3.1.

Example 3.2 In Example 3.1 we already have

f (p,q, r) = MdMcpMnqMcrp.
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We continue by converting this into canonical form:

f (p,q, r) = MdMcpMnqMcrp

= MdMc(I2 ⊗ Mn)pqMcrp

= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)pqrp

= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)pW[2,4]pqr

= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)(I2 ⊗ W[2,4])p
2qr

= MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)(I2 ⊗ W[2,4])Mrpqr

:= Mf pqr.

Then,

Mf = MdMc(I2 ⊗ Mn)(I4 ⊗ Mc)(I2 ⊗ W[2,4])Mr

= δ2[1 2 1 1 2 2 2 2].

Note that, for convenience, we will hereafter identify T with 1 or δ1
2 , and F with

0 or δ2
2 . Hence, we will also identify D with Δ. It should be clear from the text

which form we are using.

3.2 Structure Matrix for k-valued Logic

In this section we consider the matrix expression of k-valued logic [3]. Observe that
a k-valued logical variable takes values from

Dk =

{

T = 1,
k − 2

k − 1
,
k − 3

k − 1
, . . . ,F = 0

}

.

To use a matrix expression, we identify each k-valued logical value with a vector as
follows:

i

k − 1
∼ δk−i

k , i = 1,2, . . . , k − 1. (3.18)

For instance, T = 1 ∼ δ1
k , F = 0 ∼ δk

k , etc. Similarly to the Boolean case, we iden-
tify Dk with Δk . An r-ary k-valued logical operator is then a mapping σ : D r

k → Dk ,
and in vector form it is a mapping σ : Δr

k → Δk .

Definition 3.3 A k × kr matrix Mσ is said to be the structure matrix of the r-ary
logical operator σ if

σ(p1, . . . , pr) = Mσ p1 · · ·pr . (3.19)
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Similarly to the Boolean case, we can construct the structure matrices of some
fundamental logical operators. For negation, ¬, we define its structure matrix, de-
noted by Mn,k , as

Mn,k = δk[k k − 1 · · · 1]. (3.20)

It is then easy to check that when a logical variable p is expressed in k-dimensional
vector form, we have

¬p = Mn,kp. (3.21)

The structure matrix of the rotator ⊘k , denoted by Mo,k , can be easily shown to
be

Mo,k = δk[2 3 · · · k 1]. (3.22)

For instance, when k = 3 we have

Mo,3 = δ3[2 3 1].

When k = 4,

Mo,4 = δ4[2 3 4 1].

Consider the i-confirmer, ▽i,k . A straightforward verification shows that its
structure matrix is

M▽i,k
= δk[k · · ·k

︸ ︷︷ ︸

i−1

1 k · · ·k
︸ ︷︷ ︸

k−i

], i = 1,2, . . . , k. (3.23)

For instance, let k = 3 or 4 and i = 2. We then have

M▽2,3 = δ3[3 1 3], M▽2,4 = δ4[4 1 4 4].

For conjunction, ∧, and disjunction, ∨, as defined in Chap. 1 for the k-valued
case, we define their respective structure matrices, Mc,k and Md,k , as

Mc,k = δk[1 2 3 · · ·k
︸ ︷︷ ︸

k

2 2 3 · · · k
︸ ︷︷ ︸

k

3 3 3 · · ·k
︸ ︷︷ ︸

k

· · · k k k · · ·k
︸ ︷︷ ︸

k

], (3.24)

Md,k = δk[1 1 1 · · ·1
︸ ︷︷ ︸

k

1 2 2 · · ·2
︸ ︷︷ ︸

k

1 2 3 · · ·3
︸ ︷︷ ︸

k

· · · 1 2 3 · · ·k
︸ ︷︷ ︸

k

]. (3.25)

For instance, when k = 3 we have

Mc,3 = δ3[1 2 3 2 2 3 3 3 3], (3.26)

Md,3 = δ3[1 1 1 1 2 2 1 2 3]. (3.27)

Next, assume that we use equations (1.30) and (1.31) in Proposition 1.1 as the
respective definitions of conditional and biconditional. That is, define p → q =

(¬p) ∨ q and p ↔ q = (p → q) ∧ (q → p). Since

p → q = Mi,kpq = Md,k(Mn,kp)q
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we have

Mi,k = Md,kMn,k . (3.28)

When k = 3 we have

Mi,3 = δ3[1 2 3 1 2 2 1 1 1]. (3.29)

When k = 4 we have

Mi,4 = δ4[1 2 3 4 1 2 3 3 1 2 2 2 1 1 1 1]. (3.30)

Next, we consider Me. To do this we need the k-valued power-reducing matrix.
Define the k-valued power-reducing matrix, Mr,k , as

Mr,k =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

δ1
k 0k · · · 0k

0k δ2
k · · · 0k

...

0k 0k · · · δk
k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.31)

where 0k ∈ Rk is a zero vector. When k = 3,

Mr,3 = δ9[1 5 9]. (3.32)

When k = 4,

Mr,4 = δ16[1 6 11 16]. (3.33)

Similarly to the Boolean case, it is easy to prove the following.

Proposition 3.2 If p ∈ Δk , then

p2 = Mr,kp. (3.34)

We are now ready to calculate Me,k . Using (3.31) we have

Me,kpq = Mc,kMi,kpqMi,kqp

= Mc,kMi,k(Ik2 ⊗ Mi,k)pqqp

= Mc,kMi,k(Ik2 ⊗ Mi,k)pW[k,k2]pq2

= Mc,kMi,k(Ik2 ⊗ Mi,k)(Ik ⊗ W[k,k2])p
2q2

= Mc,kMi,k(Ik2 ⊗ Mi,k)(Ik ⊗ W[k,k2])Mr,kpMr,kq

= Mc,kMi,k(Ik2 ⊗ Mi,k)(Ik ⊗ W[k,k2])Mr,k(Ik ⊗ Mr,k)pq. (3.35)

Hence,
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Me,k = Mc,kMi,k(Ik2 ⊗ Mi,k)(Ik ⊗ W[k,k2])Mr,k(Ik ⊗ Mr,k). (3.36)

When k = 3 we have

Me,3 = δ3[1 2 3 2 2 2 3 2 1]. (3.37)

When k = 4 we have

Me,4 = δ4[1 2 3 4 2 2 3 3 3 3 2 2 4 3 2 1]. (3.38)

Similarly to the Boolean case, it is easy to prove the following theorem, which is
the counterpart of Theorem 3.1 for the k-valued logic case.

Theorem 3.2 Given a k-valued logical function f (p1,p2, . . . , pr) with k-valued

logical variables p1,p2, . . . , pr , there exists a unique logical matrix Mf ∈ Lk×kr ,
called the structure matrix of f , such that

f (p1,p2, . . . , pr) = Mf p1p2 · · ·pr . (3.39)

We now give an example to illustrate this.

Example 3.3 Assume that

f (p,q, r) = (p ∨ q) ∧ (q ∨ r) ∧ (r ∨ p),

where p,q, r ∈ Δk . Then,

f (p,q, r)

= (Mc,k)
2(Md,kpq)(Md,kqr)(Md,krp)

= (Mc,k)
2Md,k(Ik2 ⊗ Md,k)pq2r(Md,krp)

= (Mc,k)
2Md,k(Ik2 ⊗ Md,k)(Ik4 ⊗ Md,k)pq2r2p

= (Mc,k)
2Md,k(Ik2 ⊗ Md,k)(Ik4 ⊗ Md,k)pW[k,k4]pq2r2

= (Mc,k)
2Md,k(Ik2 ⊗ Md,k)(Ik4 ⊗ Md,k)(Ik ⊗ W[k,k4])p

2q2r2

= (Mc,k)
2Md,k(Ik2 ⊗ Md,k)(Ik4 ⊗ Md,k)(Ik ⊗ W[k,k4])Mr,kpMr,kqMr,kr

= (Mc,k)
2Md,k(Ik2 ⊗ Md,k)(Ik4 ⊗ Md,k)

(Ik ⊗ W[k,k4])Mr,k(Ik ⊗ Mr,k)(Ik2 ⊗ Mr,k)pqr

:= Mf pqr.

It follows that

Mf = (Mc,k)
2Md,k(Ik2 ⊗ Md,k)(Ik4 ⊗ Md,k)

(Ik ⊗ W[k,k4])Mr,k(Ik ⊗ Mr,k)(Ik2 ⊗ Mr,k).
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When k = 3, Mf is a 3 × 33 matrix, which is

Mf = δ3[1 1 1 1 2 2 1 2 3 1 2 2 2 2 2 2 2 3 1 2 3 2 2 3 3 3 3].

When k = 4, Mf is a 4 × 44 matrix, which is

Mf = δ4[1 1 1 1 1 2 2 2 1 2 3 3 1 2 3 4 1 2 2 2 2 2 2 2 2 2 3 3 2 2 3 4
1 2 3 3 2 2 3 3 3 3 3 3 3 3 3 4 1 2 3 4 2 2 3 4 3 3 3 4 4 4 4 4].

3.3 Logical Matrices

Recall that in Definition 3.1, a logical matrix was defined as a matrix whose columns
are in Δm. In this section we will show that most of the matrices encountered in the
algebraic expression of logic are logical matrices.

Proposition 3.3

1. A swap matrix is a logical matrix:

W[m,n] ∈ Lmn×mn.

2. The identity matrix is a logical matrix:

Im ∈ Lm×m.

3. The (k-valued) power-reducing matrix is a logical matrix:

Mr,k ∈ Lk2×k.

4. The structure matrices of rotator, i-confirmer, and negation are logical matrices:

Mo,k ∈ Lk×k, M▽i,k
∈ Lk×k, Mn,k ∈ Lk×k.

5. The structure matrices of conjunction, disjunction, conditional, and bicondi-

tional are logical matrices:

Mc,k ∈ Lk×k2, Md,k ∈ Lk×k2, Mi,k ∈ Lk×k2 , Me,k ∈ Lk×k2 .

Next, we investigate some fundamental properties of logical matrices. First, we
will show that the product of two logical matrices is itself a logical matrix. Later,
we will see that this property is extremely important because a certain set of logical
matrices is closed under the semi-tensor product.

Denote the set of all logical matrices by L . That is,

L =
⋃

i,j=1,2,...

Li×j . (3.40)
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We are also interested in certain subsets, each of which is related to a k-valued logic:

Lk =
⋃

i,j=0,1,2,...

Lki×kj . (3.41)

Proposition 3.4

1. Let L ∈ L and I be an identity matrix. Then,

L ⊗ I ∈ L , I ⊗ L ∈ L . (3.42)

2. Let L ∈ Lk and I = Iks . Then,

L ⊗ I ∈ Lk, I ⊗ L ∈ Lk. (3.43)

Proof We prove only (3.43). Note that both I ⊗ L and L ⊗ I are of dimension
kp+s ×kq+s , satisfying the multiple dimension requirement. A straightforward com-
putation shows that

Lj ⊗ I = δkp+s

[

(ij − 1)ks + 1, (ij − 1)ks + 2, . . . , ijk
s
]

. (3.44)

Then,

L ⊗ I = [L1 ⊗ I,L2 ⊗ I, . . . ,Lkq ⊗ I ], (3.45)

which is obviously an element of Lk .
Similarly, a straightforward computation shows that

δ
j

ks ⊗ L = δkp+s

[

(j − 1)kp + 1, (j − 1)kp + 2, . . . , jkp
]

. (3.46)

Then,

I ⊗ L =
[

δ1
ks ⊗ L,δ2

ks ⊗ L, . . . , δks

ks ⊗ L
]

, (3.47)

which is also an element of Lk . �

Note that formulas (3.44)–(3.47) are useful in computer-based calculations.

Proposition 3.5 Lk is closed under the semi-tensor product ⋉. That is, if A,B ∈

Lk , then AB := A ⋉ B is always well defined, and AB ∈ Lk .

Proof Using Propositions 2.10 and 3.4, we only have to prove this for the conven-
tional product case. So, we assume that A ∈ Mkp×kq and B ∈ Mkq×kr , and write

A = δkp [i1 i2 · · · ikq ], B = δkq [j1 j2 · · · jkr ].

A straightforward computation then shows that

AB = δkp [ij1 ij2 · · · ijkr ] ∈ Lk. (3.48)

�
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Note that equation (3.48) is itself a useful formula.
Combining the above arguments and taking the constructive proof of Theo-

rem 3.1 into consideration, the following result clearly follows.

Theorem 3.3

1. The structure matrix of a k-valued (n-ary for any n) logical operator Mf is a

logical matrix, i.e., Mf ∈ Lk , which is called a k-valued logical matrix.
2. A (semi-tensor) product of several structure matrices of k-valued (n-ary for

any n) logical operators is also a k-valued logical matrix.

Remark 3.1

1. The first statement of Theorem 3.3 is based on the following fact: any oper-
ation performed in obtaining the structure matrix of a logical function is Lk

closed. The second statement of Theorem 3.3 implies that further multiplication
of structure matrices is legal and that Lk is closed with respect to the semi-tensor
product. This fact will be used in the sequel.

2. In the previous two sections, all matrix products were taken without checking the
“multiple dimension” requirement. Theorem 3.3 ensures the legality of this.

3. We can also say that the set of logical matrices, L , is closed under the semi-
tensor product. When two matrices satisfy the multiple dimension requirement,
this is obvious. However, when this requirement is not satisfied, the general def-
inition of the semi-tensor product must be used.
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Chapter 4

Logical Equations

4.1 Solution of a Logical Equation

A logical variable p is called an logical argument or logical unknown if it can take
a value p ∈ D = {T ,F } to satisfy certain logical requirements. A logical constant c

is a fixed value c ∈ D .

Definition 4.1 A standard system of logical equations is expressed as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1(p1,p2, . . . , pn) = c1,

f2(p1,p2, . . . , pn) = c2,

...

fm(p1,p2, . . . , pn) = cm,

(4.1)

where fi , i = 1, . . . ,m, are logical functions, pi , i = 1, . . . , n, are logical arguments
(unknowns), and ci , i = 1, . . . ,m, are logical constants. A set of logical constants
di , i = 1, . . . , n, such that

pi = di, i = 1, . . . , n, (4.2)

satisfy (4.1) is said to be a solution of (4.1).

We now give an illustrative example.

Example 4.1 Consider the following system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

p ∧ q = c1,

q ∨ r = c2,

r ↔ (¬p) = c3.

(4.3)
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1. Assume the logical constants are

c1 = 1, c2 = 1, c3 = 1.

A straightforward verification shows that

⎧

⎪

⎨

⎪

⎩

p = 1,

q = 1,

r = 0

is the only solution.
2. Assume the logical constants are

c1 = 1, c2 = 0, c3 = 1.

It can then be checked that there is no solution.
3. Assume the logical constants are

c1 = 0, c2 = 1, c3 = 0.

There are then two solutions:
⎧

⎪

⎨

⎪

⎩

p1 = 1,

q1 = 0,

r1 = 1

and
⎧

⎪

⎨

⎪

⎩

p2 = 0,

q2 = 1,

r2 = 0.

Example 4.1 is heuristic. It shows that the solutions of systems of logical equa-
tions are quite different from those of linear algebraic equations where the type of
solution depends only on the coefficients of the system.

4.2 Equivalent Algebraic Equations

This section considers how to solve the system (4.1). The basic idea is first to convert
(4.1) into an equivalent linear algebraic equation and then to solve this algebraic
equation, thereby providing the solution(s) to the system of logical equations. To do
this, we first need some preparatory results.
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Lemma 4.1 Let pi , i = 1,2, . . . , n, be logical variables in vector form, i.e., pi ∈ ∆.
We define

x = ⋉n
i=1pi .

Then, pi , i = 1,2, . . . , n, are uniquely determined by x.

Proof We prove this by giving a formula to calculate pi . First, since pi ∈ ∆, it
follows that x ∈ ∆2n . We can now assume that x = δi

2n . Split x into two equal-sized
segments as

x =
[

xT
1 , xT

2

]T
,

where either 0 �= x1 ∈ ∆2n−1 and x2 = 0, or x1 = 0 and 0 �= x2 ∈ ∆2n−1 . According
to the definition of the semi-tensor product, if x2 = 0, then p1 = 1, and if x2 = 1,
then p1 = 0. We can then split a nonzero segment, say x1 �= 0, into two equal-sized
parts as x1 = [xT

11, x
T
12]

T, then apply the same judgment to p2, and so on. The result
follows. �

Based on the argument in the proof of the last lemma, we give the following
algorithm.

Algorithm 4.1 Let ⋉n
j=1pj = δi

2n , where pj ∈ ∆ are in vector form. Then:

1. The scalar form of {pj } can be calculated from i inductively as follows:

• Step 1. Set q0 := 2n − i.
• Step 2. Calculate pj and qj , j = 1,2, . . . , n, recursively by

{

pj = [
qj−1

2n−j ],

qj = qj−1 − pj ∗ 2n−j , j = 1,2, . . . , n,
(4.4)

where, in the first equation, [a] denotes the largest integer less than or equal
to a.

2. i can be calculated from the scalar form of {pj } by

i =

n
∑

j=1

(1 − pj )2
n−j + 1. (4.5)

We now give an example to demonstrate the formulas.

Example 4.2 Assume x = p1p2p3p4p5.

1. The value of x is known to be x = δ7
32. We then try to obtain the values of pi ,

i = 1, . . . ,5. Using the first part of Algorithm 4.1, we have

q0 = 25 − 7 = 32 − 7 = 25.
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It follows that

p1 = [q0/16] = 1, q1 = q0 − p1 ∗ (16) = 9,

p2 = [q1/8] = 1, q2 = q1 − p2 ∗ 8 = 1,

p3 = [q2/4] = 0, q3 = q2 − p3 ∗ 4 = 1,

p4 = [q3/2] = 0, q4 = q3 − p4 ∗ 2 = 1,

p5 = [q4/1] = 1.

We conclude that p1 = 1 ∼ δ1
2 , p2 = 1 ∼ δ1

2 , p3 = 0 ∼ δ2
2 , p4 = 0 ∼ δ2

2 , and
p5 = 1 ∼ δ1

2 .
2. Assume p1 = 0, p2 = 1, p3 = 0, p4 = 1, and p5 = 1. Using (4.5), we have

i = 24 + 22 + 1 = 21.

Therefore, x = δ21
32 .

Next, we construct a matrix, which may be called the group power-reducing ma-
trix, as follows. For j ≥ 1, define

Φj =

j
∏

i=1

I2i−1 ⊗
[

(I2 ⊗ W[2,2j−i ])Mr

]

. (4.6)

We then have the following result.

Lemma 4.2 If zj = p1p2 · · ·pj , where pi ∈ ∆, i = 1,2, . . . , j , then

z2
j = Φjzj . (4.7)

Proof We prove this by mathematical induction. When j = 1, using Proposition
3.1, we have

z2
1 = p2

1 = Mrp1.

In the above formula

Φ1 = (I2 ⊗ W[2,1])Mr .

Note that W[2,1] = I2, so it follows that Φ1 = Mr . Hence, (4.7) is true for j = 1. If
we assume (4.7) is true for j = s, then for j = s + 1 we have

P 2
s+1 = p1p2 · · ·ps+1p1p2 · · ·ps+1

= p1W[2,2s ]p1[p2 · · ·ps+1]
2

= (I2 ⊗ W[2,2s ])p
2
1[p2 · · ·ps+1]

2

=
[

(I2 ⊗ W[2,2s ])Mr

]

p1[p2 · · ·ps+1]
2.
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Applying the induction assumption to the last equality, we have

z2
s+1 = (I2 ⊗ W[2,2s ])Mrp1

×

(

s
∏

i=1

I2i−1 ⊗
[

(I2 ⊗ W[2,2s−i ])Mr

]

)

p2p3 · · ·ps+1

=
[

(I2 ⊗ W[2,2s ])Mr

]

×

(

s
∏

i=1

I2i ⊗
[

(I2 ⊗ W[2,2s−i ])Mr

]

)

p1p2 · · ·ps+1.

The conclusion then follows. �

Before presenting the next lemma we require another concept, called a dummy
operator, σd, defined by

σd(p, q) = q, ∀p,q ∈ D . (4.8)

It is easy to show that the structure matrix of the dummy operator σd is

Ed :=

[

1 0 1 0
0 1 0 1

]

. (4.9)

It follows from the definition that for any two logical variables X, Y ,

EdXY = Y or EdW[2]XY = X. (4.10)

A logical variable which only formally appears in a logical function, but does not
affect the value of that function, is called a fabricated variable.

Lemma 4.3 Let

x = ⋉n
i=1pi .

Using vector form, each logical equation

fi(p1,p2, . . . , pn) = ci, i = 1,2, . . . ,m,

in the system (4.1) can be expressed as

Mix = ci, i = 1,2, . . . ,m, (4.11)

where Mi ∈ L2×2n .

Proof Assume fi is a logical equation of p1, . . . , pn. Let Mi be the structure ma-
trix of fi . Then, (4.11) immediately follows. Assume some pj ’s do not appear in fi .
Using the dummy operator technique we can still obtain (4.11) by introducing fab-
ricated variables. �
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We are now ready to present the main result, which converts the system of logical
equations (4.1) into an algebraic equation.

Theorem 4.1 Let x = ⋉n
i=1pi , b = ⋉m

i=1ci . The system of logical equations (4.1)
can then be converted into a linear algebraic equation as

Lx = b, (4.12)

where

L = M1 ⋉n
j=2

[

(I2n ⊗ Mj )Φn

]

, (4.13)

Mi being defined as in (4.11).

Proof Note that from Lemma 4.2 we have

x2 = Φnx.

Multiplying (4.11) together yields

b = M1xM2x · · ·Mnx

= M1(I2n ⊗ M2)x
2M3x · · ·Mnx

= M1(I2n ⊗ M2)ΦnxM3x · · ·Mnx

= · · ·

= M1(I2n ⊗ M2)Φn(I2n ⊗ M3)Φn · · · (I2n ⊗ Mn)Φnx.

(4.13) then follows. �

Remark 4.1

1. To obtain the algebraic form for a particular logical equation, we may not need
to use formula (4.13). In most cases, L can be obtained by a direct computation.

2. Using Lemma 4.1 and Algorithm 4.1, as long as algebraic equation (4.12) is
solved for x, the logical unknowns pi , i = 1,2, . . . , n, can be easily calculated.

3. As discussed in Chap. 3, in equation (4.12), the coefficient matrix L ∈ L2m×2n ,
and the constant vector b ∈ ∆2m .

Denote by Col(L) the set of columns of matrix L. Since L ∈ L2m×2n and b ∈

∆2m , it is clear that algebraic equation (4.12) has solution x ∈ ∆2n if and only if

b ∈ Col(L).

Express L in condensed form as

L = δ2m [i1, i2, . . . , i2n ].
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We define a set

Λ =
{

λ
∣

∣ δ
iλ
2m = b,1 ≤ λ ≤ 2n

}

.

The following result is then obvious.

Theorem 4.2 Using the above notation, the solution of (4.12) is

x = δλ
2n , λ ∈ Λ. (4.14)

As an application, we reconsider Example 4.1.

Example 4.3 Consider system (4.3) again. We have its algebraic form as
⎧

⎪

⎨

⎪

⎩

Mcpq = c1,

Mdqr = c2,

Mer(Mnp) = c3.

(4.15)

Multiplying these three equations together yields

McpqMdqrMerMnp = c1c2c3 := b. (4.16)

Next, set x = p ⋉ q ⋉ r . We simplify the left-hand side of (4.16) as follows:

McpqMdqrMerMnp

= Mc(I4 ⊗ Md)pq2rMerMnp

= Mc(I4 ⊗ Md)(I16 ⊗ Me)pq2r2Mnp

= Mc(I4 ⊗ Md)(I16 ⊗ Me)(I32 ⊗ Mn)pq2r2p

= Mc(I4 ⊗ Md)(I16 ⊗ Me)(I32 ⊗ Mn)pW[2,16]pq2r2

= Mc(I4 ⊗ Md)(I16 ⊗ Me)(I32 ⊗ Mn)(I2 ⊗ W[2,16])p
2q2r2

= Mc(I4 ⊗ Md)(I16 ⊗ Me)(I32 ⊗ Mn)(I2 ⊗ W[2,16])MrpMrqMrr

= Mc(I4 ⊗ Md)(I16 ⊗ Me)(I32 ⊗ Mn)(I2 ⊗ W[2,16])Mr(I2 ⊗ Mr)(I4 ⊗ Mr)pqr

:= Lx.

It is easy to calculate that

L = Mc(I4 ⊗ Md)(I16 ⊗ Me)(I32 ⊗ Mn)(I2 ⊗ W[2,16])Mr(I2 ⊗ Mr)(I4 ⊗ Mr)

= δ23 [2,1,6,7,5,6,5,8].

Now, if b = δ1
8 , then Λ = {2}. That is, the second column of L equals b. We have

the solution x = δ2
8 . Returning to Boolean form we have

b = δ1
8 ⇐⇒ c1 = 1, c2 = 1, c3 = 1,

x = δ2
8 ⇐⇒ p1 = 1,p2 = 1,p3 = 0.

We list all possible constants and their corresponding solutions in Table 4.1.
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Table 4.1 Solutions of (4.3)

b (c1, c2, c3) Λ x (p1,p2,p3)

δ1
8 (1,1,1) {2} δ2

8 (1,1,0)

δ2
8 (1,1,0) {1} δ1

8 (1,1,1)

δ3
8 (1,0,1) ∅

δ4
8 (1,0,0) ∅

δ5
8 (0,1,1) {5,7} δ5

8 , δ7
8 (0,1,0), (0,0,1)

δ6
8 (0,1,0) {3,6} δ3

8 , δ6
8 (1,0,1), (0,1,0)

δ7
8 (0,0,1) {4} δ4

8 (1,0,0)

δ8
8 (0,0,0) {8} δ8

8 (0,0,0)

When the number of unknowns is not very small, calculating the coefficient ma-
trix by hand will be very difficult, but a simple routine can do this easily. We now
give another example.

Example 4.4 Consider the following system of logical equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p1 ∧ p2 = c1,

p2 ∨ (p3 ↔ p2) = c2,

p5 → (p4 ∨ p3) = c3,

¬p3 = c4,

p4 ∨ (p5 ∧ p2) = c5,

(p6 ∨ p2) ∧ p6) = c6,

(¬p9) → p7 = c7,

p5 ∧ p6 ∧ p7 = c8,

(p6 ∨ p8) ↔ p3 = c9.

(4.17)

Its algebraic form is

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Mcp1p2 = c1,

Mdp2Mep3p2 = c2,

Mip5Mdp4p3 = c3,

Mnp3 = c4,

Mdp4Mcp5p2 = c5,

McMdp6p2p6 = c6,

MiMnp9p7 = c7,

M2
c p5p6p7 = c8,

MeMdp6p8p3 = c9.

(4.18)
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Of course, we can convert (4.18) into an algebraic equation as

L ⋉9
i=1 pi = ⋉9

i=1ci or Lx = b.

Then, L ∈ L512×1024. To save space, we give the first and last few columns (in
condensed form) as follows:

δ29 [33 33 33 33 35 39 35 39 43 43 44 44 43 47 44 48
35 35 35 35 35 39 35 39 43 43 44 44 43 47 44 48
33 33 33 33 35 39 35 39 43 43 44 44 43 47 44 48
51 51 51 51 51 55 51 55 59 59 60 60 59 63 60 64

2 2 2 2 4 8 4 8 12 12 11 11 12 16 11 15
· · ·

260 264 260 264 268 268 267 267 268 272 267 271
260 260 260 260 260 264 260 264 268 268 267 267
268 272 267 271 338 338 338 338 340 344 340 344
348 348 347 347 348 352 347 351 276 276 276 276
276 280 276 280 284 284 283 283 284 288 283 287].

Next, giving a special set of logical constants, we solve the system of logical
equations. Assume c1 = 1, c2 = 1, c3 = 1, c4 = 0, c5 = 1, c6 = 1, c7 = 1, c8 = 0,
and c9 = 1. Then,

b = ⋉9
i=1ci = δ35

29 .

Using a computer routine, we can find the set Λ such that for the columns Lλ of L

with Lλ = b, λ ∈ Λ. It is easy to calculate in this way that

Λ = {5,7,17,18,19,20,21,23,37,39} .

According to Theorem 4.2, there are ten corresponding solutions, which can be
easily calculated as follows:

1. x1 = δ5
29 or

⎧

⎪

⎨

⎪

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 1,p6 = 1,

p7 = 0,p8 = 1,p9 = 1,

2. x2 = δ7
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 1,p6 = 1,

p7 = 0,p8 = 0,p9 = 1,
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3. x3 = δ17
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 0,p6 = 1,

p7 = 1,p8 = 1,p9 = 1,

4. x4 = δ18
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 0,p6 = 1,

p7 = 1,p8 = 1,p9 = 0,

5. x5 = δ19
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 0,p6 = 1,

p7 = 1,p8 = 0,p9 = 1,

6. x6 = δ20
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 0,p6 = 1,

p7 = 1,p8 = 0,p9 = 0,

7. x7 = δ21
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 0,p6 = 1,

p7 = 0,p8 = 1,p9 = 1,

8. x8 = δ23
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 1,p5 = 0,p6 = 1,

p7 = 0,p8 = 0,p9 = 1,

9. x9 = δ37
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 0,p5 = 1,p6 = 1,

p7 = 0,p8 = 1,p9 = 1,

10. x10 = δ39
29 or

⎧

⎨

⎩

p1 = 1,p2 = 1,p3 = 1,

p4 = 0,p5 = 1,p6 = 1,

p7 = 0,p8 = 0,p9 = 1.
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We then consider a general form of logical equation. Consider

f (p1,p2, . . . , pn) = g(q1, q2, . . . , qm). (4.19)

We want to find its algebraic form.

Proposition 4.1 The algebraic form of logical equation (4.19) is

MeMf (I2n ⊗ Mg)p1 · · ·pnq1 · · ·qm = δ1
2 . (4.20)

Proof Define p := f (p1,p2, . . . , pn) and q := g(q1, q2, . . . , qm). (4.19) implies
that either both p and q are “true” or both p and q are “false”. That is, p ↔ q

is a tautology. In algebraic form we have

MeMf p1p2 · · ·pnMgq1q2 · · ·qm = δ1
2 .

Note that

p1p2 · · ·pnMg = (I2n ⊗ Mg)p1p2 · · ·pn.

Equation (4.20) follows immediately. �

Finally, we consider a system of logical equations as follows:
⎧

⎪

⎨

⎪

⎩

f1(x1, . . . , xn) = g1(x1, . . . , xn),
...

fm(x1, . . . , xn) = gm(x1, . . . , xn).

(4.21)

Using vector form and setting x = ⋉n
i=1xi we have

⎧

⎪

⎨

⎪

⎩

M
f

1 x = M
g

1 x,
...

M
f
mx = M

g
mx,

(4.22)

where M
f
i , etc. are the structure matrices of the respective fi . Multiplying both

sides together and using the standard procedure to simplify both sides, we finally
have

Mf x = Mgx, (4.23)

where Mf ,Mg ∈ L2m×2n . It is easy to verify that x = ⋉n
i=1xi is the solution of

(4.23) if and only if (x1, . . . , xn) is a set of solutions of (4.20).
The following result is straightforward to verify.

Theorem 4.3 x = δ
j

2n is a solution of (4.23) if and only if

Colj
(

Mf
)

= Colj
(

Mg
)

, (4.24)

where Colj (M) is the j th column of M .
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In fact we can also perform a computation as an algebraic “transposition of
terms”.

If A = (aij ) ∈ Bp×q and B = (bij ) ∈ Bp×q , then we define the logical “exclu-
sive or”, ∨̄, over A and B as

A ∨̄B := (aij ∨̄bi,j ) ∈ Bp×q .

Letting

J =
{

j
∣

∣Colj (Mf ∨̄Mg) = 0
}

,

we then have the following result.

Corollary 4.1 x = δ
j

2n is a solution of (4.23) if and only if j ∈ J .

We illustrate this with an example.

Example 4.5 Consider the following system of logical equations:
{

f1(x1, x2, x3) = g1(x1, x2, x3),

f2(x1, x2, x3) = g2(x1, x2, x3),
(4.25)

where
{

f1(x1, x2, x3) = ¬x1,

f2(x1, x2, x3) = (x1 ∧ x2) ∨ [¬x1 ∧ (x2 ↔ x3)]

and
{

g1(x1, x2, x3) = x3,

g2(x1, x2, x3) = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2).

It is easy to calculate that

Mf = δ4[3,3,4,4,1,2,2,1], Mg = δ4[2,4,1,3,1,3,2,4].

It can now be seen that Col5(Mf ) = Col5(Mg) and Col7(Mf ) = Col7(Mg). Ac-
cording to Theorem 4.3, the solutions are x = δ5

8 and x = δ7
8 .

We conclude that the solutions of (4.25) are
⎧

⎪

⎨

⎪

⎩

x1 = 0,

x2 = 1,

x3 = 1,

⎧

⎪

⎨

⎪

⎩

x1 = 0,

x2 = 0,

x3 = 1.

4.3 Logical Inference

The purpose of this section is to deduce logical inference by solving logical equa-
tions. We will discuss this via several examples.
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Example 4.6 A says “B is a liar”, B says “C is a liar”, C says “Both A and B are
liars.” Who is a liar?

To solve this problem we define three logical variables:

• p: A is honest,
• q: B is honest,
• r : C is honest.

The three statements can then be expressed in logical version as

p ⇔ ¬q,

q ⇔ ¬r,

r ⇔ ¬p ∧ ¬q.

(4.26)

Let c = δ1
2 . The system (4.26) can then be converted into an algebraic form as

⎧

⎪

⎨

⎪

⎩

MepMnq = c,

MeqMnr = c,

MerMcMnpMnq = c.

(4.27)

It is easy to convert (4.27) into an algebraic equation as

Lx = b, where x = pqr, b = c3 = δ1
8,

and

L = δ8[8,5,2,3,4,1,5,8].

Since only Col6(L) = b, we have the unique solution

x = δ6
8,

which implies that

p = 0, q = 1, r = 0.

We conclude that only B is honest.

Example 4.7 A competition between five players took place in a simple-rotating
way, which means each player had to play all others. We have the following infor-
mation about the result:

• C beat E,
• A won three games,
• E won one game,
• among B,C, and D, there is one player who beat the other two,
• each of B,C, and D won two games,
• each of A,C,D, and E won some and lost some.
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We use AB to denote “A beat B”, and so on. It is clear from the definition that

BA = ¬AB, CA = ¬AC, . . . .

Next, we convert each statement into a logical expression.

1. C beat E:

CE = 1.

2. A won three games:

⎧

⎪

⎨

⎪

⎩

(AB ∧ AC ∧ AD) ∨ (AB ∧ AC ∧ AE)

∨(AB ∧ AD ∧ AE) ∨ (AC ∧ AD ∧ AE) = 1,

AB ∧ AC ∧ AD ∧ AE = 0.

(4.28)

3. E won one game:

⎧

⎪

⎨

⎪

⎩

AE ∧ BE ∧ CE ∧ DE = 0,

(EA ∧ EB) ∨ (EA ∧ EC) ∨ (EA ∧ ED)

∨(EB ∧ EC) ∨ (EB ∧ ED) ∨ (EC ∧ ED) = 0.

Since EC = ¬CE = 0, it can be removed from the above expression to give the
following simplification:

{

AE ∧ BE ∧ DE = 0,

(EA ∧ EB) ∨ (EA ∧ ED) ∨ (EB ∧ ED) = 0.
(4.29)

4. Among B,C, and D, one player beat the other two:

(BC ∧ BD) ∨ (CB ∧ CD) ∨ (DB ∧ DC) = 1. (4.30)

5. Each of B,C, and D won two games:

• B won two games:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(BA ∧ BC) ∨ (BA ∧ BD) ∨ (BA ∧ BE)

∨(BC ∧ BD) ∨ (BC ∧ BE) ∨ (BD ∧ BE) = 1,

(BA ∧ BC ∧ BD) ∨ (BA ∧ BC ∧ BE)

∨(BA ∧ BD ∧ BE) ∨ (BC ∧ BD ∧ BE) = 0.

(4.31)

• D won two games: Note that CE = 1 can be used to simplify the expression.
We then have

{

CA ∨ CB ∨ CD = 1,

(CA ∧ CB) ∨ (CA ∧ CD) ∨ (CB ∧ CD) = 0.
(4.32)
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• D won two games:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(DA ∧ DB) ∨ (DA ∧ DC) ∨ (DA ∧ DE)

∨ (DB ∧ DC) ∨ (DB ∧ DE) ∨ (DC ∧ DE) = 1,

(DA ∧ DB ∧ DC) ∨ (DA ∧ DB ∧ DE)

∨ (DA ∧ DC ∧ DE) ∨ (DB ∧ DC ∧ DE) = 0.

(4.33)

6. Each of A,C,D, and E won some and lost some. Obviously, this statement does
not contain any additional information.

Next, we convert (4.28)–(4.33) into algebraic form. To save space, we write

p = AB, q = AC, r = AC, s = AE, t = BC

u = BD, v = BE, α = CD, β = DE.

Applying De Morgan’s law to the second equation of (4.29) and the equations of
(4.33), and then combining all the algebraic equations yields

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M3
dM2

c pqrM2
c pqsM2

c prsM2
c qrs = δ1

2,

M3
c pqrs = δ2

2,

M2
c svβ = δ2

2,

M2
c MdsvMdsβMdvβ = δ1

2,

M2
dMctuMcMntαMcMnuMnα = δ1

2,

M5
dMcMnptMcMnpuMcMnpvMctuMctvMcuv = δ1

2,

M3
dM2

c MnptuM2
c MnptvM2

c MnpuvM2
c tuv = δ2

2,

M2
dMnqMntα = δ1

2,

M2
dMcMnqMntMcMnqαMcMntα = δ2

2,

M5
c MdruMdrαMdrMnβMduαMduMnβMdαMnβ = δ2

2,

M3
c M2

d ruαM2
d ruMnβM2

d rαMnβM2
duαMnβ = δ1

2 .

(4.34)

Now, multiplying all the equations in (4.34) together and using the standard pro-
cedure, we obtain the algebraic form

Lx = b, (4.35)

where x = pqrstuvαβ . Using (4.5) yields

b = δ1
2

(

δ2
2

)2(
δ1

2

)3
δ2

2δ1
2

(

δ2
2

)2
δ1

2 = δ791
211 .

L is a 211 × 29 matrix. The first and last few columns are

δ211 [5 261 15 269 277 405 287 413
· · ·

1812 1939 1812 1940 1972 1971 1972 1972].
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Table 4.2 Solutions of
(4.28)–(4.33) p q r s t u v α β

x1 1 1 0 1 1 1 0 1 1

x2 1 0 1 1 1 1 0 0 1

x3 1 0 1 1 1 0 1 0 0

x4 0 1 1 1 0 0 1 0 0

A routine shows that

Col69(L) = Col135(L) = Col140(L) = Col284(L) = b.

Therefore, the solutions of (4.28)–(4.33) are

x1 = δ69
29 , x2 = δ135

29 , x3 = δ140
29 , x4 = δ284

29 . (4.36)

Using formula (4.4) yields the scalar forms of the solutions, as in Table 4.2.
Next, we make the following modification to the last statement “Each of A,C,D,

and E won some and lost some.”:

• Within the group A,C,D, and E, each won some and lost some.

It is now obvious that the new information is: (i) A can not beat all of C, D, and E,
and (ii) E cannot lose to all of A, C, and D (equivalently to A and D). All other
items of information have already be implied by previous statements. We then have
two more equations:

{

q ∧ r ∧ s = 0,

s ∧ β = 0.
(4.37)

Equivalently, we have algebraic equations as follows:
{

M2
c qrs = δ2

2,

Mcsβ = δ2
2 .

(4.38)

One way to solve this problem is to add (4.38) to (4.34) and solve this system of
equations again. Obviously, this is a computationally intensive task. From Table 4.2,
it is easy to check that only x3 satisfies (4.38). So, in this case, x3 is the unique
solution.

The major disadvantage of the method proposed above is the complexity of com-
putation. We now give an example to illustrate it.

Example 4.8 (Eight queens puzzle) Eight queens are to be placed on an 8×8 chess-
board such that none of them is able to capture any other using the standard queen’s
moves. The queens must be placed in such a way that no two queens are attacking
each other. Thus, a solution requires that no two queens share the same row, column,
or diagonal.
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Fig. 4.1 Eight queens puzzle

One solution is depicted in Fig. 4.1.
The problem can be extended to the “n queens puzzle” of placing n queens on

an n × n chessboard.
Consider the n queens puzzle. We use Pij to denote the placement of a queen at

position (i, j). Then:

• “one row has exactly one queen” can be formulated as
{

Pi1 ∨ Pi2 ∨ · · · ∨ Pin = T , i = 1,2, . . . , n

Pij ∧ Pik = F, j �= k, i = 1,2, . . . , n,
(4.39)

• “no two queens share the same column” can be formulated as

Pji ∧ Pki = F, j �= k, i = 1,2, . . . , n, (4.40)

• “no two queens share the same diagonal” can be formulated as
⎧

⎪

⎨

⎪

⎩

Pij ∧ Pi+kj+k = F, 1 ≤ i + k ≤ n,1 ≤ j + k ≤ n,

Pij ∧ Pi+kj−k = F, 1 ≤ i + k ≤ n,1 ≤ j − k ≤ n,

i, j = 1,2, . . . , n.

This can be clarified as
⎧

⎪

⎨

⎪

⎩

Pij ∧ Pi+kj+k = F, 1 − min{i, j} ≤ k ≤ n − max{i, j},

Pij ∧ Pi+kj−k = F, max{1 − i, j − n} ≤ k ≤ min{n − i, j − 1},

i, j = 1,2, . . . , n.

(4.41)

The n queens puzzle is equivalent to solving logical equations (4.39)–(4.41). Since
there are n2 logical unknowns, in general it is impossible to solve the problem by the
method proposed earlier. In this case, we may give up the effort of finding all solu-
tions and simply try to find some particular solutions. This kind of problem is called
a satisfiability problem (SAT). SAT is an important problem in computer science
and its applications. Many decision making problems of intelligent systems can be
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formulated as problems of SAT. Several numerical methods have been developed to
deal with SAT problems [8].

As n = 8, it is easy to solve the problem. A simple routine shows that there are
92 solutions. We list a few of them below (in increasing order). The first number in
each bracket shows the position in the first column, the second number shows the
position in the second column, and so on.

(1,5,8,6,3,7,2,4) (1,6,8,3,7,4,2,5) (1,7,4,6,8,2,5,3)

(1,7,5,8,2,4,6,3) (2,4,6,8,3,1,7,5) (2,5,7,1,3,8,6,4)

· · ·
(8,2,5,3,1,7,4,6) (8,3,1,6,2,5,7,4) (8,4,1,3,6,2,7,5).

4.4 Substitution

It is well known that in solving a system of linear algebraic equations, a general
formula (e.g., using determinants) may be complicated. However, using some un-
known substitutions may simplify the calculation substantially. Similarly, in solv-
ing logical equations, certain algebraic substitutions may simplify the calculation
tremendously. We need some formulas for this and in the following proposition we
provide some simple ones which follow directly from the definitions.

Proposition 4.2 Let A1, . . . , As be (possibly compound) logical variables.

1. If

Ms−1
c A1 · · ·As = δ1

2, (4.42)

then

A1 = · · · = As = δ1
2 . (4.43)

2. If

Ms−1
d A1 · · ·As = δ2

2, (4.44)

then

A1 = · · · = As = δ2
2 . (4.45)

3. If

Ms−1
c A1 · · ·As = δ2

2 (4.46)

and, for some 1 ≤ k ≤ s,

Ak = δ1
2, (4.47)

then Ak can be removed. That is, (4.46) can be reduced to

Ms−2
c A1 · · ·Ak−1Ak+1 · · ·As = δ2

2 . (4.48)
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4. If

Ms−1
d A1 · · ·As = δ1

2 (4.49)

and, for some 1 ≤ k ≤ s,

Ak = δ2
2, (4.50)

then Ak can be removed. That is, (4.49) can be reduced to

Ms−2
d A1 · · ·Ak−1Ak+1 · · ·As = δ1

2 . (4.51)

From distributive laws (1.20) and (1.21), we can obtain the following “factoriza-
tion” formulas.

Proposition 4.3 Let A1, . . . ,As be (possibly compound) logical variables and p

another logical variable. Then,

Ms−1
d (McpA1 · · ·McpAs) = McpMs−1

d A1 · · ·As; (4.52)

and

Ms−1
c (MdpA1 · · ·MdpAs) = MdpMs−1

c A1 · · ·As . (4.53)

These formulas are useful for simplifying logical equations. For instance, if

Ms−1
d McpA1 · · ·McpAs = δ1

2, (4.54)

then we have
{

p = δ1
2,

Ms−1
d A1 · · ·pAs = δ1

2 .
(4.55)

If

Ms−1
c MdpA1 · · ·MdpAs = δ2

2, (4.56)

then we have
{

p = δ2
2,

Ms−1
c A1 · · ·pAs = δ2

2 .
(4.57)

4.5 k-valued Logical Equations

Systems of k-valued logical equations have the same form as the system of Boolean
equations (4.1), with fi as k-valued logical equations, and pi and ci as k-valued
logical arguments and k-valued constants, respectively. We do not need to repeat
the basic concepts discussed in connection with Boolean equations as these can be
naturally extended from Boolean logic to k-valued logic.
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First, we adapt Algorithm 4.1 to the k-valued case. An argument similar to binary
case shows the following. We leave the proof to the reader. Let x = ⋉n

s=1As , where
As ∈ ∆k . If we assume x = δi

kn , then the {As | s = 1, . . . , n} can be calculated by
means of the following algorithm.

Algorithm 4.2

• Step 1. Define b0 := kn − i.
• Step 2. Calculate aj , bj , and Aj , j = 1,2, . . . , n, recursively, by

⎧

⎪

⎨

⎪

⎩

aj (t) = [
bj−1

kn−j ],

bj = bj−1 − aj ∗ kn−j ,

Aj = aj/(k − 1), j = 1,2, . . . , n.

(4.58)

We give an example of this.

Example 4.9 Assume x = A1A2A3A4A5 and x = δ17
243. Then,

b0 = 243 − 17 = 226.

It follows that

a1 =
[

b0/34] = 2, A1 = 1.

Continuing this procedure, we have

b1 = b0 − a1 ∗
(

34
)

= 64, a2 =
[

b1/33
]

= 2, A2 = 1,

b2 = b1 − a2 ∗ 27 = 10, a3 =
[

b2/32
]

= 1, A3 = 0.5,

b3 = b2 − a3 ∗ 32 = 1, a4 = [b3/3] = 0, A4 = 0,

b4 = b3 − a4 ∗ 3 = 1, a5 = [b4/1] = 1, A5 = 0.5.

We conclude that A1 = 1 ∼ δ1
3 , A2 = 1 ∼ δ1

3 , A3 = 0.5 ∼ δ2
3 , A4 = 0 ∼ δ3

3 , and
A5 = 0.5 ∼ δ2

3 .

Next, we modify Lemma 4.2 for k-valued logic.

Lemma 4.4 Assume zj = p1p2 · · ·pj , where pi ∈ ∆k , i = 1,2, . . . , j . Then,

z2
j = Φj,kzj , (4.59)

where

Φj,k =

j
∏

i=1

Iki−1 ⊗
[

(Ik ⊗ W[k,kj−i ])Mr,k

]

. (4.60)
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Finally, we generalize Theorem 4.2 to the k-valued case. Consider a k-valued
logical equation

Lx = b, (4.61)

where L ∈ Lkm×kn , b ∈ ∆km , and k ∈ ∆kn . Express L in a condensed form as

L = δkm [i1, i2, . . . , ikn ]

and define the set

Λ =
{

λ
∣

∣ δ
iλ
km = b,1 ≤ λ ≤ kn

}

.

We then have the following result.

Theorem 4.4 The solution of (4.61) is

x = δλ
kn , λ ∈ Λ. (4.62)

We now give an example to show how to use k-valued logical equations to deal
with logical inference.

Example 4.10 A detective is investigating a murder case. He has the following
clues:

• he is 80% sure that either A or B is the murderer,
• if A is the murderer, it is very likely that the murder happened after midnight,
• if B’s confession is true, then the light at midnight was on,
• if B’s confession is false, it is very likely that the murder happened before mid-

night,
• there is evidence that the light in the room of the murder was off at midnight.

What conclusion can he draw? First, we must establish the levels of logical values.
If we understand “very likely” as more possible that “80%”, then we may quantize
the logical values into six levels as “T ”, “very likely”, “80%”, “1 − 80%”, “very
unlikely”, and “F ”. Hence, we may consider the problem as one of 6-valued logical
inference.

Define the logical variables (unknowns) as

• A: A is the murderer,
• B: B is the murderer,
• M : the murder happened before midnight,
• S: B’s confession is true,
• L: the light in the room was on at midnight.
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We can then convert the statements into logical equations as follows:

A ∨ B = δ3
6,

A → ¬M = δ2
6,

S → L = δ1
6,

¬S → M = δ2
6,

¬L = δ1
6 .

(4.63)

We may use the general formula provided in Theorem 4.4 to solve this system of
logical equations, but substitution will be much easier.

First, from ¬L = δ1
6 we have

L = ¬δ1
6 = δ6

6 .

Then, because S → L = δ1
6 , we have the following matrix form:

Mi,6SL = Mi,6W[6]LS := Ψ1S.

We then have

Ψ1S = b,

where b = δ1
6 , and it is easy to calculate that

Ψ1 = Mi,6W[6]L = δ6[6 5 4 3 2 1].

Since only Col6(Ψ1) = b, the solution is

S = δ6
6 .

Similarly, from ¬S → M = δ2
6 we have

Mi,6Mn,6SM = δ2
6 .

We can thus solve for M :

M = δ2
6 .

Next, we consider A → ¬M = Mi,6AMn,6M = δ2
6 . Applying some properties of

the semi-tensor product, we obtain

Mi,6AMn,6M = Mi,6(I6 ⊗ Mn,6)AM = Mi,6(I6 ⊗ Mn,6)W[6]MA := ψ2A.

It can be calculated that

ψ2 = Mi,6(I6 ⊗ Mn,6)W[6]M = δ6[5 5 4 3 2 1].

Hence, we have

A = δ5
6 .
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Finally, from A ∨ B = MdAB = δ3
6 we can solve for B:

B = δ3
6 .

We conclude that

• it is “very unlikely” that A is the murderer,
• it is 80% possible that B is the murderer.

4.6 Failure Location: An Application

As an application of the algebraic expression of logical equations, we consider the
failure location problem in networks.

Recently, some methods of quality of service (QoS) degradation locating from
observed data on the end-to-end performance of flows have been proposed and in-
vestigated by [3–5, 7], etc. The basic idea of this approach can be described as
follows. First, set a quality threshold for a network. According to this threshold the
flows are classified as good quality flows or bad quality flows. Assume a bad flow
is caused by a certain failure link (or several) on the flow path. The location of
failure then needs to be specified in order to improve the QoS of the network. The
routing information can be obtained by routers. End-to-end verification in a random
framework is also a promising method [1].

We assume the route information is not completely known. This is practically
reasonable since, for technical reasons, the detected routes between two testing ends
may not be as precise as a simple serial line. In this case the routes between two
testing ends are allowed to be serial–parallel ones.

It is natural to identify a good link with a through (ON) link and a bad link with
a broken (OFF) one. In this way, the problem becomes one of solving a system of
Boolean equations.

4.6.1 Matrix Expression of Route Logic

To begin with, we give a rigorous definition of a route network and the logical
relationship between an end-to-end path and its links.

Definition 4.2 A route network consists of a finite set of nodes, denoted by N =

{A,B,C, . . . } and a finite set of links, denoted by S = {a, b, c, . . . }. Therefore,
a network can be denoted by a pair (N ,S ).

Remark 4.2

• A link s is an arc between two nodes. We assume a link to be the smallest possible
segment, that is, there are no middle nodes on a link, so a link is an “atom” of the
route. A link s could be through (called “ON”), denoted by s = 1 (equivalently, in
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Fig. 4.2 A network

vector form, s = δ1
2 ), or broken (called “OFF”), denoted by s = 0 (equivalently,

s = δ2
2 ). Thus, a link is a Boolean variable.

• Unlike in graph theory, there may be several links between two nodes. Also, un-
like the Boolean network case, under the route topology a link, not a node, is a
Boolean variable.

• A link s has two ending nodes. If s is between A and B , then we write n(s) =
{A,B}.

We need a description for part of a network, which could be considered as the
route of an end-to-end testing.

Definition 4.3

1. A network (N ′,S ′) is said to be a subnet of (N ,S ) if N ′ ⊂ N and S ′ ⊂ S .
For such a subnet, we write (N ′,S ′) ⊂ (N ,S ).

2. A subnet (N ′,S ′) ⊂ (N ,S ) is said to be complete if s ∈ S and n(s) ⊂ N ′

implies that s ∈ S ′.

Definition 4.4

1. A path from a node A to a node B is a set of serial links such that we can get
from A to B along the serially connected links. A path without self-intersection
is called a legal path, otherwise it is illegal.

2. A route with ending nodes A and B , denoted by r(A,B), is a complete subnet
consisting of some nodes N ′ ⊂ N with A,B ∈ N ′. We denote its node set as
n(r) = {X | X ∈ N ′}.

3. When the logical structure of a route is considered, only legal paths are counted.

We now give an illustrative example.

Example 4.11 Consider the network in Fig. 4.2. We can conclude the following:

1. The set of nodes of the network is N = {A,B,C,D,E,F } and the set of links
is S = {a, b, c, d, e, f, g,h, i}.

2. Let N1 = {A,F,E,D}, S1 = {b, i, h}, N2 = {A,B,C,D}, and S2 = {a, e, g}.
Then (N1,S1) is a complete subnet and (N2,S2) is not a complete subnet.

3. (N ,S ) can be considered as a route from A to D, denoted by r(A,D).
4. b − i − f − g is a legal path between A and D, denoted by p(A,D).
5. b − i − f − e − c − i − h is an illegal path, so it is not considered as a path in

r(A,D).
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Fig. 4.3 A network

6. Let N3 = {A,B,C,D} and S3 = {a, e, d, g}. (N3,S3) is also a route from A

to D, consisting of two paths from A to D: a − d − g and a − e − g.

Note that a route can be either ON or OFF, but not both, and it is obvious that a
route is also a Boolean variable. Since the logical value of a route is determined by
its links, it is a logical function of its links. We must therefore determine the function
of a route, where its links act as the arguments of the function. We will explain this
by means of the following example.

Example 4.12 Consider the routes in Fig. 4.3.

• Route (a) has a parallel connection. It is clear that r(A,B) is ON if either a or b

is ON. Therefore, we have the following logical relation:

r(A,B) = a ∨ b. (4.64)

• Route (b) has a serial connection, hence

r(A,B) = a ∧ b. (4.65)

• In route (c), a and b are connected in parallel mode and this subnet is then con-
nected with c in serial mode. It is easy to see that

r(A,B) = (a ∨ b) ∧ c. (4.66)

An alternative way to analyze this is as follows: r(A,B) consists of two paths,
a − c and b − c, so

r(A,B) = (a ∧ c) ∨ (b ∧ c). (4.67)

Obviously, (4.66) and (4.67) are the same.
• Consider route (d). The parallel–serial structure analysis seems complicated. Af-

ter careful path analysis, it is easy to see that there are four paths: a − b, d − e,
a − c − e, and d − c − b. Thus, we have

r(A,B) = (a ∧ b) ∨ (d ∧ e) ∨ (a ∧ c ∧ e) ∨ (d ∧ c ∧ b). (4.68)
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Note that the logical function of a route depends on its ending points. A net-
work or subnet may not have a uniquely defined logical function. Consider (d)
again. If we take C and D as two ending points, then it is clear that we have

r(C,D) = (a ∧ d) ∨ c ∨ (b ∧ e). (4.69)

From the previous discussion, it can easily be seen that from a route’s topological
structure we can obtain the expression of the route as a logical function of its links.
The end-to-end test will provide the resulting test value of a route as through (ON)
or broken (OFF). Our goal is to find out which link(s) is (are) broken (OFF) from a
system of such logical equations.

Using the vector form of logic, equations (4.64) and (4.65) can be expressed,
respectively, as

r(A,B) = Mdab = δ2[1 1 1 2]ab (4.70)

and

r(A,B) = Mcab = δ2[1 2 2 2]ab. (4.71)

As for (4.66), we have

r(A,B) = Mc(Mdab)c = McMdabc := M3abc. (4.72)

The coefficient matrix, M3, of (4.72) can be calculated as

M3 = McMd = δ2[1 2 1 2 1 2 2 2].

Finally, we consider (4.68). It is easy to calculate that

r(A,B) = M3
d (Mcab)(Mcde)

(

M2
c ace

)(

M2
c dcb

)

:= M4abcde, (4.73)

where

M4 = MαMβ = δ2[1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 2 1 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2].

Remark 4.3 It can be easily seen that as long as the network structure is known for
a route with two fixed ends, its logical value is a known function of its links. There-
fore, the method proposed in this section is applicable to networks without routers
(routers can only add some information to reduce the computation complexity).

4.6.2 Failure Location

Consider a network (N ,S ) where the links are labeled as

S = {s1, s2, . . . , sn}.

Let A,B ∈ N . From the network structure, with available information obtained
from routers, we can have a route r(A,B). A trivial case is when r(A,B) is a series
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connection. Here, though, we assume that it can be an arbitrary logical function of
its links. When a real network such as the Internet is considered, obtaining a precise
description is difficult. This is particularly the case when the network is simplified
by approximations. Of course, the end-to-end testing result is known. As discussed
earlier, the route r(A,B) is a logical function of its component links, expressed as

r(A,B) = f (s1, s2, . . . , sn), (4.74)

where f is a logical function. (4.74) can be converted into its algebraic form as

r(A,B) = Mf ⋉n
i=1 si . (4.75)

Now, assuming we have tested m routes, we have m end-to-end testing results:

ri(Ai,Bi) = fi(x1, . . . , xn) = bi, i = 1,2, . . . ,m.

Converting them into algebraic equations, we have

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

M1x = b1,

M2x = b2,

...

Mnx = bm,

(4.76)

where Mi = Mfi
is the structure matrix of the logical function fi of ri(Ai,Bi), and

x = ⋉n
i=1xi .

Then, (4.76) can be converted into a linear algebraic equation,

Lx = b, (4.77)

where b = ⋉n
i=1bi , and

L = M1 ⋉n
j=2

[

(I2n ⊗ Mj )Φn

]

,

Φn =

n
∏

i=1

I2i−1 ⊗
[

(I2 ⊗ W[2,2j−i ])Mr

]

.

From the previous section it is clear that:

1. Equation (4.77) has solution if and only if b ∈ Col(L),
2. x = δk

2n is a solution of (4.76) if and only if Colk(L) = b.

Next, we give an example to illustrate the above theorem.

Example 4.13 Consider Fig. 4.4, where (a) is the network, and (b)–(e) are four
routes, denoted by r1 to r4, respectively.
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Fig. 4.4 Network with four
routes

Now, assume the testing results are r1(A,E) = 0, r2(C,A) = 1, r3(E,C) = 0,
and r4(F,C) = 1. We then have the following system of logical equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

c ∧ h ∧ i ∧ f = 0,

(h ∧ c) ∨ (i ∧ e ∧ a) = 1,

[(b ∧ d) ∨ (f ∧ g) ∨ (b ∧ e ∧ g) ∨ (f ∧ e ∧ d)] ∧ h = 0,

(d ∧ h) ∨ (e ∧ i) ∨ (d ∧ g ∧ i) ∨ (e ∧ g ∧ h) = 1.

(4.78)

Using vector form and matrix expression, we have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M3
c chif = δ2

2,

MdMchcM2
c iea = δ1

2,

McMdMcbdMdMcfgMdM2
c begM2

c f edh = δ2
2,

MdMcdhMdMceiM
2
c dgi = δ1

2 .

(4.79)

After reducing the powers, (4.79) is expressed in normal form as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M1cf hi = δ2
2,

M2acehi = δ1
2,

M3bdefgh = δ2
2,

M4deghi = δ1
2,

(4.80)
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where

M1 = δ2[1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2],
M2 = δ2[1 1 1 2 1 1 2 2 1 2 1 2 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2],
M3 = δ2[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2

1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2],
M4 = δ2[1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2].

Multiplying the four equations in (4.80) together yields

Lx = b, (4.81)

where x = abcdefghi, b = δ2
2δ1

2δ2
2δ1

2 = δ11
16 , and

L = δ16[ 1 9 11 16 1 9 11 16 9 9 11 16 9 9 11 16
1 9 15 1 1 9 16 16 9 9 15 16 9 9 16 16
1 10 11 16 3 12 11 16 9 10 11 16 11 12 11 16
2 10 16 16 4 12 16 16 12 12 16 16 12 12 16 16
9 13 11 16 9 13 11 16 9 13 11 16 9 13 11 16

13 13 15 16 13 13 16 16 13 13 15 16 13 13 16 16
9 14 11 16 11 16 11 16 9 14 11 16 11 16 11 16

14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 9 11 16 1 9 11 16 11 11 11 16 11 11 11 16
1 9 15 16 3 11 16 16 11 11 15 16 11 11 16 16
1 10 11 16 3 12 11 16 11 12 11 16 11 12 11 16
2 10 16 16 4 12 16 16 12 12 16 16 12 12 16 16
9 13 11 16 9 13 11 16 11 15 11 16 11 15 11 16

13 13 15 16 15 15 16 16 15 15 15 16 15 15 16 16
9 14 11 16 11 16 11 16 11 16 11 16 11 16 11 16

14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 9 15 16 1 9 15 16 9 9 15 16 9 9 15 16
1 9 15 16 1 9 16 16 9 9 15 16 9 9 16 16
1 10 15 16 3 12 15 16 9 10 15 16 11 12 15 16
2 10 16 16 4 12 16 16 12 12 16 16 12 12 16 16

13 13 15 16 13 13 15 16 13 13 15 16 13 13 15 16
13 13 15 16 13 13 16 16 13 13 15 16 13 13 16 16
13 14 15 16 15 16 15 16 13 14 15 16 15 16 15 16
14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 9 15 16 1 9 15 16 11 11 15 16 11 11 15 16
1 9 15 16 3 11 16 16 11 11 15 16 11 11 16 16
1 10 15 16 3 12 15 16 11 12 15 16 11 12 15 16
2 10 16 16 4 12 16 16 12 12 16 16 12 12 16 16

13 13 15 16 13 13 15 16 15 15 15 16 15 15 15 16
13 13 15 16 15 15 16 16 15 15 15 16 15 15 16 16
13 14 15 16 15 16 15 16 15 16 15 16 15 16 15 16
14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16].
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From L one sees that the columns Col3(L),Col7(L), . . . are δ11
16 . Hence, x =

δ3
29 , δ

7
29, . . . are the solutions. Now, consider δ3

29 . Using formula (4.58) it is easy to
find the solution

x1 ∼ (s1, s2, . . . , s9) = (1 1 1 1 1 1 1 0 1).

In the following all the solutions are listed:

x1 ∼ (1 1 1 1 1 1 1 0 1), x2 ∼ (1 1 1 1 1 1 0 0 1),

x3 ∼ (1 1 1 1 1 0 1 0 1), x4 ∼ (1 1 1 1 1 0 0 0 1),

x5 ∼ (1 1 1 0 1 1 1 0 1), x6 ∼ (1 1 1 0 1 1 0 0 1),

x7 ∼ (1 1 1 0 1 0 1 0 1), x8 ∼ (1 1 1 0 1 0 0 1 1),

x9 ∼ (1 1 1 0 1 0 0 0 1), x10 ∼ (1 1 0 1 1 1 1 0 1),

x11 ∼ (1 1 0 1 1 1 0 0 1), x12 ∼ (1 1 0 1 1 0 1 0 1),

x13 ∼ (1 1 0 1 1 0 0 0 1), x14 ∼ (1 1 0 0 1 1 1 0 1),

x15 ∼ (1 1 0 0 1 1 0 1 1), x16 ∼ (1 1 0 0 1 1 0 0 1),

x17 ∼ (1 1 0 0 1 0 1 0 1), x18 ∼ (1 1 0 0 1 0 0 1 1),

x19 ∼ (1 1 0 0 1 0 0 0 1), x20 ∼ (1 0 1 1 1 1 1 0 1),

x21 ∼ (1 0 1 1 1 1 0 0 1), x22 ∼ (1 0 1 1 1 0 1 1 1),

x23 ∼ (1 0 1 1 1 0 1 1 0), x24 ∼ (1 0 1 1 1 0 1 0 1),

x25 ∼ (1 0 1 1 1 0 0 1 1), x26 ∼ (1 0 1 1 1 0 0 1 0),

x27 ∼ (1 0 1 1 1 0 0 0 1), x28 ∼ (1 0 1 1 0 1 0 1 0),

x29 ∼ (1 0 1 1 0 0 1 1 1), x30 ∼ (1 0 1 1 0 0 1 1 0),

x31 ∼ (1 0 1 1 0 0 0 1 1), x32 ∼ (1 0 1 1 0 0 0 1 0),

x33 ∼ (1 0 1 0 1 1 1 0 1), x34 ∼ (1 0 1 0 1 1 0 0 1),

x35 ∼ (1 0 1 0 1 0 1 1 1), x36 ∼ (1 0 1 0 1 0 1 0 1),

x37 ∼ (1 0 1 0 1 0 0 1 1), x38 ∼ (1 0 1 0 1 0 0 0 1),

x39 ∼ (1 0 0 1 1 1 1 0 1), x40 ∼ (1 0 0 1 1 1 0 0 1),

x41 ∼ (1 0 0 1 1 0 1 1 1), x42 ∼ (1 0 0 1 1 0 1 0 1),

x43 ∼ (1 0 0 1 1 0 0 1 1), x44 ∼ (1 0 0 1 1 0 0 0 1),

x45 ∼ (1 0 0 0 1 1 1 0 1), x46 ∼ (1 0 0 0 1 1 0 1 1),

x47 ∼ (1 0 0 0 1 1 0 0 1), x48 ∼ (1 0 0 0 1 0 1 1 1),

x49 ∼ (1 0 0 0 1 0 1 0 1), x50 ∼ (1 0 0 0 1 0 0 1 1),

x51 ∼ (1 0 0 0 1 0 0 0 1), x52 ∼ (0 1 1 0 1 0 0 1 1),

x53 ∼ (0 0 1 1 1 0 1 1 1), x54 ∼ (0 0 1 1 1 0 1 1 0),

x55 ∼ (0 0 1 1 1 0 0 1 1), x56 ∼ (0 0 1 1 1 0 0 1 0),

x57 ∼ (0 0 1 1 0 1 0 1 0), x58 ∼ (0 0 1 1 0 0 1 1 1),

x59 ∼ (0 0 1 1 0 0 1 1 0), x60 ∼ (0 0 1 1 0 0 0 1 1),

x61 ∼ (0 0 1 1 0 0 0 1 0), x62 ∼ (0 0 1 0 1 0 1 1 1),

x63 ∼ (0 0 1 0 1 0 0 1 1).

From the above data, one may doubt the value of this approach. What conclusion
can we draw from so many solutions? We need the following hypothesis: Failure
is unlikely to happen in many places. In other words, the probability of a failure is
low. We believe this hypothesis is practically reasonable. Based on this hypothesis,
we have the following principle.
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Least Side Principle: The most likely failure is the one with the smallest number
of ill (broken, or OFF) links.

According to this principle, we conclude that the most likely failure case is x1

because it is the only one which contains only one broken link. It follows that the ill
(broken) link is (very likely) h.

Remark 4.4 In most cases we do not need to solve such an elaborate system of
algebraic equations when a practical problem is considered. In fact, if we have a
good serial route, meaning that

xi1 ∧ xi2 ∧ · · · ∧ xik = 1,

then we have

xi1 = xi2 = · · · = xik = 1.

In a vector-form logical equation we can simply replace xij by δ1
2 .

Similarly, if we have a bad parallel route, meaning that

xi1 ∨ xi2 ∨ · · · ∨ xik = 0,

then we have

xi1 = xi2 = · · · = xik = 0.

In a vector-form logical equation we can simply replace xij by δ2
2 , but this case

should be very rare.

4.6.3 Cascading Inference

When a network is not small, the method proposed in last section fails because of
the computation complexity. For a large-scale network, [6] proposed a method that
logically divides the network into subnets in order to utilize parallelism. Here, we
propose an algorithm called cascading inference. This algorithm may considerable
reduce the time for inferring.

Definition 4.5 Let (M ,T ) ⊂ (N ,S ) be a complete subnet. The neighborhood
degree of (M ,T ) is the number of links with one end on M and the other end on
N \M . Such a link is called a front link of the subnet. A node of the subnet which
is attached a front link is called a front node.

We illustrate the notion of cascading inference in Fig. 4.5. If we have a large
network, we split it into several subnets. As in Fig. 4.5 we split it into three subnets:
S1, S2, and S3. In general we split it in such a way that each subnet has neigh-
borhood degree as small as possible. In our example, S1, S2, and S3 have neigh-
borhood degrees 4, 3, and 3, respectively, and sets of front nodes are {A1,A2,A3},
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Fig. 4.5 Cascading inference
of a large network

{B1,B2,B3}, and {C1,C2,C3}, respectively. In each subnet, we then choose one or
more node(s) as the testing end node(s). In the example, we have chosen A0 ∈ S1,
B0 ∈ S2, and C0 ∈ S3 as testing end nodes. The test nodes are connected to the
front nodes of their own subnets by auxiliary links. In Fig. 4.5 the auxiliary links
are drawn as dashed lines. We now obtain a simplified network with all testing nodes
and front nodes as its nodes and all front links and auxiliary links as its links. Test-
ing this simplified network, we can determine which subnet contains the failure. We
may need to introduce further end-to-end tests to eventually detect which subnet
is the troublemaker. Next, we consider the problematic subnet and repeat the same
procedure until the failure is located.

Summarizing the above procedure, we propose the following algorithm.

Algorithm 4.3

• Step 1. Split the network into a few subnets according to the principle that each
subnet has a low neighborhood degree.

• Step 2. For each subnet simply connect the test point(s) [or end point(s)] with all
front nodes to form a new, simplified network.

• Step 3. For the simplified network, use end-to-end testing to find the bad (OFF)
link, which could be an auxiliary link.

• Step 4. Replace the original network by the subnet containing the bad link, then
go back to Step 1.

We use the following example to illustrate this algorithm.

Example 4.14 Consider the network depicted in Fig. 4.6. The subnet within triangle
△ADE has neighborhood degree 2 and its two front nodes are D and E.

We assume that it is a self-similar network, that is, there are three subnets, tri-
angles △ADE, △DBF , and △EFC, which have same structure as △ABC. We
assume the network contains k layers of such refinement.

We now apply the algorithm to this network. In Step 1 we divide it into three
subnets, △ADE, △DBF , and △EFC. For each triangle, in addition to the two
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Fig. 4.6 Cascading inference

front points, we choose the third vertex as the end point for testing. For ease of
statement, we name the segments as follows:

x1 = AD, x2 = DB, x3 = BF, x4 = FC, x5 = CE,

x6 = AE, x7 = DE, x8 = DF, x9 = EF.

Assume that we test six end-to-end routes, which are classified into two categories:
(I) r1 = r(A,B), r2 = r(A,C), and r3 = r(B,C), with n(r1) = {A,D,B}, n(r2) =
{A,E,C}, and n(r3) = {B,F,C}, which are connected as in route (b) of Example
4.11; (II) r4 = r(A,F ), r5 = r(B,E), and r6 = r(C,D), with n(r4) = {A,D,E,F },
n(r5) = {B,D,E,F }, and n(r6) = {C,E,F,D}, which are connected as in route
(d) of Example 4.11. We have the following system of logical equations:

r(A,B) = x1 ∧ x2,

r(B,C) = x3 ∧ x4,

r(A,C) = x5 ∧ x6,

r(A,F ) = (x1 ∧ x8) ∨ (x6 ∧ x9) ∨ (x1 ∧ x7 ∧ x9) ∨ (x6 ∧ x7 ∧ x8),

r(B,E) = (x2 ∧ x7) ∨ (x3 ∧ x9) ∨ (x2 ∧ x8 ∧ x9) ∨ (x3 ∧ x8 ∧ x7),

r(C,D) = (x5 ∧ x7) ∨ (x4 ∧ x8) ∨ (x5 ∧ x9 ∧ x8) ∨ (x4 ∧ x9 ∧ x7).

(4.82)

Converting these into algebraic equations, we have

b1 = r(A,B) = Mdx1x2,

b2 = r(B,C) = Mdx3x4,

b3 = r(A,C) = Mdx5x6,

b4 = r(A,F ) = M3
dMcx1x8Mcx6x9M

2
c x1x7x9M

2
c x6x7x8,

b5 = r(B,E) = M3
dMcx2x7Mcx3x9M

2
c x2x8x9M

2
c x3x8x7,

b6 = r(C,D) = M3
dMcx5x7Mcx4x8M

2
c x9x8M

2
c x4x9x7,

(4.83)

where bi , i = 1,2, . . . ,6, are measured values. Let b = b1b2b3b4b5b6 and x =

x1x2x3x4x5x6x7x8x9. The equations can then be converted into a linear algebraic
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equation as

Lx = b, (4.84)

where

L = δ64[ 1 1 1 5 1 3 2 8 9 9 9 13 9 11 14 16
17 17 17 22 17 19 18 24 25 25 25 30 25 27 30 32
17 17 17 21 17 20 18 24 25 25 25 29 25 28 30 32
18 18 18 22 18 20 18 24 26 26 26 30 26 28 30 32
33 33 33 37 33 35 36 40 41 41 41 45 41 43 48 48
49 49 49 54 49 51 52 56 57 57 57 62 57 59 64 64
49 49 49 53 49 52 52 56 57 57 57 61 57 60 64 64
50 50 50 54 50 52 52 56 58 58 58 62 58 60 64 64
33 33 33 39 33 35 34 40 41 41 41 47 41 43 46 48
49 49 49 56 49 51 50 56 57 57 57 64 57 59 62 64
49 49 49 55 49 52 50 56 57 57 57 63 57 60 62 64
50 50 50 56 50 52 50 56 58 58 58 64 58 60 62 64
35 35 35 39 35 35 36 40 43 43 43 47 43 43 48 48
51 51 51 56 51 51 52 56 59 59 59 64 59 59 64 64
51 51 51 55 51 52 52 56 59 59 59 63 59 60 64 64
52 52 52 56 52 52 52 56 60 60 60 64 60 60 64 64
33 33 33 37 33 39 34 40 45 45 45 45 45 47 46 48
49 49 49 54 49 55 50 56 61 61 61 62 61 63 62 64
49 49 49 53 49 56 50 56 61 61 61 61 61 64 62 64
50 50 50 54 50 56 50 56 62 62 62 62 62 64 62 64
33 33 33 37 33 39 36 40 45 45 45 45 45 47 48 48
49 49 49 54 49 55 52 56 61 61 61 62 61 63 64 64
49 49 49 53 49 56 52 56 61 61 61 61 61 64 64 64
50 50 50 54 50 56 52 56 62 62 62 62 62 64 64 64
33 33 33 39 33 39 34 40 45 45 45 47 45 47 46 48
49 49 49 56 49 55 50 56 61 61 61 64 61 63 62 64
49 49 49 55 49 56 50 56 61 61 61 63 61 64 62 64
50 50 50 56 50 56 50 56 62 62 62 64 62 64 62 64
35 35 35 39 35 39 36 40 47 47 47 47 47 47 48 48
51 51 51 56 51 55 52 56 63 63 63 64 63 63 64 64
51 51 51 55 51 56 52 56 63 63 63 63 63 64 64 64
52 52 52 56 52 56 52 56 64 64 64 64 64 64 64 64].

It is easy to verify that if the number of layers is k, then the number of total links
(unknowns) is Ns = 3k+1. The number of triangles we have to test is Nt = 2k − 1,
which is much smaller than Ns .
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Chapter 5

Topological Structure of a Boolean Network

5.1 Introduction to Boolean Networks

Inspired by the Human Genome Project, a new view of biology, called systems bi-
ology, is emerging. Systems biology does not investigate individual genes, proteins
or cells in isolation. Rather, it studies the behavior and relationships of all the cells,
proteins, DNA and RNA in a biological system called a cell network. The most ac-
tive networks may be the genetic regulatory networks, which, reacting to changes of
environment, regulate the growth, replication, and death of cells. We refer to [14, 17]
for a general introduction to systems biology.

How do genetic regulatory networks function? According to [25], in the early
1960s Jacob and Monod showed that any cell contains a number of “regulatory”
genes that act as switches and which can turn one another on and off. This indicates
that a genetic network is acting in a Boolean manner. The logical essence of a cell
network was also pointed out by Paul Nurse [21], who stated that the cells “then need
to be linked and integrated together to define the modules and overall regulatory
networks required to bring about the reproduction of the cell. This task will require
system analysis that emphasize the logical relationships between elements of the
networks, . . . .”

The Boolean network, first introduced by Kauffman [15], then developed by
[1, 2, 4, 7, 10, 16, 23, 24] and many others, has become a powerful tool for describ-
ing, analyzing, and simulating cell networks. Hence, it has received much attention,
not only from the biology community, but also within physics, systems science, etc.
In this model, a gene state is quantized to only two levels: true and false. The state
of each gene is then determined by the states of its neighboring genes using logical
rules. It has been shown that Boolean networks play an important role in modeling
cell regulation because they can represent important features of living organisms
[3, 12]. The structure of a Boolean network is described in terms of its cycles and
the transient states that lead to them. Two different methods, iteration and scalar
form, were developed in [11] to determine the cyclic structure and the transient
states that lead to them. In [8], a linear reduced scalar equation was derived from a
more rudimentary nonlinear scalar equation to obtain immediate information about

D. Cheng et al., Analysis and Control of Boolean Networks,
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both cycles and the transient structure of the network. Several useful Boolean net-
works have been analyzed and their cycles revealed (see, e.g., [8, 11] and references
therein). It was pointed out in [26] that finding fixed points and cycles of a Boolean
network is an NP-complete problem.

Boolean models have been studied for a long time and many useful tools have
been developed to find the solutions of static and dynamic Boolean equations, such
as discrete iteration [22] and satisfiability [6, 18]. As pointed out in [21], “Perhaps
a proper understanding of the complex regulatory networks making up cellular sys-
tems like the cell cycle will require a similar shift from common sense thinking. We
might need to move into a strange more abstract world, more readily analyzable in
terms of mathematics than our present imaginings of cells operating as a microcosm
of our everyday world.”

The algorithms developed in this chapter can be used to obtain all the fixed points,
cycles, transient periods, and basins of attractors. Theoretically, the algorithms pre-
sented in the following section can provide complete solutions, but the algorithms
are limited by computational complexity (they can hardly be used for large-scale
networks).

5.2 Dynamics of Boolean Networks

Definition 5.1 [8] A Boolean network is a set of nodes, x1, x2, . . . , xn, which si-
multaneously interact with each other. At each given time t = 0,1,2, . . . , a node
has only one of two different values: 1 or 0. Thus, the network can be described by
a system of equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t)),

...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t)),

(5.1)

where fi , i = 1,2, . . . , n, are n-ary logical functions.

In the following, we give a rigorous description of a network graph.

Definition 5.2 A network graph, Σ = {N ,E }, consists of a set of nodes, N =
{xi | i = 1, . . . , n}, and a set of edges, E ⊂ {x1, . . . , xn} × {x1, . . . , xn}. If (xi, xj ) ∈

E , there is an edge from xi → xj , which means that node xj is affected by node xi .

The network graph is also sometimes called the connectivity graph [22].
We now give a simple example to show the structure of a Boolean network.
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Fig. 5.1 Network graph of
(5.2)

Example 5.1 Consider a Boolean network, Σ = (N ,E ), of three nodes, given by
⎧

⎪

⎨

⎪

⎩

A(t + 1) = B(t) ∧ C(t),

B(t + 1) = ¬A(t),

C(t + 1) = B(t) ∨ C(t).

(5.2)

Its set of nodes is N = {x1 := A, x2 := B, x3 := C} and its set of edges is
E = {(x1, x2), (x2, x1), (x2, x3), (x3, x1), (x3, x3)}. Its network graph is depicted in
Fig. 5.1.

Using mod 2 algebra, it can also be expressed as
⎧

⎪

⎨

⎪

⎩

A(t + 1) = B(t)C(t),

B(t + 1) = 1 + A(t),

C(t + 1) = B(t) + C(t) + B(t)C(t).

(5.3)

Note that in mod 2 algebra we have addition ⊕ and product ∗:

a ⊕ b = a + b mod 2,

a ∗ b = ab mod 2.

In most cases we omit “mod 2” and use the conventional addition and product sym-
bols for ⊕ and ∗.

For a Boolean network, the number of edges which point to a node i is called the
in-degree of node i and the number of edges which start from node i is called the
out-degree of node i. In Example 5.1 the in-degrees of A and C are both 2, and the
in-degree of B is 1; the out-degree of A is 1, and the out-degrees of B and C are 2.

The network graph can also be expressed by an n×n matrix, called the incidence
matrix, defined as

I = (bij ), where bij =

{

1, (xi, xj ) ∈ N ,

0, otherwise.
(5.4)

Consider the network Σ in Example 5.1. Its incidence matrix is

I (Σ) =

⎡

⎣

0 1 1
1 0 0
0 1 1

⎤

⎦ . (5.5)
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Our first task is to convert the Boolean network dynamics (5.1) into an algebraic
form or, more precisely, to express it as a conventional discrete-time linear system.
Using the technique developed in the previous chapter, we use vector form xi(t) ∈ Δ

and define

x(t) = x1(t)x2(t) · · ·xn(t) := ⋉n
i=1xi(t).

Using Theorem 3.1, there exist structure matrices, Mi = Mfi
, i = 1, . . . , n, such that

xi(t + 1) = Mix(t), i = 1,2, . . . , n. (5.6)

Remark 5.1 Note that the in-degree is usually much less than n, that is, the right-
hand side of the ith equation of (5.1) may not involve all xj , j = 1,2, . . . , n. For
instance, in the previous example, for node A we have

A(t + 1) = B(t) ∧ C(t).

In matrix form this is

A(t + 1) = McB(t)C(t). (5.7)

To obtain the form of (5.6), using dummy matrix Ed (4.9), we can rewrite (5.7) as

A(t + 1) = McEdA(t)B(t)C(t) = McEdx(t).

Multiplying the equations in (5.6) together yields

x(t + 1) = M1x(t)M2x(t) · · ·Mnx(t). (5.8)

Using Theorem 4.1, (5.8) can be expressed as

x(t + 1) = Lx(t), (5.9)

where

L = M1

n
∏

j=2

[

(I2n ⊗ Mj )Φn

]

is called the transition matrix.
The question now is: Is the system (5.9) enough to describe the dynamics? The

answer is “yes”.

Theorem 5.1 The dynamics of the Boolean network (5.1) is uniquely determined

by the linear dynamical system (5.9).

Proof From (5.9) one sees that

x(t) = Ltx(0), t = 0,1,2, . . . . (5.10)
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It follows that

xi(t) = MiL
t−1x(0), i = 1,2, . . . . (5.11)

Hence (5.9) completely determines the dynamics (5.1). �

Definition 5.3 Equation (5.9) is called the algebraic form of the network (5.1).
Equation (5.6) is called the componentwise algebraic form of the network (5.1).

In fact, a direct computation using the properties of the semi-tensor product can
easily produce the algebraic form. We give a simple example to show how to obtain
the algebraic form of the dynamics of a Boolean network.

Example 5.2 Recall the Boolean network in Example 5.1. Its dynamics is given by
(5.2). In algebraic form, we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A(t + 1) = McB(t)C(t),

B(t + 1) = MnA(t),

C(t + 1) = MdB(t)C(t).

(5.12)

Setting x(t) = A(t)B(t)C(t) we can calculate L as

x(t + 1) = McBCMnAMdBC

= Mc(I4 ⊗ Mn)BCAMdBC

= Mc(I4 ⊗ Mn)(I8 ⊗ Md)BCABC

= Mc(I4 ⊗ Mn)(I8 ⊗ Md)W[2,4]ABCBC

= Mc(I4 ⊗ Mn)(I8 ⊗ Md)W[2,4]ABW[2]BCC

= Mc(I4 ⊗ Mn)(I8 ⊗ Md)W[2,4](I4 ⊗ W[2])AMrBMrC

= Mc(I4 ⊗ Mn)(I8 ⊗ Md)W[2,4]

(I4 ⊗ W[2])(I2 ⊗ Mr)(I4 ⊗ Mr)ABC. (5.13)

Then system (5.2) can be expressed in matrix form as

x(t + 1) = Lx(t),

where the network transition matrix is

L = Mc(I4 ⊗ Mn)(I8 ⊗ Md)W[2,4](I4 ⊗ W[2])(I2 ⊗ Mr)(I4 ⊗ Mr)

= δ8[3 7 7 8 1 5 5 6].
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Remark 5.2

• It is obvious that a mod 2 equation such as (5.3) can be converted into a logical
equation such as (5.12). A logical equation can also be converted into a mod 2
equation because “1 + (mod 2)” is equivalent to “¬”, “×(mod 2)” is equivalent
to “∧”, and {¬,∧} is an adequate set. Logical form may provide a clear meaning
for the relationship between logical variables, but in numerical computations, e.g.,
identification, mod 2 algebra is more convenient. Therefore, we use both.

• Equation (5.9) is a standard linear system with L being a square Boolean matrix.
Therefore, all classical methods and conclusions for linear systems can be used
to analyze the dynamics of the Boolean network.

5.3 Fixed Points and Cycles

Consider the Boolean network equation (5.9). We have the following result.

Lemma 5.1

Coli(L) ∈ Δ2n , where L ∈ L2n×2n . (5.14)

Proof We only have to show Col(L) ⊂ Δ2n . Assume there is a j (1 ≤ j ≤ 2n) such
that Colj (L) �∈ Δ2n . Then, when x(t) = δ

j

2n , we have

x(t + 1) = Lx(t) = Colj (L) �∈ Δ2n ,

which is a contradiction. �

Definition 5.4

1. A state x0 ∈ Δ2n is called a fixed point of system (5.9) if Lx0 = x0.
2. {x0,Lx0, . . . ,L

kx0} is called a cycle of system (5.9) with length k if Lkx0 = x0
and the elements in the set {x0,Lx0, . . . ,L

k−1x0} are pairwise distinct.

Remark 5.3 We use L to denote both the matrix and its corresponding linear map-
ping. So, x0 may be in an L-invariant subspace. In this way, a cycle (or a fixed point)
can be defined on an L-invariant subspace.

The next two theorems are the main results of this chapter. They show how many
fixed points and cycles of different lengths a Boolean network has.

Theorem 5.2 Consider the Boolean network (5.1). δi
2n is its fixed point if and only

if, in its algebraic form (5.9), the diagonal element ℓii of the network transition

matrix L equals 1. It follows that the number of fixed points of the network (5.1),
denoted by Ne, equals the number of i for which ℓii = 1. Equivalently,

Ne = tr(L). (5.15)
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Proof Assume that δi
2n is its fixed point. Note that Lδi

2n = Coli(L). It is clear that
δi

2n is its fixed point if and only if Coli(L) = δi
2n , which completes the proof. �

For ease of statement, if ℓii = 1, then Coli(L) is called a diagonal nonzero col-
umn of L.

Next, we consider the cycles of the Boolean network system (5.1). Let k ∈ Z+.
A positive integer s ∈ Z+ is called a proper factor of k if s < k and k/s ∈ Z+.
The set of proper factors of k is denoted by P(k). For instance, P(8) = {1,2,4},
P(12) = {1,2,3,4,6}, etc. Using a similar argument as for Theorem 5.2, we can
have the following theorem.

Theorem 5.3 The number of cycles of length s, denoted by Ns , is inductively deter-

mined by
⎧

⎨

⎩

N1 = Ne,

Ns = tr(Ls )−
∑

k∈P(s) kNk

s
, 2 ≤ s ≤ 2n.

(5.16)

Proof First, if δi
2n is an element of a cycle of length s, then Lsδi

2n = δi
2n . From the

proof of Theorem 5.2 the ith column of Ls , denoted by Coli(Ls), is a diagonal
nonzero column of Ls , which adds 1 to tr(Ls). Note that if δk

2n is an element of a
cycle of length k ∈ P(s), then we also have Lsδk

2n = δk
2n , and Colk(Ls) will also

add 1 to tr(Ls). Such diagonal elements have to be subtracted from tr(Ls). Taking
this into consideration, the second part of formula (5.16) is obvious.

As for the upper boundary of s, note that since x(t) can have at most 2n possible
values, the length of any cycle is less than or equal to 2n. �

Next, we consider how to find the cycles. If

tr
(

Ls
)

−
∑

k∈P(s)

kNk > 0, (5.17)

then we call s a nontrivial power.
Assume s is a nontrivial power. Denote by ℓs

ii the (i, i)th entry of matrix Ls . We
then define

Cs =
{

i
∣

∣ℓs
ii = 1

}

, s = 1,2, . . . ,2n,

and

Ds = Cs

⋂

i∈P(s)

Cc
i ,

where Cc
i is the complement of Ci .

From the above argument the following result is obvious.

Proposition 5.1 Let x0 = δi
2n . Then {x0,Lx0, . . . ,L

sx0} is a cycle with length s if

and only if i ∈ Ds .
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Theorem 5.3 and Proposition 5.1 provide a simple algorithm for constructing
cycles. We give an example to illustrate the algorithm.

Example 5.3 Recall Example 5.1. It is easy to check that

tr
(

Lt
)

= 0, t ≤ 3,

and

tr
(

Lt
)

= 4, t ≥ 4.

Using Theorem 5.3, we conclude that there is only one cycle of length 4. Moreover,
note that

L4 = δ8[1 3 3 1 5 7 7 3].

Each diagonal nonzero column can then generate the cycle. For instance, choosing
Z = δ1

8 , we have

LZ = δ3
8, L2Z = δ7

8, L3Z = δ5
8, L4Z = Z.

Using Algorithm 4.1 to convert the vector forms back to the scalar forms of A(t),
B(t), and C(t), we have the cycle as (1,1,1) → (1,0,1) → (0,0,1) → (0,1,1) →

(1,1,1).

Next, we consider the transient period, i.e., the minimum number of transient
steps that leads any point to the limit set, Ω , which consists of all fixed points and
cycles. First, note that L has only r := 2n × 2n possible independent values. Hence,
if we construct a sequence of r + 1 matrices as

L0 = I2n ,L,L2, . . . ,Lr ,

then there must be two equal matrices. Let r0 < r be the smallest i such that Li

appears again in the sequence. That is, there exists a k > i such that Li = Lk . More
precisely,

r0 = argmin
0≤i<r

{

Li ∈
{

Li+1,Li+2, . . . ,Lr
}}

. (5.18)

Then, such r0 exists. The following proposition is obvious.

Proposition 5.2 Let r0 be defined as in (5.18). Starting from any state, the trajectory

will then enter into a cycle after r0 iterations.

For a given state x0, the transient period of x0, denoted by Tt (x0), is the smallest
k satisfying x(0) = x0 and x(k) ∈ Ω . The transient period of a Boolean network,
denoted by Tt , is defined as

Tt = max
∀x∈Δ2n

(

Tt (x)
)

.

In fact, we can show that r0 is the transient period of the system.
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Theorem 5.4 The r0 defined in (5.18) is the transient period of the system, that is,

Tt = r0. (5.19)

Proof First, assume that

Lr0 = Lr0+T (5.20)

and that T > 0 is the smallest positive number which verifies (5.20). By definition,
r0 + T ≤ r . We first claim that if there is a cycle of length t , then t is a factor
of T . We prove this claim by contradiction, as follows. Assume T (mod t) = s and
1 ≤ s < t . Let x0 be a state on the cycle. Lr0x0 is then also a state on the same cycle.
Hence,

Lr0x0 = Lr0+T x0 = LTLr0x0 = Ls
(

Lr0x0
)

�= Lr0x0,

which is a contradiction.
From (5.20) and the definition of Tt it is obvious that Tt ≤ r0. To prove Tt = r0

we assume that Tt < r0. By definition, for any x, LTt x is on a cycle, the length of
which is a factor of T . Hence,

LTt x = LTLTt x = LTt+T x, ∀x. (5.21)

It is easy to check that if, for any x ∈ Δ2n , (5.21) holds, then LTt = LTt+T , which
contradicts the definition of r0. �

Remark 5.4

1. According to Theorem 5.4 it is clear that r0 ≤ 2n, because the transient period
cannot be larger than 2n.

2. Let r0 = Tt be defined as above and T > 0 be the smallest positive number which
verifies (5.20). It is then easy to see that T is the least common multiple of the
lengths of all cycles. For convenience, we call such a T the cycle multiplier.

3. From the first and second items of this remark, it is easily seen that to find r0 we
have only to check Ls for s ≤ r0 + T and hence for

s ≤ 2n+1.

Next, we consider when a network converges to one point.

Definition 5.5 A Boolean network is said to be globally convergent if its limit set,
Ω , consists of only one fixed point. Global convergence is also called global stabil-
ity.

Note that, by definition, the global convergence of a Boolean network means that
starting from any state, the trajectory of the network converges to the unique fixed
point.

The following result is a consequence of Theorems 5.2 and 5.3.
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Corollary 5.1 The system (5.1) is globally convergent if and only if one of the fol-

lowing equivalent conditions is satisfied:

1. 1 is the only nontrivial power and

tr(L) = 1. (5.22)

2.

tr
(

L2n)= 1. (5.23)

3. The cycle multiplier T = 1.

Next, we give an example of global convergence.

Example 5.4 [22] Consider a system with state space X = D7. Using scalar form
(i.e., xi ∈ {1,0}), the system can be expressed in mod 2 algebra as

x(t + 1) = Ax, (5.24)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 1 1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Equivalently, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = x1(t)∨̄x5(t),

x2(t + 1) = x2(t)∨̄x3(t),

x3(t + 1) = x1(t)∨̄x2(t),

x4(t + 1) = x3(t),

x5(t + 1) = x2(t)∨̄x3(t),

x6(t + 1) = x4(t)∨̄x5(t),

x7(t + 1) = x2(t)∨̄x3(t)∨̄x5(t)∨̄x6(t).

(5.25)

Recall that the structure matrix of ∨̄ is

Mp =

[

0 1 1 0

1 0 0 1

]

.



5.3 Fixed Points and Cycles 113

Using this, we obtain the componentwise algebraic form:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = Mpx1(t)x5(t),

x2(t + 1) = Mpx2(t)x3(t),

x3(t + 1) = Mpx1(t)x2(t),

x4(t + 1) = x3(t),

x5(t + 1) = Mpx2(t)x3(t),

x6(t + 1) = Mpx4(t)x5(t),

x7(t + 1) = M3
px2(t)x3(t)x5(t)x6(t).

(5.26)

Multiplying together yields

x(t + 1) = Lx(t), (5.27)

where

L = Mp

(

I2 ⊗
(

I2 ⊗ Mp

(

I2 ⊗
(

I2 ⊗ Mp

(

I2 ⊗
(

I2 ⊗ MX

(

I2 ⊗
(

I2 ⊗ Mp

(

I2 ⊗
(

I2 ⊗ Mp

(

I2 ⊗ (I2 ⊗ MpMpMp)
)))))))))))

(I8 ⊗ W[2])(I4 ⊗ W[2])

(I2 ⊗ W[2])(I4 ⊗ W[2])(I16 ⊗ W[2])(I8 ⊗ W[2])(I128 ⊗ W[2])

(I64 ⊗ W[2])(I32 ⊗ W[2])(I16 ⊗ W[2])(I2048 ⊗ W[2])(I1024 ⊗ W[2])

(I512 ⊗ W[2])(I256 ⊗ W[2])(I128 ⊗ W[2])(I64 ⊗ W[2])(I32 ⊗ W[2])

(I64 ⊗ W[2])(I256 ⊗ W[2])(I128 ⊗ W[2])(I512 ⊗ W[2])(I256 ⊗ W[2])

(I4096 ⊗ W[2])(I2048 ⊗ W[2])(I1024 ⊗ W[2])(I512 ⊗ W[2])(I2048 ⊗ W[2])

(I1024 ⊗ W[2])(I4096 ⊗ W[2])(I8192 ⊗ W[2])(I16384 ⊗ W[2])Mr

(

I2 ⊗ MrMrMr

(

I2 ⊗ MrMrMr

(

I2 ⊗ (I2 ⊗ MrMr)
)))

.

This can be calculated as

δ128[120 120 119 119 53 53 54 54 118 118 117 117

55 55 56 56 91 91 92 92 26 26 25 25

89 89 90 90 28 28 27 27 67 67 68 68

2 2 1 1 65 65 66 66 4 4 3 3

112 112 111 111 45 45 46 46 110 110 109 109

47 47 48 48 40 40 39 39 101 101 102 102

38 38 37 37 103 103 104 104 11 11 12 12

74 74 73 73 9 9 10 10 76 76 75 75

19 19 20 20 82 82 81 81 17 17 18 18

84 84 83 83 64 64 63 63 125 125 126 126

62 62 61 61 127 127 128 128].
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Fig. 5.2 The dynamic graph
of (5.24)

It is then easy to calculate that the smallest repeating power r0 = 7 and that L7 = L8.
That is, the transient period Tt = 7 and the cycle multiplier T = 1. According to
Corollary 5.1 the system (5.24) is globally convergent.

To find the fixed point, which is the global attractor, we can check L to find
the ith column Coli(L) satisfying Coli(L) = δi

128. The only solution is i = 128.
δ128

128 ∼ (0,0,0,0,0,0,0), which is the fixed point.
We will call the state-space graph of a network the dynamic graph. It is also

called an iteration graph [22].
The dynamic graph of the system is shown in Fig. 5.2 [22].

Further consideration of Example 5.4 may be rewarding. Recall system (5.27).
x7 does not appear in the dynamics of any variable. We call such a variable the
following-up variable. It is easy to see that in a network, the following-up variables
do not affect the structure of the attractors. Finding a cycle for the remaining system
and calculating the corresponding values of the following-up variables for each state
on the cycle, we have the corresponding overall cycle.
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Now, for a linear mod 2 system, the coefficient matrix always coincides with its
incidence matrix. So, we can check A. If we remove the last row (equation of x7), we
can see that x6 becomes a following-up variable. If we remove it, then x4 becomes
a following-up matrix. We conclude that the subsystem of x1, x2, x3, x5 determines
the cycles of the original system. This subsystem is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(t + 1) = Mpx1(t)x5(t),

x2(t + 1) = Mpx2(t)x3(t),

x3(t + 1) = Mpx1(t)x2(t),

x5(t + 1) = Mpx2(t)x3(t).

(5.28)

Its network transition matrix is

L = Mp

(

I2 ⊗
(

I2 ⊗ Mp

(

I2 ⊗
(

I2 ⊗ Mp

(

I2 ⊗ (I2 ⊗ Mp)Mr

)))))

(I8 ⊗ W[2])

(I4 ⊗ W[2])(I2 ⊗ W[2])(I4 ⊗ W[2])(I16 ⊗ W[2])(I8 ⊗ W[2])(I16 ⊗ W[2])

(I32 ⊗ W[2])Mr

(

I2 ⊗ Mr(I2 ⊗ Mr)
)

.

L, it follows, is

L = δ16[16 8 11 3 9 1 14 6 6 14 1 9 3 11 8 16].

Moreover, the transient period Tt = 4 and the cycle multiplier is T = 1. We also
conclude that the system is globally convergent.

From the above argument we arrive at the following result.

Proposition 5.3 Assume the incidence matrix of a network Σ (with possible re-

ordering of the variables) is expressed as

I (Σ) =

[

A1 0
A2 A3

]

,

where A3 is a strictly lower triangular matrix (i.e., lower triangular matrix with

zero diagonal elements). The structure of the limit set is then exactly the same as

that of the subsystem consisting of first block variables.

Before concluding this section, we consider the basin of each attractor. Define

Ω :=

k
⋃

i=1

Ci,

where {Ci | i = 1, . . . , k} is the set of attractors. We give the following definition.

Definition 5.6

1. Si is called the basin of attractor Ci if Si is the set of points which converge
to Ci . More precisely, p ∈ Si if and only if the trajectory x(t,p) with x(0,p) = p

satisfies x(t,p) ∈ Ci for t ≥ Tt .
2. q is called the parent state of p if p = x(1, q).
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Remark 5.5

• Let C ⊂ Δ2n and let

L−1(C) = {q |Lq ∈ C}.

The set of parent states of p is then L−1(p).
• Δ2n =

⋃k
i=1 Si . Moreover, since {Si | i = 1, . . . , k} are disjoint, it is a partition of

the state space X = Δ2n .

An alternative way to describe basins is as follows. Consider the system (5.9).
Let p ∈ X . Define the descendant set of p as

Des(p) =
{

q
∣

∣ for some k ≥ 0, q = Lkp
}

.

Next, if Des(p) ∩ Des(q) �= ∅, p and q are said to be equivalent, denoted by p ∼ q .
It is then easy to see the following:

• ∼ is an equivalence relation. If we denote the equivalence class of p by [p], that
is,

[p] = {q |q ∼ p},

then {[p] |p ∈ X } is a partition of X . That is, either [p] = [q] or [p] ∩ [q] = ∅.
• In this partition, each component contains exactly one attractor. Therefore, each

component is the basin of the unique attractor contained in it.
• For an attractor C, let p ∈ C. Its basin is then [p].

What remains to investigate now is how to find Si . We start from each point
p ∈ Ci . If we can find its parent states L−1(p), then, for each point p1 ∈ L−1(p),
we can also find L−1(p1). Continuing this process, after Tt iterations, we obtain a
tree of states which converge to p. Summarizing the above arguments, we have the
following result.

Proposition 5.4

Si = Ci ∪ L−1(Ci) ∪ L−2(Ci) ∪ · · · ∪ L−Tt (Ci). (5.29)

Finally, let us consider how to find L−1(p). It is easy to verify the following.

Proposition 5.5

{

L−1(p) = {δ
j

2n |Colj (L) = p},

L−k(p) = {δ
j

2n |Colj (Lk) = p}, k = 2, . . . , Tt .
(5.30)
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Fig. 5.3 The dynamic graph
of (5.2)

Example 5.5 Recall Example 5.1. It is easy to check that r0 = 3 and

L3 = L7 = δ8[5 1 1 5 7 3 3 1].

We then have the transient period Tt = 3. Using Propositions 5.4 and 5.5, we may
choose any point p ∈ C, where C is its only cycle, to find L−1(p), L−2(p), and
L−3(p).

For instance, suppose we choose p = (0,1,1) ∼ δ5
8 . We can then see two

columns, Col6(L) and Col7(L), equal to p. Therefore, δ6
8 ∼ (0,1,0) and δ7

8 ∼

(0,0,1) form L−1(p). However, (0,0,1) is on the cycle, so we are only interested
in p1 = δ6

8 ∼ (0,1,0). Now, since only Col8(L) = p1, we have L−1(p1) = {δ8
8}. Let

p2 = δ8
8 ∼ (0,0,0). Only Col4(L) = p2, so we have p3 := δ4

8 ∼ (1,0,0) ∈ L−1(p2).
Thus, we have a chain p3 → p2 → p1 → p. If we choose q = (0,0,1) ∼ δ7

8 ,
then Col2(L) = Col3(L) = q . Since δ3

8 ∼ (1,0,1) is on the cycle, we choose
q1 = δ2

8 ∼ (1,1,0). It is easy to check that L−1(q1) = ∅, and we have no more
parent states. Finally, we obtain the dynamical graph of the network in Example 5.1
as in Fig. 5.3. (Note that we only use L−1 here. The iterative calculation provides
the whole tree. If we need only the basins Si , then the L−k are convenient.)

In the following we consider some examples from the literature to show that the
aforementioned method is universally applicable.

Example 5.6 [26] Consider the following Boolean network:

{

A(t + 1) = A(t) ∨ B(t),

B(t + 1) = A(t) ∧ B(t).
(5.31)

It is easy to calculate that

x(t + 1) = MdABMcAB

= Md(I4 ⊗ Mc)AW[2]AB2

= Md(I4 ⊗ Mc)(I2 ⊗ W[2])MrAMrB

= Md(I4 ⊗ Mc)(I2 ⊗ W[2])Mr (I2 ⊗ Mr)x(t)

:= Lx(t).

L can be calculated as

L = δ4[1 2 2 4].
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It follows that tr(L) = 3, so the system (5.31) has three fixed points: δ1
4 ∼ (1,1),

δ2
4 ∼ (1,0), and δ4

4 ∼ (0,0). Since L2 = L, r0 = 1. Finally, for x = δ3
4 ∼ (0,1),

Lx = δ2
4 ∼ (1,0). We conclude that the state-space graph of the system (5.31) con-

tains three components: two fixed points, (1,1) and (0,0), and a length-2 cycle,
{(0,1), (1,0)}.

Example 5.7 [8] Consider the following Boolean network:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A(t + 1) = B(t)C(t),

B(t + 1) = 1 ∨̄A(t),

C(t + 1) = B(t).

(5.32)

It is easy to calculate that

x(t + 1) = McBCMnAB

= Mc(I4 ⊗ Mn)BCAB

= Mc(I4 ⊗ Mn)W[2,4]ABCB

= Mc(I4 ⊗ Mn)W[2,4]ABW[2]BC

= Mc(I4 ⊗ Mn)W[2,4](I4 ⊗ W[2])AMrBC

= Mc(I4 ⊗ Mn)W[2,4](I4 ⊗ W[2])(I2 ⊗ Mr)x(t)

:= Lx(t).

L follows immediately as

L = δ8[3 7 8 8 1 5 6 6].

We then have

tr
(

Lk
)

= 0, k = 1,2,3,4,

and

L5 = δ8[1 3 3 3 5 6 8 8],

tr
(

L5) = 5.

Choosing any diagonal nonzero column of L5, e.g., x = δ1
8 ∼ (1,1,1), we can gen-

erate a length-5 cycle x → Lx → L2x → L3x → L4x → L5x = x, where Lx =

δ3
8 ∼ (1,0,1), L2x = δ8

8 ∼ (0,0,0), L3x = δ6
8 ∼ (0,1,0), L4x = δ5

8 ∼ (0,1,1), and
L5x = δ1

8 ∼ (1,1,1).
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Fig. 5.4 The dynamic graph of (5.32)

It is easy to check that r0 = 2 and L2 = L7. That is, Tt = 2. Since T = 5, there
are no cycles of length greater than 5. If we choose z = δ2

8 ∼ (1,1,0), then

Lz = δ7
8 ∼ (0,0,1), L2z = δ6

8 = L3x.

If we choose y = δ4
8 ∼ (1,0,0), then

Ly = δ8
8 = L2x.

The dynamic graph is shown in Fig. 5.4, which coincides with the one in [8].

5.4 Some Classical Examples

In this section we revisit some examples which have been previously investigated
in the literature. Compared with known results, it is evident that the approach intro-
duced in this chapter is universal and precise.

The following example is the Boolean model of cell growth, differentiation, and
apoptosis (programmed cell death) introduced in [13] and reinvestigated in [8].

Example 5.8

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = K(t) ∨̄K(t) ∧ H(t),

B(t + 1) = A(t) ∨̄A(t) ∧ C(t),

C(t + 1) = 1 ∨̄D(t) ∨̄D(t) ∧ I (t),

D(t + 1) = J (t) ∧ K(t),

E(t + 1) = 1 ∨̄C(t) ∨̄C(t) ∧ F(t),

F (t + 1) = E(t) ∨̄E(t) ∧ G(t),

G(t + 1) = 1 ∨̄B(t) ∧ E(t),

H(t + 1) = F(t) ∨̄F(t) ∧ G(t),

I (t + 1) = H(t) ∨̄H(t) ∧ I (t),

J (t + 1) = J (t),

K(t + 1) = K(t).

(5.33)

Note that

A ∨̄ (A ∧ B) = ¬(A → B).
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This formula is used in the sequel to simplify the expression. First, we convert (5.33)
into componentwise algebraic form as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = MnMiK(t)H(t),

B(t + 1) = MnMiA(t)C(t),

C(t + 1) = MiD(t)I (t),

D(t + 1) = McJ (t)K(t),

E(t + 1) = MiC(t)F (t),

F (t + 1) = MnMiE(t)G(t),

G(t + 1) = MnMcB(t)E(t),

H(t + 1) = MnMiF(t)G(t),

I (t + 1) = MnMiH(t)I (t),

J (t + 1) = J (t),

K(t + 1) = K(t).

(5.34)

It is easy to calculate the structure matrix L as

L = MnMi

(

I2 ⊗
(

I2 ⊗ MnMi

(

I2 ⊗
(

I2 ⊗ Mi

(

I2 ⊗
(

I2 ⊗ Mc

(

I2 ⊗
(

I2 ⊗ Mi

(

I2 ⊗

(

I2 ⊗ MnMi

(

I2 ⊗
(

I2 ⊗ MnMc

(

I2 ⊗
(

I2 ⊗ MnMi

(

I2 ⊗ (I2 ⊗

MnMi)
)))))))))))))))

(I2 ⊗ W[2])W[2](I2048 ⊗ W[2])(I1024 ⊗ W[2])

(I512 ⊗ W[2])(I256 ⊗ W[2])(I128 ⊗ W[2])(I64 ⊗ W[2])(I32 ⊗ W[2])

(I16 ⊗ W[2])(I8 ⊗ W[2])(I4 ⊗ W[2])(I2 ⊗ W[2])(I8 ⊗ W[2])(I4 ⊗ W[2])

(I256 ⊗ W[2])(I128 ⊗ W[2])(I64 ⊗ W[2])(I32 ⊗ W[2])(I16 ⊗ W[2])(I8 ⊗ W[2])

(I32 ⊗ W[2])(I16 ⊗ W[2])(I1024 ⊗ W[2])(I512 ⊗ W[2])(I256 ⊗ W[2])

(I128 ⊗ W[2])(I64 ⊗ W[2])(I32 ⊗ W[2])(I4096 ⊗ W[2])(I2048 ⊗ W[2])

(I1024 ⊗ W[2])(I512 ⊗ W[2])(I256 ⊗ W[2])(I128 ⊗ W[2])(I64 ⊗ W[2])

(I2048 ⊗ W[2])(I1024 ⊗ W[2])(I512 ⊗ W[2])(I256 ⊗ W[2])(I128 ⊗ W[2])

(I8192 ⊗ W[2])(I4096 ⊗ W[2])(I2048 ⊗ W[2])(I1024 ⊗ W[2])(I512 ⊗ W[2])

(I256 ⊗ W[2])(I8192 ⊗ W[2])(I4096 ⊗ W[2])(I2048 ⊗ W[2])(I1024 ⊗ W[2])

(I512 ⊗ W[2])(I16384 ⊗ W[2])(I8192 ⊗ W[2])(I4096 ⊗ W[2])(I2048 ⊗ W[2])

(I1024 ⊗ W[2])(I2048 ⊗ W[2])(I32768 ⊗ W[2])(I16384 ⊗ W[2])(I8192 ⊗ W[2])
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(I4096 ⊗ W[2])(I8192 ⊗ W[2])(I65536 ⊗ W[2])(I32768 ⊗ W[2])(I16384 ⊗ W[2])

(I32768 ⊗ W[2])(I131072 ⊗ W[2])(I65536 ⊗ W[2])
(

I2 ⊗
(

I2 ⊗ Mr

(

I2 ⊗
(

I2 ⊗ Mr

(

I2 ⊗ Mr

(

I2 ⊗ Mr

(

I2 ⊗ Mr

(

I2 ⊗ Mr

(

I2 ⊗ Mr(I2 ⊗ MrMr)
)))))))))

.

Since this is a 211 × 211 matrix, it is too long to display here, even in condensed
form. However, it can be easily stored in a computer. It is then easy to calculate that

tr(L) = 3, tr
(

L9)= 12,

and that there are no other nontrivial powers. We conclude that there are only three
fixed points and one cycle of length 9. Finding diagonal nonzero columns of L and
L9, respectively, it is easy to deduce that the three fixed points are

E1 = (1,0,1,0,0,0,1,0,0,0,1),

E2 = (0,0,1,0,0,0,1,0,0,1,0),

E3 = (0,0,1,0,0,0,1,0,0,0,0).

The only cycle of length 9 is

(1,1,0,1,1,1,0,1,0,1,1) → (0,1,0,1,1,1,0,1,1,1,1) →

(0,0,1,1,1,1,0,1,0,1,1) → (0,0,0,1,1,1,1,1,1,1,1) →

(0,0,1,1,1,0,1,0,0,1,1) → (1,0,0,1,0,0,1,0,0,1,1) →

(1,1,0,1,1,0,1,0,0,1,1) → (1,1,0,1,1,0,0,0,0,1,1) →

(1,1,0,1,1,1,0,0,0,1,1) → (1,1,0,1,1,1,0,1,0,1,1).

The minimum power for repeating Lk is L10 = L19, so the transient period Tt = 10.

Remark 5.6 It was shown in [13] that a nontrivial growth attractor exists. Our
result shows that there are exactly three fixed points and one cycle of length 9.
As J = K = D = 1, both [13] and [8] showed that the cycle exists. Our re-
sult agrees with this. In the case of J = K = D = 1, it is easy to check
that the transient period is still Tt = 10. [8] claimed that Tt ≤ 7, but this is
incorrect. Consider x(0) := x0 = (0,1,1,1,1,0,0,0,0,1,1). It is easy to cal-
culate that x(10) = (1,0,0,1,0,1,1,0,0,1,1), which is not in the cycle, and
x(11) = (1,1,0,1,1,0,1,0, 0,1,1), which is in the cycle. Thus, Tt (x0) = 10.

The following example is from [9] and was reinvestigated in [11].



122 5 Topological Structure of a Boolean Network

Example 5.9 Consider the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = 1 ∨̄C(t) ∨̄F(t) ∨̄C(t) ∧ F(t),

B(t + 1) = A(t),

C(t + 1) = B(t),

D(t + 1) = 1 ∨̄C(t) ∨̄F(t) ∨̄ I (t) ∨̄C(t) ∧ F(t) ∨̄C(t) ∧ I (t)

∨̄F(t) ∧ I (t) ∨̄C(t) ∧ F(t) ∧ I (t),

E(t + 1) = D(t),

F (t + 1) = E(t),

G(t + 1) = 1 ∨̄F(t) ∨̄ I (t) ∨̄F(t) ∧ I (t),

H(t + 1) = G(t),

I (t + 1) = H(t).

(5.35)

The componentwise algebraic form of the above equation is

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = MnMdCF,

B(t + 1) = A,

C(t + 1) = B,

D(t + 1) = M2
c MnIMnCMnF,

E(t + 1) = D,

F(t + 1) = E,

G(t + 1) = MnMdFI,

H(t + 1) = G,

I (t + 1) = H.

(5.36)

Let x(t) = A(t)B(t)C(t)D(t)E(t)F (t)G(t)H(t)I (t) and x(t + 1) = Lx(t). Then,

L = MnMd

(

I2 ⊗
(

I2 ⊗
(

I2 ⊗
(

I2 ⊗ McMcMn

(

I2 ⊗ Mn

(

I2 ⊗ Mn

(

I2 ⊗
(

I2 ⊗

(I2 ⊗ MnMd)
))))))))

(I2 ⊗ W[2])W[2](I4 ⊗ W[2])(I2 ⊗ W[2])(I16 ⊗ W[2])

(I8 ⊗ W[2])(I64 ⊗ W[2])(I32 ⊗ W[2])(I16 ⊗ W[2])(I128 ⊗ W[2])(I64 ⊗ W[2])

(I32 ⊗ W[2])(I128 ⊗ W[2])(I256 ⊗ W[2])(I1024 ⊗ W[2])(I512 ⊗ W[2])

(I2048 ⊗ W[2])(I1024 ⊗ W[2])
(

I2 ⊗
(

I2 ⊗ Mr

(

I2 ⊗
(

I2 ⊗

(

I2 ⊗ MrMr

(

I2 ⊗
(

I2 ⊗ (I2 ⊗ Mr)
)))))))

.
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The nontrivial powers are tr(L2) = 4 and tr(L6 = 64). It follows from Theo-
rem 5.3 that there are only two cycles of length 2 and ten cycles of length 6. Search-
ing diagonal nonzero columns of L2 yields

(1,0,1,1,0,1,1,0,1) → (0,1,0,0,1,0,0,1,0) → (1,0,1,1,0,1,1,0,1),

(1,0,1,0,0,0,0,1,0) → (0,1,0,0,0,0,1,0,1) → (1,0,1,0,0,0,0,1,0).

Searching diagonal nonzero columns of L6 yields

(1,1,1,1,1,1,1,1,1) → (0,1,1,0,1,1,0,1,1) → (0,0,1,0,0,1,0,0,1) →

(0,0,0,0,0,0,0,0,0) → (1,0,0,1,0,0,1,0,0) → (1,1,0,1,1,0,1,1,0) →

(1,1,1,1,1,1,1,1,1),

(1,1,1,1,1,0,1,1,0) → (0,1,1,0,1,1,1,1,1) → (0,0,1,0,0,1,0,1,1) →

(0,0,0,0,0,0,0,0,1) → (1,0,0,0,0,0,0,0,0) → (1,1,0,1,0,0,1,0,0) →

(1,1,1,1,1,0,1,1,0),

(1,1,1,1,0,1,1,0,1) → (0,1,1,0,1,0,0,1,0) → (0,0,1,0,0,1,1,0,1) →

(0,0,0,0,0,0,0,10) → (1,0,0,1,0,0,1,0,1) → (1,1,0,0,1,0,0,1,0) →

(1,1,1,1,0,1,1,0,1),

(1,1,1,1,0,0,1,0,0) → (0,1,1,0,1,0,1,1,0) → (0,0,1,0,0,1,1,1,1) →

(0,0,0,0,0,0,0,1,1) → (1,0,0,0,0,0,0,0,1) → (1,1,0,0,0,0,0,0,0) →

(1,1,1,1,0,0,1,0,0),

(1,1,1,0,1,1,0,1,1) → (0,1,1,0,0,1,0,0,1) → (0,0,1,0,0,0,0,0,0) →

(0,0,0,0,0,0,1,0,0) → (1,0,0,1,0,0,1,1,0) → (1,1,0,1,1,0,1,1,1) →

(1,1,1,0,1,1,0,1,1),

(1,1,1,0,1,0,0,1,0) → (0,1,1,0,0,1,1,0,1) → (0,0,1,0,0,0,0,1,0) →

(0,0,0,0,0,0,1,0,1) → (1,0,0,0,0,0,0,1,0) → (1,1,0,1,0,0,1,0,1) →

(1,1,1,0,1,0,0,1,0),

(1,1,1,0,0,1,0,0,1) → (0,1,1,0,0,0,0,0,0) → (0,0,1,0,0,0,1,0,0) →

(0,0,0,0,0,0,1,1,0) → (1,0,0,1,0,0,1,1,1) → (1,1,0,0,1,0,0,1,1) →

(1,1,1,0,0,1,0,0,1),

(1,1,1,0,0,0,0,0,0) → (0,1,1,0,0,0,1,0,0) → (0,0,1,0,0,0,1,1,0) →

(0,0,0,0,0,0,1,1,1) → (1,0,0,0,0,0,0,1,1) → (1,1,0,0,0,0,0,0,1) →

(1,1,1,0,0,0,0,0,0),

(1,0,1,1,0,1,1,1,1) → (0,1,0,0,1,0,0,1,1) → (1,0,1,0,0,1,0,0,1) →

(0,1,0,0,0,0,0,0,0) → (1,0,1,1,0,0,1,0,0) → (0,1,0,0,1,0,1,1,0) →

(1,0,1,1,0,1,1,1,1),

(1,0,1,1,0,0,1,1,0) → (0,1,0,0,1,0,1,1,1) → (1,0,1,0,0,1,0,1,1) →

(0,1,0,0,0,0,0,0,1) → (1,0,1,0,0,0,0,0,0) → (0,1,0,0,0,0,1,0,0) →

(1,0,1,1,0,0,1,1,0).

Finally, we can calculate that the first repeating Lk is L3 = L9. Thus, Tt = 3.
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Remark 5.7 In [11] it was shown that there are no fixed points and that there
are two cycles of length 2. Our results concerning fixed points and cycles of
length 2 coincide with those of [11]. Heidel et al. [11] pointed out only six
cycles of length 6, but according to our result there are exactly ten cycles of
length 6.

5.5 Serial Boolean Networks

The Boolean network defined by (5.1) is called a parallel Boolean network. Most
Boolean networks discussed in this book are of this class. Sometimes, though,
we may need to update the elements in a serial way. Consider the following sys-
tem:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn−1(t), xn(t)),

x2(t + 1) = f2(x1(t + 1), x2(t), . . . , xn−1(t), xn(t)),

...

xn(t + 1) = fn(x1(t + 1), . . . , xn−1(t + 1), xn(t)).

(5.37)

Here we update x1 first, then use the updated x1 to update x2, then use the updated
x1 and x2 to update x3, and so on. Such a Boolean network is called a serial Boolean
network.

We now give an example of a serial Boolean network.

Example 5.10 Consider a game with n players, denoted by P1, . . . ,Pn. Each player
has two possible actions, denoted by D = {0,1}, and the next action of each player
depends on the current actions of all players. Denote the strategy of player i by fi .
Then, fi is a Boolean function of the current actions x1, . . . , xn of the players
P1, . . . ,Pn. If the game is played by all players simultaneously, then the dynam-
ics of the strategies can be described by (5.1). However, if it is played one-by-one,
that is, P1 plays first, then P2, and so on, then the strategy of P2 depends on an
updated x1 and not updated x2, . . . , xn, and so on. The dynamics of the strategies
are then described by (5.37).

It is easy to prove the following result.

Proposition 5.6 Assume that the systems (5.1) and (5.37) have the same logical

functions fi , i = 1, . . . , n. They then have the same fixed points.

In general, the systems (5.1) and (5.37) have different cycles, as shown by the
following example.
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Example 5.11 Consider Example 5.2, which is a continuation of Example 5.1. Now,
if we convert (5.3) into a serial network, we have

⎧

⎪

⎨

⎪

⎩

A(t + 1) = B(t) ∧ C(t),

B(t + 1) = ¬A(t + 1),

C(t + 1) = B(t + 1) ∨ C(t).

(5.38)

Plugging the first equation into second yields

B(t + 1) = ¬
(

B(t) ∧ C(t)
)

= ¬B(t) ∨ ¬C(t).

Replacing the B(t + 1) in the third equation with this expression, we have

C(t + 1) = ¬B(t) ∨ ¬C(t) ∨ C(t) = 1.

Collecting these together, we have

⎧

⎪

⎨

⎪

⎩

A(t + 1) = B(t) ∧ C(t),

B(t + 1) = ¬B(t) ∨ ¬C(t),

C(t + 1) = 1.

(5.39)

It is easy to deduce that there is a length-2 cycle of (5.39) and hence (5.38), which is
(1,0,1) → (0,1,1) → (1,0,1). Comparing this with the cycle obtained in Example
5.2, we see that they are different.

Note that the above example shows how to convert a serial Boolean network
into an equivalent parallel Boolean network. Therefore, if we are only interested
in their topological structures, we do not need a special tool to deal with serial
Boolean networks. However, for optimization, etc. (in game theory, for instance)
they are quite different. The terms “parallel” and “serial” come from their cycle-
based realizations in automata theory.

We can, of course, have a serial–parallel model. Usually we use a partition with
ordered subsets to describe this. Suppose we have a six-node network. We may
have nodes 1, 2, and 5 updated first, then nodes 3 and 6, and, finally, 4. The ordered
partition becomes ({1,2,5}, {3,6}, {4}). The system of dynamic equations becomes

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)),

x2(t + 1) = f2(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)),

x5(t + 1) = f5(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)),

x3(t + 1) = f3(x1(t + 1), x2(t + 1), x3(t), x4(t), x5(t + 1), x6(t)),

x6(t + 1) = f6(x1(t + 1), x2(t + 1), x3(t), x4(t), x5(t + 1), x6(t)),

x4(t + 1) = f4(x1(t + 1), x2(t + 1), x3(t + 1), x4(t), x5(t + 1), x6(t + 1)).

It is obvious that Proposition 5.6 remains true for serial–parallel Boolean networks.
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5.6 Higher Order Boolean Networks

In this section we consider higher order Boolean networks. This is based on [19].

Definition 5.7 A Boolean network is called a µth order network if the current states
depend on length-µ histories. Precisely, its dynamics can be described as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t − µ + 1), . . . , xn(t − µ + 1), . . . , x1(t), . . . , xn(t)),

x2(t + 1) = f2(x1(t − µ + 1), . . . , xn(t − µ + 1), . . . , x1(t), . . . , xn(t)),

...

xn(t + 1) = fn(x1(t − µ + 1), . . . , xn(t − µ + 1), . . . , x1(t), . . . , xn(t)),

t ≥ µ − 1,

(5.40)
where fi : Dµn → D , i = 1, . . . , n, are logical functions.

Note that, as for higher order discrete-time difference equations, to determine the
solution (also called a trajectory) we need a set of initial conditions

xi(j) = aij , i = 1, . . . , n, j = 0, . . . ,µ − 1. (5.41)

We give an example to illustrate this kind of system. It is a biochemical network
of coupled oscillations in the cell cycle [9].

Example 5.12 Consider the following Boolean network:

{

A(t + 3) = ¬(A(t) ∧ B(t + 1)),

B(t + 3) = ¬(A(t + 1) ∧ B(t)).
(5.42)

It can be easily converted into the canonical form (5.40) as

{

A(t + 1) = ¬(A(t − 2) ∧ B(t − 1)),

B(t + 1) = ¬(A(t − 1) ∧ B(t − 2)), t ≥ 2.
(5.43)

This is a third order Boolean network.

The second example comes from [20]. We refer to Example 2.5 in Chap. 2 for a
detailed description of the Prisoners’ Dilemma and to Chap. 18 for background on
game theory.

Example 5.13 Consider the infinite Prisoners’ Dilemma. Assume that player 1 is a
machine and player 2 is a human. Set the strategies as follows:

0: the player cooperates with his partner,
1: the player betrays his partner.
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Denote by {x(0), x(1), . . . } the machine’s strategy and by {y(0), y(1), . . . } the
human’s strategy. Assume the machine’s strategy, fm, depends on µ-memory. The
machine’s strategy can then be described as

x(t + 1) = fm

(

x(t − µ + 1), y(t − µ + 1), . . . , x(t), y(t)
)

. (5.44)

It was proven in [20] that the human’s best strategy, fh, can be obtained by also
using µ-memory. That is,

y(t + 1) = fh

(

x(t − µ + 1), y(t − µ + 1), . . . , x(t), y(t)
)

. (5.45)

Putting these together, we have a µth order Boolean network:

{

x(t + 1) = fm(x(t − µ + 1), y(t − µ + 1), . . . , x(t), y(t)),

y(t + 1) = fh(x(t − µ + 1), y(t − µ + 1), . . . , x(t), y(t)).
(5.46)

These two examples will be revisited later.
As with standard Boolean networks, we have to explore the topological structures

of higher order Boolean networks. Since the trajectories of a µth order Boolean
network depend on µ initial values, we need rigorous definitions for cycles and/or
fixed points.

Definition 5.8 Consider the system (5.40). Denote the state space by

X =
{

X
∣
∣X = (x1, . . . , xn) ∈ Dn

}

.

1. Let Xi = (xi
1, . . . , x

i
n), X

j = (x
j

1 , . . . , x
j
n) ∈ X . (Xi,Xj ), is said to be a directed

edge if there exist Xjα , α = 1, . . . ,µ − 1, such that Xi,Xj , {Xjα } satisfy (5.40).
More precisely,

x
j

k = fk

(

Xj1 ,Xj2, . . . ,Xjµ−1,Xi
)

, k = 1, . . . , n.

The set of edges is denoted by E ⊂ X × X .
2. (X1,X2, . . . ,Xℓ) is called a path if (Xi,Xi+1) ∈ E , i = 1,2, . . . , ℓ − 1.
3. A path (X1,X2, . . . ) is called a cycle if Xi+ℓ = Xi for all i, the smallest such ℓ

being called the length of the cycle. In particular, a cycle of length 1 is called a
fixed point.

A standard Boolean network can be expressed formally as a higher order Boolean
network with order μ = 1. Hence, Definition 5.4 is a special case of Definition 5.8.

As with a standard Boolean network, to explore the topological structure of a
higher order Boolean network we will first try to convert it into its algebraic form.
In the following we will discuss two algebraic forms of (5.40).
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5.6.1 First Algebraic Form of Higher Order Boolean Networks

Using vector form, we define
{

x(t) = ⋉n
i=1xi(t) ∈ Δ2n ,

z(t) = ⋉
t+μ−1
i=t x(i) ∈ Δ2μn , t = 0,1, . . . .

Assume the structure matrix of fi is Mi ∈ L2×2μn . We can then express (5.40) in its
componentwise algebraic form as

xi(t + 1) = Miz(t − μ + 1), i = 1, . . . , n, t = μ − 1,μ,μ + 1, . . . . (5.47)

Multiplying the equations in (5.47) together yields

x(t + 1) = L0z(t − μ + 1), t ≥ μ, (5.48)

where

L0 = M1 ⋉n
j=2

[

(I2μn ⊗ Mj )Φµn

]

. (5.49)

Note that the L0 here can be calculated with a standard procedure as was used
before, and we refer to (4.6) for the definition of Φk . Using some properties of the
semi-tensor product of matrices, we have

z(t + 1) = ⋉
t+µ
i=t+1x(i)

= (Ed)n ⋉
t+µ−1
i=t x(i)

(

L0 ⋉
t+µ−1
i=t x(i)

)

= (Ed)n(I2µn ⊗ L0)Φµn ⋉
t+µ−1
i=t x(i)

:= Lz(t), (5.50)

where

Ed = δ2[1 2 1 2], L = (Ed)n(I2μn ⊗ L0)Φµn. (5.51)

Equation (5.50) is called the first algebraic form of the network (5.40). We now give
an example to illustrate it.

Example 5.14 Consider the following Boolean network:
⎧

⎪
⎨

⎪
⎩

A(t + 1) = C(t − 1) ∨ (A(t) ∧ B(t)),

B(t + 1) = ¬(C(t − 1) ∧ A(t)),

C(t + 1) = B(t − 1) ∧ B(t).

(5.52)

Using vector form, we have
⎧

⎪
⎨

⎪
⎩

A(t + 1) = MdC(t − 1)McA(t)B(t),

B(t + 1) = MnMcC(t − 1)A(t),

C(t + 1) = McB(t − 1)B(t).

(5.53)
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Let x(t) = A(t)B(t)C(t). Then, (5.53) can be converted into its componentwise
algebraic form as

⎧

⎪

⎨

⎪

⎩

A(t + 1) = M1x(t − 1)x(t),

B(t + 1) = M2x(t − 1)x(t),

C(t + 1) = M3x(t − 1)x(t),

(5.54)

where

M1 = δ4[1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2],

M2 = δ4[2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1],

M3 = δ4[1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2].

Multiplying the three equations in (5.54) together yields

x(t + 1) = L0x(t − 1)x(t), (5.55)

where

L0 = δ8[3 3 4 4 1 1 2 2 1 1 6 6 5 5 6 6 4 4 4 4 2 2 2 2 2 2 6 6 6 6 6 6
3 3 4 4 1 1 2 2 1 1 6 6 5 5 6 6 4 4 4 4 2 2 2 2 2 2 6 6 6 6 6 6].

Setting z(t) = x(t)x(t + 1), t ≥ 1, we finally have

z(t + 1) = x(t + 1)x(t + 2)

= (Ed)3x(t)x(t + 1)x(t + 2)

= (Ed)3x(t)x(t + 1)L0x(t)x(t + 1)

= (Ed)3(I26 ⊗ L0)Φ6x(t)x(t + 1)

:= Lz(t), (5.56)

where

L = δ64[3 11 20 28 33 41 50 58 1 9 22 30 37 45 54 62
4 12 20 28 34 42 50 58 2 10 22 30 38 46 54 62
3 11 20 28 33 41 50 58 1 9 22 30 37 45 54 62
4 12 20 28 34 42 50 58 2 10 22 30 38 46 54 62].

(5.57)

In fact, we can prove the two Boolean networks have the same topological struc-
ture, including fixed points, cycles, and the transient time, which is the time for all
points to enter the set of cycles. Therefore, the first order Boolean network (5.50)
provides all such results for higher order Boolean networks (5.48). We prove this in
the form of the following result.
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Lemma 5.2 There is a one-to-one correspondence between the trajectories of

(5.48) and the trajectories of (5.50).

Proof Denote the sets of trajectories of (5.48) and (5.50) by Tx and Tz, respectively.
Note that a trajectory is completely determined by its initial values. Now, because of
the order, each trajectory of (5.48) depends on {x(0), x(1), . . . , x(µ − 1)}, and each
trajectory of (5.50) depends on z(0). Setting z(0) = ⋉

µ−1
i=0 x(i), we have a one-to-one

correspondence between Tx and Tz. �

Define a mapping φ : Tx → Tz, which maps each trajectory in Tx with initial
value {x(0), x(1), . . . , x(μ − 1)} to a trajectory in Tz with initial value z(0) =

⋉
μ−1
i=0 x(i). Then, φ is bijective. It is easy to see that there are 2kn trajectories of

each system, and we write

Tx =
{

ξx
i

∣

∣ i = 1,2, . . . ,2μn
}

, Tz =
{

ξ z
i

∣

∣ i = 1,2, . . . ,2μn
}

.

Denote the sets of cycles of (5.48) and (5.50) by Ωx and Ωz, respectively. Here,
a fixed point is considered as a cycle of length 1. Note that for a Boolean network,
each trajectory will eventually converge to a unique cycle. The cycle to which ξx ∈
Tx (resp., ξ z ∈ Tz) converges is then denoted by C(ξx) [resp., C(ξ z)].

Now, for each ξx ∈ Tx , we have C(ξx) ∈ Ωx and for φ(ξx) ∈ Tz, we have
C(φ(ξx)) ∈ Ωz. Using this relation, we define ψ : C(ξx) �→ C(φ(ξx)) by

ψ
(

C
(

ξx
))

:= C
(

φ
(

ξx
))

. (5.58)

Lemma 5.3

1. Let ξx ∈ Tx be ξx = {x(0), x(1), . . . }. Then,

ξ z := φ
(

ξx
)

=
{

z(0) = ⋉
μ−1
i=0 x(i), z(1) = ⋉

μ
i=1x(i), . . .

}

. (5.59)

2. Let ξx converge to a trajectory {x(t), x(t + 1), . . . , x(t + α) = x(t)}. Then, ξ z =
φ(ξx) converges to a trajectory {z(t), z(t + 1), . . . , z(t + α) = z(t)}, where

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

z(t) = ⋉
t+μ−1
i=t x(i),

z(t + 1) = ⋉
t+μ
i=t+1x(i),

...

z(t + α) = ⋉
t+α+μ−1
i=t+α x(i) = ⋉

t+μ−1
i=t x(i) = z(t).

(5.60)

3. ψ : Ωx → Ωz is a one-to-one and onto mapping.

Proof 1. (5.59) follows directly from the definition of z(t).
2. To see that the elements in (5.60) constitute a cycle, since we have z(t) =

z(t + α), it is enough to show that the elements of {z(t), . . . , z(t + α − 1)} are
distinct, i.e., Cz := {z(t), . . . , z(t + α − 1), z(t + α) = z(t)} is not a multifold cy-
cle. This follows as it can easily be shown that if the set {z(t), . . . , z(t + α − 1)}
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has duplicated elements, then so does {x(t), . . . , x(t + α − 1)}, contradicting the
assumption that Cx = {x(t), . . . , x(t + α − 1), x(t + α) = x(t)} is a cycle.

3. Since the mapping ψ is defined via each trajectory, we must first show that it
is well defined. That is, if the trajectories ξx and ξx′

determine the same cycle in
Ωx , then ψ(C(ξx)) = ψ(C(ξx′

)).
Let the cycle determined by ξx be {x(t), x(t + 1), . . . , x(t + α) = x(t)}. Using

(5.60), we obtain

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

z(t) = ⋉t+k−1
i=t x(i),

z(t + 1) = ⋉t+k
i=t+1x(i),

...

z(t + α) = ⋉t+α+k−1
i=t+α x(i) = ⋉t+k−1

i=t x(i) = z(t).

Since ξx′
determines the same cycle, there is a constant a ∈ Z, 0 ≤ a ≤ α, such

that

x′(t) = x(t + a),
...

x′(t + α − a) = x(t + α) = x(t),
...

x′(t + α) = x(t + a).

By (5.60), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z′(t) = ⋉t+k−1
i=t x′(i) = ⋉t+a+k−1

i=t+a x(i) = z(t + a),

...

z′(t + α − a) = ⋉t+α−a+k−1
i=t+α−a x′(i) = ⋉t+α+k−1

i=t+α x(i) = z(t),

...

z′(t + α) = ⋉t+α+k−1
i=t+α x′(i) = ⋉t+a+k−1

i=t+a x(i) = z(t + a).

That is, ψ(C(ξx)) = ψ(C(ξx′
)). Hence, ψ : Ωx → Ωz is a well-defined mapping.

Next, we will prove that ψ is injective. That is, if the trajectories ξx and ξx′

determine the same cycle in Ωz, i.e., ψ(C(ξx)) = ψ(C(ξx′
)), then C(ξx) ∈ Ωx and

C(ξx′
) ∈ Ωx are the same.

Now assume that ξx′
converges to a cycle {x′(t), . . . , x′(t + α) = x′(t)}, which

determined the same cycle as ξx . Precisely, φ(C(ξx′
)) = φ(C(ξx)) ∈ Ωz, which has

elements as in (5.60). It follows that

⋉k−1
i=0 x′(t + i) ∈ φ

(

C
(

ξx
))

.

Hence, there exists a 0 ≤ μ < α such that

⋉k−1
i=1 x′(t + i) = z(t + μ).
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According to the definition of φ, we have

⋉k−1
i=0 x′(t + i) = z(t + μ),

...

⋉k−1
i=0 x′(t + α − μ + i) = z(t + α) = z(t),

...

⋉k−1
i=0 x′(t + α − 1 + i) = z(t + μ − 1),

⋉k−1
i=0 x′(t + α + i) = z(t + μ).

(5.61)

Since z(t) = ⋉k−1
i=0 x(t + i) can uniquely determine all {x(t + i) | i = 0, . . . , k − 1},

(5.61) implies that

x′(t) = x(t + μ),
...

x′(t + α − μ) = x(t),
...

x′(t + α − 1) = x(t + μ − 1).

(5.62)

That is, C(ξx) and C(ξx′
) are the same cycle. Therefore, ψ is a one-to-one map-

ping. Finally, we have to prove that ψ is surjective. To see this let Cz := {z(t),
z(t + 1), . . . , z(t + α) = z(t)} ∈ Ωz, where

z(t + i) = ⋉k−1
j=0x(t + i + j), i = 0,1, . . . , α.

It follows from z(t) = z(t + α) that x(t) = x(t + α). Moreover, it is easy to see
that the elements of {x(t), x(t + 1), . . . , x(t + α − 1)} are distinct. Hence, Cx :=
{x(t), x(t + 1), . . . , x(t + α − 1), x(t + α) = x(t)} ∈ Ωx and ψ(Cx) = Cz. �

To construct the inverse mapping Ψ −1 : Ωz → Ωx , we define a mapping π :

Δ2kn → Δ2n as follows:

π(z) =
(

I2n ⊗ 1T
2(k−1)n

)

z. (5.63)

Some straightforward computations then lead to the following result.

Lemma 5.4

1. If z = ⋉
μ−1
i=0 xi ∈ Δ2μn , where xi ∈ Δ2n , then

π(z) = x0. (5.64)

2. Consider φ : Tx → Tz. If {z(0), z(1), . . . } ∈ Tz, then

φ−1({z(0), z(1), . . .
})

=
{

π
(

z(0)
)

,π
(

z(1)
)

, . . .
}

∈ Tx . (5.65)
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3. Consider ψ : Ωx → Ωz. If {z(t), z(t + 1), . . . , z(t + α) = z(t)} ∈ Ωz, then

ψ−1({z(t), z(t + 1), . . . , z(t + α) = z(t)
})

=
{

π
(

z(t)
)

,π
(

z(t + 1)
)

, . . . , π
(

z(t + α)
)

= π
(

z(t)
)}

∈ Ωx . (5.66)

Summarizing Lemmas 5.2–5.4, we have the following result, which shows how
to obtain the topological structure of (5.40) from its first algebraic form (5.50).

Theorem 5.5

1. Each trajectory ξx of (5.48) can be obtained from a trajectory ξ z of (5.50). More

precisely,

Tx =
{

π
(

ξ z
)
∣

∣ ξ z ∈ Tz

}

. (5.67)

2. Each cycle Cx of (5.48) can be obtained from a cycle of (5.50). More precisely,

Ωx =
{

π(Cz)
∣

∣Cz ∈ Ωz

}

. (5.68)

3. The transient period of the network (5.48) equals the transient period of the

network (5.50).

Theorem 5.5 shows that to find the cycles of (5.48) it is enough to find the cycles
of (5.50). Hence, the method developed in the previous sections of this chapter can
be applied to the system (5.50).

We now consider some examples.

Example 5.15 Recall Example 5.12. Set x(t) = A(t)B(t). Using vector form, (5.43)
can be expressed as

x(t + 1) = L0x(t − 2)x(t − 1)x(t), (5.69)

where

L0 = δ4[4 4 4 4 2 2 2 2 3 3 3 3 1 1 1 1
3 3 3 3 1 1 1 1 3 3 3 3 1 1 1 1
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].

Set z(t) = x(t)x(t + 1)x(t + 2). Then,

z(t + 1) = x(t + 1)x(t + 2)x(t + 3)

= (Ed)2x(t)x(t + 1)x(t + 2)x(t + 3)

= (Ed)2x(t)x(t + 1)x(t + 2)L0x(t)x(t + 1)x(t + 2)

= (Ed)2(I26 ⊗ L0)Φ6x(t)x(t + 1)x(t + 2)

:= Lz(t), (5.70)
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Fig. 5.5 The cycle of (5.43)
with length 2

where

L = δ26 [4 8 12 16 18 22 26 30 35 39 43 47 49 53 57 61
3 7 11 15 17 21 25 29 35 39 43 47 49 53 57 61
2 6 10 14 18 22 26 30 33 37 41 45 49 53 57 61
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61].

To find the cycles of (5.69), it is enough to find all the cycles in the system (5.70).
We can check tr(Lk), k = 1,2, . . . ,64, and look for nontrivial powers. These can be
easily calculated as

tr
(

L2)= 2, tr
(

L5)= 5, tr
(

L10)= 17.

Using Theorem 5.3, we conclude that the system does not have fixed point, but it
has one cycle of length 2, one cycle of length 5, and one cycle of length 10.

To determine the cycles of (5.70), we first consider L2. It is easy to deduce that
the 26th column, Col26(L

2), is a diagonal nonzero column. We can then use it to
generate the cycle of length 2. Since Lδ26

64 = δ29
64 and Lδ29

64 = δ26
64 , we have a cycle of

length 2.
Now, define π(z) = Γ z, where

Γ = I4 ⊗ 1T
16.

Using Theorem 5.5, the cycle of system (5.43) with length 2 is

π
(

δ26
64

)

→ π
(

δ39
64

)

→ π
(

δ26
64

)

.

Equivalently,

δ2
4 → δ3

4 → δ2
4 .

Back in its scalar form, it is shown in Fig. 5.5.
Similarly, since Col1(L5) = δ1

64 is a diagonal nonzero column of L5, then δ1
64,

Lδ1
64 = δ4

64, L2δ1
64 = δ16

64 , L3δ1
64 = δ61

64 and L4δ1
64 = δ49

64 form a cycle of length 5.
Using Theorem 5.5, the cycle of system (5.43) with length 5 is

π
(

δ1
64

)

→ π
(

δ4
64

)

→ π
(

δ16
64

)

→ π
(

δ61
64

)

→ π
(

δ49
64

)

→ π
(

δ1
64

)

.

Equivalently, it is

δ1
4 → δ1

4 → δ1
4 → δ4

4 → δ4
4 → δ1

4 .

Back in its scalar form, it is the cycle depicted in Fig. 5.6.
Since Col2(L10) = δ2

64 is a diagonal nonzero column of L10, it follows that δ2
64,

Lδ2
64 = δ8

64, L2δ2
64 = δ30

64 , L3δ2
64 = δ53

64 , L4δ2
64 = δ17

64 , L5δ2
64 = δ3

64, L6δ2
64 = δ12

64 ,
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Fig. 5.6 The cycle of (5.43)
with length 5

Fig. 5.7 The cycle of (5.43)
with length 10

L7δ2
64 = δ47

64 , L8δ2
64 = δ5

64, and L9δ2
64 = δ33

64 form a cycle of length 10.
Using Theorem 5.5, the cycle of the system (5.43) with length 10 is

π
(

δ2
64

)

→ π
(

δ8
64

)

→ π
(

δ30
64

)

→ π
(

δ53
64

)

→ π
(

δ17
64

)

→ π
(

δ3
64

)

→

π
(

δ12
64

)

→ π
(

δ47
64

)

→ π
(

δ5
64

)

→ π
(

δ33
64

)

→ π
(

δ2
64

)

.

Equivalently,

δ1
4 → δ1

4 → δ2
4 → δ4

4 → δ2
4 → δ1

4 → δ1
4 → δ3

4 → δ4
4 → δ3

4 → δ1
4 .

In scalar form, it is the cycle depicted in Fig. 5.7.
It is easy to calculate the transient period of (5.70), which is 4. From Theorem 5.5

we know that the transient time of the network (5.43) is 4. That is, for any initial
state (A(t0),B(t0)), the trajectory will enter into a cycle after four steps.

The result coincides with the one in [11].

Example 5.16 Recall Example 5.14. To find the cycles of (5.53), it is enough to find
all the cycles of the network (5.56). We can check tr(Lk), k = 1,2, . . . ,64, and look
for nontrivial powers. It can be easily calculated that

tr
(

Lk
)

=

{

8, k = 8i, i = 1,2, . . . ,

0, others.

From Theorem 5.3, we conclude that the system (5.56) has only one cycle with
length 8. To find this cycle, we consider L8. It is easy to deduce that the third
column, Col3(L8), is a diagonal nonzero column. We can then use it to generate
the cycle of length 8. Since Lδ3

64 = δ20
64 , L2δ3

64 = δ28
64 , L3δ3

64 = δ30
64 , L4δ3

64 = δ46
64 ,

L5δ3
64 = δ45

64 , L6δ3
64 = δ37

64 , L7δ3
64 = δ33

64 , and L8δ3
64 = δ3

64, we obtain a cycle of length
8 of the network (5.56) as

δ3
64 → δ20

64 → δ28
64 → δ30

64 → δ46
64 → δ45

64 → δ37
64 → δ33

64 → δ3
64.

Define π(z) = Γ z, where

Γ = I8 ⊗ 1T
8 .
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Fig. 5.8 The cycle of (5.53)
with length 8

Using Theorem 5.5, the cycle of the network (5.53) can be obtained as

π
(

δ3
64

)

→ π
(

δ20
64

)

→ π
(

δ28
64

)

→ π
(

δ30
64

)

→ π
(

δ46
64

)

→ π
(

δ45
64

)

→

π
(

δ37
64

)

→ π
(

δ33
64

)

→ π
(

δ3
64

)

.

Equivalently,

δ1
8 → δ3

8 → δ4
8 → δ4

8 → δ6
8 → δ6

8 → δ5
8 → δ5

8 → δ1
8 .

Using its scalar form, the cycle of the system (5.53) with length 8 is shown in
Fig. 5.8.

It is easy to calculate that the transient period of (5.56) is 7. From Theorem 5.5
we know that the transient period of the network (5.53) is Tt = 7. That is, for any
initial state (A(t0),B(t0)), the trajectory will enter into the above cycle after seven
steps.

Remark 5.8 In this section, we do not consider the basin of an attractor (fixed point
or cycle) as discussed for first order Boolean networks. For higher order Boolean
networks, the basin of a cycle is meaningless because an initial point x(0) in the
original state space X may enter into more than one cycle.

To see this, we consider the following example. In Example 5.15 or Exam-
ple 5.12, there are three cycles, with lengths 2, 5, and 10. We consider only the
cycles with lengths 2 and 5. Consider the algebraic form (5.70). From initial states
δ60

64 and δ50
64 , we have

δ60
64 → δ45

64 →
{

δ49
64 → δ1

64 → δ4
64 → δ16

64 → δ61
64 → δ49

64

}

,

δ50
64 → δ5

64 → δ18
64 → δ7

64 →
{

δ26
64 → δ39

64 → δ26
64

}

.

For system (5.43), based on Lemma 5.4, from initial states π(δ60
64) and π(δ50

64),
we have

π
(

δ60
64

)

→ π
(

δ45
64

)

→
{

π
(

δ49
64

)

→ π
(

δ1
64

)

→ π
(

δ4
64

)

→ π
(

δ16
64

)

→ π
(

δ61
64

)

→ π
(

δ49
64

)}

,

π
(

δ50
64

)

→ π
(

δ5
64

)

→ π
(

δ18
64

)

→ π
(

δ7
64

)

→
{

π
(

δ26
64

)

→ π
(

δ39
64

)

→ π
(

δ26
64

)}

.

Equivalently, for system (5.43), from initial states δ4
4 , we have

δ4
4 → δ3

4 →
{

δ4
4 → δ1

4 → δ1
4 → δ1

4 → δ4
4 → δ4

4

}

,



5.6 Higher Order Boolean Networks 137

δ4
4 → δ1

4 → δ2
4 → δ1

4 →
{

δ2
4 → δ3

4 → δ2
4

}

.

That is, δ4
4 enters into two different cycles.

5.6.2 Second Algebraic Form of Higher Order Boolean Networks

Define

w(τ) := x(μτ)x(μτ + 1) · · ·x
(

μτ + (μ − 1)
)

= z(μτ). (5.71)

We then have

w(τ + 1) = z(μτ + μ) = Lμz(μτ) = Lμw(τ),

where L is obtained in (5.51). Therefore, we have

w(τ + 1) = Γ w(τ), (5.72)

where

Γ =
[

(Ed)n(I2μn ⊗ L0)Φµn

]µ
,

with initial value w(0) = ⋉
µ−1
i=0 x(i). We call (5.72) the second algebraic form of the

µth order Boolean network (5.40).
In fact, by rescheduling the sampling time, the second algebraic form provides

the state variable, w(τ), τ = 0,1, . . . , as a set of non-overlapping segments of x(t).
Hence, there is an obvious one-to-one correspondence between the trajectories of
(5.40) and the trajectories of (5.72).

Proposition 5.7 There is an obvious one-to-one correspondence between the tra-

jectories of (5.40) and the trajectories of its second algebraic form (5.72), given

by

w(τ) := x(µτ)x(µτ + 1) · · ·x
(

µτ + (µ − 1)
)

, τ = 0,1, . . . .

Therefore, it is easier to use the second algebraic form to calculate the trajecto-
ries of higher order Boolean networks. Unfortunately, for analyzing the topological
structures, it is not as convenient as the first algebraic form.

Proposition 5.8 Assume that the system (5.40) has a cycle of length α. Let the least

common multiple (lcm) of α and µ be β = lcm(α,µ). The system (5.72) then has a

cycle of length γ = β/µ.
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Proof Assume s > 0 is sufficiently large so that x((s − 1)µ + 1) is on the cycle of
length α. Since β is a multiply of α, we have that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x((s − 1)µ + 1) = x((s − 1)µ + 1 + β),

x((s − 1)µ + 2) = x((s − 1)µ + 2 + β),

...

x(sµ) = x(sµ + β).

(5.73)

Multiplying both sides of (5.73) yields

w(s) = w

(

s +
β

µ

)

= w(s + γ ). (5.74)

It is also easy to check that γ is the smallest positive integer which satisfies (5.74).
The conclusion follows. �

Example 5.17 Consider Example 5.14 again. From (5.56) we know that

z(t + 1) = Lz(t),

where L is the matrix given in (5.57).
If we set w(τ) = x(2τ)x(2τ + 1) = z(2τ), then the second algebraic form of

(5.52) is

w(τ + 1) = z(2τ + 2) = L2z(2τ) = L2w(τ) = Γ w(τ), (5.75)

where

Γ = δ64[20 22 28 30 3 1 12 10 3 1 42 46 33 37 42 46
28 30 28 30 11 9 12 10 11 9 42 46 41 45 42 46
20 22 28 30 3 1 12 10 3 1 42 46 33 37 42 46
28 30 28 30 11 9 12 10 11 9 42 46 41 45 42 46].

To find the cycles of (5.52), we check tr(Γ s), s = 1,2, . . . , and look for nontrivial
powers s. These can be easily calculated as

tr
(

Γ s
)

=
{

8, s = 4i, i = 1,2, . . . ,

0, others.

Using Theorem 5.3 we conclude that the system (5.75) has two cycles of length 4.
Next, we investigate the cycles. Consider Γ 4. It is easy to determine that its third

column is a diagonal nonzero column. We can then use it to generate one cycle of
length 4. Since Γ δ3

64 = δ28
64 , Γ δ28

64 = δ46
64 , Γ δ46

64 = δ37
64 , and Γ δ37

64 = δ3
64, we have a

cycle of length 4. Similarly, since δ20
64 is a diagonal nonzero column of Γ 4, it follows

that δ20
64 , Γ δ20

64 = δ30
64 , Γ δ30

64 = δ45
64 , Γ δ45

64 = δ33
64 , and Γ δ33

64 = δ20
64 form another cycle

of length 4.
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Using formula (4.4) to convert δ3
64, δ28

64 , δ46
64 , δ37

64 and δ20
64 , δ30

64 , δ45
64 , δ33

64 back to
binary form, we have

δ3
64 ∼ (1,1,1,1,0,1), δ20

64 ∼ (1,0,1,1,0,0),

δ28
64 ∼ (1,0,0,1,0,0), δ30

64 ∼ (1,0,0,0,1,0),

δ46
64 ∼ (0,1,0,0,1,0), δ45

64 ∼ (0,1,0,0,1,1),

δ37
64 ∼ (0,1,1,0,1,1), δ33

64 ∼ (0,1,1,1,1,1).

Thus, the two cycles of length 4 are

(1,1,1,1,0,1) → (1,0,0,1,0,0) → (0,1,0,0,1,0) → (0,1,1,0,1,1) →

(1,1,1,1,0,1) → (1,0,0,1,0,0) → (0,1,0,0,1,0) → (0,1,1,0,1,1) → ·· ·

and

(1,0,1,1,0,0) → (1,0,0,0,1,0) → (0,1,0,0,1,1) → (0,1,1,1,1,1) →

(1,0,1,1,0,0) → (1,0,0,0,1,0) → (0,1,0,0,1,1) → (0,1,1,1,1,1) → ·· · .

Comparing the set of cycles of system (5.52) with that of system (5.75), one
sees easily that there is no one-to-one correspondence between them. Of course, in
this simple case, we can calculate that w(τ) = z(2τ − 1) = A(2τ − 1)B(2τ − 1) ×

C(2τ − 1)A(2τ)B(2τ)C(2τ). For A(t),B(t),C(t), we have

(1,1,1) → (1,0,1) → (1,0,0) → (1,0,0) → (0,1,0) → (0,1,0) →

(0,1,1) → (0,1,1) → (1,1,1) → (1,0,1) → (1,0,0) → (1,0,0) →

(0,1,0) → (0,1,0) → (0,1,1) → (0,1,1) → ·· ·

and

(1,0,1) → (1,0,0) → (1,0,0) → (0,1,0) → (0,1,0) → (0,1,1) →

(0,1,1) → (1,1,1) → (1,0,1) → (1,0,0) → (1,0,0) → (0,1,0) →

(0,1,0) → (0,1,1) → (0,1,1) → (1,1,1) → ·· · .

It is easy to see that the two cycles of (5.75) become

(1,0,1) → (1,0,0) → (1,0,0) → (0,1,0) → (0,1,0) → (0,1,1) →

(0,1,1) → (1,1,1) → (1,0,1) → (1,0,0) → (1,0,0) → (0,1,0) →

(0,1,0) → (0,1,1) → (0,1,1) → (1,1,1) → ·· · ,

which is the only cycle of (5.52) of length 8.
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Chapter 6

Input-State Approach to Boolean Control
Networks

6.1 Boolean Control Networks

A Boolean control network is defined as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

(6.1)

and

yj (t) = hj

(

x1(t), x2(t), . . . , xn(t)
)

, j = 1,2, . . . , p, (6.2)

where fi : Dn+m → D , i = 1,2, . . . n, and hj : Dn → D , j = 1,2, . . . p, are logical
functions, xi ∈ D , i = 1,2, . . . n, are states, yj ∈ D , j = 1,2, . . . , p are outputs, and
uℓ ∈ D , ℓ = 1,2, . . .m, are inputs (or controls).

In this chapter we assume that the controls are logical variables satisfying certain
logical rules, called the input network, described as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u1(t + 1) = g1(u1(t), u2(t), . . . , um(t)),

u2(t + 1) = g2(u1(t), u2(t), . . . , um(t)),

...

um(t + 1) = gm(u1(t), u2(t), . . . , um(t)).

(6.3)

Let

u(t) = ⋉m
i=1ui(t),

x(t) = ⋉n
i=1xi(t),

y(t) = ⋉
p

i=1yi(t).
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Fig. 6.1 A control network

The Boolean control network (6.1)–(6.3) can then be expressed in algebraic form as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u(t + 1) = Gu(t), u ∈ Δ2m ,

x(t + 1) = Lu(t)x(t) := L(u)x(t), x ∈ Δ2n ,

y(t) = Hx(t), y ∈ Δ2p ,

(6.4)

where G ∈ L2m×2m , L ∈ L2n×2n+m , H ∈ L2p×2n , and L(u) = Lu(t) is the control-
dependent network transition matrix.

Example 6.1 Consider the system depicted in Fig. 6.1.
We consider u(t) = A(t) as the input and y(t) = E(t) as the output. The dynam-

ics of the Boolean network is then described as
⎧

⎪

⎨

⎪

⎩

B(t + 1) = u(t) → C(t),

C(t + 1) = B(t) ∨ D(t),

D(t + 1) = ¬B(t),

(6.5)

the control network is

u(t + 1) = ϕ
(

u(t)
)

, (6.6)

and the output is

y(t) = h
(

C(t)
)

. (6.7)

Set x(t) = B(t) ⋉ C(t) ⋉ D(t). Converting this system into its algebraic form,
we have

⎧

⎪

⎨

⎪

⎩

u(t + 1) = Gu(t),

x(t + 1) = Lu(t)x(t) = L(u(t))x(t),

y(t) = Hx(t),

(6.8)

where L(u(t)) = Lu(t) is the control-dependent network transition matrix. First, we
assume ϕ is an identity mapping, that is, u(t + 1) = u(t) is a constant control. L(u)

can then be easily calculated as

L(u) = Miu(I2 ⊗ Md)(I8 ⊗ Mn)W[2]W[2,8]Mr

=

{

δ8[2 2 6 6 1 3 5 7], u = δ1
2,

δ8[2 2 2 2 1 3 1 3], u = δ2
2 .



6.2 Semi-tensor Product Vector Space vs. Semi-tensor Product Space 143

Now, both δ1
2 and δ2

2 are fixed points of the control network. Using Theorems 5.2
and 5.3, it is easy to deduce that for u = δ1

2 , there is a fixed point for the system,
which is x = δ2

8 , or, equivalently, X = (1,1,0), and there is also a cycle of length 2,
which is (1,0,1) → (0,1,0) → (1,0,1). When u = δ2

2 , there is only a fixed point
X = (1,1,0).

In general, we would like to consider the structure of the Boolean control system
(6.1), where the controls are varying, according to its own dynamical evolution rule
(6.3). It is now clear that the system is evolving on an input-state “product space”.
We will need some preparatory results concerning this product space.

6.2 Semi-tensor Product Vector Space vs. Semi-tensor Product

Space

Definition 6.1 Let M and N be vector spaces of dimensions m and n, respectively,
with bases {α1, α2, . . . , αm} and {β1, β2, . . . , βn}, respectively. A vector space of
dimension mn is called a semi-tensor product (STP) vector space of M and N ,
denoted by Span{M ⋉ N}, if there exists a linear mapping ⋉ : M × N → W such
that

γ(i−1)n+j := αi ⋉ βj , i = 1, . . . ,m, j = 1, . . . , n,

form a basis of W .

Remark 6.1

1. We fix the bases α = {αi | i = 1, . . . ,m}, β = {βi | i = 1, . . . , n} and γ =

{αi ⋉ βj | i = 1, . . . ,m; j = 1, . . . , n} as the default bases for M , N , and
W = Span{M ⋉ N}, respectively.

If we assume that X =
∑m

i=1 aiαi , Y =
∑n

j=1 bjβj , then

X ⋉ Y =

m
∑

i=1

aiαi ⋉

n
∑

j=1

bjβj =

m
∑

i=1

n
∑

j=1

aibjαi ⋉ βj := cγ. (6.9)

We use a vector form for coefficients:

a = [a1 a2 · · · am]T,

b = [b1 b2 · · · bn]
T,

c = [c1 c2 · · · cmn]
T.

It is then easy to check that

c = a ⋉ b. (6.10)

Therefore, as in linear algebra we can ignore the bases and simply express vectors
as X = a, Y = b, and X ⋉ Y = a ⋉ b.
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2. Note that

M ⋉ N = {u ⋉ v |u ∈ M,v ∈ N}

is not a vector space. However, it contains a basis of W , which is why we use
W = Span{M ⋉ N}. We call M ⋉ N the semi-tensor product space.

3. To make Definition 6.1 meaningful, we have to show that it is independent of the
choice of bases for M and N .

First, let

α̃ =

⎡

⎢
⎢
⎢
⎣

α̃1

α̃2
...

α̃m

⎤

⎥
⎥
⎥
⎦

, β̃ =

⎡

⎢
⎢
⎢
⎣

β̃1

β̃2
...

β̃n

⎤

⎥
⎥
⎥
⎦

be alternate bases for M , N , respectively. We have to show that

γ̃ = α̃ ⋉ β̃ =

⎡

⎢
⎢
⎢
⎣

γ̃1

γ̃2
...

γ̃mn

⎤

⎥
⎥
⎥
⎦

is also a basis of W .
To see this let α̃ = Aα and β̃ = Bβ . Using (2.32) we have

γ̃ = α̃ ⋉ β̃ = (Aα) ⋉ (Bβ) = (A ⊗ B)α ⋉ β = (A ⊗ B)γ.

Since both A and B are nonsingular, so is A ⊗ B , which means that γ̃ is a basis
of W .

Next, we show that the product is independent of the choice of bases. Let
X = ãTα̃ = aTα and Y = b̃Tβ̃ = bTβ . We then have ãTAα = aTα. That is,

a = ATã.

Similarly, we have

b = BTb̃.

Using (6.9), we see that under two different product bases of W we have two
product values:

X ⋉ Y =
(

ã ⋉ b̃
)T

γ̃ , (6.11)

X ⋉ Y = (a ⋉ b)Tγ. (6.12)

We then have to show that (6.11) and (6.12) are equal. This is true because

X ⋉ Y = (a ⋉ b)Tγ =
[

ATã ⋉ BTb̃
]T

γ

=
[(

AT ⊗ BT)

ã ⋉ b̃
]T

γ
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=
[

ã ⋉ b̃
]T

(A ⊗ B)γ

=
[

ã ⋉ b̃
]T

γ̃ .

Consider ⋉ : M × N → W = Span{M ⋉ N}. It is easy to check that the image

⋉(M × N) := {uv |u ∈ M and v ∈ N} = M ⋉ N ⊂ W.

As mentioned earlier, in general, this is not an onto mapping. Naturally, we would
like to know whether or not ⋉ is a one-to-one mapping. It turns out that in general, it
is not. Let Z ∈ M ⋉N . If Z = 0 and XY = Z, where X ∈ M and Y ∈ N , then at least
one of X and Y should be zero. Assume Z �= 0. By definition, we can find X0 ∈ M

and Y0 ∈ N such that X0Y0 = Z. It is then easy to prove that all the solutions of
XY = Z are

{

X = X0/µ,

Y = µY0, µ �= 0.
(6.13)

Now, assume that M = ∆km and N = ∆kn . Note that these are not vector spaces.
We may consider them as topological spaces with the discrete topology. Thus, we
can also call M ⋉ N := {uv |u ∈ M and v ∈ N} the STP topological space of M

and N (sometimes just called the STP space of M and N ). It is easy to check the
following property.

Proposition 6.1 Let M = ∆km , N = ∆kn , and W = M ⋉ N .

1. The STP space is

W = ∆km+n .

2. Let w ∈ W . There then exist unique u ∈ M and v ∈ N such that w = uv.

We define the matrix

1p×q = Ip ⊗ 1T
q .

A straightforward computation then shows that we have the following formulas for
the decomposition.

Proposition 6.2 Let M = ∆km , N = ∆kn , and w ∈ W = M ⋉ N . Decompose w =

uv, where u ∈ M and v ∈ N . Then,

{

u = 1km×knw,

v = 1T
kmw.

(6.14)

We now give a simple example.
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Example 6.2 Let M = Δ3, N = Δ9, and W = M ⋉ N = Δ27. Then,

13×9 =

⎡

⎢
⎣

1T
9 0 0

0 1T
9 0

0 0 1T
9

⎤

⎥
⎦ .

Assume that w = δ13
27 ∈ W , u ∈ M , v ∈ N , and w = uv. It is then easy to calculate

that
{

u = 13×9w = δ2
3 = [0 1 0]T,

v = 1T
3 w = δ4

9 = [0 0 0 1 0 0 0 0 0]T.

6.3 Cycles in Input-State Space

Recall system (6.1) with input (6.3). Note that the state space is X ∈ Dn (equiva-
lently, in vector form, x ∈ X = Δ2n ) and the input space is U ∈ Dm (equivalently,
in vector form, u ∈ U = Δ2m ). The input-state STP space (sometimes just called
the input-state space) is U × X = Dm+n (or W = U ⋉ X = Δ2m+n ).

In this section we consider the structure of a cycle in the input-state space. Denote
by Cr

W
a cycle in the space W with length r . Assume that there is a cycle of length

k in the input-state space W , say,

Ck
W

: w(0) = w0 = u0x0 → w(1) = w1 = u1x1 → ·· · →

w(k) = wk = ukxk = w0.

First, it is easily seen that since u0 = uk , in the input space U , the sequence
{u0, u1, . . . , uk} contains, say, j folds of a cycle of length ℓ, where jℓ = k. Note
that “j folds of a cycle” means the cycle is repeated j times. Hence, uℓ = u0. Now,
let us see what conditions the {xi} in the cycle Ck

W
should satisfy. Define a network

transition matrix

Ψ := L(uℓ−1)L(uℓ−2) · · ·L(u1)L(u0). (6.15)

Starting from w0 = u0x0, the x component of the cycle Ck
W

is

x0 → x1 = L(u0)x0 → x2 = L(u1)L(u0)x0 → ·· · → xℓ = Ψ x0 →

xℓ+1 = L(u0)Ψ x0 → xℓ+2 = L(u1)L(u0)Ψ x0 → ·· · → x2ℓ = Ψ 2x0 → ·· · →

x(j−1)ℓ+1 = L(u0)Ψ
j−1x0 → x(j−1)ℓ+2 = L(u1)L(u0)Ψ

j−1x0 → ·· · →

xjℓ = Ψ jx0 = x0.

(6.16)
We conclude that x0 ∈ Δ2n is a fixed point of the equation

x(t + 1) = Ψ jx(t). (6.17)
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For convenience, we assume that j > 0 is the smallest positive integer which makes
x0 a fixed point of (6.17). Conversely, we assume that x0 ∈ Δ2n is a fixed point of
(6.17) and that u0 is a point on a cycle of the control space Cℓ

U
. It is then obvious

that we have the cycle (6.16).
Summarizing the above arguments yields the following theorem.

Theorem 6.1 Consider the Boolean control network (6.1)–(6.3). A set Ck
W

⊂

Δ2k(n+m) is a cycle in the input-state space W with length k if and only if for

any point w0 = u0x0 ∈ Ck
W

, there exists an ℓ ≤ k which is a factor of k such that

u0, u1 = Gu0, u2 = G2u0, . . . , uℓ = Gℓu0 = u0 is a cycle in the control space, and

x0 is a fixed point of equation (6.17) with j = k/ℓ.

Theorem 6.1 shows how to find all the cycles in the input-state space. First, we
can find cycles in the input space. If we pick a cycle in the input space, say Cℓ

U
,

then for each point u0 ∈ Cℓ
U

we can construct an auxiliary system

x(t + 1) = Ψ x(t). (6.18)

Suppose that Cℓ
U

= (u0, u1, . . . , uℓ = u0) is a cycle in U and C
j

X
= (x0, x1, . . . ,

xj = x0) is a cycle of (6.18). There is then a cycle Ck
W

, k = ℓj , in the input-state
STP space, which can be constructed as follows:

w0 = u0x0 → w1 = u1L(u0)x0 → w2 = u2L(u1)L(u0)x0 → ·· · →

wℓ = u0x1 → wℓ+1 = u1L(u0)x1 → wℓ+2 = u2L(u1)L(u0)x1 → ·· · →

...

w(j−1)ℓ = u0x(j−1) → w(j−1)ℓ+1 = u1L(u0)x(j−1) →

w(j−1)ℓ+2 = u2L(u1)L(u0)x(j−1) → ·· · →

wjℓ = u0xj = u0x0 = w0.

(6.19)

We call this Ck
W

the composed cycle of Cℓ
U

and C
j

X
, denoted by Ck

W
= Cℓ

U
◦C

j

X
.

Note that from a cycle Cℓ
U

we can choose any point as the starting point u0.

In equation (6.18) we then have different Ψ , which produce different C
j

X
. It is

reasonable to guess that the composed cycle Ck
W

= Cℓ
U

◦C
j

X
is independent of the

choice of u0. In fact, this is true.

Definition 6.2 Let Ck
W

= {w(t) | t = 0,1, . . . , k} be a cycle in the input-state space
and Cℓ

U
be a cycle in the input space. Splitting w(t) = u(t)x(t), we say that Ck

W
is

attached to Cℓ
U

at u0 if w(0) = u0x0 and

1. u(t) ∈ Cℓ
U

with u(0) = u0,
2. x(0) = x0 is a fixed point of (6.17) with j = k

ℓ
∈ Z+.
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Remark 6.2 According to Theorem 6.1, each cycle Ck
W

in the input-state space
must be attached to exactly one cycle in the input space. In fact, the following ar-
gument shows that Ck

W
attaches Cℓ

U
at u0 at moment t = 0 (where the attaching

point of Ck
W

is w0 = u0x0) and will attach it at u1 at moment t = 1 (where the at-
taching point of Ck

W
is w1 = u1x1), and so on. So, Ck

W
and Cℓ

U
are moving as two

assembled together gears.

Proposition 6.3 The sets of cycles in the input-state space which are attached to

any point of a given cycle Cℓ
U

are the same.

Proof Let Cℓ
U

= {u0, u1, . . . , uℓ = u0} be the cycle under consideration and let S0,
S1, . . . , Sℓ−1 be the sets of input-state cycles attached to u0, u1, . . . , uℓ−1, respec-
tively. First, we show that

S0 ⊂ Si, i = 1,2, . . . , ℓ − 1.

Let C0
k = {w0,w1, . . . ,wk} ∈ S0, i.e., it is a cycle attached to Cℓ

U
at u0. Using the

elements of a control cycle, we can define

Li := L(ui), i = 0,1, . . . , ℓ − 1.

We then construct ℓ system matrices:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ψ0 := Lℓ−1Lℓ−2 · · ·L0,

Ψ1 := L0Lℓ−1Lℓ−2 · · ·L1,
...

Ψℓ−1 := Lℓ−2Lℓ−3 · · ·L0Lℓ−1.

Correspondingly, we then construct ℓ auxiliary systems:

x(t + 1) = Ψix(t), i = 0,1, . . . , ℓ − 1. (6.20)

Since w0 = u0x0 ∈ Ck
W

∈ S0, it follows that x0 satisfies

(Ψ0)
jx0 = x0. (6.21)

Note that w(1) := w1 = u1L0x0. To see that w1 ∈ C1
k ∈ S1 we have to show that

L0x0 satisfies

(Ψ1)
jL0x0 = L0x0. (6.22)

This is true because

L0x0 = L0(Ψ0)
jx0

= L0 (Lℓ−1 · · ·L0)
j x0

= L0 (Lℓ−1 · · ·L0) · · · (Lℓ−1 · · ·L0)
︸ ︷︷ ︸

j

x0
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Fig. 6.2 The structure of a
cycle in the input-state space

= (L0Lℓ−1 · · ·L1) · · · (L0Lℓ−1 · · ·L1)
︸ ︷︷ ︸

j

L0x0

= (L0Lℓ−1 · · ·L1)
jL0x0

= Ψ
j

1 L0x0.

Similarly, we can show that

usLs−1Ls−2 · · ·L0x0 ∈ Cs
k ∈ Ss, s = 1,2, . . . , ℓ − 1.

Note that, precisely speaking, (6.22) can only ensure that there is a cycle of length
ℓ× j ′ attached to the cycle at u1, where j ′ is a factor of j . However, since the above
definition of {Ψi} is in a rotating form, starting from a point w0 = u1x

′
0, the same

argument shows j ≤ j ′. Therefore, j ′ = j .
The same argument shows that

Sj ⊂ Si, 0 ≤ i �= j ≤ ℓ − 1.

We conclude that

Sj = Si, 0 ≤ i, j ≤ ℓ − 1. �

Remark 6.3 To see the rolling process, assume C3
U

= {U,V,W }. An attached cycle
in the input-state space is then depicted in Fig. 6.2, where the dashed-line cycles are
duplicated ones.

Remark 6.4 From Proposition 6.3 we see that cycles in the input-state space of a
Boolean control network can be found in the following way:
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1. Find all the cycles in the input space, say, C1
U

, . . . ,C
p

U
. We call such a cycle a

kernel cycle.
2. For each cycle Ci

U
in the input space, choosing any point as starting point of the

cycle, say, u0, u1, . . . , uℓ−1, construct a network transition matrix (6.15) and then
find all the cycles of the system (6.18), say, C

i,1
X

, . . . ,C
i,qi

X
. The set of overall

composed cycles in the input-state space are then

Ci
U

◦ C
i,j

X
, i = 1,2, . . . , p, j = 1,2, . . . , qi .

Remark 6.5

1. Note that C
i,j

X
are not real cycles of the original system unless X is also an

invariant subspace of W .
2. It is easy to see that Cℓ

U
has the group structure of Zℓ and Ck

W
has the product

group structure of Zℓ × Zj , where j = k/ℓ.

Example 6.3 We revisit Example 6.1. Changing the control to

u(t + 1) = ¬u(t),

we now have an obvious kernel cycle, 0 → 1 → 0. We can then easily calculate that

L(0) = δ8[2 2 2 2 1 3 1 3],

L(1) = δ8[2 2 6 6 1 3 5 7].

Hence, we consider an auxiliary system

x(t + 1) = Ψ x(t), (6.23)

where

Ψ = L(1)L(0) = δ8[2 2 2 2 2 6 2 6].

A routine calculation shows that a nontrivial power of Ψ is 1 and that
tr(Ψ 1) = 2. Thus, there are two fixed points, δ1

8 ∼ (1,1,0) and δ6
8 ∼ (0,1,0). The

overall composed cycles are depicted in Fig. 6.3, where the dashed lines show the
duplicated cycles. Overall, we have a cycle in the input space and two product cycles
of length 2 in the input-state space.

Finally, we consider transient periods of product cycles. Assume that C
li
U

, i =

1, . . . , p, are the cycles of length li in the control space. We can construct Ψi and
find the smallest r i such that

(Ψi)
r i

= (Ψi)
r i+Ti .

It is clear that if a point will eventually enter the cycle attached to this cycle, then
after r i (composed) steps the second component will enter the rotating cycle. Note
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Fig. 6.3 Cycles of a control
system

that Ψi is a composed mapping, consisting of ℓi steps. Taking the first part (Cℓ
U

)
into consideration, it is easily seen that the transient period for cycles attached to
C

ℓi

U
, denoted by Tt (C

ℓi

U
), satisfies

max
{

r0, ℓi

(

r i − 1
)}

≤ Tt

(

Ci
u

)

≤ max
{

r0, ℓi

(

r i
)}

, i = 1, . . . , p. (6.24)

Define

Vi := max
{

r0, ℓi

(

r i − 1
)}

,

Ui := max
{

r0, ℓi

(

r i
)}

, i = 1, . . . , p.

The following is then obvious.

Proposition 6.4 The transient period of the control system satisfies

max
1≤i≤p

{Vi} < Tt ≤ max
1≤i≤p

{Ui}. (6.25)

6.4 Cascaded Boolean Networks

The input-state structure proposed in previous sections is very useful for analyzing
the structure of Boolean networks with cascading structure.

Definition 6.3 Consider the system (5.1) [or the system (6.1)]. Let X = Δ2n be the
state space. V = Δ2k is said to be a k-dimensional subspace of X if there is a space
V c = Δ2n−k , called the complement space (or, simply, complement) of V , such that

V ⋉ V c = X . (6.26)
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Fig. 6.4 Invariant subspaces

Remark 6.6 Since the state space X is not a vector space, the subspace can only be
understood as a topological subspace (with discrete topology). Note that not every
subset Δ2k can be a k-dimensional subspace. For instance, let X be generated by
two logical variables, x1 and x2, and consider z = x1 ∧ x2. This can take values
{0,1}. Let Z be a subspace generated by z. This is not a 1-dimensional subspace of
X because there cannot be found a Z c such that (6.26) holds. A general study of
the state space and subspaces will be presented in Chap. 8.

Definition 6.4 Consider the system (5.1), where x ∈ X = Δ2n . A k-dimensional
subspace V = Δ2k is called an invariant subspace if x0 ∈ V implies that x(t, x0) ∈

V , ∀ t > 0.

From the last section it is easily seen that the input space U is an invariant
subspace of the input-state STP space W . Conversely, an invariant subspace can
also be considered as an input subspace.

To test whether a subspace is an invariant subspace, we can use either a network
graph or a network equation. We will use some examples to illustrate this. A more
general definition and some verifiable conditions will be discussed in the next chap-
ter.

Let {xi1, . . . , xis } be a subset of the vertices of a network. Define a subspace V =

Span{xi1, . . . , xis }. V ⊂ X is the subspace describing the states of {xi1 , . . . , xis }.
Note that “Span” is not clearly defined here. In Chap. 8 we will see that “Span”

is the same as “Fℓ{· · · }”, which means “the set of logical functions of {· · · }”.

Example 6.4 Consider the network graph shown in Fig. 6.4. It is easily seen that
V1 = Span{A} and V2 = Span{A,B,C,D} are two invariant subspaces. Denote by
X the total space. We then have the nested invariant subspaces

V1 ⊂ V2 ⊂ X .

Note that V = Span{A,B,C} is not an invariant subspace because it is affected
by D. (For readers familiar with graph theory, it is easy to see that a subspace is
invariant if and only if the subgraph generated by the set of vertices with the inherent
edges between them has in-degree zero.)

The structure of nested invariant subspaces can also be determined from systems
of equations. Consider the following example.
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Example 6.5 Consider the following system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A1(t + 1) = f 1
1 (A1(t), . . . ,Aℓ(t)),

...

Aℓ(t + 1) = f 1
ℓ (A1(t), . . . ,Aℓ(t)),

B1(t + 1) = f 2
1 (A1(t), . . . ,Aℓ(t),B1(t), . . . ,Bm(t)),

...

Bm(t + 1) = f 2
m(A1(t), . . . ,Aℓ(t),B1(t), . . . ,Bm(t)),

C1(t + 1) = f 3
1 (A1(t), . . . ,Aℓ(t),B1(t), . . . ,Bm(t),C1(t), . . . ,Cn(t)),

...

Cn(t + 1) = f 3
n (A1(t), . . . ,Aℓ(t),B1(t), . . . ,Bm(t),C1(t), . . . ,Cn(t)).

(6.27)
Here we have at least two nested invariant subspaces:

V1 = Span{A1, . . . ,Aℓ} = Dℓ,

V2 = Span{A1, . . . ,Aℓ,B1, . . . ,Bm} = Dℓ+m,

V1 ⊂ V2 ⊂ X = Dℓ+m+n.

We consider a cycle, say U3 ∈ X . As discussed in the previous section, it must
attach to a cycle, say U2 ∈ V2. Similarly, U2 must attach to a cycle, say U1 ∈ V1.
Now, in Fig. 6.5 we assume that cycles U2

1 ,U2
2 ∈ V2 are attached to U1 ∈ V1, that

U3
1 ,U3

2 ∈ X are attached to U2
1 , and that U3

3 ,U3
4 ∈ X are attached to U2

2 . We call
such connected cycles chained gears.

Chained gears have the following properties:

• The gears in each chain, such as U1 → U2
1 → U3

1 , have multiple perimeters. Here
the perimeter of a cycle means the number of states in the cycle. For instance, the
perimeter of U3

1 is a multiple of the perimeter of U2
1 , and the perimeter of U2

1 is
a multiple of the perimeter of U1.

• In each chain the smaller gears affect the larger gears, and the larger gears do not
affect the smaller gears.

• Smallest gears act as leading gears, the other gears will follow them.

Kauffman claimed that in a cellular network the tiny attractors decide the vast
order [4]. The “rolling gear” structure may explain why small cycles determine the
order of the whole network. We are led to speculate that the structure of “rolling
gear” may account for the “hidden order” in human lives!

Finally, you may ask why there should be invariant subspaces. In fact, if a large
or, potentially, huge network has small cycles, then the small cycles with the states in
their regions of attraction form small invariant subspaces. If there are no such small
cycles, then the system is in chaos [4]! Therefore, an ordered large-scale network
should have the structure of nested invariant subspaces.
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Fig. 6.5 Structure of cycles
in a cascaded Boolean
network

Table 6.1 Truth table of
(6.28) f1 f2 f3 f4 f5

1 1 1 1 1

1 1 0 1 0

1 1 1 1 0

0 0 1 0 0

1 0 0 1 0

1 1 1 0 0

1 1 1 0 0

0 0 0 0 0

j1 5 3 3 3 5

j2 2 5 1 4 4

j3 4 4 5 4 1

6.5 Two Illustrative Examples

The first example is from [5]. It serves two purposes: (1) to illustrate the standard
algorithm, and (2) to demonstrate that the “small cycles” play a decisive role in
determining the overall structure of the network.

Example 6.6 Consider a system with five nodes:

Ai = fi(Aj1 ,Aj2 ,Aj3), i = 1,2,3,4,5, (6.28)

where the logical functions fi , i = 1, . . . ,5, are determined by Table 6.1.
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The algebraic form of system (6.28) is then
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = δ2[1 1 1 2 1 1 1 2]E(t)B(t)D(t),

B(t + 1) = δ2[1 1 1 2 2 1 1 2]C(t)E(t)D(t),

C(t + 1) = δ2[1 2 1 1 2 1 1 2]C(t)A(t)E(t),

D(t + 1) = δ2[1 1 1 2 1 2 2 2]C(t)D(t)D(t),

E(t + 1) = δ2[1 2 2 2 2 2 2 2]E(t)D(t)A(t).

(6.29)

To obtain the structure matrices, note that the first row of the structure matrix of
fi is exactly the same as its values in the truth table.

To convert the algebraic form back to logical form, mod 2 algebra is more con-
venient. Using mod 2 algebra, the system (6.28) can be expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = B(t) + D(t) + B(t)D(t),

B(t + 1) = D(t) + E(t) + C(t)D(t)E(t),

C(t + 1) = A(t) + C(t) + E(t) + C(t)E(t) + A(t)C(t)E(t),

D(t + 1) = D(t),

E(t + 1) = A(t)D(t)E(t).

(6.30)

In fact, the mod 2 product A · B = A ∧ B , and the mod 2 addition A + B = A∨̄B .
Hence,

M× = Mc = δ2[1 2 2 2], M+ = Mp = δ2[2 1 1 2].

If we let x(t) = A(t)B(t)C(t)D(t)E(t), then

x(t + 1) = M2
pBDMcBDM2

pDEM2
c CDEM4

pACEMcCEM2
c ACEDM2

c ADE.

Now, there is a standard procedure to determine L. In fact,

L = δ32[1 6 4 16 13 2 8 12 1 6 20 32 13 2 24 28
2 2 4 12 10 6 4 16 2 2 20 28 10 6 20 32].

It is then easy to check that the nontrivial powers are 1 and 2, and that

tr(L) = 4, tr
(

L2) = 6.

We conclude that there are four fixed points and one cycle of length 2. Using Theo-
rem 5.2, it is easily seen that the fixed points are

E1 = (1,1,1,1,1), E2 = (1,0,0,1,1),

E3 = (0,0,1,0,0), E4 = (0,0,0,0,0),

and the cycle of length 2 is

(1,1,1,1,0) → (1,1,0,1,0) → (1,1,1,1,0).

The smallest repeating Lk is L3 = L5, so the transient period Tt = 3.
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Finally, we use Proposition 5.5 to obtain the overall picture of the state space.

• Starting from E1 = (1,1,1,1,1), we calculate its parent states, its grandparent
states, and so on. We have the following retrieval process and results. Note that
in the following, [x] is used to show that x is already on the cycle and can thus
be removed from the retrieving chain:

E1 = (1,1,1,1,1) ∼ δ1
32 ⇒

[

L1 → δ1
32

]

,L9 → δ9
32 ∼ (1,0,1,1,1) ⇒ ∅.

•

E2 = (1,0,0,1,1) ∼ δ13
32 ⇒

[

L13 → δ13
32

]

,L5 → δ5
32 ∼ (1,1,0,1,1) ⇒ ∅.

•

E3 = (0,0,1,0,0) ∼ δ28
32 ⇒ [L28 → δ28

32],L16 → δ16
32 ∼ (1,0,0,0,0) ⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L4 → δ4
32 ∼ (1,1,1,0,0) ⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L3 → δ3
32 ∼ (1,1,1,0,1) ⇒ ∅,

L19 → δ19
32 ∼ (0,1,1,0,1) ⇒ ∅,

L23 → δ23
32 ∼ (0,1,0,0,1) ⇒ ∅,

L24 → δ24
32 ∼ (0,1,0,0,0) ⇒ L15 → δ15

32 ∼ (1,0,0,0,1) ⇒ ∅.

•

E4 = (0,0,0,0,0) ∼ δ32
32 ⇒ [L32 → δ32

32],L12 → δ12
32 ∼ (1,0,1,0,0) ⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L20 → δ20
32 ∼ (0,1,1,0,0) ⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L11 → δ11
32 ∼ (1,0,1,0,1) ⇒ ∅,

L27 → δ27
32 ∼ (0,0,1,0,1) ⇒ ∅,

L31 → δ31
32 ∼ (0,0,0,0,1) ⇒ ∅,

L8 → δ8
32 ∼ (1,1,0,0,0) ⇒ L7 → δ7

32 ∼ (1,1,0,0,1) ⇒ ∅.

• Next, we consider two points on the cycle: C1 = (1,1,0,1,0) and C2 =

(1,1,1,1,0). For C1:

C1 = 11010 ∼ δ6
32 ⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[L2 → δ2
32],

L10 → δ10
32 ∼ (1,0,1,1,0) ⇒

⎧

⎨

⎩

L21 → δ21
32 ∼ (0,1,0,1,1) ⇒ ∅,

L29 → δ29
32 ∼ (0,0,0,1,1) ⇒ ∅,

L22 → δ22
32 ∼ (0,1,0,1,0) ⇒ ∅,

L31 → δ31
32 ∼ (0,0,0,1,0) ⇒ ∅.
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Fig. 6.6 The state-transition diagram

• And for C2, we have

C2 = (1,1,1,1,0) ∼ δ2
32 ⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[L6 → δ6
32],

L14 → δ14
32 ∼ (1,1,0,1,0) ⇒ ∅,

L17 → δ17
32 ∼ (0,1,1,1,1) ⇒ ∅,

L18 → δ18
32 ∼ (0,1,1,1,0) ⇒ ∅,

L25 → δ25
32 ∼ (0,0,1,1,1) ⇒ ∅,

L26 → δ26
32 ∼ (0,0,1,1,0) ⇒ ∅.

The state transition diagram in Fig. 6.6 from [5] verifies our conclusion.
The significance of this example lies in the following observation: There is a

smallest “cycle”, the fixed point D. From Fig. 6.6 it is easily seen that for D = 0 and
D = 1 the topological structures of the state-space graphs are completely different.
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Fig. 6.7 Gene and protein
signaling activity patterns

Table 6.2 Logical relations

Network element W A B C D E

Input 1 U U A H E D

Input 2 V G C W C F

Boolean function And Not if Not if Implicate Implicate Not if

Network element F G H

Input 1 B F H

Input 2 D E G

Boolean function Nand Not if Not if

Next, we analyze a system which is used to simulate gene and protein signaling
activity patterns [2].

Example 6.7 The network depicted in Fig. 6.7 and Table 6.2 is presented in [2] to
simulate gene and protein signaling activity patterns within a small model Boolean
network. For notational brevity, we use A for “Erk”, B for “cyclin D1”, C for “p27”,
D for “cyclin E”, E for “E2F”, F for “pRb”, G for “S phase genes”, U for “growth
factors”, V for “cell shape (spreading)”, and W for “X”. We refer to [2] for the
biological meanings of this notation.

The logical equation is then expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = ¬(U(t) → G(t)),

B(t + 1) = ¬(A(t) → C(t)),

C(t + 1) = H(t) → W(t),

D(t + 1) = E(t) → C(t),

E(t + 1) = ¬(D(t) → F(t)),

F (t + 1) = ¬(B(t) ∧ D(t)),

G(t + 1) = ¬(F (t) → E(t)),

H(t + 1) = ¬(H(t) → G(t)).

(6.31)
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As for the control network, we have

⎧

⎪

⎨

⎪

⎩

U(t + 1) = g1(U(t)),

V (t + 1) = g2(V (t)),

W(t + 1) = g3(U(t),V (t)).

(6.32)

In vector form, we have the componentwise system of algebraic equations

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = MnMiU(t)G(t),

B(t + 1) = MnMiA(t)C(t),

C(t + 1) = MiH(t)W(t),

D(t + 1) = MiE(t)C(t),

E(t + 1) = MnMiD(t)F (t),

F (t + 1) = MnMcB(t)D(t),

G(t + 1) = MnMiF(t)E(t),

H(t + 1) = MnMiH(t)G(t).

(6.33)

As in [2], we first set the control network as

⎧

⎪

⎨

⎪

⎩

U(t + 1) = σ1(U(t)),

V (t + 1) = σ2(V (t)),

W(t + 1) = U(t) ∧ V (t).

(6.34)

Case 1: U(0) = V (0) = δ1
2 . In this case σ1 = σ2 = identity, i.e., U(t) and V (t)

are equal to the constant δ1
2 .

Plugging these into (6.33) yields the system transition matrix

L
(

U(t),W(t)
)

= L
(

δ1
2, δ1

2

)

.

In calculation, a control can be treated as a logical operator, so the procedure for
calculating the network transition matrix remains applicable. It is then easy to obtain
the following results:

• The only attractor is a fixed point, (0,0,1,1,0,1,1,0).
• L10 = L11 and the transient period is Tt = 10.

Case 2: U(0) = δ1
2 and V (0) = δ2

2 . In this case we arrive at the same conclusion
as above.

Case 3: U(0) = δ2
2 . In this case we always have W(t) = δ2

2 , t ≥ 1. The conclusion
is then:

• The only attractor is a fixed point, (0,0,1,1,0,1,1,0).
• L6 = L7 and the transient period is Tt = 6. [Taking W(0) into consideration, Tt

should be 7.]



160 6 Input-State Approach to Boolean Control Networks

Fig. 6.8 Chained cycles

Next, we assume σ1 = σ2 = ¬, and the control network is then

⎧

⎪

⎨

⎪

⎩

U(t + 1) = ¬U(t),

V (t + 1) = ¬V (t),

W(t + 1) = V (t) ∧ W(t).

(6.35)

We then have two sequences of nested invariant subspaces which we consider sepa-
rately. Consider the first chain, which is

V1 = Span{U} ⊂ V2 = Span{A,B,C,D,E,F,G,H,U,V,W }.

In V1 we have an obvious cycle: (0) → (1) → (0). For U = 0 a routine computation
shows that there is only a cycle of length 2, which is

(0,0,1,1,0,1,1,0,1,0) → (0,0,1,1,0,1,1,0,0,0) → (0,0,1,1,0,1,1,0,1,0).

L(0) is a 1024 × 1024 matrix. We omit this here, but we can calculate that L(0)7 =

L(0)9 and Tt = 7. For U = 1, we have the same cycle, and L(1)11 = L(1)13 and
Tt = 11.

Finally, let Ψ = L(1)L(0). Then, Ψ has only one fixed point, (0,0,1,1,0,1,1,0,
1,0). We conclude that, overall, in U space we have only one cycle, 0 → 1 → 0,
and in the whole space we have only one product cycle,

0 × (0,0,1,1,0,1,1,0,1,0) → 1 × (0,0,1,1,0,1,1,0,0,0) →

0 × (0,0,1,1,0,1,1,0,1,0).

These are depicted in Fig. 6.8(a), where I − S is the overall input-state space.
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Next, we consider the second chain, which is

V1 = Span{V } ⊂ V2 = Span{V,W } ⊂ V3

= Span{A,B,C,D,E,F,G,H,U,V,W }.

First, there is a trivial cycle in V space: 0 → 1 → 0. Then, in V × W space, it is
easy to calculate that

L(0) = δ2[2 2], L(1) = δ2[1 2].

Therefore,

Ψ = L(1)L(0) = δ2[2 2],

which has unique fixed point δ2
2 ∼ 0. We conclude that in V × W space we

have only one cycle, 0 × 0 and 1 × 0. Finally, we consider the space V × W ×

ABCDEFGHU . Calculating Ψ = L(0 × 0)L(1 × 0), it is easy to show that
the only cycle is a fixed point: (0,0,1,1,0,1,1,0,1)T. We conclude that there
is only one cycle of length 2 in the overall product space, which is 0 × 0 ×

(0,0,1,1,0,1,1,0,1)T → 1×0× (0,0,1,1,0,1,1,0,0)T. Cycles in different lev-
els are depicted in Fig. 6.8(b).
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Chapter 7

Model Construction via Observed Data

7.1 Reconstructing Networks

Recall that the dynamics of a Boolean network can be expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t)),

...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t)).

(7.1)

In vector form we have

x(t) = ⋉n
i=1xi(t)

and assume that the structure matrices of fi , i = 1, . . . , n, are Mi ∈ L2×2n , i =

1, . . . , n. Then, (7.1) can be converted to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = M1x(t),

x2(t + 1) = M2x(t),

...

xn(t + 1) = Mnx(t).

(7.2)

The system (7.2) is called the componentwise algebraic form of (7.1). Multiplying
the equations in (7.2) together yields a linear representation of (7.1) as

x(t + 1) = Lx(t), (7.3)

where L ∈ L2n×2n is called the network transition matrix. Equation (7.3) is called
the algebraic form of (7.1).

It was proven in Chap. 5 that (7.1), (7.2), and (7.3) are equivalent. The advantages
of (7.1) are that it provides clear logical relations and that it is easy to realize via
circuitry. The advantage of using (7.3) is that it is a conventional linear discrete-time

D. Cheng et al., Analysis and Control of Boolean Networks,
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dynamical system, so many tools developed in control theory can be used to design
and analyze the network.

Chapter 5 provided a standard procedure to calculate (7.3) from (7.1) via (7.2).
It consists of an algorithm, which is used to calculate Mi from its logical form, and
a formula, which calculates the transition matrix by using structure matrices Mi ,
i = 1, . . . , n. A direct computation is also convenient to use. For the purposes of
review, we give a simple example.

Example 7.1 Consider the following Boolean network (see Fig. 7.1)
Its dynamics can be described as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = x1(t) → x4(t),

x2(t + 1) = ¬x1(t),

x3(t + 1) = x2(t) ∧ x4(t),

x4(t + 1) = x2(t) ↔ x3(t).

(7.4)

We first express the system (7.4) in its componentwise algebraic form as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = Mix1(t)x4(t) = δ2[1 2 1 1]x1(t)x4(t),

x2(t + 1) = Mnx1(t) = δ2[2 1]x1(t),

x3(t + 1) = Mcx2(t)x4(t) = δ2[1 2 2 2]x2(t)x4(t),

x4(t + 1) = Mex2(t)x3(t) = δ2[1 2 2 1]x2(t)x3(t).

(7.5)

Setting x = ⋉4
i=1xi(t), the system (7.4) can be expressed in algebraic form as

x(t + 1) = Mix1(t)x4(t)Mnx1(t)Mcx2(t)x4(t)Mex2(t)x3(t)

= Mi(I4 ⊗ Mn)x1(t)x4(t)x1(t)Mcx2(t)x4(t)Mex2(t)x3(t)

...

= Lx(t), (7.6)

where

L = δ16[5 15 6 16 8 16 7 15 1 3 2 4 4 4 3 3]. (7.7)

At this point it is pertinent to ask how to reconstruct the Boolean network from
its network transition matrix L. This is important because we will work on a state

Fig. 7.1 Network graph of
(7.4)
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space and try to design a network transition matrix. We will then have to convert it
back to the network and give its logical relations for design purposes.

Consider a Boolean network with input–output structure. From a set of input–
output data we may identify the network transition matrix L. Particularly, in the case
of large or, potentially, huge networks, we may find a matrix L to approximate the
original system or a particular input–output functional part of the original network.
We refer to Chap. 17 for the investigation of Boolean control networks. Since L is
the coefficient matrix of a standard discrete-time linear system, it seems that many
known methods can be used for this purpose. This makes the deduction from L of
the dynamics of network variables more important.

Assuming that L is known, we will try to retrieve (7.1) and the network. First,
we have to reconstruct the structure matrices Mi of the logical operators fi . We
define a set of logical matrices Sn

i ∈ L2×2n , called retrievers, in the following way.
Divide the set of columns, labeled 1,2, . . . ,2n, into 2i equal-sized segments, where
1 ≤ i ≤ n. Then, put δ1

2 into the first segment of columns, put δ2
2 into the second

segment of columns, then δ1
2 again, and so on, continuing this process to define Sn

i .
In this way we have defined

Sn
1 = δ2[1 · · · 1

︸ ︷︷ ︸

2n−1

2 · · · 2
︸ ︷︷ ︸

2n−1

],

Sn
2 = δ2[1 · · · 1

︸ ︷︷ ︸

2n−2

2 · · · 2
︸ ︷︷ ︸

2n−2

1 · · · 1
︸ ︷︷ ︸

2n−2

2 · · · 2
︸ ︷︷ ︸

2n−2

],

...

Sn
n = δ2[ 1 2

︸︷︷︸
· · · 1 2

︸︷︷︸
︸ ︷︷ ︸

2n−1

].

(7.8)

The following result shows how to calculate Mi, i = 1, . . . , n, from L.

Theorem 7.1 The structure matrices Mi of fi can be retrieved as follows:

Mi = Sn
i L, i = 1,2, . . . , n. (7.9)

To prove Theorem 7.1, we need the following lemma.

Lemma 7.1

Sn
k = Sn

1 W[2k−1,2], k = 1,2, . . . , n. (7.10)

Proof First, note that Sn
k can be expressed as

Sn
k = δ2

[

Γ n
k

]

,
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where

Γ n
k = 1T

2k−1 ⊗ [1 · · · 1
︸ ︷︷ ︸

2n−k

2 · · · 2
︸ ︷︷ ︸

2n−k

].

We now prove (7.10) by mathematical induction. For k = 1, the right-hand side
of (7.10) is

RHS = Sn
1 W[1,2] = Sn

1 I2 = Sn
1 ,

so (7.10) is true.
Now, assume (7.10) is true for k = j < n. For k = j + 1, using (2.52), we then

have

RHS = Sn
1 W[2j ,2]

= Sn
1 (W[2j−1,2] ⊗ I2)(I2j−1 ⊗ W[2])

= Sn
j (I2j−1 ⊗ W[2])

= δ2
[

1T
2j−1 ⊗ [1 · · · 1

︸ ︷︷ ︸

2n−j

2 · · · 2
︸ ︷︷ ︸

2n−j

]
]

(I2j−1 ⊗ W[2])

= δ2
[

1T
2j−1 ⊗ I2j−1

]

⊗
(

δ2[1 · · · 1
︸ ︷︷ ︸

2n−j

2 · · · 2
︸ ︷︷ ︸

2n−j

]W[2]

)

= δ2
[

1T
2j−1

]

⊗ δ2[1 · · · 1
︸ ︷︷ ︸

2n−j−1

2 · · · 2
︸ ︷︷ ︸

2n−j−1

1 · · · 1
︸ ︷︷ ︸

2n−j−1

2 · · · 2
︸ ︷︷ ︸

2n−j−1

]

= δ2
[

1T
2j−1

]

δ2[1 · · · 1
︸ ︷︷ ︸

2n−j−1

2 · · · 2
︸ ︷︷ ︸

2n−j−1

]

= Sn
j+1. (7.11)

�

Proof of Theorem 7.1 If x = ⋉n
i=1xi , where xi ∈ ∆, then ⋉n

i=2xi ∈ ∆2n−1 . We there-

fore denote it as ⋉n
i=2xi = δ

j

2n−1 .

Assume x1 = δ1
2 . Then,

x = δ1
2δ

j

2n−1 =

[

δ
j

2n−1

0

]

.

A straightforward computation shows that

Sn
1 x = x1. (7.12)

Next, we also have

x = W[2,2k−1]xk ⋉i �=k xi
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or

W[2,2k−1]x = xk ⋉i �=k xi .

Using (7.12), we have

Sn
1 W[2,2k−1]x = xk.

Using Lemma 7.1, the conclusion follows. �

Note that the number of neighborhood nodes of node i (equivalently, edges, start-
ing from other nodes, toward i), called the in-degree of node i, is usually much
smaller than n. We have to determine which node is connected to i. We have the
following result.

Proposition 7.1 Consider the system (7.2). If Mi satisfies

MiW[2,2j−1](Mn − I2) = 0, (7.13)

then j is not in the neighborhood of i. In other words, the edge j → i does not exist.
Moreover, the equation of Ai can be replaced by

x(t + 1) = M ′
ix1(t) · · ·xj−1(t)xj+1(t) · · ·xn(t), (7.14)

where

M ′
i = MiW[2,2j−1]δ

1
2 .

Proof Note that we can rewrite the ith equation of (7.2) as

xi(t + 1) = MiW[2,2j−1]xj (t)x1(t) · · ·xj−1(t)xj+1(t) · · ·xn(t).

We now replace xj (t) by ¬xj (t). If this does not affect the overall structure matrix,
it means that xi(t + 1) is independent of xj (t). The invariance of replacement is il-
lustrated by (7.13). As for (7.14), since xj (t) does not affect xi(t +1), we can simply
set xj (t) = δ1

2 [equivalently, we could set xj (t) = δ2
2 ] to simplify the expression. �

Remark 7.1 Repeating the verification of (7.13), all the fabricated variables can be
removed from the equation and we can finally obtain the network expression with
clean logical dynamics. This is called a clean form.

We now illustrate this with an example.

Example 7.2 Assume we have a Boolean network with five nodes and that its net-
work matrix L ∈ L32×32 is

L = δ32[3 6 7 6 19 22 31 30 19 22 23 22 3 6 15 14
3 5 7 5 19 21 31 29 19 21 23 21 3 5 15 13].
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Using the retriever S5
i , we have

Mi = S5
i L, i = 1,2,3,4,5,

which are

M1 = δ2[1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1],

M2 = δ2[1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2],

M3 = δ2[1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2],

M4 = δ2[2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1],

M5 = δ2[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].

Next, considering M1, it is easy to verify that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M1Mn = M1,

M1W[2]Mn �= M1,

M1W[2,22]Mn �= M1,

M1W[2,23]Mn = M1,

M1W[2,24]Mn = M1.

We conclude that x1(t + 1) depends only on x2(t) and x3(t). We can then remove
the fabricated variables x1(t), x4(t), and x5(t) from the first equation

x1(t + 1) = M1x1(t)x2(t)x3(t)x4(t)x5(t) (7.15)

by replacing x1(t), x4(t) and x5(t) in (7.15) with any constant logical values. If, say,
we let x1(t) = x4(t) = x5(t) = δ1

2 , then we get

x1(t + 1) = M1δ
1
2x2(t)x3(t)δ

1
2δ1

2

= M1W[4,8](δ
1
2)3x2(t)x3(t)

= δ2[1 2 2 1]x2(t)x3(t). (7.16)

We can similarly remove the fabricated variables from other equations. Skipping
the mechanical verification process, we finally have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = δ2[1 2 2 1]x2(t)x3(t),

x2(t + 1) = δ2[1 1 1 2]x3(t)x4(t),

x3(t + 1) = δ2[1 2 2 2]x4(t)x5(t),

x4(t + 1) = δ2[2 1]x5(t),

x5(t + 1) = δ2[1 2 1 1]x1(t)x5(t).

(7.17)

We can then reconstruct the network as Fig. 7.2.
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Fig. 7.2 Reconstructed
graph from network matrix

Moreover, from the above algebraic equations of the network it is easy to obtain
the logical equations as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = x2(t) ↔ x3(t),

x2(t + 1) = x3(t) ∨ x4(t),

x3(t + 1) = x4(t) ∧ x5(t),

x4(t + 1) = ¬x5(t),

x5(t + 1) = x1(t) → x5(t).

(7.18)

Remark 7.2 Unlike an algebraic function, for a logical function it might be very
difficult to verify that an argument is fabricated. Converting a logical function into
its algebraic form and using Proposition 7.1, the fabricated arguments can be elimi-
nated. We then convert it back to logical form. We will call such a logical equation
a clean form. When we construct the incidence matrix of a Boolean network from
its dynamics, the latter should be in its clean form.

In Example 7.2 we convert the algebraic form (7.17) to logical form (7.18) by
observation. In general, converting a logical function from its algebraic form back
to logical form is not easy. We now describe a procedure for doing this.

Proposition 7.2 Assume that a logical variable E has an algebraic expression as

E = f (x1, x2, . . . , xn) = Mf x1x2 · · ·xn, (7.19)

where Mf ∈ L2×2n is the structure matrix of f . Then,

E =
[

x1 ∧ f1(x2, . . . , xn)
]

∨
[

¬x1 ∧ f2(x2, . . . , xn)
]

, (7.20)

where

Mf = (Mf1 | Mf2),

i.e., the structure matrix of f1 (f2) is the first (last) half of Mf .

Proof Using (7.19), when x1 = 1,

E = Mf δ1
2x2 · · ·xn = Mf1x2 · · ·xn
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and when x1 = 0,

E = Mf δ2
2x2 · · ·xn = Mf2x2 · · ·xn.

Equation (7.20) then follows. �

Using Proposition 7.2 we can obtain the logical expression of E recursively. We
give an example to illustrate this.

Example 7.3 Assume

E = δ2[1 2 2 1 2 1 2 1 1 1 2 2 2 1 1 2]x1x2x3x4. (7.21)

Then,

E =
[

x1 ∧ f1(x2, x3, x4)
]

∨
[

¬x1 ∧ f2(x2, x3, x4)
]

,

and

Mf1 = δ2[1 2 2 1 2 1 2 1],

Mf2 = δ2[1 1 2 2 2 1 1 2].

Next,

f1(x2, x3, x4) =
[

x2 ∧ f11(x3, x4)
]

∨
[

¬x2 ∧ f12(x2, x4)
]

,

where

Mf11 = δ2[1 2 2 1] =⇒ f11(x3, x4) = x3 ↔ x4,

Mf12 = δ2[2 1 2 1] =⇒ f12(x3, x4) = ¬x4.

f2(x2, x3, x4) =
[

x2 ∧ f21(x3, x4)
]

∨
[

¬x2 ∧ f22(x3, x4)
]

,

where

Mf21 = δ2[1 1 2 2] =⇒ f21(x3, x4) = x3,

Mf22 = δ2[2 1 1 2] =⇒ f22(x3, x4) = ¬(x3 ↔ x4).

Combining all of this, we have

E =
[

x1 ∧ x2 ∧ (x3 ↔ x4)
]

∨
[

x1 ∧ (¬x2) ∧ (¬x4)
]

∨
[

(¬x1) ∧ x2 ∧ x3
]

∨
[

(¬x1) ∧ (¬x2) ∧
(

¬(x3 ↔ x4)
)]

.

Remark 7.3 Consider a Boolean control network in its algebraic form as

{

x(t + 1) = Lu(t)x(t), x(t) ∈ ∆2n , u(t) ∈ ∆2m ,

y(t) = Hx(t), y(t) ∈ ∆2p .
(7.22)
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Theorem 7.1 and Proposition 7.2 can then be applied to convert the algebraic forms
of state equation and output equations back to their logical forms. These will be
used frequently in the sequel.

7.2 Model Construction for General Networks

Assume a Boolean network consists of n nodes. Let X(t) = {x1(t), . . . , xn(t)}. De-
note the observed data as {X(0),X(1), . . . ,X(N)}. We give a rigorous definition
for the model construction.

Definition 7.1 Assume a set of observed data {X(0),X(1), . . . ,X(N)} is given,
where X(t) = {x1(t), . . . , xn(t)}. The model construction problem is the problem of
finding a logical dynamical system (7.1) such that the given data verify the dynam-
ical equation.

A model which is verified by the given data is called a realization of the data.

The model construction problem is also called the identification problem. It has
been investigated by several authors. For instance, in [5] a reverse engineering al-
gorithm was proposed for inference of genetic network architecture. Identification
by using a small number of gene expression patterns was proposed in [1] and an-
other identification algorithm based on matrix multiplication and the “fingerprint
function” was later proposed by the same authors [2]. Nam et al. [6] presented a
randomized network search algorithm, which requires less time on average.

From the definition we have the following, immediate, result.

Proposition 7.3 The system is uniquely identifiable if and only if the data

{X(0),X(1), . . ., X(N − 1)} contain all possible states.

Proof Convert the data into vector form by using x(t) := ⋉n
i=1xi(t). In algebraic

form, we then have that x(t) = δi
2n and x(t + 1) = δ

j

2n if and only if the ith column
of L is

Coli(L) = δ
j

2n . (7.23)

It follows that L is identifiable if and only if, in vector form,
{

x(0), x(1), . . . , x(N − 1)
}

= ∆2n .

The conclusion then follows. �

If the procedure has been carried out more than once, the following result is
obvious.

Corollary 7.1 Assume the observed data consists of k groups, as

{

Xi(0),Xi(1), . . . ,Xi(Ni)
}

,
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where i = 1, . . . , k. The system is then uniquely identifiable if and only if (in vector

form)
{

xi(0), . . . , xi(Ni − 1)
∣
∣ i = 1,2, . . . , k

}

= ∆2n . (7.24)

Remark 7.4

1. From Proposition 7.3 one sees that to identify a Boolean network of n nodes, at
least 2n + 1 data are necessary.

2. If the data are not sufficient or do not satisfy the condition of Proposition 7.3,
we still can use (7.23) to identify some columns. The model is then not unique.
Uncertain columns of L can be chosen arbitrarily.

Example 7.4 Assume a set of five cells is considered. The 12 groups of experimental
data are demonstrated in Fig. 7.3, where a white disc, labeled 1, represents a healthy
cell, and a black disc, labeled 0, represents an infected cell. Our goal is to build a
dynamical model for the process of infection.

From the first experimental data we have (where the nodes are ordered from left
to right and then from top to bottom),

X1(0) = (0,0,1,0,0), X1(1) = (0,1,1,1,0), X1(2) = (1,1,0,1,1),

X1(3) = (0,1,1,0,0), X1(4) = (1,1,1,1,1), X1(5) = (1,1,1,0,0),

X1(6) = (1,1,1,1,0), X1(7) = (1,1,0,1,0), X1(8) = (0,1,0,1,0),

X1(9) = (0,1,0,1,1), X1(10) = (0,1,1,0,1), X1(11) = (1,1,0,0,1),

X1(12) = (0,0,0,0,0), X1(13) = (0,0,1,1,0), X1(14) = (0,1,0,1,0).

In vector form we now have X1(0) = δ2{2,2,1,2,2} and

x1(0) = δ2
2 ⋉ δ2

2 ⋉ δ1
2 ⋉ δ2

2 ⋉ δ2
2 = δ28

32 .

Similarly, we can calculate that

x1(0) = δ28
32, x1(1) = δ18

32, x1(2) = δ5
32, x1(3) = δ20

32,

x1(4) = δ1
32, x1(5) = δ4

32, x1(6) = δ2
32, x1(7) = δ6

32,

x1(8) = δ22
32, x1(9) = δ21

32, x1(10) = δ19
32, x1(11) = δ7

32,

x1(12) = δ32
32, x1(13) = δ26

32, x1(14) = δ22
32 .

Using Proposition 7.3 [or, more precisely, equation (7.23)], we know that

Col28(L) = δ18
32, Col18(L) = δ5

32, Col5(L) = δ20
32, . . . .

The 14 columns of L have thus been determined.
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Fig. 7.3 Observed data for Example 7.4
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Applying the same procedure to the other groups of data, certain values of
columns of L can be determine. Finally, we can easily obtain that

L = δ32[4 6 8 2 20 22 32 26 19 21 23 17 19 21 31 25
3 5 7 1 19 21 31 25 20 22 24 18 20 22 32 26].

(7.25)

Hence, we have the algebraic form of the dynamics of the infection process from
the experimental data as

x(t + 1) = Lx(t), (7.26)

where L ∈ L32×32 is shown in (7.25). Next, we construct its logical dynamical equa-
tion to see the interaction between cells. Using (7.8), the corresponding retrievers
are

S5
1 = δ2[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2],

S5
2 = δ2[1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2],

S5
3 = δ2[1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2],

S5
4 = δ2[1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2],

S5
5 = δ2[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2].

(7.27)

We can then obtain the componentwise algebraic form

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t) = M1x(t),

x2(t) = M2x(t),

x3(t) = M3x(t),

x4(t) = M4x(t),

x5(t) = M5x(t),

(7.28)

where

M1 = S5
1L = δ2[1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2],

M2 = S5
2L = δ2[1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2],

M3 = S5
3L = δ2[1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1],

M4 = S5
4L = δ2[2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1],

M5 = S5
5L = δ2[2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2].

(7.29)
We first consider the logical expression of x1(t):

x1(t + 1) = M1x(t) = δ2[1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2]x(t).
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Fig. 7.4 Network graph of
system (7.31)

We use Proposition 7.1 to remove the fabricated variables. It is easy to verify that

M1(Mn − I2) = 0,

M1W[2,2](Mn − I2) �= 0,

M1W[2,4](Mn − I2) �= 0,

M1W[2,8](Mn − I2) = 0,

M1W[2,16](Mn − I2) = 0.

(7.30)

Therefore, x1(t), x4(t), and x5(t) are fabricated variables in the dynamical equation
of x1(t + 1). Setting x1(t) = x4(t) = x5(t) = δ1

2 yields

x1(t + 1) = M1x1(t)x2(t)x3(t)x4(t)x5(t)

= M1W[4,8]x4(t)x5(t)x1(t)x2(t)x3(t)

= M1W[4,8]
(

δ1
2

)3
x2(t)x3(t)

= δ2[1 2 2 2]x2(t)x3(t).

Hence, its logical expression is

x1(t + 1) = x2(t) ∧ x3(t).

The same process can be used to reconstruct the logical expression of x2(t), x3(t),
x4(t), and x5(t). Finally, we can obtain the logical expression of the dynamics of
the group of cells as

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

x1(t + 1) = x2(t) ∧ x3(t),

x2(t + 1) = x3(t) ∨ x4(t),

x3(t + 1) = x4(t) ↔ x5(t),

x4(t + 1) = ¬x5(t),

x5(t + 1) = x1(t) ∨̄x2(t).

(7.31)

Figure 7.4 is its network graph.
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Fig. 7.5 Network graph of
system (7.33)

Fig. 7.6 Observed data for Example 7.5

7.3 Construction with Known Network Graph

In previous section a general method was given to construct the dynamical model
of a Boolean network from its experimental data. As was pointed out, in general at
least 2n + 1 data are necessary to uniquely determine the model. As n is not very
small, this is a large or, potentially, huge number and in practical experiments such
an amount of data cannot easily be obtained. In this section, we consider the case
where the network graph is known. In this case, the data required can be reduced
considerably.

Note that when the number of a network nodes is large, drawing its network graph
is a demanding task. An alternative expression of the dynamical connection of nodes
is the incidence matrix [7]. The incidence matrix was defined in Chap. 5 and we
now recall it. Consider an n-node network. An n × n matrix, J = (ri,j ) ∈ Mn×n,
is called its incidence matrix, where ri,j = 1, if xi(t + 1) depends on xj (t) directly;
otherwise, ri,j = 0. For instance, recall Example 7.1. Its incidence matrix is

J |(7.4) =

⎛

⎜

⎝

1 0 0 1
1 0 0 0
0 1 0 1
0 1 1 0

⎞

⎟
⎠ . (7.32)

We consider the following example.

Example 7.5 Consider a network with eight nodes. Its network graph is depicted in
Fig. 7.5.

Assume that for this network we have the experimental data as in Fig. 7.6.
To construct its dynamical model, we use the componentwise algebraic form.

That is,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = M1x8(t),

x2(t + 1) = M2x1(t),

x3(t + 1) = M3x2(t),

x4(t + 1) = M4x3(t)x7(t),

x5(t + 1) = M5x4(t),

x6(t + 1) = M6x5(t),

x7(t + 1) = M7x6(t),

x8(t + 1) = M8x3(t)x7(t).

(7.33)
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From the data, it is easy to see that

x8(0) = 0 =⇒ x1(1) = 1,

x8(1) = 1 =⇒ x1(2) = 0, . . . .

In vector form we then have

Col2(M1) = δ1
2, Col1(M1) = δ2

2, . . . .

We conclude that M1 = δ2[2 1] and hence

x1(t + 1) = ¬x8(t).

Similarly, the other Mi , i = 2,3, . . . ,8, can be calculated. Finally, we have the dy-
namics as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = ¬x8(t),

x2(t + 1) = x1(t),

x3(t + 1) = ¬x2(t),

x4(t + 1) = x3(t) ∨ x7(t),

x5(t + 1) = x4(t),

x6(t + 1) = ¬x5(t),

x7(t + 1) = x6(t),

x8(t + 1) = x3(t) ∧ x7(t).

(7.34)

Comparing this example with Example 7.4, it is obvious that when the network
graph (equivalently, the incidence matrix) is known, then much less data will be
needed to build the model.

7.4 Least In-degree Model

Consider a network with n nodes. The in-degree of node k, denoted by di(k), is the
number of edges which end at node k. Consider the incidence matrix of the network.
Then,

di(k) =

n
∑

j=1

rkj , k = 1, . . . , n. (7.35)

For instance, consider Example 7.1. Its in-degrees are di(1) = 2, di(2) = 1,
di(3) = 2, and di(4) = 2. Consider Example 7.4. Its in-degrees are di(1) = di(2) =

di(3) = di(5) = 2, and di(4) = 1.
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It is well known that in ordered networks the in-degree is much less than the
number of nodes [4]. In an experiment involving random light bulb networks, it was
assumed that the number of nodes n = 100,000 and the in-degree di = 2. In this
section we consider the least in-degree model.

Definition 7.2 Given a set of experimental data, for an n-node Boolean network,
a realization with the in-degree d∗

i (k), k = 1, . . . , n, is called the least in-degree
model if, for any other realization with in-degree di(k), k = 1, . . . , n, we have

d∗
i (k) ≤ di(k), k = 1, . . . , n.

It is obvious that a least in-degree model requires much less data to identify
the model. Moreover, a real practical network should be of least in-degree. In the
following we consider how to obtain a least in-degree realization. We start from
the componentwise algebraic form (7.2). Denote a set of experimental data by
{X(0),X(1), . . . ,X(N)}. Consider the ith subsystem

xi(t + 1) = Mix(t), where Mi ∈ L2×2n . (7.36)

Using this set of data, some columns of the structure matrix Mi can be determined.
Say,

Mi = [∗ · · · ∗ ci1 ∗ · · · ∗ ci2 ∗ · · · ∗ · · · ∗ cis ∗ · · · ∗], (7.37)

where cij , j = 1, . . . , s, are identified columns and ∗ denotes an uncertain column.
We call (7.37) the uncertain structure matrix. Next, we construct a set of matrices as

Mi,j := MiW[2,2j−1], j = 1,2, . . . , n,

and then split it into two equal-sized parts as

Mi,j =
[

M1
i,j M2

i,j

]

. (7.38)

We then have the following result.

Proposition 7.4 fi has a realization which is independent of xj if and only if

M1
i,j = M2

i,j (7.39)

has a solution for uncertain columns.

Proof When j = 1, we have Mi,j = Mi , so

Mi =
[

M1
i M2

i

]

. (7.40)

If

M1
i = M2

i (7.41)
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Fig. 7.7 Observed data for
Example 7.6

has a solution for uncertain elements, then the solution makes M1
i = M2

i . Using
equation (7.13), it is easy to see that this realization is independent of x1. Consider-
ing xj , we rewrite (7.36) as

xi(t + 1) = Mi,jxj ⋉
j−1
k=1 xk ⋉n

k=j+1 xk

and the same argument as for x1 leads to the general conclusion. �

Next, we give an algorithm for producing a least in-degree realization.

Algorithm 7.1

Step 1. For each componentwise algebraic equation, we use the observed data to
identify some of its columns as (7.37). Moreover, we define the incidence set as
Si = {1,2, . . . , n}, i = 1, . . . , n.

Step 2. Construct (7.40) to check whether (7.41) has a solution. If it does, then fix
some uncertain columns and update the system to

xi(t + 1) = M1
i ⋉n

j=2 xj (t).

Go to the next step.
Step j. (Repeat this step for 3 ≤ j ≤ n.) Check whether (7.39) has solution. If it

does, then fix some uncertain columns and update the system to

xi(t + 1) = M1
i,j ⋉1≤k≤j−1,k∈Si

xk ⋉n
k=j+1 xk. (7.42)

Replace Si by Si\{j}.

The following conclusion follows from the design of the algorithm.

Proposition 7.5 Algorithm 7.1 yields least in-degree realizations.

We now give an example to illustrate this.

Example 7.6 Consider the experimental data in Fig. 7.7.
The vector form of the data is as follows:

x(0) = δ12
16, x(1) = δ16

16, x(2) = δ8
16,

x(3) = δ2
16, x(4) = δ10

16, x(5) = δ12
16 .

Using the technique developed in previous sections, we can identify some columns
of M1 via the known data as

M1 = δ2[∗ 2 ∗ ∗ ∗ ∗ ∗ 1 ∗ 2 ∗ 2 ∗ ∗ ∗ 1].



180 7 Model Construction via Observed Data

Setting M1
1 = M2

1 yields the solution as

M1
1 = M2

1 = δ2[∗ 2 ∗ 2 ∗ ∗ ∗ 1].

Therefore, the system can be simplified as

x1(t + 1) = δ2[∗ 2 ∗ 2 ∗ ∗ ∗ 1]x2(t)x3(t)x4(t).

Splitting M1
1 into two parts and considering the equation

δ2[∗ 2 ∗ 2] = δ2[∗ ∗ ∗ 1],

we have no solution. Thus, the equation depends on x2.
Consider

M1,2 = M1
1W[2,2] = δ2[∗ 2 ∗ ∗ ∗ 2 ∗ 1].

Then,

δ2[∗ 2 ∗ ∗] = δ2[ ∗ 2 ∗ 1]

has solution as

δ2[∗ 2 ∗ 1].

The original equation can then be updated as

x1(t + 1) = δ2[∗ 2 ∗ 1]x2(t)x4(t).

Finally, we check x4(t). Since

δ2[∗ 2 ∗ 1]W[2,2] = δ2[∗ ∗ 2 1],

and

δ2[∗ ∗] = δ2[2 1]

has solution

δ2[2 1],

we finally have

x1(t + 1) = δ2[2 1]x2(t).

That is,

x1(t + 1) = ¬x2(t).
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Fig. 7.8 Network graph of
system (7.43)

Applying the same procedure to three other equations, we can finally obtain the least
in-degree realization as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = ¬x2(t),

x2(t + 1) = x4(t) ∨ x1(t),

x3(t + 1) = x1(t),

x4(t + 1) = x3(t) ∨̄x4(t).

(7.43)

Figure 7.8 is its network graph.

In fact, if

di(k) ≤ µ, k = 1, . . . , n,

then it is easy to see that the smallest number of data required to identify the system
is 2µ + 1, which is, in general, much less than 2n + 1.

7.5 Construction of Uniform Boolean Network

In this section we consider the case where the network has uniform dynamical struc-
ture. Physically, this would correspond to something like the following situation.
Assume we have a set of cells where each cell can be infected only by its neighbors
and, moreover, the rule for a cell being infected is the same for all cells. Each cell
then has the same logical dynamical interactive pattern with its neighbors.

Example 7.7 Let a set of experimental data be given as in Fig. 7.9. We assume that
the infection process is uniform and that each cell x0 is affected only by its neigh-
boring cells, x1, x2, x3, x4, x5, and x6. Moreover, it is also reasonable to assume that
the infection is isotropic. That is, if we label the six neighboring cells of a cell in
clockwise order (starting from any of them), then the dynamical equation becomes

x0(t + 1) = M ⋉6
i=0 xi(t), where M ∈ L2×27 . (7.44)

Our purpose is to identify M .
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Fig. 7.9 Observed data for Example 7.7

We now consider some special points in order to demonstrate how to find M .

1. Consider x0 = A. Note that x0(0) = 1 and, on its neighborhood, we have x1(0) =

1, x2(0) = 1, x3(0) = 1, x4(0) = 1, x5(0) = 1, and x6(0) = 1, that is, X(0) =

(1 1 1 1 1 1 1) ∼ δ1
128. Since x0(1) = 1, we conclude that Col1(M) = δ1

2 .
2. Consider x0 = B . We have x0(0) = 1 and, on its neighborhood, we have

x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1, x5(0) = 1, and x6(0) = 0, that is,
X(0) = (1 1 1 1 1 1 0) ∼ δ2

128. Since x0(1) = 1, we conclude that Col2(M) = δ1
2 .

Moreover, by isotropy we can also assume that X(0) is obtained by rotating
the subscripts of x1(0), x2(0), x3(0), x4(0), x5(0), and x6(0), and all such X(0)

yields the same x0(1). That is,

X(0) = (1 1 1 1 1 0 1) ∼ δ3
128 =⇒ Col3(M) = δ1

2,

X(0) = (1 1 1 1 0 1 1) ∼ δ5
128 =⇒ Col5(M) = δ1

2,

X(0) = (1 1 1 0 1 1 1) ∼ δ9
128 =⇒ Col9(M) = δ1

2,

X(0) = (1 1 0 1 1 1 1) ∼ δ17
128 =⇒ Col17(M) = δ1

2,
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X(0) = (1 0 1 1 1 1 1) ∼ δ33
128 =⇒ Col33(M) = δ1

2 .

3. Consider x0 = C. Since x0(0) = 0 and x0(1) = 0, we have X(0) = (0,1,1,1,

1,1,1) ∼ δ65
128, which implies that Col65(M) = δ2

2 .
4. Consider x0 = D. Since x0(0) = 1 and x0(1) = 0, using isotropy, we have

X(0) = (1 0 1 0 1 1 1) ∼ δ41
128 =⇒ Col41(M) = δ2

2,

X(0) = (1 1 0 1 1 1 0) ∼ δ18
128 =⇒ Col18(M) = δ2

2,

X(0) = (1 0 1 1 1 0 1) ∼ δ35
128 =⇒ Col35(M) = δ2

2,

X(0) = (1 1 1 1 0 1 0) ∼ δ6
128 =⇒ Col6(M) = δ2

2,

X(0) = (1 1 1 0 1 0 1) ∼ δ11
128 =⇒ Col11(M) = δ2

2,

X(0) = (1 1 0 1 0 1 1) ∼ δ21
128 =⇒ Col21(M) = δ2

2 .

5. Consider x0 = E. Since x0(0) = 1, x0(1) = 1, and x0(2) = 0, we have

X(0) = (1 0 1 1 0 1 1) ∼ δ37
128 =⇒ Col37(M) = δ1

2,

X(0) = (1 1 1 0 1 1 0) ∼ δ10
128 =⇒ Col10(M) = δ1

2,

X(0) = (1 1 0 1 1 0 1) ∼ δ19
128 =⇒ Col19(M) = δ1

2,

and

X(0) = (1 0 1 0 0 1 1) ∼ δ45
128 =⇒ Col45(M) = δ2

2,

X(0) = (1 1 0 0 1 1 0) ∼ δ26
128 =⇒ Col26(M) = δ2

2,

X(0) = (1 0 0 1 0 0 1) ∼ δ51
128 =⇒ Col51(M) = δ2

2,

X(0) = (1 0 1 1 0 1 0) ∼ δ38
128 =⇒ Col38(M) = δ2

2,

X(0) = (1 1 1 0 1 0 0) ∼ δ12
128 =⇒ Col12(M) = δ2

2,

X(0) = (1 1 0 1 0 0 1) ∼ δ23
128 =⇒ Col23(M) = δ2

2 .

6. Continuing this process, all the columns of M can finally be identified as

M = δ2[1 1 1 2 1 2 2 2 1 1 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2].
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Skipping the standard (and tedious) process, we finally can convert the algebraic
form back to logical form as

x0(t + 1) = x0(t) ∧
(

x1(t) ∨ x2(t)
)

∧
(

x2(t) ∨ x3(t)
)

∧
(

x3(t) ∨ x4(t)
)

∧
(

x4(t) ∨ x5(t)
)

∧
(

x5(t) ∨ x6(t)
)

∧
(

x6(t) ∨ x1(t)
)

∧
(

x1(t) ∨ x3(t)
)

∧
(

x3(t) ∨ x5(t)
)

∧
(

x5(t) ∨ x1(t)
)

∧
(

x2(t) ∨ x4(t)
)

∧
(

x4(t) ∨ x6(t)
)

∧
(

x6(t) ∨ x2(t)
)

. (7.45)

7.6 Modeling via Data with Errors

Until now the data we have considered are precisely correct. In dealing with real-
world data, certain numerical methods should be used, so in this section we propose
some basic ideas for dealing with imperfect data.

Data can contain errors caused by measurement, for example. In identification,
we may have conflicting data. Suppose, with some data we have obtained, that

Coli(L) =

{

δ
p

2n , k times,

δ
q

2n , s times.
(7.46)

1. If k ≫ s, then we can ignore δ
q

2n and let Coli(L) = δ
p

2n .
2. If k ≪ s, then we can ignore δ

p

2n and let Coli(L) = δ
q

2n .
3. If k ≈ s, then we may need more data or (when we already have enough data)

conclude that the model is not acceptable.

A similar judgment can be applied to each Mi in the componentwise model.
Consider the least in-degree model. Let {I, J } be a partition of {1,2, . . . ,2n}. If

{

Colj (M) = δ
sj
2 , kj ≥ k, j ∈ J,

Coli(M) = δ
si
2 , ki ≪ k, i ∈ I,

(7.47)

then we may consider Coli(M), i ∈ I , as error columns and set Coli(M) = ∗, i.e.,
consider them as uncertain columns.

Roughly speaking, for model construction, we use only the data about which we
are confident. Many statistical testing methods can be used to tell whether particular
data is reliable. We give a simple example to illustrate this.
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Fig. 7.10 Observed data for Example 7.8

Example 7.8 Suppose we have a Boolean network with three nodes. The experi-
mental data are depicted in Fig. 7.10.

The 50 experiment data can be converted into vector form as

x(0) = δ3
8, x(1) = δ2

8, x(2) = δ7
8, x(3) = δ6

8, x(4) = δ5
8,

x(5) = δ1
8, x(6) = δ3

8, x(7) = δ7
8, x(8) = δ6

8, x(9) = δ5
8,

x(10) = δ1
8, x(11) = δ8

8, x(12) = δ6
8, x(13) = δ5

8, x(14) = δ1
8,

x(15) = δ3
8, x(16) = δ7

8, x(17) = δ6
8, x(18) = δ5

8, x(19) = δ1
8,

x(20) = δ4
8, x(21) = δ7

8, x(22) = δ6
8, x(23) = δ5

8, x(24) = δ1
8,

x(25) = δ3
8, x(26) = δ7

8, x(27) = δ6
8, x(38) = δ5

8, x(29) = δ1
8,

x(30) = δ8
8, x(31) = δ6

8, x(32) = δ5
8, x(33) = δ1

8, x(34) = δ2
8,

x(35) = δ7
8, x(36) = δ6

8, x(37) = δ5
8, x(38) = δ1

8, x(39) = δ3
8,

x(40) = δ7
8, x(41) = δ6

8, x(42) = δ6
8, x(43) = δ1

8, x(44) = δ3
8,

x(45) = δ4
8, x(46) = δ7

8, x(47) = δ6
8, x(48) = δ5

8, x(49) = δ1
8 .

Suppose the componentwise algebraic form of x1(t) is

x1(t + 1) = M1x(t), M1 ∈ L2×8.

From the data, using the technique developed in Section 7.2, we have

Col1(M1) =

{

δ1
2, 8 times,

δ2
2, 2 times.

(7.48)

Hence, we set Col1(M1) = δ1
2 .
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For the 2nd, . . . , 8th columns, we have

Col2(M1) = δ2
2, 2 times,

Col3(M1) =

{

δ1
2, 2 times,

δ2
2, 4 times,

Col4(M1) = δ2
2, 2 times,

Col5(M1) = δ1
2, 9 times,

Col6(M1) =

{

δ1
2, 1 time,

δ2
2, 10 times,

Col7(M1) = δ2
2, 6 times,

Col8(M1) = δ2
2, 2 times.

(7.49)

Hence, we can obtain the matrix M1 as

M1 = δ2[1 2 2 2 1 2 2 2].

Splitting M1 as M1 = [M11 M12], we have M11 = M12. The algebraic form of x1(t)

is

x1(t + 1) = δ2[1 2 2 2]x2(t)x3(t).

Converting this into its logical form, we get

x1(t + 1) = x2(t) ∧ x3(t).

Using the same technique for x2(t) and x3(t), we obtain the logical expression
from data as

⎧

⎪
⎨

⎪
⎩

x1(t + 1) = x2(t) ∧ x3(t),

x2(t + 1) = ¬x1(t),

x3(t + 1) = x1(t) ∨ x2(t).

(7.50)

Returning to the data, it is easy to check that eight of them are wrong. The method
seems relatively robust.

Finally, we note that if a model is constructed and, later, additional data become
available, then we can update the model as follows. If the kth equation verifies new
data, it remains available. Otherwise, we can add newly identified columns to the
existing set and use them to construct a new structure matrix Mk . The new kth
equation can then be updated.
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Chapter 8

State Space and Subspaces

8.1 State Spaces of Boolean Networks

One of the fundamental pillars of modern control theory is the state-space descrip-
tion of control systems, first proposed by Kalman [7]. Consider a linear system

{

ẋ = Ax + Bu, x ∈ Rn, u ∈ Rm,

y = Cx, y ∈ Rp.
(8.1)

Many subspaces of the state space Rn then play important roles in system analysis
and control design, e.g., the controllable subspace, observable subspace and (A,B)-
invariant subspace. Consider an affine nonlinear system

{

ẋ = f (x) +
∑m

i=1 gi(x)ui, x ∈ M,u ∈ U,

y = h(x), y ∈ N,
(8.2)

where M , U , and N are n-, m-, and p-dimensional manifolds, respectively. The
vector fields on M , denoted by V (M), form a vector space, called the Lie algebra,
and f (x), gi(x) ∈ V (M). Like the subspaces of V (M), the accessibility Lie algebra,
(f, g)-invariant distribution, etc. also play important roles in the control of affine
nonlinear systems.

Consider a Boolean network,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t)), xi ∈ D,

(8.3)
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or a Boolean control network,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

yj (t) = hj

(

x1(t), . . . , xn(t)
)

, xi, ui, yj ∈ D .

(8.4)

Unlike quantity-based dynamical (control) systems, the logic-based dynamical
(control) systems do not have a natural vector space structure. To use the state-
space approach, we have to define the state space and its various subspaces. In fact,
in Chap. 6 we have already used the concepts of state space and subspaces based on
the coordinates of the system. In this chapter, the general coordinate-independent
definitions will be given. These will play a similar role as their counterparts in mod-
ern control theory.

Definition 8.1 Consider the Boolean network (8.3) or the Boolean control net-
work (8.4).

1. The state space X is defined as the set of all logical functions of x1, . . . , xn,
denoted by

X = F ℓ{x1, . . . , xn}. (8.5)

2. Let z1, . . . , zk ∈ X . The subspace Z generated by z1, . . . , zk is the set of logical
functions of z1, . . . , zk , denoted by

Z = F ℓ{z1, . . . , zk}. (8.6)

Remark 8.1

1. Let ξ ∈ X . Then, ξ is a logical function of x1, . . . , xn, say

ξ = g(x1, . . . , xn).

It can then be uniquely expressed in algebraic form as

ξ = Mg ⋉n
i=1 xi,

where Mg ∈ L2×2n . Now, Mg can be expressed as

δ2[i1 i2 · · · i2n ],

where is can be either 1 or 2. It follows that there are 22n
different functions.

That is,

|X | = 22n

.
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2. Using a set of functions to define a (sub)space is reasonable. For instance, in the
linear space Rn with the coordinate frame {x1, . . . , xn}, we consider all the linear
functions over xi1, . . . , xik , that is,

Lk =

{

k
∑

j=1

cjxij

∣

∣

∣

∣

∣

c1, . . . , ck ∈ R

}

,

which is obviously a k-dimensional subspace. In fact, we can identify Lk with
its domain, which is a k-dimensional subspace of the state space Rn, called the
dual space of Lk .

The logical space (subspace) defined here is also in the dual sense and we
consider its domain as a subspace of the state space.

8.2 Coordinate Transformation

From modern control theory, we know that in the state-space approach the coor-
dinate transformation plays a fundamental role. To apply this approach to logical
dynamical systems, we also need to define a coordinate transformation (or change
of coordinates) on the state space X .

Definition 8.2 Let Z = {z1, . . . , zn} ⊂ X . For notational ease, we also consider
Z = (z1, . . . , zn)

T as a column vector. The mapping G : Dn → Dn defined by X =

(x1, . . . , xn)
T �→ Z = (z1, . . . , zn)

T is called a coordinate transformation if T is one-
to-one and onto.

To obtain the verifiable condition for the coordinate transformation, we consider
its algebraic form. Suppose the mapping is determined by

G :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z1 = g1(x1, . . . , xn),

...

zn = gn(x1, . . . , xn).

(8.7)

Setting x = ⋉n
i=1xi and z = ⋉n

i=1zi , the algebraic form of G is described as

z = TGx, (8.8)

where TG ∈ L2n×2n is the structure matrix of G. Since there is a one-to-one cor-
respondence between ∆2n and Dn, that is, a one-to-one correspondence between
X = (x1, . . . , xn) and x = ⋉n

i=1xi , the following result is obvious.

Theorem 8.1 G is a coordinate transformation if and only if its structure matrix

TG is nonsingular.
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Remark 8.2 If a matrix T ∈ Ls×s is nonsingular, then it is an orthogonal matrix.
Hence, if (8.8) is a coordinate transformation, then

x = T T
Gz. (8.9)

Remark 8.3 Let ai , i = 1, . . . , n, and bi , i = 1, . . . , n, be sets of n vectors. From
linear algebra it is well known that if

⎡

⎢

⎢

⎢

⎣

b1

b2
...

bn

⎤

⎥

⎥

⎥

⎦

= G

⎡

⎢

⎢

⎢

⎣

a1

a2
...

an

⎤

⎥

⎥

⎥

⎦

and G is singular, then b1, b2, . . . , bn are linearly dependent, so at least one bi can
be determined by the others. This is not true in the logical case. For suppose

B1B2 = δ4[1 1 3 4]A1A2 := GA1A2.

Here, G is singular and

B1 = S2
1GA1A2 = δ2[1 1 2 2]A1A2 ∼ A1,

B2 = S2
2GA1A2 = δ2[1 1 1 2]A1A2 ∼ A1 ∨ A2,

but neither one can be determined by the other.
This example shows that even if n logical functions are not dependent (no one

can be determined by others), they may not be valid as a set of coordinate variables.

Next, we give an example to illustrate coordinate transformation in the logical
setting.

Example 8.1 Let

B1 = ¬A2,

B2 = A1 ↔ A2,

B3 = ¬A3.

(8.10)

Define x = A1A2A3, y = B1B2B3. Then

y = B1B2B3

= MnA2MeA1A2MnA3

= Mn(I2 ⊗ Me)W[2]A1A
2
2MnA3

= Mn(I2 ⊗ Me)W[2](I2 ⊗ Mr)A1A2MnA3

= Mn(I2 ⊗ Me)W[2](I2 ⊗ Mr)(I4 ⊗ Mn)A1A2A3

:= T x, (8.11)
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where T ∈ L8×8 is

T = Mn(I2 ⊗ Me)W[2](I2 ⊗ Mr)(I4 ⊗ Mn)

= δ8[6 5 4 3 8 7 2 1]. (8.12)

Since T is nonsingular, (8.10) is a logical coordinate transformation.
Note that since the T in (8.12) is an orthogonal matrix, we have

x = T −1y = T Ty.

Then,

A1 = S3
1T Ty := M1y = δ2[2 2 1 1 1 1 2 2]B1B2B3,

A2 = S3
2T Ty := M2y = δ2[2 2 2 2 1 1 1 1]B1B2B3,

A3 = S3
3T Ty := M3y = δ2[2 1 2 1 2 1 2 1]B1B2B3.

It is easy to check that

M1W[2,4](Mn − I2) = 0.

Therefore, A1 is independent on B3. To eliminate it, we replace M1 by

M1W[2,4]δ
1
2 = δ2[2 1 1 2].

Hence,

A1 = δ2[2 1 1 2]B1B2.

Similarly, we can check that A2 is independent of B2 and B3, and can be expressed
as

A2 = δ2[2 1]B1.

A3 is independent of B1 and B2, and can be expressed as

A3 = δ2[2 1]B3.

Converting these into logical form, we have

A1 = ¬(B1 ↔ B2) = B1 ∨̄B2,

A2 = ¬B1,

A3 = ¬B3.

(8.13)

Next, we consider the logical coordinate transformation of the dynamics of a
Boolean network. Consider a Boolean network in algebraic form as

x(t + 1) = Lx(t), x ∈ Δ2n . (8.14)
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Let z = T x : ∆2n → ∆2n be a logical coordinate transformation. Then,

z(t + 1) = T x(t + 1) = T Lx(t) = T LT −1z(t).

That is, under the z coordinate frame, the Boolean network dynamics (8.14) be-
comes

z(t + 1) = L̃z(t), (8.15)

where

L̃ = T LT T. (8.16)

Consider a Boolean control system in algebraic form as

{

x(t + 1) = Lu(t)x(t), x ∈ ∆2n , u ∈ ∆2m ,

y(t) = Hx(t), y ∈ ∆2p .
(8.17)

Let z = T x : ∆2n → ∆2n be a logical coordinate transformation. A straightforward
computation shows that (8.17) can be expressed as

z(t + 1) = L̃u(t)z(t), z ∈ ∆2n , u ∈ ∆2m ,

y(t) = H̃ z(t), y ∈ ∆2p ,
(8.18)

where

L̃ = T L
(

I2m ⊗ T T)

,

H̃ = HT T.
(8.19)

We give an example to describe this.

Example 8.2 Consider the following system:

⎧

⎪

⎨

⎪

⎩

A1(t + 1) = ¬(A1(t) ↔ A2(t)),

A2(t + 1) = ¬(A2(t) ↔ A3(t)),

A3(t + 1) = u(t) ∧ A1(t),

y(t) = A1(t) ↔ A2(t),

u(t + 1) = ¬u(t).

(8.20)

In algebraic form, it becomes

⎧

⎪

⎨

⎪

⎩

A1(t + 1) = MpA1A2(t),

A2(t + 1) = MpA2(t)A3(t),

A3(t + 1) = Mcu(t)A1(t),

y(t) = MeA1(t)A2(t),

u(t + 1) = Mnu(t).

(8.21)
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Let x(t) = A1(t)A2(t)A3(t). Then,

x(t + 1) = MpA1A2MpA2A3McuA1 := Lu(t)x(t),

where L ∈ L8×16 can be easily calculated as

L = Mp(I4 ⊗ Mp)(I2 ⊗ Mr)(I8 ⊗ Mc)W[4,8](I2 ⊗ Mr)

= δ8[7 5 1 3 4 2 6 8 8 6 2 4 4 2 6 8].

Using the dummy matrix Ed, y can be expressed as

y(t) = MeA1(t)EdMnA2(t)A3(t)

= Me(I2 ⊗ EdMn)x(t)

= δ2[1 2 1 2 2 1 2 1]x(t).

Assume that we use the change of coordinates

⎧

⎪

⎨

⎪

⎩

B1 = A1 ∨̄A2,

B2 = ¬A1,

B3 = ¬A3,

which is the inverse of the coordinate transformation in (8.10). Its transfer matrix is
then T T, where T is as in (8.12).

Using logical coordinate transformation (8.18), we have

L̃ = T L
(

I2 ⊗ T T)

= δ8[7 3 4 8 5 1 2 6 7 3 3 7 5 1 1 5],

H̃ = HT T = δ2[1 2 2 1 1 2 2 1].

We also have

M̃1 = δ2[2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2],

M̃2 = δ2[2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1],

M̃3 = δ2[1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1].

It is easy to check that

M̃1Mn = M̃1, M̃1W[2]Mn = M̃1W[2].

Hence, B1(t + 1) is independent on u(t) and B1(t), so we can replace it by

M̃1
(

δ1
2

)2
= δ2[2 1 1 2].
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Thus, the first equation becomes

B1(t + 1) = B2(t) ∨̄B3(t).

A similar argument applied to the other equations yields
⎧

⎪

⎨

⎪

⎩

B1(t + 1) = B2(t) ∨̄B3(t),

B2(t + 1) = ¬B1(t),

B3(t + 1) = u(t) → B2(t),

y(t) = B2(t) ↔ B3(t),

u(t + 1) = ¬u(t).

(8.22)

8.3 Regular Subspaces

In Definition 8.1 a subspace of the state space X was defined as Z = F ℓ{z1, . . . ,

zk}. Recall that in the previous chapter a subspace was defined as X0 = F ℓ{xi1, . . . ,

xik }. This subspace corresponds to a set of state variables. We can check whether
this subspace is invariant, etc., according to their corresponding logical dynamic
equations. Now, a fundamental problem is: for a general subspace, can we always
consider its basis as part of the coordinate variables? It turns out that we cannot. Let
us consider the following simple example.

Example 8.3 Assume X = F ℓ{x1, x2}. Let Z be a subspace generated by z1 =

x1 ∧ x2, that is, Z = F ℓ{z1}. Can we then find z2 ∈ X such that Z = (z1, z2)

is a coordinate frame? Since z2 = f (x1, x2), there are 24 = 16 different functions.
Checking them one by one, it can be seen that there is no z2 which makes (z1, z2) a
coordinate frame.

We therefore need to introduce the following definition.

Definition 8.3 A subspace Z = F ℓ{z1, . . . , zk} ⊂ X is called a regular subspace
of dimension k if there are zk+1, . . . , zn such that Z = (z1, . . . , zn) is a coordinate
frame. Moreover, {z1, . . . , zk} is called a regular basis of Z .

Example 8.4 Consider the state space X = F ℓ{x1, x2, x3} and the subspace Z =

F ℓ{z1, z2} ⊂ X .

1. Assume that
{

z1 = x1 ↔ x2,

z2 = x2 ∨̄x3.
(8.23)

Its algebraic form can then be expressed as
{

z1 = δ2[1 1 2 2 2 2 1 1]x1x2x3,

z2 = δ2[2 1 1 2 2 1 1 2]x1x2x3.
(8.24)
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We claim that Z is a regular subspace. To see this, we choose z3 =

(x1 ∧ (x2 ↔ x3)) ∨ (¬x1 ∧ (x2 ∨̄x3)) or, equivalently,

z3 = δ2[1 2 2 1 2 1 1 2]x1x2x3. (8.25)

Setting z = z1z2z3 and x = x1x2x3, it is easy to calculate that

z = Lx = δ8[3 2 6 7 8 5 1 4]x. (8.26)

Since L ∈ L8×8 is nonsingular, z is a coordinate frame, and hence Z is a regular
subspace.

2. Assume that
{

z1 = x1 → x2,

z2 = x2 ∨̄x3.
(8.27)

Its algebraic form can then be expressed as

{

z1 = δ2[1 1 2 2 1 1 1 1]x,

z2 = δ2[2 1 1 2 2 1 1 2]x.
(8.28)

Let z3 ∈ X . There are then 28 different z3’s and it is then straightforward to
check that there is no z3 which makes {z1, z2, z3} a coordinate frame. Therefore,
Z = F ℓ{z1, z2} is not a regular subspace.

From the above example one sees that using the definition to check whether a
subspace is regular is a very demanding task. Therefore, we have to find an efficient
way to verify regularity.

Consider the set of functions

zi = gi(x1, . . . , xn), i = 1, . . . , k, (8.29)

and let Z = F ℓ{z1, . . . , zk}. We would like to know when Z is a regular subspace
with {z1, . . . , zk} as its regular sub-basis. Set z = ⋉k

i=1zi and x = ⋉n
i=1xi . From

(8.29) we can get its algebraic form as

z = Lx :=

⎡

⎢

⎣

ℓ1,1 ℓ1,2 · · · ℓ1,2n

...

ℓ2r ,1 ℓ2r ,2 · · · ℓ2r ,2n

⎤

⎥

⎦
x. (8.30)

Recalling Theorem 4.1, we have

L = M1

k
∏

j=2

[(

I2n ⊗ Mj

)

Φn

]

, (8.31)
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where

Φs =

s
∏

i=1

I2i−1 ⊗
[

(I2 ⊗ W[2,2s−i ])Mr

]

, s = 1,2, . . . ,

and Mr = δ4[1 4].
We provide another method to calculate L using Mi . It is very convenient in nu-

merical calculation and, moreover, it reveals certain relations between the elements
of L and Mi .

Proposition 8.1 Consider (8.29) and (8.30). Assume that the structure matrix of gi

is

Mi =
[

ξ i
1 ξ i

2 · · · ξ i
2n

]

, i = 1, . . . , k,

and

L = [ℓ1 ℓ2 · · · ℓ2n ].

Then,

ℓr = ⋉k
i=1ξ

i
r , r = 1, . . . ,2n.

Proof If we assume x1 = x2 = · · · = xn = δ1
2 ∼ 1, then x = ⋉n

i=1xi = δ1
2n , and

z = Lx = Col1(L) = ℓ1.

On the other hand,

zi = Mix = Col1(Mi) = ξ i
1, i = 1, . . . , k.

Hence, z = ⋉k
i=1ξ

i
1. We then have

ℓ1 = ⋉k
i=1ξ

i
1.

Similarly, let xi = αi ∈ {0,1}, i = 1, . . . , n, and set r = 2n − [α1 × 2n−1 + α2 ×

2n−2 + · · · + αn]. Then, zi = ξ i
r , i = 1, . . . , k. Hence,

ℓr = z = ⋉k
i=1ξ

i
r . �

The following corollary is easily verifiable.

Corollary 8.1 Assume that y1, . . . , yp and z1, . . . , zq are sets of logical functions

of x1, . . . , xn. Let y = ⋉
p

i=1yi , z = ⋉
q

i=1zi , w = yz, and x = ⋉n
i=1xi . Moreover, we

have

y = Mx, z = Nx, w = Lx,

where M ∈ L2p×2n , N ∈ L2q×2n , and L ∈ L2p+q×2n . We then have

Coli(L) = Coli(M)Coli(N), i = 1, . . . ,2n. (8.32)
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To convert a componentwise algebraic form to (overall) algebraic form, (8.32)
is very convenient. The following theorem shows when Z = F ℓ{z1, . . . , zk} is a
regular subspace with regular sub-basis {z1, . . . , zk}.

Theorem 8.2 Assume there is a set of logical variables z1, . . . , zk (k ≤ n) sat-

isfying (8.30). Z = F ℓ{z1, . . . , zk} is a regular subspace with regular sub-basis

{z1, . . . , zk} if and only if the corresponding coefficient matrix L satisfies

2n
∑

i=1

ℓj,i = 2n−k, j = 1,2, . . . ,2k, (8.33)

where ℓj,i are defined in (8.30).

Proof (Sufficiency) Note that condition (8.33) means that there are 2n−k different
x’s which make z = δ

j

2k , j = 1,2, . . . ,2k . We can now choose zk+1 as follows. Set

S
j

k =
{

x
∣

∣Lx = δ
j

2k

}

, j = 1,2, . . . ,2k.

Then, the cardinal number |S
j
k | = 2n−k . For half of the elements of S

j
k , define

zk+1 = 0, and for the other half, set zk+1 = 1. It is then easy to see that for
z̃ = ⋉k+1

i=1 zi , the corresponding L̃ satisfies (8.33) with k being replaced by k + 1.
Continue this process until k = n. Then, (8.33) becomes

2n
∑

i=1

ℓj,i = 1, j = 1,2, . . . ,2n. (8.34)

Equation (8.34) means that the corresponding L contains all the columns of I2n ,
i.e., it is obtained from I2n via a column permutation. It is, therefore, a coordinate
transformation.

(Necessity) Note that using the swap matrix, it is easy to see that the order of
zi does not affect the property of (8.33). First, we claim that if {zi | i = 1, . . . , k}

satisfies (8.33), then any of its subsets {zit } ⊂ {zi | i = 1, . . . , k} will also satisfy
(8.33) with k replaced by |{zit }|. Since the order does not affect this property, it is
enough to show that a (k−1)-element subset {zi | i = 2, . . . , k} is a proper sub-basis,
because from k − 1 we can proceed to k − 2, and so on. Assume that z2 = ⋉k

i=2zi =

Qx and z1 = Px. Using Corollary 8.1, we have

Coli(L) = Coli(P )Coli(Q), i = 1, . . . ,2n. (8.35)

Next, we split L into two equal-sized blocks as

L =

[

L1

L2

]

.
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Note that either Coli(P ) = δ1
2 or Coli(P ) = δ2

2 . Applying this fact to (8.35), one

easily sees that either Coli(L) =
[ Coli (Q)

0

]

[as Coli(P ) = δ1
2 ] or Coli(L) =

[ 0
Coli(Q)

]

[as Coli(P ) = δ2
2]. Hence, Coli(Q) = Coli(L1) + Coli(L2). It follows that

Q = L1 + L2. (8.36)

Since L satisfies (8.33), (8.36) ensures that Q also satisfies (8.33).
Now, since {zi | i = 1, . . . , k} is a proper sub-basis, there exists {zi | i = k +

1, . . . , n} such that {zi | i = 1, . . . , n} is a coordinate transformation of x, which sat-
isfies (8.33). [More precisely, it satisfies (8.34) with row sum equal to 1.] According
to the claim, the subset {zi | i = 1, . . . , k} also satisfies (8.34). �

The constructive proof of the sufficiency of Theorem 8.2 provides a way to con-
struct a basis (equivalently, a coordinate transformation) from a regular sub-basis.
To make this process easier, we introduce another concept.

Definition 8.4 Let z1, . . . , zk ∈ X with their algebraic forms given by

zi = δ2[ℓi,1 ℓi,2 · · · ℓi,2n ], i = 1, . . . , k.

The characteristic matrix of {z1, . . . , zk} is defined as

E(z1, . . . , zk) =

⎡

⎢

⎢

⎢

⎣

ℓ1,1 ℓ1,2 · · · ℓ1,2n

ℓ2,1 ℓ2,2 · · · ℓ2,2n

...

ℓk,1 ℓk,2 · · · ℓk,2n

⎤

⎥

⎥

⎥

⎦

∈ Bk×2n . (8.37)

Proposition 8.2 Let zi ∈ X and

zi = δ2[ℓi,1 · · · ℓi,2n]x, i = 1, . . . , n,

where x = ⋉n
i=1xi . Then, Z = (z1, . . . , zn) is a coordinate frame if and only if the

columns of its characteristic matrix

E := (ℓi,j ) ∈ Bn×2n , (8.38)

denoted by Col(E), are all distinct.

Proof Let z = T x, where z = ⋉n
i=1zi . Assume there are two columns of E, which

are the same, say, Colp(E) = Colq(E). Using Proposition 8.1, we know that if the
pth column and qth column of T are the same, then T is not a coordinate change.
That is, {zi} is not a coordinate frame. The necessity is thus proved. To prove the
sufficiency, note that

⋉n
s=1δ

is
2 = δk

2n ,
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where

k = (i1 − 1)2n−1 + (i2 − 1)2n−2 + · · · + (in−1 − 1)2 + in.

It is clear that if (i1, . . . , in) �= (j1, . . . , jn), then

⋉n
s=1δ

is
2 �= ⋉n

s=1δ
js

2 .

Hence, the assumption ensures that the 2n columns of T are of the form δk
2n with 2n

different k’s. It follows that T is nonsingular. �

The above proposition can easily be used to construct a coordinate frame from a
regular subspace. Moreover, it can also be used to test a regular subspace.

Corollary 8.2 Let zi ∈ X , i = 1, . . . , k. Then, {z1, . . . , zk} is a regular sub-basis

(equivalently, Z = F ℓ{z1, . . . , zk} is a regular subspace of dimension k) if and only

if its characteristic matrix E ∈ Bk,2n has the same number (that is, 2n−k) of distinct

columns. E ∈ Bk×2n contains equal (2n−k) distinct columns Coli(E) ∈ Bk×1,∀ i,
is called a regular characteristic matrix. That is, for any ξ ∈ Bk×1,

∣

∣{i | Coli(E) = ξ}
∣

∣ = 2n−k. (8.39)

To illustrate this we recall Example 8.4.

Example 8.5 Recall Example 8.4.

1. Consider case 1. Using (8.24) we can easily calculate that

z1z2 = Mx = δ4[2 1 3 4 4 3 1 2]x. (8.40)

That is,

M =

⎡

⎢

⎢

⎣

0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

⎤

⎥

⎥

⎦

.

We then have
8

∑

j=1

mij = 2, i = 1, . . . ,4.

According to Theorem 8.2, Z is a regular subspace. If we use Corollary 8.2, it
will be more simple. From (8.24) we can construct the characteristic matrix E as

E =

[

1 1 2 2 2 2 1 1
2 1 1 2 2 1 1 2

]

.

Now, the numbers of distinct columns are the same (i.e., 2), so Z is a regular
subspace. In this form, finding a z3 to form a coordinate frame also becomes
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much easier. We need to add a row to E such that the extended characteristic
matrix has no equal columns, say

Ee =

⎡

⎣

1 1 2 2 2 2 1 1
2 1 1 2 2 1 1 2
c1 c2 c3 c4 c5 c6 c7 c8

⎤

⎦ .

To make all the columns distinct, we need

c1 �= c8, c2 �= c7, c3 �= c6, c4 �= c5. (8.41)

We can therefore choose

z3 = δ2[c1 c2 c3 c4 c5 c6 c7 c8]x,

where ci ∈ {1,2}, i = 1, . . . ,8, and satisfy (8.41). It is easy to see that the z3
obtained in (8.25) is a particular one which satisfies (8.41).

2. Consider case 2. From (8.28), we can calculate that

z1z2 = Mx = δ4[2 1 3 4 2 1 1 2]x.

Then,

8
∑

j=1

m1j =

8
∑

j=1

m2j = 3,

8
∑

j=1

m3j =

8
∑

j=1

m4j = 1.

According to Theorem 8.2, Z is not a regular subspace.
We can also use Corollary 8.2. From (8.28) the characteristic matrix

E =

[

1 1 2 2 1 1 1 1
2 1 1 2 2 1 1 2

]

.

We now have three of columns (1,2)T and (1,1)T, and only one of columns
(2,1)T and (2,2)T. We conclude that Z is not a regular subspace.

Next, we consider a set of nested regular sub-bases.

Theorem 8.3 Let y1, . . . , ys and z1, . . . , zt be regular sub-bases of the state space

X = F ℓ{x1, . . . , xn}. If we assume that

yi ∈ F ℓ{z1, . . . , zt }, i = 1, . . . , s,

then y1, . . . , ys is also a regular sub-basis of z1, . . . , zt .

Proof Choose zt+1, . . . , zn such that z̃ = ⋉n
i=t+1zi ⋉t

i=1 zi is a coordinate transfor-
mation of x. First, we claim that if y = ⋉s

i=1yi is a regular sub-basis with respect to
x = ⋉n

i=1xi , then it is also a regular sub-basis with respect to z̃, i.e., “regularity” is
independent of a particular choice of the coordinates.
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To prove this claim, let x = T z̃. Since T is a coordinate transformation, it is a
permutation of In. Note that y = Hx and H satisfies (8.33), and that

y = HT z̃.

Since HT is obtained from H by column permutation, HT satisfies (8.33). There-
fore, we have

y = Hz̃ := [H1,H2]z̃, (8.42)

where H satisfies (8.33), and H1 and H2 are two equal-sized blocks of H . Set-
ting zt+1 = δ1

2 we have H1z
′, and setting zt+1 = δ2

2 we have H2z
′, where z′ =

⋉n
i=t+2zi ⋉t

i=1 zi . Now, since y is independent of zt+1, we conclude that H1 = H2.
Removing the fabricated variable zt+1 from (8.42) yields

y = [H1]z
′. (8.43)

Since H1 = H2, one sees that H1 satisfies (8.33). Continuing this procedure, we can
finally have

y = H0z, (8.44)

where z = ⋉t
i=1zi and H0 satisfies (8.33). The conclusion follows from Theo-

rem 8.2. �

Using Theorem 8.3, we can construct a universal coordinate frame for a set of
nested regular sub-bases. The following corollary is obvious.

Corollary 8.3 Let {zi
1, . . . , z

i
ni

}, i = 1, . . . , k, be a set of regular sub-bases of X =

F ℓ{x1, . . . , xn}. If we assume that

{

zi
1, . . . , z

i
ni

}

⊂ F ℓ

{

zi+1
1 , . . . , zi+1

ni+1

}

, i = 1, . . . , k − 1,

then there exists a coordinate frame w1, . . . ,wn, such that

F ℓ

{

zi
1, . . . , z

i
ni

}

= F ℓ

{

w1, . . . ,wni

}

, i = 1, . . . , k.

Corollary 8.4 Let Y and Z be regular subspaces of X such that Y ⊂ Z . There

then exists a regular subspace W such that F ℓ(W ,Y ) = Z , which is denoted by

W ⊕ Y = Z . (8.45)

Remark 8.4

1. If (8.45) holds, then W is called the complement space of Y in Z , denoted by
W = Z \Y .

2. The complement space was defined in Chap. 6 (Definition 6.3). This alternative
definition is essentially the same as the old one.
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The following example shows that the complement space W is, in general, not
unique.

Example 8.6 Let Z = Fℓ{x1, x2} ⊂ X and Y = Fℓ{x1 ↔ x2}. Set W1 = Fℓ{x1}

and W2 = Fℓ{x2}. Then,

Y ⊕ W1 = Z ,

and

Y ⊕ W2 = Z .

Corollary 8.5 Let

Z1 ⊂ Z2 ⊂ · · · ⊂ Zk = X

be a set of nested regular subspaces. There then exists a coordinate frame Z =

{z1,1, . . . z1,n1 , z21, . . . , z2,n2 , . . . , zk,1, . . . , zk,nk
} such that

Zs = F ℓ

{

z11, . . . , z1,n1 , . . . , zs,1, . . . zs,ns

}

, s = 1, . . . , k.

8.4 Invariant Subspaces

Consider the system (8.3) again. If it can be expressed (under a suitable coordinate
frame) as

{

z1(t + 1) = F 1(z1(t)), z1 ∈ D s,

z2(t + 1) = F 2(z(t)), z2 ∈ Dn−s,
(8.46)

then Z = F ℓ{z
1} = F ℓ{z

1
1, . . . , z

1
s } is called an invariant subspace of (8.3).

Remark 8.5

1. In a general sense, a subspace Z is invariant with respect to the system (8.46) if,
starting from any point z0 ∈ Z , the trajectory of (8.46) will remain in Z .

2. It follows from the definition that an invariant subspace is a regular subspace.
3. In Chap. 6 the invariant subspace was defined in a similar way, but under the orig-

inal coordinate frame x. Obviously, this new definition is more general than the
previous one because it allows for a change of coordinates. This generalization
reveals the essence of invariant subspaces.

From Chap. 6 (or [2]) one sees that invariant subspaces are very important for
investigating the topological structure of a network. By means of coordinate trans-
formations, we have generalized the concept of an invariant subspace. Obviously,
in a general sense, the invariant subspaces play the same role in determining the
topological structure of a network.
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Next, we consider how to check whether a subspace is an invariant subspace.
Let z1, . . . , zs ∈ X and Z = F ℓ{z1, . . . , zs}, and set z = ⋉s

i=1zi . We then have the
following result.

Theorem 8.4 Consider the system (8.3) with its algebraic form (8.14). Assume that

a regular subspace Z = F ℓ{z1, . . . , zs} with z = ⋉s
i=1zi has the algebraic form

z = Qx, (8.47)

where Q ∈ L2s×2n . Then, Z = F ℓ{z1, . . . , zs} is an invariant subspace of the sys-

tem (8.3) if and only if

Row(QL) ⊂ SpanB Row(Q), (8.48)

where SpanB means that the coefficients are in D and where L is as in (8.14), i.e.,
it is the transition matrix of the algebraic form of the system (8.3).

Proof Since Z is a regular subspace, there is a set {w1, . . . ,wn−s} such that the
elements of {z1, . . . , zs,w1, . . . ,wn−s} form a new coordinate frame.

(Sufficiency) From (8.47) we have

z(t + 1) = Qx(t + 1) = QLx(t). (8.49)

Since Row (QL) ⊂ SpanB Row (Q) there exists η ∈ B2s×2s such that QL = ηQ.
Hence,

z(t + 1) = ηQx(t) = ηz(t). (8.50)

Note that from (8.50) we know that η ∈ L2s×2s ⊂ B2s×2s .
Converting the algebraic form (8.49) back to logical form (say, F 1 is the logical

form of η), we have
{

z(t + 1) = F 1(z(t)),

w(t + 1) = F 2(z(t),w(t)).

(Necessity) Converting z(t + 1) = F 1(z(t)) into algebraic form, we have

z(t + 1) = ηz(t) = ηQx(t). (8.51)

Comparing (8.51) with (8.49), we have QL = ηQ, which implies (8.48). �

From the proof of the above theorem, it is easy to see the following.

Corollary 8.6 Using the notation of Theorem 8.4, Z is an invariant subspace if

and only if there exists an H ∈ L2s×2s such that

QL = HQ. (8.52)
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Note that checking (8.48) is not a straightforward computation; it is easier to use
(8.52). If (8.52) holds, as we know that Q is of full row rank, we have

H = QLQT(

QQT)−1
.

Hence, we have the following result.

Corollary 8.7 Z is an invariant subspace if and only if

QL = QLQT(

QQT)−1
Q. (8.53)

It is straightforward to verify (8.53).

Example 8.7 Consider the following Boolean network:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = (x1(t) ∧ x2(t) ∧ ¬x4(t)) ∨ (¬x1(t) ∧ x2(t)),

x2(t + 1) = x2(t) ∨ (x3(t) ↔ x4(t)),

x3(t + 1) = (x1(t) ∧ ¬x4(t)) ∨ (¬x1(t) ∧ x2(t))

∨ (¬x1(t) ∧ ¬x2(t) ∧ x4(t)),

x4(t + 1) = x1(t) ∧ ¬x2(t) ∧ x4(t).

(8.54)

Let Z = F ℓ{z1, z2, z3}, where
⎧

⎪

⎨

⎪

⎩

z1 = x1 ∨̄x4,

z2 = ¬x2,

z3 = x3 ↔ ¬x4.

(8.55)

Set x = ⋉4
i=1xi , z = ⋉3

i=1zi . We then have

z = Qx,

where

Q = δ8[8 3 7 4 6 1 5 2 4 7 3 8 2 5 1 6],

and the algebraic form of (8.54) is

x(t + 1) = Lx(t),

where

L = δ16[11 1 11 1 11 13 15 9 1 2 1 2 9 15 13 11].

It is easy to calculate that

QL = δ8[3 8 3 8 3 2 1 4 8 3 8 3 4 1 2 3],

which satisfies (8.48). Hence, Z is an invariant subspace of (8.54).
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In fact we can choose z4 = x4 such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z1 = x1 ∨̄x4,

z2 = ¬x2,

z3 = x3 ↔ ¬x4,

z4 = x4

(8.56)

is a coordinate transformation. Moreover, under coordinate frame z, the system
(8.54) can be expressed in the cascading form (8.46) as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = z1(t) → z2(t),

z2(t + 1) = z2(t) ∧ z3(t),

z3(t + 1) = ¬z1(t),

z4(t + 1) = z1(t) ∨ z2(t) ∨ z4(t).

(8.57)

8.5 Indistinct Rolling Gear Structure

Consider the system (8.3). Assume its algebraic form (in decomposed form) is

{

z1(t + 1) = L1z
1(t),

z2(t + 1) = L2z
1(t)z2(t).

(8.58)

Let Z1 = F ℓ(z
1
1, . . . , z

1
s ) and Z2 = F ℓ(z

2
1, . . . , z

2
n−s). It was proven in Chap. 6

that the cycle of (8.58) is composed of the cycle in Z1 and a “formal cycle” in Z2.
More precisely, let Ck

z = (z0, z1, . . . , zk = z0) be a cycle of length k with zi = z1
i z

2
i ,

i = 0, . . . , k. Then, for any z ∈ Ck
z , without loss of generality set z = z0, and z0 =

z1
0z

2
0 ∈ Ck

z , there exists an ℓ ≤ k, a factor of k such that

Cℓ
z1 =

(

z1
0, z

1
1 = (L1)z

1
0, z

1
2 = (L1)

2z1
0, . . . , z

1
ℓ = (L1)

ℓz1
0 = z1

0

)

is a cycle in the Z1 subspace. Moreover, if we define

Ψ := L2z
1
ℓ−1L2z

1
ℓ−2 · · ·L2z

1
1L2z

1
0,

then we can construct an auxiliary system

z2(t + 1) = Ψ z2(t). (8.59)

Then,

C
j

z2 =
(

z2
0, z

2
1 = Ψ z2

0, . . . , z
2
j = Ψ jz2

0 = z2
0

)
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is a cycle of (8.59), where j = k/ℓ. Finally, the cycle Ck
z is decomposed as

z0 = z1
0z

2
0 → z1 = z1

1L2z
1
0z

2
0 → z2 = z1

2L2z
1
1L2z

1
0z

2
0 → ·· · →

zℓ = z1
0z

2
1 → zℓ+1 = z1

1L2z
1
0z

2
1 → zℓ+2 = z1

2L2z
1
1L2z

1
0z

2
1 → ·· · →

...

z(j−1)ℓ = z1
0z

2
(j−1) → z(j−1)ℓ+1 = z1

1L2z
1
0z

2
(j−1) →

z(j−1)ℓ+2 = z1
2L2z

1
1L2z

1
0z

2
(j−1) → zjℓ = z1

0z
2
j = z1

0z
2
0 = z0. (8.60)

We call this Ck
z the composed cycle of Cℓ

z1 and C
j

z2 , denoted by Ck
z = Cℓ

z1 ◦ C
j

z2 .

Remark 8.6

1. As long as the dynamics of a Boolean network has a cascading structure as (8.58),
its cycles have such a “composed structure”, which is called the rolling gear
structure, described in Chap. 6.

2. Cℓ
z1 is a real cycle, which involves only some of the nodes (precisely, s nodes).

C
j

z2 is not a real cycle; it is a cycle of the auxiliary system (8.59).
3. To the best of the authors’ knowledge, in the current literature (for instance,

[1, 3, 5, 6, 8] and the references therein) only cycles and fixed points involving all
nodes are considered. Cycles and fixed points involving only some nodes, such
as Cℓ

z1 , are ignored. They can be found only in the cascading form. Furthermore,

cycles such as Cℓ
z1 can only be found under a coordinate transformation and in

the cascading form.

If a system is not originally in cascading form but has cascading form under
a suitable coordinate frame, then the system still has the cycles and/or fixed points
involving some of the state variables. Moreover, the rolling gear structure still exists,
which will be called the indistinct rolling gear structure. We investigate it via the
following example.

Example 8.8 Consider the following Boolean network:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = [x5(t) ∧ (x3(t) ∨̄x4(t))] ↔ (x5(t) ∨̄x3(t)),

x2(t + 1) = x5(t) ∨̄x3(t),

x3(t + 1) = (x3(t) ∨̄x4(t)) ∨̄x2(t),

x4(t + 1) = [¬(x1(t) ↔ x2(t))] ∨̄ [(x3(t) ∨̄x4(t)) ∨̄x2(t)],

x5(t + 1) = x5(t) ∨ (x3(t) ∨̄x4(t)),

x6(t + 1) = [(x1(t) ↔ x2(t)) ↔ (x2(t) ∨̄x6(t))] ∨̄ (x5(t) ∨̄x3(t)).

(8.61)
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Setting x = ⋉6
i=1xi , the algebraic form of system (8.61) is

x(t + 1) = Lx(t), (8.62)

where

L = δ64[18 17 35 36 62 61 45 46 13 14 30 29 33 34 20 19
26 25 43 44 54 53 37 38 5 6 22 21 41 42 28 27
21 22 40 39 57 58 42 41 10 9 25 26 38 37 23 24
29 30 48 47 49 50 34 33 2 1 17 18 46 45 31 32].

Using the method presented in Chap. 5, it is easy to calculate that the attractive
set of (8.61) consists of four cycles of length 8. These are:

C1: (1 1 1 1 1 1) → (1 0 1 1 1 0) → (1 0 0 1 1 1) → (1 1 1 0 1 1) →

(0 0 0 0 1 0) → (0 1 0 0 1 1) → (0 1 1 0 1 0) → (0 0 0 1 1 0) →

(1 1 1 1 1 1),

C2: (1 1 1 1 1 0) → (1 0 1 1 1 1) → (1 0 0 1 1 0) → (1 1 1 0 1 0) →

(0 0 0 0 1 1) → (0 1 0 0 1 0) → (0 1 1 0 1 1) → (0 0 0 1 1 1) →

(1 1 1 1 1 0),

C3: (1 1 0 1 1 1) → (1 1 0 0 1 1) → (0 1 1 1 1 1) → (1 0 1 0 1 1) →

(0 0 1 0 1 0) → (0 0 1 1 1 0) → (1 0 0 0 1 0) → (0 1 0 1 1 0) →

(1 1 0 1 1 1),

C4: (1 1 0 1 1 0) → (1 1 0 0 1 0) → (0 1 1 1 1 0) → (1 0 1 0 1 0) →

(0 0 1 0 1 1) → (0 0 1 1 1 1) → (1 0 0 0 1 1) → (0 1 0 1 1 1) →

(1 1 0 1 1 0).

Under this coordinate frame, we are not able to find cycles which are contained
in smaller invariant subspaces. Therefore, we are not able to reveal the rolling gear
structure for the network.

To find very small cycles and the rolling gear structure of the network, we try to
convert (8.61), if possible, into a cascading form in order to investigate its indistinct
rolling gear structure. Note that Theorem 8.4 says that Span{Col(Q)T} is a standard
LT invariant subspace. Therefore, standard tools from linear algebra can be used to
find the invariant subspaces. We skip the tedious and straightforward computation
and consider the following two nested spaces:

Z1 = F ℓ{z1 = x1 ↔ x2; z2 = x5; z3 = x3 ∨̄x4},

Z2 = F ℓ{z1 = x1 ↔ x2; z2 = x5; z3 = x3 ∨̄x4; z4 = x2 ∨̄x6}.

Set z1 = z1 ⋉ z2 ⋉ z3. It is easy to calculate that

z1 = Q1x,

where

Q1 = δ8[2 2 4 4 1 1 3 3 1 1 3 3 2 2 4 4 6 6 8 8 5 5 7 7 5 5 7 7 6 6 8 8
6 6 8 8 5 5 7 7 5 5 7 7 6 6 8 8 2 2 4 4 1 1 3 3 1 1 3 3 2 2 4 4].
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Similarly, set z2 = z1 ⋉ z2 ⋉ z3 ⋉ z4. We have

z2 = Q2x,

where

Q2 = δ16[ 4 3 8 7 2 1 6 5 2 1 6 5 4 3 8 7
11 12 15 16 9 10 13 14 9 10 13 14 11 12 15 16
12 11 16 15 10 9 14 13 10 9 14 13 12 11 16 15

3 4 7 8 1 2 5 6 1 2 5 6 3 4 7 8 ].

Using Theorem 8.3, it is easy to check that Z1 ⊂ Z2 are nested regular sub-
spaces. To see they are invariant subspaces of the system (8.61), it suffices to find
Hi , i = 1,2, such that (8.52) holds, that is, QiL = HiQi . It is easy to calculate that

H1 = δ8[2 6 6 8 1 5 5 7],

H2 = δ16[3 4 11 12 11 12 15 16 2 1 10 9 10 9 14 13].

It is not difficult to find z5 = x2 and z6 = x3 such that π : (x1, . . . , x6) �→

(z1, . . . , z6) is a coordinate transformation:

π :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1 = x1 ↔ x2,

z2 = x5,

z3 = x3 ∨̄x4,

z4 = x2 ∨̄x6,

z5 = x2,

z6 = x3.

The algebraic form of π is

z = ⋉6
i=1zi = T x, (8.63)

where

T = δ64[13 9 29 25 5 1 21 17 6 2 22 18 14 10 30 26
43 47 59 63 35 39 51 55 36 40 52 56 44 48 60 64
45 41 61 57 37 33 53 49 38 34 54 50 46 42 62 58
11 15 27 31 3 7 19 23 4 8 20 24 12 16 28 32].

Now, under the coordinate frame z = T x we have the algebraic form of the system
(8.61) as

z(t + 1) = T x(t + 1) = T Lx(t) = T LT −1z(t) := L̃z(t), (8.64)

where

L̃ = δ64[12 10 11 9 16 14 15 13 43 41 44 42 47 45 48 46
42 44 41 43 46 48 45 47 57 59 58 60 61 63 62 64

8 6 7 5 4 2 3 1 39 37 40 38 35 33 36 34
38 40 37 39 34 36 33 35 53 55 54 56 49 51 50 52].
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Using the method proposed in Proposition 7.2, we can convert (8.64) into a logical
form as (omitting the mechanical procedure)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = z2(t) ∧ z3(t),

z2(t + 1) = z2(t) ∨ z3(t),

z3(t + 1) = ¬z1(t),

z4(t + 1) = z1(t) ↔ z4(t),

z5(t + 1) = z2(t) ∨̄ z6(t),

z6(t + 1) = z3(t) ∨̄ z5(t).

(8.65)

From this cascading form one easily sees that Z1 = F ℓ{z1, z2, z3} and Z2 =
F ℓ{z1, z2, z3, z4} are invariant subspaces.

The subsystem with respect to Z1 has one cycle of length 4, which is

(1 1 1) → (1 1 0) → (0 1 0) → (0 1 1) → (1 1 1),

and the subsystem with respect to Z2 has two cycles of length 4, which are

(1 1 1 1) → (1 1 0 1) → (0 1 0 1) → (0 1 1 0) → (1 1 1 1),

(1 1 1 0) → (1 1 0 0) → (0 1 0 0) → (0 1 1 1) → (1 1 1 0).

The corresponding cycles of system (8.61) become

C̃1: (1 1 0 0 1 1) → (0 1 0 0 0 1) → (0 1 1 1 0 0) → (1 1 1 0 1 1) →

(1 1 0 0 0 0) → (0 1 0 0 1 0) → (0 1 1 1 1 1) → (1 1 1 0 0 0) →

(1 1 0 0 1 1),

C̃2: (1 1 0 1 1 1) → (0 1 0 1 0 1) → (0 1 1 0 0 0) → (1 1 1 1 1 1) →

(1 1 0 1 0 0) → (0 1 0 1 1 0) → (0 1 1 0 1 1) → (1 1 1 1 0 0) →

(1 1 0 1 1 1),

C̃3: (1 1 1 0 1 0) → (1 1 0 0 1 0) → (0 1 0 0 1 1) → (0 1 1 1 0 1) →

(1 1 1 0 0 1) → (1 1 0 0 0 1) → (0 1 0 0 0 0) → (0 1 1 1 1 0) →

(1 1 1 0 1 0),

C̃4: (1 1 1 1 1 0) → (1 1 0 1 1 0) → (0 1 0 1 1 1) → (0 1 1 0 0 1) →

(1 1 1 1 0 1) → (1 1 0 1 0 1) → (0 1 0 1 0 0) → (0 1 1 0 1 0) →

(1 1 1 1 1 0).

It is easy to see that the cycle of Z1 is implicitly contained in the cycles of Z2
(marked by underlining) and, similarly, the cycles of Z2 are implicitly contained in
the cycles of (8.64). The latter form several groups of three assembled gears, which
form the so-called indistinct rolling gear structure.

Note that cycles Ci and C̃i , i = 1,2,3,4, are exactly the same. (They are point-
to-point correspondent. The only difference is caused by the different coordinate
frames.)
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Chapter 9

Controllability and Observability of Boolean
Control Networks

9.1 Control via Input Boolean Network

Controllability is a fundamental topic in investigating Boolean control networks, but
there are few known results on control design [1, 3, 4]. Using the algebraic form,
the dynamics of a Boolean control network can be converted into a discrete-time
conventional dynamical system and the analysis method in modern control theory
can then be used to investigate the controllability of Boolean control networks.

We will discuss controllability via two types of inputs. In this section we assume
the controls are generated by an input Boolean network. In the following sections,
we will then consider the problem for controls of free Boolean sequences.

Consider a Boolean control network:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

yj (t) = hj

(

x1(t), . . . , xn(t)
)

, j = 1, . . . , n.

(9.1)

Assume the control is generated from a control Boolean network,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

u1(t + 1) = g1(u1(t), . . . , um(t)),

...

um(t + 1) = gm(u1(t), . . . , um(t)).

(9.2)

Letting X = (x1, . . . , xn)
T, Y = (y1, . . . , yp)T, U = (u1, . . . , um)T, F =

(f1, . . ., fn)
T, H = (h1, . . . , hp)T, and G = (g1, . . . , gm)T, (9.1) and (9.2) can be

simply expressed by the following (9.3) and (9.4), respectively:
{

X(t + 1) = F(X(t),U(t)),

Y (t) = H(X(t)),
(9.3)

U(t + 1) = G
(

U(t)
)

. (9.4)
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Definition 9.1 Consider the control system (9.1)–(9.2). Given initial state X(0) =

X0 and destination state Xd , Xd is said to be controllable (or reachable) from X0 (at
the sth step) with fixed (designable) input structure (G) if we can find U0 (and G)
such that X(U,0) = X0 and X(U, s) = Xd for some s ≥ 1.

Since, in this section, the control is generated by a control network, the controlla-
bility will here be called controllability by networked control. Note that, according
to the above definition, we may consider four cases: (1) fixed s and fixed G, (2) fixed
s and designable G, (3) free s > 0 and fixed G, (4) free s > 0 and designable G.

In the following, we use vector form. As a convention, x = ⋉n
i=1xi , etc.

Definition 9.2 For a fixed G, the input-state transfer matrix ΘG(t,0) is defined as
follows. For any u0 ∈ ∆2m and any x0 ∈ ∆2n , we have

x(t) = ΘG(t,0)u0x0, x(t) ∈ ∆2n , t > 0.

It is obvious that ΘG(t,0) depends on G. In the following we will find the input-
state transfer matrix. Since

x1 = Lu0x0,

we have ΘG(1,0) = L. Next, we calculate x2 = x(2), which is

x2 = Lu1x1 = LGu0Fu0Fu0x0 = FG(I2m ⊗ F)Φmu0x0,

where Φm is defined in Chap. 4 (4.6) as

Φm =

m
∏

i=1

I2i−1 ⊗
[

(I2 ⊗ W[2,2m−i ])Mr

]

.

We then have

ΘG(2,0) = LG(I2m ⊗ L)Φm.

Using mathematical induction, it is easy to prove that

ΘG(t,0) = LGt−1(I2m ⊗ LGt−2)(I22m ⊗ LGt−3) · · · (I2(t−1)m ⊗ L)

(I2(t−2)m ⊗ Φm)(I2(t−3)m ⊗ Φm) · · · (I2m ⊗ Φm)Φm. (9.5)

We start from case (1). From the above argument the following result is obvious.

Theorem 9.1 Consider the system (9.1) with control (9.2), where G is fixed. xd is

the sth step reachable from x0 if and only if

xd ∈ Col
{

ΘG(s,0)W[2n,2m]x0
}

. (9.6)
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Proof Since

x(s) = ΘG(s,0)u0x0 = ΘG(s,0)W[2n,2m]x0u0

the conclusion is obvious. �

We here give an example to describe this result.

Example 9.1 Consider the system

⎧

⎪

⎨

⎪

⎩

A(t + 1) = B(t) ↔ C(t),

B(t + 1) = C(t) ∨ u1(t),

C(t + 1) = A(t) ∧ u2(t),

(9.7)

with controls satisfying

{

u1(t + 1) = g1(u1(t), u2(t)),

u2(t + 1) = g2(u1(t), u2(t)).
(9.8)

Assume g1 and g2 are fixed as
{

g1(u1(t), u2(t)) = ¬u2(t),

g2(u1(t), u2(t)) = u1(t),
(9.9)

and assume A(0) = 1, B(0) = 0, C(0) = 1, and s = 5. If we let u(t) = u1(t)u2(t),
then

u(t + 1) = u1(t + 1)u2(t + 1) = Mnu2(t)u1(t) = MnW[2]u(t).

Therefore,

G = MnW[2] = δ4[3 1 4 2],

x(t + 1) = MeB(t)C(t)MdC(t)u1(t)McA(t)u2(t) = Lx(t),

where L ∈ L8×32, which is

L = δ8[1 5 5 1 2 6 6 2 2 6 6 2 2 6 6 2 1 7 5 3 2 8 6 4 2 8 6 4 2 8 6 4].

Φ2 = (I2 ⊗ W[2])Mr(I2 ⊗ Mr) = δ16[1 6 11 16].

Finally, using formula (9.5) yields Θ(5,0) ∈ L8×32 as

Θ(5,0) = LG4(I26 ⊗ LG3)(I24 ⊗ LG2)(I26 ⊗ LG)(I28 ⊗ L)

(I26 ⊗ Φ2)(I24 ⊗ Φ2)(I22 ⊗ Φ2)(I2 ⊗ Φ2)Φ2

= δ8[6 5 5 6 6 5 5,6 2 2 2 2 2 2 2 2

8 8 8 8 2 2 2 2 4 8 4 8 4 8 4 8].
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Now, assume that X(0) = (A(0),B(0),C(0)) = (1,0,1). Then, in vector form,

x0 = A(0)B(0)C(0) = δ1
2δ2

2δ1
2 = δ3

8 .

Using Theorem 9.1, we have

Θ(5,0)W[8,4]x0 = δ8[5 2 8 4].

Note that in the above equation and hereafter we use the following notation:

δk{i1, . . . , is} :=
{

δ
i1
k , . . . , δ

is
k

}

.

We conclude that the reachable set starting from X(0) and at step 5, denoted by
R5(X(0)), is

R5
(

(1,0,1)T)= Col
(

Θ(5,0)W[8,4]x0
)

= δ8{5 2 8 4}.

Converting to binary form, we have

R5
(

(1,0,1)
)

=
{

(0,1,1), (1,1,0), (0,0,0), (1,0,0)
}

.

Finally, we have to find the initial control u0 which drives the trajectory to the as-
signed xd . Since

xd = Θ(5,0)W[8,4]x0u0 = δ8[5 2 8 4]u0

it is obvious that to reach, say, δ5
8 ∼ (0,1,0), the u0 = δ1

4 , i.e., in scalar form,
u1(0) = 1 and u2(0) = 0.

Similarly, to reach the other four points
{

(0,1,1), (1,1,0), (0,0,0), (1,0,0)
}

,

the corresponding initial controls should be
(

u1(0), u2(0)
)

=
{

(1,1), (1,0), (0,1), (0,0)
}

,

respectively.

Remark 9.1 The ΘG(s,0) can be calculated inductively. For this purpose, we define

ΘLG(t,0) := LGt−1(I2m ⊗ LGt−2)(I22m ⊗ LGt−3) · · · (I2(t−1)m ⊗ L),

ΘΦ(t,0) := (I2(t−2)m ⊗ Φm)(I2(t−3)m ⊗ Φm) · · · (I2m ⊗ Φm)Φm.
(9.10)

Then,

ΘG(t,0) = ΘLG(t,0)ΘΦ(t,0). (9.11)

We give inductive formulas for these two factors. For ΘΦ(t,0) we simply have

ΘΦ(t + 1,0) = (I2(t−1)m ⊗ Θm)ΘΦ(t,0). (9.12)
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As for ΘLG(t,0), we first convert the semi-tensor product to a conventional matrix
product as

ΘLG(t,0) =

t−1
∏

i=0

(

I2im ⊗ LGt−1−i ⊗ I2(t−1−i)m

)

.

If we express it in right semi-tensor product form, we have (referring to Chap. 2 for
the right semi-tensor product)

ΘLG(t,0) = ⋊t−1
i=0

(

LGt−1−i ⊗ I2(t−1−i)m

)

.

It is then clear that

ΘLG(t + 1,0) =
(

LGt ⊗ I2tm

)

⋊ ΘLG(t,0). (9.13)

Next, we consider case (2). Since there are m0 = (2m)2m
possible distinct G’s,

we may express each G in condensed form and arrange them in an “increasing
order”. Say, when m = 2, we have G1 = δ4[1 1 1 1], G2 = δ4[1 1 1 2], . . . ,G256 =

δ4[4 4 4 4]. In general, we may consider a subset Λ ⊂ {1,2, . . . ,m0} and allow G to
be chosen from the admissible set {Gλ |λ ∈ Λ}. The following result is an immediate
consequence of Theorem 9.1.

Corollary 9.1 Consider the system (9.1) with control (9.2), where

G ∈ {Gλ |λ ∈ Λ}. Then, xd is reachable from x0 at the sth step if and only if

xd ∈ Col
{

ΘGλ(s,0)W[2n,2m]x0 |λ ∈ Λ
}

. (9.14)

Example 9.2 Consider the system (9.7) again. We still assume that A(0) = 1,
B(0) = 0, and C(0) = 1 [equivalently, x(0) = δ3

8] and let the step be s = 5. As-
sume the admissible set of G consists of nonsingular G’s. There are 24 such G’s:

G = {G ∈ L4×4 |G is nonsingular} := {Gi | i = 1,2, . . . ,24},

where G1 = δ4[1 2 3 4], G2 = δ4[1 2 4 3], G3 = δ4[1 3 2 4], . . . ,G24 = δ4[4 3 2 1].
The corresponding

Ri := (R5)
i = Col

{

Θ i(5,0)W[2n,2m]x0
}

are

R1 = δ8{5,6,8,4}, R2 = δ8{5,6,8,6}, R3 = δ8{5,6,8,4},

R4 = δ8{5,7,4,2}, R5 = δ8{5,8,2,4}, R6 = δ8{5,2,8,8},

R7 = δ8{5,6,8,4}, R8 = δ8{5,6,8,6}, R9 = δ8{6,8,2,4},

R10 = δ8{6,2,7,4}, R11 = δ8{1,2,4,8}, R12 = δ8{6,8,8,2},

R13 = δ8{8,5,6,4}, R14 = δ8{5,2,8,4}, R15 = δ8{5,6,8,4},

R16 = δ8{7,6,8,1}, R17 = δ8{5,2,8,8}, R18 = δ8{2,6,7,8},

R19 = δ8{6,2,7,2}, R20 = δ8{8,5,8,2}, R21 = δ8{8,6,1,4},

R22 = δ8{5,6,8,8}, R23 = δ8{2,2,7,8}, R24 = δ8{5,6,8,8}.
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Therefore, the reachable set at the fifth step is

RG
5

(

(1,0,1)
)

= δ8{1,2,4,5,6,7,8}.

It is interesting that starting from (A(0),B(0),C(0)) = (1,0,1), the only unreach-
able point at the fifth step is δ3

8 , which is the starting point. Now, assume we want to
reach (A(5),B(5),C(5)) = (1,1,1), which is δ1

8 . Since the first component of R11

is δ1
8 (we have some other choices such as R16 and R21) , we can choose G11 and

u1(0)u2(0) = δ1
4 to drive (1,0,1) to δ1

8 ∼ (1,1,1) at the fifth step. It is easy to show
that G11 = δ4[2 4 1 3].

From u1(0)u2(0) = δ1
4 , we have u1(0) = 1 and u2(0) = 1.

To reconstruct the control dynamics, we need retrievers

S2
1 = δ2[1 1 2 2], S2

2 = δ2[1 2 1 2].

We then have the structure matrices of g1 and g2 as

M1 = S2
1G = δ2[1 2 1 2], M2 = S2

2G = δ2[2 2 1 1].

It follows that the control dynamics is

u1(t + 1) = M1u1(t)u2(t) = u2(t),

u2(t + 1) = M2u1(t)u2(t) = ¬u1(t).

Next, we consider the reachable set for free s. The reachable set is divided into
two classes: the steady-state reachable set and the transient reachable set. Inclusion
in the steady-state reachable set means that destination points xd can be reached af-
ter any T > 0 (equivalently, at infinite times). Its complement is the transient reach-
able set. Note that for Boolean networks, a state will eventually enter an attractor, so
we are interested in the attractor, to which a point will enter under certain controls.

First we give a lemma, which is of independent interest.

Lemma 9.1 For a Boolean network, if its transition matrix is nonsingular, then

every point is on a cycle.

Proof According to Theorem 5.4 the transient period Tt is the smallest k ≥ 0 such
that there exists a T > 0 satisfying

Lk = Lk+T . (9.15)

To prove the lemma it suffices to show that the transient period Tt is zero. Let the
network matrix be L. Consider the sequence L, L2, . . . . Since there are only finitely
many distinct logical matrices in L2n×2n , there must be two integers p < q such that
Lp = Lq . Since L is nonsingular, it follows that Lp−q = I , which, in (9.15), means
that k = 0 and T = p − q . That is, the transient period is zero. �

In the following, we require an assumption.
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Assumption 1 G is nonsingular.

According to Lemma 9.1, starting from u0, we can find a minimum T0 > 0 such
that GT0u0 = u0. Hence, u0,Gu0, . . . ,G

T0u0 is a cycle of length T0. Following the
procedure in Chap. 6, we can construct a mapping

Ψ :=
(

LGT0−1u0
)(

LGT0−2u0
)

· · · (LGu0)(Lu0). (9.16)

For x0 we then consider the sequence x0, Ψ x0, . . . and find the transient period r1

and a minimum T1 > 0 such that

Ψ r1x0 = Ψ r1+T1x0. (9.17)

The reachable set starting from x0 with u0 can then be easily constructed. We give
the following algorithm:

Step 1. Find T0 such that u0,Gu0, . . . ,G
T0u0 is a cycle in the input space.

Step 2. Find the transient period r1 and minimum T1 > 0 satisfying (9.17).
Step 3. Construct a sequence

xi
0 = Ψ ix0, i = 0,1,2, . . . , r1 + T1 − 1. (9.18)

Step 4. For each xi
0, inductively construct a sequence

xi
j = LGj−1u0x

i
j−1, j = 1, . . . , T0 − 1. (9.19)

Note that the above construction is a special case of the general one discussed
in Chap. 6 for constructing input-state composed cycles. Thus, it is easily seen that
{xi

j } is the set of reachable points starting from x0 using u0 and a fixed G. We now
present this as a theorem.

Theorem 9.2 Consider the system (9.1) with control (9.2). If we assume Assump-

tion 1 and use the above algorithm, then:

1. For given u0 and Gk , the set of reachable states is

Rk
u0

=
{

xi
j

∣

∣ i = 0,1, . . . , r1 + T1 − 1; j = 0,1, . . . , T0 − 1
}

,

where {xi
j } are constructed by (9.18)–(9.19) and the steady-state reachable set is

RSk
u0

=
{

xi
j ∈ Rk

u0

∣

∣ i ≥ r1
}

.

2. For fixed G = Gk , the reachable set from x0 is

Rk =
⋃

u0

Rk
u0

.
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Table 9.1 Reachable set for
G1 = δ4[1 2 3 4] u(0) T0 r1 T1 RG1

1 1 2 2 δ8{2,3,5}

2 1 2 1 δ8{3,6}

3 1 1 7 δ8{3,4,8}

4 1 4 1 δ8{3,4,6,8}

Table 9.2 Reachable set for
G2 = δ4[2 4 3 1] u(0) T0 r1 T1 RG2

1 3 2 1 δ8{1,2,3,4,5,8}

2 3 2 1 δ8{2,3,5,6,8}

3 1 1 7 δ8{2,3,4,5,6,7,8}

4 3 2 1 δ8{3,6,8}

3. For admissible {Gλ |λ ∈ Λ}, the reachable set is

R =
⋃

λ∈Λ

⋃

u0

Rλ
u0

.

Example 9.3 Consider system (9.7) again with x(0) = δ3
8 . It is easy to obtain the

reachable set for each G and each u(0). We give two special G’s:

• G1 = δ4[1 2 3 4]. The reachable sets for the first 4 steps are listed in Table 9.1.
Therefore, the overall reachable set for G1 is δ8{2,3,4,5,6,8}.

• G2 = δ4[2 4 3 1]. The reachable sets for the first 4 steps are listed in Table 9.2.
Therefore, the overall reachable set for G2 is ∆8 ∼ D3, which means that the
system is G2-controllable from (1,0,1) [or, equivalently, x(0) = δ3

8 ].

9.2 Subnetworks

In this section we consider the controller nodes and controlled nodes. To make the
related topological structure clear, we need to discuss the corresponding subnet-
works.

Definition 9.3 Let Σ = (N ,E ) be a network. Σs = (Ns,Es) is called a subnet-
work of Σ if (i) Ns ⊂ N , and (ii) (i, j) ∈ Es if and only if (i, j) ∈ E and i, j ∈ Ns .
A subnetwork is denoted by Σs ⊂ Σ .

Definition 9.4 Let Σs ⊂ Σ .

1. The in-degree of Σs is the number of edges starting from N C
s and ending at Ns ,

where N C
s is the complement of Ns . The out-degree of Σs is the number of

edges starting from Ns and ending at N C
s .
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Fig. 9.1 Subnetwork

2. If the in-degree of Σs is 0, Σs is called a controller subnetwork. If the out-degree
of Σs is 0, Σs is called a controlled subnetwork. If Σ is a controller subnetwork,
then its complement ΣC

s is a controlled subnetwork, and vice versa.

We give an example to illustrate these definitions.

Example 9.4 Consider a network Σ consists of five nodes N = {A,B,C,D,E},
depicted in Fig. 9.1(a). Its subnetworks Σ1 and Σ2, consisting of N = {A,B,C}

and N = {D,E}, are depicted in Fig. 9.1(b) and (c), respectively.
It is easy to show the following:

• The in-degree of Σ1 is 0 and its out-degree is 3.
• Σ1 is an invariant subnetwork.
• The out-degree of Σ2 is 0 and its in-degree is 3.
• Σ2 is a controlled subnetwork and its control subnetwork is ΣC

2 = Σ1.

The incidence matrix of the Σ in Example 9.4 is

I (Σ) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1 0 0
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎦

. (9.20)

Observing (9.20), one sees that the incidence matrix has block lower triangular
form, which has two diagonal blocks corresponding to Σ1 and Σ2 respectively. In
fact, it is easy to prove that this is generally true.

Proposition 9.1 The subnetwork Σs ⊂ Σ is invariant if and only if the incidence

matrix I (Σ) has block lower triangular form, where the upper part of the matrix

corresponds to the subnetwork nodes Ns .

From a graph theoretical point of view, for a network Σ = (N ,E ) we can
choose a subset of nodes Ns ⊂ N , then remove the nodes in N c

s := N \Ns and
all the edges connected to N c

s . What then remains is a subnetwork. However, if
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the network is a Boolean (control) network, we may have a problem with the sub-
network dynamics. When we remove the dynamic equations of nodes in N c

s , the
remaining dynamic equations of nodes in Ns may still depend on the variables
of N c

s . Thus, we have to determine the dynamics of a subnetwork. We are only
interested in two cases: the subnetwork is either the controller subnetwork or the
controlled subnetwork. For the controller subnetwork there is no problem because
the controller subnetwork forms an invariant subspace. Its dynamics is independent
of the variables of N c

s . For controlled subnetwork Ns we assume, for each state
variable xλ ∈ N c

s , that there is a frozen value xe
λ such that the dynamics of Ns is

obtained by using the original equations in N and replacing the variable xλ ∈ N c
s

by xe
λ.

Note that this dynamics is physically realizable if and only if
{

xe
λ

∣

∣xλ ∈ N c
s

}

is a fixed point of the dynamics of N c
s .

Example 9.5 Consider Example 9.4. Assume the dynamics of Σ is
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A(t + 1) = A(t) ∧ C(t),

B(t + 1) = ¬A(t),

C(t + 1) = B(t) ↔ A(t),

D(t + 1) = B(t) → C(t),

E(t + 1) = ¬D(t) ∨̄C(t).

(9.21)

It is then obvious that (0,1,0)T is a fixed point of the subnetwork Σ1, which is
a controller subnetwork. Its complement, Σ2, is a controlled subnetwork. Define
X1(t) := (A(t),B(t),C(t))T, and X2(t) := (D(t),E(t))T. If we set the frozen value
as Xe

1 = (0,1,0)T, then the dynamics of Σ2 is
{

D(t + 1) = 1 → 0 = 0,

E(t + 1) = ¬D(t) ∨̄0 = ¬D(t).
(9.22)

9.3 Controllability via Free Boolean Sequence

In the following we consider the case where the control is a free Boolean sequence.
Such a control is called an open-loop control. We refer to [1] for an initial descrip-
tion of this kind of controllability.

Definition 9.5 Consider the Boolean control network (9.1) and suppose we are
given x0, xd ∈ ∆2n . The system (9.1) is said to be controllable from x0 to xd

(by a free Boolean sequence) at the sth step if we can find control u(t) ∈ Dm,
t = 0,1, . . . , s − 1, such that the initial state ⋉n

i=1xi(0) = x0 can be driven to the
destination state ⋉n

i=1xi(s) = xd .
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Fig. 9.2 A Boolean control
network

Recall that the algebraic form of (9.1) is

x(t + 1) = Lu(t)x(t), x ∈ ∆2n , u ∈ ∆2m . (9.23)

If we define L̃ = LW[2n,2m], then (9.23) can be expressed as

x(t + 1) = L̃x(t)u(t). (9.24)

Using it repetitively yields

x(s) = L̃sx(0)u(0)u(1) · · ·u(s − 1). (9.25)

Therefore, the solution to this kind of control problem can easily be deduced, as
follows.

Theorem 9.3 xd is reachable from x0 at the sth step by controls of Boolean se-

quences of length s if and only if

xd ∈ Col
{

L̃sx0
}

. (9.26)

Remark 9.2 Note that (9.26) means that xd is equal to a column of L̃sx0. If, say, xd

is equal to the kth column of L̃sx0, then the controls should be

u(0)u(1) · · ·u(s − 1) = δk
2ms , (9.27)

which uniquely determines all ui , i = 0,1, . . . , s − 1.

The following example is from [1].

Example 9.6 Consider the Boolean control system depicted in Fig. 9.2.
Its logical equation is

⎧

⎪

⎨

⎪

⎩

A(t + 1) = C(t) ∧ u1(t),

B(t + 1) = ¬u2(t),

C(t + 1) = A(t) ∨ B(t).

(9.28)
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Its componentwise algebraic form is

⎧

⎪

⎨

⎪

⎩

A(t + 1) = McC(t)u1(t),

B(t + 1) = Mnu2(t),

C(t + 1) = MdA(t)B(t).

(9.29)

Let x(t) = A(t)B(t)C(t), u(t) = u1(t)u2(t). We can then express the system in its
algebraic form as

x(t + 1) = L̃x(t)u(t), (9.30)

where L̃ ∈ L8×32 is

L̃ = δ8[3 1 7 5 3 1 7 5 7 5 7 5 7 5 7 5
3 1 7 5 3 1 7 5 8 6 8 6 8 6 8 6].

As in [1] we assume that X0 = (A(0),B(0),C(0)) = (0,0,0). We want to know if
a destination state can be reached at the sth step. If, say, s = 3, then using Theo-
rem 9.3, we can calculate L̃3x0 ∈ L8×64 as

L̃3x0 = δ8[8 6 8 6 3 1 7 5 8 6 8 6 3 1 7 5
7 5 7 5 3 1 7 5 8 6 8 6 3 1 7 5
8 6 8 6 3 1 7 5 8 6 8 6 3 1 7 5
7 5 7 5 3 1 7 5 8 6 8 6 3 1 7 5].

It is clear that at the third step all states except δ2
16 δ4

16 can be reached. We
now choose one state, say δ5

8 ∼ (0,1,1). Note that in the 8th, 16th, 18th, 20th,
. . . columns we have δ5

8 , which means that any of the controls δ8
64, δ16

64 , δ18
64 , δ20

64 , . . .

can drive the initial state (0,0,0) to the destination state (0,1,1). We choose, for
example,

u1(0)u2(0)u1(1)u2(1)u1(2)u2(2) = δ8
64.

Converting 64 − 8 = 56 to binary form yields 111000, which means that the corre-
sponding controls are

u1(0) = 1, u2(0) = 1, u1(1) = 1, u2(1) = 0, u1(2) = 0,

u2(2) = 0.

It is easy to check directly that this set of controls works. We may check some
others. Choosing, say, δ24

64 and converting 64 − 24 = 40 to binary form as 101000,
we have

u1(0) = 1, u2(0) = 0, u1(1) = 1, u2(1) = 0, u1(2) = 0,

u2(2) = 0.

This also works.
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In general, it is easy to calculate that when s = 1, the reachable set from X0 =

(0,0,0), denoted by R1(X0), is

R1(X0) =
{

(0,1,0), (0,0,0)
}

.

When s > 1 the reachable set is

Rs(X0) =
{

(1,1,1), (1,0,1), (0,1,1), (0,1,0), (0,0,1), (0,0,0)
}

, s > 1.

A generalization of controllability via control of Boolean sequences is when the
length of the sequences, s, is free. An immediate consequence of Theorem 9.3 is the
following result.

Corollary 9.2 xd is reachable from x0 if and only if

xd ∈ Col

{

∞
⋃

i=1

L̃ix0

}

. (9.31)

Denote by Rs(x0) the reachable set from x0 at time s and let R(x0) =
⋃

s≥0 Rs(x0). The following proposition makes (9.31) verifiable.

Proposition 9.2

1. The reachable set, R(x0), is a subset of Col{L̃}.
2. If we assume that k∗ is the smallest k > 0 such that

Col
{

L̃k+1x0
}

⊂ Col
{

L̃sx0
∣

∣ s = 1,2, . . . , k
}

,

then the reachable set

R(x0) = Col

{

k∗
⋃

i=1

L̃ix0

}

. (9.32)

Proof 1. A straightforward computation shows that L̃kx0 ∈ L2n×2km . Since L̃ ∈

L2n×2n+m , by a property of the semi-tensor product we have

L̃k+1x0 = L̃ ⋉ L̃kx0 = L̃ ×
[

L̃kx0 ⊗ I2m

]

,

where × is the conventional matrix product. The conclusion follows immediately.
2. We use the notation

Col
{

L̃k
}

⊗ Im :=
{

X ⊗ Im

∣

∣X ∈ Col
{

L̃k
}}

.

If we assume

Col
{

L̃k+1x0
}

⊂ Col
{

L̃sx0
∣

∣ s = 1,2, . . . , k
}

,
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then

Col
{

L̃k+2x0
}

=
{

L̃η
∣

∣η ∈ Col
{

L̃k+1x0
}

⊗ Im

}

⊂
{

L̃η
∣

∣η ∈ Col
{

L̃sx0
}

⊗ Im, s = 1,2, . . . , k
}

= Col
{

L̃sx0
∣

∣ s = 2,3, . . . , k + 1
}

⊂ Col
{

L̃sx0 ⊗ Im

∣

∣ s = 1,2,3, . . . , k
}

.

This inequality shows that after k there are no more new columns. From part 1 we
know that such a k∗ does exist. �

Example 9.7 We reconsider Example 9.6. Denote the eight possible initial points
by (in decreasing order) X1

0 = (1,1,1), X2
0 = (1,1,0), . . . , X8

0 = (0,0,0). It is then
easy to see that for all of them, the first degenerate step is the same, that is, s0 = 3.
For X1

0 , X2
0 , X5

0 , X6
0 , the first-step reachable set is

R1
(

X1
0

)

= R1
(

X2
0

)

= R1
(

X5
0

)

= R1
(

X6
0

)

=
{

(1,1,1)T, (1,0,1)T, (0,1,1)T, (0,0,1)T}.

For X3
0 , X4

0 , the first-step reachable set is

R1
(

X3
0

)

= R1
(

X4
0

)

=
{

(0,1,1)T, (0,0,1)T}.

For X7
0 , X8

0 , the first-step reachable set is

R1
(

X7
0

)

= R1
(

X8
0

)

=
{

(0,1,0)T, (0,0,0)T}.

These have same second-step reachable set (which is also the reachable set for any
k > 2 steps)

R2
(

Xi
0

)

=
{

(1,1,1)T, (1,0,1)T, (0,1,1)T, (0,1,0)T, (0,0,1)T, (0,0,0)T},

where i = 1,2, . . . ,8. Note that since R2(x
i
0) = Col{L̃}, according to part 1 of

Proposition 9.2, no more states can be reached.

From above argument, it is reasonable to give the following definition.

Definition 9.6 The system (9.1) is said to be globally reachable from X0 ∼ x0 (by
the control of a free length Boolean sequence) if

R(x0) = Col
{

L̃kx0
∣

∣ k = 0,1, . . . ,2n − 1
}

= ∆2n . (9.33)

The system (9.1) is called globally controllable (by the control of a free length
Boolean sequence) if

Col
{

L̃kx0
∣

∣ k = 0,1, . . . ,2n − 1
}

= ∆2n , ∀x0 ∈ ∆2n . (9.34)
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Example 9.8 Consider the following system:

⎧

⎪

⎨

⎪

⎩

A(t + 1) = B(t) ∧ u1(t),

B(t + 1) = C(t) ↔ (¬u2(t)),

C(t + 1) = A(t) ∨ u2(t).

(9.35)

It is easy to check that from point X0 = (1,0,0) the first-, second- and third-step
reachable sets are

R1(X0) =
{

(0,1,1), (0,0,1)
}

,

R2(X0) =
{

(1,1,0), (1,0,1), (0,1,0), (0,0,1)
}

,

R3(X0) =
{

(1,1,1), (1,0,1), (1,0,0), (0,1,1), (0,1,0), (0,0,1), (0,0,0)
}

.

Therefore, the system (9.35) is globally reachable from X0 = (1,0,0).

Remark 9.3 Unlike the controllability of linear control systems, for system (9.1),
x ∈ R(y) does not mean y ∈ R(x). A trivial example is as follows. Assume the state
equations of (9.1) have algebraic form

x(t + 1) = Lu(t)x(t),

where

Coli(L) = δi
2n := xd , ∀1 ≤ i ≤ 2n+m.

For any x0 ∈ ∆2n , the reachable set is then R(x0) = {xd}, but if x0 �= xd , then x0 �=

R(xd).

It is obvious that control by free length Boolean sequences is the strongest form
of control. It has been pointed out in the literature that in some Boolean network
problems, the controls can only be generated by a Boolean system of controls. The
control of free length Boolean sequences could destroy the cycle structure of the
system, which could be very important for, e.g, deciding the type of cells.

The controllability of a Boolean control network considered thus far has been
solved by means of some entirely theoretical results. The disadvantage of the ap-
proach taken here is the computational complexity. We refer to [5] for some suf-
ficient conditions which can be used for larger Boolean control networks. We also
refer to Chap. 16, where the verifying condition is a matrix which has fixed size
with respect to each step s.

9.4 Observability

It is obvious that for a Boolean network, observability is control-dependent. We first
give a definition.
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Definition 9.7 Consider the system (9.1).

1. X0
1 and X0

2 are said to be distinguishable if there exists a control sequence
{U(0),U(1), . . . ,U(s)}, where s ≥ 0, such that

Y 1(s + 1) = ys+1(U(s), . . . ,U(0),X0
1

)

�= Y 2(s + 1)

= ys+1(U(s), . . . ,U(0),X0
2

)

. (9.36)

2. The system is said to be observable if any two initial points X0, Y 0 ∈ D2n are
distinguishable.

We now give an algorithm for observability.

Step 1. Construct a sequence Γi , i = 1,2, . . . , of sets of 2p ×2n matrices as follows:

Γ1 =
{

Lδi
2m

∣

∣ i = 1,2, . . . ,2m
}

,

Γk+1 =
{

Lδi
2mγ
∣

∣γ ∈ Γk; i = 1,2, . . . ,2m
}

, k ≥ 1.

If Col{Γk∗+1} ⊂ Col{Γi | i ≤ k∗}, then k∗+1 is called the degenerate step. If k∗ > 0
is the last nondegenerate step, then the sequence will stop at k∗. (Since there are at
most 2n different columns, k∗ ≤ 2n.)

Step 2. Construct a sequence of sets of 2p × 2n matrices as H0 = H , Hi = HΓi =

{Hγ |γ ∈ Γi}.
Step 3. Using condensed form, each matrix in Hi becomes a 2n-dimensional row.

Choose h0 ∼ H and linearly independent rows hi
j ∈ Hi , i = 1,2, . . . , k∗, to form a

matrix as

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h0

h1
1

...

h1
i1

...

hk∗

1

...

hk∗

ik∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9.37)

We call M the observability matrix.

Theorem 9.4 Assuming that the system (9.1) is globally controllable, it is observ-

able, if and only if all columns of C are distinct.
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Proof Starting from one point x0 we can observe Hx0. Using different controls
δi

2n , we can observe HLδi
2n . Using different δi

2n is allowed because the system is
globally controllable. Hence, we can start from the same point as many times as we
wish. Continuing this process, we see that

HLδ
i1
2nLδ

i2
2n · · ·Lδ

is
2nx0, s ≥ 0,

are observable. Since s ≥ k0 adds no linearly independent rows to the previous set,
and a linearly dependent row is useless in distinguishing initial values, the initial
values can be distinguished if and only if all columns of C are distinct. �

Next, we consider controllability and observability with control of sequence of
1−0−∅, where ∅ means the input channel is disconnected. This is reasonable. For
instance, in a cellular network the active cycles determine the types of cells. Now,
the genetic regulatory network can change the active cycles in a cellular network to
change the types of cells, but it acts only over a very short time period, like a pulse.
Thus, the control becomes a sequence of 1 − 0 − ∅.

When an input ui is disconnected, we should ask: What is the nominal network

dynamics? Principally, it is reasonable to ask that the network graph be a subgraph
of the original one by removing ui related edges. In this way the nominal network
graph is unique, but the nominal network dynamics could be different. To specify
it, we assume that it has a network matrix L∅. For convenience, we assume that
there is a frozen control u

∅

i = constant such that the ith input-disconnected system
has the form ui = u

∅

i . When ui = u
∅

i , ∀ i, the control-free system is the nominal
network of the original Boolean control network. That is,

L∅ = Lu
∅

1 u
∅

2 · · ·u∅

m .

In many cases we are only interested in the steady-state case. For the nominal
Boolean network let Ci , i = 1,2, . . . , k, be its cycles (attractors) and denote by
Ω =
⋃k

i=1 Ci its set of steady states, by Bi the region of attraction of Ci .

Definition 9.8 A Boolean network is globally steady-state controllable by control
sequence of 1 − 0 − ∅ if, for any two points x, y ∈ Ω , there is a control sequence
of 1 − 0 − ∅, which drives the trajectory from x to y. A Boolean network is steady-
state observable if, for any x0, y0 ∈ Ω , there is a control sequence of 1 − 0 −∅ such
that x0, y0 are distinguished from outputs.

We will need the following assumption.

Assumption 2 ∅ is a frozen control, which is a fixed point of the input network.

For the rest of this chapter, Assumption 2 is assumed.
The following result is a direct consequence of the last definition and Theo-

rem 9.4.
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Proposition 9.3

1. Consider a Boolean control network such that its nominal system has cycles Ci ,
1,2, . . . , k. The system is globally steady-state controllable if and only if, for any

1 ≤ i, j ≤ k, there exist at least one x ∈ Ci , one y ∈ Cj and a 1−0−∅ sequence

of control which drives x to y.
2. If a Boolean control network is steady-state controllable, then it is steady-state

observable if and only if M, defined in (9.37), has all distinct columns.

Proof Note that a point on a cycle of the nominal system can be reached infinitely
many times as ∅ is used. The conclusions are then trivial. �

We now give an example.

Example 9.9 Consider the system (9.7) in Example 9.1. It is natural to assume its
nominal system to be (by using frozen controls u

∅

1 = 0 and u
∅

2 = 1)

⎧

⎪

⎨

⎪

⎩

A(t + 1) = B(t) ↔ C(t),

B(t + 1) = C(t),

C(t + 1) = A(t).

(9.38)

Using the technique developed in Chap. 5 it is easy to calculate that there are two
cycles: equilibrium C1 : (1,1,1) and length-7 cycle

C2: (1,1,0) → (0,0,1) → (0,1,0) → (0,0,0) →

(1,0,0) → (1,0,1) → (0,1,1) → (1,1,0).

Since there are no transient states, “globally steady-state controllable” is the same
as “globally controllable”. To prove global steady-state controllability, we have to
find a control to drive a point in one cycle to the other and vice versa.

If we let (A(0),B(0),C(0)) = (1,1,1) ∈ C1 and use u1(0) = 0, u2(0) = 0, then
(A(1),B(1),C(1)) = (1,1,0) ∈ C2. If we let (A(0),B(0),C(0)) = (1,0,0) ∈ C2

and use u1(0) = 1, u2(0) = 1, then (A(1),B(1),C(1)) = (1,1,1) ∈ C1. By Propo-
sition 9.3, the system (9.7) is globally steady-state controllable.

We now assume that the outputs are

y1(t) = A(t),

y2(t) = B(t) ∨ C(t).
(9.39)

We then have

y(t) := y1(t)y2(t) = A(t)MdB(t)C(t) = Hx(t),

where H ∈ M4×8 is

H = δ4[1 1 1 2 3 3 3 4].
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For the system (9.7), it is easy to calculate that

L = δ8[1 5 5 1 2 6 6 2 2 6 6 2 2 6 6 2
1 7 5 3 2 8 6 4 2 8 6 4 2 8 6 4].

We can then calculate that

HLδ1
4 = δ4[1 3 3 1 1 3 3 1],

HLδ2
4 = δ4[1 3 3 1 1 3 3 1],

HLδ3
4 = δ4[1 3 3 1 1 4 3 2],

HLδ4
4 = δ4[1 4 3 2 1 4 3 2].

We only need to construct part of M. Choosing linearly independent rows, we have
the observability matrix as

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H

HLδ1
4

HLδ2
4

HLδ3
4

HLδ4
4

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 2 3 3 3 4
1 3 3 1 1 3 3 1
1 3 3 1 1 4 3 2
1 4 3 2 1 4 3 2
...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

From part of M it is enough to see that it has no identical columns. Therefore, the
system is observable.

References

1. Akutsu, T., Hayashida, M., Ching, W., Ng, M.: Control of Boolean networks: hardness results
and algorithms for tree structured networks. J. Theor. Biol. 244(4), 670–679 (2007)

2. Cheng, D., Qi, H.: Controllability and observability of Boolean control networks. Automatica
45(7), 1659–1667 (2009)

3. Datta, A., Choudhary, A., Bittner, M., Dougherty, E.: External control in Markovian genetic
regulatory networks. Mach. Learn. 52, 169–191 (2003)

4. Datta, A., Choudhary, A., Bittner, M., Dougherty, E.: External control in Markovian genetic
regulatory networks: the imperfect information case. Bioinformatics 20, 924–930 (2004)

5. Kobayashi, K., Imura, J.I., Hiraishi, K.: Polynomial-time algorithm for controllability test of
Boolean networks. In: IEICE Tech. Rep., vol. 109, pp. 13–18 (2009)



Chapter 10

Realization of Boolean Control Networks

10.1 What Is a Realization?

Consider a control system. Overall, it can be considered as a mapping from input(s)
to output(s), which is depicted as a black box in Fig. 10.1.

The state-space approach, proposed by Kalman, is one of the cornerstones
of modern control theory. It proposes the use of a set of dynamical equations
for certain state variables to describe the black box. The dynamical equations
of the state variables can represent the input–output mapping, and hence it is
called a realization of the system Σ . In general, the realization is not unique.
Obtaining a minimum realization involves finding a smallest size of Σ (equiva-
lently, a smallest number of state variables) to realize the required input–output
mapping. For a Boolean control network (BCN) with input(s) and output(s), we
can consider the same problem. This chapter is devoted to the realization of
BCNs.

A dynamical system may have two formally different forms under two differ-
ent coordinate frames, but it is obvious that any such pair of different forms are
equivalent. Because of this coordinate transformation, we may choose a model
to be the representation of the equivalence class. This is the so-called normal
form.

A BCN can also be considered as a mapping from input space, say Dm, to
output space, say Dp . In Chap. 8 we considered coordinate transformations of
Boolean (control) systems. It is now clear that if one BCN is obtained from an-
other by a state-space coordinate transformation, then these two BCNs realize the
same input–output mapping. If two systems are related by a coordinate transfor-
mation, we naturally say that they are equivalent. A question which then natu-
rally arises is: Can two nonequivalent BCNs realize the same input–output map-
ping? More generally, is it possible for two BCNs with different sizes to realize
the same input–output mapping? The answer is “Yes”. We give a heuristic exam-
ple.
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Fig. 10.1 A control system

Example 10.1 Consider the following BCN:

Σ1 :

⎧

⎪

⎨

⎪

⎩

x1(t + 1) = u ↔ ¬(x1(t) → x2(t)),

x2(t + 1) = (u ∧ (¬x1(t) ∧ x2(t)) ∨ (¬u ∧ ¬(x1(t) → x1(t))),

y(t) = x1(t) ↔ x2(t).

(10.1)

Using a coordinate transformation
{

z1 = x1 ↔ x2,

z2 = ¬x1,
(10.2)

the system becomes

Σ2 :

⎧

⎪
⎨

⎪
⎩

z1(t + 1) = z1(t) ∧ u,

z2(t + 1) = (z1(t) ∨ z2(t)) ↔ u,

y(t) = z1(t).

(10.3)

It is not difficult to verify that as the initial values satisfy
{

z1(0) = x1(0) ↔ x2(0),

z2(0) = ¬x1(0),
(10.4)

the input–output mappings of Σ1 and Σ2 are exactly the same.
Moreover, we can see from (10.3) that the output of Σ2 in fact depends only on

z1, and z1 is independent of z2. Therefore, z2 is a redundant state variable regarding
the realization of the input–output mapping and we can remove it to obtain the
following:

Σ3 :

{

z(t + 1) = z(t) ∧ u,

y(t) = z(t).
(10.5)

Thus, as long as the initial conditions of Σ1 and Σ3 satisfy the condition z(0) =

x1(0) ↔ x2(0), they realize the same input–output mapping.

From this example one sees that, as with conventional control systems, the real-
ization of BCNs is also an interesting and practically important problem. Moreover,
we would like to emphasize the following points:

• To consider the realization of BCNs, coordinate transformations are fundamental.
• It is very likely that a “minimum realization” of a BCN can be found under a

suitable coordinate frame.
• Corresponding initial values of different realizations should be taken into consid-

eration.
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10.2 Controllable Normal Form

Consider a logical mapping F : Dn → Dm, described as

F : zi = fi(x1, . . . , xn), i = 1, . . . ,m. (10.6)

fi is said to be in a clean form if fi has no fabricated arguments. That is, if fi is
independent of xj , then xj will not appear in fi . Note that in a logical function, it is
not obvious how to identify whether an argument is fabricated or not. In Chap. 7 a
procedure is provided to obtain the clean form of an arbitrary logical function f .

The incidence matrix of a dynamic network was defined in Chap. 5. We recall it
now. For a mapping F with fi in clean form, its incidence matrix I (F ) := (bij ) ∈

Bm×n is constructed as follows:

bij =

{

1, if xj appears in fi,

0, otherwise.

Consider the BCN
⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t));

y1(t) = h1
(

x1(t), x2(t), . . . , xn(t)
)

,

...

yp(t) = hp

(

x1(t), x2(t), . . . , xn(t)
)

.

(10.7)

Hereafter and throughout this chapter we assume that the logical equations fi are
in clean form. Denote the incidence matrices for x and y by I (F ) ∈ Bn×(n+m)

and I (H) ∈ Bp×n, respectively . For convenience we arrange I (F ) as follows:
The first n columns correspond to x and the last m columns correspond to u, that
is, bij = 1, j ≤ n, means xj appears in fi(x,u) and bij = 1, j > n, means uj−n

appears in fi(x,u).

Definition 10.1 Let z be a coordinate frame. A subspace V = F ℓ{z1, z2, . . . , zk} ⊂

X is said to be an invariant subspace of the system (10.7) if, for any z0 ∈ V and
any control u(t), the trajectory

z(t) = z(z0, u, t) ∈ V .

A subspace V = F ℓ{z1, z2, . . . , zk} ⊂ X is said to be a control-independent
invariant subspace of the system (10.7) if it is an invariant subspace and, for any
z0 ∈ V , the trajectory is independent of control u, i.e.,

z(t) = z(z0, t) ∈ V .
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Note that the invariant subspace of a control system is not exactly the same as
the invariant subspace of a free system, which is defined in Chaps. 6 and 8.

The following, easily verifiable, results are useful for testing invariant subspaces.

Proposition 10.1

1. V = F ℓ{z1, z2, . . . , zk} is an invariant subspace if and only if one of the follow-

ing two equivalent conditions is satisfied:
(i) Under coordinate frame z (in clean form)

fi(z1, z2, . . . , zn, u1, . . . , um)

= fi(z1, z2, . . . , zk, u1, . . . , um), i = 1,2, . . . , k. (10.8)

(ii) Under coordinate frame z (in clean form) the incidence matrix becomes

I (F ) =

[

B11 0 G1

B21 B22 G2

]

. (10.9)

2. V = F ℓ{z1, z2, . . . , zk} is a control-independent invariant subspace, iff one of

the following two equivalent conditions is satisfied:
(i) Under coordinate frame z (in clean form)

fi(z1, z2, . . . , zn, u1, . . . , um)

= fi(z1, z2, . . . , zk), i = 1,2, . . . , k. (10.10)

(ii) Under coordinate frame z (in clean form) the incidence matrix becomes

I (F ) =

[

B11 0 0
B21 B22 G2

]

. (10.11)

Next, we consider how to verify whether a regular subspace Z ⊂ X is a
(control-independent) invariant subspace. Let the algebraic form of (10.7) be

{

x(t + 1) = Lx(t)u(t), x(t) ∈ ∆2n , u(t) ∈ ∆2m ,

y(t) = Hx(t), y(t) ∈ ∆2p ,
(10.12)

where L ∈ L2n×2m+n and H ∈ L2p×2n . Assume that

Z = F ℓ{z1, . . . , zk | zi ∈ X } (10.13)

is a k-dimensional regular subspace, let z = ⋉k
i=1zi , and let the algebraic form of

Z be

z = Gx, (10.14)

where G ∈ L2k×2n . We then have the following result.
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Proposition 10.2

1. Z is an invariant subspace if and only if one of the following two equivalent

conditions is satisfied:
(i)

Row(GL) ⊂ SpanB Row(G). (10.15)

(ii) There exists an E ∈ L2k×2k+m such that

GL = EG. (10.16)

2. Define

GLW[2m,2n] := [B1,B2, . . . ,B2m ],

where Bi ∈ L2k×2n , i = 1,2, . . . ,2m. Then, Z is a control-independent invari-

ant subspace if and only if:
(i)

Bi = B ∈ L2k×2n , i = 1,2, . . . ,2m. (10.17)

(ii) There exists an E ∈ L2k×2k such that

B = EG. (10.18)

Proof 1. The proof is the same as that of Theorem 8.4.
2. By definition we have

z(t + 1) = Ez(t),

where E ∈ L2k×2k . A similar argument as in the proof of Theorem 8.4 yields that

GLW[2m,2n]u(t)x(t) = EGx(t).

It follows that

GLW[2m,2n]u(t) = EG. (10.19)

Since the right-hand side is independent of u(t), taking u(t) = δ1
2m , . . . , δ2m

2m , the
left-hand side becomes B1, . . . ,B2m . Hence,

B1 = B2 = · · · = B2m := B.

Substituting any u(t) into (10.19) yields (10.18). �

Definition 10.2 A regular subspace V is said to be uncontrollable if it is a control-
independent invariant subspace.

Definition 10.3 Consider the system (10.7).

1. A logical variable ξ ∈ X is said to be uncontrollable if there is an uncontrollable
subspace V such that ξ ∈ V .
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2.

Cc := {ξ ∈ X | ξ is uncontrollable}

is called the largest uncontrollable subspace of the system (10.7).

Remark 10.1 By definition any uncontrollable subspace is a subset of Cc, hence it
is the largest one. Moreover, it is easy to prove its uniqueness.

Theorem 10.1 Assume Cc is a regular subspace with {zk+1, . . . , zn} as its regular

sub-basis. The state equations of the system (10.7) can then be expressed as

{

z1(t + 1) = F1(z(t), u(t)),

z2(t + 1) = F2(z
2(t)),

(10.20)

where z2 = (zk+1, . . . , zn)
T. The system (10.20) is called the controllable normal

form of (10.7).

Proof Consider zs , where s > k. Since zs ∈ Cc, by definition there is an uncon-
trollable subspace W = F ℓ{w1, . . . ,wℓ} such that zs ∈ W . Let w = ⋉ℓ

i=1wi . In
algebraic form, we have

zs = Mw, where M ∈ L2×2k . (10.21)

Since W is uncontrollable, we have

w(t + 1) = Lww(t), where Lw ∈ L2ℓ×2ℓ . (10.22)

Since both W and Cc are regular subspaces of X and W ⊂ Cc , according to Theo-
rem 8.3, W is a regular subspace of Cc . Hence, we have

w = Nz2, where N ∈ L2ℓ×2k . (10.23)

Using (10.21)–(10.23), we have

zs(t + 1) = Mw(t + 1) = MLww(t) = MLwNz2(t). (10.24)

Since s > k is arbitrary, (10.24) implies (10.20). �

We now give an example.

Example 10.2 Consider the following system:

⎧

⎪

⎨

⎪

⎩

x1(t + 1) = x1(t) → u(t),

x2(t + 1) = (x1(t) → u(t)) ↔ ([(x1(t) ∧ x2(t)) ∨ (¬x1(t) ∧ ¬x2(t))] ∨ x3(t)),

x3(t + 1) = ¬(x1(t) ∧ x2(t)) ∧ (x1(t) ∨ x2(t)).

(10.25)
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Choose a logical coordinate transformation as follows:

⎧

⎪

⎨

⎪

⎩

z1(t) = x1(t),

z2(t) = (x1(t) ∧ x2(t)) ∨ (¬x1(t) ∧ ¬x2(t)),

z3(t) = x3(t).

Its inverse mapping is
⎧

⎪

⎨

⎪

⎩

x1(t) = z1(t),

x2(t) = z1(t) ↔ z2(t),

x3(t) = z3(t).

Letting Cc = {z2, z3}, and setting x(t) = ⋉3
i=1xi(t) and z2(t) = z2(t) ⋉ z3(t), we

then have

z2(t) = δ4[1 2 3 4 3 4 1 2]x(t).

From Theorem 8.2, Cc is a regular subspace. Under the coordinates {zi}, (10.25)
can be expressed as

⎧

⎪

⎨

⎪

⎩

z1(t + 1) = z1(t) → u(t),

z2(t + 1) = z2(t) ∨ z3(t),

z3(t + 1) = ¬z2(t).

(10.26)

The incidence matrix of (10.26) is

I (F ) =

⎛

⎜

⎝

1 0 0 1

0 1 1 0

0 1 0 0

⎞

⎟

⎠
,

so (10.26) is a controllable normal form of (10.25) with Cc = Fℓ{z2, z3}.

10.3 Observable Normal Form

To investigate the observable normal form, we have to consider the complement
subspace, which was discussed in Chap. 8.

Definition 10.4 Consider the system (10.7). A regular subspace V is said to be
unobservable if there is a complement space W of V satisfying:

(i) W is an invariant subspace of (10.7).
(ii)

hj ∈ W , j = 1, . . . , p.
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Remark 10.2 Let Z = (Z1,Z2) be the coordinate frame such that W = F ℓ{Z
1}

and V = F ℓ{Z
2}. Under coordinate frame Z, the system (10.7) can be expressed

as
{

Z1(t + 1) = F1(Z
1(t),U(t)),

Z2(t + 1) = F2(Z(t),U(t)),

Y (t) = H
(

Z1(t)
)

.

Equivalently, under this coordinate frame the incidence matrices of F and H are

I (F ) =

[

B11 0 B13

B21 B22 B23

]

, I (H) = [C 0 ].

Definition 10.5

1. Consider the system (10.7). A logical variable ξ ∈ X is called an unobservable
variable if there exists an unobservable subspace V such that ξ ∈ V .

2.

Oc := {ξ | ξ is unobservable}

Now, let ξ ∈ Oc. There then exist a ξ ∈ Vξ and its complement, denoted by V c
ξ ,

which is invariant and such that Y ⊂ V c
ξ .

Theorem 10.2 Consider the system (10.7). Assume that:

(i) Oc is a regular subspace.
(ii) For each ξ ∈ Oc , there exist a ξ ∈ Vξ and its complement, denoted by V c

ξ , which

is invariant, with Y ⊂ V c
ξ and such that

O :=
⋂

ξ∈Oc

V c
ξ

is a complement of Oc .

There then exists a coordinate frame Z = (Z1,Z2) such that:

(1) O = F ℓ{Z
1} and Oc = F ℓ{Z

2}.
(2) Under coordinate frame Z, the system (10.7) is expressed as

{

Z1(t + 1) = F1(Z
1(t),U(t)),

Z2(t + 1) = F2(Z(t),U(t)),

Y (t) = H
(

Z1(t)
)

.

(10.27)

Proof First, we claim that

Oc =
⋃

ξ∈Oc

Vξ . (10.28)
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Since ξ ∈ Vξ , we have

Oc =
⋃

ξ∈Oc

ξ ⊂
⋃

ξ∈Oc

Vξ .

Next, let ξ ∈ Oc . By definition, there then exists Vξ and its complement V c
ξ such

that (i) and (ii) of Theorem 10.2 hold. Now, for any η ∈ Vξ , by definition we have
η ∈ Oc . Hence, Vξ ⊂ Oc and then

⋃

ξ∈Oc

ξ ⊂ Oc.

Equation (10.28) follows. Now, letting ζ ∈ O , we express

ζ(t + 1) = f
(

Z(t),U(t)
)

. (10.29)

We then assume z0 ∈ Oc. According to (10.28), there exists ξ ∈ Oc such that ξ ∈ Vξ .
By definition, ζ ∈ V c

ξ and hence f is independent of z0 in (10.29). Since z0 ∈ Oc is
arbitrary,

ζ(t + 1) = f
(

Z1(t),U(t)
)

. (10.30)

Since ζ ∈ O is arbitrary, (10.27) follows. �

Remark 10.3

1. Assuming that the conditions of Theorem 10.2 hold, (10.27) is called the observ-
able normal form.

2. Assuming that the conditions of Theorem 10.2 hold, it is then obvious that Oc is
the unique largest unobservable subspace.

We give an example.

Example 10.3 Consider the following system:
⎧

⎨

⎩

x1(t + 1) = x3(t) ∨ u(t),

x2(t + 1) = (x1(t) ∧ ¬x3(t)) ∨ (¬x1(t) ∧ (x3(t) ↔ u(t))),

x3(t + 1) = x3(t) → u(t),

y =
(

x1(t) ↔ x3(t)
)

→
(

x2(t) ∨̄x3(t)
)

.

(10.31)

Choose the logical coordinate transformation as follows:
⎧

⎨

⎩

z1(t) = x1(t) ↔ x3(t),

z2(t) = x2(t) ∨̄x3(t),

z3(t) = x3(t).

Its inverse mapping is
⎧

⎨

⎩

x1(t) = (z1(t) ∧ z3(t)) ∨ (¬z1(t) ∧ ¬z3(t)),

x2(t) = z2(t) ∨̄ z3(t),

x3(t) = z3(t).
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Letting Oc = {z3} and setting x(t) = ⋉3
i=1xi(t), we then have

z3(t) = δ2[1 2 1 2 1 2 1 2]x(t).

From Theorem 8.2, Cc is a regular subspace. Under the coordinates {zi}, (10.31)
can be expressed as

⎧

⎪

⎨

⎪

⎩

z1(t) = u(t),

z2(t) = z1(t) ∧ u(t),

z3(t) = z3(t) → u(t),

y = z1(t) → z2(t).

(10.32)

The incidence matrices of (10.32) are

I (F ) =

(

0 0 0 1
1 0 0 1
0 0 1 1

)

, I (H) = (1 1 0 ).

It follows that Oc = Fℓ{z3}.

10.4 Kalman Decomposition

Combining the controllable and observable normal forms, we may look for more a
general form. Given a Boolean control system (10.7), we can find Cc and Oc . Then,
C and O , as the respective complements of Cc and Oc , can also be obtained. Note
that the uncontrollable subspace Cc and the unobservable subspace Oc are uniquely
determined, while the controllable subspace C and the observable subspace O are
not even unique. Consider the subspaces

V1 = C ∩ O, V2 = C ∩ Oc, V3 = Cc ∩ O, V4 = Cc ∩ Oc.

Using (10.20), (10.27), and the above notation, the following theorem is clear.

Theorem 10.3 Assume Cc, Oc , Cc ∪ Oc , and Cc ∩ Oc are regular subspaces. The

system (10.7) then has the following Kalman decomposition:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = F 1(z1(t), z3(t), u(t)), x1 ∈ V1,

z2(t + 1) = F 2(z1(t), z2(t), z3(t), z4(t), u(t)), x2 ∈ V2,

z3(t + 1) = F 3(z3(t)), z3 ∈ V3,

z4(t + 1) = F 4(z3(t), z4(t)), z4 ∈ V4,

ys(t) = hs

(

z1(t), z3(t)
)

, s = 1,2, . . . , p,

(10.33)

where

z1(t) =
(

z1(t), z2(t), . . . , zn1(t)
)T

,

z2(t) =
(

zn1+1(t), zn1+2(t), . . . , zn2(t)
)T

,
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...

z4(t) =
(

zn1+n2+n3+1(t), zn1+n2+n3+2(t), . . . , zn(t)
)T

,

F 1 = (f1, f2, . . . , fn1)
T,

F 2 = (fn1+1, fn1+2, . . . , fn2)
T,

...

F 4 = (fn1+n2+n3+1, fn1+n2+n3+2, . . . , fn)
T.

ni , i = 1,2,3,4, are the respective dimensions of Vi , i = 1,2,3,4.

Proof By assumption, we have a sequence of nested regular subspaces:

Cc ∩ Oc ⊂ Cc ⊂ Cc ∪ Oc ⊂ X .

According to Corollary 8.5, we can find a coordinate frame Z = (Z4,Z3,Z2,Z1)

such that Cc ∩ Oc = F {Z4}, Cc = F {Z4,Z3}, Cc ∪ Oc = F {Z3,Z3,Z2}, and
X = F {Z4,Z3,Z2,Z1}. Expressing system (10.7) in coordinate frame Z, we have
Vi = F {Zi}, i = 1,2,3,4. Note that since V3 ∪ V4 is the largest uncontrollable
subspace, Z1, Z2, and u will not appear in the equations of Z3 and Z4. Since V2 ∪V4
is the largest unobservable subspace, the variables Z2 and Z4 will not appear in the
equations of Z1 and Z3. Moreover, the outputs depend only on Z1 and Z3. (10.33)
then follows. �

Next, we give an example to illustrate this.

Example 10.4 Consider the following system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = u,

x2(t + 1) = ¬x2(t),

x3(t + 1) = [x3(t) ∧ x4(t) ∧ (x5(t) ↔ x6(t))]

∨ [x3(t) ∧ (¬(x4(t)) ∧ x5(t)] ∨ (¬x3(t)),

x4(t + 1) = ¬(x1(t) ↔ x2(t)),

x5(t + 1) = [x1(t) ∧ (x2(t) ↔ x3(t))] ∨ [(¬x1(t))

∧ (¬(x2(t) ↔ x3(t)))],

x6(t + 1) = [x1(t) ↔ x2(t)] ∧ {[x4(t)

∧ (x5(t) ↔ x6(t))] ∨ [(¬x4(t)) ∧ x5(t)]},

y1(t) = ¬x4(t),

y2(t) =
(

x1(t) ↔ x2(t)
)

→
(

¬x2(t)
)

.

(10.34)
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We skip the tedious process of finding the subspaces by using coordinate trans-
formations and give the logical coordinate transformation as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1(t) = x1(t) ↔ x2(t),

z2(t) = x4(t),

z3(t) = x6(t),

z4(t) = ¬x2(t),

z5(t) = ¬x3(t),

z6(t) = [x4(t) ∧ (x5(t) ↔ x6(t))] ∨ [(¬x4(t)) ∧ x5(t)].

(10.35)

Its inverse mapping is

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t) = ¬(z1(t) ↔ z4(t)),

x2(t) = ¬z4(t),

x3(t) = z5(t),

x4(t) = z2(t),

x5(t) = [z2(t) ∧ (z3(t) ↔ z6(t))] ∨ [(¬z2(t)) ∧ z6(t)],

x6(t) = z3(t).

(10.36)

Using (10.35)–(10.36), it is easy to show that under coordinate frame {zi}, the
system (10.34) can be converted into the following form:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = z4(t) ↔ u,

z2(t + 1) = ¬z1(t),

z3(t + 1) = z1(t) ∧ z6(t),

z4(t + 1) = ¬z4(t),

z5(t + 1) = z5(t) ∨ z6(t),

z6(t + 1) = ¬z5(t),

y1(t) = ¬z2(t),

y2(t) = z1(t) → z4(t).

(10.37)

A straightforward computation verifies that (10.37) is the Kalman decomposition
form of system (10.34), with

C ∩ O = F
{

z1(t), z2(t)
}

, C ∩ Oc = F
{

z3(t)
}

,

Cc ∩ O = F
{

z4(t)
}

, Cc ∩ Oc = F
{

z5(t), z6(t)
}

.

Remark 10.4 In Kalman decomposition (10.33) we assume that V1 = C ∩ O is
regular. If V1 is not regular, then we propose two ways to replace it:
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• Replace it by V O
1 , a smallest regular subspace containing V1. This can be used

for a minimum realization. We refer to Chap. 11 (Sect. 11.2) for calculating a
regular subspace containing a given subspace.

• Replace it by V o
1 , a largest regular subspace contained in V1. This can be used

to ensure that the regular subspace, V o
1 , is controllable and observable. In the

following, we will discuss how to construct a regular subspace contained in a
given subspace.

Definition 10.6 Let H ∈ Lp×q , where Hi is the ith column of H . {J1, . . . , Js} is
called an s-partition of J = {1,2, . . . , q} with respect to H if:

(i)
s
⋃

i=1

Ji = J.

(ii)

Coli1(H) �= Coli2(H), ∀i1 ∈ Ji, i2 ∈ Jj ,1 ≤ i < j ≤ s.

Example 10.5 If we assume that

H = δ3[1 2 3 2 3 2],

then

J1 = {1}, J2 = {2,4,6}, J3 = {3,5}

form a 3-partition of {1, . . . ,6} with respect to H and

J1 = {1,3,5}, J2 = {2,4,6}

form a 2-partition of {1, . . . ,6} with respect to H .

Let Y ⊂ X be a subspace. In the following we consider how to find a largest reg-
ular subspace Z ⊂ Y . Note that “largest” here means that Z has largest dimension.
Let X = Fℓ(x1, . . . , xn) and Y = Fℓ(y1, . . . , ys), where yi = hi(x1, . . . , xn), i =

1, . . . , s, are logical functions. Assume the algebraic form of Y is

y = Hx, where H ∈ L2s×2n .

Theorem 10.4 Y has a regular subspace of dimension k if and only if {J1, J2,

. . . , J2k } is a 2k-partition of J = {1, . . . ,2s} with respect to Col(H), satisfying

| J1 |= · · · =| J2k |= 2n−k.

Proof Denote the algebraic forms of Z and Y by z = T x and y = Hx, respec-
tively, where T ∈ L2k×2n , H ∈ L2s×2n . Since Z ⊂ Y is a subspace of dimension
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k, there exists a logical matrix W ∈ L2k×2s such that

z = Wy = WHx = T x.

We let W = δ2k [w1 · · · w2s ] and H = δ2s [h1 · · · h2n ], and define

Ii = {p |wp = i},

Ji = {q |hq = p,p ∈ Ii}, i = 1, . . . ,2k.

{J1, J2, . . . , J2k } is then a 2k-partition of J = {1, . . . ,2s} with respect to H .
A straightforward computation shows that

T = δ2k

[

Colh1(W)Colh2(W), . . . ,Colh2k
(W)
]

.

It follows from the definition that

Colhq (W) = i ⇐⇒ q ∈ Ji .

It follows that Z is a regular subspace if and only if

|Ji | = 2n−k, i = 1, . . . ,2k. �

As a convention, we set

I0 =
{

p
∣

∣ Colp(W) is free
}

.

Example 10.6 Let X = Fℓ(x1, x2, x3) and Y = Fℓ(x1 → x2, x1 ∨ x2). The alge-
braic form of y1 = x1 → x2, y2 = x1 ∨ x2 is

y = Hx = δ4[1 1 3 3 1 1 2 2]x.

Let J1 = {1,2,5,6} and J2 = {3,4,7,8}. We then have I1 = {1}, I2 = {2,3}, and
I0 = {4}. Construct the logical matrix W = δ2[w1 w2 w3 w4], where

⎧

⎪

⎨

⎪

⎩

wi = 1, when i ∈ I1 = {1},

wi = 2, when i ∈ I2 = {2,3},

wi = 1 or 2, when i ∈ I0 = {4}.

We choose W = δ2[1 2 2 2]. Thus, z = Wy = WHx = δ2[1 1 2 2 1 1 2 2]x is a
regular subspace. According to Theorem 10.4, Z ∈ Y .

10.5 Realization

Definition 10.7 Two Boolean control networks are said to be equivalent if, for any
point x0 of one network, there is a point x̃0 of the other network such that for the
same inputs u(t), t = 0,1,2, . . . , with initial values x0 and x̃0, respectively, the
outputs {y(t)} are the same.
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Consider a linear control system [2]:

{

ẋ = Ax + Bu, x ∈ Rn, u ∈ Rm,

y = Cx, y ∈ Rp.
(10.38)

Its Kalman decomposition form is

⎡

⎢

⎢

⎣

ż1

ż2

ż3

ż4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A33 A34

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

z1

z2

z3

z4

⎤

⎥

⎥

⎦

,

y(t) =
[

C1 0 C3 0
]

z.

(10.39)

Its minimum realization is then
{

ż1 = A11z
1,

y = C1z
1.

(10.40)

We define the minimum realization of the system (10.7) in an analogous way.

Definition 10.8 Consider the Boolean control network (10.7) with Kalman decom-
position (10.33). Given a fixed (frozen) value z3 = z3

0, the minimum realization of
the system (10.7) with frozen z3 = z3

0 is defined by

{

z1(t + 1) = F 1(z1(t),At
3z

3
0, u(t)),

ys(t) = hs(z
1(t),At

3z
3
0), s = 1,2, . . . , p,

(10.41)

where A3, as the structure matrix of F 3, is a known n3 × n3 logical matrix, and z3
0

is an adjustable parameter.

Note that, in general, the minimum realization depends on A3 and z3
0. In the

following two cases the minimum realization is unique:

• Case 1. z3 does not appear in the dynamical equation of z1.
• Case 2. The subsystem of z3 globally converges to ξ . In (10.41), we can then

replace At
3z

3
0 by ξ and call (10.41) the stationary state realization.

Example 10.7 Recall Example 10.4. To obtain the minimum realization of (10.34),
we write the first block equation by using its Kalman decomposition form (10.37):

⎧

⎪

⎨

⎪

⎩

z1(t + 1) = z4(t) ↔ u,

y1(t) = ¬z4(t),

y2(t) = z1(t) → z4(t).

(10.42)
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Note that in (10.37) the third block variable is z3 = z4. Since z4 = M t
nz

0
4 we have

the minimum realization
⎧

⎪

⎨

⎪

⎩

z1(t + 1) = MeM
t
nz

0
4u,

y1(t) = M t+1
n z0

4,

y2(t) = Miz1(t)M
t
nz

0
4.

(10.43)

It is easy to verify that the input–output mapping of the system (10.34) with initial
value (z0

1, . . . , z
0
6) is exactly the same as that of (10.43) with initial value z0

1 and
parameter z0

4.

References

1. Cheng, D., Li, Z., Qi, H.: Realization of Boolean control networks. Automatica 46(1), 62–69
(2010)

2. Wonham, W.: Linear Multivariable Control: A Geometric Approach, 2nd edn. Springer, Berlin
(1979)



Chapter 11

Stability and Stabilization

11.1 Boolean Matrices

Let D = {1,0}. We recall the definition of a Boolean matrix and define its operators
first.

Definition 11.1

1. A Boolean matrix X = (xij ) is an m × n matrix with entries xij ∈ D . When
n = 1 it is called a Boolean vector. The set of m×n Boolean matrices is denoted
by Bm×n.

2. Let X = (xij ) ∈ Bm×n. If σ is an unary logical operator, then σX = (σxij ).
3. Let X = (xij ), Y = (yij ) ∈ Bm×n. If σ is a binary logical operator, then XσY :=

(xijσyij ).
4. Let α ∈ D and X = (xij ) ∈ Bm×n. If σ is a binary logical operator, then ασX :=

(ασxij ).

The follow example illustrates the operations between Boolean matrices.

Example 11.1

1. Let

X =

[

1 0 1
0 1 1

]

.

Then,

¬X =

[

0 1 0
1 0 0

]

.

2. Let X be as in part 1 and

Y =

[

1 1 0
0 0 1

]

.
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Then,

X ∨ Y =

[

1 1 1
0 1 1

]

, X ∨̄Y =

[

0 1 1
0 1 0

]

.

3. Let X and Y be as in part 2, a = 1 and b = 0. Then,

(a ∨̄X) ∨ (b ↔ Y) =

[

1 0 1
0 1 1

]

∨

[

0 0 1
1 1 0

]

=

[

1 0 1
1 1 1

]

.

Next, we consider the scalar product and matrix product.

Definition 11.2

1. Let α ∈ D . The scalar product of α with X ∈ Bm×n is

αX = Xα := α ∧ X. (11.1)

In particular, let α,β ∈ D . Then, αβ = α ∧ β , which is the same as the conven-
tional real number product.

2. Let X = (xij ) ∈ Bp×q and Y ∈ Bm×n be two Boolean matrices. Then,

X ⊗ Y = (xijY) ∈ Bpm⋉qn. (11.2)

3. Let α,β,αi ∈ D , i = 1,2, . . . , n. Boolean addition is defined as follows:
{

α +B β := α ∨ β,
∑

B

n

i=1
αi := α1 ∨ α2 ∨ · · · ∨ αn.

(11.3)

4. Let X = (xij ) ∈ Bm×n and Y = (yij ) ∈ Bn×p . The Boolean product of Boolean
matrices is then defined as

X ⋉B Y := Z ∈ Bm×p, (11.4)

where

zij =

n
∑

k=1
B

xikykj , i = 1, . . . ,m; j = 1, . . . , p.

5. Let A ≺t B (A ≻t B). The Boolean product of A, B is then defined as

A ⋉B B := (A ⊗ It ) ⋉B B
[

A ⋉B B := A ⋉B (B ⊗ It )
]

. (11.5)

6. Assume that A⋉BA is well defined. Boolean powers are then defined as follows:

A(k) := A ⋉B A ⋉B · · · ⋉B A
︸ ︷︷ ︸

k

.

Note that ⋉B may be omitted when there is no possible confusion.
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We give an example.

Example 11.2 Let

A =

⎡

⎣

1 1
0 1
0 0

⎤

⎦ , B =

⎡

⎣

0 1
1 0
0 1

⎤

⎦ , C =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
0 1

⎤

⎥
⎥
⎦

.

Then,

A +B B = A ∨ B =

⎡

⎣

1 1
1 1
0 1

⎤

⎦ , A → B =

⎡

⎣

0 1
1 0
1 1

⎤

⎦ ,

A ↔ B =

⎡

⎣

0 1
0 0
1 0

⎤

⎦ , A ∨̄B =

⎡

⎣

1 0
1 1
0 1

⎤

⎦ ,

A ⋉B C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
1 1
1 0
0 1
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B ⋉B C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
1 0
0 1
1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Next, we define some relations between matrices in Bm×n.

Definition 11.3 Let X = (xij ), Y = (yij ) ∈ Bm×n.

1. We write X ≤ Y if xij ≤ yij , ∀i, j .
2. The vector distance between X and Y , denoted by Dv(X,Y ), is defined as

Dv(X,Y ) = X ∨̄Y. (11.6)

Since both the Boolean product and Boolean addition are order-preserving, it is
easy to verify the following properties, which generalize the corresponding results
(for the vector case) in [2].

Proposition 11.1 Assume A ≥ B and C ≥ E. Then:

1.

A +B C ≥ B +B E. (11.7)

2. (As long as the product is well defined)

A ⋉B C ≥ B ⋉B E. (11.8)



252 11 Stability and Stabilization

Proposition 11.2 Let X,Y,Z ∈ Bm×n. Vector distance Dv(X,Y ) satisfies

⎧

⎪
⎨

⎪
⎩

Dv(X,Y ) = 0 ⇔ X = Y,

Dv(X,Y ) = Dv(Y,X),

Dv(X,Z) ≤ Dv(X,Y ) +B Dv(Y,Z).

(11.9)

Finally, we consider the Boolean product of matrices. For simplicity, the “⋉B”
is omitted.

Proposition 11.3 Let A,B ∈ Bm×n, C ∈ Bn×p , and E ∈ Bq×m. Then:

1.

Dv(AC,BC) ≤ Dv(A,B)C. (11.10)

2.

Dv(EA,EB) ≤ EDv(A,B). (11.11)

Proof We prove (11.10) only, the proof of (11.11) being identical. By definition, we
only have to prove that for any 1 ≤ i ≤ n and 1 ≤ j ≤ n,

n
∑

k=1
B

aikckj ∨̄

n
∑

k=1
B

bikckj ≤

n
∑

k=1
B

(aik ∨̄bik)ckj . (11.12)

Now, the right-hand side equals zero (RHS = 0) if and only if

either aik = bik or ckj = 0, ∀k. (11.13)

However, when either one of (11.13) holds, it is easy to check that the left-hand side
is also zero (LHS = 0). The conclusion follows. �

Note that when C is a vector, that is, when X ∈ Bn×1, equation (11.10) becomes

Dv(AX,BX) ≤ Dv(A,B)X, (11.14)

which is particularly useful. The follow example shows that the inequality is some-
times a strict inequality.

Example 11.3 Let

A =
[

1 0 1 0
]

, B =
[

1 1 1 1
]

,

and

X =
[

1 0 0 1
]T

.
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Then,

AX ∨̄BX =

⎛

⎜
⎜
⎝

[

1 0 1 0
]

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

∨̄

⎛

⎜
⎜
⎝

[

1 1 1 1
]

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

= 1 ∨̄1 = 0,

(A ∨̄B)X =
[

0 1 0 1
]

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦

= 1,

that is,

Dv(AX,BX) < Dv(A,B)X.

One may ask when the inequalities (11.10) and (11.11) become equalities. In
fact, we have the following result, which will be useful in the sequel.

Proposition 11.4 If A,B ∈ Bm×n, C ∈ Ln×p , and Et ∈ Lm×q , then

Dv(AC,BC) = Dv(A,B)C (11.15)

and

Dv(EA,EB) = EDv(A,B). (11.16)

Proof We prove (11.15) only. By definition, it is enough to prove it for C ∈ Ln×1.
That is, we can assume C = δi

n. Then, (11.15) becomes

Coli(A) ∨̄ Coli(B) = Coli(A ∨̄B),

which is obviously true. �

11.2 Global Stability

In this section we investigate the global stability of a Boolean network, that is, the
existence of a fixed point as a global attractor. Equivalently, we consider when a
Boolean dynamics converges globally. Our basic tool will be the vector distance.
This section is a generalization of the corresponding results in [2].

Consider a Boolean network,
⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x1(t + 1) = f1(x1, . . . , xn),

x2(t + 1) = f2(x1, . . . , xn),

...

xn(t + 1) = fn(x1, . . . , xn), xi ∈ D,

(11.17)
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or a Boolean control network,
⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x1(t + 1) = f1(x1, . . . , xn, u1, . . . , um),

x2(t + 1) = f2(x1, . . . , xn, u1, . . . , um),

...

xn(t + 1) = fn(x1, . . . , xn, u1, . . . , um).

(11.18)

Denote by X = Dn their state space. A point X ∈ X is expressed as X =

(x1, . . . , xn)
T. We consider a logical mapping F : X → X , which is described

as
⎧

⎪
⎪
⎨

⎪
⎪
⎩

z1 = f1(x1, . . . , xn),

...

zn = fn(x1, . . . , xn).

(11.19)

We may also express this compactly as

Z = F(X), where X,Z ∈ X . (11.20)

This mapping may come from the Boolean network (11.17), that is, we may have

Xt+1 = F(Xt ). (11.21)

Theorem 11.1 If X,Y ∈ X , F : X → X , then

Dv
(

F(X),F (Y )
)

≤ I (F ) ⋉B Dv(X,Y ), (11.22)

where I (F ) is the incidence matrix of F .

Proof Let

I (F ) = (bij ) ∈ Bn×n.

Using the triangle inequality, we have

Dv
(

fi(X),fi(Y )
)

≤ Dv
(

fi(x1, . . . , xn), fi(y1, x2, . . . , xn)
)

+B Dv
(

fi(y1, x2, . . . , xn), fi(y1, y2, x3, . . . , xn)
)

+B · · ·

+B Dv
(

fi(y1, . . . , yn−1, xn), fi(y1, . . . , yn)
)

≤

n
∑

k=1
B

bi,kDv(xk, yk).

The conclusion then follows. �

Note that the same argument shows that (11.22) is also true for the general case
F : Dn → Dm.
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Theorem 11.2 For a mapping F : X → X , where X = Dn, if there exists a

matrix M ∈ Bn×n such that

Dv
(

F(X),F (Y )
)

≤ M ⋉B Dv(X,Y ), ∀X,Y ∈ X , (11.23)

then

I (F ) ≤ M.

Proof We prove this by contradiction. Suppose that there exists an M satisfy-
ing (11.23) and that there is an entry mij < bij . It follows that mij = 0 and
bij = 1. Now, since fi depends on xj , we can find X = (x1, . . . , xj , . . . , xn) and
Y = (x1, . . . , yj , . . . , xn) such that fi(X) �= fi(Y ). That is,

Dv
(

fi(X),fi(Y )
)

= 1.

However, using (11.23) we have

Dv
(

fi(X),fi(Y )
)

≤
∑

k �=j

B
mikDv(xk, xk) +B mijDv(xj , yj ) = 0,

which is absurd. �

Theorem 11.3 If E,F : X → X are logical mappings, then

I (E ◦ F) ≤ I (E) ⋉B I (F ). (11.24)

Proof For any X,Y ∈ X

Dv
(

E ◦ F(X),E ◦ F(Y )
)

≤ I (E) ⋉B d
(

F(X),F (Y )
)

≤ I (E) ⋉B I (F ) ⋉B Dv(x, y).

The conclusion follows from Theorem 11.2. �

An immediate application of the above theorem is the following result.

Corollary 11.1 If ξ is a fixed point of (11.17), then

Dv
(

X(k), ξ
)

≤
[

I (F )
](k)

⋉B Dv
(

x(0), ξ
)

. (11.25)

Particularly, if

Colλ
([

I (F )
](k))

= 0, λ ∈ Λ := {j1, . . . , js} ⊂ {1,2, . . . , n},

and

xα(0) = ξα, ∀α �∈ {j1, . . . , js},

then X(t) = ξ , t ≥ k.
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Definition 11.4 The system (11.17) is said to be globally stable if it is globally
convergent. In other words, it has a fixed point as a global attractor (equivalently,
the only attractor).

Example 11.4 Consider the system

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1(t + 1) = f1(x2(t), x3(t)),

x2(t + 1) = f2(x4(t),

x3(t + 1) = c0,

x4(t + 1) = f4(x3),

(11.26)

where f1, f2, and f3 can be any logical functions, and c0 is a logical constant. The
incidence matrix of F is

I (F ) =

⎡

⎢
⎢
⎣

0 1 1 0
0 0 0 1
0 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦

.

It is easy to check that [I (F )](4) = 0. If we assume 0 to be a fixed point of the
system (11.26), then the system globally converges to 0.

Summarizing the above arguments, we have the following.

Proposition 11.5 Assume that 0 is a fixed point of F and that there exists an integer

k > 0 such that

[

I (F )
](k)

= 0. (11.27)

Then, 0 is the global attractor.

Note that if xe = (e1, e2, . . . , en) is a fixed point of the system (11.17), then the
above method is still useful for testing whether xe is a global attractor. Consider the
coordinate transformation

zi =

{

xi, ei = 0,

¬xi, ei = 1.
(11.28)

It is now easy to convert the system (11.17) into a system under z as

z(t + 1) = F̃
(

z(t)
)

. (11.29)

If there exists a k > 0 such that [I (F̃ )](k) = 0, then xe is a global attractor of the
system (11.17).

It is easy to prove the following result.
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Proposition 11.6 For a Boolean matrix H ∈ Bn×n the following are equivalent:

(i) There exists a k > 0 such that H (k) = 0.
(ii) There exists a permutation matrix P such that P T ⋉B H ⋉B P is a strictly

lower triangular (equivalently, upper triangular) matrix.

In fact, when H = I (F ) is an incidence matrix, P brings about a reordering
variables.

Unfortunately, this method is sufficient but not necessary, as demonstrated by the
following example.

Example 11.5 Consider the system
{

x1(t + 1) = x1(t) ∧ x2(t),

x2(t + 1) = x1(t) ∧ (¬x2(t)).
(11.30)

It is easy to check that 0 is its global attractor. However, its incidence matrix is

I (F ) =

[

1 1
1 1

]

,

and
[

I (F )
](k)

= I (F ) �= 0, k ≥ 1.

So, what is the necessary and sufficient condition for a Boolean network to be
globally convergent? We have the following result.

Theorem 11.4 The Boolean network (11.17) is globally convergent if and only if

there exists a k > 0 such that

I
(

F k
)

= 0. (11.31)

Proof (Necessity) If the system is globally convergent, then after Tt steps (where
Tt is the transient period) all the states converge to the global attractor ξ . Therefore,
when k ≥ Tt , (11.31) is true.

(Sufficiency) Now, assume (11.31) to be true. Then, for any X we have that
F k(X) is constant, say

F k(X) = ξ, ∀X ∈ Dn.

Then, for any number t ≥ k,

F t (X) = F k
(

F t−k(X)
)

= ξ. �

Remark 11.1

1. Proposition 11.5 and the method immediately following it are practically useful
because the size of the incidence matrix is n × n, which is of the order of O(n).
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2. In Theorem 11.3, F k is not directly computable. It can only be calculated by the
algebraic form of F , say LF , which is of size 2n × 2n, so it is difficult to use if n

is not small.
3. According to Theorem 11.3 it is clear that

I
(

F k
)

≤
[

I (F )
](k)

, k ≥ 1, (11.32)

but they are not generally equal.

Definition 11.5 Let F : Dn → Dm. F is called a constant mapping if there exists a
constant Z0 ∈ Dm such that

F(X) = Z0, ∀X ∈ Dn. (11.33)

It is easy to verify the following results, which follow directly from the defini-
tions .

Proposition 11.7

1. F is a constant mapping if and only if its structure matrix, MF , satisfies (for a

fixed z0 ∈ ∆2m )

Coli(MF ) = z0, 1 ≤ i ≤ 2n. (11.34)

2. I (F ) = 0 if and only if F is a constant mapping.

Recall Proposition 11.5. In fact, the condition that 0 is a fixed point is not nec-
essary for stability. Since we consider the topology of the network state space to
be discrete, stability means global convergence. Because, from (11.32), the condi-
tion (11.27) ensures that F s is constant for s ≥ k, say F s(X) = ξ , ∀X and s ≥ k, it
follows that the system globally converges to ξ . We present this as a corollary.

Corollary 11.2 Consider system (11.17). It is globally stable if condition (11.27)
holds.

Proposition 11.5 is one of the main tools for stability analysis and stabilizer de-
sign, so some further discussion is necessary. First, we would like to point out that
the incidence matrix I (F ) of a Boolean network is coordinate-dependent. The fol-
lowing example shows this.

Example 11.6 Consider the following system:

⎧

⎪
⎨

⎪
⎩

x1(t + 1) = [x1(t) ∧ (x2(t) ∨̄x3(x))] ∨ (¬x1(t) ∧ x3(t)),

x2(t + 1) = [x1(t) ∧ (¬x2(t))] ∨ (¬x1 ∧ x2),

x3(t + 1) = [x1(t) ∧ (¬(x2(t) ∧ x3(t)))] ∨ [¬x1(t) ∧ (x2(t) ∨ x3(t))].

(11.35)
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We can express it compactly as

x(t + 1) = F
(

x(t)
)

.

It is easy to check that 0 is a fixed point of (11.35). The incidence matrix of this
system is

I (F ) =

⎡

⎣

1 1 1
1 1 0
1 1 1

⎤

⎦ .

There is no way to convert this into a strictly lower triangular form by reordering
the variables. In algebraic form it is easy to calculate that system (11.35) can be
expressed as

x(t + 1) = Lx(t), (11.36)

where x(t) = x1(t)x2(t)x3(t) and

L = δ8[8 3 1 5 1 5 3 8].

We now consider a coordinate transformation:
⎧

⎪
⎨

⎪
⎩

z1 = [x1 ∧ ¬(x3)] ∨ [(¬x1) ∧ (x2 ∨̄x3)],

z2 = [x1 ∧ (x2 ∨̄x3)] ∨ [(¬x1) ∧ x3],

z3 = x2.

(11.37)

In vector form, we can easily calculate that

z = z1z2z3 = T x,

where

T = δ8[7 1 6 4 5 3 2 8].

In coordinate frame z, we then have

z(t + 1) = T LT Tz(t) := L̃z(t), (11.38)

where L̃ is

L̃ = δ8[6 6 5 5 7 7 8 8].

Recall that a sequence of 2 × 2n matrices, called retrievers, were defined in
Chap. 7 as

Sn
k = δ2[1 · · ·1

︸ ︷︷ ︸

2n−k

2 · · ·2
︸ ︷︷ ︸

2n−k

· · ·1 · · ·1
︸ ︷︷ ︸

2n−k

2 · · ·2
︸ ︷︷ ︸

2n−k

], k = 1, . . . , n. (11.39)

Using these, a procedure was proposed in Chap. 7 to recover a system from the
transition matrix of its algebraic form (11.38). Next, we recover the system from L̃.
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Using retrievers S3
i , i = 1,2,3, we have

⎧

⎪
⎨

⎪
⎩

z1(t + 1) = M1z(t),

z2(t + 1) = M2z(t),

z3(t + 1) = M3z(t),

(11.40)

where

M1 = S3
1 L̃ = δ2[2 2 2 2 2 2 2 2],

M2 = S3
2 L̃ = δ2[1 1 1 1 2 2 2 2],

M3 = S3
3 L̃ = δ2[2 2 1 1 1 1 2 2].

It is easy to convert the componentwise algebraic form (11.40) back to logical form,
denoted by z(t + 1) = F̃ (z(t)), as

⎧

⎪
⎨

⎪
⎩

z1(t + 1) = 0,

z2(t + 1) = z1(t),

z3(t + 1) = z1(t) ∨̄ z2(t).

(11.41)

Now, consider the system (11.41) [i.e., the system (11.35) under the coordinates z].
Its incidence matrix is

I
(

F̃
)

=

⎡

⎣

0 0 0
1 0 0
1 1 0

⎤

⎦ ,

which is strictly lower triangular. Since x1 = x2 = x3 = 0 is a fixed point of (11.35),
we conclude that the system (11.35) globally converges to zero.

Example 11.6 shows that in some cases a coordinate transformation can help to
find a nice incidence matrix to ensure global convergence.

A question which now naturally arises is: If a network is globally stable, can we
always find a coordinate transformation such that under the new coordinate frame
the system has a strict triangular form? Unfortunately, the answer is “no”. Let us
return to Example 11.5. Since n = 2 there are 22! = 24 coordinate transformations.
We list them in increasing order as

T1 = I2, T2 = δ4[1 2 4 3], T3 = δ4[1 3 2 4], . . . , T24 = δ4[4 3 2 1].

It follows that under the new coordinate frames we have

T2 :

{

z1 = x1,

z2 = x1 ↔ x2
=⇒

{

z1(t + 1) = z1(t) ∧ z2(t),

z2(t + 1) = ¬z1(t).

T3 :

{

z1 = x2,

z2 = x1 ↔ x2
=⇒

{

z1(t + 1) = z1(t) ∧ z2(t),

z2(t + 1) = (¬z1(t)) ∧ z2(t).
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...

T24 :

{

z1 = ¬x1,

z2 = x2
=⇒

{

z1(t + 1) = z1(t) ∧ z2(t),

z2(t + 1) = z2(t) → z1(t).

We have a variety of forms, but unfortunately none has an incidence matrix in
strictly triangular form. Hence, when the condition of Proposition 11.5 fails, even
under all possible coordinate transformations, we have to invoke Theorem 11.4.

11.3 Stabilization of Boolean Control Networks

Consider the Boolean control network (11.18). As before, we use the notation
x(t) = ⋉n

i=1xi(t) and u(t) = ⋉m
i=1ui(t).

Definition 11.6 The global stabilization problem for the system (11.18) is to find,
if possible, u(t) such that the system becomes globally convergent. If u(t) = Wx(t)

consists of a set of logical functions, then the control is called the state feedback
control.

Proposition 11.5 and the arguments thereafter are the main tools used in this
section.

We first give a simple example.

Example 11.7 Consider the following system:
⎧

⎪
⎨

⎪
⎩

x1(t + 1) = x3(t) ∨ u(t),

x2(t + 1) = ¬x1(t),

x3(t + 1) = x1(t) ↔ x2(t).

(11.42)

It is obvious that as long as we can delete x3(t) by using control u, the system is
globally stable because the incidence matrix becomes strictly lower triangular. This
is easily done. We may choose either an open-loop control u(t) = 1 or a closed-loop
control u(t) = ¬x3(t).

To obtain a general design method, we first recall the expression of logical state
variables. Let x1, . . . , xn be n logical state variables. In scalar form we have xi ∈ D ,
i = 1, . . . , n, and in vector form we write x = ⋉n

i=1xi ∈ ∆2n .
Define a set of vectors:

sn
k = [1 · · ·1

︸ ︷︷ ︸

2n−k

0 · · ·0
︸ ︷︷ ︸

2n−k

· · ·1 · · ·1
︸ ︷︷ ︸

2n−k

0 · · ·0
︸ ︷︷ ︸

2n−k

], k = 1, . . . , n. (11.43)

Remark 11.2

1. sn
k ∈ B1×2n , k = 1, . . . , n, so the logical operators are applicable to them.
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2. Comparing (11.43) with (11.39), we see that sn
k can be obtained from the first

row of Sn
k by replacing 2 by 0.

We then define a matrix as

S n =

⎡

⎢
⎢
⎢
⎣

sn
1

sn
2

...

sn
n

⎤

⎥
⎥
⎥
⎦

∈ Bn×2n .

The following proposition is easily verifiable.

Proposition 11.8

1. Converting from scalar form to vector form, we have

x =
[(

x1 ↔ sn
1

)

∧
(

x2 ↔ sn
2

)

∧ · · · ∧
(

xn ↔ sn
n

)]T
, ∀xi ∈ D . (11.44)

2. Converting from vector form to scalar form, we have

X = S nx. (11.45)

Example 11.8 Let X = (1,0,1,0)T. In vector form, we then have

x =
[

1 ↔ (1111111100000000)
]

∧
[

0 ↔ (1111000011110000)
]

∧
[

1 ↔ (1100110011001100)
]

∧
[

0 ↔ (1010101010101010)
]

= (1111111100000000) ∧ (0000111100001111)

∧ (1100110011001100) ∧ (0101010101010101)

= (0000010000000000) = δ6
16.

If x = δ9
16, then

X = S 4x = (0,1,1,1).

Next, we give a systematic analysis of the stabilizer design for Boolean control
networks. First, we define a mapping π : B2n×2n → Bn×n as

π(L) =
[[(

S nL
)

∨̄
(

S nLMn

)]

⋉B 12n ,
[(

S nL
)

∨̄
(

S nL
)

(I2 ⊗ Mn)
]

⋉B 12n ,

. . . ,
[(

S nL
)

∨̄
(

S nL
)

(I2n−1 ⊗ Mn)
]

⋉B 12n

]

, L ∈ B2n×2n . (11.46)

Note that Mn is the structure matrix of negation.
We then have the following result concerning how to build the incidence matrix

from L.



11.3 Stabilization of Boolean Control Networks 263

Theorem 11.5 Consider the Boolean network (11.17) [equivalently, (11.21)], with

its algebraic form

x(t + 1) = Lx(t), x(t) ∈ ∆2n , (11.47)

where L ∈ L2n×2n . The incidence matrix of F can be obtained from L by the fol-

lowing formula:

I (F ) = π(L). (11.48)

Proof Applying (11.45) to (11.47) yields

X(t + 1) =

⎡

⎢
⎢
⎢
⎣

x1(t + 1)

x2(t + 1)

...

xn(t + 1)

⎤

⎥
⎥
⎥
⎦

= S nLx1(t) · · ·xn(t)

= S nLMn

(

¬x1(t)
)

x2(t) · · ·xn(t).

It is now clear that xi(t + 1) is independent of x1(t) if and only if

Rowi

(

S nL
)

= Rowi

(

S nLMn

)

,

if and only if

Rowi

(

S nL
)

∨̄ Rowi

(

S nLMn

)

= 0,

if and only if

Rowi

[(

S nL
)

∨̄
(

S nLMn

)

⋉B 12n

]

= 0.

Hence, the first column of I (F ) is

Col1
(

I (F )
)

=
[(

S nL
)

∨̄
(

S nLMn

)]

⋉B 12n .

Similarly,

X(t + 1) = S nLx1(t) · · ·xj (t) · · · xn(t)

= S nLx1(t) · · ·Mn

(

¬xj (t)
)

· · · xn(t)

= S n(I2j−1 ⊗ Mn)Lx1(t) · · ·
(

¬xj (t)
)

· · · xn(t).

A similar argument shows that xi(t + 1) is independent of xj (t) if and only if

Rowi

[(

S nL
)

∨̄
(

S nLMn(I2j−1 ⊗ Mn)
)

⋉B 12n

]

= 0.

Hence,

Colj
(

I (F )
)

=
[(

S nL
)

∨̄
(

S nL(I2j−1 ⊗ Mn)
)]

⋉B 12n , j = 2, . . . , n.

Equation (11.48) follows. �
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We give an example to depict it.

Example 11.9 Assume that the system (11.17) has as its network transition matrix

L = δ16[1 9 9 13 4 12 12 16 2 10 10 14 1 9 9 13]. (11.49)

S 4 can then be calculated as

S 4 =

⎡

⎢
⎢
⎣

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

⎤

⎥
⎥
⎦

∈ B4×16.

Using (11.46), we can calculate that
[(

S 4L
)

∨̄
(

S 4LMn

)]

⋉B 124 = [0 0 1 1]T,

[(

S 4L
)

∨̄
(

S 4L(I2 ⊗ Mn)
)]

⋉B 124 = [0 0 1 1]T,

[(

S 4L
)

∨̄
(

S 4L(I22 ⊗ Mn)
)]

⋉B 124 = [1 1 0 0]T,

[(

S 4L
)

∨̄
(

S 4L(I23 ⊗ Mn)
)]

⋉B 124 = [1 1 0 0]T,

that is,

I (F ) = π(L) =

⎡

⎢
⎢
⎣

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎤

⎥
⎥
⎦

.

In fact, using the standard procedure, we can uniquely recover the system from L as
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1(t + 1) = x3(t) ∧ x4(t),

x2(t + 1) = x3(t) ∨ x4(t),

x3(t + 1) = x1(t) → x2(t),

x4(t + 1) = x1(t) ↔ x2(t).

(11.50)

This verifies the validity of the I (F ) obtained .

Next, we consider the stabilization problem. Consider the system (11.18), with
its algebraic form

x(t + 1) = Lu(t)x(t), x(t) ∈ ∆2n , u(t) ∈ ∆2m , (11.51)

where L ∈ L2n×2n+m .
Using Propositions 11.5 and 11.6, a sufficient condition for stabilization with

open-loop control is given by the following lemma.

Lemma 11.1 The system (11.18) is stabilizable by a constant control u if π(L(u))

has a strictly lower (or upper) triangular form.
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Note that since the incidence matrix is coordinate-dependent, coordinate trans-
formations have to be taken into consideration.

Using the formula (8.18), we have the following result.

Theorem 11.6 The system (11.18), with its algebraic form (11.51), is stabilizable

by a constant control u if there is a coordinate transformation z = T x such that

π(T L(I2m ⊗ T T)u) has a strictly lower (or upper) triangular form.

Note that both the possible values of u and the number of possible coordinate
transforms are finite (2m and 2n!, respectively), so, theoretically, both Lemma 11.1
and Theorem 11.6 are verifiable.

Example 11.10 Consider the following system:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1(t + 1) = ¬x2(t),

x2(t + 1) = ¬x4(t) ↔ ((x4(t) ∧ (x2(t) ∨̄x3(t))) ∨ u(t)),

x3(t + 1) = ¬((x4(t) ∧ (x2(t) ∨̄x3(t))) ∨ u(t)),

x4(t + 1) = (x4(t) ∨ (x2(t) ∨̄x3(t))) ∧ u(t).

(11.52)

After a “trial and error” approach to simplifying the system, we use the following
coordinate transformation:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

z1 = x4,

z2 = x2 ∨̄x3,

z3 = ¬x3,

z4 = ¬x1.

(11.53)

Its inverse can be easily calculated as

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1 = ¬z4,

x2 = z2 ↔ z3,

x3 = ¬z3,

x4 = z1.

(11.54)

The system then becomes

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

z1(t + 1) = (z1(t) ∨ z2(t)) ∧ u(t),

z2(t + 1) = ¬z1(t),

z3(t + 1) = (z1(t) ∧ z2(t)) ∨ u(t),

z4(t + 1) = z2(t) ↔ z3(t).

(11.55)

It is now clear that if we choose

u(t) = 0, (11.56)
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then the system becomes

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

z1(t + 1) = 0,

z2(t + 1) = ¬z1(t),

z3(t + 1) = (z1(t) ∧ z2(t)),

z4(t + 1) = z2(t) ↔ z3(t).

(11.57)

It is obvious that the incidence matrix of the system (11.57) is

I (F ) =

⎡

⎢
⎢
⎣

0 0 0 0
1 0 0 0
1 1 0 0
0 1 1 0

⎤

⎥
⎥
⎦

,

which is in strictly lower triangular form. We conclude that the constant control
u(t) = 0 stabilizes the system (11.52).

Remark 11.3 Let

T L
(

I2m ⊗ T T)

= [B1 B2 · · · B2n ],

where Bi = Blki(T L(I2m ⊗ T T)) ∈ L2n×2n , i = 1, . . . ,2n. Theorem 11.6 then be-
comes the statement that there exists an i such that π(Bi) is strictly lower (upper)
triangular.

Next, we consider the closed-loop control. Let u(t) be a set of logical functions
of x(t). We can then always express it as

u(t) = Gx(t), (11.58)

where G ∈ L2m×2n . Plugging this into (11.51) yields

x(t + 1) = LGx2(t) = LGΦnx(t), (11.59)

where Φn is defined in Chap. 4 [equation (4.6)] as

Φn =

n
∏

i=1

I2n−1 ⊗
[

(I2 ⊗ W[2,2n−i ])Mr

]

, (11.60)

with Mr = δ4[1,4].
The following result is now obvious.

Theorem 11.7 The system (11.18) is stabilizable by a closed-loop control u = Gx

if π(LGΦn) has a strictly lower (or upper) triangular form. Moreover, if there exists

a coordinate transformation z = T x such that π(T LGΦnT
T) has a strictly lower

(or upper) triangular form, then the control also stabilizes the system.
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Example 11.11 Consider the system

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1(t + 1) = ¬x2(t),

x2(t + 1) = ¬x4(t) ↔ ((x4(t) ∧ (x2(t) ∨̄x3(t))) ∨ u(t)),

x3(t + 1) = ¬((x4(t) ∧ (x2(t) ∨̄x3(t))) ∨ u(t)),

x4(t + 1) = (x4(t) ∨ (x2(t) ∨̄x3(t))) ∨ u(t).

(11.61)

In fact, it is obtained from (11.52) by changing the nature of the inputs. Using the
same coordinate transformation as in Example 11.10, we have

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

z1(t + 1) = (z1(t) ∨ z2(t)) ∨ u(t),

z2(t + 1) = ¬z1(t),

z3(t + 1) = (z1(t) ∧ z2(t)) ∧ u(t),

z4(t + 1) = z2(t) ↔ z3(t).

(11.62)

One can check that constant (open-loop) controls cannot stabilize the system. If we
use a closed-loop control

u(t) = ¬z1(t) ∧ ¬z2(t),

then the system (11.62) becomes

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

z1(t + 1) = 1,

z2(t + 1) = ¬z1(t),

z3(t + 1) = 0,

z4(t + 1) = z2(t) ↔ z3(t).

(11.63)

Obviously, this is globally stable. Converting the control back to the original coor-
dinate frame, we conclude that

u(t) = ¬x4(t) ∧ ¬
(

x2(t) ∨̄x3(t)
)

stabilizes the system (11.61).

The advantage of using metric-based analysis is that the matrix involved is of a
small size. The disadvantage is that the condition is only a sufficient one. Next, we
search for necessary and sufficient condition.

As discussed above, the global stability of a free Boolean network is equivalent to
the existence of a k > 0 such that F k = constant. In vector form it is equivalent to Lk

having equal columns, which is the global attractor. Now, consider the stabilization
by a constant control u. The control-dependent transition matrix is then Lu. Using
the properties of the semi-tensor product, it is easy to calculate that

(Lu)k = L
[

(I2m ⊗ L)Φm

]k−1
u. (11.64)
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Since k should be less than or equal to the transient time, i.e., k ≤ Tt ≤ 2n, we
can get an easily verifiable necessary and sufficient condition as follows. Note that
L[(I2m ⊗ L)Φm]k−1 is a 2n × 2n+m matrix. We split it into 2m square blocks as

L
[

(I2m ⊗ L)Φm

]k−1
:=

[

Lk
1 Lk

2 · · · Lk
2m

]

. (11.65)

Using this notation and in accordance with the above argument, we have the follow-
ing necessary and sufficient condition.

Theorem 11.8 The system (11.18) is stabilizable by a constant control u if and only

if there exists a matrix of constant mapping

Lk
j , 1 ≤ k ≤ 2n,1 ≤ j ≤ 2m.

Moreover, corresponding to each matrix of constant mapping Lk
j , the stabilizing

control is u = δ
j

2m .

The following example illustrates this result.

Example 11.12 Consider the following system:
{

x1(t + 1) = (x1(t) ∨ x2(t)) ∧ u,

x2(t + 1) = (x2(t) ∧ u) → x1.
(11.66)

It is easy to calculate that

L = δ4[1 1 2 3 3 3 3 3].

Since Φ1 = Mr , according to Theorem 11.8, we have to calculate

L
[

(I2 ⊗ L)Mr

]k
, k ≥ 1,

to see if we can find a constant mapping block. In fact when k = 2 we have

L
[

(I2 ⊗ L)Mr

]2
= δ4[1 1 1 1 3 3 3 3].

We conclude that if we use control u = 1, then the system is stabilized at x = δ1
4

(i.e., x1 = 1 and x2 = 1), and if we use u = 0, the system is stabilized at x = δ3
4 (i.e.,

x1 = 0, x2 = 1).

Consider the state feedback control as in (11.58). Using the expression (11.59)
and the above argument, the following result is obvious.

Theorem 11.9 The system (11.18) is stabilizable by a closed-loop control u = Gx

if and only if there exists a 2m × 2n logical matrix G and an integer 1 ≤ k ≤ 2n such

that (LGΦn)
k is a matrix of constant mapping.
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We give an example.

Example 11.13 Consider the following system:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

x1(t + 1) = [x2(t) ∨ (¬x2(t) ∧ (x3(t) ∨ x4(t)))] ∧ u(t),

x2(t + 1) = (x2(t) ∧ (x3(t) ∨ x4(t))) ∨ [x1(t) ∧ (¬x2(t)

∧ ¬(x3(t) ∨ x4(t)))],

x3(t + 1) = (x1(t) ∧ (x3(t) ↔ x4(t))) ∨ [¬x1(t) ∧ ((x2(t)

∧ (x3(t) ↔ x4(t))) ∧ (¬x2(t) ∧ (x3(t) ∧ x4(t))))],

x4(t + 1) = x1(t) ∧ ¬x4(t) ∨ [¬x1(t) ∧ ((x2(t) ∧ ¬x4(t))

∨ (¬x2(t) ∧ ¬(x3(t) → x4(t))))].

(11.67)

It is easy to verify that if we choose

G =

[

1 1 0 0
0 0 1 1

]3

,

then

(LGΦ4)
14 = δ16[16 · · · 16

︸ ︷︷ ︸

16

].

Note that

u(t) = Gx(t) = x1(t),

which globally stabilizes the system (11.67) to X = (0,0,0,0).

Next, we briefly discuss the case where the system is required to converge to a
particular state x0. In this case the problem is slightly simpler. In addition to the
above stability requirements, we need to ensure that x0 is a fixed point of the control
system. We now give this as a corollary.

Corollary 11.3

1. The system (11.18) is globally stabilized to x0 by a constant control u if and only

if u satisfies

Lux0 = x0, (11.68)

and there exists an integer k > 0 such that (Lu)k is a constant mapping.
2. The system (11.18) is globally stabilized to x0 by a closed-loop control u = Gx

if and only if G satisfies

LGΦnx0 = x0, (11.69)

and there exists an integer k > 0 such that (LGΦn)
k is a constant mapping.
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Finally, we consider the stabilization by an open-loop control, u(t) = ⋉m
i=1ui(t),

t = 1,2, . . . . We assume that we want to stabilize it to x0.
First, it is obvious that a necessary condition is that there exists a control ue ∈

∆2m such that

Luex0 = x0. (11.70)

Second, note that

x(t0 + k + 1) = Lu(t0 + k)Lu(t0 + k − 1) · · ·Lu(t0 + 1)x(t0).

To make all trajectories converge to x0, there must be a k > 0 such that

Lu(k)Lu(k − 1) · · ·Lu(1)x ≡ x0, ∀x ∈ ∆2n .

This is equivalent to

Col
(

Lu(k)Lu(k − 1) · · ·Lu(1)
)

= {x0}. (11.71)

Observe that

Lu(k)Lu(k − 1) · · ·Lu(1)

= L(I2m ⊗ L)(I22m ⊗ L) · · · (I2(k−1)m ⊗ L) ⋉1
i=k u(i)

:=
[

Lk
1,L

k
2, . . . ,L

k
2km

]

⋉1
i=k u(i). (11.72)

It is now clear that if there exists a 1 ≤ j ≤ 2km such that Lk
j corresponds to the

constant mapping ψ(x) ≡ x0, then we can choose the control

⋉1
i=ku(i) = δ

j

2mn

such that (11.71) holds.
Summarizing the above arguments, we have the following theorem.

Theorem 11.10 The system (11.18) is globally stabilized to x0 by an open-loop

control u(t), t = 1,2, . . . , if and only if:

(i) There exist an integer k > 0 and an Lk
j , 1 ≤ j ≤ 2km, such that

Col
(

Lk
j

)

= {x0}.

(ii) There exists a ue ∈ ∆2m such that (11.70) holds.

We give an example for this.
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Example 11.14 Consider the following system:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1(t + 1) = x1(t) ∨ u1(t),

x2(t + 1) = (x2(t) ∨ x3(t)) ↔ u1(t),

x3(t + 1) = (u1(t) → x2(t)) ∨ x3(t),

x4(t + 1) = (x3(t) ∧ u2(t)) → x4(t).

(11.73)

Set x(t) = ⋉4
i=1xi(t) and u(t) = ⋉2

i=1ui(t). Using vector form, (11.73) can be ex-
pressed as

x(t + 1) = Lu(t)x(t), (11.74)

where

L = δ16[1 2 1 1 1 2 7 7 1 2 1 1 1 2 7 7
1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7
5 6 5 5 5 6 1 1 13 14 13 13 13 14 9 9
5 5 5 5 5 5 1 1 13 13 13 13 13 13 9 9].

According to (11.72), we calculate

L(I22 ⊗ L)(I22×2 ⊗ L) · · · (I22(k−1) ⊗ L)

to see whether we can find a constant mapping block. In fact when k = 2 we have

M = L(I22 ⊗ L)

:= [M1,M2, . . . ,M16],

where

M = δ16[1 2 1 1 1 2 7 7 1 2 1 1 1 2 7 7
1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7
1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7
1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 6 5 5 5 6 1 1 5 6 5 5 5 6 1 1
5 5 5 5 5 5 1 1 5 5 5 5 5 5 1 1
5 6 5 5 5 6 5 5 13 14 13 13 13 14 13 13
5 5 5 5 5 5 5 5 13 13 13 13 13 13 13 13
5 5 5 5 5 5 1 1 5 5 5 5 5 5 1 1
5 5 5 5 5 5 1 1 5 5 5 5 5 5 1 1
5 5 5 5 5 5 5 5 13 13 13 13 13 13 13 13
5 5 5 5 5 5 5 5 13 13 13 13 13 13 13 13],

(11.75)
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and Blki(M) ∈ L16×16, i = 1, . . . ,16. From (11.75), we know that

Blk4(M) = Blk7(M) = Blk8(M) = δ16[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].

Equivalently,

Col
(

Blk4(M)
)

= Col
(

Blk7(M)
)

= Col
(

Blk8(M)
)

=
{

δ1
16

}

.

On the other hand, choosing ue = δ1
4 ∼ (1,1) [or ue = δ2

4 ∼ (1,0)], we have

Lueδ
1
16 = δ1

16.

From Theorem 11.10, the system (11.73) is globally stabilized to x0 = δ1
16 ∼

(1,1,1,1) by an open-loop control u(t) [or ū(t) and ũ(t)], where

u(t) =

⎧

⎪
⎨

⎪
⎩

δ4
4 ∼ (0,0), t = 1,

δ1
4 ∼ (1,1), t = 2,

ue, t ≥ 3,

ū(t) =

⎧

⎪
⎨

⎪
⎩

δ3
4 ∼ (0,1), t = 1,

δ2
4 ∼ (1,0), t = 2,

ue, t ≥ 3,

ũ(t) =

⎧

⎪
⎨

⎪
⎩

δ4
4 ∼ (0,0), t = 1,

δ2
4 ∼ (1,0), t = 2,

ue, t ≥ 3.

In the following we would like to discuss further the conditions in Theorem
11.10. Condition (i) says that all the trajectories can reach the preassigned fixed
point x0. One may doubt whether condition (ii) (which means that x0 is a fixed point
under a certain control) is necessary. The following example shows that condition
(ii) is indeed necessary.

Example 11.15 Consider the following system:
{

x1(t + 1) = ¬(x1(t) ∧ u(t)),

x2(t + 1) = (u(t) ∧ (x2(t) → x1(t))) ∨ (¬u(t) ∧ (x1(t) ↔ x2(t))).
(11.76)

Set x(t) = ⋉2
i=1xi(t). In vector form, (11.76) can be expressed as

x(t + 1) = Lu(t)x(t)

= δ4[3 3 2 1 1 2 2 1]u(t)x(t). (11.77)

For any initial state ξ ∈ ∆4, if we choose u(1) = δ2
2 , then

x(2) = Lu(1)ξ

= δ4[1 2 2 1]ξ.
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Next, if we choose u(2) = δ1
2 , then

x(3) = Lu(2)x(2)

=
(

δ4[3 3 2 1]
)(

δ4[1 2 2 1]
)

ξ

= δ4[3 3 3 3]ξ

= δ3
4, ∀ξ ∈ ∆4.

From (11.77), it is obvious that there does not exist an ue such that

Lueδ
3
4 = δ3

4 .

In step 3, regardless of the value of u(3) [u(3) = δ1
2 or u(3) = δ2

2], the dynamics
of the Boolean network will leave the state x0 = δ3

4 fixed. Therefore, the system
(11.76) cannot be globally stabilized to x0 by an open-loop control u(t).
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Chapter 12

Disturbance Decoupling

12.1 Problem Formulation

Assume that in a Boolean control network there are some disturbance inputs. We
then have a disturbed Boolean control network. In general, its dynamics is described
as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t), ξ1(t), . . . , ξq(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t), ξ1(t), . . . , ξq(t)),

yj (t) = hj

(

x(t)
)

, j = 1, . . . , p,

(12.1)

where ξi(t), i = 1, . . . , q , are disturbances. Let x(t) = ⋉n
i=1xi(t), u(t) = ⋉m

i=1ui(t),
ξ(t) = ⋉

q

i=1ξi(t), and y(t) = ⋉
p

i=1yi(t). The algebraic form of (12.1) is then ex-
pressed as

x(t + 1) = Lu(t)ξ(t)x(t),

y(t) = Hx(t),
(12.2)

where L ∈ L2n×2n+m+q , H ∈ L2p×2n .
We consider the following example.

Example 12.1 A disturbed Boolean control network is defined by the following
equation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A(t + 1) = B(t) ∧ ξ(t),

B(t + 1) = C(t) ∨ u1(t),

C(t + 1) = D(t) ∧ [(B(t) → ξ(t)) ∨ u1(t)],

D(t + 1) = ¬C(t) ∨ [ξ(t) ∧ u2(t)],

y(t) = C(t) ∧ D(t).

(12.3)
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Roughly speaking, the disturbance decoupling problem involves finding suitable
controls such that, for the closed-loop system, the outputs are not affected by the
disturbances. Consider the system (12.3). If we choose controllers

u1(t) = B(t), u2(t) = 0,

then the closed-loop system becomes
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A(t + 1) = B(t) ∧ ξ(t),

B(t + 1) = C(t) ∨ B(t),

C(t + 1) = D(t),

D(t + 1) = ¬C(t),

y(t) = C(t) ∧ D(t).

(12.4)

It is obvious that the disturbance will not affect the output.
We now give a rigorous definition.

Definition 12.1 Consider the system (12.1). The DDP is solvable if we can find a
feedback control

u(t) = φ
(

x(t)
)

(12.5)

and a coordinate transformation z = T (x) such that under the z coordinate frame,
the closed-loop system becomes

{

z1(t + 1) = F 1(z(t), φ(x(t)), ξ(t)),

z2(t + 1) = F 2(z2(t)),

y(t) = G
(

z2(t)
)

.

(12.6)

From Definition 12.1 one sees that to solve the DDP problem there are two key
issues: (i) finding a regular coordinate subspace z2 which contains outputs, and (ii)
designing a control such that the complement coordinate sub-basis z1 and the dis-
turbances ξ can be deleted from the dynamics of z2. These will be investigated in
the following two sections.

12.2 Y -friendly Subspace

Definition 12.2 Let X = F ℓ{x1, . . . , xn} be the state space and Y =

{y1, . . . , yp} ⊂ X . A regular subspace Z ⊂ X is called a Y -friendly subspace
if yi ∈ Z , i = 1, . . . , p. A Y -friendly subspace of minimum dimension is called a
minimum Y -friendly subspace.

This section is devoted to finding the output-friendly subspace. First, we consider
one variable y. Since y ∈ X , we its algebraic expression is

y = δ2[i1, i2, . . . , i2n ]x := hx. (12.7)
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Let

nj =
∣

∣

{

k
∣

∣ ik = j,1 ≤ k ≤ 2n
}
∣

∣, j = 1,2,

where | · | is the cardinal number of the set. We then have the following result.

Lemma 12.1 Assume that Y = Fℓ{y} has algebraic form (12.7). There is a Y -

friendly subspace of dimension r if and only if n1 and n2 have a common fac-

tor 2n−r .

Proof (Necessity) Assume that there is a Y -friendly subspace Z = F ℓ{z1, . . . , zr}

with {z1, . . . , zr } as its regular sub-basis, and let z = ⋉r
i=1zi . Then,

z = T0x = (ti,j )x,

where T0 ∈ L2r×2n . Since y ∈ Z , we have

y = Gz = GT0x,

where G ∈ L2×2r . G can then be expressed as

G = δ2[j1, . . . , j2r ].

Hence,

h = δ2[i1, i2, . . . , i2n ] = δ2[j1, . . . , j2r ]T0.

Let ms = |{k | jk = s,1 ≤ k ≤ 2r}|, s = 1,2. Using Corollary 8.2, a straightforward
computation shows that h has 2n−rm1 columns which are equal to δ1

2 and 2n−rm2

columns which are equal to δ2
2 . That is, n1 = 2n−rm1 and n2 = 2n−rm2. The con-

clusion follows.
(Sufficiency) Let y = hx be as in (12.7), where n1 = 2n−rm1 columns of h

equal δ1
2 and n2 = 2n−rm2 columns equal δ2

2 . It suffices to construct a Y -friendly
subspace of dimension r . We construct a logical matrix T0 ∈ L2r×2n , as follows.
Let J1 = {k |hk = δ1

2} and J2 = {k |hk = δ2
2}, where hk = Colk(h). Simply letting

I1 = {1, . . . ,m1} and I2 = {m1 + 1, . . . ,2r}, we can split T0 into 2 × 2 minors as
follows: T

i,j

0 = {tr,s | r ∈ Ii and s ∈ Jj }, i, j = 1,2. We set these to be

T
1,1

0 =

⎡

⎢

⎢

⎣

1T
2n−r · · · 0

. . .

0 · · · 1T
2n−r

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

m1, T
1,2

0 = 0,

T
2,2

0 =

⎡

⎢

⎢

⎣

1T
2n−r · · · 0

. . .

0 · · · 1T
2n−r

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

m2, T
2,1

0 = 0.
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We are now ready to verify that T0, constructed in this way, satisfies (8.33). Accord-
ing to Theorem 8.2, z = T0x forms a regular sub-basis.

Next, we define G as

G = δ2[1, . . . ,1
︸ ︷︷ ︸

m1

,2, . . . ,2
︸ ︷︷ ︸

m2

].

A straightforward computation shows that GT0 = h, which means that

GT0x = hx = y. �

For ease of statement, we call a factor of the form 2s a 2-type factor. In sub-basis
construction, only 2-type factors are counted.

From the proof of Lemma 12.1 the following result is obvious.

Corollary 12.1 Assume that 2n−r is the largest common 2-type factor of n1 and n2.
The minimum Y -friendly subspace is then of dimension r .

Next, we consider the multi-output case. Let Y = {y1, . . . , yp} ⊂ X be p logical
functions, and let y = ⋉

p

i=1yi . Then, y can be expressed in its algebraic form as

y = δ2p [i1, i2, . . . , i2n ]x := Hx. (12.8)

Let

nj =
∣

∣

{

k
∣

∣ ik = j,1 ≤ k ≤ 2n
}
∣

∣, j = 1, . . . ,2p.

Using the same argument as for the single output case, it is easy to prove the fol-
lowing result. (In fact, the following Algorithm 12.1 could be considered as a con-
structive proof.)

Theorem 12.1 Assume that y = ⋉
p

i=1yi has algebraic form (12.8).

1. There is a Y -friendly subspace of dimension r if and only if nj , j = 1, . . . ,2p ,
have a common factor 2n−r .

2. Assume that 2n−r is the largest common 2-type factor of nj , j = 1, . . . ,2p . The

minimum Y -friendly subspace is then of dimension r .

We give an algorithm for constructing a Y -friendly subspace. Assume that 2n−r

is a common factor of ni , writing ni = mi · 2n−r , i = 1, . . . ,2p . We split the set of
Col(H) into 2p subsets as Ji , i = 1, . . . ,2p . k ∈ Ji if and only if the kth column of
H satisfies Colk(H) = δi

2p . Constructing the required Y -friendly subspace is equiv-
alent to constructing a logical matrix T0 ∈ L2r×2n such that we can find a logical
matrix G ∈ L2p×2r satisfying

GT0 = H.
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Algorithm 12.1

Step 1. Split the rows of T0 into 2p blocks as follows: I1 consists of the first m1
rows, I2 consists of the following m2 rows, and so on, until I2p consists of the last
m2p rows. (Note that

∑2p

i=1 mi = 2r .) Partition T0 into 2p × 2p minors as

T
i,j

0 = {tr,s | r ∈ Ii, s ∈ Jj }, i, j = 1, . . . ,2p.

Step 2. Note that T
i,j

0 is an mi × (mj 2n−r) minor. Set it as

T
i,j

0 =

{

Imi
⊗ 1T

2n−r , i = j,

0, otherwise.
(12.9)

Step 3. Set

z = ⋉r
i=1zi := T0x.

Recover zi , i = 1, . . . , r , from T0. (We refer to Chap. 7 for the recovery technique.)

Proposition 12.1 Assume that 2n−r is a common factor of ni . The zi , i = 1, . . . , r ,
obtained from Algorithm 12.1 then form a regular sub-basis of an r-dimensional

Y -friendly subspace.

Proof Define a block diagonal matrix

G =

⎡

⎢

⎢

⎢

⎣

1T
m1

0 · · · 0
0 1T

m2
· · · 0

...

0 0 · · · 1T
m2p

⎤

⎥

⎥

⎥

⎦
. (12.10)

By the construction of T0, it is easy to check that

y = GT0x = Gz. �

We are particularly interested in constructing the minimum Y -friendly subspace.
We give an example to show how to construct it.

Example 12.2 Let X = F ℓ{x1, x2, x3, x4},

y1 = f1(x1, x2, x3, x4) = (x1 ↔ x3) ∧ (x2 ∨̄x4),

y2 = f2(x1, x2, x3, x4) = x1 ∧ x3.
(12.11)

We look for the minimum Y -friendly subspace. Setting y = y1y2 and x = x1x2x3x4,
it is easy to calculate that

y1 = McMex1x3Mpx2x4

= McMe(I4 ⊗ Mp)x1x3x2x4
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= McMe(I4 ⊗ Mp)(I2 ⊗ W[2])x1x2x3x4

:= M1x,

where M1 is the structure matrix of f1, which can be easily calculated as

M1 = McMe(I4 ⊗ Mp)(I2 ⊗ W[2])

= δ2[2 1 2 2 1 2 2 2 2 2 2 1 2 2 1 2].

Similarly, y2 = M2x with

M2 = δ2[1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2].

Finally, we have y = Mx, where

M = δ4[3 1 4 4 1 3 4 4 4 4 4 2 4 4 2 4].

From M one easily sees that n1 = n2 = n3 = 2 and n4 = 10. Since the only com-
mon 2-type factor is 2 = 2n−r , we can have the minimum Y -friendly subspace of
dimension r = 3. To construct T0 we have

J1 = {2,5}, J2 = {12,15}, J3 = {1,6},

J4 = {3,4,7,8,9,10,11,13,14,16}.

Now, since m1 = m2 = m3 = 1 and m4 = 5, we have I1 = {1}, I2 = {2}, I3 = {3},
and I4 = {4,5,6,7,8}. Setting B1,1 equal to 1T

2 yields that the 2nd and 5th columns
of T0 are equal to δ1

8 . Similarly, the 12th and 15th columns are equal to δ2
8 , etc.

Finally, T0 is obtained as

T0 = δ8[3 1 4 4 1 3 5 5 6 6 7 2 7 8 2 8]. (12.12)

Correspondingly, we can construct G by formula (12.10) as

G = δ4[1 2 3 4 4 4 4 4]. (12.13)

Finally, we construct the minimum Y -friendly subspace which has sub-basis, say,
{z1, z2, z3}. Setting z = z1z2z3, we have

z = T0x.

Define zi := Eix, i = 1,2,3. The structure matrices Ei can then be uniquely calcu-
lated from T0 as

E1 = δ2[1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 2],

E2 = δ2[2 1 2 2 1 2 1 1 1 1 2 1 2 2 1 2],

E3 = δ2[1 1 2 2 1 1 1 1 2 2 1 2 1 2 2 2].

(12.14)
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We can then use Proposition 7.2 to find the logical expression of zi from its structure
matrix Ei . It is easy to calculate that

z1 =
{

x1 ∧
[

x2 ∨ (¬x2 ∧ x3)
]}

∨
{

¬x1 ∧
([

x2 ∧ ¬(x3 ∨ x4)
]

∨
[

¬x2 ∧ (¬x3 ∧ x4)
])}

,

z2 =
{

x1 ∧
[(

x2 ∧ (x3 ∧ ¬x4)
)

∨
(

¬x2 ∧ (x3 → x4)
)]}

∨
{

¬x1 ∧
[(

x2 ∧
(

x3 ∨ (¬x3 ∧ ¬x4)
))

∨
(

¬x2 ∧ (¬x3 ∧ x4)
)]}

,

z3 =
{

x1 ∧
[

(x2 ∧ x3) ∨ ¬x2
]}

∨
{

¬x1 ∧
[(

x2 ∧ (¬x3 ∧ x4)
)

∨
(

¬x2 ∧ (x3 ∧ x4)
)]}

.

(12.15)

Similarly, from (12.13) we can easily calculate that

y1 = δ2[1 1 2 2 2 2 2 2]z,

y2 = δ2[1 2 1 2 2 2 2 2]z.

It follows that

y1 = z1 ∧ z2,

y2 = z1 ∧ z3.
(12.16)

A question which now naturally arises is whether the minimum Y -friendly sub-
space is unique. First, we consider the number of bases of the subspace.

Proposition 12.2 Assume the algebraic form of {y1, . . . , yp} is y = Hx and that

the numbers nj = |{s |Hs = δ
j

2p }|, j = 1, . . . ,2p , have common factor 2n−r . There

are then

Nr =

2p
∏

i=1

(mi · 2n−r)!

[(2n−r)!]mi
(12.17)

different choices of sub-basis which form the r-dimensional Y -friendly subspaces.

Proof The question is equivalent to asking how many different T0 there are. First,
we fix the row assignment, that is, the assignment of I1, I2, . . . , I2p . Note that Ii has
mi rows, and Ji has mi · 2n−r columns. It is obvious that to get the same GT0 we
can, for each row in Ii , choose any 2n−r columns and assign them to be 1. Hence,
we have N i different choices for values in Ji columns, where

N i =

(

mi · 2n−r

2n−r

)(

(mi − 1) · 2n−r

2n−r

)

· · ·

(

2n−r

2n−r

)

=
(mi · 2n−r)!

[(2n−r)!]mi
.

Since Nr =
∏2p

i=1 N i , (12.17) follows immediately.
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The only thing remaining to be clarified is that the row assignment for Ii , i =

1, . . . ,2p , is fixed in advance. In fact, we can choose any m1 rows for I1, then m2
rows from remaining rows for I2, and so on. For this purpose, we can introduce
a row permutation. Let P ∈ M2r×2r be a permutation matrix, so a new T0 can be
obtained by T̃0 = PT0. We then have a new regular sub-basis, z̃ = Pz = PT0z,
which is just a coordinate transformation of z, so they generate the same regular
subspace and will be considered as the same. It is worth noting that we have

y = G̃z̃, where G̃ = GP T. �

In fact, Nr is a huge number when n is large. Fortunately, different sub-bases
may determine the same subspace. We give a simple example to illustrate this.

Example 12.3 Let y = x1 ∧ x3 ∈ F ℓ{x1, x2, x3}. Using Theorem 12.1, it is easy to
verify that a minimum Y -friendly subspace is of dimension 2. Moreover, we can
easily show {x1, x3} to be a basis, that is, y ∈ Z1 = F ℓ{x1, x3}. It is also easy to
verify that Z2 = F ℓ{x1, x1 ∨̄x3}, Z3 = F ℓ{x3, x1 ∨̄x3}, Z4 = F ℓ{x3, x1 ↔ x3},
etc. are also minimum Y -friendly subspaces. Fortunately, it is easy to check that
they are all the same.

Now, let X = F ℓ{x1, . . . , xn} be the state space and

Z i = F ℓ

{

zi
1, . . . , z

i
k

}

⊂ X , i = 1,2,

where {zi
1, . . . , z

i
k}, i = 1,2, are regular sub-bases with

zi
j = f i

j (x1, . . . , xn), i = 1,2, j = 1, . . . , k. (12.18)

We wish to know when Z1 = Z2.
Let zi = ⋉k

j=1z
i
j , i = 1,2. The logical equations (12.18) have algebraic forms

zi = Tix, i = 1,2. (12.19)

Assume that Z1 = Z2. There then exists a nonsingular P ∈ L2k×2k such that

T1x = PT2x

and it follows that T1 = PT2. Hence,

P = T1
(

T T
2

(

T2T
T
2

)−1)
. (12.20)

Plugging this into T1 = PT2 yields

T1 = T1T
T
2

(

T2T
T

2

)−1
T2. (12.21)

Conversely, if (12.21) holds and the P defined in (12.20) is a coordinate transforma-
tion matrix, then we have T1x = PT2x, i.e., z1 = Pz2. According to Theorem 8.1,
Z1 = Z2. Summarizing the above argument yields the following theorem.
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Theorem 12.2 Using the above notation, two regular subspaces of equal dimension

Z1 = Z2 if and only if (i) their structure matrices T1 and T2 satisfy (12.21), and (ii)

T1T
T
2

(

T2T
T
2

)−1
∈ L2k×2k

is nonsingular.

Using Theorem 12.2, we can easily show that the minimum Y -friendly subspace
is, in general, not unique. This is shown by the following example.

Example 12.4 Consider Example 12.2 again. Using formula (12.17), there are
10!/32 different choices of sub-basis. These come from setting the entries of the
T

4,4
0 , which corresponds to I4 × J4.

We may construct some other subspaces by using other structure matrices.

1. Choosing

T ′
0 = δ8[3 1 5 5 1 3 7 7 8 8 4 2 4 6 2 6],

we can generate another Y -friendly minimum subspace. Note that this choice is
legal because we only put two 4s, two 5s, two 6s, two 7s, and two 8s into the
slots of J4. It is easy to check that if we set T2 := T0 and T1 := T ′

0 , then (12.21)
is satisfied. Moreover,

T1T
T
2

(

T2T
T
2

)−1
= δ8[1 2 3 5 7 8 4 6] ∈ L2k×2k

is nonsingular, so z = T0x and z′ = T ′
0x generate the same Y -friendly subspace.

2. We may consider another legal choice:

T ′′
0 = δ8[3 1 5 6 1 3 7 8 7 8 4 2 4 5 2 6].

If we set T2 := T0 and T1 := T ′′
0 , then (12.21) fails to be satisfied. Thus, z = T0x

and z′′ = T ′′
0 x generate two different Y -friendly minimum regular subspaces.

The second example shows that the Y -friendly minimum regular subspace is
not generally unique.

12.3 Control Design

In the previous section, the problem of finding a Y -friendly subspace was investi-
gated. Assume that a Y -friendly subspace is obtained as z2. We can then find z1

such that z = {z1, z2} forms a new coordinate frame. Under this z, the system (12.1)
can be expressed as

{

z1(t + 1) = F 1(z(t), u(t), ξ(t)),

z2(t + 1) = F 2(z(t), u(t), ξ(t)),

y(t) = G
(

z2(t)
)

.

(12.22)
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Equation (12.22) is called the output-friendly form. Comparing it with (12.6), one
sees that solving the DDP reduces to finding u(t) = u(z(t)) such that

F 2(z(t), u
(

z(t)
)

, ξ(t)
)

= F̃ 2(z2(t)
)

. (12.23)

Assume z2 = (z2
1, . . . , z

2
k) is of dimension k. We define a set of functions,

e1
(

z2)= z2
1 ∧ z2

2 ∧ · · · ∧ z2
k; e2

(

z2)= z2
1 ∧ z2

2 ∧ · · · ∧ ¬z2
k;

e3
(

z2)= z2
1 ∧ · · · ∧ ¬z2

k−1 ∧ z2
k; e4

(

z2)= z2
1 ∧ · · · ∧ ¬z2

k−1 ∧ ¬z2
k;

· · ·

e2k

(

z2)= ¬z2
1 ∧ ¬z2

2 ∧ · · · ∧ ¬z2
k .

(12.24)

It is easy to check that

Z 2 := F ℓ

{

z2}= F ℓ

{

ei

∣

∣1 ≤ i ≤ 2k
}

.

We call {ei |1 ≤ i ≤ 2k}, defined in (12.24), a conjunctive basis of Z 2 (or z2). Using
Proposition 7.2, each equation of F 2, denoted by F 2

i , can be expressed as

F 2
j

(

z(t), u(t), ξ(t)
)

=

2k
∨

i=1

[

ei

(

z2(t)
)

∧ Qi
j

(

z1(t), u(t), ξ(t)
)]

, j = 1, . . . , k.

(12.25)

Proposition 12.3 F 2(z(t), u(t), ξ(t)) = F 2(z2(t)) if and only if, in the expression

(12.25),

Qi
j

(

z1(t), u(t), ξ(t)
)

= const., j = 1, . . . , k, i = 1, . . . ,2p. (12.26)

Proof Sufficiency is trivial. For necessity, assume that for a special pair i, j , the
Q

j
i is not constant. Consider the corresponding ei . If its z2

s factor is z2
s , set z2

s = 1.
Otherwise, if this factor is ¬z2

s , set z2
s = 0, s = 1, . . . , k. We then have

ei

(

z2)= 1, ej

(

z2)= 0, j �= i.

Now, since Q
j

i is not constant, when Q
j

i = 1, we have F 2
i = 1, and when Q

j

i = 0,
we have F 2

i = 0. So, for fixed z2, F 2
i can have different values, which means that

F 2
i is not a function with of z2 alone. �

We are now ready to give the condition for the solvability of the DDP. Taking
into consideration the above argument, the following result is obvious.

Theorem 12.3 Consider the system (12.1). The DDP is solvable if and only if:
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(i) There exists an output-friendly coordinate sub-basis such that, using this sub-

basis, the system is expressed as (12.22).
(ii) In (12.22), when F 2 is expressed as in (12.25), there exists a feedback control

u(t) = u(z(t)) such that (12.26) is satisfied.

Remark 12.1 An output-friendly coordinate sub-basis, say z2, is obtained. A com-
plement set of logical variables, z1, must be chosen to form a new coordinate frame
z = {z1, z2}. It is easy to check that the choice of z1 does not affect the solvability
of the DDP.

Now, assume that we have (12.22) with z2 being the minimum output-friendly
subspace. We can then search for the feedback control. Set the feedback as

u
(

z1(t)
)

= Uz1(t), (12.27)

where U ∈ L2m×2n−k .
Note that there are only finitely many U . If there is a control u such that all

the functions in (12.26) are constant, then we are done. Otherwise, there is no u

which deletes ξ from all functions in (12.26), which means that the DDP is not solv-
able. If there is a u which does delete ξ from all functions in (12.26), but there are
some functions of z1, say {η1, . . . , ηs} ⊂ F ℓ{z

1}, which remain undeleted, then we
add {ηi | i = 1, . . . , s} to {y1, . . . , yp} and find a minimum (yi, ηj | i = 1, . . . , p; j =

1, . . . , s)-friendly subspace, say V . We then turn the closed-loop system into the
form of (12.22) with F ℓ{z

2} = V to see whether it has the form of (12.6).
To see that a possible solution with an output-friendly subspace can be obtained

by starting from a minimum subspace, we have to show that an output-friendly sub-
space contains a minimum output-friendly subspace. We have the following result.

Proposition 12.4 Let V be a Y = {y1, . . . , yp}-friendly subspace. There then exists

a minimum Y -friendly subspace, W ⊂ V .

Proof Let

y = ⋉
p

i=1yi = Hx,

and let ni , i = 1, . . . ,2p , denote the numbers of columns of H , which equal δi
2p . Let

2s be the largest common 2-type factor of {ni}. The minimum Y -friendly subspace
then has dimension n − s. Let {v1, . . . , vt } be a basis of V . If t = n − s, then we are
done. Therefore, we assume that t > n − s. Since V is a Y -friendly subspace, by
writing v = ⋉t

i=1vi , we can express

y = Gv, where G ∈ L2p×2t . (12.28)

Denote by ri , i = 1, . . . ,2p , the numbers of columns of G which are equal to δi
2p .

Let 2j be the largest 2-type common factor of ri , and write ri = mi2j . Since V is a
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regular subspace, we let v = Ux, where U ∈ L2t×2n . Since v is a regular sub-basis,
(8.33) holds. Note that since

y = Gv = GUx,

we have to calculate GU . Using the construction of G and the property (8.33) of
U , it is easy to verify that each column of δi

2p yields 2n−t columns of δi
2p in GU .

Hence, we have

ri · 2n−t = mi · 2n−t+j

instances of δi
2p in GU , i = 1, . . . ,2p . This means that the largest common 2-type

factor of {ni} is 2n−t+j . It follows that n − t + j = s. Equivalently,

j = t − (n − s).

Going back to (12.28), since the dimension of V is t , and the ri have largest com-
mon 2-type factors 2j , we can find a minimum Y -friendly subspace of V of di-
mension t − j = t − [t − (n − s)] = n − s. It follows from the dimension that
this minimum Y -friendly subspace of V is also a minimum Y -friendly subspace of
X = Fℓ{x1, . . . , xn}. �

We give an example to describe this.

Example 12.5 Consider the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = x4(t) ∨̄u1(t),

x2(t + 1) = (x2(t) ∨̄x3(t)) ∧ ¬ξ(t),

x3(t + 1) = [(x2(t) ↔ x3(t)) ∨ ξ(t)] ∨̄ [(x1 ↔ x5) ∨ u2(t)],

x4(t + 1) = [u1(t) → (¬x2(t) ∨ ξ(t))] ∧ (x2(t) ↔ x3(t)),

x5(t + 1) = (x4(t) ∨̄u1(t)) ↔ [(u2(t) ∧ ¬x2(t)) ∨ x4(t)],

y(t) = x4(t) ∧
(

x1(t) ↔ x5(t)
)

,

(12.29)

where u1(t), u2(t) are controls, ξ(t) is a disturbance, and y(t) is the output.
Setting x(t) = ⋉5

i=1xi(t), u = u1(t)u2(t), we express (12.29) in algebraic form
as

x(t + 1) = Lu(t)ξ(t)x(t),

y(t) = h(t),
(12.30)
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where

L = δ32[30 30 14 14 32 32 16 16 32 32 15 15 30 30 13 13

30 30 14 14 32 32 16 16 32 32 15 15 30 30 13 13

32 32 16 16 20 20 4 4 20 20 3 3 30 30 13 13

32 32 16 16 20 20 4 4 20 20 3 3 30 30 13 13

30 26 14 10 32 28 16 12 32 28 16 12 30 26 14 10

26 30 10 14 28 32 12 16 28 32 12 16 26 30 10 14

32 28 16 12 20 24 4 8 20 24 4 8 30 26 14 10

28 32 12 16 24 20 8 4 24 20 8 4 26 30 10 14

13 13 29 29 15 15 31 31 15 15 32 32 13 13 30 30

13 13 29 29 15 15 31 31 15 15 32 32 13 13 30 30

13 13 29 29 3 3 19 19 3 3 20 20 13 13 30 30

13 13 29 29 3 3 19 19 3 3 20 20 13 13 30 30

13 9 29 25 15 11 31 27 15 11 31 27 13 9 29 25

9 13 25 29 11 15 27 31 11 15 27 31 9 13 25 29

13 9 29 25 3 7 19 23 3 7 19 23 13 9 29 25

9 13 25 29 7 3 23 19 7 3 23 19 9 13 25 29],

h = δ2[1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2].

First, we have to find the minimum output-friendly subspace. Observing h, we
have n1 = 8 and n2 = 24. We then have the largest common 2-type factor 2s = 23,
and m1 = 1, m2 = 3. Hence, we know that the minimum output-friendly subspace
is of dimension n − s = 5 − 3 = 2. Using Algorithm 12.1, we may choose

T0 = δ4[1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3]

and

G = δ2[1 2 2 2].

From T0 we can find the output-friendly sub-basis, denoting it by {z4, z5}, with
z4 = M4x and z5 = M5x. We can then easily calculate M4 and M5 from T0. In fact,
for the two-factor case, we have the following simple rule: For M1 each column of
δ1

4 or δ2
4 of T0 yields a column δ1

2 in the corresponding column of M1, otherwise
we have δ2

2 ; for M2 each column of δ1
4 or δ3

4 of T0 yields a δ1
2 in the corresponding

column of M2, otherwise we have δ2
2 . Hence, we have

M4 = δ2[1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2],

M5 = δ2[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1].
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Using Corollary 8.2, we simply set zi = Mix, i = 1,2,3, where Mi are chosen
as follows:

M1 = δ2[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2],

M2 = δ2[2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1],

M3 = δ2[1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1].

It is easy to check that the Boolean matrix Bz of {z1, z2, z3, z4, z5} has no equal
columns. Therefore, it is a coordinate transformation. From Mi , the zi can be cal-
culated as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1 = x1,

z2 = ¬x2,

z3 = x2 ↔ x3,

z4 = x4,

z5 = x1 ↔ x5.

(12.31)

Setting z = ⋉5
i=1zi and x = ⋉5

i=1xi , the algebraic form of (12.31) is z = T x, with

T = δ32[9 10 11 12 13 14 15 16 5 6 7 8 1 2 3 4 26 25

28 27 30 29 32 31 22 21 24 23 18 17 20 19].

Conversely, we have x = T Tz, with

T T = [13 14 15 16 9 10 11 12 1 2 3 4 5 6 7 8 30 29

32 31 26 25 28 27 18 17 20 19 22 21 24 23].

The inverse mapping of the coordinate transformation (12.31) becomes
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1 = z1,

x2 = ¬z2,

x3 = z2 ∨̄ z3,

x4 = z4,

x5 = z1 ↔ z5.

Under the coordinate frame z, equation (12.30) now becomes

z(t + 1) = T x(t + 1) = T Lu(t)ξ(t)x(t) = T Lu(t)ξ(t)T Tz(t)

= T L
(

I8 ⊗ T T)u(t)ξ(t)z(t) := L̃u(t)ξ(t)z(t)

and

y(t) = hx(t) = hT Tz(t) := h̃z(t),
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where

L̃ = δ32[17 17 1 1 19 19 3 3 17 17 2 2 19 19 4 4
17 17 1 1 19 19 3 3 17 17 2 2 19 19 4 4
17 17 1 1 27 27 11 11 19 19 4 4 27 27 12 12
17 17 1 1 27 27 11 11 19 19 4 4 27 27 12 12
17 21 2 6 19 23 4 8 17 21 2 6 19 23 4 8
17 21 2 6 19 23 4 8 17 21 2 6 19 23 4 8
17 21 2 6 27 31 12 16 19 23 4 8 27 31 12 16
17 21 2 6 27 31 12 16 19 23 4 8 27 31 12 16
1 1 17 17 3 3 19 19 1 1 18 18 3 3 20 20
1 1 17 17 3 3 19 19 1 1 18 18 3 3 20 20
1 1 17 17 11 11 27 27 1 1 18 18 11 11 28 28
1 1 17 17 11 11 27 27 1 1 18 18 11 11 28 28
1 5 18 22 3 7 20 24 1 5 18 22 3 7 20 24
1 5 18 22 3 7 20 24 1 5 18 22 3 7 20 24
1 5 18 22 11 15 28 32 1 5 18 22 11 15 28 32
1 5 18 22 11 15 28 32 1 5 18 22 11 15 28 32],

h̃ = δ2[1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2].

A mechanical procedure can then convert the original system into a Y -friendly co-
ordinate frame z as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = z4(t) ∨̄u1(t),

z2(t + 1) = z3(t) ∨ ξ(t),

z3(t + 1) = z5(t) ∨ u2(t),

z4(t + 1) = [u1(t) → (z2(t) ∨ ξ(t))] ∧ z3(t),

z5(t + 1) = (u2(t) ∧ z2(t)) ∨ z4(t),

y = z4 ∧ z5.

(12.32)

In the output-friendly subspace (z4, z5), we may now choose

u1(t) = z2(t) = ¬x2(t), u2(t) = 0.

Now the only unlimited variable, which is outside of this space, is z3. Enlarging the
output-friendly subspace to include z3, one sees that the closed-loop system is in
such a form that the DDP is solved. Since, in system (12.32), the controls which
solve the DDP are obvious, we do not need to use the general formula.

12.4 Canalizing Boolean Mapping

In this section we consider the canalizing Boolean mapping. It will be used to solve
the DDP via constant controls.
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Definition 12.3 A Boolean function y = f (x1, . . . , xn) is called a canalizing (or
forcing) Boolean function (CBF) if there exist an i ∈ {1, . . . , n} and u,v ∈ D such
that

f (x1, . . . , xi−1, u, xi+1, . . . , xn) = v, ∀xj , j �= i. (12.33)

If (12.33) holds, xi is called the canalizing variable with canalizing value u and
canalized value v, and f is said to be a (u, v)-type canalizing Boolean function.

It was pointed out by Kauffman [4] that canalizing Boolean functions allow us to
deduce large-scale order in the underlying ontogeny of genetic regulatory systems.

For our purposes, we define a generalized version of a CBF.

Definition 12.4 A mapping F : Dn → Dp , determined by

yj = fj (x1, . . . , xn), j = 1, . . . , p,

is called a multi-input multi-output canalizing (or forcing) Boolean mapping [or,
more briefly, a canalizing Boolean mapping (CBM)] if there exist a proper subset
Λ = {λ1, . . . , λk} ⊂ {1, . . . , n} and u1, . . . , uk , v1, . . . , vp ∈ D such that

fj (x1, . . . , xn)|xλi
=ui ,i=1,...,k = vj , j = 1, . . . , p. (12.34)

If (12.34) holds, then xλ, λ ∈ Λ are called the canalizing variables with canalizing
values u = (u1, . . . , uk) and canalized values v = (v1, . . . , vp), and F is said to be
a (u, v)-type canalizing Boolean mapping.

In the following we look for a necessary and sufficient condition for a given
mapping to be a CBM. Of course, the results obtained are also applicable to CBFs.

Recall that M ∈ L2p×2n is called a constant mapping matrix (CMM) if it is a
structure matrix of a constant mapping, that is, if there exists an s, 1 ≤ s ≤ 2p , such
that

Coli(M) = δs
2p , ∀i.

First, we assume that Λ = {1,2, . . . , k}. We then have the following result.

Theorem 12.4 Let F : Dn → Dp be defined by

yj = fj (x1, . . . , xn), j = 1, . . . , p. (12.35)

Its algebraic form is y = MF x, with x = ⋉n
i=1xi and y = ⋉

p

i=1yi . Split MF into 2k

equal-sized blocks as

MF =
[

M1 M2 · · · M2k ]

.

F is then a CBM with canalizing variables x1, . . . , xk if and only if there exits an s,
1 ≤ s ≤ 2k , such that Ms is a CMM.
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Proof First, let z1, . . . , zs be a set of logical variables and z = ⋉s
i=1zi . Then, z ∈ ∆2s

and {zi | i = 1, . . . , s} can be uniquely calculated from z, so we have only to consider
y and x. Let x1 = ⋉k

i=1xi and x2 = ⋉n
i=k+1xi . Then,

y = MF x1x2 =
(

MF x1)x2 := M2x
2.

Now, assume that M t is a CMM, where 1 ≤ t ≤ 2k . We can then choose x1
0 = δt

2k .

By the definition of the semi-tensor product, we have M2 = MF x1
0 = M t , which is

a CMM. That is, y is a CBM with x1 as canalizing variables.
Conversely, if all M t are not CMMs, then for any x1

0 ∈ ∆2k the M2 = MF x1
0 is

not a CMM. Hence, y is not a CBM with x1 as canalizing variables. �

Next, we consider the general case. Let

Λ = {i1, . . . , ik} ⊂ {1,2, . . . , n}.

Without loss of generality, we assume i1 < i2 < · · · < ik . Using the aforementioned
notation, we define

M̃F = MF

k
∏

j=1

W
[2,2ij +k−j

]
.

Splitting this as

M̃F =
[

M̃1 M̃2 · · · M̃2k ]

,

we then have the following conclusion.

Corollary 12.2 F is a CBM with canalizing variables xλ, λ ∈ Λ = {i1, . . . , ik}, if

and only if there is a 1 ≤ s ≤ 2k such that M̃s is a CBM.

Proof We use a swap matrix to rearrange the order of products. A straightforward
computation then shows that

x = ⋉n
i=1xi =

k
∏

j=1

W
[2,2ij +k−j

]
xi1 · · ·xik ⋉n

i=1
i �∈Λ

xi,

and the conclusion follows. �

As an immediate consequence, we have the following result.

Corollary 12.3 Let y = f (x1, . . . , xn) be a logical function with structure ma-

trix Mf . Let

Mf W[2,2i−1] =
[

M1 M2],
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Table 12.1 Type of f
i 1 1 2 2

Columns δ1
2 δ2

2 δ1
2 δ2

2

Type (1,1) (1,0) (0,1) (0,0)

where M i ∈ L2×2n−1 , i = 1,2. Then f is a canalizing Boolean function with canal-

izing variable xi if and only if at least one of M1 or M2 is a CMM. Moreover, if M i

(i = 1 or i = 2) is a CMM with its columns equal to δ1
2 (or δ2

2), then the type of f is

shown in Table 12.1.

12.5 Solving DDPs via Constant Controls

It was proposed in the above that the DDP can be solved in two steps: First, convert
(12.1) into an output-friendly form (12.22); then, in (12.22), try to design a control
such that the dynamics of the output-related part, x2, will be independent of x1 and
ξi , i = 1, . . . , q .

Converting (12.1) into the output-friendly form (12.22) was discussed in
Sect. 12.2. Now, assume that (12.22) is obtained. Write the second part of its state
equations as

x2(t + 1) = F 2(x(t), u(t), ξ(t)
)

. (12.36)

The DDP is then solvable if we can find controls such that the F 2 in (12.36) is
independent of x1 and ξi , i = 1, . . . , q , that is, if we can find state feedback u(t) =

u(x(t)) such that

F 2(x(t), u
(

x(t)
)

, ξ(t)
)

= F 2(x2). (12.37)

Using the algorithm developed in Sect. 12.3, F 2 can be expressed as

F 2(x(t), u(t), ξ(t)
)

=

2k
∨

i=1

ei

(

x2)∧ Qi
(

x1(t), u(t), ξ(t)
)

. (12.38)

Note that here

Qi =

⎡

⎢

⎢

⎢

⎢

⎣

Qi
1

Qi
2

...

Qi
k

⎤

⎥

⎥

⎥

⎥

⎦

.

It was proven in Proposition 12.3 that (12.37) holds if and only if Qi , i =

1, . . . ,2k , are constant in (12.38).
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Summarizing the above argument, we can give a condition for a DDP to be solv-
able via constant controls. To see that, we define a mapping Q : Dn−k+m+q →
Dp×2k

as

Q :=

⎡

⎢

⎣

Q1

...

Q2k

⎤

⎥

⎦ . (12.39)

Theorem 12.5 Consider system (12.22) and assume the dynamics of z2 is decom-

posed as (12.38). The DDP is solvable via constant controls if and only if the map-

ping Q defined in (12.39) is a CBM with u(t) as canalizing variables.

Using the properties of CBMs obtained in the last section, the condition in The-
orem 12.5 is verifiable. We now give an example to illustrate this result.

Example 12.6 Consider the following system:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1(t + 1) = (x1(t) → x2(t)) ∨ [(x1(t) ↔ x3(t)) → ξ(t)] ∨ (u1(t) → x4(t)),

x2(t + 1) = (x1(t) → ξ(t)) ↔ (u2(t) ∧ x4(t)),

x3(t + 1) = [((x1(t) ↔ x2(t)) ∧ ξ(t)) → u1(t)] ↔ (x3(t) ∧ ¬x4(t)),

x4(t + 1) = (x3(t) ↔ x4(t)) → [(x1(t) → ξ(t)) ∧ u2(t)],

y1(t) = x3(t),

y2(t) = x4(t),

(12.40)
where x1(t), x2(t), x3(t), x4(t) are the states, u1(t), u2(t) are controls, ξ(t) is a dis-
turbance, and y1(t), y2(t) are the outputs.

The DDP of the system (12.40) is solvable if we can find controls u1 and u2 such
that the states x3, x4 are not affected by the disturbance d .

Consider the dynamics of x3, x4:
{

x3(t + 1) = [((x1(t) ↔ x2(t)) ∧ ξ(t)) → u1(t)] ↔ (x3(t) ∧ ¬x4(t)),

x4(t + 1) = (x3(t) ↔ x4(t)) → [(x1(t) → ξ(t)) ∨ u2(t)].
(12.41)

Let x = x3 ⋉ x4 ⋉ x1 ⋉ x2, u = ⋉2
i=1ui , and y = ⋉2

i=1yi . States x3, x4 can then
be expressed in algebraic form as

{

x3(t + 1) = M3x(t)u(t)ξ(t),

x4(t + 1) = M4x(t)u(t)ξ(t),
(12.42)

where

M3 = δ2[2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2
1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1
2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2
2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2],
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M4 = δ2[1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2].

Choose x1 = (x1, x2), x
2 = (x3, x4), u = (u1, u2), and y = (y1, y2). We have

e1
(

x2) = x3 ∧ x4, e2
(

x2)= x3 ∧ ¬x4,

e3
(

x2) = ¬x3 ∧ x4, e4
(

x2)= ¬x3 ∧ ¬x4.

Split M3 and M4 into four equal-sized blocks as

M3 =
[

M1
3 M2

3 M3
3 M4

3

]

, M4 =
[

M1
4 M2

4 M3
4 M4

4

]

,

respectively, where

M1
3 = M3

3 = M4
3 = δ2[2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2],

M2
3 = δ2[1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1],

M1
4 = M4

4 = δ2[1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2],

M2
4 = M3

4 = δ2[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].

Hence, (12.42) can be expressed as

F
(

x(t), u(t), ξ(t)
)

=

4
∨

i=1

ei

(

x2)∧ Qi
(

x1(t), u(t), ξ(t)
)

,

where Qi(x1(t), u(t), ξ(t)), i = 1,2,3,4 are the following mappings:

{

Qi
1(x

1(t), u(t), ξ(t)) = M i
3x

1(t)u(t)ξ(t),

Qi
2(x

1(t), u(t), ξ(t)) = M i
4x

1(t)u(t)ξ(t).

We can now check whether the mapping Q is a CBM with u(t) as the canalizing
variables, where Q := [Q1,Q2,Q3,Q4]T.
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The structure matrix of Q(x1(t), u(t), ξ(t)), denoted by P , can be obtained as

Q
(

x1(t), u(t), ξ(t)
)

= M1
3 x1(t)u(t)ξ(t)M1

4 x1(t)u(t)ξ(t)

M2
3x1(t)u(t)ξ(t)M2

4 x1(t)u(t)ξ(t)

M3
3x1(t)u(t)ξ(t)M3

4 x1(t)u(t)ξ(t)

M4
3x1(t)u(t)ξ(t)M4

4 x1(t)u(t)ξ(t)

= Pu(t)x1(t)ξ(t).

A straightforward computation shows that

P = δ28 [139 204 139 204 139 139 139 139
204 204 204 204 204 204 204 204
33 204 139 204 139 139 33 139
98 204 204 204 204 204 98 204].

Splitting P into four equal-sized blocks, the second block Blk2(P ) is a CMM, where

Blk2(P ) = δ28 [204 204 204 204 204 204 204 204].

From Theorem 12.4 we can conclude that the mapping Q is a CBM with u(t) as
canalizing variables. Therefore, the DDP of system (12.40) is solvable via constant
controls u(t) = δ2

4 , that is,

u(t) = δ2
4 ∼
(

u1(t), u2(t)
)

= (1,0).

When (u1(t), u2(t)) = (0,1), the system (12.40) becomes

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = (x1(t) → x2(t)) ∨ [(x1(t) ↔ x3(t)) → ξ(t)] ∨ (1 → x4(t)),

x2(t + 1) = (x1(t) → ξ(t)) ↔ 0,

x3(t + 1) = 1 ↔ (x3(t) ∧ ¬x4(t)),

x4(t + 1) = (x3(t) ↔ x4(t)) → 0,

y1(t) = x3(t),

y2(t) = x4(t).

It is obvious that the outputs y1, y2 are not affected by the disturbance ξ(t).
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Chapter 13

Feedback Decomposition of Boolean Control
Networks

13.1 Decomposition of Control Systems

Consider a linear control system:

ẋ = Ax + Bu, x ∈ Rn, u ∈ Rm,

y = Cx, y ∈ Rp.
(13.1)

The state-space decomposition problem (SSDP) has been widely discussed and has
proven to be a powerful tool in system analysis and control design. We refer to [5]
as a standard reference for this.

There are two kinds of SSDP. One is called cascading SSDP, which involves
finding a feedback control

u = Kx + Gv (13.2)

and a coordinate transformation z = T x, such that under the coordinate frame z, the
state space of system (13.1) can be expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ż1 = Ã11z
1 + B̃1v,

ż2 = Ã21z
1 + Ã22z

2 + B̃2v,

...

żp = Ãp1z
1 + · · · + Ãppzp + B̃pv,

(13.3)

where dim(zi) = ni and
∑p

i=1 ni = n. The other kind is called parallel SSDP, which
involves finding a feedback control (13.2), a coordinate transformation z = T x, and
a partition v = {v1, . . . , vp}, such that the state equation of the closed-loop system
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can be expressed as
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ż1 = Ã11z
1 + B̃11v

1,

ż2 = Ã22z
2 + B̃22v

2,

...

żp = Ãppzp + B̃ppvp.

(13.4)

The input–output decomposition problem (IODP), also called Morgan’s problem,
involves finding a feedback control (13.2), a coordinate transformation z = T x, and
a partition v = {v1, . . . , vp}, such that each set of controls vi can control yi and
does not affect yj , j �= i [3]. Formally, the input–output-decomposed form can be
expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ż1 = A11z
1 + B11v

1,

ż2 = A22z
2 + B22v

2,

...

żp = Appzp + Bppvp,

yj = Cjz
j , j = 1, . . . , p.

(13.5)

Consider an affine nonlinear control system:

ẋ = f (x) +

m
∑

i=1

gi(x)ui := g(x)u, x ∈ Rn, u ∈ Rm,

yj = hj (x), j = 1, . . . , p.

(13.6)

A similar problem can be considered. However, these problems are usually con-
sidered over a local neighborhood, e.g. the treatment of Morgan’s problem in
[1, 2]. When m = p, Morgan’s problem has been completely solved, but the m > p

case has remained an open problem for almost half a century. On several occasions,
a solution has been claimed, but then counterexamples have later been constructed.

In this chapter we first consider the SSDP and then the IODP for Boolean control
systems. As a prerequisite, the structure of several regular subspaces needs to be
investigated.

13.2 The Cascading State-space Decomposition Problem

We consider a Boolean control system,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)), xi(t), uj (t) ∈ D .

(13.7)
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Definition 13.1 Consider the system (13.7).

1. The cascading SSDP is solvable by a coordinate transformation z = T x if, under
the coordinate frame z, the system can be expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = F 1(z1(t), u(t)),

z2(t + 1) = F 2(z1(t), z2(t), u(t)),

...

zp(t + 1) = Fp(z(t), u(t)), zi ∈ D i .

(13.8)

2. The cascading SSDP is solvable by a state feedback control

u(t) = Gx(t)v(t), (13.9)

where G ∈ L2m×2n+m , if the closed-loop system under a suitable coordinate
frame z = T x can be expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = F 1(z1(t), v(t)),

z2(t + 1) = F 2(z1(t), z2(t), v(t)),

...

zp(t + 1) = Fp(z(t), v(t)), zi ∈ D i .

(13.10)

We express the algebraic form of (13.7) as

x(t + 1) = Lx(t)u(t). (13.11)

Note that in this book we generally express the algebraic form of (13.7) as

x(t + 1) = L0u(t)x(t). (13.12)

For the decoupling problem, though, (13.11) is more convenient. Now, assume we
have (13.12). Then,

x(t + 1) = L0u(t)x(t) = L0W[2n,2m]x(t)u(t),

that is,

L = L0W[2n,2m] or L0 = LW[2m,2n].

For cascading SSDP, we have the following result.

Theorem 13.1 Consider the system (13.7).

1. The cascading SSDP is solvable by a coordinate transformation z = T x if and

only if:
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(i) There exists a set of nested regular subspaces

Z1 ⊂ Z2 ⊂ · · · ⊂ Zp = Dn,

where the algebraic form of Zi is

zi = Tix, i = 1, . . . , p.

(ii) There exist Si ∈ L2ni ×2ni+m such that

TiL = SiTi, i = 1, . . . , p − 1. (13.13)

2. The cascading SSDP is solvable by a state feedback control

u(t) = Gx(t)v(t),

where G ∈ L2m×2m+n if and only if:
(i) There exists a set of nested regular subspaces

Z1 ⊂ Z2 ⊂ · · · ⊂ Zp = Dn,

where the algebraic form of Zi is

zi = Tix, i = 1, . . . , p.

(ii) There exist G ∈ B2m×2m+n and Si ∈ L2ni ×2ni+m such that

TiL(I2n ⊗ G)Φn = SiTi, i = 1, . . . , p − 1, (13.14)

where Φn is defined as (4.6) in Chap. 4.

Proof 1. (i) is obviously necessary. Now, assume that such a set of nested regular
subspaces exists. According to Corollary 8.5 we can find a coordinate frame Z =

(z1
1, . . . , z

1
n1

, . . . , z
p

1 , . . . , z
p
np

) such that

Zi =
(

z1
1, . . . , z

1
n1

, . . . , zi
1, . . . , z

i
ni

)

, i = 1, . . . , p.

We then have

zi(t + 1) = Tix(t + 1) = TiLx(t)u(t). (13.15)

To obtain the cascading form we must have

zi(t + 1) = Siz
i(t)u(t) = SiTix(t)u(t), (13.16)

where Si ∈ L2ni ×2ni+m . Comparing (13.15) with (13.16), (13.13) becomes a neces-
sary and sufficient condition for (13.15) and (13.16) being consistent.
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2. The proof is the same as for the case of coordinate change only. The only
difference is that we need to replace (13.15) and (13.16) by the following (13.17)
and (13.18), respectively:

zi(t + 1) = Tix(t + 1)

= TiLx(t)u(t)

= TiL(I2n ⊗ G)Φnx(t)v(t), (13.17)

zi(t + 1) = Siz
i(t)v(t) = SiTix(t)v(t). (13.18)

�

Note that for (13.13) or (13.14) we do not need to consider the i = p case. Be-
cause Zp = X , it follows that Tp is nonsingular (in fact, it is an orthogonal matrix).
Hence, for (13.13), say, we can simply set Sp = TpLT T

p to ensure (13.13).
We use the following examples to illustrate these two kinds of cascading SSDPs.

Example 13.1

1. Consider the following Boolean control system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = ¬x4(t) ∨̄ (x1(t) → u1(t)),

x2(t + 1) = ((x1(t) ∨̄x4(t)) ↔ x2(t)) ∨ u2(t),

x3(t + 1) = ¬x4(t) ↔ (x4(t) ∧ (x3(t) ↔ (x1(t) ∨̄x4(t)))),

x4(t + 1) = x1(t) → u1(t).

(13.19)

Setting x(t) = ⋉4
i=1xi(t), the algebraic form of (13.19) is

x(t + 1) = Lx(t)u(t),

where

L = δ16[1 5 10 14 11 11 4 4 3 7 12 16 11 11 4 4
1 1 10 10 11 15 4 8 3 3 12 12 11 15 4 8
3 3 3 3 11 15 11 15 1 1 1 1 11 15 11 15
3 7 3 7 11 11 11 11 1 5 1 5 11 11 11 11].

Skipping the tedious and straightforward computation, we consider the fol-
lowing three nested spaces:

Z1 = F ℓ{z1 = x4; z2 = x1 ∨̄x4},

Z2 = F ℓ{z1 = x4; z2 = x1 ∨̄x4; z3 = x2},

Z3 = F ℓ

{

z1 = x4; z2 = x1 ∨̄x4; z3 = x2; z4 = x3 ↔ (x1 ∨̄x4)
}

.

Setting z1 = ⋉2
i=1zi , it is easy to calculate that

z1 = T1x,
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where

T1 = δ4[2 3 2 3 2 3 2 3 1 4 1 4 1 4 1 4].

Similarly, setting z2 = ⋉3
i=3zi , we have

T2 = δ8[3 5 3 5 4 6 4 6 1 7 1 7 2 8 2 8].

Setting z = ⋉3
i=4zi , we have

T3 = δ16[6 9 5 10 8 11 7 12 1 14 2 13 3 16 4 15].

Using Theorem 8.2, it is not difficult to find Si such that Z1 ⊂ Z2 ⊂ Z3 are
three nested regular subspaces. We now need to find Si , i = 1,2,3, such that
(13.14) holds, that is, TiL = SiTi . It is easy to calculate that

S1 = δ4[2 2 2 2 2 2 4 4 1 1 3 3 1 1 1 1],

S2 = δ8[3 3 3 3 3 4 3 4 3 4 7 8 3 3 7 7
1 1 5 5 1 2 5 6 1 2 1 2 1 1 1 1],

S3 = δ16[5 5 5 5 6 6 6 6 5 7 5 7 6 8 6 8
5 7 13 15 6 8 14 16 5 5 13 13 6 6 14 14
2 2 10 10 2 2 10 10 2 4 10 12 2 4 10 12
2 4 2 4 2 4 2 4 2 2 2 2 2 2 2 2].

Let T = T3. It is obvious that T is nonsingular, therefore,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z1(t) = x4(t),

z2(t) = x1(t) ∨̄x4(t),

z3(t) = x2(t),

z4(t) = x3(t) ↔ (x1(t) ∨̄x4(t))

(13.20)

is a coordinate transformation, its algebraic form being z = T x.
Under the coordinate frame z = T x, the system (13.19) is expressed as

z(t + 1) = T x(t + 1) = T Lx(t)u(t) = T LT −1z(t)u(t) := L̃z(t)u(t),

where L̃ = S3. We can convert it to logical form as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z1(t + 1) = (z1(t) ∨̄ z2(t)) → u1(t),

z2(t + 1) = ¬z1(t),

z3(t + 1) = (z2(t) ↔ z3(t)) ∨ u2(t),

z4(t + 1) = z1(t) ∧ z4(t).

(13.21)

Hence, under the coordinate frame z = T x, the system (13.19) can be ex-
pressed as the cascading form (13.21), and Z1 ⊂ Z2 ⊂ Z3 = D4 are the nested
regular subspaces.
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2. Consider the following Boolean control system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = (x3(t) ↔ x4(t)) ∨̄ (¬x1(t) → x3(t)),

x2(t + 1) = (x2(t) ↔ x4(t)) ∨ u2(t),

x3(t + 1) = x3(t) → x4(t),

x4(t + 1) = x4(t) ∨̄u1(t).

(13.22)

Using the state feedback control
{

u1(t) = v1(t),

u2(t) = x4(t) ∧ v2(t),
(13.23)

the system (13.22) can be converted to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = (x3(t) ↔ x4(t)) ∨̄ (¬x1(t) → x3(t)),

x2(t + 1) = (x2(t) ↔ x4(t)) ∨ (x4(t) ∧ v2(t)),

x3(t + 1) = x3(t) → x4(t),

x4(t + 1) = x4(t) ∨̄v1(t).

(13.24)

Then, using the coordinate transformation

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z1(t) = x3(t),

z2(t) = x4(t),

z3(t) = x2(t),

z4(t) = x1(t) ∨̄x3(t),

(13.25)

the system (13.24) can be converted to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z1(t + 1) = z1(t) → z2(t),

z2(t + 1) = z2(t) ∨̄v1(t),

z3(t + 1) = (z2 ↔ z3) ∨ (z2(t) ∧ v2(t)),

z4(t + 1) = z1(t) ∨ z4(t).

(13.26)

13.3 Comparable Regular Subspaces

For block decomposition an important issue is to find a coordinate frame such that
all the subspaces are disjoint and comparable, that is, they become parts of coordi-
nate frame as zi , i = 1, . . . , p. This section investigates when we can have such a
set of regular subspaces.

Let z1, . . . , zk ∈ X and Z = F ℓ{z1, . . . , zk}, where

zj = δ2
[

i
j

1 , . . . , i
j

2n

]

x, j = 1, . . . , k.
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Recall from Chap. 8 that the characteristic matrix E(Z ) is defined as

E(Z ) =

⎡

⎢

⎣

i1
1 i1

2 · · · i1
2n

...

ik1 ik2 · · · ik2n

⎤

⎥

⎦
∈ Bk×2n . (13.27)

E is regular if Col(E) satisfies (8.39).

Definition 13.2 Let Zi ⊂ X = Dn, i = 1, . . . , p, be a set of regular subspaces.
{Zi | i = 1, . . . , p} is called a set of comparable (regular) subspaces if there exists a
coordinate frame

Z =
{

z0
1, . . . , z

0
n0

, z1
1, . . . , z

1
n1

, . . . , z
p

1 , . . . , z
p
np

}

,

p
∑

i=0

ni = n,

such that

Zi = F ℓ

{

zi
1, . . . , z

i
ni

}

, i = 1, . . . , p.

Set Z0 = F ℓ{z
0
1, . . . , z

0
ni

}. We can then express the comparable subspaces as

X = Z0 ⊕ Z1 ⊕ · · · ⊕ Zp.

To test whether a set of subspaces is a comparable set of regular subspaces we
need the following proposition, which follows from the definition and the relation-
ship between a regular subspace and its characteristic matrix.

Proposition 13.1 Assume that Zi = F ℓ{z
i
1, . . . , z

i
ni

}, i = 1, . . . , p, are regular sub-

spaces of X = Dn and that the characteristic matrix of Zi is E(Zi) ∈ Bni×2n .
Then, {Zi | i = 1, . . . , p} is a set of comparable regular subspaces if and only if

E :=

⎡

⎢

⎢

⎢

⎣

E1

E2
...

Ep

⎤

⎥

⎥

⎥

⎦

∈ Bn×2n (13.28)

is regular, where n =
∑p

i=1 ni .

Proof Necessity is trivial because Z itself is a regular subspace of X . As for suf-
ficiency, note that for a regular characteristic matrix, any subset of its rows forms
a regular characteristic matrix. This is because if it contains different numbers of
different columns, then the overall characteristic matrix also contains different num-
bers of different columns. �
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Example 13.2 Let X = F ℓ{x1, x2, x3, x4, x5}, Z1 = F ℓ{z1, z2}, and Z2 =

F ℓ{z3, z4}, with

z1 = x1 ∨̄x3,

z2 = x2 ↔ x5,

z3 = ¬x4,

z4 = x1 ↔ ¬x3.

In algebraic form, we have

z1 = δ2[2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2],

z2 = δ2[1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1],

z3 = δ2[2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1],

z4 = δ2[2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2].

It is then easy to check that the matrix

E =

[

E1

E2

]

is regular because for each ξ ∈ B4×1, |{i | Coli(E) = ξ}| = 2. Therefore, Z1 and
Z2 are comparable regular subspaces and X = Z1 ⊕ Z2.

13.4 The Parallel State-space Decomposition Problem

We consider the Boolean control system (13.7) again.

Definition 13.3 Consider the system (13.7). The parallel SSDP is solvable by the
state feedback control (13.9) if there exists a partition

v(t) =
{

v1(t), . . . , vp(t)
}

such that the closed-loop system under a suitable coordinate frame z = T x can be
expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1(t + 1) = F 1(z1(t), v1(t)),

z2(t + 1) = F 2(z2(t), v2(t)),

...

zp(t + 1) = Fp(zp(t), vp(t)), where zi(t) ∈ D i .

(13.29)
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Let v = ⋉
p

i=1v
i ∈ Δ2m , where vi ∈ Δ2mi , i = 1, . . . , p, and

∑p

i=1 mi = m. To
represent a partition, we consider how to retrieve vi from v. Similar to the retrievers
defined in (7.8), we define

Bk
m := I2k ⊗ 1T

2m−k , k ≤ m. (13.30)

It is then easy to prove that

v1 = Bm1
m v. (13.31)

Using a swap matrix, we have

v = v1 · · ·vk−1vkvk+1 · · ·vp

= W[2mk ,2m1+···+mk−1 ]v
kv1 · · ·vk−1vk+1 · · ·vp.

Since

W−1
[m,n] = WT

[m,n] = W[n,m],

we have

W[2m1+···+mk−1 ,2mk ]v = vkv1 · · ·vk−1vk+1 · · ·vp. (13.32)

Applying (13.31) to both sides of (13.32) yields

Bmk
m W[2m1+···+mk−1 ,2mk ]v = vk.

We now define a set of general retrievers as

S mi
m := Bmk

m W[2m1+···+mk−1 ,2mk ], i = 1, . . . , p. (13.33)

The above argument then leads to the following result.

Proposition 13.2 Let v = ⋉
p

i=1v
i ∈ Δ2m , where vi ∈ Δ2mi , i = 1, . . . , p, and

∑p

i=1 mi = m. Then,

vi = S mi
m v, i = 1, . . . , p, (13.34)

where S mi
m is defined by (13.33) and (13.30).

Now, assume that there is a set of comparable regular subspaces Zi , with
dim(Zi) = ni , i = 1, . . . , p, and

Z1 ⊕ · · · ⊕ Zp = X , (13.35)

with algebraic forms

zi = Tix, i = 1, . . . , p. (13.36)

Moveover, we have state feedback control (13.9) and a partition

v(t) =
(

v1(t), . . . , vp(t)
)

, (13.37)
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where dim(vi) = mi , i = 1, . . . , p, and
∑p

i=1 mi = m. The system, under this z

coordinate frame, then becomes

zi(t + 1) = Tix(t + 1)

= TiLx(t)Gx(t)v(t)

= TiL(I2n ⊗ G)Φnx(t)v(t), i = 1, . . . , p. (13.38)

At the same time, we want it to have the parallel state-space decomposed form

zi(t + 1) = Siz
i(t)vi(t)

= SiTix(t)S mi
m v(t)

= SiTi

(

I2n ⊗ S mi
m

)

x(t)v(t). (13.39)

Comparing (13.38) with (13.39) yields

TiL(I2n ⊗ G)Φn = SiTi

(

I2n ⊗ S mi
m

)

, i = 1, . . . , p. (13.40)

Summarizing the above argument, we have the following result.

Theorem 13.2 Consider the system (13.7). The parallel SSDP is solvable by the

state feedback control (13.9) with the given partition (13.37) if and only if there

exist a G ∈ L2m×2m+n , a partition (13.37), and Si ∈ L2ni ×2ni+mi , i = 1, . . . , p, such

that (13.40) holds.

If we consider an open-loop control

u(t) = Gv(t), (13.41)

where G ∈ L2m×2m , then we have the following corollary.

Corollary 13.1 Consider the SSDP via open-loop control (13.41). Theorem 13.2
remains true, provided (13.40) is replaced by

TiL(I2n ⊗ G) = SiTi

(

I2n ⊗ S mi
m

)

, i = 1, . . . , p, (13.42)

with G ∈ L2m×2m .

Example 13.3 Consider the following system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = (x2(t) ∨ u3(t)) ∨̄ (¬x4(t) ∨̄ (u1(t) ↔ u2(t))),

x2(t + 1) = (x3(t) ↔ x4(t)) ∨ u3(t),

x3(t + 1) = (x2(t) ∧ (x3(t) ↔ x4(t))) ↔ ((x1(t) ∨̄x2(t)) ↔ u2(t)),

x4(t + 1) = (x1(t) ∨̄x2(t)) ↔ u2(t).

(13.43)
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Using the coordinate transformation z = T x given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z1(t) = x2(t),

z2(t) = x3(t) ↔ x4(t),

z3(t) = x1(t) ∨̄x2(t),

z4(t) = x4(t)

and the open-loop feedback u = Gv given by

⎧

⎪

⎨

⎪

⎩

u1(t) = v2(t) ↔ v3(t),

u2(t) = v3(t),

u3(t) = v1(t),

the system (13.43) can be expressed in a parallel state-space decomposed form as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z1(t + 1) = z2(t) ∨ v1(t),

z2(t + 1) = z1(t) ∧ z2(t),

z3(t + 1) = ¬z4(t) ∨̄v2(t),

z4(t + 1) = z3(t) ↔ v3(t),

(13.44)

where Z1 = Fℓ{z1, z2}, Z2 = Fℓ{z3, z4}.

13.5 Input–Output Decomposition

Consider the system (13.7) with outputs

yj (t) = hj

(

x1(t), . . . , xn(t)
)

, j = 1, . . . , p. (13.45)

We will try to solve the IODP by either open-loop control or state feedback control.
The open-loop control considered here is

u(t) = Gv(t), u(t), v(t) ∈ Δ2m , (13.46)

where G ∈ L2m×2m . The state feedback (or closed-loop) control we consider is

u(t) = Gx(t)v(t), u(t), v(t) ∈ Δ2m , (13.47)

where G ∈ L2m×2n+m .
The input–output decomposition problem can then be stated precisely as follows.

Definition 13.4 Consider the system (13.7)–(13.45). The IODP is solvable by open-
loop (resp., closed-loop) control if we can find a control of the form (13.46) [resp.,
(13.47)], and a coordinate transformation z = T (x) such that:
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(i) Under the coordinate frame z, the system (13.7)–(13.45) with the designed con-
trol can be expressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z1(t + 1) = F 1(z1(t), v1(t)),

...

zp(t + 1) = Fp(zp(t), vp(t)), zj ∈ Dnj , vj ∈ Dmj ,

yj (t) = h̃
(

zj (t)
)

, j = 1, . . . , p,

(13.48)

where v = (v1, . . . , vp) is a partition as in (13.37).
(ii) yj is affected by uj , j = 1, . . . , p.

To make the IODP meaningful, we have to assume that each output yi is affected
by some inputs, hence the following assumption.

Assumption 1 For the (13.7)–(13.45), each output yi is affected by inputs.

We have (denoting by Hi the structure matrix of hi )

yi(t + 1) = HiLx(t)u(t), i = 1, . . . , p.

yi depending on u means that the above logical function is u-dependent.
In solving the IODP problem we must continue to assume Assumption 1 for

controlled systems. Considering the open-loop control (13.46), it is easy to see that
as long as G is nonsingular, this property can be sustained. Therefore, we introduce
another assumption.

Assumption 2 The open-loop control (13.46) which satisfies G is nonsingular.

Similarly, for the closed-loop control (13.47) we assume for each cycle C ∈ Ω

that the corresponding G is not degenerate. More precisely, we assume the follow-
ing.

Assumption 3 The closed-loop control (13.47) is such that for any cycle C ∈ Ω

there exists at least one x ∈ C such that Gx is nonsingular.

Using the results of parallel SSDP together with the above arguments, we obtain
the following result immediately.

Theorem 13.3 Consider the system (13.7)–(13.45) and assume that it satisfies As-

sumption 1. The IODP is solvable by open-loop control (resp., closed-loop control)
if and only if there exists a set of comparable regular subspaces Zi , i = 1, . . . , p,
such that:

(i) The parallel SSDP is solvable by an open-loop control satisfying Assumption 2
(resp., by a closed-loop control satisfying Assumption 3).

(ii) Zi is friendly to yi , i = 1, . . . , p. (That is, Zi is a Y = Fℓ(y1, . . . , yp) friendly

subspace.)
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Next, we give an example to illustrate the process of IODP.

Example 13.4 Consider the following system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = [((x1(t) ∨̄x2(t)) ∧ x3(t)) ∨ (u1(t) ↔ u3(t))] ∨̄

¬[(¬(x1(t) ∨̄x2(t)) ∧ (u1(t) ↔ u3(t))) ∨ u3(t)],

x2(t + 1) = [(x1(t) ∨̄x2(t)) ∨ ¬(u1(t) ↔ u3(t))] ∧ ¬u3(t),

x3(t + 1) = (x1(t) ∨̄x2(t)) ∧ u2(t),

y1(t) = (x1(t) ∨̄x2(t)) ↔ x3(t),

y2(t) = x2(t).

(13.49)

Based on observation, we choose a coordinate transformation z = T x where

⎧

⎪

⎨

⎪

⎩

z1(t) = x1(t) ∨̄x2(t),

z2(t) = x3(t),

z3(t) = ¬x2(t).

(13.50)

Its inverse is
⎧

⎪

⎨

⎪

⎩

x1(t) = z1(t) ∨̄¬z3(t),

x2(t) = ¬z3(t),

x3(t) = z2(t).

(13.51)

Using (13.50)–(13.51), the original system (13.49) is converted into the z coordinate
frame as

⎧

⎪

⎨

⎪

⎩

z1(t + 1) = (z1(t) ∧ z2(t)) ∨ (u1(t) ↔ u3(t)),

z2(t + 1) = z1(t) ∧ u2(t),

z3(t + 1) = (¬z1(t) ∧ (u1(t) ↔ u3(t))) ∨ u3(t),

y1(t) = z1(t) ↔ z2(t),

y2(t) = ¬z3(t).

(13.52)

Consider the control transformation u = T v given by

⎧

⎪

⎨

⎪

⎩

u1(t) = v1(t) ↔ v3(t),

u2(t) = v2(t),

u3(t) = v3(t),

(13.53)

with its inverse given by

⎧

⎪

⎨

⎪

⎩

v1(t) = u1(t) ↔ u3(t),

v2(t) = u2(t),

v3(t) = u3(t).

(13.54)
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The system then becomes
⎧

⎪

⎨

⎪

⎩

z1(t + 1) = (z1(t) ∧ z2(t)) ∨ v1(t),

z2(t + 1) = z1(t) ∧ v2(t),

z3(t + 1) = (¬z1(t) ∧ v1(t)) ∨ v3(t),

y1(t) = z1(t) ↔ z2(t),

y2(t) = ¬z3(t).

(13.55)

Finally, we construct an additional state feedback control:
⎧

⎪

⎨

⎪

⎩

v1(t) = z1(t) ∧ w1(t),

v2(t) = w2(t),

v3(t) = w3(t).

(13.56)

The system (13.55) then becomes
⎧

⎪

⎨

⎪

⎩

z1(t + 1) = (z1(t) ∧ z2(t)) ∨ (z1(t) ∧ w1(t)),

z2(t + 1) = z1(t) ∧ w2(t),

z3(t + 1) = w3(t),

y1(t) = z1(t) ↔ z2(t),

y2(t) = ¬z3(t).

(13.57)

It is easy to check that (13.57) is an input–output-decomposed form with w1(t) =

{w1(t),w2(t)} and w2(t) = {w2(t)}.
Note that the overall coordinate transformation is (13.50) [equivalently, (13.51)],

and the overall state feedback control is
⎧

⎪

⎨

⎪

⎩

u1(t) = (z1(t) ∧ w1(t)) ↔ w3(t),

u2(t) = w2(t),

u3(t) = w3(t).

(13.58)
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Chapter 14

k-valued Networks

14.1 A Review of k-valued Logic

In this section we briefly review the matrix expression of k-valued logic which was
introduced in Chaps. 1 and 3.

Let

Dk =

{

1 = T ,
k − 2

k − 1
, . . . ,

1

k − 1
,0 = F

}

,

which is the set from which k-valued logical variables take their values.
To use the matrix approach, we identify a scalar logic value with a vector as

i

k − 1
∼ δk−i

k , i = 0,1, . . . , k − 1.

∆k is also used for vector expression as

∆k =
{

δi
k

∣
∣ i = 1,2, . . . , k

}

.

We now summarize some of the main results of k-valued logic and its matrix ex-
pression.

The basic operators and their structure matrices are listed as follows (the opera-
tors are defined in terms of their scalar values):

• Negation is defined as

¬P := 1 − P, (14.1)

and its structure matrix is

Mn,k = δk[k k − 1 · · · 1]. (14.2)

• The rotator ⊘k is defined as

⊘k(P ) :=

{

P − 1
k−1 , P �= 0,

1, P = 0,
(14.3)
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and its structure matrix, Mo,k , is

Mo,k = δk[2 3 · · · k 1]. (14.4)

For instance, we have

Mo,3 = δ3[2 3 1], Mo,4 = δ4[2 3 4 1]. (14.5)

• The i-confirmor, ▽i,k , i = 1, . . . , k, is defined as

▽i,k(P ) =

{

1, P = k−i
k−1 (equivalently,P = δi

k),

0, otherwise.
(14.6)

Its structure matrix (using the same notation) is

▽i,k = δk[k · · ·k
︸ ︷︷ ︸

i−1

1 k · · ·k
︸ ︷︷ ︸

k−i

], i = 1,2, . . . , k. (14.7)

For instance, we have

▽2,3 = δ3[3 1 3], ▽2,4 = δ4[4 1 4 4], ▽3,4 = δ4[4 4 1 4]. (14.8)

• Conjunction is defined as

P ∧ Q := min{P,Q}, (14.9)

and its structure matrix is (to save space, we let n = 3)

Mc,3 = δ3[1 2 3 2 2 3 3 3 3]. (14.10)

• Disjunction is defined as

P ∨ Q := max{P,Q}, (14.11)

and its structure matrix is (n = 3)

Md,3 = δ3[1 1 1 1 2 2 1 2 3]. (14.12)

• The conditional is defined as

P → Q := (¬P) ∨ Q, (14.13)

and its structure matrix is (n = 3)

Mi,3 = δ3[1 2 3 1 2 2 1 1 1]. (14.14)

• The biconditional is defined as

P ↔ Q := (P → Q) ∧ (Q → P), (14.15)
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and its structure matrix is (n = 3)

Me,3 = δ3[1 2 3 2 2 2 3 2 1]. (14.16)

Remark 14.1 In general, there are kk2
binary k-valued logical operators, including

constant operators and unary operators as special cases. In the above, we give only a
few of them which are commonly used. Moreover, [4] proved that {⊘,∧,∨} form an
adequate set, and they are enough to express any k-valued logical operator. In other
words, all other k-valued logical operators can be expressed as certain combinations
of {⊘,∧,∨}.

Some fundamental properties are collected the following:

• If P ∈ ∆k , then

P 2 = Mr,kP, (14.17)

where Mr,k is the base-k power-reducing matrix.

Mr,k =

⎡

⎢
⎢
⎢
⎣

δ1
k 0k · · · 0k

0k δ2
k · · · 0k

...

0k 0k · · · δk
k

⎤

⎥
⎥
⎥
⎦

, (14.18)

where 0k ∈ Rk is a zero vector. When k = 3,

Mr,3 = δ9[1 5 9]. (14.19)

When k = 4,

Mr,4 = δ16[1 6 11 16]. (14.20)

• Let f (p1,p2, . . . , pr) be a k-valued logical function. There then exists a structure
matrix of f , denoted by Mf , such that

f (p1,p2, . . . , pr) = Mf ⋉r
i=1 pi . (14.21)

• For any P,Q ∈ ∆k , we have

Ed,kPQ = Q, P,Q ∈ ∆k, (14.22)

where Ed is the base-k dummy operator defined as

Ed,k := [Ik Ik · · · Ik
︸ ︷︷ ︸

k

]. (14.23)

In the symbols of the above operators and their corresponding structure matrices
there is a second index k for the logical type. In the sequel, when k is fixed and there
is no possible confusion, this index k can be omitted.
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Table 14.1 Structure matrices of logical operators (k = 3)

Operator Structure matrix Operator Structure matrix

¬ Mn = δ3[3 2 1] ∨ Md = δ3[1 1 1 1 2 2 1 2 3]

⊘ Mo = δ3[3 1 2] ∧ Mc = δ3[1 2 3 2 2 3 3 3 3]

∇1 M∇1 = δ3[1 1 1] → Mi = δ3[1 2 3 1 2 2 1 1 1]

∇2 M∇2 = δ3[2 2 2] ↔ Me = δ3[1 2 3 2 2 2 3 2 1]

∇3 M∇3 = δ3[3 3 3]

As in the Boolean case, using mod k algebra is sometimes convenient. Since the
values in Dk are not integers, we need to multiply each argument by k −1 to convert
them into integers. Then two operators, namely, +(mod k) and ×(mod k), are used
for calculation. Finally, the results are converted back to fraction by dividing them
by k − 1.

Definition 14.1

• The binary operator +k : D2
k → Dk , called mod k addition, is defined as

P +k Q :=
[(k − 1) ∗ (P + Q)](mod k)

k − 1
. (14.24)

• The binary operator ×k : D2
k → Dk , called mod k multiplication, is defined as

P ×k Q :=
[(k − 1)2 ∗ (P × Q)](mod k)

k − 1
. (14.25)

Their structure matrices can be easily computed as (for k = 3)

M+3 = Mp,3 = δ3[2 3 1 3 1 2 1 2 3], (14.26)

M×3 = Mt,3 = δ3[2 1 3 1 2 3 3 3 3]. (14.27)

Assuming k = 3, the structure matrices of the previous logical operators are col-
lected in Table 14.1.

14.2 Dynamics of k-valued Networks

A k-valued network consists of a set of nodes V = {x1, x2, . . . , xn} and a list of
k-valued logical functions F = {f1, f2, . . . , fn}. Both the nodes and the functions
take values from Dk . The dynamics of a k-valued network is then described as

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t)),
...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t)).

(14.28)
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It is clear that when k = 2, the k-valued network becomes a Boolean network.
As with Boolean networks, we can use the semi-tensor product to convert (14.28)

into algebraic form. We briefly describe this process. Define

x(t) = x1(t)x2(t) · · ·xn(t), xi ∈ ∆k.

Using Theorem 3.2, we can find the structure matrices Mi = Mfi
, i = 1, . . . , n, such

that

xi(t + 1) = Mix(t), i = 1,2, . . . , n. (14.29)

Equations (14.29) are called the componentwise algebraic form of (14.28).
Note that by using the base-k dummy matrix (14.23) we can formally introduce

any logical variable into a logical expression without changing its real meaning.
Similarly to the Boolean case, we can prove the following result.

Lemma 14.1 Assume that Pℓ = A1A2 · · ·Aℓ, where Ai ∈ ∆k , i = 1,2, . . . , ℓ. Then,

P 2
ℓ = Φℓ,kPℓ, (14.30)

where

Φℓ,k =

ℓ
∏

i=1

(

Iki−1 ⊗ [Ik ⊗ W[k,kℓ−i ]Mr,k]
)

. (14.31)

Proof We prove this by induction. When ℓ = 1, using (14.23), we have

P 2
1 = A2

1 = Mr,kA1.

In formula (14.30),

Φ1,k = (Ik ⊗ W[k,1])Mr,k.

Note that because W[k,1] = Ik , it follows that Φ1,k = Mr,k . Hence, (14.30) is true for
ℓ = 1. Assume that (14.30) is true for ℓ = s. Then, for ℓ = s + 1 we have

P 2
s+1 = A1A2 · · ·As+1A1A2 · · ·As+1

= A1W[k,ks ]A1[A2 · · ·As+1]
2

= (Ik ⊗ W[k,ks ])A
2
1[A2 · · ·As+1]

2

=
[

(Ik ⊗ W[k,ks ])Mr,k

]

A1[A2 · · ·As+1]
2.

Applying the induction assumption to the last factor of the above expression, we
have

P 2
s+1 = (Ik ⊗ W[k,ks ])Mr,kA1

(
s
∏

i=1

Iki−1 ⊗
[

(Ik ⊗ W[k,ks−i ])Mr,k

]

)

A2A3 · · ·As+1
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=
[

(Ik ⊗ W[k,ks ])Mr,k

]

(
s
∏

i=1

Iki ⊗
[

(Ik ⊗ W[k,ks−i ])Mr,k

]

)

Ps+1

=

s+1
∏

i=1

(

Iki−1 ⊗ [Ik ⊗ W[k,ks+1−i ]Mr,k]
)

Ps+1.
�

Using Lemma 14.1, a straightforward computation leads to the following result.

Proposition 14.1 Equation (14.28) can be expressed in algebraic form as

x(t + 1) = Lx(t), x ∈ ∆kn , (14.32)

where the system transition matrix L is obtained as

L = M1

n
∏

j=2

[

(Ik ⊗ Mj )Φn,k

]

∈ Lkn×kn ,

Mi being defined in (14.29).

Proof Define x(t) = ⋉n
i=1xi(x). According to Lemma 14.1 we have

x(t)2 = Φn,kx(t).

Now, multiplying equations in (14.29) together yields

x(t + 1) = M1x(t)M2x(t) · · ·Mnx(t)

= M1(Ik ⊗ M2)x(t)2M3x(t) · · ·Mnx(t)

= M1(Ik ⊗ M2)Φn,kx(t)M3x(t) · · ·Mnx(t)

= · · ·

= M1(Ik ⊗ M2)Φn,k(Ik ⊗ M3)Φn,k · · · (Ik ⊗ Mn)Φn,kx(t),

so

L = M1(Ik ⊗ M2)Φn,k(Ik ⊗ M3)Φn,k · · · (Ik ⊗ Mn)Φn,k

= M1

n
∏

j=2

[

(Ik ⊗ Mj )Φn,k

]

.
�

For a particular system, we may obtain the system matrix by direct computation,
using properties of the semi-tensor product. We give an example to illustrate the
process of computing L.
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Example 14.1 Consider the following k-valued network:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

A(t + 1) = A(t),

B(t + 1) = A(t) → C(t),

C(t + 1) = B(t) ∨ D(t),

D(t + 1) = ¬B(t),

E(t + 1) = ¬C(t).

(14.33)

Defining x(t) = A(t)B(t)C(t)D(t)E(t), we then have

x(t + 1) = A(t)Mi,kA(t)C(t)Md,kB(t)D(t)Mn,kB(t)Mn,kC(t).

Since there is no E(t) on the left-hand side, we have to introduce it by using the
dummy matrix:

x(t + 1) = A(t)Mi,kA(t)C(t)Md,kB(t)D(t)Mn,kB(t)Mn,kC(t)Ed,kE(t)C(t).

(14.34)
Using the pseudo-commutative property of the semi-tensor product, we can move
A(t),B(t), . . . ,E(t) to the last part of the product in the right-hand side of
(14.34). Then, using the base-k power-reducing matrix to reduce the powers of
A(t),B(t), . . . ,E(t) to 1, we finally obtain the algebraic form of (14.33) as

x(t + 1) = Lx(t),

where

L = (Ik ⊗ Mi)Rk

(

Ik ⊗
(

Ik ⊗ Md

(

Ik ⊗
(

Ik ⊗ Mn(Ik ⊗ MnEd)
))))

(Ik ⊗ W[k])(Ik3 ⊗ W[k])(Ik2 ⊗ W[k])(Ik5 ⊗ W[k])

(Ik4 ⊗ W[k])
(

Ik ⊗ Rk(Ik ⊗ Rk)
)

.

When k = 3, we can calculate the network transition matrix L. It is the following
243 × 243 matrix:

L = δ243[9 9 9 9 9 9 9 9 9 35 35 35 35 35 35 35
35 35 61 61 61 61 61 61 61 61 61 6 6 6 15 15
15 15 15 15 32 32 32 41 41 41 41 41 41 58 58 58
67 67 67 67 67 67 3 3 3 12 12 12 21 21 21 29
29 29 38 38 38 47 47 47 55 55 55 64 64 64 73 73
73 90 90 90 90 90 90 90 90 90 116 116 116 116 116 116
116 116 116 115 115 115 115 115 115 115 115 115 87 87 87 96
96 96 96 96 96 113 113 113 122 122 122 122 122 122 112 112
112 121 121 121 121 121 121 84 84 84 93 93 93 102 102 171
171 171 171 171 171 171 102 110 110 110 119 119 119 128 128 128
109 109 109 118 118 118 127 127 127 171 171 170 170 170 170 170
170 170 170 170 169 169 169 169 169 169 169 169 169 168 168 168
177 177 177 177 177 177 167 167 167 176 176 176 176 176 176 166
166 166 175 175 175 175 175 175 165 165 165 174 174 174 183 183
183 164 164 164 173 173 173 182 182 182 163 163 163 172 172 172
181 181 181].
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14.3 State Space and Coordinate Transformations

As with Boolean (control) networks, to use the state-space approach, the state space
and its subspaces have to be defined carefully. In the following definition, they are
only defined as a set and subsets, but they can be considered as a topological space
and subspaces equipped with the discrete topology.

Let x1, . . . , xn ∈ Dk = {0, 1
k−1 , . . . ,1} be a set of logical variables. Denote by

F ℓ(x1, . . . , xn) the set of logical functions of {x1, . . . , xn}. It is obvious that F ℓ is
a finite set with cardinality kkn

.

Definition 14.2 Consider the k-valued logical network (14.28).

(1) The state space of (14.28) is defined as

X = F ℓ(x1, . . . , xn). (14.35)

(2) If y1, . . . , ys ∈ X , then

Y = F ℓ(y1, . . . , ys) ⊂ X (14.36)

is called a subspace of X .
(3) If {xi1, . . . , xis } ⊂ {x1, . . . , xn}, then

Z = F ℓ(xi1, . . . , xis ) (14.37)

is called an s-dimensional natural subspace of X .

Let F : Dn
k → Dm

k be defined by

zi = fi(x1, . . . , xn), i = 1, . . . ,m. (14.38)

In vector form, we have xi, zj ∈ ∆k . Setting x = ⋉n
i=1xi , z = ⋉m

i=1zi , we have
the following result.

Theorem 14.1 Given a logical mapping F : Dn
k → Dm

k , as described by (14.38),
there is a unique matrix, MF ∈ Lkm×kn , called the structure matrix of F , such that

z = MF x. (14.39)

Note that when m = 1 the mapping becomes a logical function and MF is called
the structure matrix of the function.

Definition 14.3 Let X = F ℓ(x1, . . . , xn) be the state space of (14.28). Assume
that there exist z1, . . . , zn ∈ X such that

X = F ℓ(z1, . . . , zn).

The logical mapping F : (x1, . . . , xn) �→ (z1, . . . , zn) is then called a coordinate
transformation of the state space.
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The following proposition is obvious.

Proposition 14.2 A mapping T : Dn
k → Dn

k is a coordinate transformation if and

only if T is one-to-one and onto (i.e., bijective).

It is easy to prove the following result.

Theorem 14.2 A mapping T : Dn
k → Dn

k is a coordinate transformation if and only

if its structure matrix MT ∈ Lkn×kn is nonsingular.

We give an example to illustrate the above theorem for a 3-valued mapping.

Example 14.2 Consider the following mapping T :

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

z1 = ⊘(x3),

z2 = (∇1(x1) ∧ x3) ∨ [∇2(x1) ∧ (⊘2(¬(∇2(x3))))]

∨ (∇3(x1) ∧ ∇3(x3)),

z3 = ⊘2(x2),

(14.40)

where ∇i,3, i = 1,2,3, and ⊘3 are defined as in Sect. 14.1. The logical variables
xi ∈ D3, i = 1,2,3. Define x = ⋉3

i=1xi and z = ⋉3
i=1zi . Based on Theorem 14.1,

there exists a unique matrix MT ∈ L33×33 such that

z(t) = MT x(t), (14.41)

where

MT = δ81[20 5 17 21 6 18 19 4 16 23 2 14 24 3 15 22 1 13 26 8 11 27 9 12 25 7 10],

which is nonsingular. Thus, T is a coordinate transformation in the 3-valued net-
work.

Definition 14.4 A subspace Z ⊂ X is called a regular subspace if there is a coor-
dinate frame {z} such that under {z} the subspace Z is a natural subspace.

Let Z = F ℓ{z1, . . . , zr }, where zi ∈ X , i = 1, . . . , k. Then, zi are logical func-
tions of {xj }, which are expressed as

zj = gj (x1, . . . , xn), j = 1, . . . , r. (14.42)

Express (14.42) in vector form as

zj = Mjx, j = 1, . . . , r, (14.43)

where

Mj = δk

[

ξ
j

1 , . . . , ξ
j

kn

]

, j = 1, . . . , r.
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Equation (14.42) can be further be expressed in one equation as

z = Gx =

⎡

⎢
⎣

ℓ1,1 · · · ℓ1,kn

...

ℓr,1 · · · ℓr,kn

⎤

⎥
⎦x. (14.44)

Similarly to Theorem 8.2, we can prove the following theorem.

Theorem 14.3 Z is a regular subspace if and only if

kn
∑

i=1

ℓj,i = kn−r , j = 1, . . . , r. (14.45)

Define the characteristic matrix as

E(Z ) =

⎡

⎢
⎣

ξ1
1 · · · ξ1

kn

...

ξ r
1 · · · ξ r

kn

⎤

⎥
⎦ .

Similarly to Corollary 8.2, we can prove the following result.

Proposition 14.3 Z is a regular subspace if and only if E(Z ) has equal distinct

columns. Precisely, Z is a regular subspace if and only if for each vector α :=

(α1, . . . , αr)
T ∈ Rr with αj ∈ {1,2, . . . , k}, j = 1, . . . , r , we have

∣
∣
{

i
∣
∣ Coli
(

E(Z )
)

= α
}∣
∣= kn−r , ∀α.

Invariant subspaces have been defined for Boolean networks. Here, we generalize
them to k-valued logical networks. In addition, we give a geometric description of
them.

Definition 14.5 Let X ,Z be defined as in (14.35) and (14.37), and Z ⊂ X .

(1) A mapping P : Dn
k → D s

k , defined from (the domain of) X to (the domain of)
Z as

P : (x1, . . . , xn) �→ (xi1 , . . . , xis ),

is called a natural projection from X to Z .
(2) Given F : Dn

k → Dn
k , Z is called an invariant subspace (with respect to F ) if

there exists a mapping F̄ such that the following graph (Fig. 14.1) is commuta-
tive.

Let X := (x1, . . . , xn)
T ∈ Dn

k . We can then compactly express the system (14.28)
as

X(t + 1) = F
(

X(t)
)

, X ∈ Dn
k . (14.46)
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Fig. 14.1 Invariant subspace

Definition 14.6 Consider the system (14.28) [equivalently, (14.46)]. Z is an invari-
ant subspace if it is invariant with respect to F .

Consider a logical mapping G : Dn
k → D s

k . It can be expressed as

zi = g1(x1, . . . , xn), i = 1, . . . , s. (14.47)

Setting z = ⋉s
i=1zi and x = ⋉n

i=1xi , the algebraic form of the mapping G is

z = MGx :=

⎡

⎢
⎣

g11 · · · g1,kn

...

gks ,1 · · · gks ,kn

⎤

⎥
⎦x. (14.48)

The algebraic form of multivalued system (14.28) is

x(t + 1) = Lx(t),

where L ∈ Lkn×kn , x = ⋉n
i=1xi , xi ∈ Dk, i = 1, . . . , n.

Using the above notation we have the following theorem.

Theorem 14.4 Z0 is an invariant subspace with respect to the multivalued system

(14.28) if and only if one of the following two equivalent conditions is satisfied:

(i)

Row(MGL) ⊂ SpanB Row(MG). (14.49)

(ii) There exists an H ∈ Lks×ks such that

MGL = HMG. (14.50)

Theorem 14.3 is similar to Theorem 8.2, and Theorem 14.4 is similar to Theorem
8.4 and Corollary 8.6 for the Boolean case. The corresponding proofs are effectively
the same.
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14.4 Cycles and Transient Period

Consider the topological structure of k-valued logical networks. Using the same
technique developed for Boolean networks, we can obtain the following results for
cycles.

Theorem 14.5 Consider the k-valued logical network (14.28).

1. δi
kn is a fixed point if and only if, in its algebraic form (14.32), the diagonal

element ℓii of the network matrix L equals 1. It follows that the number of fixed

points of system (14.32), denoted by Ne, equals the number of i for which ℓii = 1.
Equivalently,

Ne = tr(L). (14.51)

2. The number of length-s cycles, Ns , is inductively given by

⎧

⎨

⎩

N1 = Ne,

Ns =
tr(Ls)−

∑

t∈P(s) tNt

s
, 2 ≤ s ≤ kn.

(14.52)

3. The set of elements on cycles of length s, denoted by Cs , is

Cs = Da

(

Ls
)
∖ ⋃

t∈P(s)

Da

(

Lt
)

, (14.53)

where Da(L) is the set of diagonal nonzero columns of L.

Example 14.3 Recall Example 14.1. A straightforward computation shows that

tr
(

Lt
)

= 5, t = 1,3, . . . ,

and

tr
(

Lt
)

= 11, t = 2,4, . . . .

Using Theorem 14.5 we conclude that there are five fixed points and three cycles
of length 2. Moreover, we can find the fixed points and the cycles of length 2 as
follows.

To find the fixed points, we consider the network matrix L. It is easily shown that
the 9th, 41st, 90th, 122nd, and 171st columns of L are diagonal nonzero columns.
Therefore the five fixed points are δ9

35 , δ41
35 , δ90

35 , δ122
35 , and δ171

35 . Using conversion
formula (4.58), we can convert the fixed points back to standard form as

E1 = δ9
35 ∼ (1,1,1,0,0),

E2 = δ41
35 ∼ (1,0.5,0.5,0.5,0.5),
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E3 = δ90
35 ∼ (0.5,1,1,0,0),

E4 = δ122
35 ∼ (0.5,0.5,0.5,0.5,0.5),

E5 = δ171
35 ∼ (0,1,1,0,0).

For the cycles, we consider L2. Searching for diagonal nonzero columns of L2

yields three cycles of length 2:

(1,1,0.5,0.5,0) → (1,0.5,1,0,0.5) → (1,1,0.5,0.5,0),

(1,1,0,1,0) → (1,0,1,0,1) → (1,1,0,1,0),

(0.5,1,0.5,0.5,0) → (0.5,0.5,1,0,0.5) → (0.5,1,0.5,0.5,0).

There are no other cycles.

For the transient period, we also have the following theorem.

Theorem 14.6 For the system (14.28) the transient period is

Tt = r0 = min
{

r
∣
∣Lr ∈

{

Lr+1,Lr+2, . . . ,Lkn}}

. (14.54)

Moreover, let T > 0 be the smallest positive number satisfying Lr0 = Lr0+T . Then,
T is the least common multiple of the lengths of all cycles.

Since the proof is similar to that of the Boolean case, we leave it to the reader.

Example 14.4 Recall Example 14.1. It is easy to check that the first repeating power
for Lk is L4 = L6, so r0 = 4. That is, Tt = 4, T = 2. Therefore the transient period
is 4, which means that any initial state will enter an attractor after at most four steps.

14.5 Network Reconstruction

Assume for a k-valued logical system that the network matrix L is given. We have to
reconstruct the logical network and its dynamics from the network matrix. As with
Boolean networks, we first define a set of retrievers. For notational compactness, we
first define a set of column vectors:

Σi =
[

δ1
k , . . . , δ

1
k

︸ ︷︷ ︸

i

, δ2
k , . . . , δ

2
k

︸ ︷︷ ︸

i

, . . . , δk
k , . . . , δ

k
k

︸ ︷︷ ︸

i

]

.
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We then define the retrievers:

Sn
1,k =
[

Σkn−1

]

,

Sn
2,k = [Σkn−2 , . . . ,Σkn−2

︸ ︷︷ ︸

k

],

S3,k = [Σkn−3 , . . . ,Σkn−3
︸ ︷︷ ︸

k2

],

...

Sn
n,k = [Σ1, . . . ,Σ1

︸ ︷︷ ︸

kn−1

].

(14.55)

Proposition 14.4 Assume the network matrix L of the system (14.28) is known. The

structure matrices of fi , i = 1, . . . , n, are then

Mi = Sn
i,kL, i = 1,2, . . . , n. (14.56)

Next, we have to determine which node is connected to i, in order to remove
fabricated variables from the ith logical equation. We have the following result.

Proposition 14.5 Consider the system (14.28). If Mi satisfies

MiW[k,kj−1](Mo,k − Ik) = 0,

MiW[k,kj−1]

(

(Mo,k)
2 − Ik

)

= 0,

...

MiW[k,kj−1]

(

(Mo,k)
k−1 − Ik

)

= 0,

(14.57)

then node j is not in the neighborhood of node i. In other words, the edge j → i

does not exist. The equation of xi can then be replaced by

xi(t + 1) = M ′
ix1(t) · · ·xj−1(t)xj+1(t) · · ·xn(t), (14.58)

where

M ′
i = MiW[k,kj−1]δ

1
k .

Proof Using the properties of the semi-tensor product, we can rewrite the ith equa-
tion of (14.28) as

xi(t + 1) = MiW[k,kj−1]xj (t)x1(t) · · ·xj−1(t)xj+1(t) · · ·xn(t).

We now replace xj (t) by ⊘(xj (t)),⊘
2(xj (t)), . . . ,⊘

k−1(xj (t)), that is, all possible
values of xj (t). If such replacements do not affect the overall structure matrix, it
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means xi(t +1) is independent of xj (t). The invariance of replacement is illustrated
by (14.57). As for (14.58), since xj (t) does not affect xi(t + 1), we can simply set
xj (t) = δ1

k to simplify the expression. �

Example 14.5 Given a Boolean network

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

A(t + 1) = f1(A(t),B(t),C(t),D(t)),

B(t + 1) = f2(A(t),B(t),C(t),D(t)),

C(t + 1) = f3(A(t),B(t),C(t),D(t)),

D(t + 1) = f4(A(t),B(t),C(t),D(t)),

(14.59)

where A(t),B(t),C(t),D(t) ∈ D3 = {0,0.5,1}, assume its network matrix L ∈

M81×81 is

L = δ81[ 3 6 9 29 41 44 55 67 79 3 6 9 29 41 44 28
40 52 3 6 9 2 14 17 1 13 25 6 6 9 32 41
44 58 67 79 6 6 9 32 41 44 31 40 52 6 6 9

5 14 17 4 13 25 9 9 9 35 44 44 61 70 79 9
9 9 35 44 44 34 43 52 9 9 9 8 17 17 7 16 25].

We reconstruct the system. Using retrievers S3
i we have

Mi = Si,3L, i = 1,2,3,4,

which are

M1 = δ3[1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 2 2 2 1 1 1
1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1],

M2 = δ3[1 1 1 1 2 2 1 2 3 1 1 1 1 2 2 1 2 3 1 1 1
1 2 2 1 2 3 1 1 1 1 2 2 1 2 3 1 1 1 1 2 2
1 2 3 1 1 1 1 2 2 1 2 3 1 1 1 1 2 2 1 2 3
1 1 1 1 2 2 1 2 3 1 1 1 1 2 2 1 2 3],

M3 = δ3[1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3
2 2 3 2 2 3 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3],

M4 = δ3[3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3
2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2
1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1
3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1].
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Next, to remove fabricated variables, it is easy to verify that

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

M1Mo,3 − M1 = 0, M1(Mo,3)
2 − M1 = 0,

M1W[3](Mo,3 − I3) �= 0, M1W[3]((Mo,3)
2 − I3) �= 0,

M1W[3,32](Mo,3 − I3) �= 0, M1W[3,32]((Mo,3)
2 − I3) �= 0,

M1W[3,33](Mo,3 − I3) = 0, M1W[3,33]((Mo,3)
2 − I3) = 0.

Therefore we conclude that A(t +1) depends on B(t) and C(t) only. Using the same
procedure, we know that B(t + 1) depends only on C(t) and D(t), that C(t + 1)

depends only on A(t) and D(t), and that D(t +1) depends only on C(t). To remove
the fabricated variables A(t) and D(t) from the first equation, we set A(t) = D(t) =

δ1
3 and get

A(t + 1) = M1δ
1
3B(t)C(t)δ1

3

= M1δ
1
3W[3,9]δ

1
3B(t)C(t)

= δ3[1 2 3 1 2 2 1 1 1]B(t)C(t). (14.60)

In a similar way, we can remove the fabricated variables from the other equations.
Finally we get

B(t + 1) = δ3[1 1 1 1 2 2 1 2 3]C(t)D(t),

C(t + 1) = δ3[1 2 3 2 2 3 3 3 3]D(t)A(t),

D(t + 1) = δ3[3 2 1]C(t).

Converting back to logical equations, we have

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

A(t + 1) = B(t) → C(t),

B(t + 1) = C(t) ∨ D(t),

C(t + 1) = D(t) ∧ A(t),

D(t + 1) = ¬C(t).

(14.61)

In general, converting an algebraic form back to its logical form is not easy, so
we now describe a mechanical procedure for doing this.

Proposition 14.6 Assume a k-valued logical variable L has algebraic expression

L = L(A1,A2, . . . ,An) = MLA1A2 · · ·An, (14.62)

where ML ∈ Lk×kn is the structure matrix of logical function L. Split this into k

equal-sized blocks as

ML = [ML1 ,ML2 , . . . ,MLk
],
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where MLi
∈ Lk×kn−1 . Then, L can be expressed as

L =
[

∇1,k(A1) ∧ L1(A2, . . . ,An)
]

∨
[

∇2,k(A1) ∧ L2(A2, . . . ,An)
]

∨ · · · ∨
[

∇k,k(A1) ∧ Lk(A2, . . . ,An)
]

,

where Li has MLi
as its structure matrix, i = 1, . . . , k. That is, in vector form,

Li(A2, . . . ,An) = MLi
A2 · · ·An, i = 1, . . . , k.

Using Proposition 14.6 we can obtain the logical expression of L recursively. We
give an example to describe this.

Example 14.6 Let L be a logical variable, and

L = MLABCD,

where A,B,C,D ∈ ∆3 and

ML = δ3[1 2 3 2 2 2 3 2 1 2 2 2 2 2 2 3 2 2 3 2 1 3 2 1 3 2 1
2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2
1 1 1 2 2 2 3 3 3 2 2 2 2 2 2 2 2 3 3 2 1 2 2 2 1 2 3]. (14.63)

Then,

ML =
[

∇1(A) ∧ L1(B,C,D)
]

∨
[

∇2(A)

∧ L2(B,C,D)
]

∨
[

∇3(A) ∧ L3(B,C,D)
]

, (14.64)

and

ML1 = δ3[1 2 3 2 2 2 3 2 1 2 2 2 2
2 2 3 2 2 3 2 1 3 2 1 3 2 1],

(14.65)

ML2 = δ3[2 2 2 2 2 2 3 2 2 2 2 2 2
2 2 2 2 2 3 2 2 2 2 2 2 2 2],

(14.66)

ML3 = δ3[1 1 1 2 2 2 3 3 3 2 2 2 2
2 2 2 2 3 3 2 1 2 2 2 1 2 3].

(14.67)

Next, consider L1:

L1(B,C,D) = ML1BCD

=
[

∇1(B) ∧ L11(C,D)
]

∨
[

∇2(B)

∧ L12(C,D)
]

∨
[

∇3(B) ∧ L13(C,D)
]

, (14.68)

where

ML11 = δ3[1 2 3 2 2 2 3 2 1 ],
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ML12 = δ3[2 2 2 2 2 2 3 2 2 ],

ML13 = δ3[3 2 1 3 2 1 3 2 1 ].

Hence, we have

L11(C,D) = C ↔ D,

L12(C,D) = ML12CD,

L13(C,D) = ¬D.

In the same way, we have the following expression:

L2(B,C,D) =
[

∇1(B) ∧ L21(C,D)
]

∨
[

∇2(B)

∧ L22(C,D)
]

∨
[

∇3(B) ∧ L23(C,D)
]

, (14.69)

L3(B,C,D) =
[

∇1(B) ∧ L31(C,D)
]

∨
[

∇2(B)

∧ L32(C,D)
]

∨
[

∇3(B) ∧ L33(C,D)
]

. (14.70)

Putting this all together, we have

L =
[

∇1(A) ∧
[[

∇1(B) ∧ L11(C,D)
]

∨
[

∇2(B) ∧ L12(C,D)
]

∨
[

∇3(B) ∧ L13(C,D)
]]]

∨
[

∇2(A) ∧
[[

∇1(B) ∧ L21(C,D)
]

∨
[

∇2(B) ∧ L22(C,D)
]

∨
[

∇3(B) ∧ L23(C,D)
]]]

∨
[

∇3(A) ∧
[[

∇1(B) ∧ L31(C,D)
]

∨
[

∇2(B) ∧ L32(C,D)
]

∨
[

∇3(B) ∧ L33(C,D)
]]]

. (14.71)

Remark 14.2 Note that we can also write down the split form of all binary operators.
For instance,

L12(C,D) = δ3[2 2 2 2 2 2 3 2 2]CD

=
[

∇1(C) ∧ δ3[2 2 2]D
]

∨
[

∇2(C) ∧ δ3[2 2 2]D
]

∨
[

∇3(C) ∧ δ3[3 2 2]D
]

=
[

∇1(C) ∧ δ2
3

]

∨
[

∇2(C) ∧ δ3
2

]

∨
[

∇3(C) ∧ ψ(D)
]

, (14.72)

where the structure matrix of the unary logical operator ψ is δ3[3 2 2].

14.6 k-valued Control Networks

Let ui , i = 1, . . . ,m, be a set of controls. These are also k-valued logical variables.
Moreover, let hi , i = 1, . . . , p, be k-valued output logical functions. We then have a
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k-valued control network with state dynamics
⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t))

(14.73)

and outputs

yj = hj

(

x1(t), x2(t), . . . , xn(t)
)

, j = 1, . . . , p. (14.74)

The controls could be a free k-valued logical sequence or it could be generated by a
control dynamics as

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

u1(t + 1) = g1(u1(t), u2(t), . . . , um(t)),

u2(t + 1) = g2(u1(t), u2(t), . . . , um(t)),

...

um(t + 1) = gm(u1(t), u2(t), . . . , um(t)).

(14.75)

First, we consider the case where the control is generated by a control dynamics.
The system (14.73)–(14.75) can then also be expressed in algebraic form as

x(t + 1) = Lu(t)x(t) = L(u)x(t), x ∈ Dn
k ,

y(t) = Hx(t), y ∈ D
p

k ,

u(t + 1) = Gu(t), u ∈ Dm
k .

(14.76)

We give an example.

Example 14.7 We reconsider Example 6.1 and assume that the logical variables can
now take values from D3 = {0,0.5,1}. Set x(t) = B(t) ⋉ C(t) ⋉ D(t). Converting
the system (6.5) into its algebraic form, we have

x(t + 1) = L(u)x(t),

y(t) = Mn,3x(t),

u(t + 1) = u(t),

(14.77)

where x(t) ∈ ∆33 .
L(u) can be easily calculated as

L(u) = Mi,3u(I3 ⊗ Md,3)(I27 ⊗ Mn,3)W[3]W[3,27]Mr,3.

When u1 = δ1
3 ,

L(u1) = δ27[3 3 3 12 12 12 21 21 21 2 5 5 11 14 14 20 23 23 1 4 7 10 13 16 19
22 25],
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when u2 = δ2
3 ,

L(u2) = δ27[3 3 3 12 12 12 12 12 12 2 5 5 11 14 14 11 14 14 1 4 7 10 13 16 10
13 16],

and when u3 = δ3
3 ,

L(u3) = δ27[3 3 3 3 3 3 3 3 3 2 5 5 2 5 5 2 5 5 1 4 7 1 4 7 1 4 7].

Now, δ1
3 , δ2

3 , and δ3
3 are fixed points of the control network. It is easy to de-

duce that for u = δ1
3 there are two fixed points, (1,1,0) and (0.5,0.5,0.5), and

two cycles of length 2, which are (1,0.5,0.5) → (0.5,1,0) → (1,0.5,0.5) and
(1,0,1) → (0,1,0) → (1,0,1). For u = δ2

3 there are two fixed points, (1,1,0) and
(0.5,0.5,0.5), and one cycle of length 2, which is (1,0.5,0.5) → (0.5,1,0) →

(1,0.5,0.5). When u = δ3
3 there is only one fixed point, (1,1,0).

Definition 14.7 Consider the k-valued logical system (14.73) with control (14.75).
Given initial state x(0) = x0 and destination state xd , the latter is said to be reachable
from x0 (at the sth step) with fixed (designable) input structure (G) if we can find
u0 (and G) such that x(u,0) = x0 and x(u, s) = xd (for some s ≥ 1).

We use ΘG(t,0) to denote the input-state transfer matrix in a k-valued network,
which can be calculated as

ΘG(t,0) = LGt−1(Ikm ⊗ LGt−2)(Ik2m ⊗ LGt−3) · · · (Ik(t−1)m ⊗ L)

(Ik(t−2)m ⊗ Φm,k)(Ik(t−3)m ⊗ Φm,k) · · · (Ikm ⊗ Φm,k)Φm,k, (14.78)

where Φm,k is defined in Lemma 14.1 as

Φm,k =

m
∏

i=1

Iki−1 ⊗
[

(Ik ⊗ W[k,km−i ])Mr,k

]

.

It is then easy to prove that for the system (14.76),

x(t) = ΘG(t,0)u(0)x(0).

We will now discuss two cases.

Case 1: We have fixed s and fixed G.

From the definition of the transfer matrix, the following result is obvious.

Theorem 14.7 Consider the system (14.73) with control (14.75), where G is fixed.
xd is s-step reachable from x0 if and only if

xd ∈ Col
{

ΘG(s,0)W[kn,km]x0
}

. (14.79)
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We give an example to describe this result.

Example 14.8 Reconsider Example 9.1, but now assume that the logical variables
may take three different values, {0,0.5,1}. Convert it to its algebraic form,

x(t + 1) = MeB(t)C(t)MdC(t)u1(t)McA(t)u2(t) = Lu(t)x(t),

where L ∈ L27×243 is

L = δ27[1 10 19 10 10 10 19 10 1 2 11 20 11 11 11 20 11
2 3 12 21 12 12 12 21 12 3 2 11 20 11 11 11 20
11 2 2 11 20 11 11 11 20 11 2 3 12 21 12 12 12
21 12 3 3 12 21 12 12 12 21 12 3 3 12 21 12 12
12 21 12 3 3 12 21 12 12 12 21 12 3 1 13 22 10
13 13 19 13 4 2 14 23 11 14 14 20 14 5 3 15 24
12 15 15 21 15 6 2 14 23 11 14 14 20 14 5 2 14
23 11 14 14 20 14 5 3 15 24 12 15 15 21 15 6 3
15 24 12 15 15 21 15 6 3 15 24 12 15 15 21 15 6
3 15 24 12 15 15 21 15 6 1 13 25 10 13 16 19 13
7 2 14 26 11 14 17 20 14 8 3 15 27 12 15 18 21
15 9 2 14 26 11 14 17 20 14 8 2 14 26 11 14 17
20 14 8 3 15 27 12 15 18 21 15 9 3 15 27 12 15
18 21 15 9 3 15 27 12 15 18 21 15 9 3 15 27 12
15 18 21 15 9].

Assume g1 and g2 are fixed as
{

g1(u1(t), u2(t)) = ¬u2(t),

g2(u1(t), u2(t)) = u1(t).
(14.80)

Choose A(0) = 0.5, B(0) = 0, C(0) = 0.5, and s = 5. If we let u(t) = u1(t)u2(t),
then

u(t + 1) = u1(t + 1)u2(t + 1) = Mnu2(t)u1(t) = MnW[3]u(t).

Hence,

G = MnW[3] = δ9[7 4 1 8 5 2 9 6 3] ∈ L9×9.

It is easy to calculate Φ2,3 as

Φ2,3 = (I3 ⊗ W[3])Mr3(I3 ⊗ Mr3)

= δ81[1 11 21 31 41 51 61 71 81].

Finally, using formula (14.78) yields Θ(5,0) ∈ L27×243 as

Θ(5,0) = LG4(I32 ⊗ LG3)(I34 ⊗ LG2)(I36 ⊗ LG)(I38 ⊗ L)(I36 ⊗ Φ3,3)

(I34 ⊗ Φ3,3)(I32 ⊗ Φ3,3)(I3 ⊗ Φ3,3)Φ3,3,
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which is

δ27[21 20 19 20 20 20 19 20 21 21 20 19 20 20 20 19 20 21
21 20 19 20 20 20 19 20 21 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 12 11 11 11 11 11 11 11 12

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 14 14 23 14 14 14 23 14 14 14 14 14 14 14 14 14

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 15 15 15 15 15 15 6 15 15 15 15 15 15 15 15 6
15 15 15 15 15 15 15 15 6 15 15 27 27 27 27 27 27 27
27 27 15 15 15 15 15 15 15 15 15 3 3 3 3 3 3 3 3 3
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
15 14 14 15 14 14 15 14 14 9 18 27 9 18 27 9 18 27 9
18 27 9 18 27 9 18 27 9 18 27 9 18 27 9 18 27].

Setting the initial value as X0 = (A(0),B(0),C(0)) = (0.5,1,1), we then have

x0 = A(0)B(0)C(0) = δ10
27 .

Using Theorem 14.7, we have the reachable set as

Θ(5,0)W[27,9]x0 = δ27{21,11,3,14,15,9}.

Converting them to ternary form, we have

R5(X0) =
{

(0,1,0), (0.5,1,0.5), (1,1,0), (0.5,0.5,0.5), (0.5,0.5,0), (1,0,0)
}

.

Finally, we have to find the initial control u0 which drives the trajectory to the as-
signed xd . Since

xd = Θ(5,0)W[27,9]x0u0 = δ27[21 11 3 14 14 15 15 14 9]u0,

it is obvious that to reach, say, δ21
27 ∼ (0,1,0), the control should be u0 = δ1

9 , i.e.,
u1(0) = δ1

3 ∼ 1 and u2(0) = δ1
3 ∼ 1. Similarly, to reach all six points in R5(X0) at

step 5, the corresponding initial controls ui(0) are given in the following Table 14.2.

Remark 14.3 The ΘG(s,0) can be calculated inductively, and the algorithm is sim-
ilar to the one in Chap. 7.

Case 2: We have fixed s and a set of G.

Since there are m0 = (km)k
m

possible distinct G’s, we may express each G

in condensed form and order them in “increasing order”. For example, when
m = 2, k = 3, we have G1 = δ9[1 1 1 1 1 1 1 1 1], G2 = δ9[1 1 1 1 1 1 1 1 2], . . . ,
G99 = δ9[9 9 9 9 9 9 9 9 9]. In general, we may consider a subset Λ ⊂ {1,2, . . . ,m0}
and allow G to be chosen from the admissible set: {Gλ |λ ∈ Λ}.
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Table 14.2 The desired
states and the corresponding
controls, x(0) = (0.5,1,1)

xd u(0) u1(0) u2(0)

δ21
27 ∼ (0,1,0) δ1

9 ∼ (0,1,0) δ1
3 ∼ 1 δ1

3 ∼ 1

δ11
27 ∼ (0.5,1,0.5) δ2

9 ∼ (0,1,0) δ1
3 ∼ 1 δ1

3 ∼ 0.5

δ3
27 ∼ (1,1,0) δ3

9 ∼ (0,1,0) δ1
3 ∼ 1 δ1

3 ∼ 0

δ14
27 ∼ (0.5,0.5,0.5) δ4

9 ∼ (0,1,0) δ2
3 ∼ 0.5 δ1

3 ∼ 1

δ5
9 ∼ (0,1,0) δ2

3 ∼ 0.5 δ2
3 ∼ 0.5

δ8
9 ∼ (0,1,0) δ3

3 ∼ 0 δ2
3 ∼ 0.5

δ15
27 ∼ (0.5,0.5,0) δ6

9 ∼ (0,1,0) δ2
3 ∼ 0.5 δ3

3 ∼ 0

δ7
9 ∼ (0,1,0) δ3

3 ∼ 0 δ1
3 ∼ 1

δ9
27 ∼ (1,0,0) δ9

9 ∼ (0,0,0) δ3
3 ∼ 0 δ3

3 ∼ 0

Corollary 14.1 Consider the system (14.73) with control (14.74), where G ∈

{Gλ |λ ∈ Λ}. Then, xd is reachable from x0 if and only if

xd ∈
⋃

λ∈Λ

Col
{

ΘGλ(s,0)W[kn,km]x0
}

. (14.81)

Example 14.9 Recall Example 9.1, with network dynamics (9.7). We change it to
a 3-valued network, but still assume that X0 = (1,0,1) and s = 5. Assume that
Ξ = {G1,G2,G3,G4}, where G1 = δ9[1 2 3 4 5 6 7 8 9], G2 = δ9[1 5 8 9 7 4 6 3 2],
G3 = δ9[1 8 9 6 5 7 3 2 4], G4 = δ9[9 8 5 6 4 2 3 1 7], and the corresponding
Gi

5(X0) = Col
{

Θ i(5,0)W[3n,3m]x0
}

are

G1
5(X0) = δ27{2,11,21,14,14,15,14,14,9},

G2
5(X0) = δ27{2,14,12,14,15,15,11,26,15},

G3
5(X0) = δ27{2,11,17,27,14,6,15,14,12},

G4
5(X0) = δ27{23,17,11,11,15,15,15,21,15}.

The reachable set is then

G1
5(X0) = δ27{2,11,21,14,15,9},

G2
5(X0) = δ27{2,14,12,15,11,6},

G3
5(X0) = δ27{2,11,17,27,14,6,15,12},

G4
5(X0) = δ27{23,17,11,15,21}.
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The reachable set at the fifth step is thus

4
⋃

i=1

Gi
5(X0) = δ27{2,6,9,11,12,14,15,17,21,23,26,27}.

Now, assume that we want to reach (A(5),B(5),C(5)) = (0.5,1,0), which is δ12
27

since the third component of G2
5(X0) is 12. (We have some other choices, such

as the 9th component of G3
5(X0), etc.) We can therefore choose G2 and u(0) =

u1(0)u2(0) = δ3
9 to drive (0.5,0,0.5) to (0.5,1,0) at the fifth step.

We can reconstruct the control dynamics from the logical matrix, G2. Converting
G2 = δ9[1 5 8 9 7 4 6 3 2] back to standard form, we have

G2 = δ9[1 5 8 9 7 4 6 3 2].

From u1(0)u2(0) = δ3
9 , we have u1(0) = δ1

3 and u2(0) = δ3
3 . To reconstruct control

dynamics, we need retrievers

S1,3 = δ3[1 1 1 2 2 2 3 3 3], S2,3 = δ3[1 2 3 1 2 3 1 2 3].

We then have the structure matrices

M1 = S1,3G = δ3[1 2 3 3 3 2 2 1 1],

M2 = S2,3G = δ3[1 2 2 3 1 1 3 3 2].

It follows that

u1(t + 1) = δ3[1 2 3 3 3 2 2 1 1]u1(t)u2(t),

u2(t + 1) = δ3[1 2 2 3 1 1 3 3 2]u1(t)u2(t).

We leave the investigation of other cases to the reader. Next, we consider the
controllability of a multivalued logical network with control a k-valued sequence.
We give the following definition.

Definition 14.8 Consider the k-valued logical system (14.73) and assume that an
initial state of the network xi

0, i = 1, . . . , n, and a destination of the network xi
d , i =

1, . . . , n, at the sth step are given. The control problem via a free control sequence
is then to find a sequence of δi

k vectors u(0), . . . , u(s − 1) such that xi(0) = xi
0,

xi(s) = xi
d , i = 1, . . . , n.

Defining L̃ = LW[kn,km], the second equation in (14.76) can be expressed as

x(t + 1) = L̃x(t)u(t). (14.82)

Using this repetitively yields

x(s) = L̃sx(0)u(0)u(1) · · ·u(s − 1). (14.83)

Therefore the answer to this kind of control problem is obvious.
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Fig. 14.2 A 3-valued control
network

Theorem 14.8 xi
d is reachable from xi

0, i = 1, . . . , n, at the sth step by controls of

k-valued sequences of length s if and only if

xs ∈ Col
{

L̃sx0
}

, (14.84)

where xs = ⋉n
i=1x

i
d , x0 = ⋉n

i=1x
i
0.

Remark 14.4 Note that (14.84) means that xs is equal to a column of L̃sx0. For
example, if xs equals the kth column of L̃sx0, then the controls should be

u(0)u(1) · · ·u(s − 1) = δk
ms , (14.85)

which uniquely determines all ui , i = 0,1, . . . , s − 1.

The following example is taken from [2], but here we allow the values of the
nodes in the network to be from D3 = {0,0.5,1}.

Example 14.10 Reconsider Fig. 14.2 from Example 9.6. We now consider it as a
3-valued logical control network.

Its system of logical equations is

⎧

⎪
⎨

⎪
⎩

A(t + 1) = C(t) ∧ u1(t),

B(t + 1) = ¬u2(t),

C(t + 1) = A(t) ∨ B(t),

(14.86)

and its algebraic form is

⎧

⎪
⎨

⎪
⎩

A(t + 1) = Mc,3C(t)u1(t),

B(t + 1) = Mn,3u2(t),

C(t + 1) = Md,3A(t)B(t).

(14.87)

Let x(t) = A(t)B(t)C(t), u(t) = u1(t)u2(t). We can then express the system by

x(t + 1) = L̃x(t)u(t), (14.88)
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where L̃ ∈ L27×243 is

L̃ = δ27[ 7 4 1 16 13 10 25 22 19 16 13 10 16 13 10 25 22 19
25 22 19 25 22 19 25 22 19 7 4 1 16 13 10 25 22 19
16 13 10 16 13 10 25 22 19 25 22 19 25 22 19 25 22
19 7 4 1 16 13 10 25 22 19 16 13 10 16 13 10 25 22
19 25 22 19 25 22 19 25 22 19 7 4 1 16 13 10 25 22
19 16 13 10 16 13 10 25 22 19 25 22 19 25 22 19 25
22 19 8 5 2 17 14 11 26 23 20 17 14 11 17 14 11 26
23 20 26 23 20 26 23 20 26 23 20 8 5 2 17 14 11 26
23 20 17 14 11 17 14 11 26 23 20 26 23 20 26 23 20
26 23 20 7 4 1 16 13 10 25 22 19 16 13 10 16 13 10
25 22 19 25 22 19 25 22 19 25 22 19 8 5 2 17 14 11
26 23 20 17 14 11 17 14 11 26 23 20 26 23 20 26 23
20 26 23 20 9 6 3 18 15 12 27 24 21 18 15 12 18 15
12 27 24 21 27 24 21 27 24 21 27 24 21].

We now assume that (A(0),B(0),C(0)) = (0,0,0). We want to know if a designed
state can be reached at the sth step. If, for example, s = 3, then using Theorem 14.8
we calculate L̃3x0 ∈ M33×36 as

L̃ = δ27[27 24 21 27 24 21 27 24 21 26 23 20 26 23 20 26 23
20 25 22 19 25 22 19 25 22 19 27 24 21 27 24 21 27
24 21 26 23 20 26 23 20 26 23 20 25 22 19 25 22 19
25 22 19 27 24 21 27 24 21 27 24 21 26 23 20 26 23
20 26 23 20 25 22 19 25 22 19 25 22 19 18 15 12 18
15 12 27 24 21 17 14 11 17 14 11 26 23 20 16 13 10
16 13 10 25 22 19 18 15 12 18 15 12 27 24 21 17 14
11 17 14 11 26 23 20 16 13 10 16 13 10 25 22 19 18
15 12 18 15 12 27 24 21 17 14 11 17 14 11 26 23 20
16 13 10 16 13 10 25 22 19 9 6 3 18 15 12 27 24 21

8 5 2 17 14 11 26 23 20 7 4 1 16 13 10 25 22 19 9
6 3 18 15 12 27 24 21 8 5 2 17 14 11 26 23 20 7 4
1 16 13 10 25 22 19 9 6 3 18 15 12 27 24 21 8 5 2

17 14 11 26 23 20 7 4 1 16 13 10 25 22 19 27 24 21
27 24 21 27 24 21 26 23 20 26 23 20 26 23 20 25 22
19 25 22 19 25 22 19 27 24 21 27 24 21 27 24 21 26
23 20 26 23 20 26 23 20 25 22 19 25 22 19 25 22 19
27 24 21 27 24 21 27 24 21 26 23 20 26 23 20 26 23
20 25 22 19 25 22 19 25 22 19 18 15 12 18 15 12 27
24 21 17 14 11 17 14 11 26 23 20 16 13 10 16 13 10
25 22 19 18 15 12 18 15 12 27 24 21 17 14 11 17 14
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11 26 23 20 16 13 10 16 13 10 25 22 19 18 15 12 18
15 12 27 24 21 17 14 11 17 14 11 26 23 20 16 13 10
16 13 10 25 22 19 9 6 3 18 15 12 27 24 21 8 5 2 17
14 11 26 23 20 7 4 1 16 13 10 25 22 19 9 6 3 18 15
12 27 24 21 8 5 2 17 14 11 26 23 20 7 4 1 16 13 10
25 22 19 9 6 3 18 15 12 27 24 21 8 5 2 17 14 11 26
23 20 7 4 1 16 13 10 25 22 19 27 24 21 27 24 21 27
24 21 26 23 20 26 23 20 26 23 20 25 22 19 25 22 19
25 22 19 27 24 21 27 24 21 27 24 21 26 23 20 26 23
20 26 23 20 25 22 19 25 22 19 25 22 19 27 24 21 27
24 21 27 24 21 26 23 20 26 23 20 26 23 20 25 22 19
25 22 19 25 22 19 18 15 12 18 15 12 27 24 21 17 14
11 17 14 11 26 23 20 16 13 10 16 13 10 25 22 19 18
15 12 18 15 12 27 24 21 17 14 11 17 14 11 26 23 20
16 13 10 16 13 10 25 22 19 18 15 12 18 15 12 27 24
21 17 14 11 17 14 11 26 23 20 16 13 10 16 13 10 25
22 19 9 6 3 18 15 12 27 24 21 8 5 2 17 14 11 26 23
20 7 4 1 16 13 10 25 22 19 9 6 3 18 15 12 27 24 21

8 5 2 17 14 11 26 23 20 7 4 1 16 13 10 25 22 19 9
6 3 18 15 12 27 24 21 8 5 2 17 14 11 26 23 20 7 4
1 16 13 10 25 22 19].

A routine from the Toolbox (see Appendix A) shows that at the third step all
states can be reached. Choose one state, say δ25

27 ∼ (0,0,1). Note that in the 19th,
22nd, 25th, . . . columns of L̃3x0 we have δ25

27 , which means that controls δ19
729, δ22

729,
δ25

729, or . . . can drive the initial state (0,0,0) to the destination state (0,0,1). We
choose, for example,

u1(0)u2(0)u1(1)u2(1)u1(2)u2(2) = δ19
729.

Converting this to ternary form yields (1,1,1,0,1,1), which means that the corre-
sponding controls are

u1(0) = 1, u2(0) = 1; u1(1) = 1,

u2(1) = 0; u1(2) = 1, u2(2) = 1.

It is easy to directly check that this set of controls works. We may check some
others. Choosing, say, δ22

729 and converting it to ternary form as (1,1,1,0,0.5,1),
we have

u1(0) = 1, u2(0) = 1; u1(1) = 1,

u2(1) = 0; u1(2) = 0.5, u2(2) = 1.

This also works.
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In general it is easy to calculate that when s = 1, the reachable set from (0,0,0) is
{

(0,0,0), (0,0.5,0), (0,1,0)
}

.

When s = 2 the reachable set is
{

(0,0,0), (0,0.5,0), (0,1,0), (0,0,0.5), (0,0.5,0.5),

(0,1,0.5), (0,0.5,1), (0,0,1), (0,1,1)
}

.

In this chapter we considered only the topological structure and the controllabil-
ity of k-valued logical (control) networks. It is easily seen that the methods devel-
oped and the results obtained for Boolean (control) networks can be easily extended
to k-valued networks. We are not going to repeat all of the other control problems
for the k-valued case, but leave them for the reader to explore the similar results.

14.7 Mix-valued Logic

Consider a set of logical variables {x1, . . . , xn}. If xi ∈ Dki
, then how do we define

the logical operators between them? We call such a set of logical variables and oper-
ators a mix-valued logic. The problem basically comes from the mix-valued logical
dynamical (control) systems. We first introduce them (we also refer to Sect. 16.6 for
their properties).

Definition 14.9

1. Consider a logical dynamical system
⎧

⎪
⎪
⎨

⎪
⎪
⎩

x1(t + 1) = f1(x1(t), . . . , xn(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t)),

(14.89)

where xi ∈ Dki
, fi :
∏n

j=1 Dkj
→ Dki

, i = 1, . . . , n, are logical functions. If ki ,
i = 1, . . . , n, are not identically equal, then the system (14.89) is called a mix-
valued logical system.

2. Consider a logical control system
⎧

⎪
⎪
⎨

⎪
⎪
⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

yl(t) = hl

(

x1(t), . . . , xn(t)
)

, l = 1, . . . , p,

(14.90)

where xi ∈ Dki
, uj ∈ Dsj , yl ∈ Dql

, fi :
∏n

i=1 Dki
×
∏m

j=1 Dsj → Dki
, i =

1, . . . , n, and hl :
∏n

i=1 Dki
→ Dql

, l = 1, . . . , p, are logical functions. If ki , sj ,
and ql are not identically equal, then the system (14.90) is called a mix-valued
logical control system.
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Investigating mix-valued logical systems, we first encounter a problem: how to
define logical operators for mix-valued logical variables. Definitions for all of them
will be very massy, and they may be of less logical meaning. Thus far, the question
has not been considered by logicians. We avoid this and assume that only k-valued
logical operators are allowed. We then need to define a projection from Dp to Dq .

Definition 14.10 The projection φ[q,p] : Dp → Dq is defined as follows. If x ∈ Dp ,
then φ[q,p](x) := ξ , where ξ ∈ Dq , satisfying

|ξ − x| = min
y∈Dq

|x − y|.

If there are two such solutions, ξ1 > x and ξ2 < x, then φ[q,p](x) = ξ1 is called the
up-round projection and φ[q,p](x) = ξ2 is called the down-round projection.

In the sequel, we assume that the default projection is the up-round projection
unless otherwise stated. In vector form, we have x ∈ ∆p and φ[q,p](x) ∈ ∆q . Hence,
there exists a unique Φ[q,p] ∈ Lp×q , called the structure matrix of φ[q,p], such that

φ[q,p](x) = Φ[q,p]x. (14.91)

We give a simple example to illustrate this.

Example 14.11 Consider D3 = {0, 1
2 ,1} and D4 = {0, 1

3 , 2
3 ,1}. Then,

1.

φ[4,3](0) = 0, φ[4,3]

(
1

2

)

=
2

3
, φ[4,3](1) = 1.

Hence,

Φ[4,3] = δ4[1 2 4].

2.

φ[3,4](0) = 0, φ[3,4]

(
1

3

)

=
1

2
, φ[3,4]

(
2

3

)

=
1

2
, φ[3,4](1) = 1.

Hence,

Φ[3,4] = δ3[1 2 2 3].

Next, we define the logical operators between mix-valued logical variables.

Definition 14.11

1. Let σ be a unary operator on Dk , and x ∈ Dp . Then,

σ(x) := σ
(

φ[k,p](x)
)

∈ Dk.
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2. Let σ be a binary operator on Dk , and x ∈ Dp , y ∈ Dq . Then,

xσy :=
(

φ[k,p](x)
)

σ
(

φ[k,q](y)
)

∈ Dk.

Example 14.12

1. Let ⊘ = ⊘3 be a unary operator on D3 and x = 3
7 ∈ D8. Then,

⊘3(x) = ⊘3
(

φ[3,8](x)
)

= ⊘

(
1

2

)

= 0.

2. Let ▽2,4 be a unary operator on D4 and x = 1
2 ∈ D3. Then,

▽2,4(x) = ▽2,4
(

φ[4,3](x)
)

= ▽2,4

(
2

3

)

= 1.

3. Let ∧ = ∧3 be a binary operator on D3, x = 1
3 ∈ D4, and y = 4

5 ∈ D6. Then,

x ∧3 y =
(

φ[3,4](x)
)

∧3
(

φ[3,6](y)
)

=
1

2
∧3 1 =

1

2
.

4. Let ∨ = ∨3 be a binary operator on D3, and x and y as in part 3. Then,

x ∨3 y =
(

φ[3,4](x)
)

∨3
(

φ[3,6](y)
)

=
1

2
∨3 1 = 1.

We can now consider the logical expression of a mix-valued logical system. Con-
sider either (14.89) or (14.90). Since xi ∈ Dki

, i = 1, . . . , n, we can automatically
assume the logical operators on the ith equation are all ki -operators, that is, the op-
erators on Dki

. As for the outputs of (14.90), the type of operators in the kth output
equation depends on the type of yk .

We give an example to illustrate this.

Example 14.13 Consider a mix-valued logical control system:
{

x1(t + 1) = x1(t) ∨ x2(t),

x2(t + 1) = x1(t) ∧ (x2(t) ↔ u(t)),

y(t) = ¬x1(t),

(14.92)

where xi(t) ∈ Dki
, u(t) ∈ Ds , and y(t) ∈ Dq . In componentwise algebraic form, we

then have

x1(t + 1) = Md,k1x1(t)Φ[k1,k2]x2(t) = Md,k1(Ik1 ⊗ Φ[k1,k2])x1(t)x2(t),

x2(t + 1) = Mc,k2Φ[k2,k1]x1(t)Me,k2x2(t)Φ[k2,s]u(t)

= Mc,k2Φ[k2,k1](Ik1 ⊗ Me,k2)x1(t)x2(t)Φ[k2,s]u(t)

= Mc,k2Φ[k2,k1](Ik1 ⊗ Me,k2)W[k2,k1k2]Φ[k2,s]u(t)x1(t)x2(t),
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y(t) = Mn,qΦ[q, k1]x1(t).

In particular, assume that k1 = 2, k2 = 3, s = 2, and q = 3. We can then calculate
the algebraic form of (14.92) as follows.

Note that Φ[2,3] = δ2[1 1 2],Φ[3,2] = δ3[1 3], Md,2 = δ2[1 1 1 2], Mc,3 =

δ3[1 2 3 2 2 3 3 3 3], Me,3 = δ3[1 2 3 2 2 2 3 2 1], Mn,3 = δ3[3 2 1], and
W[3,6] = δ3[1 4 7 10 13 16 2 5 8 11 14 17 3 6 9 12 15 18]. Therefore we have

x1(t + 1) = Md,2(I2 ⊗ Φ[2,3])x1(t)x2(t)

= δ2[1 1 1 1 1 2]x1(t)x2(t)

= δ2[1 1 1 1 1 2 1 1 1 1 1 2]u(t)x1(t)x2(t)

=: Pu(t)x1(t)x2(t),

x2(t + 1) = Mc,3Φ[3,2](I2 ⊗ Me,3)W[3,6]Φ[3,2]u(t)x1(t)x2(t)

= δ3[1 2 3 3 3 3 3 2 1 3 3 3]u(t)x1(t)x2(t)

=: Qu(t)x1(t)x2(t),

y(t) = Mn,3Φ[3,2]x1(t)

= δ3[3 3 3 1 1 1]x1(t)x2(t).

Set x(t) = x1(t) ⋉ x2(t). Suppose that the algebraic form of the mix-valued log-
ical control system (14.92) is

{

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),

where L = δ6[ℓ1, . . . , ℓ12], H = δ3[3 3 3 1 1 1]. From Proposition 8.1, we have
Coli(L) = Coli(P ) ⋉ Coli(Q). Hence,

L = δ6[1 2 3 3 3 6 3 2 1 3 3 6].

Let k =
∏n

i=1 ki , s =
∏m

j=1 si , and q =
∏p

k=1 qi . We then know that (14.89) has
the algebraic form

x(t + 1) = Lx(t), (14.93)

where L ∈ Lk×k .
Similarly, (14.90) has the algebraic form

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(14.94)

where L ∈ Lk×ks and H ∈ Lq×k .
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From Example 14.13 one sees that from the logical form of a mix-valued logical
(control) system, to construct its algebraic form is easy. It is now pertinent to ask
whether we can always obtain the logical form of a mix-valued logical (control)
system from its algebraic form (14.93) or (14.94) as in the Boolean or the k-valued
case. Unfortunately, we generally cannot.

In the following we consider (14.94) only. (14.93) can be considered as a partic-
ular case. From (14.94) we can easily obtain its componentwise algebraic form as

xi(t + 1) = Miu(t)x(t), i = 1, . . . , n,

yα(t) = hαx(t), α = 1, . . . , p,
(14.95)

where Mi ∈ Lki×ks and hα ∈ Lqα×k . If we have a logical expression, then a straight-
forward computation shows that

xi(t + 1) = NiΦ[ki ,s1]u1 · · ·Φ[ki ,sm]umΦ[ki ,k1]x1 · · ·Φ[ki ,kn]xn

= NiΓiu(t)x(t), i = 1, . . . , n, (14.96)

where Ni ∈ Lki×kn+m
i

and, setting Is0 = 1 and k0 = 0,

Γi = ⋉m−1
α=0 (Is0+···+sα ⊗ Φki ,sα+1) ⋉n−1

β=0 (Is+k0+···+kβ ⊗ Φki ,kβ+1). (14.97)

Similarly, assuming that the outputs have mix-valued logical form, we then have
gα ∈ Lqα×qn

α
such that

yα(t) = gαΦ[qα,k1]x1(t) · · ·Φ[qα,kn]xn(t)

= gαΞαx(t),

where, denoting Ik0 = 1,

Ξα = ⋉n−1
i=0 (Ik0+···+ki

⊗ Φqα,ki+1). (14.98)

Summarizing the above argument yields the following theorem.

Theorem 14.9 The algebraic form (14.95) has a logical realization if and only if

{

NiΓi = Mi, i = 1, . . . , n,

gαΞα = hα, α = 1, . . . , p
(14.99)

has solution {Ni, i = 1, . . . , n;gα, α = 1, . . . , p}.

Example 14.14 Consider a mix-valued logical control system, with algebraic form

x1(t + 1) = Lu(t)x1(t)x2(t), (14.100)

where x1(t) ∈ ∆2, x2(t) ∈ ∆3, u(t) ∈ ∆2, and with structure matrix L given by

L = δ2[1 2 2 1 1 1 1 2 1 1 1 1].
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Suppose that the system (14.100) has the logical realization

x1(t + 1) = f
(

x1(t), x2(t), u(t)
)

, (14.101)

where x1(t) ∈ D2, x2(t) ∈ D3, u(t) ∈ D2. Assume that the system (14.101) can also
be expressed as

x1(t + 1) = Nu(t)x1(t)Φ[2,3]x2(t)

= NΓ u(t)x1(t)x2(t), (14.102)

where N ∈ L2×8, Φ[2,3] = δ2[1 1 2], and

Γ = I4 ⊗ Φ[2,3]

= δ8[1 1 2 3 3 4 5 5 6 7 7 8].

From (14.100) and (14.102), there exists N ∈ L2×8 such that

Nδ8[1 1 2 3 3 4 5 5 6 7 7 8] = δ2[1 2 2 1 1 1 1 2 1 1 1 1]. (14.103)

It is obvious that we cannot find the matrix N satisfying (14.103). Thus, the
algebraic form (14.100) does not have a logical realization.
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Chapter 15

Optimal Control

15.1 Input-State Transfer Graphs

We consider a control network of the form

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

x2(t + 1) = f2(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

(15.1)

where xi, uj ∈ Dk , the xi being state variables, uj being controls, and fi being
logical functions. (15.1) is compactly expressed as

X(t + 1) = F
(

X(t),U(t)
)

, (15.2)

where X = (x1, . . . , xn) and U = (u1, . . . , um). When k = 2, (15.1) becomes a
Boolean control network. In this chapter we consider general k. The outputs of
the control network are omitted because we are not concerned with outputs in this
chapter.

In vector form, we have xi, ui ∈ ∆k . If we let x(t) = ⋉n
i=1xi(t), u(t) =

⋉m
i=1ui(t), then (15.1) can be expressed in algebraic form as

x(t + 1) = Lu(t)x(t), (15.3)

where x(t) ∈ ∆kn , u(t) ∈ ∆km , L ∈ Lkn×km+n .
The payoff function of the network at time t is denoted by P(X(t),U(t)) : Dn

k ×

Dm
k → R [using vector form, the equivalent mapping is (using the same notation)

P(x(t), u(t)) : ∆kn ×∆km → R]. Set S(t) = (X(t),U(t)) or s(t) = u(t)⋉x(t). We
consider as performance criterion the average payoff or ergodic payoff [3]. From ini-
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tial state x0, under control u(t), the trajectory of the network is x(t, x0, u) [or, sim-
ply, x(t)]. The average payoff of x(t, x0, u) is defined as

J
(

x(t, x0, u)
)

= J (u) = lim
T →∞

1

T

T
∑

t=1

P
(

x(t), u(t)
)

. (15.4)

The aim of the optimal control problem is to find the optimal control u∗(t) to
maximize the objective function J (u), that is,

J
(

u∗
)

= max
u

J (u). (15.5)

To solve the optimal control problem, we have to answer the following questions:
(i) Does the optimal control u∗(t) exist? (ii) If the optimal control does exist, is it
unique? (iii) How do we design it? In what follows, we will answer these questions.

We first define the cycles in S = Dn
k × Dm

k (in vector form we have the equiva-
lent S = ∆km+n ). The following definition was first proposed in [2].

Definition 15.1 A directed graph whose nodes are the elements of S is called the
input-state transfer graph (ISTG) of the system (15.1) if its edges are constructed as
follows: For any two nodes Sp = (Up,Xp) ∈ S and Sq = (Uq ,Xq) ∈ S , there is a

directed edge
−−→
SpSq if and only if

Xq = F(Up,Xp).

In vector form, we can also use sp = (up, xp) = (δα
km , δ

β
kn) to represent a node,

but a more convenient definition is sp = upxp = δ
γ

km+n ∈ Δkm+n . The last expression
is reasonable because sp has a unique decomposition into (up, xp). If we let δ

γ

km+n =

δα
kmδ

β
kn , then

γ = (α − 1)kn + β

or, equivalently,

α =

[

γ

kn

]

+ 1, β = γ
(

mod kn
)

.

Using the algebraic form, we know that there is a directed edge
−−→
SpSq [or, equiva-

lently, (sp, sq)] if and only if

xq = Lupxp (or xq = Lsp).

If we now assume sp = δ
ξ

km+n and sq = δ
η

km+n , then the edge (sp, sq) can also be
expressed as

δkm+n(ξ, η).

The topological structure of ISTGs plays a key role in optimal control problems.
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Fig. 15.1 Input-state transfer
graph of (15.1)

Definition 15.2

1. A state s′ ∈ S is said to be reachable from s = (u, x) ∈ S if there is a path,
consisting of directed edges, starting from s and ending at s′. We denote the
reachable set of s by R(s).

2. The ISTG is called strongly connected if, for all s ∈ S ,

R(s) = S .

We now give an example to illustrate an ISTG.

Example 15.1 Consider the following Boolean control network:
{

x1(t + 1) = (x1(t) ∧ u(t)) ∨ x2(t),

x2(t + 1) = (u(t) ∧ x1(t) ∧ ¬x2(t)) ∨ (¬u(t) ∧ x1(t)).
(15.6)

Using vector form, its algebraic form is obtained as

x(t + 1) = Lu(t)x(t), (15.7)

where

L = δ4[2 1 2 4 1 3 2 4].

Its input-state transfer graph consists of eight states, which are

A =
(

δ1
2, δ1

4

)

, B =
(

δ1
2, δ2

4

)

, C =
(

δ1
2, δ3

4

)

, D =
(

δ1
2, δ4

4

)

,

E =
(

δ2
2, δ1

4

)

, F =
(

δ2
2, δ2

4

)

, G =
(

δ1
2, δ3

4

)

, H =
(

δ1
2, δ4

4

)

.

Using Definition 15.1, we can easily determine its edges. The ISTG is shown in
Fig. 15.1.

From Fig. 15.1, it is easily seen that

R(A) = R(B) = R(C) = R(F) = R(G) = S .

On the other hand,

R(E) = {D,H }, R(H) = {H,D}, R(D) = {D,H },

so this ISTG is not strongly connected.
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We refer to next chapter for the verification of strong connectedness, where it is
called controllability.

Definition 15.3

1. Let si ∈ S , i = 1,2, . . . , ℓ. (s1, s2, . . . , sℓ) is called a path if (si, si+1), i =

1, . . . , ℓ − 1, are edges of the ISTG.
2. A path (s1, s2, . . .) is called a cycle if si+ℓ = si for all i, and the smallest ℓ is

called the length of the cycle. In particular, if ℓ = 1, then the cycle is also called
a fixed point.

3. Suppose C = (s1, s2, . . . , sℓ) is a cycle and let si = (ui, xi), i = 1, . . . , ℓ. If xi 	=

xj ,1 ≤ i < j ≤ ℓ, then the cycle C is called a simple cycle.

Example 15.2 Consider the ISTG of Example 15.1. It is easy to see that we have the
following cycles: (D), (H), (G), (H,D), (A,B), (F,C), (F,G,C), (A,F,C,B),
(A,F,G,C,B), etc.

Let C := (s1, . . . , sℓ) be a cycle in S . The average payoff is defined by

Pa(C) =
P(s1) + · · · + P(sℓ)

ℓ
.

We then have the following result [2].

Proposition 15.1

1. Let S := (s1, . . . , sT ) be a path of the ISTG of the system (15.1). Then,

S =

N⋃

i=1

Ci ∪ R, (15.8)

where Ci are some cycles, R is the remainder, and |R| ≤ km+n.
2. Let S := (s1, . . . , sT ) be a path of the ISTG of the system (15.1) and C be the

(finite) set of cycles. If C∗ ∈ C such that

Pa
(
C∗

)
= max

{
Pa(C),∀C ∈ C

}
,

then

J (S) ≤ Pa
(
C∗

)
. (15.9)

Proof 1. Remove all cycles from S one by one. The remainder then has at most
km+n elements because |S | = km+n. Note that (15.8) is in the sense of “element
set”, that is, we do not need to worry about whether the elements of a cycle Ci are
adjacent. This completes our proof.
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2. Let S be decomposed into cycles Ci with lengths ℓi , i = 1, . . . ,N , and remain-
der R. Then,

1

T

T∑

t=1

P(St ) =

N∑

i=1

[
ℓ1

T
Pa(C1) + · · · +

ℓN

T
Pa(CN )

]
+

P(r1) + · · · + P(rq)

T

≤

∑N
i=1 ℓi

T
Pa

(
C∗

)
+

P(r1) + · · · + P(rq)

T

=
T − q

T
Pa

(
C∗

)
+

P(r1) + · · · + P(rq)

T
, (15.10)

where {r1, . . . , rq} = R and hence q ≤ km+n. It is now clear that

lim
T →∞

T − q

T
Pa

(
C∗

)
+

P(r1) + · · · + P(rq)

T
= Pa

(
C∗

)
,

and the conclusion follows. �

Next, we define the reachable set of a state x0 by

R(x0) =
⋃

u0∈D
m
k

R
(
s0 = (u0, x0)

)

and the cycles in this reachable set by

Cx0 =
{
C ∈ C

∣∣C ⊂ R(x0)
}
.

The optimal cycle C∗
x0

∈ Cx0 satisfies

Pa
(
C∗

x0

)
≥ Pa(C), ∀C ∈ Cx0 .

The following result then follows immediately.

Corollary 15.1 Consider the optimal control of the network (15.1) with perfor-

mance criterion (15.4). The optimal control makes the trajectory converge to C∗
x0

,
and the optimal value of the criterion is Jmax = Pa(C

∗
x0

). If C∗ ⊂ R(x0) = S , then

the optimal value Jmax = Pa(C
∗). If the ISTG is strongly connected, then the optimal

value is Pa(C
∗), which is independent of the starting point.

15.2 Topological Structure of Logical Control Networks

To deal with the optimal control of a logical control network, its topological struc-
ture needs to be considered first. In particular, from Corollary 15.1 we know that an
optical trajectory could converge to a certain cycle, so calculating cycles becomes a
key issue. In the sequel, we suppose the ISTG of the control network to be strongly
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Fig. 15.2 Input-state transfer
graph

connected. If this is not the case, then we just consider the optimal control within
the reachable set R(x0) from the initial point x0.

A k-valued logical control network can be expressed as (15.1) with xi, ui ∈ Dk .
Its algebraic form is (15.3) with L ∈ Lkn×km+n , where x = ⋉n

i=1xi , u = ⋉m
j=1uj ,

and xi, ui ∈ ∆k . Therefore we need to investigate the cycles in the control-state
space S . We can prove the following result.

Proposition 15.2 An edge δkm+n(i, j) exists if and only if

Coli(L) = δℓ
kn , where ℓ = j

(
mod kn

)
. (15.11)

Proof By definition, the edge δkm+n(i, j) exists if and only if there exists u(t + 1)

such

u(t + 1)Lδi
km+n = δ

j

km+n . (15.12)

It is easy to check that Lδi
km+n = Coli(L), thus (15.3) yields

u(t + 1)Coli(L) = δ
j

km+n . (15.13)

Note that δ
j

km+n can be factorized uniquely into δ
ξ
kmδℓ

kn , where j = (ξ − 1)kn + ℓ.
The proposition is thus proved. �

Example 15.3 Consider the Boolean control network given by

x(t + 1) = Lu(t)x(t), (15.14)

where u(t), x(t) ∈ Δ and

L = δ2[1 2 2 1].

Note that δ1
4 ∼ (1,1), δ2

4 ∼ (1,0), δ3
4 ∼ (0,1), and δ4

4 ∼ (0,0), so we can obtain the
graph as follows:

From Fig. 15.2 we can see that (1,1) and (1,0) are fixed points and that it has
the following cycles of length less than or equal to 4:

(0,1) → (0,0), (0,1) → (1,0) → (0,0),

(1,1) → (0,1) → (0,0), (0,0) → (1,1) → (0,1) → (1,0),

(1,1) → (1,1) → (0,1) → (0,0), (1,0) → (1,0) → (0,0) → (0,1).
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In a simple case, the fixed points and cycles can be found from the ISTG directly,
but when m and n are larger, it is difficult to draw the graph as was done above.
Thus, we need to develop formulas to compute all the cycles algebraically.

From (15.3), we have

x(t + d) = Lu(t + d − 1)x(t + d − 1)

= Lu(t + d − 1)Lu(t + d − 2) · · ·Lu(t + 1)Lu(t)x(t)

= L(Ikm ⊗ L)u(t + d − 1)u(t + d − 2)Lu(t + d − 3)

Lu(t + d − 4) · · ·Lu(t)x(t)

:= Ld

(
⋉d

ℓ=1u(t + d − ℓ)
)
x(t), (15.15)

where

Ld =

d∏

i=1

(Ik(i−1)m ⊗ L) ∈ Lkn×kdm+n . (15.16)

Before calculating the cycles, we need some notation.

• For d ∈ Z+, P(d) denotes the set of proper factors of d .
• For i, k,m ∈ Z+,

θm
k (d, i) :=

{
(ℓ, j)

∣∣∃ℓ ∈ P(d) and j such that δi
kdm =

(
δ
j

kℓm

) d
ℓ
}
. (15.17)

We now give examples to illustrate the use of this notation.

Example 15.4

1. If d = 6, then P(d) = {1,2,3}.

2. If m,k, d ∈ Z+ are given, then, using the obvious formula δa
kαδ

b
kβ = δ

(a−1)kβ+b

kα+β ,

there exists at most one j for every ℓ ∈ P(d) such that (ℓ, j) ∈ θm
k (i, d).

Suppose m = k = 2 and d = 6.

• If i = 1, then

for ℓ = 1, δi
kdm = δ1

212 = (δ1
22)

6 = (δ
j

kℓm)
d
ℓ , so j = 1;

for ℓ = 2, δ1
212 = (δ1

24)
3, so j = 1;

for ℓ = 3, δ1
212 = (δ1

26)
2, so j = 1.

Hence, θ2
2 (6,1) = {(1,1), (2,1), (3,1)}.

• If i = 2, then for any ℓ ∈ P(6) and any 1 ≤ j ≤ 22ℓ, δ2
212 	= (δ

j

22ℓ)
d
ℓ , thus there

is no solution. That is, θ2
2 (6,2) = ∅.

• If i = 26 + 2, then

for ℓ = 1 or 2, there is no solution;

for ℓ = 3, δ26+2
212 = (δ2

26)
2, so j = 2.

Therefore θ2
2 (6,26 + 2) = {(3,2)}.
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In the following we simply use θ(d, i) for θm
k (d, i), where the default k and m

are assumed to be the type of logic and the number of inputs, respectively. Denote
by Blki(L) the ith n × n block of an n × nm logical matrix L. We then have the
following result.

Theorem 15.1 The number of cycles of length d in the ISTG of the k-valued logical

control network (15.3) is inductively determined by

Nd =
1

d

kdm∑

i=1

T
(
Blki(Ld)

)
, (15.18)

where Ld is defined in (15.16) and

T
(
Blki(Ld)

)
= tr

(
Blki(Ld)

)
−

∑

(ℓ,j)∈θ(d,i)

T
(
Blkj (Lℓ)

)
. (15.19)

Proof Each cycle in S is a product of cycles in the state space and the control
space, so we look for the cycle in the state space first. If x(t) is in a cycle of length
d in the state space, then from (15.15) we have

x(t) = Ld

(
⋉d

ℓ=1u(t + d − ℓ)
)
x(t).

If u(t + d − 1), . . . , u(t) are fixed, say ⋉d
ℓ=1u(t + d − ℓ) = δi

kdm , then

x(t) = Blki(Ld)x(t).

If x(t) = δ
j

kn , then the (j, j)-element of Blki(Ld) is 1, so the cycle with length d in
the state space under the given controls u(t + d − 1), . . . , u(t) is

{
x(t),Lu(t)x(t),L2u(t + 1)u(t)x(t), . . . ,Ldu(t + d − 1) · · ·u(t)x(t)

}
.

Thus, multiplying the cycle and the given u, we obtain a cycle of length d in control-
state space. Therefore the number of length-d cycles, including multifold ones, is
1
d

∑kdm

i=1 tr(Blki(Ld)).
It is obvious that if ℓ is a proper factor of d , and x(t) is in the cycle of

length ℓ under ũ(t + ℓ − 1) · · · ũ(t) = δ
j

kℓm and the cycle of length d under

u(t + d − 1) · · ·u(t) = δi
kdm , then we can obtain the same cycle in the ISTG if and

only if δi
kdm = (δ

j

kℓm)
d
ℓ . Removing these multifold cycles, we obtain (15.18). �

To see that (15.19) inductively defines all T (Blki(Ld)) with respect to d , note
that as d = 1, we have

θ(i,1) = φ, ∀i.

Thus, T (Blki(Ld)) is well defined for d = 1 and hence d > 1 can be defined induc-
tively.
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For a cycle C of length d , because s(t) = δℓ
km+n can be decomposed uniquely as

u(t)x(t) = δi
kmδ

j
kn , the cycle can be described as

C =
((

δ
i(t)
km , δ

j (t)
kn

)
,
(
δ
i(t+1)
km , δ

j (t+1)
kn

)
, . . . ,

(
δ
i(t+d−1)
km , δ

j (t+d−1)
kn

))
.

For compactness, we write this as

C = δkm × δkn

((
i(t), j (t)

)
,
(
i(t + 1), j (t + 1)

)
, . . . ,

(
i(t + d − 1), j (t + d − 1)

))
.

(15.20)
We now give an alternative definition of a simple cycle (originally defined

in Definition 15.3): A cycle C = δkm × δkn((i(t), j (t)), (i(t + 1), j (t + 1)), . . . ,

(i(t + d − 1), j (t + d − 1))) is called a simple cycle if it satisfies

i(ξ) 	= i(ℓ), t ≤ ξ < ℓ ≤ t + d − 1. (15.21)

Example 15.5 Recall Example 15.3. Since

L1 = L = δ2[1 2 2 1],

we have tr(Blk1(L1)) = 2 and tr(Blk2(L1)) = 0. Hence, δ1
2 and δ2

2 are fixed points
under the control u = δ1

2 . It follows that N1 = 1 and the fixed points in ISTG are

δ2 × δ2
(
(1,1)

)
, δ2 × δ2

(
(1,2)

)
,

which are simple ones. Next, since

L2 = L(I2 ⊗ L) = δ2[1 2 2 1 2 1 1 2],

we have tr(Blk1(L2)) = tr(Blk4(L2)) = 2, tr(Blk2(L2)) = tr(Blk3(L2)) = 0, δ1
4 =

δ1
2δ1

2 , and δ4
4 = δ2

2δ2
2 , so

T
(
Blk1(L2)

)
= tr

(
Blk1(L2)

)
− T

(
Blk1(L1)

)
= 0,

T
(
Blk4(L2)

)
= tr

(
Blk4(L2)

)
− T

(
Blk2(L1)

)
= 2.

T (Blk2(L2)) = T (Blk3(L2)) = 0, so N2 = 1. δ1
2 and δ2

2 are in cycles of length 2
under u(t + 1)u(t) = δ2

2δ2
2 . We can then obtain a cycle of length 2 in ISTG as

δ2 × δ2
(
(2,1), (2,2)

)
,

which is also simple. Consider

L3 = L(I2 ⊗ L)(I4 ⊗ L) = δ2[1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1].

Since tr(Blk1(L3)) = tr(Blk4(L3)) = tr(Blk6(L3)) = tr(Blk7(L3)) = 2, we have
T (Blk4(L3)) = T (Blk6(L3)) = T (Blk7(L3)) = 2, and T (Blki(L3)) = 0 for i =

1,2,3,5, 8. It follows that N3 = 2. δ1
2 and δ2

2 are in cycles of length 3 under
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u(t + 2)u(t + 1)u(t) = δ4
8 = δ1

2δ2
2δ2

2 , δ6
8 = δ2

2δ1
2δ2

2 , and δ7
8 = δ2

2δ2
2δ1

2 . We can then
obtain the cycles of length 3 in the ISTG as

δ2 × δ2
(
(1,1), (2,1), (2,2)

)
, δ2 × δ2

(
(2,1), (1,2), (2,2)

)
.

Finally, since

L4 = L(I2 ⊗ L)(I4 ⊗ L)(I8 ⊗ L)

= δ2[1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1
2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2],

we have tr(Blki(L4)) = 2, i = 1,4,6,7,10,11,13,16.
Therefore T (Blki(L4)) = 2 for i = 4, 6, 7, 10, 11, 13, otherwise

T (Blki(L4)) = 0, hence N4 = 3. δ1
2 and δ2

2 are in cycles of length 4 under
u(t + 3)u(t + 2)u(t + 1)u(t) = δ4

16 = δ1
2δ1

2δ2
2δ2

2 , δ6
16 = δ1

2δ2
2δ1

2δ2
2 , δ7

16 = δ1
2δ2

2δ2
2δ1

2 ,
δ10

16 = δ2
2δ1

2δ1
2δ2

2 , δ11
16 = δ2

2δ1
2δ2

2δ1
2 , and δ13

16 = δ2
2δ2

2δ1
2δ1

2 . We can then obtain the cycles
of length 4 in the ISTG as

δ2 × δ2
(
(1,1), (2,1), (1,2), (2,2)

)
,

δ2 × δ2
(
(1,2), (1,2), (2,2), (2,1)

)
,

δ2 × δ2
(
(1,1), (1,1), (2,1), (2,2)

)
.

This result is the same as what we observed from the graph in Example 15.3.

15.3 Optimal Control of Logical Control Networks

In this section we consider the optimal control and optimal trajectory of logical con-
trol networks. Corollary 15.1 generalizes a result in [2] for single-variable Boolean
networks to multivariable k-valued logical networks. However, after expression
them into graphs, there is no essential difference, so the proofs are similar. Corol-
lary 15.1 ensures that the optimal control can be achieved on a trajectory which
converges to a cycle. In the sequel, using the matrix expression of logical functions,
we give a method to find the optimal trajectory and obtain a G∗, called the optimal
control matrix, such that

u∗(t + 1) = G∗u∗(t)x∗(t).

Proposition 15.3 The limit

J
(
u∗

)
:= lim

T →∞

1

T

T∑

t=1

P
(
x∗(t), u∗(t)

)
(15.22)

always exists.
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Proof Consider the system (15.1). According to Corollary 15.1, an optimal trajec-
tory will converge to an attractor. As a limit, J (u∗) is the average over an attractor
(fixed point or cycle). �

Proposition 15.4 For any cycle C, there exists a simple cycle Cs such that

Pa(Cs) ≥ Pa(C). (15.23)

Proof Denote by C = δkm × δkn((i(t), j (t)), (i(t + 1), j (t + 1)), . . . , (i(t + d − 1),
j (t + d − 1))) an arbitrary cycle. If it is a simple cycle, then the result is trivial.
Otherwise, assume δ

j (ξ)
kn = δ

j (ℓ)
kn , ξ < ℓ, and that C1 = δkm × δkn((i(ξ), j (ξ)), . . . ,

(i(ℓ − 1), j (ℓ − 1))) is a simple cycle. If Pa(C1) ≥ Pa(C), then we are done.
Otherwise, we remove C1. The remainder then forms a new cycle C′

1 because

Lδ
i(ξ−1)
km δ

j (ξ−1)
kn = δ

i(ξ)
kn = δ

i(ℓ)
kn . Now, Pa(C

′
1) > Pa(C). If C′

1 is a simple cycle, then
we are done. Otherwise, we can find a simple cycle C2 such that either it satis-
fies (15.23) or we can remove it. Continuing this process, we will eventually find a
simple cycle Cs such that (15.23) holds. �

By (15.15), at the d th step, the initial state x0 can reach

Rd(x0) =
{
u(d)Ld ⋉d

ℓ=1 u(d − ℓ)x0
∣∣∀u(ℓ) ∈ Δkm ,0 ≤ ℓ ≤ d

}
,

and if x0 = δ
j (0)

kn ,

Rd(x0) =
{
u(d)Colℓ(Ld)

∣∣∀u(d) ∈ Δkm , ℓ = j (0)
(
mod kn

)}
.

If δi
kmδ

j

kn is reached from x0 at the d th step, d ≥ kn, then the path from the initial

state to δi
kmδ

j

kn must pass a state at least twice. Similarly to the proof of Proposi-

tion 15.4, we can finally conclude that the state δi
kmδ

j

kn can be reached from x0 at
the d ′th step, where d ′ < kn. Thus,

R(x0) =

kn−1⋃

d=0

Rd(x0). (15.24)

According to the above argument, we can find the optimal cycle C∗ from all the
simple cycles contained in R(x0). Denote the shortest path from the initial state to
C∗ by

(
δ
i(0)
km δ

j (0)

kn , δ
i(1)
km δ

j (1)

kn , . . . , δ
i(T0−1)
km δ

j (T0−1)

kn

)
, (15.25)

where

C∗ = δkm × δkn

((
i(T0), j (T0)

)
, . . . ,

(
i(T0 + d − 1), j (T0 + d − 1)

))
.

We call (15.25) the optimal trajectory.
Next, we will prove the existence of the optimal control matrix G∗.
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Table 15.1 Payoff bi-matrix
P1\P2 L M R

L 3,3 0,4 9,2

M 4,0 4,4 5,3

R 2,9 3,5 6,6

Theorem 15.2 Consider the k-valued logical control network (15.1) with objective

function (15.4). Let the optimal trajectory be (15.25), and the optimal control be

u∗(t). There then exists a logical matrix G∗ ∈ Lkn×kn+m , satisfying

{
x∗(t + 1) = Lu∗(t)x∗(t),

u∗(t + 1) = G∗u∗(t)x∗(t).
(15.26)

Proof According to Proposition 15.4 we can find an optimal cycle from the set of
all simple cycles. Because the length of a simple cycle cannot be greater than kn, we
assume the initial state of a trajectory is δ

j (0)

kn . We can find all cycles with length less
than or equal to kn which can be reached from the initial state and then determine
the optimal trajectory (15.25). It is easy to show that T0 + d ≤ km+n, so we can get
T0 + d columns of the optimal control matrix G∗, which satisfies

Cols
(
G∗

)
=

{
δ
i(ℓ+1)
km , s = (i(ℓ) − 1)kn + j (ℓ), ℓ ≤ T0 + d − 2,

δ
i(T0)
km , s = (i(T0 + d − 1) − 1)kn + j (T0 + d − 1),

(15.27)

and the other columns of G∗ [Col(G∗) ⊂ Δkm ] can be arbitrary. Thus, G∗ can be
constructed. �

Example 15.6 Recall Example 15.3 and Example 15.5. Set

P
(
u(t), x(t)

)
= uT(t)

[
1 2
3 4

]
x(t)

and assume the initial state x0 = δ2
2 . From the result of Example 15.5 we can see

that C∗ = δ2 × δ2((2,1), (2,2)) is obviously the optimal cycle. Choosing u(0) = δ2
2 ,

the optimal cycle and the shortest path from δ2
2 to the cycle is

δ2 × δ2
(
(2,2), (2,1)

)
.

Therefore G∗ = δ2[i j 2 2] and i, j can be either 1 or 2.

Example 15.7 We consider the following infinitely repeated game. Both player 1
and player 2 have three possible actions, {L,M,R}. The payoff bi-matrix is as-
sumed to be as in Table 15.1.

It is easy to check that (M,M), which means that player 1 chooses M and player
2 also chooses M , is the unique Nash equilibrium of the one-stage game, but it is
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obvious that (R,R) is more efficient than (M,M). In the infinitely repeated game,
assume that player 2’s strategy is fixed as follows: he plays R in the first stage,
and in the t th stage, if the outcome in the (t − 1)th stage was (R,R), he plays R,
otherwise, he plays M . This is called the “trigger strategy” [1].

Let L ∼ 1,M ∼ 0.5, and R ∼ 0. The above game can be rewritten as

x(t + 1) = Lu(t)x(t), (15.28)

where

L = δ3[2 2 2 2 2 2 2 2 3].

x(t) ∈ ∆3, as the state, is the action of player 2 at the t th stage; u(t) ∈ ∆3, as the
control, is the action of player 1 at t th stage.

As we know, the trigger strategy is the Nash equilibrium of an infinitely repeated
finite game in which the payoff function is

(1 − δ)

∞∑

t=1

δt−1πt ,

where πt is the payoff at the t th stage and δ is the discount factor, when δ is suffi-
ciently close to 1 [1].

Ignoring the discount factor, our respective payoff functions for player 1 and
player 2 are

J1 = lim
T →∞

1

T

T∑

t=1

P1
(
x(t), u(t)

)
,

J2 = lim
T →∞

1

T

T∑

t=1

P2
(
x(t), u(t)

)
,

where

P1
(
x(t), u(t)

)
= uT(t)

⎡
⎣

3 0 9
4 4 5
2 3 6

⎤
⎦x(t),

P2
(
x(t), u(t)

)
= uT(t)

⎡
⎣

3 4 2
0 4 3
9 5 6

⎤
⎦x(t).

A natural question is whether the trigger strategy is still a Nash equilibrium in this
game. Player 2 has adopted the trigger strategy, and we want to find the best response
for player 1. The question is then converted to one of finding the optimal control of
the 3-valued logical control network (15.28) which maximizes J1.

We now calculate the cycles:

L1 = L = δ3[2 2 2 2 2 2 2 2 3],
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thus tr(Blk1(L1)) = 1, tr(Blk2(L1)) = 1, tr(Blk3(L1)) = 2, and N1 = 4. δ2
3 is a

fixed point under u = δi
3, i = 1,2,3, and δ3

3 is a fixed point under u = δ3
3 , so the

fixed points of the system (15.28) are

δ3 × δ3
(
(1,2)

)
, δ3 × δ3

(
(2,2)

)
, δ3 × δ3

(
(3,2)

)
, and δ3 × δ3

(
(3,3)

)
.

L2 = L(I3 ⊗ L) = δ3[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3],

tr(Blki(L2)) = 1, i = 1, . . . ,8, tr(Blk9(L2)) = 2. For u(t + 1)u(t) = δ1
9 = δ1

3δ1
3 ,

T
(
Blk1(L2)

)
= tr

(
Blk1(L2)

)
− tr

(
Blk1(L1)

)
= 0.

Similarly, we obtain T (Blk1(L2)) = T (Blk5(L2)) = T (Blk9(L2)) = 0,
T (Blki(L2)) = 1, i = 2,3,4,6,7,8. Thus, N2 = 3. δ2

3 is in cycles of length 2 with
u(t + 1)u(t) = δi

9, i = 2,3,4,6,7,8. We can then find the cycles of length 2 as

δ3 × δ3
(
(1,2), (2,2)

)
, δ3 × δ3

(
(1,2), (3,2)

)
, δ3 × δ3

(
(2,2), (3,2)

)
.

L3 = Lx(I3 ⊗ Lx)(I9 ⊗ Lx) = δ81[2 · · · 2︸ ︷︷ ︸
80

3].

By (15.19) we have T (Blki(L3)) = 1, i = 2, . . . ,13,15, . . . ,26, T (Blki(L3)) = 0,
i = 1,14,27, and N3 = 8. δ2

3 is in cycles of length 3 with u(t +2)u(t +1)u(t) = δi
27,

i = 2, . . . ,13,15, . . . ,26. We can then find the cycles of length 3 as

δ3 × δ3
(
(1,2), (1,2), (2,2)

)
, δ3 × δ3

(
(1,2), (3,2), (2,2)

)
,

δ3 × δ3
(
(1,2), (1,2), (3,2)

)
, δ3 × δ3

(
(1,2), (3,2), (3,2)

)
,

δ3 × δ3
(
(1,2), (2,2), (2,2)

)
, δ3 × δ3

(
(2,2), (2,2), (3,2)

)
,

δ3 × δ3
(
(1,2), (2,2), (3,2)

)
, δ3 × δ3

(
(2,2), (3,2), (3,2)

)
.

There are also many cycles of length greater than or equal to 4, but we have proven
that to deal with the optimal control of this game, finding all the cycles of length
less than or equal to 3 is sufficient.

As a trigger strategy, from the initial state x0 = δ3
3 , the reachable set is

R(x0) =
{
δ1

3δ2
3, δ2

3δ2
3, δ3

3δ2
3, δ1

3δ3
3, δ2

3δ3
3, δ1

3δ3
3

}
.

Using the above result, all the simple cycles contained in R(x0) are δ3 × δ3((1,2)),
δ3 ×δ3((2,2)), δ3 ×δ3((3,2)), and δ3 ×δ3((3,3)), and, among them, δ3 ×δ3((3,3))

is the optimal cycle. Choosing u∗(0) = δ3
3 , we then have

G∗ = δ3[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3],

where the first eight columns can be arbitrary.
For instance, we can choose

G∗ = δ3[2 2 2 2 2 2 2 2 3],
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which is the trigger strategy. We conclude that the best response for player 1 is to
adopt the trigger strategy if player 2 has adopted the trigger strategy. The payoffs
are symmetrical, so if player 1 has adopted the trigger strategy, the best response for
player 2 is also to adopt the trigger strategy. This means that the trigger strategy is a
Nash equilibrium of this game.

15.4 Optimal Control of Higher-Order Logical Control

Networks

In general, a µth order logical control network can be expressed as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), . . . , x1(t − µ + 1), . . . , xn(t − µ + 1),

u1(t), . . . , um(t), . . . , u1(t − µ + 1), . . . , um(t − µ + 1))

x2(t + 1) = f2(x1(t), . . . , xn(t), . . . , x1(t − µ + 1), . . . , xn(t − µ + 1),

u1(t), . . . , um(t), . . . , u1(t − µ + 1), . . . , um(t − µ + 1))

...

xn(t + 1) = fn(x1(t), . . . , xn(t), . . . , x1(t − µ + 1), . . . , xn(t − µ + 1),

u1(t), . . . , um(t), . . . , u1(t − µ + 1), . . . , um(t − µ + 1)),

yj (t) = hj

(
x1(t), . . . , xn(t)

)
, j = 1, . . . , p.

(15.29)

To deal with aµth order logical control network, we first consider how to convert
it to a first order form. Recall that in last chapter we defined the base-k power-
reducing matrix, in (14.18). This can be compactly expressed as

Mr,k = δk2[1 k + 2 2k + 3 · · · (k − 1)k + k]. (15.30)

If we now assume x = ⋉
µ
i=1xi ∈ ∆kµ , then (14.31) shows that

x2 = Φµ,kx, (15.31)

where

Φµ,k :=

µ∏

i=1

Iki−1 ⊗
[
(Ik ⊗ W[k,kµ−i ])Mr,k

]
= Mr,kµ , (15.32)

and we can prove the following retrieval formulas.

Lemma 15.1 If we assume x = ⋉n
i=1xi ∈ ∆kn , where xi ∈ ∆k , and define

F[m,n],k = Ikm ⊗ 1T
kn−m,

E[m,n],k = 1T
kn−m ⊗ Ikm,

then

F[m,n],kx = ⋉m
i=1xi, E[m,n],kx = ⋉n

i=n−m+1xi .
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Proof If ⋉m
i=1xi = δ

j
km , then

F[m,n],kx =
(
Ikm ⊗ 1T

kn−m

)
⋉ δ

j
km ⋉n

i=m+1 xi = δ
j
km ⋉ 1T

kn−m ⋉n
i=m+1 xi = δ

j
km .

Whatever ⋉n−m
i=1 xi is, we also have

E[m,n],kx = E[m,n],k ⋉n−m
i=1 xi ⋉n

i=n−m+1 xi = Ikm ⋉n
i=n−m+1 xi = ⋉n

i=n−m+1xi .

�

In the following we use the simpler notation Mr , Φµ, F[m,n], and E[m,n] for Mr,k ,
Φµ,k , F[m,n],k , and E[m,n],k , respectively, where the default k is assumed to be the
type of logic. Let x(t) = ⋉n

i=1xi(t), u(t) = ⋉m
i=1ui(t). Each equation of the µth

order logical control network (15.29) can be written in its componentwise algebraic
form as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1(t + 1) = M1u(t − µ + 1) · · ·u(t)x(t − µ + 1) · · ·x(t),

x2(t + 1) = M2u(t − µ + 1) · · ·u(t)x(t − µ + 1) · · ·x(t),

...

xn(t + 1) = Mnu(t − µ + 1) · · ·u(t)x(t − µ + 1) · · ·x(t).

(15.33)

Multiplying the equations in (15.33) together, we obtain

x(t + 1) = L ⋉
µ
i=1 u(t − µ + i) ⋉

µ
i=1 x(t − µ + i), (15.34)

where

L = M1

n∏

j=2

[
(Ikµ(m+n) ⊗ Mj )Φµ(m+n)

]
.

If we let z(t) = ⋉
t+µ−1
i=t x(i), v(t) = ⋉

t+µ−1
i=t u(i), then (15.34) can be converted to

x(t + 1) = Lv(t − µ + 1)z(t − µ + 1).

We then have

z(t + 1) = ⋉
t+µ
i=t+1x(i)

= ⋉
t+µ−1
i=t+1 x(i)Lv(t)z(t)

= (Ik(µ−1)n ⊗ L) ⋉
t+µ−1
i=t+1 x(i)v(t)z(t)

= (Ik(µ−1)n ⊗ L)W[kµm+n,k(µ−1)n]v(t)z(t) ⋉
t+µ−1
i=t+1 x(i)

= (Ik(µ−1)n ⊗ L)W[kµm+n,k(µ−1)n]v(t)x(t)Φ(µ−1)n ⋉
t+µ−1
i=t+1 x(i)

:= L̃v(t)z(t), (15.35)
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where

L̃ = (Ik(µ−1)m ⊗ L)W[kµm+n,k(µ−1)n](Ikµm+n ⊗ Φ(µ−1)n).

Note that the v(t), t = 0,1, . . . , here are not completely independent as they should
satisfy

F[(µ−1)m,µm]v(t + 1) = E[(µ−1)m,µm]v(t).

Thus, (15.34) can be converted to

{
z(t + 1) = L̃v(t)z(t),

F[(µ−1)m,µm]v(t + 1) = E[(µ−1)m,µm]v(t).
(15.36)

Similarly to (15.15), if z(t) is in a cycle of length d , then we have

z(t) = z(t + d) = L̃dv(t + d − 1)v(t + d − 2) · · ·v(t)z(t), (15.37)

where

L̃d =

d∏

i=1

(
Ik(i−1)µm ⊗ L̃

)
.

v(t + d − 1)v(t + d − 2) · · ·v(t) can be simplified as

v(t + d − 1) · · ·v(t)

= ⋉
t+d+µ−2
i=t+d−1 u(i) ⋉

t+d+µ−3
i=t+d−2 u(i) · · · ⋉

t+µ−1
i=t u(i)

= W[kµm] ⋉
t+d+µ−3
i=t+d−2 u(i) ⋉

t+d+µ−2
i=t+d−1 u(i) ⋉

t+d+µ−4
i=t+d−3 u(i) · · · ⋉

t+µ−1
i=t u(i)

= W[kµm]

(
u(t + d − 2)Φ(µ−1)m ⋉

t+d+µ−3
i=t+d−1 u(i)u(t + d + µ − 2)

)

⋉
t+d+µ−4
i=t+d−3 u(i) · · · ⋉

t+µ−1
i=t u(i)

= W[kµm](Ikm ⊗ Φ(µ−1)m) ⋉
t+d+µ−2
i=t+d−2 u(i) ⋉

t+d+µ−4
i=t+d−3 u(i) · · · ⋉

t+µ−1
i=t u(i)

...

=

d−1∏

i=1

(
W[kµm,k(µ+i−1)m](Ikm ⊗ Φ(µ−1)m)

)
⋉

t+µ+d−2
i=t u(i)

:= R ⋉
t+µ+d−2
i=t u(i),

where

R =

d−1∏

i=1

(
W[kµm,k(µ+i−1)m](Ikm ⊗ Φ(µ−1)m)

)
.
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Moreover, v(t + d) = v(t) must hold, that is,

⋉
t+d+µ−1
i=t+d u(i) = ⋉

t+µ−1
i=t u(i). (15.38)

Assuming that µ = sd + r , where s = [µ
d
], µ = r (mod d), the product

v(t + d − 1)v(t + d − 2) · · ·v(t) becomes

v(t + d − 1) · · ·v(t)

= R ⋉t+d−1
i=t u(i) ⋉

t+d+µ−2
i=t+d u(i)

= R ⋉t+d−1
i=t u(i)

(
⋉t+d−1

i=t u(i)
)s−1

⋉t+d+r−2
i=t u(i)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

R(Φdm)s−1(Ik(d−1)m ⊗ W[k(d−1)m,km])Φ(d−1)m ⋉t+d−1
i=t u(i), r = 0,

R(Φdm)s ⋉t+d−1
i=t u(i), r = 1,

R(Φdm)s(Ik(r−1)m ⊗ W[k(r−1)m,k(d−r+1)m])

× Φ(r−1)m ⋉t+d−1
i=t u(i), 2 ≤ r ≤ d − 1.

Equation (15.37) is then converted to

z(t) = Ψd ⋉t+d−1
i=t u(i)z(t), (15.39)

where

Ψd =

⎧
⎪⎨
⎪⎩

L̃dR(Φdm)s−1(Ik(d−1)m ⊗ W[k(d−1)m,km])Φ(d−1)m, r = 0,

L̃dR(Φdm)s, r = 1,

L̃dR(Φdm)s(Ik(r−1)m ⊗ W[k(r−1)m,k(d−r+1)m])Φ(r−1)m, 2 ≤ r ≤ d − 1.

Note that in (15.39), u(i), i = t, t +1, . . . , t +d −1 are independent. Referring to
the method developed in Sect. 15.2, we can search the cycles of length d of (15.36)
by using (15.39) and checking the trace of Blki(Ψd): if its (j, j)-element equals 1,
then z(t) = δ

j
kμn is in a cycle of length d under u(t)u(t + 1) · · ·u(t + d − 1) = δi

kdm .
Using (15.38) we can get v(t), . . . , v(t + d − 1), and we can then obtain the cycle.
Note that when ℓ is a proper factor of d , and z(t) is in the cycles of length ℓ and d

simultaneously under ⋉t+ℓ−1
ξ=t ũ(ξ) = δ

j

kℓm and ⋉t+d−1
ξ=t u(ξ) = δi

kdm , respectively, we

have the same cycle in control-state space if and only if δi
kdm = (δ

j

kℓm)
d
ℓ . To count

the number of cycles, we should take out these repeated cycles. Thus, we have the
following theorem, similar to Theorem 15.1.

Theorem 15.3 The number of length-d cycles of the logical control network (15.36)
is inductively determined by

Nd =
1

d

kdm∑

i=1

T
(
Blki(Ψd)

)
, (15.40)
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where

T
(
Blki(Ψd)

)
= tr

(
Blki(Ψd)

)
−

∑

(ℓ,j)∈θ(i,d)

T
(
Blkj (Ψℓ)

)
.

Proposition 15.5 There is a one-to-one correspondence between the cycles of the

system (15.36) and the cycles of the higher-order logical control network (15.29).

Proof Since δi
kμ(m+n) can be decomposed uniquely as ⋉

μ
ℓ=1δ

i(ℓ)
km ⋉

μ
ℓ=1 δ

j (ℓ)

kn , we can
construct a function π : Δkμ(m+n) ,Δkm+n as follows:

π
(
δi
kμ(m+n)

)
:= F[m,μm](Ikμm ⊗ F[n,μn])δ

i
kμ(m+n) = δ

i(1)
km δ

j (1)

kn . (15.41)

Denote by Ωvz and Ωux all the cycles of the system (15.36) and the higher-order
logical control network (15.29), respectively. We then define ψ : Ωvz → Ωux as
follows: For any C = (v(t)z(t), . . . , v(t + d − 1)z(t + d − 1)),

ψ(C) :=
(
π

(
v(t)z(t)

)
, . . . , π

(
v(t + d − 1)z(t + d − 1)

))
. (15.42)

Let u(ξ) = u(ℓ), x(ξ) = x(ℓ), v(ξ) = v(ℓ), and z(ξ) = z(ℓ), when ξ = ℓ (mod d).
Because

L ⋉t+d−1
i=t+d−μ π

(
v(i)z(i)

)
= Lv(t + d − μ)z(t + d − μ) = F[n,μn]z(t + d),

ψ(C) is a cycle in Ωux . Thus, ψ is well defined. We then prove the following:
(1) ψ is surjective. For any cycle C ∈ Ωux , C = (u(t)x(t), u(t + 1) ×

x(t + 1), . . . , u(t + d − 1)x(t + d − 1)), let C1 = {v(t)z(t), . . . , v(t + d − 1) ×

z(t + d − 1)}, where v(i) = ⋉i+d−1
ξ=i u(ξ), z(i) = ⋉i+d−1

ξ=i x(ξ). We can then easily
check that ψ(C1) = C.

(2) ψ is injective. If there is another cycle C2 = (̃v(t )̃z(t), . . . , ṽ(t + d − 1) ×

z̃(t + d − 1)) such that ψ(C2) = C, then there exists an a ≤ d such that
π(̃v(i)̃z(i)) = u(a + i − 1)x(a + i − 1). That is, the first m factors of ṽ(i) form
u(a + i − 1), and the first n factors of z̃(i) form x(a + i − 1). By (15.36) we know
that the first (k − 1)m factors of ṽ(i + 1) are equal to the last (k − 1)m factors of
ṽ(i), while the first (k − 1)n factors of z̃(i + 1) are equal to the last (k − 1)n factors
of z̃(i). Thus, we obtain

ṽ(i) = ⋉
a+i+μ−2
ξ=a+i−1 u(ξ) = v(a + i − 1),

z̃(i) = ⋉
a+i+μ−2
ξ=a+i−1 x(ξ) = z(a + i − 1).

It is then obvious that C2 = C1. �

We now consider the optimal control of the μth order logical network. Set

J̃ (v) = lim
T →∞

1

T

T∑

t=1

P̃
(
z(t), v(t)

)
, (15.43)
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where

P̃
(
z(t), v(t)

)
= P

(
F[n,µn]z(t),F[m,µm]v(t)

)
.

By Lemma 15.1 it is easy to see that F[n,µn]z(t) = x(t) and F[m,µm]v(t) = u(t).
Maximizing (15.43) is then equivalent to maximizing (15.4).

Proposition 15.4 is no longer true, but it is easy to see that the optimal cycles
(in Ωvz) can be found in the cycles with no repeated element. Thus, we can only
search from the cycles with lengths less than or equal to the number of elements of
the reachable set R(z0) of the initial state z0. The following theorem can then be
obtained.

Theorem 15.4 For the μth order logical control network (15.29) with the objective

function (15.43), there exists an optimal logical control matrix G∗ such that the

objective function is maximized and the trajectory of s∗(t) = u∗(t)x∗(t) will become

periodic after a certain (finite) time.

Proof We can use (15.36) and (15.43) to replace (15.29) and (15.4), respectively,
to find the optimal control. (15.36) can also be described as a directed graph with
finite vertices, so, similarly to Corollary 15.1, we can find the optimal cycle in Ωvz.
Using (15.42), the optimal cycle in Ωux can then be obtained. Denote the shortest
path from the initial state δ

j (0)

kn , . . . , δ
j (μ−1)

kn to C∗ by

(
δ
i(0)
km δ

j (0)

kn , δ
i(1)
km δ

j (1)

kn , . . . , δ
i(T0−1)
km δ

j (T0−1)

kn ,C∗
)
,

where

C∗ = δkm × δkn

((
i(T0), j (T0)

)
,
(
i(T0 + 1), j (T0 + 1)

)
, . . . ,

(
i(T0 + d − 1), j (T0 + d − 1)

))
.

In the following, if ℓ = ξ (mod d) where ℓ ≥ T0 and T0 ≤ ξ ≤ T0 + d − 1, then we
set i(ℓ) = i(ξ). Using this convention, we can find G∗ satisfying

Cols
(
G∗

)
= δ

i(ℓ+1)
km , μ − 1 ≤ ℓ ≤ T0 + d + μ − 2, (15.44)

where

s =

μ∑

ξ=1

(
i(ℓ − μ + ξ) − 1

)
k(μ−ξ)m+μn +

μ−1∑

ζ=1

(
j (ℓ − μ + ζ ) − 1

)
k(μ−ζ )n + j (ℓ)

and the other columns of G∗ [Col(G∗) ⊂ Δkm ] can be arbitrary. The higher-order
logical control network (15.29) is then converted to

{
x∗(t + 1) = Lu∗(t − k + 1) · · ·u∗(t)x∗(t − k + 1) · · ·x∗(t),

u∗(t + 1) = G∗u∗(t − k + 1) · · ·u∗(t)x∗(t − k + 1) · · ·x∗(t).
(15.45)

�
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Table 15.2 Payoff bi-matrix
P1\P2 0 1

0 3, 3 0, 5

1 5, 0 1, 1

Example 15.8 We consider the model of the infinite prisoner’s dilemma [2].
Player 1 is a machine and player 2 is a person. Their possible actions are

0: the player cooperates with the partner,
1: the player betrays the partner.

The payoff bi-matrix is assumed to be as in Table 15.2.
Assume that the machine strategy, which depends on the µ-memory, is fixed. It

is defined as

m(t + 1) = fm

(
m(t − µ + 1),m(t − µ + 2), . . . ,m(t),

h(t − µ + 1), h(t − µ + 2), . . . , h(t)
)
, (15.46)

where the machine strategy m(t) is considered as the state and fm is a fixed logical
function. The human strategy, h(t), is considered as the control. Denote by ph(t) :=

ph(m(t), h(t)) the payoff of the human. Our purpose is to design an optimal control
to maximize the average human payoff

J = lim
T →∞

1

T

T∑

t=1

ph(t). (15.47)

Assuming that the machine uses the strategy “Two Tits For One Tat”, it will take
the action m(t + 1) = 0 only under (h(t − 1), h(t),m(t − 1),m(t)) = (0,0,1,1).
Assuming that the initial state and control are m(0) = m(1) = h(0) = h(1) = 0, then
(15.46) and the human payoff Ph can be rewritten as

m(t + 1) = Lh(t − 1)h(t)m(t − 1)m(t), (15.48)

where

L = δ2[1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1]

and

P
(
m(t), h(t)

)
:= Ph = hT(t)

[
1 5
0 3

]
m(t).

Set z(t) = m(t)m(t + 1), v(t) = h(t)h(t + 1), and s(t) = v(t)z(t). From (15.35),
(15.48) can be converted to

z(t + 1) = L̃v(t)z(t), (15.49)
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where

L̃ = (I2 ⊗ Lm)W[8,2](I8 ⊗ MR)

= δ4[1 3 1 3 1 3 1 3 1 3 1 3 2 3 1 3].

From (15.43),

P̃
(
δ1

4δ1
4

)
= P̃

(
δ1

4δ2
4

)
= P̃

(
δ2

4δ1
4

)
= P̃

(
δ2

4δ2
4

)
= 1,

P̃
(
δ1

4δ3
4

)
= P̃

(
δ1

4δ4
4

)
= P̃

(
δ2

4δ3
4

)
= P̃

(
δ2

4δ4
4

)
= 5,

P̃
(
δ3

4δ1
4

)
= P̃

(
δ3

4δ2
4

)
= P̃

(
δ4

4δ1
4

)
= P̃

(
δ4

4δ2
4

)
= 0,

P̃
(
δ3

4δ3
4

)
= P̃

(
δ3

4δ4
4

)
= P̃

(
δ4

4δ3
4

)
= P̃

(
δ4

4δ4
4

)
= 3.

It is easy to check that the reachable set of the initial state (x(0), u(0), x(1),
u(1)) = (0,0,0,0) is

R
(
δ4

4δ4
4

)
=

{
δ1

4δ1
4, δ1

4δ3
4, δ2

4δ1
4, δ2

4δ3
4, δ3

4δ1
4, d3

4δ2
4, δ3

4δ3
4, δ4

4δ1
4, δ4

4δ2
4, δ4

4δ3
4

}
,

which consists of 10 elements.
By Theorem 15.3, we can obtain the cycles of length less than or equal to 10 with

no repeated elements as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 = δ4 × δ4{(1,1)},

C2 = δ4 × δ4{(2,1), (3,1)},

C1
3 = δ4 × δ4{(1,1), (2,1), (3,1)},

C2
3 = δ4 × δ4{(2,3), (4,1), (3,2)},

C3
3 = δ4 × δ4{(4,1), (4,2), (4,3)},

C1
4 = δ4 × δ4{(1,3), (2,1), (4,1), (3,2)},

C2
4 = δ4 × δ4{(2,1), (4,1), (4,2), (3,3)},

C1
5 = δ4 × δ4{(1,1), (2,1), (4,1), (3,2), (1,3)},

C2
5 = δ4 × δ4{(2,1), (4,1), (3,2), (2,3), (3,1)},

C3
5 = δ4 × δ4{(1,1), (2,1), (4,1), (4,2), (3,3)},

C4
5 = δ4 × δ4{(2,1), (4,1), (4,2), (4,3), (3,1)},

C1
6 = δ4 × δ4{(1,1), (2,1), (4,1), (3,2), (2,3), (3,1)},

C2
6 = δ4 × δ4{(1,1), (2,1), (4,1), (4,2), (4,3), (3,1)}.

A straightforward calculation shows that the optimal cycle is C2
3 , which has average

human payoff 5
3 . This result coincides with the one in [2].
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The optimal trajectory for the system (15.49) is

δ4
4δ4

4 → δ4
4δ3

4 → δ4 × δ4
{
(4,1), (3,2), (2,3)

}
.

Thus, we can find the optimal trajectory for the system (15.48) as

δ2
2δ2

2 → δ2
2 × δ2

2 → δ2 × δ2
{
(2,1), (2,1), (1,2)

}
.

Then,

G∗ = δ2[∗ ∗ ∗ ∗ ∗ ∗ 2 ∗ ∗ 2 1 ∗ ∗ ∗ ∗ 2 2],

where ∗ can be chosen arbitrarily from {1,2}.
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Chapter 16

Input-State Incidence Matrices

16.1 The Input-State Incidence Matrix

Consider a Boolean control network with n network nodes, m input nodes, and p

output nodes. Its dynamics is described as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)), xi ∈ D,

yj (t) = hj

(
x1(t), . . . , xn(t)

)
, j = 1, . . . , p; yj ∈ D,

(16.1)

where fi : Dn+m → D , i = 1, . . . , n, and hi : Dn → D , j = 1, . . . , p, are logical
functions. Its algebraic form is

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(16.2)

where L ∈ L2n×2n+m and H ∈ L2p×2n .
We first ignore the output and consider the input-state transfer graph (ISTG) of

the system (16.1). ISTGs were briefly explained in the last chapter. We now give one
more example, in order to explain them more thoroughly, as well as to introduce the
input-state incidence matrix.

Example 16.1 Consider the Boolean control network Σ , given by

Σ :

{

x1(t + 1) = (x1(t) ∨ x2(t)) ∧ u(t),

x2(t + 1) = x1(t) ↔ u(t).
(16.3)

Setting x(t) = x1(t) ⋉ x2(t), it is easy to calculate that the algebraic form of Σ is

Σ : x(t + 1) = Lu(t)x(t), (16.4)
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Fig. 16.1 Input-state transfer
graph

where

L = δ4[1 1 2 4 4 4 3 3]. (16.5)

According to the dynamic equation (16.3) [equivalently, (16.4)], we can draw the
flow of (u(t), (x1(t), x2(t))) on the product space U × X , called the input-state
transfer graph, as in Fig. 16.1.

Using vector form, the input-state product space becomes ∆×∆4. We may define
the points in the input-state product space as P1 = δ1

2 × δ1
4 , P2 = δ1

2 × δ2
4, . . . ,P8 =

δ2
2 × δ4

4 . We now construct an 8 × 8 matrix, J (Σ), in the following way:

Jij =

{

1, there exists an edge from Pj to Pi,

0, otherwise.

J (Σ), called the input-state incidence matrix of the Boolean control network Σ ,
is then

J (Σ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16.6)

It is easy to see that the incidence matrix of a Boolean control network is indeed
the transpose of the adjacency matrix of the input-state transfer graph (note that it is
different from the adjacency matrix of a Boolean network). However, it is very dif-
ficult to find this matrix by drawing the graph since the graph will be very complex
when n and m are not very small.

Next, we explore the structure of the input-state incidence matrix. Comparing
(16.6) with (16.5), it may seem surprising to find that

J (Σ) =

[

L

L

]

.
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In fact, this is also true for the general case. Consider equation (16.2). In fact, the j th
column corresponds to the “output” x(t + 1) for the Pj th “input” (u(t), x(t)) of the
dynamical system. If this column Colj (L) = δi

2n , then the output x(t + 1) is exactly
the ith element of x(t) ∈ ∆2n . Now, since u(t + 1) can be arbitrary, it follows that
the input-state incidence matrix of the system (16.2) is

J := J |(16.2) =

⎡

⎢
⎢
⎢
⎣

L

L
...

L

⎤

⎥
⎥
⎥
⎦

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

2m ∈ B2m+n×2m+n , (16.7)

where the first block of rows corresponds to u(t + 1) = δ1
2m , the second block cor-

responds to u(t + 1) = δ2
2m , and so on.

Next, we consider the properties of J . We first introduce a new concept.

Definition 16.1 A matrix A ∈ Mm×n is called a row-periodic matrix with period τ

if τ is a proper factor of m such that Rowi+τ (A) = Rowi(A), 1 ≤ i ≤ m − τ .

The following property can be verified via a straightforward computation.

Proposition 16.1

1. A ∈ Mm×m is a row-periodic matrix with period τ (where m = τk) if and only if

A = 1τA0,

where A0 ∈ Mk×m consists of the first k rows of A, called the basic block of A.
2. If A ∈ Mm×m is a row-periodic matrix with period τ (where m = τk), then so is

As , s ∈ Z+ (where Z+ is the set of positive integers).

Applying Proposition 16.1 to the incidence matrix, we obtain the following re-
sult.

Corollary 16.1 Consider the system (16.1). Its input-state incidence matrix is

J = 12m ⋉ J0, where J0 = L. (16.8)

Moreover, the basic block of J s is

J s
0 = L ⋉ (12m ⋉ L)s−1 . (16.9)

Note that since J s is a row-periodic matrix, it is easy to see that

J s+1
0 = J0J

s = LJ s = L12m ⋉ J s
0 . (16.10)

This equation shows that in calculating J s
0 , we do not need to take account of the

whole of J in the calculation. We summarize this in the following proposition.
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Proposition 16.2

J s+1
0 = MsL, (16.11)

where

M =

2m
∑

i=1

Blki(L).

Proof From (16.10) it is easy to see that J s+1
0 = MJ s

0 . Since J0 = L, (16.11)
follows. �

16.2 Controllability

First, we explore the physical meaning of J s . When s = 1 we know that Jij

dictates whether or not there exists a set of controls such that Pi is reachable from Pj

in one step (based on whether or not Jij = 1). Is there a similar meaning for J s?
The following result answers this question.

Theorem 16.1 Consider the system (16.1) and assume that the (i, j)-element of the

sth power of its input-state incidence matrix, J s
ij , equals c. There are then c paths

from point Pj which reach Pi at the sth step with proper controls.

Proof We prove this by mathematical induction. When s = 1 the conclusion follows
from the definition of the input-state incidence matrix. Now, assume that J s

ij is the
number of the paths from Pj to Pi at the sth step. Since a path from Pj to Pi at the
(s + 1)th step can always be considered as a path from Pj to Pk at the sth step and
then from Pk to Pi at the first step, it can be calculated as

c =

2m+n
∑

k=1

JikJ
s
kj ,

which is exactly J s+1
ij . �

From the above theorem the following result is obvious.

Corollary 16.2 Consider the system (16.1), denoting its input-state incidence ma-

trix by J . Pi is reachable from Pj at the sth step if and only if J s
ij > 0.

The above arguments show that all controllability information is contained in
{J s | s = 1,2, . . .}. By the Cayley–Hamilton theorem of linear algebra, it is easy
to see that if J s

ij = 0, ∀ s ≤ 2m+n, then J s = 0, ∀ s. Next, we consider only
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{J s | s ≤ 2m+n}. Since they are row-periodic matrices, we need only to consider
their basic blocks, J s

0 . We split such a basic block into 2m blocks as

J s
0 =

[

Blk1(J
s

0 ) Blk2(J
s

0 ) · · · Blk2m(J s
0 )

]

, (16.12)

where Blki(J
s

0 ) ∈ M2n×2n , i = 1, . . . ,2m.
Recall Definition 9.1 for controllability.

Definition 16.2 Consider the system (16.1). Denote its state space by X = Dn and
let X0 ∈ X .

1. X ∈ X is said to be reachable from X0 at time s > 0 if we can find a sequence
of controls U(0) = {u1(0), . . . , um(0)}, U(1) = {u1(1), . . . , um(1)}, . . . such that
the trajectory of (16.1) with initial value X0 and controls {U(t)}, t = 0,1, . . . ,

will reach X at time t = s. The reachable set at time s is denoted by Rs(X0). The
overall reachable set is denoted by

R(X0) =

∞
⋃

s=1

Rs(X0).

2. The system (16.1) is said to be controllable at X0 if R(X0) = X . It is said to be
controllable if it is controllable at every X ∈ X .

From Proposition 16.2, Blki(J
s

0 ) = Ms−1 Blki(L). From the construction, it is
clear that Blki(J

s
0 ) corresponds to the ith input u = δi

2m . Moreover, the j th column

of Blkµ(J s
0 ) corresponds to the initial value x0 = δ

j

2n . The following conclusion is
then clear.

Theorem 16.2 Consider the system (16.1), with input-state incidence matrix J .

1. x(s) = δα
2n is reachable from x(0) = δ

j

2n at the sth step if and only if

2m
∑

i=1

(
Blki

(
J s

0

))
αj

=
(
Ms

)
αj

> 0. (16.13)

2. x = δα
2n is reachable from x(0) = δ

j

2n if and only if

2m+n
∑

s=1

2m
∑

i=1

(
Blki

(
J s

0

))
αj

=

2m+n
∑

s=1

(
Ms

)
αj

> 0. (16.14)

3. The system is controllable at x(0) = δ
j

2n if and only if

2m+n
∑

s=1

2m
∑

i=1

Colj
[

Blki

(

J s
0

)]

=

2m+n
∑

s=1

Colj
(

Ms
)

> 0. (16.15)
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4. The system is controllable if and only if the controllability matrix, C , satisfies

C =

2m+n
∑

s=1

2m
∑

i=1

Blki

(
J s

0

)
=

2m+n
∑

s=1

Ms > 0. (16.16)

If A ∈ Mm×n is a real matrix, then the inequality A > 0 is used to mean that all
the entries of A are positive, i.e., ai,j > 0, ∀ i, j .

When controllability is considered, we do not need to consider the number of
paths from one state to another. Hence, the real value of each entry of J s is less
interesting. What we really do need to know is whether it is positive or not. Hence,
we can simply use Boolean algebra in the above calculation. We refer to Chap. 11
for more about the following Boolean algebra.

1. If a, b ∈ D , we can define Boolean addition and the Boolean product, respec-
tively, as

a +B b = a ∨ b, a ×B b = a ∧ b.

{D,+B,×B} forms an algebra, called the Boolean algebra.
2. Let A = (aij ), B = (bij ) ∈ Bm×n. We define

A +B B := (aij +B bij ).

3. Let A ∈ Bm×n and B ∈ Bn×p . We define A ×B B := C ∈ Bm×p , where

cij =

n
∑

k=1
B

aik ×B bkj .

In particular, if A ∈ Bn×n, then

A(2) := A ×B A.

We use a simple example to illustrate the Boolean algebra.

Example 16.2 Assume

A =

⎡

⎣

1 0 0
0 1 0
1 0 1

⎤

⎦ , B =

⎡

⎣

0 1 0
1 0 1
1 0 1

⎤

⎦ .

Then,

A +B B =

⎡

⎣

1 1 0
1 1 1
1 0 1

⎤

⎦ , A ⋉B B =

⎡

⎣

0 1 0
1 0 1
1 1 1

⎤

⎦ .

A(2) =

⎡

⎣

1 0 0
0 1 0
1 0 1

⎤

⎦ , A(s) =

⎡

⎣

1 0 0
0 1 0
1 0 1

⎤

⎦ , s ≥ 3.
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Using Boolean algebra, we have the following alternative condition.

Corollary 16.3 Results 1, 2, 3, and 4 of Theorem 16.2 remain true if, in the corre-

sponding conditions (16.13)–(16.16), J s
0 is replaced by J (s)

0 , and Ms is replaced

by M(s). In particular, we call

MC :=

2m+n
∑

s=1
B

2m
∑

i=1
B

Blki

(
J (s)

0

)
=

2m+n
∑

s=1
B

M(s) ∈ B2n×2n (16.17)

the controllability matrix and write MC = (cij ). Then:

(i) δi
2n is reachable from δ

j

2n if and only if cij > 0.

(ii) The system is controllable at δ
j

2n if and only if Colj (MC ) > 0.
(iii) The system is controllable if and only if MC > 0.

The following example shows how to use Theorem 16.2 or Corollary 16.3.

Example 16.3 Consider the following Boolean control network:

{

x1(t + 1) = (x1(t) ↔ x2(t)) ∨ u1(t),

x2(t + 1) = ¬x1(t) ∧ u2(t),

y(t) = x1(t) ∨ x2(t).

(16.18)

Setting x(t) = ⋉2
i=1xi(t), u = ⋉2

i=1ui(t), we have

{

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(16.19)

where

L = δ4[2 2 1 1 2 2 2 2 2 4 3 1 2 4 4 2 ],

H = δ2[1 1 1 2 ].

For the system (16.18), the basic block of its input-state incidence matrix J0

equals L.

1. Is δ1
4 reachable from x(0) = δ2

4?
After a straightforward computation, we have

(
M(1)

)
12 = 0,

(
M(2)

)
12 > 0.

This means that x(2) = δ1
4 is reachable from x(0) = δ2

4 at the second step.
2. Is the system controllable, or controllable at any point?
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We check the controllability matrix:

MC =

24
∑

s=1
B

M(s) =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 1 1
0 0 1 0
1 1 1 1

⎤

⎥
⎥
⎦

.

According to Corollary 16.3, we conclude that:
(i) The system is not controllable. However, it is controllable at x0 = δ3

4 ∼

(0,1).
(ii) xd = δ3

4 ∼ (0,1) is not reachable from x0 = δ1
4 ∼ (1,1), x0 = δ2

4 ∼ (1,0), or
x0 = δ4

4 ∼ (0,0).

16.3 Trajectory Tracking and Control Design

Assume xd ∈ R(x0). The purpose of this section is to find a control which drives x0

to xd . Since the trajectory from x0 to xd (driven by a proper sequence of controls)
is generally not unique, we only try to find the shortest one. A similar approach can
produce all the required trajectories.

Assume that x0 = δ
j

2n and xd = δi
2n . Consider the following algorithm.

Algorithm 16.1 Assume that the (i, j)-element of the controllability matrix, ci,j ,
is positive.

• Step 1. Find the smallest s such that in the block-decomposed form (16.12) of
J (s)

0 , there exists a block, say Blkα(J (s)
0 ), which has as its (i, j)-element

[

Blkα

(

J (s)
0

)]

ij
> 0. (16.20)

Set u(0) = δα
2m and x(s) = δi

2n . If s = 1, stop; otherwise, go to next step.
• Step 2. Find k, β such that

[

Blkβ(J0)
]

ik
> 0,

[

Blkα

(

J s−1
0

)]

kj
> 0.

Set u(s − 1) = δ
β

2m and x(s − 1) = δk
2n .

• Step 3. If s − 1 = 1, stop; otherwise, set s = s − 1, i = k (that is, replace s by
s − 1 and replace i by k) and go back to Step 2.

Proposition 16.3 As long as xd ∈ R(x0), the control sequence {u(0), u(1), . . . ,

u(s − 1)} generated by Algorithm 16.1 can drive the trajectory from x0 to xd . More-

over, the corresponding trajectory is {x(0) = x0, x(1), . . . , x(s) = xd}, which is also

produced by the algorithm.
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Proof Since xd ∈ R(x0), by the construction of controllability matrix MC , there
exists a smallest s such that [Blkα(J (s)

0 )]i,j > 0. This means that if u(0) = δα
2m ,

x(0) = δ
j

2n , then there exists at least one path from x(0) to x(s) = δi
2n . We then

know that x0 can reach xd at the sth step if u(0) = δα
2m . Hence, it is obvious that

there must exist k such that x0 can reach δk
2n at the (s − 1)th step with u(0) = δα

2m ,

and β such that u(s − 1) = δ
β

2m , which make Lδ
β

2mδk
2n = δi

2n . Equivalently, we can
find k, β such that

[

Blkβ(J0)
]

ik
> 0,

[

Blkα

(

J (s−1)
0

)]

kj
> 0.

In the same way, we can find β ′ and k′ such that δk′

2n can be reached at (s − 2)th

step and Lδ
β ′

2mδk′

2n = δk
2n . Continuing this process, the sequence of controls and states

from x0 to xd can be obtained. �

Example 16.4 Recall Example 16.3. For x0 = δ2
4 and xd = δ1

4 , we want to find a
trajectory from x0 to xd . We follow Algorithm 16.1 step by step, as follows:

• Step 1. The smallest s is 2. We can calculate that
[

Blk3
(

J 2
0

)]

12 > 0,

so u(0) = δ3
4 , x(2) = δ1

4 .
• Step 2. From a straightforward computation, we have

[

Blk1(J0)
]

14 > 0,
[

Blk3
(

J 2−1
0

)]

42 > 0,

so u(1) = δ1
4 , x(1) = δ4

4 .
• Step 3. Now s − 1 = 1, so we stop the process.

Hence, the control sequence for x0 = δ2
4 ∼ (1,0) and xd = δ1

4 ∼ (1,1) is {u(0) =

δ3
4 ∼ (0,1), u(1) = δ1

4 ∼ (1,1)}, and the trajectory is {x(0) = δ2
4 ∼ (1,0), x(1) =

δ4
4 ∼ (0,0), x(2) = δ1

4 ∼ (1,1)}. In general, the smallest-step trajectory is not
unique. In this example there are four ways drive x0 to xd at the second step. In
the same way, we can find the other three paths, which are

{

u(0) = δ3
4, u(1) = δ3

4

}

,
{

x(0) = δ2
4, x(1) = δ4

4, x(2) = δ1
4

}

;
{

u(0) = δ4
4, u(1) = δ1

4

}

,
{

x(0) = δ2
4, x(1) = δ4

4, x(2) = δ1
4

}

;
{

u(0) = δ4
4, u(1) = δ3

4

}

,
{

x(0) = δ2
4, x(1) = δ4

4, x(2) = δ1
4

}

.

16.4 Observability

This section considers the observability of the system (16.1). We denote the outputs
as Y(t) = (y1(t), . . . , yp(t)) and, alternatively, y(t) = ⋉

p

k=1yk(t). We adapt Defini-
tion 9.7 for observability as follows.
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Definition 16.3 Consider the system (16.1).

1. X0
1 and X0

2 are said to be distinguishable if there exists a control sequence
{U(0),U(1), . . . ,U(s)}, where s ≥ 0, such that

Y 1(s + 1) = ys+1(U(s), . . . ,U(0),X0
1

)
= Y 2(s + 1)

= ys+1(U(s), . . . ,U(0),X0
2

)
. (16.21)

2. The system is said to be observable if any two initial points X0
1,X

0
2 ∈ ∆2n are

distinguishable.

Recall that in Chap. 11 we defined the logical operators for Boolean matrices as
follows:

1. Let A = (aij ) ∈ Bn×s and σ be a unary operator. σ : Bn×s → Bn×s is then
defined as

σA := (σaij ). (16.22)

2. Let A = (aij ), B = (bij ) ∈ Bn×s , and σ be a binary operator. σ : Bn×s ×

Bn×s → Bn×s is then defined as

AσB := (ai,jσbij ). (16.23)

Definition 16.4 Let A = (aij ) ∈ Bm×n. The weight of A is defined as

wt(A) :=

m
∑

i=1

n
∑

j=1

aij . (16.24)

The Boolean weight of A is defined as

wb(A) :=

{

1, wt(A) > 0,

0, wt(A) = 0.
(16.25)

We give a simple example.

Example 16.5 Assume that

A =

[

1 0 1
0 0 1

]

, B =

[

1 1 0
1 0 1

]

.

Then,

¬A =

[

0 1 0
1 1 0

]

, A ∨̄B =

[

0 1 1
1 0 0

]

,

wt(A) = 3, wt(B) = 4, wb(A) = wb(B) = 1.
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Recall (16.12). From the construction of J and the properties of the semi-tensor
product, it is easy to see that Blki corresponds to the input u(0) = δi

2m . Moreover,

each block Colj (Blki) corresponds to x0 = δ
j

2n . To exchange the running order of
the indices i and j , we use the swap matrix to define

J̃ (s)
0 := J (s)

0 W[2n,2m] (16.26)

and then split it into 2n blocks as

J̃ (s)
0 =

[

Blk1(J̃
(s)

0 ) Blk2(J̃
(s)

0 ) · · · Blk2n(J̃ (s)
0 )

]

, (16.27)

where Blki(J̃
(s)

0 ) ∈ B2n×2m , i = 1, . . . ,2n.

Each block Blki(J̃
(s)

0 ) now corresponds to x0 = δi
2n , and in each block,

Colj (Blki(J̃
(s)

0 )) corresponds to u(0) = δ
j

2m .
Using the Boolean algebraic expression, we have the following sufficient condi-

tion for observability.

Theorem 16.3 Consider the system (16.1) with algebraic form (16.2). If

2m+n
∨

s=1

[(

H ⋉ Blki

(

J̃ (s)
0

))

∨̄
(

H ⋉ Blkj

(

J̃ (s)
0

))]

= 0, 1 ≤ i < j ≤ 2n, (16.28)

then the system is observable.

Proof According to the construction and the above argument, it is easy to see that
(16.28) implies that, at least at first step, the outputs corresponding to x0 = δi

2m and

x0 = δ
j

2m are distinct. �

Theorem 16.3 can be alternatively expressed as follows.

Corollary 16.4 Consider the system (16.1) with algebraic form (16.2). Define

Oij :=

2m+n
∨

s=1

[(

H ⋉ Blki

(

J̃ (s)
0

))

∨̄
(

H ⋉ Blkj

(

J̃ (s)
0

))]

.

If

∧

1≤i<j≤2n

wb(Oij ) = 1, (16.29)

then the system is observable.

Remark 16.1 Comparing this with the corresponding result in Chap. 9, one of the
advantages of this result is that when the step s increases, the corresponding ma-
trices involved in the condition do not increase their dimensions. Thus, it is easily
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computable. Another advantage is that this condition does not require controllability
of the system. The major disadvantage is that this result is not necessary.

We give an example to illustrate this.

Example 16.6 Consider the network (16.18) in Example 16.3.
Let

Oij =

24
∨

s=1

[(

H ⋉ Blki

(

J̃ (s)
0

))

∨̄
(

H ⋉ Blkj

(

J̃ (s)
0

))]

.

A straightforward computation yields

O12 =

[

0 0 1 1
0 0 1 1

]

, O13 =

[

0 0 0 1
1 0 0 1

]

, O14 =

[

0 0 0 0
1 0 1 0

]

,

O23 =

[

0 0 1 0
1 0 1 0

]

, O24 =

[

0 0 1 1
1 0 1 1

]

, O34 =

[

0 0 0 1
0 0 1 1

]

.

We then have
∧

1≤i<j≤4

wb(Oij ) = 1.

The system is therefore observable.

16.5 Fixed Points and Cycles

The fixed points and cycles of an input-state transfer graph are very important topo-
logical features of a Boolean control network. For instance, the optimal control can
always be realized over a fixed point or a cycle. We refer to Chap. 15 or [2]. The
input-state incidence matrix can also provide the information about this.

We now adapt Definition 15.3 for fixed points and cycles.

Definition 16.5 Consider the system (16.1). Denote the input-state (product) space
by

S =
{

(U,X)
∣
∣U = (u1, . . . , um) ∈ Dp, X = (x1, . . . , xn) ∈ Dn

}

.

Note that |S | = 2m+n.

1. Let Si = (U i,Xi) ∈ S and Sj = (U j ,Xj ) ∈ S . Let U i = (ui
1, . . . , u

i
m), Xi =

(xi
1, . . . , u

i
n), etc. (Si, Sj ) is said to be a directed edge if Xi , U i , and Xj satisfy

(16.1), that is, if

x
j

k = fk

(

xi
1, . . . , x

i
n, u

i
1, . . . , u

i
m

)

, k = 1, . . . , n.

The set of edges is denoted by E ⊂ S × S .
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2. The pair (S ,E ) forms a directed graph, which is called the input-state transfer
graph.

3. (S1, S2, . . . , Sℓ) is called a path if (Si, Si+1) ∈ E , i = 1,2, . . . , ℓ − 1.
4. A path (S1, S2, . . .) is called a cycle if Si+ℓ = Si for all i. The smallest ℓ is called

the length of the cycle. In particular, the cycle of length 1 is called a fixed point.

Taking the properties of J s into consideration and recalling the argument for
the fixed points and cycles of a free Boolean network (without control) in Chap. 5,
the following result is obvious.

Theorem 16.4 Consider the system (16.1) with input-state incidence matrix J .

1. The number of the fixed points in the input-state dynamic graph is

N1 =

2m
∑

i=1

tr
(
Blki(J0)

)
= tr(M). (16.30)

2. The number of length-s cycles can be calculated inductively as

Ns =
tr(Ms) −

∑
k∈P(s) kNk

s
, 2 ≤ s ≤ 2m+n. (16.31)

We use an example to illustrate this.

Example 16.7 Recall Example 16.1. We can calculate that

trM = 3, trM3 = 6,

trM4 = 15, trM5 = 33,

trM6 = 66, trM7 = 129,

trM8 = 255.

Using Theorem 16.4, we conclude that N1 = 3, N3 = 1, N4 = 3, N5 = 6, N6 = 10,
N7 = 18, and N8 = 30. It is not easy to convert them from the graph directly.

16.6 Mix-valued Logical Systems

In the multivalued logic case, say in a k-valued logical network, we have xi, ui ∈

Dk [1]. When the infinitely repeated game is considered, the dynamics of the strate-
gies, depending on one history, may be expressed as in (16.1), but xi ∈ Dki

and
uα ∈ Djα . Such a dynamic system is called a mix-valued logical dynamical system.
We refer to Sect. 14.7 for a detailed discussion of mix-valued logic.
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Set

x = ⋉n
i=1xi ∈

n
∏

i=1

Dki
, u = ⋉m

α=1uα ∈

m
∏

α=1

Djα .

In vector form, we then have xi ∈ ∆ki
and uα ∈ ∆jα . Setting k =

∏n
i=1 ki and j =

∏m
α=1 jα , we have

x ∈ ∆k, u ∈ ∆j .

In this section, we claim that all the major results obtained in previous sections
remain true for mix-valued logical dynamical systems (including multivalued logi-
cal control networks as a particular case). We state this as a theorem and omit the
proofs since they are identical.

Theorem 16.5 Consider the system (16.1) and assume that it is a mix-valued log-

ical dynamical system, where xi ∈ Dki
, i = 1, . . . , n, uα ∈ Djα , α = 1, . . . ,m, and

yβ ∈ Dℓβ , β = 1, . . . , p. That is, each state xi , control uα , and output yβ can have

different dimensions. We then have the following generalizations:

1. Considering the controllability of this mix-valued logical dynamical system, The-

orem 16.2 and Corollary 16.3 remain true.
2. Considering the observability of this mix-valued logical dynamical system, The-

orem 16.3 (equivalently, Corollary 16.4) remains true.
3. Considering the number of fixed points and the number of cycles of this mix-

valued logical dynamical system, Theorem 16.4 remains true.
4. Considering the trajectories and corresponding controls, Algorithm 16.1 re-

mains available.

To apply the extended results technically, we need to solve the problem of how to
calculate {xi} from x and vice versa. Similarly, we also have to calculate {ui} from
u and vice versa. We give the following formula.

Proposition 16.4 Let xi = δ
αi

ki
, i = 1, . . . , n, and x = δα

k . Then:

1.

α = (α1 − 1) ×
k

k1
+ (α2 − 1) ×

k

k1k2
+ · · · + (αn−1 − 1) × kn + αn. (16.32)

2.
⎧

⎨

⎩

x1 = (Ik/k1 ⊗ 1T
k1

)x,

xj = (Ik/kj
⊗ 1T

kj
)W[

∏j−1
i=1 ki ,kj ]x.

(16.33)

Proof Equation (16.32) can be proven via a straightforward computation. The first
equality in (16.33) comes from the definition of the semi-tensor product. To prove
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the second one, we have

W
[
∏j−1

i=1 ki ,kj ]
x = xjx1 · · ·xj−1xj+1 · · ·xn.

Applying the first equality to it yields the second equality. �

We use the following example to demonstrate all the extended results in Theo-
rem 16.5.

Example 16.8 Consider the mix-valued dynamical system

{

x1(t + 1) = f1(u(t), x1(t), x2(t)),

x2(t + 1) = f2(u(t), x1(t), x2(t)),

y(t) = h
(
x1(t), x2(t)

)
,

(16.34)

where x1(t) ∈ D2, x2(t) ∈ D3, u(t) ∈ D2, f1 : D2
2 ×D3 → D2, f2 : D2

2 ×D3 → D3,
and h : D2 × D3 → D2 are mix-valued logical functions.

Using vector form, the system (16.34) can be expressed as

⎧
⎪⎨
⎪⎩

x1(t + 1) = M1u(t)x1(t)x2(t),

x2(t + 1) = M2u(t)x1(t)x2(t), x1, u ∈ ∆2, x2 ∈ ∆3,

y(t) = Hx1(t)x2(t), y ∈ ∆2.

(16.35)

In fact, in the mix-valued case, describing a logical function is not easy. In general
it should be described by a truth table. We refer to Sect. 14.7 for a detailed discussion
of the logical expression of mix-valued logical systems. In general, we use structure
matrices to represent the functions directly. We assume the structure matrices of f1,
f2, and h are M1, M2, and H , respectively, where

M1 = δ2[1 1 1 2 1 2 2 2 2 2 2 2],

M2 = δ3[3 1 3 2 2 1 3 2 1 3 3 3],

H = δ3[1 3 3 2 2 2].

Setting x(t) = x1(t)x2(t), the algebraic form of (16.34) can be calculated as

{

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(16.36)

where

L = δ6[3 1 3 5 2 4 6 5 4 6 6 6].

1. Consider the controllability of the system. The basic block of the input-state
incidence matrix J0 equals L. From a straightforward computation, the con-
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trollability matrix is

MC =

12
∑

s=1
B

M(s) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0.

We conclude that the system (16.34) is controllable.
2. Given any two points, say x0 = δ1

6 ∼ (δ1
2, d1

3 ) and xd = δ5
6 ∼ (δ2

2, δ2
3), we want to

find a trajectory from x0 to xd with proper controls.

• Step 1: The smallest s is 3 for
[

Blk1 J 3
0

]

51 > 0,

so u(0) = δ1
2 , x(3) = δ5

6 .
• Step 2: We have

[

Blk1 J0
]

54 > 0,
[

Blk1 J 3−1
0

]

41 > 0,

so u(2) = δ1
2 , x(2) = δ4

6 . Then,

[Blk2 J0]43 > 0,
[

Blk1 J 2−1
0

]

31 > 0,

so u(1) = δ2
2 , x(1) = δ3

6 .
• Step 3: s − 1 = 1, and we stop the process.

Hence, the control sequence which drives x0 = δ1
6 to xd = δ5

6 is {u(0) =

δ1
2, u(1) = δ2

2, u(2) = δ1
2}, and the trajectory is {x(0) = δ1

6, x(1) = δ3
6, x(2) =

δ4
6, x(3) = δ5

6}.
3. Next, we calculate the number of fixed points and the numbers of cycles of dif-

ferent lengths. It is easy to calculate that

trM = 2, trM2 = 6,

trM3 = 8, trM4 = 14,

trM5 = 37, trM6 = 60,

trM7 = 135, trM8 = 254,

trM9 = 512, trM10 = 1031,

trM11 = 2037, trM12 = 4112.

We conclude that there are N1 = 2 fixed points and Ni cycles of length i, i =

2,3,4,5,6,7,8,9,10,11, where N2 = 2 , N3 = 2, N4 = 2, N5 = 7, N6 = 8,
N7 = 19, N8 = 30, N9 = 56, N10 = 99, N11 = 185, and N12 = 337.
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4. Finally, we consider the observability of the system. Let

Oij =

2×6
∨

s=1

[(

H ⋉ Blki

(

J̃ (s)
0

))

∨̄
(

H ⋉ Blkj

(

J̃ (s)
0

))]

.

A straightforward computation yields

O12 =

⎡

⎣

1 1
1 0
1 0

⎤

⎦ , O13 =

⎡

⎣

0 0
0 1
0 1

⎤

⎦ , O14 =

⎡

⎣

1 0
1 0
1 0

⎤

⎦ ,

O15 =

⎡

⎣

1 0
1 0
1 0

⎤

⎦ , O16 =

⎡

⎣

0 0
1 0
1 0

⎤

⎦ , O23 =

⎡

⎣

1 1
1 1
1 1

⎤

⎦ ,

O24 =

⎡

⎣

1 1
1 0
0 0

⎤

⎦ , O25 =

⎡

⎣

1 1
0 0
1 0

⎤

⎦ , O26 =

⎡

⎣

1 1
0 0
1 0

⎤

⎦ ,

O34 =

⎡

⎣

1 0
1 1
1 1

⎤

⎦ , O35 =

⎡

⎣

1 0
1 1
1 1

⎤

⎦ , O36 =

⎡

⎣

0 0
1 1
1 1

⎤

⎦ ,

O45 =

⎡

⎣

1 0
1 0
1 0

⎤

⎦ , O46 =

⎡

⎣

1 0
1 0
1 0

⎤

⎦ , O56 =

⎡

⎣

1 0
0 0
0 0

⎤

⎦ .

Hence,
∧

1≤i<j≤6

wb(Oi,j ) = 1.

According to Theorem 16.3 or Corollary 16.4, the system is observable.

Finally, we compare the new controllability result with the corresponding result
in Chap. 9. The main results in Chap. 9 for free sequences of controls are Theorem
9.3 and Corollary 9.2. Roughly speaking, they claim that the reachable set from x0 is

R(x0) = Col

{
2n
⋃

i=1

L̃ix0

}

. (16.37)

Note that by the properties of semi-tensor product, L̃s ∈ L2n×2n+sm . So, when the
step s is not small enough, the size of L̃s will be too large to be calculated in a
memory-restricted computer. However, the main result in this chapter requires that
J (s)

0 is checked. Since J (s)
0 ∈ L2n×2m , ∀s, it is always easily computable (as long

as the first step is computable).
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Chapter 17

Identification of Boolean Control Networks

17.1 What Is Identification?

Consider the Boolean control network

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

x2(t + 1) = f2(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

yj (t) = hj

(
x1(t), . . . , xn(t)

)
, j = 1, . . . , p,

(17.1)

where xi(t), uk(t), yj (t) ∈ D , i = 1, . . . , n, k = 1, . . . ,m, j = 1, . . . , p, are states,
inputs (controls), and outputs respectively, and fi : Dn+m → Dn, hj : Dn → Dp

are logical functions.
The identification problem is stated as follows.

Definition 17.1 Assume we have a Boolean control network with dynamic struc-
ture (17.1). The identification problem involves finding the functions fi , i =

1, . . . , n, and hj , j = 1, . . . , p, via certain input–output data {U(0),U(1), . . .},
{Y(0), Y (1), . . .}. The identification problem is said to be solvable if fi and hj can
be uniquely determined by using proper inputs {U(0),U(1), . . .}.

Note that here we use the following notation: X(t) := (x1(t), x2(t), . . . , xn(t)),
Y(t) := (y1(t), y2(t), . . . , yp(t)), and U(t) := (u1(t), u2(t), . . . , um(t)).

Remark 17.1 From Chap. 10 we know that different models may realize the same
input–output mapping, so we may not be able to obtain unique fi ’s and hi ’s. Most
likely, we are only interested in the equivalence classes which realize the same
input–output mapping. Therefore the “uniqueness” should be clearly stated.
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Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_17, © Springer-Verlag London Limited 2011

389
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By identifying 1 ∼ δ1
2 and 0 ∼ δ2

2 , the algebraic form of (17.1) is obtained as

{

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t).
(17.2)

Note that X = (x1, . . . , xn) and x = ⋉n
i=1xi are in one-to-one correspondence

and can be easily converted from one form to the other. Similarly, Y and y (U and u)
are in one-to-one correspondence. Therefore, (17.1) and (17.2) are equivalent, and
hence identifying fi , i = 1, . . . , n, and hj , j = 1, . . . , p, is equivalent to identifying
L and H .

Model construction for a Boolean network was discussed in Chap. 7, where a
pure Boolean network without inputs and outputs was investigated. This chapter
considers a Boolean network with inputs and outputs.

17.2 Identification via Input-State Data

In this section, we assume that the state is measurable. Alternatively, we may make
the following assumption.

Assumption 1 p = n and yi(t) = xi(t), i = 1, . . . , n.

Recall the following definition from Chap. 9.

Definition 17.2 The system (17.1) is controllable if, for any initial state X0 =

(x1(0), . . . , xn(0)) ∈ Dn and destination state Xd , there is a sequence of controls
U0,U1, . . . , where Ut = (u1(t), . . . , um(t)), such that the trajectory X(t,X0,U)

satisfies X(0,X0,U) = X0, and X(s,X0,U) = Xd for some s > 0.

For identifiability from input-state data, we have the following result.

Theorem 17.1 The system (17.1) is input-state identifiable if it is controllable.

Proof (Sufficiency) Since the system is controllable, for any xd = δi
2n we can find

a set of controls such that at time s, x(s) = δi
2n . Now, to identify Colk(L), we can

find a unique pair (i, j) such that

δ
j

2mδi
2n = δk

2n+m .

In fact, i = k%2m and j = k−i
2m + 1. Hence, we can first choose control u0, u1, . . . to

drive the system to x(s) = δi
2n at a certain time s > 0, and then choose u(s) = δ

j

2m .
It follows that

Colk(L) = x(s + 1).
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(Necessity) Split L̃ = LW[2n,2m] into 2n equal-sized blocks as L̃ = [L̃1, L̃2,

. . . , L̃2n ]. If we now assume that δi
2n is not reachable, then the columns of Blki(L̃) =

L̃i can never be shown in the state x(t), t = 1,2, . . . . Thus, Blki(L̃) is not identifi-
able. �

It is now apparent that controllability is the key for identifiability. We refer to
Chap. 9 for the necessary and sufficient condition for controllability, and to Chap. 16
for an alternative condition.

Remark 17.2

1. Assume we have enough proper input data {U0,U1, . . . ,UT } and the correspond-
ing state data {X0,X1, . . . ,XT } such that (in the set-theoretical sense)

{U0 × X0,U1 × X1, . . . ,UT −1 × XT −1} = Dn+m. (17.3)

L can then be identified in the following way: if, in vector form, uixi = δ
j

2m+n ,
then Colj (L) = xi+1.

2. Similarly, if we know {X0,X1, . . . ,XT } and the corresponding {Y0, Y1, . . . , YT },
such that

{X0,X1, . . . ,XT } = Dn, (17.4)

then in vector form xi = δ
j

2n implies Colj (H) = yi .

Example 17.1 Consider the following Boolean control network:
{

x1(t + 1) = ¬x1(t) ∨ x2(t),

x2(t + 1) = u(t) ∧ ¬x1(t) ∨ (¬u(t) ∧ x1(t) ∧ ¬x2(t)).
(17.5)

Setting x(t) = ⋉2
i=1xi(t), we have

x(t + 1) = Lu(t)x(t), (17.6)

where

L = δ4[2 4 1 1 2 3 2 2].

For the system (17.5), the basic block of its input-state incidence matrix J0
equals L.

Checking the controllability matrix, we have

MC =

23
∑

s=1

M(s) =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎦

> 0.

We conclude that the system is identifiable.
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Table 17.1 Input-state data

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

u(t) 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 2 1 2 2 1

x(t) 1 2 4 1 2 4 2 4 1 2 4 2 4 2 4 1 2 4 2 3

We can choose a sequence of controls and the initial state randomly, and the
sequence of states can be determined. First, we choose 20 controls: the control-state
data are given in Table 17.1.

Here, the number i in u(t) [resp., x(t)] refers to δi
2 (resp., δi

4). We can obtain L

as

L = δ4[2 4 ∗ 1 2 3 ∗ 2].

Some columns of L are not identified because not all input-states δ
j

2m+n are reached
by the randomly chosen sequence of control. One way to deal with this problem is
to choose a long sequence of input-state data. For example, if we randomly choose
a sequence of 100 controls (or even more), then L could be identified.

From the example, we know that any length of input sequence chosen randomly
cannot ensure that L can be identified, although the probability is very close to 1 if
the sequence is long enough. In fact, we can design an input sequence

u(t) =

{

δi
2m , ∃s such that x(s) = x(t), u(s) = δi−1

2m ,∀s < t ′ < t,x(t ′) �= x(t),

δ1
2m , otherwise,

(17.7)

where, when x(t) enters a cycle, we stop the process. We then have the following
result.

Theorem 17.2 If the system (17.1) is identifiable, then the logical functions fi can

be determined uniquely by the inputs designed in (17.7).

Proof The state under the input sequence must enter a cycle. Thus, for δi
2n in the

cycle, there must exist t1 < t2 < · · · < t2m such that x(tj ) = δi
2n , u(tj ) = δ

j

2m . Hence,
none of the states in this cycle can reach the state outside the cycle by changing the
control. If the cycle does not contain all the states, then the system is not control-
lable. �

Example 17.2 Recall Example 17.1. Using (17.7) we can obtain the input-state data
given in Table 17.2.

L can then be identified as

L = δ4[2 4 1 1 2 3 2 2].
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Table 17.2 Input-state data
t 0 1 2 3 4 5 6 7 8 9 10 11

u(t) 1 1 1 2 2 1 1 1 2 2 2 1

x(t) 1 2 4 1 2 3 1 2 4 2 3 2

17.3 Identification via Input–Output Data

Definition 17.3 The system (17.1) is observable if there is a sequence of controls
{U0,U1, . . .}, where Ut = (u1(t), . . . , um(t)), such that the initial state X0 can be
determined by the outputs {Y0, Y1, . . .}.

We introduce the following assumption.

Assumption 2 The system is controllable.

For identification via input–output data we need the observability condition. We
refer to Chap. 9 for the necessary and sufficient conditions. In the following we give
an alternative condition. This is basically the same as the one in Chap. 9, but it is
convenient for identifying x0.

Split L into 2m equal-sized blocks as

L =
[

Blk1(L),Blk2(L), . . . ,Blk2m(L)
]

:= [B1,B2, . . . ,B2m ],

where Bi ∈ L2n×2n , i = 1, . . . ,2m.
Define a sequence of sets of matrices Γi ∈ L

p

2 × 2n, i = 0,1,2, . . . , as follows:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Γ0 = {H },

Γ1 = {HBi | i = 1,2, . . . ,2m},

Γ2 = {HBiBj

∣
∣ i, j = 1,2, . . . ,2m},

...

Γs = {HBi1Bi2 · · ·Bis |i1, i2, . . . , is = 1,2, . . . ,2m},
...

(17.8)

Note that Γs ⊂ L2p×2n , ∀s. It is then easy to prove the following result.

Lemma 17.1

1. There exists an s∗ > 0 such that

Γs∗+1 ⊂

s∗
⋃

k=1

Γk. (17.9)
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2. Let s∗ > 0 be the smallest positive integer such that (17.9) holds. Then,

Γj ⊂

s∗
⋃

k=1

Γk, ∀j > s∗. (17.10)

For notational ease, we also use Γs to denote the matrix consisting of its elements
arranged in a column. For instance,

Γ1 =

⎡

⎢
⎢
⎢
⎣

HB1

HB2
...

HB2m

⎤

⎥
⎥
⎥
⎦

, Γ2 =

⎡

⎢
⎢
⎢
⎣

HB1B1

HB1B2
...

HB2mB2m

⎤

⎥
⎥
⎥
⎦

, . . .

Using these, we construct a matrix, called the observability matrix:

MO =

⎡

⎢
⎢
⎢
⎣

Γ0

Γ1
...

Γs∗

⎤

⎥
⎥
⎥
⎦

. (17.11)

We then have the following theorem.

Theorem 17.3 Assume that the system (17.1) is controllable. It is then observable

if and only if

rank (MO) = 2n. (17.12)

Proof Let the initial state be x0. Since the system is controllable we can find a time
sequence {t1

i | i = 1,2, . . . , n} satisfying

t1
i+1 > t1

i + 1, i = 0,1, . . . ,2m − 1, t1
0 := 0,

such that x(t1
i ) = x0. Using u(t1

i ) = δi
2m , i = 1, . . . ,2m, it is easy to see that

⎡

⎢
⎢
⎢
⎢
⎣

y(t1
1 + 1)

y(t1
2 + 1)
...

y(t1
2m + 1)

⎤

⎥
⎥
⎥
⎥
⎦

= Γ1x0.

In general, assume we have a time sequence t si1 i2 ··· is
, ik = 1,2, . . . ,2m, k =

1, . . . , s, and we convert the multi-index (i1 i2 · · · is) to a single index µ(i1 i2 · · · is)

in “alphabetical order”. That is,

µ(1 1 · · · 1) = 1, µ(1 1 · · · 2) = 2, . . . , µ
(

2m 2m · · · 2m
)

= 2sm.
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We assume that this time sequence satisfies

t si+1 > t si + s, i = 0,1, . . . ,2sm − 1, t s0 := 0.

Now, assume (using proper controls) that

x
(
t si1 i2 ··· is

)
= x0

and define a sequence of controls as

u
(
t sµ(i1 i2 ··· is)

)
= δ

i1
2m , u

(
t sµ(i1 i2 ··· is)

+ 1
)
= δ

i2
2m , . . . ,

u
(
t sµ(i1 i2 ··· is)

+ s − 1
)
= δ

is
2m .

We then have
⎡

⎢
⎢
⎢
⎣

y(t s1 + s)

y(t s2 + s)
...

y(t s2sm + s)

⎤

⎥
⎥
⎥
⎦

= Γsx0.

Note that we assume the sets of time sequences to be sufficiently far separated from
each other. Precisely,

t s1 1 ··· 1
︸ ︷︷ ︸

s

>
(

t s−1
2m 2m ··· 2m

︸ ︷︷ ︸

s−1

)

+ s.

Finally, we have

MOx0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(0)

y(t1
1 + 1)

y(t1
2 + 1)
...

y(t1
2m + 1)

...

y(t s
∗

1 + s∗)

y(t s
∗

2 + s∗)
...

y(t s
∗

2sm + s∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= Y. (17.13)

Note that when Y is a set of observed data, x0 can be uniquely solved as

x0 =
(

M T
O

MO

)−1
M T

O
Y. (17.14)

(Necessity) By the definition of s∗ it is easy to see that Y contains all possible
outputs. Now, if rank(MO) < 2n, then one sees easily that in addition to x0, there



396 17 Identification of Boolean Control Networks

exists at least one other solution x′
0 of (17.13). Then, x0 and x′

0 are not distinguish-
able. �

We are now ready to present our main result.

Theorem 17.4 The system (17.1) is identifiable from input–output data with proper

controls if and only if the system is controllable and observable.

Proof (Necessity) In fact, from Theorems 17.1 and 17.3, the necessity in obvious
because if the system is not observable, then it is impossible to identify all the states
from outputs. If the system is not controllable, then it is impossible to identify L

from input-state data.
(Sufficiency) Because the system is controllable, we can assume that we first

construct enough input data {U0,U1, . . . ,UT1}, this generates the corresponding
{X0,X1, . . . ,XT1}, and these collectively satisfy (17.3). Then, by controllability,
there exist controls {Ut |T1 < t ≤ T2} such that XT2 = X0. Since the system is ob-
servable, there exist controls {Ut |T2 < t ≤ T3} and XT2 = X0 can be identified
by using this control sequence. We can then choose {Ut |T3 < t ≤ T4 − 2} and
UT4−1 = U0 such that XT4−1 = X0. We know that XT4 = X1 and this can be then be
identified by choosing proper controls. Continuing this process, {X0,X1, . . . ,XT1}

can eventually be identified. Now, using the identified {Xi | i = 0,1, . . . , T1} and
the input data {Ui | i = 0,1, . . . , T1}, we can identify L according to Theorem 17.1.
It is easy to see that (17.3) implies (17.4). Then, using {Xi | i = 0,1, . . . , T1} and
{Yi | i = 0,1, . . . , T1}, we can identify H . �

17.4 Numerical Solutions

17.4.1 General Algorithm

Consider the system (17.1) again. Assume that we have a coordinate transformation
z = T x, where T ∈ L2n×2n . Its algebraic form (17.2) then becomes

{

z(t + 1) = L̃u(t)z(t),

y(t) = H̃ z(t),
(17.15)

where

L̃ = T L
(
I2m ⊗ T T)

, H̃ = HT T. (17.16)

It is obvious that {L,H } and {L̃, H̃ } are not distinguishable by any input–output
data. Is this a counterexample to Theorem 17.4? In fact, when we state that a system
is observable, we implicitly assume that the coordinate x is fixed. Otherwise, it
would be impossible to identify x0 from input–output data. So, precisely speaking,
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we should say either (i) assume the coordinate frame x is fixed, then Theorem 17.4
holds, or (ii) {L,H } are identifiable up to a coordinate transformation.

Keeping this in mind, what we are going to identify is the equivalence class, but
not a particular {L,H }. We then have the following lemma.

Lemma 17.2 Without loss of generality, we can assume the initial value is fixed,
say, x0 = δ1

2n .

Proof Assume that we have a realization {L,H } with initial value x0 = δi
2n . Under

a coordinate transformation z = T x, with

Coli(T ) = δ1
2n ,

we then have z0 = δ1
2n . �

To evaluate the error, we need a distance.

Definition 17.4 Let A,B ∈ Bm×n. The distance between A and B , denoted by
d(A,B), is then defined as

d(A,B) =
1

2

m
∑

i=1

n
∑

j=1

[aij ∨̄bij ]. (17.17)

Remark 17.3 Let A,B ∈ Lp×q . It is then easy to see that d(A,B) is the number of
different columns of A and B . This is why we introduce the coefficient 1

2 into the
definition.

Assume that we have the input data {Ut | t = 0,1, . . . , T } and the correspond-
ing output data {Yt | t = 0,1, . . . , T }. For each pair {L,H } we define the error as
follows.

Definition 17.5 Assume the input data {Ut | t = 0,1, . . . , T } and the corresponding
output data {Yt | t = 0,1, . . . , T } are given. For a given (L,H), using initial x0 = δ1

2n

and the input data {Ut | t = 0,1, . . . , T }, the estimated output data can be calculated
as {Ŷt | t = 1, . . . , T }. The error is then defined as

ε(L,H) =

T
∑

t=1

d
(
Ŷt , Yt

)
. (17.18)

Next, we define a neighborhood of (L,H).

Definition 17.6 Let r ∈ Z+. The neighborhood of (L0,H0), denoted by Br (L0,H0),
is defined as

Br (L0,H0) :=
{

(L,H)
∣
∣ d(L,L0) ≤ r, d(H,H0) ≤ r

}

. (17.19)
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We are now ready to present our main algorithm.

Algorithm 17.1 Assume a set of input data {Ut | t = 0,1, . . . , T } and the corre-
sponding output data {Yt | t = 0,1, . . . , T } are given.

Step 0. Set S = {(L,H) |L ∈ L2n×2n+m; H ∈ L2p×2n}, r = r0 (default: r0 = 1),
and εmin = ∞.

Step 1. Choose an (L0,H0) ∈ S.

(i) If ε(L0,H0) = 0, set (L∗,H ∗) = (L0,H0) and terminate the algorithm (the
solution is obtained).

(ii) Otherwise, set ε0 := ε(L0,H0) and proceed to the next step.

Step 2. Over the neighborhood Br(L0,H0) find a point (L∗,H ∗) such that

ε∗ = ε
(
L∗,H ∗

)
= min

(L,H)∈Br (L0,H0)∩S
ε(L,H).

(i) If ε∗ = 0, set (L∗,H ∗) = (L0,H0) and terminate the algorithm (the solution
is obtained).

(ii) Otherwise, if ε∗ < ε0, replace (L0,H0) by (L∗,H ∗) and S by S :=

S\{Br (L0,H0)}, then return to Step 2.
(iii) Otherwise, if ε0 < εmin, replace εmin by ε0 and return to Step 1.

Theorem 17.5 Algorithm 17.1 will terminate at a certain step, where a solution

(L∗,H ∗) with ε(L∗,H ∗) = 0 is provided.

Proof Since at each iteration the error ε is strictly decreasing, and there are finitely
many {L,H }, the conclusion is obvious. �

Remark 17.4 If the data contain errors, then we can only obtain an optimal solution
(L∗,H ∗), satisfying ε(L∗,H ∗) = εmin.

Example 17.3 Recalling Example 17.1, add the output as

y(t) = x1 ∨̄x2.

The algebraic form of the Boolean control system is then
{

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(17.20)

where

L = δ4[2 4 1 1 2 3 2 2]

and

H = δ2[2 1 1 2].
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A straightforward computation shows that the observability matrix is

MO =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H

HB1

HB2

HB1B1
...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0

1 0 0 1

1 0 0 0

0 1 1 1

1 1 1 1

0 0 0 0

0 0 1 1

1 1 0 0
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From this part of MO , it is apparent that all of its columns are different, so
rank(MO) = 4. Thus, the system is observable and hence identifiable.

Using (17.20) and setting x0 = δ1
4 , we randomly choose 50 inputs and calculate

50 corresponding outputs as follows:

u(t) : 1 2 1 2 1 2 1 2 2 2 1 2 2 2 2 2 1

1 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2

1 2 1 1 2 2 1 1 2 1 1 2 1 1 1 2,

y(t) : 2 1 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1

2 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1

1 2 1 2 2 1 1 2 1 1 2 1 1 2 1 2.

Using Algorithm 17.1, this terminates at

{

L̂ = δ4[4 1 1 2 4 4 4 3],

Ĥ = δ2[2 2 1 1].
(17.21)

It seems that it is quite different from the original system (17.20), but note that if we
set

x(t) = T z(t) =

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤

⎥
⎥
⎥
⎦

z(t),

which is a coordinate transform, then the system (17.20) can be converted to

{

z(t + 1) = L̃u(t)z(t),

y(t) = H̃ z(t),
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where

L̃ = T −1L(I2 ⊗ T ) = δ4[4 1 1 2 4 4 4 3] = L̂,

H̃ = HT = δ2[2 2 1 1] = Ĥ .

Thus, the system which we identified is equivalent to the original system.

17.4.2 Numerical Solution Based on Network Graph

In practice, for an n-node network, the in-degree of each node is usually much less
than n. In this case, the number of candidate structure matrices L can be reduced
tremendously. In this subsection we assume that the network graph is known and
consider how to identify the system. Note that since the graph is fixed, a coordinate
transformation which changes the graph is not allowed. Therefore we have to take
the initial state x0 into consideration.

Example 17.4 Consider the following system:
{

x1(t + 1) = f1(x1(t), x2(t), u1(t), u2(t)),

x2(t + 1) = f2(x1(t), x2(t), u1(t), u2(t)),

y1(t) = h1
(
x1(t), x2(t)

)
,

y1(t) = h2
(
x1(t), x2(t)

)
.

(17.22)

Assume the observed data are as follows:

u(t) : 4 1 3 2 4 4 2 1 4 2 3 4 4 3 1 2 4 4 2 4
1 2 4 1 1 1 1 3 2 1 1 3 2 4 2 2 4 3 1 3
4 1 3 2 4 3 3 2 2 1 1 3 2 3 1 3 2 4 4 3
2 4 4 3 4 3 2 2 2 3 3 2 4 3 2 3 3 2 3 3
4 4 3 4 1 4 2 2 4 3 1 1 4 1 2 3 2 2 1 4,

y(t) : 2 3 4 4 1 3 3 3 4 3 3 4 3 3 4 2 1 3 3 3
3 4 1 3 4 2 2 2 4 1 4 2 4 1 3 3 3 3 4 2
4 3 4 4 1 3 4 4 1 3 4 2 4 1 4 2 4 1 3 3
4 1 3 3 4 3 4 1 3 3 4 4 1 3 4 1 4 4 1 4
4 3 3 4 3 4 3 3 3 3 4 2 2 3 4 1 4 1 3 4.

If the network graph of the system is known, as in Fig. 17.1, then we can infer
that the algebraic form of the system is

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t + 1) = L1u1(t)x2(t),

x2(t + 1) = L2u2(t),

y1(t + 1) = H1x1(t),

y2(t + 1) = H2x2(t),
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Fig. 17.1 Network graph

where L1 ∈ L2×4, L2,H1,H2 ∈ L2×2. Replacing the neighborhood (17.19) by

Br

(
Li

0,H
j

0 , x00
)

=
{(

Li,H j , x0
) ∣
∣ d

(

Li,Li
0

)

≤ r, d
(

H j ,H
j

0

)

≤ r, d(x0, x00) ≤ 1,

i = 1,2, j = 1,2
}

,

Algorithm 17.1 remains applicable. The system is then identified as
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

L̂1 = δ2[2 1 1 1],

L̂2 = δ2[1 2],

Ĥ1 = δ2[2 1],

Ĥ2 = δ2[2 1],

x̂0 = δ3
4 .

(17.23)

In fact, the data are generated from the system

{

x1(t + 1) = u1(t) ∧ x2(t),

x2(t + 1) = u2(t),

y1(t) = x1(t),

y2(t) = ¬x2(t),

(17.24)

with the initial state x0 = δ1
4 .

Let x(t) = x1(t)x2(t), u(t) = u1(t)u2(t), y(t) = y1(t)y2(t). Its algebraic form is

x(t + 1) = Lx(t),

y(t) = Hx(t),
(17.25)

where

L = δ4[1 3 1 3 2 4 2 4 3 3 3 3 4 4 4 4],

H = δ4[2 1 4 3].

Note that if we set x̃1(t) = ¬x1(t) and x̃2(t) = x2(t), then it is easy to see
that (17.23) is equivalent to the original system (17.24) via this coordinate trans-
formation. Moveover, this coordinate transformation does not change the network
graph.
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Remark 17.5

1. When the system is not observable and/or controllable, there is no unique (L,H)

(up to a coordinate transformation), but this does not mean that the data have
no realization. In particular, if the data are from a real Boolean network, then
one realization (the real one) exists. In fact, it only means there is more than
one realization. In this case Algorithm 17.1 remains applicable. Therefore, when
applying this algorithm we do not need to worry about whether the system is
controllable and/or observable.

2. If the data contain some errors, the algorithm is still useful. In this case we may
preassign an acceptable error level such that the algorithm terminates when the
true error reaches this.

Example 17.5 Consider the following system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(t + 1) = u1(t) ∧ x2(t),

x2(t + 1) = ¬x1(t),

x3(t + 1) = x1(t) ↔ x2(t),

x4(t + 1) = ¬u2(t),

y1(t) = x2(t) ∨̄x3(t),

y2(t) = x4(t).

(17.26)

Let x(t) = x1(t)x2(t)x3(t)x4(t), u(t) = u1(t)u2(t), y(t) = y1(t)y2(t). Its alge-
braic form is then

x(t + 1) = Lx(t),

y(t) = Hx(t),
(17.27)

where

L = δ16[ 6 6 6 6 16 16 16 16 4 4 4 4 10 10 10 10
5 5 5 5 15 15 15 15 3 3 3 3 9 9 9 9

14 14 14 14 16 16 16 16 11 11 11 11 10 10 10 10
13 13 13 13 15 15 15 15 11 11 11 11 9 9 9 9],

H = δ4[3 4 1 2 1 2 3 4 3 4 1 2 1 2 3 4].

It is obvious that the system is not controllable, thus it is not uniquely identifiable.
However, Algorithm 17.1 remains applicable.

Let a set of input–output data be generated from (17.26) as

u(t) : 1 3 3 2 3 4 2 2 2 2 2 2 3 3 2 1 2 2 1 3
3 2 2 3 4 4 2 4 2 4 4 1 2 3 3 3 2 2 1 2
2 2 4 4 4 3 1 3 4 4 1 3 3 4 3 1 2 1 4 2
1 4 4 2 2 4 1 4 3 4 1 2 1 4 3 2 2 4 2 1
1 1 3 1 3 1 4 2 4 1 3 4 2 4 1 1 1 4 1 2,
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y(t) : 3 2 4 4 1 2 3 1 1 3 3 1 1 4 4 1 2 3 3 2
2 4 1 1 4 3 1 1 1 3 1 1 2 1 4 4 1 1 1 4
3 1 1 3 3 1 1 2 2 3 1 2 2 4 1 1 2 1 4 3
1 2 3 3 1 1 3 4 1 1 1 2 1 4 3 1 1 1 3 3
2 2 4 4 2 2 4 1 1 1 4 1 1 1 1 4 2 2 3 4.

Let the initial L0, H0 be (to avoid computational complexity, we choose the
initial structure close enough to the real network to see whether the algorithm works)

L0 = δ16[ 7 6 6 6 16 16 16 16 4 4 4 4 10 10 10 10
5 5 5 5 15 15 15 15 3 3 8 3 9 9 9 9

14 14 14 14 16 16 16 16 11 11 11 11 10 10 10 10
13 13 13 13 15 15 15 15 11 11 11 11 9 9 9 9],

H0 = δ4[4 4 1 2 1 2 3 4 3 1 1 2 1 2 3 4].

The algorithm then terminates at the second step at

L̂ = δ16[ 6 6 6 6 16 16 16 16 4 4 4 4 10 10 10 10
5 5 5 5 15 15 15 15 3 3 3 3 9 9 9 9

14 14 14 14 16 16 16 16 11 11 11 11 10 10 10 10
13 13 13 13 15 15 15 15 11 11 11 11 9 9 9 9],

Ĥ = δ4[4 4 1 2 1 2 2 4 3 4 1 2 1 2 3 4].

Note that L̂ = L, but Ĥ is different from H . Since the system is not uniquely
identifiable, we here have another realization.

17.4.3 Identification of Higher-Order Systems

A µth order Boolean control network is defined as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t), . . . , x1(t − µ + 1), . . . ,

xn(t − µ + 1), u1(t − µ + 1), . . . , um(t − µ + 1)),

x2(t + 1) = f2(x1(t), . . . , xn(t), u1(t), . . . , um(t)), . . . , x1(t − µ + 1), . . . ,

xn(t − µ + 1), u1(t − µ + 1), . . . , um(t − µ + 1),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t), . . . , x1(t − µ + 1), . . . ,

xn(t − µ + 1), u1(t − µ + 1), . . . , um(t − µ + 1)),

yj (t) = hj

(
x1(t), . . . , xn(t)

)
, j = 1, . . . , p.

(17.28)

Consider the identification of the system (17.28). Basically, Algorithm 17.1 is
still applicable, provided some observations are introduced. These are:
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1. Note that

L ∈ L2n×2(n+m)µ , H ∈ L2p×2n .

2. Considering the initial values {x(0), x(1), . . . , x(µ − 1)}, we cannot simply as-
sume that all of them are δ1

2n because this cannot represent all possible initial
values, even under a coordinate transformation. Let

[0,µ − 1] = [µ0 = 0,µ1) ∪ [µ1,µ2) ∪ · · · ∪ [µ2n−1,µ2n = µ − 1] (17.29)

be a partition with nonincreasing length, where µi, i = 0,1, . . . ,2n, are nonneg-
ative integers, that is,

µi − µi−1 ≥ µi+1 − µi, i = 1, . . . ,2n − 1. (17.30)

For each partition (17.29) satisfying (17.30), we assign the initial values as fol-
lows:

x(i) = δ
j

2n , µj−1 ≤ i < µj , i = 0,1, . . . ,µ − 1.

It is easy to check that this covers all possible assignments of initial values under
a coordinate transformation. For instance, if we assume µ = 2, then we have two
different partitions:

[0,1) ∪ [1,2) ∪ ∅ ∪ · · · , [0,2) ∪ ∅ ∪ · · · .

The corresponding initial-value assignments are
{

x(0) = δ1
2n ,

x(1) = δ2
2n ,

and

{

x(0) = δ1
2n ,

x(1) = δ1
2n .

17.5 Approximate Identification

Assume that we have a large Boolean network and are particularly interested in a
certain function. We may then consider approximating the network with a simpler
model. For instance, consider a large Boolean network as in Fig. 17.2. We may

Fig. 17.2 A partitioned network
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split it into several parts. Suppose we have three parts, A, B , and C. Inside each
part, the nodes are strongly connected and in between parts, the connections are
assumed to be weak. We may now ignore the interior nodes and focus solely on
the frontier nodes which are related to other parts. Suppose we have frontier nodes
{x1, x2, . . . , x12}. We can then approximate the original network by (17.31) and try
to identify these nodes.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), x3(t), x4(t)),

x2(t + 1) = f2(x1(t), x2(t), x3(t), x4(t), x6(t)),

x3(t + 1) = f3(x1(t), x2(t), x3(t), x4(t)),

x4(t + 1) = f4(x1(t), x2(t), x3(t), x4(t), x12(t)),

x5(t + 1) = f5(x1(t), x5(t), x6(t), x7(t), x8(t), u(t)),

x6(t + 1) = f6(x5(t), x6(t), x7(t), x8(t), u(t)),

x7(t + 1) = f7(x5(t), x6(t), x7(t), x8(t), u(t)),

x8(t + 1) = f8(x1(t), x5(t), x6(t), x7(t), x8(t), x9(t), u(t)),

x9(t + 1) = f9(x9(t), x10(t), x11(t), x12(t)),

x10(t + 1) = f10(x7(t), x9(t), x10(t), x11(t), x12(t)),

x11(t + 1) = f11(x3(t), x9(t), x10(t), x11(t), x12(t)),

x12(t + 1) = f12(x9(t), x10(t), x11(t), x12(t)),

y(t) = h
(
x9(t), x10(t), x11(t), x12(t)

)
.

(17.31)

We give a numerical example to illustrate this.

Example 17.6 Consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = ¬x2(t) ∧ x3(t) ∨ u(t),

x2(t + 1) = ¬x3(t) ∧ x4(t) ∨ u(t),

...

x99(t + 1) = ¬x100(t) ∧ x1(t) ∨ u(t),

x100(t + 1) = ¬x1(t) ∧ x2(t) ∨ u(t),

z1(t + 1) = z2(t) ∧ ¬z3(t),

z2(t + 1) = z3(t) ∧ ¬z4(t),

...

z99(t + 1) = z100(t) ∧ ¬z1(t),

z100(t + 1) = x100(t) ∧ ¬z1(t),

y(t) = z1(t) ∧ ¬z5(t)¬z100(t).

(17.32)
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For example, we choose ξ1(t) = x100(t) and ξ2(t) = z100(t). We can then con-
struct an approximate system as follows:

{

ξ1(t + 1) = f1(ξ1(t), u(t)),

ξ2(t + 1) = f2(ξ1(t), ξ2(t)),

y(t) = h
(
ξ2(t)

)
.

(17.33)

Its algebraic form is

{

ξ1(t + 1) = L1ξ1(t)u(t),

ξ2(t + 1) = L2ξ1(t)ξ2(t),

y(t) = Hξ2(t).

Randomly choose a sequence of 100 input data and let xi(0) = zi(0) = δ2
2 . Using

the dynamics (17.32) yields 100 data as follows:

u(t) : 2 2 2 1 1 1 1 1 2 1 1 2 2 1 1 2 1 2 1 2

2 1 2 2 2 1 2 2 2 1 1 2 1 1 2 1 1 1 2 1

1 2 1 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 1 1

2 1 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 1

2 1 1 2 1 1 2 1 1 2 1 2 2 2 1 2 1 1 1 1,

y(t) : 2 2 2 2 1 1 1 1 1 2 1 1 2 2 1 1 2 1 2 1

2 2 1 2 2 2 1 2 2 2 1 1 2 1 1 2 1 1 1 2

1 1 2 1 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 1

1 2 1 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1

1 2 1 1 2 1 1 2 1 1 2 1 2 2 2 1 2 1 1 1.

L1, L2, H can then be identified as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

L1 = δ2[1 2 1 1],

L2 = δ2[2 1 1 1],

H = δ2[1 2],

with ξ1(0) = δ1
2 , ξ2(0) = δ2

2 , and the smallest error being 29.
We change the input sequence 100 times to see its effect. The errors are as fol-

lows:

32 31 36 36 29 27 27 29 29 28 30 34 25 24 25 26 27 30 29 25

26 36 33 24 32 28 32 32 31 28 21 33 33 24 25 24 35 29 28 21

29 26 30 23 23 20 30 30 27 29 26 25 25 27 26 28 20 28 35 23

27 23 27 24 26 25 28 30 27 31 28 27 27 27 28 28 27 36 23 29

28 27 27 32 23 28 29 28 28 26 26 27 27 30 29 25 27 26 27 24.
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It is easily seen that the minimum of the 100 times is 20, while the maximum is 36,
and the average is 27.76.

References

1. Cheng, D., Zhao, Y.: Identification of Boolean control networks. Automatica (2010, provision-
ally accepted)



Chapter 18

Applications to Game Theory

18.1 Strategies with Finite Memory

To make the objectives of this chapter clear, we give a rigorous definition for the
games which we will consider

Definition 18.1

(1) A static game G consists of three components: (i) n players, named A1, . . . ,An,
(ii) ki possible actions for each player Ai , denoted by xi ∈ Dki

, i = 1, . . . n,
(iii) n payoff functions for the n players, given respectively by

cj (x1 = i1, . . . , xn = in) = c
j

i1 i2 ··· in
, j = 1, . . . , n. (18.1)

(2) A set of actions of all players, denoted by s = (x1, . . . , xn), is called a pure
strategy of G, and the set of pure strategies is denoted by S.

Throughout this chapter only pure strategies are considered and so the word
“pure” is omitted. Using the above definition, we can define the infinitely repeated
version of game G, denoted by G∞.

Definition 18.2 Consider the game G described in Definition 18.1.

(1) A strategy of the infinitely repeated game G∞ is

s∞ = {s1, . . . , sn} ∈ S∞,

where the sequence sj = (sj (0), sj (1), . . .) is called the strategy of player Aj ,
in which sj (t) = xj (t), called the action of Aj at time t , is a function of the first
t historical actions of Ai , i = 1, . . . , n.

(2) A set of logical dynamic functions which determine the strategies of the in-
finitely repeated game is called a generator of the strategies. More precisely, we
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have

xj (t + 1) = f t+1
j

(

x1(t), . . . , xn(t), . . . , x1(0), . . . , xn(0)
)

, j = 1, . . . , n,

(18.2)

where

f t+1
j : (Dk1 × · · · × Dkn) · · · (Dk1 × · · · × Dkn)

︸ ︷︷ ︸

t+1

→ Dkj
, j = 1, . . . , n.

For convenience, (18.2) is sometimes also called a strategy.
(3) The payoff functions for G are assumed to be

J 0
j = cj (x1, . . . , xn), j = 1, . . . , n. (18.3)

The corresponding payoff functions for G∞ are the average payoffs defined
as [6, 7]

Jj = lim
T →∞

1

T

T
∑

t=1

cj

(

x1(t), . . . , xn(t)
)

, j = 1, . . . , n. (18.4)

(4) A strategy for G∞ is called a zero-memory strategy if

xj (t + 1) = fj (t + 1) = f t+1
j , j = 1, . . . , n. (18.5)

(5) A strategy for G∞ is called a µ-memory strategy, with µ > 0, if its generators
are

xj (t + 1) = fj

(

x1(t), . . . , xn(t), . . . , x1(t − µ + 1), . . . , xn(t − µ + 1)
)

,

j = 1, . . . , n, (18.6)

combined with the initial conditions

xj (t0) = x
j
t0
, j = 1, . . . , n, t0 = 0,1, . . . ,µ − 1.

Remark 18.1

1. For the zero-memory strategy defined by (18.5), the action of each player could
be an arbitrary infinity-time sequence {xj (0), xj (1), . . .}, j = 1, . . . , n.

2. For a µ-memory strategy, the generating functions fj are assumed to be time-
invariant. If fj is time-varying, then the value xj (t) is entirely arbitrary and the
strategy degenerates to the zero-memory case.

Throughout this chapter we consider only the µ-memory case where 0 ≤ µ < ∞.
Using vector form, it is easily seen that, as in Proposition 14.1, we can find a

unique Lj ∈ Lkj ×kµ such that

xj (t + 1) = Lj ⋉
µ−1
i=0 x(t − i), j = 1, . . . , n. (18.7)
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Equivalently, we can find a unique L ∈ Lk×kµ such that

x(t + 1) = L ⋉
µ−1
i=0 x(t − i). (18.8)

In Chap. 5 (Sect. 5.6) and in [5] it was shown that the topological structure of
(18.6) can be obtained by investigating the topological structure of (18.8). We de-
scribe a brief constructive process.

Note that x = ⋉n
i=1xi can uniquely determine the xi , i = 1, . . . , n. We denote the

natural projections by

xi = πi(x), i = 1, . . . , n.

The projections can be determined precisely by Proposition 16.4. That is, if we let
ki =

∏n
j=1,j �=i kj = k

ki
, then we have

{

x1 = π1(x) = (Ik1 ⊗ 1k1)x,

xi = πi(x) = (Iki
⊗ 1ki )W[k1×k2×···ki−1,ki ]x, i > 1.

(18.9)

We need to show that (18.7) and (18.8) are equivalent, that is, that there is a one-
to-one correspondence between L and {L1, . . . ,Ln}. We prove this by constructing
the conversion formulas, which are themselves very useful.

Using the notation κi =
∏n

j=i+1 kj , i = 1,2, . . . , n − 1, we define a set of re-
trievers as

S1 = Ik1 ⊗ 1T
κ1

,

S2 =
[

Ik2 ⊗ 1T
κ2

, . . . , Ik2 ⊗ 1T
κ2

︸ ︷︷ ︸

k1

]

,

...

Sn−1 =
[

Ikn−1 ⊗ 1T
κn−1

, . . . , Ikn−1 ⊗ 1T
κn−1

︸ ︷︷ ︸

k1×k2×···×kn−2

]

,

Sn = [ Ikn , . . . , Ikn
︸ ︷︷ ︸

k1×k2×···×kn−1

].

(18.10)

It is then easy to check the following proposition.

Proposition 18.1

1.

L = L1

n
∏

j=2

[

(Ik ⊗ Lj )Φ
]

, (18.11)
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where

Φ =

µ
∏

j=1

[

Ikj−1 ⊗ (Ik ⊗ W[k,kµ−j ])Mr,k

]

.

2.

Li = SiL, i = 1,2, . . . , n. (18.12)

The proof of this proposition is similar to the proof of Theorem 7.1. We leave it
to the reader. Next, we define the sub-Nash equilibrium for the game.

Definition 18.3 Let S = {sλ |λ ∈ Λ} be a set of strategies of G and ελ0 ≥ 0 the
smallest nonnegative real number such that

cj

(

x
λ0
1 , . . . , xλ0

n

)

+ ελ0 ≥ cj

(

x
λ0
1 , . . . , xλ

j , . . . , xλ0
n

)

, ∀λ, j = 1, . . . , n. (18.13)

Then, ελ0 is called the tolerance of sλ0 .

• If ελ0 = 0, then sλ0 is called a Nash equilibrium.
• If

ε0 = min {ελ |λ ∈ Λ} > 0,

then there is no Nash equilibrium, and if ελ = ε0, then sλ is called a sub-Nash
equilibrium of S.

• For any strategy sλ, if its tolerance is 0, then it is also called a Nash solution of
the game; if its tolerance is ε > 0, then it is called an ε-tolerance solution of the
game.

We can similarly define the Nash or sub-Nash equilibria and ε-tolerance solutions
for G∞ in this way, except that (18.13) is replaced by

Jj

(

s
λ0
1 , . . . , sλ0

n

)

+ ε0 ≥ Jj

(

s
λ0
1 , . . . , sλ

j , . . . , sλ0
n

)

, j = 1, . . . , n. (18.14)

18.2 Cycle Strategy

Definition 18.4 A strategy for G∞ is called a cycle strategy if it satisfies

xj (t + T0) = xj (t), j = 1, . . . , n, ∀ t ≥ 0. (18.15)

Equivalently, (18.15) can be expressed in product form, with x = ⋉n
i=1xi , as

x(t + T0) = x(t), t ≥ 0. (18.16)
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As a convention, in the sequel we always assume that the T0 > 0 in (18.15) or
(18.16) is the smallest one, i.e., the period of the strategy. Denote by C the set of
cycle strategies. C is then a subset of strategies, i.e., C ⊂ S. Also, denote by Cα the
set of cycle strategies with cycle length α, which equals T0.

If a strategy satisfies (18.15) [or, equivalently, (18.16)], for t ≥ t0, with a fixed
t0 > 0, the payoff functions Jj , j = 1, . . . , n, have the same values as t0 = 0. We
still consider it as a cycle strategy. In general, the possible strategies are infinite in
number. We consider the µ-memory (0 ≤ µ < ∞) Nash equilibrium only within C.
In the following we will show that if there is a Nash solution, then there is a corre-
sponding cycle strategy as the solution.

Consider a logical control network

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

x1(t + 1) = f1(x1(t), . . . , xp(t), . . . , x1(t − µ + 1), . . . , xp(t − µ + 1),

u1(t), . . . , uq(t), . . . , u1(t − µ + 1), . . . , uq(t − µ + 1)),

...

xp(t + 1) = fp(x1(t), . . . , xp(t), . . . , x1(t − µ + 1), . . . , xp(t − µ + 1),

u1(t), . . . , uq(t), . . . , u1(t − µ + 1), . . . , uq(t − µ + 1)).

(18.17)

The performance criterion is

J = lim
T →∞

1

T

T
∑

t=1

c
(

x1(t), . . . , xp(t), u1(t), . . . , uq(t)
)

. (18.18)

The design purpose is to find an optimal control u∗(t) = ⋉
q

i=1u
∗
i (t) such that

J
(

u∗(t)
)

= max
u(t)

J
(

u(t)
)

.

It was proven in the last chapter that for any given initial value {x1(0), . . . , xp(0),
. . . , x1(µ − 1), . . . , xp(µ − 1)}, there exists an optimal control as described in the
following proposition.

Proposition 18.2 There exists an optimal control satisfying

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

u1(t + 1) = g1(x1(t), . . . , xp(t), . . . , x1(t − µ + 1), . . . , xp(t − µ + 1),

u1(t), . . . , uq(t), . . . , u1(t − µ + 1), . . . , uq(t − µ + 1)),

...

uq(t + 1) = gq(x1(t), . . . , xp(t), . . . , x1(t − µ + 1), . . . , xp(t − µ + 1),

u1(t), . . . , uq(t), . . . , u1(t − µ + 1), . . . , uq(t − µ + 1)).

(18.19)

Moreover, the optimal value can be obtained on a cycle trajectory starting from the

given initial value.
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Considering the µ-memory strategy (18.6), we propose an algorithm for solving
the game.

Algorithm 18.1

Step 1. Assume that {L0
1, . . . ,L

0
n} are chosen. We consider x1(t) as a control for the

logical control system

xj (t + 1) = fj

(

x1(t), . . . , xn(t), . . . , x1(t − µ + 1), . . . , xn(t − µ + 1)
)

,

j = 2,3, . . . , n, (18.20)

where fj , j = 2, . . . , n, are uniquely determined by L0
j . Solving the optimal con-

trol problem with the given initial values {x0
j | j �= 1} and the performance criterion

J = J1 = lim
T →∞

1

T

T
∑

t=1

c1
(

x(t)
)

,

the optimal solution {L1
1, x

0
1} can be obtained. (Note that for the same {fj , x

0
j |

j �= 1} there may be more than one solution. We can choose any one of these in the
first instance. However, at the next time when the same {fj , x

0
j | j �= 1} appear, we

must choose the same one which was first chosen.) Using this L1
1, we can uniquely

determine a new f1. We then replace the old f1 by this new f1 and take x0
1 as the

initial value.
Step 2. Assume {Ls

1, . . . ,L
s
j−1,L

s−1
j+1, . . . ,L

s−1
n } with {x0

i | i �= j} are obtained. We
consider the corresponding system

xi(t + 1) = fi(x1(t), . . . , xn(t), . . . , x1(t − µ + 1), . . . , xn(t − µ + 1), i �= j.

(18.21)

Solving the optimal control problem with

J = Jj = lim
T →∞

1

T

T
∑

t=1

cj

(

x(t)
)

,

the Ls
j and x0

j are obtained, and then fj and x0
j are updated.

By definition, the following result is then obvious.

Theorem 18.1

1. In Algorithm 18.1, assume that there exists a k∗ such that

Lk∗

i = Lk∗+1
i , i = 1, . . . , n. (18.22)

Then,

Li = Lk∗

i , i = 1, . . . , n,
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form a set of Nash equilibria. Moreover, the corresponding optimal solution can

be chosen as a cycle strategy.
2. If {L0

1, . . . ,L
0
n} with {x0

j | j = 1, . . . , n} is a µ-memory Nash equilibrium, then it

is a fixed point of the algorithm.

18.3 Compounded Games

Definition 18.5 Let Gs , s = 1,2, be two games with As
1, . . . ,A

s
n being the two

groups of players. Each As
i has ks

i possible actions. Their payoff functions are, re-
spectively,

c1
i

(

δ
α1

k1
1
, . . . , δ

αn

k1
n

)

= ci
α1···αn

,

c2
i

(

δ
β1

k2
1
, . . . , δ

βn

k2
n

)

= d i
β1···βn

, i = 1,2, . . . , n.
(18.23)

G is called a compounded game of G1 and G2 with weight (λ,1 − λ), 0 < λ < 1,
denoted by G = G1 ◦ G2, if:

(i) G has n players, Ai , i = 1, . . . , n.
(ii) Each Ai has k1

i × k2
i possible actions, denoted by δ

p

k1
i

× δ
q

k2
i

, p = 1, . . . , k1
i and

q = 1, . . . , k2
i .

(iii) Using (18.23), the payoff functions are

ci

(

δ
α1

k1
1

× δ
β1

k2
1
, . . . , δ

αn

k1
n

× δ
βn

k2
n

)

= λci
α1···αn

+ (1 − λ)d i
β1···βn

. (18.24)

In practical terms, a compounded game corresponds to a game between teams of
players. We give an example to illustrate this.

Example 18.1 Assume that there are two games G1 and G2 with players {A,B} and
{C,D}, respectively. Their strategies and payoff functions are described via payoff
bi-matrices in Tables 18.1 and 18.2, respectively.

Assume that A and C form a team to play against the team of B and D. The
strategies and payoff functions of the compounded game G = G1 ◦ G2 with weight
(0.5,0.5) are then described in Table 18.3.

By definition the following result is obvious.

Table 18.1 Payoff bi-matrix
of G1 A\B 1 2 3

1 1, 1 1, −1 2, 1

2 0, 1 1, 0 0, 0
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Table 18.2 Payoff bi-matrix
of G2 C\D 1 2

1 −1, 1 1, 2

2 2, 1 1, −2

Table 18.3 Payoff bi-matrix of G1 ◦ G2

A ◦ C\B ◦ D 1 × 1 1 × 2 2 × 1 2 × 2 3 × 1 3 × 2

1 × 1 0, 1 1, 1.5 0, 0 1, 0.5 0.5, 1 1.5, 1.5

1 × 2 1.5, 1 1, −0.5 1.5, 0 1, −1.5 2, 1 1.5, −0.5

2 × 1 −0.5, 1 −0.5, 1 0, 0.5 1, 1 −0.5, 0.5 0.5, 1

2 × 2 1, 1 0.5, −0.5 1.5, 0.5 1, −1 1, 0.5 0.5, −1

Proposition 18.3 Let G = G1 ◦ G2. {ξ∗
1 , . . . , ξ∗

n } and {η∗
1, . . . , η∗

n} are Nash equi-

libria of G1 and G2, respectively, if and only if {ξ∗
1 × η∗

1, . . . , ξ∗
n × η∗

n} is a Nash

equilibrium of G.

Proof (Necessity) Assume that {ξ∗
1 , . . . , ξ∗

n } and {η∗
1, . . . , η∗

n} are Nash equilibria of
G1 and G2, respectively. For G = G1 ◦ G2, we then have the payoffs

cj

(

ξ∗
1 × η∗

1, . . . , ξ∗
n × η∗

n

)

= λc1
j

(

ξ∗
1 , . . . , ξ∗

n

)

+ (1 − λ)c2
j

(

η∗
1, . . . , η∗

n

)

≥ λc1
j

(

ξ∗
1 , . . . , ξj , . . . , ξ

∗
n

)

+ (1 − λ)c2
j

(

η∗
1, . . . , ηj , . . . , η

∗
n

)

= cj

(

ξ∗
1 × η∗

1, . . . , ξj × ηj , . . . , ξ
∗
n × η∗

n

)

, 1 ≤ j ≤ n.

(Sufficiency) Assume that {ξ∗
1 × η∗

1, . . . , ξ∗
n × η∗

n} is a Nash equilibrium of G.
Then,

cj

(

ξ∗
1 × η∗

1, . . . , ξ∗
j × η∗

j , . . . , ξ
∗
n × η∗

n

)

≥ cj

(

ξ∗
1 × η∗

1, . . . , ξj × η∗
j , . . . , ξ

∗
n × η∗

n

)

,

where 1 ≤ j ≤ n. That is,

λc1
j

(

ξ∗
1 , . . . , ξ∗

j , . . . , ξ∗
n

)

+ (1 − λ)c2
j

(

η∗
1, . . . , η∗

j , . . . , η
∗
n

)

≥ λc1
j

(

ξ∗
1 , . . . , ξj , . . . , ξ

∗
n

)

+ (1 − λ)c2
j

(

η∗
1, . . . , η∗

j , . . . , η
∗
n

)

.

Hence,

c1
j

(

ξ∗
1 , . . . , ξ∗

j , . . . , ξ∗
n

)

≥ c1
j

(

ξ∗
1 , . . . , ξj , . . . , ξ

∗
n

)

, 1 ≤ j ≤ n.

Similarly, we have

c2
j

(

η∗
1, . . . , η∗

j , . . . , η
∗
n

)

≥ c1
j

(

η∗
1, . . . , ηj , . . . , η

∗
n

)

, 1 ≤ j ≤ n. �



18.4 Sub-Nash Solution for Zero-Memory Strategies 417

An immediate consequence of this proposition is the following.

Corollary 18.1 G has no Nash equilibrium if and only if any finitely repeated game

G ◦ G ◦ · · · ◦ G
︸ ︷︷ ︸

s

has no Nash equilibrium.

18.4 Sub-Nash Solution for Zero-Memory Strategies

Consider an infinitely repeated game G∞ of G. If G has a Nash equilibrium, then
according to Corollary 18.1, it, after being compounded finitely many times, is a
Nash equilibrium for the corresponding finite-time repeated game, and there is no
new zero-memory Nash equilibrium. So, for zero-memory strategies, this case is
less interesting. For example, consider the prisoner’s dilemma and assume its payoff
bi-matrix is as in Table 18.4.

It is clear that (2,2) is a Nash equilibrium. Now, consider the infinitely repeated
prisoner’s dilemma: If it is formulated as a game between a machine and a human [6]
and if only zero-memory strategies are considered, then the machine can simply
choose the strategy of the Nash equilibrium, that is, choose action 2 forever. The
human then has no option but simply to choose action 2. Note that this case is not
true for the µ > 0 memory case, where new a Nash equilibrium may appear, because
in this case, the actions of different steps are no longer independent.

Therefore, for the zero-memory case, when considering the Nash solution, the in-
teresting case is when the original payoff bi-matrix has no Nash equilibrium. How-
ever, we know that in this case we have no Nash equilibrium for a finitely repeated
game, so we consider the sub-Nash solution.

We give a simple example to illustrate the sub-Nash solution.

Example 18.2 Consider a game G with two players, A and B . The payoff bi-matrix
is given in Table 18.5.

It is obvious that there is no Nash equilibrium. It is easy to calculate that the
tolerance of (1,1) and (1,2) is 2, and that the tolerance of (2,1) and (2,2) is 1.
Hence, (2,1) and (2,2) are sub-Nash equilibria with tolerance 1 and corresponding

Table 18.4 Payoff bi-matrix
P1\P2 1 2

1 3, 3 0, 5

2 5, 0 1, 1

Table 18.5 Payoff bi-matrix
of G A\B 1 2

1 2, 0 0, 2

2 1, 2 2, 1
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Table 18.6 Payoff bi-matrix
of G ◦ G A\B 1 × 1 1 × 2 2 × 1 2 × 2

1 × 1 2, 0 1, 1 1, 1 0, 2

1 × 2 1.5, 1 2, 0.5 0.5, 2 1, 1.5

2 × 1 1.5, 1 0.5, 2 2, 0.5 1, 1.5

2 × 2 1, 2 1.5, 1.5 1.5, 1.5 2, 1

payoffs {pA,pB} = {1,2} and {2,1}, respectively. It is very likely that A may not
be satisfied with (2,1) and B may not be satisfied with (2,2).

Next, we may consider length-2 cycle zero-memory strategies. That is, we con-
sider G◦G, with λ = 0.5. The payoff bi-matrix is then as shown in Table 18.6. Now,
(2 × 2,1 × 2) and (2 × 2,2 × 1) are the two sub-Nash equilibria with tolerance 0.5
and the same corresponding payoffs, {1.5,1.5}. This payoff may be acceptable by
both A and B . We argue this as follows: A may choose 1 × 2 to get a better payoff,
but as A chooses 1 × 2, B can choose 2 × 1 to get a better payoff. Similarly, B

may choose 1 × 1 to get a better payoff, but then A can choose 1 × 1 to get a better
payoff. Hence, to avoid uncertainty, this sub-Nash strategy may be accepted by both
A and B .

Continuing this process, we consider cycle strategies of length 3. The tolerance
for the sub-Nash equilibria is 0.6667. The sub-Nash equilibria

(122,111), (122,222), (212,111),

(212,222), (221,111), (221,222)

have payoffs {1.3333,1.3333}, the sub-Nash equilibria

(222,112), (222,121), (222,211)

have payoffs {1.3333,1.6667}, and the sub-Nash equilibria

(222,122), (222,211), (222,221)

have payoffs {1.6667,1.3333}.
For cycle strategies of length 4, the tolerance is 0.5. Sub-Nash equilibria are

(2222,1122), (2222,1212), (2222,1221),

(2222,2112), (2222,2121), (2222,2211),

which have the same payoffs, {1.5,1.5}.
Note that the longest length of a cycle is 4. No more calculation is necessary.

Summarizing the above argument, one sees that the best sub-Nash equilibrium
for cycle strategies is of tolerance 0.5. The corresponding sub-Nash solutions are
(2 × 2,1 × 2) and (2 × 2,2 × 1).

In principle, for a game with n players, each player Ai with ki strategies, the
longest cycle strategy has length k =

∏n
j=1 kj . For each length, we can then find

the sub-Nash equilibrium (equilibria). Finally, we can find the best sub-Nash equi-
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librium (equilibria), which has (have) the minimum tolerance. This (these) can be
taken as the sub-Nash solution(s) of the zero-memory cycle strategies for the game.

Denote by εα the minimum tolerance of cycle strategies. Assume that
ℓ (mod α) = β , i.e.,

ℓ = γ α + β.

By choosing an optimal cycle of length α for γ times and an optimal cycle of length
β , it is easily seen that

εℓ ≤
γ εα + εβ

ℓ
. (18.25)

If (18.25) becomes an equality, then the “optimal” cycle of length ℓ is meaningless.
Otherwise, we have an improved sub-Nash solution.

18.5 Nash Equilibrium for µ-Memory Strategies

Consider a μ-memory strategy. By Definition 18.2 each such strategy can be deter-
mined by

xj (t + 1) = fj

(

x(t), . . . , x(t − μ + 1)
)

, j = 1, . . . , n, (18.26)

with a set of initial values {xj (t) | j = 1, . . . , n; t = 0, . . . ,μ− 1}. Now, (18.26) can
be expressed equivalently in its algebraic form as

xj (t + 1) = Lj ⋉
μ
i=1 x(t − μ + i), j = 1, . . . , n, (18.27)

where Lj ∈ Lkj ×kμ . Hence, a strategy can be determined by a set of logical matrices

{Lj ∈ Lkj ×kμ |j = 1, . . . , n}

with a set of initial values.
We give an example to illustrate this.

Example 18.3 Consider the infinitely repeated prisoner’s dilemma with μ = 1. Both
players then have 16 strategies, denoted by

s1 = δ2[1111], s2 = δ2[1112], s3 = δ2[1121], s4 = δ2[1122],

s5 = δ2[1211], s6 = δ2[1212], s7 = δ2[1221], s8 = δ2[1222],

s9 = δ2[2111], s10 = δ2[2112], s11 = δ2[2121], s12 = δ2[2122],

s13 = δ2[3211], s14 = δ2[2212], s15 = δ2[2221], s16 = δ2[2222].

The payoff bi-matrices for different initial values are as follows:

• x1(0) = δ1
2 , x2(0) = δ1

2 , as in Table 18.7.
• x1(0) = δ1

2 , x2(0) = δ2
2 , as in Table 18.8.
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Table 18.7 Payoff bi-matrix

A/B 1 2 3 4 5 6 7 8

1 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

2 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

4 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

5 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

6 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

7 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

8 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

9 4, 1.5 4, 1.5 2.67, 2.67 2.67, 2.67 4, 1.5 4, 1.5 0, 5 0, 5

10 4, 1.5 4, 1.5 2.67, 2.67 2.67, 2.67 4, 1.5 4, 1.5 0, 5 0, 5

11 5, 0 5, 0 3, 1.33 2.25, 2.25 5, 0 5, 0 3, 1.33 0, 5

12 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

13 4, 1.5 4, 1.5 2.5, 2.5 2.5, 2.5 4, 1.5 4, 1.5 2.25, 2.25 0.5, 3

14 4, 1.5 4, 1.5 2.5, 2.5 2.5, 2.5 4, 1.5 4, 1.5 2, 2 1, 1

15 5, 0 5, 0 3, 1.33 2, 2 5, 0 5, 0 3, 1.33 0.5, 3

16 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

A/B 9 10 11 12 13 14 15 16

1 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

2 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

3 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

4 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

5 2.67, 2.67 2.67, 2.67 2.5, 2.5 2.5, 2.5 1.33, 3 0.5, 3 1.33, 3 0.5, 3

6 2.67, 2.67 2.67, 2.67 2.5, 2.5 2.5, 2.5 2.25, 2.25 1, 1 2, 2 1, 1

7 5, 0 5, 0 2.25, 2.25 2, 2 1.33, 3 0.5, 3 1.33, 3 0.5, 3

8 5, 0 5, 0 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

9 2, 2 1.33, 3 2, 2 1.33, 3 2, 2 0, 5 2, 2 0, 5

10 3, 1.33 1, 1 2.25, 2.25 1, 1 3, 1.33 1, 1 0, 5 1, 1

11 2, 2 1.33, 3 2, 2 1.33, 3 2, 2 0, 5 2, 2 0, 5

12 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

13 2, 2 2.25, 2.25 2, 2 2.5, 2.5 2, 2 0.5, 3 2, 2 0.5, 3

14 3, 1.33 1, 1 2.5, 2.5 1, 1 3, 1.33 1, 1 2, 2 1, 1

15 2, 2 5, 0 2, 2 2, 2 2, 2 0.5, 3 2, 2 0.5, 3

16 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

• x1(0) = δ2
2 , x2(0) = δ1

2 , as in Table 18.9.
• x1(0) = δ2

2 , x2(0) = δ2
2 , as in Table 18.10.

We can check that there are 53 1-memory Nash equilibria, as in Table 18.11.
In Table 18.11 the double pairs (n a), (m b) indicate that player A takes a strat-

egy with initial value n and uses the logical matrix sa , while player B takes a strategy
with initial value m and uses the logical matrix sb .
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Table 18.8 Payoff bi-matrix

A/B 1 2 3 4 5 6 7 8

1 3, 3 3, 3 3, 3 3, 3 0, 5 0, 5 0, 5 0, 5

2 3, 3 3, 3 3, 3 3, 3 0, 5 0, 5 0, 5 0, 5

3 3, 3 3, 3 3, 3 3, 3 0, 5 0, 5 0, 5 0, 5

4 3, 3 3, 3 3, 3 3, 3 0, 5 0, 5 0, 5 0, 5

5 3, 3 3, 3 2.5, 2.5 2.5, 2.5 3, 3 0.5, 3 3, 3 0.5, 3

6 3, 3 3, 3 2.5, 2.5 2.5, 2.5 3, 3 1, 1 2, 2 1, 1

7 5, 0 5, 0 3, 3 2, 2 3, 3 0.5, 3 3, 3 0.5, 3

8 5, 0 5, 0 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

9 4, 1.5 4, 1.5 2.67, 2.67 2.67, 2.67 0, 5 0, 5 0, 5 0, 5

10 4, 1.5 4, 1.5 2.67, 2.67 2.67, 2.67 0, 5 0, 5 0, 5 0, 5

11 5, 0 5, 0 3, 1.33 2.25, 2.25 0, 5 0, 5 0, 5 0, 5

12 5, 0 5, 0 3, 0.5 1, 1 0, 5 0, 5 0, 5 0, 5

13 4, 1.5 4, 1.5 2.5, 2.5 2.5, 2.5 4, 1.5 0.5, 3 2.25, 2.25 0.5, 3

14 4, 1.5 4, 1.5 2.5, 2.5 2.5, 2.5 4, 1.5 1, 1 2, 2 1, 1

15 5, 0 5, 0 3, 1.33 2, 2 5, 0 0.5, 3 3, 1.33 0.5, 3

16 5, 0 5, 0 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

A/B 9 10 11 12 13 14 15 16

1 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

2 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

3 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

4 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

5 2.67, 2.67 2.67, 2.67 2.5, 2.5 2.5, 2.5 1.33, 3 0.5, 3 1.33, 3 0.5, 3

6 2.67, 2.67 2.67, 2.67 2.5, 2.5 2.5, 2.5 2.25, 2.25 1, 1 2, 2 1, 1

7 5, 0 5, 0 2.25, 2.25 2, 2 1.33, 3 0.5, 3 1.33, 3 0.5, 3

8 5, 0 5, 0 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

9 2, 2 1.33, 3 2, 2 1.33, 3 0, 5 0, 5 0, 5 0, 5

10 3, 1.33 1, 1 2.25, 2.25 1, 1 0, 5 0, 5 0, 5 0, 5

11 2, 2 1.33, 3 2, 2 1.33, 3 0, 5 0, 5 0, 5 0, 5

12 5, 0 1, 1 3, 0.5 1, 1 0, 5 0, 5 0, 5 0, 5

13 2, 2 2.25, 2.25 2.5, 2.5 2.5, 2.5 2, 2 0.5, 3 2, 2 0.5, 3

14 3, 1.33 1, 1 2.5, 2.5 2.5, 2.5 3, 1.33 1, 1 2, 2 1, 1

15 5, 0 5, 0 2, 2 2, 2 2, 2 0.5, 3 2, 2 0.5, 3

16 5, 0 5, 0 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

18.6 Common Nash (Sub-Nash) Solutions for µ-Memory

Strategies

In the previous section we investigated how to find a Nash solution for µ-memory
strategies. Since there may be many Nash solutions, we are particularly interested in
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Table 18.9 Payoff bi-matrix

A/B 1 2 3 4 5 6 7 8

1 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 0, 5 0, 5

2 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 0, 5 0, 5

3 5, 0 5, 0 3, 3 3, 3 5, 0 5, 0 3, 3 0, 5

4 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

5 3, 3 3, 3 2.5, 2.5 2.5, 2.5 3, 3 3, 3 3, 3 0.5, 3

6 3, 3 3, 3 2.5, 2.5 2.5, 2.5 3, 3 3, 3 2, 2 1, 1

7 5, 0 5, 0 3, 3 2, 2 5, 0 5, 0 3, 3 0.5, 3

8 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

9 4, 1.5 4, 1.5 2.67, 2.67 2.67, 2.67 4, 1.5 4, 1.5 0, 5 0, 5

10 4, 1.5 4, 1.5 2.67, 2.67 2.67, 2.67 4, 1.5 4, 1.5 0, 5 0, 5

11 5, 0 5, 0 3, 1.33 2.25, 2.25 5, 0 5, 0 3, 1.33 0, 5

12 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

13 4, 1.5 4, 1.5 2.5, 2.5 2.5, 2.5 4, 1.5 4, 1.5 2.25, 2.25 0.5, 3

14 4, 1.5 4, 1.5 2.5, 2.5 2.5, 2.5 4, 1.5 4, 1.5 2, 2 1, 1

15 5, 0 5, 0 3, 1.33 2, 2 5, 0 5, 0 3, 1.33 0.5, 3

16 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

A/B 9 10 11 12 13 14 15 16

1 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

2 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5

3 5, 0 5, 0 1.5, 4 1.5, 4 5, 0 5, 0 0, 5 0, 5

4 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

5 2.67, 2.67 2.67, 2.67 2.5, 2.5 2.5, 2.5 1.33, 3 0.5, 3 1.33, 3 0.5, 3

6 2.67, 2.67 2.67, 2.67 2.5, 2.5 2.5, 2.5 2.25, 2.25 1, 1 2, 2 1, 1

7 5, 0 5, 0 2.25, 2.25 2, 2 5, 0 5, 0 1.33, 3 0.5, 3

8 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

9 2, 2 1.33, 3 2, 2 1.33, 3 2, 2 0, 5 0, 5 0, 5

10 3, 1.33 1, 1 2.25, 2.25 1, 1 3, 1.33 1, 1 0, 5 0, 5

11 5, 0 5, 0 2, 2 1.33, 3 5, 0 5, 0 2, 2 0, 5

12 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

13 2, 2 2.25, 2.25 2.5, 2.5 2.5, 2.5 2, 2 0.5, 3 2, 2 0.5, 3

14 3, 1.33 1, 1 2.5, 2.5 2.5, 2.5 3, 1.33 1, 1 2, 2 1, 1

15 5, 0 5, 0 2, 2 2, 2 5, 0 5, 0 2, 2 0.5, 3

16 5, 0 5, 0 3, 0.5 1, 1 5, 0 5, 0 3, 0.5 1, 1

the common Nash equilibrium, which is independent of the initial values. If such a
common Nash equilibrium exists, it could be considered as the best solution to G∞.

If such a common Nash equilibrium does not exist, finding a reasonable solution
to the game G∞ becomes a challenging problem. In this section we consider the
common Nash or sub-Nash solution for µ-memory strategies, which is independent
of the initial value.
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Table 18.10 Payoff bi-matrix

A/B 1 2 3 4 5 6 7 8

1 3, 3 3, 3 3, 3 3, 3 3, 3 0, 5 3, 3 0, 5
2 3, 3 1, 1 3, 3 1, 1 3, 3 1, 1 0, 5 1, 1
3 3, 3 3, 3 3, 3 3, 3 3, 3 0, 5 3, 3 0, 5
4 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1
5 3, 3 3, 3 3, 3 2.5, 2.5 3, 3 0.5, 3 3, 3 0.5, 3
6 3, 3 1, 1 2.5, 2.5 1, 1 3, 3 1, 1 2, 2 1, 1
7 3, 3 5, 0 3, 3 2, 2 3, 3 0.5, 3 3, 3 0.5, 3
8 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1
9 4, 1.5 4, 1.5 2.67, 2.67 2.67, 2.67 4, 1.5 0, 5 0, 5 0, 5
10 4, 1.5 1, 1 2.67, 2.67 1, 1 4, 1.5 1, 1 0, 5 1, 1
11 5, 0 5, 0 3, 1.33 2.25, 2.25 5, 0 0, 5 3, 1.33 0, 5
12 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1
13 4, 1.5 4, 1.5 2.5, 2.5 2.5, 2.5 4, 1.5 0.5, 3 2.25, 2.25 0.5, 3
14 4, 1.5 1, 1 2.5, 2.5 1, 1 4, 1.5 1, 1 2, 2 1, 1
15 5, 0 5, 0 3, 1.33 2, 2 5, 0 0.5, 3 3, 1.33 0.5, 3
16 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

A/B 9 10 11 12 13 14 15 16

1 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5
2 1.5, 4 1, 1 1.5, 4 1, 1 0, 5 1, 1 0, 5 1, 1
3 1.5, 4 1.5, 4 1.5, 4 1.5, 4 0, 5 0, 5 0, 5 0, 5
4 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1
5 2.67, 2.67 2.67, 2.67 2.5, 2.5 2.5, 2.5 1.33, 3 0.5, 3 1.33, 3 0.5, 3
6 2.67, 2.67 1, 1 2.5, 2.5 1, 1 2.25, 2.25 1, 1 2, 2 1, 1
7 5, 0 5, 0 2.25, 2.25 2, 2 1.33, 3 0.5, 3 1.33, 3 0.5, 3
8 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1
9 2, 2 1.33, 3 2, 2 1.33, 3 2, 2 0, 5 2, 2 0, 5
10 3, 1.33 1, 1 2.25, 2.25 1, 1 3, 1.33 1, 1 0, 5 1, 1
11 2, 2 1.33, 3 2, 2 1.33, 3 2, 2 0, 5 2, 2 0, 5
12 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1
13 2, 2 2.25, 2.25 2, 2 2.5, 2.5 2, 2 0.5, 3 2, 2 0.5, 3
14 3, 1.33 1, 1 2.5, 2.5 1, 1 3, 1.33 1, 1 2, 2 1, 1
15 2, 2 5, 0 2, 2 2, 2 2, 2 0.5, 3 2, 2 0.5, 3
16 5, 0 1, 1 3, 0.5 1, 1 5, 0 1, 1 3, 0.5 1, 1

Describing a µ-memory strategy by its generating dynamics as

L := {L1 ∈ Lk1×kµ , . . . ,Ln ∈ Lkn×kµ} (18.28)

with initial values

x0 =
(

x0
1(0), . . . , x0

n(0), . . . , x0
1(µ − 1), . . . , x0

n(µ − 1)
)

∈ Δkμ ,

we give the following definition.
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Table 18.11 1-memory Nash equilibria

(1 5), (1 3) (1 5), (1 4) (1 5), (1 7) (1 5), (1 8) (1 5), (2 7) (1 6), (1 3)

(1 6), (1 4) (1 6), (1 7) (1 6), (1 8) (1 7), (1 3) (1 7), (1 4) (1 7), (1 7)

(1 7), (1 8) (1 7), (2 3) (1 7), (2 7) (1 8), (1 3) (1 8), (1 4) (1 8), (1 7)

(1 8), (1 8) (1 14), (2 12) (1 16), (1 16) (1 16), (2 6) (1 16), (2 8) (1 16), (2 14)

(1 16), (2 16) (2 4), (1 16) (2 4), (2 6) (2 4), (2 8) (2 4), (2 14) (2 4), (2 16)

(2 5), (1 7) (2 5), (2 3) (2 5), (2 7) (2 7), (1 3) (2 7), (1 7) (2 7), (2 3)

(2 7), (2 7) (2 8), (1 16) (2 8), (2 6) (2 8), (2 8) (2 8), (2 14) (2 8), (2 16)

(2 12), (1 16) (2 12), (2 6) (2 12), (2 8) (2 12), (2 14) (2 12), (2 16) (2 14), (1 12)

(2 16), (1 16) (2 16), (2 6) (2 16), (2 8) (2 16), (2 14) (2 16), (2 16)

Definition 18.6 Consider G∞. A common µ-memory strategy is defined as
(18.28).

(1) L∗ = (L∗
1, . . . ,L

∗
n) is called a common Nash equilibrium if

Jj

(

L∗
1, . . . ,L

∗
n;x

0) ≥ Jj

(

L∗
1, . . . ,Lj , . . . ,L

∗
n;x

0), ∀x0 ∈ Δkμ , j = 1, . . . , n.

(18.29)

(2) Let εx0

L be the tolerance of the strategy {L} when x0 is fixed. The common
tolerance of L is defined as

εL = max
x0∈Δkμ

εx0

L . (18.30)

(3) A strategy L0 is called a common ε0 sub-Nash equilibrium if

ε0 = εL0 ≤ εL, ∀L ∈ {Lk1×kμ , . . . ,Lkn×kμ}.

(4) A strategy L is also called a common εL sub-Nash solution to G∞.

If a common Nash equilibrium does not exist, then we will naturally look for
a common sub-Nash equilibrium as an acceptable solution to G∞. If it is difficult
to find a common sub-Nash equilibrium, then we may have to accept a reasonable
sub-Nash solution. It is easy to see that a common (sub-)Nash equilibrium must be
a (sub-)Nash equilibrium with respect to any initial states. Thus, it can be thought
of as a refinement of a Nash equilibrium.

We discuss this by means of the following examples. The first example concerns
the common Nash equilibrium.

Example 18.4 Recall Example 18.3. Because there are too many Nash equilibria,
for further refinement we are particularly interested in common Nash equilibria,
which are independent of the initial value. It is easy to check that there are three
common Nash equilibria:
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Table 18.12 Payoff
bi-matrix A\B 1 2 3

1 2.7, 1.5 0.3, 2.4 1.1, 0.8

2 0.9, 2.1 1.8, 1.3 1.6, 1.4

(i) sA = s16 and sB = s16. Since s16 = δ2[2,2,2,2], regardless of the initial value,
both players just take action 2, which constitutes the original Nash equilibrium
of G. This is not particularly interesting.

(ii) sA = s8 and sB = s8. Since s8 = δ2[1,2,2,2], if the previous values are (1,1),
then action 1 is taken, otherwise, action 2 is taken. This is the famous trigger
strategy [4].

(iii) sA = s7 and sB = s7. Since s7 = δ2[1,2,2,1], we have

xi(t + 1) =

{

1, x1(t) = x2(t),

2, x1(t) �= x2(t).

In fact, under the payoff bi-matrix in Table 18.4, this strategy is the best one
because it will converge to (1,1), regardless of the initial state. However, this
strategy has poor robustness: if the payoff 5 is changed to 5 + δ for arbitrary
δ > 0, then it is easy to check that this strategy is no longer the Nash equilib-
rium.

The second example concerns sub-Nash equilibria.

Example 18.5 The payoff bi-matrix of a game G is given in Table 18.12.
From Table 18.12 it is easily seen that there is no Nash equilibrium and the

only sub-Nash equilibrium is (2,3), with payoffs [1.6,1.4] and tolerance ε = 0.7.
Consider 1-memory strategies for G∞. A standard routine shows that there are 57
sub-Nash equilibria with payoff [1.3,2] and tolerance ε = 0.3, which are listed in
Table 18.13.

In Table 18.13 the double pairs (n a), (m b) indicate that player A takes a strat-
egy MA

a with initial value n, while player B takes a strategy MB
b . The sets of strate-

gies are ordered as follows:

MA =
{

MA
1 ,MA

2 ,MA
3 , . . . ,MA

26

}

=
{

δ2[1 1 1 1 1 1], δ2[1 1 1 1 1 2], δ2[1 1 1 1 2 1], . . . , δ2[2 2 2 2 2 2]
}

,

MB =
{

MB
1 ,MB

2 ,MB
3 , . . . ,MB

36

}

=
{

δ3[1 1 1 1 1 1], δ3[1 1 1 1 1 2], δ3[1 1 1 1 1 3], . . . , δ3[3 3 3 3 3 3]
}

.

Finally, (17,279) and (19,279) are common sub-Nash equilibria with ε = 0.3,
which are independent of the initial value.
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Table 18.13 1-memory sub-Nash equilibria

(1 17), (1 279) (1 17), (1 306) (1 17), (2 279) (1 17), (2 306) (1 17), (3 279)

(1 18), (1 279) (1 18), (1 306) (1 18), (2 279) (1 18), (2 306) (1 18), (3 279)

(1 19), (1 279) (1 19), (1 306) (1 19), (2 279) (1 19), (2 306) (1 19), (3 279)

(1 20), (1 279) (1 20), (1 306) (1 20), (2 279) (1 20), (2 306) (1 20), (3 279)

(1 25), (1 279) (1 25), (1 306) (1 25), (2 279) (1 25), (2 306) (1 26), (1 279)

(1 26), (1 306) (1 26), (2 279) (1 26), (2 306) (1 27), (1 279) (1 27), (1 306)

(1 27), (2 279) (1 27), (2 306) (1 28), (1 279) (1 28), (1 306) (1 28), (2 279)

(1 28), (2 306) (2 17), (1 279) (2 17), (1 306) (2 17), (2 279) (2 17), (3 279)

(2 18), (1 279) (2 18), (1 306) (2 18), (2 279) (2 19), (1 279) (2 19), (1 306)

(2 19), (2 279) (2 19), (3 279) (2 20), (1 279) (2 20), (1 306) (2 25), (1 279)

(2 25), (1 306) (2 26), (1 279) (2 26), (1 306) (2 27), (1 279) (2 27), (1 306)

(2 28), (1 279) (2 28), (1 306)

Next, we consider 2-memory strategies. Ignoring initial values, we have 236 ×336

strategies. It is almost impossible to consider all of them in the previous way. We
propose the following algorithm for obtaining common sub-Nash solutions with
µ > 1 memory strategies.

Algorithm 18.2

Step 1. Let the set of 1-memory strategies (without initial values) be

S1 =
{

S1
1 , S1

2 , . . . , S1
n

}

,

where S1
j = Lkj ×k , j = 1, . . . , n, are the strategies of player Aj . Find the common

sub-Nash equilibria with tolerance ε1.

• If ε1 = 0, or ε1 > 0 and the common sub-Nash equilibrium is unique, then take
the common sub-Nash equilibrium as a common ε1 sub-Nash solution and stop.
(For ease of statement, a common Nash solution is considered as a particular
common sub-Nash solution with zero tolerance. In this case, the solution may
not be unique.)

• Otherwise, denote the set of common sub-Nash equilibria by N1 and consider it
as the set of 1-memory common sub-Nash solutions.

Step μ (μ > 1). Assume that

Nμ−1 =
{

N
μ−1
1 ,N

μ−1
2 , . . . ,Nμ−1

n

}

are obtained. Set

Sμ =
{

S
μ
1 , S

μ
2 , . . . , Sμ

n

}

,
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where

S
µ
j =

{[

s
µ−1
1 s

µ−1
2 · · · s

µ−1
k

]∣
∣sµ−1

α ∈ N
µ−1
j , α = 1, . . . , k

}

, j = 1, . . . , n.

Find the µ-memory common sub-Nash equilibria over Sµ (just compare with
strategies in Sµ) with tolerance εμ.

• If εμ = 0, or εμ = εμ−1, or εμ > 0 and the common sub-Nash equilibrium is
unique, then take the common sub-Nash equilibrium as a common εμ sub-Nash
solution and stop. (For the case of εμ = 0, or εμ = εμ−1, the solution may not
be unique.)

• Otherwise, denote the set of common sub-Nash equilibria in Sμ by Nμ and
consider it as the set of μ-memory common sub-Nash solutions. Go to Step
μ + 1.

The following proposition shows that the sub-Nash equilibria obtained by the
algorithm have monotonically nonincreasing tolerances.

Proposition 18.4 Let Nμ be the set of μ-memory common sub-Nash equilibria with

tolerance εμ. Construct

Sμ+1 =
{[

L
μ+1
1 , . . . ,Lμ+1

n

]}

(18.31)

with

L
μ+1
i =

[

L
μ
i1, . . . ,L

μ
ik

]

, i = 1, . . . , n, (18.32)

and

(

L
μ
1α, . . . ,Lμ

nα

)

∈ Nμ, α = 1, . . . , k. (18.33)

If Lμ+1∗
= (L

μ+1
1

∗
, . . . ,L

μ+1
n

∗
) is a strategy of (μ+1)-memory common sub-Nash

equilibrium of Sμ+1, then the tolerance of Lμ+1∗
, denoted by εμ+1, satisfies

εμ+1 ≤ εμ. (18.34)

Proof Let

Lμ∗
=

{

L
μ
1

∗
, . . . ,Lμ

n
∗
}

∈ Nμ

with tolerance εμ. We can then construct Lμ+1 by

L
μ+1
j =

[

L
μ
j

∗
, . . . ,L

μ
j

∗

︸ ︷︷ ︸

k

]

, j = 1, . . . , n. (18.35)

By the construction we know that

L
μ+1
j ∈ Sμ+1. (18.36)
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Using (18.27), we then know that

xj (t + 1) = L
µ+1
j x(t − µ)x(t − µ + 1) · · ·x(t)

=
[

L
µ
j

∗
, . . . ,L

µ
j

∗

︸ ︷︷ ︸

k

]

x(t − µ)x(t − µ + 1) · · ·x(t)

= L
µ
j

∗
x(t − µ + 1) · · ·x(t), j = 1, . . . , n,

which means that the strategy Lµ+1 constructed in (18.35) is exactly the same as the
strategy Lµ∗. Hence, the tolerance of Lµ+1 is εμ. Now, since it is in Sμ+1, εμ+1, as
the smallest tolerance over Sμ+1, surely satisfies (18.34). �

We now continue the discussion of Example 18.5.

Example 18.6 Consider Example 18.5. Since

N1 =
{

(17,279), (19,279)
}

consists of only two strategies, it is easy to see that

MA
17 = δ2[1 2 1 1 1 1], MA

19 = δ2[1 2 1 1 2 1],

MB
279 = δ3[2 1 2 1 3 3].

A straightforward computation shows that the payoffs of the two common 1-memory
sub-Nash equilibria with any initial value are the same, so all the strategies in S2

have the same payoff. Thus, they are all common Nash equilibria in S2, which
implies that ε2 = 0. The algorithm then terminates.

We now have to answer the following questions:

• What is the real tolerance of the common Nash equilibrium in S2?
• Are they the best 2-memory strategies?

We use the following nonparametric test to answer these questions: Choose 300
additional 2-memory strategies randomly and add them to S2 to form an extended
set S̃2, then find the sub-Nash equilibria over S̃2. We then have the following results:

• The common Nash equilibria in S2 have tolerance 0.3 over S̃2. We conclude
that the algorithm does not provide better solutions (with 2-memory) than the
1-memory sub-Nash solutions.

• There is no better sub-Nash solution in S̃2. Using the nonparametric test, it is
easily seen that with the confidence limit 99.5%, we can say that the tolerance of
the strategies in S2 is less than or equal to the tolerance of 99.8% of the overall
2-memory strategies. (We refer to any standard statistics textbook, e.g., [3].)

We conclude that the algorithm provides only two “best sub-Nash solutions", which
are with 1-memory. They are:
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(1) The strategies of A and B are as in the following (18.37) and (18.38), respec-
tively.

x1(t + 1) =

{

2, x1(t) = 1 and x2(t) = 2,

1, otherwise.
(18.37)

x2(t + 1) =

⎧

⎪
⎨

⎪
⎩

1, x1(t) = 1 and x2(t) = 2, or x1(t) = 2 and x2(t) = 1,

2, x1(t) = 1 and x2(t) = 2 or 3,

3, otherwise.

(18.38)

(2) The strategy of A is as in the following (18.39) and the strategy of B is as in
(18.38).

x1(t + 1) =

{

2, x2(t) = 2,

1, otherwise.
(18.39)
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Chapter 19

Random Boolean Networks

19.1 Markov Chains

This section provides some simple background on Markov processes. We review
some basic concepts, notation, and properties (without proofs), and refer to some
standard textbooks, e.g., [1], for details. Readers familiar with stochastic processes
can skip this section.

Definition 19.1

(i) Let Ω be a set, F an algebra generated by a set of subsets of Ω , and P a
probabilistic measure on (Ω,F ). Then, (Ω,F ,P ) is called a probabilistic
space.

(ii) Let B be the Borel set on R. We denote by (R,B) the Borel-measurable space
on R.

(iii) Let T = Z+ = {0,1,2, . . .}. A sequence ξ(t,ω), t ∈ T , is called a discrete-
time real stochastic process if for each t ∈ T , ξ(t, ·) : (Ω,F ) → (R1,B) is a
measurable function.

We now give an example of a discrete-time real stochastic process.

Example 19.1 (Bernoulli sequence) A bag contains m red balls (denoted by 0) and
n white balls (denoted by 1). A person repetitively draws balls from the bag and
each time, after drawing, returns the ball back to the bag. It is easy to see that the
probability of drawing a1, a2, . . . , as (ai = 0 or 1) is

pa1+a2+···+as qs−(a1+a2+···+as ), (19.1)

where

p =
n

m + n
, q = 1 − p.

To make this a stochastic process, we need a probabilistic space. Let

Ω = {ω1,ω2, . . . ,ωs, . . . |ωi ∈ D, i ≥ 1}.
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It is then easy to see that there exists a unique probabilistic measure P such that

P
({

ω = (ω1,ω2, . . . ,ωs, . . .)
∣

∣ωi = ai, i = 1,2, . . . , s
})

= pa1+a2+···+as qs−(a1+a2+···+as ). (19.2)

F is a σ -algebra generated by the cylinder set of Ω , i.e.,

F =
{

Ω = (ω1,ω2, . . . ,ωs, . . .)
∣

∣ωj = aj , j > s; s ≥ 1
}

σ
.

Now, on (Ω,F ,P ) we define

ξ(t,ω) = ωt , t ≥ 0.

ξ = {ξ(t, ·) | t ∈ Z+} is then a stochastic process.

Definition 19.2 A discrete-time stochastic process {ξ(t) | t ∈ Z+} on a probabilistic
space (Ω,F ,P ) with state space I = {1,2, . . .} is called a Markov process (or
Markov chain) if, for any positive integers j1 < j2 < · · · < jℓ < m,

P
(

ξ(m + k) = am+k

∣

∣ ξ(j1) = aj1, ξ(j2) = aj2 , . . . , ξ(jℓ) = ajℓ
, ξ(m) = am

)

= P
(

ξ(m + k) = am+k

∣

∣ ξ(m) = am

)

. (19.3)

The probability of the process taking the value j at time m + k and taking the
value i at time m is called the k-step transition probability at m, denoted by

P
(

ξ(m + k) = j
∣

∣ ξ(m) = i
)

:= p
(k)
ij (m). (19.4)

It is obvious that p
(k)
ij (m) ≥ 0 and

∑

j∈I

p
(k)
ij (m) = 1. (19.5)

The matrix

P (k)(m) =
(

p
(k)
ij (m)

)
∣

∣

i,j∈I

is called the k-step transition probability matrix, which is, in general, an infinite-
dimensional matrix. When k = 1, we denote it simply by P(m) and call it the
transition probability matrix. It is particularly useful when P(m) = P , which is
independent of m.

We have the following property.

Proposition 19.1 (Kolmogorov–Chapman equation) For any two positive integers

k, ℓ, we have

p
(k+ℓ)
ij (m) =

∑

r∈I

p
(k)
ir (m)p

(ℓ)
rj (m + k). (19.6)
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Equivalently, in matrix form, (19.6) can be written as

P (k+ℓ)(m) = P (k)(m)P (ℓ)(m + k). (19.7)

The one-step transition matrix is denoted by P 1(m) := P(m).

Definition 19.3 A Markov chain is said to be homogeneous if P(m) = P is inde-
pendent of m.

Example 19.2 (Random walk) A particle is moving on a straight line according
to the following rule: At time t it is at position i, and at the next moment it
moves to i + 1 with probability p or to i − 1 with probability q = 1 − p. It is
then easily seen that {ξ(t)} forms a homogeneous Markov chain. The state space is
I = {0,±1,±2, . . .} and the transition probabilities are

⎧

⎪

⎨

⎪

⎩

pi i+1 = p,

pi i−1 = q,

pi j = 0, |i − j | > 1, i, j ∈ I.

(19.8)

It is easy to calculate that

p
(n)
i j =

{

( n
(n+j−i)/2

)

p(n+j−i)/2q(n−j+i)/2, n + j − i is even,

0, otherwise.
(19.9)

For states i, j ∈ I , we define the first arrival time from i to j as

Tij =

{

min{n | ξ(0) = i, ξ(n) = j},

∞, if {n | ξ(0) = i, ξ(n) = j} = ∅.
(19.10)

The probability of arriving at j from i via n steps is

f
(n)
ij = P

{

ξ(n) = j, ξ(m) �= j, m = 1,2, . . . , n − 1
∣

∣ ξ(0) = i
}

=
∑

i1 �=j

· · ·
∑

in−1 �=j

pii1pii2 · · ·piin−1, n ≥ 1. (19.11)

The conditional probability of starting from ξ(0) = i and arriving at j after a finite
time is then

fij =

∞
∑

n=1

f
(n)
ij =

∞
∑

n=1

P {Tij = n} = P {Tij < ∞}. (19.12)

Proposition 19.2 If fjj = 1, then ξ(t) returns to j infinitely many times with proba-

bility 1. If fjj < 1, then ξ(t) returns to j only finitely many times with probability 1.

Observing this, we give the following definition.
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Definition 19.4 For a state i ∈ I , if fii = 1, then the state i is called a recurrent
state and if fii < 1, then the state i is called a nonrecurrent (or transient) state.

Proposition 19.3 i is recurrent if and only if

∞
∑

n=1

pn
ii = ∞. (19.13)

Assume a state i ∈ I is recurrent. The average return time is then defined as

µi =

∞
∑

n=1

nf
(n)
ii . (19.14)

Definition 19.5 A recurrent state i ∈ I is said to be positive recurrent if µi < ∞,
and it is said to be null recurrent if µi = ∞.

Definition 19.6

1. A state j ∈ I is said to have period t if {n |p
(n)
jj > 0} have a common factor t .

If t > 1, then the state j is called periodic. If t = 1, then the state j is called
aperiodic.

2. If a state j is positive recurrent and aperiodic, it is called ergodic.

Proposition 19.4 Assume that i is a recurrent state. It is then null recurrent if and

only if

lim
n→∞

p
(n)
ii = 0. (19.15)

Proposition 19.5

1. If i is an ergodic state, then

lim
n→∞

p
(n)
ii =

1

µi

. (19.16)

2. If i is positive recurrent with period t , then

lim
n→∞

p
(nt)
ii =

t

µi

. (19.17)

Definition 19.7 The state j is said to be reachable from i, written as i → j , if there
exists some n ≥ 1 such that p

(n)
ij > 0. If i → j and j → i, then i and j are said to

be connected, written as i ↔ j .

Proposition 19.6

1. i → j if and only if fij > 0.
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2. If i ↔ j , then they are either both nonrecurrent, or both recurrent. Moreover, if

they are both recurrent, then they are either both null recurrent or both positive

recurrent.
3. If i ↔ j , then they are either both aperiodic or both periodic. Moreover, if they

are both periodic, then they have the same period.

Definition 19.8 Let C ⊂ I be a subset of the state space. C is called a closed set if,
for any i ∈ C and j ∈ Cc, we have pij = 0. A closed set C is said to be irreducible
if the states in C are connected. A Markov chain is irreducible if it does not have a
proper closed set.

Proposition 19.7 C ⊂ I is closed if and only if one of the following two equivalent

conditions is satisfied:

(i) For any i ∈ C and j ∈ Cc ,

p
(n)
ij = 0, ∀n = 1,2, . . . . (19.18)

(ii) For any i ∈ C,

∑

j∈C

p
(n)
ij = 1, ∀n = 1,2, . . . . (19.19)

We now a couple of examples.

Example 19.3

1. Consider a Markov chain {ξ(n) |n = 1,2, . . .} with state space I = {1,2,3}. Its
state transition graph is depicted in Fig. 19.1(a), and its transition matrix is

P =

⎡

⎣

1
3

1
3

1
3

0 0 1
1 0 0

⎤

⎦ . (19.20)

• From the graph it is easily seen that each state can be reached from another
one, so the graph is connected. Hence, the chain is irreducible.

Fig. 19.1 Markov chain
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• Since p11 = 1
3 , we have

{

n
∣

∣p
(n)
11 > 0

}

= 1.

It follows that state 1 is aperiodic. According to Proposition 19.6, all the states
are aperiodic.

•

f
(1)
11 =

1

3
,

f
(2)
11 = P

{

x(2) = 1, x(1) �= 1
∣

∣x(0) = 1
}

= P
{

x(2) = 1, x(1) = 2
∣

∣x(0) = 1
}

+ P
{

x(2) = 1, x(1) = 3
∣

∣x(0) = 1
}

=
1

3
· 0 +

1

3
· 1 =

1

3
,

f
(3)
11 = P

{

x(3) = 1, x(2) �= 1, x(1) �= 1
∣

∣x(0) = 1
}

= P
{

x(3) = 1, x(2) = 2, x(1) = 2
∣

∣x(0) = 1
}

+ P
{

x(3) = 1, x(2) = 2, x(1) = 3
∣

∣x(0) = 1
}

+ P
{

x(3) = 1, x(2) = 3, x(1) = 2
∣

∣x(0) = 1
}

+ P
{

x(3) = 1, x(2) = 3, x(1) = 3
∣

∣x(0) = 1
}

= 0 + 0 +
1

3
+ 0 =

1

3
,

f
(n)
11 = 0, n > 3.

Since

f11 =

∞
∑

n=1

f n
11 = 1,

state 1 is recurrent. Since

µ1 =

∞
∑

n=1

nf n
11 = 2 < ∞,

state 1 is positive recurrent. According to Proposition 19.6, the whole chain is
positive recurrent.

Since the chain is aperiodic and positive recurrent, it is ergodic.
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2. Consider a Markov chain {ξ(n) |n = 1,2, . . .} with state space I = {1,2,3,4,5}.
Its state transition graph is depicted in Fig. 19.1(b), and its transition matrix is

P =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 1

2 0 1
2 0

0 0 0 0 1
1
3

1
3 0 1

3 0
1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

. (19.21)

• Since

p
(n)
11 =

{

1, n = 3k,

0, n �= 3k, k ∈ Z+,

we know that state 1 is of period 3, and thus so are states 3 and 5.
• Since

f11 =

∞
∑

n=1

f
(n)
11 = 1

and

μ1 =

∞
∑

n=1

nf
(n)
11 = 3,

state 1 is positive recurrent (and thus so are the states 3 and 5).
• It is obvious that C1 = {1,3,5} is a closed set. Hence, the chain is not irre-

ducible.
• Since

p
(1)
22 =

1

2
,

state 2 is aperiodic.
•

f
(1)
22 =

1

2
,

f
(k)
22 = P

{

x(k) = 2, x(s) �= 2, k > s ≥ 1
∣

∣x(0) = 2
}

= 0 + P
{

x(k) = 2, x(s) = 4, k > s ≥ 1
∣

∣x(0) = 2
}

=
1

2

(

1

3

)k−1

, k = 1,2, . . . .

Since

f22 =

∞
∑

i=1

f
(n)
22 =

1/2

1 − 1/3
=

3

4
,

state 2 is nonrecurrent.
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•

f
(1)
44 =

1

3
,

f
(2)
44 = P

{

x(2) = 4, x(1) �= 4
∣

∣x(0) = 4
}

= 0 + P
{

x(2) = 4, x(1) = 2
∣

∣x(0) = 4
}

=
1

6
.

Similarly,

f
(k)
44 = P

{

x(k) = 4, x(s) �= 4, k > s ≥ 1
∣

∣x(0) = 4
}

= 0 + P
{

x(k) = 4, x(s) = 2, k > s ≥ 1
∣

∣x(0) = 4
}

=
1

3

(

1

2

)k−1

, k = 1,2, . . . .

Since

f44 =

∞
∑

i=1

f
(n)
44 =

1/3

1 − 1/2
=

2

3
,

state 4 is nonrecurrent.

Proposition 19.8 Assume that {ξ(n)} is a finite Markov chain (the state space con-

sists of finitely many elements, that is, |I | < ∞). If the chain is irreducible, then all

the states are positive recurrent.

Note that the chain in part 1 of Example 19.3 is irreducible, and hence its states
are all positive recurrent.

In practice the most important problem is to investigate the limiting case of the
distribution of a Markov chain. We now consider this.

Definition 19.9 Let (pij ) be the transition probabilities of a Markov chain. If there
is a nonnegative series {πj } such that

{

∑∞
j=1 πj = 1,

πj =
∑∞

i=1 πi · pij , j = 1,2, . . . ,
(19.22)

then {πj } is called the stationary distribution of the Markov chain.

Proposition 19.9 Suppose we have an irreducible Markov chain and a state j that

is aperiodic. Then,

lim
n→∞

p
(n)
ij =

1

μj

≥ 0. (19.23)
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The { 1
µj

} defined in Proposition 19.9 is called the limiting distribution.

Theorem 19.1 Assume a Markov chain is irreducible and aperiodic. There then ex-

ists a steady-state distribution if and only if the chain is positive recurrent. Moreover,
in this case the steady-state distribution is exactly the limiting distribution.

Note that according to Proposition 19.6, if the state space is finite, i.e., |I | < ∞,
then the positive recurrence is ensured by irreducibility.

From the above discussion we see that the properties of a Markov chain, partic-
ularly those of a homogeneous one, depend completely on its transition matrix. The
transition matrix of a homogeneous Markov chain is also called a stochastic matrix.
It can also be defined independently (for a finite state space) as follows.

Definition 19.10 A ∈ Mn×n is called a stochastic matrix if

(i)

aij ≥ 0, ∀ i, j = 1, . . . , n,

(ii)

n
∑

j=1

aij = 1, ∀ i = 1, . . . , n. (19.24)

19.2 Vector Form of Random Boolean Variables

We first give a rigorous definition of a random Boolean variable as a variable which
can take values from Df = {r ∈ R |0 ≤ r ≤ 1}. Assume α ∈ Df . To express α in
vector form, we define

Λ :=

{[

α

1 − α

]∣

∣

∣

∣

α ∈ Df

}

.

We now have a one-to-one correspondence between Df and Λ as

α ⇔

[

α

1 − α

]

, ∀α ∈ Df .

In general, we define

Λn =

{

ν = (ν1, . . . , νn)
T ∈ Rn

∣

∣

∣

∣

∣

νi ≥ 0,

n
∑

i=1

νi = 1

}

.

It is clear that Λ = Λ2.
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Definition 19.11 A matrix A ∈ Mm×n is called a random logical matrix if

Col(A) ∈ Λm.

The set of m × n random logical matrices is denoted by L r
m×n.

The following results are fundamental.

Proposition 19.10

1. If x ∈ Λp and y ∈ Λq , then

xy := x ⋉ y ∈ Λpq .

2. Let A ∈ L r
m×n and B ∈ L r

p×q . If n = pt , then AB := A ⋉ B ∈ L r
m×qt , and if

nt = p, then AB ∈ L r
mt×q .

Proof We prove item 2. Item 1 can be considered as a particular case of item 2.
First, note that if A ≻t B (resp., A ≺t B), then A ⋉ B = A(B ⊗ It ) [resp., A ⋉

B = (A ⊗ It )B]. It is easy to see that if L is a random logical matrix, then L ⊗ I2t

is also a random logical matrix. Using these two facts, we can assume that n = p.
The product AB then becomes the conventional matrix product. Let A = (ai,j ) and
B = (bi,j ). It is obvious that since all the entries of A and B are nonnegative, so are
all the entries of AB . Hence, we have only to prove that the sum of the entries of
each column of AB is 1. Consider the ith column of AB , which is

Coli(AB) =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,2n

a2,1 a2,2 · · · a2,2n

...

a2m,1 a2m,2 · · · a2m,2n

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

b1,i

b2,i

...

b2n,i

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑2n

k=1 a1,kbk,i

∑2n

k=1 a2,kbk,i

...
∑2n

k=1 a2m,kbk,i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Since
2m
∑

j=1

2n
∑

k=1

aj,kbk,i =

2n
∑

k=1

(

2m
∑

j=1

aj,k

)

bk,i =

2n
∑

k=1

bk,i = 1,

the result follows. �

Let xi ∈ Λ, i = 1, . . . , n, and define x = ⋉n
i=1xi . We then want to know whether

the xi ’s can be retrieved from x. Using the retrievers Sn
i defined in Chap. 7, we can

prove a similar reconstruction result.
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Proposition 19.11 If x = ⋉n
i=1xi , where xi ∈ Λ, i = 1, . . . , n, then

xi = Sn
i x, i = 1,2, . . . , n. (19.25)

Proof Let

x1 =

[

p

1 − p

]

.

Then we have

x = x1x2 · · ·xn =

[

px2 · · ·xn

(1 − p)x2 · · ·xn

]

.

Write

x2x3 · · ·xn = (α1, α2, . . . , α2n−1)
T ∈ Λ2n−1 .

It is then easy to see that

Sn
1 x =

[

p
∑2n−1

i=1 αi

(1 − p)
∑2n−1

i=1 αi

]

=

[

p

1 − p

]

= x1. (19.26)

Note that

W[2k−1,2]x1x2 · · ·xn = xkx1 · · ·xk−1xk+1 · · ·xn.

Using (19.26), we have

Sn
1 W[2k−1,2]x = xk,

so it is enough to prove that

Sn
1 W[2k−1,2] = Sn

k . (19.27)

Recall the factorization formula of a swap matrix,

W[pq,r] = (W[p,r] ⊗ Iq)(Ip ⊗ W[q,r]), (19.28)

we have

W[2k−1,2] = (W[2] ⊗ I2k−2)(I2 ⊗ W[2k−2,2]). (19.29)

Using (19.29), (19.27) can easily be proven by mathematical induction. �
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19.3 Matrix Expression of a Random Boolean Network

Recall that a Boolean network with n nodes can be described as
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t)),

...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t)),

(19.30)

where fi , i = 1,2, . . . , n, are logical functions. If Mi is the structure matrix of fi ,
i = 1,2, . . . , n, then (19.30) can be converted into componentwise algebraic form
as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = M1x1(t)x2(t) · · ·xn(t),

x2(t + 1) = M2x1(t)x2(t) · · ·xn(t),

...

xn(t + 1) = Mnx1(t)x2(t) · · ·xn(t).

(19.31)

If we define x(t) = ⋉n
i=1xi(t), then (19.31) can be converted into algebraic form as

x(t + 1) = Lx(t). (19.32)

The Boolean network (19.30) becomes a random Boolean network if fi could be
chosen from a previously given set of ℓi different models [3]. That is,

fi ∈
{

f 1
i , f 2

i , . . . , f
ℓi

i

}

, (19.33)

and the probability of fi being f
j

i is

Pr
{

fi = f
j

i

}

= p
j

i , j = 1,2, . . . , ℓi . (19.34)

It is clear that
ℓi

∑

j=1

p
j

i = 1, i = 1, . . . , n.

Summarizing the above description, we can give a rigorous definition of a random
Boolean network.

Definition 19.12 A random Boolean network consists of a finite set of logical func-
tions and probabilities,

{

f
j
i ,Pr

(

fi = f
j
i

) ∣

∣ i = 1, . . . , n, j = 1, . . . , ℓi

}

, (19.35)

such that in the Boolean network (19.30), the ith submodel fi is f
j
i with probability

Pr(fi = f
j
i ).
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A matrix K is used to denote the index set of possible models [3]:

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1 1
1 1 · · · 1 2
...

...
. . .

...
...

1 1 · · · 1 ℓn

1 1 · · · 2 1
1 1 · · · 2 2
...

...
. . .

...
...

1 1 · · · 2 ℓn

...
...

. . .
...

...

ℓ1 ℓ2 · · · ℓn−1 ℓn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19.36)

K ∈ MN×n and N =
∏n

j=1 ℓj .
Each row of K represents a possible network with probability

Pi = Pr{network i is selected} =

n
∏

j=1

p
Kij

j . (19.37)

If we now define

x(t) := ⋉n
i=1xi(t)

then, for each network, we have

x(t + 1) = Lix(t), i = 1,2, . . . ,N. (19.38)

Hence, the overall expected value of x(t + 1) satisfies

Ex(t + 1) =

N
∑

i=1

PiLiEx(t) := LEx(t). (19.39)

It is easy to see that the matrix

L :=

N
∑

i=1

PiLi ∈ L r
2n×2n

is a random Boolean matrix. It is called the random network transition matrix.
Since LT is a probability matrix, we simply say that L is irreducible (resp., ape-

riodic) if the Markov chain determined by LT is irreducible (resp., aperiodic).
Using Proposition 19.8 and Theorem 19.1, we have the following.
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Proposition 19.12 If L is irreducible and aperiodic, then there exists a steady-state

distribution

πi ≥ 0,

2n
∑

i=1

πi = 1,

such that

P
{

x = ⋉n
i=1xi = δi

2n

}

= πi, i = 1, . . . , n.

In fact, we have

lim
t→∞

Lt =

⎡

⎢

⎢

⎢

⎣

π1 · · · π1

π2 · · · π2
...

π2n · · · π2n

⎤

⎥

⎥

⎥

⎦

.

We now give an example.

Example 19.4 Consider the system

⎧

⎪

⎨

⎪

⎩

A(t + 1) = f1(A(t),B(t),C(t)),

B(t + 1) = f2(A(t),B(t),C(t)),

C(t + 1) = f3(A(t),B(t),C(t)),

(19.40)

where
{

f 1
1 = [A1(t) ∧ (¬(A2(t) ∧ A3(t)))] ∨ [(¬A1(t)) ∧ A2(t)],

f 2
1 = [A1(t) ∧ (¬(A3(t) → A2(t)))] ∨ [(¬A1(t)) ∧ (¬(A2(t) ↔ A3(t)))]

with

Pr
(

f1 = f 1
1

)

= 0.4, Pr
(

f1 = f 2
1

)

= 0.6,
{

f 1
2 = [A1(t) ∧ (A2(t) ↔ A3(t))] ∨ [(¬A1(t)) ∧ (¬(A2(t))],

f 2
2 = [A1(t) ∧ A2(t)] ∨ [(¬A1(t)) ∧ (A2(t) ↔ A3(t))]

with

Pr
(

f2 = f 1
2

)

= 0.6, Pr
(

f2 = f 2
2

)

= 0.4,

and
{

f 1
3 = A1(t) ∧ (A3(t) → A2(t)),

f 2
3 = [A1(t) ∧ A2(t) ∧ A3(t)] ∨ [(¬A1(t)) ∧ A3(t)]

with

Pr
(

f3 = f 1
3

)

= 0.4, Pr
(

f3 = f 2
3

)

= 0.6.
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The model-index matrix K and the model probabilities are now

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P1 = 0.4 × 0.6 × 0.4 = 0.096,

P2 = 0.4 × 0.6 × 0.6 = 0.144,

P3 = 0.4 × 0.4 × 0.4 = 0.064,

P4 = 0.4 × 0.4 × 0.6 = 0.096,

P5 = 0.6 × 0.6 × 0.4 = 0.144,

P6 = 0.6 × 0.6 × 0.6 = 0.216,

P7 = 0.6 × 0.4 × 0.4 = 0.096,

P8 = 0.6 × 0.4 × 0.6 = 0.144.

Denote the structure matrix of f
j
i by M

j
i . It is then easy to calculate that

M1
1 = δ2[2 1 1 1 1 1 2 2],

M2
1 = δ2[2 2 1 2 2 1 1 2],

M1
2 = δ2[1 2 2 1 2 2 1 1],

M2
2 = δ2[1 1 2 2 1 2 2 1],

M1
3 = δ2[1 1 2 1 2 2 2 2],

M2
3 = δ2[1 2 2 2 1 2 1 2].

Now, set x(t) = A(t)B(t)C(t). The network matrix of each network can then be
calculated using a standard procedure. For example, for the first model we have

x(t + 1) = M1
1x(t)M1

2 x(t)M1
3 x(t) := L1x(t),

where L1 can be calculated as

L1 = δ8[8 1 1 1 1 1 8 8].

Similarly, we can calculate Li , i = 2,3, . . . ,8. Finally, the random network matrix
of the random Boolean network is found to be

L =

8
∑

i=1

PiLi

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.4 0 0 0 0 0.6 0
0 0 0 0 0.4 0 0 0
0 0 0 0.4 0 0 0 0
0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1
0 0 0 0.6 0 0 0 0
0 0 0 0 0.6 0 0 0
0 0.6 0 0 0 0 0.4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19.41)
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Next, we consider another example.

Example 19.5 [3] The system of equations is as (19.40), where f1 has two models,
f 1

1 and f 2
1 . Pr(f1 = f 1

1 ) = 0.6, Pr(f1 = f 2
1 ) = 0.4, and

M1
1 = δ2[1 1 1 2 1 1 1 2],

M2
1 = δ2[1 1 1 2 2 1 1 2].

f2 has only one model, and

M2 = δ2[1 2 1 1 2 1 1 2].

f3 has two models, f 1
3 and f 2

3 . Pr(f3 = f 1
3 ) = 0.5, Pr(f3 = f 2

3 ) = 0.5, and

M1
3 = δ2[1 1 1 2 1 2 2 2],

M2
3 = δ2[1 2 2 2 2 2 2 2].

It is then easy to calculate that

L1 = δ8[1 3 1 6 3 2 2 8], P1 = 0.2,

L2 = δ8[1 4 2 6 4 2 2 8], P1 = 0.2,

L3 = δ8[1 3 1 6 7 2 2 8], P3 = 0.3,

L4 = δ8[1 4 2 6 8 2 2 8], P4 = 0.3.

Finally, we have

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0.5 0 0 0 0 0
0 0 0.5 0 0 1 1 0
0 0.5 0 0 0.2 0 0 0
0 0.5 0 0 0.2 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0.3 0 0 0
0 0 0 0 0.3 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19.42)

An interesting feature of this system is that there is a “pseudo-steady-state distri-
bution”. Define

Ls := lim
k→∞

Lk. (19.43)
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Such a limit then exists, which is

Ls =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 5
8

13
16

7
16

7
16

5
8

5
8 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3

8
3
16

9
16

9
16

3
8

3
8 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19.44)

There are two fixed points, P = δ1
8 ∼ (1,1,1)T and Q = δ8

8 ∼ (0,0,0)T. Starting
from any initial value, the trajectory will converge to either P or Q with probabil-
ity 1. However, this is not a genuine steady-state distribution because, starting from
different points, the probabilities of convergence to P and Q will vary according to
the initial value.

19.4 Some Topological Properties

This section is based on [2]. First, we consider the cycles of a random Boolean
network. We consider a fixed point to be a cycle of length 1.

The following result is obvious.

Proposition 19.13 Consider a random Boolean network Σ . Assume that it has N

possible models, Σi , with Pi = P(Σ = Σi) > 0, i = 1, . . . ,N . If C is a common

cycle of all Σi , then C is a cycle of Σ .

Proposition 19.14 Consider a random Boolean network Σ . Assume that it has N

possible models, Σi , with Pi = P(Σ = Σi) > 0, i = 1, . . . ,N . Assume that:

(i) C is a common cycle of all Σi ,
(ii) there is an i∗ such that C is the unique attractor of Σi∗ .

The network then converges to C with probability 1.

Proof Since C is the unique attractor of Σi∗ , there is a transient time Tt such that as
Σ = Σi∗ for a period [t1, t2] with t2 − t1 + 1 ≥ Tt , all the trajectories will enter C.
Consider the time period (kTt , (k + 1)Tt ]:

P
{

Σ(t) = Σi∗(t)
∣

∣ kTt < t ≤ (k + 1)Tt

}

= P
Tt

i∗ > 0.

Now, consider the time period [0,mTt ]:

P
{

Σ(t) = Σi∗(t)
∣

∣ kTt < t ≤ (k + 1)Tt ; 0 ≤ k < m
}

= 1 −
(

1 − P
Tt

i∗

)m
.
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As m → ∞ one sees that the probability of Σi∗ appearing sequentially over Tt times
is 1. Hence, all the trajectories of the network converge to C with probability 1. �

Finally, we consider the random Boolean control network. The system is de-
scribed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t + 1) = f1(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

x2(t + 1) = f2(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t)).

(19.45)

Now assume fi can equal one of f
j

i , j = 1,2, . . . , ℓi , with probabilities

Pr
{

fi = f
j

i

}

= p
j

i > 0, j = 1,2, . . . , ℓi . (19.46)

We consider the stabilization problem of (19.45). Using Proposition 19.14, we
have the following result.

Corollary 19.1 Consider the random Boolean control network (19.45). Assume that

there exists a fixed point xe and a set of controls

(

ui
1, . . . , u

i
m

)

, i = 1, . . . ,N, (19.47)

such that for the closed-loop models Σi , i = 1, . . . ,N :

(i) xe is a common fixed point of all Σi ,
(ii) there is an i∗ such that xe is the unique attractor of Σi∗ .

The closed-loop network then converges to xe with probability 1. In other words, the

controls (19.47) stabilize the network (19.45).

Example 19.6 Consider the system

⎧

⎪

⎨

⎪

⎩

A(t + 1) = f1(A(t),B(t),C(t), u(t)),

B(t + 1) = f2(A(t),B(t),C(t), u(t)),

C(t + 1) = f3(A(t),B(t),C(t), u(t)),

(19.48)

where
{

f 1
1 = A(t) ∧ C(t),

f 2
1 = A(t) ∧ B(t)

with

Pr
(

f1 = f 1
1

)

= 0.2, Pr
(

f1 = f 2
1

)

= 0.8,
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{

f 1
2 = ¬A(t) ∨ C(t),

f 2
2 = (A(t) ∧ C(t)) ∨ u2(t)

with

Pr
(

f2 = f 1
2

)

= 0.7, Pr
(

f2 = f 2
2

)

= 0.3,

and
{

f 1
3 = (B(t) ↔ C(t)) ∧ u1(t),

f 2
3 = A(t) ∧ ¬B(t),

with

Pr
(

f3 = f 1
3

)

= 0.4, Pr
(

f3 = f 2
3

)

= 0.6.

The model-index matrix K and the model probabilities are

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

P1 = 0.2 × 0.7 × 0.4 = 0.056,

P2 = 0.2 × 0.7 × 0.6 = 0.084,

P3 = 0.2 × 0.3 × 0.4 = 0.024,

P4 = 0.2 × 0.3 × 0.6 = 0.036,

P5 = 0.8 × 0.7 × 0.4 = 0.224,

P6 = 0.8 × 0.7 × 0.6 = 0.336,

P7 = 0.8 × 0.3 × 0.4 = 0.096,

P8 = 0.8 × 0.3 × 0.6 = 0.144.

Using the control

{

u1(t) = A(t),

u2(t) = ¬A(t) ∧ ¬C(t),
(19.49)

we can calculate the network matrices for all the models as follows:

L1 = δ8[1 8 2 7 6 6 6 6],

L2 = δ8[2 8 1 7 6 6 6 6],

L3 = δ8[1 8 2 7 6 6 6 6],

L4 = δ8[2 8 1 7 6 6 6 6],

L5 = δ8[1 4 6 7 6 6 6 6],

L6 = δ8[2 4 5 7 6 6 6 6],

L7 = δ8[1 4 6 7 6 6 6 6],

L8 = δ8[2 4 5 7 6 6 6 6].
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It is easy to show that models 1, 3, 5, and 7 have two fixed points, (1,1,1)T and
(0,1,0)T, and models 2, 4, 6, and 8 have only one fixed point, (0,1,0)T. Hence,
(0,1,0)T is the only common fixed point for these models.

We now calculate the network transition matrix of the random Boolean network:

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
5 0 3

25 0 0 0 0 0

3
5 0 2

25 0 0 0 0 0

0 0 0 0 0 0 0 0

0 4
5 0 0 0 0 0 0

0 0 12
25 0 0 0 0 0

0 0 8
25 0 1 1 1 1

0 0 0 1 0 0 0 0

0 1
5 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can also calculate that the limit of L is

Ls = lim
k→∞

Lk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

There is only one fixed point C = δ6
8 ∼ (0,1,0)T. That is, the network converges to

C with probability 1.
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Appendix A

Numerical Algorithms

A.1 Computation of Logical Matrices

In computing a logical matrix L and other related matrices involved in this book, it
is easily seen that the dimension grows exponentially with n . To reduce the compu-
tational complexity, we present in this section some formulas for the computation
of logical matrices, which will be used in the computation of examples in the next
section.

A matrix L ∈ Mm×n is called a logical matrix if its columns are of the form δi
m.

Example A.1

1. The structure matrix of any logical operator is a logical matrix. For instance, Mn,
Md , Mc, Mi , Me, etc. are all logical matrices.

2. The swap matrix W[m,n] is a logical matrix.
3. The power-reducing matrix Mr (or Mr,k) is a logical matrix.

Note that from previous examples one may find that for computing system ma-
trix L, only delta matrices are involved.

Now, if ψ ∈ Lm×n is a logical matrix, then ψ can be expressed as

ψ =
[

δi1
m, δi2

m, . . . , δ
i2q

m

]

.

In the text of this book it is denoted as

ψ = δm[i1, . . . , in].

In the toolbox it is denoted as

ψ =
(

[i1, i2, . . . , in],m
)

.
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We call such an expression the condensed form of a logical matrix. Using this nota-
tion we now deduce some formulas which are useful in computations.

Proposition A.1

1. Assume that ψ = ([i1, i2, . . . , i2q ],p). Then

ψ ⊗ I2r =
([

(i1 − 1)2r + 1 (i1 − 1)2r + 2 · · · (i1)2
r

(i2 − 1)2r + 1 (i2 − 1)2r + 2 · · · (i2)2
r

...

(i2q − 1)2r + 1 (i2q − 1)2r + 2 · · · (i2q )2r
]

,p + r
)

. (A.1)

2. Assume that ψ = ([i1, i2, . . . , i2q ],p). Then

I2r ⊗ ψ =
([

i1 i2 · · · i2q

2p + i1 2p + i2 · · · 2p + i2q

2 × 2p + i1 2 × 2p + i2 · · · 2 × 2p + i2q

(2r − 1) × 2p + i1 (2r − 1) × 2p + i2 · · · (2r − 1) × 2p + i2q

]

,p + r
)

.

(A.2)
3. Assume that ψ = ([i1, i2, . . . , i2q ],p), φ = ([j1, j2, . . . , j2r ], q). Then

ψφ =
(

[ij1 , ij2 , . . . , ij2r ],p
)

. (A.3)

Formulas (A.1)–(A.3) are enough to calculate the transition matrix L of a
Boolean (control) network.

Next, let X = F {x1, . . . , xn}, y1, . . . , yp ∈ X , and z1, . . . , zq ∈ X . Set x =

⋉n
i=1xi , y = ⋉

p

i=1yi , and z = ⋉
q

i=1zi . Assume that

y = Px, z = Qx,

where P ∈ L2p×2n and Q ∈ L2q×2n . We then have the following.

Proposition A.2

yz = Wx, (A.4)

where W ∈ L2p+q×2n can be calculated as follows. Denote by Coli(W) [resp.,
Coli(P ), Coli(Q)] the ith column of W (resp., P , Q). Then

Coli(W) = Coli(P ) ⋉ Coli(Q), i = 1,2, . . . ,2n.
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A.2 Basic Functions

1. Calculate the semi-tensor product of A and B:

f u n c t i o n c = sp ( a , b )
% SP Semi−Tensor P r o d u c t o f M a t r i c e s u s i n g Kronecke r

p r o d u c t
%
% SP (A, B) i s t o c a l c u l a t e t h e semi−t e n s o r p r o d u c t o f A and

B.
% The number o f columns of t h e f i s r t m a t r i x must be t h e

d i v i s o r
% or m u l t i p l e o f t h e number o f rows of t h e l a s t m a t r i x .

i f ¬( i s a ( a , ’ sym ’ ) | i s a ( a , ’ d o u b l e ’ ) )
a = d o u b l e ( a ) ;

end

i f ¬( i s a ( b , ’ sym ’ ) | i s a ( b , ’ d o u b l e ’ ) )
b = d o u b l e ( b ) ;

end

i f ndims ( a ) > 2 | ndims ( b ) > 2
e r r o r ( ’ I n p u t a rgumen t s must be 2−D. ’ ) ;

end

[m, n ] = s i z e ( a ) ;
[ p , q ] = s i z e ( b ) ;
i f n == p

c = a∗b ;
e l s e i f mod ( n , p ) == 0

z = n / p ;
c = z e r o s (m, z∗q ) ;
c = a∗ kron ( b , eye ( z ) ) ;

e l s e i f mod ( p , n ) == 0
z = p / n ;
c = z e r o s (m∗z , q ) ;
c = kron ( a , eye ( z ) ) ∗b ;

e l s e

e r r o r ( ’ d imens ion e r r o r : sp ’ ) ;
end ;

2. Calculate the semi-tensor product of n (≥ 2) matrices:

f u n c t i o n r = spn ( v a r a r g i n )

% SPN Semi−t e n s o r p r o d u c t o f m a t r i c e s w i t h a r b i t r a r y number
o f m a t r i c e s

%
% SPN(A, B , C , . . . ) c a l c u l a t e s t h e semi−t e n s o r p r o d u c t o f

a r b i t r a r y
% number o f m a t r i c e s which have t h e p r o p e r d i m e n s i o n s .

n i = n a r g i n ;
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s w i t c h n i
c a s e 0

e r r o r ( ’No i n p u t a r g u m e n t s . ’ )
c a s e 1

r = v a r a r g i n { 1 } ;
re turn

c a s e 2
r = sp ( v a r a r g i n {1} , v a r a r g i n {2}) ;
re turn

o t h e r w i s e

r = sp ( v a r a r g i n {1} , v a r a r g i n {2}) ;
f o r i = 3 : n i

r = sp ( r , v a r a r g i n { i } ) ;
end

end

3. Calculate the swap matrix W[m,n]:

f u n c t i o n w = w i j (m, n )

% WIJ P r oduc e s swap m a t r i x
%
% A = WIJ (N) p r o d u c e s an N^2−by−N^2 swap m a t r i x .
% A = WIJ (M,N) p r o d u c e s an MN−by−MN swap m a t r i x .

i f n a r g i n == 1
n=m;

end

d = m∗n ;
w = z e r o s ( d ) ;
f o r k = 1 : d

j = mod ( k , n ) ;
i f j == 0

j = n ;
end

i = ( k−j ) / n +1;
w( ( j −1)∗m+i , k ) = 1 ;

end ;

4. Create a semi-tensor product object:

f u n c t i o n m = s t p ( a )

% STP / STP semi−t e n s o r p r o d u c t ( STP ) c l a s s c o n s t r u c t o r
% m = s t p ( a ) c r e a t e s an STP o b j e c t from t h e m a t r i x A

5. Create an LM object:

f u n c t i o n m = lm ( v a r a r g i n )

% LM/LM l o g i c a l m a t r i x (LM) c l a s s c o n s t r u c t o r
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%
% M = LM(A) c r e a t e s an LM o b j e c t from t h e m a t r i x A
% Example : m = lm ( eye ( 3 ) )
%
% M = LM(V,N) c r e a t e s an LM o b j e c t from a v e c t o r V and a

p o s i t i v e i n t e g e r N
% Example : m = lm ( [ 1 , 2 , 2 , 3 ] , 4 )

6. Create the logical matrix for an n × n identity matrix:

f u n c t i o n m = l e y e ( n )

% LEYE C r e a t e an n−by−n i d e n t i t y ma t r i x , r e t u r n an LM
o b j e c t

%
% M = LEYE(N)
%
% Example : m = l e y e ( 3 ) , c l a s s (m)

i f n < 0
e r r o r ( ’ I n p u t a rgument must be a p o s i t i v e i n t e g e r ’ )

end

m = lm ( 1 : n , n ) ;

7. Create the logical matrix for power-reducing matrix:

f u n c t i o n Mr = lmr ( k , n )

% LMR P r o d u c e s power−r e d u c i n g ma t r i x , r e t u r n s an LM o b j e c t
%
% The power−r e d u c i n g m a t r i x M s a t i s f i e s P^2=MP, where P i s a

l o g i c a l v a r i a b l e .
%
% M = LMR f o r c l a s s i c a l l o g i c
% M = LMR(K) f o r k−v a l u e d l o g i c
%
% Example : m = lmr , m = lmr ( 2 )

i f n a r g i n == 0 | i s e m p t y ( k ) , k = 2 ; end ;

a = 1 : k ;
Mr = lm ( a +( a −1)∗k , k ^ 2 ) ;

8. Create the logical matrix for negation:

f u n c t i o n m = lmn ( k ) ;

% LMN P r oduc e s l o g i c a l m a t r i x f o r n e g a t i o n , r e t u r n s an LM
o b j e c t

%
% M = LMN f o r c l a s s i c a l l o g i c
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% M = LMN(K) f o r k−v a l u e d l o g i c
%
% Example : m = lmn , m = lmn ( 2 )

i f n a r g i n == 0 | i s e m p t y ( k )
k = 2 ;

end

m = lm ( k : −1:1 , k ) ;

9. Create the logical matrix for conjunction:

f u n c t i o n m = lmc ( k )

% LMC P r oduc e s l o g i c a l m a t r i x f o r c o n j u n c t i o n , r e t u r n s an
LM o b j e c t

%
% M = LMC f o r c l a s s i c a l l o g i c
% M = LMC(K) f o r k−v a l u e d l o g i c
%
% Example : m = lmc , m = lmc ( 2 )

i f n a r g i n == 0 | i s e m p t y ( k )
k = 2 ;

end

m = lm ;
m.n = k ;

a = 1 : k ;
p = a ( ones ( 1 , k ) , : ) ;
p = ( p ( : ) ) ’ ;
q = repmat ( a , 1 , k ) ;
b = p≥q ;
m.v = p . ∗b+ q . ∗¬b ;

10. Create the logical matrix for disjunction:

f u n c t i o n m = lmd ( k )

% LMD P r oduc e s l o g i c a l m a t r i x f o r d i s j u n c t i o n , r e t u r n s an
LM o b j e c t

%
% M = LMD f o r c l a s s i c a l l o g i c
% M = LMD(K) f o r k−v a l u e d l o g i c
%
% Example : m = lmd , m = lmd ( 2 )

i f n a r g i n == 0 | i s e m p t y ( k )
k = 2 ;

end

m = lm ;
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m.n = k ;

a = 1 : k ;
p = a ( ones ( 1 , k ) , : ) ;
p = ( p ( : ) ) ’ ;
q = repmat ( a , 1 , k ) ;
b = p≤q ;
m.v = p . ∗b+ q . ∗¬b ;

11. Create the logical matrix for implication:

f u n c t i o n m = lmi ( k )

% LMI P r oduc e s l o g i c a l m a t r i x f o r i m p l i c a t i o n , r e t u r n s an
LM o b j e c t

%
% M = LMI f o r c l a s s i c a l l o g i c
% M = LMI (K) f o r k−v a l u e d l o g i c
%
% Example : m = lmi , m = lmi ( 2 )

i f n a r g i n == 0 | i s e m p t y ( k )
k = 2 ;

end

Md = lmd ( k ) ;
Mn = lmn ( k ) ;

m = Md∗Mn;

12. Create the logical matrix for equivalence:

f u n c t i o n m = lme ( k )

% LME P r oduc e s l o g i c a l m a t r i x f o r e q u i v a l e n c e , r e t u r n s an
LM o b j e c t

%
% M = LME f o r c l a s s i c a l l o g i c
% M = LME(K) f o r k−v a l u e d l o g i c
%
% Example : m = lme , m = lme ( 2 )

i f n a r g i n == 0 | i s e m p t y ( k )
k = 2 ;

end

Mc = lmc ( k ) ;
Mi = lmi ( k ) ;
Mr = lmr ( k ) ;

m = Mc∗Mi∗ ( l e y e ( k ^ 2 ) +Mi ) ∗ ( l e y e ( k ) +Mr) ∗ ( l e y e ( k ) + l w i j ( k ) ) ∗Mr ;
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13. Create the dummy logical matrix:

f u n c t i o n m = lmu ( k )

% LMU Produces dummy l o g i c a l ma t r i x , r e t u r n s an LM o b j e c t
%
% The dummy l o g i c a l m a t r i x M s a t i s f i e s MXY = Y, where X, Y
% a r e two l o g i c a l v a r i a b l e s
%
% M = LMU f o r c l a s s i c a l l o g i c
% M = LMU(K) f o r k−v a l u e d l o g i c
%
% Example : m = lmu , m = lmu ( 2 )

i f n a r g i n == 0 | i s e m p t y ( k )
k = 2 ;

end

m = lm ( repmat ( 1 : k , 1 , k ) , k ) ;

A.3 Some Examples

1. Calculate the semi-tensor product:

% This example i s t o show how t o pe r fo rm semi−t e n s o r p r o d u c t

x = [1 2 3 −1];
y = [2 1 ] ’ ;
r1 = sp ( x , y )
% r1 = [ 5 , 3 ]

x = [2 1 ] ;
y = [1 2 3 −1] ’;
r2 = sp ( x , y )
% r2 = [ 5 ; 3 ]

x = [1 2 1 1 ;
2 3 1 2 ;
3 2 1 0 ] ;

y = [1 −2;
2 −1];

r3 = sp ( x , y )
% r3 = [3 ,4 , −3 , −5;4 ,7 , −5 , −8;5 ,2 , −7 , −4]

r4 = spn ( x , y , y )
% r4 = [−3 ,−6 ,−3 ,−3;−6 ,−9 ,−3 ,−6;−9 ,−6 ,−3 ,0]

2. Examples for semi-tensor product class:

% Thi s example i s t o show t h e usage o f s t p c l a s s .
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% Many u s e f u l methods a r e o v e r l o a d e d f o r s t p c l a s s , t h u s you
can use s t p o b j e c t a s d o u b l e .

x = [1 2 1 1 ;
2 3 1 2 ;
3 2 1 0 ] ;

y = [1 −2;
2 −1];

% C ove r t x and y t o s t p c l a s s
a = s t p ( x )
b = s t p ( y )

% mtimes method i s o v e r l o a d e d by semi−t e n s o r p r o d u c t f o r s t p
c l a s s

c0 = spn ( x , y , y )
c = a∗b∗b , c l a s s ( c )

% Conve r t an s t p o b j e c t t o doub le
c1 = d o u b l e ( c ) , c l a s s ( c1 )

% s i z e method f o r s t p c l a s s
s i z e ( c )

% l e n g t h method f o r s t p c l a s s
l e n g t h ( c )

% s u b s r e f method f o r s t p c l a s s
c ( 1 , : )

% s u b s a s g n method f o r s t p c l a s s
c ( 1 , 1 ) = 3

3. Examples for the LM class:

% Thi s example i s t o show t h e usage o f lm c l a s s .
% Many methods a r e o v e r l o a d e d f o r lm c l a s s .

% C o n s i d e r c l a s s i c a l (2− v a l u e d ) l o g i c h e r e
k = 2 ;

T = lm ( 1 , k ) ; % True
F = lm ( k , k ) ; % F a l s e

% Given a l o g i c a l ma t r i x , and c o n v e r t i t t o lm c l a s s
A = [1 0 0 0 ;

0 1 1 1]
M = lm (A)
% or we can use
% M = lm ( [ 1 2 2 2 ] , 2 )

% Use m−f u n c t i o n t o pe r fo rm semi−t e n s o r p r o d u c t f o r l o g i c a l
m a t r i c e s



460 A Numerical Algorithms

r1 = l s p n (M, T , F )

% Use o v e r l o a d e d mtimes method f o r lm c l a s s t o pe r fo rm semi−
t e n s o r p r o d u c t

r2 = M∗T∗F

% C r e a t e a 4−by−4 l o g i c a l m a t r i x randomly
M1 = lmrand ( 4 )
% M1 = randlm ( 4 )

% Conve r t an lm o b j e c t t o doub le
d o u b l e (M1)

% s i z e method f o r lm c l a s s
s i z e (M1)

% d i a g method f o r lm c l a s s
d i a g (M1)

% I d e n t i t y m a t r i x i s a s p e c i a l t y p e o f l o g i c a l m a t r i x
I3 = l e y e ( 3 )

% p l u s method i s o v e r l o a d e d by Kroneche r p r o d u c t f o r lm c l a s s
r3 = M1 + I3
% A l t e r n a t i v e way t o pe r fo rm Kronecher p r o d u c t o f two l o g i c a l

m a t r i c e s
r4 = l k r o (M1, I3 )

% C r e a t e an lm o b j e c t by a s s i g n m e n t
M2 = lm ;
M2.n = 2 ;
M2.v = [2 1 1 2 ] ;
M2

4. Consider Example 5.9:

% I n i t i a l i z e
k = 2 ;
MN = lmn ( k ) ; % n e g a t i o n
MI = lmi ( k ) ; % i m p l i c a i t o n
MC = lmc ( k ) ; % c o n j u n c t i o n
MD = lmd ( k ) ; % d i s j u n c t i o n
ME = lme ( k ) ; % e q u i v a l e n c e
MR = lmr ( k ) ; % power−r e d u c i n g m a t r i x
MU = lmu ( k ) ; % dummy m a t r i x
o p t i o n s = [ ] ;

% Dynamics o f Boolean ne twork
% A( t +1) = MN∗MD∗C( t ) ∗F ( t )
% B( t +1) = A( t )
% C( t +1) = B( t )
% D( t +1) = MC∗MC∗MN∗ I ( t ) ∗MN∗C∗MN∗F ( t )
% E ( t +1) = D( t )
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% F ( t +1) = E ( t )
% G( t +1) = MN∗MD∗F ( t ) ∗ I ( t )
% H( t +1) = G( t )
% I ( t +1) = H( t )

% S e t X( t ) =A( t )B( t )C( t )D( t ) E ( t ) F ( t )G( t )H( t ) I ( t ) , t h e n

eqn = { ’MN MD C F ’ ,
’A’ ,
’B ’ ,
’MC MC MN I MN C MN F ’ ,
’D’ ,
’E ’ ,
’MN MD F I ’ ,
’G’ ,
’H’ } ;

% S e t t h e v a r i a b l e s ’ o r d e r , o t h e r w i s e t h e y w i l l be s o r t e d i n
t h e d i c t i o n a r y o r d e r

o p t i o n s = l m s e t ( ’ v a r s ’ ,{ ’A’ , ’B ’ , ’C ’ , ’D’ , ’E ’ , ’F ’ , ’G’ , ’H’ , ’ I ’ } ) ;

% Conve r t t h e l o g i c a l e q u a t i o n s t o t h e i r c a n o n i c a l form
[ expr , v a r s ] = s t d f o r m ( s t r j o i n ( eqn ) , o p t i o n s , k ) ;

% C a l c u l a t e t h e ne twork t r a n s i t i o n m a t r i x
L = e v a l ( e xp r )

% Analyze t h e dynamics o f t h e Boolean ne twork
[ n , l , c , r0 , T ] = bn ( L , k ) ;

f p r i n t f ( ’ Number o f a t t r a c t o r s : %d \ n \ n ’ , n ) ;
f p r i n t f ( ’ Leng ths o f a t t r a c t o r s : \ n ’ ) ;
d i s p ( l ) ;
f p r i n t f ( ’ \ n A l l a t t r a c t o r s a r e d i s p l a y e d as f o l l o w s : \ n \ n ’ ) ;
f o r i =1 : l e n g t h ( c )

f p r i n t f ( ’ No. %d ( l e n g t h %d ) \ n \ n ’ , i , l ( i ) ) ;
d i s p ( c { i } ) ;

end

f p r i n t f ( ’ T r a n s i e n t t i m e : [ T_t , T ] = [%d %d ] \ n \ n ’ , r0 , T ) ;

5. Consider Example 14.1:

% I n i t i a l i z e
k = 3 ;
MN = lmn ( k ) ; % n e g a t i o n
MI = lmi ( k ) ; % i m p l i c a i t o n
MC = lmc ( k ) ; % c o n j u n c t i o n
MD = lmd ( k ) ; % d i s j u n c t i o n
ME = lme ( k ) ; % e q u i v a l e n c e
MR = lmr ( k ) ; % power−r e d u c i n g m a t r i x
MU = lmu ( k ) ; % dummy m a t r i x
o p t i o n s = [ ] ;

% Dynamics o f Boolean ne twork
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% A( t +1) = A( t )
% B( t +1) = MI∗A( t ) ∗C( t )
% C( t +1) = MD∗B( t ) ∗D( t )
% D( t +1) = MN∗B( t )
% E ( t +1) = MN∗C( t )

% S e t X( t ) =A( t )B( t )C( t )D( t ) E ( t ) , t h e n

eqn = { ’MU E A’ ,
’MI A C ’ ,
’MD B D’ ,
’MN B ’ ,
’MN C ’ } ;

% S e t t h e v a r i a b l e s ’ o r d e r , o t h e r w i s e t h e y w i l l be s o r t e d i n
t h e d i c t i o n a r y o r d e r

o p t i o n s = l m s e t ( ’ v a r s ’ ,{ ’A’ , ’B ’ , ’C ’ , ’D’ , ’E ’ } ) ;

% Conve r t t h e l o g i c a l e q u a t i o n s t o t h e i r c a n o n i c a l form
[ expr , v a r s ] = s t d f o r m ( s t r j o i n ( eqn ) , o p t i o n s , k ) ;

% C a l c u l a t e t h e ne twork t r a n s i t i o n m a t r i x
L = e v a l ( e xp r )

% Analyze t h e dynamics o f t h e Boolean ne twork
[ n , l , c , r0 , T ] = bn ( L , k ) ;

f p r i n t f ( ’ Number o f a t t r a c t o r s : %d \ n \ n ’ , n ) ;
f p r i n t f ( ’ Leng ths o f a t t r a c t o r s : \ n ’ ) ;
d i s p ( l ) ;
f p r i n t f ( ’ \ nA l l a t t r a c t o r s a r e d i s p l a y e d as f o l l o w s : \ n \ n ’ ) ;
f o r i =1 : l e n g t h ( c )

f p r i n t f ( ’ No. %d ( l e n g t h %d ) \ n \ n ’ , i , l ( i ) ) ;
d i s p ( c { i } ) ;

end

f p r i n t f ( ’ T r a n s i e n t t i m e : [ T_t , T ] = [%d %d ] \ n \ n ’ , r0 , T ) ;
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Proofs of Some Theorems Concerning
the Semi-tensor Product

The proves in this appendix are cited from [1] with the permission from Science
Press.

(1) Proof of Theorem 2.1

Proof The first part (distributive law) can be proven by a straightforward computa-
tion, so we prove only the second part (associative law).

First, we show that if F , G, and H have feasible dimensions for (F ⋉ G) ⋉ H ,
then the dimensions are also feasible for F ⋉ (G ⋉ H).

Case 1. F ≻ G and G ≻ H . The dimensions of F , G, and H can be assumed to
be m × np, p × qr , and r × s, respectively.

Now, the dimension of F ⋉ G is m × nqr , which works for (F ⋉ G) ⋉ H . On
the other hand the dimension of G ⋉ H is p × qs, which works for F ⋉ (G ⋉ H).

Case 2. F ≺ G and G ≺ H . The dimensions of F , G, and H can be assumed to
be m × n, np × q , and rq × s, respectively.

Now, the dimension of F ⋉ G is mp × q , which works for (F ⋉ G) ⋉ H . On the
other hand the dimension of G ⋉ H is npr × s, which works for F ⋉ (G ⋉ H).

Case 3. F ≺ G and G ≻ H . The dimensions of F , G, and H can be assumed to
be m × n, np × qr , and r × s, respectively.

Now, the dimension of F ⋉ G is mp × qr , which works for (F ⋉ G) ⋉ H . On
the other hand the dimension of G ⋉ H is np × qs, which works for F ⋉ (G ⋉ H).

Case 4. F ≻ G and G ≺ H . The dimensions of F , G, and H can be assumed to
be m × np, p × q , and rq × s, respectively.

Now, the dimension of F ⋉G is m×nq . To make this feasible for (F ⋉G)⋉H ,
we need:

Case 4.1. (F ⋉ G) ≻ H , that is, n = n′r . This works for F ⋉ (G ⋉ H).
Case 4.2. (F ⋉ G) ≺ H , that is, r = nr ′. This works for F ⋉ (G ⋉ H).
The dimension of G ⋉ H is pr × s. To make this feasible for (F ⋉ G) ⋉ H , we

need:
Case 4.3. F ≻ (G ⋉ H), that is, n = n′r . This is good for (F ⋉ G) ⋉ H .
Case 4.4. F ≺ (G ⋉ H), that is, r = nr ′. This is good for (F ⋉ G) ⋉ H .
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Next, we prove associativity. We will do this case by case. Since Cases 1–3 are
similar, we prove only Case 1, that is, F ≻ G and G ≻ H .

Let Fm×np , Gp×qr , and Hr×s be given. Based on the definition we can, without
loss of generality, assume that m = 1 and s = 1. Then,

F ⋉ G =
(

F1, . . . ,Fp

)

⋉

⎛

⎜

⎝

g1
11 · · · g1

1q · · · g1
r1 · · · g1

rq

...

g
p

11 · · · g
p

1q · · · g
p

r1 · · · g
p
rq

⎞

⎟

⎠

=

(

p
∑

i=1

Fig
i
11, . . . ,

p
∑

i=1

Fig
i
1q , . . . ,

p
∑

i=1

Fig
i
r1, . . . ,

p
∑

i=1

Fig
i
rq

)

.

We then have

(F ⋉ G) ⋉ H = (F ⋉ G) ⋉

⎛

⎜

⎝

h1
...

hr

⎞

⎟

⎠

=

(

r
∑

j=1

p
∑

i=1

Fig
i
j1hj , . . . ,

r
∑

j=1

p
∑

i=1

Fig
i
jqhj

)

. (B.1)

On the other hand,

⎛

⎜

⎝

g1
11 · · · g1

1q · · · g1
r1 · · · g1

rq

...

g
p

11 · · · g
p

1q · · · g
p

r1 · · · g
p
rq

⎞

⎟

⎠
⋉

⎛

⎜

⎝

h1
...

hr

⎞

⎟

⎠

=

⎛

⎜

⎝

∑r
j=1 g1

j1hj · · ·
∑r

j=1 g1
jqhj

...
∑r

j=1 g
p

j1hj · · ·
∑r

j=1 g
p
jqhj

⎞

⎟

⎠
.

Then,

F ⋉ (G ⋉ H) = (F1, . . . ,Fp) ⋉ (G ⋉ H)

=

(

r
∑

j=1

p
∑

i=1

Fig
i
j1hj , . . . ,

r
∑

j=1

p
∑

i=1

Fig
i
jqhj

)

,

which is the same as (B.1).
Since Cases 4.1–4.4 are similar, we prove Case 4.1 only. Let Fm×npr , Gp×q , and

Hrq×s be given. We also assume that m = 1 and s = 1. Then,

F = (F11, . . . ,F1r , . . . ,Fp1, . . . ,Fpr),
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where each Fij is a 1 × n block.

G =

⎛

⎜

⎜

⎝

g11 · · · g1q

...

gp1 · · · gpq

⎞

⎟

⎟

⎠

, H = (h11, . . . , h1r , . . . , hq1, . . . , hqr )
T.

A careful computation shows that

(F ⋉ G) ⋉ H = F ⋉ (G ⋉ H) =

p
∑

i=1

r
∑

j=1

q
∑

k=1

Fijgikhkj .
�

(2) Proof of Proposition 2.5

Proof Note that the elements aij of Vr(A) are arranged by the ordered multi-
index Id(i, j ;m,n), and in Vc(A) they are arranged by Id(j, i;n,m). Now, since
the columns of W[m,n] are indexed by Id(i, j ;m,n) and its rows indexed by
Id(j, i;n,m), by the construction of W[m,n], it moves the (i, j)-element in the or-
der of Id(i, j ;m,n) to (i, j)-position in the order of Id(j, i;n,m), which is (j, i)-
position in Id(i, j ;m,n). That is,

W[m,n]Vr(A) = Vr
(

AT)

.

The first equality then follows from (2.11). Multiplying both sides of the first equal-
ity by W[n,m] yields the second equality. �

(3) Proof of Proposition 2.9

Proof A simple computation shows that for a row vector X and a column vector Y

with proper dimensions, we have

〈X,Y 〉L =
(〈

Y T,XT〉

L

)T
. (B.2)

Consider A ⋉ B . Denote the rows of A by Ai and columns of B by Bj . It is then
clear that the (i, j)-block of A ⋉ B is

〈

Ai,Bj

〉

L
,

while the (j, i)-block of BT ⋉ AT is

〈

BT
j ,

(

Ai
)T〉

L
.

Using the definition, we see that the transpose of the (i, j)-block of A ⋉ B is
exactly the (j, i)-block of B ⋉ A. The conclusion then follows. �
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(4) Proof of Proposition 2.10

Proof We prove the first case. The proof of the second case is similar.
Denote by bi the ith column of B , that is,

B = [b1, b2, . . . , bq ].

Note that

B ⊗ In = [b1 ⊗ In, b2 ⊗ In, . . . , bq ⊗ In].

Using the block product law, we can then assume that m = 1 and q = 1. We then
have

[a1 a2 · · · anp]

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

b1

b2
...

bp

⎞

⎟

⎟

⎟

⎠

⊗ In

⎤

⎥

⎥

⎥

⎦

.

A straightforward computation shows that this equals A ⋉ B . �
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µ-memory strategy, 410
ε-tolerance solution, 412

A

Adequate set, 9
Algebra, 21
Algebraic form, 107, 163
Aperiodic state, 434
Approximate identification, 405
Associative algebra, 21
Average payoff, 347, 410
Average return time, 434

B

Base-k power-reducing matrix, 315, 361
Basic block, 373
Basic conjunctive form, 11
Basic disjunctive form, 11
Basin of attractor, 115
Biconditional, 2
Boolean logic, 14
Boolean matrix, 249
Boolean network, 104
Boolean plus, 250
Boolean power, 250
Boolean product, 250
Boolean vector, 249
Boolean weight, 380

C

Canalizing Boolean function, 290
Canalizing Boolean mapping, 290
Cascading inference, 97
Cascading SSDP, 297
Characteristic matrix, 200, 322

Clean form, 167
Column stacking form, 28
Common ε0 sub-Nash equilibrium, 424
Common εL sub-Nash solution, 424
Common Nash equilibrium, 424
Commutativity, 7
Comparable regular subspaces, 304
Complement space, 151
Component-wise algebraic form, 107, 163,

174, 317
Composed cycle, 147
Compounded game, 415
Condensed form, 452
Conditional, 2
Conjunction, 2
Conjunctive basis, 284
Conjunctive normal form, 12
Connectivity graph, 104
Constant mapping, 258
Contra-variant degree, 23
Contradiction, 5
Control-dependent network transition matrix,

142
Control-independent invariant subspace, 235
Controllability, 213, 375
Controllability matrix, 376, 391
Controllable, 214, 390
Controllable at sth step, 214
Controllable by networked control, 214
Controllable normal form, 238
Controllable with designable G, 214
Controllable with fixed G, 214
Controlled sub-network, 221
Controller sub-network, 221
Coordinate change, 191
Coordinate transformation, 191
Covariant degree, 21
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Cross product, 19
Cycle, 108, 127, 350, 383
Cycle multiplier, 111

D

De Morgan’s law, 7
Descendant set, 116
Diagonal nonzero column, 109
Disjunction, 2
Disjunctive normal form, 11
Distributive law, 7
Disturbance decoupling, 276
Dual space, 22
Dummy operator, 71
Dynamic graph, 114

E

Edge, 127
Entry, 1

subentry, 1
Ergodic, 434
Ergodic payoff, 347
Exclusive or ∨̄, 9

F

Fabricated variable, 71
Failure locating, 89
First algebraic form, 128
Fixed point, 108, 127, 350, 383
Following-up variable, 114
Free Boolean sequence, 222
Fuzzy logic, 2, 15

G

Global stability, 111, 256
Globally controllable, 226
Globally convergent, 111
Group power-reducing matrix, 70

H

Higher-order Boolean control network, 403
Homogeneous Markov chain, 433

I

i-confirmor, 60
i-confirmor, ▽i,k , 16
Identification, 389
In-degree, 105, 152, 167, 220
Incidence matrix, 105, 235
Indistinct rolling gear structure, 208
Input network, 141
Input-output decomposition problem, 298

Input-state identifiable, 390
Input-state incidence matrix, 372
Input-state space, 146
Input-state transfer graph (ISTG), 348, 383
Invariant subspace, 150, 152, 204, 235, 322
Irreducible, 435
Iteration graph, 114

K

k-dimensional data, 19
k-dimensional subspace, 151
k-step transition probability matrix, 432
k-valued logic, 15
k-valued logical matrix, 65
k-valued network, 316
k-valued power-reducing matrix, 61
Kalman decomposition, 242
k dimensional data, 19
Kernel cycle, 150

L

Largest uncontrollable subspace, 238
Least in-degree model, 178
Left semi-tensor inner product, 31
Left semi-tensor product, 29, 31, 51
Limit set, 110
Limiting distribution, 439
Logical argument, 67
Logical constant, 67
Logical equation, 67
Logical equivalence, 6
Logical function, 3
Logical identity, 3
Logical implication, 6
Logical inference, 78
Logical matrix, 33, 55
Logical operator, 2
Logical relation, 3
Logical unknown, 67
Logical variable, 3
Low-round projection, 341

M

Markov chain, 432
Markov process, 432
Minimum realization, 247
Mix-valued logic, 340
Mix-valued logical control system, 340
Mix-valued logical dynamic system, 384
Mix-valued logical system, 340
Model construction, 171
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Morgan’s problem, 298
Multi-valued logic, 2, 15

N

Nash equilibrium, 412
Natural subspace, 320
Negation, 2, 60
Nested regular subspace, 204
Network graph, 104
Nominal network, 229
Non-recurrent state, 434
Nontrivial power, 109
Normal form, 233
Not and ↑, 9
Not or ↓, 9

O

Observability, 227, 228, 380
Observability matrix, 228, 394
Observable normal form, 241
Open-loop control, 222
Optimal control, 348
Optimal control matrix, 356
Optimal trajectory, 357
Optimized conjunctive normal form, 14
Optimized disjunctive normal form, 14
Out-degree, 105, 220
Output-friendly form, 284

P

Parallel Boolean network, 124
Parallel SSDP, 297
Path, 127
Payoff function, 347, 410
Payoff matrix, 28, 29
Periodic state, 434
Permutation group, 25
Possibly true form, 5
Power-reducing matrix, 56
Prisoners’ Dilemma, 28, 37, 367
Probabilistic space, 431
Proper factor, 109
Proposition, 1
Pseudo-commutative, 38

R

Random Boolean control network, 448
Random Boolean network, 442
Random logical matrix, 440
Random network transition matrix, 443
Reachable, 214, 374
Reachable state, 219
Realization, 233
Recurrent state, 434

Regular basis, 196
Regular subspace, 321
Regular subspace of dimension k, 196
Retriever, 165
Right semi-tensor product, 49, 51
“rolling gear” structure, 153
Rotator, 60
Rotator ⊘k , 16
Row stacking form, 28
Row-periodic matrix, 373

S

Semi-tensor product of arbitrary dimensions,
51

Semi-tensor products of arbitrary matrices, 51
Serial Boolean network, 124
Simple cycle, 350
Stability, 258
Stabilization, 261
State feedback, 261
State space, 151, 190, 320
State-space decomposition problem (SSDP),

297
Statement, 1
Statement variable, 3
Static game, 409
Stationary distribution, 438
STP space, 144
STP topological space, 145
STP vector space, 143
Structure constant, 20
Structure matrix, 29, 34, 35, 55, 57, 59, 62
Sub-Nash equilibrium, 412
Sub-network, 220
Subspace, 190, 320
Swap matrix, 38

T

Tautology, 5
Tensor, 21, 22
Tolerance, 412
Transient period, 110, 325
Transition matrix, 106
Transition probability, 432
Transition probability matrix, 432
Truth table, 4

U

Uncontrollable subspace, 237
Uniform Boolean network, 181
Uniquely identifiable, 171
Unobservable subspace, 239
Up-round projection, 341
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V

Vector distance, 251

W

Weight, 380

Y

Y -friendly subspace, 276

Z

Zero-memory strategy, 410
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