Communications and Control Engineering ™ MM N |

"THEE
"THER
4 | |
=—
Daizhan Cheng
Hongsheng Qi
Zhigiang Li

Analysis and
Control of Boolean
Networks

A Semi-tensor Product Approach

@ Springer

Communications and Control Engineering

For other titles published in this series, go to
www.springer.com/series/61

http://www.springer.com/series/61

Series Editors

A. Isidori e J.H. van Schuppen ¢ E.D. Sontag ® M. Thoma e M. Krsti¢

Published titles include:

Stability and Stabilization of Infinite Dimensional
Systems with Applications
Zheng-Hua Luo, Bao-Zhu Guo and Omer Morgul

Nonsmooth Mechanics (Second edition)
Bernard Brogliato

Nonlinear Control Systems II
Alberto Isidori

Ly-Gain and Passivity Techniques in Nonlinear Control
Arjan van der Schaft

Control of Linear Systems with Regulation and Input
Constraints

Ali Saberi, Anton A. Stoorvogel and Peddapullaiah
Sannuti

Robust and Hso Control
Ben M. Chen

Computer Controlled Systems
Efim N. Rosenwasser and Bernhard P. Lampe

Control of Complex and Uncertain Systems
Stanislav V. Emelyanov and Sergey K. Korovin

Robust Control Design Using Hoo Methods
Tan R. Petersen, Valery A. Ugrinovski and
Andrey V. Savkin

Model Reduction for Control System Design
Goro Obinata and Brian D.O. Anderson

Control Theory for Linear Systems
Harry L. Trentelman, Anton Stoorvogel and Malo Hautus

Functional Adaptive Control

Simon G. Fabri and Visakan Kadirkamanathan
Positive 1D and 2D Systems

Tadeusz Kaczorek

Identification and Control Using Volterra Models
Francis J. Doyle III, Ronald K. Pearson and Babatunde
A. Ogunnaike

Non-linear Control for Underactuated Mechanical
Systems
Isabelle Fantoni and Rogelio Lozano

Robust Control (Second edition)
Jiirgen Ackermann

Flow Control by Feedback
Ole Morten Aamo and Miroslav Krstié

Learning and Generalization (Second edition)
Mathukumalli Vidyasagar

Constrained Control and Estimation
Graham C. Goodwin, Maria M. Seron and
José A. De Dond

Randomized Algorithms for Analysis and Control
of Uncertain Systems

Roberto Tempo, Giuseppe Calafiore and Fabrizio
Dabbene

Switched Linear Systems
Zhendong Sun and Shuzhi S. Ge

Subspace Methods for System Identification
Tohru Katayama

Digital Control Systems
Ioan D. Landau and Gianluca Zito

Multivariable Computer-controlled Systems
Efim N. Rosenwasser and Bernhard P. Lampe

Dissipative Systems Analysis and Control

(Second edition)

Bernard Brogliato, Rogelio Lozano, Bernhard Maschke
and Olav Egeland

Algebraic Methods for Nonlinear Control Systems
Giuseppe Conte, Claude H. Moog and Anna M. Perdon

Polynomial and Rational Matrices
Tadeusz Kaczorek

Simulation-based Algorithms for Markov Decision
Processes

Hyeong Soo Chang, Michael C. Fu, Jiagiao Hu and
Steven I. Marcus

Iterative Learning Control
Hyo-Sung Ahn, Kevin L. Moore and YangQuan Chen

Distributed Consensus in Multi-vehicle Cooperative
Control
‘Wei Ren and Randal W. Beard

Control of Singular Systems with Random Abrupt
Changes
EI-Kébir Boukas

Nonlinear and Adaptive Control with Applications
Alessandro Astolfi, Dimitrios Karagiannis and Romeo
Ortega

Stabilization, Optimal and Robust Control

Aziz Belmiloudi

Control of Nonlinear Dynamical Systems
Felix L. Chernous’ko, Igor M. Ananievski and Sergey
A. Reshmin

Periodic Systems
Sergio Bittanti and Patrizio Colaneri

Discontinuous Systems
Orlov

Constructions of Strict Lyapunov Functions
Malisoff and Mazenc

Controlling Chaos
Zhang et al.

Control of Complex Systems
Zetevi¢ and Siljak

Daizhan Cheng « Hongsheng Qi - Zhigiang Li

Analysis and
Control of Boolean
Networks

A Semi-tensor Product Approach

@ Springer

Dr. Daizhan Cheng

Academy of Mathematics and Systems
Science (AMSS), Institute of Systems
Science

Chinese Academy of Sciences

100190 Beijing

China, People’s Republic

Zhiqiang Li

Academy of Mathematics and Systems
Science (AMSS), Institute of Systems
Science

Chinese Academy of Sciences

100190 Beijing

China, People’s Republic

dcheng@iss.ac.cn

Hongsheng Qi

Academy of Mathematics and Systems
Science (AMSS), Institute of Systems
Science

Chinese Academy of Sciences

100190 Beijing

China, People’s Republic

ISSN 0178-5354

ISBN 978-0-85729-096-0

DOI 10.1007/978-0-85729-097-7
Springer London Dordrecht Heidelberg New York

e-ISBN 978-0-85729-097-7

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

© Springer-Verlag London Limited 2011

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098, USA. http://www.mathworks.com

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: eStudio Calamar S.L.
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:dcheng@iss.ac.cn
http://www.mathworks.com
http://www.springer.com
http://www.springer.com/mycopy

Preface

Motivated by the Human Genome Project, a new view of biology, called systems
biology, is emerging [5]. Systems biology does not investigate individual genes,
proteins or cells in isolation. Rather, it studies the behavior and relationships of
all of the cells, proteins, DNA and RNA in a biological system called a cellular
network. The most active networks may be those associated with genetic regulation,
which regulate the growth, replication, and death of cells in response to changes in
the environment.

How do these genetic regulatory networks function? In the early 1960s Jacob
and Monod showed that any cell contains a number of “regulatory” genes that act
as switches and which can turn each another on and off. This shows that a genetic
network is of “on—off” type [7].

Boolean networks, first introduced by Kauffman, have become powerful tools
for describing, analyzing, and simulating cellular networks [2, 3]. Hence, they have
received much attention, not only from the biology community, but also from re-
searchers with backgrounds in physics, systems science, etc.

The purpose of this book is to present a new approach to the investigation of
Boolean (control) networks. In this new approach, a logical relation is expressed as
an algebraic equation, and a logical dynamical system, such as a Boolean network,
is converted into a standard discrete-time linear system. Similarly, a Boolean con-
trol network is converted into a discrete-time bilinear system. In this way, various
tools for solving conventional algebraic equations and dealing with difference or
differential equations can be used to solve logic-based problems. Under this frame-
work, the topological structures of Boolean networks are revealed via the structures
of their network transition matrices. The state space, subspaces, etc., are then de-
fined as sets of logical functions. This framework makes the state-space approach
to dynamical (control) systems applicable to Boolean (control) networks. Using
this new technique, we investigate the properties and control design of Boolean
networks. Many basic problems in control theory are studied, such as controlla-
bility, observability, realization, stabilization, disturbance decoupling and optimal
control.

The fundamental tool in this approach is a new matrix product, called the semi-
tensor product (STP). The STP of matrices is a generalization of the conventional

v

vi Preface

matrix product to the case where the dimension-matching condition is not satisfied.
That is, we extend the matrix product AB to the case where the column number of
A and the row number of B are different. This generalization preserves all the major
properties of the conventional matrix product.

Using the STP, a logical function can be converted into a multilinear mapping,
called the matrix expression of logical relations. Under this construction, the dy-
namics of a Boolean network can be expressed as a conventional discrete-time linear
system. In the light of this linear expression, certain major features of the topology
of a Boolean network, such as fixed points, cycles, transient time, and basins of
attractors, can be easily revealed via a set of formulas.

When the control of a Boolean network is considered, the bilinear system repre-
sentation of a Boolean control network makes it possible to apply most techniques
developed in modern control theory to the analysis and synthesis of a Boolean con-
trol network.

The main contents of this book are as follows.

Chapter 1 consists of a brief introduction to propositional logic. This is very
elementary and involves only the propositional logic required in this book. A reader
who is familiar with mathematical logic can skip it.

In Chap. 2 we introduce some basic concepts and properties of the STP, which is
the principal tool used in this book. The STP is a generalization of the conventional
matrix product in cases where the dimension-matching requirement for the factor
matrices fails. This generalization preserves the major properties of the conventional
matrix product.

In Chap. 3 we consider the matrix expression of logical relations. Identifying
T (true) and F (false) with vectors [1, O]T and [0, l]T, respectively, a logical vari-
able becomes a 2-dimensional vector variable. Using the STP, a logical function
can be expressed as a multilinear mapping with respect to its logical arguments so
that each logical function is uniquely determined by a matrix, called its structure
matrix.

Chapter 4 is devoted to solving logical equations. Using the matrix expression of
logic a system of logical equations can be converted into a linear algebraic equation.
Ignoring the complexity of computation, the solution of systems of logical equations
becomes theoretically equivalent to the solution of algebraic equations, which can
be achieved with straightforward computation.

Chapter 5 considers the linear expression of Boolean networks. Using the tech-
nique developed in previous chapters, the dynamics of a Boolean network is con-
verted into a conventional discrete-time linear system. In the light of this linear
expression, the topological structures of Boolean networks are investigated via their
transition matrices. Formulas are obtained to calculate the fixed points, cycles of
different lengths, transient period, and the basin of each attractor.

The input-state structures of Boolean control networks are studied in Chap. 6.
The compounded structure of cycles in input-state space is obtained. This approach
is applied to the analysis of Boolean networks with cascading structure. The “rolling
gear” structure of cycles is revealed, which explains the phenomenon that tiny at-
tractors can determine the vast order of the network [4].

Preface vii

Chapter 7 presents a technique to build the dynamic model of a Boolean network
via observed data. Instead of building the logical dynamics of a Boolean network,
we first identify its algebraic form, so the conversion of the algebraic form of a
Boolean network back to its logical form is first investigated. After a general model
construction technique is introduced, several special cases are studied, including the
known network graph case, the least in-degree model, the uniform model, etc. The
problem of dealing with data containing errors is also discussed.

In Chap. 8 a systematic state-space description is developed. The state space
(and its subspaces) of a Boolean (control) network are defined in a dual way, i.e.,
they are defined as sets of logical functions. It is shown that this description is very
convenient in revealing the properties of Boolean networks and in the control design
of Boolean control networks.

Chapter 9 is devoted to Boolean control networks. Using linear expressions, it is
shown that Boolean control networks can be converted into linear control systems.
Some basic control problems such as controllability and observability of Boolean
control networks are then investigated via their equivalent forms for linear control
systems.

Chapter 10 considers the realization problem of Boolean control networks. First,
coordinate transformations are considered, and then the Kalman decomposition of
Boolean input—output networks is proposed. Using the Kalman decomposition, the
minimum realization of a Boolean input—output mapping is obtained.

The stability and stabilization problem is discussed in Chap. 11. The applicable
set from metric-based convergence analysis [6] is enlarged by the use of coordinate
transformations. Based on the analysis of the network transition matrix, necessary
and sufficient conditions are then obtained for stability and stabilization by either
open-loop control or closed-loop control. Several examples are included.

Chapter 12 considers the disturbance decoupling problem. First, the output-
friendly subspace is introduced. Formulas and algorithms are provided to construct
a minimum regular subspace, which is called the “friend” of output y. The de-
sign technique for constructing the feedback and solving the disturbance decoupling
problem is presented. To construct a constant stabilizing control, the canalizing map-
ping, which is a generalization of the canalizing function, is proposed and its main
properties are revealed.

In Chap. 13 we consider the coordinate-independent geometric structure of
Boolean (control) networks. Based on this structure, the feedback decomposition
of Boolean control networks is studied. The input-state decomposition, including
cascading and parallel decompositions, and input—output decomposition of Boolean
control networks are investigated, and necessary and sufficient conditions are pre-
sented.

Chapter 14 deals with the multivalued logic which could provide a more precise
description for real networks such as gene regulation networks, etc. The structure
of k-valued logical networks is first investigated. Controllability and observabil-
ity of k-valued logical networks are then considered. In fact, almost all the argu-
ments and results about Boolean networks can be extended to the k-valued logic
setting.

viii Preface

Chapter 15 considers the optimal control of Boolean control networks. To deal
with Boolean (or k-valued) games with s-memory, higher-order Boolean (control)
networks are introduced, and their algebraic forms are also presented. The one-to-
one correspondence between the cycles of the original network and the cycles of its
algebraic form is established. The optimal control problem is then investigated and
the optimal control is designed.

Chapter 16 introduces a useful tool, called the input-state incidence matrix, which
is an algebraic description of the input-state transfer graph. Controllability and ob-
servability of Boolean control networks are revisited and some further results are
presented. The topological structures of Boolean control networks with free con-
trols are also investigated. Finally, the results are extended to mix-valued logical
dynamical systems.

Chapter 17 investigates the identification of Boolean control networks. First, a
new observability condition is obtained which provides a way to construct the initial
state of a trajectory from its input—output data. A necessary and sufficient condition
for identifiability is then presented. A numerical algorithm is proposed for practical
application.

Chapter 18 considers an application to game theory. We consider a game with
finitely many players and where each player has finitely many possible actions.
When the game is infinitely repeated, a strategy using finite memory becomes a
logical dynamical system. Hence, the results obtained for Boolean or logical net-
works are applicable to finding Nash or sub-Nash solutions for the infinitely re-
peated games.

The primary objects of this book are deterministic Boolean networks, but in
Chap. 19 we provide a brief introduction to random Boolean networks. Basic con-
cepts are presented and then the steady-state distribution of a random Boolean net-
work is investigated. Finally, the stabilization of a random Boolean network is stud-
ied. Recently, random Boolean networks have been the subject of much research,
and so a detailed discussion is beyond the scope of this work.

Appendix A explains relevant numerical calculations. A software toolbox for the
algorithms is available at http://Isc.amss.ac.cn/~dcheng/.

Appendix B contains proofs of some key properties of the semi-tensor product,
which are translated from [1], with the permission of Science Press.

This book is self-contained. The prerequisites for its use are linear algebra and
some basic knowledge of the control theory of linear systems. The manuscript was
originally prepared when the first author was visiting Kyoto University. The first
author would like to express his hearty thanks to Professor Yutaka Takahashi for his
proof-reading and useful suggestions for parts of the manuscript. The manuscript
has been used as lecture notes in a series of seminars organized jointly by the
Academy of Mathematics and Systems Science, Tsinghua University, and Peking
University. Many colleagues and students attending these seminars have contributed
to this book via useful discussions, suggestions, and corrections. Particularly, Dr.
Yin Zhao helped in the preparation of Chaps. 15-17. Dr. Yifen Mu, Dr. Zhenning
Zhang, Dr. Yin Zhao, Dr. Xiangru Xu, and Dr. Jiangbo Zhang helped with the final
galley proof of the manuscript. The authors are also indebted to Mr. Oliver Jackson
for his warmhearted support.

http://lsc.amss.ac.cn/~dcheng/

References ix

The research presented in this book was partly supported by the Chinese National
Natural Science Foundation under grant number G60736022.

Beijing Daizhan Cheng
Hongsheng Qi
Zhiqiang Li

References

1. Cheng, D., Qi, H.: Semi-tensor Product of Matrices—Theory and Applications. Science Press,
Beijing (2007) (in Chinese)
2. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor.
Biol. 22(3), 437 (1969)
3. Kauffman, S.: The Origins of Order: Self-organization and Selection in Evolution. Oxford Uni-
versity Press, London (1993)
. Kauffman, S.: At Home in the Universe. Oxford University Press, London (1995)
. Kitano, H.: Systems biology: a brief overview. Science 259, 1662—1664 (2002)
. Robert, F.: Discrete Iterations: A Metric Study. Springer, Berlin (1986). Translated by J. Rolne
. Waldrop, M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Touchstone,
New York (1992)

~N o A

Contents

1 Propositional Logic 1
1.1 Statements 1

1.2 Implication and Equivalence 5

1.3 Adequate Sets of Connectives 8

1.4 NormalForm. 11

1.5 Multivalued Logic 14
References L 18

2 Semi-tensor Product of Matrices 19
2.1 Multiple-Dimensional Data 19

2.2 Semi-tensor Product of Matrices 29

23 SwapMatrix 37

2.4 Properties of the Semi-tensor Product 41

2.5 General Semi-tensor Product Lo 49
References 53

3 Matrix Expressionof Logic 55
3.1 Structure Matrix of a Logical Operator 55

3.2 Structure Matrix for k-valued Logic 59

3.3 Logical Matrices 63
References 65

4 Logical Equations 67
4.1 Solution of a Logical Equation 67

4.2 Equivalent Algebraic Equations 68

43 LogicalInference 78

4.4 Substitution 84

4.5 k-valued Logical Equations 85

4.6 Failure Location: An Application 89
4.6.1 Matrix Expression of Route Logic 89

4.6.2 Failure Location 92

xii

Contents

4.6.3 Cascading Inference 97

References L .. 100
Topological Structure of a Boolean Network 103
5.1 Introduction to Boolean Networks 103
5.2 Dynamics of Boolean Networks 104
5.3 FixedPointsandCycles 108
54 Some Classical Examples 119
5.5 Serial Boolean Networks 124
5.6 Higher Order Boolean Networks 126

5.6.1 First Algebraic Form of Higher Order Boolean Networks . 128
5.6.2 Second Algebraic Form of Higher Order Boolean Networks 137

References 139
Input-State Approach to Boolean Control Networks 141
6.1 Boolean Control Networks 141
6.2 Semi-tensor Product Vector Space vs. Semi-tensor Product Space . 143
6.3 Cyclesin Input-State Space 146
6.4 Cascaded Boolean Networks 151
6.5 Two Illustrative Examples 154

References 161
Model Construction via ObservedData 163
7.1 Reconstructing Networks 163
7.2 Model Construction for General Networks 171
7.3 Construction with Known Network Graph 176
74 LeastIn-degreeModel 177
7.5 Construction of Uniform Boolean Network 181
7.6 Modeling via Data with Errors 184

References 187
State Space and Subspaces 189
8.1 State Spaces of Boolean Networks 189
8.2 Coordinate Transformation 191
8.3 RegularSubspaces oL 196
8.4 [Invariant Subspaces 204
8.5 Indistinct Rolling Gear Structure 207

References 212
Controllability and Observability of Boolean Control Networks . . . 213
9.1 Control via Input Boolean Network 213
9.2 Subnetworks 220
9.3 Controllability via Free Boolean Sequence 222
9.4 Observability 227

References 231

Contents

10

11

12

13

14

15

10.4 Kalman Decomposition
10.5 Realization
References

Stability and Stabilization
11.1 Boolean Matrices e
11.2 Global Stability,
11.3 Stabilization of Boolean Control Networks

References

Disturbance Decoupling
12.1 Problem Formulation
12.2 Y-friendly Subspace oL
123 Control Design
12.4 Canalizing Boolean Mapping
12.5 Solving DDPs via Constant Controls

References

Feedback Decomposition of Boolean Control Networks
13.1 Decomposition of Control Systems
13.2 The Cascading State-space Decomposition Problem
13.3 Comparable Regular Subspaces
13.4 The Parallel State-space Decomposition Problem
13.5 Input—Output Decomposition

Referenceso

k-valued Networks
14.1 A Review of k-valued Logic
14.2 Dynamics of k-valued Networks
14.3 State Space and Coordinate Transformations
14.4 Cycles and Transient Period
14.5 Network Reconstruction
14.6 k-valued Control Networks
147 Mix-valued Logic

References

Optimal Control
15.1 Input-State Transfer Graphs
15.2 Topological Structure of Logical Control Networks
15.3 Optimal Control of Logical Control Networks
15.4 Optimal Control of Higher-Order Logical Control Networks

References

Xiv Contents

16 Input-State Incidence Matrices 371

16.1 The Input-State Incidence Matrix 371

16.2 Controllability 374

16.3 Trajectory Tracking and Control Design 378

16.4 Observability 379

16.5 Fixed Pointsand Cycles 382

16.6 Mix-valued Logical Systems 383

Referenceso 388

17 Identification of Boolean Control Networks 389

17.1 What Is Identification? 389

17.2 Identification via Input-State Data 390

17.3 Identification via Input—Output Data 393

17.4 Numerical Solutions 396

17.4.1 General Algorithm 396

17.4.2 Numerical Solution Based on Network Graph 400

17.4.3 Identification of Higher-Order Systems 403

17.5 Approximate Identification 404

References 407

18 Applications to Game Theory 409

18.1 Strategies with Finite Memory 409

182 Cycle Strategy e 412

183 Compounded Games 415

18.4 Sub-Nash Solution for Zero-Memory Strategies 417

18.5 Nash Equilibrium for u-Memory Strategies 419

18.6 Common Nash (Sub-Nash) Solutions for -Memory Strategies . . 421

References 429

19 Random Boolean Networks 431

19.1 MarkovChains 431

19.2 Vector Form of Random Boolean Variables 439

19.3 Matrix Expression of a Random Boolean Network 442

19.4 Some Topological Properties 447

References 450

Appendix A Numerical Algorithms 451

A.1 Computation of Logical Matrices 451

A2 BasicFunctions, 453

A3 SomeExamples, 458
Appendix B Proofs of Some Theorems Concerning the Semi-tensor

Product 463

References L 466

Notation

ZNO RO

N
3

Id(y, ..., 60, ...

lem(p, q)
=

&

5

9

Dk

i

A

, 1)

set of complex numbers

set of real numbers

set of rational numbers

set of integers

set of natural numbers

finite group {1, ..., n} equipped with +(mod n)
“is defined as”

set of m x n real matrices

set of n x n real matrices

cardinal number of set S

ordered multi-index

column number of A is ¢ times the row number of B
row number of B is ¢ times the column number of A
negation

disjunction

conjunction

conditional

biconditional

exclusive or (EOR)

not and (NAND)

not or (NOR)

rotator in k-valued logic

i-confirmor in k-valued logic

largest integer less than or equal to a
least common multiple of p and ¢
implication

equivalence

kth column of I,

set {T, F}or{1,0}

set {0, 7. &2, 1)
set{reR|0<r<1}

set {81, 5%}

XV

XVvi

Ag
R(x0)
R (x0)
®

X

X
LU,V)
z.&'

gmxn
Slir - is]

Srfit, ..., i}

Col(A)
Col; (A)
Row(A)
Row; (A)
Blk; (A)

diag(Al, N

Ve(A)
Vi(A)
det(r)
tr(A)
P (k)
Sk
Wim,n)
T;

1;

,Ap)

Notation

set {8} |1 <i <k}
reachable set from x
reachable set from x¢ at the sth step
tensor (or Kronecker) product
left semi-tensor product
right semi-tensor product
set of linear mappings from U to V
set of tensors with covariant order s and contravariant
order ¢
set of m x n logical matrices
logical matrix with 5,? as its jth column
(B8 C A
set of columns of matrix A
ith column of matrix A
set of rows of matrix A
ith row of matrix A
ith block of matrix A
block diagonal matrix whose diagonal blocks are A;,
i=1,...,k
column-stacking form of matrix A
row-stacking form of matrix A
determinant of A
trace of A
set of proper factors of k
permutation group of k elements
swap matrix with index (m, n)
transient period
[,1,..., 17

k
limit set
set of m x n Boolean matrices
Boolean addition for Boolean matrices
Boolean sum for Boolean matrices
Boolean product for Boolean matrices

Boolean power of Boolean matrix A

vector distance of A, B € By xn

state space

subspace generated by - - -

incidence matrix of ¥

weight function of a Boolean matrix
Boolean weight function of a Boolean matrix

Chapter 1
Propositional Logic

1.1 Statements

Mathematical logic uses mathematical methods to perform logical deduction and
logical reasoning. It is now the subject of a fundamental course for students of
pure mathematics, computer science, etc., and there are many standard textbooks
on the topic. We will use [2] as one of our main references. The use of mathematical
methods means that concepts are expressed through mathematical symbols, and that
reasoning and deduction are performed by means of mathematical calculations. The
objects studied in propositional logic are statements. A simple statement is a simple
sentence which could be either “true” or “false”. Such statements are also called
propositions. We give some examples.

Example 1.1

. The Earth is round.

. The Earth is square.

. If n > 2, then x" + y" = z" has no integer solutions (x, y, z).
. There are beings in outer space.

. Bridge, stream, village.

DA W=

It is easy to see that statement 1 is “true” and statement 2 is “false”. Statement 3
is Fermat’s Last Theorem, which was proven by Andrew Wiles in 1995, so we now
know that it is “true”. For statement 4, the answer could be “true” or “false”, al-
though we still do not know which. Hence statements 1—4 are all propositions. State-
ment 5 is not a proposition because neither “true” nor “false” can be meaningfully
applied to it.

We now consider some other examples.

Example 1.2

1. Mr. Martin is an old man.
2. Today is hot.

D. Cheng et al., Analysis and Control of Boolean Networks, 1
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_1, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_1

2 1 Propositional Logic

First, we would like to emphasize that these two statements are well-defined
propositions because “Is the statement true?” is a logically meaningful question in
both cases. However, it is also worth noting that this does not mean the answer is
obvious. Consider statement 1. If this man is in his eighties or nineties, the answer
is obviously “true”. If he is a teenager, the statement is “false”. But what if he is
in his forties or fifties? The answer is not clear. An analogous argument shows that
the second statement has a similar status. Hence, we may need a value between 0
(“false”) and 1 (“true”) to describe such propositions. This is a topic discussed in
the study of multivalued logic or fuzzy logic.

In classical logic we make the basic assumption that a proposition must be either
“true” or “false”. For compactness we use “T” or “1” for “true”, and “F” or “0”
for “false”. We use capital letters A, B, C, ... to represent simple statements. In the
following example all the statements are propositions.

Example 1.3 Consider the following statements: A. Beijing is a city in China;
B. Beijing is a city in Europe; C. Beijing is a city in Asia; D. Beijing is a city
outside China; E. Either Beijing or Moscow is in Europe.

In Example 1.3 the propositions seem to be related. For instance, if A is “T” then
B is “F” and vice versa. Similarly, A is “T” if and only if D is “F”. We now introduce
some symbols, called connectives, to express relationships between propositions.
The following are five commonly used connectives:

e Negation. The negation of proposition A is denoted by —A and is its opposite.
A is true if and only if —A is false and vice versa.

e Conjunction. The conjunction of A and B, denoted by A A B, is a proposition
which is true only if both A and B are true.

e Disjunction. The disjunction of A and B, denoted by A V B, is a proposition
which is true if either A or B or both A and B are true.

e Conditional. The conditional of A to B, denoted by A — B, means that A implies
B (equivalently, if A then B).

e Biconditional. The biconditional of A and B, denoted by A <> B, means that A
is true if and only if B is true.

A connective is also called a logical operator.

Example 1.4 Recall Example 1.3. One sees easily that the following relations are
true:

1.
A — (—B), B — (—A).
2.
A— C, (=C)— D.
3.

A < (—0D), B — E.

1.1 Statements 3

Simple statements can be compounded by connectives to form compound state-
ments. To investigate general relationships between propositions with connectives,
we may use logical variables to replace particular statements. This is the same as
in simple algebra where we use letters x,y,... or a,b, ... to replace particular
numbers. Logical variables are also called statement variables. Statement variables
are denoted by p,q,r,... or x1, x2,.... A valid logical relation (logical identity)
for some logical variables is true when the variables are replaced by any partic-
ular propositions. This is the same as in simple algebra: for example, if we have
x? — y2 = (x + y)(x — y), then no matter what values x and y are replaced with,
the equality is always true. It is easy to check that

pV(—p) =T, (1.1
pA(—p)=F. (1.2)

That is, no matter what logical value p takes, logical equations (1.1) and (1.2) al-
ways hold.
Consider the set

2 ={T,F} (equivalently, 7 ={1,0}). (1.3)

Definition 1.1

1. A logical variable is a variable which can take values from 2.

2. A set of logical variables x, ..., x, are independent if, for any fixed values x;,
J # i, the logical variable x; can still take value either 1 or 0.

3. Alogical function of logical variables, x, ..., x, is a logical expression involv-
ing x1, ..., x, and some possible statements (called constants), joined by con-
nectives. Hence a logical function is a mapping f : 2" — 2. It is also called an
n-ary operator [1].

Example 1.5
y=(ngqg)< (T Ar) (1.4)

is a logical function of p, g, r. Using conventional notation we have y = f(p, q,r),
D, q,r € 9. The only difference is that here, f is a logical function.

In general, a known constant can be removed from the function. For example,
(1.4) is equivalent to

y={@Ag)<r. (1.5)
Remark 1.1 Let x1, ..., x, be logical variables.
1. y is said to be independent of x1, ..., x, if y can take either F or T as its value,
regardless of what values the x, ..., x, take.
2. It is said that y depends on xi, ..., x, (completely) if, as long as the values of
X1,..., X, are fixed, y can take only a unique value. In this case, y is a logical

function of xy, ..., x,. Alternatively, y : 2" — & is a logical mapping.

4 1 Propositional Logic

Table 1.1 Truth table for

negation P -p
1 0
0 1

Table 1.2 Truth table for A,

VAV P 4 PANg pVq p—q p<q pVqg ptqg plg
1 1 1 1 1 1 0 0 0
1 0 0 1 0 0 1 1 0
0 1 0 1 1 0 1 1 0
0 0 O 0 1 1 0 1 1
3. y can be neither independent of xi,...,x, nor dependent on xi,...,x,. For

example, y = x1 A x3 is neither independent of x| nor dependent on x| because
when x; = F, y = F, but when x; = T, we can say nothing about y.

Note that an operator is also a logical function. Recall the basic connectives de-
fined earlier. It is clear that negation, —, is a 1-ary operator and that conjunction, A,
disjunction, V, conditional, —, and biconditional, <>, are all 2-ary operators.

Remark 1.2 Operating priority is defined such that 1-ary operators take priority over
2-ary operators. So (1.1) and (1.2) can be expressed respectively as

and

A connective or a logical operator can easily be expressed by a table, called a
truth table. For instance, for negation, we have Table 1.1.

Similarly, we can give truth tables for conjunction, disjunction, conditional, bi-
conditional, and three others, as in Table 1.2.

The truth value of a logical function can easily be obtained from the truth tables
of basic connectives. We use an example to illustrate this point.

Example 1.6

1. Let x = p A (—gq). The truth table of x is shown in Table 1.3.
2. Let y = (—p) — (¢q Vv r). The truth table of y is shown in Table 1.4.

1.2 Implication and Equivalence 5

Table 1.3 Truth table for x

p q —q x=pA(—q)
1 1 0 0

1 0 1 1

0 1 0 0

0 0 1 0

Table 1.4 Truth table for y

p q r —-p qVvr y=(Ep)—>(gVr)
1 1 1 0 1 1

1 1 0 0 1 1

1 0 1 0 1 1

1 0 0 0 0 1

0 1 1 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1

0 0 0 1 0 0

1.2 Implication and Equivalence

Definition 1.2

1. A logical function involving certain logical variables is said to be a tautology if
it is always true no matter what values the logical variables take.

2. Alogical function involving certain logical variables is said to be a contradiction
if it is always false no matter what values the logical variables take.

From (1.1) we know p Vv —p is a tautology, and from (1.2) we know p A —pisa
contradiction. According to the definition, it is clear that if x is a tautology, then —x
is a contradiction. Conversely, if x is a contradiction, then —x is a tautology. Both
tautology and contradiction are extreme cases. A logical expression which is neither
tautology nor contradiction is called a possibly true form.

In the following example we give some useful tautologies and contradictions.

Example 1.7

1. (Law of excluded middle) p v —p is a tautology.
2. (Law of contradiction) p A —p is a contradiction.
3. (Law of negation of negation) p <> —(—p) is a tautology.
4. (p > (g > r)) = ((p — q) — (p — r)) is a tautology.

To prove a tautology or a contradiction, we simply use a truth table. For example,
ifwesetx =(p — (g > r)) — ((p —> qg) > (p — r)), then the truth table for x is
shown in Table 1.5.

6 1 Propositional Logic

Table 1.5 Truth table for x

p g9 r gqgq—>r p—>@—r) p—q po>r (pog9->@pP-o>r) x
1 1 11 1 1 1 1 1
1 1 0 O 0 1 0 0 1
1 0 1 1 1 0 1 1 1
1 0 0 1 1 0 0 1 1
0 1 11 1 1 1 1 1
0 1 0 0 1 1 1 1 1
0o 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1

Definition 1.3 Let x, y be two logical variables.

e x is said to logically imply y if x — y is a tautology. Logical implication is
denoted by =, asin x = y.

e x and y are logically equivalent if x <> y is a tautology. Logical equivalence is
denoted by <, asin x < y (or x = y).

In the following example we give some useful laws involving logical implication.

Example 1.8

1.
((p—) r=q) = —p. (1.8)

2.
((pva)yn—p)=gq, (1.9)
((pva)A=q)=p. (1.10)

3,
(pAg) = p, (1.11)
(PAg)=q. (1.12)

4.
(p=a)A@—=n)=(p—r). (1.13)

5.
(p— (r A=r)) = —p. (1.14)

6.

p=(pVvaq). (1.15)

1.2 Implication and Equivalence

We leave the proofs to the reader.

In the following example some useful laws involving logical equivalence are

presented.

Example 1.9
1. (De Morgan’s law)

2. (Commutativity)

(pAg) & (gAp),
(pvag) & (@Vp).

3. (Distributive law)

(pA@@Vv))&((pAg)V(pAar),
(pvigrn) & ((pva) AlpVvr).

4.
(p—=>q)& (—pVvay).
5
pe(prlgVv—q),
p&(pvignr—g).
6.
(peoq) & ((p— a9 Alg—p),
peoq) s ((prgV(—pAr—g).
7.
(pVp) & p,
(pAPp) & p.

We give one more example, which is useful in normal form deduction.

Example 1.10

@AP)V(maAg)=(aVg)A(-aV p).

(1.16)

(1.17)

(1.18)
(1.19)

(1.20)
(1.21)

(1.22)

(1.23)
(1.24)

(1.25)
(1.26)

(1.27)
(1.28)

(1.29)

8 1 Propositional Logic

Table 1.6 Truth table for (1.29)

a p q —a anp —aAngq LHS avaq —aVv p RHS
1 1 1 0 1 0 1 1 1 1
1 1 0 0 1 0 1 1 1 1
1 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0
0 1 1 1 0 1 1 1 1 1
0 1 0 1 0 0 0 0 1 0
0 0 1 1 0 1 1 1 1 1
0 0 0 1 0 0 0 0 1 0

Table 1.7 Truth table for binary operators

p g 01 02 03 04 O5 O O7 O 09 010 O11 012 013 014 015 Ol6
I 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0 o0 o0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
o o601 o0 1 o0 1 O 1 O 1 O 1 0 1 0 1 0

Note that we have here used equality (“="), which is an alternative expression
of logical equivalence. That is, two logical expressions are equal if and only if they
are logically equivalent.

We use a truth table to prove (1.29). Denote the left- (resp., right-) hand side of
(1.29) by LHS (resp., RHS).

From Table 1.6 it is clear that LHS = RHS.

1.3 Adequate Sets of Connectives

In the previous section a 1-ary (unary) connective, —, and some 2-ary (binary) con-
nectives, A, V, —, <>, etc. were discussed. Note that for an n-ary connective there
are n logical variables and each variable can take two possible values, so an n-ary
operator is a mapping from a set (domain) of 2" different elements to a set (region)
of two elements. Hence there are 22" different connectives. When n = 2, we know
that there are 222 = 16 different binary connectives. We list them all in Table 1.7,
where they are denoted by o1, 02, ..., 016.

Remark 1.3

1. ogis A, 02 1S Vv, 05 is —, and o7 is <>.
2. 01(p,q) =T and o16(p,q) = F. They are 0-ary connectives (constant opera-
tors).

1.3 Adequate Sets of Connectives 9

3. o13(p,q) = —p and o11(p, q) = —q. They are 1-ary connectives.

4. In general, a k-ary (k < s) connective can be formally expressed as an s-ary
connective. The above two operators, 013 and o711, are such examples.

5. oqg is called the “exclusive or” (EOR), denoted by “V” [4]:

o10(p,q) =pVq=—(p<q).
6. o9 is called the “not and” (NAND), denoted by “1”:
o9(p.g) =prtg=—(pAq).
7. o5 is called the “not or” (NOR), denoted by “|

ois(p.g)=plg=—(pVaq).

The following proposition provides two important tautologies. They may be used
as alternative definitions of the conditional and biconditional, respectively.

Proposition 1.1
1.
p—qs(p)Va. (1.30)

p<qs (p—>q) NG — p). (1.31)

Definition 1.4 A set of connectives is called an adequate set if any connective can
be expressed in terms of its elements.

Proposition 1.2 The following four sets are all adequate sets: (i) {—, A}, (i) {—, V},
@ii1) {—=, A, VE (V) {7 AV, =, o)

Proof Since (iii) is a subset of (iv), if (iii) is adequate then so is (iv).
According to De Morgan’s law, we have
xVy & =((=x)A=y),
XAy & (=) Vv (=y).

Hence if (iii) is adequate, so are (i) and (ii). Therefore, it is enough to prove that (iii)
is adequate.

Note that it is easy to check that Table 1.7 is “antisymmetric”, meaning that
01 & —016, 02 & 075, etc. In general,

o; & —o17—i, =1,...,8.

Hence it is enough to prove that o;, i = 1,..., 8, can be expressed in terms of
{—=, A, V}. Since o2(p,q) = p vV q and a3(p, q) = p A ¢, these do not need proof.

10 1 Propositional Logic

Table 1.8 Truth value to logical form

o(p.q) o o(p.q) o

1111 T 0000 F

1110 pVq 0001 —(pVvg)or—-pA—-gorplgq

1101 q—>p 0010 —(q —> p)or—pAgq

1100 p 0011 -p

1011 p—q 0100 —(p—>gq)or pA—gq

1010 q 0101 —q

1001 p<q 0110 —(p<q)or(pA—qg)V(gA—p)orpVgqg
1000 PAq 0111 —(pAg)or—=pV—-gorptgq

We also have o5(p, g) = p — g and so, using Proposition 1.1, o5 can be expressed
in terms of them. Furthermore, since o7(p, q) < (p < q), the second identity in
Proposition 1.1 ensures that o7 can be expressed in terms of them as

(P < ((p—q9Ag—p).

We still need to prove o1, 03, 04, 0¢. In fact we have

01(p.q) & (P ANV (P A=)V (7P Aq)V (mp A7),
03(p.q) < (pV—q) or o3(p,q) < q—p,
04(p.q) & p,
o6(P.q) < q. O
In the sequel it will be very useful to find a logical operator from its truth values
in a truth table. We use four {0, 1} numbers to denote the truth values of a binary
operator. For instance, referring to Table 1.8, p A g takes four values: (1, 0,0, O)T.
(We use superscript T for transpose.) We then use “1000” to denote its truth values.
The following table shows the mapping from the four numerical truth values to their
corresponding logical operators, which may have several equivalent forms.
A single connective can form an adequate set, as we will see in the following
example.

Example 1.11
1. If we define
o9(p,q) == plq,

then {|} is an adequate set. First, we have

(—=p) & (plp);

1.4 Normal Form 11

second, we have

PV < ((pIPIGl).

According to Proposition 1.2, the conclusion follows.
2. If we define

o15(p,q):==plq,
then {|} is an adequate set. Note that
(=p) & (P ip.

We also have

prg)< ((pipl@la).

The conclusion then follows.

Remark 1.4 In the study of Boolean networks, mod 2 addition “+(mod 2)” and
mod 2 multiplication “x(mod 2)” are commonly used as logical operators. It is
obvious that “x(mod 2)” is the same as conjunction, “A”, and that “+4(mod 2)” is
the same as EOR, “V”. They form an adequate set, so they are sufficient to describe
all logical expressions.

1.4 Normal Form

Definition 1.5 Let {p1, p2, ..., pn} be a set of logical variables. Define a set of
logical variables by also including their negations, as follows:

P:={p1,=p1, p2,7p2, ..., Pn» " Pn}

N
c:=/\ai, ai € P,
i=1

then c is called a basic conjunctive form.
2. If

N
d::\/ai, a; € P,

i=1
then d is called a basic disjunctive form.
3. If

K
.= \/C,‘,
i=1

where ¢; are basic conjunctive forms, then £ is called a disjunctive normal form.

12 1 Propositional Logic

where d; are basic disjunctive forms, then £ is called a conjunctive normal form.
We give some examples.

Example 1.12
Let p, g, r be three logical variables. Then:

1. p,—=p,and p A (—g) A (—r) are basic conjunctive forms.

2. (=p)Vvr,pV(=p),and (—q) VvV p V (—r) are basic disjunctive forms.

3. pAg,pVg,and (—p) VvV (p Aq) V ((—g) A p A (—r)) are disjunctive normal
forms.

4. pAng,pVg,and (—p) A(pVq) A((—q) V (—q) V (—r)) are conjunctive normal
forms.

Proposition 1.3 Any logical expression can be expressed in disjunctive normal form
as well as conjunctive normal form.

Proof Let £ be a logical expression with py, pa, ..., p, as its logical variables. We
first prove that it can be expressed as a disjunctive normal form. If, for any i and any
value of p;, it is always F, then it is a contradiction. Hence it can be expressed as

L=piA(=pI)AP2LA--- A Pp.

Assume that when (p1,..., pp) = = (a1,...,0,) (e, pi=caj,i=1,...,n), ¢
is T'. We construct a basic conjunctive form as

by =ciANCca A+ Acy,

where

_Jpi, «i=T,
C; =
—pi, oj=F.

Now assume the set of values of logical variables for which £ is T to be o =
(ot’1 , ot’2, ...,af),i=1,2,...,s. Using the above method, we can construct for each
! a corresponding by, . It is obvious that

N
0=\/ by (1.32)
i=1

This is a disjunctive normal form.

1.4 Normal Form 13

Table 1.9 Truth table of ¢
p g r (pve—o-r rop AV
1 1 1 0 1 1
1 1 0 1 1 1
1 0 1 0 1 1
1 0 0 1 0 0
0 1 1 0 0 1
0 1 0 1 1 1
0 0 1 1 0 0
0 0 0 1 0 0

Next, we construct a conjunctive normal form. Because of the existence of a
disjunctive normal form of —¢, we have

where b; = c’i ARERWA c,‘;i are basic conjunctive forms. Using De Morgan’s law,
L= (=b1) A (=b2) A+ A (—=by). (1.33)

Note that —b; = —-c‘i \VARERY, —-cﬁli is a basic disjunctive form. It follows that (1.33)
is a conjunctive normal form. O

The proof of the above proposition is constructive, so we can use it to construct
normal forms. We show this by means of the following example.

Example 1.13 Consider
l:= ((qu)—)-r)—)((r—)p)/\(rVq)). (1.34)

We will convert this into a disjunctive normal form and a conjunctive normal form.
We give the truth table of £ in Table 1.9.

When p, ¢, and r take values from rows 1,2, 3,5, and 6, £ is true. According
to the values of the variables in each row, we can construct a basic conjunctive
form. Then, the disjunction of all such terms yields the disjunctive normal form, as
follows:

L=(MPANgArINVN(PAGA—F)V(PA—=gAT)V(pAGAT)V(mpAgA-—r).

When p, g, and r take values from rows 4,7, and 8, —¢ is true. As before, the
disjunctive form of —¢ can be constructed as

AL=(pPpA—=gA=F)V(=pA=gAF)V (=pA—gA-T).
Using De Morgan’s law, the conjunctive normal form of £ is obtained as

L=(—pVvgVr)N(pVvgV—-r)yA(pVq\Vr).

14 1 Propositional Logic

According to Definition 1.5, neither the disjunctive normal form nor the con-
junctive normal form is unique. To get unique expressions, we give the following
definition.

Definition 1.6

1. A disjunctive normal form is said to be optimized if it satisfies the following
conditions:

e If a variable appears in the normal form, then it appears in all basic conjunctive
forms.

There is no basic conjunctive form that is a contradiction.

There are no identical variables in each basic conjunctive form.

There are no identical basic conjunctive forms.

In the normal form, the variables, their negations, and basic conjunctive forms
are all arranged in alphabetical order.

2. A conjunctive normal form is said to be optimized if it satisfies the following
conditions:

e If a variable appears in the normal form, then it appears in all basic disjunctive
forms.

There is no basic disjunctive form that is a tautology.

There are no identical variables in each basic disjunctive form.

There are no identical basic disjunctive forms.

In the normal form, the variables, their negations, and basic disjunctive forms
are all arranged in alphabetical order.

Theorem 1.1 For each logical expression there exist a unique optimized disjunctive
normal form and a unique optimized conjunctive normal form.

Proof In fact the constructive proof of Proposition 1.3 provides a way to construct
the optimal normal forms. For instance, in Example 1.13, the disjunctive normal
form and conjunctive normal form obtained there are optimal, as long as we reorder
the variables in alphabetical order, i.e.,

(p Aq)o1(p A—q)o(—p Ag)os(—p A—q),

where o;, i =1, 2, 3, are connectives. From the construction it is clear that the opti-
mized normal forms are unique. O

1.5 Multivalued Logic

Hereafter, two-valued logic will be called Boolean logic. It was mentioned earlier
that in the real world, “true” and “false” may not be sufficient to describe a state-
ment. We give some additional simple examples.

1.5 Multivalued Logic 15

Table 1.10 Logical values with respect to age
a >70 [60, 70) [40, 60) [30, 40) [20, 30) <20

A 1 0.8 0.6 0.4 0.2 0

Example 1.14 Consider the following statements:

1. The temperature in the stove is high.
2. The air pollution is severe.

3. Smith’s family is rich.

4. She is an old lady.

All the statements are propositions, but “true” or “false” may not be enough to
characterize them. For instance, in a chemical factory the stove temperature may be
classified as “very high”, “high”, “average”, “low”, or “very low”. Here, we could
use “true” or “1” for the first case, and “false” or “0” for the fifth case. But what of
the intermediate cases? It would be natural to define some logical values between 1
and 0 to describe them, e.g., “0.75” for “high”, “0.5” for “average”, and “0.25” for
“low”.

In Beijing, the television broadcast uses “clean”, “mildly polluted”, and “severely
polluted” to describe the air quality. The broadcasters thus provide three values
(which we could label “0”, “0.5”, and “1”) to classify statement 2.

For wealth, “below the poverty line”, “low income”, “middle class”, “high in-
come”, etc. may be used to describe statement 3.

Finally, we consider the last statement. According to the person’s age, we may
assign a logical value to it. We refer to Table 1.10 for this.

In this way, we need six different values to describe a statement. This yields
multivalued logic. If we allow the values to be anything between 1 and 0, we have
fuzzy logical values.

Next, we define multivalued logic and fuzzy logic rigorously.
Define

k—2 k-3

= T=1,—,—,.
P { k—1k—1

. r=o)

and
Dy={r|0<r<1}.

Note that 2, = Z is what we defined before for Boolean logic.

Definition 1.7

1. A logical system is called a k-valued logic if its logical variables may take any
values from Z.

2. A logical system is called a fuzzy logic if its logical variables may take any
values from Z;.

16

Table 1.11 k-valued unary operators

1

Propositional Logic

p —p @k (p) Vik(p)
1 0 k=2)/(k—1) 0
(k—=2)/(k—1) 1/(k—1) (k—=3)/(k—=1) 0
i—-1/k=1) (k—1i)/(k—1) (i —=2)/(k—1) 1
2/k—=1) (k=3)/(k—=1) 1/(k=1) 0
1/(k—1) k—=2)/(k—1) 0 0
0 1 1 0

3. Alogical operator o : & — % is an s-ary k-valued logical operator; a logical
operator o : @} — Yy is an s-ary fuzzy logical operator.

For the remainder of this section we mainly consider k-valued logic.

First, we define some unary operators. It is easy to see that there are k* unary
operators. We define some which will be useful in the sequel: (1) “negation”, —,
(2) “rotator”, @k, (3) “i-confirmer”, V; s, i =1,2,..., k.

Definition 1.8
1. Let p= lel Then
k—1)—i
TP=T (1.35)
2. Let p= lel Then
i—1 .
i— >0,
op=1 T (136)
3.
p. p=1=,
VikP = i (1.37)

Table 1.11 shows the truth values of these unary operators.

Next, we define some binary operators.

Definition 1.9 Let p and g be two k-valued logical variables. Define their disjunc-
tion as

pVq=max(p,q) (1.38)

1.5 Multivalued Logic 17

Table 1.12 3-valued extended logic

p q -p pP—>4q -q q—>7D p<q
1 1 0 1 0 1 1

1 0.5 0 0.5 0.5 1 0.5

1 0 0 0 1 1 0

0.5 1 0.5 1 0 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0 0.5 0.5 1 1 0.5

0 1 1 1 0 0 0

0 0.5 1 1 0.5 0.5 0.5

0 0 1 1 1 1 1

Table 1.13 Some other 3-valued logics

p q KD L B

— <> — <> — <>
1 1 1 1 1 1 1
1 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 0 0 0 0 0 0
0.5 1 1 0.5 1 0.5 0.5 0.5
0.5 0.5 0.5 0.5 1 1 0.5 0.5
0.5 0 0.5 0.5 0.5 0.5 0.5 0.5
0 1 0 1 0 1 0
0 0.5 1 0.5 1 0.5 0.5 0.5
0 1 1 1 1 1 1

and their conjunction as
pAg=min(p,q). (1.39)

Definition 1.9 is a natural generalization of Boolean logic. When k = 2, it is
obvious that these definitions of disjunction and conjunction coincide with those in
Boolean logic. Definition 1.9 is widely accepted, but others exist. For implication,
there are many different definitions.

A natural way to define the “conditional” and “biconditional” is by using equa-
tions (1.30) and (1.31) of Proposition 1.1, respectively. We call this the extended
logic. Using (1.30), (1.31), (1.38), and (1.39), the truth table for the conditional
and biconditional in the 3-valued extended logic can be easily calculated, as in Ta-
ble 1.12.

There are several other types of 3-valued logic. They may have different “con-
ditionals”, but the “biconditional” is usually defined by (1.31). In the follow-

18 1 Propositional Logic

ing table we give three different 3-valued logics: (1) Kleene—Dienes type (KD),
(2) Lukasiewicz type (L), (3) Bochvar type (B), as in Table 1.13 of [3].

From Tables 1.12 and 1.13, one easily sees that the Kleene—Dienes logic is the
same as the extended logic. Throughout this book, our default multivalued logic is
the extended logic, unless otherwise stated.

References

1. Barnes, D., Mac, J.: An Algebraic Introduction to Mathematical Logic. Springer, New York
(1975)

2. Hamilton, A.: Logic for Mathematicians. Cambridge University Press, Cambridge (1988). Re-

vised edn.

Liu, Z., Liu, Y.: Fuzzy Logic and Neural Network. BUAA Press, Beijing (1996) (in Chinese)

4. Rade, L., Westergren, B.: Mathematics Handbook. Studentlitteratur, Lund (1989)

(95}

Chapter 2
Semi-tensor Product of Matrices

2.1 Multiple-Dimensional Data

Roughly speaking, linear algebra mainly concerns two kinds of objects: vectors and
matrices. An n-dimensional vector is expressed as X = (x1, x2, ..., Xx,). Its ele-
ments are labeled by one index, i, where x; is the ith element of X. Foran m x n
matrix

ar arn Aln

azl ay v azn
A= s

aml Aam2 - dmn

elements are labeled by two indices, i and j, where g; ; is the element of A located
in the ith row and jth column. In this way, it is easy to connect the dimension of a
set of data with the number of indices. We define the dimension of a set of data as
follows.

Definition 2.1 A set of data, labeled by & indices, is called a set of k-dimensional
data. Precisely,

X ={Xij iy |1 =ij=nj, j=12,... k} 2.1)

is a set of k-dimensional data. The cardinal number of X, denoted by | X]|, is | X| =
niny---nNg.

In the following example we give an example of 3-dimensional data.

Example 2.1 Consider R3, with its canonical basis {e1, ez, e3}. Any vector X € R3
may then be expressed as X = xje; + x2e3 4+ x3e3. When the basis is fixed, we
simply use X = (x1, x2, x3)T to represent it. From simple vector algebra we know
that in R? there is a cross product, x, such that for any two vectors X, Y € R3 we

D. Cheng et al., Analysis and Control of Boolean Networks, 19
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_2, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_2

20 2 Semi-tensor Product of Matrices

have X x Y € R3, defined as follows:

e1 e e3
X x Y =det X1 X2 X3 . 2.2)
yr y2 y3

Since the cross product is linear with respect to X as well as Y, it is a bilinear
mapping. The value of the cross product is thus uniquely determined by its value on
the basis. Write
_ 1 2 3 Co
eixej—c,-je1+cijez+cijeg, i,j=1,2,3.

The coefficients form a set of 3-dimensional data,

{eij

which are called the structure constants. Structure constants are easily computable.
For instance,

i, j,k=1,2,3],

€y ey e3
e] X ep =det 1 0 O =e3,
0O 1 0

which means that 6{2 = 0%2 =0, 0?2 = 1. Similarly, we can determine all the struc-
ture constants:

1

e =0, 1 =0, 1 =0, 12 =0, 1 =0, =1
c 0 c —1 c 0) 0 c? 0 c —1
13=Y 13=—5 13=Y 21 =Y 21 =Y 21=— L
1 2 3 _ 1 2 3 _
¢ =0, ¢ =0, =Y, =1 ¢33 =0, ¢33 =0,

3 1 _ 2 3
c31 =0, g =1, 31 =0, 3 =—1, c3, =0, c3, =0,
1 2 3
c33 =0, ¢33 =0, c33=0

Since the cross product is linear with respect to the coefficients of each vec-
tor, the structure constants uniquely determine the cross product. For instance, let
X =3e; —e3 and Y =2e5 + 3e3. Then
X XY =6e; Xxey+9e) Xxe3—2e3 Xey—3e3 Xe3
1 2 3 1 2 3
= 6(cppe1 +cipea +cize3) +9(cizen +cizez + cise)
1 2 1 2
—2(exper + chrea +ches) — 3(ezzer +chzer + czen)
=2e; — 9ep + Ges.

It is obvious that using structure constants to calculate the cross product in this
way is very inconvenient, but the example shows that the cross product is uniquely

2.1 Multiple-Dimensional Data 21

determined by structure constants. So, in general, to define a multilinear mapping it
is enough to give its structure constants.
Using structure constants to describe an algebraic structure is a powerful method.

Definition 2.2 [6] Let V be an n-dimensional vector space with coefficients in R.
If there is a mapping x : V x V — V, called the product of two vectors, satisfying

@X+BY)*Z=a(X*Z)+ BY xZ),

23
Xx(@Y+BZ)y=a(X*xY)+B(X*x2Z) @3)
(where o, B e R, X, Y, Z € V), then (V, %) is called an algebra.
Let (V, %) be an algebra. If the product satisfies associative law, i.e.,
X*xY)xZ=Xx(YxZ), X, Y, ZeV, (2.4)

then it is called an associative algebra.

R3 with the cross product is obviously an algebra. It is also easy to check that it
is not an associative algebra.

Let V be an n-dimensional vector space and (V,) an algebra. Choosing a basis
{e1,en, ..., ey}, the structure constants can be obtained as

n
k ..
e,-*ej=2cijek, i,j=1,2,...,n.
k=1

Although the structure constants {cll.‘j i, j,k=1,2,...,n} depend on the choice of
basis, they uniquely determine the structure of the algebra. It is also easy to convert
a set of structure constants, which correspond to a basis, to another set of structure
constants, which correspond to another basis. For an algebra, the structure constants
are always a set of 3-dimensional data.

Next, we consider an s-linear mapping on an n-dimensional vector space. Let V
be an n-dimensional vector space andlet ¢ : V x V x .-+ x V — R, satisfying (for

N

any 1 <i <s,0,B €R)

o(X1, Xo,...,aX; +BY;, ..., Xy_1, Xy)
=ap(X1, X2, ..., Xiy .o, Xs1, Xy) + B (X1, X2, .. Y, oo, X1, Xy).
2.5)

Equation (2.5) shows the linearity of ¢ with respect to each vector argument. Choos-
ing a basis of V, {e1, ez, ..., e,}, the structure constants of ¢ are defined as

plei iy, .. €) =Cijiy,iys j=12,...,n,j=1,2,..,s.

Similarly, the structure constants, {c;, j,...i; | i1,...,is =1,2,...,n}, uniquely de-
termine ¢. Conventionally, ¢ is called a tensor, where s is called its covariant degree.

22 2 Semi-tensor Product of Matrices

It is clear that for a tensor with covariant degree s, its structure constants form a set
of s-dimensional data.

Example 2.2
1. In R? we define a three linear mapping as
$(X.Y.Z)=(XxY.Z), X.Y.ZeR’

where (-, -) denotes the inner product. Its geometric interpretation is the volume
of the parallelogram with X, Y, Z as three adjacent edges [when (X, Y, Z) form
a right-hand system, the volume is positive, otherwise, the volume is negative].
It is obvious that ¢ is a tensor with covariant degree 3.

2. In R3 we can define a four linear mapping as

VX, Y, Z,W)=(XxY,Zx W), X,Y,Z,WeR>.
Obviously, ¥ is a tensor of covariant degree 4.
Next, we consider a more general case. Let « : V — R be a linear mapping on V,
ule)=ci, i=1,...,n.
Then, u can be expressed as
w=ciel +cae;+ -+ cpep,
where e : V — R satisfies

1, i=j,
e =i=1q i;éj'.
It can be seen easily that the set of linear mappings on V forms a vector space, called
the dual space of V and denoted by V*.

Let X =xiey +xze2+- -+ x5, € Vand u = e} +poes +---+pue;; € V-
When the basis and the dual basis are fixed, X € V can be expressed as a column
vector and p € V* can be expressed as a row vector, i.e.,

T
X=(ay,az,...,a,) , mw=1(c1,¢2,...,Cn).

Using these vector forms, the action of © on X can be expressed as their matrix
product:

n
wX)=pX=Yy aci, peV: XeV.

i=1

Letgp:V*x---xV*xV x---xV — R be an (s + t)-fold multilinear map-

t N
ping. Then, ¢ is said to be a tensor on V with covariant degree s and contravariant

2.1 Multiple-Dimensional Data 23

degree t. Denote by .7;° the set of tensors on V with covariant degree s and con-
travariant degree ¢.

If we define
I1502,els L. S *
i = (e €€y €5, €5, €),
then
11,0250l . ..)
{1 <in,ooyis, jis ooy jo <nj

is the set of structure constants of ¢. Structure constants of ¢ € .7;° form a set of
(s + t)-dimensional data.

Next, we consider how to arrange higher-dimensional data. In linear algebra one-
dimensional data are arranged as a column or a row, called a vector, while two-
dimensional data are arranged as a rectangle, called a matrix. In these forms matrix
computation becomes a very convenient and powerful tool for dealing with one-
or two-dimensional data. A question which then naturally arises is how to arrange
three-dimensional data. A cubic matrix approach has been proposed for this pur-
pose [1, 2] and has been used in some statistics problems [8—10], but, in general,
has not been very successful. The problem is: (1) cubic matrices cannot be clearly
expressed in a plane (i.e., on paper), (2) the conventional matrix product does not
apply, hence some new product rules have to be produced, (3) it is very difficult to
generalize this approach to even higher-dimensional cases.

The basic idea concerning the semi-tensor product of matrices is that no matter
what the dimension of the data, they are arranged in one- or two-dimensional form.
By then properly defining the product, the hierarchy structure of the data can be
automatically determined. Hence the data arrangement is important for the semi-
tensor product of data.

Definition 2.3 Suppose we are given a set of data S with Hf'(:l n; elements and, as
in (2.1), the elements of x are labeled by k indices. Moreover, suppose the elements
of x are arranged in a row (or a column). It is said that the data are labeled by indices

i1, ...,1Ir according to an ordered multi-index, denoted by /d or, more precisely,
Id(lla -"7ik;n]a "‘5nk)7
if the elements are labeled by iy, ..., i; and arranged as follows: Leti;, t =1,...,k,

run from 1 to n; with the order that t = k first, thent = k — 1, and so on, until t = 1.
Hence, xq,,....o; 15 ahead of xg, . g, if and only if there exists 1 < j < k such that

ap=p, i=1,....,7—1, aj < Bj.

If the numbers ny, ..., ng of i1, ..., i} are equal, we may use
ld(iy, ... ig;n):=1d(y, ... i, n,...,n).

If n; are obviously known, the expression of Id can be simplified as

Id@iy, ..., i) :=1d(iy, ..., ik 01, ...,0%).

24 2 Semi-tensor Product of Matrices

Example 2.3

1. Assume x = {x;jx | i =1,2,3; j =1,2; k=1, 2}. If we arrange the data accord-
ing to the ordered multi-index Id(i, j, k), they are

X111, X112, X121, X122, X211, X212, X221, X222, X311, X312, X321, X322

If they are arranged by Id(j, k, i), they become

X111, X211, X311, X112, X212, X312, X121, X221, X321, X122, X222, X322.

2. Let x = {x1,x2, ..., x24}. If we use A1, Ap, A3 to express the data in the form
a; =y, x5 then under different /d’s they have different arrangements:
(a) Using the ordered multi-index Id(A1, A2, A3; 2, 3,4), the elements are ar-
ranged as

X111 X112 X113 X114
X121 X122 X123 X124
X131 X132 X133 X134

X231 X232 X233 X234.

(b) Using the ordered multi-index Id(A, A2, A3;3,2,4), the elements are ar-
ranged as

X111 X112 X113 X114
X121 X122 X123 X124
X211 X212 X213 X214

X321 X322 X323 X324.

(c) Using the ordered multi-index Id(11, A2, A3;4,2,3), the elements are ar-
ranged as

X111 X112 X113
X121 X122 X123
X211 X212 X213

X421 X422 X423.

Note that in the above arrangements the data are divided into several rows, but
this is simply because of spatial restrictions. Also, in this arrangement the hierarchy
structure of the data is clear. In fact, the data should be arranged into one row.

Different Id’s, corresponding to certain index permutations, cause certain per-
mutations of the data. For convenience, we now present a brief introduction to the
permutation group. Denote by S; the permutations of k elements, which form a

2.1 Multiple-Dimensional Data 25
group called the kth order permutation group. We use 1, ..., k to denote the k ele-

ments. If we suppose that k = 5, then S5 consists of all possible permutations of five
elements: {1, 2, 3,4, 5}. An element ¢ € S5 can be expressed as

4 5
| €eSs.
5 4

— < W

12
o=y
2 3

That is, o changes 1 to 2, 2to 3,3 to 1,4 to 5, and 5 to 4. o can also be simply
expressed in a rotational form as

o=(1,2,3)4,5).

Let i € S5 and

1 2 3 4 5
P A)
4 3 2 1 5

The product (group operation) on Ss is then defined as

po =

W <= N —
DN <— W< 1
N i]
N < <
—<— B W

that is, uo = (1, 3,4, 5).

If, in (2.1), the data x are arranged according to the ordered multi-index

Id(iy, ..., 1), it is said that the data are arranged in a natural order. Of course, they
may be arranged in the order of (i5(1), . .., io(k)), that is, letting index i, (k) run from
1 to ng k) first, then letting iy k—1) run from 1 to n4k—1), and so on. It is obvious
that a different /d corresponds to a different data arrangement.
Definition 2.4 Let 0 € S; and x be a set of data with]_[fz | ni elements. Arrange
x in a row or a column. It is said that x is arranged by the ordered multi-index
Id(isqy, ... iok)s o(l), - - - Mo (k) if the indices i1, ..., ix in the sequence are run-
ning in the following order: first, i,) runs from 1 to ns), then i k—1) runs from
1 to ng k1), and so on, until, finally, i5 (1) runs from 1 to ns(y).

We now introduce some notation. Let a € Z and b € Z,.. As in the programming
language C, we use a%b to denote the remainder of a /b, which is always nonnega-
tive, and [7] for the largest integer that is less than or equal to z. For instance,

100%3 =1, 100%7 =2, (=7 %3 =2,

[zi| =2 [-1.25]=-2
3| =% 25]=-2.

26 2 Semi-tensor Product of Matrices

It is easy to see that
a= [;—Z]b+a%b. (2.6)

Next, we consider the index-conversion problem. That is, we sometimes need
to convert a single index into a multi-index, or vice versa. Particularly, when we
need to deform a matrix into a designed form using computer, index conversion is
necessary. The following conversion formulas can easily be proven by mathematical
induction.

Proposition 2.1 Let S be a set of data with n =]_[le n; elements. The data are
labeled by single index as {x;} and by k-fold index, by the ordered multi-index
Id(Ay, ..., gy nq,...,nk), as

S={splp=1....n}={s .ol l=ki=nsi=1 ...k}

We then have the following conversion formulas:

1. Single index to multi-index. Defining py := p — 1, the single index p can be
converted into the order of the ordered multi-index Id(iy, ..., ix;ny,...,nr) as
(A1, ..., M), where A; can be calculated recursively as

Ak = prPony + 1,

Pj+1 . (2-7)
pjz[”i+l]’)\jzpj%nj—i-l, j=k—1,...,1.
2. Multi-index to single index. From multi-index (A1,...,Ag) in the order of
ld(iy, ..., ik 0, ..., ng) back to the single index, we have
k—1
p= 0= Dnjpinjea--ng+he. 2.8)
j=1

The following example illustrates the conversion between different types of in-
dices.

Example 2.4 Recalling the second part of Example 2.3, we may use different types
of indices to label the elements.
1. Consider an element which is x1; in single-index form. Converting it into the
order of Id(A1, A2, A3; 2, 3,4) by using (2.7), we have
p3=p—1=10,
AM=p3%n3+1=10%4+1=2+1=3,
D3 10
=|—|=|—|= 2,
m=[nl-[3]

M =p2%ny+1=2%3+1=2+1=3,

2.1 Multiple-Dimensional Data 27

D2 2
=|—|=|- :O’
m=[]-[3]
M=p1%n1+1=0%2+1=1.
Hence x11 = x133.

2. Consider the element x214 in the order of Id(A1, A2, 13; 2, 3,4). Using (2.8), we
have

p=RX1—Dnynz+ X —Dnz+r3=1-3-44+0+4=16.

Hence X214 = X16-
3. In the order of Id(A;, A3, A1; 3,4, 2), the data are arranged as

X111 X211 X112 X212
X113 X213 X114 X214

X131 X231 X132 X232
X133 X233 X134 X234

For this index, if we want to use the formulas for conversion between nat-
ural multi-index and single index, we can construct an auxiliary natural multi-
index ya; 4,45, Where Ay =Xy, Ao =243, A3=Aj and Ny =np =3, Nr =
n3 =4, N3 =n; = 2. Then, b; jx is indexed by (A1, A2, A3) in the order of
1d(Aq, Az, A3; N1, N2, N3). In this way, we can use (2.7) and (2.8) to convert
the indices.

For instance, consider x124. Let x124 = y241. For y241, using (2.7), we have
p = (A1 = 1)N2N3+ (A2 — 1)N3 + A3
=R2-1)x4x24+@A—-1)x24+1=8+6+1=15.
Hence
X124 = Y241 = Y15 = X15.

Consider x17 again. Since x17 = y17, using (2.6), we have

p3=p—1=16, A3=p3%N3+1=1,
p2=[p3/N3] =3, Ay=pr %Ny +1=1,
p1=1[p2/N21 =2, Ay =p1%N; +1=3.

Hence x17 = y17 = y311 = x131.

From the above argument one sees that a set of higher-dimensional data, labeled
by a multi-index, can be converted into a set of 1-dimensional data, labeled by

28 2 Semi-tensor Product of Matrices

Table 2.1 The prisoner’s

dilemma PI\P Al Az
Al -1, —1 -9,0
Ay 0, -9 —6, —6

single-index. A matrix, as a set of 2-dimensional data, can certainly be converted
into a set of 1-dimensional data. Consider a matrix

apy a2 -0 din
A=

aml Aam2 - Admn

The row-stacking form of A, denoted by V:(A), is a row-by-row arranged nm-
vector, 1.€.,

Ve(A) = (@11, @12, -+, Qlns -+ s Al G2 - -y A (2.9)
The column-stacking form of A, denoted by V.(A), is the following nm-vector:
Ve(A) = (@11, @21, -+ @l -+, Qs Qs -y) - (2.10)
From the definition it is clear that we have the following result.

Proposition 2.2
Ve(A) = Vi (AT), Ve(A) = Ve (AT). (2.11)
Finally, we give an example for multidimensional data labeled by an ordered
multi-index.

Example 2.5

1. Consider the so-called prisoner’s dilemma [5]. Two suspects are arrested and
charged with a crime and each prisoner has two possible strategies:

A1: not confess (or be mum); Ay: confess (or fink).

The payoffs are described by a payoff bi-matrix, given in Table 2.1.

For instance, if prisoner P; chooses “mum” (A1) and P> chooses “fink” (A3),
P; will be sentenced to jail for nine months and P, will be released. Now, if we
denote by

r},k, i=1,2,j=12k=1,2,

the payoff of P; as P; takes strategy j and P, takes strategy k, then {rj., ¢ is aset
of 3-dimensional data. We may arrange it into a payoff matrix as

1 1 1 1
r r r r -1 -9 0 -6
M. — 11 12 21 22 — . (212)
2 2 2 2
o Th Ty T -1 0 -9 -6

2.2 Semi-tensor Product of Matrices 29

2. Consider a game with n players. Player P; has k; strategies and the payoff of P;
as P; takes strategy s;, j =1,...,n,is

1 p— — j—
Tty i=1,...,n55;=1,....kj,j=1,...,n
Then, {r;1 .5,) is aset of (n + 1)-dimensional data. Arranging it with i as the
row index and its column by the ordered multi-index Id(sy, ..., Sy; k1, ..., kn),
we have
1 1 1 1
et 0 Mk 7 Tlhgekn 7 Thikooky
My = : . (2.13)
n n n n
M 7 Tk, 7 Tk 7 Thikoeky

M, is called the payoff matrix of game g.

2.2 Semi-tensor Product of Matrices

We consider the conventional matrix product first.

Example 2.6 Let U and V be m- and n-dimensional vector spaces, respectively.
Assume F € L(U x V,R), that is, F is a bilinear mapping from U x V to R.
Denote by {uq,...,u,} and {vi,...,v,} the bases of U and V, respectively. We
call § = (s;;) the structure matrix of F', where

Sij:F(uirvj)v i:17"‘7m’j:1""’n‘
If welet X = Z;"Zl xju; € U, otherwise written as X = (x|, ..., x,)T € U, and
Y =37, yivi €V, otherwise written as ¥ = (y1, ..., y)T € V, then
F(X,Y)=X'SY. (2.14)
Denoting the rows of S by S L .., 8™ we can alternatively calculate F in two
steps.
Step I: Calculate x; S x,82, ..., x,, S™ and take their sum.

Step 2: Multiply "/, x; S’ by ¥ (which is a standard inner product).

It is easy to check that this algorithm produces the same result. Now, in the first
step it seems that we have (S'---$") x X. This calculation motivates a new algo-
rithm, which is defined as follows.

Definition 2.5 Let 7 be an np-dimensional row vector and X a p-dimensional
column vector. Split T into p equal blocks, named T!,....,TP, which are 1 x n
matrices. Define a left semi-tensor product, denoted by x, as

p
TxX=) TxeR" (2.15)

i=1

30 2 Semi-tensor Product of Matrices

Using this new product, we reconsider Example 2.6 and propose another algo-
rithm.

Example 2.7 (Example 2.6 continued) We rearrange the structure constants of F
into a row as

T:Vr(S)=(511,...,S]n,...,Sml,...,smn),

called the structure matrix of F. This is a row vector of dimension mn, labeled by
the ordered multi-index Id(i, j; m, n). The following algorithm provides the same
result as (2.14):

F(X,Y)=T x X x Y. (2.16)

It is easy to check the correctness of (2.16), but what is its advantage? Note
that (2.16) realized the product of 2-dimensional data (a matrix) with 1-dimensional
data by using the product of two sets of 1-dimensional data. If, in this product,
2-dimensional data can be converted into 1-dimensional data, we would expect that
the same thing can be done for higher-dimensional data. If this is true, then (2.16)
is superior to (2.14) because it allows the product of higher-dimensional data to be
taken. Let us see one more example.

Example 2.8 Let U, V, and W be m-, n-, and z-dimensional vector spaces, re-
spectively, and let F € L(U x V x W, R). Assume {u1,...,un}, {vi,...,v,}, and
{wy, ..., w} are the bases of U, V, and W, respectively. We define the structure
constants as

sik=F@j,vj,wr), i=1,....m, j=1,...,n, k=1,...,t.

The structure matrix S of F can be constructed as follows. Its data are labeled by
the ordered multi-index Id(i, j, k; m, n,t) to form an mnz-dimensional row vector
as

S =(S111s-- 581t S8Inls oo Slats > Smnls -« Smnt)-

Then, for X e U, Y € V, Z € W, it is easy to verify that

F(X,Y,Z)=Sx XxY X Z.

Observe that in a semi-tensor product, X can automatically find the “pointer” of
different hierarchies and then perform the required computation.

It is obvious that the structure and algorithm developed in Example 2.8 can be
used for any multilinear mapping. Unlike the conventional matrix product, which
can generally treat only one- or two-dimensional data, the semi-tensor product of
matrices can be used to deal with any finite-dimensional data.

Next, we give a general definition of semi-tensor product.

2.2 Semi-tensor Product of Matrices 31
Definition 2.6
(1) Let X = (x1,...,x5) be arow vector, Y = (y1, ..., y,)T a column vector.

Case 1: If ¢ is a factor of s, say, s = X n, then the n-dimensional row vector
defined as

t
XxY::ZXkykeR” (2.17)
k=1

is called the left semi-tensor inner product of X and Y, where
X=(X"....,X"), X' eR'i=1,...1.

Case 2: If s is a factor of ¢, say, t = s x n, then the n-dimensional column
vector defined as

t
XxY:=) xY*eR" (2.18)
k=1

is called the left semi-tensor inner product of X and Y, where

y=(r"). ...\, Yieri=1,...,1

(2) Let M € Myxn and N € M pxq. If n is a factor of p or p is a factor of n, then
C =M x N is called the lef't'semi-tensor product of M and N, where C consists
of m x g blocks as C = (C"), and

CV=MxN;, i=1,....,m, j=1,...,q,
where M’ = Row; (M) and N; = Col;;(N).
Remark 2.1
1. In the first item of Definition 2.6, if ¢ = s, the left semi-tensor inner product be-

comes the conventional inner product. Hence, in the second item of Definition
2.6, if n = p, the left semi-tensor product becomes the conventional matrix prod-
uct. Therefore, the left semi-tensor product is a generalization of the conventional
matrix product. Equivalently, the conventional matrix product is a special case of
the left semi-tensor product.

. Throughout this book, the default matrix product is the left semi-tensor product,

so we simply call it the “semi-tensor product” (or just “product’).

. Let Ae #,x, and B € ///pxq. For convenience, when n = p, A and B are said

to satisfy the “equal dimension” condition, and whenn =tp or p =tn, A and B
are said to satisfy the “multiple dimension” condition.
When n =tp, we write A >; B; when p = tn, we write A <; B.

. So far, the semi-tensor product is a generalization of the matrix product from the

equal dimension case to the multiple dimension case.

32 2 Semi-tensor Product of Matrices

Example 2.9
1. Let X=[2—-112],Y =[-2 1]T. Then

XxY=[2 —1]x(=2)+[1 2]x1=[-3 4].

2. Let
2 -1 3
x=1|0 2 1, yz[_; ;]
2 -1 1 1
Then
D) x (=D +(—13)x3 Q2D x2+(—13) x2
XxY=|ODx(D+2-1)x3 OH)x2+Q2—-1)x2
| Q=D x(=DH+AD)x3 2—-1)x2+ (1) x2
-5 8 2 8
=1 6 —4 4 0
|1 4 6 0
Remark 2.2

1. The dimension of the semi-tensor product of two matrices can be determined by
deleting the largest common factor of the dimensions of the two factor matrices.
For instance,

Apxgr X Brxs X Cysrxi = (A X B)pxgs X Cystxi = (A X B X C)prxi.

In the first product, r is deleted, and in the second product, gs is deleted.
This is a generalization of the conventional matrix product: for the conventional
matrix product, A pxsBsxg = (AB)pxq, where s is deleted.
2. Unlike the conventional matrix product, for the semi-tensor product even A x B
and B x C are well defined, but A x B x C = (A x B) x C may not be well
defined. For instance, A € #3x4, B € M>x3, C € Mox1.

In the conventional matrix product the equal dimension condition has certain
physical interpretation. For instance, inner product, linear mapping, or differential
of compound multiple variable function, etc. Similarly, the multiple dimension con-
dition has its physical interpretation, e.g., the product of different-dimensional data,
tensor product, etc.

We give one more example.

Example 2.10 Denote by Ay the set of columns of the identity matrix I, i.e.,
Ay =Col{lx} = {8} |i=1,2,....k}.
Define
L ={B € Mmxy|m=1,n=>0,Col(B)C A} (2.19)

2.2 Semi-tensor Product of Matrices 33

The elements of . are called logical matrices. It is easy to verify that the semi-
tensor product X : ¥ x £ — £ is always well defined. So, when we are consider-
ing matrices in ., we have full freedom to use the semi-tensor product. (The formal
definition of a logical matrix is given in the next chapter.)

Comparing the conventional matrix product, the tensor product, and the semi-
tensor product of matrices, it is easily seen that there are significant differences be-
tween them. For the conventional matrix product, the product is element-to-element,
for the tensor product, it is a product of one element to a whole matrix, while for the
semi-tensor product, it is one element times a block of the other matrix. This is one
reason why we call this new product the “semi-tensor product”.

The following example shows that in the conventional matrix product, an illegal
term may appear after some legal computations. This introduces some confusion
into the otherwise seemingly perfect matrix theory. However, if we extend the con-
ventional matrix product to the semi-tensor product, it becomes consistent again.
This may give some support to the necessity of introducing the semi-tensor product.

Example 2.11 Let X,Y,Z, W € R" be column vectors. Since YTZ is a scalar, we
have

xyN(zwh) =x(YTZ)W' = (¥"2)(xW") € 4,. (2.20)
Again using the associative law, we have

(r"z)(xwh) =yTzxw'. (2.21)

A problem now arises: What is ZX? It seems that the conventional matrix product
is flawed.

If we consider the conventional matrix product as a particular case of the semi-
tensor product, then we have

(xXYT)(zwT) =v"x (Zx X) x WT. (2.22)

It is easy to prove that (2.22) holds. Hence, when the conventional matrix product is
extended to the semi-tensor product, the previous inconsistency disappears.

The following two examples show how to use the semi-tensor product to perform
multilinear computations.

Example 2.12

1. Let (V, %) be an algebra (refer to Definition 2.2) and {e1, €2, ..., e, } abasisof V.
For any two elements in this basis we calculate the product as

n
civej=y che, i.j.k=12..n (2.23)
k=1

2 Semi-tensor Product of Matrices

‘We then have the structure constants {cf.‘j }. We arrange the constants into a matrix
as follows:

1 1 1 1
‘i1 12 St G
2 2 2 2
I ‘2 S o G
M= . (2.24)
n n n n
it 2 S G

M is called the structure matrix of the algebra.
Let X,Y € V be given as

n n
X:Zaiei, Y=Zbi€i-
i=1 i=1

If we fix the basis, then X, Y can be expressed in vector form as
X =(aj,an,...,an)", Y =(b1, b, ...,bn)7T.
In vector form, the vector product of X and Y can be simply calculated as
X*xY=MxXKxY. (2.25)

. Consider the cross product on R>. Its structure constants were obtained in Ex-
ample 2.1. We can arrange them into a matrix as

0 0 O 0O 01 0 -1 0
Mc=({0 0 -1 0 O O 1 0 O . (2.26)
01 0 -1 0 00 O O
Now, if
X = ! 11 Y= ! (1)
\/g 1 9 \/z _1 9
then we have
0.4082
XxY=MXY=|0.8165
0.4082

When a multifold cross product is considered, this form becomes very conve-
nient. For instance,

0.5774
XXYx--xY=MPxy0=| 05774
0 0.5774

2.2 Semi-tensor Product of Matrices 35

Example 2.13 Let ¢ € .7,°(V). Thatis, ¢ is a tensor on V with covariant order s and

contra-variant order ¢. Suppose that its structure constants are {C’jll’l,é":_’l;, }. Arrange
it into a matrix by using the ordered multi-index Id(i1, i7, . .., is; n) for columns and
the ordered multi-index 1d(j1, jo, ..., j:; n) for rows. The matrix turns out to be
11---1 11--n nn---n
Clo1 Ci1..1 1.1
11---1 11--n nn---n
€112 C11..2 1.2
My = . (2.27)
11--1 11
Caneen " Cnn-uz e CZ;LIII:
It is the structure matrix of the tensor ¢. Now, assume w; € V*,i =1,2,...,t, and
X;jeV,j=1,2,...,s, where w; are expressed as rows, and X ; are expressed as
columns. Then
¢(Cl)], "'awlvxlv '--7XS) = Wrwr—1 "'wlMd)Xle..'XS? (2‘28)

where the product symbol x is omitted.

Next, we define the power of a matrix. The definition is natural and was used in
the previous example.

Definition 2.7 Given a matrix A € .#),x, such that p%qg =0 or g%p =0, we
define A", n > 0, inductively as

Al = A,
ARl — Ak A k=1,2,....

Remark 2.3 Tt is easy to verify that the above A" is well defined. Moreover, if p =
sq, where s € N, then the dimension of A* is s¥q x ¢; if ¢ = sp, then the dimension
of Ak is p x s*p.

Example 2.14

1. If X is a row or a column, then according to Definition 2.7, X" is always well
defined. Particularly, when X, Y are columns, we have

XXY=X®Y. (2.29)
When X, Y are rows,
XxY=Y®X. (2.30)
In both cases,
X=X® --®X. (2.31)

k

36 2 Semi-tensor Product of Matrices

2. Let X e R", Y € RY be column vectors and A € Ay xn, B € M }xq- Then,

(AX) x (BY)=(AQ® B)(X xY). (2.32)
Particularly,
AX)'=(A®- - -®A)x~ (2.33)
[——
k

3. Let X e R™, Y € R? be row vectors and A, B be matrices (as in 2. above). Then

(XA) X (YB)=(X X Y)(B® A). (2.34)
Hence,
XA =x"A® --®A). (2.35)
%/_./
k

4. Consider the set of real kth order homogeneous polynomials of x € R” and de-
note it by B¥. Under conventional addition and real number multiplication, B
is a vector space. It is obvious that x* contains a basis (x* itself is not a basis be-
cause it contains redundant elements). Hence, every p(x) € B,’f can be expressed

. k .
as p(x) = Cx¥, where the coefficients C € R" are not unique. Note that here
x=(x1,x2,..., xn)T is a column vector.

In the rest of this section we describe some basic properties of the semi-tensor
product.

Theorem 2.1 As long as x is well defined, i.e., the factor matrices have proper
dimensions, then x satisfies the following laws:

1. Distributive law:

Fx (aG+bH)=aF x G+bF x H,

(2.36)
(aF £bG)x H=aF x H+bG x H, a,beR.

2. Associative law:

(FxG)Xx H=F x (G x H). (2.37)

(We refer to Appendix B for the proof.)
The block multiplication law also holds for the semi-tensor product.

Proposition 2.3 Assume A >; B (or A <; B). Split A and B into blockwise forms
as

All . Als Bll Blt
A= N B=] : :
ATl Lo AT Bst ... pBst

2.3 Swap Matrix 37

If we assume A'* =, BKi Vi, j k (correspondingly, A% <; B Vi, j k), then

C]l Clt
AxB=| : e (2.38)
Crl crt

where

N
C=Y%" A% wxBY.
k=1
Remark 2.4 We have mentioned that the semi-tensor product of matrices is a gen-

eralization of the conventional matrix product. That is, if we assume A € %y,
B e #pxy,and n = p, then

Ax B=AB.

Hence, in the following discussion the symbol x will be omitted, unless we want
to emphasize it. Throughout this book, unless otherwise stated, the matrix product
will be the semi-tensor product, and the conventional matrix product is its particular
case.

As a simple application of the semi-tensor product, we recall an earlier example.

Example 2.15 Recall Example 2.5. To use a matrix expression, we introduce the
following notation. Let 8;; be the ith column of the identity matrix I,,. Denote by P
the variable of players, where P = 8;; means P = P;, i.e., the player under consid-
eration is P;. Similarly, denote by x; the strategy chosen by the ith player, where

X = ‘Sli,- means that the jth strategy of player i is chosen.

1. Consider the prisoner’s dilemma. The payoff function can then be expressed as
rp(P,x1,x2) = PT x M), x x1 % x2, (2.39)

where M), is the payoff matrix, as defined in (2.12).
2. Consider the general case. The payoff function is then

ra(P,X1,%2, ..., xm) = PT x Mg x"_, x;, (2.40)

where M, is defined in (2.13).

2.3 Swap Matrix

One of the major differences between the matrix product and the scalar product is
that the scalar (number) product is commutative but the matrix product is not. That
is, in general,

AB # BA.

38 2 Semi-tensor Product of Matrices

Since the semi-tensor product is a generalization of the conventional matrix product,
it would be absurd to expect it to be commutative. Fortunately, with some auxiliary
tools, the semi-tensor product has some “commutative” properties, called pseudo-
commutative properties. In the sequel, we will see that the pseudo-commutative
properties play important roles, such as separating coefficients from the variables,
which makes it possible for the calculation of polynomials of multiple variables to
be treated in a similar way as the calculation of polynomials of a single variable. The
swap matrix is the key tool for pseudo-commutativity of the semi-tensor product.

Definition 2.8 A swap matrix W, ,j is an mn x mn matrix, defined as follows.
Its rows and columns are labeled by double index (i, j), the columns are arranged
by the ordered multi-index Id(i, j; m, n), and the rows are arranged by the ordered
multi-index 1d(j, i; n, m). The element at position [(/, J), (i, j)] is then

1.J 1, I:iandJ:j,

W), (ij) = 51-,’] = (2.41)

0, otherwise.

Example 2.16

1. Letting m = 2, n = 3, the swap matrix W[, , can be constructed as follows.
Using double index (7, j) to label its columns and rows, the columns of W are
labeled by 1d(i, j; 2, 3), that is, (11,12, 13,21, 22,23), and the rows of W are
labeled by 1d(j, i; 3,2), thatis, (11,21, 12,22, 13,23). According to (2.41), we
have

(11) (12) (13) (21) (22) (23)
10000 0] @D

00010 0| D
Woe—|0 1 0000 @2
23=10 0 0 01 0| 2
001 00O0]| 13
00000 1| (3

2. Consider W3 2. Its columns are labeled by 1d(i, j; 3, 2), and its rows are labeled
by Id(j, i; 2,3). We then have

(1) (12) (21) (22) (31) (32)

1 0000 0] (D
00100 0| @
W —|0 0 00 1 0 @D
B21=1o 10 0 0 0| Q2
000T100]| (2
00000 1| (32

The swap matrix is a special orthogonal matrix. A straightforward computation
shows the following properties.

2.3 Swap Matrix 39
Proposition 2.4

1. The inverse and the transpose of a swap matrix are also swap matrices. That is,

wr —w!

[m,n] [m,n

1= Winm)- (2.42)

2. When m = n, (2.42) becomes

Winn) = Wiy = Wiy (2.43)

3.
Wiin = Win1) = In. (2.44)
Since the case of m = n is particularly important, for compactness, we denote it

as

Win1 := Winny-

From (2.42) it is clear that W, , is an orthogonal matrix. This is because, when
used as a linear mapping from R™" to R"", it changes only the positions of the
elements but not the values.

A swap matrix can be used to convert the matrix stacking forms, as described in
the following result.

Proposition 2.5 Let A € My xy. Then

W[m,n] Vr(A) = VC(A)a
(2.45)
W[n,m] VC(A) = Vr(A)

For double-index-labeled data {a;;}, if it is arranged by Id(i, j; m, n), then the
swap matrix W}, ,] can convert its arrangement to the order of 1d(j,i; n,m) and
vice versa. This is what the “swap” refers to. This property can also be extended to
the multiple index-case. We give a rigorous statement for this.

Corollary 2.1 Let the data {a;;j | 1 <i <m, 1 < j <n} be arranged by the ordered
multi-index Id(i, j; m,n) as a column X. Then

Y = Wi X

is the same data {a;;} arranged in the order of Id(j,i;n, m).

40 2 Semi-tensor Product of Matrices

Example 2.17

1. Let X = (x11, X12, X13, X21, X22, X23). That is, {x;;} is arranged by the ordered
multi-index Id(i, j; 2, 3). A straightforward computation shows

1000 0 0]y X1
0001 0 0|/ a1
_ 10 1.0 0 0 O x13 | | x12
Y=WoaX=10 0001 0||xy|~=|xn
00100 0/]xm 13
00 0 0 0 1]1]x3 X23

That is, Y is the rearrangement of the elements x;; in the order of Id(j, i; 3, 2).
2. Let X = (x1, x2, ...,xm)T eR™, Y = (y1, y2, ...,yn)T € R". We then have

X®Y = (XI¥1X1Y2 o2 XV o XV XmY2e -2 X ¥n)
Y ® X = (YIX1, Y1520 -« VX oo YnX1s YnX2s -y YnXm)
= (X1Y1 X2V 10 o2 X VLs o2 XUV X2V -2 X i) -
They both consist of {x;y;}. However, in X ® Y the elements are arranged in the

order of Id(i, j; m,n), while in ¥ ® X the elements are arranged in the order of
1d(j,i;n,m). According to Corollary 2.1 we have

Y@X =W (X®Y). (2.46)
It is easy to check that XY = X ® Y, so we have

YX =Wy XY. 2.47)
The following proposition comes from the definition.

Proposition 2.6

1. Let X = (x;j) be a set of data arranged as a column vector by the ordered multi-
index 1d(i, j; m,n). Then Wy, 1 X is a column with the same data, arranged by
the ordered multi-index Id(j,i; n, m).

2. Let w = (wjj) be a set of data arranged by the ordered multi-index 1d(i, j; m,n).
Then W,) is a row with the same set of data, arranged by the ordered multi-
index Id(j,i;n,m).

A swap matrix can be used for multiple-index-labeled data and can swap two
special indices. This allows a very useful generalization of the previous proposition,
which we now state as a theorem.

2.4 Properties of the Semi-tensor Product 41

Theorem 2.2
1. Let X = (x;,,...i;) be a column vector with its elements arranged by the ordered
multi-index Id(iy, ...,ix;n1,...,n;). Then

Unjtotn oy ® Win n 1 ® Iﬂr+2+“'+”k]X

is a column vector consisting of the same elements, arranged by the ordered

multi-index Id(i1, ..., T4 1,0ty oo s B3 Ly o ooy Rpe 1y Mgy oo oy IR
2. Let w = (wj,,...i;;) be a row vector with its elements arranged by the ordered
multi-index 1d(iy, ..., ig;ny,...,ng). Then

Ol otn 1 @ Wing i n] © Inyio oty]

is a row vector consisting of the same elements, arranged by the ordered multi-
index 1d(i1, ..., 041,08y oo B3 AL, ooy Rpg 1, Ry y ey).

Wim,n) can be constructed in an alternative way which is convenient in some
applications. Denoting by &/, the ith column of the identity matrix I,, we have the
following.

Proposition 2.7
Wimm =8 x 8L, - 8rxsl o Siwam o srxam]. (248)

For convenience, we provide two more forms of swap matrix:

In®81"
Wim,n = : (2.49)
I, @8
and, similarly,
Winn = [In ® 8}, ... I ® 8] (2.50)

The following factorization properties reflect the blockwise permutation property
of the swap matrix.

Proposition 2.8 The swap matrix has the following factorization properties:

W[p,qr] = (lq &® W[p,r])(W[p,q] ® [r) = (Ir ® W[p,q])(W[p,r] X Iq)v (251)
Wipg.r1 = Wip.n ® Ig)Up ® Wig 1) = (Wig.rn ® Ip) (g ® Wip.ry). (2.52)

2.4 Properties of the Semi-tensor Product

In this section some fundamental properties of the semi-tensor product of matrices
are introduced. Throughout, it is easily seen that when the conventional matrix prod-

42 2 Semi-tensor Product of Matrices

uct is extended to the semi-tensor product, almost all its properties continue to hold.
This is a significant advantage of the semi-tensor product.

Proposition 2.9 Assuming that A and B have proper dimensions such that X is
well defined, then

(Ax B)T =BT x AT. (2.53)

The following property shows that the semi-tensor product can be expressed by
the conventional matrix product plus the Kronecker product.

Proposition 2.10
1. If A€ Myxnp, B € Mpxq, then

AXxB=ABQI,). (2.54)
2. If A€ Muxn, B € Mupxgy, then

Ax B=(A®1,)B. (2.55)

(We refer to Appendix B for the proof.)

Proposition 2.10 is a fundamental result. Many properties of the semi-tensor
product can be obtained through it. We may consider equations (2.54) and (2.55)
as providing an alternative definition of the semi-tensor product. In fact, the name
“semi-tensor product” comes from this proposition. Recall that for A € .4}, , and
Be / pxq» their tensor product satisfies

Intuitively, it seems that the semi-tensor product takes the “left half” of the product
in the right-hand side of (2.56) to form the product.

The following property may be considered as a direct corollary of Proposi-
tion 2.10.

Proposition 2.11 Let A and B be matrices with proper dimensions such that A x B
is well defined. Then:

1. A X B and B x A have the same characteristic functions.

2. tr(A X B) =tr(B x A).

3. If A and B are invertible, then A X B ~ B X A, where “~” stands for matrix
similarity.

4. If both A and B are upper triangular (resp., lower triangular, diagonal, orthog-
onal) matrices, then A X B is also an upper triangular (resp., lower triangular,
diagonal, orthogonal) matrix.

5. If both A and B are invertible, then A x B is also invertible. Moreover,

(AxB) '=B"1xal (2.57)

2.4 Properties of the Semi-tensor Product 43

6. If A <; B, then
dmAxm=kmmﬂmey (2.58)
If A >; B, then
det(A x B) = det(A)[det(B)]t. (2.59)
The following proposition shows that the swap matrix can also perform the swap
of blocks in a matrix.
Proposition 2.12
1. Assume
A=(A119"‘7A1n5"‘5Am17"'7Amn)7

where each block has the same dimension and the blocks are labeled by double
index {i, j} and arranged by the ordered multi-index Id(i, j; m,n). Then

AW[n,m] = (Allv'“aAmls ~'-1Alns ~~~1Amn)

consists of the same set of blocks, which are arranged by the ordered multi-index
1d(j,i;n,m).
2. Let
B=(B},....BY,....BY,, ..., B2)",

1n> ml»

where each block has the same dimension and the blocks are labeled by double
index {i, j} and arranged by the ordered multi-index Id(i, j; m,n). Then

T T T T\T
WimmB = (B{|,.... By, B, M)

ml»
consists of the same set of blocks, which are arranged by the ordered multi-index
ld(j,i;n,m).

The product of a matrix with an identity matrix / has some special properties.

Proposition 2.13
1. Let M € My xpn. Then
MxI,=M. (2.60)
2. Let M € My, xn. Then
MxIy=MQI,. 2.61)
3. Let M € Mpmxn- Then
I, x M=M. (2.62)

44 2 Semi-tensor Product of Matrices
4. Let M € My, xn. Then
I[,mlxM:M(X)Ip. (2.63)

In the following, some linear mappings of matrices are expressed in their stacking
form via the semi-tensor product.

Proposition 2.14 Let A € Myxn, X € Myxq, Y € Mpxm. Then
Vi(AX) = A x Vi(X), (2.64)
Ve(YA) = AT x Vo(Y). (2.65)

Note that (2.64) is similar to a linear mapping over a linear space (e.g., R"). In
fact, as X is a vector, (2.64) becomes a standard linear mapping.

Using (2.64) and (2.65), the stacking expression of a matrix polynomial may also
be obtained.

Corollary 2.2 Let X be a square matrix and p(x) be a polynomial, expressible as
p(x) =q(x)x + po. Then

Vi(p(X)) = g(X)Va(X) + poVi(D). (2.66)

Using linear mappings on matrices, some other useful formulas may be ob-
tained [4].

Proposition 2.15 Let A € My xn and B € M pxq. Then
Iy @ AW p) = Wim p)(A® 1), (2.67)
Wi, p1(A ® B)Wig.m = (B ® A). (2.68)
In fact, (2.67) can be obtained from (2.68).
Proposition 2.16 Let X € My, x, and A € My «s. Then
XA = (L ® V' (1) Wigm AT Ve (X). (2.69)

Roughly speaking, a swap matrix can swap a matrix with a vector. This is some-
times useful.

Proposition 2.17

1. Let Z be a t-dimensional row vector and A € My, xn. Then
ZWinnA=AZW,n=AR Z. (2.70)

2. Let Y be a t-dimensional column vector and A € My, xn. Then

AWp Y =W mYA=AQY. (2.71)

2.4 Properties of the Semi-tensor Product 45
The following lemma is useful for simplifying some expressions.

Lemma 2.1 Let A € My, %, Then

Win.q1 X AX Wig =1, ® A. (2.72)

The semi-tensor product has some pseudo-commutative properties. The follow-
ing are some useful pseudo-commutative properties. Their usefulness will become
apparent later.

Proposition 2.18 Suppose we are given a matrix A € My xy .
1. Let Z € R! be a column vector. Then
AZY = Z"Wi n AWy = 2V, @ A). (2.73)
2. Let Z € R! be a column vector. Then
ZA =W nAWimZ=UQA)Z. (2.74)
3. Let X € R™ be a row vector. Then
xTA = [Vi(a)]"x. (2.75)
4. Let Y € R" be a row vector. Then
AY = YTV (A). (2.76)
5. Let X € R™ be a column vector and Y € R" a row vector. Then
XY =Y WpmX. (2.77)
Proposition 2.19 Let A € My x, and B € Myw;. Then

AQRB=Wm X BX Wipqgx A=, Q®B) X A. (2.78)

Example 2.18 Assume

b1 b2
A=|:a11 a12i|, B=|by bpn|,
ax axn by b
where m =n=2,s =3 and t =2. Then
1 0 0 0 0 O
0O 01 0 0 O
0O 0 0 0 1 O
Wo2=10 1000 o
0O 0 01 0O
0O 0 0 0 0 1

46 2 Semi-tensor Product of Matrices

1 0 0 O
0O 0 1 0
Wea=1g 1 0 o
(00 0 1
by b2 0 0
by b 0 0
0

b31 b3 0 ajy ap
W, X B x W X A= ; X
3.2 (2.2] 0 0 b b2 |:6121 022i|

0 0 bn by
0 0 b3 b3

airtbir anbiz anbii anbi
ainbar anbn anby apnbxn
anbs1 anbyy apbz axbin

az1bir axibiz axnbi anbi
aziba1 axiby anby anbxn
| a21b31 anbzy axbsi anbip
As a corollary of the previous proposition, we have the following.
Corollary 2.3 Let C € Msy;. Then, for any integer m > 0, we have
Wism) X € X Wi iy = In ® C. (2.79)

Finally, we consider how to express a matrix in stacking form and vice versa, via
the semi-tensor product.

Proposition 2.20 Let A € #,,xy,. Then

Vi(A) = A x Vi(1), (2.80)
Ve(A) = Wiy X A X Ve(Iy). 2.81)

Conversely, we can retrieve A from its row- or column-stacking form.
Proposition 2.21 Let A € My« Then
A=[In ® VI (1)] % Vi(A) = [In ® V' (1)] X Wiy X Ve(A). (2.82)

As an elementary application of semi-tensor product, we consider the following
example.

Example 2.19 In mechanics, it is well known that the angular momentum of a rigid
body about its mass center is

H =/r X (w X r)dm, (2.83)

2.4 Properties of the Semi-tensor Product 47

Fig. 2.1 Rotation

where r = (x, y, z) is the position vector, starting from the mass center, and w =
(wy, wy, w.)T is the angular speed. We want to prove the following equation for
angular momentum (2.84), which often appears in the literature:

H, Iy _Ixy — I Wy
Hy | =| =1 I, =1y, wy |, (2.84)
H, Iy _Iyz I Wz

where

I, =/(y2+zz) dm, I, =/(zz+x2)dm, I; =/(x2+y2)dm,

Iyy :/xydm, Iyzzfyzdm, sz=/zxdm.

Let M be the moment of the force acting on the rigid body. We first prove that
the dynamic equation of a rotating solid body is

dH
<M. (2.85)
dr

Consider a mass dm, with O as its rotating center, r as the position vector (from
O to dm) and d f the force acting on it (see Fig. 2.1). From Newton’s second law,

dv
df =adm=—d
f=adm ” m

d
= —(w X r)dm.
@ (0 xr)
Now, consider the moment of force on it, which is
d
dM =r xdf =r x a(w x r)dm.

Integrating this over the solid body, we have

d
M = /r X a(w x r)ydm. (2.86)

48 2 Semi-tensor Product of Matrices
We claim that
Loxn=S[rx@xn]
rx —(wxr)y=—|r X (wxr)l|,
dr dr

RHS = dg(r) X (wxr)+rx dg(a) X r)
g g (2.87)

d
:(a)xr)x(a)xr)—i—rxg(wxr)
d
=0+rx a(wxr):LHS.

Applying this to (2.86), we have

Mz/.%[rx(wxr)]dm

=£/rx(a)xr)dm
dr
_d
T dr
Next, we prove the angular momentum equation (2.84). Recall that the structure
matrix of the cross product (2.26) is

00 0 O o010 —-10
M¢g={0 0 -1 0 O O 1 O Of,
o1 0 —-10 00 O O

and for any two vectors X, Y € R3, their cross product is
X xY=MXY. (2.88)

Using this, we have
H :/rx(a)xr)dm
= /Mchca)r dm
= fMC(I3 ® Mc)rwr dm
= /MC(I3 ® MC)W|3,9|r2wdm
= /MC(I3 ® Me)Wp3.01r% dma

= / wr? dmw,

2.5 General Semi-tensor Product 49

where

¥ =M(3&® M)W 9y

0000 -1000-1 000100000 0000 O0 0100
=|{0100 0 000 0 —-100000O00O0-1 02000 0 0071 0|
00100 0000 00000100 0 —-1000-100200
We then have
y: 422 Xy —XZ
2
Ure = —Xy x2 472 —-yz
—xz —yz x?+y?

Equation (2.84) follows immediately.

2.5 General Semi-tensor Product

In previous sections of this chapter the semi-tensor product considered was the left
semi-tensor product of matrices. Throughout this book the default semi-tensor prod-
uct is the left semi-tensor product, unless otherwise stated. In this section we will
discuss some other kinds of semi-tensor products.

According to Proposition 2.10, an alternative definition of the left semi-tensor
product is

AxB:FA®MR A<, B, 2.59)
AB®I;), A>:B.

This proceeds as follows. For a smaller-dimensional factor matrix, we match it
on the right with an identity matrix of proper dimension such that the conventional
matrix product is possible. The following definition then becomes natural.

Definition 2.9 Suppose we are given matrices A and B. Assuming A <; B or A >;
B, we define the right semi-tensor product of A and B as

(2.90)

(II®A)B, A<f B,
AXB=
A(It ®B), A >t B.

Most properties of the left semi-tensor product hold for the right semi-tensor
product. In Proposition 2.22 we assume the matrices have proper dimensions such
the product x is defined. In addition, for items 5—-10 A and B are assumed to be two
square matrices.

Proposition 2.22
1. Associative law:

(MAxB)xC=Ax(BxC). 2.91)

50 2 Semi-tensor Product of Matrices
Distributive law:
(A+B)yxC=AxC+BxC, CxX(A+B)=CxA+CxB. (292)
2. Let X and Y be column vectors. Then,
XxY=YQR®X. (2.93)

Let X and Y be row vectors. Then,

XxY=XQ®Y. (2.94)
3.
(AxB)T=BTxATl (2.95)
4. Let M € My x pn- Then,
MxI,=M. (2.96)
Let M € My xn. Then,
Mxl,,=1,®M. (2.97)
Let M € M pmxn- Then,
I, xM=M. (2.98)
Let M € My xn. Then,
Ipm xM=1, M. (2.99)

5. A X B and B X A have the same characteristic function.

tr(A x B) =tr(B X A). (2.100)

7. If A and B are orthogonal (upper triangular, lower triangular) matrices, then so
is A x B.

8. If A and B are invertible, then A X B~ B X A.

9. If A and B are invertible, then

(AxB) '=B"1xA"l. (2.101)
10. If A <; B, then
det(A x B) = [det(A)]’ det(B). (2.102)
If A >; B, then
det(A x B) = det(A)[det(B)]‘. (2.103)

2.5 General Semi-tensor Product 51

A question which naturally arises is whether we can define the right semi-tensor
product in a similar way as in Definition 2.6, i.e., in a “row-times-column” way. The
answer is that we cannot. In fact, a basic difference between the right and the left
semi-tensor products is that the right semi-tensor product does not satisfy the block
product law. The row-times-column rule is ensured by the block product law. This
difference makes the left semi-tensor product more useful. However, it is sometimes
convenient to use the right semi-tensor product.

We now consider some relationships between left and right semi-tensor products.

Proposition 2.23 Let X be a row vector of dimension np, Y a column vector of
dimension p. Then,

XXY=XWpn,xY. (2.104)
Conversely, we also have

XXY=XWypxY. (2.105)
If dim(X) = p and dim(Y) = pn, then

XXY=Xx Wy Y. (2.106)
Conversely, we also have

XXY=XxW,pnY. (2.107)

In the following, we introduce the left and right semi-tensor products of matrices
of arbitrary dimensions. This will not be discussed beyond this section since we have
not found any meaningful use for semi-tensor products of arbitrary dimensions.

Definition 2.10 Let A € %}, xn, B € M pxy, and a =Icm(n, p) be the least com-
mon multiple of n and p. The left semi-tensor product of A and B is defined as

A|><B:(A®1a7)(B®I%). (2.108)
The right semi-tensor product of A and B is defined as

AxB=(I:®A)Is®B). (2.109)

Note that if n = p, then both the left and right semi-tensor products of arbitrary
matrices become the conventional matrix product. When the dimensions of the two
factor matrices satisfy the multiple dimension condition, they become the multiple
dimension semi-tensor products, as defined earlier.

Proposition 2.24 The semi-tensor products of arbitrary matrices satisfy the follow-
ing laws:

52 2 Semi-tensor Product of Matrices

1. Distributive law:
(A+B)xC=(AxC)+ (B x (),
(A+B)XC=(AxC)+(BxC(C),
Cx(A+B)=(Cx A)+(C x B),
Cx(A+B)=(CxA)+(C x B).

2. Associative law:

(AXxB)xC=AX(BxC(C),
(AXB)XC=AXx(BxC(C).

(2.110)
(2.111)
(2.112)
(2.113)

2.114)
(2.115)

Almost all of the properties of the conventional matrix product hold for the left or
right semi-tensor product of arbitrary matrices. For instance, we have the following.

Proposition 2.25
1.
FAMBFZBTMA?
(Ax B)T =BT x AT.
2. If M € Myxpn, then

Mx I, =M,

MxIl,=M.
If M € M ppxn, then

Iy X M =M,

In X M=M.

In the following, A and B are square matrices.

(98]

tr(A x B) = tr(B x A),
tr(A x B) = tr(B x A).

(2.116)

(2.117)

(2.118)

. AX Band B x A (A X B and B x A) have the same characteristic function.

(2.119)

5. If both A and B are orthogonal (resp., upper triangular, lower triangular, diago-
nal) matrices, then A X B (A X B) is orthogonal (resp., upper triangular, lower

triangular, diagonal).

6. If both A and B are invertible,then AX B~BXA(AXB~BXA).

7. If both A and B are invertible, then

(Ax By '=B"1x AL,
(AxB)l=B"1xaAl

(2.120)

References 53
8. The determinant of the product satisfies

det(A x B) = [det(A)]% [det(B)] 7,

« « (2.121)
det(A x B) = [det(A)]= [det(B)]?.
Corollary 2.4 Let A € Myxn, B € Mpxq. Then
C=AxB=(CY), i=1,...m j=1,...,q, (2.122)

where
CY = A" x By,
Al =Row;(A), and Bj = Col;(B).

References

1. Bates, D., Watts, D.: Relative curvature measures of nonlinearity. J. R. Stat. Soc. Ser. B
(Methodol.) 42, 1-25 (1980)

2. Bates, D., Watts, D.: Parameter transformations for improved approximate confidence regions
in nonlinear least squares. Ann. Stat. 9, 1152-1167 (1981)

3. Cheng, D.: Sime-tensor product of matrices and its applications: a survey. In: Proc. 4th In-
ternational Congress of Chinese Mathematicians, pp. 641-668. Higher Edu. Press, Int. Press,
Hangzhou (2007)

4. Cheng, D., Qi, H.: Semi-tensor Product of Matrices—Theory and Applications. Science Press,
Beijing (2007) (in Chinese)

5. Gibbons, R.: A Primer in Game Theory. Prentice Hall, New York (1992)

6. Lang, S.: Algebra, 3rd edn. Springer, New York (2002)

7. Mei, S., Liu, F,, Xue, A.: Semi-tensor Product Approach to Transient Analysis of Power Sys-
tems. Tsinghua Univ. Press, Beijing (2010) (in Chinese)

8. Tsai, C.: Contributions to the design and analysis of nonlinear models. Ph.D. thesis, Univ. of
Minnesota (1983)

9. Wang, X.: Parameter Estimate of Nonlinear Models—Theory and Applications. Wuhan Univ.
Press, Wuhan (2002) (in Chinese)

10. Wei, B.: Second moments of LS estimate of nonlinear regressive model. J. Univ. Appl. Math.
1, 279-285 (1986) (in Chinese)

Chapter 3
Matrix Expression of Logic

3.1 Structure Matrix of a Logical Operator

Recall that a logical variable takes value from & = {T, F} or, equivalently, ¥ =
{1, 0}. To obtain a matrix expression we identify “7” and “F”, respectively, with

the vectors
1 0
T.:1~|:O:|, F.:O~|:1i|. (3.1

To describe the vector form of logic we first recall some notation:

e §! is the ith column of the identity matrix /g,
o Ap:={8l1i=1,2,... k.

For notational ease, let A := A;. Then,

A={85,6%}={[<1)H(1)]}’

and an r-ary logical operator is a mapping o : A” — A.

Definition 3.1 A matrix L € .#,,«, is called a logical matrix if Col(L) C A,. The
set of n x m logical matrices is denoted by %, «.

If L € %, xm, then it has the form
For notational compactness we write this as

L=6yliyiz -+ im].

Definition 3.2 A 2 x 2" matrix M, is said to be the structure matrix of the r-ary
logical operator o if

o(Plo..s Pr)=Ms X pi X - X ppi= My Xi_| pi. (3.2)
D. Cheng et al., Analysis and Control of Boolean Networks, 55

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_3, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_3

56 3 Matrix Expression of Logic

Note that throughout this book we assume the matrix product is the (left) semi-
tensor product, and hereafter the symbol x will be omitted in most cases. However,
we use

XI_\pii=p1 X py XX py.

We start by constructing the structure matrices for some fundamental logical op-
erators. We define the structure matrix for negation, —, denoted by M,,, as

0 1
an[l 0:|=82[21]. (3.3)
It is then easy to check that when a logical variable p is expressed in vector form,
we have
—p=M,p. 3.4
To see this, when p =T,
p=T~8 = M,p=8~F,
and when p = F,
p=F~8 = M,p=8~T.

Similarly, for conjunction, A, disjunction, V, conditional, —, and biconditional,
<, we define their corresponding structure matrices, denoted by M., My, M;, and
M., respectively, as follows:

M. =8[1222], (3.5)
Mg =358[1112], (3.6)
M;=8[1211], (3.7)
M, =8[1221]. (3.8)

A straightforward computation then shows that for any two logical variables p and
q, we have

PAq=Mcpq, (3.9
PV q=Mapq, (3.10)
p—q=Mpq, (3.11)
p<q=M.pq. (3.12)

In the following we will show that for any logical function, f, there exists a
unique structure matrix My of f such that (3.2) holds.

We need an auxiliary tool.

Define a matrix, M,, called the power-reducing matrix, as

M, =54[14]. (3.13)

3.1 Structure Matrix of a Logical Operator 57

Proposition 3.1 Let p € A. Then
p=M,p. (3.14)
Proof Let p=[t,1 —t]T. Then,
pr=[2 11—, (1 -0t (1-n2]".

Since ¢ € {0, 1} it is clear that 12 =1, (1 —)2 =1 — ¢, and t(1 —) = 0. Then,

PP =11,0,0,1—11" =M, p. O
Lemma 3.1 Let f(py1, p2, ..., pr) be alogical function with logical variables (ar-
guments) pi1, p2, ..., pr. Then, f can be expressed as
f(p]9p29"‘9pr)=[><i$i’ (3‘15)
where
Ei € {Mn» Mdv MC? Pl’ p29 cee pr}
Proof Using the disjunctive (or conjunctive) normal form, f(p1, p2,..., pr) can
be written as a logical expression involving only A, V, =, and p;, i =1,2,...,r.
Using the corresponding structure matrices, the semi-tensor product form (3.15) can
be obtained. O

We now give an example to illustrate this.
Example 3.1 Consider
f(p.q.r)=({pA=q)V(rAp).
This can be expressed as
f(p.q.r)=(pA=q)V(rAp)

= Mai(p A=q)(r A p)

= Md(Mcp(MnQ))(Mcrp)

=MqM:pMugMcrp.

We are now ready to present a general result.

Theorem 3.1 Given a logical function f(pi1, pa, ..., pr) with logical variables
Pl, P2, .-, Dr, there exists a unique 2 x 2" matrix My, called the structure ma-
trix of f, such that

fp1.p2s....p)=Myspip2---py. (3.16)

Moreover, My € £5y2r.

58 3 Matrix Expression of Logic

Proof We first prove the existence of M . Using Lemma 3.1 we only have to prove
that x;&; can be expressed as the right-hand side of (3.16). This can be done in three
steps.

e Step 1. Using the fact that
pM = (L@ M)p 3.17)

we can move all factors of structure matrices, such as M; or I ® M, to the front
and move all variables, p;, to the rear of the product:

X;& =X ;N Xg pi,
where
Nie{ls @M, I @My, I @M. s=0,1,2,...}, ire{l,2,...,r}.
e Step 2. Using a swap matrix we can change the order of two logical variables:

Wiipipj = pjpi-
Using (3.17) it is easy to obtain the following form:

k k %
Xk piy = Mpi' py* - pyr.

e Step 3. Using a power-reducing matrix, the powers of the p;’s can all be reduced
to 1. Again using (3.17), the coefficient matrices, generated by reducing orders,
can be moved to the front part.

Following this procedure, a structure matrix will be produced.
To prove uniqueness, assume there are two structure matrices, My #= M } These
must differ in at least one column, say the ith column, ¢; # cl’.. Choose p1,..., pr

such that x!_, p; = 8%,. We then have

fp1,....pr)=Msxi_| pi =c.
Meanwhile,

Fp1seo,pr) =My x[_y pi =c.
This then leads to a contradiction.
Asfor My € 5o, this follows from the properties of logical matrices (we refer
to Sect. 3.3 for details). O
We now reconsider Example 3.1.

Example 3.2 In Example 3.1 we already have

fp.q.r)=MqM.-pM,qM_.rp.

3.2 Structure Matrix for k-valued Logic 59
We continue by converting this into canonical form:

f(p,q,r) = MaMcpMyuqM.rp

= MaM:(I, ® Mp) pgMcrp
= MygM (I, ® My)(I1s ® M) pqrp
= MgM (I, ® M) (14 ® M) pW2,41pqr
= MyM. (I, ® My)(Is ® M) (I ® Wip,4)) p°qr
= MM (I, ® My)(Is @ M) (I ® Wa,4)) My pgr
= Mg¢pqr.

Then,

Mp=MgM: (I ® Mp)(Is @ M) (12 @ Wi, 4) M,
—5[12112222].

Note that, for convenience, we will hereafter identify 7 with 1 or 8! and F with
0 or 5%. Hence, we will also identify 2 with A. It should be clear from the text
which form we are using.

3.2 Structure Matrix for k-valued Logic

In this section we consider the matrix expression of k-valued logic [3]. Observe that
a k-valued logical variable takes values from

k—2 k-3
D { T R=T 0}

To use a matrix expression, we identify each k-valued logical value with a vector as
follows:

k’—l~5,’§—", i=1,2... k—1. (3.18)

For instance, 7 =1 ~ 5,1, F=0~ 6,’f , etc. Similarly to the Boolean case, we iden-
tify Z, with Ay. Anr-ary k-valued logical operator is then a mapping o : Z;, — %,
and in vector form it is a mapping o : A} — Ag.

Definition 3.3 A k x k" matrix M, is said to be the structure matrix of the r-ary
logical operator o if

o(pt,....pr)=Msp1---p,. (3.19)

60 3 Matrix Expression of Logic

Similarly to the Boolean case, we can construct the structure matrices of some
fundamental logical operators. For negation, —, we define its structure matrix, de-
noted by M, , as

My =6lkk—1---1]. (3.20)

It is then easy to check that when a logical variable p is expressed in k-dimensional
vector form, we have

—p =My ip. (3.21)

The structure matrix of the rotator @, denoted by M, i, can be easily shown to
be

Mo =623 --- k1]. (3.22)
For instance, when k = 3 we have
M,3=258[231].
When k =4,
Mya=064[2341].

Consider the i-confirmer, V; ;. A straightforward verification shows that its
structure matrix is

Mvi’k=8k[@_~\;_l_glk---k], i=1,2,... k. (3.23)
i—1 k—i
For instance, let k = 3 or 4 and i = 2. We then have

My, ,=28[313], My,, =8[4144].

For conjunction, A, and disjunction, Vv, as defined in Chap. 1 for the k-valued
case, we define their respective structure matrices, M, x and My i, as

Mejp=568123--k223--- k333 .--k---kkk - - k], (3.24)
—_—) — —_——
k k k k
Mgr=46J0111---1122...2123...3 ... 123 ...k]. (3.25)
—_———— —— — —— ———
k k k k

For instance, when k = 3 we have
M.3=68[123223333], (3.26)
Mg3=463[111122123]. (3.27)

Next, assume that we use equations (1.30) and (1.31) in Proposition 1.1 as the
respective definitions of conditional and biconditional. That is, define p — g =

(=p)Vvgqand p<g=(p—q)A(g— p). Since

P —>q=M;rpqg=Mgr(Myrp)gq

3.2 Structure Matrix for k-valued Logic 61

we have
M= Mg M. (3.28)
When k =3 we have
M;3=463[123122111]. (3.29)
When k =4 we have
M;4=064[1234123312221111]. (3.30)

Next, we consider M,. To do this we need the k-valued power-reducing matrix.
Define the k-valued power-reducing matrix, M, , as

5/1 O --- O
Ok 5]%)

Myp=1| , (3.31)
O Op - 51k<

where 0 € R* is a zero vector. When k = 3,
M,3=259[159]. (3.32)

When k =4,
M, 4 =3516[161116]. (3.33)

Similarly to the Boolean case, it is easy to prove the following.
Proposition 3.2 If p € A, then
p* =M, ip. (3.34)
We are now ready to calculate M, ;. Using (3.31) we have
Mexpq = Mc kM xpqMi kqp
= M kM k(I)2 ® M k) pqqp
= MexMi (L2 ® M) pWy i21pq”
=M M (I @ M; 1) (I ® W[k,k2])l72£12
= McxMix(Liz @ Mi i) (I @ Wiy 121) Mk pMy kg
= McxMik(Lz @ Mi 1) Ik @ Wiy k21) My i (Ix @ My i) pg. (3.35)

Hence,

62 3 Matrix Expression of Logic
Me = Mc i Mi k(L2 @ M 1) (Ik @ Wiy 121) My i (Ix @ My). (3.36)
When k =3 we have
M,3=463[123222321]. (3.37)
When k =4 we have

M,4=1084[1234223333224321]. (3.38)

Similarly to the Boolean case, it is easy to prove the following theorem, which is
the counterpart of Theorem 3.1 for the k-valued logic case.

Theorem 3.2 Given a k-valued logical function f(pi, p2, ..., pr) with k-valued
logical variables p1, pa, ..., pr, there exists a unique logical matrix My € Lexkr s
called the structure matrix of f, such that

fp1,p2,....,pr)=Msp1p2---pr. (3.39)

We now give an example to illustrate this.
Example 3.3 Assume that

fp.q.r)=(pPVg A@Vr)AFVp),

where p, g,r € Ag. Then,

fp.q.r)
= (Mc)*(Ma k pg)(Ma kqr) (M rp)
= (Mex)*Ma x(Iz ® My i) pg*r (Mg rp)
= (Mep)* My (e ® My i) (s ® My) pg*r*p
= (Mcj)*Ma k(2 ® My i) (s ® My) pWy 410"
= (Me)* My (L ® My) (It ® My i) (I ® Wiy e p2q°r?
= (M)*Max (e ® Ma i) (s ® Ma i) Ik ® Wy i) My pMy kg My i
= (Mex)* My k(e ® My) (Ips ® My)
(I @ W ka1 My i (I @ My i) (L2 @ My i) pgr
‘= Mg pqr.
It follows that

My = (M) My (I @ My) (Iis ® Ma i)
(I @ Wi DMy ik (I @ My i) (L2 @ My).

3.3 Logical Matrices 63

When k =3, Myisa3 x 33 matrix, which is
Mp=463(111122123122222223123223333].

When k =4, Myisa4 x 44 matrix, which is

Mp=084[11111222123312341222222222332234
12332233333333341234223433344444].

3.3 Logical Matrices

Recall that in Definition 3.1, a logical matrix was defined as a matrix whose columns
are in A,,. In this section we will show that most of the matrices encountered in the
algebraic expression of logic are logical matrices.

Proposition 3.3
1. A swap matrix is a logical matrix:
Wim.n] € Linnxmn-
2. The identity matrix is a logical matrix:
LIn € Linsm-
3. The (k-valued) power-reducing matrix is a logical matrix:
M,k € Loy
4. The structure matrices of rotator, i-confirmer, and negation are logical matrices:
Mo,k ED%(X/(’ MV,;k Go%(xk’ Mn,keo%(xk-

5. The structure matrices of conjunction, disjunction, conditional, and bicondi-
tional are logical matrices:

Mc i € Ligies Mgy € Lo M€ L Moy € Ly

Next, we investigate some fundamental properties of logical matrices. First, we
will show that the product of two logical matrices is itself a logical matrix. Later,
we will see that this property is extremely important because a certain set of logical
matrices is closed under the semi-tensor product.

Denote the set of all logical matrices by .Z. That is,

L= |J L (3.40)
ij=12,..

64 3 Matrix Expression of Logic

We are also interested in certain subsets, each of which is related to a k-valued logic:

L= | G (3.41)
i,j=0,1,2,...

Proposition 3.4
1. Let L € £ and I be an identity matrix. Then,
LRIcZ, IQLecZ. (3.42)

2. Let L € 4 and I = Iys. Then,
L®Ie Y, IQLe%. (3.43)

Proof We prove only (3.43). Note that both / ® L and L ® I are of dimension
kPTS x k97, satisfying the multiple dimension requirement. A straightforward com-
putation shows that

Li®I=08m[ij— DK +1,G; — DK +2,...,i;k]. (3.44)
Then,
LR®I=[Li1®I,L,Q1I,...,Lia ®I], (3.45)

which is obviously an element of .%%.
Similarly, a straightforward computation shows that

5,{ ® L =08ps[(j—DKP +1,(j — DkP +2,..., jkP]. (3.46)

Then,
IQL=[5L®LSL®L,....86 ®L], (3.47)
which is also an element of .%. O

Note that formulas (3.44)—(3.47) are useful in computer-based calculations.

Proposition 3.5 % is closed under the semi-tensor product x. That is, if A, B €
%k, then AB := A X B is always well defined, and AB € %%.

Proof Using Propositions 2.10 and 3.4, we only have to prove this for the conven-
tional product case. So, we assume that A € Mypryrs and B € My, and write

A =6krliviy -+ igal, B =38lj1j2 - jil
A straightforward computation then shows that

AB =6plijijy - ij,] € %. (3.48)

References 65

Note that equation (3.48) is itself a useful formula.
Combining the above arguments and taking the constructive proof of Theo-
rem 3.1 into consideration, the following result clearly follows.

Theorem 3.3

1. The structure matrix of a k-valued (n-ary for any n) logical operator My is a
logical matrix, i.e., My € £}, which is called a k-valued logical matrix.

2. A (semi-tensor) product of several structure matrices of k-valued (n-ary for
any n) logical operators is also a k-valued logical matrix.

Remark 3.1

1. The first statement of Theorem 3.3 is based on the following fact: any oper-
ation performed in obtaining the structure matrix of a logical function is %%
closed. The second statement of Theorem 3.3 implies that further multiplication
of structure matrices is legal and that .%; is closed with respect to the semi-tensor
product. This fact will be used in the sequel.

2. In the previous two sections, all matrix products were taken without checking the
“multiple dimension” requirement. Theorem 3.3 ensures the legality of this.

3. We can also say that the set of logical matrices, .Z, is closed under the semi-
tensor product. When two matrices satisfy the multiple dimension requirement,
this is obvious. However, when this requirement is not satisfied, the general def-
inition of the semi-tensor product must be used.

References

1. Cheng, D.: Sime-tensor product of matrices and its applications: a survey. In: Proc. 4th In-
ternational Congress of Chinese Mathematicians, pp. 641-668. Higher Edu. Press, Int. Press,
Hangzhou (2007)

2. Cheng, D., Qi, H.: Semi-tensor Product of Matrices—Theory and Applications. Science Press,
Beijing (2007) (in Chinese)

3. Li, Z., Cheng, D.: Algebraic approach to dynamics of multi-valued networks. Int. J. Bifurc.
Chaos 20(3), 561-582 (2010)

Chapter 4
Logical Equations

4.1 Solution of a Logical Equation

A logical variable p is called an logical argument or logical unknown if it can take
avalue p € 2 ={T, F} to satisfy certain logical requirements. A logical constant ¢
is a fixed value ¢ € 2.

Definition 4.1 A standard system of logical equations is expressed as

Si(p1, p2, - pn) =ci,
Hp1,p2, ..o pr) =c2,

“4.1)
fm(pls p25 M) pn) ZCWL’
where f;,i =1,...,m,arelogical functions, p;,i =1, ..., n, are logical arguments
(unknowns), and ¢;, i =1, ..., m, are logical constants. A set of logical constants
di,i=1,...,n,such that
pi:dl‘, i=1,...,n, (42)
satisfy (4.1) is said to be a solution of (4.1).
We now give an illustrative example.
Example 4.1 Consider the following system:
pAg=ct,
qVr=cy, 4.3)
r< (—p)=cj3.
D. Cheng et al., Analysis and Control of Boolean Networks, 67

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_4, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_4

68 4 Logical Equations
1. Assume the logical constants are
c1=1, =1, c3=1.

A straightforward verification shows that

p=1
q=1,
r=0
is the only solution.
2. Assume the logical constants are
c1=1, cr =0, c3=1.

It can then be checked that there is no solution.
3. Assume the logical constants are

c1 =0, =1, c3=0.

There are then two solutions:

p1=1,

q1 =0,

r=1
and

p2=0,

qQp =1,

rp=0.

Example 4.1 is heuristic. It shows that the solutions of systems of logical equa-
tions are quite different from those of linear algebraic equations where the type of
solution depends only on the coefficients of the system.

4.2 Equivalent Algebraic Equations

This section considers how to solve the system (4.1). The basic idea is first to convert
(4.1) into an equivalent linear algebraic equation and then to solve this algebraic
equation, thereby providing the solution(s) to the system of logical equations. To do
this, we first need some preparatory results.

4.2 Equivalent Algebraic Equations 69

Lemmad.l Let p;,i =1,2,...,n, be logical variables in vector form, i.e., p; € A.
We define
X = l><;1=1 Di.

Then, p;,i =1,2,...,n, are uniquely determined by x.

Proof We prove this by giving a formula to calculate p;. First, since p; € A, it
follows that x € Az». We can now assume that x = §5,. Split x into two equal-sized
segments as

x=[x.]

where either 0 # x; € A,n-1 and xo =0, or x; =0 and 0 # x2 € Ayu—1. According
to the definition of the semi-tensor product, if x; = 0, then p; =1, and if x; =1,
then p; = 0. We can then split a nonzero segment, say x; # 0, into two equal-sized
parts as x| = [)clT1 , xlT2]T, then apply the same judgment to p», and so on. The result
follows. g

Based on the argument in the proof of the last lemma, we give the following
algorithm.

Algorithm 4.1 Let l><;?=1 pj= 85,1, where p; € A are in vector form. Then:
1. The scalar form of {p;} can be calculated from i inductively as follows:

e Step 1. Set gp :=2" —i.
e Step 2. Calculate pj and g;, j =1,2,...,n, recursively by

!pj=[§,’;‘}],
qj=qj—1—p;j*2"70, j=1,2,...,n,

4.4)

where, in the first equation, [a] denotes the largest integer less than or equal
toa.

2. i can be calculated from the scalar form of {p;} by
n
i = 2(1 — P27 1. (4.5)
j=1
We now give an example to demonstrate the formulas.

Example 4.2 Assume x = p1p2p3p4ps.

1. The value of x is known to be x = 8;2. We then try to obtain the values of p;,
i=1,...,5. Using the first part of Algorithm 4.1, we have

go=2>—7=32-7=25.

70 4 Logical Equations

It follows that

p1=I[q0/16] =1, g1 =¢q0— p1*(16) =9,

r2=Iq1/81=1, g2=q1 —p2*x8=1,
p3 =[q2/41=0, @B=qr—p3*x4=1,
pa=1lq3/2]1=0, ga=q3— pa*x2=1,
ps=Ilqa/11=1.

We conclude that p; =1~ 81, pp=1~8), p3=0~683, ps=0~ 53, and
ps=1~8).
2. Assume p;1 =0, po =1, p3=0, ps =1, and p5 = 1. Using (4.5), we have
i=2"4224+1=21.

Therefore, x = 8%;

Next, we construct a matrix, which may be called the group power-reducing ma-
trix, as follows. For j > 1, define

i
@ =[]l ® [® Wy 2i-) M,]. (4.6)
i=1

We then have the following result.
Lemmad4.2 [fzj=pipy---pj,where p;e A,i=1,2,..., j, then
=¢,z; 4.7)
Zj]ZJ' .

Proof We prove this by mathematical induction. When j = 1, using Proposition
3.1, we have

In the above formula
@)= (L Wp 1)M,.

Note that Wy, 1] = I, so it follows that @; = M,. Hence, (4.7) is true for j = 1. If
we assume (4.7) is true for j = s, then for j =5 + 1 we have

Ps2+1 = Pp1P2- " Ps+1P1P2" - Ds+1
= piWpoapilp2 - pss
= (L ® W)pilp2 - pstil’
=[(L® W2 DM, | pilp2--- ps+1]’

4.2 Equivalent Algebraic Equations 71

Applying the induction assumption to the last equality, we have

sz = (L ® Wp.2s1) M, pi

N
X (]_[Li-i ®[(L® W[2,2S,‘])Mr])p2p3 ot Ps+1
i=1

=[(I ® W22 M,]
N
x <]_[Li®[(L® W[2’2Si])Mr]>p1p2 " Pt
i=1

The conclusion then follows. O

Before presenting the next lemma we require another concept, called a dummy
operator, og, defined by

od(p,q)=q, Vp,gqeP. 4.8)

It is easy to show that the structure matrix of the dummy operator oy is

1 01 O
Ed:[o 0! 1] 4.9)

It follows from the definition that for any two logical variables X, Y,
EqXY =Y or EqWpXY=X. (4.10)

A logical variable which only formally appears in a logical function, but does not
affect the value of that function, is called a fabricated variable.

Lemma 4.3 Let
x=x}_pi.
Using vector form, each logical equation
fitp1, P2, op)=ci, i=12,....m,
in the system (4.1) can be expressed as
Mix=c;, 1i=12,...,m, “4.11)

where M; € £pxon.

Proof Assume f; is a logical equation of py, ..., p,. Let M; be the structure ma-
trix of f;. Then, (4.11) immediately follows. Assume some p;’s do not appearin f;.
Using the dummy operator technique we can still obtain (4.11) by introducing fab-
ricated variables. d

72 4 Logical Equations

We are now ready to present the main result, which converts the system of logical
equations (4.1) into an algebraic equation.

Theorem 4.1 Let x = x!_, p;, b= x!"c;. The system of logical equations (4.1)
can then be converted into a linear algebraic equation as

Lx =b, (4.12)
where

L=M x'_, [® Mj)®,], (4.13)
M; being defined as in (4.11).

Proof Note that from Lemma 4.2 we have
x2= D, x.
Multiplying (4.11) together yields
b=MxM>x---M,x

= M(In ® Ma)x>M3x - - - Mypx
= Mi(Ion @ My)®u,xM3x --- Mux

=M(In @ M2)D,, (Ipn @ M3)Dy, - - - (Ion @ M) Py x.
(4.13) then follows. O

Remark 4.1

1. To obtain the algebraic form for a particular logical equation, we may not need
to use formula (4.13). In most cases, L can be obtained by a direct computation.

2. Using Lemma 4.1 and Algorithm 4.1, as long as algebraic equation (4.12) is
solved for x, the logical unknowns p;, i =1, 2, ..., n, can be easily calculated.

3. As discussed in Chap. 3, in equation (4.12), the coefficient matrix L € Zpmyon,
and the constant vector b € Aom.

Denote by Col(L) the set of columns of matrix L. Since L € £myon and b €
Aom, it is clear that algebraic equation (4.12) has solution x € Ay if and only if

b e Col(L).
Express L in condensed form as

L = (Szm [il, i2, ceey izn].

4.2 Equivalent Algebraic Equations 73

We define a set
A={r]8h =b 1 <2 <2").

The following result is then obvious.

Theorem 4.2 Using the above notation, the solution of (4.12) is

x=08u, reA. (4.14)
As an application, we reconsider Example 4.1.
Example 4.3 Consider system (4.3) again. We have its algebraic form as

Mcpg = c1,
Mugr = c3, (4.15)
Mer(Myp) = c3.
Multiplying these three equations together yields
M:.pgMaqrM.rM,p = cicac3 :=b. 4.16)
Next, set x = p X g X r. We simplify the left-hand side of (4.16) as follows:

McpgMaqr Mer My, p
= Mc(I4 ® Mg) pq°rMer My p
= M (I4 ® Ma)(I16 ® M) pg°r*M, p
= Mc(I4 ® Mg)(Ii6 ® Me)(I32 ® My) pg°r*p
= Mc(I4 ® M) (116 ® M.)(I32 ® My) pWi,16/pq°r*
= Mc(I4 ® Mg)(I16 ® M.)(I2 ® My)(I ® Wi2,16)) p*q°r?
=M:.(14 ® My)(116 ® Me)(I32 @ M) (1> ® W2, 16)) My pMrg M, 1
=M:(14 ® Mg)(1i6 ® Me)(I32 @ My) (12 @ W2, 16) My (12 @ M) (14 @ M) pqr
= Lx.

It is easy to calculate that

L=M: (14 @ My)(116 ® M.)(132 @ Mp) (12 @ W2,16) M, (1o @ M,)(14 @ M,)
=6,[2,1,6,7,5,6,5, 8].

Now, if b = 851;, then A = {2}. That is, the second column of L equals b. We have
the solution x = 8%. Returning to Boolean form we have

b=38 = c=lLa=1a=1,
x=8 <<= pi=1lp=1rp3=0.

We list all possible constants and their corresponding solutions in Table 4.1.

74

Table 4.1 Solutions of (4.3)

4 Logical Equations

b (c1,c2,c¢3) A X (p1, p2, p3)

84 1,1, 2} 82 (1,1,0)

82 (1,1,0) (1} 84 1,1,1)

8 (1,0, 1)]

85 (1,0,0)]

8 ©,1,1) (5,7} 83,81 0,1,0),(0,0, 1)
88 0,1,0) (3,6} 83,88 (1,0, 1), (0, 1, 0)
81 0,0, 1) {4} 8y (1,0,0)

I (0,0, 0) (8} 88 (0,0, 0)

When the number of unknowns is not very small, calculating the coefficient ma-

trix by hand will be very difficult, but a simple routine can do this easily. We now
give another example.

Example 4.4 Consider the following system of logical equations:

Its algebraic form is

P1ANp2=ci,

P2V (p3 < p2) =02,
ps —> (paV p3) =c3,
—p3 =c4,

paV (ps A p2) = cs,
(p6 V p2) A p6) = c6,
(=p9) = p1=c7,
P5 N\ p6 N\ p1=Cg,
(p6 V pg) <> p3 = 9.

Mcpip2=ci,
Map2Mep3p2 = c2,
MipsMapap3 = cs3,
My p3 =c4,
MqpaM.psp2 = cs,
M:Mgpsp2pe = ce,
M; M, pop7 = c7,
M? pspep7 = cs,
M,Mgpepsp3 = co.

4.17)

(4.18)

4.2 Equivalent Algebraic Equations 75

Of course, we can convert (4.18) into an algebraic equation as
9 9
Lx;_, pi=x;_j¢c; or Lx=b.

Then, L € Zs12x1024- To save space, we give the first and last few columns (in
condensed form) as follows:

859 [3333 333335393539 43434444 43 47 44 48
3535353535393539 4343 44 44 43 47 44 48
3333333335393539 434344444347 44 48
5151515151555155 5959606059 63 60 64
222248 481212111112161115

260 264 260 264 268 268 267 267 268 272 267 271
260 260 260 260 260 264 260 264 268 268 267 267
268 272 267 271 338 338 338 338 340 344 340 344
348 348 347 347 348 352 347 351 276 276 276 276
276 280 276 280 284 284 283 283 284 288 283 287].

Next, giving a special set of logical constants, we solve the system of logical
equations. Assume c; =1, co =1, c3=1,¢c4=0,c5=1,c6 =1, c7=1, c§ =0,
and c9 = 1. Then,

9 35
b= Xi_1Ci = 529.

Using a computer routine, we can find the set A such that for the columns L; of L
with Ly = b, A € A. Itis easy to calculate in this way that

A=1{5,7,17,18,19, 20,21, 23,37, 39}.

According to Theorem 4.2, there are ten corresponding solutions, which can be
easily calculated as follows:

1. x1=8§9 or
p=Lp=1p3=1,

pa=1,ps=1,ps=1,
p1=0,pg=1,po=1,

2. xzzﬁgg or
pi=Lpp=1p3=1,

pa=1,ps=1,ps=1,
p7=0,pg=0, pg =1,

76 4 Logical Equations
3. x3=6;97 or

pi=Lpr=1,p3=1,

pa=1,ps=0,ps=1,

pi=1,ps=1,py=1,

4. x4 = 5;? or

D1 ,p2=1,p3 ,

p4= 5p5=07p6_ ’

pr=1,pg=1, ,
5. xszéég or

pi=1,p2=1,p3=1,
pa=1,p5=0,ps=1,
p1=1,pg=0,pg=1,

6. x¢ = 858 or

pi=1Lpr=1,p3=1,
pa=1,p5=0,ps=1,
p1=1,ps=0,py=0,

321

7. x7= 29

or
pi=1,p=1,p3=1,
pa=1,p5=0,ps=1,
p1=0,pg=1,py=1,

8. x3=8§§’ or
pi=1pr=1,p3=1,

pa=1,p5=0,ps=1,
p7=0,pg =0, py=1,

9.)C9=8§97 or
pi=1p=1p3=1,

pa=0,ps5=1,ps=1,
p7=0,pg=1,po=1,

10. x10 =8;99 or
pi=1,p2=1,p3=1,

pa=0,ps=1,ps=1,
p7=0,pg=0, pg=1.

4.2 Equivalent Algebraic Equations 77

We then consider a general form of logical equation. Consider
F(p1.p2s s pn) = 8(q1. 92, -+ Gm)- (4.19)
We want to find its algebraic form.
Proposition 4.1 The algebraic form of logical equation (4.19) is
MMy (I ® Mo)pi--- pudi -+~ G = 8. (4.20)

Proof Define p := f(p1, p2,...,pn) and q := g(q1,q2, .-, qm)- (4.19) implies
that either both p and g are “true” or both p and g are “false”. That is, p <> g
is a tautology. In algebraic form we have

M.My¢pip2---pnMgqi1q2- - Gm = 85.
Note that

pip2- pnMg = (In @ Mg)p1p2- -+ pn.
Equation (4.20) follows immediately. g

Finally, we consider a system of logical equations as follows:

fl(-x19"°9xn):g1(x17”'7xﬂ)v

: (4.21)
T (X1, X0) = gm (X1, .o, Xn).
Using vector form and setting x = x?_,x; we have
lex = Mlgx,
: (4.22)
M,{lx = M&x,

where Ml.f , etc. are the structure matrices of the respective f;. Multiplying both
sides together and using the standard procedure to simplify both sides, we finally
have

MTx = Mé3x, (4.23)

where M/, M8 € Lomyon. Tt is easy to verify that x = x7_,x; is the solution of
(4.23) if and only if (x, ..., x,) is a set of solutions of (4.20).
The following result is straightforward to verify.

Theorem 4.3 x = 8%,1 is a solution of (4.23) if and only if
Col;(M') = Col; (M$), (4.24)

where Col j (M) is the jth column of M.

78 4 Logical Equations

In fact we can also perform a computation as an algebraic “transposition of
terms”.

If A= (aij) € Bpxq and B = (b;j) € B)xq, then we define the logical “exclu-
sive or”’, vV, over A and B as

AV B:= (a;j _/bi,j) € ggpxq.
Letting
J={j|Colj(Ms¥ My) =0},
we then have the following result.
Corollary 4.1 x = Sgn is a solution of (4.23) if and only if j € J.

We illustrate this with an example.

Example 4.5 Consider the following system of logical equations:

S1(x1, x2, x3) = g1(x1, X2, X3), 4.25)
f2(x1, x2, x3) = g2(x1, X2, X3),
where
S1(x1, x2, x3) = —xq,
Salxr,x2,x3) = (x1 Ax2) V [—x1 A (2 < x3)]
and

g1(x1, x2,x3) = x3,
g2(x1, x2,x3) = (x1 A —x2) V (X1 AX2).

It is easy to calculate that
M7 =6403,3,4,4,1,2,2,11, M®=842,4,1,3,1,3,2,4].

It can now be seen that Cols(M/) = Cols(M¢) and Col;(M/) = Col7(M®). Ac-
cording to Theorem 4.3, the solutions are x = (Sg and x = 8; .
We conclude that the solutions of (4.25) are

xl—O, x1—0,
xp=1, xp =0,
x3=1, x3=1

4.3 Logical Inference

The purpose of this section is to deduce logical inference by solving logical equa-
tions. We will discuss this via several examples.

4.3 Logical Inference 79

Example 4.6 A says “B is a liar”, B says “C is a liar”, C says “Both A and B are
liars.” Who is a liar?
To solve this problem we define three logical variables:

e p: Ais honest,
e ¢: B is honest,
e r: Cis honest.

The three statements can then be expressed in logical version as

P9,
q <, (4.26)
r< -pA—g.

Letc= Sé. The system (4.26) can then be converted into an algebraic form as

M.pMyg =c,
M.gMur =c, 4.27)
MrM .M, pM,q = c.

It is easy to convert (4.27) into an algebraic equation as
Lx =b, wherex = pqr,b= A= 8%,

and
L =153(8,5,2,3,4,1,5,8].
Since only Colg(L) = b, we have the unique solution
X = 8§’,
which implies that
p=0, q=1, r=0.

‘We conclude that only B is honest.

Example 4.7 A competition between five players took place in a simple-rotating
way, which means each player had to play all others. We have the following infor-
mation about the result:

C beat E,

A won three games,

E won one game,

among B, C, and D, there is one player who beat the other two,
each of B, C, and D won two games,

each of A, C, D, and E won some and lost some.

80 4 Logical Equations
We use A B to denote “A beat B”, and so on. It is clear from the definition that
BA=-AB, CA=-AC,....
Next, we convert each statement into a logical expression.
1. Cbeat E:

CE=1.
2. A won three games:
(ABANACANAD)V (ABANAC AN AE)

V(ABAAD AAE)V (AC AAD A AE) =1, (4.28)
ABAACAAD A AE =0.

3. E won one game:

AEANBEANCEANDE =0,
(EANEB)V(EANEC)V(EAANED)
V(IEBANEC)V(EBAED)V(ECANED)=0.

Since EC = —CE =0, it can be removed from the above expression to give the
following simplification:

AEANBE ADE =0,

(4.29)
(EAANEB)V(EAANED)V (EBAED)=0.

4. Among B, C, and D, one player beat the other two:
(BCABD)V(CBACD)V(DBADC)=1. (4.30)
5. Each of B, C, and D won two games:
e B won two games:

(BAANBC)V(BAABD)V (BAABE)
V(BCABD)V(BCABE)V(BDABE)=1,

(BAANBCABD)V(BAANBCABE)
V(BAABDABE)V (BCABDABE)=0.

4.31)

e D won two games: Note that CE =1 can be used to simplify the expression.
We then have

CAvCBvCD=1,

(4.32)
(CAANCB)V(CAACD)V (CBACD)=0.

4.3 Logical Inference 81
e D won two games:

(DAANDB)V(DAADC)V (DAADE)
V(DBADC)V(DBADE)V (DCADE)=1,

(DAADBADC)V(DAANDBADE)
V(DAANDCADE)V(DBADCADE)=0.

(4.33)

6. Eachof A, C, D, and E won some and lost some. Obviously, this statement does
not contain any additional information.

Next, we convert (4.28)—(4.33) into algebraic form. To save space, we write

p=AB, q=AC, r=AC, s=AE, t=BC
u=BD, v=BE, a=CD, B=DE.

Applying De Morgan’s law to the second equation of (4.29) and the equations of
(4.33), and then combining all the algebraic equations yields

MngpqrMczpqufprsngrs = 8;,

Mg,pqrs =62,

Mczsv,B = 8%,

M?2MgsvMgsBMgvB =65,

M2MctuMMyta McMyuMyo = 81,
MgMcantMcMnpuMCM,,vaCtuMCtvMCuv =581, (4.34)
MSManptuManptvaM,,pung.tuv =43,
M2M,gMyta =3,

M2M MugMytMcMyga MMyt = 83,

M3 MgruMqraMgr My fMaueMauM,BMaaM,p = 53,
Mg,MﬁruaMgruMn,BM;raMnﬂMguaMn,B = 8;.

Now, multiplying all the equations in (4.34) together and using the standard pro-
cedure, we obtain the algebraic form

Lx=b, (4.35)
where x = pgrstuvaf. Using (4.5) yields

2/:1\3 2
b=5,(83)(52)"638,(83) "0, = 0301

L is a 2! x 29 matrix. The first and last few columns are

Sul[5 261 15 269 277 405 287 413

1812 1939 1812 1940 1972 1971 1972 1972].

82 4 Logical Equations

Table 4.2 Solutions of

(4.28)-(4.33) p g r s u v a B
x1 1 10 1 1 10 1 1
x 1 0 1 1 1 1 0 0 1
X3 1 0 1 1 1 0o 1 0 0
xs 0 1 1 1 o o0 1 0 0

A routine shows that
Colgg (L) = Coly35(L) = Coly40(L) = Colpga(L) = b.

Therefore, the solutions of (4.28)—(4.33) are

135

52, x3 = 8140 xq =03 (4.36)

69
.X']=829, -x2=8 29 >

Using formula (4.4) yields the scalar forms of the solutions, as in Table 4.2.
Next, we make the following modification to the last statement “Each of A, C, D,
and E won some and lost some.”:

e Within the group A, C, D, and E, each won some and lost some.

It is now obvious that the new information is: (i) A can not beat all of C, D, and E,
and (ii) E cannot lose to all of A, C, and D (equivalently to A and D). All other
items of information have already be implied by previous statements. We then have
two more equations:

A =0,
{ INTAS 4.37)
sAB=0.
Equivalently, we have algebraic equations as follows:
M2%grs =82,
cdre =’ (4.38)
Msp = 6;.

One way to solve this problem is to add (4.38) to (4.34) and solve this system of
equations again. Obviously, this is a computationally intensive task. From Table 4.2,
it is easy to check that only x3 satisfies (4.38). So, in this case, x3 is the unique
solution.

The major disadvantage of the method proposed above is the complexity of com-
putation. We now give an example to illustrate it.

Example 4.8 (Eight queens puzzle) Eight queens are to be placed on an 8 x 8 chess-
board such that none of them is able to capture any other using the standard queen’s
moves. The queens must be placed in such a way that no two queens are attacking
each other. Thus, a solution requires that no two queens share the same row, column,
or diagonal.

4.3 Logical Inference 83

Fig. 4.1 Eight queens puzzle Q

O

O

One solution is depicted in Fig. 4.1.

The problem can be extended to the “n queens puzzle” of placing n queens on
an n x n chessboard.

Consider the n queens puzzle. We use P;; to denote the placement of a queen at
position (i, j). Then:

e “one row has exactly one queen” can be formulated as

PiVvPoVv---vP,=T, i‘=1,2’,...,n (4.39)
Pij/\PikZF,]75](,121,2,...,11,
e “no two queens share the same column” can be formulated as
PiinPy=F, j#k, i=1,2,...,n, (4.40)

e “no two queens share the same diagonal” can be formulated as

Pij APiygjyxk=F, 1<i+k<n1<j+k<n,
PijAPipjx=F, 1<i+k=<n1<j—k=<n,
i,j=1,2,...,n.

This can be clarified as

Pij/\Pi+kj+k=F7 l—min{i,j}gkfn—max{i,j},
Pij/\Pi+kj7k=F7 max{l —i,j —n} <k <min{n —1i, j — 1}, “4.41)
i, j=12,...,n.

The n queens puzzle is equivalent to solving logical equations (4.39)—(4.41). Since
there are n” logical unknowns, in general it is impossible to solve the problem by the
method proposed earlier. In this case, we may give up the effort of finding all solu-
tions and simply try to find some particular solutions. This kind of problem is called
a satisfiability problem (SAT). SAT is an important problem in computer science
and its applications. Many decision making problems of intelligent systems can be

84 4 Logical Equations

formulated as problems of SAT. Several numerical methods have been developed to
deal with SAT problems [8].

As n =8, it is easy to solve the problem. A simple routine shows that there are
92 solutions. We list a few of them below (in increasing order). The first number in
each bracket shows the position in the first column, the second number shows the
position in the second column, and so on.

8,2,5,3,1,7,4,6) (8,3,1,6,2,5,7,4) (8,4,1,3,6,2,7,5).

4.4 Substitution

It is well known that in solving a system of linear algebraic equations, a general
formula (e.g., using determinants) may be complicated. However, using some un-
known substitutions may simplify the calculation substantially. Similarly, in solv-
ing logical equations, certain algebraic substitutions may simplify the calculation
tremendously. We need some formulas for this and in the following proposition we
provide some simple ones which follow directly from the definitions.

Proposition 4.2 Let o7, ..., o7 be (possibly compound) logical variables.
1. If

M7 ety oy =8, (4.42)
then
%:...:%:3%. (4.43)
2. If
M5 ety ot =63, (4.44)
then
N ==l =83, (4.45)
3. If
M ety oy =83 (4.46)
and, for some 1 <k <s,
o =83, (4.47)

then <, can be removed. That is, (4.46) can be reduced to

M 72ah e iy - s =83 (4.48)

4.5 k-valued Logical Equations 85
4. If
M5 A oy = 5) (4.49)
and, for some 1 <k <s,
T =83, (4.50)

then <t can be removed. That is, (4.49) can be reduced to
M2 - o\ g1 - Ay =5, 4.51)

From distributive laws (1.20) and (1.21), we can obtain the following “factoriza-
tion” formulas.

Proposition 4.3 Let <7y, ..., 9/ be (possibly compound) logical variables and p
another logical variable. Then,

M (Mopety - Mepet) = McpMS ™ oy - - ot (4.52)

and

MY (Mypsty - Mypsty) = MgpMS ™\ ot - - a;. (4.53)

These formulas are useful for simplifying logical equations. For instance, if

My ' Mcpsth - Mepsty =85, (4.54)
then we have
=54
P | (4.55)
If
M "Mypty - Mypet, =53, (4.56)
then we have
=42,
po , (4.57)

4.5 k-valued Logical Equations

Systems of k-valued logical equations have the same form as the system of Boolean
equations (4.1), with f; as k-valued logical equations, and p; and ¢; as k-valued
logical arguments and k-valued constants, respectively. We do not need to repeat
the basic concepts discussed in connection with Boolean equations as these can be
naturally extended from Boolean logic to k-valued logic.

86 4 Logical Equations

First, we adapt Algorithm 4.1 to the k-valued case. An argument similar to binary
case shows the following. We leave the proof to the reader. Let x = x{_, A;, where

A € Ag. If we assume x = 8,’;,,, then the {As | s =1, ..., n} can be calculated by
means of the following algorithm.

Algorithm 4.2

e Step 1. Define by := k" —1i.
e Step 2. Calculate aj, bj,and A;, j =1,2,...,n, recursively, by
bi_
aj(t) = [=4],
bj =bj_1 —aj*knij, (4.58)
Aj=a;/(k—=1), j=12,...,n

We give an example of this.
Example 4.9 Assume x = AjA2A3A4As and x = 852{3. Then,
by =243 — 17 =226.

It follows that
ar=[bo/3*]=2, Ai=1

Continuing this procedure, we have

bi=by—a x(3*)=64, ar=[b1/3*]=2, A,=1,

by =b; —ar x27 =10, a3=[b2/3*]=1, A3=0.5,
by=br—azx3%>=1, as =[b3/3]1 =0, Ay=0,
by=b3—ayx3=1, as =[bs/11=1, As=0.5.

We conclude that Aj =1~ 8}, Ao =1~68), A3=05~62, A4y =0~ 43, and
As=05~83.

Next, we modify Lemma 4.2 for k-valued logic.
Lemma 4.4 Assume z; = p1pa---pj, where p; € Ay, i=1,2,..., j. Then,
Z? = ¢j,ijv (4.59)

where

J
@i =[]l ® [k ® Wy pi-iDMri]- (4.60)

i=1

4.5 k-valued Logical Equations 87

Finally, we generalize Theorem 4.2 to the k-valued case. Consider a k-valued
logical equation

Lx =b, 4.61)

where L € Zymxjn, b € Agm, and k € Agn. Express L in a condensed form as
L =6pm [i1,02,..., k]

and define the set
A={r]80 =b, 1 <r<k"}.

We then have the following result.

Theorem 4.4 The solution of (4.61) is
x =8, *€A. (4.62)

We now give an example to show how to use k-valued logical equations to deal
with logical inference.

Example 4.10 A detective is investigating a murder case. He has the following
clues:

e he is 80% sure that either A or B is the murderer,

e if A is the murderer, it is very likely that the murder happened after midnight,

e if B’s confession is true, then the light at midnight was on,

e if B’s confession is false, it is very likely that the murder happened before mid-
night,

e there is evidence that the light in the room of the murder was off at midnight.

What conclusion can he draw? First, we must establish the levels of logical values.
If we understand “very likely”” as more possible that “80%”, then we may quantize
the logical values into six levels as “T”, “very likely”, “80%”, “1 — 80%”, “very
unlikely”, and “F”’. Hence, we may consider the problem as one of 6-valued logical
inference.

Define the logical variables (unknowns) as

A: A is the murderer,

B: B is the murderer,

M : the murder happened before midnight,
S: B’s confession is true,

L: the light in the room was on at midnight.

88 4 Logical Equations

We can then convert the statements into logical equations as follows:

AV B=8},
A— —-M=8§,
S—L=36,, (4.63)
-S— M =62,
—L=36,.

We may use the general formula provided in Theorem 4.4 to solve this system of
logical equations, but substitution will be much easier.
First, from =L = Sé we have

L =85 =8L.
Then, because S — L = Bé, we have the following matrix form:
M;6SL=M; sWicLS :=¥S.

We then have
1S =b,

where b = Sé, and it is easy to calculate that
U1 =M, WL =086[654321].
Since only Colg(¥1) = b, the solution is
§=2sg.
Similarly, from =S — M = (Sg we have
M; M, 6SM = 52

‘We can thus solve for M:
M =82

Next, we consider A — =M = M; g AM, 6 M = (Sé. Applying some properties of
the semi-tensor product, we obtain

M; 6 AM, 6M = M; 6(Ie @ My 6)AM = M,; 6(Ic @ My 6) W) MA := 2 A.
It can be calculated that
Yo =M, 6(le ® M, 6)WielM = 865543 21].

Hence, we have

4.6 Failure Location: An Application 89
Finally, from Av B= M ;AB = Bg we can solve for B:
3
B=4;.

We conclude that

e itis “very unlikely” that A is the murderer,
e itis 80% possible that B is the murderer.

4.6 Failure Location: An Application

As an application of the algebraic expression of logical equations, we consider the
failure location problem in networks.

Recently, some methods of quality of service (QoS) degradation locating from
observed data on the end-to-end performance of flows have been proposed and in-
vestigated by [3-5, 7], etc. The basic idea of this approach can be described as
follows. First, set a quality threshold for a network. According to this threshold the
flows are classified as good quality flows or bad quality flows. Assume a bad flow
is caused by a certain failure link (or several) on the flow path. The location of
failure then needs to be specified in order to improve the QoS of the network. The
routing information can be obtained by routers. End-to-end verification in a random
framework is also a promising method [1].

We assume the route information is not completely known. This is practically
reasonable since, for technical reasons, the detected routes between two testing ends
may not be as precise as a simple serial line. In this case the routes between two
testing ends are allowed to be serial-parallel ones.

It is natural to identify a good link with a through (ON) link and a bad link with
a broken (OFF) one. In this way, the problem becomes one of solving a system of
Boolean equations.

4.6.1 Matrix Expression of Route Logic

To begin with, we give a rigorous definition of a route network and the logical
relationship between an end-to-end path and its links.

Definition 4.2 A route network consists of a finite set of nodes, denoted by .4 =
{A,B,C,...} and a finite set of links, denoted by . = {a, b, c, ...}. Therefore,
a network can be denoted by a pair (.4, .%).

Remark 4.2

e Alink s is an arc between two nodes. We assume a link to be the smallest possible
segment, that is, there are no middle nodes on a link, so a link is an “atom” of the
route. A link s could be through (called “ON”), denoted by s = 1 (equivalently, in

90 4 Logical Equations

Fig. 4.2 A network

vector form, s = 8%), or broken (called “OFF”), denoted by s = 0 (equivalently,
s = 8%). Thus, a link is a Boolean variable.

e Unlike in graph theory, there may be several links between two nodes. Also, un-
like the Boolean network case, under the route topology a link, not a node, is a
Boolean variable.

e A link s has two ending nodes. If s is between A and B, then we write n(s) =
{A, B}.

We need a description for part of a network, which could be considered as the
route of an end-to-end testing.

Definition 4.3

1. Anetwork (A7, .%")is said to be a subnet of (A",) if /' C A and .¥’ C .¥.
For such a subnet, we write (", .%") C (AN, .7).

2. A subnet (A7,) C (AN, .¥) is said to be complete if s € . and n(s) C A"
implies that s € ..

Definition 4.4

1. A path from a node A to a node B is a set of serial links such that we can get
from A to B along the serially connected links. A path without self-intersection
is called a legal path, otherwise it is illegal.

2. A route with ending nodes A and B, denoted by r(A, B), is a complete subnet
consisting of some nodes .4/’ C .4 with A, B € .#". We denote its node set as
nr)={X|Xe AN}

3. When the logical structure of a route is considered, only legal paths are counted.

We now give an illustrative example.

Example 4.11 Consider the network in Fig. 4.2. We can conclude the following:

1. The set of nodes of the network is 4" ={A, B, C, D, E, F} and the set of links
is.¥={a,b,c,d,e, f, g, h,i}.

2. Let 1 ={A,F,E,D}, #1=1{b,i,h}, /={A,B,C,D},and .75 ={a,e, g}.

Then (A1, 1) is a complete subnet and (.45, .%5) is not a complete subnet.

(N, &) can be considered as a route from A to D, denoted by r(A, D).

b —i — f — gis alegal path between A and D, denoted by p(A, D).

5.b—i— f—e—c—i—hisanillegal path, so it is not considered as a path in
r(A, D).

hale

4.6 Failure Location: An Application 91

Fig. 4.3 A network a

6. Let /5 ={A,B,C,D} and .73 ={a, e,d, g}. (43, .73) is also a route from A
to D, consisting of two paths from Ato D:a —d —ganda —e — g.

Note that a route can be either ON or OFF, but not both, and it is obvious that a
route is also a Boolean variable. Since the logical value of a route is determined by
its links, it is a logical function of its links. We must therefore determine the function
of a route, where its links act as the arguments of the function. We will explain this
by means of the following example.

Example 4.12 Consider the routes in Fig. 4.3.

e Route (a) has a parallel connection. It is clear that (A, B) is ON if either a or b
is ON. Therefore, we have the following logical relation:

r(A,B)=a\Vb. (4.64)
e Route (b) has a serial connection, hence
r(A,B)=anbh. (4.65)

e In route (c), a and b are connected in parallel mode and this subnet is then con-
nected with ¢ in serial mode. It is easy to see that

r(A,B)=(aVvh)Ac. (4.66)

An alternative way to analyze this is as follows: (A, B) consists of two paths,
a—cand b —c, so
r(A,By=(anc)V(bAc). (4.67)

Obviously, (4.66) and (4.67) are the same.

e Consider route (d). The parallel-serial structure analysis seems complicated. Af-
ter careful path analysis, it is easy to see that there are four paths: a — b, d — e,
a—c—e,and d — ¢ — b. Thus, we have

r(A,By=(@Arb)yv({dAre)Vv(ancnre)V(dAncADb). (4.68)

92 4 Logical Equations

Note that the logical function of a route depends on its ending points. A net-
work or subnet may not have a uniquely defined logical function. Consider (d)
again. If we take C and D as two ending points, then it is clear that we have

r(C,Dy=(@Ad) VeV (bAe). (4.69)

From the previous discussion, it can easily be seen that from a route’s topological
structure we can obtain the expression of the route as a logical function of its links.
The end-to-end test will provide the resulting test value of a route as through (ON)
or broken (OFF). Our goal is to find out which link(s) is (are) broken (OFF) from a
system of such logical equations.

Using the vector form of logic, equations (4.64) and (4.65) can be expressed,
respectively, as

r(A, B) = Mgab=35[1112]ab (4.70)
and
r(A, B) = M.ab = §3[1 22 2]ab. (4.71)
As for (4.66), we have
r(A,B) =M. Myab)c = M.Mjabc := M3abc. 4.72)

The coefficient matrix, M3, of (4.72) can be calculated as
M3=MM;=2357[12121222].
Finally, we consider (4.68). It is easy to calculate that
r(A, B) = M3 (Mcab)(M.de)(M?ace)(M?2dcb) := Maabcde, (4.73)
where

My=MMg=5[11111111121212221122122212221222].

Remark 4.3 It can be easily seen that as long as the network structure is known for
a route with two fixed ends, its logical value is a known function of its links. There-
fore, the method proposed in this section is applicable to networks without routers
(routers can only add some information to reduce the computation complexity).

4.6.2 Failure Location

Consider a network (.47, .#’) where the links are labeled as
L =1{s51,82,...,5}.

Let A, B € /. From the network structure, with available information obtained
from routers, we can have a route r (A, B). A trivial case is when r (A, B) is a series

4.6 Failure Location: An Application 93

connection. Here, though, we assume that it can be an arbitrary logical function of
its links. When a real network such as the Internet is considered, obtaining a precise
description is difficult. This is particularly the case when the network is simplified
by approximations. Of course, the end-to-end testing result is known. As discussed
earlier, the route r (A, B) is a logical function of its component links, expressed as

r(A, B) = f(s1,82, ...,), (4.74)
where f is a logical function. (4.74) can be converted into its algebraic form as
r(A,B)=M; x}_, s;. 4.75)
Now, assuming we have tested m routes, we have m end-to-end testing results:
ri(Ai, B)) = fi(x1,...,xy)=b;, i=1,2,...,m.

Converting them into algebraic equations, we have

Mix =by,
M>x = by,

(4.76)
Myx = by,

where M; = My, is the structure matrix of the logical function f; of r;(A;, B;), and
x =X x;.
Then, (4.76) can be converted into a linear algebraic equation,
Lx =b, 4.77)

where b = x?zlbi, and

L =M x"

i [l © M@y,

n
&, =[]l @ [(12 ® Wi pi-iDM].
i=1

From the previous section it is clear that:

1. Equation (4.77) has solution if and only if b € Col(L),
2. x = 8’2‘,, is a solution of (4.76) if and only if Colx (L) = b.

Next, we give an example to illustrate the above theorem.

Example 4.13 Consider Fig. 4.4, where (a) is the network, and (b)—(e) are four
routes, denoted by 1 to r4, respectively.

94 4 Logical Equations

Fig. 4.4 Network with four

A ¢ B
routes
al ¥ %
F 8 C
b| o .
E f D
(@)
A ¢ B
Z
C
\
E f D
(b)
B
D o
F 8 C
b
E f D

Now, assume the testing results are r1 (A, E) =0, rn(C,A) =1, r3(E,C) =0,
and r4(F, C) = 1. We then have the following system of logical equations:

cAhANIANf=0,

(hAace)v(inena)=1,
[(bAdYV(fAg)VbAerng)V(fAend)]Ah=0,
dnrh)yveni)yvidnrngni)vengAnh)=1.

(4.78)

Using vector form and matrix expression, we have

M3chif =82,

MgMcheMPiea =3},

M MyM bdMqM. fgMyM2begM? fedh = 83,
MM dhMgMeiM?dgi =6).

(4.79)

After reducing the powers, (4.79) is expressed in normal form as

Micfhi =383,
Mracehi = 8%,
Msbdefgh =83,
Mydeghi =8},

(4.80)

4.6 Failure Location: An Application
where

My =6,(12222222222222272],
My=26,[11121122121222221122112222222222],
M3z=6,[12121212121212121222122212222222
12122222122222221222222212222222],
My=6,[11121112111211221212121222222222].

Multiplying the four equations in (4.80) together yields
Lx =b,

where x = abcdefghi, b= §35)858) = 8¢, and
L=386[1 91116 1 91116 9 91116 9 91116
19151 191616 9 91516 9 91616
1101116 3121116 910111611 121116
2101616 412161612121616 121216 16
9131116 9131116 9131116 9131116
131315161313161613 131516131316 16
914111611161116 9141116111611 16
1414161616 161616 16 16 16 16 16 16 16 16
1 91116 1 911161111111611 111116
1 91516 31116161111151611 111616
1101116 312111611121116 11121116
2101616 412161612121616 121216 16
9131116 91311161115111611151116
131315161515161615151516151516 16
91411161116111611161116 1116 1116
141416161616 16 16 16 16 16 16 16 16 16 16
1 91516 1 91516 9 91516 9 91516
1 91516 1 91616 9 91516 9 91616
1101516 3121516 910151611 121516
2101616 412161612121616 121216 16
131315161313 1516 131315161313 1516
1313151613131616 131315161313 16 16
131415161516151613 141516151615 16
141416161616 16 16 16 16 16 16 16 16 16 16
1 91516 1 915161111151611 111516
1 91516 31116161111151611111616
1101516 31215161112151611 121516
2101616 412161612121616 121216 16
131315161313 151615151516 151515 16
131315161515161615151516151516 16
1314151615161516 151615161516 15 16
14141616 16 16 16 16 16 16 16 16 16 16 16 16].

95

(4.81)

96 4 Logical Equations

From L one sees that the columns Colsz(L), Col;(L), ... are (Sllé. Hence, x =
8;9, 859, ... are the solutions. Now, consider 839. Using formula (4.58) it is easy to
find the solution

x1~(s1,82,...,59)=(111111101).

In the following all the solutions are listed:

x~(111111101), x~(111111001),
x3~(111110101), xa~(111110001),
xs~(111011101), x6~(111011001),
x7~(111010101), xs~ (11101001 1),
xo~(111010001), x10~(110111101),

x11~(110111001), x2~(110110101),
x3~(110110001), xu~(110011101),
x5~ (110011011), x6~(110011001),
x17~(110010101), x;g~(11001001 1),
X19~(110010001), xp0~(101111101),
X0 ~(101111001), xn~((01110111),
x3~(101110110), xu~(101110101),
x5 ~(101110011), x6~(101110010),
x57~(101110001), x3~(101101010),
x0~(101100111), x30~(101100110),
x31~(101100011), x3~(101100010),
x3~(101011101), x3a~(101011001),
x35~(101010111), x36~(101010101),
x37~(101010011), x33~(101010001),
x39~(100111101), x4~(100111001),
xa~(100110111), x4~(100110101),
x3~(100110011), xua~(100110001),
X4s~(100011101), xu~(100011011),
xg7~(100011001), xug~(100010111),
x40~ (100010101), x50~(10001001 1),
x51~(100010001), x520~(©11010011),
x53~001110111), x4~(@©01110110),
xss~(001110011), x56~(001110010),
x57~(001101010), x553~(001100111),
x50~ (001100110), x0~(@©0110001 1),
X1~ (001100010), x~(@©01010111),
X3~ (00101001 1).

From the above data, one may doubt the value of this approach. What conclusion
can we draw from so many solutions? We need the following hypothesis: Failure
is unlikely to happen in many places. In other words, the probability of a failure is
low. We believe this hypothesis is practically reasonable. Based on this hypothesis,
we have the following principle.

4.6 Failure Location: An Application 97

Least Side Principle: The most likely failure is the one with the smallest number
of ill (broken, or OFF) links.

According to this principle, we conclude that the most likely failure case is x
because it is the only one which contains only one broken link. It follows that the ill
(broken) link is (very likely) A.

Remark 4.4 In most cases we do not need to solve such an elaborate system of
algebraic equations when a practical problem is considered. In fact, if we have a
good serial route, meaning that

Xi /\x,'z/\-u/\x,-k:l,

then we have
Xip =Xip == Xj, = 1.

In a vector-form logical equation we can simply replace x;; by 8;.
Similarly, if we have a bad parallel route, meaning that

Xiy VXiy Voo Vx;, =0,

then we have
Xip = Xijp =+ = Xj; =0.

In a vector-form logical equation we can simply replace x;; by 82, but this case
should be very rare.

4.6.3 Cascading Inference

When a network is not small, the method proposed in last section fails because of
the computation complexity. For a large-scale network, [6] proposed a method that
logically divides the network into subnets in order to utilize parallelism. Here, we
propose an algorithm called cascading inference. This algorithm may considerable
reduce the time for inferring.

Definition 4.5 Let (#,.7) C (/,.%) be a complete subnet. The neighborhood
degree of (.#, .7) is the number of links with one end on .Z and the other end on
N\ . Such a link is called a front link of the subnet. A node of the subnet which
is attached a front link is called a front node.

We illustrate the notion of cascading inference in Fig. 4.5. If we have a large
network, we split it into several subnets. As in Fig. 4.5 we split it into three subnets:
S, S, and .73. In general we split it in such a way that each subnet has neigh-
borhood degree as small as possible. In our example, .7}, -5, and .#3 have neigh-
borhood degrees 4, 3, and 3, respectively, and sets of front nodes are {A1, Az, Az},

98 4 Logical Equations

Fig. 4.5 Cascading inference Ao
of a large network

S3

Co

{B1, Bz, B3}, and {C, C2, C3}, respectively. In each subnet, we then choose one or
more node(s) as the testing end node(s). In the example, we have chosen Ay € .77,
By € ¥, and Cy € ¥ as testing end nodes. The test nodes are connected to the
front nodes of their own subnets by auxiliary links. In Fig. 4.5 the auxiliary links
are drawn as dashed lines. We now obtain a simplified network with all testing nodes
and front nodes as its nodes and all front links and auxiliary links as its links. Test-
ing this simplified network, we can determine which subnet contains the failure. We
may need to introduce further end-to-end tests to eventually detect which subnet
is the troublemaker. Next, we consider the problematic subnet and repeat the same
procedure until the failure is located.
Summarizing the above procedure, we propose the following algorithm.

Algorithm 4.3

e Step 1. Split the network into a few subnets according to the principle that each
subnet has a low neighborhood degree.

e Step 2. For each subnet simply connect the test point(s) [or end point(s)] with all
front nodes to form a new, simplified network.

e Step 3. For the simplified network, use end-to-end testing to find the bad (OFF)
link, which could be an auxiliary link.

e Step 4. Replace the original network by the subnet containing the bad link, then
go back to Step 1.

We use the following example to illustrate this algorithm.

Example 4.14 Consider the network depicted in Fig. 4.6. The subnet within triangle
AADE has neighborhood degree 2 and its two front nodes are D and E.

We assume that it is a self-similar network, that is, there are three subnets, tri-
angles AADE, ADBF, and AEFC, which have same structure as AABC. We
assume the network contains & layers of such refinement.

We now apply the algorithm to this network. In Step 1 we divide it into three
subnets, AADE, ADBF, and AEFC. For each triangle, in addition to the two

4.6 Failure Location: An Application 99

Fig. 4.6 Cascading inference A

front points, we choose the third vertex as the end point for testing. For ease of
statement, we name the segments as follows:

xlzﬁ, xgzﬁ,)Q:ﬁ, X4=ﬁ, JC5=CE,

x6:ﬁ, X7=ﬁ, X8 Zﬁ, X9 :ﬁ_
Assume that we test six end-to-end routes, which are classified into two categories:
O ri=r(A,B),rn=r(A,C),and r3 =r(B, C), with n(r)) ={A, D, B}, n(r2) =
{A, E,C}, and n(r3) = {B, F, C}, which are connected as in route (b) of Example
411, ra=r(A, F),rs=r(B, E),andre =r(C, D), withn(r4) ={A, D, E, F},
n(rs) ={B, D, E, F}, and n(r¢) = {C, E, F, D}, which are connected as in route
(d) of Example 4.11. We have the following system of logical equations:

r(A, B) =x1 A x2,
r(B,C)=x3 A x4,

r(A, C) =xs5 A xg,

r(A, F) = (x1 Axg) V (X6 Axo) V (X1 A X7 A Xg) V (X6 A X7 AXS), (+82)
r(B,E)=(x2 Ax7) V (x3 AX9) V (x2 A X8 AX9) V (X3 A X3 A X7),
r(C,D)=(x5Ax7)V (x4 Axg) V (x5 Axg Axg)V (X4 AXg A X7).
Converting these into algebraic equations, we have
b1 =r(A, B) = Mgxx3,
by =r(B,C) = M x3x4,
by =r(A,C) = Myxsxe,
by=r(A,F)= MSMcxlXSMCXGX9MCZX1X7)69M62X6X7)68, (4.83)
bs=r(B,E)= MjMc,x2x7Mcx3x9M§xzx3x9M3x3x3x7,
bg=r(C,D) = M;MCX5X7MCX4)C8M62)C9X8MC2X4X9X7,
where b;, i = 1,2,...,6, are measured values. Let b = b1byb3bsbsbg and x =

X1X2X3X4X5X6X7Xx8X9. The equations can then be converted into a linear algebraic

100 4 Logical Equations

equation as
Lx=b, (4.84)

where

L=6%al 1 115132899 91309111416
1717 1722 17 19 18 24 25 2525 30 25 27 30 32
17 17 1721 17 20 18 24 25 25 25 29 25 28 30 32
18 18 1822 18 20 18 24 26 26 26 30 26 28 30 32
33333337333536404141414541434848
49 49 49 54 49 51 52 56 57 57 57 62 57 59 64 64
49 49 49 53 49 52 52 56 57 57 57 61 57 60 64 64
505050 54 50 52 52 56 58 58 58 62 58 60 64 64
33333339333534404141414741434648
49 49 49 56 49 51 50 56 57 57 57 64 57 59 62 64
49 49 49 55 49 52 50 56 57 57 57 63 57 60 62 64
505050 56 50 52 50 56 58 58 58 64 58 60 62 64
353535393535364043 434347434348 48
5151515651515256 595959645959 64 64
515151555152525659 59596359 60 64 64
52525256 52 52 52 56 60 60 60 64 60 60 64 64
3333333733393440454545454547 4648
49 49 49 54 49 55 50 56 61 61 61 62 61 63 62 64
49 49 49 53 49 56 50 56 61 61 61 61 61 64 62 64
5050 50 54 50 56 50 56 62 62 62 62 62 64 62 64
333333373339364045454545454748 48
49 49 49 54 49 55 52 56 61 61 61 62 61 63 64 64
49 49 49 5349 56 52 56 61 61 61 61 61 64 64 64
5050 50 54 50 56 52 56 62 62 62 62 62 64 64 64
3333333933393440454545474547 4648
49 49 49 56 49 55 50 56 61 61 61 64 61 63 62 64
49 49 49 5549 56 50 56 61 61 61 63 61 64 62 64
505050 56 50 56 50 56 62 62 62 64 62 64 62 64
353535393539364047 47 474747 47 48 48
515151565155525663 636364636364 64
515151555156525663 63636363 6464 64
52525256 525652 56 64 64 64 64 64 64 64 64].

It is easy to verify that if the number of layers is k, then the number of total links
(unknowns) is Ny = 3!, The number of triangles we have to testis N; =2k — 1,
which is much smaller than Nj;.

References

1. Chen, Y., Bindel, D., Song, H.H., Katz, R.H.: Algebra-based scalable overlay network mon-
itoring: Algorithms evaluation, and applications. IEEE/ACM Trans. Netw. 15(5), 1084-1097
(2007). doi:10.1109/TNET.2007.896251

http://dx.doi.org/10.1109/TNET.2007.896251

References 101

|95

Cheng, D., Li, Z.: Solving logic equation via matrix expression. Front. Electr. Electron. Eng.
China 4(3), 259-269 (2009)

Cheng, D., Takahashi, Y.: Network failure locating via end-to-end verification. Preprint (2009)
Duffield, N.: Simple network performance tomography. In: Proc. 3rd ACM SIGCOMM Con-
ference on Internet Measurement, pp. 210-215. ACM, New York (2003). doi:http://doi.acm.
org/10.1145/948205.948232

Kobayashi, M., Hasegawa, Y., Murase, T.: Estimating points of QoS degradation in the net-
work from the aggregation of per-flow quality information. Tech. rep., Institute of Electronics,
Information and Communication Engineers (2005)

Kobayashi, M., Murase, T.: Scalable QoS degradation locating from end-to-end quality of flows
on various routes. Preprint (2005)

Tachibana, A., Ano, S., Hasegawa, T., Tsuru, M., Oie, Y.: Empirical study on locating con-
gested segments over the internet based on multiple end-to-end path measurements. In: Pro-
ceedings of the 2005 Symposium on Applications and the Internet pp. 342-351 (2005).
doi:http://doi.ieeecomputersociety.org/10.1109/SAINT.2005.26

Truemper, K.: Design of Logic-based Intelligent Systems. Wiley, New York (2004)

http://doi.acm.org/10.1145/948205.948232
http://doi.acm.org/10.1145/948205.948232
http://doi.ieeecomputersociety.org/10.1109/SAINT.2005.26

Chapter 5
Topological Structure of a Boolean Network

5.1 Introduction to Boolean Networks

Inspired by the Human Genome Project, a new view of biology, called systems bi-
ology, is emerging. Systems biology does not investigate individual genes, proteins
or cells in isolation. Rather, it studies the behavior and relationships of all the cells,
proteins, DNA and RNA in a biological system called a cell network. The most ac-
tive networks may be the genetic regulatory networks, which, reacting to changes of
environment, regulate the growth, replication, and death of cells. We refer to [14, 17]
for a general introduction to systems biology.

How do genetic regulatory networks function? According to [25], in the early
1960s Jacob and Monod showed that any cell contains a number of “regulatory”
genes that act as switches and which can turn one another on and off. This indicates
that a genetic network is acting in a Boolean manner. The logical essence of a cell
network was also pointed out by Paul Nurse [21], who stated that the cells “then need
to be linked and integrated together to define the modules and overall regulatory
networks required to bring about the reproduction of the cell. This task will require
system analysis that emphasize the logical relationships between elements of the
networks,”

The Boolean network, first introduced by Kauffman [15], then developed by
[1,2,4,7,10, 16, 23, 24] and many others, has become a powerful tool for describ-
ing, analyzing, and simulating cell networks. Hence, it has received much attention,
not only from the biology community, but also within physics, systems science, etc.
In this model, a gene state is quantized to only two levels: true and false. The state
of each gene is then determined by the states of its neighboring genes using logical
rules. It has been shown that Boolean networks play an important role in modeling
cell regulation because they can represent important features of living organisms
[3, 12]. The structure of a Boolean network is described in terms of its cycles and
the transient states that lead to them. Two different methods, iteration and scalar
form, were developed in [11] to determine the cyclic structure and the transient
states that lead to them. In [8], a linear reduced scalar equation was derived from a
more rudimentary nonlinear scalar equation to obtain immediate information about

D. Cheng et al., Analysis and Control of Boolean Networks, 103
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_5, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_5

104 5 Topological Structure of a Boolean Network

both cycles and the transient structure of the network. Several useful Boolean net-
works have been analyzed and their cycles revealed (see, e.g., [8, 11] and references
therein). It was pointed out in [26] that finding fixed points and cycles of a Boolean
network is an NP-complete problem.

Boolean models have been studied for a long time and many useful tools have
been developed to find the solutions of static and dynamic Boolean equations, such
as discrete iteration [22] and satisfiability [6, 18]. As pointed out in [21], “Perhaps
a proper understanding of the complex regulatory networks making up cellular sys-
tems like the cell cycle will require a similar shift from common sense thinking. We
might need to move into a strange more abstract world, more readily analyzable in
terms of mathematics than our present imaginings of cells operating as a microcosm
of our everyday world.”

The algorithms developed in this chapter can be used to obtain all the fixed points,
cycles, transient periods, and basins of attractors. Theoretically, the algorithms pre-
sented in the following section can provide complete solutions, but the algorithms
are limited by computational complexity (they can hardly be used for large-scale
networks).

5.2 Dynamics of Boolean Networks

Definition 5.1 [8] A Boolean network is a set of nodes, xi, x2, ..., x,, which si-
multaneously interact with each other. At each given time t =0, 1,2, ..., a node
has only one of two different values: 1 or 0. Thus, the network can be described by
a system of equations:

x1(t+1) = fi(x1 (@), x2(2), ..., xa (1)),
x2(r +1) = falx1(t), x2(2), ..., xa (1)), 5.0)

Xp(t + 1) = fru(x1(1), x2(0), ..., xn (1)),

where f;,i=1,2,...,n, are n-ary logical functions.

In the following, we give a rigorous description of a network graph.
Definition 5.2 A network graph, ¥ = {4/, &}, consists of a set of nodes, ./ =
{x;li=1,...,n},and aset of edges, & C {x1,...,x,} X {x1,...,x,}. If (x;, x}) €

&, there is an edge from x; — xj, which means that node x; is affected by node x;.

The network graph is also sometimes called the connectivity graph [22].
We now give a simple example to show the structure of a Boolean network.

5.2 Dynamics of Boolean Networks 105

Fig. 5.1 Network graph of

(5.2) (©)

@)

Example 5.1 Consider a Boolean network, X = (4, &), of three nodes, given by

A@t+1)=B({)AC(1),
B(t+1)=—-A(@), (5.2)
C(t+1)=B()VvC().

Its set of nodes is .4 = {x; := A, xp := B, x3:= C} and its set of edges is
& ={(x1, x2), (x2,x1), (x2, x3), (x3, x1), (x3, x3)}. Its network graph is depicted in
Fig. 5.1.

Using mod 2 algebra, it can also be expressed as

At +1)=B®)C{),
B+ 1) =1+A@), (5.3)
Cit+1)=B(t)+C(t)+ B®)C(1).

Note that in mod 2 algebra we have addition ¢ and product x:

a®b=a+bmod?2,
a*b=abmod 2.

In most cases we omit “mod 2" and use the conventional addition and product sym-
bols for @ and .

For a Boolean network, the number of edges which point to a node i is called the
in-degree of node i and the number of edges which start from node i is called the
out-degree of node i. In Example 5.1 the in-degrees of A and C are both 2, and the
in-degree of B is 1; the out-degree of A is 1, and the out-degrees of B and C are 2.

The network graph can also be expressed by an n x n matrix, called the incidence
matrix, defined as

L, (xi,xj) €N,
7 = (bij), where bj; = (xi %)) € (5.4)
0, otherwise.
Consider the network X' in Example 5.1. Its incidence matrix is
01 1
J(X)=|1 0 0 (5.5)
01 1

106 5 Topological Structure of a Boolean Network

Our first task is to convert the Boolean network dynamics (5.1) into an algebraic
form or, more precisely, to express it as a conventional discrete-time linear system.
Using the technique developed in the previous chapter, we use vector form x; (t) € A
and define

x(t) =x1(O)x2(1) -+ - xp (1) 1= X]_x; ().

Using Theorem 3.1, there exist structure matrices, M; = M,,i =1, ..., n, such that
xit+1D)=M;x@®), i=12,...,n. (5.6)

Remark 5.1 Note that the in-degree is usually much less than n, that is, the right-
hand side of the ith equation of (5.1) may not involve all x;, j =1,2,...,n. For
instance, in the previous example, for node A we have

At +1)=B(t) AC(t).

In matrix form this is
A+1)=M.B@)C(1). 5.7

To obtain the form of (5.6), using dummy matrix E; (4.9), we can rewrite (5.7) as
At +1)=ME A(@)Bt)C(t) = M E x(1).
Multiplying the equations in (5.6) together yields
x(@t+1)=Mix@)Max(t)--- Myx(t). (5.8)
Using Theorem 4.1, (5.8) can be expressed as
x(t+1)=Lx(), (5.9)

where
n
L=M [][(x®M)®,)
j=2

is called the transition matrix.
The question now is: Is the system (5.9) enough to describe the dynamics? The
answer is “yes”.

Theorem 5.1 The dynamics of the Boolean network (5.1) is uniquely determined
by the linear dynamical system (5.9).

Proof From (5.9) one sees that

x(t)=L"x0), t=0,1,2,.... (5.10)

5.2 Dynamics of Boolean Networks 107

It follows that
xi()=M;L'""'x0), i=12,.... (5.11)

Hence (5.9) completely determines the dynamics (5.1). O

Definition 5.3 Equation (5.9) is called the algebraic form of the network (5.1).
Equation (5.6) is called the componentwise algebraic form of the network (5.1).

In fact, a direct computation using the properties of the semi-tensor product can
easily produce the algebraic form. We give a simple example to show how to obtain
the algebraic form of the dynamics of a Boolean network.

Example 5.2 Recall the Boolean network in Example 5.1. Its dynamics is given by
(5.2). In algebraic form, we have

At+1)=M.B1)C(1),
B(t+1)=M,A(1), (5.12)
Ct+1)=My;B()C(1).

Setting x(¢) = A(t) B(t)C(¢) we can calculate L as
x(t+1)=M.BCM,AM;BC
= M.(I4 @ M,)BCAM4BC
=M:(14 ® My)(Ig ® Mg)BCABC
=M:(14 ® M,)(Is ® My)W2,41ABCBC
=M:(I4 ® My)(Is @ My) W2, 4)ABW[21BCC
=M:(14 @ M,;)(Is ® Mg)W2.41(1s @ Wi2))AM, BM,.C
=Mc(14 @ My)(Is ® Ma)W2,4)
(I4 @ WL ® M) (14 ® M,)ABC. (5.13)
Then system (5.2) can be expressed in matrix form as
x(@+1)=Lx(),
where the network transition matrix is
L =M 14 M,)Is @ Mg)W2,41(14 @ W) (12 @ M;)(I4 ® M)

=68[37781556].

108 5 Topological Structure of a Boolean Network

Remark 5.2

e It is obvious that a mod 2 equation such as (5.3) can be converted into a logical
equation such as (5.12). A logical equation can also be converted into a mod 2
equation because “1 + (mod 2)” is equivalent to “—", “x(mod 2)” is equivalent
to “A”, and {—, A} is an adequate set. Logical form may provide a clear meaning
for the relationship between logical variables, but in numerical computations, e.g.,
identification, mod 2 algebra is more convenient. Therefore, we use both.

e Equation (5.9) is a standard linear system with L being a square Boolean matrix.
Therefore, all classical methods and conclusions for linear systems can be used

to analyze the dynamics of the Boolean network.

5.3 Fixed Points and Cycles
Consider the Boolean network equation (5.9). We have the following result.

Lemma 5.1
Col; (L) € Ayn, where L € Lonyon. (5.14)

Proof We only have to show Col(L) C Ap. Assume thereisa j (1 <j <2") such
that Col (L) & Aon. Then, when x () = 83, , we have

x(t+1)=Lx(t)=Col;(L) & Aon,
which is a contradiction. O

Definition 5.4

1. A state xo € Ao is called a fixed point of system (5.9) if Lxg = xg.
2. {xo, Lxo, ..., kao} is called a cycle of system (5.9) with length k if kao =X
and the elements in the set {xg, Lxo, ..., Lk —le} are pairwise distinct.

Remark 5.3 We use L to denote both the matrix and its corresponding linear map-
ping. So, xo may be in an L-invariant subspace. In this way, a cycle (or a fixed point)
can be defined on an L-invariant subspace.

The next two theorems are the main results of this chapter. They show how many
fixed points and cycles of different lengths a Boolean network has.

Theorem 5.2 Consider the Boolean network (5.1). 85,, is its fixed point if and only
if, in its algebraic form (5.9), the diagonal element £;; of the network transition
matrix L equals 1. It follows that the number of fixed points of the network (5.1),
denoted by N,, equals the number of i for which £;; = 1. Equivalently,

N, =tr(L). (5.15)

5.3 Fixed Points and Cycles 109

Proof Assume that 83,1 is its fixed point. Note that L(Si,l = Col; (L). It is clear that
85,, is its fixed point if and only if Col; (L) = 55,, , which completes the proof. g

For ease of statement, if £;; = 1, then Col; (L) is called a diagonal nonzero col-
umn of L.

Next, we consider the cycles of the Boolean network system (5.1). Let k € Z .
A positive integer s € Z4 is called a proper factor of k if s <k and k/s € Z.
The set of proper factors of k is denoted by &?(k). For instance, & (8) = {1, 2, 4},
P(12) ={1,2,3,4, 6}, etc. Using a similar argument as for Theorem 5.2, we can
have the following theorem.

Theorem 5.3 The number of cycles of length s, denoted by Ny, is inductively deter-
mined by
Nl = NL‘?

tr(L*)—> e P(s) k Ny
s ’

(5.16)
N, = 2<s<2"
Proof First, if 85,, is an element of a cycle of length s, then LSSE,, = 83,1. From the
proof of Theorem 5.2 the ith column of L, denoted by Col,; (L), is a diagonal
nonzero column of L®, which adds 1 to tr(L*). Note that if 812‘,, is an element of a
cycle of length k € Z(s), then we also have L8k, = Slgn, and Coly (L®) will also
add 1 to tr(L*®). Such diagonal elements have to be subtracted from tr(L*). Taking
this into consideration, the second part of formula (5.16) is obvious.

As for the upper boundary of s, note that since x (¢) can have at most 2" possible
values, the length of any cycle is less than or equal to 2". g

Next, we consider how to find the cycles. If

(L) — Y kNg >0, (5.17)
ke P (s)

then we call s a nontrivial power.
Assume s is a nontrivial power. Denote by ¢ the (i, i)th entry of matrix L*. We
then define

Co={i|es; =1}, s=1,2,...,2",
and
D.=C [€f.
i€eP(s)
where C7 is the complement of C;.

From the above argument the following result is obvious.

Proposition 5.1 Let xo = 83,1. Then {xg, Lxo, ..., L xq} is a cycle with length s if
and only if i € Dy.

110 5 Topological Structure of a Boolean Network

Theorem 5.3 and Proposition 5.1 provide a simple algorithm for constructing
cycles. We give an example to illustrate the algorithm.

Example 5.3 Recall Example 5.1. It is easy to check that
(L") =0, <3,

and
(L") =4, 1>4.

Using Theorem 5.3, we conclude that there is only one cycle of length 4. Moreover,
note that

L*=84[13315773].

Each diagonal nonzero column can then generate the cycle. For instance, choosing
Z= 8%, we have

Lz=s, L*z=§, L'z=&, L'z=2z.

Using Algorithm 4.1 to convert the vector forms back to the scalar forms of A(¢),
B(t), and C(t), we have the cycle as (1,1, 1) — (1,0,1) — (0,0,1) - (0,1,1) —
(1,1, 1).

Next, we consider the transient period, i.e., the minimum number of transient
steps that leads any point to the limit set, £2, which consists of all fixed points and
cycles. First, note that L has only r := 2" x 2" possible independent values. Hence,
if we construct a sequence of r + 1 matrices as

L0= D, L, L% ..., L,

then there must be two equal matrices. Let rg < r be the smallest i such that L!
appears again in the sequence. That is, there exists a k > i such that L' = LK. More
precisely,

rg = argmin{Li € {LHl, L2 .. Lr}}. (5.18)

O<i<r
Then, such ry exists. The following proposition is obvious.

Proposition 5.2 Let ro be defined as in (5.18). Starting from any state, the trajectory
will then enter into a cycle after rq iterations.

For a given state xg, the transient period of xg, denoted by T;(xg), is the smallest
k satisfying x(0) = xo and x(k) € £2. The transient period of a Boolean network,
denoted by T3, is defined as

T[: max (Tl(.x))

VXGAzn

In fact, we can show that r is the transient period of the system.

5.3 Fixed Points and Cycles 111

Theorem 5.4 The ro defined in (5.18) is the transient period of the system, that is,
T; = ro. (5.19)

Proof First, assume that
L0 =potT (5.20)

and that T > 0 is the smallest positive number which verifies (5.20). By definition,
ro + T < r. We first claim that if there is a cycle of length ¢, then ¢ is a factor
of T'. We prove this claim by contradiction, as follows. Assume 7 (mod ¢) = s and
1 <s < t. Let xq be a state on the cycle. L0x(is then also a state on the same cycle.
Hence,

L'xg=L""Txg=LTL"xg=L*(L"x0) # L"xq,

which is a contradiction.

From (5.20) and the definition of 7; it is obvious that 7; < ry. To prove T; = rg
we assume that 7; < ro. By definition, for any x, LT x is on a cycle, the length of
which is a factor of 7. Hence,

Llix=LTLTix =1 Ty wvx. (5.21)
It is easy to check that if, for any x € Asn, (5.21) holds, then LT = LT+T | which
contradicts the definition of ry. O
Remark 5.4

1. According to Theorem 5.4 it is clear that ro < 2", because the transient period
cannot be larger than 2".

2. Letro = T; be defined as above and T > 0 be the smallest positive number which
verifies (5.20). It is then easy to see that T is the least common multiple of the
lengths of all cycles. For convenience, we call such a T' the cycle multiplier.

3. From the first and second items of this remark, it is easily seen that to find ro we
have only to check L* for s <rg-+ T and hence for

5 < 2n+1
Next, we consider when a network converges to one point.

Definition 5.5 A Boolean network is said to be globally convergent if its limit set,
£2, consists of only one fixed point. Global convergence is also called global stabil-

1ty.

Note that, by definition, the global convergence of a Boolean network means that
starting from any state, the trajectory of the network converges to the unique fixed
point.

The following result is a consequence of Theorems 5.2 and 5.3.

112 5 Topological Structure of a Boolean Network

Corollary 5.1 The system (5.1) is globally convergent if and only if one of the fol-
lowing equivalent conditions is satisfied.:

1. 1 is the only nontrivial power and

tr(L) = 1. (5.22)

(L) =1. (5.23)
3. The cycle multiplier T = 1.

Next, we give an example of global convergence.

Example 5.4 [22] Consider a system with state space 2" = 2. Using scalar form
(i.e., x; € {1, 0}), the system can be expressed in mod 2 algebra as

x(t+1)=Ax, (5.24)
where
1 0 0 01 0 0
01 1 0 0 00O
1 1.0 0 0 0O
A=[0 0 1 0 0 0 O
01 10 0 00O
0 0O0T1TT1TO0O0
|01 1.0 1 1 0]

Equivalently, we have

x1(t+ 1) =x1(t)Vxs(t),
x2(t +1) = x2()Vxa(t),
x3(t+ 1) =x1(1)Vxa (1),
x4(t +1) =x3(1), (5.25)
x5(t + 1) = x2()Vx3 (1),
x6(t + 1) = x4()Vxs(1),

x7(t+ 1) = x2(0)Vx3(t) Vx5 () Vxe(t).

Recall that the structure matrix of V is

M0110
P71 0 0 1|

5.3 Fixed Points and Cycles

Using this, we obtain the componentwise algebraic form:

Multiplying together yields

where

L=My(L®(LeMy(Lh®(LeM,(L®(LeMx(L®(L]M,

x1(t+ 1) = Mpx1(t)xs5(),
xo(t +1)=Mpxa()x3(1),
x3(t+1)=Mpx1()xa(1),
x4(t + 1) =x3(2),

xXs(t + 1) = Mpxa(t)x3(1),
x6(t + 1) = Mpxa(t)xs(1),

x7(t 4 1) = My xa(£)x3(1)x5(1)x6(1).

x(t+1)=Lx(1),

113

(5.26)

(5.27)

(L@ (L®My(L® (L MM,Mp)))))))))))Us @ W) (s @ Wpap)
(I ® W) (14 @ Wi (16 ® Wi21) (Is @ W) (128 @ Wiap)

(o4 ® W21) (132 @ W) (116 ® Wi21) (12048 ® Wi21) (11024 ® Wi2))
(Is12 @ W21 (1256 ® Wi21) (T128 @ Wi (Tss @ W21 (132 ® W)
(Isa ® W21) (1256 @ Wp21) (1128 @ W) (Is12 @ Wiap) (1256 @ Wi21)

(13096 @ Wi21) (12048 @ W21) (1024 ® Wi (U512 @ Wi2p) (L2048 @ W2p)
(11024 @ Wi21) (L4096 ® W21 (13192 ® W) (16384 @ Wi)) M,
(12 ® M, M, M, (I, ® M; M, M, (1> ® (I ® M, M,)))).

This can be calculated as

8128[120 120 119 119
55 55 56 56
89 89 90 90

2

2

1

1

112 112 111 111

47
38
74
19
84
62

47
38
74
19
84
62

48
37
73
20
83
61

48

53
91
28
65
45
40

53
91
28
65
45
40

54
92
27
66
46
39

54 118 118 117 117
92 26 26 25 25
27 67 67 68 68
66 4 4 3 3
46 110 110 109 109
39 101 101 102 102

37103103104 104 11 11 12 12
9 9 10 10 76 76 75 75
20 82 82 81 81 17 17 18 18
64 64 63 63 125125126126
61 127 127 128 128].

73

83

114 5 Topological Structure of a Boolean Network

Fig. 5.2 The dynamic graph o—
of (5.24) T

It is then easy to calculate that the smallest repeating power ro = 7 and that L7 = L8,
That is, the transient period 7; = 7 and the cycle multiplier T = 1. According to
Corollary 5.1 the system (5.24) is globally convergent.

To find the fixed point, which is the global attractor, we can check L to find
the ith column Col; (L) satisfying Col; (L) = 5?28' The only solution is i = 128.
8138~ (0,0,0,0,0,0,0), which is the fixed point.

We will call the state-space graph of a network the dynamic graph. It is also
called an iteration graph [22].

The dynamic graph of the system is shown in Fig. 5.2 [22].

Further consideration of Example 5.4 may be rewarding. Recall system (5.27).
x7 does not appear in the dynamics of any variable. We call such a variable the
following-up variable. It is easy to see that in a network, the following-up variables
do not affect the structure of the attractors. Finding a cycle for the remaining system
and calculating the corresponding values of the following-up variables for each state
on the cycle, we have the corresponding overall cycle.

5.3 Fixed Points and Cycles 115

Now, for a linear mod 2 system, the coefficient matrix always coincides with its
incidence matrix. So, we can check A. If we remove the last row (equation of x7), we
can see that xg becomes a following-up variable. If we remove it, then x4 becomes
a following-up matrix. We conclude that the subsystem of xp, x2, x3, x5 determines
the cycles of the original system. This subsystem is

x1(t+ 1) =Mpx1(t)xs(1),
x2(t + 1) = Mpxa(£)x3(2),
x3(t+ 1) =Mpx1(t)x2(2),
xs(t+1) = Mpxa(t)x3(2).

(5.28)

Its network transition matrix is

L=My(L®(LeM,(L&(LeM,(L® (e M,M,)))))Us® Wg2)
(U4 @ W2 (I2 ® W) (U @ W2 (I16 ® W) (s @ Wi2)) (I16 ® W21)
(I32 @ WM, (L @ M, (I, ® M,)).
L, it follows, is

L=466[1681139114661419311816].

Moreover, the transient period 7; = 4 and the cycle multiplier is 7 = 1. We also
conclude that the system is globally convergent.
From the above argument we arrive at the following result.

Proposition 5.3 Assume the incidence matrix of a network X (with possible re-
ordering of the variables) is expressed as

_|A1 O
S(D) = [A2 AJ,
where A3 is a strictly lower triangular matrix (i.e., lower triangular matrix with

zero diagonal elements). The structure of the limit set is then exactly the same as
that of the subsystem consisting of first block variables.

Before concluding this section, we consider the basin of each attractor. Define

k
2= U Ci s
i=1
where {C; |i =1, ..., k} is the set of attractors. We give the following definition.

Definition 5.6

1. §; is called the basin of attractor C; if S; is the set of points which converge
to C;. More precisely, p € S; if and only if the trajectory x (¢, p) with x(0, p) = p
satisfies x (¢, p) € C; fort > T;.

2. g is called the parent state of p if p =x(1, q).

116 5 Topological Structure of a Boolean Network

Remark 5.5
e Let C C Apn and let
L™'(C)={q|LqeC).

The set of parent states of p is then L~ (p).
o Ay = Uf'(:l S;. Moreover, since {S; |i =1, ..., k} are disjoint, it is a partition of
the state space 2 = Agn.

An alternative way to describe basins is as follows. Consider the system (5.9).
Let p € 2. Define the descendant set of p as

Des(p) = |q | for some k > 0,q = L*p}.
Next, if Des(p) N Des(q) # ¥, p and g are said to be equivalent, denoted by p ~ ¢.

It is then easy to see the following:

e ~ is an equivalence relation. If we denote the equivalence class of p by [p], that
is,

(pl={qlq ~ p},

then {[p]| p € 2"} is a partition of 2. That is, either [p] = [¢] or [p] N [¢] = @.
e In this partition, each component contains exactly one attractor. Therefore, each
component is the basin of the unique attractor contained in it.
e For an attractor C, let p € C. Its basin is then [p].

What remains to investigate now is how to find S;. We start from each point
p € C;. If we can find its parent states L~'(p), then, for each point p; € L™!(p),
we can also find L~!(p1)- Continuing this process, after 7; iterations, we obtain a
tree of states which converge to p. Summarizing the above arguments, we have the
following result.

Proposition 5.4
Si=C UL N (CHUL2(CHU---UL™T(Cy). (5.29)
Finally, let us consider how to find L™ (p). It is easy to verify the following.
Proposition 5.5

L™'(p) = {83,] Col, (L) = p),
! (p)={) | Col; (L) P} (5.30)

L~*(p) = {83,1Col; (L) = p}, k=2,....T.

5.3 Fixed Points and Cycles 117

Fig. 5.3 The dynamic graph (1,0,0) — (0,0,0) — (0,1,0) — (0,1,1) —> (1,1,1)
of (5.2)

(1,1,0)— (0,0,1) < (1,0,1)

Example 5.5 Recall Example 5.1. It is easy to check that ro =3 and
LP=L"=6&[51157331].

We then have the transient period 7; = 3. Using Propositions 5.4 and 5.5, we may
choose any point p € C, where C is its only cycle, to find L~!(p), L=2(p), and
L7 (p).

For instance, suppose we choose p = (0,1,1) ~ 83. We can then see two
columns, Colg(L) and Col;(L), equal to p. Therefore, SS ~(0,1,0) and 5; ~
(0,0, 1) form L] (p). However, (0, 0, 1) is on the cycle, so we are only interested
in p; =83 ~ (0, 1, 0). Now, since only Colg(L) = py, we have L~ (py) = {85}. Let
p2 =388 ~(0,0,0). Only Cols(L) = p,, so we have p3 := 8§ ~ (1,0,0) € L~ (p).
Thus, we have a chain p3 — p» — p1 — p. If we choose ¢ = (0,0, 1) ~ 8/,
then Coly(L) = Col3(L) = ¢g. Since 8; ~ (1,0,1) is on the cycle, we choose
q1 = 8§ ~ (1,1,0). It is easy to check that L_l(ql) = ¢J, and we have no more
parent states. Finally, we obtain the dynamical graph of the network in Example 5.1
as in Fig. 5.3. (Note that we only use L~! here. The iterative calculation provides
the whole tree. If we need only the basins S;, then the L% are convenient.)

In the following we consider some examples from the literature to show that the
aforementioned method is universally applicable.

Example 5.6 [26] Consider the following Boolean network:

A +1)=A@) Vv B(@),
B(t+1)=A@t) A B(t).

(5.31)

It is easy to calculate that
x(t+1) = MjABM.AB

= My(I4 ® M) AWz AB?

Ma(Is @ Mo)(Ih ® W) M AM, B
= Mg(I4 @ M) (I @ W) M, (In @ M,)x(t)
= Lx(1).

L can be calculated as

L =064[1224].

118 5 Topological Structure of a Boolean Network

It follows that tr(L) = 3, so the system (5.31) has three fixed points: (Si ~ (1, 1),
83 ~ (1,0), and 8§ ~ (0,0). Since L? = L, ro = 1. Finally, for x = 8] ~ (0, 1),
Lx = 8‘% ~ (1, 0). We conclude that the state-space graph of the system (5.31) con-
tains three components: two fixed points, (1, 1) and (0, 0), and a length-2 cycle,

{0, 1), (1,0)}.
Example 5.7 [8] Consider the following Boolean network:

At+1)=B@)C(),
Bit+1)=1VAQ), (5.32)
C(t+1)=B(@®).

It is easy to calculate that

x(t+1) = M.BCM,AB
= M.(I; ® M,)BCAB
= M:(I4 @ M)W, 44/ABCB
= Mc(14 ® M) W2,4/ABW (2 BC
= M:(I4 @ M)W 4114 ® W21))AM, BC
= M:(14 ® Myp)W2,41(14 @ W2 (12 ® M,)x(t)

= Lx(1).
L follows immediately as
L=063[37881566].
We then have
(LX) =0, k=1,2,3,4,

and

L3 =83[13335688],
tr(LS) =5.

Choosing any diagonal nonzero column of L>, e.g., x = (Sé ~(1,1,1), we can gen-
erate a length-5 cycle x — Lx — L?>x — L3x — L*x — L3x = x, where Lx =
83~ (1,0, 1), L2x = 6§ ~ (0,0, 0), L3x =85 ~ (0, 1,0), L*x =83 ~ (0,1, 1), and
Lix =8~ (1,1,1).

5.4 Some Classical Examples 119
(1,1,0) = (0,0,1) = (0,1,0) — (0,1,1) — (1,1,1) — (1,0,1) — (0,0,0) < (1,0,0)

Fig. 5.4 The dynamic graph of (5.32)

It is easy to check that rp =2 and L? =L’ That is, T; =2. Since T =5, there
are no cycles of length greater than 5. If we choose z = 8% ~ (1, 1,0), then

Lz=28]~(0,0,1), L?7=85=L’x.
If we choose y = 8§ ~ (1,0, 0), then
Ly=488=Lx.

The dynamic graph is shown in Fig. 5.4, which coincides with the one in [8].

5.4 Some Classical Examples

In this section we revisit some examples which have been previously investigated
in the literature. Compared with known results, it is evident that the approach intro-
duced in this chapter is universal and precise.

The following example is the Boolean model of cell growth, differentiation, and
apoptosis (programmed cell death) introduced in [13] and reinvestigated in [8].

Example 5.8
AG+ D) =K@ VK@) AH®@),
Bd+1)=A@)VAQ@) AC(1),
Ct+1)=1YD@)V D) A1),
Dit+1)=J@)AK(),
Et+1)=1VYCEHVC@E)AF(),
Fit+1)=E@)VE(@) AG(), (5.33)
G(t+1)=1VB@t)ANE(),
Ht+1)=F@®)VF(@t) AG(),
I+ 1)=H@)VH@) A1),
Je+1)=J@),
Kt+1)=K().

Note that

AV (AAB)=—(A— B).

120 5 Topological Structure of a Boolean Network

This formula is used in the sequel to simplify the expression. First, we convert (5.33)
into componentwise algebraic form as

A(t+1)=M,M;K()H(1),

Bt +1)=M,M;A(t)C(t),

Cae+1)=M;Dn)I{),

D+ 1)=MJ(K (),

E@t+1)=MCOF@),

Ft+1)=M,ME(@®)G(1), (5.34)
Gt+1)=M,M.B@)E(),
H@+1)=M,MF(@)G(t),
It+1)=M,MH@)I),

J+1)=J@),

K@+1)=K(@).

It is easy to calculate the structure matrix L as
L=MM(L® (L MM (L®(LeM(L®(L®M(L® (L M(L®
(L®MM; (I ® (I, ® MyMc(® (b ® My M; (I ® (I, ®
M. MO)))))))))))))) L2 @ W) Wiay(Ta0as @ Wiap) (T1024 @ Wiap)
(Is12 @ W2 (T2s6 ® Wi21) (1128 ® Wi2)) (les @ Wi2p) (132 @ Wi2))
(I16 @ W2 Is ® W) (s @ W2 (12 ® Wi (g @ Wiz (14 ® Wiop)
(1256 ® W21) (1128 @ W2 (Tea @ Wi21) (132 ® W2)) (T16 @ W2 (Is ® Wiz))
(132 ® W21) (116 @ W2 (11024 ® W2 (Is12 @ Wiz (256 @ Wi2p)
(1128 ® W2 (Tea @ Wi21) (132 ® Wi2p) (14096 © Wi21) (12048 @ Wi2))
(11024 @ W21 Us12 @ Wp2p) (I256 @ W) (1128 ® Wiap) (Tes @ Wp2p)
(12048 @ W21 (11024 ® W21 (Is12 @ Wpap) (I2se @ W) (1128 @ Wiap)
(I3192 ® W2)) (11096 ® Wi21) (12048 @ Wi21) (11024 @ Wi2p) (Is12 @ Wia))
(1256 ® Wi21) (Ig192 @ Wi21) (14096 @ W2p) (12048 ® Wi2p) (11024 @ W2)
(Is12 @ W21 (16384 @ W21 (18192 ® W21) (1096 @ Wi21) (12048 @ Wiop)

(11024 @ Wi21) (T2048 @ W21) (132768 ® Wi2)) (16384 @ Wi21) (Ig192 @ Wi2))

5.4 Some Classical Examples 121

(12006 @ W21) (8192 ® W21) (ss536 @ W21) (132768 @ W21) (116384 @ Wi2))
(132768 ® Wi2) (1131072 @ Wi21) (Iss536 ® W) (I ® (I @ M (I ® (12 @ M,

(L® M, (L®M:(L®M:(L®M (L ® ML ®M:M))))))))))-

Since this is a 2'! x 2! matrix, it is too long to display here, even in condensed
form. However, it can be easily stored in a computer. It is then easy to calculate that

tr(L) =3, tr(L%) = 12,

and that there are no other nontrivial powers. We conclude that there are only three
fixed points and one cycle of length 9. Finding diagonal nonzero columns of L and
L?, respectively, it is easy to deduce that the three fixed points are

E;=(1,0,1,0,0,0,1,0,0,0, 1),
E»=(0,0,1,0,0,0,1,0,0,1,0),

E;=(0,0,1,0,0,0,1,0,0,0,0).
The only cycle of length 9 is

1,1,0,1,1,1,0,1,0,1,1) - (0, 1,0,1,1, 1,0, 1,1, 1, 1) —»
0,0,1,1,1,1,0,1,0,1,1) - (0,0,0, 1,1, 1,1, 1,1, 1, 1) —
,o0,1,1,1,0,1,0,0,1,1) - (1,0,0,1,0,0,1,0,0,1,1) —
{l4,1,0,1,1,0,1,0,0,1,1) - (1,1,0,1,1,0,0,0,0, 1, 1) —
1,1,0,1,1,1,0,0,0,1,1) - (1,1,0,1,1, 1,0, 1,0, 1, 1).

The minimum power for repeating L¥ is L'® = L%, so the transient period T; = 10.

Remark 5.6 It was shown in [13] that a nontrivial growth attractor exists. Our
result shows that there are exactly three fixed points and one cycle of length 9.
As J =K = D =1, both [13] and [8] showed that the cycle exists. Our re-
sult agrees with this. In the case of / = K = D =1, it is easy to check
that the transient period is still 7; = 10. [8] claimed that 7; < 7, but this is
incorrect. Consider x(0) := xo = (0,1,1,1,1,0,0,0,0, 1, 1). It is easy to cal-
culate that x(10) = (1,0,0,1,0,1,1,0,0, 1, 1), which is not in the cycle, and
x(1)=(1,1,0,1,1,0,1,0, 0, 1, 1), which is in the cycle. Thus, T;(xp) = 10.

The following example is from [9] and was reinvestigated in [11].

122 5 Topological Structure of a Boolean Network

Example 5.9 Consider the following system:

At+1)=1VC@)VF@)VC(t)AF(1),

B(t+1)=A(@),

Cit+1)=B(),

Dt+1)=1VCHVFOVIEHVCH) AF@)VC(E)AI(t)
VFE®) NIV C@E)AF (@) AL,

(5.35)
Et+1)=D(),
Ft+1)=E@),
Gt+1D)=1IVF@O)VIE)VF@)ANI{®),
Ht+1)=G(@),
It+1)=H(@).
The componentwise algebraic form of the above equation is
At +1)=M,M,CF,
Bit+1)=A,
Cit+1)=B,
D(t+1)=M>M,IM,CM,F,
E(t+1)=D, (5.36)
F(t+1)=E,
Gt+1)=M,M;F1I,
H(+1)=aG,
It+1)=H.

Let x(t) = A() B&)C(t) D) E(t) F(t)G(t)H (1) (t) and x(+ 1) = Lx(¢). Then,

L=MMi(L®(L® (L& (L®MMMy(lh®M(lh® M (L (L®
(L, ® M,My))))))))) U2 @ Wiap) Wizj(Is ® Wiz (12 @ Wiap) (T1s ® Wiap)
(I3 ® Wi2)) (Tea @ Wiap) (132 @ Wiap) (116 ® W2p) (1128 @ Wi2)) (Tea @ Wi2))
(132 ® Wi2)) (1128 ® Wi2)) (1256 @ Wi2p) (11024 ® Wi2)) (I512 @ Wi2))
(Ia048 ® W) (11024 @ W) (2 ®@ (L@ M, (12 ® (12 ®

(L@ MM, (L® (L® (I ® M))))))))-

123

5.4 Some Classical Examples

The nontrivial powers are tr(L?) = 4 and tr(L® = 64). It follows from Theo-
rem 5.3 that there are only two cycles of length 2 and ten cycles of length 6. Search-

ing diagonal nonzero columns of L? yields

(1,0,1,1,0,1,1,0,1) - (0, 1,0,0,1,0,0, 1,0) — (1,
1,0,1,0,0,0,0,1,0) — (0,1,0,0,0,0,1,0,1) — (1,

Searching diagonal nonzero columns of L° yields

a,1,1,1,1,1,1,1,1) - (0,1,1,0,1,1,0,1,1) - (0,0, 1,0,0,1,0,0, 1) —

7070)%(17070519070’11070)%(1117071’110717170)%

1D,

0,0,0,0,0,0
1,1,1,1,1,1

’
s

©
¢!

(1,1,1,1,1,0,1,1,0) - (0,1,1,0,1,1, 1,1, 1) - (0,0, 1,0,0, 1,0, I, I) —

,0,1)— (1,0,0,0,0,0,0,0,0) - (1,1,0,1,0,0,1,0,0) —

1,0,

0

1

’

0
0

’

0

50’07
1,1, 1

0

1

©,

,

3

’

’

El

’

(1,1,1,1,0,1,1,0,1) - (0,1,1,0,1,0,0,1,0) - (0,0,1,0,0,1,1,0,1) —

(1,0,1,1,0,1,1,1,1) - (0, 1,0,0,1,0,0, 1, 1) - (1,0, 1,0,0,1,0,0, I) —

,0,00—~ (1,0,1,1,0,0,1,0,0) - (0,1,0,0,1,0,1,1,0) —

{14,0,1,1,0,0,1,1,0) — (0,1,0,0,1,0,1,1,1) - (1,0,1,0,0,1,0,1,1) —

,0,0,1)—(1,0,1,0,0,0,0,0,0) - (0, 1,0,0,0,0,1,0,0) —

,1,1,0).

0
0

’
’

0
0

1,0,0,
0,1,1,

’
’

©
¢!

L°. Thus, T, = 3.

Finally, we can calculate that the first repeating L¥ is L3

124 5 Topological Structure of a Boolean Network

Remark 5.7 In [11] it was shown that there are no fixed points and that there
are two cycles of length 2. Our results concerning fixed points and cycles of
length 2 coincide with those of [11]. Heidel et al. [11] pointed out only six
cycles of length 6, but according to our result there are exactly ten cycles of
length 6.

5.5 Serial Boolean Networks

The Boolean network defined by (5.1) is called a parallel Boolean network. Most
Boolean networks discussed in this book are of this class. Sometimes, though,
we may need to update the elements in a serial way. Consider the following sys-
tem:

x1(t+ 1) = f1(x1(@), x2(8), ..., xp—1(2), X, (1)),

X+ 1) = frlx1(t+1),x200), ..., x0—-1(8), x,4(2)),
(5.37)

X+ D= foxi(t+ D, X014 1D, 2 (0)).

Here we update x first, then use the updated x; to update x;, then use the updated
x1 and x» to update x3, and so on. Such a Boolean network is called a serial Boolean
network.

We now give an example of a serial Boolean network.

Example 5.10 Consider a game with n players, denoted by Py, ..., P,. Each player
has two possible actions, denoted by Z = {0, 1}, and the next action of each player
depends on the current actions of all players. Denote the strategy of player i by f;.
Then, f; is a Boolean function of the current actions xi,...,x, of the players
P1, ..., P,. If the game is played by all players simultaneously, then the dynam-
ics of the strategies can be described by (5.1). However, if it is played one-by-one,
that is, P; plays first, then P,, and so on, then the strategy of P, depends on an
updated x; and not updated x», ..., x,, and so on. The dynamics of the strategies
are then described by (5.37).

It is easy to prove the following result.

Proposition 5.6 Assume that the systems (5.1) and (5.37) have the same logical
functions fi,i =1,...,n. They then have the same fixed points.

In general, the systems (5.1) and (5.37) have different cycles, as shown by the
following example.

5.5 Serial Boolean Networks 125

Example 5.11 Consider Example 5.2, which is a continuation of Example 5.1. Now,
if we convert (5.3) into a serial network, we have

At +1)=B@) AC(2),
B+ 1)=—A(@+1), (5.38)
Ct+1)=B@+1)VvC().

Plugging the first equation into second yields
B(t+1)==(B(t) AC(t)) =—=B(1) vV =C(1).
Replacing the B(z + 1) in the third equation with this expression, we have
Ct+1)==-B@)v-C@)vC(@) =1.
Collecting these together, we have

A(t+1) =B ACQ),
B(t +1)=—B@t) VvV -C@), (5.39)
Cit+1)=1.

It is easy to deduce that there is a length-2 cycle of (5.39) and hence (5.38), which is
(1,0,1) - (0,1, 1) — (1,0, 1). Comparing this with the cycle obtained in Example
5.2, we see that they are different.

Note that the above example shows how to convert a serial Boolean network
into an equivalent parallel Boolean network. Therefore, if we are only interested
in their topological structures, we do not need a special tool to deal with serial
Boolean networks. However, for optimization, etc. (in game theory, for instance)
they are quite different. The terms “parallel” and “serial” come from their cycle-
based realizations in automata theory.

We can, of course, have a serial-parallel model. Usually we use a partition with
ordered subsets to describe this. Suppose we have a six-node network. We may
have nodes 1, 2, and 5 updated first, then nodes 3 and 6, and, finally, 4. The ordered
partition becomes ({1, 2, 5}, {3, 6}, {4}). The system of dynamic equations becomes

x1(t+ 1) = filer (@), x2(2), x3(1), x4(1), x5(1), x6(1)),

X2t +1) = fo(x1(2), x2(2), x3(2), x4(1), x5(1), x6(1)),

xs(t+1) = fs(x1(2), x2(2), x3(8), x4(2), x5(2), x6(1)),

x3(t+ 1) = f3(c1(t + 1), x2(t + 1), x3(), x4(1), x5(t + 1), x6(2)),

xe(t + 1) = folx1(t + 1), x2(t + 1), x3(2), x4(1), x5(t + 1), x6(2)),

xX4(t +1) = fa(xp(t + 1), x2(+ 1), x3(¢ + 1), x4(2), x5(t + 1), x6(t + 1)).

It is obvious that Proposition 5.6 remains true for serial-parallel Boolean networks.

126 5 Topological Structure of a Boolean Network
5.6 Higher Order Boolean Networks
In this section we consider higher order Boolean networks. This is based on [19].

Definition 5.7 A Boolean network is called a pth order network if the current states
depend on length-u histories. Precisely, its dynamics can be described as

x4+ D) =fix1t—pn+1),....x,t —p4+1),...,x1(), ..., x,(2)),
t+D) =L@ —pn+1),. .., x,¢—pn+ 1D, ..., x1(1), ..., x,(2)),

X+ D) =frx1t—p+1D,...,x,¢—p4+1), ..., x10),...,x,(2)),
t>p—1,
(5.40)
where f; : 7" — 2,i =1, ...,n, are logical functions.

Note that, as for higher order discrete-time difference equations, to determine the
solution (also called a trajectory) we need a set of initial conditions

xi()=ajj, i=1,...,nj=0,...,u—1. 541

We give an example to illustrate this kind of system. It is a biochemical network
of coupled oscillations in the cell cycle [9].

Example 5.12 Consider the following Boolean network:

!A(: +3)==(A() A B(t + 1)), 5.4
Bt +3)=—(A + 1) A B(1t)).
It can be easily converted into the canonical form (5.40) as
iA(t+ 1) = =(A(t —2) A B(t — 1)), 5.4
B(t+1)==(A@t —1)AB(—2), t>2.

This is a third order Boolean network.

The second example comes from [20]. We refer to Example 2.5 in Chap. 2 for a
detailed description of the Prisoners’ Dilemma and to Chap. 18 for background on
game theory.

Example 5.13 Consider the infinite Prisoners’ Dilemma. Assume that player 1 is a
machine and player 2 is a human. Set the strategies as follows:

0: the player cooperates with his partner,
1: the player betrays his partner.

5.6 Higher Order Boolean Networks 127

Denote by {x(0), x(1), ...} the machine’s strategy and by {y(0), y(1), ...} the
human’s strategy. Assume the machine’s strategy, f;,, depends on pu-memory. The
machine’s strategy can then be described as

XU+ 1) = fru(xC —p+ 1), yt —p+1), ..., x@1), y(@)). (5.44)

It was proven in [20] that the human’s best strategy, fj,, can be obtained by also
using p-memory. That is,

Y4+ = fi(x — 41,y —p+1),...,x@1), y1)). (5.45)

Putting these together, we have a uth order Boolean network:

x@+1D=foux@t—pn+1D,yt—pn+1),....,x@0), y1),
ye+1D)=frx@—pu+1D,y¢—pu+1),...,x@),y1).

(5.46)

These two examples will be revisited later.

As with standard Boolean networks, we have to explore the topological structures
of higher order Boolean networks. Since the trajectories of a uth order Boolean
network depend on p initial values, we need rigorous definitions for cycles and/or
fixed points.

Definition 5.8 Consider the system (5.40). Denote the state space by

2 ={X|X=(x1,....xo) € D"}.

I Let Xi = (xi,...,x0), X/ = (x],...,x}) € 2. (X', X/),is said to be a directed
edge if there exist X/« =1,..., u — 1, such that X, X/, {XJo} satisfy (5.40).
More precisely,

x]{:fk(le,ij,.-qu’klei)’ k=1,...,n.

The set of edges is denoted by & € 2" x 2.

2. (X', X2, ..., XY iscalled a path if (X!, XIT) e &, i=1,2,...,4—1.

3. Apath (X!, X%, ...) is called a cycle if X!*¢ = X’ for all i, the smallest such ¢
being called the length of the cycle. In particular, a cycle of length 1 is called a
fixed point.

A standard Boolean network can be expressed formally as a higher order Boolean
network with order = 1. Hence, Definition 5.4 is a special case of Definition 5.8.

As with a standard Boolean network, to explore the topological structure of a
higher order Boolean network we will first try to convert it into its algebraic form.
In the following we will discuss two algebraic forms of (5.40).

128 5 Topological Structure of a Boolean Network
5.6.1 First Algebraic Form of Higher Order Boolean Networks

Using vector form, we define

x(t) = D(;l 1Xi (1) € Apn,

t+u 1

2(0) =< x(i) € Ay, 1=0,1,....

Assume the structure matrix of f; is M; € £ «oun. We can then express (5.40) in its
componentwise algebraic form as

xit+D)=Miz¢t—u+1), i=1,...,n,t=p—1L,u,u+l1,.... (547
Multiplying the equations in (5.47) together yields
x@+1D)=Loz(t—pu+1), t>pu, (5.48)
where
Lo= My x'i_ [(Iun @ Mj)®]- (5.49)

Note that the L here can be calculated with a standard procedure as was used
before, and we refer to (4.6) for the definition of @;. Using some properties of the
semi-tensor product of matrices, we have

2+ 1) = w0 x()

= (Ea)" {27 @) (Lo %2 x(0)
= (Eq)"(Iywn ® Lo)Ppun %1t ™" x(0)
= Lz(1), (5.50)
where
E;=58[1212], L= (Eg)"(Ioun ® Lo)P . (5.51)

Equation (5.50) is called the first algebraic form of the network (5.40). We now give
an example to illustrate it.

Example 5.14 Consider the following Boolean network:

A+ 1)=C@—1)Vv(A@®) A B(1)),
Bt+1)==(C(t—-1)AA@)), (5.52)
Ct+1)=B(t—1)AB(t).

Using vector form, we have

At + 1) = MsC(t — H)M.A(t)B(1),
Bt+1)=M,MC(—1)A(1), (5.53)
C(t+1)=M.B(t — 1)B(®).

5.6 Higher Order Boolean Networks 129

Let x(¢t) = A(t)B(t)C(¢t). Then, (5.53) can be converted into its componentwise
algebraic form as

A+ 1) =M x(t — Dx(),
B(t+1)=Mpx(t — 1)x(¢), (5.54)
Cit+1)=Mzx(t —1)x(),

where

My=611111111112222221111111111222222
11111111112222221111111111222222],

My=464[22221111111111112222111111111111
222211111r11111112222111111111111],

M3z=064[11221122112211222222222222222222
11221122112211222222222222222222].

Multiplying the three equations in (5.54) together yields
x(t+1)=Lox(t — Dx(1), (5.55)

where

Lp=48g[33441122116655664444222222666666
33441122116655664444222222666666].

Setting z(t) = x(t)x(t + 1), t > 1, we finally have

2t4+1) =x@+Dx(+2)
= (Eq)*xx(t + Dx(t +2)
= (Eq)*x(1)x(t +) Lox(t)x(t + 1)
= (Eq)*(Iys ® Lo)®ex (H)x(t + 1)
= Lz (1), (5.56)

where

L =6864[31120283341505819 223037455462
4122028 344250582 102230384654 62
31120283341505819 223037455462
4122028 344250582 102230384654 62].

(5.57)

In fact, we can prove the two Boolean networks have the same topological struc-
ture, including fixed points, cycles, and the transient time, which is the time for all
points to enter the set of cycles. Therefore, the first order Boolean network (5.50)
provides all such results for higher order Boolean networks (5.48). We prove this in
the form of the following result.

130 5 Topological Structure of a Boolean Network

Lemma 5.2 There is a one-to-one correspondence between the trajectories of

(5.48) and the trajectories of (5.50).

Proof Denote the sets of trajectories of (5.48) and (5.50) by T, and T, respectively.
Note that a trajectory is completely determined by its initial values. Now, because of
the order, each trajectory of (5.48) depends on {x(0), x(1),...,x(x — 1)}, and each
trajectory of (5.50) depends on z(0). Setting z(0) = x fi ;le(i), we have a one-to-one
correspondence between 7, and 7. 0

Define a mapping ¢ : Ty — T, which maps each trajectory in T, with initial
value {x(0),x(1),...,x(u — 1)} to a trajectory in 7, with initial value z(0) =
l><f.‘=701x(i). Then, ¢ is bijective. It is easy to see that there are 2K trajectories of
each system, and we write

T,={g|i=1.2,....2""}, T.={§|i=12,..2"}

1

Denote the sets of cycles of (5.48) and (5.50) by £2, and 2., respectively. Here,
a fixed point is considered as a cycle of length 1. Note that for a Boolean network,
each trajectory will eventually converge to a unique cycle. The cycle to which £* €
T, (resp., £¢ € T,) converges is then denoted by C(£¥) [resp., C(£7)].

Now, for each &* € Ty, we have C(§¥) € £2, and for ¢(£*) € T, we have
C(¢(&Y)) € £2,. Using this relation, we define ¢ : C(§*) — C(¢(£¥)) by

V(C(£7)) = C(¢(57))- (5.58)

Lemma 5.3

1. Let ¥ € Ty be £ ={x(0), x(1),...}. Then,

£ = (%) = {2(0) = < x (@), 2(1) = X/ x (D), ...). (5.59)

2. Let &£* converge to a trajectory {x(t), x(t + 1), ..., x(t + o) = x(t)}. Then, £* =
@ (EY) converges to a trajectory {z(t), z(t + 1), ..., z(t + @) = z(t)}, where
2 = w27 x),
2t 4+ 1) =1 x (),
. i=t+1 (5.60)

t+atu—1_ . =1 .
2t 4 o) = x0T x (@) = %G X () = 200).

3. ¥ : 82, — §2, is a one-to-one and onto mapping.

Proof 1. (5.59) follows directly from the definition of z().

2. To see that the elements in (5.60) constitute a cycle, since we have z(¢) =
z(t + «), it is enough to show that the elements of {z(¢),...,z(t + o« — 1)} are
distinct, i.e., C; :={z(¢),...,z(t + @ — 1), z(t + @) = z(¢)} is not a multifold cy-
cle. This follows as it can easily be shown that if the set {z(¢),...,z(t + o« — 1)}

5.6 Higher Order Boolean Networks 131

has duplicated elements, then so does {x(t),...,x(# + o — 1)}, contradicting the
assumption that C, = {x(¢), ..., x(t +a — 1),x(t + @) = x(¢t)} is acycle.

3. Since the mapping v is defined via each trajectory, we must first show that it
is well defined. That is, if the /trajectories &* and S"/ determine the same cycle in
2y, then Y (C(§%)) =¥ (C(EY)).

Let the cycle determined by £* be {x (), x(t + 1),...,x(t + «) = x(¢)}. Using
(5.60), we obtain

2(t) = %! i),
2+ 1) = xtifo(i),

Z(t+a)_) O e (i) =)T (i) = 2(0).

Since E", determines the same cycle, there is a constant a € Z, 0 < a < «, such
that

X)) =x@t+a),
x.’(t +a—a)=xt+a)=x(1),

X' (t+a)=x¢+a).
By (5.60), we have

(r)-x“" /(i) = xR () = 2(t +),

t k—1 t k—1_ -
(t+a_a)_ [><z+(tx+ozl+a X' (i) = l+(lX:_01 x(@) =z(1),

2t + o) = w T () = T () = 200+ a).
That is, ¥ (C (%)) = 1//(C($x/)). Hence, ¢ : 2, — £2; is a well-defined mapping.
Next, we will prove that v is injective. That is, if the trajectories £* and &*

determine the same cycle in £2;, i.e., ¥ (C(£¥)) = 1//(C(§"/)), then C(§*) € 2, and
C(&Y) € £2, are the same.

Now assume that £¥ converges to a cycle {x'(¢), ..., x'(t + &) = x/(r)}, which

determined the same cycle as £*. Precisely, ¢ (C (¢ x,)) =¢(C(&Y)) € £2,, which has
elements as in (5.60). It follows that

xEZox'(t +1) € p(C(EY)).

Hence, there exists a 0 < i < « such that

X lx(t~l—z)—z(t+u).

132 5 Topological Structure of a Boolean Network
According to the definition of ¢, we have
)EZox (i) =zt +),

f X (o — i) =zt + o) =z(0), (5.61)

)Xt +a—1+i)=z(t+p—1),

)EZax'(t + o +1) = 2(t +).

Since z(t) = |>< x(t + i) can uniquely determine all {x(r +i)|i =0, ...,k — 1},
(5.61) implies that

X)) =x@t+w),
)é/(r +a—p)=x(@1), (5.62)

)é/(t+a—1):x(t+u—1).

That is, C(£*) and C (& x/) are the same cycle. Therefore, ¥ is a one-to-one map-
ping. Finally, we have to prove that v is surjective. To see this let C, := {z(¢),
zZt+1),...,z2(t + o) = z(t)} € §2;, where

Z(t+1)—|>< x(t—l—l—i—]) i=0,1,...,«
It follows from z(z) = z(t + «) that x(z) = x(t + «). Moreover, it is easy to see
that the elements of {x(¢),x(t + 1),...,x(+ « — 1)} are distinct. Hence, Cy :=

x@®,xt+1D,....x¢t+a—1),x(t+a)=x(1)} € 2, and Yy (Cy) =C;. O

To construct the inverse mapping ¥ ! : 2. — £2,, we define a mapping 7 :
Agkn — Apn as follows:

m(2) = (I ® Ly)2- (5.63)

Some straightforward computations then lead to the following result.

Lemma 5.4

1. Ifz= l><§:01x,~ € Aoun, where x; € Apn, then
7(z) = Xo. (5.64)
2. Consider ¢ : Ty — T;. If {z(0), z(1), ...} € T, then

¢~ ({200, z2(D), ... }) = {7 (2(0)), 7 (z(D)). ...} € T;y. (5.65)

5.6 Higher Order Boolean Networks 133
3. Consider v : 25 — 2, If {z(1), 2(t + 1), ..., 2(t + @) = z2(t)} € 2., then
v ({z®, 2+ Dzt + @) =2(0))
={7(z®), 7 (z¢+ D), ... 7zt + @) =7(z(1))} € 2:. (5.66)

Summarizing Lemmas 5.2-5.4, we have the following result, which shows how
to obtain the topological structure of (5.40) from its first algebraic form (5.50).
Theorem 5.5

1. Each trajectory £&* of (5.48) can be obtained from a trajectory £* of (5.50). More
precisely,

T, = {7 (&%) |6* e T} (5.67)
2. Each cycle Cy of (5.48) can be obtained from a cycle of (5.50). More precisely,

2, ={n(C)|C, e 2.} (5.68)

3. The transient period of the network (5.48) equals the transient period of the
network (5.50).

Theorem 5.5 shows that to find the cycles of (5.48) it is enough to find the cycles
of (5.50). Hence, the method developed in the previous sections of this chapter can
be applied to the system (5.50).

We now consider some examples.

Example 5.15 Recall Example 5.12. Set x(¢) = A(¢) B(¢). Using vector form, (5.43)
can be expressed as

x(t+1)=Lox(—2)x(t — Dx(t), (5.69)

where

Lop=184[4444222233331111
3333111133331111
2222222211111111
rr1i11111r1111111 11

Set z(t) = x(£)x(t + 1)x(t 4+ 2). Then,

zZt+1) = x@+ Dx@ +2)x(t +3)
= (Eg)’x()x(t + Dx(r +2)x(t +3)
= (Ed)zx(t)x(t + Dx(@+2)Lox(t)x(t + Dx(t +2)
= (Eq)*(I6 ® Lo)Pex (1)x(t + Dx(t +2)
= Lz(1), (5.70)

134 5 Topological Structure of a Boolean Network
Fig. 5.5 The cycle of (5.43)
with length 2 @.@

where

L =26,6[481216182226303539434749535761
371115172125293539434749 535761
261014 182226303337414549535761
159 13172125293337414549535761].

To find the cycles of (5.69), it is enough to find all the cycles in the system (5.70).
We can check tr(Lk),k=1,2,...,64, and look for nontrivial powers. These can be
easily calculated as

w(L?) =2, wL)=5 «L'0)=17.

Using Theorem 5.3, we conclude that the system does not have fixed point, but it
has one cycle of length 2, one cycle of length 5, and one cycle of length 10.

To determine the cycles of (5.70), we first consider LZ. It is easy to deduce that
the 26th column, C0126(L2), is a diagonal nonzero column. We can then use it to
generate the cycle of length 2. Since L(Sgg = 6%2 and L(Séz = 6%2, we have a cycle of
length 2.

Now, define 7 (z) = Iz, where

=1
Using Theorem 5.5, the cycle of system (5.43) with length 2 is
7 (854) — 7 (884) — 7 (553)-
Equivalently,
83— 83— 53

Back in its scalar form, it is shown in Fig. 5.5.

Similarly, since Col; (L5) = 8é4 is a diagonal nonzero column of L3, then 8é4,
Lo}, =68, L2}, =818, L3s}, = 88} and L*s}, = 8¢ form a cycle of length 5.
Using Theorem 5.5, the cycle of system (5.43) with length 5 is

7 (964) = 7 (8a) = 7 (34) — 7 (863) = 7 (32) — 7 (864).
Equivalently, it is
8h— 81— 81— 8§ — 85— 5.

Back in its scalar form, it is the cycle depicted in Fig. 5.6.
Since Colp(L'0) = 854 is a diagonal nonzero column of L', it follows that 834,

2 _s8 7242 _ 30 7352 __ 53 7452 _ 517 7552 _ 3 7652 _ sl2
L8, = 8ey4» L7064 = 84> L7854 = 854> L7854 = 864 L7836, = 8gu» L7064 = 8¢5

5.6 Higher Order Boolean Networks 135

ig. 5.6 42
with g s @

withengtn 10 A~ —(0—(0)—
@

L76§4 = 8‘6‘2, L88§4 = 824, and L98§4 = 822 form a cycle of length 10.
Using Theorem 5.5, the cycle of the system (5.43) with length 10 is

7 (884) = 7 (864) — 7 (55) = 7 (53) — 7 (364) — 7 (854)

7 (863) = 7 (J64) = 7 (854) > 7 (833) — 7 (554).
Equivalently,

84— 8} —> 87— 85— 87— 84 — 8} — 83 — 8 — 8 — 85

In scalar form, it is the cycle depicted in Fig. 5.7.

It is easy to calculate the transient period of (5.70), which is 4. From Theorem 5.5
we know that the transient time of the network (5.43) is 4. That is, for any initial
state (A(ty), B(tp)), the trajectory will enter into a cycle after four steps.

The result coincides with the one in [11].

Example 5.16 Recall Example 5.14. To find the cycles of (5.53), it is enough to find
all the cycles of the network (5.56). We can check tr(Lk), k=1,2,...,64, and look
for nontrivial powers. It can be easily calculated that

8, k=8i,i=12,...,

tr(Lk) = {0,

others.

From Theorem 5.3, we conclude that the system (5.56) has only one cycle with
length 8. To find this cycle, we consider L8. It is easy to deduce that the third
column, Colj (LS), is a diagonal nonzero column. We can then use it to generate
the cycle of length 8. Since L&}, = 829, L2583, = 825, L3683, = 630, L6}, = 588,
L58g4 = 8%‘2, L6824 = 82’1, L7824 = 82’2, and L8824 = 8;’4, we obtain a cycle of length
8 of the network (5.56) as

3 20 28 30 46 ¢45 37T . ¢33 3
84 = 864 = 864 — 864 — 84 — 8eq — 854 — 54 — Seu-
Define 7 (z) = Iz, where

r=iel;.

136 5 Topological Structure of a Boolean Network

Fig. 5.8 The cycle of (5.53)
with length 8 111 @ @ 100

(o11) (010)
011 011 010 010
N N

Using Theorem 5.5, the cycle of the network (5.53) can be obtained as
7 (834) — 7 (855) — 7 (863) — 7 (32) — 7 (565) — 7 (83) —
7 (854) = 7 (883) — 7 (854)-
Equivalently,
84— 83 — 83 — 8¢ — 85 — 88 — 83 — 83 — 4.

Using its scalar form, the cycle of the system (5.53) with length 8 is shown in
Fig. 5.8.

It is easy to calculate that the transient period of (5.56) is 7. From Theorem 5.5
we know that the transient period of the network (5.53) is 7; = 7. That is, for any
initial state (A(%p), B(#p)), the trajectory will enter into the above cycle after seven
steps.

Remark 5.8 In this section, we do not consider the basin of an attractor (fixed point
or cycle) as discussed for first order Boolean networks. For higher order Boolean
networks, the basin of a cycle is meaningless because an initial point x(0) in the
original state space 2" may enter into more than one cycle.

To see this, we consider the following example. In Example 5.15 or Exam-
ple 5.12, there are three cycles, with lengths 2, 5, and 10. We consider only the
cycles with lengths 2 and 5. Consider the algebraic form (5.70). From initial states
822 and 822, we have

60 45 49 1 4 16 61 49
8o4 = 61 — {86a = 864 = Sgu — 84 — 84 — 84}
50 5 18 7 26 39 26
854 — Sga — 64 — s — {61 — 854 — 54}

For system (5.43), based on Lemma 5.4, from initial states 71(822) and 71(822),

we have

7 (864) = 7 (563) = {7 (563) = 7 (354) = 7 (84) = 7 (868) > 7 (56) > 7 (32) }.
7 (554) — 7 (554) — 7 (863) — 7 (554) — {m (865) — 7 (552) > 7 (89) .
Equivalently, for system (5.43), from initial states 82, we have

82—)82—){82—)&{—)6}—)&{—)82—)53},

5.6 Higher Order Boolean Networks 137
4 1 2 1 2 3 2
8, — 8y —> 85 —> 8, > {85 — 8, — 84).

That is, 82 enters into two different cycles.

5.6.2 Second Algebraic Form of Higher Order Boolean Networks

Define

w(t) :=x(uo)x(ut + - x(ur + (= 1) =z(u1). (5.71)

We then have
w(T+ 1) =z(ut +p) = L z(ut) = LFw(1),
where L is obtained in (5.51). Therefore, we have
w(t+1)=Tw(r), (5.72)

where
I'=[(Eq)"(Iin ® Lo)Ppun ",

with initial value w(0) = l><§:01x(i). We call (5.72) the second algebraic form of the
wuth order Boolean network (5.40).

In fact, by rescheduling the sampling time, the second algebraic form provides
the state variable, w(t), T =0, 1, ..., as a set of non-overlapping segments of x(¢).
Hence, there is an obvious one-to-one correspondence between the trajectories of
(5.40) and the trajectories of (5.72).

Proposition 5.7 There is an obvious one-to-one correspondence between the tra-
Jjectories of (5.40) and the trajectories of its second algebraic form (5.72), given
by

w(@) =x(un)x(ur+1--x(ut+@-1), ©=01,....

Therefore, it is easier to use the second algebraic form to calculate the trajecto-
ries of higher order Boolean networks. Unfortunately, for analyzing the topological
structures, it is not as convenient as the first algebraic form.

Proposition 5.8 Assume that the system (5.40) has a cycle of length o. Let the least
common multiple (Icm) of o and u be B = lcm(«,). The system (5.72) then has a

cycle of length y = B/ L.

138 5 Topological Structure of a Boolean Network

Proof Assume s > 0 is sufficiently large so that x((s — 1) + 1) is on the cycle of
length «. Since § is a multiply of «, we have that

(s =Du+1D=x((s = Du+ 14+ p),
x((s = Du+2)=x((s —Du+2+p),

(5.73)
x(spu) =x(su+ B).
Multiplying both sides of (5.73) yields
w(s):w(s—}-g) =w(s+y). 5.74)

It is also easy to check that y is the smallest positive integer which satisfies (5.74).
The conclusion follows. O

Example 5.17 Consider Example 5.14 again. From (5.56) we know that
z(t+ 1) = Lz(1),

where L is the matrix given in (5.57).
If we set w(r) = x(21)x (2t + 1) = z(21), then the second algebraic form of
(5.52)is

w(t +1)=zQt +2) = L*221) = L>w(t) = F'w(7), (5.75)

where

I' =664[202228303 112103 1424633374246
283028301191210119424641454246
202228303 112103 1424633374246
283028301191210119424641 4542 46].

To find the cycles of (5.52), we check tr(™*), s = 1, 2, ..., and look for nontrivial
powers s. These can be easily calculated as

8, s=4i,i=1,2,...,

() = !o,

others.

Using Theorem 5.3 we conclude that the system (5.75) has two cycles of length 4.
Next, we investigate the cycles. Consider I'*. It is easy to determine that its third
column is a diagonal nonzero column. We can then use it to generate one cycle of
length 4. Since I'83, = 623, I'828 = 8¢5, 'S¢ = 53], and I'83] = 83, we have a
cycle of length 4. Similarly, since 8(2)2 is a diagonal nonzero column of I, it follows

that 820, I'820 = 839, '8} = 835, '8 = 823, and I'533 = 529 form another cycle

of length 4.

References 139

Using formula (4.4) to convert 6g4, (Séff, (Sgg, (ng and 8%2, (Sgg, (Sgi, 52431 back to

binary form, we have

83, ~(1,1,1,1,0,1), 829~ (1,0,1,1,0,0),
88~ (1,0,0,1,0,0), 839~ (1,0,0,0,1,0),
88 ~(0,1,0,0,1,0), 82~ (0,1,0,0,1,1),
83 ~(0,1,1,0,1,1), §3~(0,1,1,1,1,1).

Thus, the two cycles of length 4 are

Comparing the set of cycles of system (5.52) with that of system (5.75), one
sees easily that there is no one-to-one correspondence between them. Of course, in
this simple case, we can calculate that w(r) =z(27 — 1) = A27 —)BQ2t — 1) X
CR2t — 1)AQRt)B(2t)C(21). For A(t), B(t), C(t), we have

(1, 1,1)—(1,0,1) = (1,0,0) > (1,0,0) - (0, 1,0) - (0, 1,0) —
O, 1L,H)—-@O1L)—->d,1,1)—(1,0,1)— (1,0,0) > (1,0,0) -
(07170)_>(071’0)_)(07151)_)(07151)_)

and

(1,0, 1) = (1,0,0) - (1,0,0) = (0,1,0) = (0, 1,0) = (0, 1, 1) —
0,1, 1) - (1,1,1) > (1,0, 1) > (1,0,0) — (1,0,0) — (0, 1,0) —
0,1,00 > (0,1, 1) > (0, 1,) > (1, 1, 1) > -~ .

It is easy to see that the two cycles of (5.75) become
1,0,1) = (1,0,0) - (1,0,0) - (0,1,0) - (0,1,0) - (0, 1, I) —
O, L) — 11,1 —(1,0,1) = (1,0,0) > (1,0,0) = (0, 1,0) —
©0,1,00—»@©0,1,)-> O, 1,) -1, 1,1) > ---,

which is the only cycle of (5.52) of length 8.

References

1. Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic networks and
metabolic pathways. Bioinformatics 16, 727-734 (2000)

140

2.

3.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

5 Topological Structure of a Boolean Network

Albert, R., Barabasi, A.: Dynamics of complex systems: Scaling laws for the period of Boolean
networks. Phys. Rev. Lett. 84(24), 5660-5663 (2000)

Albert, R., Othmer, H.: The topology and signature of the regulatory interactions predict the
expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol.
223(1), 1-18 (2003)

Aldana, M.: Boolean dynamics of networks with scale-free topology. Phys. D: Nonlinear Phe-
nom. 185(1), 45-66 (2003)

Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE Trans.
Automat. Contr. 55(10), 2251-2258 (2010)

Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complexity of
bounded model checking. In: Verification, Model Checking, and Abstract Interpretation. Lec-
ture Notes in Computer Science, vol. 2937, pp. 85-96. Springer, Berlin/Heidelberg (2004)
Drossel, B., Mihaljev, T., Greil, F.: Number and length of attractors in a critical Kauffman
model with connectivity one. Phys. Rev. Lett. 94(8), 88,701 (2005)

Farrow, C., Heidel, J., Maloney, J., Rogers, J.: Scalar equations for synchronous Boolean
networks with biological applications. IEEE Trans. Neural Netw. 15(2), 348-354 (2004)
Goodwin, B.: Temporal Organization in Cells. Academic Press, San Diego (1963)

Harris, S., Sawhill, B., Wuensche, A., Kauffman, S.: A model of transcriptional regulatory
networks based on biases in the observed regulation rules. Complexity 7(4), 23—40 (2002)
Heidel, J., Maloney, J., Farrow, C., Rogers, J.: Finding cycles in synchronous Boolean net-
works with applications to biochemical systems. Int. J. Bifurc. Chaos 13(3), 535-552 (2003)
Huang, S.: Regulation of cellular states in mammalian cells from a genomewide view. In:
Collado-Vodes, J., Hofestadt, R. (eds.) Gene Regulation and Metabolism: Post-Genomic Com-
putational Approaches, pp. 181-220. MIT Press, Cambridge (2002)

Huang, S., Ingber, D.: Shape-dependent control of cell growth, differentiation, and apopto-
sis: Switching between attractors in cell regulatory networks. Exp. Cell Res. 261(1), 91-103
(2000)

Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annu.
Rev. Genom. Hum. Genet. 2, 343-372 (2001)

Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets.
J. Theor. Biol. 22(3), 437 (1969)

Kauffman, S.: The Origins of Order: Self-organization and Selection in Evolution. Oxford
University Press, London (1993)

Kitano, H.: Systems biology: a brief overview. Science 259, 1662-1664 (2002)

Langmead, C., Jha, S., Clarke, E.: Temporal-logics as query languages for Dynamic Bayesian
Networks: Application to D. melanogaster Embryo Development. Tech. rep., School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA 15213 (2006)

Li, Z., Zhao, Y., Cheng, D.: Structure of higher order Boolean networks. Preprint (2010)

Mu, Y., Guo, L.: Optimization and identification in a non-equilibrium dynamic game. In: Proc.
CDC-CCC’09, pp. 5750-5755 (2009)

Nurse, P.: A long twentieth century of the cell cycle and beyond. Cell 100(1), 71-78 (2000)
Robert, F.: Discrete Iterations: A Metric Study. Springer, Berlin (1986). Translated by J. Rolne
Samuelsson, B., Troein, C.: Superpolynomial growth in the number of attractors in Kauffman
networks. Phys. Rev. Lett. 90(9), 98,701 (2003)

Shmulevich, 1., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-
based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261-274 (2002)
Waldrop, M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Touch-
stone, New York (1992)

Zhao, Q.: A remark on ‘Scalar equations for synchronous Boolean networks with biologi-
capplications’ by C. Farrow, J. Heidel, J. Maloney, and J. Rogers. IEEE Trans. Neural Netw.
16(6), 1715-1716 (2005)

Chapter 6
Input-State Approach to Boolean Control
Networks

6.1 Boolean Control Networks

A Boolean control network is defined as

x1(t+ D= fi(x1 (@), x2(6), ..., X0 (), ur (1), ..., um (1)),
X+ 1D =), x20), ..., %0 (), ur (@), ..., um()),

(6.1)
Xt +1) = fu(xi(@), x2(0), ..., X (), u1 (), ..., um (1)),
and
yi®)=hj(x1(t), x2(0),....xa (1)), j=1,2,...,p, (6.2)
where f; : 9" — 9, i = 1,2,...n,and h; : 2" — 9, j=1,2,... p, are logical
functions, x; € Z,i =1,2,...n,arestates, y; € 7, j = 1,2, ..., p are outputs, and

ug € 9,£=1,2,...m, are inputs (or controls).
In this chapter we assume that the controls are logical variables satisfying certain
logical rules, called the input network, described as follows:

I/l](t + 1) = g] (I/l] (t)7 MZ(t),] um(t))’
uz(t + 1) = ga(ur (1), uz(t), ..., um (1)),

(6.3)
Ut + 1) = gmui(0), us(t), ..., um(1)).
Let
u(t) = %t u;i(t),
x(1) = [x?zlxi(t)»
y(©) = x[_yi ().
D. Cheng et al., Analysis and Control of Boolean Networks, 141

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_6, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_6

142 6 Input-State Approach to Boolean Control Networks

Fig. 6.1 A control network

The Boolean control network (6.1)—(6.3) can then be expressed in algebraic form as

u(t +1)=Gu(r), u e Am,
x(t+1)=Lu(t)x(t):=Lu)x(t), x¢& Apm, (6.4)
y(t) = Hx(t), y € Aop,

where G € Lomyom, L € Lonyon+m, H € Lorpyon, and L(u) = Lu(t) is the control-
dependent network transition matrix.

Example 6.1 Consider the system depicted in Fig. 6.1.
We consider u(¢) = A(z) as the input and y(¢) = E(¢) as the output. The dynam-
ics of the Boolean network is then described as
B+ 1)=u(t) > C(t),
C(it+1)=B()Vv D), (6.5)
D(t+1) ==B(1),

the control network is
u(t+1) = (u@)), (6.6)
and the output is
y(t)=h(C®)). 6.7)

Set x(t) = B(t) x C(t) x D(t). Converting this system into its algebraic form,
we have

u(t +1) = Gu(t),
x(t+ 1) = Lu(®)x(®) = Lu@)x @), (6.8)
y(t) = Hx(1),

where L(u(t)) = Lu(t) is the control-dependent network transition matrix. First, we
assume ¢ is an identity mapping, that is, u(t + 1) = u(¢) is a constant control. L (u)
can then be easily calculated as

L(u) = Miu(l @ Mg)(Is @ M) W21 W2, 81 M,

33226613571, u=3),
822221313, u=2s%

6.2 Semi-tensor Product Vector Space vs. Semi-tensor Product Space 143

Now, both 8% and 5% are fixed points of the control network. Using Theorems 5.2
and 5.3, it is easy to deduce that for u = 8;, there is a fixed point for the system,
whichis x = (Sé, or, equivalently, X = (1, 1, 0), and there is also a cycle of length 2,
which is (1,0,1) — (0,1,0) — (1,0, 1). When u = 8%, there is only a fixed point
X=(1,1,0).

In general, we would like to consider the structure of the Boolean control system
(6.1), where the controls are varying, according to its own dynamical evolution rule
(6.3). It is now clear that the system is evolving on an input-state “product space”.
We will need some preparatory results concerning this product space.

6.2 Semi-tensor Product Vector Space vs. Semi-tensor Product
Space

Definition 6.1 Let M and N be vector spaces of dimensions m and n, respectively,
with bases {a1, a2, ..., 0y} and {B1, B2, ..., Bu}, respectively. A vector space of
dimension mn is called a semi-tensor product (STP) vector space of M and N,
denoted by Span{M x N}, if there exists a linear mapping X : M x N — W such
that

)/(,'_1)n+j:=Olil><,3j, i=1,....m,j=1,...,n,

form a basis of W.

Remark 6.1

1. We fix the bases o = {o;j|i = 1,...,m}, B ={Bili =1,...,n} and y =
{a; x Bjli=1,...,m; j=1,...,n} as the default bases for M, N, and
W = Span{M x N}, respectively.

If we assume that X = 31" @i, ¥ =37, b;B;, then

m n m n
XwY=) aoixy bjj=Y Y aibjo;xpj:=cy. (6.9
i=1 j=1

i=1 j=1

We use a vector form for coefficients:

a=lar a - anll,
b=[bi by -+ byl
c=[c1 c - canll

It is then easy to check that
c=a¥xbh. (6.10)

Therefore, as in linear algebra we can ignore the bases and simply express vectors
asX=a,Y=b,and X X Y =a X b.

144 6 Input-State Approach to Boolean Control Networks

2. Note that
MxN={uxv|iue M,veN}

is not a vector space. However, it contains a basis of W, which is why we use
W = Span{M x N}. We call M x N the semi-tensor product space.

3. To make Definition 6.1 meaningful, we have to show that it is independent of the
choice of bases for M and N.

First, let
ay B
B a - | B
o= . , /3 =
&m Bn

be alternate bases for M, N, respectively. We have to show that
Y1

72

Yimn

is also a basis of W. _
To see this let @ = A and 8 = Bf. Using (2.32) we have

7=axB=(Aa)x (BB)=(A®B)ax =(AQ B)y.

Since both A and B are nonsingular, so is A ® B, which means that y is a basis
of W.
Next, we show that the product is independent of the choice of bases. Let
X=ad"a=a"aand Y =bTB = bTB. We then have a* Aw = a'«. That is,
a=A"a.
Similarly, we have
b= BTb.

Using (6.9), we see that under two different product bases of W we have two
product values:

XwY=(axhb)'y, (6.11)
XxY=(@xbTy. (6.12)

We then have to show that (6.11) and (6.12) are equal. This is true because
XxY=(@wxbTy=[ATaxB5"y
=[(AT® BM)a E]Ty

6.2 Semi-tensor Product Vector Space vs. Semi-tensor Product Space 145
~ ~T
= [a l><b] (A® B)y
T~
=[axb]'y.

Consider X : M x N — W = Span{M x N}. It is easy to check that the image

S

X

N

X(Mx N):={uvlueMandve N} =Mx NCW.

As mentioned earlier, in general, this is not an onto mapping. Naturally, we would
like to know whether or not X is a one-to-one mapping. It turns out that in general, it
isnot. Let Ze Mx N.If Z=0and XY = Z,where X € M and Y € N, then at least
one of X and Y should be zero. Assume Z # 0. By definition, we can find Xo € M
and Yy € N such that XoYy = Z. It is then easy to prove that all the solutions of
XY =Z are

{X:XO/“’ (6.13)

Y=pnYy, p#0.

Now, assume that M = Ap» and N = A». Note that these are not vector spaces.
We may consider them as topological spaces with the discrete topology. Thus, we
can also call M x N :={uv|u € M and v € N} the STP topological space of M
and N (sometimes just called the STP space of M and N). It is easy to check the
following property.

Proposition 6.1 Let M = Ajpm, N = Agpn,and W =M X N.
1. The STP space is
W = Akm+n .

2. Let w € W. There then exist unique u € M and v € N such that w = uv.

‘We define the matrix
Lyxg=1,®1y.

A straightforward computation then shows that we have the following formulas for
the decomposition.

Proposition 6.2 Let M = Agm, N = Apn, and w € W = M X N. Decompose w =
uv, whereu € M and v € N. Then,

u=lgmypnw,
6.14
v:lzmw. ()

We now give a simple example.

146 6 Input-State Approach to Boolean Control Networks

Example 6.2 Let M = Az, N = Ag,and W = M x N = Ap7. Then,

17 o0 o
Iio=| 0 15 0
0 0 17

Assume that w = 85’ eW,ueM,veN,and w = uv. It is then easy to calculate
that

u=1l30w=25=[010]",

v=1Lw=38;=[000100000]".

6.3 Cycles in Input-State Space

Recall system (6.1) with input (6.3). Note that the state space is X € 2" (equiva-
lently, in vector form, x € 2" = Aj») and the input space is U € 2™ (equivalently,
in vector form, u € % = Ap»). The input-state STP space (sometimes just called
the input-state space) is U x X = 2"V (or W = U X X = Apmn).

In this section we consider the structure of a cycle in the input-state space. Denote
by C’, acycle in the space % with length r. Assume that there is a cycle of length
k in the input-state space #/, say,

Cal;/l w(0) =wy=ugxo > w(l)=w) =u1x; > - —>
w(k) = wr = urxy = wo.

First, it is easily seen that since uo = uy, in the input space %, the sequence
{ug,u1,...,ur} contains, say, j folds of a cycle of length ¢, where j¢ = k. Note
that “j folds of a cycle” means the cycle is repeated j times. Hence, u, = ug. Now,
let us see what conditions the {x;} in the cycle C kW should satisfy. Define a network
transition matrix

W = L(ug—1)L(ug—2) -+ L(u1)L(uo). (6.15)

Starting from wo = ugxp, the x component of the cycle Cf;/ is

x0—> x1 = L(ug)xg —> xp =L L(ug)xg— -+ —> x¢ =¥xp—
Xe+1 = Lwo)¥xg — xp42=Lu)L(up)¥Wxo— - — x2¢ = 'I/Zxo —
X(j—1yet1 = L)W/ ~'xg — x(j_1ye42 = L) L(ug)¥/~1xg — - - —

Xjg = i xo = xo.
(6.16)
We conclude that xg € A is a fixed point of the equation

x(t+1)=wix@). (6.17)

6.3 Cycles in Input-State Space 147

For convenience, we assume that j > 0 is the smallest positive integer which makes
xo a fixed point of (6.17). Conversely, we assume that xg € Ao« is a fixed point of
(6.17) and that uq is a point on a cycle of the control space Cé/. It is then obvious
that we have the cycle (6.16).

Summarizing the above arguments yields the following theorem.

Theorem 6.1 Consider the Boolean control network (6.1)-(6.3). A set Cf;y C
Asgiwmy s a cycle in the input-state space W with length k if and only if for
any point wy = uoxg € C 1;/ there exists an £ < k which is a factor of k such that
uo, u1 = Guo, ur = G2uq, ..., ug = Glug=ug is a cycle in the control space, and
Xo is a fixed point of equation (6.17) with j =k/¢.

Theorem 6.1 shows how to find all the cycles in the input-state space. First, we
can find cycles in the input space. If we pick a cycle in the input space, say C fZ/’

then for each point ug € Cg% we can construct an auxiliary system
x(t+1)=wx(r). (6.18)

Suppose that sz/ = (ug, U1, ..., ug = ug) is a cycle in % and Cj% = (X0, X1y -.-,
Xj = xg) is a cycle of (6.18). There is then a cycle Cf;,, k = ¢j, in the input-state
STP space, which can be constructed as follows:

wo = uoxo —> wi = u1 L(ug)xo — wo =usL(uy)L(ug)xo— ---—

wyg = upx] —> wes| =uL(ug)x) — weqr =uzL(uy)L(ug)x) — -+ —

(6.19)
W(i—1)¢ = U0X(j—1) —> W(i—1)e+1 = U1 L(up)xj—1) —
w(j—1ye2 =u2L(u)L(uo)xj—1) —> -+ —

Wj¢ = UpXj = UpXxXo = wo-

We call this C f;ﬂ the composed cycle of C e% and C]3(, denoted by C kW =C l% oC jg{
Note that from a cycle C%/ we can choose any point as the starting point u.
In equation (6.18) we then have different ¥, which produce different C]% It is

reasonable to guess that the composed cycle Cf;, = C%/ o CJ% is independent of the
choice of ug. In fact, this is true.

Definition 6.2 Let C;/ ={w(@)|t=0,1,...,k} be acycle in the input-state space
and Cfl/ be a cycle in the input space. Splitting w(¢) = u(¢)x(¢), we say that ij, is
attached to C%/ at ug if w(0) = ugxp and

1. u(t) € C5, with u(0) = uo,
2. x(0) = xo is a fixed point of (6.17) with j = % €ly.

148 6 Input-State Approach to Boolean Control Networks

Remark 6.2 According to Theorem 6.1, each cycle C];// in the input-state space
must be attached to exactly one cycle in the input space. In fact, the following ar-
gument shows that CkW attaches C %/ at ug at moment ¢ = 0 (where the attaching

point of C;/ is wo = ugxg) and will attach it at #; at moment ¢t = 1 (where the at-
taching point of C];// is w; = u1x1), and so on. So, C];// and C%/ are moving as two
assembled together gears.

Proposition 6.3 The sets of cycles in the input-state space which are attached to
any point of a given cycle C % are the same.

Proof Let C%/ = {uog, u1, ..., us = up} be the cycle under consideration and let S,
S1, ..., Se—1 be the sets of input-state cycles attached to ug, uy, ..., ue_1, respec-
tively. First, we show that

SoCS;, i=1,2,...,¢—-1

Let C,? = {wp, wi, ..., wi} € So, i.e., it is a cycle attached to C%/ at ug. Using the
elements of a control cycle, we can define

Li:=Lw;), i=0,1,...,¢—1.
We then construct £ system matrices:

Wo:=Lg_1Lg—2--- Lo,
Yy:=LoL¢1L¢g2---Ly,

Wo1:=LgoLg3---LoL¢—1.
Correspondingly, we then construct £ auxiliary systems:
xt+1)=¥x@), i=01,...,¢—1. (6.20)
Since wo = ugpxg € Cﬁy € 8o, it follows that x(satisfies
(W) xo = xo. (6.21)

Note that w(1) := w1 = u1Loxg. To see that w; € C,i € S1 we have to show that
Loxg satisfies
(¥1)7 Loxo = Loxo. (6.22)

This is true because
Loxo = Lo(¥)” xo

= Lo (Le—1-+-Lo)’ xo
=Lo(L¢—1---Lo)---(L¢—1---Lo)xo

J

6.3 Cycles in Input-State Space 149

Fig. 6.2 The structure of a
cycle in the input-state space

= (LoLg—1---Ly)---(LoL¢—1---L1) Loxo

J
= (LoL¢—1 -+ L1)? Loxo
=&/ Loxo.
Similarly, we can show that
usLg 1Lg 2---Loxo€ CL €8s, s=1,2,...,0—1.

Note that, precisely speaking, (6.22) can only ensure that there is a cycle of length
£ x j' attached to the cycle at u1, where j’ is a factor of j. However, since the above
definition of {¥;} is in a rotating form, starting from a point wo = u1x, the same
argument shows j < j’. Therefore, j' = j.

The same argument shows that

SjCS,', O0<i#j<{-1.
We conclude that
S;=8, 0<ij<t—1. -

Remark 6.3 To see the rolling process, assume C%/ ={U, V, W}. An attached cycle
in the input-state space is then depicted in Fig. 6.2, where the dashed-line cycles are
duplicated ones.

Remark 6.4 From Proposition 6.3 we see that cycles in the input-state space of a
Boolean control network can be found in the following way:

150 6 Input-State Approach to Boolean Control Networks

1. Find all the cycles in the input space, say, C 012/ RN C%. We call such a cycle a
kernel cycle.

2. Foreach cycle C ’% in the input space, choosing any point as starting point of the
cycle, say, ug, u1, ..., ug—1, construct a network transition matrix (6.15) and then

find all the cycles of the system (6.18), say, C f%l, ...,C ig’t?i. The set of overall
composed cycles in the input-state space are then

ChoChl, i=12,...,pj=12..,4q.

Remark 6.5

1. Note that C fgé are not real cycles of the original system unless X is also an
invariant subspace of W.

2. Itis easy to see that C%/ has the group structure of Z, and C§V has the product
group structure of Zy x Zj, where j =k/{.

Example 6.3 We revisit Example 6.1. Changing the control to
u(t+1) =—u(t),
we now have an obvious kernel cycle, 0 — 1 — 0. We can then easily calculate that

L(0)=85[22221313],
L(1)=85[22661357].

Hence, we consider an auxiliary system
x(t+1)=vx(), (6.23)

where
¥ =L(1)L0)=4683[22222626].

A routine calculation shows that a nontrivial power of ¥ is 1 and that
tr(¥!) = 2. Thus, there are two fixed points, 8} ~ (1, 1,0) and 8¢ ~ (0, 1, 0). The
overall composed cycles are depicted in Fig. 6.3, where the dashed lines show the
duplicated cycles. Overall, we have a cycle in the input space and two product cycles
of length 2 in the input-state space.

Finally, we consider transient periods of product cycles. Assume that C l@"/, i=
1,..., p, are the cycles of length /; in the control space. We can construct ¥; and
find the smallest r* such that

W) =)"+

It is clear that if a point will eventually enter the cycle attached to this cycle, then
after r' (composed) steps the second component will enter the rotating cycle. Note

6.4 Cascaded Boolean Networks 151

Fig. 6.3 Cycles of a control
system

that ¥; is a composed mapping, consisting of ¢; steps. Taking the first part (C%/)
into consideration, it is easily seen that the transient period for cycles attached to
Cg/, denoted by T,(Cg/), satisfies
max {ro, ¢; (r' — 1)} < T,(Cl)) <max {ro, & ()}, i=1,....,p. (624

Define

Vi ;= max {ro, £ (r[— 1)},

U; := max {ro,Zi(ri)}, i=1,...,p.
The following is then obvious.

Proposition 6.4 The transient period of the control system satisfies

max {V;} < T; < max {U;}. (6.25)

I<i<p I<i<p

6.4 Cascaded Boolean Networks

The input-state structure proposed in previous sections is very useful for analyzing
the structure of Boolean networks with cascading structure.

Definition 6.3 Consider the system (5.1) [or the system (6.1)]. Let 2~ = A be the
state space. ¥ = A, is said to be a k-dimensional subspace of .2 if there is a space
V¢ = Ay, called the complement space (or, simply, complement) of ¥/, such that

VXV =X (6.26)

152 6 Input-State Approach to Boolean Control Networks
(O—()

@@ | ©
(0)—(F)

Remark 6.6 Since the state space 2~ is not a vector space, the subspace can only be
understood as a topological subspace (with discrete topology). Note that not every
subset A,« can be a k-dimensional subspace. For instance, let .2~ be generated by
two logical variables, x; and x», and consider z = x; A x. This can take values
{0, 1}. Let 2 be a subspace generated by z. This is not a 1-dimensional subspace of
2 because there cannot be found a 2’ such that (6.26) holds. A general study of
the state space and subspaces will be presented in Chap. 8.

Fig. 6.4 Invariant subspaces

Definition 6.4 Consider the system (5.1), where x € 2" = Aj». A k-dimensional
subspace ¥ = A, is called an invariant subspace if xo € ¥ implies that x (¢, xo) €
V.Vt >0.

From the last section it is easily seen that the input space % is an invariant
subspace of the input-state STP space #. Conversely, an invariant subspace can
also be considered as an input subspace.

To test whether a subspace is an invariant subspace, we can use either a network
graph or a network equation. We will use some examples to illustrate this. A more
general definition and some verifiable conditions will be discussed in the next chap-
ter.

Let {x;,, ..., x;,} be a subset of the vertices of a network. Define a subspace ¥ =
Span{x;,, ..., x; }. ¥ C & is the subspace describing the states of {x;,, ..., x; }.

Note that “Span” is not clearly defined here. In Chap. 8 we will see that “Span”
is the same as “.%;{- - - }””, which means “the set of logical functions of {---}”.

Example 6.4 Consider the network graph shown in Fig. 6.4. It is easily seen that
¥1 = Span{A} and ¥, = Span{A, B, C, D} are two invariant subspaces. Denote by
Z the total space. We then have the nested invariant subspaces

Nnchcx.

Note that 7" = Span{A, B, C} is not an invariant subspace because it is affected
by D. (For readers familiar with graph theory, it is easy to see that a subspace is
invariant if and only if the subgraph generated by the set of vertices with the inherent
edges between them has in-degree zero.)

The structure of nested invariant subspaces can also be determined from systems
of equations. Consider the following example.

6.4 Cascaded Boolean Networks 153

Example 6.5 Consider the following system:

At + 1) = fLALD), ..., A@)),

Act + D) = fHAL®), ..., A1),
Bi(t+1) = f2(A1(0), ..., Ae(t), Bi(D), ..., Bu (D)),

Byt +1) = fr(A1(0), ..., Ac(1), B1(1), ..., B (1)),
Ci¢t+1)= f]3(A1(t),...,Ag(t), Bi(t),....By(t),C1(2), ..., Cu(2)),

Cot +1) = f3(AL1(1), ..., Ag(t), B1(D), ..., Bu(1), C1(D). ..., Cp(D)).
6.27)

Here we have at least two nested invariant subspaces:

¥ = Span{Ay, ..., As} = 2",
Y5 =Span{Ay, ..., A¢, By, ..., By} = 2,
a//l Ca//zc <%=@Z+m+n.

We consider a cycle, say U € 2. As discussed in the previous section, it must
attach to a cycle, say U 2e 5. Similarly, U, must attach to a cycle, say U Leys.
Now, in Fig. 6.5 we assume that cycles U 2 U22 € ¥, are attached to U; € 7], that
U13, U23 € 4 are attached to Ulz, and that U33, Uf € 4 are attached to U22. We call
such connected cycles chained gears.

Chained gears have the following properties:

e The gears in each chain, suchas U! — U 12 - U 13, have multiple perimeters. Here
the perimeter of a cycle means the number of states in the cycle. For instance, the
perimeter of U f is a multiple of the perimeter of U?, and the perimeter of U 12 is
a multiple of the perimeter of U

e In each chain the smaller gears affect the larger gears, and the larger gears do not
affect the smaller gears.

e Smallest gears act as leading gears, the other gears will follow them.

Kauffman claimed that in a cellular network the tiny attractors decide the vast
order [4]. The “rolling gear” structure may explain why small cycles determine the
order of the whole network. We are led to speculate that the structure of “rolling
gear” may account for the “hidden order” in human lives!

Finally, you may ask why there should be invariant subspaces. In fact, if a large
or, potentially, huge network has small cycles, then the small cycles with the states in
their regions of attraction form small invariant subspaces. If there are no such small
cycles, then the system is in chaos [4]! Therefore, an ordered large-scale network
should have the structure of nested invariant subspaces.

154 6 Input-State Approach to Boolean Control Networks

)
NN
ol

RO

Fig. 6.5 Structure of cycles
in a cascaded Boolean
network

Table 6.1 Truth table of

(6.28) h p) f3 Ja /s
1 1 1 1 1

1 1 0 1 0

1 1 1 1 0

0 0 1 0 0

1 0 0 1 0

1 1 1 0 0

1 1 1 0 0

0 0 0 0 0

Ji 5 3 3 3 5
J2 2 5 1 4 4
i 4 4 5 4 1

6.5 Two Illustrative Examples

The first example is from [5]. It serves two purposes: (1) to illustrate the standard
algorithm, and (2) to demonstrate that the “small cycles” play a decisive role in
determining the overall structure of the network.

Example 6.6 Consider a system with five nodes:
Ai=fi(Aj, A}, A}, i=1,2,34,5, (6.28)

where the logical functions f;,i =1, ..., 5, are determined by Table 6.1.

6.5 Two Illustrative Examples 155
The algebraic form of system (6.28) is then

A+ 1) =8[11121112]E(®)B(t)D(),
B(t+1)=8[11122112ICA)E®)D(),
Cht+1)=8[12112112]C()AGM)E(), (6.29)
D(t+1)=8[11121222]C(t)D)D(),
E(t+1)=6[12222222]E()D(1)A(t).

To obtain the structure matrices, note that the first row of the structure matrix of
fi 1s exactly the same as its values in the truth table.

To convert the algebraic form back to logical form, mod 2 algebra is more con-
venient. Using mod 2 algebra, the system (6.28) can be expressed as

A(t+1)=B(t)+ D(t) + B(t)D(1),

B(t+1)=D@)+ E(t)+ CE)D@)E(2),
Ci+D=AO+CH+EW@)+COEQW)+ADCH)E®), (6.30)
D(t+1)=D(),

E@+1)=A@)D()E@).

In fact, the mod 2 product A - B = A A B, and the mod 2 addition A + B = AVB.
Hence,

My =M. =8[1222], My=M,=8[2112].
If we let x (1) = A(t) B(t)C(t) D(t) E(t), then

x(t+1)=M;BDM.BDM,DEM;CDEM,ACEM.CEM;ACEDM}ADE.
Now, there is a standard procedure to determine L. In fact,

L=653[164161328121620321322428
22412106416222028 10620 32].

It is then easy to check that the nontrivial powers are 1 and 2, and that
tr(L) = 4, tr(L?) =6.

We conclude that there are four fixed points and one cycle of length 2. Using Theo-
rem 5.2, it is easily seen that the fixed points are

Ey=1, 1111, E,=(1,0,0,1, 1),
E3=1(0,0,1,0,0), E4=1(0,0,0,0,0),

and the cycle of length 2 is
(1,1,1,1,00 - (1, 1,0, 1,0) - (1, 1, 1, 1, 0).

The smallest repeating L¥ is L3 = L>, so the transient period 7; = 3.

156 6 Input-State Approach to Boolean Control Networks

Finally, we use Proposition 5.5 to obtain the overall picture of the state space.

e Starting from E1 = (1,1, 1, 1, 1), we calculate its parent states, its grandparent
states, and so on. We have the following retrieval process and results. Note that
in the following, [x] is used to show that x is already on the cycle and can thus
be removed from the retrieving chain:

Er=(,1,1,1,1)~8 = [L1 — 8,], Lo — 83 ~ (1,0, 1, 1, 1) = @.

[)
Ey=(1,0,0,1,1) ~ 833 = [Li3 > 83|, Ls > 83, ~ (1, 1,0, 1, 1) = 0.
L)
E3=(0,0,1,0,0) ~ 833 3 19~
Ly— 683~ (1,1,1,0,1) =4,
Ly— 85 ~(1,1,1,0,0) = Lig— 835~ (0,1,1,0,1) = 4,
Loz — 833 ~(0,1,0,0,1) = 4,
Las — 835 ~(0,1,0,0,0) = Lis — 833 ~ (1,0,0,0,1) = 0.
[)

E4=(0,0,0,0,0) ~ 835 = [L3 — 8331, L12 — 813 ~ (1,0, 1,0,0) =
Ly — 83 ~(1,0,1,0,1) = ¢,
Lao— 620~ (0,1,1,0,0) = { L2783~ (0,0.1,0,1) = #,
L3 — 831 ~(0,0,0,0,1) = ¢,

Ls— 8%, ~(1,1,0,0,0) = L7 — 81, ~(1,1,0,0,1) = ¢.

e Next, we consider two points on the cycle: C; = (1,1,0,1,0) and C, =
(1,1,1,1,0). For Cy:

C; =11010~ %, =
[Ly — 83,1,
Lot — 83, ~(0,1,0,1, 1) = 4,

Lig— 8}9~(1,0,1,1,0)= . 59 (0.0.0.1 1) = 7
29_) 32N k] k)) k))

Ly — 835 ~(0,1,0,1,0) = ¢,

L3 — 831 ~(0,0,0,1,0) = 7.

6.5 Two Illustrative Examples 157

Part 2. D=1

Fig. 6.6 The state-transition diagram

e And for C,, we have

[Le — 85,1,

Liy— 83~(1,1,0,1,0)= 9,
Li7 > 8 ~(0,1,1,1,1) = ¢,
Lig—813~(0,1,1,1,0) = 4,
Los — 63 ~(0,0,1,1,1) = 4,
Lys — 825~ (0,0, 1,1,0) = 0.

C=(01,1,1,1,00~ 63, =

The state transition diagram in Fig. 6.6 from [5] verifies our conclusion.

The significance of this example lies in the following observation: There is a
smallest “cycle”, the fixed point D. From Fig. 6.6 it is easily seen that for D = 0 and
D =1 the topological structures of the state-space graphs are completely different.

158

Fig. 6.7 Gene and protein
signaling activity patterns

6 Input-State Approach to Boolean Control Networks

BN R

A—B—F —>G———

HO
) t |
ey
Table 6.2 Logical relations
Network element w A B Cc D E
Input 1 U U A H E D
Input 2 1 G C w C F
Boolean function And Not if Not if Implicate Implicate Not if
Network element F G H
Input 1 B F H
Input 2 D E G
Boolean function Nand Not if Not if

Next, we analyze a system which is used to simulate gene and protein signaling

activity patterns [2].

Example 6.7 The network depicted in Fig. 6.7 and Table 6.2 is presented in [2] to
simulate gene and protein signaling activity patterns within a small model Boolean
network. For notational brevity, we use A for “Erk”, B for “cyclin D17, C for “p27”,
D for “cyclin E”, E for “E2F”, F for “pRb”, G for “S phase genes”, U for “growth
factors”, V for “cell shape (spreading)”, and W for “X”. We refer to [2] for the
biological meanings of this notation.

The logical equation is then expressed as

A+ 1) =—-U@) — G(@1)),
B +1)=—(A(t) — C(@)),
Ct+1)=H(@)— W),
D(+1)=E(t)— C(1),
E(t+1)=—(D@{) — F(@)),
F(t+1)=—(B({) AD(@)),
G+ 1)=—(F@)— E@)),
Ht+1)=—(H@) — G@)).

6.31)

6.5 Two Illustrative Examples 159
As for the control network, we have

U+ 1) =gU®),
Vie+1)=g(V@)), (6.32)
Wt +1)=g3(U@), V(1)).

In vector form, we have the componentwise system of algebraic equations

A+ 1) =MMU@®)G{),
Bt +1)=M,M;A()C(2),
Ct+1)=MH@)W(t),

D(t+1)=M;E(1)C(®),

E@+1)=M,M;D@)F(1),
Fi+1)=M,M.B(t)D(t),
Gt+1)=M,M;F@)E(®),
H(t+1)=M,MH®)G{).

(6.33)

As in [2], we first set the control network as

Ut+1)=01(U®),
Vit+1) =02V (1)), (6.34)
WiE+1D)=U@)AV().

Case 1: U(0) =V (0) = 8%. In this case o1 = 0, = identity, i.e., U(¢) and V (¢)
are equal to the constant 6%.
Plugging these into (6.33) yields the system transition matrix

L(U@®), W) = L(53,8,).

In calculation, a control can be treated as a logical operator, so the procedure for
calculating the network transition matrix remains applicable. It is then easy to obtain
the following results:

e The only attractor is a fixed point, (0,0, 1, 1,0, 1, 1, 0).
e L'0= Ll and the transient period is 7; = 10.

Case 2: U(0) = 8; and V(0) = 8%. In this case we arrive at the same conclusion
as above.

Case3: U(0) = 8%. In this case we always have W (¢) = 6%, t > 1. The conclusion
is then:

e The only attractor is a fixed point, (0,0, 1, 1,0, 1, 1, 0).
e L%=L"7 and the transient period is T; = 6. [Taking W (0) into consideration, T;
should be 7.]

160 6 Input-State Approach to Boolean Control Networks

1X001101100 w‘@ 0X0011011010

(a) Cycles in U C I — S spaces

1X0X001101100

0X0X001101101

(b) CyclesinV CV xW CI—S§ spaces

Fig. 6.8 Chained cycles

Next, we assume o] = 0, = —, and the control network is then

Uet+1D)==-U(@),
Vi+1)==-V({@), (6.35)
Wit+1)=V(@)AW().

We then have two sequences of nested invariant subspaces which we consider sepa-
rately. Consider the first chain, which is

¥ =Span{U} C ¥» =Span{A,B,C,D,E,F,G,H,U,V,W}.

In #1 we have an obvious cycle: (0) — (1) — (0). For U = 0 a routine computation
shows that there is only a cycle of length 2, which is

0,0,1,1,0,1,1,0,1,0) - (0,0, 1, 1,0,1,1,0,0,0) - (0,0, 1,1,0,1,1,0, 1, 0).

L(0) is a 1024 x 1024 matrix. We omit this here, but we can calculate that L(0)” =
L(0)? and T, = 7. For U = 1, we have the same cycle, and L(HY = L(l)13 and
T, =11.

Finally, let ¥ = L(1)L(0). Then, ¥ has only one fixed point, (0,0, 1,1,0,1, 1,0,
1,0). We conclude that, overall, in U space we have only one cycle, 0 — 1 — 0,
and in the whole space we have only one product cycle,

0x(0,0,1,1,0,1,1,0,1,0) — 1 x (0,0,1,1,0, 1, 1,0,0,0) —
0x (0,0,1,1,0,1,1,0, 1,0).

These are depicted in Fig. 6.8(a), where I — S is the overall input-state space.

References 161

Next, we consider the second chain, which is

1 = Span{V} C ¥ = Span{V, W} C 73
=Span{A,B,C,D,E,F,G,H, U, V,W}.

First, there is a trivial cycle in V space: 0 — 1 — 0. Then, in V x W space, it is
easy to calculate that

L(0) =6,[22], L(1) =462[12].

Therefore,
¥ = L(1)L(0) =6[22],

which has unique fixed point 8% ~ 0. We conclude that in V x W space we
have only one cycle, 0 x 0 and 1 x 0. Finally, we consider the space V x W x
ABCDEFGHU. Calculating ¥ = L(0 x 0)L(1 x 0), it is easy to show that
the only cycle is a fixed point: (0,0,1,1,0,1,1,0, l)T. We conclude that there
is only one cycle of length 2 in the overall product space, which is 0 x 0 x
0,0,1,1,0,1,1,0, 1)T —->1x0x(0,0,1,1,0,1,1,0, O)T. Cycles in different lev-
els are depicted in Fig. 6.8(b).

References

1. Cheng, D.: Input-state approach to Boolean networks. IEEE Trans. Neural Netw. 20(3), 512—
521 (2009)

2. Huang, S., Ingber, D.: Shape-dependent control of cell growth, differentiation, and apoptosis:
switching between attractors in cell regulatory networks. Exp. Cell Res. 261(1), 91-103 (2000)

3. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annu. Rev.
Genomics Hum. Genet. 2, 343-372 (2001)

4. Kauffman, S.: At Home in the Universe. Oxford University Press, London (1995)

5. Paszek, E.: Boolean Networks. http://cnx.org/content/m12394/latest/ (2008)

http://cnx.org/content/m12394/latest/

Chapter 7
Model Construction via Observed Data

7.1 Reconstructing Networks

Recall that the dynamics of a Boolean network can be expressed as

x1(t+ 1D = fi(x1(@), x2(2), ..., xa (1)),
x2(r+1) = foax1(t), x2(1), ..., xa (1)),

(7.1)
Xp(t +1) = fu(x1 (@), x2(8), . .., X4 ().
In vector form we have
x(1) = X7_ x; (1)
and assume that the structure matrices of f;, i = 1,...,n, are M; € Lxom, | =
1,...,n. Then, (7.1) can be converted to
x1t+1)=Mx(@),
Xt +1)=Mx(),
(7.2)

X (t+1)=M,x(1).

The system (7.2) is called the componentwise algebraic form of (7.1). Multiplying
the equations in (7.2) together yields a linear representation of (7.1) as

x(t+1)=Lx(), (7.3)

where L € %nyon is called the network transition matrix. Equation (7.3) is called
the algebraic form of (7.1).

It was proven in Chap. 5 that (7.1), (7.2), and (7.3) are equivalent. The advantages
of (7.1) are that it provides clear logical relations and that it is easy to realize via
circuitry. The advantage of using (7.3) is that it is a conventional linear discrete-time

D. Cheng et al., Analysis and Control of Boolean Networks, 163
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_7, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_7

164 7 Model Construction via Observed Data

dynamical system, so many tools developed in control theory can be used to design
and analyze the network.

Chapter 5 provided a standard procedure to calculate (7.3) from (7.1) via (7.2).
It consists of an algorithm, which is used to calculate M; from its logical form, and
a formula, which calculates the transition matrix by using structure matrices M;,
i=1,...,n. A direct computation is also convenient to use. For the purposes of
review, we give a simple example.

Example 7.1 Consider the following Boolean network (see Fig. 7.1)
Its dynamics can be described as

x1(t+ 1) =x1(8) = x4(1),
X +1)=—x1),

(7.4)
x3(t + 1) =x2(1) A x4(t),
x4(t + 1) = x2(1) < x3(1).
We first express the system (7.4) in its componentwise algebraic form as
x1(t +1) = Mix1(£)xa(t) = 82[1 2 1 1]x1(1)x4(2),
x2(t + 1) = Mpxi (1) = 62(2 11x1(2), (7.5)

x3(t 4+ 1) = Mexa()xa(t) = 82[1 2 2 2]x2(1)x4(1),
x4(1 + 1) = Mexz(£)x3(1) = 62[1 22 1]x2 (1) x3(2).

Setting x = b<l‘f': 1Xi (1), the system (7.4) can be expressed in algebraic form as

x(t+1) = Mix1()xa@)Myx1(t) Mexo(8)x4() Mexo(2)x3(1)
= M;(I4 @ My)x1(t)xa(t)x1 (@) Mcx2(t)x4 () Mex2(t)x3(t)

= Lx(1), (7.6)

where

L=66[51561681671513244433]. 7.7)

At this point it is pertinent to ask how to reconstruct the Boolean network from
its network transition matrix L. This is important because we will work on a state

()
Fig. 7.1 Network graph of @“@

(7.4)

7.1 Reconstructing Networks 165

space and try to design a network transition matrix. We will then have to convert it
back to the network and give its logical relations for design purposes.

Consider a Boolean network with input—output structure. From a set of input—
output data we may identify the network transition matrix L. Particularly, in the case
of large or, potentially, huge networks, we may find a matrix L to approximate the
original system or a particular input—output functional part of the original network.
We refer to Chap. 17 for the investigation of Boolean control networks. Since L is
the coefficient matrix of a standard discrete-time linear system, it seems that many
known methods can be used for this purpose. This makes the deduction from L of
the dynamics of network variables more important.

Assuming that L is known, we will try to retrieve (7.1) and the network. First,
we have to reconstruct the structure matrices M; of the logical operators f;. We
define a set of logical matrices Sl." € Ly on, called retrievers, in the following way.
Divide the set of columns, labeled 1, 2, ..., 2", into 21 equal-sized segments, where
1 <i <n. Then, put 8% into the first segment of columns, put 8% into the second
segment of columns, then 8; again, and so on, continuing this process to define S?'.
In this way we have defined

n e DEEEY DEEEEY
1 =0ll 12 2],
on—1 on—1
SE=81--12--21---12---2],
——— — e S —
on=2 on=2 on=2 on=2
(7.8)
SP=8[12---12].
_\(—/
on—1
The following result shows how to calculate M;,i =1,...,n, from L.
Theorem 7.1 The structure matrices M; of f; can be retrieved as follows:
M;=S'L, i=1,2,...,n. (7.9)
To prove Theorem 7.1, we need the following lemma.
Lemma 7.1
S]}::S?Wp’k—l’z], k=1,2,...,7’l. (710)

Proof First, note that S,f can be expressed as

¢ =&[1y'],

166 7 Model Construction via Observed Data

where

Fknzl;ka M ---12---2].
on—k on—k

We now prove (7.10) by mathematical induction. For k = 1, the right-hand side
of (7.10) is

RHS=S{Wi=Sth=57.

so (7.10) is true.
Now, assume (7.10) is true for k = j < n. For k = j + 1, using (2.52), we then
have

RHS = S} Wy o
= S?(W[ZJ*I,Z] ®) (Ij-1 ® W)
= 8 (Lj-1 ® W2))

= 32[1;-,1 ® [L:/'_l 2 '\;'_%]](12/—1 ® Wi

on=j on=j
=81}, ® L1] @ (S2[1 - 1 2 -+ 2]W)
on—j on—j
252[1T._1]®52[1 1202101 2-442]
2J —_— ——— ——— — —C
on—j—1 on—j—1 on—j—1 on—j—1
:52[1;._1]52[1 e 12--02]
on—j—1 on—j—1
= S7+1. (7.11)
O

Proof of Theorem 7.1 1f x = x!'_ x;, where x; € A, then X}_,x; € Aju—1. We there-

: n _ s/
fore denote it as x/_,x; =8,_;.

i
_sisi |8
x_6232n*1 - [20 l:|'

A straightforward computation shows that

Assume x| = 8%. Then,

Six =xj. (7.12)

Next, we also have

X = W[z)zk—l])(fk Xtk Xi

7.1 Reconstructing Networks 167

or
W[z’qu]x = Xk Xiztk Xi.
Using (7.12), we have
ST Wi pk-17x = X

Using Lemma 7.1, the conclusion follows. O

Note that the number of neighborhood nodes of node i (equivalently, edges, start-
ing from other nodes, toward i), called the in-degree of node i, is usually much
smaller than n. We have to determine which node is connected to i. We have the
following result.

Proposition 7.1 Consider the system (7.2). If M; satisfies
MIIW[Z’Z/'*I](MVL —12):(), (713)

then j is not in the neighborhood of i. In other words, the edge j — i does not exist.
Moreover, the equation of A; can be replaced by

x(t+ 1) =Mixi(6) - xj—1(Oxj11(0) - - X (0, (7.14)
where
M] = M;Wpy5i-118).
Proof Note that we can rewrite the ith equation of (7.2) as
Xi(t + 1) = MW 0j-13x (0)x1(2) -+ xj—1 ()X j41 () - - - % (7).

We now replace x;(¢) by —x;(¢). If this does not affect the overall structure matrix,
it means that x; (¢ + 1) is independent of x (¢). The invariance of replacement is il-
lustrated by (7.13). As for (7.14), since x; (¢) does not affect x; (r + 1), we can simply
setx;(t) = 35 [equivalently, we could set x;(¢) = 8%] to simplify the expression. [

Remark 7.1 Repeating the verification of (7.13), all the fabricated variables can be
removed from the equation and we can finally obtain the network expression with
clean logical dynamics. This is called a clean form.

We now illustrate this with an example.

Example 7.2 Assume we have a Boolean network with five nodes and that its net-
work matrix L € %3437 is

L=63[36761922313019222322361514
35751921312919212321351513].

168 7 Model Construction via Observed Data

Using the retriever Si5 , we have
M;=SL, i=1,2,3,4,5,

which are

My=6[11112222222211111111222222221111],
My=8[11111122111111221111112211111122],
M;=6,[12221222122212221222122212221222],
Ms=6[21212121212121212121212121212121],
Ms=6[12121212121212121111111111111111].

Next, considering M1, it is easy to verify that

MM, = M,
MW M, # M,
M1W[2’22]Mn #* My,
MWy 09 My = My,
MW oMy = M.

We conclude that x;(r + 1) depends only on x>(¢) and x3(¢). We can then remove
the fabricated variables x1(¢), x4(¢), and x5(¢) from the first equation

x1 (1 + 1) = Myxy (£)x2(1)x3 (1) x4 (1) x5 (1) (7.15)

by replacing x1(¢), x4(¢) and x5(¢) in (7.15) with any constant logical values. If, say,
we let x1 (1) = x4(t) = x5() = 8!, then we get
x1(t + 1) = M8hxo (1) x3(1)818)
= M Wi 51(8)) x2(0)x3(1)
=8[122 1]x(t)x3(2). (7.16)

We can similarly remove the fabricated variables from other equations. Skipping
the mechanical verification process, we finally have

x1(t+ 1) =82[122 1]x2(1)x3(2),

x2(t + 1) =38[1 112]x3()x4(2),
x3(t+1)=2082[1222]x4(t)x5(2), (7.17)
x4(t + 1) = 62[2 1]x5(2),

x5+ 1) =362[121 1]x1(¢)x5(¢).

We can then reconstruct the network as Fig. 7.2.

7.1 Reconstructing Networks 169

Fig. 7.2 Reconstructed @
graph from network matrix

E—C—L)
©,

Moreover, from the above algebraic equations of the network it is easy to obtain
the logical equations as follows:

x1(t + 1) = x2(1) < x3(1),

Xt + 1) =x3() Vv x4(2),

x3(t 4+ 1) = xa(t) A x5(0), (7.18)
x4(t + 1) = —x5(2),

x5t + 1) =x1() = x5(1).

Remark 7.2 Unlike an algebraic function, for a logical function it might be very
difficult to verify that an argument is fabricated. Converting a logical function into
its algebraic form and using Proposition 7.1, the fabricated arguments can be elimi-
nated. We then convert it back to logical form. We will call such a logical equation
a clean form. When we construct the incidence matrix of a Boolean network from
its dynamics, the latter should be in its clean form.

In Example 7.2 we convert the algebraic form (7.17) to logical form (7.18) by
observation. In general, converting a logical function from its algebraic form back
to logical form is not easy. We now describe a procedure for doing this.

Proposition 7.2 Assume that a logical variable E has an algebraic expression as
E=f(x1,x2,..., %) =Mygx1x2 - Xp, (7.19)
where My € L5 won is the structure matrix of f. Then,
E = [xl A f1(xa, ...,xn)] \Y4 [—-xl A fa(xa, ...,xn)], (7.20)
where

My= My | Mp,),
i.e., the structure matrix of f1 (f2) is the first (last) half of My .

Proof Using (7.19), when x| =1,

E = MfS%Xz Xy = Mf] X2 Xp

170 7 Model Construction via Observed Data

and when x; =0,
E = Mf(S%)Cz e xp =Mpyxp e xy.
Equation (7.20) then follows. O

Using Proposition 7.2 we can obtain the logical expression of E recursively. We
give an example to illustrate this.

Example 7.3 Assume

E=6[1221212111222112]x1x2x3x4. (7.21)
Then,
E=[x1 A fi(xz, x3,x4)]V [7x1 A fa(x2, %3, x4)],
and
My =8[12212121],
My, =8[11222112].
Next,
S1(x2,x3,x8) = [x2 A f11(x3,x9) |V [73x2 A fra(x2, xa)],
where
Mg, =8[1221] = fi1(x3,x4) = x3 < x4,
My, =68[2121] = fi2(x3, x4) = —x4.
Fr(x2,x3,x4) = [x2 A fo1(x3, xa)] V [mx2 A far(x3,x4)],
where

Mp, =68[1122] = fo1(x3,x4) = x3,
Mp, =58[2112] = fo(x3,x3) =—(x3 < x4).

Combining all of this, we have
E = [xl AX2 A (x3 < X4)] \% [xl A (mx2) A (—'X4)] \% [(—-xl) A X2 /\JC3]
V [(=x1) A (mx2) A (=(x3 < x4))]
Remark 7.3 Consider a Boolean control network in its algebraic form as

x(t+1)=Lu(t)x(t), x(t)e Am,u(t)e A,

(7.22)
y(t)=Hx(), y(t)e€ Aw.

7.2 Model Construction for General Networks 171

Theorem 7.1 and Proposition 7.2 can then be applied to convert the algebraic forms
of state equation and output equations back to their logical forms. These will be
used frequently in the sequel.

7.2 Model Construction for General Networks

Assume a Boolean network consists of n nodes. Let X () = {x1(¢), ..., x,(¢)}. De-
note the observed data as {X (0), X(1),..., X(N)}. We give a rigorous definition
for the model construction.

Definition 7.1 Assume a set of observed data {X(0), X(1),..., X ()} is given,
where X () = {x1(¢), ..., x,(t)}. The model construction problem is the problem of
finding a logical dynamical system (7.1) such that the given data verify the dynam-
ical equation.

A model which is verified by the given data is called a realization of the data.

The model construction problem is also called the identification problem. It has
been investigated by several authors. For instance, in [5] a reverse engineering al-
gorithm was proposed for inference of genetic network architecture. Identification
by using a small number of gene expression patterns was proposed in [1] and an-
other identification algorithm based on matrix multiplication and the “fingerprint
function” was later proposed by the same authors [2]. Nam et al. [6] presented a
randomized network search algorithm, which requires less time on average.

From the definition we have the following, immediate, result.

Proposition 7.3 The system is uniquely identifiable if and only if the data
{X(0), X(1),..., X(N — 1)} contain all possible states.

Proof Convert the data into vector form by using x(¢) := x_,x;(¢). In algebraic

form, we then have that x(¢) = 55,, andx(r+1) = Sén if and only if the ith column
of Lis

Col; (L) =682, (7.23)
It follows that L is identifiable if and only if, in vector form,
{x©),x(D),....x(N = D} = Ay.

The conclusion then follows. O

If the procedure has been carried out more than once, the following result is
obvious.

Corollary 7.1 Assume the observed data consists of k groups, as

{X'0), X' (1), ..., X" (N},

172 7 Model Construction via Observed Data

where i =1, ..., k. The system is then uniquely identifiable if and only if (in vector
form)

(x'0), ... x"(N; =D |i=1,2,... .k} = Ap. (7.24)
Remark 7.4

1. From Proposition 7.3 one sees that to identify a Boolean network of n nodes, at
least 2" + 1 data are necessary.

2. If the data are not sufficient or do not satisfy the condition of Proposition 7.3,
we still can use (7.23) to identify some columns. The model is then not unique.
Uncertain columns of L can be chosen arbitrarily.

Example 7.4 Assume a set of five cells is considered. The 12 groups of experimental
data are demonstrated in Fig. 7.3, where a white disc, labeled 1, represents a healthy
cell, and a black disc, labeled 0, represents an infected cell. Our goal is to build a
dynamical model for the process of infection.

From the first experimental data we have (where the nodes are ordered from left
to right and then from top to bottom),

X'(0)=(0,0,1,0,0), x'(1)=(0,1,1,1,0), x'2)=(,1,0,1,1),
x'(3)=1(0,1,1,0,0), X'@=@1,1,1,1,1), x'(5)=(1,1,1,0,0),
x'e)=(1,1,1,1,00, X' (7)=(1,1,0,1,0), Xx'(8)=(0,1,0,1,0),
X'(9)=(0,1,0,1,1), x'(10)=(0,1,1,0, 1), x'11)=(1,1,0,0,1),
x'(12)=(0,0,0,0,0), x'(13)=(0,0,1,1,0), X'(14)=1(0,1,0,1,0).

In vector form we now have X! 0)=462{2,2,1,2,2} and
x1(0) =63 % 83 x 8] x 83 X 85 =835

Similarly, we can calculate that
oy=88, =83 =8, 1B =60,
=5l G =%, KO =64, (D=5,
x1(8) =833, x1(9) =683, x1(10) =81, x(11) = 682,,

a2y =632, Ktazn =83, x4 =53
Using Proposition 7.3 [or, more precisely, equation (7.23)], we know that
Colg(L) =833, Colig(L)=83,, Cols(L) =833,

The 14 columns of L have thus been determined.

o o
[¢]
o o
t=0
® O
[]
o e
t=38
o e
o
o o
t=0
o o
[}
e O
t=0
e o
[}
e O
t=0
o e
°
o o
t=0
o o
°
o o
t=0
o o
°
o e
t=0
o e
o
o e
t=0
o e
°
o e
t=0
o e
°
o o
t=0
o e
[}
o o
t=0
o e
°
e O
t=0

t=9

o O
[]
o O
t=2
® O
[¢]
e O
t=10
e O
o
e O
t=2
o o
o
o o
t=2
o o
[}
e O
=2

Fig. 7.3 Observed data for Example 7.4

7.2 Model Construction for General Networks

o O

®e O
t=11

o e
t=4

t=13

t=14

173

174 7 Model Construction via Observed Data

Applying the same procedure to the other groups of data, certain values of
columns of L can be determine. Finally, we can easily obtain that

L=063[4682202232261921231719213125

357119213125202224 182022 32 26]. (7.25)

Hence, we have the algebraic form of the dynamics of the infection process from
the experimental data as

x(t+1) = Lx (1), (7.26)

where L € %4437 is shown in (7.25). Next, we construct its logical dynamical equa-
tion to see the interaction between cells. Using (7.8), the corresponding retrievers
are

SIS=82[11111111]]1111112222222222222222],
S;:Bz[l1111111222222221111111122222222],
S;:Bz[lll12222111122221111222211112222], (7.27)
Si:ég[l1221122112211221122112211221122],
S§=82[12121212121212121212121212121212].

We can then obtain the componentwise algebraic form

x1(t) = M1x(2),
x2(t) = Max (1),
x3(t) = M3x(t), (7.28)
x4(t) = Myx (1),
xs(t) = Msx (1),

where

M1=SfL=82[11112222222222221111222222222222],
M2=S§L=82[11111122111111221111112211111122],
M3=S§L=52[12211221122112211221122112211221],
M4=SZL=82[21212121212121212121212121212121],

Ms=S3L=55[22222222111111111111111122222222].
(7.29)

We first consider the logical expression of x1(#):

X (t+ 1) =Mx(t)=8[1111222222222222
11112222222222221x(7).

7.2 Model Construction for General Networks 175

Fig. 7.4 Network graph of a
system (7.31)

@v@
@A@

We use Proposition 7.1 to remove the fabricated variables. It is easy to verify that
M\ (M, — 1) =0,
MW (My, — 1) #0,
M iWpa(My, — 1) #0, (7.30)
MW 81 (M, — 1) =0,
MyWp16)(My, — 1) =0.

Therefore, x(t), x4(t), and x5(¢) are fabricated variables in the dynamical equation
of x1(t + 1). Setting x1(t) = x4(t) = x5(t) = 8% yields

x1(t+1) = Myx ()x2(t)x3(t)x4(t)x5(t)
= M Wig g1x4(2)x5(t)x1 (1) x2(1)x3()

= M Wia g (8)) x2(0)x30)
= 8,[122 2]x2(t)x3(t).

Hence, its logical expression is
x1(t 4+ 1) =x2(t) Ax3(t).

The same process can be used to reconstruct the logical expression of x;(¢), x3(¢),
x4(t), and x5(¢). Finally, we can obtain the logical expression of the dynamics of
the group of cells as

x1(t + 1) = x2(1) Ax3(1),

x2(t + 1) = x3(0) V x4(2),

x3(t 4+ 1) = x4(t) < x5(t), (7.31)
xq4(t +1) = —x5(1),

xs5(t+ 1) =x1(t) V x2(2).

Figure 7.4 is its network graph.

176 7 Model Construction via Observed Data

Fig. 7.5 Network graph of o o
system (7.33) @ -) 5

Fig. 7.6 Observed data for Example 7.5

7.3 Construction with Known Network Graph

In previous section a general method was given to construct the dynamical model
of a Boolean network from its experimental data. As was pointed out, in general at
least 2" + 1 data are necessary to uniquely determine the model. As # is not very
small, this is a large or, potentially, huge number and in practical experiments such
an amount of data cannot easily be obtained. In this section, we consider the case
where the network graph is known. In this case, the data required can be reduced
considerably.

Note that when the number of a network nodes is large, drawing its network graph
is a demanding task. An alternative expression of the dynamical connection of nodes
is the incidence matrix [7]. The incidence matrix was defined in Chap. 5 and we
now recall it. Consider an n-node network. An n x n matrix, ¢ = (ri ;) € Mpxn,
is called its incidence matrix, where r; ; = 1, if x; (+ 1) depends on x; (¢) directly;
otherwise, r; j = 0. For instance, recall Example 7.1. Its incidence matrix is

Hlaa = (7.32)

SO ==
—_——_0 O
— O OO
OO

We consider the following example.

Example 7.5 Consider a network with eight nodes. Its network graph is depicted in
Fig. 7.5.

Assume that for this network we have the experimental data as in Fig. 7.6.

To construct its dynamical model, we use the componentwise algebraic form.
That is,

x1(t+ 1) = Myxg(1),
Xt +1) =Myx (1),
x3(t + 1) = M3x (1),
x4(t + 1) = Myx3(t)x7(1),
xs5(t +1) = Msx4(2),
X6t + 1) = Mexs(2),
x7(t + 1) = M7xe(2),
xg(t + 1) = Mgx3(t)x7(1).

(7.33)

7.4 Least In-degree Model 177

From the data, it is easy to see that

x0)=0 = x(H)=1,
x(Hh=1 = x12)=0,....

In vector form we then have
Coly (M) = 81, Coly (M) =483,
‘We conclude that M; = §,[2 1] and hence
x1(t 4+ 1) = —xg(¢).

Similarly, the other M;, i =2, 3, ..., 8, can be calculated. Finally, we have the dy-
namics as

xi1(t +1) =—xg(1),

x2(t +1) =x1(1),

x3(t + 1) = —x2(1),

x4(t + 1) =x3(1) V x7(1),

xs5(t + 1) =x4(2),

X6(t + 1) = —xs5(1),

x7(t + 1) =x6(1),

xg(t + 1) =x3() Ax7(2).

(7.34)

Comparing this example with Example 7.4, it is obvious that when the network
graph (equivalently, the incidence matrix) is known, then much less data will be
needed to build the model.

7.4 Least In-degree Model

Consider a network with n nodes. The in-degree of node k, denoted by d; (k), is the
number of edges which end at node k. Consider the incidence matrix of the network.
Then,

n

d,'(k):Zrkj, k=1,...,n. (7.35)
j=l1
For instance, consider Example 7.1. Its in-degrees are d;(1) = 2, d;(2) =1,
d;(3) =2, and d; (4) = 2. Consider Example 7.4. Its in-degrees are d; (1) =d;(2) =
di(3)=di(5)=2,and d;(4) = 1.

178 7 Model Construction via Observed Data

It is well known that in ordered networks the in-degree is much less than the
number of nodes [4]. In an experiment involving random light bulb networks, it was
assumed that the number of nodes n = 100,000 and the in-degree d; = 2. In this
section we consider the least in-degree model.

Definition 7.2 Given a set of experimental data, for an n-node Boolean network,
a realization with the in-degree di* (k), k=1,...,n, is called the least in-degree
model if, for any other realization with in-degree d; (k), k =1, ..., n, we have

di (k) <di(k), k=1,...,n.

It is obvious that a least in-degree model requires much less data to identify
the model. Moreover, a real practical network should be of least in-degree. In the
following we consider how to obtain a least in-degree realization. We start from
the componentwise algebraic form (7.2). Denote a set of experimental data by
{X(0), X(1),..., X(N)}. Consider the ith subsystem

xi(t+1)=M;x(t), where M; € L. (7.36)

Using this set of data, some columns of the structure matrix M; can be determined.
Say,

M=% -+ % Cjj % o+ % Ciy % «=+ % ==+ k ¢ % -+ %], (7.37)

where Cijs j=1,...,s, are identified columns and * denotes an uncertain column.
We call (7.37) the uncertain structure matrix. Next, we construct a set of matrices as

M; ;= M,»W[lzj_]], j=12,...,n,
and then split it into two equal-sized parts as
Mij=[M; M. (7.38)
We then have the following result.
Proposition 7.4 f; has a realization which is independent of x ; if and only if
M} ;=M (7.39)
has a solution for uncertain columns.
Proof When j =1, we have M; ; = M;, so
M;=[Mm! M7P] (7.40)

If
M! = M? (7.41)

7.4 Least In-degree Model 179
Fig. 7.7 Observed data for eCee® eeee Oeee 0O0OO@ @000 eOe®

Example 7.6 1=0 1=1 1=2 1=3 1=4 1=5

has a solution for uncertain elements, then the solution makes Mi1 = Mi2. Using
equation (7.13), it is easy to see that this realization is independent of x1. Consider-
ing x;, we rewrite (7.36) as

j—1
xit+1D) =M, jx; K/i:] Xk [><2=j+1 Xk
and the same argument as for x; leads to the general conclusion. g
Next, we give an algorithm for producing a least in-degree realization.

Algorithm 7.1

Step 1. For each componentwise algebraic equation, we use the observed data to
identify some of its columns as (7.37). Moreover, we define the incidence set as
S;={1,2,...,n},i=1,...,n.

Step 2. Construct (7.40) to check whether (7.41) has a solution. If it does, then fix
some uncertain columns and update the system to

xi(t+1) =M} < x;(0).

1

Go to the next step.
Step j. (Repeat this step for 3 < j < n.) Check whether (7.39) has solution. If it
does, then fix some uncertain columns and update the system to

xi(t+1) =M} Xi<k<j1kes; Xk Xi_j | X (7.42)
Replace S; by Si\{j}.
The following conclusion follows from the design of the algorithm.
Proposition 7.5 Algorithm 7.1 yields least in-degree realizations.

We now give an example to illustrate this.

Example 7.6 Consider the experimental data in Fig. 7.7.
The vector form of the data is as follows:

x(0)=8lz. x(H)=82 x2)=8%.
x3) =8, x@=82, x5 =852

Using the technique developed in previous sections, we can identify some columns
of M, via the known data as

My =38 [*2 % % % % % 1 %2 %2 %% % 1].

180 7 Model Construction via Observed Data
Setting M 11 =M 12 yields the solution as
Ml =M?=8[%2 % 2 % * * 1].
Therefore, the system can be simplified as
X1t +1)=082[%2 % 2 % % x 1]xa(t)x3(t)x4(2).
Splitting M 11 into two parts and considering the equation
So[*2 * 2] =8a[* x % 1],

we have no solution. Thus, the equation depends on x».
Consider

Mia=M{Wpo =82 %% %2 x 1].

Then,

So[*%2 * x] =8 x2 % 1]
has solution as

Sr[x2 * 1].
The original equation can then be updated as
X1+ 1) =38[*2 * 1]x2()x4(2).
Finally, we check x4(¢). Since
82[*2 * 11Wp o) =82[* * 21],
and
So[* %] =62[2 1]
has solution
52[2 1],

we finally have

x1(t+1) =622 11x2(2).
That is,

x1(t+ 1) =—x2 ().

7.5 Construction of Uniform Boolean Network 181

f;gt.ezr.lSUT;)work graph of @ @
()

Applying the same procedure to three other equations, we can finally obtain the least
in-degree realization as

x1(t+ 1) =—x2(0),
Xt + 1) =x4(t) vV x1(2),
x3(t+ 1) =x1(),
x4(t +1) = x3(1) V x4(1).

(7.43)

Figure 7.8 is its network graph.

In fact, if
diky<u, k=1,...,n,

then it is easy to see that the smallest number of data required to identify the system
is 2* 4+ 1, which is, in general, much less than 2" + 1.

7.5 Construction of Uniform Boolean Network

In this section we consider the case where the network has uniform dynamical struc-
ture. Physically, this would correspond to something like the following situation.
Assume we have a set of cells where each cell can be infected only by its neighbors
and, moreover, the rule for a cell being infected is the same for all cells. Each cell
then has the same logical dynamical interactive pattern with its neighbors.

Example 7.7 Let a set of experimental data be given as in Fig. 7.9. We assume that
the infection process is uniform and that each cell x is affected only by its neigh-
boring cells, x1, x2, x3, x4, x5, and xg. Moreover, it is also reasonable to assume that
the infection is isotropic. That is, if we label the six neighboring cells of a cell in
clockwise order (starting from any of them), then the dynamical equation becomes

xo(t+1)=M =8 x;(r), where M € %, . (7.44)

Our purpose is to identify M.

182

7 Model Construction via Observed Data

0O o o o o o o o o o o o o o 0O o0 o o o0 o o o o0 o o0 0o o0 o
O o0 o o o o o0 0 o0 O e O O
O o0 o0 o o o @€ OO0 o o o o O 0O 0O 0O O O @ OO0 O @ @€ O O
OAO o O OBOCO o O OD. ® O
O o0 o o o o o o o o o o o o O O 0O O @ OO O O @ O @€ O O
O O e @ ®€ O O O @ @ @ O O
0O 0O 0 e O OO0 OO0 0 e O o O O O 0O @ @€ O OO @ @ @€ O O O
O OC @ @€ O O O @ @ @6 ¢ O O
O 0O 0 o0 O O O O @ O @€ O O O O O O O O O O O @ @ @€ O O O
o O .E. O O O e @ @ @ O O
0O 0O o0 o e O OO0 0o o o o O O e @ ® O O OO @€ OO O O
O o0 e @€ O O O O O O O o O
O o0 o o o o o o o o o o o o 0O 0 0 o o o o o o0 0 0 o o o

O 0O 0 0O o O o O O O e O O
A B C D
O 0O 0O O O O O O 0 0 e e O
O O O @ @€ O O O @€ @ O O O
O O 0O @€ O OO O @ @€ O O O
E
O O @€ O O O O O @@ @€ O O O
0O O @€ O OO O O 0 O O 0 Oo

t=0

t=1

O o0 o o o o o o o o o o o o O 0O 0O O O O O O O O @ @€ O O
O O O O O O O O OC e e o o
O O O O O O @ OO0 O e e @ O O O O O O O @ OO0 @ e @ & O
OAO (O3] .BOCO (O3] .D. o o
O O OC e @ @ O O @ @ 06 0 0 O O O @ @ @6 @6 O ¢ 06 06 06 0 ¢ O
O ©e @6 6 6 ¢ 6 6 6 6 ¢ 0 o
O O @ e @ @ O ¢ 6 @ ¢ ¢ O O O O @ @ @6 @6 O ¢ 6 6 ¢ ¢ ¢ O
O @ @ ¢ ¢ ¢ 06 6 ¢ ¢ ¢ o O
O O @@ @€ O OO @€ @ @ @ @ O O O e e & 6 6 O 6 0 06 06 ¢ O O
o e .h. ® O © 6 ¢ ¢ ¢ o O
O 0 e @ @€ O O O @ @ @€ O O O O e e @ 6 @6 O ¢ ¢ ¢ ¢ ¢ O O
O e ¢ @€ € O O O @ @€ O O O
0O 0 o0 e O OO0 0 o0 o o o o o O 0 e @ € O O O O O O O O O

O 0O O O O O O O O o @@ @ O
A B _C D
O 0O 0O O O O O O O e e @ O
O O @ @ @€ O O @ ¢ 6 ¢ 0 O
O O @ @ ® O O @ @ @ @ O O
E
O e ¢ @€ @€ O O ¢ ¢ ¢ ¢ O O
C e @ @€ € O O O O O O O O

t=2

Fig. 7.9 Observed data for Example 7.7

t=3

We now consider some special points in order to demonstrate how to find M.

1. Consider xo = A. Note that xo(0) = 1 and, on its neighborhood, we have x; (0) =
1, x2(0) =1, x3(0) = 1, x4(0) = 1, x5(0) = 1, and x¢(0) = 1, that is, X (0) =
(1111111)~8]. Since xo(1) = 1, we conclude that Col; (M) = §).

2. Consider xo = B. We have xp(0) = 1 and, on its neighborhood, we have
x1(0) =1, x2(0) =1, x3(0) = 1, x4(0) =1, x5(0) = 1, and x¢(0) = 0O, that is,
X0)=(1111110)~ 8%28. Since xg(1) = 1, we conclude that Coly(M) = 85.
Moreover, by isotropy we can also assume that X (0) is obtained by rotating
the subscripts of x1(0), x2(0), x3(0), x4(0), x5(0), and x¢(0), and all such X (0)

yields the same xo(1). That is,

XO0)=1111101)~ 8}
XO0)=(1111011)~8,
X(0)=(1110111)~ 8}
XO0)=1101111)~ 87

vl

Cols(M) =61,
Cols(M) =61,
Coly(M) =683,
Coli7(M) =43,

7.5 Construction of Uniform Boolean Network

XO=1011111)~83, =

3. Consider xo = C. Since x9(0) =0 and xo(1) = 0, we have X (0) =

Col33(M) = 5).

Colg1 (M) = 53,
Colig(M) = 63,
Colas(M) = 83,
Colg(M) = 83,

Coly (M) =83,

183

(07 1’]1 17

1,1, 1) ~ 6%, which implies that Coles(M) = 63.

4. Consider xo = D. Since x¢(0) = 1 and xo(1) = 0, using isotropy, we have
XO0)=(1010111)~8 =
X0)=(1101110)~85 =
XO0)=(1011101)~83 =
XO0)=(1111010)~8, =
XO0)=(1110101)~8j33 =
XO0)=(1101011)~8l =

5. Consider xg = E. Since xo(0) =1, xo(1) = 1, and xo(2) =

X0=1011011)~8) =
XO0)=(1110110)~8% =
XO0)=(1101101)~83 =
and
XO0)=(1010011)~68py =
XO0)=(1100110)~85 =
X(0)=(1001001)~8)1; =
XO0)=(1011010)~85 =
X0)=(1110100)~535 =

X(O0)=(1101001)~83, =

Coly1 (M) =63.

Colz7 (M) = 8,
Colig(M) = 8,

Colo(M) =43,

Cols(M) =63,
Colas(M) = 83,
Cols (M) = 83,
Colsg(M) = 83,
Colia(M) =63,

Colp3 (M) =83

0, we have

6. Continuing this process, all the columns of M can finally be identified as

M=46[11121222112222221212222222222222
12221222222222222222222222222222
22222222222222222222222222222222
22222222222222222222222222222222].

184 7 Model Construction via Observed Data

Skipping the standard (and tedious) process, we finally can convert the algebraic
form back to logical form as

xo(t +1) = x0() A (x1(1) Vx2 (1)) A (x2(0) V x3(1)) A (x3(0) V x4())
A (xa() v xs®) A (x5() V x6()) A (x6(1) v x1(1))
A (x1(@) vV x3(0) A (x3() Vx5 () A (xs(1) Vv x1(1))

A (x2(0) V x4(0)) A (x4(0) V x6(0)) A (x6(8) V x2(2)). (7.45)

7.6 Modeling via Data with Errors

Until now the data we have considered are precisely correct. In dealing with real-
world data, certain numerical methods should be used, so in this section we propose
some basic ideas for dealing with imperfect data.

Data can contain errors caused by measurement, for example. In identification,
we may have conflicting data. Suppose, with some data we have obtained, that

85,k times,
Col; (L) = . . (7.46)
d5n, s times.

L. If k> s, then we can ignore 83, and let Col; (L) = 85,.

2. If k < s, then we can ignore 85,1 and let Col; (L) = Sg,l.

3. If k & s, then we may need more data or (when we already have enough data)
conclude that the model is not acceptable.

A similar judgment can be applied to each M; in the componentwise model.
Consider the least in-degree model. Let {1, J} be a partition of {1, 2, ..., 2"}. If

Col;(M) =8y, kj>k,jel,

(7.47)
Col; (M) :8;", ki <k,iel,
then we may consider Col; (M), i € I, as error columns and set Col; (M) = %, i.e.,
consider them as uncertain columns.
Roughly speaking, for model construction, we use only the data about which we
are confident. Many statistical testing methods can be used to tell whether particular
data is reliable. We give a simple example to illustrate this.

7.6 Modeling via Data with Errors

[eX N6
t=0

[e)exe)
t=10

cee
t=20

[X N]
t =30

[X _N©)
t=40

coe
t=1

[X N]
t=11

[X Ne}
t=21

[JON]
t =31

o0 e
t =41

t=2

[JON]
t=12

[JoX J
t=22

@00
t=32

[JOX]
t=42

[JON]
t=3

@00
t=13

®0O0
t=23

OO0
t=33

000
t=43

@00
t=4

OO0
t=14

[oXeje}
t=24

ooe
t=134

[eX X6
t=44

Fig. 7.10 Observed data for Example 7.8

t=5

[oX N6
t=15

ceoO
t=25

00O
t=35

cee
t=45

e0® @000
t=38 t=9

@00 00O
t=18 t=19

0O 00O
t=28 t=29

OO0 Oeo
t =38 t =39

@00 00O
t=48 =49

Example 7.8 Suppose we have a Boolean network with three nodes. The experi-
mental data are depicted in Fig. 7.10.
The 50 experiment data can be converted into vector form as

x(0) =83,

x(5) =84,
x(10) = &3,
x(15) = &3,
x(20) = &3,
x(25) =&,
x(30) = &%,
x(35) =53,
x(40) = &g,
x(45) = &3,

x(1) =82,
x(6) =53,
x(11) =88,
x(16) = &3,
x(21) =87,
x(26) =8,
x(31) =89,
x(36) =88,
x(41) =89,
x(46) = 53,

x(2) =83,
x(7) =83,
x(12) =8,
x(17) = &8,
x(22) =8¢,
x(27) =8,
x(32) =53,
x(37) =853,
x(42) =88,
x(47) =58,

x(3) =88,
x(8) =88,
x(13) =8,
x(18) = &3,
x(23) =53,
x(38) =43,
x(33) =84,
x(38) =484,
x(43) =84,
x(48) =53,

Suppose the componentwise algebraic form of x1(¢) is

x1(r+1)=Mx@),

M € Lxs.

x(4) =853,
x(9) =353,
x(14) = 8§,
x(19) = &4,
x(24) =84,
x(29) =83,
x(34) =83,
x(39) =53,
x(44) =83,
x(49) =5;.

From the data, using the technique developed in Section 7.2, we have

81
20
Coly (M) = 5
52,

Hence, we set Col; (M) = 5;.

8 times,

2 times.

(7.48)

186 7 Model Construction via Observed Data
For the 2nd, ..., 8th columns, we have
Coly(M) =83, 2 times,

(Sé, 2 times,
Col3(My) = 5 _
85, 4 times,

Coly(M;) =83, 2 times,

Cols(M;) =83, 9 times, (7.49)
8;, 1 time,
Colg(My) = 5 _
5, 10 times,

Coly (M) =83, 6 times,
Colg(M{) =63, 2 times.
Hence, we can obtain the matrix M as
M| =8[12221222].
Splitting M1 as M1 = [M11 Mj2], we have M1 = M1>. The algebraic form of x1 (¢)
is
x1(t+1) =8[1222]x2(1)x3(7).

Converting this into its logical form, we get
xi(t+1) =x2(t) Ax3(1).

Using the same technique for x»(¢) and x3(¢), we obtain the logical expression
from data as

x1(t+1) =x2(t) A x3(2),
x2(t + 1) = —x1 (1), (7.50)
x3(t+1)=x1() VvV x2(1).

Returning to the data, it is easy to check that eight of them are wrong. The method
seems relatively robust.

Finally, we note that if a model is constructed and, later, additional data become
available, then we can update the model as follows. If the kth equation verifies new
data, it remains available. Otherwise, we can add newly identified columns to the
existing set and use them to construct a new structure matrix M. The new kth
equation can then be updated.

References 187

References

1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of
gene expression patterns under the Boolean network model. In: Proc. Pacific Symposium on
Biocomputing, pp. 17-28. World Scientific, Singapore (1999)

2. Akutsu, T., Miyano, S., Kuhara, S.: Algorithms for identifying Boolean networks and related
biological networks based on matrix multiplication and fingerprint function. J. Comput. Biol.
7(3/4), 331-343 (2000)

3. Cheng, D., Qi, H., Li, Z.: Model construction of Boolean network via observed data (2010,
submitted)

4. Kauffman, S.: At Home in the Universe. Oxford University Press, London (1995)

5. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for infer-
ence of genetic network architectures. In: Proc. Pacific Symposium on Biocomputing, vol. 3,
pp- 18-29 (1998)

6. Nam, D., Seo, S., Kim, S.: An efficient top-down search algorithm for learning Boolean net-
works of gene expression. Mach. Learn. 65, 229-245 (2006)

7. Robert, F.: Discrete Iterations: A Metric Study. Springer, Berlin (1986). Translated by J. Rolne

Chapter 8
State Space and Subspaces

8.1 State Spaces of Boolean Networks

One of the fundamental pillars of modern control theory is the state-space descrip-
tion of control systems, first proposed by Kalman [7]. Consider a linear system

{)&:Ax—i—Bu, x eR" ueR™, 8.1)

y=Cx, yeR?,

Many subspaces of the state space R” then play important roles in system analysis
and control design, e.g., the controllable subspace, observable subspace and (A, B)-
invariant subspace. Consider an affine nonlinear system

{J&:f(x)—i—zlr-"_lgi(x)u,-, xeM,ueU, 82)

y=h(x), yeN,

where M, U, and N are n-, m-, and p-dimensional manifolds, respectively. The
vector fields on M, denoted by V (M), form a vector space, called the Lie algebra,
and f(x), g;(x) € V(M). Like the subspaces of V (M), the accessibility Lie algebra,
(f, g)-invariant distribution, etc. also play important roles in the control of affine
nonlinear systems.

Consider a Boolean network,

x1@t+ 1) = fi(x1(@), ..., x, (1)),
: (8.3)
Xt + D)= fux1(®),....,x, (1), x; €9,

D. Cheng et al., Analysis and Control of Boolean Networks, 189
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_8, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_8

190 8 State Space and Subspaces
or a Boolean control network,

x1(t+ D= filx (@), ..., x(0), u1(t), ..., un (1)),

~ (8.4)
xn(t + 1) = fn(xl (t)’ e 7-xn(t)a ul(t)7 ceey um(t))v
yj(t)=hj(x1(t),...,xn(t)), Xi,ui,yj €.

Unlike quantity-based dynamical (control) systems, the logic-based dynamical
(control) systems do not have a natural vector space structure. To use the state-
space approach, we have to define the state space and its various subspaces. In fact,
in Chap. 6 we have already used the concepts of state space and subspaces based on
the coordinates of the system. In this chapter, the general coordinate-independent
definitions will be given. These will play a similar role as their counterparts in mod-
ern control theory.

Definition 8.1 Consider the Boolean network (8.3) or the Boolean control net-

work (8.4).
1. The state space Z is defined as the set of all logical functions of xi, ..., x,,
denoted by
X =Folx1, ..., xn}. (8.5)
2. Letzy,...,zr € Z . The subspace 2 generated by z1, ..., zx is the set of logical
functions of z1, ..., Zx, denoted by
Z =Tz, wuh (8.6)
Remark 8.1

1. Let& € 2. Then, & is a logical function of xy, ..., x,, say
E=g(x1,...,x,).
It can then be uniquely expressed in algebraic form as
§ = Mg xj_y xi,
where M, € Lo Now, M ¢ can be expressed as
Soliyin -],

where i can be either 1 or 2. It follows that there are 22" different functions.
That is,

|2 | =2%".

8.2 Coordinate Transformation 191

2. Using a set of functions to define a (sub)space is reasonable. For instance, in the
linear space R"” with the coordinate frame {x, ..., x,}, we consider all the linear
functions over x;,, ..., x;,, that is,

k
L= chx,-j Cl,...,c, €RE,
j=1

which is obviously a k-dimensional subspace. In fact, we can identify L; with
its domain, which is a k-dimensional subspace of the state space R”, called the
dual space of L.

The logical space (subspace) defined here is also in the dual sense and we
consider its domain as a subspace of the state space.

8.2 Coordinate Transformation

From modern control theory, we know that in the state-space approach the coor-
dinate transformation plays a fundamental role. To apply this approach to logical
dynamical systems, we also need to define a coordinate transformation (or change
of coordinates) on the state space 2.

Definition 8.2 Let Z = {zy,...,z,} C Z . For notational ease, we also consider
Z =(z1,...,2,)" as a column vector. The mapping G : 2" — 2" defined by X =
1, ..., x) T > Z=(z1,...,zy)" is called a coordinate transformation if T is one-

to-one and onto.

To obtain the verifiable condition for the coordinate transformation, we consider
its algebraic form. Suppose the mapping is determined by

21 =g1(X1, ..., Xn),
G:{: (8.7)
Zn = 8n(X1, ..., Xn).
Setting x = x7_,x; and z = X7_, z;, the algebraic form of G is described as

z=Tgx, (8.8)

where Tg € Z5nyon is the structure matrix of G. Since there is a one-to-one cor-
respondence between Ajx and 2", that is, a one-to-one correspondence between
X = (x1,...,x,) and x = X!_, x;, the following result is obvious.

Theorem 8.1 G is a coordinate transformation if and only if its structure matrix
T is nonsingular.

192 8 State Space and Subspaces

Remark 8.2 1f a matrix T € %, is nonsingular, then it is an orthogonal matrix.
Hence, if (8.8) is a coordinate transformation, then

x=Tkz. (8.9)

Remark 8.3 Leta;,i =1,...,n,and b;, i =1, ...,n, be sets of n vectors. From
linear algebra it is well known that if

b aj
by a
.| =G
by dp
and G is singular, then by, b, ..., b, are linearly dependent, so at least one b; can

be determined by the others. This is not true in the logical case. For suppose
B1By, =64[1134]A1Ar :=GA A,
Here, G is singular and

B; = SIGA1 Ay =8[1 122]A1Ax ~ Ay,
By =S3GA1Ay=58[1112]A1A2 ~ Ay V Ay,

but neither one can be determined by the other.
This example shows that even if n logical functions are not dependent (no one
can be determined by others), they may not be valid as a set of coordinate variables.

Next, we give an example to illustrate coordinate transformation in the logical
setting.

Example 8.1 Let

By =—A,
By=A; < A, (8.10)
Bz =—Aj3.

Define x = A1 Ay A3z, y = B1 B> B3. Then

y = B1ByB3
= M,AyM,A1 A M, As
= My (L ® M)Wp21A1A3M, A5
= My(Lh @ M)Wp(Ih ® My)A1A2 M, Az
= My (L ® M)Wp2) (I ® M;)(Is ® M) A1 A2 A3
= Tx, (8.11)

8.2 Coordinate Transformation 193

where T € Z3«g is

T=M,(Io@M)Wp1(I ® M;)(14 ® My,)
—85[65438721]. (8.12)

Since T is nonsingular, (8.10) is a logical coordinate transformation.
Note that since the T in (8.12) is an orthogonal matrix, we have

x = T_ly = TTy.
Then,
Al =S8;T "y :=M1y=5[22111122]BB1Bs,
Ay =S3TTy:= Mry=8[22221111]B, B, B3,
A3 =S3T y = M3y =8[21212121]B,B,Bs.
It is easy to check that
MW 4(M, — 1) =0.
Therefore, A; is independent on Bs. To eliminate it, we replace M| by
M Wp4183 =822 112].
Hence,
Ay =8[2112]B;B,.

Similarly, we can check that A; is independent of B, and Bj3, and can be expressed
as

Ay =5[21]B;.
Aj is independent of By and Bj, and can be expressed as
Az =5[2 1]Bs3.
Converting these into logical form, we have
Ay =—(B1 < B2) = B1V By,
A, =—Bj, (8.13)

A3 = —Bs.

Next, we consider the logical coordinate transformation of the dynamics of a
Boolean network. Consider a Boolean network in algebraic form as

x(t+1)=Lx(t), x¢&Anmn. (8.14)

194 8 State Space and Subspaces

Let z=Tx : Ayn — Apn be alogical coordinate transformation. Then,
z+1)=Tx(t+1)=TLx(t) = TLT_]z(t).

That is, under the z coordinate frame, the Boolean network dynamics (8.14) be-
comes

2(t+ 1) =Lz (o), (8.15)
where
L=TLT". (8.16)

Consider a Boolean control system in algebraic form as

(8.17)

x(t+1)=Lut)x(t), x€& Am,uec Am,
y(#)=Hx(t), yeAw.

Let z =Tx : Ay» — Apn be a logical coordinate transformation. A straightforward
computation shows that (8.17) can be expressed as

2t 4+ 1) =Lu(t)z(t), z€ Apm,uc Am,
- (8.18)
y(t) =Hz(t), ye€ Aw,

where

L=TL(Lmo&T"),
~ (8.19)
H=HT".

We give an example to describe this.
Example 8.2 Consider the following system:

ALt + 1) = =(A1 (1) < Ax (),
As(t+ 1) = =(Ax(r) < A3(1)),

A3+ 1) =u) A A (D), (8.20)
Y1) = A1(1) < Ax(1),

u(t + 1) = —u(t).

In algebraic form, it becomes

At +1)=M,A1A2(0),
Ax(t +1) = My Ay() A3 (1),
A3t + 1) = Mou(t) Ay (1), ®.21)

y@®) =M.A1(1)A2(2),
u(t+1) = M,uu().

8.2 Coordinate Transformation 195
Let x(1) = A1(t)A2(t) A3(¢). Then,

x(t+1)=MyA1AoMpA2AsMcuAy = Lu(t)x(2),
where L € %16 can be easily calculated as

L=My(Is @ Mp)(I2 ® M;)(Is @ M-)W4.8/(I> ® M)
=8g[7513426886244268].

Using the dummy matrix Eg, y can be expressed as

y(#) =MA (1) EaMp Ao (2)A3(t)
= Me(IZ & EdMn)x(t)
=5[12122121]x@).

Assume that we use the change of coordinates

Bl =A| VA,
By =—Ay,
B3 =—A3,

which is the inverse of the coordinate transformation in (8.10). Its transfer matrix is
then 7T, where T is as in (8.12).
Using logical coordinate transformation (8.18), we have

L=TL(L®T")
=8[7348512673375115],
H=HT ' =8[12211221].

We also have

M;=68[2112211221122112),
M =5802222111122221111],
My=38[1122112211111111].

It is easy to check that
Man:Ml, M1W[2]Mn=M1W[2].
Hence, B (¢ + 1) is independent on u(#) and Bj(¢), so we can replace it by

Mi(83) =802112],

196 8 State Space and Subspaces

Thus, the first equation becomes
Bi(t+ 1) = Ba(1) V B3 ().
A similar argument applied to the other equations yields

B1(t + 1) = Ba(t) V B3(1),
By(t+1)=—B(2),
Bi(t+ 1) =u(t) — By(1), (8.22)

y(t) = Ba(t) <> B3(1),
u(t+1) =—u(r).

8.3 Regular Subspaces

In Definition 8.1 a subspace of the state space 2 was defined as 2 = .%,{z1,...,
zk}. Recall that in the previous chapter a subspace was defined as 2o = F ¢{x;, ...,
x;, }. This subspace corresponds to a set of state variables. We can check whether
this subspace is invariant, etc., according to their corresponding logical dynamic
equations. Now, a fundamental problem is: for a general subspace, can we always
consider its basis as part of the coordinate variables? It turns out that we cannot. Let
us consider the following simple example.

Example 8.3 Assume 2" = .%¢{x1, x2}. Let 2 be a subspace generated by z; =
X1 A xp, that is, & = % ,{z1}. Can we then find z» € Z such that Z = (z;, 22)
is a coordinate frame? Since zo = f(x1, x2), there are 24 = 16 different functions.
Checking them one by one, it can be seen that there is no z» which makes (z1, z2) a
coordinate frame.

We therefore need to introduce the following definition.

Definition 8.3 A subspace 2 = % ,{z1,..., 2k} C Z is called a regular subspace
of dimension k if there are zz41, ..., z, such that Z = (z1, ..., z,) is a coordinate
frame. Moreover, {z1, ..., zx} is called a regular basis of 2.

Example 8.4 Consider the state space 2" = .% ¢{x1, x2, x3} and the subspace Z =
Fla,nyc 2.

1. Assume that

as e (8.23)
72 = X2 V X3.
Its algebraic form can then be expressed as
=6,[11222211
z1 =26 Jrixaxs3, (8.24)
22=2052[(21122112]x1x2x3.

8.3 Regular Subspaces 197

We claim that 2 is a regular subspace. To see this, we choose z3 =
(x1 A (x2 < x3)) V (—x] A (x2 V x3)) or, equivalently,

z3=087[12212112]x1x2x3. (8.25)
Setting z = 712223 and x = x1x2x3, it is easy to calculate that

7=Lx=4683[32678514]x. (8.26)
Since L € %3xs is nonsingular, z is a coordinate frame, and hence %2 is a regular

subspace.
2. Assume that

aEaT (8.27)
72 = X2 V X3.
Its algebraic form can then be expressed as
=8&[11221111]x,
z1 =24 Tx (8.28)
22=268[21122112]x.

Let z3 € 2. There are then 2% different z3’s and it is then straightforward to
check that there is no z3 which makes {z1, z2, z3} a coordinate frame. Therefore,
% = F¢{z1, 72} is not a regular subspace.

From the above example one sees that using the definition to check whether a
subspace is regular is a very demanding task. Therefore, we have to find an efficient
way to verify regularity.

Consider the set of functions

Zizgl.('xlv"'axn)a i=17--'7k5 (8.29)
and let & = % ¢{z1, ..., zx}. We would like to know when % is a regular subspace
with {z1, ..., zx} as its regular sub-basis. Set z = xf:]zi and x = x?_,x;. From

(8.29) we can get its algebraic form as

i Lo oo Lpom
7= Lx = X. (830)
Cory Lorp oo+ Lorom
Recalling Theorem 4.1, we have
k
L=M[[[(l» ® M}) @], (8.31)

j=2

198 8 State Space and Subspaces

where

N
Oy =[[11 @ [(2® Wpp-iDM,], s=1,2,...,
i=1
and M, = 54[1 4].
We provide another method to calculate L using M;. Itis very convenient in nu-

merical calculation and, moreover, it reveals certain relations between the elements
of L and M;.

Proposition 8.1 Consider (8.29) and (8.30). Assume that the structure matrix of g;
is

M‘Z[Eiéééén]v i=1,...,k,

and
L=1[Ly - L]
Then,
6=xk_g, r=1,...,2"
Proof If we assume x| =xp =---=x, = 8% ~1,then x = X7_,x; = 8%,1, and
z=Lx=Col|(L)=4¢;.
On the other hand,

zi=Mix =Coly(M;) =&}, i=1,... k.
Hence, z = l><§‘=]3;‘f. We then have
0 =k gl

Similarly, let x; = «; € {0, 1},.i =1,...,n,and set r =2" — [a] X on=1 4 oy X
2"=2 4 ... 4 q,]. Then, z; =&, i =1,..., k. Hence,

6 =z=x*_ gl O

The following corollary is easily verifiable.

Corollary 8.1 Assume that yi,...,yp and z1, ..., 24 are sets of logical functions
of X1,...,xy. Let y = l><f=]yi, 7= K?zlzi, w=yz,and x = |><;’:1xl~. Moreover, we
have

y=Mx, 7= Nx, w=Lx,
where M € Lspson, N € Lraxom, and L € Lsp+qxom. We then have

Col; (L) =Col;(M)Col;(N), i=1,...,2" (8.32)

8.3 Regular Subspaces 199

To convert a componentwise algebraic form to (overall) algebraic form, (8.32)

is very convenient. The following theorem shows when % = % ,{z1,...,zx} is a

regular subspace with regular sub-basis {z, ..., Zx}.

Theorem 8.2 Assume there is a set of logical variables z1, ..., zr (k < n) sat-

isfying (8.30). & = F¢{z1,..., 2k} is a regular subspace with regular sub-basis

{z1,..., zk} if and only if the corresponding coefficient matrix L satisfies
dogi=2F =122 (8.33)

where £ ; are defined in (8.30).

Proof (Sufficiency) Note that condition (8.33) means that there are 2" ¥ different

x’s which make z = 8/ j=12,..., 2k 'We can now choose Zx+1 as follows. Set

2k>
S{={x|Lx=5)}. j=12..72"

Then, the cardinal number |SJ | = 2"k For half of the elements of S/, define
Tkl = O and for the other half, set zz4+; = 1. It is then easy to see that for
7= xf | Zi» the corresponding L satisfies (8.33) with k being replaced by k + 1.
Continue this process until k£ = n. Then, (8.33) becomes

2"
Yoti=1. j=1.2,...2" (8.34)

Equation (8.34) means that the corresponding L contains all the columns of I,
i.e., it is obtained from I» via a column permutation. It is, therefore, a coordinate
transformation.

(Necessity) Note that using the swap matrix, it is easy to see that the order of
z; does not affect the property of (8.33). First, we claim that if {z; |i =1,..., k}
satisfies (8.33), then any of its subsets {z;,} C {z; |[i = 1,...,k} will also satisfy
(8.33) with k replaced by |{z;, }|. Since the order does not affect this property, it is
enough to show that a (k — 1)-element subset {z; |i =2, ..., k} is a proper sub-basis,
because from k — 1 we can proceed to k — 2, and so on. Assume that 2= Mfzzzi =

QOx and z; = Px. Using Corollary 8.1, we have
Col; (L) =Col;(P)Col;(Q), i=1,...,2". (8.35)

Next, we split L into two equal-sized blocks as

L:m.

200 8 State Space and Subspaces

Note that either Col;(P) = 8% or Col; (P) = 8%. Applying this fact to (8.35), one
easily sees that either Col; (L) = [COI;)(Q)] [as Col; (P) = 81] or Col; (L) =
[as Col; (P) = 8%]. Hence, Col; (Q) = Col; (L) + Col; (L»). It follows that

CO&Q)]

O=L1+L». (8.36)
Since L satisfies (8.33), (8.36) ensures that Q also satisfies (8.33).

Now, since {z; |i = 1,...,k} is a proper sub-basis, there exists {z; |i = k +
1,...,n}suchthat {z; |i =1, ..., n}is a coordinate transformation of x, which sat-
isfies (8.33). [More precisely, it satisfies (8.34) with row sum equal to 1.] According
to the claim, the subset {z; |i =1, ..., k} also satisfies (8.34). O

The constructive proof of the sufficiency of Theorem 8.2 provides a way to con-
struct a basis (equivalently, a coordinate transformation) from a regular sub-basis.
To make this process easier, we introduce another concept.

Definition 8.4 Let 71, ..., zx € 2 with their algebraic forms given by

zi=0Wi1liz - L], i=1,..., k.

The characteristic matrix of {z1, ..., zx} is defined as
lin b1 oo lyom
o1 lop -+ loom
E@, ..oz =| . € Brxon. (8.37)
ber ik oo Lgom

Proposition 8.2 Let z; € 2" and
zi =8 - tixlx, i=1,...,n,

where x = X7_,x;. Then, Z = (z1, ..., 2x) is a coordinate frame if and only if the
columns of its characteristic matrix

E =) € Buxom, (8.38)
denoted by Col(E), are all distinct.

Proof Let z =Tx, where 7z = X ?zlzi. Assume there are two columns of E, which
are the same, say, Col,(E) = Col, (E). Using Proposition 8.1, we know that if the
pth column and gth column of T are the same, then T is not a coordinate change.
That is, {z;} is not a coordinate frame. The necessity is thus proved. To prove the
sufficiency, note that

n is — k
Xs=103 = &,

8.3 Regular Subspaces 201

where
k=1 — D2+ (2= D2" 2+ 4 (it — D2+
Itis clear that if (i1, ...,i;) # (j1, ..., Ju), then

n is n js
X108y 7# X105 -

Hence, the assumption ensures that the 2" columns of T are of the form 8’2‘,1 with 27
different k’s. It follows that 7' is nonsingular. g

The above proposition can easily be used to construct a coordinate frame from a
regular subspace. Moreover, it can also be used to test a regular subspace.

Corollary 8.2 Let z; € &, i =1,...,k. Then, {z1, ..., zx} is a regular sub-basis
(equivalently, & = F¢{z1, ..., zx} is a regular subspace of dimension k) if and only
if its characteristic matrix E € Py on has the same number (that is, 2" =k of distinct
columns. E € By contains equal (2"~%) distinct columns Col;(E) € Byx1,Vi,
is called a regular characteristic matrix. That is, for any & € By« 1,

(i | Coli (E) =§}| =27, (8.39)
To illustrate this we recall Example 8.4.

Example 8.5 Recall Example 8.4.

1. Consider case 1. Using (8.24) we can easily calculate that

2122 =Mx =84[21344312]x. (8.40)
That is,
01 0000T10
M—|1 0000001
1001 00100
00011000

We then have

8
}:mﬁzz i=1,...,4.
j=1

According to Theorem 8.2, & is a regular subspace. If we use Corollary 8.2, it
will be more simple. From (8.24) we can construct the characteristic matrix E as

Now, the numbers of distinct columns are the same (i.e., 2), so & is a regular
subspace. In this form, finding a z3 to form a coordinate frame also becomes

202 8 State Space and Subspaces

much easier. We need to add a row to E such that the extended characteristic
matrix has no equal columns, say

C] C) €3 €4 €5 C6 C7 C§
To make all the columns distinct, we need
c1 # g, c2F# 7, 3 # C6, C4 F Cs. (8.41)
We can therefore choose
73 =82[c1 2 ¢3 ¢4 5 C6 €7 c8lx,

where ¢; € {1,2},i =1,...,8, and satisfy (8.41). It is easy to see that the z3
obtained in (8.25) is a particular one which satisfies (8.41).
2. Consider case 2. From (8.28), we can calculate that

2122 =Mx =64[21342112]x.

Then,

8 8 8 8
Domiy=Y may =3,) maj=) my=1.
=1 i=1 =1 i=1

According to Theorem 8.2, Z is not a regular subspace.
We can also use Corollary 8.2. From (8.28) the characteristic matrix

We now have three of columns (1,2)T and (1, 1)T, and only one of columns
2, DT and (2,2)T. We conclude that % is not a regular subspace.

Next, we consider a set of nested regular sub-bases.

Theorem 8.3 Let yy,...,ys and z1, ..., 2; be regular sub-bases of the state space
X = Folx1, ..., x,}. If we assume that

vieFlzr, ... u), i=1,...,s,

then yi, ..., ys is also a regular sub-basis of 71, ..., 2;.

Proof Choose 741, ..., 2z, such that 7 = |><l’f:t+lzi l><§:1 Z; 1s a coordinate transfor-
mation of x. First, we claim that if y = x7_, y; is a regular sub-basis with respect to
x = X7_,x;, then it is also a regular sub-basis with respect to z, i.e., “regularity” is

independent of a particular choice of the coordinates.

8.3 Regular Subspaces 203

To prove this claim, let x = T'z. Since T is a coordinate transformation, it is a
permutation of [,,. Note that y = Hx and H satisfies (8.33), and that

y=HTZ.
Since HT is obtained from H by column permutation, H T satisfies (8.33). There-
fore, we have
y=HzZ:=[H\, H]z, (8.42)

where H satisfies (8.33), and H; and H, are two equal-sized blocks of H. Set-
ting z;41 = 8; we have Hiz’, and setting 7,41 = 8% we have H,7', where 7/ =
|><;‘:t+2z,~ l><§=1 z;. Now, since y is independent of z; 1, we conclude that H| = Hj.
Removing the fabricated variable z;1 from (8.42) yields

y=[HZ. (8.43)

Since H| = H;, one sees that H satisfies (8.33). Continuing this procedure, we can
finally have

y = Hypz, (8.44)
where 7z = ><§=1Zi and Hj satisfies (8.33). The conclusion follows from Theo-
rem 8.2. O

Using Theorem 8.3, we can construct a universal coordinate frame for a set of
nested regular sub-bases. The following corollary is obvious.

Corollary 8.3 Let {z"l, e, zili },i=1,...,k, be a set of regular sub-bases of 2" =
Folx1, ..., x,). If we assume that

{zil,...,zfli}Cﬁg{z’i“,...,z;ﬁl}, i=1,....,k—1,

then there exists a coordinate frame wi, ..., Wy, such that
ﬁg{z’l,...,z;i}=ﬁ@{w1,...,wni}, i=],...,k.

Corollary 8.4 Let % and Z be regular subspaces of 2 such that % C % . There
then exists a regular subspace W such that % (W , %) = %, which is denoted by

Ve =25 (8.45)

Remark 8.4

1. If (8.45) holds, then % is called the complement space of % in 2, denoted by
W =\Y.

2. The complement space was defined in Chap. 6 (Definition 6.3). This alternative
definition is essentially the same as the old one.

204 8 State Space and Subspaces

The following example shows that the complement space % is, in general, not
unique.

Example 8.6 Let & = Fy{x1,x2} C Z and ¥ = Fy{x| <> x2}. Set ¥ = F{x1}
and %5 = F¢{x>}. Then,

YeN=%,
and

Yon,=2.

Corollary 8.5 Let
ACHC---CH =X

be a set of nested regular subspaces. There then exists a coordinate frame Z =
{211, - 21,0y 2215 -+ 22mps o s T, 1y - -+ Thony } SUCH that

ffs298{Zlh~~,Zl,n1,-~-,Zs,l,~-~Zs,nS}a SZI"”’k'

8.4 Invariant Subspaces

Consider the system (8.3) again. If it can be expressed (under a suitable coordinate
frame) as

de+D)=F' @), ez,

2+ 1) = F2z(1)), z2e9n, (8.46)

then & = . F{z'} = ﬁ’g{zi, ..., z!} is called an invariant subspace of (8.3).

Remark 8.5

1. In a general sense, a subspace & is invariant with respect to the system (8.46) if,
starting from any point zg € 2, the trajectory of (8.46) will remain in 2.

2. It follows from the definition that an invariant subspace is a regular subspace.

3. InChap. 6 the invariant subspace was defined in a similar way, but under the orig-
inal coordinate frame x. Obviously, this new definition is more general than the
previous one because it allows for a change of coordinates. This generalization
reveals the essence of invariant subspaces.

From Chap. 6 (or [2]) one sees that invariant subspaces are very important for
investigating the topological structure of a network. By means of coordinate trans-
formations, we have generalized the concept of an invariant subspace. Obviously,
in a general sense, the invariant subspaces play the same role in determining the
topological structure of a network.

8.4 Invariant Subspaces 205
Next, we consider how to check whether a subspace is an invariant subspace.
Letzy,...,zs € 2 and 2= .F¢{z1,..., 25}, and set z = X_,z;. We then have the

following result.

Theorem 8.4 Consider the system (8.3) with its algebraic form (8.14). Assume that

a regular subspace & = F¢{z1, ..., 25} withz = xlezi has the algebraic form
7= Qx, (8.47)
where Q € Lpsxon. Then, & = F¢{z1, ..., 25} is an invariant subspace of the sys-
tem (8.3) if and only if
Row(QL) C SpangRow(Q), (8.48)

where Spang means that the coefficients are in 9 and where L is as in (8.14), i.e.,
it is the transition matrix of the algebraic form of the system (8.3).

Proof Since & is a regular subspace, there is a set {wy, ..., w,—_s} such that the
elements of {z1, ..., zs, Wi, ..., W,_s} form a new coordinate frame.
(Sufficiency) From (8.47) we have

2(t+1)=0x(t +1)= QLx(t). (8.49)

Since Row (QL) C Span g Row (Q) there exists n € Has«2s such that QL =nQ.
Hence,

z2(t+ 1) =n0x() =nz(2). (8.50)

Note that from (8.50) we know that 5 € Zs w5 C PBos x2s.
Converting the algebraic form (8.49) back to logical form (say, F' is the logical
form of 1), we have

{z(t +1)=Fl(z()),
w(t +1) = F2(z(1), w(®)).
(Necessity) Converting z(r + 1) = F L(z(1)) into algebraic form, we have
2t + 1) =nz(t) =nQ0x(). (8.51)
Comparing (8.51) with (8.49), we have QL = nQ, which implies (8.48). O

From the proof of the above theorem, it is easy to see the following.

Corollary 8.6 Using the notation of Theorem 8.4, % is an invariant subspace if
and only if there exists an H € £ps s such that

OL=HOQ. (8.52)

206 8 State Space and Subspaces

Note that checking (8.48) is not a straightforward computation; it is easier to use
(8.52). If (8.52) holds, as we know that Q is of full row rank, we have

—1
H=0LQ"(00")".
Hence, we have the following result.

Corollary 8.7 Z is an invariant subspace if and only if

oL=0L0"(00") 0. (8.53)

It is straightforward to verify (8.53).
Example 8.7 Consider the following Boolean network:

x1(t+ 1) = (x1(t) Ax2(t) A=x4(2)) V (—x1 () A x2(2)),

x2(t + 1) =x2(0) V (x3(1) < x4(1)),

x3(t+ 1) = (x1(t) A =xa(1)) V (—=x1 () A x2(1)) (3.54)
V (mxp (8) A —xa(t) A xa(r)),

x4(t + 1) = x1(t) A —x2(t) A xa(t).

Let & = %¢{z1, 22, 23}, Where

71 = X1 V X4,
73 = —xp, (8.55)
73 = X3 <> TX4.
Set x = x?zlx,-, z= l><,~3:12i~ We then have
z=0x,
where
0 =238g[8374615247382516],
and the algebraic form of (8.54) is
x(t+1)=Lx(),

where
L=516[111111111315912129151311].

It is easy to calculate that
QL =14g[3838321483834123],

which satisfies (8.48). Hence, £ is an invariant subspace of (8.54).

8.5 Indistinct Rolling Gear Structure 207
In fact we can choose z4 = x4 such that

21 = X1V X4,

22 = 7X2,
(8.56)
73 = X3 <> TX4,

24 = X4
is a coordinate transformation. Moreover, under coordinate frame z, the system
(8.54) can be expressed in the cascading form (8.46) as
z1+ 1) =21() — z2(0),
2+ 1) =2z20t) Az3(1),
23+ 1) =—z1(1),

2@+ 1) =z210) V() vV za(0).

(8.57)

8.5 Indistinct Rolling Gear Structure

Consider the system (8.3). Assume its algebraic form (in decomposed form) is

d+D=LiZ' @),
(8.58)
2@+ 1) = Laz' ()22 ().
Let 24 = f@(z}, ...,zsl) and %5 = ﬁg(z%, ...,zﬁ_s). It was proven in Chap. 6
that the cycle of (8.58) is composed of the cycle in Z and a “formal cycle” in 2.
More precisely, let C¥ = (z0, 1, ..., zx = z0) be a cycle of length k with z; = z/z?,
i=0,...,k. Then, for any z € Cf, without loss of generality set z = zg, and zp =
z(l)z(% € Cf, there exists an £ < k, a factor of k such that
Ch= (20,21 = LDz, 23 = (L1)*2p, -, 7 = (L) 25 = 7)
is a cycle in the 2] subspace. Moreover, if we define
W= Lozy_ Lazj_- - Lazi Loz,
then we can construct an auxiliary system
2 w2
7@+ 1) =vz7 (). (8.59)

Then,

(22 g2 2 gi2_ 2
Ch=(z.21=¥z5, ... 25 =¥ 55 =15)

208

8 State Space and Subspaces

is a cycle of (8.59), where j = k /. Finally, the cycle C é‘ is decomposed as

20 = 2075 = 721 =21 Lazgzy — 22 = 2y Loz Lozgz — - —

2= zéz% = Zg41 = Z%Lzzéz% — zer2 =Lz Lozt — - —

12 ‘ _ 17 12
2(j=t = 202(j—1) = 2G-he+1 = 21 L2207y =

1y 17 .12 1.2_ 12
2(j—e+2 =2 Loz Lazgz(i_1y = 2je = 202 = 2pZ(= 20- (8.60)

We call this Cf the composed cycle of Cfl and Czjz, denoted by Cf = Cfl) Czjz.

Remark 8.6

1.

As long as the dynamics of a Boolean network has a cascading structure as (8.58),
its cycles have such a “composed structure”, which is called the rolling gear
structure, described in Chap. 6.

. C le is a real cycle, which involves only some of the nodes (precisely, s nodes).

C’, is not a real cycle; it is a cycle of the auxiliary system (8.59).

Z . . .
. To the best of the authors’ knowledge, in the current literature (for instance,

[1, 3,5, 6, 8] and the references therein) only cycles and fixed points involving all
nodes are considered. Cycles and fixed points involving only some nodes, such
as Cfl , are ignored. They can be found only in the cascading form. Furthermore,

cycles such as Cfl can only be found under a coordinate transformation and in
the cascading form.

If a system is not originally in cascading form but has cascading form under

a suitable coordinate frame, then the system still has the cycles and/or fixed points
involving some of the state variables. Moreover, the rolling gear structure still exists,
which will be called the indistinct rolling gear structure. We investigate it via the
following example.

Example 8.8 Consider the following Boolean network:

x1(+ 1) = [xs5(t) A (x3(2) Vxa(1))] < (x5(2) V x3(2)),
x(t+ 1) =x5(t) Vxs (1),

x3(1 + 1) = (x3(1) Vxa (1) V x2(1),

xg(t + 1) = [=(x1(t) < x20))]V [(x3(2) Vxa (1)) V x2 ()],
x5(t+ 1) =x5(t) v (x3(t) V xa(t)),

x6(t + 1) =[(x1(1) < x2(1)) < (x2(2) Vx6(0))1V (x5(2) vV x3(2)).

(8.61)

8.5 Indistinct Rolling Gear Structure 209

Setting x = |><l.6:1xi, the algebraic form of system (8.61) is
x(t+1)=Lx(@), (8.62)

where

L =6864[18 17 3536 62 61 4546 13 14 30 29 33 34 20 19
26254344545337385 6 222141422827
2122403957584241109 252638372324
29304847495034332 1 17184645 31 32].

Using the method presented in Chap. 5, it is easy to calculate that the attractive
set of (8.61) consists of four cycles of length 8. These are:

Cpi: (111111 = 101110)—= (100111)—(111011)—
(000010)— (010011)— (011010) = (000110) —
(111111,

Cy: (111110)—=(101111)—(100110)— (111010) —
(000011)— (010010)— (011011)— (000111)—
(111110),

Cy: (110111 = (110011)—=@©11111)—(101011)—
(001010)— (001110)— (100010)— (010110) —
(110111),

Cs: (110110)—(110010)—(©11110)—(101010) —
(001011)—= (001111)—= (100011)— 010111)—
(110110).

Under this coordinate frame, we are not able to find cycles which are contained
in smaller invariant subspaces. Therefore, we are not able to reveal the rolling gear
structure for the network.

To find very small cycles and the rolling gear structure of the network, we try to
convert (8.61), if possible, into a cascading form in order to investigate its indistinct
rolling gear structure. Note that Theorem 8.4 says that Span{Col(Q)7} is a standard
LT invariant subspace. Therefore, standard tools from linear algebra can be used to
find the invariant subspaces. We skip the tedious and straightforward computation
and consider the following two nested spaces:

P =Felzi =x1 < x2; 20 =2x5; 23 =x3V x4},
2 = Flz1 =x1 < x2; 20 =2X5; 23 =X3VX4; 24 = X2 V X}
Setz! =71 X 75 X z3. It is easy to calculate that
7' =0ix,
where

01=20383[22441133113322446688557755776688
66885577557766882244113311332244].

210 8 State Space and Subspaces

Similarly, set 2= z1 X 22 X 73 X z4. We have
22 = Qox,

where

Or=66[4 387 2165216354387
11121516 9101314 91013 1411121516
1211161510 9141310 9141312111615
347812561256 34 78]

Using Theorem 8.3, it is easy to check that 2] C % are nested regular sub-
spaces. To see they are invariant subspaces of the system (8.61), it suffices to find
H;,i=1,2, such that (8.52) holds, that is, Q; L = H; Q;. It is easy to calculate that

H =683[26681557],
Hy =6816[3411121112151621109109 14 13].
It is not difficult to find z5 = x» and z¢ = x3 such that 7 : (x1,...,x6) —
(z1, ..., ze) is a coordinate transformation:
1 = X1 < X2,
72 = X5,
723 =x3 Vx4,
24 = X2V Xe,
15 = X2,

26 = X3.
The algebraic form of 7 is
z=x% 1z =Tx, (8.63)

where

T =6864[13 92925 5 12117 6 2221814103026
43 4759 63 353951 553640 52 56 44 48 60 64
4541 61 57 3733 53 49 38 34 54 50 46 42 62 58
11152731 3 71923 4 82024121628 32].

Now, under the coordinate frame z = 7'x we have the algebraic form of the system
(8.61) as

G+ 1) =Tx(t+1)=TLx(t)=TLT 'z2(t) := Lz(¢t), (8.64)

where

L=3864[121011 91614 1513 43 41 44 42 47 45 48 46
4244 41 4346 484547 5759 58 60 61 63 62 64
8 6 75 4 2 3 13937403835333634
384037 39 3436 33 3553 55 54 56 49 51 50 52].

8.5 Indistinct Rolling Gear Structure

211

Using the method proposed in Proposition 7.2, we can convert (8.64) into a logical
form as (omitting the mechanical procedure)

21t + 1) =z22(t) Az3(21),
2+ 1) =220 v z3(),
3t + 1) =—z1(8),

za(t+ 1) =z1(t) < z4(8),
25t +1) = 22(2) V z6(1),
z6(t +1) =z3(t) Vz5(1).

(8.65)

From this cascading form one easily sees that 29 = % ¢{z1, 22,23} and 25 =
Flz1, 22, 23, 24} are invariant subspaces.
The subsystem with respect to 2] has one cycle of length 4, which is

111> 110)—>(©010)—> O11)—(111),

and the subsystem with respect to 2% has two cycles of length 4, which are

(1111)— (1101)— (0101)— (0110)— (1L111),
(1110)— (1100)— (0100) — (0111)— (1110).

The corresponding cycles of system (8.61) become

(110011)— (010001)— (011100)— (111011) —
(110000)— (010010)— (011111)— (111000) —
(11001 1),

(110111)— (010101)— (011000)— (111111)—
(110100)— (010110)— (011011)— (111100) —
(110111),

(111010)—(110010)—-(0©10011)—-(©11101)—
(111001)—-(110001)—-(010000)—=(011110)—
111010,

(111110)— (110110)— (010111)— (011001) —
(111101)— (110101)— (010100)— (011010) —
(111110).

It is easy to see that the cycle of 2] is implicitly contained in the cycles of %5
(marked by underlining) and, similarly, the cycles of Z; are implicitly contained in
the cycles of (8.64). The latter form several groups of three assembled gears, which
form the so-called indistinct rolling gear structure.

Note that cycles C; and C‘i, i =1,2,3,4, are exactly the same. (They are point-
to-point correspondent. The only difference is caused by the different coordinate

frames.)

212 8 State Space and Subspaces
References

1. Aracena, J., Demongeot, J., Goles, E.: On limit cycles of monotone functions with symmetric
connection graph. Theor. Comput. Sci. 322, 237-244 (2004)

2. Cheng, D.: Input-state approach to Boolean networks. IEEE Trans. Neural Netw. 20(3), 512—
521 (2009)

3. Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE Trans.
Automat. Contr. 55(10), 2251-2258 (2010)

4. Cheng, D., Qi, H.: State-space analysis of Boolean networks. IEEE Trans. Neural Netw. 21(4),
584-594 (2010)

5. Farrow, C., Heidel, J., Maloney, J., Rogers, J.: Scalar equations for synchronous Boolean net-
works with biological applications. IEEE Trans. Neural Netw. 15(2), 348-354 (2004)

6. Heidel, J., Maloney, J., Farrow, C., Rogers, J.: Finding cycles in synchronous Boolean networks
with applications to biochemical systems. Int. J. Bifurc. Chaos 13(3), 535-552 (2003)

7. Kalman, R.E.: On the general theory of control systems. In: Automatic and Remote Control,
Proc. First Internat. Congress, International Federation of Automatic Control, (IFAC), Moscow,
1960, vol. 1, pp. 481-492. Butterworth, Stoneham (1961)

8. Shih, M.H., Dong, J.L.: A combinatorial analogue of the Jacobian problem in automata net-
works. Adv. Appl. Math. 34, 30-46 (2005)

Chapter 9
Controllability and Observability of Boolean
Control Networks

9.1 Control via Input Boolean Network

Controllability is a fundamental topic in investigating Boolean control networks, but
there are few known results on control design [1, 3, 4]. Using the algebraic form,
the dynamics of a Boolean control network can be converted into a discrete-time
conventional dynamical system and the analysis method in modern control theory
can then be used to investigate the controllability of Boolean control networks.

We will discuss controllability via two types of inputs. In this section we assume
the controls are generated by an input Boolean network. In the following sections,
we will then consider the problem for controls of free Boolean sequences.

Consider a Boolean control network:

x1(t+ D= filx (@), ..., x0(0), u1(t), ..., un (1)),

: 9.1)
xn(t + 1) = fn(xl (t)v e ’xn(t)a u](t)7 R “m(t))a
yj®) =hj(x](t),...,xn(t)), j=1,...,n.
Assume the control is generated from a control Boolean network,
ul(t + 1) =g1(u1(t)7) um(t))v
: 9.2)

U (t + 1) = gnu1(t), ..., um(1)).
Letting X = (x1,....x), YV = 01,... 9 U = (U, un)’, F =

(fiseeo f)W H=(h1,...,h,)T, and G = (g1, ..., gm)T, (9.1) and (9.2) can be
simply expressed by the following (9.3) and (9.4), respectively:

Xt+1D)=FX@),U(@)),

9.3)
Y(t) =H(X(1)),
Ut+1)=G(U®). (9.4)
D. Cheng et al., Analysis and Control of Boolean Networks, 213

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_9, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_9

214 9 Controllability and Observability of Boolean Control Networks

Definition 9.1 Consider the control system (9.1)—(9.2). Given initial state X (0) =
Xy and destination state X4, X is said to be controllable (or reachable) from X (at
the sth step) with fixed (designable) input structure (G) if we can find Uy (and G)
such that X (U, 0) = Xy and X (U, s) = X4 for some s > 1.

Since, in this section, the control is generated by a control network, the controlla-
bility will here be called controllability by networked control. Note that, according
to the above definition, we may consider four cases: (1) fixed s and fixed G, (2) fixed
s and designable G, (3) free s > 0 and fixed G, (4) free s > 0 and designable G.

In the following, we use vector form. As a convention, x = l><?:1x,- , etc.

Definition 9.2 For a fixed G, the input-state transfer matrix ©Y(t,0) is defined as
follows. For any up € Ap» and any xg € Ajn, we have

x(1) = 0%, 0 uoxg, x(t) € A, t > 0.

It is obvious that @Y (¢, 0) depends on G. In the following we will find the input-
state transfer matrix. Since

x1 = Luoxo,
we have ©6 (1, 0) = L. Next, we calculate x, = x(2), which is
xo=Luix1 = LGugFugFugxo = FG(Ipm @ F)®,,upxg,
where @,, is defined in Chap. 4 (4.6) as
m
¢m = 1_[]21'—1 ® [(12 ® W[Z,zm—i])Mr].

i=1

We then have
©%2,0)=LG(Im Q L)P,,.
Using mathematical induction, it is easy to prove that
0%(t,0) = LG (Ion ® LG') (Lyom @ LG') -+ (Iyu-1m ® L)

(Iz(t—Z)m by ¢m)(12(t—3)m Q Pp) -+ (I @ Ppy) Py 9.5)

We start from case (1). From the above argument the following result is obvious.

Theorem 9.1 Consider the system (9.1) with control (9.2), where G is fixed. xq is
the sth step reachable from xq if and only if

xq € Col {® (5, 0) Wiz 2m1x0). (9.6)

9.1 Control via Input Boolean Network 215

Proof Since
x(s) = 0% (s, 0)uopxo = O (s, 0) Wyzn 2mx0u0

the conclusion is obvious. U
We here give an example to describe this result.
Example 9.1 Consider the system

A(t+1)=B@) < C(1),
B(t+1)=C®)Vu), 9.7)
C+1)=A@) Aux(t),

with controls satisfying

u(t+1) = g1 (u1 (@), uz(1)), ©.8)

up(t 4 1) = g2 (u1 (1), ua (1)). '
Assume g1 and g; are fixed as

gr(u1 (@), uz(®)) = —ux (1), 9.9)

g2ui(t), uz(t)) =u(t),)

and assume A(0) =1, B(0) =0, C(0) =1, and s = 5. If we let u(t) = u1(t)us(t),
then

u(t+ 1D =ui(t+ Duz(t +1) = Muur(t)u1 () = My Wpoqu(t).
Therefore,
G =MW =4643142],
x(@t+1)=MB@OCHMgC(Ou1 ()M A ua(t) = Lx(1),
where L € %332, which is
L=463[15512662266226621753286428642864].
Dy = (L @WpIM, (I, ® M,) =516[161116].
Finally, using formula (9.5) yields ©(5, 0) € L3 as
O(5,0) = LG* (16 ® LG?) (14 ® LG?) (16 ® LG)(Is ® L)
(16 ® D2) (s @ P2)(I2 @ P2)(I2 ® P2) P2
=4g[6556655,622222222
88882222484848438].

216 9 Controllability and Observability of Boolean Control Networks
Now, assume that X (0) = (A(0), B(0), C(0)) = (1,0, 1). Then, in vector form,
xo = A(0)B(0)C(0) = 81635} = &3.
Using Theorem 9.1, we have
O (5,0)Wg 41x0 = 83[52 8 4].
Note that in the above equation and hereafter we use the following notation:
Silit, ... ishi= {8, ..., 8.).

We conclude that the reachable set starting from X (0) and at step 5, denoted by
Rs(X(0)), is

R5((1, 0, l)T) = Col(@(S, 0) W[8,4]xo) =0g{5284}.
Converting to binary form, we have
Rs((1,0.1)) = {(0.1, 1), (1,1,0),(0,0.0). (1,0.0)}.

Finally, we have to find the initial control uo which drives the trajectory to the as-
signed x4. Since

xqg =0O(5,0)Wg g1xouo = 83[5 2 8 4Jug

it is obvious that to reach, say, 83 ~ (0,1,0), the ug = sl ie., in scalar form,
u1(0)=1and u,(0) =0.
Similarly, to reach the other four points

{(0,1,1),(1,1,0),(0,0,0), (1,0,0)},
the corresponding initial controls should be
(11(0), u2(0)) = {(1, 1), (1,0), (0. 1), (0,0},
respectively.
Remark 9.1 The @ (s, 0) can be calculated inductively. For this purpose, we define
OLG(t,0):= LG (I;n ® LG ?)(I2n ® LG' ™) - (-1 ® L), ©.10)
Oo(1,0) := (Ipyt—2m & Pp)(Lpa-3m @ Ppy) - -+ (Ipm @ D) Dy

Then,
@G(t,O) =01, 004(t,0). 9.11)

We give inductive formulas for these two factors. For ®¢ (¢, 0) we simply have

Oa(t +1,0) = (e 1 ® Op)Oa (1, 0). 9.12)

9.1 Control via Input Boolean Network 217

As for ©p (¢, 0), we first convert the semi-tensor product to a conventional matrix
product as

-1
Org(,0) = 1_[(121'111 ® LGtilii ® Iz(t—]—i)m).
i=0
If we express it in right semi-tensor product form, we have (referring to Chap. 2 for
the right semi-tensor product)

OL6(t,0)=x'" (LG @ Lu-1-im).
It is then clear that

OLG(t +1,0)= (LG' ® Iym) x O16(1,0). (9.13)

Next, we consider case (2). Since there are my = (2’”)2"' possible distinct G’s,
we may express each G in condensed form and arrange them in an “increasing
order”. Say, when m =2, we have G1 =684[1 11 1], Go =684[1112],...,Grs6 =
84[4 4 4 4]. In general, we may consider a subset A C {1,2, ..., mq} and allow G to
be chosen from the admissible set {G | A € A}. The following result is an immediate
consequence of Theorem 9.1.

Corollary 9.1 Consider the system (9.1) with control (9.2), where
G € {G, | » € A}. Then, x4 is reachable from xq at the sth step if and only if

xa € Col {© (s, 0)Wian omxo | A € A (9.14)

Example 9.2 Consider the system (9.7) again. We still assume that A(0) = 1,
B(0) =0, and C(0) =1 [equivalently, x(0) = 5;’] and let the step be s = 5. As-
sume the admissible set of G consists of nonsingular G’s. There are 24 such G’s:

4 ={G € Z4x4|Gisnonsingular} :={G; |i =1, 2,..., 24},

where G1 =684[1234], Go =684[1243], Gz =684[1324],...,Goa =684[4321].
The corresponding

R :=(Rs)' =Col{©®'(5,0) Wiz 2mx0}

are
R'=64(5,6,8,4}), R*=63(5,6,8,6}, R®=683(5,6,8,4},
R* =63{5,7, 4,2}, R> =63{5,8,2,4}, R® =54{5,2,8, 8},
R7 =684{5,6,8,4}, R® =8(5,6,8,6}, R% =63(6,8,2,4},

R0 =55(6,2,7,4}, R =55{1,2,4,8}, R'2 =316, 8, 8,2},
R} =53(8,5,6,4}, R =83(5,2,8,4}, R =53(5,6,8,4},
R0 =683{7.,6,8,1}, RV =683{5,2,8, 8}, R =63{2,6,7,8},
RV =683{6,2,7,2}, R0 = 54(8,5, 8,2}, R?' =683{8,6, 1,4},
R?? = 83{5,6, 8, 8}, RB =683{2,2,7,8}, R =835, 6,8, 8}.

218 9 Controllability and Observability of Boolean Control Networks

Therefore, the reachable set at the fifth step is
RZ((1,0, 1)) = 8s{1,2,4,5,6,7,8}.

It is interesting that starting from (A(0), B(0), C(0)) = (1,0, 1), the only unreach-
able point at the fifth step is § 3, which is the starting point. Now, assume we want to
reach (A(5), B(5),C(5)) = (1,1, 1), which is 8§. Since the first component of RU
is Sé (we have some other choices such as R0 and R21) , we can choose G and
u1(0)uz(0) = 8, to drive (1,0, 1) to 8§ ~ (1, 1, 1) at the fifth step. It is easy to show
that G1; =64[24 1 3].

From u1(0)u;(0) = Bi, we have #1(0) =1 and u>(0) = 1.

To reconstruct the control dynamics, we need retrievers

SP=8[1122], S3=&[1212].
We then have the structure matrices of g; and g as
My =5G=6[1212], My=83G=68[2211].
It follows that the control dynamics is

ur(+ 1) = Myju (Dua(t) = us(t),
ua(t + 1) = Mauy (Dua(r) = —uy (7).

Next, we consider the reachable set for free s. The reachable set is divided into
two classes: the steady-state reachable set and the transient reachable set. Inclusion
in the steady-state reachable set means that destination points x; can be reached af-
ter any 7 > 0O (equivalently, at infinite times). Its complement is the transient reach-
able set. Note that for Boolean networks, a state will eventually enter an attractor, so
we are interested in the attractor, to which a point will enter under certain controls.

First we give a lemma, which is of independent interest.

Lemma 9.1 For a Boolean network, if its transition matrix is nonsingular, then
every point is on a cycle.

Proof According to Theorem 5.4 the transient period T; is the smallest £k > O such
that there exists a 7 > 0 satisfying

LF =T, (9.15)

To prove the lemma it suffices to show that the transient period 7; is zero. Let the
network matrix be L. Consider the sequence L, L2, Since there are only finitely
many distinct logical matrices in %n » o1, there must be two integers p < ¢ such that
LP = L4. Since L is nonsingular, it follows that L”~% = I, which, in (9.15), means
that k =0 and T = p — ¢q. That is, the transient period is zero. g

In the following, we require an assumption.

9.1 Control via Input Boolean Network 219
Assumption 1 G is nonsingular.

According to Lemma 9.1, starting from u, we can find a minimum 7y > 0 such
that GTouy = ug. Hence, ug, Gug, ..., GPug is a cycle of length Ty. Following the
procedure in Chap. 6, we can construct a mapping

¥ = (LG ug) (LG™2ug) - - (LGug) (Lug). (9.16)

For xp we then consider the sequence xg, ¥ xp, ... and find the transient period ry
and a minimum 77 > O such that

Plixg=w 1y 9.17)

The reachable set starting from xo with uo can then be easily constructed. We give
the following algorithm:

Step 1. Find Tj such that ug, Guo, ..., G™uq is a cycle in the input space.
Step 2. Find the transient period r; and minimum 77 > O satisfying (9.17).
Step 3. Construct a sequence

xh=W'xo, i=0,1,2,...,r+T1—1. (9.18)
Step 4. For each xé, inductively construct a sequence
xj:Lfoluox;l_l, j=1,....,Ty—1. (9.19)
Note that the above construction is a special case of the general one discussed
in Chap. 6 for constructing input-state composed cycles. Thus, it is easily seen that

{xj.} is the set of reachable points starting from xq using u and a fixed G. We now
present this as a theorem.

Theorem 9.2 Consider the system (9.1) with control (9.2). If we assume Assump-
tion 1 and use the above algorithm, then:

1. For given ug and Gy, the set of reachable states is
k __ i) _ o
Ry =1{xjli=0,1,....n+T1—1; j=0,1,....,To -1},
where {xj.} are constructed by (9.18)—(9.19) and the steady-state reachable set is
RSy ={x' e Ry |i=r}.

2. For fixed G = Gy, the reachable set from x is

R*=|_JR,.

uo

220 9 Controllability and Observability of Boolean Control Networks

Table 9.1 Reachable set for

G
G =84[1234] u(0) Ty r T RO
1 1 2 2 8312,3,5)
2 1 2 1 83(3,6)
3 1 1 7 83{3,4,8)
4 1 4 1 83{3,4,6, 8}

Table 9.2 Reachable set for

G
Gy =84[2431] u(0) To 4 Ty R™
I 3 2 I 83(1,2,3.4,5,8)
2 3 2 1 8312.3,5.6,8)
3 1 1 7 83(2.3.4,5,6,7.8)
4 3 2 1 33(3.6,8)

3. For admissible {G; | A € A}, the reachable set is

rR=JJR],.

reA ug

Example 9.3 Consider system (9.7) again with x(0) = 8;’. It is easy to obtain the
reachable set for each G and each u(0). We give two special G’s:

e G| =44[1 2 3 4]. The reachable sets for the first 4 steps are listed in Table 9.1.
Therefore, the overall reachable set for G is 63{2, 3,4, 5, 6, 8}.

e Gy =64[2 4 3 1]. The reachable sets for the first 4 steps are listed in Table 9.2.
Therefore, the overall reachable set for G, is Ag ~ 23, which means that the
system is G,-controllable from (1, 0, 1) [or, equivalently, x (0) = 8;].

9.2 Subnetworks

In this section we consider the controller nodes and controlled nodes. To make the
related topological structure clear, we need to discuss the corresponding subnet-
works.

Definition 9.3 Let X = (', &) be a network. Xy = (45, &) is called a subnet-
work of X if (i) A5 C A/, and (ii) (i, j) € &; if and only if (i, j) € & and i, j € 5.
A subnetwork is denoted by Xy C X.

Definition 9.4 Let Xy C X.

1. The in-degree of X is the number of edges starting from JKC and ending at .45,
where Jl@c is the complement of . 4. The out-degree of X is the number of
edges starting from .#; and ending at 4.

9.2 Subnetworks 221

Fig. 9.1 Subnetwork

(@) (c)

2. If the in-degree of X is 0, X is called a controller subnetwork. If the out-degree
of X is 0, X is called a controlled subnetwork. If X' is a controller subnetwork,
then its complement X'C is a controlled subnetwork, and vice versa.

We give an example to illustrate these definitions.

Example 9.4 Consider a network X consists of five nodes .4 = {A, B,C, D, E},
depicted in Fig. 9.1(a). Its subnetworks X'; and X, consisting of .4 = {A, B, C}
and 4" = {D, E}, are depicted in Fig. 9.1(b) and (c), respectively.

It is easy to show the following:

The in-degree of X is 0 and its out-degree is 3.

X1 is an invariant subnetwork.

The out-degree of X is 0 and its in-degree is 3.

3 is a controlled subnetwork and its control subnetwork is X = .

The incidence matrix of the X' in Example 9.4 is

10100
1 0000
FX)=|1 100 0 (9.20)
01100
00110

Observing (9.20), one sees that the incidence matrix has block lower triangular
form, which has two diagonal blocks corresponding to X'| and X, respectively. In
fact, it is easy to prove that this is generally true.

Proposition 9.1 The subnetwork Xy C X is invariant if and only if the incidence
matrix % (X) has block lower triangular form, where the upper part of the matrix
corresponds to the subnetwork nodes .

From a graph theoretical point of view, for a network X = (4", &) we can
choose a subset of nodes .45 C .4, then remove the nodes in A, := 4"\ 4§ and
all the edges connected to .#;°. What then remains is a subnetwork. However, if

222 9 Controllability and Observability of Boolean Control Networks

the network is a Boolean (control) network, we may have a problem with the sub-
network dynamics. When we remove the dynamic equations of nodes in .4, the
remaining dynamic equations of nodes in .45 may still depend on the variables
of €. Thus, we have to determine the dynamics of a subnetwork. We are only
interested in two cases: the subnetwork is either the controller subnetwork or the
controlled subnetwork. For the controller subnetwork there is no problem because
the controller subnetwork forms an invariant subspace. Its dynamics is independent
of the variables of .4;. For controlled subnetwork .4#; we assume, for each state
variable x; € 4., that there is a frozen value x§ such that the dynamics of 45 is
obtained by using the original equations in .#” and replacing the variable x; € A4;°
by x;.
Note that this dynamics is physically realizable if and only if

i [€ A
is a fixed point of the dynamics of .4;°.
Example 9.5 Consider Example 9.4. Assume the dynamics of X' is

At +1)=A@) AC(1),
B(t+1)=—-A(),

C(t+1)=B@) < A®), 9.21)
D@ +1)=B@) — C(),

Et+1)==-D@)VC{).

It is then obvious that (0, 1,0)T is a fixed point of the subnetwork Y|, which is
a controller subnetwork. Its complement, X, is a controlled subnetwork. Define
X1(0) :=(A@®), B@t), C@)T,and X2(¢) := (D), E(t))T. If we set the frozen value
as Xf =(0,1, O)T, then the dynamics of X is

Dit+1)=1—0=0,

_ (9.22)
E(t+1)==D({)V0==D().

9.3 Controllability via Free Boolean Sequence

In the following we consider the case where the control is a free Boolean sequence.
Such a control is called an open-loop control. We refer to [1] for an initial descrip-
tion of this kind of controllability.

Definition 9.5 Consider the Boolean control network (9.1) and suppose we are
given xg, xg € An. The system (9.1) is said to be controllable from xg to x4
(by a free Boolean sequence) at the sth step if we can find control u(t) € 2™,
t=0,1,...,5 — 1, such that the initial state l><;.’:1x,- (0) = xo can be driven to the
destination state X_, x;(s) = x4.

9.3 Controllability via Free Boolean Sequence

Fig. 9.2 A Boolean control
network

(@)
Q\Q (B)

Recall that the algebraic form of (9.1) is

x(t+1)=Lu(t)x(t), x€ Am, ue Am.

If we define L = LWjn omy, then (9.23) can be expressed as
x(r + 1) = Lx()u(r).
Using it repetitively yields

x(s) = isx(O)u(O)u(l) coeu(s —1).

223

(9.23)

(9.24)

(9.25)

Therefore, the solution to this kind of control problem can easily be deduced, as

follows.

Theorem 9.3 x; is reachable from xq at the sth step by controls of Boolean se-

quences of length s if and only if

Xd € COI{ZSX()}.

(9.26)

Remark 9.2 Note that (9.26) means that x, is equal to a column of I:Sxo. If, say, x4

is equal to the kth column of L* X, then the controls should be
u(Ou(l)---u(s — 1) = s,
which uniquely determines all u;,i =0,1,...,s — 1.

The following example is from [1].

Example 9.6 Consider the Boolean control system depicted in Fig. 9.2.

Its logical equation is

A+ 1)=C@) Aui(t),
B(t + 1) =—us(t),
C(t+1)=A()V B(1).

(9.27)

(9.28)

224 9 Controllability and Observability of Boolean Control Networks
Its componentwise algebraic form is

A +1) =M C()u;(1),
B(t + 1) = Myus (1), (9.29)
Ct+1)=MsAW)B(1).

Let x(t) = A(t)B(t)C(t), u(t) = u1(t)uz(¢). We can then express the system in its
algebraic form as

x(r +1)=Lx(u(®), (9.30)

where L € %30 is

L=053[3175317575757575
3175317586868686].

As in [1] we assume that Xg = (A(0), B(0), C(0)) = (0, 0, 0). We want to know if
a destination state can be Eeached at the sth step. If, say, s = 3, then using Theo-
rem 9.3, we can calculate L3xg € Lo as

L3xg=083(8686317586863175
7575317586863175
8686317586863175
7575317586863175].

It is clear that at the third step all states except 8126 8?6 can be reached. We

now choose one state, say 83 ~ (0,1, 1). Note that in the 8th, 16th, 18th, 20th,

... columns we have (Sg , which means that any of the controls 824, (Ség, 8%5, 8%2, ..

can drive the initial state (0, 0, 0) to the destination state (0, 1, 1). We choose, for
example,

w1 (0)ua (O)ur (Nuz(Duy Qua(2) = 8§,

Converting 64 — 8 = 56 to binary form yields 111000, which means that the corre-
sponding controls are

ur(0) =1, uz(0) =1, ur(l) =1, uz(1) =0, u(2) =0,
u(2) =0.

It is easy to check directly that this set of controls works. We may check some
others. Choosing, say, 8%2 and converting 64 — 24 = 40 to binary form as 101000,
we have

u1(0) =1, u2(0) =0, ui(l)=1, uz(1) =0, u1(2) =0,
ur(2) = 0.

This also works.

9.3 Controllability via Free Boolean Sequence 225

In general, it is easy to calculate that when s = 1, the reachable set from Xo =
(0,0, 0), denoted by R;(Xjp), is

R1(X0) =1{(0,1,0), (0,0,0)}.
When s > 1 the reachable set is
Ry(Xo)={(1,1,1),(1,0,1),(0,1,1),(0,1,0), (0,0, 1), (0,0,00}, s>1.

A generalization of controllability via control of Boolean sequences is when the
length of the sequences, s, is free. An immediate consequence of Theorem 9.3 is the
following result.

Corollary 9.2 x, is reachable from x if and only if
o0 .
X4 eCol{UL’xo}. (9.31)
i=1

Denote by R (xp) the reachable set from xo at time s and let R(xp) =
Uszo R (x0). The following proposition makes (9.31) verifiable.

Proposition 9.2

1. The reachable set, R(xp), is a subset ofCol{I:}.
2. If we assume that k* is the smallest k > 0 such that

Col{ L' xo} c Col {L¥xo|s =1,2,... .k},

then the reachable set

k*
R(xg) = COl{Uifxo}. (9.32)

i=1

Proof 1. A straightforward computation shows that L¥xg € L, pm. Since L €
Lonyon+m, by a property of the semi-tensor product we have

I:k+]x0 =L x I:kxo =L x [[:kxo ® Izm],

where X is the conventional matrix product. The conclusion follows immediately.
2. We use the notation

Col{L*} ® Iy := {X ® Ln | X € Col{L*}}.

If we assume

Col {L**'xo} c Col {Lx0|s =1,2,....k},

226 9 Controllability and Observability of Boolean Control Networks

then
Col{ L% x,}
={Ln|neCol {L*'xo} ® In)
C{Ln|neCol{Lx0} ® Iy, s =1,2,....k}
=Col{Lxo|s=2,3,....k+1}
CCol{Lxo®In |s=1,2,3,....k}.

This inequality shows that after k there are no more new columns. From part 1 we
know that such a k* does exist. O

Example 9.7 We reconsider Example 9.6. Denote the eight possible initial points
by (in decreasing order) X} = (1, 1, 1), X3 = (1,1,0), ..., X§ = (0,0, 0). It is then
easy to see that for all of them, the first degenerate step is the same, that is, so = 3.
For X(l), X(z), X(S), Xg, the first-step reachable set is

Ri(Xo) = Ri(X5) = Ri (X5) = Ri (Xg)
=11, 1, 0%, 1,0,n%, 0,1, DT, 0,0,)T}
For X3, X§. the first-step reachable set is
Ri(X3) = Ri(Xg) = {0, 1, DT, 0,0, DT}
For X/, X3, the first-step reachable set is
Ri (X)) = Ri(X§) = {0, 1,07, (0,0,0)T}.

These have same second-step reachable set (which is also the reachable set for any
k > 2 steps)

Ry(Xx)) ={, 1, DT, (1,0, 0T, (0,1, DT, (0,1,0T, (0,0, DT, (0,0,0)"},

where i = 1,2, ..., 8. Note that since Rz(xé) = Col{I:}, according to part 1 of
Proposition 9.2, no more states can be reached.

From above argument, it is reasonable to give the following definition.

Definition 9.6 The system (9.1) is said to be globally reachable from Xq ~ x¢ (by
the control of a free length Boolean sequence) if

R(xo) =Col{L¥xo |k =0,1,...,2" = 1} = Aon. (9.33)

The system (9.1) is called globally controllable (by the control of a free length
Boolean sequence) if

Col{L*xo|k=0,1,...,2" — 1} = Ay, Vxg€ Ap. (9.34)

9.4 Observability 227

Example 9.8 Consider the following system:

A+ 1)=B@{) ANui(t),
Bt +1)=C@) < (—uz(?)), (9.35)
Cit+1)=A@) Vur(t).

It is easy to check that from point Xo = (1, 0, 0) the first-, second- and third-step
reachable sets are

Ri1(Xo) = {(0,1,1),(0,0, 1)},
Ry(Xo) ={(1,1,0), (1,0, 1), (0, 1,0), (0,0,)},
R3(Xo) ={(1,1,1),(1,0,1),(1,0,0), (0,1, 1), (0, 1,0), (0,0, 1), (0,0,0)}.

Therefore, the system (9.35) is globally reachable from Xo = (1,0, 0).

Remark 9.3 Unlike the controllability of linear control systems, for system (9.1),
x € R(y) does not mean y € R(x). A trivial example is as follows. Assume the state
equations of (9.1) have algebraic form

x(t+1)=Lu(t)x(t),

where
Col;(L) =8 :=xq4, V1<i<2'm,

For any xg € Ayn, the reachable set is then R(xg) = {x4}, but if xg # x4, then xo #
R(xy).

It is obvious that control by free length Boolean sequences is the strongest form
of control. It has been pointed out in the literature that in some Boolean network
problems, the controls can only be generated by a Boolean system of controls. The
control of free length Boolean sequences could destroy the cycle structure of the
system, which could be very important for, e.g, deciding the type of cells.

The controllability of a Boolean control network considered thus far has been
solved by means of some entirely theoretical results. The disadvantage of the ap-
proach taken here is the computational complexity. We refer to [5] for some suf-
ficient conditions which can be used for larger Boolean control networks. We also
refer to Chap. 16, where the verifying condition is a matrix which has fixed size
with respect to each step s.

9.4 Observability

It is obvious that for a Boolean network, observability is control-dependent. We first
give a definition.

228 9 Controllability and Observability of Boolean Control Networks

Definition 9.7 Consider the system (9.1).
1. X(l) and Xg are said to be distinguishable if there exists a control sequence
{U0),U(1),...,U(s)}, where s > 0, such that
Y+ D)=y (UE),....00), X)) Y (s + 1)
=y (Us),...,U0), XI). (9.36)

2. The system is said to be observable if any two initial points X%, Y* € % are
distinguishable.

We now give an algorithm for observability.

Step 1. Constructasequence I,i =1, 2, ..., of sets of 27 x 2" matrices as follows:
n={L&.|i=1,2,....2"}
N1 =Ly |yenei=12,....,2"}, k=1L

If Col{I}+4+1} C Col{I; |i < k*}, then k*+ 1 is called the degenerate step. If k* > 0
is the last nondegenerate step, then the sequence will stop at k*. (Since there are at
most 2" different columns, k* < 2"))

Step 2. Construct a sequence of sets of 27 x 2" matricesas Hy=H, Hi=HI; =
{Hy |y € I}

Step 3. Using condensed form, each matrix in H; becomes a 2"-dimensional row.
Choose h° ~ H and linearly independent rows h’j €H;,i=1,2,...,k* toforma
matrix as

ho
1
hl

h!
=] . 9.37)

k*
hl

k*
L i

We call .# the observability matrix.

Theorem 9.4 Assuming that the system (9.1) is globally controllable, it is observ-
able, if and only if all columns of € are distinct.

9.4 Observability 229

Proof Starting from one point xg we can observe Hxg. Using different controls
83,7, we can observe H L8§n. Using different 85,1 is allowed because the system is
globally controllable. Hence, we can start from the same point as many times as we
wish. Continuing this process, we see that

HLSY,LS% - Lé%xo, 5>0,

are observable. Since s > kg adds no linearly independent rows to the previous set,
and a linearly dependent row is useless in distinguishing initial values, the initial
values can be distinguished if and only if all columns of ¥ are distinct. g

Next, we consider controllability and observability with control of sequence of
1 —0— @, where & means the input channel is disconnected. This is reasonable. For
instance, in a cellular network the active cycles determine the types of cells. Now,
the genetic regulatory network can change the active cycles in a cellular network to
change the types of cells, but it acts only over a very short time period, like a pulse.
Thus, the control becomes a sequence of 1 — 0 — &.

When an input u; is disconnected, we should ask: What is the nominal network
dynamics? Principally, it is reasonable to ask that the network graph be a subgraph
of the original one by removing u; related edges. In this way the nominal network
graph is unique, but the nominal network dynamics could be different. To specify
it, we assume that it has a network matrix L. For convenience, we assume that
there is a frozen control u? = constant such that the ith input-disconnected system
has the form u; = uig. When u; = u?, Vi, the control-free system is the nominal
network of the original Boolean control network. That is,

;oo o
Ly=Lujuy ---u,.

In many cases we are only interested in the steady-state case. For the nominal
Boolean network let C*, i = 1,2,...,k, be its cycles (attractors) and denote by
2= Ule C' its set of steady states, by B’ the region of attraction of C".

Definition 9.8 A Boolean network is globally steady-state controllable by control
sequence of 1 — 0 — & if, for any two points x, y € £2, there is a control sequence
of 1 — 0 — &, which drives the trajectory from x to y. A Boolean network is steady-
state observable if, for any xg, yg € §2, there is a control sequence of 1 —0 — & such
that xq, yo are distinguished from outputs.

We will need the following assumption.
Assumption 2 O is a frozen control, which is a fixed point of the input network.
For the rest of this chapter, Assumption 2 is assumed.

The following result is a direct consequence of the last definition and Theo-
rem 9.4.

230 9 Controllability and Observability of Boolean Control Networks

Proposition 9.3

1. Consider a Boolean control network such that its nominal system has cycles C',
1,2, ..., k. The system is globally steady-state controllable if and only if, for any
1 <i, j <k, there exist at least one x € C!, one NS Clandal—0—o sequence
of control which drives x to y.

2. If a Boolean control network is steady-state controllable, then it is steady-state
observable if and only if #, defined in (9.37), has all distinct columns.

Proof Note that a point on a cycle of the nominal system can be reached infinitely
many times as & is used. The conclusions are then trivial. O

We now give an example.

Example 9.9 Consider the system (9.7) in Example 9.1. It is natural to assume its
nominal system to be (by using frozen controls u’lz =0 and uf =1)

A(t+1)=B(t) < C(1),
Bt+1)=C@), (9.38)
Cit+1)=A@).

Using the technique developed in Chap. 5 it is easy to calculate that there are two
cycles: equilibrium C! : (1, 1, 1) and length-7 cycle

C? (1,1,0)— (0,0,1) = (0,1,0) — (0,0,0) —
(1,0,0) - (1,0,1) - (0,1, 1) = (1, 1, 0).

Since there are no transient states, “globally steady-state controllable” is the same
as “globally controllable”. To prove global steady-state controllability, we have to
find a control to drive a point in one cycle to the other and vice versa.

If we let (A(0), B(0), C(0)) = (1,1,1) € C! and use u1(0) = 0, u2(0) = 0, then
(A(1), B(1),C(1)) = (1, 1,0) € C2. If we let (A(0), B(0), C(0)) = (1,0,0) € C2
and use u1(0) = 1, u»(0) = 1, then (A(1), B(1), C(1)) = (1,1, 1) € C. By Propo-
sition 9.3, the system (9.7) is globally steady-state controllable.

We now assume that the outputs are

=A
y1 () @), 9.39)
y2(t) = B(t) v C(1).
We then have
y(@) :=y1@®)y2() = AO)MyB()C(t) = Hx (1),

where H € M43 is

H=:04[11123334].

References 231

For the system (9.7), it is easy to calculate that

L=46[1551266226622662
1753286428642864].

We can then calculate that

HL3}=8413311331],
HL§3=584[13311331],
HLS; =584[13311432],
HLS;=54[14321432].

We only need to construct part of .. Choosing linearly independent rows, we have
the observability matrix as

H
| 11123334
Zigg 13311331
= =1 33 114302
4 1 4321 4 3 2

HL3?

From part of .# it is enough to see that it has no identical columns. Therefore, the
system is observable.

References

1. Akutsu, T., Hayashida, M., Ching, W., Ng, M.: Control of Boolean networks: hardness results
and algorithms for tree structured networks. J. Theor. Biol. 244(4), 670-679 (2007)

2. Cheng, D., Qi, H.: Controllability and observability of Boolean control networks. Automatica
45(7), 1659-1667 (2009)

3. Datta, A., Choudhary, A., Bittner, M., Dougherty, E.: External control in Markovian genetic
regulatory networks. Mach. Learn. 52, 169-191 (2003)

4. Datta, A., Choudhary, A., Bittner, M., Dougherty, E.: External control in Markovian genetic
regulatory networks: the imperfect information case. Bioinformatics 20, 924-930 (2004)

5. Kobayashi, K., Imura, J.I., Hiraishi, K.: Polynomial-time algorithm for controllability test of
Boolean networks. In: IEICE Tech. Rep., vol. 109, pp. 13—18 (2009)

Chapter 10
Realization of Boolean Control Networks

10.1 What Is a Realization?

Consider a control system. Overall, it can be considered as a mapping from input(s)
to output(s), which is depicted as a black box in Fig. 10.1.

The state-space approach, proposed by Kalman, is one of the cornerstones
of modern control theory. It proposes the use of a set of dynamical equations
for certain state variables to describe the black box. The dynamical equations
of the state variables can represent the input—output mapping, and hence it is
called a realization of the system X. In general, the realization is not unique.
Obtaining a minimum realization involves finding a smallest size of X~ (equiva-
lently, a smallest number of state variables) to realize the required input—output
mapping. For a Boolean control network (BCN) with input(s) and output(s), we
can consider the same problem. This chapter is devoted to the realization of
BCNs.

A dynamical system may have two formally different forms under two differ-
ent coordinate frames, but it is obvious that any such pair of different forms are
equivalent. Because of this coordinate transformation, we may choose a model
to be the representation of the equivalence class. This is the so-called normal
form.

A BCN can also be considered as a mapping from input space, say 2™, to
output space, say Z”. In Chap. 8 we considered coordinate transformations of
Boolean (control) systems. It is now clear that if one BCN is obtained from an-
other by a state-space coordinate transformation, then these two BCNs realize the
same input—output mapping. If two systems are related by a coordinate transfor-
mation, we naturally say that they are equivalent. A question which then natu-
rally arises is: Can two nonequivalent BCNs realize the same input—output map-
ping? More generally, is it possible for two BCNs with different sizes to realize
the same input—output mapping? The answer is “Yes”. We give a heuristic exam-
ple.

D. Cheng et al., Analysis and Control of Boolean Networks, 233
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_10, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_10

234 10 Realization of Boolean Control Networks

Fig. 10.1 A control system

Example 10.1 Consider the following BCN:

x1(t+1) =u < =(x1(1) > x2()),
Diiqx@+ 1) =wA (—x1(t) Axa(t) vV (—u A=(x1(t) — x1(2))), (10.1)
y(®) =x1(1) < x2(7).

Using a coordinate transformation

(10.2)

i1 = X1 <> X2,
2 = 7,

the system becomes

21+ D =z21(t) Au,
2120+ 1) =(z1(0) vV at) < u, (10.3)
y(@) =z1().

It is not difficult to verify that as the initial values satisfy

(10.4)

21(0) = x1(0) < x2(0),
22(0) = —x1(0),

the input—output mappings of X; and X are exactly the same.

Moreover, we can see from (10.3) that the output of X in fact depends only on
71, and z; is independent of z;. Therefore, z; is a redundant state variable regarding
the realization of the input—output mapping and we can remove it to obtain the
following:

t+1)=2z() Au,
5y T D =20 AU (10.5)
y(@) =z(@).
Thus, as long as the initial conditions of X¥'| and X5 satisfy the condition z(0) =
x1(0) <> x2(0), they realize the same input—output mapping.

From this example one sees that, as with conventional control systems, the real-
ization of BCNss is also an interesting and practically important problem. Moreover,
we would like to emphasize the following points:

e To consider the realization of BCNs, coordinate transformations are fundamental.

e It is very likely that a “minimum realization” of a BCN can be found under a
suitable coordinate frame.

e Corresponding initial values of different realizations should be taken into consid-
eration.

10.2 Controllable Normal Form 235
10.2 Controllable Normal Form

Consider a logical mapping F : 2" — 2™, described as
F:zi=filxt,....,xp), i=1,...,m. (10.6)

fi is said to be in a clean form if f; has no fabricated arguments. That is, if f; is
independent of x;, then x; will not appear in f;. Note that in a logical function, it is
not obvious how to identify whether an argument is fabricated or not. In Chap. 7 a
procedure is provided to obtain the clean form of an arbitrary logical function f.

The incidence matrix of a dynamic network was defined in Chap. 5. We recall it
now. For a mapping F' with f; in clean form, its incidence matrix % (F) := (b;;) €
DB xn 1s constructed as follows:

b — 1, ifx; appearsin f;,
Y 0, otherwise.

Consider the BCN

-xl(t + 1) = f](x](t),.x2(t), . "sxn(t)a I’tl(t)v ceey Mm(t))»
xz(t + 1) = f2(x1(t)7x2(t)5 . "sxn(t)’ M](t), ey Mm(t))a

X+ 1) = fuCx1 (), x2), ..., x5 (8), u1(t), ..., um(1)); (10.7)
)’I(I) = hl(-xl(t)sxz(t)v .. 7xn(l))1

yp) = hp(x]), x2(1), .. .,xn(t)).

Hereafter and throughout this chapter we assume that the logical equations f; are
in clean form. Denote the incidence matrices for x and y by #(F) € Bnx(nt+m)
and ¥ (H) € %Bpxn, respectively . For convenience we arrange . (F) as follows:
The first n columns correspond to x and the last m columns correspond to u, that
is, bjj =1, j <n, means x; appears in f;(x,u) and b;; =1, j > n, means u;_,
appears in f; (x, u).

Definition 10.1 Let 7 be a coordinate frame. A subspace ¥ = % ¢{z1, 22, ..., 2k} C
A is said to be an invariant subspace of the system (10.7) if, for any z¢9 € ¥ and
any control u(¢), the trajectory

z(t) = z(zo,u,t) € V.

A subspace ¥ = F¢{z1,22,...,2k} C Z is said to be a control-independent
invariant subspace of the system (10.7) if it is an invariant subspace and, for any
z0 € ¥/, the trajectory is independent of control u, i.e.,

z(t) =z(z0,) € V.

236 10 Realization of Boolean Control Networks

Note that the invariant subspace of a control system is not exactly the same as
the invariant subspace of a free system, which is defined in Chaps. 6 and 8.
The following, easily verifiable, results are useful for testing invariant subspaces.

Proposition 10.1

1. v =Z¢{z1, 22, ..., 2k} is an invariant subspace if and only if one of the follow-
ing two equivalent conditions is satisfied:
(1) Under coordinate frame z (in clean form)

fiz1, 22, 2, UL, oo Um)

= Fi(Z1, 20 e T UL e Um), i=1,2,. k. (10.8)

(i1) Under coordinate frame z (in clean form) the incidence matrix becomes

Bii 0 Gy
S(F) = . 10.9

(F) [321 By G (10.9)

2. Vv = F{z1,22, ..., 2k} Is a control-independent invariant subspace, iff one of
the following two equivalent conditions is satisfied:

(1) Under coordinate frame z (in clean form)

ﬁ(Z17Z29 "'9Zn7u1’ ~'-,um)

=fiz1,z2, -5 2%), I=1,2,... k. (10.10)

(ii) Under coordinate frame z (in clean form) the incidence matrix becomes

(10.11)

f(F)=|:B” 0 0i|'

By Byn Gz

Next, we consider how to verify whether a regular subspace 2 C 2 is a
(control-independent) invariant subspace. Let the algebraic form of (10.7) be

x(t+1)=Lx(tu(t), x(t)€ Am,u(t) e Am, (10.12)
y(t)=Hx(t), ()€ Ao, '
where L € Zonyom+n and H € ZL5p «on. Assume that
Z=Flz1,.. . wlzi € 2} (10.13)

is a k-dimensional regular subspace, let 7z = l><{?:1zi, and let the algebraic form of

Z be
z=Gx, (10.14)

where G € Z5k,,». We then have the following result.

10.2 Controllable Normal Form 237

Proposition 10.2

1. & is an invariant subspace if and only if one of the following two equivalent
conditions is satisfied:

(1)
Row(GL) C SpangzRow(G). (10.15)

(ii) There exists an E € Lok ok+m such that

GL =EG. (10.16)
2. Define
GLWom ony :=[By, By, ..., Bym],
where Bj € Loxyon, i =1,2,...,2™. Then, % is a control-independent invari-
ant subspace if and only if:
()

Bi=Be Ly, i=12_.2" (10.17)

(ii) There exists an E € L5k ok such that

B=EG. (10.18)

Proof 1. The proof is the same as that of Theorem 8.4.
2. By definition we have

z(t+1) = Ez(1),
where E € %5k o«. A similar argument as in the proof of Theorem 8.4 yields that
GLWpm omu(t)x(t) = EGx(t).

It follows that

GLWpm omu(t) = EG. (10.19)
Since the right-hand side is independent of u(¢), taking u(r) = 8%,,,, e 8%,’: , the
left-hand side becomes By, ..., Byn. Hence,
Bi=By=---= By :=B.
Substituting any u(¢) into (10.19) yields (10.18). O

Definition 10.2 A regular subspace 7 is said to be uncontrollable if it is a control-
independent invariant subspace.

Definition 10.3 Consider the system (10.7).

1. Alogical variable &£ € 2 is said to be uncontrollable if there is an uncontrollable
subspace ¥ such that & € 7.

238 10 Realization of Boolean Control Networks

%, :={& € Z | & is uncontrollable}

is called the largest uncontrollable subspace of the system (10.7).

Remark 10.1 By definition any uncontrollable subspace is a subset of %, hence it
is the largest one. Moreover, it is easy to prove its uniqueness.

Theorem 10.1 Assume 6, is a regular subspace with {Zg+1, ..., Zn} as its regular
sub-basis. The state equations of the system (10.7) can then be expressed as

e +1) = Fi@z@),u®)),

10.20
2t + 1) = BEH), ()

where 7> = (Zh41s---s) L. The system (10.20) is called the controllable normal
form of (10.7).

Proof Consider zg, where s > k. Since z5 € 4., by definition there is an uncon-
trollable subspace # = % {wy, ..., w¢} such that z; € #'. Let w = l><f=1w,-. In
algebraic form, we have

zs=Mw, where M € %, . (10.21)
Since # is uncontrollable, we have
w(t+1)=Lyw(t), where Ly, € %o oe. (10.22)

Since both # and %, are regular subspaces of 2" and # C %, according to Theo-
rem 8.3, # is a regular subspace of %,. Hence, we have

w=Nz?, where N € Ly . (10.23)
Using (10.21)—(10.23), we have
2t +1)=Muw(t +1)=ML,w(t) = ML,NZz>(t). (10.24)
Since s > k is arbitrary, (10.24) implies (10.20). U
We now give an example.
Example 10.2 Consider the following system:

x1(t+1)=x1(t) = u?),
X2t + 1) = (x1() = u(®)) < ([(x1(1) Ax2(2)) V (mx1 () A —x2(1))] V x3(1)),

x3(1 + 1) ==(x1(t) Axa (1) A (x1 (1) V x2(2)).
(10.25)

10.3 Observable Normal Form 239

Choose a logical coordinate transformation as follows:

z1(1) = x1(1),
2(0) = (x1(®) Ax2(1)) V (—x1() A —x2(1)),
z3(1) = x3(1).

Its inverse mapping is

x1(1) =z1(2),
x2(1) = z1(1) < z2(2),
x3(t) = z3(1).

Letting 6, = {z2, z3}, and setting x(t) = xf’:lxi () and Z2(t) = 22(¢) X z3(r), we
then have

22(1) =84[12343412]x(2).

From Theorem 8.2, % is a regular subspace. Under the coordinates {z;}, (10.25)
can be expressed as

21+ D =z1(0) > u(),
2+ 1) =2(0) Vz3(1), (10.26)
23(t + 1) = —z2(2).

The incidence matrix of (10.26) is
1 0 0 1
sE=|0 11 o],
01 00
$0 (10.26) is a controllable normal form of (10.25) with €. = .%¢{z2, z3}.

10.3 Observable Normal Form

To investigate the observable normal form, we have to consider the complement
subspace, which was discussed in Chap. 8.

Definition 10.4 Consider the system (10.7). A regular subspace 7 is said to be
unobservable if there is a complement space # of ¥ satisfying:
(1) # is an invariant subspace of (10.7).
(ii)
hjEW, j=1,...,p.

240 10 Realization of Boolean Control Networks

Remark 10.2 Let Z = (Z', Z?) be the coordinate frame such that # = . ,{Z'}
and ¥ = .%;{Z?}. Under coordinate frame Z, the system (10.7) can be expressed
as

ZY e+ 1) = F(Z' (1), U@)),
Z2(t+1)=F(Z@1), U(1)),
Y(t)=H(Z'(1)).

Equivalently, under this coordinate frame the incidence matrices of F and H are

Bir 0 B3

j(F):[le By B

], J(H)=[C 0].

Definition 10.5

1. Consider the system (10.7). A logical variable & € 2" is called an unobservable

variable if there exists an unobservable subspace ¥ such that £ € 7.
2.

O, :={& | € is unobservable}
Now, let &€ € 0. There then exist a £ € ¥ and its complement, denoted by 7;°,
which is invariant and such that ¥ C 7.

Theorem 10.2 Consider the system (10.7). Assume that:

(1) O, is a regular subspace.
(ii) Foreach& € O, there exist a & € V¢ and its complement, denoted by V.°, which
is invariant, with Y C ’7/; and such that

o= %

§€0;,

is a complement of 0.
There then exists a coordinate frame Z = (Z L' 72) such that:
(1) 0=F{Z"%Yand 0. = F{Z?}.
(2) Under coordinate frame Z, the system (10.7) is expressed as

ZYt+1) = Fi(Z' (1), U (1)),
Zz(t + 1) =FZ(@®),U®)), (10.27)
Y(t)=H(Z'®)).

Proof First, we claim that

- U 7. (10.28)
§e0,

10.3 Observable Normal Form 241

Since £ € 7, we have
oe=\Jec | %
£e0, £e0,

Next, let & € O.. By definition, there then exists ¥ and its complement “//EC such
that (i) and (ii) of Theorem 10.2 hold. Now, for any n € ¥, by definition we have
n € O.. Hence, ¥ C O, and then

U eco.

(€0,

Equation (10.28) follows. Now, letting ¢ € &, we express
(@t + l):f(Z(t),U(t)). (10.29)

We then assume zg € O,. According to (10.28), there exists & € &, such that & € 7%.
By definition, ¢ € 7/50 and hence f is independent of zg in (10.29). Since zg € O, is
arbitrary,

e+ =f(Z 0, uw). (10.30)
Since ¢ € O is arbitrary, (10.27) follows. Il

Remark 10.3

1. Assuming that the conditions of Theorem 10.2 hold, (10.27) is called the observ-
able normal form.

2. Assuming that the conditions of Theorem 10.2 hold, it is then obvious that & is
the unique largest unobservable subspace.

We give an example.

Example 10.3 Consider the following system:

x1(t+ 1) =x3(t) Vu(t),

Xt + 1) = (1 () A—x3() vV (—x1 (@) A (x3(2) <> u(?))), (10.31)
x3(+ 1) =x30) — u(?),

y = (x1(1) © x3(0)) = (x2(0) Vx3(1)).

Choose the logical coordinate transformation as follows:

21(1) = x1(1) < x3(1),
22(t) = x2(1) V x3(1),
z3(1) = x3(1).

Its inverse mapping is

x1() = @1(1) Az3 (@) V (—z1(t) A —z3(1)),
x2(1) = z22(t) V z3(2),
x3(t) = z3(1).

242 10 Realization of Boolean Control Networks

Letting &, = {z3} and setting x(¢) = l><l3:1x,~ (t), we then have
z23(t)=68[12121212]x(t).

From Theorem 8.2, % is a regular subspace. Under the coordinates {z;}, (10.31)
can be expressed as
z1(t) = u(?),
2@) =z1() ANu(?), (10.32)
z3(t) = z3(t) —> u(1),
y=z1(t) = 22(0).

The incidence matrices of (10.32) are

0 0 0 1
f(F):(l 0 0 1), JH)y=(1 1 0).
0 0 1 1

It follows that 0, = Fp{z3}.

10.4 Kalman Decomposition

Combining the controllable and observable normal forms, we may look for more a
general form. Given a Boolean control system (10.7), we can find %, and &,. Then,
% and O, as the respective complements of %, and O, can also be obtained. Note
that the uncontrollable subspace %, and the unobservable subspace &, are uniquely
determined, while the controllable subspace 4" and the observable subspace & are
not even unique. Consider the subspaces

N=FN0, Yh=¢NO0, V3=%.N0, Ya=%.NO,.

Using (10.20), (10.27), and the above notation, the following theorem is clear.

Theorem 10.3 Assume 6;, O, 6. U O., and 6. N O, are regular subspaces. The
system (10.7) then has the following Kalman decomposition:
1 _rle 1 3 1
Z (t+l)_F (Z ([),Z (t)vu(t))v X EVlv
2+ D =F2Z' 1), 220), 2 (), 24 (1), u()), x*eVa,
2+1)=F3P1), eV, (10.33)
2+ D) =FE0),), eV,
yA(t)=hS(Zl(t)’Z3(t))9 s=1727"'7p’

where

) = (210, 20, -z,)

20 = (2ny 110, 2y 4200, -, 2y (D),

10.4 Kalman Decomposition 243

4 T
240 = (Zn14ma4ns 410, Znytmatns 420, . 20 (D)

Fl=(fi, foreoos SV

F2 = (fay+1, fay42s oo fa) T

4 T
F' = (fn1+n2+n3+lv fn1+n2+n3+2s ey fn) .

ni,i =1,2,3,4, are the respective dimensions of ¥;,i =1,2,3,4.

Proof By assumption, we have a sequence of nested regular subspaces:
€cnNo.c6.Cc6. V0. C .

According to Corollary 8.5, we can find a coordinate frame Z = (Z4, Z3, Z2, Zl)
such that 6. N O, = F{Z*}, 6. = F{Z*, 23}, 6. U O, = F{Z3, 73, 7%}, and
X = ?{Z“, 73, 72, 71 }. Expressing system (10.7) in coordinate frame Z, we have
¥ = .F{Z'}, i =1,2,3,4. Note that since 75 U ¥4 is the largest uncontrollable
subspace, Z!, Z2, and u will not appear in the equations of Z> and Z*. Since %, U %
is the largest unobservable subspace, the variables Z2 and Z* will not appear in the
equations of Z! and Z3. Moreover, the outputs depend only on Z! and Z3. (10.33)
then follows. g

Next, we give an example to illustrate this.
Example 10.4 Consider the following system:

xit+1)=u,
X +1)=—x0),
x3(t+ 1) =[x3() Axa(t) A (x5(F) < x6(F))]

V [x3(0) A (=(xa () Axs(D)]V (—x3(2)),
X4(t + 1) = —(x1 (1) < x2(0)),
xs(t+ 1) =[x1(5) A (x2(t) <> x3(0)] V [(—x1(7))

A (=(x2(t) <> x3()))],
x(t + 1) = [x1(2) <> x2(0)] A {[xa(2)

A (x5(t) < x6(1))] V [(—x4(2)) A x5(8)]},
1) = —x4(1),

y2(t) = (x1(1) © x2(0)) = (—x2(1)).

(10.34)

244 10 Realization of Boolean Control Networks

We skip the tedious process of finding the subspaces by using coordinate trans-
formations and give the logical coordinate transformation as follows:

z1(1) = x1(1) < x2(1),

22(1) = x4(1),

z3(1) = x6(1),

(10.35)
z4(1) = —x2(1),
z5(1) = —x3(1),
z6(1) = [xa(t) A (x5(1) <> x6(1))] V [(—x4(1)) A x5(2)].
Its inverse mapping is
x1(1) = —=(z1(1) <> z4(1)),
x2(1) = —z4(2),
x3(1) = z5(1), (1036)

x4(t) = 22(2),
x5(1) =[22(t) A (z3(t) < 26(t)] V [(—z2(8) A z6()],

x6(1) = z3(1).

Using (10.35)—(10.36), it is easy to show that under coordinate frame {z;}, the
system (10.34) can be converted into the following form:

21+ 1) =z4() < u,
2+ 1) =—z1(1),
23(t+1) =z1(t) Az6(2),
z4(t + 1) = —z4(1),
z5(t + 1) =2z5(t) Vv z6(2),
z6(t +1) = —z5(),
yi(1) = —z2(1),
y2(t) = z1(0) — z4(0).

(10.37)

A straightforward computation verifies that (10.37) is the Kalman decomposition
form of system (10.34), with

ENO=F{u1). 20} Eno.=F{x0)}
CNO=Flun}, C€N0O.=F|z50).260)}.

Remark 10.4 In Kalman decomposition (10.33) we assume that Y] =4 N 0 is
regular. If /] is not regular, then we propose two ways to replace it:

10.4 Kalman Decomposition 245

e Replace it by 7,9, a smallest regular subspace containing #;. This can be used
for a minimum realization. We refer to Chap. 11 (Sect. 11.2) for calculating a
regular subspace containing a given subspace.

e Replace it by 7%, a largest regular subspace contained in ¥]. This can be used
to ensure that the regular subspace, ¥;°, is controllable and observable. In the
following, we will discuss how to construct a regular subspace contained in a
given subspace.

Definition 10.6 Let H € .prq, where H; is the ith column of H. {Jy,..., J} is
called an s-partition of J ={1, 2, ..., g} with respect to H if:
()

(1)
Col;, (H) #Col,(H), VijelJj,ixelJj,1<i<j<s.
Example 10.5 If we assume that
H=65[123232],

then
Ji={1}, J2=({2,4,6}, J3={3,5}
form a 3-partition of {1, ..., 6} with respect to H and
h={135), H=(246

form a 2-partition of {1, ..., 6} with respect to H.

Let % C X be asubspace. In the following we consider how to find a largest reg-
ular subspace 2 C #. Note that “largest” here means that Z has largest dimension.
Let 2 = Fy(x1,...,x,) and & = Fy(yy1,...,Ys), where y; = hi(x1,...,x,),i =
1,...,s, are logical functions. Assume the algebraic form of % is

y=Hx, where He %syxom.

Theorem 10.4 % has a regular subspace of dimension k if and only if {J1, J3,
<. Do) is a 2-partition of J = {1, ..., 2%} with respect to Col(H), satisfying

|y = =] e |= 275

Proof Denote the algebraic forms of 2 and % by z = Tx and y = Hx, respec-
tively, where T € Lok on, H € ZLasxon. Since & C %/ is a subspace of dimension

246 10 Realization of Boolean Control Networks

k, there exists a logical matrix W € Zsx,»s such that
z=Wy=WHx=Tx.
Welet W = 6wy --- wos] and H =6ps[hy -+ hon], and define
li={plw, =i},
Ji=lglhg=p.pel}, i=1,..2"

{J1,J2, ..., Jox} is then a Zk—partition of J =1{1,...,2%} with respect to H.
A straightforward computation shows that

T =65 [Colh] (W) Colp, (W), ..., Colp,, (W)].
It follows from the definition that
Colhq(W) =i < gq¢€lJ.
It follows that 2 is a regular subspace if and only if
|| =2""% i=1,...,2~ O
As a convention, we set
Ip={p| Col, (W) is free}.

Example 10.6 Let 2" = Fy(x1,x2,x3) and % = Fy(x; — x2,x1 V x2). The alge-
braic form of y; = x1 — x3, y2 =x1 V x3 i8

y=Hx=65411331122]x.

Let J1 ={1,2,5,6} and J, = {3,4,7,8}. We then have I} = {1}, I = {2, 3}, and
Iy = {4}. Construct the logical matrix W = §>[w1 wy w3 wa], where

w; =1, whenie]lz{l},
w; =2, wheni € I = {2, 3},
w; =1or2, whenie ly={4}.

We choose W =§5[1 22 2]. Thus, z=Wy=WHx=6[11221122]xisa
regular subspace. According to Theorem 10.4, & € %'.

10.5 Realization

Definition 10.7 Two Boolean control networks are said to be equivalent if, for any
point xg of one network, there is a point xo of the other network such that for the
same inputs u(t), t =0, 1,2, ..., with initial values xo and Xxg, respectively, the
outputs {y(¢)} are the same.

10.5 Realization 247
Consider a linear control system [2]:

x=Ax+Bu, xeR" ueR",

(10.38)
y=Cx, yeR?.
Its Kalman decomposition form is
Zl A“ 0 A13 0 Zl
z? _ | A2z Axn A An 7?
2 0 0 Ayz 0 |2} (10.39)
b 0 0 Az Az ||
y(t)=[C1 0 C; O]Z.
Its minimum realization is then
1 1
= Az,
o T AE (10.40)
y=Ciz".

We define the minimum realization of the system (10.7) in an analogous way.

Definition 10.8 Consider the Boolean control network (10.7) with Kalman decom-

position (10.33). Given a fixed (frozen) value 2= ZS, the minimum realization of

the system (10.7) with frozen z3 = Zg is defined by

1 | t,3
!z (t+1)=F'(' (1), Ayzd, u()), (10.41)

ys(t) = hs(z' (1), ALzd), s=1,2,....p,

where A3, as the structure matrix of F3, is a known n3 x n3 logical matrix, and zg
is an adjustable parameter.

Note that, in general, the minimum realization depends on A3 and zg. In the
following two cases the minimum realization is unique:

e Case 1. z> does not appear in the dynamical equation of z!.
e Case 2. The subsystem of z globally converges to £. In (10.41), we can then
replace Agzg by & and call (10.41) the stationary state realization.

Example 10.7 Recall Example 10.4. To obtain the minimum realization of (10.34),
we write the first block equation by using its Kalman decomposition form (10.37):

21t + 1) =z4(t) < u,
y1(t) = —z4(2), (10.42)
y2(t) = z1(t) — z4(2).

248 10 Realization of Boolean Control Networks

Note that in (10.37) the third block variable is z* = z4. Since z4 = M’z we have
the minimum realization

2t +1) = MM} zQu,
yi(t) = M2, (10.43)
ya(t) = Mizi (1) M1 2S.

It is easy to verify that the input—output mapping of the system (10.34) with initial
value (z(l), e, zg) is exactly the same as that of (10.43) with initial value z(l) and

0
parameter z 4-

References

1. Cheng, D., Li, Z., Qi, H.: Realization of Boolean control networks. Automatica 46(1), 62-69
(2010)

2. Wonham, W.: Linear Multivariable Control: A Geometric Approach, 2nd edn. Springer, Berlin
(1979)

Chapter 11
Stability and Stabilization

11.1 Boolean Matrices

Let 2 = {1, 0}. We recall the definition of a Boolean matrix and define its operators
first.

Definition 11.1

1. A Boolean matrix X = (x;;) is an m x n matrix with entries x;; € 2. When
n = 1itis called a Boolean vector. The set of m x n Boolean matrices is denoted
by Bxn-

2. Let X = (x;j) € Byxn. If 0 is an unary logical operator, then 0 X = (o x;;).

3. Let X = (x;;), Y = (yij) € Bmxn.If o is a binary logical operator, then XoY :=
(xijoyij)-

4. Leta € Z and X = (x;;j) € By xn.If o is a binary logical operator, then ao X :=
(aoxjj).

The follow example illustrates the operations between Boolean matrices.

Example 11.1

1. Let
1 0 1
X= |:0 1 1]
Then,
010
~X= [1 0 0]
2. Let X be as in part 1 and
1 1 0
r= [o 0 1] '
D. Cheng et al., Analysis and Control of Boolean Networks, 249

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_11, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_11

250 11 Stability and Stabilization

Then,

I 11 - 0 1 1
xvr=[o 1] xer=[0 1 o)

3. Let X and Y be as in part 2, a = 1 and b = 0. Then,

(aQX)V(b(—)Y)z[(l) (1) i]\/[(l) (1) (1)j|:[} (1) ii|

Next, we consider the scalar product and matrix product.
Definition 11.2
1. Let o € 2. The scalar product of o with X € %, «,, is
aX=Xa:=aAnX. (11.1)

In particular, let o, 8 € 2. Then, o = o A 8, which is the same as the conven-
tional real number product.
2. Let X = (x;j) € Bpxq and Y € Py, be two Boolean matrices. Then,

X®Y=(xijy)€93pmb<qn' (11.2)
3. Leta, B,a; € Z,i =1,2,...,n. Boolean addition is defined as follows:
=a VB,
“+%f’3 aVp (11.3)
Z@z‘:lai =oy Vo V.- Va,.

4. Let X = (xij) € Buxn and Y = (y;;) € B, xp. The Boolean product of Boolean
matrices is then defined as

XXgY:=2Z¢€PBuxp, (11.4)
where
n
Zij =Z@xikykj, i=1,....m j=1,...,p.
k=1
5. Let A <; B (A >; B). The Boolean product of A, B is then defined as
AxzB:=(A®l)xgB [AxgB:=AxgBeI)]. (11.5)
6. Assume that A X g A is well defined. Boolean powers are then defined as follows:

AW = AxgAxg - xazgA.

k

Note that x g2 may be omitted when there is no possible confusion.

11.1 Boolean Matrices 251
We give an example.

Example 11.2 Let

1 1 0 1 (1) (1)
A=10 11|, B=|1 0], C= 1 0
0 0 0 1 0 1
Then,
1 1 1
A+z2B=AvB=|1 1], A—-B=|1 0],
0 1 1 1
[0 1] 1 0
A<B=|0 0], AVB=|1 1],
1 0 0 1
1 1] 1 0
1 1 0 1
1 0 1 0
AxgC = 0o 1| BxgC= 0 1
0 0 1 0
0 0 0 1

Next, we define some relations between matrices in %y, «y, .

Definition 11.3 Let X = (x;;), Y = (yij) € Buxn.

1. Wewrite X <Y ifx,'j =< Vij» Vi, j.
2. The vector distance between X and Y, denoted by Dy (X, Y), is defined as

Dy(X,Y)=XV7Y. (11.6)

Since both the Boolean product and Boolean addition are order-preserving, it is
easy to verify the following properties, which generalize the corresponding results
(for the vector case) in [2].

Proposition 11.1 Assume A > B and C > E. Then:
1.

A+2C>B+gE. (11.7)
2. (As long as the product is well defined)

AxgC>BxgE. (11.8)

252 11 Stability and Stabilization
Proposition 11.2 Let X, Y, Z € B,y xn. Vector distance Dy(X,Y) satisfies

DV(X,)/)ZO<:>)(:)/7
DV(X’ Y)ZDV(ny)a (11.9)
Dy(X,Z) < Dy(X,Y) +2 Dy(Y, Z).

Finally, we consider the Boolean product of matrices. For simplicity, the “x g”
is omitted.

Proposition 11.3 Let A, B € Zyxn, C € Buxp, and E € Byxm. Then:
1.
Dy(AC,BC) < Dy(A, B)C. (11.10)

Dy(EA, EB) < EDy(A, B). (11.11)

Proof We prove (11.10) only, the proof of (11.11) being identical. By definition, we
only have to prove that forany 1 <i <nand 1 <j <n,

n n n
Zgg aikaj_/Zgg bircy;j SZ@(Clik_/bik)ij- (11.12)
k=1 k=1 k=1

Now, the right-hand side equals zero (RHS = 0) if and only if
either a;x = b;; or ¢xj =0, Vk. (11.13)

However, when either one of (11.13) holds, it is easy to check that the left-hand side
is also zero (LHS = 0). The conclusion follows. Il

Note that when C is a vector, that is, when X € %, «1, equation (11.10) becomes
Dy(AX,BX) < Dy(A,B)X, (11.14)

which is particularly useful. The follow example shows that the inequality is some-
times a strict inequality.

Example 11.3 Let

and

11.2 Global Stability 253

Then,
1 1
0] - 0 .
AXVBX=|[1 0 1 o] iV |[t 1T 1 1] ||=1Vi=0
1 1

Dy(AX, BX) < Dy(A, B)X.

One may ask when the inequalities (11.10) and (11.11) become equalities. In
fact, we have the following result, which will be useful in the sequel.

Proposition 11.4 If A, B € Byxn, C € Lnxp, and E' € Ly g, then
Dy(AC,BC)=Dy(A, B)C (11.15)
and

Dy(EA,EB)=EDy(A, B). (11.16)

Proof We prove (11.15) only. By definition, it is enough to prove it for C € Lol
That is, we can assume C = §),. Then, (11.15) becomes

Col; (A) Col;(B) = Col; (A ¥ B),

which is obviously true. d

11.2 Global Stability

In this section we investigate the global stability of a Boolean network, that is, the
existence of a fixed point as a global attractor. Equivalently, we consider when a
Boolean dynamics converges globally. Our basic tool will be the vector distance.
This section is a generalization of the corresponding results in [2].

Consider a Boolean network,

)C](t+ l)=f1(.x1,...,.xn),

x2(t+ 1) = f2(-x17 "'7-xn)7
. (11.17)

xn(t+1)=fn(x17”'7xﬂ)v xieA@v

254 11 Stability and Stabilization

or a Boolean control network,

xi(t+1D) = filxr, ..., xp U1, ..., Upm),

xo(t+ 1) = folx1, ..., Xpn, Uty .nn, Upm),
. (11.18)

Xn(@+1)= fulx1, ..., Xn, U1, ... Um).

Denote by 2 = @" their state space. A point X € 2 is expressed as X =
(X1,...,X,)T. We consider a logical mapping F : 2~ — £, which is described
as

z1 = filxr, ..., x0),
: (11.19)
Zn = fa(x1, ..., Xxn).
We may also express this compactly as
Z=F(X), whereX,ZeZ. (11.20)

This mapping may come from the Boolean network (11.17), that is, we may have
Xi+1=F(Xy). (11.21)
Theorem 11.1 If X, Y € 2, F: 2 — %, then
Dy(F(X),F(Y)) < J(F) xg Dy(X,Y), (11.22)
where % (F) is the incidence matrix of F.

Proof Let
F(F) = (bij) € Buxn.
Using the triangle inequality, we have
Dy(fi(X), fi(Y)) < Dy(fi(x1, ..., %), fi (1, %2, ..., Xn))
42 Do(fi (1. %2, .o xn), fi(V1, ¥2, X3, ..., Xn))
+2 Dy(fi(V1s oo Ynm1: %)y [i(V1s e ou Yn))
n
<> sbik Dy (i, yi).-
k=1

The conclusion then follows. O

Note that the same argument shows that (11.22) is also true for the general case

F:9"— 9™

11.2 Global Stability 255

Theorem 11.2 For a mapping F : & — 2, where & = D", if there exists a
matrix M € B, «,, such that

Dy(F(X),F(Y)) <M xz Dy(X,Y), VX,YeZ, (11.23)
then

F(F)<M.

Proof We prove this by contradiction. Suppose that there exists an M satisfy-
ing (11.23) and that there is an entry m;; < b;;. It follows that m;; = 0 and
b;j = 1. Now, since f; depends on x;, we can find X = (x1,...,xj,...,x,) and
Y=(x1,...,¥j,..., %) such that f;(X) # f;(Y). That is,

Dy(fi(X), fi(Y))=1.

However, using (11.23) we have

Dy(fi(X), fi(¥)) <D mmix Dy (k. xi) +28 mij Dy (xj, ;) =0,
kit j

which is absurd. 0
Theorem 11.3 If E, F : £ — % are logical mappings, then

SJ(EoF)<I(E)Xg F(F). (11.24)
Proof Forany X,Y € &

Dy(Eo F(X),EoF(Y)) < J(E) xgd(F(X), F(Y))
< I(E)Xp I(F) xg Dy(x,y).

The conclusion follows from Theorem 11.2. g
An immediate application of the above theorem is the following result.
Corollary 11.1 If& is a fixed point of (11.17), then
Dy (X k), &) < [#(F)]" x5 Dy(x(0), £). (11.25)
Particularly, if
Coly ([#(F)]*) =0, reA:={ji,....J} C{1,2,....n},

and

xO[(O)ZSOlﬂ Vag{jl""’js}ﬂ
then X(t) =&,t > k.

256 11 Stability and Stabilization

Definition 11.4 The system (11.17) is said to be globally stable if it is globally
convergent. In other words, it has a fixed point as a global attractor (equivalently,
the only attractor).

Example 11.4 Consider the system

X1+ 1) = fi(xa(), x3(1)),
x(t + 1) = fa(xa(®),

x3(t +1) =co,

x4t + 1) = fa(x3),

(11.26)

where f1, f», and f3 can be any logical functions, and cg is a logical constant. The
incidence matrix of F is

I (F) =

(= el eNe)
SO O
—_o O —
O O = O

It is easy to check that [.# (F)]® = 0. If we assume 0 to be a fixed point of the
system (11.26), then the system globally converges to 0.

Summarizing the above arguments, we have the following.

Proposition 11.5 Assume that O is a fixed point of F and that there exists an integer
k > 0 such that
[7(7)]" =o. (11.27)
Then, O is the global attractor.
Note that if x, = (e1, €2, ..., €,) is a fixed point of the system (11.17), then the

above method is still useful for testing whether x, is a global attractor. Consider the
coordinate transformation

. =0,
=" (11.28)

—x;, e =1.
It is now easy to convert the system (11.17) into a system under z as
2t +1) = F(z(0)). (11.29)
If there exists a k > 0 such that [.# (F)]%) = 0, then x. is a global attractor of the

system (11.17).
It is easy to prove the following result.

11.2 Global Stability 257

Proposition 11.6 For a Boolean matrix H € %y, xn the following are equivalent:

(i) There exists a k > 0 such that H® = 0.
(ii) There exists a permutation matrix P such that PT x 5 H Xz P is a strictly
lower triangular (equivalently, upper triangular) matrix.

In fact, when H = .#(F) is an incidence matrix, P brings about a reordering
variables.

Unfortunately, this method is sufficient but not necessary, as demonstrated by the
following example.

Example 11.5 Consider the system

{xl(t-i-l):xl(t)/\xZ(t)’ (11.30)

x2(r + 1) = x1(6) A (—x2(1)).

It is easy to check that O is its global attractor. However, its incidence matrix is

J(F>=[{ ”

and
(7P =7(F)#£0, k=>1.

So, what is the necessary and sufficient condition for a Boolean network to be
globally convergent? We have the following result.

Theorem 11.4 The Boolean network (11.17) is globally convergent if and only if
there exists a k > 0 such that

J(F¥) =o. (11.31)
Proof (Necessity) If the system is globally convergent, then after 7; steps (where
T; is the transient period) all the states converge to the global attractor £. Therefore,
when k > T, (11.31) is true.

(Sufficiency) Now, assume (11.31) to be true. Then, for any X we have that
F*(X) is constant, say

Ff(X)=¢, VXeP".

Then, for any number ¢ > k,
F'(X) = FK(F'7F (X)) = &. O

Remark 11.1

1. Proposition 11.5 and the method immediately following it are practically useful
because the size of the incidence matrix is n x n, which is of the order of O (n).

258 11 Stability and Stabilization

2. In Theorem 11.3, F¥ is not directly computable. It can only be calculated by the
algebraic form of F, say L, which is of size 2" x 2", so it is difficult to use if n
is not small.

3. According to Theorem 11.3 it is clear that

I(F) <[#®]Y, k=1, (11.32)
but they are not generally equal.

Definition 11.5 Let F : 2" — ™. F is called a constant mapping if there exists a
constant Zg € 2™ such that

F(X)=Zy, VXe9". (11.33)

It is easy to verify the following results, which follow directly from the defini-
tions .

Proposition 11.7

1. F is a constant mapping if and only if its structure matrix, M, satisfies (for a
fixed zog € Apm)

Col;(Mp)=z0, 1<i=<2" (11.34)

2. F(F)=0ifand only if F is a constant mapping.

Recall Proposition 11.5. In fact, the condition that O is a fixed point is not nec-
essary for stability. Since we consider the topology of the network state space to
be discrete, stability means global convergence. Because, from (11.32), the condi-
tion (11.27) ensures that F* is constant for s > k, say F*(X) =&, VX and s >k, it
follows that the system globally converges to £&. We present this as a corollary.

Corollary 11.2 Consider system (11.17). It is globally stable if condition (11.27)
holds.

Proposition 11.5 is one of the main tools for stability analysis and stabilizer de-
sign, so some further discussion is necessary. First, we would like to point out that
the incidence matrix .# (F) of a Boolean network is coordinate-dependent. The fol-
lowing example shows this.

Example 11.6 Consider the following system:

x1(t+ 1) =[x1(0) A (e2(t) Va3 (x)] Vv (—xp (1) Ax3(1)),
X+ 1) =[x1®) A (x2)]V (—x1 Axz), (11.35)
3@+ 1D =[x1()AEG2@) Ax3@®))]V [—x1() A (x2(2) V x3())].

11.2 Global Stability 259
We can express it compactly as
x(t+1)= F(x(t)).

It is easy to check that 0 is a fixed point of (11.35). The incidence matrix of this
system is

111
JF)=|11 0
111

There is no way to convert this into a strictly lower triangular form by reordering
the variables. In algebraic form it is easy to calculate that system (11.35) can be
expressed as

x(t+1) = Lx(1), (11.36)

where x (1) = x1(t)x2(t)x3(¢) and
L=46g[83151538].
‘We now consider a coordinate transformation:

71 =[x1 A= (x3)] V [(—x1) A (x2 V x3)],
22 =[x1 A (x2Vx3)] V [(—x1) A xsl, (11.37)
73 = X2.

In vector form, we can easily calculate that
z=z12223=Tx,

where
T=463[71645328].

In coordinate frame z, we then have
2t 4+ 1) =TLT z(t) := Lz(1), (11.38)

where L is
L=083[66557788].

Recall that a sequence of 2 x 2" matrices, called retrievers, were defined in
Chap. 7 as

Sp=8all 1220001 12.2-2], k=1,....n. (11.39)

on—k on—k on—k on—k

Using these, a procedure was proposed in Chap. 7 to recover a system from the
transition matrix of its algebraic form (11.38). Next, we recover the system from L.

260

—

1 Stability and Stabilization
Using retrievers Si3, i=1,2,3, we have

z1(t+ 1) =Miz(1),
20 +1) = Mz(t), (11.40)
z3(t + 1) = M3z(1),

where
My =S]L=68[22222222],
My=SL=6[11112222],
My=SiL=6[22111122].

It is easy to convert the componentwise algebraic form (11.40) back to logical form,
denoted by z(r + 1) = F(z(¢)), as

21t +1)=0,
20+ 1) =2z1(0), (11.41)
23(t+ 1) =z1(t) Vza(2).

Now, consider the system (11.41) [i.e., the system (11.35) under the coordinates z].
Its incidence matrix is

- o O

0
0.
0

which is strictly lower triangular. Since x| = x» = x3 = 0 is a fixed point of (11.35),
we conclude that the system (11.35) globally converges to zero.

Example 11.6 shows that in some cases a coordinate transformation can help to
find a nice incidence matrix to ensure global convergence.

A question which now naturally arises is: If a network is globally stable, can we
always find a coordinate transformation such that under the new coordinate frame
the system has a strict triangular form? Unfortunately, the answer is “no”. Let us
return to Example 11.5. Since n = 2 there are 22! = 24 coordinate transformations.
We list them in increasing order as

T =1, T, =64[1243], T3 =64[1324],..., Trg = 64[4321].
It follows that under the new coordinate frames we have

- im =x, _ {m(r+ 1) =z1(0) A 22(0),

=X < X2 2+ 1) =—z1(1).

. {11 =2, {m(r+ D) =z1(t) Az2 ().
T :

2 =X X 2+ 1) =(—z1(0) A z2200).

11.3 Stabilization of Boolean Control Networks 261

Ty 1= 21t + D) =z1(t) A 22(2),
Na2=x 2+ 1) =220)— 210).

We have a variety of forms, but unfortunately none has an incidence matrix in
strictly triangular form. Hence, when the condition of Proposition 11.5 fails, even
under all possible coordinate transformations, we have to invoke Theorem 11.4.

11.3 Stabilization of Boolean Control Networks

Consider the Boolean control network (11.18). As before, we use the notation
x(t) = x_;x;(t) and u(t) = X7 u; (t).

Definition 11.6 The global stabilization problem for the system (11.18) is to find,
if possible, u(¢) such that the system becomes globally convergent. If u () = Wx(¢)
consists of a set of logical functions, then the control is called the state feedback
control.

Proposition 11.5 and the arguments thereafter are the main tools used in this
section.
We first give a simple example.

Example 11.7 Consider the following system:

x1(t+1) =x3(0) vV u),
X+ 1)=—x1(), (11.42)
3@+ 1) =x1(1) < x200).

It is obvious that as long as we can delete x3(¢) by using control u, the system is
globally stable because the incidence matrix becomes strictly lower triangular. This
is easily done. We may choose either an open-loop control u(¢) = 1 or a closed-loop
control u(t) = —x3(¢).

To obtain a general design method, we first recall the expression of logical state
variables. Let xp, ..., x,, be n logical state variables. In scalar form we have x; € 2,
i=1,...,n,and in vector form we write x = x;’zlxi € Ao,

Define a set of vectors:

sg=[1---10---0---1---10---0], k=1,...,n. (11.43)
—— —— —— ——

on—k on—k on—k on—k

Remark 11.2

1. s € Bixan, k=1,...,n, so the logical operators are applicable to them.

262 11 Stability and Stabilization

2. Comparing (11.43) with (11.39), we see that s,’(’ can be obtained from the first
row of S} by replacing 2 by 0.

We then define a matrix as
S = . € %n x2M .

The following proposition is easily verifiable.

Proposition 11.8

1. Converting from scalar form to vector form, we have
T
x= [(xl P2Y si’) N (xz <~ sg) Ao A ()c,Z P2Y s,'f)] , VYx;ie€9. (11.44)
2. Converting from vector form to scalar form, we have

X =.9"x. (11.45)

Example 11.8 Let X = (1,0, 1, O)T. In vector form, we then have

x =[1 < (1111111100000000)] A [0 < (1111000011110000)]
A[1 < (1100110011001100)] A [0 <> (1010101010101010)]
= (1111111100000000) A (0000111100001111)
A (1100110011001100) A (0101010101010101)
= (0000010000000000) = §%.

If x =687, then

16°
X=S%=(0,1,1,1).

Next, we give a systematic analysis of the stabilizer design for Boolean control
networks. First, we define a mapping 7w : Bonxon — Bpxn a8

m(L) = [[(«"L)V (S"LM,)] % 1o, [(L"L) V (" L) (I ® My)] % 8 121,
(L)L) U @ My) | X 1n], L€ Bonson. (11.46)

Note that M, is the structure matrix of negation.
We then have the following result concerning how to build the incidence matrix

from L.

11.3 Stabilization of Boolean Control Networks 263

Theorem 11.5 Consider the Boolean network (11.17) [equivalently, (11.21)], with
its algebraic form

x(@t+1)=Lx(t), x(t)e A, (11.47)

where L € Lonyon. The incidence matrix of F can be obtained from L by the fol-
lowing formula:

S (F)=mn(L). (11.48)
Proof Applying (11.45) to (11.47) yields

x1(t+1)

x(t+1)
X(t+1) =

X, (t+1)
="Lx1(t)---x,(1)
=" LMy (=x1 (D) x2(t) - - xa (1)
It is now clear that x; (f 4+ 1) is independent of x1 (¢) if and only if
Row; (.#"'L) = Row; (/"' LM,,),
if and only if
Row; (y”L) Vv Row; (y”LM,,) =0,
if and only if
Row; [(S"L) V(" LMy) x5 12:] =0.
Hence, the first column of . (F) is
Coly (F(F)) =[(S"L) V (S LM,)] x5 1.
Similarly,
Xt+1)=S"Lxi(t)---xj)- x,(1)
=S Lx1 (1) My (= (1)) - X (1)
=" (D1 @ My)Lx1 (1) - (=x; (1)) - -+ 2 (0).
A similar argument shows that x; (t + 1) is independent of x(¢) if and only if
Row; [(A" L)V (" LMy (I1j-1 @ My)) X 8 122] =0.
Hence,
Colj(F(F)) =[(+"L) V(S LLyji-1 @ My)) | xz12n, j=2,...,n.

Equation (11.48) follows. O

264 11 Stability and Stabilization
We give an example to depict it.

Example 11.9 Assume that the system (11.17) has as its network transition matrix
L=24616[199134121216210101419913]. (11.49)

% can then be calculated as

4
R € PBaxi6-

—_ = = =
O = = =
—_ O =
SO ==
—_—_—O -
S = O =
—_o O ~
SO O
_—— O
S = = O
—_- o = O
oS O = O
—_—_- O O
o = O O
- o O O
(e el e e)

Using (11.46), we can calculate that
(L)Y (LM, sl =10 0 1 1],

[(A*L)V (A LL® M) xzlyy=[0 0 1 1T,

[(Z*L) V(S LUp ®My)) | xzslu=[1 1 0 0,

[(Z*L) V(S LUy ®My)) | xzslu=[1 1 0 0,

that is,

O = =
O ==

—_—_- 0 O

0

0

1

1 00

In fact, using the standard procedure, we can uniquely recover the system from L as
x1(t+1) =x30) Axa(t),
x(t+ 1) =x3(1) V x4(1),

x3(t+ 1) =x1(8) = x2(1),
x4t + 1) =x1(t) < x2(2).

(11.50)

This verifies the validity of the .# (F) obtained .

Next, we consider the stabilization problem. Consider the system (11.18), with
its algebraic form

x(t+ 1) =Lu(®)x(), x(t)€ Am, u(t) € Am, (11.51)

where L € % s ontm.
Using Propositions 11.5 and 11.6, a sufficient condition for stabilization with
open-loop control is given by the following lemma.

Lemma 11.1 The system (11.18) is stabilizable by a constant control u if w(L(u))
has a strictly lower (or upper) triangular form.

11.3 Stabilization of Boolean Control Networks 265

Note that since the incidence matrix is coordinate-dependent, coordinate trans-
formations have to be taken into consideration.
Using the formula (8.18), we have the following result.

Theorem 11.6 The system (11.18), with its algebraic form (11.51), is stabilizable
by a constant control u if there is a coordinate transformation z = Tx such that
7(TL(Iyn ® TYYu) has a strictly lower (or upper) triangular form.

Note that both the possible values of u and the number of possible coordinate
transforms are finite (2" and 2"!, respectively), so, theoretically, both Lemma 11.1
and Theorem 11.6 are verifiable.

Example 11.10 Consider the following system:

x1(+ 1) =—x2(2),

x2(t + 1) = =g (t) < ((xa(t) A (e2(t) V x3(1))) vV u(t)),
x3(t + 1) ==((xa(t) A (x2(t) V x3(2))) V u(t)),

x4(t + 1) = (xa(t) V (x2(t) V x3(1))) A u(t).

(11.52)

After a “trial and error” approach to simplifying the system, we use the following
coordinate transformation:

Zl =x43
=x, V X3,
©2TRYe (11.53)
{3 = 7X3,
Z4:—|_xl
Its inverse can be easily calculated as
X1 = T4,
RELes, (11.54)
X3 =723,
X4=21.
The system then becomes
21+ 1) =(21(0) vV z22(0) Au(?),
2(t 4+ 1) =—z1(2),
2+ 1) =—z1() (1155)

23+ 1) =(z1(t) Az2() vV u(t),
za(t+ 1) =z2(t) < z3(2).

It is now clear that if we choose

u(t) =0, (11.56)

266

—

1 Stability and Stabilization
then the system becomes

z1t+1)=0,

2@+ 1) =-z1(),

3+ 1) =(z1(t) A 22(2)),
za(t + 1) = 22(1) < z3(1).

(11.57)

It is obvious that the incidence matrix of the system (11.57) is

I (F) =

S = = O
——_ O O
— o O O
[l el Nl

which is in strictly lower triangular form. We conclude that the constant control
u(t) = 0 stabilizes the system (11.52).
Remark 11.3 Let

TL(In ®T") =By By -+ By,

where B; = BIk;(TL(Ion @ TT)) € Snyon, i =1,...,2". Theorem 11.6 then be-
comes the statement that there exists an i such that 7 (B;) is strictly lower (upper)
triangular.

Next, we consider the closed-loop control. Let u(¢) be a set of logical functions
of x(¢). We can then always express it as

u(t) = Gx(t), (11.58)
where G € %mon. Plugging this into (11.51) yields
x(t+1)=LGx*(t) = LG®ux(1), (11.59)
where @, is defined in Chap. 4 [equation (4.6)] as
n
®, =]‘[L1 ® [(I2 ® Wi gn-i)) M], (11.60)

i=1

with M, = 84[1, 4].
The following result is now obvious.

Theorem 11.7 The system (11.18) is stabilizable by a closed-loop control u = Gx
if t(LG®,,) has a strictly lower (or upper) triangular form. Moreover, if there exists
a coordinate transformation z = Tx such that 1(TLG®,T") has a strictly lower
(or upper) triangular form, then the control also stabilizes the system.

11.3 Stabilization of Boolean Control Networks 267
Example 11.11 Consider the system

x1(t + 1) = —x2(2),

x2(t + 1) = =x4(1) <> ((xa(t) A (x2(1) V x3(1))) V u(1)),
x3(t + 1) = =((xa () A (x2(2) V x3(1))) V u(t)),

x4t +1) = (x4(t) V (x2(2) Vx3(2))) V u(t).

(11.61)

In fact, it is obtained from (11.52) by changing the nature of the inputs. Using the
same coordinate transformation as in Example 11.10, we have

z1(t+ 1) = (z1() vV 22(1)) vV u(t),
2+ 1) =—z1(),

23t + 1) = (z1(t) Az2()) Au(t),
z4(t + 1) = 22(t) < z3(1).

(11.62)

One can check that constant (open-loop) controls cannot stabilize the system. If we
use a closed-loop control

u(t) =-z1() A —z2(1),

then the system (11.62) becomes

@+ 1)=1,
20+ 1) =—z1(1), (11.63)
z3(t+1)=0,

24t + 1) =z2(t) < z3(1).

Obviously, this is globally stable. Converting the control back to the original coor-
dinate frame, we conclude that

u(t) = —xa(t) A =(x2(0) V x3(1))

stabilizes the system (11.61).

The advantage of using metric-based analysis is that the matrix involved is of a
small size. The disadvantage is that the condition is only a sufficient one. Next, we
search for necessary and sufficient condition.

As discussed above, the global stability of a free Boolean network is equivalent to
the existence of a k > 0 such that F¥ = constant. In vector form it is equivalent to L*
having equal columns, which is the global attractor. Now, consider the stabilization
by a constant control u. The control-dependent transition matrix is then Lu. Using
the properties of the semi-tensor product, it is easy to calculate that

(Lu)* = L[(In ® L)®,] u. (11.64)

268 11 Stability and Stabilization

Since k should be less than or equal to the transient time, i.e., k < T; < 2", we
can get an easily verifiable necessary and sufficient condition as follows. Note that
L[(Ion ® L)®,, 1 is a 2" x 2"+™ matrix. We split it into 2" square blocks as

L[(In @ L)@, =LA Lk - 14.]. (11.65)

Using this notation and in accordance with the above argument, we have the follow-
ing necessary and sufficient condition.

Theorem 11.8 The system (11.18) is stabilizable by a constant control u if and only
if there exists a matrix of constant mapping

L5, 1<k<21<j=<2"

Moreover, corresponding to each matrix of constant mapping L];, the stabilizing

control is u = (Sém.
The following example illustrates this result.
Example 11.12 Consider the following system:

x (¢ + 1) = (1) Vxa2(t)) Au,
x(t+1) = (x2(t) ANu) — x1.

(11.66)
It is easy to calculate that
L=454[11233333].
Since @1 = M,., according to Theorem 11.8, we have to calculate
Llhe LM, k=1,
to see if we can find a constant mapping block. In fact when k = 2 we have

L[(L® LM, =84[11113333].

We conclude that if we use control # = 1, then the system is stabilized at x = § j
(i.e., x; =1 and xp = 1), and if we use u = 0, the system is stabilized at x = 82 G.e.,
x1=0,x=1).

Consider the state feedback control as in (11.58). Using the expression (11.59)
and the above argument, the following result is obvious.

Theorem 11.9 The system (11.18) is stabilizable by a closed-loop control u = Gx
if and only if there exists a 2™ x 2" logical matrix G and an integer 1 < k <2" such
that (LG®,)* is a matrix of constant mapping.

11.3 Stabilization of Boolean Control Networks 269

We give an example.
Example 11.13 Consider the following system:

x1(t+1) = [x2(t) vV (=x2(8) A (x3(8) V x4(1)))] A ult),

Xt +1) = (2(t) A (x3(0) V x4(2))) V [x1() A (—x2(2)
A= (x3(t) v xq())],

x3(t + 1) = (x1(t) A (x3(8) <> x4(1))) V [=x1 () A ((x2(2) (11.67)
A (x3(t) <> xa(1))) A (mx2(8) A (x3(8) A x4(2))))],

x4(t + 1) = x1(t) A =xq(t) V [2xp (8) A ((x2(8) A —xa(t))
V (mx2(t) A = (x3(1) — x4(1))))].

It is easy to verify that if we choose

c_[1 1 oo}
10 0 1 1]
then

14 e DY
(LG®4) " =616l16 16].
16
Note that

u(t) = Gx(t) =x1(1),
which globally stabilizes the system (11.67) to X = (0, 0, 0, 0).
Next, we briefly discuss the case where the system is required to converge to a
particular state xg. In this case the problem is slightly simpler. In addition to the

above stability requirements, we need to ensure that xg is a fixed point of the control
system. We now give this as a corollary.

Corollary 11.3

1. The system (11.18) is globally stabilized to xo by a constant control u if and only
if u satisfies

Luxo = X0, (1168)

and there exists an integer k > 0 such that (Lu)* is a constant mapping.
2. The system (11.18) is globally stabilized to xo by a closed-loop control u = Gx
if and only if G satisfies

LGD,xo = xg, (11.69)

and there exists an integer k > 0 such that (LG ®,)¥ is a constant mapping.

270 11 Stability and Stabilization
Finally, we consider the stabilization by an open-loop control, u(t) = XL u;(¢),
t=1,2,.... We assume that we want to stabilize it to xg.

First, it is obvious that a necessary condition is that there exists a control u, €
Apm such that

Luyxo = xo. (11.70)

Second, note that
x(to+k+1)=Lu(to+k)Lu(to+k—1)--- Lu(to + D)x(tp).
To make all trajectories converge to xg, there must be a k > 0 such that
Lu(k)Lu(k —1)---Lu(l)x =x9, Vxe& Apn.
This is equivalent to
Col(Lu(k)Lu(k— 1)---Lu(1))={x0}. (11.71)
Observe that

Lu(k)Lu(k —1)--- Lu(1)
=L(Ipn @ L)(Iyou @ L) - -+ (a1 ® L) x)_; u(i)
=LY, L5, LA] i u). (11.72)

It is now clear that if there exists a 1 < j < 2km guch that Llj‘. corresponds to the
constant mapping ¥ (x) = xo, then we can choose the control

1 . j
Ki:ku(l) = Sémn

such that (11.71) holds.
Summarizing the above arguments, we have the following theorem.

Theorem 11.10 The system (11.18) is globally stabilized to xo by an open-loop
control u(t),t =1,2,...,if and only if:

(i) There exist an integer k > 0 and an Ll;., 1<j< ka, such that
Col(LY) = {xo}.
(ii) There exists a u, € Aym such that (11.70) holds.

We give an example for this.

11.3 Stabilization of Boolean Control Networks 271
Example 11.14 Consider the following system:

x1(t+ 1) =x1(2) Vup (),

x2(t + 1) = (x2(2) V x3(1)) <> ui (1),
x3(t + 1) = (u1(t) > x2(0)) v x3(1),
x4(t + 1) = (x3(1) Aua(t)) — x4(2).

(11.73)

Set x(t) = xlex,- (t) and u(t) = |><l.2:1ul~(t). Using vector form, (11.73) can be ex-
pressed as

x(t+1)=Lu(®)x(), (11.74)

where

L=6p121112771 2 1 1 1 2 77
rr1111771 1111177
5655561113141313131499
5555551113131313131399].

According to (11.72), we calculate
LI @ LY(Ip2x2 @ L) -+ - (Ip2-1) @ L)
to see whether we can find a constant mapping block. In fact when k =2 we have

M= Lz ®L)
=M, M>, ..., Mi¢l,

where

M=566[121112771
111111771
121112111
111111111
111111771
111111771
111111111
111111111
565556115
555555115 5
56555655131413
55555555131313
555555115 555
555555115 55555 1
555555551313131313131313
5555555513131313 131313 13],

(11.75)

A\ == = = =N =N
N N = et et e et ek e

1
1
1
1
1
1
1
1
5
5
1
1

W W
— e e e e e = N N = = S]

7
7
1
1
7
7
1
1
1
1
1
1
1
1

272 11 Stability and Stabilization

and Blk; (M) € ZLi6x16,i =1, ..., 16. From (11.75), we know that
Blk4(M) =Blk7(M) =Blkg(M) =86[1111111111111111].

Equivalently,
Col(Blk4(M)) = Col(Blks(M)) = Col (Blks(M)) = {5}
On the other hand, choosing u, = (Si ~(1,1) [or u, = 8} ~ (1,0)], we have
Lucbls =8l

From Theorem 11.10, the system (11.73) is globally stabilized to xg = 8}6 ~
(1, 1,1, 1) by an open-loop control u () [or u(¢) and &(r)], where

85~ (0,0, t=1,
u®y =183~ 1,1, 1=2,
MEa IZ35
5~ 0,1, =1,
() =183~ (1,0), 1=2,
Ue, t>3,
85 ~0,0), =1,
i) =18~ (1,0, =2,

Ue, t>3.

In the following we would like to discuss further the conditions in Theorem
11.10. Condition (i) says that all the trajectories can reach the preassigned fixed
point xg. One may doubt whether condition (ii) (which means that xg is a fixed point
under a certain control) is necessary. The following example shows that condition
(ii) is indeed necessary.

Example 11.15 Consider the following system:

{xl(t + 1) ==(x1(2) Au(r)), (11.76)
Xt + 1) =) A (x2(8) > x1(1) V (=u) A (x1 (1) < x2(1))). '

Set x(t) = l><l.2:1x,~ (). In vector form, (11.76) can be expressed as
x(t+1)=Lu()x(t)
=384[3321122 1u(t)x(z). (11.77)
For any initial state £ € Ay, if we choose u(1) = 8%, then

x(2) = Lu(1)€
— 540122 1]E.

References 273

Next, if we choose u(2) = 8%, then

x(3) = Lu(2)x(2)
= (84332 11)(8al1 22 11)&
= 84[3333]¢
=83, VEe A,

From (11.77), it is obvious that there does not exist an u, such that
Lu,8; =83,

In step 3, regardless of the value of u(3) [u(3) = 8% oru(3) = 8%], the dynamics
of the Boolean network will leave the state xo = 82 fixed. Therefore, the system
(11.76) cannot be globally stabilized to xp by an open-loop control u(¢).

References

1. Cheng, D., Qi, H., Li, Z., Liu, J.B.: Stability and stabilization of Boolean networks. Int. J.
Robust Nonlinear Control (2010). doi:10.1002/rnc.1581 (to appear)
2. Robert, F.: Discrete Iterations: A Metric Study. Springer, Berlin (1986). Translated by J. Rolne

http://dx.doi.org/10.1002/rnc.1581

Chapter 12
Disturbance Decoupling

12.1 Problem Formulation

Assume that in a Boolean control network there are some disturbance inputs. We
then have a disturbed Boolean control network. In general, its dynamics is described
as

x1(t+ 1) = fi(x1@), ..., 0 (@O,ur(0), ..o um (1), 81(1), ..., 54 (1)),

: (12.1)
Xn(t+1) = fa1 (@), ... X (@), ur (@), -y um (1), 1(2),, £4 (1)),
yj(®) Zhj(X(t)), j=1,...,p,

where & (¢),i =1, ..., q, are disturbances. Let x (1) = x!'_ x; (¢), u(t) = X" u; (t),

E(t) = x?_ & (1), and y(r) = x!_,y;(t). The algebraic form of (12.1) is then ex-
pressed as

x(t+1)=Lu@)&@)x(t),
y(t) = Hx(z),

(12.2)

where L € gzn xon+m+q , H e gzp x2N .
We consider the following example.

Example 12.1 A disturbed Boolean control network is defined by the following
equation:

At +1)=B(@) NEQ),
Bt+1D)=C)Vui(@),
Ce+1)=D@)AI(B() = &) Vui(n], (12.3)
D@+ 1)=—C() VvI[EW) Auz(D)],
y(@)=C()AD().
D. Cheng et al., Analysis and Control of Boolean Networks, 275

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_12, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_12

276 12 Disturbance Decoupling

Roughly speaking, the disturbance decoupling problem involves finding suitable
controls such that, for the closed-loop system, the outputs are not affected by the
disturbances. Consider the system (12.3). If we choose controllers

ui(t) = B(), uz(t) =0,
then the closed-loop system becomes

A@t+1)=B@) NE@),

B(t+1)=C(t)V B(t),

C(it+1)=D(@), (12.4)
D@+ 1) =—=C(),

y(@#)=C()AD().

It is obvious that the disturbance will not affect the output.
We now give a rigorous definition.

Definition 12.1 Consider the system (12.1). The DDP is solvable if we can find a
feedback control

u(t) = ¢(x) (12.5)

and a coordinate transformation z = T (x) such that under the z coordinate frame,
the closed-loop system becomes

e+ 1) =Flz@), p(x(1)), 1)),
2+ 1) = FX(22 @), (12.6)
y(t) = G(22(1)).

From Definition 12.1 one sees that to solve the DDP problem there are two key
issues: (i) finding a regular coordinate subspace z> which contains outputs, and (ii)
designing a control such that the complement coordinate sub-basis z!' and the dis-
turbances & can be deleted from the dynamics of z>. These will be investigated in
the following two sections.

12.2 Y -friendly Subspace

Definition 12.2 Let 2 = Z,{x|,...,x,} be the state space and Y =
{(y1,...,¥p} C Z . A regular subspace & C Z is called a Y-friendly subspace
ifyeZ,i=1,..., p. A Y-friendly subspace of minimum dimension is called a
minimum Y -friendly subspace.

This section is devoted to finding the output-friendly subspace. First, we consider
one variable y. Since y € 27, we its algebraic expression is

y=2¥8li1,i2,...,0m]x :=hx. (12.7)

12.2 Y-friendly Subspace 277

Let

nj=\{klik=j,1<k=<2"}, j=12,

where | - | is the cardinal number of the set. We then have the following result.

Lemma 12.1 Assume that Y = F;{y} has algebraic form (12.7). There is a Y-
friendly subspace of dimension r if and only if ny and ny have a common fac-
tor 2",

Proof (Necessity) Assume that there is a Y -friendly subspace 2 = % ,{z1, ..., 2r}
with {z1, ..., z,} as its regular sub-basis, and let z = l><§:12i- Then,

z="Tox = (t; j)x,
where Ty € %rxon. Since y € 2, we have
y=Gz=GTpyx,
where G € % or. G can then be expressed as
G=36&lj1,..-, jor]
Hence,

h=8&li,i2,...,in] =81[j1,..., jor 1 To.

Let mg = |{k| jr =s,1 <k <2"}|, s =1,2. Using Corollary 8.2, a straightforward
computation shows that i has 2"~"m columns which are equal to 8% and 2"7"m;
columns which are equal to 8%. That is, n; =2""m; and np =2""m,. The con-
clusion follows.

(Sufficiency) Let y = hx be as in (12.7), where n; = 2"""m| columns of &
equal 8% and ny = 2"7"my columns equal 8%. It suffices to construct a Y-friendly
subspace of dimension r. We construct a logical matrix Ty € Z5r xon, as follows.
Let Ji = {k|hx = 81} and J» = {k| hy = 83}, where hy = Coli(h). Simply letting
L={l,...,m}and I ={m; + 1,...,2"}, we can split Tp into 2 X 2 minors as
follows: TOZ’J ={t,sIrel;ands e J;},i, j =1,2. We set these to be

_1;,, 0

Tol‘l =) mi, T01’2—0,
Lo 1
‘1;4 0

TO22 = mo, Toz’] =0
Lo - 1]

278 12 Disturbance Decoupling

We are now ready to verify that Ty, constructed in this way, satisfies (8.33). Accord-
ing to Theorem 8.2, z = Tpx forms a regular sub-basis.
Next, we define G as

G=46I1,...,1,2,...,2].

my m2
A straightforward computation shows that GTy = &, which means that

GTox =hx =y. O

For ease of statement, we call a factor of the form 2* a 2-type factor. In sub-basis
construction, only 2-type factors are counted.
From the proof of Lemma 12.1 the following result is obvious.

Corollary 12.1 Assume that 2"~" is the largest common 2-type factor of ny and n;.
The minimum Y -friendly subspace is then of dimension r.

Next, we consider the multi-output case. Let ¥ ={yy, ..., y,} C Z be p logical
functions, and let y = l><f’ _Yi- Then, y can be expressed in its algebraic form as

y=26&wlit,iz,...,im]x := Hx. (12.8)

Let
nj=|{k|ix=j1<k=<2"}

. j=1,...,27

Using the same argument as for the single output case, it is easy to prove the fol-
lowing result. (In fact, the following Algorithm 12.1 could be considered as a con-
structive proof.)

Theorem 12.1 Assume that y = l><ip:1yi has algebraic form (12.8).

1. There is a Y -friendly subspace of dimension r if and only ifn;, j =1,...,2P,
have a common factor 2" ",

2. Assume that 2"™" is the largest common 2-type factor of nj, j =1,...,27. The
minimum Y -friendly subspace is then of dimension r.

We give an algorithm for constructing a Y -friendly subspace. Assume that 2"~"
is a common factor of n;, writing n; =m; -2"7", i =1,...,2P. We split the set of
Col(H) into 27 subsets as J;, i = 1,...,27. k € J; if and only if the kth column of
H satisfies Coly (H) = 83,,. Constructing the required Y -friendly subspace is equiv-
alent to constructing a logical matrix Ty € %5 «on such that we can find a logical
matrix G € % xor satisfying

GThy=H.

12.2 Y-friendly Subspace 279

Algorithm 12.1

Step 1. Split the rows of Ty into 2P blocks as follows: I consists of the first m
rows, I consists of the following m, rows, and so on, until /o consists of the last
myp rows. (Note that leil m; = 2".) Partition Tj into 2”7 x 2P minors as

T(;.’j:{tr,s|reli’se‘]j}9 i’jzl,,,.,zp.

Step 2. Note that Té’j isanm; x (m;2""") minor. Set it as

i,J 1 i]-Tn—r 9 | = ‘7
i) = @ty =0 (12.9)
0, otherwise.
Step 3. Set
z=X!_,zi :==Tox.
Recoverz;,i =1, ..., r, from Ty. (We refer to Chap. 7 for the recovery technique.)
Proposition 12.1 Assume that 2"~" is a common factor of n;. The z;j,i =1, ...,r,

obtained from Algorithm 12.1 then form a regular sub-basis of an r-dimensional
Y -friendly subspace.

Proof Define a block diagonal matrix

ern. (T) 0
o 1 - 0

G=| . . (12.10)
0 o ... 1}121)

By the construction of Ty, it is easy to check that
y=GTox =Gz. 0

We are particularly interested in constructing the minimum Y -friendly subspace.
We give an example to show how to construct it.

Example 12.2 Let & = F¢{x1, x2, X3, X4},

yi = fi(x1,x2,x3,x4) = (x1 < x3) A (x2V X4), (12.11)

y2 = fa(x1, X2, X3, X4) = X1 A X3.

We look for the minimum Y -friendly subspace. Setting y = y1y2 and x = x1xx3x4,
it is easy to calculate that

= McMex1x3Mp)C2)C4
= MM.(1l4 ® Mp)X1X3x2)C4

280 12 Disturbance Decoupling
= MM.(14 ® Mp)(I2 ® Wp)x1x2x3X4
= Mx,
where M is the structure matrix of f1, which can be easily calculated as
My =MM,(I4 @ Mp)(I ® W21)
=6[2122122222212212].
Similarly, y» = Max with
M, =65[1122112222222222].
Finally, we have y = M x, where

M=:54[3144134444424424].

From M one easily sees that n| = ny =n3 =2 and n4 = 10. Since the only com-
mon 2-type factor is 2 =2"7", we can have the minimum Y -friendly subspace of
dimension r = 3. To construct 7y we have

J1=1{2,5}, Jr={12,15}, J3={1,6},
Js=1{3,4,7,8,9,10,11, 13, 14, 16}.
Now, since m| =my =m3 =1 and myq =5, we have I} = {1}, I, = {2}, I = {3},
and I = {4,5,6,7, 8}. Setting B! equal to 17 yields that the 2nd and 5th columns

of Tp are equal to (Sé. Similarly, the 12th and 15th columns are equal to 8%, etc.
Finally, Tj is obtained as

To=463[3144135566727828]. (12.12)
Correspondingly, we can construct G by formula (12.10) as
G=1654[12344444]. (12.13)

Finally, we construct the minimum Y -friendly subspace which has sub-basis, say,
{z1, 22, z3}. Setting z = 212223, we have

z=Tpx.
Define z; := E;jx, i = 1, 2, 3. The structure matrices E; can then be uniquely calcu-
lated from Tj as
Ei=6[1111112222212212],

Er=8[2122121111212212], (12.14)
E3=8[1122111122121222].

12.2 Y-friendly Subspace 281

We can then use Proposition 7.2 to find the logical expression of z; from its structure
matrix E;. It is easy to calculate that

71 = {x1 A [x2 V (—x2 /\)C3)]} \% {—-x1 A ([x2 A —(x3 V)C4)]
\% [—|x2 A (—x3 A X4)])},

D= {x1 AN [(X2 A3 A —'X4)) \ (—UCZ A (x3 > X4))]}

(12.15)
V{=xr A2 A (13 V (mx3 A —xg))) V(=2 A (x3 Axg))]
3= {x1 A [()Q AX3)V —|x2]} \% {—-x1 A [(xz A (—x3 /\x4))
\ (—UCQ A(x3 A)C4))]}
Similarly, from (12.13) we can easily calculate that
y1=62[11222222]z,
v =62[12122222]z.
It follows that
Y1=21 N2,
(12.16)
Y2 =21 NZ3.

A question which now naturally arises is whether the minimum Y -friendly sub-
space is unique. First, we consider the number of bases of the subspace.

Proposition 12.2 Assume the algebraic form of {yi,...,yp} is y = Hx and that

the numbers nj = |{s | Hy = Sép}|, j=1,...,2P, have common factor 2"~". There
are then
(m; -2"7")!
N, =]_[T (12.17)

different choices of sub-basis which form the r-dimensional Y -friendly subspaces.

Proof The question is equivalent to asking how many different 7 there are. First,
we fix the row assignment, that is, the assignment of Iy, I, ..., I>». Note that /; has
m; rows, and J; has m; - 2"~" columns. It is obvious that to get the same G Ty we
can, for each row in [;, choose any 2"~" columns and assign them to be 1. Hence,
we have N' different choices for values in J; columns, where

N — m; 2"\ ((m; — 1) - 2" n=r _(m; L2201
- (n—r >< on—r) <2nr) - [(n=r)]mi

Since N, = 1—[[21:’ N I, (12.17) follows immediately.

282 12 Disturbance Decoupling

The only thing remaining to be clarified is that the row assignment for [;, i =
1,...,2P, is fixed in advance. In fact, we can choose any m; rows for I, then m,
rows from remaining rows for I, and so on. For this purpose, we can introduce
a row permutation. Let P € .#r«»r be a permutation matrix, so a new Ty can be
obtained by f‘o = PTy. We then have a new regular sub-basis, z = Pz = PTjz,
which is just a coordinate transformation of z, so they generate the same regular
subspace and will be considered as the same. It is worth noting that we have

y:GZ, where G = GPT. O

In fact, N, is a huge number when n is large. Fortunately, different sub-bases
may determine the same subspace. We give a simple example to illustrate this.

Example 12.3 Let y = x| A x3 € F¢{x1, x2, x3}. Using Theorem 12.1, it is easy to
verify that a minimum Y -friendly subspace is of dimension 2. Moreover, we can
easily show {x1, x3} to be a basis, that is, y € 27 = % ¢{x1, x3}. It is also easy to
verify that 25 = % ¢{x1, x1 Vx3}, 25 = Fo{x3, x1 Vx3}, Z4 = Fo{x3, x1 < x3},
etc. are also minimum Y -friendly subspaces. Fortunately, it is easy to check that
they are all the same.

Now, let 2 = .%¢{x1, ..., x,} be the state space and

P =g, i=1.2,

where {z’i, R zf{}, i =1, 2, are regular sub-bases with
d= i), =12 =1k (12.18)
We wish to know when A =2.
Letz' = b<];=1z’]., i =1, 2. The logical equations (12.18) have algebraic forms

d=Tx, i=1.2. (12.19)
Assume that 2] = 2. There then exists a nonsingular P € %5 o« such that
Tix = PTx
and it follows that 77 = PT>. Hence,
P=1i(r (1)) (1220
Plugging this into 71 = PT> yields
T =TT (DT ' I (12.21)

Conversely, if (12.21) holds and the P defined in (12.20) is a coordinate transforma-
tion matrix, then we have Tjx = PThx, i.e., z! = PZ2. According to Theorem 8.1,
2 = Z5. Summarizing the above argument yields the following theorem.

12.3 Control Design 283

Theorem 12.2 Using the above notation, two regular subspaces of equal dimension
A = 25 if and only if (i) their structure matrices Ty and T; satisfy (12.21), and (ii)

-1
Ty (1)) € Loy
is nonsingular.

Using Theorem 12.2, we can easily show that the minimum Y -friendly subspace
is, in general, not unique. This is shown by the following example.

Example 12.4 Consider Example 12.2 again. Using formula (12.17), there are
10!/32 different choices of sub-basis. These come from setting the entries of the
TO4 ’4, which corresponds to I3 x Jg.

We may construct some other subspaces by using other structure matrices.

1. Choosing
Ty=383[3155137788424626],

we can generate another Y -friendly minimum subspace. Note that this choice is
legal because we only put two 4s, two Ss, two 6s, two 7s, and two 8s into the
slots of Jy. It is easy to check that if we set T» := Ty and Ty := T}, then (12.21)
is satisfied. Moreover,

Ty (DTN =6[12357846] € Loyt

is nonsingular, so z = Tox and 7’ = T;x generate the same Y-friendly subspace.
2. We may consider another legal choice:

Ty =83[3156137878424526].

If we set T» := Ty and T7 := T}/, then (12.21) fails to be satisfied. Thus, z = Tox
and z” = T x generate two different Y -friendly minimum regular subspaces.

The second example shows that the Y-friendly minimum regular subspace is
not generally unique.

12.3 Control Design

In the previous section, the problem of finding a Y -friendly subspace was investi-
gated. Assume that a Y-friendly subspace is obtained as z>. We can then find z!
such that z = {z!, z?} forms a new coordinate frame. Under this z, the system (12.1)
can be expressed as

2+ 1) =Flz@), u(t), £(1)),
2@+ 1) =F2z(), u(t), £(1)), (12.22)
y(1) =G ().

284 12 Disturbance Decoupling

Equation (12.22) is called the output-friendly form. Comparing it with (12.6), one
sees that solving the DDP reduces to finding u(#) = u(z(¢)) such that

F2(z(t), u(z(0)), £(0)) = F2(*(1)). (12.23)
Assume 72 = (z%, e, zk) is of dimension k. We define a set of functions,
a@)=gAag A ngs al@)=gAgac A
e3(P)=zinAmzi Az el@) =g A Amz A (1220)

ex () =—F A A Az

It is easy to check that
2 .= f@{zz} =Folei|1<i 52"}.

We call {e; | 1 <i < 2K}, defined in (12.24), a conjunctive basis of %2 (or 22). Using
Proposition 7.2, each equation of F2, denoted by Fl.z, can be expressed as

l\)

F}(2(0), u(0), £(1)) =\/ [ei (220)) A Q7 (2"). u(@),)], j=1.....k.

(12.25)

Proposition 12.3 F?(z(1), u(t), £(t)) = F2(z%(t)) if and only if, in the expression
(12.25),

Q'(z' (1), u(), @) =const., j=1,... .ki=1,..,2" (12.26)

Proof Sufficiency is trivial. For necessity, assume that for a special pair i, j, the
Q! is not constant. Consider the corresponding e If its z2 factor is 72, set z2 = 1.
Otherwise, if this factor is —|z , set z =0,s=1,...,k. We then have

() =1, ¢()=0, j#i.

Now, since Qj is not constant, when Qj =1, we have F; 2 =1, and when Q/ =0,
we have F; 2 = 0. So, for ﬁxed z2, F; 2 can have different values, which means that
1’712 is not a function with of z2 alone. O

We are now ready to give the condition for the solvability of the DDP. Taking
into consideration the above argument, the following result is obvious.

Theorem 12.3 Consider the system (12.1). The DDP is solvable if and only if:

12.3 Control Design 285

(1) There exists an output-friendly coordinate sub-basis such that, using this sub-
basis, the system is expressed as (12.22).

(ii) In (12.22), when F? is expressed as in (12.25), there exists a feedback control
u(t) = u(z(t)) such that (12.26) is satisfied.

Remark 12.1 An output-friendly coordinate sub-basis, say 72, is obtained. A com-
plement set of logical variables, z!, must be chosen to form a new coordinate frame
z={z', z%}. It is easy to check that the choice of z! does not affect the solvability
of the DDP.

Now, assume that we have (12.22) with z? being the minimum output-friendly
subspace. We can then search for the feedback control. Set the feedback as

u(z')) =Uz'), (12.27)

where U € Zom pn—k.

Note that there are only finitely many U. If there is a control u such that all
the functions in (12.26) are constant, then we are done. Otherwise, there is no u
which deletes & from all functions in (12.26), which means that the DDP is not solv-
able. If there is a u which does delete & from all functions in (12.26), but there are
some functions of z!, say {n1,...,ns} C F ({Zl }, which remain undeleted, then we
add{n; i =1,...,s}to{y1,...,yp} and find a minimum (y;, n;li=1,...,p; j =
1,...,s)-friendly subspace, say V. We then turn the closed-loop system into the
form of (12.22) with .%{z%} = V to see whether it has the form of (12.6).

To see that a possible solution with an output-friendly subspace can be obtained
by starting from a minimum subspace, we have to show that an output-friendly sub-
space contains a minimum output-friendly subspace. We have the following result.

Proposition 12.4 Let V bea Y ={y1, ..., yp}-friendly subspace. There then exists
a minimum Y -friendly subspace, W C V.

Proof Let
y=x{_yi=Hx,

andletn;,i =1,..., 27, denote the numbers of columns of H, which equal SEP. Let
2% be the largest common 2-type factor of {n;}. The minimum Y -friendly subspace
then has dimension n — s. Let {vy, ..., v,} be a basis of V. If r =n — s, then we are
done. Therefore, we assume that ¢t > n — s. Since V is a Y-friendly subspace, by
writing v = Mﬁzlvi, we can express

y=Gv, where G e %pyorr. (12.28)

Denote by r;, i =1, ..., 27, the numbers of columns of G which are equal to 85,,.
Let 2/ be the largest 2-type common factor of r;, and write r; = m;27. Since V is a

286 12 Disturbance Decoupling

regular subspace, we let v = Ux, where U € %) . Since v is a regular sub-basis,
(8.33) holds. Note that since

y=Gv=GUx,

we have to calculate GU. Using the construction of G and the property (8.33) of
U, it is easy to verify that each column of 8§p yields 2"~ columns of 851, in GU.
Hence, we have

rp- 2n—t =m; Zn_H_J

instances of 8£p in GU,i=1,...,27. This means that the largest common 2-type
factor of {n;} is 2"~/*/ It follows that n — t + j = s. Equivalently,

j=t—(m—s).

Going back to (12.28), since the dimension of V is ¢, and the r; have largest com-
mon 2-type factors 2/, we can find a minimum Y-friendly subspace of V of di-
mension t — j =t — [t — (n — s)] = n — 5. It follows from the dimension that
this minimum Y -friendly subspace of V is also a minimum Y -friendly subspace of
X =Fe{x1,..., %0} [l

We give an example to describe this.

Example 12.5 Consider the following system:

x1(t+1) =x4(t) Vu (),

x2(t + 1) = (x2(2) Vx3(1)) A —E(2),

x3(t + 1) = [(x2(2) <> x3(2)) VE@]V [(x1 < x5) Vua ()], (12.29)
xq(t + 1) = [u1 () = (—=x2(2) VEO)] A (x2(2) < x3(2)),

x5(t + 1) = (xa(t) Vup (1)) < [(u2(t) A =x2(1)) V x4(1)],

y(t) = x4(t) A (x1(1) > x5(1)),

where u1(t), uz(t) are controls, £(¢) is a disturbance, and y(¢) is the output.
Setting x(¢) = l><?:1xi (), u =uy(t)us(t), we express (12.29) in algebraic form
as

x(t+1)=Lu@)&@)x(1),
y() =h(),

(12.30)

12.3 Control Design 287

where

L =63[303014143232161632321515303013 13
303014 143232161632321515303013 13
3232161620204 4 20203 3 30301313
3232161620204 4 20203 3 30301313
302614103228 16123228 16 123026 14 10
263010142832121628321216263010 14
3228161220244 8 20244 8 30261410
2832121624208 4 24208 4 26301014
13132929151531311515323213 133030
13132929151531311515323213 133030
131329293 3 19193 3 202013133030
131329293 3 19193 3 202013133030
139 29251511312715113127139 2925
9 13252911152731111527319 132529
139 29253 7 19233 7 1923139 2925
9 1325297 3 23197 3 23199 132529],

h=6,[12221222122212222122212221222122].

First, we have to find the minimum output-friendly subspace. Observing &, we
have n| = 8 and n, = 24. We then have the largest common 2-type factor 2° = 23
and m; = 1, my = 3. Hence, we know that the minimum output-friendly subspace
is of dimension n — s =5 — 3 = 2. Using Algorithm 12.1, we may choose

To=1084[12341234123412342143214321432143]

and
G=6][1222].

From Ty we can find the output-friendly sub-basis, denoting it by {z4, z5}, with
74 = Myx and z5 = Msx. We can then easily calculate M4 and M5 from Tj. In fact,
for the two-factor case, we have the following simple rule: For M each column of
8)‘ or (Sf of Ty yields a column 8; in the corresponding column of M, otherwise
we have 8%; for M, each column of §)‘ or 82 of Tp yields a 8% in the corresponding
column of M,, otherwise we have 8%. Hence, we have

My=46[11221122112211221122112211221122],
Ms=46,[12121212121212122121212121212121].

288 12 Disturbance Decoupling

Using Corollary 8.2, we simply set z; = M;x, i =1, 2,3, where M; are chosen
as follows:

Mi=68[11111111111111112222222222222222],
My=1655[22222222111111112222222211111111],
M3z=68,[11112222222211111111222222221111].

It is easy to check that the Boolean matrix B, of {z1, z2, 23, 24, 25} has no equal

columns. Therefore, it is a coordinate transformation. From M;, the z; can be cal-
culated as

21 = X1,

22 = T2,

73 = X2 <> X3, (12.31)
24 = X4,

75 = X1 <> X5.

Setting z = |><f:1zl- and x = |><f:1xi, the algebraic form of (12.31) is z = T x, with

T=53[9 10111213141516567812342625
2827302932312221242318172019].

Conversely, we have x = T7Tz, with

TT=[131415169101112123456783029
323126252827 181720192221 24 23].

The inverse mapping of the coordinate transformation (12.31) becomes

X1 =121,
X2 =2,
x3=2z22Vz3,

X4 =24,

X5=127] < 25.
Under the coordinate frame z, equation (12.30) now becomes

2(t+1) = Tx(t +1) = TLu(t)&()x(t) = TLu)E() T 2(t)
=TL(Is® T)u)&(0)z(t) := Lu(t)E(t)z(1)
and

y(t) =hx(t) =hT z(t) := hz(1),

12.4 Canalizing Boolean Mapping

where

L=53[17171
17171
17171
17171
17212
17212
17212
17212

AN\ = ==

6

19193 3 17172
19193 3 17172
2727111119194
2727111119194
19234 8 17212
19234 8 17212
2731121619234
2731121619234

ol Ne) I L Y

8

19194 4
19194 4
27271212
27271212
19234 8
19234 8
27311216
27311216

289

1

OV GG Sy

1

DN DN = ==

17173 3 19191
17173 3 19191
1717111127271
1717111127271
18223 7 20241
18223 7 20241
1822111528321
1822111528321

1

[, IR, B, R

18183 3 2020
18183 3 2020
18 18 11 11 28 28
1818 11 11 28 28
18223 7 2024
18223 7 2024
182211152832
1822 11 15 28 32],

h=68[12221222122212221222122212221222].

A mechanical procedure can then convert the original system into a Y -friendly co-

ordinate frame z as

21(t+ 1) =z4(t) Vui (1),
2t +1)=2z3(t) VEQ®),
23+ 1) =2z5() Vur(r),
z4(t + 1) = [u1 (1) = (22(0) VE@)] A z3(2),
z5(t + 1) = (ua(t) A 22(1)) V 24(t),

Yy =24 AZ5.

(12.32)

In the output-friendly subspace (z4, z5), we may now choose

ui(t) =z2(t) = —x2(1),

uz(t) =0.

Now the only unlimited variable, which is outside of this space, is z3. Enlarging the
output-friendly subspace to include z3, one sees that the closed-loop system is in
such a form that the DDP is solved. Since, in system (12.32), the controls which
solve the DDP are obvious, we do not need to use the general formula.

12.4 Canalizing Boolean Mapping

In this section we consider the canalizing Boolean mapping. It will be used to solve
the DDP via constant controls.

290 12 Disturbance Decoupling

Definition 12.3 A Boolean function y = f(xq,..., x;,) is called a canalizing (or
forcing) Boolean function (CBF) if there exist an i € {1,...,n} and u, v € & such
that

FOor, X, u, X1, .. X)) =0, VX, j#£L (12.33)

If (12.33) holds, x; is called the canalizing variable with canalizing value # and
canalized value v, and f is said to be a (u, v)-type canalizing Boolean function.

It was pointed out by Kauffman [4] that canalizing Boolean functions allow us to
deduce large-scale order in the underlying ontogeny of genetic regulatory systems.
For our purposes, we define a generalized version of a CBF.

Definition 12.4 A mapping F : 2" — 2”, determined by

yjzfj(x]a”"xn)’ j=15"~5p7

is called a multi-input multi-output canalizing (or forcing) Boolean mapping [or,
more briefly, a canalizing Boolean mapping (CBM)] if there exist a proper subset
A={r, ..., C{l,...,n}and uy, ..., u, vy, ..., v, € Z such that

fj(-xlv'--v-xl’l)|xki=ui,i=1 kzvj7]:va (1234)

If (12.34) holds, then x;, A € A are called the canalizing variables with canalizing
values u = (u1, ..., ux) and canalized values v = (v1,...,v)), and F is said to be
a (u, v)-type canalizing Boolean mapping.

In the following we look for a necessary and sufficient condition for a given
mapping to be a CBM. Of course, the results obtained are also applicable to CBFs.

Recall that M € £pxon is called a constant mapping matrix (CMM) if it is a
structure matrix of a constant mapping, that is, if there exists an s, 1 <s <27, such
that

Col;(M) =385,, Vi.

First, we assume that A = {1, 2, ..., k}. We then have the following result.
Theorem 12.4 Let F : " — 2P be defined by

vi=fiGxt,....x), j=1,...,p. (12.35)

Its algebraic form is y = Mpx, with x = X/_,x; and y = xley,-. Split M into 2%
equal-sized blocks as

Mp=[M" M> ... M*]

F is then a CBM with canalizing variables x1, ..., xy if and only if there exits an s,
1 <s < 2%, such that M* is a CMM.

12.4 Canalizing Boolean Mapping 291

Proof First,letzy, ..., z; be aset of logical variables and z = Klezi. Then, z € Ayps
and {z; |i =1, ..., s} can be uniquely calculated from z, so we have only to consider
yand x. Let x! = l><f?=1xi and x2 = Xi_py1%i- Then,

— 1,2 _ 1\,2._ 2
= F —_ o .
y=Mpx'x* = (Mpx")x* := Mpx

Now, assume that M’ is a CMM, where 1 <t < 2k We can then choose xé = 8;,(.
By the definition of the semi-tensor product, we have M, = M Fxé = M", which is
a CMM. That is, y is a CBM with x! as canalizing variables.

Conversely, if all M' are not CMMs, then for any xé € Ay the Mo =M Fxé is
not a CMM. Hence, y is not a CBM with x!as canalizing variables. O

Next, we consider the general case. Let
A={i,..., ik} C{1,2,...,n}.

Without loss of generality, we assume i < iy < - - - < ix. Using the aforementioned
notation, we define

k
Mp=Mp l_[W[z’zij-*—k—_/].
j=1
Splitting this as
MFZ[MI M2 Mzk]’

we then have the following conclusion.

Corollary 12.2 F is a CBM with canalizi{zg variables x), A € A ={i1, ... i}, if
and only ifthereisal <s < 2k such that M* is a CBM.

Proof We use a swap matrix to rearrange the order of products. A straightforward
computation then shows that

k
e . - e .
X=NK,_Xj= l_[W[2,2,j+k—_/]x,1 S X X Xi
j=1 igdA

and the conclusion follows. O
As an immediate consequence, we have the following result.

Corollary 12.3 Let y = f(x1,...,x,) be a logical function with structure ma-
trix M¢. Let

MfW[z’zi—]] = [Ml MZ],

292 12 Disturbance Decoupling

Table 12.1 Type of f

i 1 1 2 2
Columns 8 82 8 82
Type 1. D (1,0 0. 1) 0,0

where M' € %y on-1,i =1,2. Then f is a canalizing Boolean function with canal-
izing variable x; if and only if at least one of M or M? is a CMM. Moreover, if M!
(i=1ori=2)isa CMM with its columns equal to 8; (or 8%), then the type of f is
shown in Table 12.1.

12.5 Solving DDPs via Constant Controls

It was proposed in the above that the DDP can be solved in two steps: First, convert
(12.1) into an output-friendly form (12.22); then, in (12.22), try to design a control
such that the dynamics of the output-related part, x2, will be independent of x! and

E,‘,iZl,...,q

Converting (12.1) into the output-friendly form (12.22) was discussed in
Sect. 12.2. Now, assume that (12.22) is obtained. Write the second part of its state
equations as

XA+ 1) = F(x @), u(r), £1)). (12.36)

The DDP is then solvable if we can find controls such that the F2 in (12.36) is
independent of x! and &,i=1,...,q, thatis, if we can find state feedback u(¢) =
u(x(t)) such that

F2(x(), u(x(®)), (1) = F*(x?). (12.37)

Using the algorithm developed in Sect. 12.3, F? can be expressed as

2k
F?(x(t), u(), (1)) =\/ x (@), u(), E0)). (12.38)

Note that here
04
oo |
0%
It was proven in Proposition 12.3 that (12.37) holds if and only if Q', i =
1,...,2% are constant in (12.38).

12.5 Solving DDPs via Constant Controls 293

Summarizing the above argument, we can give a condition for a DDP to be solv-
able via constant controls. To see that, we define a mapping Q : 2" *+"+d1
P2 as

Ql
o= : |. (12.39)
o

Theorem 12.5 Consider system (12.22) and assume the dynamics of z* is decom-
posed as (12.38). The DDP is solvable via constant controls if and only if the map-
ping Q defined in (12.39) is a CBM with u(t) as canalizing variables.

Using the properties of CBMs obtained in the last section, the condition in The-
orem 12.5 is verifiable. We now give an example to illustrate this result.

Example 12.6 Consider the following system:

x1(t+ 1) = (x1() = x2(1)) V [(x1 (1) <> x3(2)) = ED]V 1) — x4(1)),
Xt +1) = (x1 (1) = @) < (u2(t) A xa()),

X3+ 1) =[((x1 () <> x2(0)) AE@)) = u ()] < (x3(8) A —x4(1)),

X4t + 1) = (x3(2) <> x4(2)) = [(x1(£) = §(0)) AN u2(D)],

1) = x3(8),

y2(8) = x4(2),

(12.40)
where x1(¢), x2(t), x3(t), x4(t) are the states, u(t), uz(t) are controls, £(¢) is a dis-
turbance, and y;(¢), y2(¢) are the outputs.

The DDP of the system (12.40) is solvable if we can find controls #; and u» such
that the states x3, x4 are not affected by the disturbance d.
Consider the dynamics of x3, x4:

{X3(t + D =[Gx1(1) « x2(6)) AE@)) = ur(1)] < (x3(1) A —x4(1)), (12.41)

x4(t + 1) = (x3(1) < x4(1)) = [(x1(2) = &(1)) Vua(r)].

Let x =x3 X x4 X X1 X X2, u = D<,'2=1”i’ and y = l><l.2=1y,~. States x3, x4 can then
be expressed in algebraic form as

(12.42)

x3(t + 1) = Mazx(Du)&(),
x4t + 1) = Max(@)u(t)§(2),

where

M3=6[22221212222222222222222222221212
rr112121111111111111111111112121
22221212222222222222222222221212
22221212222222222222222222221212],

294 12 Disturbance Decoupling

My=6,[12221222122212221122112211221122
rr11rrrrrrrrrrrrrrrrrrrrrrrrlILLL
rr11rrrrrr1r1rrrrrrrrrrrrrrIILnL
12221222122212221122112211221122].

Choose x! = (x1,x2), x? = (x3,x4), u = (uy, u2), and y = (y1, y2). We have

4] (x2) = X3 N\ X4, ez(xz) = X3 N\ TX4,

e3 (xz) = —X3 A X4, ey (xz) = —x3 A Tx4.
Split M3 and My into four equal-sized blocks as
VA V- VA V) N VS | Vi VR Vi
respectively, where

Ml=M}=M}=502222121222222222
2222222222221212],
M;=8[1111212111111111
1111111112121,
M}=Mj=5[1222122212221222
1122112211221122],
Mi=M}=&[1111111111111111
111111111y

Hence, (12.42) can be expressed as
4
F(x@),u),£1) =\/ ei(x* X' (), u(0), £(1)),
i=1

where Q' (x!' (1), u(t),&(t)), i = 1,2, 3, 4 are the following mappings:

01 (D), u(®), (1) = Max! (DunE (@),
0y (! (1), u(®), (1)) = Myx! (Du(E ().

We can now check whether the mapping Q is a CBM with u(¢) as the canalizing
variables, where Q :=[Q!, 0%, 03, 0*1".

References 295

The structure matrix of Q(x1(#), u(?), &(t)), denoted by P, can be obtained as

O(x" (@), u(r), &)
= Mx' (Ou)E@)Myx (u()é ()
M3x (Ou(E@) MEx (Du()é (1)
M3x (g @) M x (u()é (1)
MIx (g Myx (Du()é (1)
= Pu(t)x" ()E(@).

A straightforward computation shows that

P =6,3[139 204 139 204 139 139 139 139
204 204 204 204 204 204 204 204
33 204 139204 13913933 139
98 204 204 204 204 204 98 204].

Splitting P into four equal-sized blocks, the second block Blk, (P) is a CMM, where
Blky (P) = 8,3[204 204 204 204 204 204 204 204].

From Theorem 12.4 we can conclude that the mapping Q is a CBM with u(z) as
canalizing variables. Therefore, the DDP of system (12.40) is solvable via constant
controls u(t) = 83, that is,

u(t) =8 ~ (u1 (), uz(t)) = (1,0).

When (u1(t), u2(t)) = (0, 1), the system (12.40) becomes

x1(t+1) = (x1() = x2()) V [(x1(2) <> x3(1)) = EDO]V (1 > x4(2)),
x(t+1)=(x1(t) > @) <0,

x3(+ 1) =1< (x3(1) A —x4(1)),

x4(t + 1) = (x3(1) < x4(1)) = 0,

yi(0) = x3(¢),

2(1) = x4(2).

It is obvious that the outputs y;, y» are not affected by the disturbance £ ().

References

1. Cheng, D.: Disturbance decoupling of Boolean control networks. IEEE Trans. Automat. Contr.
(2010). doi:10.1109/TAC.2010.2050161

2. Cheng, D., Li, Z., Qi, H.: Canalizing Boolean mapping and its application to disturbance de-
coupling of Boolean control networks. In: Proc. 7th IEEE International Conference on Control
& Automation (ICCA’09), pp. 7-12 (2009)

http://dx.doi.org/10.1109/TAC.2010.2050161

296 12 Disturbance Decoupling

|95

Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, Berlin (1995)

4. Kauffman, S.: The Origins of Order: Self-organization and Selection in Evolution. Oxford Uni-
versity Press, London (1993)

5. Wonham, W.: Linear Multivariable Control: A Geometric Approach, 2nd edn. Springer, Berlin

(1979)

Chapter 13
Feedback Decomposition of Boolean Control
Networks

13.1 Decomposition of Control Systems

Consider a linear control system:

XxX=Ax+Bu, xeR"'ueR™",
(13.1)
y=Cx, yeR?’.

The state-space decomposition problem (SSDP) has been widely discussed and has
proven to be a powerful tool in system analysis and control design. We refer to [5]
as a standard reference for this.

There are two kinds of SSDP. One is called cascading SSDP, which involves
finding a feedback control

u=Kx+Gv (13.2)

and a coordinate transformation z = 7 x, such that under the coordinate frame z, the
state space of system (13.1) can be expressed as

V= Apnz' + By,
2= Anz' 4+ Apz® + By,
(13.3)

P =Apz' + 4+ Appz? + By,

where dim(z') = n; and Zle n; = n. The other kind is called parallel SSDP, which
involves finding a feedback control (13.2), a coordinate transformation z = 7'x, and
a partition v = {v', ..., v”}, such that the state equation of the closed-loop system

D. Cheng et al., Analysis and Control of Boolean Networks, 297
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_13, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_13

298 13 Feedback Decomposition of Boolean Control Networks

can be expressed as
= Anz' + B,
2 = Anz® + Bnv?,
(13.4)
2P = Appal + By

The input—output decomposition problem (IODP), also called Morgan’s problem,
involves finding a feedback control (13.2), a coordinate transformation z = Tx, and
a partition v = {vl, ..., vP}, such that each set of controls v’ can control y; and
does not affect y;, j # i [3]. Formally, the input—output-decomposed form can be
expressed as

' =Anzt 4+ B!,
22 = Axnz? + Bov?,

: (13.5)
P =AppzP + Bppv?,
yi=Cjz/, j=1,...,p.
Consider an affine nonlinear control system:
m
x=fx)+ Zgi(x)u,- =g)u, xeR"'ueR™,
i=1 (13.6)

yi=h;jx), j=1,...,p.

A similar problem can be considered. However, these problems are usually con-
sidered over a local neighborhood, e.g. the treatment of Morgan’s problem in
[1, 2]. When m = p, Morgan’s problem has been completely solved, but the m > p
case has remained an open problem for almost half a century. On several occasions,
a solution has been claimed, but then counterexamples have later been constructed.

In this chapter we first consider the SSDP and then the IODP for Boolean control
systems. As a prerequisite, the structure of several regular subspaces needs to be
investigated.

13.2 The Cascading State-space Decomposition Problem
We consider a Boolean control system,

xl(t + 1) = fl(xl(t)? 9xn(t)1 ul(t)v ey um(t))v
: (13.7)

xﬂ(t + 1) = fn(-xl(t)a . "1xn(t)’ M](t), ey um(t))v xi(t)s u](t) S @

13.2 The Cascading State-space Decomposition Problem 299

Definition 13.1 Consider the system (13.7).

1.

The cascading SSDP is solvable by a coordinate transformation z = 7T'x if, under
the coordinate frame z, the system can be expressed as

e+ =F'G), u@)),
2+ 1) = F2Z @), 22(0), u(1)),

(13.8)

.zp(t +1)=FP®),u®), Ze€2'.

. The cascading SSDP is solvable by a state feedback control
u()=Gx(t)v(r), (13.9)

where G € %myon+m, if the closed-loop system under a suitable coordinate
frame z = T'x can be expressed as

2@+ 1) =F'E), v)),
2@+ 1) =F2 1), 22(), v(1)),

(13.10)
%P(r +1)=FP@@®),v@), e
We express the algebraic form of (13.7) as
x(t+1)=Lx(t)u(t). (13.11)

Note that in this book we generally express the algebraic form of (13.7) as

x(t+ 1) = Lou(t)x(1). (13.12)

For the decoupling problem, though, (13.11) is more convenient. Now, assume we
have (13.12). Then,

x(@+1) = Lou()x(t) = LoWpn omx (t)u(t),

that is,

L =LoWpnom or Lo=LWpm .

For cascading SSDP, we have the following result.

Theorem 13.1 Consider the system (13.7).

L.

The cascading SSDP is solvable by a coordinate transformation z = T x if and
only if:

300 13 Feedback Decomposition of Boolean Control Networks

(i) There exists a set of nested regular subspaces

HCHC-CZ=9",
where the algebraic form of Z; is
d=Tx, i=1,...,p.
(ii) There exist S; € Lon; yomi+m such that
LL=ST;, i=1,....,p—1 (13.13)
2. The cascading SSDP is solvable by a state feedback control
u()=Gx@)v(),

where G € Lom yom+n if and only if:
(1) There exists a set of nested regular subspaces

AcHhCc---CZ=9",
where the algebraic form of % is
Zi=T,-x, i=1,...,p.
(ii) There exist G € Bomxomin and S; € Lon; onj+m such that
LI ®G)D,=ST;, i=1,....,p—1, (13.14)
where @, is defined as (4.6) in Chap. 4.

Proof 1. (i) is obviously necessary. Now, assume that such a set of nested regular
subspaces exists. According to Corollary 8.5 we can find a coordinate frame Z =
(Zi,...,z}”,...,zf,...,zf,’p) such that

Z! =(z%,...,z,lll,...,zli,...,zili), i=1,...,p.
We then have
@+ D) =Tix(t+ 1) =T, Lx()u(t). (13.15)
To obtain the cascading form we must have

41D =S8Z (Ou@) = SiTx()u), (13.16)

where S; € Zon; oni+m. Comparing (13.15) with (13.16), (13.13) becomes a neces-
sary and sufficient condition for (13.15) and (13.16) being consistent.

13.2 The Cascading State-space Decomposition Problem 301

2. The proof is the same as for the case of coordinate change only. The only
difference is that we need to replace (13.15) and (13.16) by the following (13.17)
and (13.18), respectively:

Z+1)=Tixt+1)

=T; Lx(t)u(t)
=T, L(Iyn ® G)®px(t)v(t), (13.17)
2+ 1) =587 @)v@) =S Tx()v(r). (13.18)

O

Note that for (13.13) or (13.14) we do not need to consider the i = p case. Be-
cause %, = X, it follows that T}, is nonsingular (in fact, it is an orthogonal matrix).
Hence, for (13.13), say, we can simply set S, = T,,LTpT to ensure (13.13).

We use the following examples to illustrate these two kinds of cascading SSDPs.

Example 13.1

1. Consider the following Boolean control system:

x1(t+ 1) ==x4 () V (x1 (1) = u1 (1)),

x2(t + 1) = ((x1 (1) Vx4(2)) < x2(1)) V ua(t),

13+ 1) =—x4(1) < (x4() A (3() < (x1() Vxs(2)))),
x4+ 1) =x1() = u1(@).

(13.19)

Setting x (t) = b(?zlxi (1), the algebraic form of (13.19) is
x(t+1)=Lx(@)u(t),

where

L=6516[15101411114 4 37121611114 4
11101011154 8 33121211154 8
333 3 11151115111 1 11151115
373 7 11111111151 5 111111 11].

Skipping the tedious and straightforward computation, we consider the fol-
lowing three nested spaces:

&

1=F{z1 =xa320=x1V x4},

&
I
N

dz1 =x45 20 =x1 Vx5 23 = X2},

%

s=Fa=xn=x1Vxn=x;u=x3< (1 V)l
Setting 7! = ><l.2:1zi, it is easy to calculate that

z! =Tx,

302 13 Feedback Decomposition of Boolean Control Networks

where
T =64[2323232314141414].

Similarly, setting z> = l><?:3zi, we have
T, =108g[3535464617172828].
Setting z = x;_,z;, we have
T5=4616695108117121142133164 15].

Using Theorem 8.2, it is not difficult to find S; such that 2] C 25 C 23 are
three nested regular subspaces. We now need to find S;, i = 1,2, 3, such that
(13.14) holds, that is, T; L = S; T;. It is easy to calculate that

S1=2084[2222224411331111],

S»=4683[3333343434783377
1155125612121111],

S3=46816[555 5 666 6 575 7 686 8
5713156814165513136614 14
22101022101024101224 1012
242 4 242 4 222 2 222 2].

Let T = T3. It is obvious that T is nonsingular, therefore,

z1(#) = x4(1),

22(t) = x1(t) V x4(2),
z3(t) = x2(1),

24(1) = x3(1) < (x1(2) V x4(1))

(13.20)

is a coordinate transformation, its algebraic form being z = T'x.
Under the coordinate frame z = T x, the system (13.19) is expressed as

2+ 1) =Tx(t+1)=TLx®u(®t)=TLT 'z()u(t) := Lz(t)u(®),
where L = S3. We can convert it to logical form as

21t +1) = (1) Vz22(1)) — u1 (1),
2t +1)=-z1(),

23(t+1) = (22(1) < z3(2)) Vua(2),
24(t + 1) =z1() A z4(1).

(13.21)

Hence, under the coordinate frame z = Tx, the system (13.19) can be ex-
pressed as the cascading form (13.21), and 27 C 25 C 23 = 2* are the nested
regular subspaces.

13.3 Comparable Regular Subspaces
2. Consider the following Boolean control system:

x1(t 4+ 1) = (x3(2) < x4(1)) V (=x1 (1) — x3(1)),
x2(t + 1) = (x2(2) <> x4(1)) V ua(2),

x3(t + 1) =x3() = x4(2),

x4(t +1) = x4(t) Vuy(t).

Using the state feedback control

u(t) =v(1),
u (1) = x4(1) Av2(t),

the system (13.22) can be converted to

x1(t +1) = (x3(1) < x4(1)) V (=x1 () — x3(1)),
x2(t + 1) = (x2(t) < x4(1)) V (x4(2) A v2(2)),
x3(t + 1) = x3(t) = x4(1),

x4(t + 1) = x4(t) Vi (1).

Then, using the coordinate transformation

z1(t) = x3(1),
22(8) = x4(2),
z3(t) = x2(2),
z4(t) = x1(t) V x3(1),

the system (13.24) can be converted to
21+ 1) =z1(t) = 22(1),
2@+ 1) =z220) Vi (1),

23t + 1) = (22 < 23) V (22(2) Ava(2)),
z4(t + 1) =z1() Vv z4(2).

13.3 Comparable Regular Subspaces

303

(13.22)

(13.23)

(13.24)

(13.25)

(13.26)

For block decomposition an important issue is to find a coordinate frame such that
all the subspaces are disjoint and comparable, that is, they become parts of coordi-
nate frame as z', i = 1, ..., p. This section investigates when we can have such a

set of regular subspaces.
Letzy,...,zx € & and & = F¢{z1,..., 21}, where

=8, .. i)k, j=1,..k

304 13 Feedback Decomposition of Boolean Control Networks

Recall from Chap. 8 that the characteristic matrix E(2) is defined as

1

i i21 Uon
E(Z)=] : € Bxom. (13.27)
i{‘ i]2‘ e i§n

E is regular if Col(E) satisfies (8.39).

Definition 13.2 Let 2 C 2 = 2", i =1,..., p, be a set of regular subspaces.
{Zili=1,..., p}iscalled a set of comparable (regular) subspaces if there exists a
coordinate frame

p
_ (0 0 1 1 p p -
Z_{zl,...,zno,zl,...,znl,...,zl,...,znp}, an_n,
i=0
such that
%:yg{ztl,...,z;i}, i=1,...,p.
Set Zp =%, {z?, ey zgi }. We can then express the comparable subspaces as

To test whether a set of subspaces is a comparable set of regular subspaces we
need the following proposition, which follows from the definition and the relation-
ship between a regular subspace and its characteristic matrix.

Proposition 13.1 Assume that % = ﬁg{z’i, e, Ziz,— L, i=1,..., p,areregular sub-
spaces of & = 2" and that the characteristic matrix of % is E(Z;) € Bp;x2n.
Then,{Z;|i =1, ..., p}is a set of comparable regular subspaces if and only if

E:=| . | €eBuxr (13.28)

is regular, where n =Y""_ n;.

Proof Necessity is trivial because Z itself is a regular subspace of Z". As for suf-
ficiency, note that for a regular characteristic matrix, any subset of its rows forms
a regular characteristic matrix. This is because if it contains different numbers of
different columns, then the overall characteristic matrix also contains different num-
bers of different columns. g

13.4 The Parallel State-space Decomposition Problem 305

Example 13.2 Let 2" = Fi{x1,x2,x3,x4,%5}, 21 = Fe{z1,22}, and 25 =
F {23, 74}, with

Z1 =x1Vx3,

72 = X2 <> X5,

73 = T X4,

74 = X] <> TX3.
In algebraic form, we have

21=202(22221111222211111111222211112222],
22=206[12121212212121211212121221212121],
23=62[22112211221122112211221122112211],
74=262[22221111222211111111222211112222].

It is then easy to check that the matrix

is regular because for each & € P41, |{i | Col;(E) = &}| = 2. Therefore, 2] and
%, are comparable regular subspaces and 2" = 27 & Z%5.

13.4 The Parallel State-space Decomposition Problem

We consider the Boolean control system (13.7) again.

Definition 13.3 Consider the system (13.7). The parallel SSDP is solvable by the
state feedback control (13.9) if there exists a partition

v(t) = {u'@), ..., v (0]}

such that the closed-loop system under a suitable coordinate frame z = 7T'x can be
expressed as

2@+ 1) =Fl @), v (1)),

21+ 1) = F2(22(1), v2 (1)),
(13.29)

@t +1)=FP(zP (1), vP(t)), wherez (t) € 9.

306 13 Feedback Decomposition of Boolean Control Networks

Let v = l><f7:1vi € Ay, where v' € Ao, i = .1,...,p, and Zlemi =m. To
represent a partition, we consider how to retrieve v' from v. Similar to the retrievers
defined in (7.8), we define

By :=In®L, ., k<m. (13.30)

It is then easy to prove that
ol = B'v. (13.31)
Using a swap matrix, we have
e T e B B
= W[zmk’2n11+---+mk71]7)kvl AR AL
Since
w-!

[m,n

T

] = W[m,n] = W[n,m]’
we have

Wigni+etmy_y gm0 = Ryl kTl yp, (13.32)
Applying (13.31) to both sides of (13.32) yields

Br’zk W[21111+---+mk,1 ,ka]v = vk.

We now define a set of general retrievers as

y’:lni = BnrzlkW[zm]‘F‘“#»Mk_]’zmk], i= 1,...,p. (13.33)
The above argument then leads to the following result.

p

Proposition 13.2 Let v = x!_ v’ € Ayn, where v\ € Apmi, i = 1,...,p, and

> F mi=m.Then,
vl =My, i=1,...,p, (13.34)
where . is defined by (13.33) and (13.30).

Now, assume that there is a set of comparable regular subspaces 27, with
dim(Z)=n;,i=1,..., p,and

Ko 0L =2, (13.35)

with algebraic forms
d=Tx, i=1,...,p. (13.36)

Moveover, we have state feedback control (13.9) and a partition

v(®) = ('), ..., 0P @), (13.37)

13.4 The Parallel State-space Decomposition Problem 307

where dim(vi) =mi,i=1,...,p, and Zf’:lmi = m. The system, under this z
coordinate frame, then becomes

F+1)=Txt+1)
= T, Lx()Gx()v(t)
=T, L(In ® G)Pux(v(t), i=1,...,p. (13.38)

At the same time, we want it to have the parallel state-space decomposed form

Z(t+1) =Sz (1) (1)
= S;Tix (1) v(t)
= SiT;(I» ® I x (D (2). (13.39)

Comparing (13.38) with (13.39) yields
LIy @ G)Py =S T; (I @), i=1,...,p. (13.40)
Summarizing the above argument, we have the following result.

Theorem 13.2 Consider the system (13.7). The parallel SSDP is solvable by the
state feedback control (13.9) with the given partition (13.37) if and only if there
exista G € Lomyom+n, a partition (13.37), and S; € Lyn; yomi+mi, i =1, ..., p, such
that (13.40) holds.

If we consider an open-loop control
u(t) = Gu(r), (13.41)
where G € %m «om, then we have the following corollary.

Corollary 13.1 Consider the SSDP via open-loop control (13.41). Theorem 13.2
remains true, provided (13.40) is replaced by

7}L(12»1®G):Si7}(12n®5’,;""), i=1,...,p, (13.42)
with G € Zom yom.
Example 13.3 Consider the following system:

x1(t 4 1) = (2(t) Vuz (@) V (—xq(t) V (ur (t) < uz(1))),

x2(t + 1) = (x3(2) < x4(2)) V u3 (1),

x3(t + 1) = (x2(2) A (x3(1) <> x4(1))) < ((x1(1) V x2(1)) <> ua(1)),
x4t +1) = (x1 () Vx2(t)) <> ua(t).

(13.43)

308 13 Feedback Decomposition of Boolean Control Networks
Using the coordinate transformation z = T'x given by

z1(t) = x2(2),
22(t) = x3(8) < xa(2),
z3(t) = x1(t) V x2(2),
z4(1) = x4(7)

and the open-loop feedback u = Gv given by

u1(r) =v2(t) < v3(?),
us (1) = v3(1),
uz(t) =v1(1),

the system (13.43) can be expressed in a parallel state-space decomposed form as

21t + 1) =z2(8) Vur(1),
2 +1)=z10) Az2(1),

_ (13.44)
23t + 1) = —z4 (1) Vua (1),
z4(t + 1) = z3(t) < v3(1),
where 21 = Fy{z1, 22}, 22 = Fe{z3, 24}
13.5 Input-Output Decomposition
Consider the system (13.7) with outputs
yi®)=hj(x1(®),....x. (1), j=1,....p. (13.45)

We will try to solve the IODP by either open-loop control or state feedback control.
The open-loop control considered here is

u()=Gv(t), u(),v()e Am, (13.46)
where G € %m «om. The state feedback (or closed-loop) control we consider is
u(®)=Gx@)v(t), u(),v(t)e Am, (13.47)

where G € zzm xn+m .
The input—output decomposition problem can then be stated precisely as follows.

Definition 13.4 Consider the system (13.7)—(13.45). The IODP is solvable by open-
loop (resp., closed-loop) control if we can find a control of the form (13.46) [resp.,
(13.47)], and a coordinate transformation z = 7 (x) such that:

13.5 Input—Output Decomposition 309

(1) Under the coordinate frame z, the system (13.7)—(13.45) with the designed con-
trol can be expressed as

e+ 1) =FlE @), v @),

: ‘ . (13.48)
P+ 1) =FPP (1), 0P (1), 2/ € P, v/ e D™,

yi)y=h(z'®), j=1.....p.

where v = (v', ... ; V) is a partition as in (13.37).
(ii) y; isaffectedbyu’, j=1,..., p.

To make the IODP meaningful, we have to assume that each output y; is affected
by some inputs, hence the following assumption.

Assumption 1 For the (13.7)—(13.45), each output y; is affected by inputs.

We have (denoting by H; the structure matrix of 4;)
yvit+1)=H;Lx(Hu(t), i=1,...,p.

y; depending on # means that the above logical function is u-dependent.

In solving the IODP problem we must continue to assume Assumption 1 for
controlled systems. Considering the open-loop control (13.46), it is easy to see that
as long as G is nonsingular, this property can be sustained. Therefore, we introduce
another assumption.

Assumption 2 The open-loop control (13.46) which satisfies G is nonsingular.

Similarly, for the closed-loop control (13.47) we assume for each cycle C € £2
that the corresponding G is not degenerate. More precisely, we assume the follow-
ing.

Assumption 3 The closed-loop control (13.47) is such that for any cycle C € £2
there exists at least one x € C such that Gx is nonsingular.

Using the results of parallel SSDP together with the above arguments, we obtain
the following result immediately.

Theorem 13.3 Consider the system (13.7)—(13.45) and assume that it satisfies As-
sumption 1. The IODP is solvable by open-loop control (resp., closed-loop control)
if and only if there exists a set of comparable regular subspaces %;,i =1, ..., p,
such that:

(1) The parallel SSDP is solvable by an open-loop control satisfying Assumption 2
(resp., by a closed-loop control satisfying Assumption 3).

(i) Ziisfriendlyto y;,i=1,...,p. (Thatis, ZiisaY = Fy(y1,...,yp) friendly
subspace.)

310 13 Feedback Decomposition of Boolean Control Networks

Next, we give an example to illustrate the process of IODP.
Example 13.4 Consider the following system:

x1(t 4+ 1) = [((x1 (1) Vx2 () Ax3(0) V (1) < uz(t)]V
=[(= 1 () Vxa() A (1 (1) <> u3(1))) V uz)],

X2t + 1) = [(x1() VX2 (1) V =(u1 (1) < uz ()] A —uz (1),

x3(t +1) = (x1 (1) Vxa(t) Aua(t),

y1(t) = (x1() Vx2(t)) < x3(2),

»2(1) = x2(2).

(13.49)

Based on observation, we choose a coordinate transformation z = T'x where

z1(t) = x1(t) V x2(2),
22(8) = x3(1), (13.50)
z3() = —x2(2).
Its inverse is
x1(t) =z1(t) vV =z3(1),
x2(t) = —z3(2), (13.51)
x3(1) = z2(2).
Using (13.50)—(13.51), the original system (13.49) is converted into the z coordinate
frame as
21+ 1) = (2100) A z22(0) V (u1(7) < us(1)),
20+ 1) =z1(0) Aua(?),
23+ 1) =21 A () < u3z())) vV us(), (13.52)
yi(0) =z1(t) < z22(0),
y2(t) = —z3(2).
Consider the control transformation u = T'v given by
ui(t) =vi (1) < v3(1),

uz (1) = v2(t), (13.53)
uz(t) = v3(1),

with its inverse given by

v1(H) =u1(t) < u3(t),
v2(t) = us(2), (13.54)
v3(t) =u3(?).

References 311
The system then becomes

21+ 1) =(z10) Az2(1)) V ui (1),

2@+ 1) =z1(1) Ava(?),

23t + 1) = (mz1() Avi(0)) V u3(2), (13.55)
y1(#) = z1(1) < z2(2),

2(t) = —z3(2).

Finally, we construct an additional state feedback control:

vi(H) =z10) Awi (1),
v2(1) = wa (), (13.56)
v3(1) = w3(?).

The system (13.55) then becomes

21+ D) =1 Az2(0)) V (z1(8) Awi (1)),

20+ 1) =z1() Awa D),

z23(t + 1) = ws(1), (13.57)
1) =z1(1) < 22(1),

y2(t) = —z3(1).

It is easy to check that (13.57) is an input—output-decomposed form with w! () =
{wi (1), wa (1)} and w?(t) = {w(1)}.

Note that the overall coordinate transformation is (13.50) [equivalently, (13.51)],
and the overall state feedback control is

ui(r) = (z1(t) A wi () < ws(r),
ua (1) = wa(t), (13.58)
uz(t) = ws(?).

References

1. Glumineau, A., Moog, C.: Nonlinear Morgan’s problem: case of (p + 1) inputs and p outputs.
IEEE Trans. Automat. Contr. 37(7), 1067-1072 (1992)

2. Herrera, A., Lafay, J.: New results about Morgan’s problem. IEEE Trans. Automat. Contr.
38(12), 1834-1838 (1993)

3. Morgan, B.: The synthesis of linear multivariable systems by state variable feedback. In: Pro-
ceedings of the Joint Automatic Control Conference, pp. 468-472 (1964)

4. Qi, H., Feng, G.: On decomposition of Boolean networks (2010, submitted)

5. Wonham, W.: Linear Multivariable Control: A Geometric Approach, 2nd edn. Springer, Berlin
(1979)

Chapter 14
k-valued Networks

14.1 A Review of k-valued Logic

In this section we briefly review the matrix expression of k-valued logic which was
introduced in Chaps. 1 and 3.

Let

k—2 1
D=31=T, —,...,—,0=Fy,
¢ { k=1 k-1 }

which is the set from which k-valued logical variables take their values.

To use the matrix approach, we identify a scalar logic value with a vector as

i

P ~87 i=0,1,.. k1.

Ay is also used for vector expression as
A={8|i=1,2,....k}.

We now summarize some of the main results of k-valued logic and its matrix ex-
pression.

The basic operators and their structure matrices are listed as follows (the opera-
tors are defined in terms of their scalar values):

e Negation is defined as

—-P:=1-P, (14.1)
and its structure matrix is
Myx=06lkk—1---1]. (14.2)
e The rotator @y, is defined as
— 25 P#0,
Qk(P):= N k=1 PiO, (14.3)
D. Cheng et al., Analysis and Control of Boolean Networks, 313

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_14, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_14

314 14 k-valued Networks

and its structure matrix, M, x, is

Moy =261023 - k1]. (14.4)
For instance, we have
M,3=253[231], My 4 =264[2341]. (14.5)
e The i-confirmor, V;x,i =1, ..., k, is defined as

1, P=]];%’1 (equivalently, P = 8,"{),

ik(P) 0, otherwise. ()
Its structure matrix (using the same notation) is
V,-,k=8k[l\c_:r-_l_g 1 l\c_v_l_g] i=1,2,... k. (14.7)

i—1 k—i
For instance, we have
Va3 =2083[313], Voa4=2034[4144], V3.4 =204[4414]. (14.8)
e Conjunction is defined as
P A Q :=min{P, Q}, (14.9)
and its structure matrix is (to save space, we let n = 3)
M.3=2083[123223333]. (14.10)
e Disjunction is defined as
PV Q :=max{P, Q}, (14.11)
and its structure matrix is (n = 3)
Mg3=463[111122123]. (14.12)
e The conditional is defined as
P— Q:=(—P)VvQ, (14.13)
and its structure matrix is (n = 3)
M;3=45[123122111]. (14.14)
e The biconditional is defined as

P& Q:=(P—0)N(Q— P), (14.15)

14.1 A Review of k-valued Logic 315

and its structure matrix is (n = 3)

M,3=1483[123222321]. (14.16)

Remark 14.1 In general, there are I binary k-valued logical operators, including
constant operators and unary operators as special cases. In the above, we give only a
few of them which are commonly used. Moreover, [4] proved that {@®, A, V} form an
adequate set, and they are enough to express any k-valued logical operator. In other
words, all other k-valued logical operators can be expressed as certain combinations
of {&, A, V}.

Some fundamental properties are collected the following:
o If P € Ag, then
PZZM,,kP, (14.17)

where M, ;. is the base-k power-reducing matrix.

3]1 O --- O
Ok 313 e Ok

M, ;= : , (14.18)
O Of --- 3]/(<

where 0 € Ry is a zero vector. When k = 3,

M, 3=2389[1509]. (14.19)

When k =4,
M, 4=2516[161116]. (14.20)
e Let f(p1, p2, ..., pr) be ak-valued logical function. There then exists a structure

matrix of f, denoted by M ¢, such that

P, p2s-opr) =My xi_y pi. (14.21)
e Forany P, Q € Ag, we have
E;xPO=0Q, P,0c¢cA;, (14.22)
where E; is the base-k dummy operator defined as

Eqp =0 Ix - It]. (14.23)
———’
k
In the symbols of the above operators and their corresponding structure matrices

there is a second index & for the logical type. In the sequel, when £ is fixed and there
is no possible confusion, this index k can be omitted.

316 14 k-valued Networks

Table 14.1 Structure matrices of logical operators (k = 3)

Operator Structure matrix Operator Structure matrix

- M, =683[321] \ M;=463[111122123]
(%) M, =453[312] A M.=63[123223333]
%1 My, =683[111] — M;=65[123122111]
\%) My, =63[222] <~ M,=463[123222321]
V3 My, =63(333]

As in the Boolean case, using mod k algebra is sometimes convenient. Since the
values in 7y are not integers, we need to multiply each argument by k — 1 to convert
them into integers. Then two operators, namely, +(mod k) and x (mod k), are used
for calculation. Finally, the results are converted back to fraction by dividing them
by k — 1.

Definition 14.1
e The binary operator + : @,3 — Y, called mod k addition, is defined as

[(k—1)* (P + Q)](mod k)
k—1 '

P+, Q= (14.24)

e The binary operator xy : @,? — Y, called mod k multiplication, is defined as

[(k— 1)? % (P x Q)](mod k)

P = 14.25
Xk Q - ()
Their structure matrices can be easily computed as (for k = 3)
My, =M,3=46[231312123], (14.26)
My, =M;3=256[213123333]. (14.27)

Assuming k = 3, the structure matrices of the previous logical operators are col-
lected in Table 14.1.

14.2 Dynamics of k-valued Networks

A k-valued network consists of a set of nodes V = {x,x2,...,x,} and a list of
k-valued logical functions F = {fi, f>,..., fu}. Both the nodes and the functions
take values from Z. The dynamics of a k-valued network is then described as

x1(t+ 1) = fi(x1 (@), x2(2), ..., xa (1)),

x2(r+1) = fax1(t), x2(1), ..., xa (1)),
. (14.28)

xn(t +]) = fn(xl(t),XZ(t): »xn(t))

14.2 Dynamics of k-valued Networks 317

It is clear that when k = 2, the k-valued network becomes a Boolean network.
As with Boolean networks, we can use the semi-tensor product to convert (14.28)
into algebraic form. We briefly describe this process. Define

x(@®) =x1(O)x2(t) - xp (1), x; € Ag.
Using Theorem 3.2, we can find the structure matrices M; = My, i =1, ...,n, such
that

xit+D=M;x(), i=1,2,...,n. (14.29)

Equations (14.29) are called the componentwise algebraic form of (14.28).

Note that by using the base-k dummy matrix (14.23) we can formally introduce
any logical variable into a logical expression without changing its real meaning.
Similarly to the Boolean case, we can prove the following result.

Lemma 14.1 Assume that Py = A1Ay--- Ay, where A; € A, i =1,2,...,L. Then,
P} =i Py, (14.30)

where
14
Gy i =[] (-1 ® [k ® Wy ge-i1y My 1) (14.31)

i=1
Proof We prove this by induction. When ¢ = 1, using (14.23), we have
Pl =A2=M, A
In formula (14.30),

D= I ® Wik, 1) M, k.
Note that because Wi 1] = I, it follows that @1 x = M, . Hence, (14.30) is true for
£ = 1. Assume that (14.30) is true for £ = s. Then, for £ = s + 1 we have
Pl =A1Ay Ag1A1Ay - Ay
= A1 Wik k1 AtlAz - Ag 1P
= (I ® Wik xs)AT[A2 - Ay 1P
=[x ® W) Mk]A1[A2 - A1

Applying the induction assumption to the last factor of the above expression, we
have

N
Ps2+l = (Ix Wik ks1) Mk Ay (Hlkil ® [(Ik & W[k’kxi])Mr,k]>
i=1

ArAz - As

318 14 k-valued Networks

= [k ® Wik i) Mk (nlkz [Tk ® Wy gs-i1) My, k]) Py
i=1

+
1_[Ii-1 ® Ik®W[k ks+1-i] rk]) s+1- 0

Using Lemma 14.1, a straightforward computation leads to the following result.

Proposition 14.1 Equation (14.28) can be expressed in algebraic form as
x(@t+1)=Lx(t), x¢& A, (14.32)

where the system transition matrix L is obtained as

n
L=M, l_[[k ® Mj)Pp k| € Linscin,
j=2

M; being defined in (14.29).

Proof Define x(t) = '><,r'l=1xi (x). According to Lemma 14.1 we have
x(1)? =@, x(1).

Now, multiplying equations in (14.29) together yields

x(t+1)=Mx(t)Max(t)--- M,x(t)
= M (It ® M2)x (1) M3x(t) - - - Mux (1)
Ml @ M)®y, jx(t)M3x(t) - - - Myx(t)

=Mi(Ix @ M2) Dy, 1 (Ix @ M3)Dyy -+ - (I @ M) Dy, 1 x(2),
SO

L=M(I; ® M2)®,, i (It @ M3)Py, o - - (I @ M) Dy,

n
=M [[k ® Mj)®Pyi]-
Jj=2 O

For a particular system, we may obtain the system matrix by direct computation,
using properties of the semi-tensor product. We give an example to illustrate the
process of computing L.

14.2 Dynamics of k-valued Networks 319
Example 14.1 Consider the following k-valued network:

A +1)=A@),

Bt+1)=A(t)— C(),

Ct+1)=B()Vv D(), (14.33)
D(t + 1) ==B(1),

E(+1)==C@).

Defining x(¢) = A(¢) B(t)C(¢t) D(¢) E(t), we then have
x(t+1) =AM A@)C()Ma i B@)D (&) My i B(t) My 1 C(1).

Since there is no E(¢) on the left-hand side, we have to introduce it by using the
dummy matrix:

x(t+1) =AM A)CE)Max B(t)D(t) My i B(t) My 1 C () Eq i E(t)C(1).
(14.34)
Using the pseudo-commutative property of the semi-tensor product, we can move
A(t), B(t),..., E(t) to the last part of the product in the right-hand side of
(14.34). Then, using the base-k power-reducing matrix to reduce the powers of
A(t), B(t), ..., E(t) to 1, we finally obtain the algebraic form of (14.33) as

x(t+1)=Lx(),
where

L= @ M)Ri(Ir @ (I ® My (I ® (It ® M, (It ® My Eg)))))
(I ® W) (s @ W) (12 @ W) (Iis @ Wik)
(It @ Wi (Ik ® R (Ik @ Ry)).

When k = 3, we can calculate the network transition matrix L. It is the following
243 x 243 matrix:

L=5s19 9 9 9 9 9 9 9 9 35 35 35 35 35 35 35
35 35 61 61 61 61 61 61 61 61 61 6 6 6 15 15
15 15 15 15 32 32 32 41 41 41 41 41 41 58 58 58
67 67 67 67 67 67 3 3 3 12 12 12 21 21 21 29
29 29 38 38 38 47 47 47 55 55 55 64 64 64 73 73
73 90 90 90 90 90 90 90 90 90 116116116116116116
116 116 116 115 115115 115115 115115 11511587 87 87 96
96 96 96 96 96 113 113113122122 122122122122 112112
112 121 121 121 121 12112184 84 84 93 93 93 102102 171
171 171 171 171171 171 102 110 110 110 119 119 119 128 128 128
109 109 109 118 118 118 127 127 127 171 171 170 170 170 170 170
170 170 170 170 169 169 169 169 169 169 169 169 169 168 168 168
177 177 177 177 177 177 167 167 167 176 176 176 176 176 176 166
166 166 175 175 175 175 175 175 165 165 165 174 174 174 183 183
183164 164 164 173 173 173 182 182 182 163 163 163 172 172 172
181 181 181].

320 14 k-valued Networks

14.3 State Space and Coordinate Transformations

As with Boolean (control) networks, to use the state-space approach, the state space
and its subspaces have to be defined carefully. In the following definition, they are
only defined as a set and subsets, but they can be considered as a topological space
and subspaces equipped with the discrete topology.

Let xq1,...,x, € Y% = {0, lel, ..., 1} be a set of logical variables. Denote by
Fy(x1,...,x,) the set of logical functions of {xi, ..., x,}. It is obvious that .% is
a finite set with cardinality kX"

Definition 14.2 Consider the k-valued logical network (14.28).
(1) The state space of (14.28) is defined as

X =Fe(x1,...,%xn). (14.35)
2) Ify,...,ys € Z, then
YW =Fi(Y1,...,¥5) C X (14.36)
is called a subspace of 2.
(3) If {xiy,...,x;;} C{x1,...,x,}, then
Z=F(xiy, ..., xi,) (14.37)

is called an s-dimensional natural subspace of 2.

Let F : 9} — 2" be defined by
zi=filxt,...,x0), i=1,...,m. (14.38)

In vector form, we have x;,z; € Ay. Setting x = l><;?:1x,', 7= l><;”=1z,~, we have
the following result.

Theorem 14.1 Given a logical mapping F : 2} — 2, as described by (14.38),
there is a unique matrix, Mg € ZLgmxxn, called the structure matrix of F, such that

z=Mpx. (14.39)

Note that when m = 1 the mapping becomes a logical function and M is called
the structure matrix of the function.

Definition 14.3 Let 2" = % ,(x1,..., x,) be the state space of (14.28). Assume
that there exist z1, ..., 2, € Z such that

X =Fz1, ..., 20).

The logical mapping F : (x1,...,x,) — (21,...,2,) is then called a coordinate
transformation of the state space.

14.3 State Space and Coordinate Transformations 321
The following proposition is obvious.

Proposition 14.2 A mapping T : 9} — &} is a coordinate transformation if and
only if T is one-to-one and onto (i.e., bijective).

It is easy to prove the following result.

Theorem 14.2 A mapping T : &} — 9} is a coordinate transformation if and only
if its structure matrix My € Ljn wjn is nonsingular.

We give an example to illustrate the above theorem for a 3-valued mapping.
Example 14.2 Consider the following mapping 7'

71 = @(x3),
22 = (Vi(x1) Ax3) V[Va(x1) A (@2 (—(V2(x3))]
V (V3(x1) A V3(x3)),

(14.40)

73 = @%*(x2),

where V;3,i =1,2,3, and @3 are defined as in Sect. 14.1. The logical variables
xi €95, 1i=1,2,3. Define x = l><?=1xl~ and z = ‘><?=1Zi- Based on Theorem 14.1,
there exists a unique matrix M7 € %5333 such that

z(t) = M7 x(1), (14.41)
where
Mrp =68g1[205172161819416232142431522113268112791225710],

which is nonsingular. Thus, T is a coordinate transformation in the 3-valued net-
work.

Definition 14.4 A subspace 2 C 2 is called a regular subspace if there is a coor-
dinate frame {z} such that under {z} the subspace % is a natural subspace.

Let Z = %¢{z1,...,2+}, where z; € Z",i =1, ..., k. Then, z; are logical func-
tions of {x;}, which are expressed as

Zi=gi(x1,), j=1.r (14.42)
Express (14.42) in vector form as
zj=M;x, j=1,...,r, (14.43)

where

M;=58[¢,....&]. j=1...r

322 14 k-valued Networks

Equation (14.42) can be further be expressed in one equation as
b o b
1=Gx=| x. (14.44)
Er,l T Zr,k"

Similarly to Theorem 8.2, we can prove the following theorem.

Theorem 14.3 % is a regular subspace if and only if
kn
D=k =1 (14.45)
i=1

Define the characteristic matrix as
g gl
E(Z)=| :
£ &
Similarly to Corollary 8.2, we can prove the following result.
Proposition 14.3 % is a regular subspace if and only if E(Z) has equal distinct

columns. Precisely, % is a regular subspace if and only if for each vector a :=
(o1, ...,00)T €eR" withaj €{1,2,...,k}, j=1,...,r, we have

[{i | Coli(E(2)) =a}|=k""", Ve

Invariant subspaces have been defined for Boolean networks. Here, we generalize
them to k-valued logical networks. In addition, we give a geometric description of
them.

Definition 14.5 Let 2", & be defined as in (14.35) and (14.37), and & C 2 .

(1) A mapping P : 9}/ — %, defined from (the domain of) 2" to (the domain of)
Z as

P:(xp, .o, x0) = (X, -, Xiy),

is called a natural projection from 2" to Z.
(2) Given F : 9} — 2}, Z is called an invariant subspace (with respect to F) if

there exists a mapping F such that the following graph (Fig. 14.1) is commuta-
tive.

Let X :=(x1,...,x,)T € 2}, . We can then compactly express the system (14.28)
as

Xe+1)=F(X®), XeZ. (14.46)

14.3 State Space and Coordinate Transformations 323

Fig. 14.1 Invariant subspace a F a
P P
7 r 7

Definition 14.6 Consider the system (14.28) [equivalently, (14.46)]. Z is an invari-
ant subspace if it is invariant with respect to F.

Consider a logical mapping G : ;' — ;. It can be expressed as
zi=81(x1,...,xp), I=1,...,5. (14.47)
Setting z = xj_,z; and x = X}_, x;, the algebraic form of the mapping G is

811 81,kn
= MG_)C = . X. (1448)

gk“,l gk‘,k”
The algebraic form of multivalued system (14.28) is
x(t+1)=Lx(),

where L € .,%(nxkn, X = l><;l=1xi, X € 9](, i=1,...,n.
Using the above notation we have the following theorem.

Theorem 14.4 2 is an invariant subspace with respect to the multivalued system
(14.28) if and only if one of the following two equivalent conditions is satisfied:

®
Row(MgL) C SpangRow(Mg). (14.49)

(ii) There exists an H € Lys wis such that
MgL =HMg. (14.50)

Theorem 14.3 is similar to Theorem 8.2, and Theorem 14.4 is similar to Theorem
8.4 and Corollary 8.6 for the Boolean case. The corresponding proofs are effectively
the same.

324 14 k-valued Networks
14.4 Cycles and Transient Period

Consider the topological structure of k-valued logical networks. Using the same
technique developed for Boolean networks, we can obtain the following results for
cycles.

Theorem 14.5 Consider the k-valued logical network (14.28).

1. 8,"(,, is a fixed point if and only if, in its algebraic form (14.32), the diagonal
element £;; of the network matrix L equals 1. It follows that the number of fixed
points of system (14.32), denoted by N,, equals the number of i for which £;; = 1.
Equivalently,

N, =tr(L). (14.51)

2. The number of length-s cycles, Ny, is inductively given by

Nl = NEv
N (14.52)
I CR PRSI P
3. The set of elements on cycles of length s, denoted by €, is
% =2\ U Zl(L). (14.53)

te A(s)

where 9D,(L) is the set of diagonal nonzero columns of L.

Example 14.3 Recall Example 14.1. A straightforward computation shows that

and
(L) =11, t=24,....

Using Theorem 14.5 we conclude that there are five fixed points and three cycles
of length 2. Moreover, we can find the fixed points and the cycles of length 2 as
follows.

To find the fixed points, we consider the network matrix L. It is easily shown that
the 9th, 41st, 90th, 122nd, and 171st columns of L are diagonal nonzero columns.
Therefore the five fixed points are 825, 831 52?, 8122 and 8;21. Using conversion
formula (4.58), we can convert the fixed points back to standard form as

E; =63~ (1,1,1,0,0),

Ey =631 ~(1,0.5,0.5,0.5,0.5),

14.5 Network Reconstruction 325
E3=6%~(0.5,1,1,0,0),
122
E4 = 835 ~(0.5,0.5,0.5,0.5,0.5),

Es=681"~(0,1,1,0,0).

For the cycles, we consider L?. Searching for diagonal nonzero columns of L?>
yields three cycles of length 2:

(1,1,0.5,0.5,0) — (1,0.5,1,0,0.5) — (1,1,0.5,0.5, 0),
1,1,0,1,0) - (1,0,1,0,1) = (1,1,0, 1, 0),
0.5,1,0.5,0.5,0) = (0.5,0.5,1,0,0.5) — (0.5, 1,0.5,0.5, 0).

There are no other cycles.
For the transient period, we also have the following theorem.

Theorem 14.6 For the system (14.28) the transient period is
T,=ro=min{r|L" e {LT L+ . LF}]. (14.54)

Moreover, let T > 0 be the smallest positive number satisfying L™ = LT Then,
T is the least common multiple of the lengths of all cycles.

Since the proof is similar to that of the Boolean case, we leave it to the reader.

Example 14.4 Recall Example 14.1. It is easy to check that the first repeating power
for LK is L4 = L6, so ro =4. Thatis, T; =4, T = 2. Therefore the transient period
is 4, which means that any initial state will enter an attractor after at most four steps.

14.5 Network Reconstruction

Assume for a k-valued logical system that the network matrix L is given. We have to
reconstruct the logical network and its dynamics from the network matrix. As with
Boolean networks, we first define a set of retrievers. For notational compactness, we
first define a set of column vectors:

__[sl 1 ¢2 2 k k

Ei—[Bk,...,8k,8k,...,(Sk,...,(sk,...,(sk].

——— —— [—)
i i i

326 14 k-valued Networks

We then define the retrievers:

(14.55)

St =1Z1,..., Z1].

fn—1

Proposition 14.4 Assume the network matrix L of the system (14.28) is known. The
structure matrices of fi,i =1,...,n, are then

MizSi’ka, i=1,2,...,n. (14.56)

Next, we have to determine which node is connected to i, in order to remove
fabricated variables from the ith logical equation. We have the following result.

Proposition 14.5 Consider the system (14.28). If M; satisfies
M; W[k,kj—l](Ma,k —Ix) =0,

Mi Wy i1 (Mo,0)* = I) =0,
(14.57)

M Wy iy (Mo)" = I) =0,

then node j is not in the neighborhood of node i. In other words, the edge j — i
does not exist. The equation of x; can then be replaced by

xi(t+ 1) =Mxi(t) - xj_1()xj41(1) - x0(0), (14.58)
where
Mi/le'W[k,kj’l](Sli'

Proof Using the properties of the semi-tensor product, we can rewrite the ith equa-
tion of (14.28) as

Xi(t+ 1) =MWy gi-iyxj @)x1(#) - xj—1(@)xj41(@) - - - X (£).

We now replace x (1) by @(x; (1)), @2(xj @), ...,k (x; (1)), that is, all possible
values of x; (). If such replacements do not affect the overall structure matrix, it

14.5 Network Reconstruction 327

means x; (f + 1) is independent of x (¢). The invariance of replacement is illustrated
by (14.57). As for (14.58), since x(¢) does not affect x; (r + 1), we can simply set
xj(t)=4 ,1 to simplify the expression. g

Example 14.5 Given a Boolean network

A(r+1) = fi(A@), B(1), C(1), D(1)),
B(t+ 1) = f2(AQ1), B(1), C(1), D(1)),
Ct+1) = f3(A@), B(1), C(1), D(1)),
D(t +1) = fa(A(1), B(t), C(1), D(1)),

(14.59)

where A(t), B(t),C(t), D(t) € 25 = {0,0.5, 1}, assume its network matrix L €
Mgy «s1 is

L =151 36929414455677936929414428
405236921417113256693241
44586779669324144314052669

51417413259993544446170799
993544443443529998 1717716 25].

We reconstruct the system. Using retrievers Si3 we have
M;=S8;3L, i=1,2,3,4,

which are

M;=63[111222333111222222111
111111111222333111222
222111111111111222333
111222222111111111],

My=463[111122123111122123111
122123111122123111122
123111122123111122123
111122123111122123],

M3;=63[123123123123123123123
123123223223223223223
223223223223333333333
333333333333333333],

My=63[333222111333222111333
222111333222111333222
111333222111333222111
333222111333222111].

328 14 k-valued Networks
Next, to remove fabricated variables, it is easy to verify that

M\My3— My =0, Mi(M,3)* - M =0,

MW (Mo s — 13) #0, MiWi3(Mo3)* — 13) #0,

MW 3(Mo3 — 1) 0, MiWp3 321((My3)* — I3) #0,

M\ Wp333(Mo 3 — I3) =0, M1 W3 33((M, 3)* — I3) = 0.
Therefore we conclude that A(z 4 1) depends on B(¢) and C(¢) only. Using the same
procedure, we know that B(¢ + 1) depends only on C(¢) and D(t), that C(z + 1)
depends only on A(#) and D(¢), and that D(z + 1) depends only on C(¢). To remove

the fabricated variables A(¢) and D(¢) from the first equation, we set A(¢) = D(¢) =
8; and get

At +1) = M8 B(1)C(1)8)
= M8y W398 B(t)C (1)
=8[123122111]1B()C(1). (14.60)

In a similar way, we can remove the fabricated variables from the other equations.
Finally we get

B(t+1)=463[111122123]C(t)D(z),
C(t+1)=46[123223333]D(t)A(2),
D(t+1)=68[321]C().

Converting back to logical equations, we have

A(t+1)=B@)— C(@),
B(t+1)=C()Vv D(),
Cit+1)=D(@)ANA(1),
D(t +1)=-C(1).

(14.61)

In general, converting an algebraic form back to its logical form is not easy, so
we now describe a mechanical procedure for doing this.

Proposition 14.6 Assume a k-valued logical variable L has algebraic expression
L=L(A1,Ay,...,A)) =M A1Ay--- Ay, (14.62)

where M € Ly is the structure matrix of logical function L. Split this into k
equal-sized blocks as

Mp=[Mp, ,Mp,,...,M],

14.5 Network Reconstruction 329

where My, € £, n—1. Then, L can be expressed as

L=[Vig(AD) AL(A2, ..., AD)]V [Vax (A1) A La(As, ..., Ay)]
VeV [V(A A Li(Az, ... Ap)],

where L; has My, as its structure matrix,i =1, ..., k. That is, in vector form,
Li(Ay,...,A)) =My, A>---A,, i=1,...,k

Using Proposition 14.6 we can obtain the logical expression of L recursively. We
give an example to describe this.

Example 14.6 Let L be a logical variable, and
L=M;ABCD,
where A, B, C, D € Az and

Mp =65[123222321222222322321321321
222222322222222222322222222
111222333222222223321222123]. (14.63)

Then,
My =[Vi(A) AL(B,C,D)] Vv [Va(A)
ALy(B,C,D)]Vv[V3(A) A L3(B,C, D)], (14.64)
and

My, =683[1232223212222

22322321321321], (14.65)

My, =8[2222223222222
22222322222222], (14.66)

Mp,=683[1112223332222
22223321222123]. (14.67)

Next, consider L;:
Li(B,C,D) =M, BCD
= [Vi(B) A L11(C, D)] v [Va(B)

A L12(C,D)] v [V3(B) A L13(C, D)], (14.68)

where

My, =68[1 2 3 2 2 2 3 2 1],

330 14 k-valued Networks

Mp,=68[2 2 2 2 2 2 3 2 2],
Mp,=8[3 2 13 21 3 2 1]

Hence, we have

L1 (C,D)=C< D,
L12(C,D)=M_p,,CD,
L3(C,D)==-D.

In the same way, we have the following expression:

L2(B,C,D)=[Vi(B) A L2 (C, D)] vV [Va(B)

A Ly (C, D)] Vv [V3(B) A Las(C, D)], (14.69)
L3(B,C,D)=[Vi(B) A L31(C, D)] vV [Va2(B)
A L3 (C, D)] v [V3(B) A L33(C, D)]. (14.70)

Putting this all together, we have

L=[Vi(A) A[[Vi(B) AL (C, D)]
V [Va(B) A L12(C, D)] v [V3(B) A L13(C, D)]]]
V [V2(A) A [[V1I(B) A Ly (C, D)]
[V2(B) A La(C, D)] Vv [V3(B) A La3(C, D)]]]
[V3(A) A [[V1(B) A L31(C, D)]
[V2(B) A L3(C, D)] v [V3(B) A L33(C, D)]]]. (14.71)

Remark 14.2 Note that we can also write down the split form of all binary operators.
For instance,

L12(C,D)=83[222222322]CD
= [V1(C) A 83[222]D] v [V2(C) A 83[222]D]
Vv [V3(C) A 83[322]D]

=[Vi(C) A83] V[V2(C) A B3]V [V3(O) Ayr(D)], (14.72)

where the structure matrix of the unary logical operator y is 63[3 2 2].

14.6 k-valued Control Networks

Letu;,i =1,...,m, be a set of controls. These are also k-valued logical variables.
Moreover, let h;,i =1, ..., p, be k-valued output logical functions. We then have a

14.6 k-valued Control Networks 331

k-valued control network with state dynamics

x1(t+ 1) = fi(x1 (@), x2(0), ..., Xn (1), u1 (1), ..., um (1)),

x2(f + 1) = fZ(xl(t),)Q(t), A 7-xn(t)v Ml(t), A] um(t)),
. (14.73)

x}’l(t + 1) = fn(xl(t)aXZ(t)7 A 7xﬂ(t)3u1(t)’ LR] um(t))
and outputs

yi=hj(x1),x20),....xx(0), j=1,...,p. (14.74)

The controls could be a free k-valued logical sequence or it could be generated by a
control dynamics as

ur(t +1) = gr(ur(®), uz(t), ..., um(1)),

uz(t + 1) = ga(u1(t), uz(1), ..., um(1)),
. (14.75)

U (t +1) = gm 1 (2), u2(0), ..., up (1)).

First, we consider the case where the control is generated by a control dynamics.
The system (14.73)—(14.75) can then also be expressed in algebraic form as

x@t+1D=Lu@®)x(@)=Luxt), xe2,
y()=Hx(t), yeZ, (14.76)
u(t+1)=Gu(), ue.

We give an example.

Example 14.7 We reconsider Example 6.1 and assume that the logical variables can
now take values from 23 = {0, 0.5, 1}. Set x(t) = B(t) x C(¢) X D(t). Converting
the system (6.5) into its algebraic form, we have

x(t+1)=Lu)x (1),
y(@) =My 3x(), (14.77)
ut+1) =u(),

where x(t) € Ass.
L(u) can be easily calculated as

L(u) =M;3u(l3 ® My 3)(I27 ® My 3) W3\ W3 011 M, 3.
When u; = 8;,

L(uy) =68x[3 3312121221212125511141420232314710131619
2225],

332 14 k-valued Networks
when uy = 82,

L(upy)=20527[3 3312121212121225511141411141414710131610
13 16],

and when u3=8§’,
L(u3)=627[333333333255255255147147147].

Now, 8%, 5%, and 8% are fixed points of the control network. It is easy to de-
duce that for u = 83] there are two fixed points, (1, 1,0) and (0.5,0.5,0.5), and
two cycles of length 2, which are (1,0.5,0.5) — (0.5,1,0) — (1,0.5,0.5) and
(1,0,1) - (0,1,0) — (1,0, 1). For u = 5% there are two fixed points, (1, 1, 0) and
(0.5,0.5,0.5), and one cycle of length 2, which is (1,0.5,0.5) — (0.5,1,0) —
(1,0.5,0.5). When u = 8; there is only one fixed point, (1, 1, 0).

Definition 14.7 Consider the k-valued logical system (14.73) with control (14.75).
Given initial state x (0) = xo and destination state x4, the latter is said to be reachable
from xq (at the sth step) with fixed (designable) input structure (G) if we can find
ugp (and G) such that x(u, 0) = x¢ and x(u, s) = x4 (for some s > 1).

We use @Y (7, 0) to denote the input-state transfer matrix in a k-valued network,
which can be calculated as

0%(t,00 = LG (Iyn ® LG') (Lion ® LG' ™) -+ (La-1m ® L)
Tp-2m @ P 1) Upt-3m @ Py i) =+ - (gm @ Py k)P ks (14.78)

where @,, . is defined in Lemma 14.1 as

m

B = [[L1 ® [Tk ® Wy i) M i]-

i=1
It is then easy to prove that for the system (14.76),

x(t) = 0% (t,0u(0)x(0).

‘We will now discuss two cases.
Case 1: We have fixed s and fixed G.

From the definition of the transfer matrix, the following result is obvious.

Theorem 14.7 Consider the system (14.73) with control (14.75), where G is fixed.
X4 is s-step reachable from x if and only if

xa € Col {®F (s, 0) Wign gmx0) (14.79)

14.6 k-valued Control Networks 333
We give an example to describe this result.

Example 14.8 Reconsider Example 9.1, but now assume that the logical variables
may take three different values, {0, 0.5, 1}. Convert it to its algebraic form,

x@t+1)=M.B@)C(H)MygC@)uy(t) M A(Dua(t) = Lu(t)x (1),
where L € %7243 is

L=4»[1 101910101019101 2 11201111112011
2 3 122112121221123 2 112011111120
112 2 112011111120112 3 1221121212
21123 3 122112121221123 3 12211212
1221123 3 122112121221123 1 132210
131319134 2 142311141420145 3 1524
12151521156 2 142311141420145 2 14
2311141420145 3 152412151521156 3
152412151521156 3 152412151521156
3 152412151521156 1 13251013161913
7 2 142611141720148 3 152712151821
159 2 142611141720148 2 1426111417
20148 3 152712151821159 3 15271215
1821159 3 152712151821159 3 152712
151821 159].

Assume g1 and g; are fixed as

{gl(ul(t), ua (1)) = —ua(1), (14.80)

&), ux(t)) =u(1).

Choose A(0) =0.5, B(0) =0, C(0) =0.5, and s = 5. If we let u(t) = u(t)ux(t),
then

ut+ 1) =ur(t+ Dua(t + 1) = Mpuo (t)u1 (1) = My Wizju(t).
Hence,
G=M,Wp31=080[741852963] € Loyo.
It is easy to calculate @3 3 as
P23 = (I3 Wi3)) M, (I3 @ M,5)
=38g1[11121314151617181].

Finally, using formula (14.78) yields © (5, 0) € .£»7x243 as

O(5,0) = LG*(I3» ® LG?) (I3 ® LG?)(I36 ® LG)(I3s ® L) (I36 ® P3 3)
(134 @ ©33)(I32 @ D3 3)([3 ® 933)P33,

334 14 k-valued Networks

which is

827[212019202020192021212019202020192021
212019202020192021 111111111111 1111 11
mirirrrmnimniriiri21ir1ir1r1r 11111112

333333333333333333333333
33314142314141423141414141414141414
141414141414141414141414141414 14 14 14
14141414141414141414141414141414 14 14
1414151515151515615151515151515156
15151515151515156151527272727272727
2727151515151515151515333333333
14141414141414141414141414 141414 14 14
1514141514141514149182791827918279
18279182791827918279 18279 18 27].

Setting the initial value as Xo = (A(0), B(0), C(0)) = (0.5, 1, 1), we then have
x0 = A(0) B(0)C(0) = 839,
Using Theorem 14.7, we have the reachable set as
O (5, 0)Wpy.91x0 = 827{21, 11, 3, 14, 15, 9}.
Converting them to ternary form, we have
Rs5(Xo) = {(O, 1,0),(0.5,1,0.5), (1,1, 0), (0.5,0.5,0.5), (0.5,0.5, 0), (1, 0, 0)}.

Finally, we have to find the initial control uo which drives the trajectory to the as-
signed x,4. Since

xg = O(5,0)Wa7.01x0u0 = 87[21 113 14 14 15 15 14 9]uo,

it is obvious that to reach, say, 8%71 ~ (0, 1, 0), the control should be uy = 8 ie.,
u1(0) = 8% ~ 1 and u(0) = 5% ~ 1. Similarly, to reach all six points in R5(X() at
step 5, the corresponding initial controls u; (0) are given in the following Table 14.2.

Remark 14.3 The ©F (s, 0) can be calculated inductively, and the algorithm is sim-
ilar to the one in Chap. 7.

Case 2: We have fixed s and a set of G.

Since there are mo = (k"™)¥" possible distinct G’s, we may express each G
in condensed form and order them in “increasing order”. For example, when
m=2,k=3,wehave G1 =8o[1 1 1 111 111],Ga=68[111111112],...,
Ggo =689[999999999]. In general, we may consider a subset A C {1,2,...,mg}
and allow G to be chosen from the admissible set: {G, | A € A}.

14.6 k-valued Control Networks 335

Table 14.2 The desired
states and the corresponding ~ *d u(0) u1(0) u2(0)
controls, x(0) = (0.5, 1, 1)

821~ (0,1,0) 84~(0,1,00 8i~1 si~1
811~ (0.5,1,0.5) 82~(0,1,00 8i~1 81~05
83, ~(1,1,0) 8~0,1,00 8 ~1 8 ~0

84~(05,0505 85~(0,1,00 §~05 8i~1
85~(0,1,00 8~05 82~05
85~(0,1,00 §~0 83~0.5

813~ (0.5,0.5,0) 8§~(0,1,00 8~05 83~0
8 ~(0,1,00 §~0 8i~1
83, ~(1,0,0) 39 ~(0,0,00 §~0 $5~0

Corollary 14.1 Consider the system (14.73) with control (14.74), where G €
{Gx |2 € A}). Then, x4 is reachable from x if and only if

xq € | Col{@ (s, 0) Wik om0 }. (14.81)
rEA

Example 14.9 Recall Example 9.1, with network dynamics (9.7). We change it to
a 3-valued network, but still assume that Xo = (1,0,1) and s = 5. Assume that
E ={G1,G2,G3,G4},where G] =8§9[123456789],Gr,=389[158974632],
G3=069[189657324], G4 =89[985642317], and the corresponding
G5(Xo) = Col {®'(5,0)Wizn 3m1x0} are

Gi(Xo) =627(2,11,21,14, 14,15, 14, 14,9},
G%(Xo) = 627{2, 14,12, 14, 15,15, 11,26, 15},

G3(Xo) =827(2, 11,17,27, 14,6, 15, 14, 12},
Gi(Xo) =627{23,17,11,11,15,15, 15,21, 15}

The reachable set is then
Gi(Xo) = 6272, 11,21,14, 15,9},
G3(Xo) = 627{2, 14,12,15,11, 6},

G3(Xo) = 62712, 11,17,27,14,6,15, 12},
G(Xo) = 827123, 17, 11,15, 21}.

336 14 k-valued Networks

The reachable set at the fifth step is thus

4
| Gi(X0) = 827(2.6,9, 11,12, 14,15,17,21,23,26,27).
i=1

Now, assume that we want to reach (A(5), B(5), C(5)) = (0.5, 1, 0), which is 8;%
since the third component of G%(Xo) is 12. (We have some other choices, such
as the 9th component of Gg(Xo), etc.) We can therefore choose G, and u(0) =
u1(0)ur(0) = 83 to drive (0.5, 0,0.5) to (0.5, 1, 0) at the fifth step.

We can reconstruct the control dynamics from the logical matrix, G,. Converting
Go=1389[15897463 2] back to standard form, we have

Gr=69[158974632].

From u{(0)u>(0) = 83, we have u(0) = 831 and u;(0) = 8;’. To reconstruct control
dynamics, we need retrievers

S13=203[111222333], S23=063[123123123].

We then have the structure matrices
My =813G=463[123332211],
My;=53G=45[122311332].
It follows that
U@ +1)==563[12333221 1Ju; (Hua (1),
ur(t+1)=2563[122311332Ju;(H)us(t).
We leave the investigation of other cases to the reader. Next, we consider the

controllability of a multivalued logical network with control a k-valued sequence.
We give the following definition.

Definition 14.8 Consider the k-valued logical system (14.73) and assume that an
initial state of the network xé, i=1,...,n,and a destination of the network x;, i=
1,...,n, at the sth step are given. The control problem via a free control sequence
is then to find a sequence of 8,‘; vectors u(0),...,u(s — 1) such that x;(0) = x(i),

x; (s) :xé, i=1,...,n.
Defining L= LWign gmy, the second equation in (14.76) can be expressed as
x(t 4 1) = Lx(t)u(r). (14.82)
Using this repetitively yields
x(s) = L x(0)u(0)u(1)---u(s — 1). (14.83)

Therefore the answer to this kind of control problem is obvious.

14.6 k-valued Control Networks 337

Fig. 14.2 A 3-valued control @
network
Theorem 14.8 xﬁl is reachable from x(i), i=1,...,n,at the sth step by controls of

k-valued sequences of length s if and only if
x; € Col{ L*xo}, (14.84)
where xg = X! xh, xo = x_ x}.

Remark 14.4 Note that (14.84) means that x; is equal to a column of on. For
example, if x; equals the kth column of L*xg, then the controls should be

u(@u(l)---u(s — 1) =68k (14.85)

ms>

which uniquely determines all u;,i =0,1,...,s — 1.

The following example is taken from [2], but here we allow the values of the
nodes in the network to be from 25 = {0, 0.5, 1}.

Example 14.10 Reconsider Fig. 14.2 from Example 9.6. We now consider it as a
3-valued logical control network.
Its system of logical equations is

A(t+ 1) =C@) Aui (),
B(t + 1) = —us(1), (14.86)
Ct+1)=A@) Vv B(),

and its algebraic form is

At +1) =M 3C0ui (1),
B(t+1) =M, 3uxt), (14.87)
Cit+1)=Mys3A@)B(1).

Letx(t) = A(@t)B({)C(t), u(t) = uy(t)uz(t). We can then express the system by

x(t 4 1) = Lx()u(r), (14.88)

338 14 k-valued Networks
where i € $27><243 is

L=35y[7411613102522191613101613 10252219
252219252219252219741161310252219
1613101613102522192522192522192522
197411613102522191613101613102522
192522192522192522197411613102522
191613101613 1025221925221925221925
221985217141126232017141117141126
232026232026232026232085217141126
2320171411171411262320262320262320
2623207411613102522191613101613 10
252219252219252219252219852171411
2623201714111714112623202623202623
20262320963 181512272421 1815121815
12272421272421272421272421].

We now assume that (A(0), B(0), C(0)) = (0, 0, 0). We want to know if a designed
state can be reached at the sth step. If, for example, s = 3, then using Theorem 14.8
we calculate L3xg € M3 .56 as

L =57[27 24 21272421 27 2421 26 23 20 26 23 20 26 23
2025221925221925221927242127242127
2421262320262320262320252219252219
2522192724212724212724212623202623
20262320252219252219252219181512 18
15122724211714111714112623201613 10
16131025221918151218151227242117 14
1117141126232016131016131025221918
1512181512272421171411171411262320
161310161310252219963 181512272421

8521714112623207411613102522199

6318151227242185217141126232074

1161310252219963181512272421852

171411262320741161310252219272421
2724212724212623202623202623202522
1925221925221927242127242127242126
2320262320262320252219252219252219
2724212724212724212623202623202623
2025221925221925221918151218151227
24211714111714112623201613101613 10
25221918151218151227242117141117 14

14.6 k-valued Control Networks 339

1126232016131016131025221918151218
15122724211714111714112623201613 10
16131025221996318151227242185217
1411262320741161310252219963 1815
12272421852171411262320741161310
25221996318151227242185217141126
232074116131025221927242127242127
2421262320262320262320252219252219
2522192724212724212724212623202623
2026232025221925221925221927242127
2421272421262320262320262320252219
25221925221918151218 151227242117 14
111714112623201613101613 10252219 18
15121815122724211714111714 11262320
16131016131025221918151218 15122724
211714111714112623201613101613 1025
22199631815122724218521714112623
20741161310252219963 181512272421
8521714112623207411613102522199
6318151227242185217141126232074
1161310252219].

A routine from the Toolbox (see Appendix A) shows that at the third step all

states can be reached. Choose one state, say 853 ~ (0,0, 1). Note that in the 19th,

22nd, 25th, ... columns of Z3x0 we have 8%3, which means that controls 87139, 8%%9,

6%9, or ... can drive the initial state (0, 0, 0) to the destination state (0,0, 1). We

choose, for example,
u1 (Qu2(0)u (Dua(Dui (Qua(2) = 57139-

Converting this to ternary form yields (1, 1, 1,0, 1, 1), which means that the corre-
sponding controls are

ur(0) =1, uz(0) =1 ur(l) =1,
u(1) =0; u1(2)=1, u(2) =1.

It is easy to directly check that this set of controls works. We may check some
others. Choosing, say, 3%%9 and converting it to ternary form as (1,1, 1,0,0.5, 1),
we have

ur(0) =1, uz(0) =1 ur(h) =1,
uz(1) =0; u1(2)=0.5, u(2) =1.

This also works.

340 14 k-valued Networks

In general it is easy to calculate that when s = 1, the reachable set from (0, 0, 0) is
{(0,0,0), (0,0.5,0), (0, 1,0)}.
When s = 2 the reachable set is

{(0, 0,0), (0,0.5,0), (0,1, 0), (0,0,0.5), (0,0.5,0.5),
0,1,0.5),(0,0.5,1),(0,0,1), (0, 1, 1)}.

In this chapter we considered only the topological structure and the controllabil-
ity of k-valued logical (control) networks. It is easily seen that the methods devel-
oped and the results obtained for Boolean (control) networks can be easily extended
to k-valued networks. We are not going to repeat all of the other control problems
for the k-valued case, but leave them for the reader to explore the similar results.

14.7 Mix-valued Logic

Consider a set of logical variables {xi, ..., x,}. If x; € Z,, then how do we define
the logical operators between them? We call such a set of logical variables and oper-
ators a mix-valued logic. The problem basically comes from the mix-valued logical
dynamical (control) systems. We first introduce them (we also refer to Sect. 16.6 for
their properties).

Definition 14.9

1. Consider a logical dynamical system

x1(t+ 1D = fi(x1(@), ..., x:(0)),
: (14.89)

X (1 +1) = fux1(0), ..., xu (1)),

where x; € Z,, fi]—[;5=1 @kj — Y, i =1,...,n, are logical functions. If k;,
i =1,...,n, are not identically equal, then the system (14.89) is called a mix-
valued logical system.

2. Consider a logical control system

x1(t+ D= fr(xi@), ..., %0 (0), ur (@), ..., um (1)),

: (14.90)
Xp(t+ 1) = fux1 (@), .., Xn (1), ur (1), ..., um (1)),
yl(t)zh[(xl(t),...,xn(t)), I=1,...,p,

where x; € Dy, uj € Is;, yi € Dgy» fi + [1i=1 Di; <]_[]’”:1951. = Dy, i =
I,...,n,and h; :]_[:'=1 D, — Dy, 1 =1, ..., p, are logical functions. If k;, s,
and ¢; are not identically equal, then the system (14.90) is called a mix-valued
logical control system.

14.7 Mix-valued Logic 341

Investigating mix-valued logical systems, we first encounter a problem: how to
define logical operators for mix-valued logical variables. Definitions for all of them
will be very massy, and they may be of less logical meaning. Thus far, the question
has not been considered by logicians. We avoid this and assume that only k-valued
logical operators are allowed. We then need to define a projection from Z,, to .

Definition 14.10 The projection ¢4, »| : Zp — %, is defined as follows. If x € &,
then ¢4 p)(x) :=&, where £ € Z,, satisfying

|€ — x| = min |x — y]|.
y€D, Y

If there are two such solutions, &1 > x and & < x, then ¢y, p1(x) = & is called the
up-round projection and ¢y, 1(x) = &; is called the down-round projection.

In the sequel, we assume that the default projection is the up-round projection
unless otherwise stated. In vector form, we have x € A, and ¢, p1(x) € A,. Hence,
there exists a unique @4,) € £Lpxq, called the structure matrix of ¢4, 5], such that

Plg,p1(X) = Py, p1X. (14.91)

We give a simple example to illustrate this.

Example 14.11 Consider 73 = {0, , 1} and Z4 = {0, 1, 3, 1}. Then,
1.

1 2
$14,31(0) =0, ?14,3] (5) == o3 =1.

3
Hence,
B3 = 4[124].
2.
1 1 2 1
#13,41(0) =0, ¢[3,4]<§> =3 ¢[3,4](§> =5 #3411 =1
Hence,

D34 =083[1223].
Next, we define the logical operators between mix-valued logical variables.

Definition 14.11

1. Let o be a unary operator on %, and x € Z,. Then,

o(x):= U(cp[k,p](x)) € Y.

342 14 k-valued Networks

2. Let o be a binary operator on %, and x € &, y € ;. Then,
x0y = (P, p) (X))o (Pr.01(0)) € .

Example 14.12

1. Let @ = @3 be a unary operator on %3 and x = % € 94. Then,

1
@3(x) = @3(¢p3,81(x)) = ®<§) =0.

2. Let V3 4 be a unary operator on %4 and x = % € 95. Then,

2
V2,4(x) = Va4(Pa,3(x)) = V2,4(§> =1

3. Let A = A3 be a binary operator on %3, x = % € P4, and y = g—‘ € Y. Then,

1

1
x A3y = (p.410)) A3 (d3,61(0) = 33 1= 3

4. Let vV = V3 be a binary operator on %3, and x and y as in part 3. Then,

1
xV3y=(¢p4(x) V3 (d3.6(0) = 5 V3 I=1

We can now consider the logical expression of a mix-valued logical system. Con-
sider either (14.89) or (14.90). Since x; € %, i =1, ..., n, we can automatically
assume the logical operators on the ith equation are all k;-operators, that is, the op-
erators on 7, . As for the outputs of (14.90), the type of operators in the kth output
equation depends on the type of yy.

We give an example to illustrate this.

Example 14.13 Consider a mix-valued logical control system:

x1(t+ 1) =x1() vV x(),
x2(t+ 1) =x1(t) A (x2(t) < u(t)), (14.92)
y(#) = —x1 (1),

where x;(t) € Z;, u(t) € Y5, and y(t) € Z,. In componentwise algebraic form, we
then have

X1t + 1) = My j, X1 () Piicy ey X2(1) = Ma ke, Ty @ Priey k1) X1 (1) x2(2),
X2t + 1) = Me iy Plicy 11171 (1) M ey X2 (1) Py 570 ()

= Me ky Pliey k11 Uky & Me gy)x1(8)x2(8) Py 574 (1)

= Mc iy Plicy k1 1y © Me 1y) Wiky k1 ka] Py 514 (1) x1 (1) x2(2),

14.7 Mix-valued Logic 343

y() = Mn,qu[(’Iﬂ kilxi(2).

In particular, assume that k1 =2, ko =3, s = 2, and ¢ = 3. We can then calculate
the algebraic form of (14.92) as follows.

Note that @3 = $[1 1 2], P30y = 83[1 3], Mo =1 1 1 2], M3 =
83[123223333], M3 =063[123222321], My3=2483[32 1], and
Wiz,60=63[147101316258 1114173 69 12 15 18]. Therefore we have

x1(t+1) = Maa(Ir ® Pp2,31)x1(1)x2(7)
=8[111112]x1()x2(2)
=S 11112111112Ju()x()x(t)
=: Pu(t)x1(1)x2(1),
x2(t +1) = Mc3P321(12 @ Me 3)Wi3,6/P(3,21u (1) x1 (1) x2(2)
= 83[123333321333u()x (t)xa(t)
=: Qu(t)x1()x2(1),
(@) = My 3P(3,2]x1(7)
=8[333111]x1(#)x2(2).

Set x(t) = x1(¢) X x2(¢). Suppose that the algebraic form of the mix-valued log-
ical control system (14.92) is

x(t+1)=Lu()x(t),
y(t) = Hx(1),

where L = §¢[£1,...,£12], H =63[333 11 1]. From Proposition 8.1, we have
Col; (L) = Col; (P) x Col; (Q). Hence,

L=6[123336321336].

Letk =[[i_ ki, s =[]j—; si,and g = [17_, ;- We then know that (14.89) has
the algebraic form

x(t+1)=Lx(t), (14.93)

where L € L.
Similarly, (14.90) has the algebraic form

x(t+1)=Lu(t)x(t),
y(1) = Hx(1),

(14.94)

where L € L xks and H € L.

344 14 k-valued Networks

From Example 14.13 one sees that from the logical form of a mix-valued logical
(control) system, to construct its algebraic form is easy. It is now pertinent to ask
whether we can always obtain the logical form of a mix-valued logical (control)
system from its algebraic form (14.93) or (14.94) as in the Boolean or the k-valued
case. Unfortunately, we generally cannot.

In the following we consider (14.94) only. (14.93) can be considered as a partic-
ular case. From (14.94) we can easily obtain its componentwise algebraic form as

xi(t+1)=Mu(@t)x®), i=1,...,n,
(14.95)
Vo () =hgx(t), a=1,...,p,

where M; € 2}, xks and hy € 25, x . If we have alogical expression, then a straight-
forward computation shows that

Xi(t +1) = Ni®i si1u1 - -~ Pl 5,1 Um Pl k11%1 + + * Plky k1 Xn
= NiTut)x(t), i=1,...,n, (14.96)

where N; € .,?j{ix «+m and, setting Iy) =1 and ko =0,

T = X020 sgtbs ® Py sy t) X Ustkotothy © Py k) (14.97)

Similarly, assuming that the outputs have mix-valued logical form, we then have
8u € Ly, xqn such that

Ya (1) = 8a Pige ki1 X1 (1) - Plgy k1 Xn (1)
= gOl E()lx (t))
where, denoting I;, =1,
Ey = [X?:_ol Tkgt-+ki ® P kiy1)- (14.98)
Summarizing the above argument yields the following theorem.

Theorem 14.9 The algebraic form (14.95) has a logical realization if and only if

Nl =M;, i=1,....n,
{" ot " (14.99)

8oy =hy, a=1,...,p
has solution {N;,i=1,...,n;84,0=1,..., p}.
Example 14.14 Consider a mix-valued logical control system, with algebraic form
x1(t+1)=Lu(t)x1(t)x2(), (14.100)
where x1(t) € Az, x2(t) € Az, u(t) € A, and with structure matrix L given by

L=46[122111121111].

References 345

Suppose that the system (14.100) has the logical realization
xi(t+1) = f(x1(0), x20), u (), (14.101)

where x| (t) € 2, x2(t) € D3, u(t) € 2. Assume that the system (14.101) can also
be expressed as

x1(t+ 1) = Nu(@)x1(£)P(2,31x2(1)
=NTu(t)x1(t)x(t), (14.102)

where N € %53, 2,31 =82[112], and

I'=1LQ %P3
=63[112334556778].

From (14.100) and (14.102), there exists N € % g such that
Né&g[112334556778]=6[122111121111]. (14.103)

It is obvious that we cannot find the matrix N satisfying (14.103). Thus, the
algebraic form (14.100) does not have a logical realization.

References

1. Adamatzky, A.: On dynamically non-trivial three-valued logics: oscillatory and bifurcatory
species. Chaos Solitons Fractals 18, 917-936 (2003)

2. Akutsu, T., Hayashida, M., Ching, W., Ng, M.: Control of Boolean networks: hardness results
and algorithms for tree structured networks. J. Theor. Biol. 244(4), 670-679 (2007)

3. Li, Z., Cheng, D.: Algebraic approach to dynamics of multi-valued networks. Int. J. Bifurc.
Chaos 20(3), 561-582 (2010)

4. Luo, Z.K.: The Theory of Multi-valued Logic and Its Application. Science Press, Beijing (1992)
(in Chinese)

5. Volkert, L., Conrad, M.: The role of weak interactions in biological systems: the dual dynamics
model. J. Theor. Biol. 193(2), 287-306 (1998)

Chapter 15
Optimal Control

15.1 Input-State Transfer Graphs

‘We consider a control network of the form

xl(t+]):fl(xl(t)v7xn(t)vul(t)’ ""um(t))’

X+ 1) = fr(x1@), ..., x0 @), u1(0), ..., un (1)),
(15.1)

Xp(t+ 1) = fu(xi (@), ..., X0 (0, ur (@), ..., um (1)),

where x;, u; € Z, the x; being state variables, u; being controls, and f; being
logical functions. (15.1) is compactly expressed as

X(t+1)=F(X1),U®), (15.2)

where X = (x1,...,x,) and U = (u1,...,u,). When kK =2, (15.1) becomes a
Boolean control network. In this chapter we consider general k. The outputs of
the control network are omitted because we are not concerned with outputs in this
chapter.

In vector form, we have x;,u; € Ag. If we let x(t) = x_,x;(t), u(t) =
X u;(t), then (15.1) can be expressed in algebraic form as

x(+1)=Lu(t)x(t), (15.3)

where x(t) € Agn, u(t) € Agm, L € .,E/ﬂknkaﬂl.

The payoff function of the network at time ¢ is denoted by P(X (¢), U (1)) : &} x
2;' — R [using vector form, the equivalent mapping is (using the same notation)
Px(@),u()): A x Agm — R]. Set S(t) = (X (@), U(t)) or s(t) =u(t) x x(t). We
consider as performance criterion the average payoff or ergodic payoff [3]. From ini-

D. Cheng et al., Analysis and Control of Boolean Networks, 347
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_15, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_15

348 15 Optimal Control

tial state xo, under control u(t), the trajectory of the network is x (¢, xg, u) [or, sim-
ply, x(¢)]. The average payoff of x (¢, xo, u) is defined as

T
J(x(t,xo,u))=J(u)=T@O%ZP(x(t),u(t)). (15.4)
=1

The aim of the optimal control problem is to find the optimal control u*(¢) to
maximize the objective function J (), that is,

J () = max J (). (15.5)

To solve the optimal control problem, we have to answer the following questions:
(1) Does the optimal control u*(t) exist? (ii) If the optimal control does exist, is it
unique? (iii) How do we design it? In what follows, we will answer these questions.

We first define the cycles in & = ;' x 2} (in vector form we have the equiva-
lent . = Agm+n). The following definition was first proposed in [2].

Definition 15.1 A directed graph whose nodes are the elements of . is called the
input-state transfer graph (ISTG) of the system (15.1) if its edges are constructed as
follows: For any two nodes S, = (Up,, X)) € % and S; = (U,, X4) € 7, there is a

directed edge S, S, if and only if

X, =F(Up, Xp).

In vector form, we can also use s, = (up, xp) = (8,‘2‘,,,, an) to represent a node,
but a more convenient definitionis s, =upx, = 8,’:%,, € Aym+n. The last expression
is reasonable because s, has a unique decomposition into (u , xp). If we let 8}(/,,,“ =

5,‘;‘,,,65,[, then
y=(@—-Dk"+8

or, equivalently,

a:|:]z/—ni|+1, ﬂ:y(modk").

Using the algebraic form, we know that there is a directed edge S,S, [or, equiva-
lently, (sp, s4)] if and only if

xg =Lupx, (orx,;=Lsp).

If we now assume s, = Blimﬂ and s, = SZmH, then the edge (sp, s,) can also be
expressed as

8k1n+n (é:, 7’])

The topological structure of ISTGs plays a key role in optimal control problems.

15.1 Input-State Transfer Graphs 349

Fig. 15.1 Input-state transfer
graph of (15.1) e e @

Definition 15.2

1. A state s’ € . is said to be reachable from s = (u, x) € . if there is a path,
consisting of directed edges, starting from s and ending at s’. We denote the
reachable set of s by R(s).

2. The ISTG is called strongly connected if, for all s € .7,

R(s)=.7.
We now give an example to illustrate an ISTG.
Example 15.1 Consider the following Boolean control network:

x1(r+1) = (x1 (1) Au(r)) vV x2(1),

(15.6)
X2t + 1) = (u@) Axi () A —x2(0) V (mu(r) A xi(1)).
Using vector form, its algebraic form is obtained as
x(+1)=Lu(t)x(), (15.7)

where
L=564[21241324].

Its input-state transfer graph consists of eight states, which are
A=(Lel). B=(La). C=(hel). D=(he),
E=(3.0]). F=(3.0). G=(ha). H=(s}5).

Using Definition 15.1, we can easily determine its edges. The ISTG is shown in
Fig. 15.1.
From Fig. 15.1, it is easily seen that

R(A)=R(B)=R(C)=R(F)=R(G)=.%.
On the other hand,
R(E)={D, H}, R(H)={H, D}, R(D)={D, H},

so this ISTG is not strongly connected.

350 15 Optimal Control

We refer to next chapter for the verification of strong connectedness, where it is
called controllability.

Definition 15.3

1. Let sj e &, i=1,2,...,L. (s1,82,...,5¢) is called a path if (s;,s;+1), i =
1,...,¢—1, are edges of the ISTG.

2. A path (s, s2,...) is called a cycle if s;1, = s; for all i, and the smallest ¢ is
called the length of the cycle. In particular, if £ = 1, then the cycle is also called
a fixed point.

3. Suppose C = (s1,52,...,5¢) isacycle and let s; = (u;, x;),i =1,..., L. If x; #
xj,1 <i < j </, then the cycle C is called a simple cycle.

Example 15.2 Consider the ISTG of Example 15.1. It is easy to see that we have the
following cycles: (D), (H), (G), (H, D), (A, B), (F,C), (F,G,C), (A, F,C, B),
(A,F,G,C, B),etc.

Let C := (s1, ..., s¢) be acycle in .. The average payoff is defined by

P(sy)+---+ P(se)

P(C) = 7

We then have the following result [2].

Proposition 15.1
1. Let S :=(s1,...,ST) be a path of the ISTG of the system (15.1). Then,

N
S=UC,- UR, (15.8)

i=1

where C; are some cycles, R is the remainder, and |R| < k™",
2. Let S :=(s1,...,57) be a path of the ISTG of the system (15.1) and € be the
(finite) set of cycles. If C* € € such that

Py(C*) =max{Pu(C),VC € ¢},
then

J(S) < Po(CY). (15.9)

Proof 1. Remove all cycles from S one by one. The remainder then has at most
k™" elements because || = k™1". Note that (15.8) is in the sense of “element
set”, that is, we do not need to worry about whether the elements of a cycle C; are
adjacent. This completes our proof.

15.2 Topological Structure of Logical Control Networks 351

2. Let S be decomposed into cycles C; with lengths ¢;,i =1, ..., N, and remain-
der R. Then,

P(ri) + -+ P(ry)
T

1 & N e N
7ZP(S,>=Z[?Pa<c]>+-~+7pa(cm}+
t=1 i=1

YL

= Pa(c*)+P(r1)+-~-+P(rq)

T
P(ri)+---+ P(ry)
+ T 9

(15.10)

where {ri,...,ry} = R and hence ¢ < k™" It is now clear that

P(ri)+---+Plry)
T =

lim ~ 9 p(c*) +

*
T—soo T Pa(C)’

and the conclusion follows. O
Next, we define the reachable set of a state xo by

R(xo) = U R(s0 = (1o, x0))

e D"
and the cycles in this reachable set by
%x, ={C €€|C CRxp)}.
The optimal cycle Cy € X, satisfies
Pa(C;“O) > P,(C), VYCe%y,.
The following result then follows immediately.

Corollary 15.1 Consider the optimal control of the network (15.1) with perfor-
mance criterion (15.4). The optimal control makes the trajectory converge to C ;‘0,
and the optimal value of the criterion is Jpax = Pa(C;‘O). If C* C R(xo) =&, then
the optimal value Jmax = Py(C*). If the ISTG is strongly connected, then the optimal

value is P,(C*), which is independent of the starting point.

15.2 Topological Structure of Logical Control Networks

To deal with the optimal control of a logical control network, its topological struc-
ture needs to be considered first. In particular, from Corollary 15.1 we know that an
optical trajectory could converge to a certain cycle, so calculating cycles becomes a
key issue. In the sequel, we suppose the ISTG of the control network to be strongly

352 15 Optimal Control

Fig. 15.2 Input-state transfer
graph

connected. If this is not the case, then we just consider the optimal control within
the reachable set R(x) from the initial point xg.
A k-valued logical control network can be expressed as (15.1) with x;, u; € %.

Its algebraic form is (15.3) with L € Zjnypm+n, Where x = x?zlx,-, U= M;”Z]uj,

and x;,u; € Ax. Therefore we need to investigate the cycles in the control-state
space .. We can prove the following result.

Proposition 15.2 An edge §m+n (i, j) exists if and only if
Col; (L) =8,€n, where { = j (rnod k”). (15.11)

Proof By definition, the edge &y m+n (i, j) exists if and only if there exists u(¢ + 1)
such
U(t + VL8 =8 i (15.12)

It is easy to check that LS,’;M” = Col; (L), thus (15.3) yields
u(t +1) Coli (L) = 8- (15.13)

Note that 8]{,,”” can be factorized uniquely into 8,%,,, 8,{,,, where j = (§ — Dk" + ¢.
The proposition is thus proved. g

Example 15.3 Consider the Boolean control network given by
x(+1)=Lu(t)x(t), (15.14)

where u(t), x(¢t) € A and
L=5[1221].

Note that 8} ~ (1, 1), 82 ~ (1,0), 83 ~ (0, 1), and &§ ~ (0, 0), so we can obtain the
graph as follows:

From Fig. 15.2 we can see that (1, 1) and (1, 0) are fixed points and that it has
the following cycles of length less than or equal to 4:

0, 1) — (0,0), 0,1) = (1,0) = (0,0,
(1,1) = (0, 1) — (0,0), 0,0) — (1,1) = (0, 1) — (1,0,
1, 1H)—(,1)— (0,1)— (0,0, (1,0) = (1,0) = (0,0) — (0, 1).

15.2 Topological Structure of Logical Control Networks 353

In a simple case, the fixed points and cycles can be found from the ISTG directly,
but when m and n are larger, it is difficult to draw the graph as was done above.
Thus, we need to develop formulas to compute all the cycles algebraically.

From (15.3), we have

x(t+d)=Lu@t+d—-Dx@t+d—-1)
Lu(t4+d—1)Lu(t+d—2)---Lu(t+ 1)Lu(t)x(z)
L(Iim ® LYu(t +d — Du(t +d —2)Lu(t +d — 3)
Lu(t+d—4)-- Lu(t)x(t)

= Lg(x{_ju(t +d — 0)x(1), (15.15)
where
d
Lg =] [Upi-m ® L) € Lo gmsn. (15.16)

i=1
Before calculating the cycles, we need some notation.

e Ford € Z,, #(d) denotes the set of proper factors of d.
e Fori,k,meZy,

i

07 (d, i) = {(E, J) | 3¢ € #(d) and j such that ‘Slicdm = (5,{zm) } (15.17)
We now give examples to illustrate the use of this notation.
Example 15.4
1. If d =6, then #(d) ={1, 2, 3}.
2. If m,k,d € Z, are given, then, using the obvious formula B,fa (Si’ﬁ = 8;{2;31)](/3%,

there exists at most one j for every £ € &(d) such that (¢, j) € 6" (i, d).
Suppose m =k =2 and d = 6.
e Ifi =1, then
i j d .
for€=1,8,,=38,=0)°=(/,)7,50j=1;
for €=2,8),, =(8,)% 50 j =1
for£=3,8),, =(8)5)% 50 j=1.
Hence, 07(6,1) = {(1,1), (2, 1), (3, D}.
o Ifi =2, then forany ¢ € #(6) and any 1 < j <2%,83,, (5§N)%,thus there
is no solution. That is, 022 6,2)=40.
o Ifi =20 +2, then
for £ =1 or 2, there is no solution;
for ¢ = 3,822 = (82)%, 50 j = 2.
Therefore 65 (6,2° +2) = {(3,2)}.

354 15 Optimal Control

In the following we simply use 6(d, i) for 6;"(d, i), where the default k and m
are assumed to be the type of logic and the number of inputs, respectively. Denote
by BIk; (L) the ith n x n block of an n x nm logical matrix L. We then have the
following result.

Theorem 15.1 The number of cycles of length d in the ISTG of the k-valued logical
control network (15.3) is inductively determined by

kdm
1
Ny = EiZ]:T(Blki(Ld)), (15.18)
where Ly is defined in (15.16) and
T (Bl (L)) =tr(Blk;(La)) — Y T(BIk;(Ly). (15.19)
,j)eb(d,i)

Proof Each cycle in . is a product of cycles in the state space and the control
space, so we look for the cycle in the state space first. If x(¢) is in a cycle of length
d in the state space, then from (15.15) we have

x(t) = La(x4_ju(t +d — 0))x(1).
Ifu(t+d—1),...,u() are fixed, say x{_,u(t +d — £) =81, then
x(t) = Blk; (Lg)x (1)

Ifx(t) = Sjn , then the (j, j)-element of BIk; (Ly) is 1, so the cycle with length d in
the state space under the given controls u(t +d — 1), ..., u(t) is

{x(@), Lu@)x (), Lau(t + Du()x(t), ..., Lau(t +d — 1) - u(®)x (1) }.

Thus, multiplying the cycle and the given u, we obtain a cycle of length d in control-
state space. Therefore the number of length-d cycles, including multifold ones, is
dm
LS r(BIK; (La)).
It is obvious that if £ is a proper factor of d, and x(¢) is in the cycle of
length ¢ under %(t + £ — 1)---%(t) = &/,, and the cycle of length d under

i klm
ut+d—1)---u@) = (Sllcdm’ then we can obtain the same cycle in the ISTG if and

only if 8 ,,, = (8,&,,1)%. Removing these multifold cycles, we obtain (15.18). O

To see that (15.19) inductively defines all 7 (Blk; (L)) with respect to d, note
that as d = 1, we have
03, 1)=¢, Vi

Thus, T (Blk;(Ly)) is well defined for d = 1 and hence d > 1 can be defined induc-
tively.

15.2 Topological Structure of Logical Control Networks 355

For a cycle C of length d, because s(t) = Bfén,ﬂ can be decomposed uniquely as

u()x(t) = 8,"(,,, 8,{,,, the cycle can be described as
_ i) oj@ it+1) oj@+1) i(t+d—1) jt+d—1)
C= (8- 8) B850) (B ™00).
For compactness, we write this as

C=6m x5 (i), j@®), (¢ + 1, jt+1),....((¢+d =1, jt+d—D)).

(15.20)

We now give an alternative definition of a simple cycle (originally defined

in Definition 15.3): A cycle C = 8gm X Sn ((i(2), j (1)), (it + 1), jt + 1)), ...,
i@t+d—1),j+d—1))) iscalled a simple cycle if it satisfies

iE)#£i(), t<&<l<t+4+d-1. (15.21)
Example 15.5 Recall Example 15.3. Since
Li=L=6[1221],

we have tr(Blk; (L)) =2 and tr(Blk, (L)) = 0. Hence, 8% and 8% are fixed points
under the control u = 8;. It follows that Ny = 1 and the fixed points in ISTG are

8 x 8((1, 1)), 8 x 82((1,2)),
which are simple ones. Next, since
Ly=L(Ihb®L)=68[12212112],

we have tr(Blk; (L»)) = tr(Blk4(L2)) = 2, tr(Blka(L»)) = tr(Blks(L2)) =0, 8} =
818}, and 87 = 6383, so

T (Blk; (L2)) = tr(Blk; (L2)) — T (Blk; (L)) =0,
T (Blky(L2)) = tr(Blky(L2)) — T (Blka(L1)) =2.

T (Blky(L>)) = T (Blk3(L2)) = 0, so N, = 1. §} and 87 are in cycles of length 2
under u(t + Du(t) = 8%8%. We can then obtain a cycle of length 2 in ISTG as

8 x 8((2,1),(2,2),
which is also simple. Consider
Lyi=L(LQ®L)(I4s®L)=68[1221211221121221].
Since tr(Blk;(L3)) = tr(Blks4(L3)) = tr(Blke(L3)) = tr(Blk7(L3)) = 2, we have

T (Blk4(L3)) = T (Blkg(L3)) = T (Blk7(L3)) =2, and T (Blk;(L3)) =0 for i =
1,2,3,5, 8. It follows that N3 = 2. 8; and 5% are in cycles of length 3 under

356 15 Optimal Control

u(t + 2u(t + Du(t) = 8§ = 518383, 85 = 838162, and 8] = §36281. We can then
obtain the cycles of length 3 in the ISTG as

8 x 82((1, 1), (2, 1), (2,2)), 82 x 82((2, 1), (1,2), (2,2)).
Finally, since

Ly=L(L®L)I4s®L)(Is®L)

=6[1221211221121221
2112122112212112],

we have tr(Blk; (L4)) =2,i=1,4,6,7,10, 11, 13, 16.

Therefore T(BIk;(L4)) = 2 for i = 4, 6, 7, 10, 11, 13, otherwise
T (Blk;(L4)) = 0, hence N4 = 3. 8% and 8% are in cycles of length 4 under
u(t + 3ult + ut + Du(t) = 8 = 618)8363, 8% = 51638183, 8]¢ = 83638365,
8]12 = 8%8;5;8%, 5}é = 5%8;8%5;, and 8112 = 8%5%8;8%. We can then obtain the cycles
of length 4 in the ISTG as

8 x 82((1,1), (2, 1), (1,2), (2,2)),
8 x 82((1,2), (1,2), 2,2), 2, 1)),
8 x 82((1, 1), (1, 1), 2, 1), (2,2)).

This result is the same as what we observed from the graph in Example 15.3.

15.3 Optimal Control of Logical Control Networks

In this section we consider the optimal control and optimal trajectory of logical con-
trol networks. Corollary 15.1 generalizes a result in [2] for single-variable Boolean
networks to multivariable k-valued logical networks. However, after expression
them into graphs, there is no essential difference, so the proofs are similar. Corol-
lary 15.1 ensures that the optimal control can be achieved on a trajectory which
converges to a cycle. In the sequel, using the matrix expression of logical functions,
we give a method to find the optimal trajectory and obtain a G*, called the optimal
control matrix, such that

w*(t + 1) = G u* (t)x*(r).
Proposition 15.3 The limit

T
J(u*) = lim lZP(x*(z),u*(z)) (15.22)
=1

T—>ooTt

always exists.

15.3 Optimal Control of Logical Control Networks 357

Proof Consider the system (15.1). According to Corollary 15.1, an optimal trajec-
tory will converge to an attractor. As a limit, J(u#*) is the average over an attractor
(fixed point or cycle). U

Proposition 15.4 For any cycle C, there exists a simple cycle Cs such that
Pa(Cy) = Pa(C). (15.23)

Proof Denote by C = §gm X §gn (i (¢), j(@)), (¢ + 1), jt+1)),..., >0 ¢t +d—-1),
j(+d — 1))) an arbitrary cycle. If it is a simple cycle, then the result is trivial.
Otherwise, assume BIi,,@) = 8{,,“), & < ¢, and that C| = §gm X Spn ((i(€), j(&)), ...,
@ —1),j¢ — 1)) is a simple cycle. If P,(C1) > P,(C), then we are done.
Otherwise, we remove Cp. The remainder then forms a new cycle C i because
L8 Vs =515 = 51O Now, P,(C}) > Py(C). If C} is a simple cycle, then
we are done. Otherwise, we can find a simple cycle C, such that either it satis-
fies (15.23) or we can remove it. Continuing this process, we will eventually find a
simple cycle C; such that (15.23) holds. U

By (15.15), at the dth step, the initial state xo can reach
Ra(x0) = {u(d)Ly x9_y u(d — €)xo | Yu(l) € Apn,0 < € < d},

and if xo = 5],

Rq(x0) = {u(d) Col¢(Lq) | Yu(d) € Agn, £ = j(0) (mod k")}.

If 8;{,,1 8,{,, is reached from xq at the dth step, d > k", then the path from the initial
state to 8,’;,,, 5,{,, must pass a state at least twice. Similarly to the proof of Proposi-

tion 15.4, we can finally conclude that the state 8,’;,,, 6,{,, can be reached from xq at
the d’th step, where d’ < k™. Thus,

k"1
R(xo) = | Raxo). (15.24)
d=0

According to the above argument, we can find the optimal cycle C* from all the
simple cycles contained in R(x(). Denote the shortest path from the initial state to
C* by

(51600, 51Dl D, ..., siiTom D] (To= by, (15.25)
where

C* = 8pm x 8n (i1 (T0), j (T0)), ..., (i(To+d — 1), j(To+d — 1))).

We call (15.25) the optimal trajectory.
Next, we will prove the existence of the optimal control matrix G*.

358 15 Optimal Control

Table 15.1 Payoff bi-matrix

P\ P> L M R
L 3,3 0,4 9,2
M 4,0 4,4 5,3
R 2,9 3,5 6,6

Theorem 15.2 Consider the k-valued logical control network (15.1) with objective
function (15.4). Let the optimal trajectory be (15.25), and the optimal control be
u*(t). There then exists a logical matrix G* € Lyn n+m , satisfying
4+ 1) = Lu*(t)x* (@),
X"+ 1) u*(H)x* (1) (15.26)
u*(t +1)=G*u*(t)x*).

Proof According to Proposition 15.4 we can find an optimal cycle from the set of
all simple cycles. Because the length of a simple cycle cannot be greater than k", we
assume the initial state of a trajectory is 8;5,,(0). We can find all cycles with length less
than or equal to k" which can be reached from the initial state and then determine
the optimal trajectory (15.25). It is easy to show that Tp +d < k1", so we can get

Ty + d columns of the optimal control matrix G*, which satisfies

S TV s =0 = DK+ (0,6 <Ty+d -2,

Cols(G*) =1 iin)
SV, s=((To+d—1) = DK" + j(To+d — 1),

(15.27)

and the other columns of G* [Col(G*) C Agn] can be arbitrary. Thus, G* can be
constructed. O

Example 15.6 Recall Example 15.3 and Example 15.5. Set
P(u(t),x(t)) =u" (1) 2 x(1)
’ 3 4

and assume the initial state xo = 8%. From the result of Example 15.5 we can see
that C* = §, x 82((2, 1), (2, 2)) is obviously the optimal cycle. Choosing u(0) = 8%,
the optimal cycle and the shortest path from 8% to the cycle is

8 x 82((2,2), 2, 1)).

Therefore G* = §,[i j 22] and i, j can be either 1 or 2.

Example 15.7 We consider the following infinitely repeated game. Both player 1
and player 2 have three possible actions, {L, M, R}. The payoff bi-matrix is as-
sumed to be as in Table 15.1.

It is easy to check that (M, M), which means that player 1 chooses M and player
2 also chooses M, is the unique Nash equilibrium of the one-stage game, but it is

15.3 Optimal Control of Logical Control Networks 359

obvious that (R, R) is more efficient than (M, M). In the infinitely repeated game,
assume that player 2’s strategy is fixed as follows: he plays R in the first stage,
and in the rth stage, if the outcome in the (r — 1)th stage was (R, R), he plays R,
otherwise, he plays M. This is called the “trigger strategy” [1].

Let L ~1,M ~ 0.5, and R ~ 0. The above game can be rewritten as

x(t+1)=Lu(t)x(t), (15.28)
where

L=63[222222223].

x(t) € Az, as the state, is the action of player 2 at the rth stage; u(¢) € Asz, as the
control, is the action of player 1 at ¢th stage.

As we know, the trigger strategy is the Nash equilibrium of an infinitely repeated
finite game in which the payoff function is

o0
1=8)Y 8 ',
t=1

where 7, is the payoff at the ¢th stage and 6 is the discount factor, when § is suffi-
ciently close to 1 [1].

Ignoring the discount factor, our respective payoff functions for player 1 and
player 2 are

T
1
Ji= lim — ; Pi(x (), u(n)),

T
— 1
J= lim — ; Py(x(1), u(®)),

where
3 0 9]
Pi(x@®),u@®))=u"®) |4 4 5|x@),
(2 3 6|
3 4 27
P(x@),u®)=u"()| 0 4 3 |x(@).
(9 5 6]

A natural question is whether the trigger strategy is still a Nash equilibrium in this
game. Player 2 has adopted the trigger strategy, and we want to find the best response
for player 1. The question is then converted to one of finding the optimal control of
the 3-valued logical control network (15.28) which maximizes Jj.

We now calculate the cycles:

L1 =L=463[222222223],

360 15 Optimal Control

thus tr(Blki (L)) = 1, tr(Blko(L1)) = 1, tr(Blk3z(L1)) = 2, and N = 4. 8% is a
fixed point under u = 8%, i=1,2,3, and 5% is a fixed point under u = 8;, so the
fixed points of the system (15.28) are
83 X 83((1, 2)), 83 X 83((2, 2)), 83 X 83((3, 2)), and 43 X 83((3, 3))
Ly=L(Iz3QL)=2¥83[222222222222222222222222223],

tr(Blk;(Ly)) =1,i=1,...,8, tr(Blko(L>)) = 2. For u(t + Du(t) = 8} = 815},
T (Blk(L»)) = tr(Blk; (L2)) — tr(Blki (L1)) = 0.

Similarly, we obtain T (Blk;(Ly)) = T(Blks(Ly)) = T(Blkg(Ly)) = O,
T(BIk;(Ly))=1,i=2,3,4,6,7,8. Thus, N, = 3. 8% is in cycles of length 2 with
u(t+ Du(@) = 8t i=2,3,4,6,7,8. We can then find the cycles of length 2 as

83 x 83((1,2), (2,2)), 83 x 83((1,2), 3,2)), 83 x 83((2,2), (3,2)).
Ly=Ly(I3®Ly)(Ig®L,)=38z1[2 --- 2 3].
80

By (15.19) we have T (Blk;(L3))=1,i=2,...,13,15,...,26, T (Blk; (L3)) =‘O,
i=1,14,27,and N3 = 8. 8% isin cycles of length 3 with u(f +2)u(t + Du(t) = 8,
i=2,...,13,15,...,26. We can then find the cycles of length 3 as
83 x 83((1,2), (1,2), (2,2)), 83 x 83((1,2), 3,2),(2,2))
83 X 83((1, 2),(1,2), 3, 2)), 83 X 83((1, 2), (3,2), (3, 2))
55 x 8((1,2),(2,2),(2,2), 8 x8(2,2),(2,2), (3,2)),
83 % 85((1,2),(2,2),3,2)), 83 x 83((2,2), (3,2), 3,2)).

)
)

There are also many cycles of length greater than or equal to 4, but we have proven
that to deal with the optimal control of this game, finding all the cycles of length
less than or equal to 3 is sufficient.

As a trigger strategy, from the initial state xg = 8; , the reachable set is

R(xo) = {8363, 6383, 8383, 8383, 6363, 8353 .
Using the above result, all the simple cycles contained in R(xg) are 63 x §3((1, 2)),
63 x 63((2,2)), 83 x83((3,2)), and 83 x §3((3, 3)), and, among them, §3 x §3((3, 3))
is the optimal cycle. Choosing u*(0) = 8%’, we then have

G* =83 * * * * * * x 3],

where the first eight columns can be arbitrary.
For instance, we can choose

G*=683[222222223],

15.4 Optimal Control of Higher-Order Logical Control Networks 361

which is the trigger strategy. We conclude that the best response for player 1 is to
adopt the trigger strategy if player 2 has adopted the trigger strategy. The payoffs
are symmetrical, so if player 1 has adopted the trigger strategy, the best response for
player 2 is also to adopt the trigger strategy. This means that the trigger strategy is a
Nash equilibrium of this game.

15.4 Optimal Control of Higher-Order Logical Control
Networks

In general, a pth order logical control network can be expressed as

x1t+1D)=fix1®), ..., xx, @), ..., x1¢—p+1),...,x,t — 4+ 1),
ur(@)y .oyt (@), ..., utt—pn+ 10, up(t—pn+1))
X2t + D)= fox1(®), ..., x,@), ..., x1C—p+1),...., x5, —p+1),

ur(0)s st @), ur (0= o+ 1)t =+ 1)) (15.29)

Xn@+1) = frx1(®),....x5 (), ..., 51—+ 1), ..., x,(t =+ 1),
ur(t), ooty (@), .o, — 4+, oo up(t — e+ 1)),
yj(t)=hj(x1(t),...,xn(t)), j=1,...,p.

To deal with apth order logical control network, we first consider how to convert
it to a first order form. Recall that in last chapter we defined the base-k power-
reducing matrix, in (14.18). This can be compactly expressed as

My =601 k+22k+3 --- (k—Dk+k]. (15.30)
If we now assume x = l><f:1x,~ € Agu, then (14.31) shows that
X% =dyx, (15.31)

where

w
Gy =] [L1 ® [Tk ® Wy pe-i))Mik] = My (15.32)
i=1

and we can prove the following retrieval formulas.
Lemma 15.1 If we assume x = x}_x; € Ay, where x; € Ak, and define
— T
F[m,n],k - Ikm ® lkn—ms
E[m,n],k = IZ)lfm ® Ikm,

then

m n
Fimn e x = Xi_yXi, Elmnykx = X —p—ma1%Xi-

362 15 Optimal Control
Proof If |><;":1x,- = Slim, then

F[m n (Ikm ® 1kn m) akm |>< _m+1 -xt - 5km X lkn m [><;'1=m+1 -xi = 8]£/11-

‘Whatever ><l 1 " x; is, we also have

_ n—m . . n _on .
E[m,"]’kx - E[m,n],k [)<i=1 Xi [Xi:n—m—H Xi = Ikm [)(l =n—m+1 Xi = [Xi:n—m—ﬁ—lxl'

0

In the following we use the simpler notation M,., @, Fim,n], and Ey, 51 for M, g,
D ks Fim,ny k> and Epp n) k., respectively, where the default k is assumed to be the
type of logic. Let x(t) = x7_,x;(t), u(t) = X" u;(t). Each equation of the uth
order logical control network (15.29) can be written in its componentwise algebraic
form as

x4+ D) =Mut —pu+1-u@®x@—pn+1)---x(1),
o+ D) =Mu(t—pu+1)---u@®x(t —pu+1)---x(),

(15.33)
xp@+D)=Mu(t —p+1)---u@®x@t—pn+1)---x(@).
Multiplying the equations in (15.33) together, we obtain
x(t+l)—Ll>< 1u(l‘—,bL+l)l>< X —p+i), (15.34)

where
n
L= M] l_[[(lk#(m+") ® Mj)(pu(ern)]-
j=2

t+u 1 t+p, 1

If we let z(7) = X, x(@), v(t) = X; u(i), then (15.34) can be converted to
xt+1)=Lv@t—p+ Dzt —pn+1).
We then have
2+ 1) = x! xG)

= T (@) Lo(n)z()
= (I ® L) X/ x (o (0)z(1)
= Lguin ® L) Wiggmen g 1mu(0)z(0) <7 x (i)
= (g1 ® L) Wigaunsn gu-1m (X (@ gu—tyn X1 x(0)

= Lu(t)z(1), (15.35)

15.4 Optimal Control of Higher-Order Logical Control Networks 363

where

Z = (Ik(ll—])"’ ® L) W[kp.m-#n,k(u—])n](lkuern ® d)(u_l)n).
Note that the v(¢),# =0, 1, ..., here are not completely independent as they should
satisfy

Figu—tym,umv(t + 1) = Efu—1ym, um v (7).

Thus, (15.34) can be converted to

2(t + 1) = Lu()z(1),

(15.36)
Fiu—1ym,pum 0 (t +1) = Ejgu—1ym, um)v (1)-
Similarly to (15.15), if z(¢) is in a cycle of length d, then we have
)=z +d)=Lgv(t +d — Dot +d —2)---v(1)z(1), (15.37)
where
d
l_[(Tti=1pem ®L
v(t+d—1Dv(t+d—2)---v(t) can be simplified as
vt +d—1)---v(1)
=) xS @ T)
= Wiy o< 500055 @) s S) s S @ T)
= Wk (w(t +d = DDty)G L0 u@ut +d + u —2))
s @)

Fdtu=2 o tdtp—d . thp—1 .
= W[kum (Ik"‘ ®¢(M l)m) [><l H-;L 2 u(i) Ki:t-i—;—:% u(@)--- |><[:¢L M(l)

— -2 .
= | | Wi gei—vom (Iem ® Pu—tym)) WGt ui)
i=1

= R /T2y,

where

d—1
R= H(W[kum’k(wi—l)m](lkm ® (p(p,—l)m))-
i=1

364 15 Optimal Control

Moreover, v(t + d) = v(¢) must hold, that is,

T iy =), (15.38)

Assuming that u = sd + r, where s = [%], u =r (mod d), the product
v(it+d—1Dv(@+d—2) --v(t) becomes

v(it+d—1)---v(t)

t+d—1 t+d+p—2 .
=R u(@) X, g Tu@)

= R !y (I (i) T 2 3y

R(@dm)S7 (Ik(d—l)m ® W[k(d_l)'”,k’”])@(d—l)m D(ﬁ+d71 M(l)’ r = O,

=t

_JR@am)® <), F=1,
R(®am)* (Ik(r m & W[k(rfl)m’k(d—ﬂrl)m])
X D1y X (), 2<r<d-—1.

Equation (15.37) is then converted to

2(t) = W ¥ u iz (o), (15.39)

where

ZdR(@dm)Sfl(Ik(d—l)m ® Wika-nm jm))Pd—1ym, r=0,
Wq = LaR(Pam)’, r=1,
LdR(@dm)S (Ik(rfl)’" ® W[k(rfl)m’k(d—r+l)m])¢(r71)m, 2 <r< d—1.

Note thatin (15.39), u(i),i =t,t+1,...,t+d — 1 are independent. Referring to
the method developed in Sect. 15.2, we can search the cycles of length d of (15.36)
by using (15.39) and checking the trace of Blk; (¥,): if its (j, j)-element equals 1,
then z(¢) = 8,9”1 isin a cycle of length d under u(H)u(t +1)---u(t+d —1) = é‘kdm
Using (15.38) we can get v(¢), ..., v(t +d — 1), and we can then obtain the cycle.
Note that when £ is a proper factor of d, and z(#) is in the cycles of length £ and d

simultaneously under l><2_+zl e = Skem and T lug) = 8! 4n» respectively, we

have the same cycle in control-state space if and only if Skdm ((Skgm)%. To count
the number of cycles, we should take out these repeated cycles. Thus, we have the
following theorem, similar to Theorem 15.1.

Theorem 15.3 The number of length-d cycles of the logical control network (15.36)
is inductively determined by

kdm

ZT BIK; (%)), (15.40)
i=1

15.4 Optimal Control of Higher-Order Logical Control Networks 365

where

T (Blk; (¥y)) = tr(Blk; (¥y)) — Z T (BIk, (¥)).

(£, j)eo(i,d)

Proposition 15.5 There is a one-to-one correspondence between the cycles of the
system (15.36) and the cycles of the higher-order logical control network (15.29).

Proof Since Sk wmim €an be decomposed uniquely as bt — 18'(@ bt =1 s/ "(Z)’ we can
construct a function 7w : Aguon+n), Agm+n as follows:
i 1 1
jT(Sll(/l,(m-%—n)) = Fyn, pum) (Igem @ F[Vl,,un])aku(m+n) = (Sl()3](). (15.41)

Denote by £2,, and £2,, all the cycles of the system (15.36) and the higher-order
logical control network (15.29), respectively. We then define v : £2,;, — £2,x as
follows: For any C = (v(#)z(t),...,v(t +d — Dz(t +d — 1)),

V(€)= (7 (v)z(®),.... (vt +d — Dz(t +d — 1))). (15.42)

Let u(¢§) = u(l), x(§) =x(£), v(§) = v(£), and z(§) = z(£), when & = £ (mod d).
Because

Lt m(v@z@) = Lo +d —)2t +d — p) = Fiuumz(t +),

¥ (C) is acycle in §2,,,. Thus, ¥ is well defined. We then prove the following:

(1) v is surjective. For any cycle C € £2,,, C = (u(@®)x(@),u(t + 1) x
x4+ 1D,...,ut+d—Dx@+d—1)),let C; = {v(t)z(t) ,o(t+d—1)x
2t +d— 1)} where v(z) = i u®), 26) = x4 x (). We can then casily
check that ¢ (Cy) =

(2) ¥ is injective. If there is another cycle C; = (V()Z(¢), ..., +d — 1) x
Z(t + d — 1)) such that ¥ (C;) = C, then there exists an a < d such that
7(V(@)ZG)) =u(a +i — Dx(a +i — 1). That is, the first m factors of v(i) form
u(a +i— 1), and the first n factors of Z(i) form x(a +i — 1). By (15.36) we know
that the first (k — 1)m factors of v (i + 1) are equal to the last (k — 1)m factors of
v (i), while the first (k — 1)n factors of Z(i + 1) are equal to the last (k — 1)n factors
of Z(i). Thus, we obtain

~. 1 -2 .
v() = w{L T u@E) =va+i—1),

~ . iu—2 .
z(i) = Kg:ﬁ:f_lx(é) =z(a+i—1).
It is then obvious that C, = C;. Il

We now consider the optimal control of the pth order logical network. Set

J() = _m

T
Z (2. v(®)), (15.43)

'ﬁ |

366 15 Optimal Control

where

P(z(), v(®)) = P(Fin,umz(6), Fm,umv(@)).

By Lemma 15.1 it is easy to see that Fi, ,,2(t) = x() and Fy, umv(t) = u(t).
Maximizing (15.43) is then equivalent to maximizing (15.4).

Proposition 15.4 is no longer true, but it is easy to see that the optimal cycles
(in £2,;) can be found in the cycles with no repeated element. Thus, we can only
search from the cycles with lengths less than or equal to the number of elements of
the reachable set R(zg) of the initial state zg. The following theorem can then be
obtained.

Theorem 15.4 For the uth order logical control network (15.29) with the objective
Sfunction (15.43), there exists an optimal logical control matrix G* such that the
objective function is maximized and the trajectory of s*(t) = u™(t)x™(t) will become
periodic after a certain (finite) time.

Proof We can use (15.36) and (15.43) to replace (15.29) and (15.4), respectively,
to find the optimal control. (15.36) can also be described as a directed graph with
finite vertices, so, similarly to Corollary 15.1, we can find the optimal cycle in £2,,.
Using (15.42), the optimal cycle in £2,, can then be obtained. Denote the shortest

path from the initial state 8,{,1(0), e, 8,{,,(”_1) to C* by
i(0) ¢j(0) ¢i(1)gj(D) i(To—1) ¢ j(To—1)
(Skm (Skn ’ Skm 8kn LR) 8km 0 Skn 0 I C*)’
where

C* = 8m x 8 ((i(To), j(T0)), (i(To + 1), j(To + D), ...,
(i(To+d—1), j(To+d — 1))).

In the following, if £ =& (mod d) where £ > Ty and Tp < & < Tp +d — 1, then we
set i (£) = i(&). Using this convention, we can find G* satisfying

Coly(G*) =8 ™", p—1<t<To+d+pn-2, (15.44)
where
n pu—1
5=y (i(—p+&) — EHOmEmn L NG — 4 0) = 1)k 4 j0)
&=1 ¢=1

and the other columns of G* [Col(G*) C Aym] can be arbitrary. The higher-order
logical control network (15.29) is then converted to

x*¢+D)=Lu*@t —k+1)---u*O)x* @t —k+1)---x*@),

(15.45)
Wt +1) =G ur(t —k+ 1) u*(O)x*(t —k+ 1) x*(0).

O

15.4 Optimal Control of Higher-Order Logical Control Networks 367

Table 15.2 Payoff bi-matrix

Pi\P, 0 1
0 3,3 0,5
5,0 1,1

Example 15.8 We consider the model of the infinite prisoner’s dilemma [2].
Player 1 is a machine and player 2 is a person. Their possible actions are

0: the player cooperates with the partner,
1: the player betrays the partner.

The payoff bi-matrix is assumed to be as in Table 15.2.
Assume that the machine strategy, which depends on the p-memory, is fixed. It
is defined as
m(t+1) = fu(m@ —p+1D,m@t —pn+2),....m@),
h(t =+ 1), h(t = p+2), ..., h(D), (15.46)
where the machine strategy m(t) is considered as the state and f;, is a fixed logical
function. The human strategy, 4 (), is considered as the control. Denote by pj, (1) :=

pr(m(t), h(t)) the payoff of the human. Our purpose is to design an optimal control
to maximize the average human payoff

T
1
J = Tim — ; (o). (15.47)

Assuming that the machine uses the strategy “Two Tits For One Tat”, it will take
the action m(t + 1) = 0 only under (h(t — 1), h(t),m(t — 1), m(¢)) = (0,0, 1, 1).
Assuming that the initial state and control are m (0) =m (1) = h(0) = (1) =0, then
(15.46) and the human payoff Pj, can be rewritten as

m@+1)=Lh(t — D)h(@®)m(t — Dm(t), (15.48)

where
L=82[1111111111112111]

and

P(m(t),h(t)) := Py =h* (1) [(1) 2} m(t).

Set z(t) =m(t)m(t + 1), v(t) = h(t)h(t + 1), and s(t) = v(¢)z(¢). From (15.35),
(15.48) can be converted to

2(t+ 1) = Lo(t)z(1), (15.49)

368 15 Optimal Control

where
=L ®Ly)Wig2(Is® MR)
=841313131313132313].

From (15.43),

P(5454) = P(5163) = P(538)) = P(8383) =1,
B(sis}) = P(slat) = B(53s]) = P(s}s}) =s.
13(5254) (5454) (5354) F(‘SZ“SZ) =0,
B(s161) = P(a3a) = P(sis) = P(siai) =3.

It is easy to check that the reachable set of the initial state (x(0),u«(0), x(1),
u(1)) =(0,0,0,0) is

R(5483) = {8484, 8483, 8383, 6187, 838, d353, 8353, 8483, 8487, 8083},

which consists of 10 elements.
By Theorem 15.3, we can obtain the cycles of length less than or equal to 10 with
no repeated elements as

C1 =364 x 84{(1, D},

Ca =484 x84{(2, D, (3, D},

C3 =384 x8{(1,1), (2, 1), 3, D)},

C3 =84 x84{(2,3), (4, 1), (3,2)},

C3 =84 x 84{(4, 1), (4,2), (4,3)},

C; =384 x84{(1,3),(2,1), (4, 1), 3,2)},

C7 =284 x84{(2,1), (4, 1), (4,2), 3,3)},

Cy =384 x84{(1, 1), (2,1), (4, 1), (3,2), (1,3)},

C3 =084 x84{(2, 1), (4,1),(3,2),(2,3), 3,)},

C3 =84 x 84{(1,1), 2, 1), (4, 1), (4,2), (3,3)},

C5 =684 x 84{(2,1), (4, 1), (4,2), 4,3), 3, 1)},

Cg =084 x84{(1,1),(2,1), (4, 1),3,2),(2,3), 3, D},
Cé =04 x 84{(1,1),(2,1),(4,1),(4,2),(4,3),(3, D}.

A straightforward calculation shows that the optimal cycle is C2, which has average
human payoff % This result coincides with the one in [2].

References 369

The optimal trajectory for the system (15.49) is
8384 — 8483 — 84 x 84{(4, 1), (3,2), (2,3)}.
Thus, we can find the optimal trajectory for the system (15.48) as
8385 — 83 x 83— 6, x &{(2,1), (2, 1), (1,2)}.
Then,

G*=8*% % * % % % 2 % x21 % % % %x22],

where * can be chosen arbitrarily from {1, 2}.

References

Gibbons, R.: A Primer in Game Theory. Prentice Hall, New York (1992)
. Mu, Y., Guo, L.: Optimization and identification in a non-equilibrium dynamic game. In: Proc.
CDC-CCC’09, pp. 5750-5755 (2009)
3. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
New York (1994)
4. Zhao, Y., Li, Z., Cheng, D.: Optimal control of logical control networks. IEEE Trans. Automat.
Contr. (2010, accepted)

N =

Chapter 16
Input-State Incidence Matrices

16.1 The Input-State Incidence Matrix

Consider a Boolean control network with n network nodes, m input nodes, and p
output nodes. Its dynamics is described as

x1(t+ 1) = frler @), ..., x0 @), ur1(0), ..., um(1)),

: (16.1)
xn(t+ 1):fn(xl(t), "'7xn(t)7ul([)s "'sum(t))s -xi € —@1

yj() :hj(xl(t),...,x,,(t)), j=1...,p;y,€P,

where f; : """ — @, i=1,...,n,and h; : " — D, j=1,..., p, are logical
functions. Its algebraic form is

x(t+1)=Lu(t)x(t),

y() = Hx(), (16.2)

where L € %nyontm and H € Lopxon.

We first ignore the output and consider the input-state transfer graph (ISTG) of
the system (16.1). ISTGs were briefly explained in the last chapter. We now give one
more example, in order to explain them more thoroughly, as well as to introduce the
input-state incidence matrix.

Example 16.1 Consider the Boolean control network X', given by

E:ixl(t+1)=(X1(I)VX2(I))A“([)’ (16.3)

Xo(t+1)=x1(t) < u().
Setting x(z) = x1 () X x2(¢), it is easy to calculate that the algebraic form of X' is
X :x(t+1)=Lu()x(), (16.4)

D. Cheng et al., Analysis and Control of Boolean Networks, 371
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_16, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_16

372 16 Input-State Incidence Matrices

Fig. 16.1 Input-state transfer
graph 0x(1.0) CxO03 D

where
L=54[11244433]. (16.5)

According to the dynamic equation (16.3) [equivalently, (16.4)], we can draw the
flow of (u(t), (x1(t), x2(z))) on the product space Z x 2, called the input-state
transfer graph, as in Fig. 16.1.

Using vector form, the input-state product space becomes A x A4. We may define
the points in the input-state product space as P} = 85) i, P, = 821 X 82, ..., Pg=
6% X 62. ‘We now construct an 8 x 8 matrix, / (X)), in the following way:

1, there exists an edge from P; to P;,
Sij= 0

, otherwise.

F (X)), called the input-state incidence matrix of the Boolean control network X,
is then

1100000 0
0010000 0
0000001 1
0001 1100

E=11 70000 0 0 (16.6)
0010000 0
0000001 1
0001 110 0]

It is easy to see that the incidence matrix of a Boolean control network is indeed
the transpose of the adjacency matrix of the input-state transfer graph (note that it is
different from the adjacency matrix of a Boolean network). However, it is very dif-
ficult to find this matrix by drawing the graph since the graph will be very complex
when n and m are not very small.

Next, we explore the structure of the input-state incidence matrix. Comparing
(16.6) with (16.5), it may seem surprising to find that

F(D)= [ﬁ]

16.1 The Input-State Incidence Matrix 373

In fact, this is also true for the general case. Consider equation (16.2). In fact, the jth
column corresponds to the “output” x (7 + 1) for the Pjth “input” (u(2), x(1)) of the
dynamical system. If this column Col; (L) = &5, , then the output x (¢ + 1) is exactly
the ith element of x(¢) € Ax. Now, since u (¢ + 1) can be arbitrary, it follows that
the input-state incidence matrix of the system (16.2) is

L

L
S = Flaer = . 2" € Bymen xomeen, (16.7)
L

where the first block of rows corresponds to u(t + 1) = 8L, the second block cor-

responds to u(r + 1) = 8%,,1 , and so on.
Next, we consider the properties of _¢. We first introduce a new concept.

Definition 16.1 A matrix A € .#),x, is called a row-periodic matrix with period t
if 7 is a proper factor of m such that Row;;;(A) =Row;(A), 1 <i <m — 7.

The following property can be verified via a straightforward computation.

Proposition 16.1
1. A € Myxm is a row-periodic matrix with period Tt (where m = tk) if and only if
A = 1TA07

where Ag € Myxm consists of the first k rows of A, called the basic block of A.
2. If A € Myuxm is a row-periodic matrix with period Tt (where m = tk), then so is
AS, s € Zy (where Z is the set of positive integers).

Applying Proposition 16.1 to the incidence matrix, we obtain the following re-
sult.

Corollary 16.1 Consider the system (16.1). Its input-state incidence matrix is
F =l x _fy, where fy=1L. (16.8)
Moreover, the basic block of #* is
Is=Lx (A x L)', (16.9)
Note that since _#* is a row-periodic matrix, it is easy to see that

This equation shows that in calculating jg , we do not need to take account of the
whole of _# in the calculation. We summarize this in the following proposition.

374 16 Input-State Incidence Matrices

Proposition 16.2

=ML, (16.11)
where
2771
M = ZBlki (L).

i=1

Proof From (16.10) it is easy to see that /g‘“ =M g;. Since #o=L, (16.11)
follows. O

16.2 Controllability

First, we explore the physical meaning of _#°. When s = 1 we know that _Z;;
dictates whether or not there exists a set of controls such that P; is reachable from P;
in one step (based on whether or not _#;; = 1). Is there a similar meaning for _#*?
The following result answers this question.

Theorem 16.1 Consider the system (16.1) and assume that the (i, j)-element of the
sth power of its input-state incidence matrix, ji;" equals c. There are then c paths
from point P; which reach P; at the sth step with proper controls.

Proof We prove this by mathematical induction. When s = 1 the conclusion follows
from the definition of the input-state incidence matrix. Now, assume that %j is the
number of the paths from P; to P; at the sth step. Since a path from P; to P; at the
(s + Dth step can always be considered as a path from P; to Py at the sth step and
then from Py to P; at the first step, it can be calculated as

om +n

c= Z ik Fijs
k=1

which is exactly _# i‘}“) O

From the above theorem the following result is obvious.

Corollary 16.2 Consider the system (16.1), denoting its input-state incidence ma-
trix by ¢ . P; is reachable from P; at the sth step if and only if %j > 0.

The above arguments show that all controllability information is contained in
{#°|s=1,2,...}. By the Cayley-Hamilton theorem of linear algebra, it is easy

to see that if l.j =0, Vs < 2" then F° =0, Vs. Next, we consider only

16.2 Controllability 375

{ #%|s <2™*"}. Since they are row-periodic matrices, we need only to consider
their basic blocks, /OS . We split such a basic block into 2™ blocks as

73 =[Blki(#§) Blka(75) - Blkan(7)]. (16.12)

where BIK; (_#) € Moy, i=1,...,2".
Recall Definition 9.1 for controllability.

Definition 16.2 Consider the system (16.1). Denote its state space by 2" = 2" and
let Xge 2.

1. X € 2 is said to be reachable from X at time s > 0 if we can find a sequence
of controls U (0) = {u1(0), ..., u, (0)}, U(1) ={u1(1),...,u,(1)},...such that
the trajectory of (16.1) with initial value X and controls {U(¢)}, t =0, 1,...,
will reach X at time r = 5. The reachable set at time s is denoted by R;(Xo). The
overall reachable set is denoted by

R(Xo) = |_J Rs(X0).

s=1
2. The system (16.1) is said to be controllable at X if R(Xo) = 2. It is said to be
controllable if it is controllable at every X € 2.

From Proposition 16.2, BIk; (_#;) = M* ~1BIk; (L). From the construction, it is
clear that BIk; (_#) corresponds to the ith input u = 8§m . Moreover, the jth column

of Blk, (_#;) corresponds to the initial value xo = 82, The following conclusion is
then clear.

Theorem 16.2 Consider the system (16.1), with input-state incidence matrix ¢ .
1. x(s) =85, is reachable from x(0) = 85,1 at the sth step if and only if

om

Y (Bi(.7)),; = (M), >0. (16.13)

i=1

2. x = 6%, is reachable from x(0) = 8;,1 if and only if

2n1+n om 2m+n
Yo Y (BK(A))y = D (M), >0. (16.14)
s=1 i=l s=1

3. The system is controllable at x(0) = 8'2/,, if and only if

om+n om om+n

> Colj[Blk;(75)] = Y _ Col;(M*) > 0. (16.15)
s=1

s=1 i=1

376 16 Input-State Incidence Matrices

4. The system is controllable if and only if the controllability matrix, €, satisfies

2m+n om 2m+n

s€=§:§:Bm4/@)=§:AF>o. (16.16)
s=1

s=1 i=1

If A € #,x, is a real matrix, then the inequality A > 0 is used to mean that all
the entries of A are positive, i.e., a; j > 0, Vi, j.

When controllability is considered, we do not need to consider the number of
paths from one state to another. Hence, the real value of each entry of _#*¢ is less
interesting. What we really do need to know is whether it is positive or not. Hence,
we can simply use Boolean algebra in the above calculation. We refer to Chap. 11
for more about the following Boolean algebra.

1. If a,b € 2, we can define Boolean addition and the Boolean product, respec-
tively, as

a+gb=aVvbhb, axgb=a~nh.

{2, +2, x g} forms an algebra, called the Boolean algebra.
2. Let A= (a;j), B=(bij) € Byxn. We define

A+% B :=(aij +2bij).
3. Let A € Byxn and B € %y ,. We define A x g B := C € By p, Where
n
Cij = Z% ik X R bkj.
k=1
In particular, if A € %, «n, then
AP = A x4 A.
We use a simple example to illustrate the Boolean algebra.

Example 16.2 Assume

1 00 01 0
A=|0 1 0], B=|1 0 1
1 0 1 1 0 1
Then,
(1 1 0] 01 0
A+zB=|1 1 , AxgB=|1 0 1
|1 0 1] 111
(1 0 0] 1 00
AD =10 1 0 A® =10 1 0|, s>3
|1 0 1] 1 0 1

16.2 Controllability 377

Using Boolean algebra, we have the following alternative condition.

Corollary 16.3 Results 1, 2, 3, and 4 of Theorem 16.2 remain true if, in the corre-
sponding conditions (16.13)=(16.16), 7 is replaced by 7) and M* is replaced
by M9 . In particular, we call

pm+n om pm+n

Mg= 5> 5 Blki(7)) = 5 MY € By (16.17)

s=1 i=1 s=1
the controllability matrix and write M« = (c;j). Then:

@) 83,1 is reachable from (Sén if and only if ¢;j > 0.
(i1) The system is controllable at 8%,, if and only if Col (M) > 0.
(iii) The system is controllable if and only if M > 0.

The following example shows how to use Theorem 16.2 or Corollary 16.3.
Example 16.3 Consider the following Boolean control network:

x1(r+1) = (x1(1) < x2(1)) Vur (1),
x2(r + 1) = —x1 (1) Aua(r), (16.18)
y(@) = x1(t) V x2(7).

Setting x (1) = x7_ x; (1), u = x?_,u;(t), we have

(16.19)

x(t+1)=Lu(t)x(t),
y(®) =Hx(),

where

L=64[2211222224312442],

H=245[1112].
For the system (16.18), the basic block of its input-state incidence matrix _#o
equals L.

1. Is SJL reachable from x (0) = 5%?
After a straightforward computation, we have

(M(l))u:o’ (M(z))lz > 0.

This means that x(2) = 5}1 is reachable from x (0) = 83 at the second step.
2. Is the system controllable, or controllable at any point?

378 16 Input-State Incidence Matrices

We check the controllability matrix:

s=1

. 111 1
2 111 1

_ () _
//%_Z%M ~lo 01 0
111 1

According to Corollary 16.3, we conclude that:

(1) The system is not controllable. However, it is controllable at xop = 82 ~
©,1).

(ii) x4 =383 ~ (0,1) is not reachable from xo = 8} ~ (1, 1), xo = 87 ~ (1,0), or
xo =84~ (0,0).

16.3 Trajectory Tracking and Control Design

Assume x4 € R(xp). The purpose of this section is to find a control which drives xg
to xg4. Since the trajectory from xg to x4 (driven by a proper sequence of controls)
is generally not unique, we only try to find the shortest one. A similar approach can
produce all the required trajectories.

Assume that xo = 65,, and x4 = 8&,,. Consider the following algorithm.

Algorithm 16.1 Assume that the (i, j)-element of the controllability matrix, ¢; ;,
is positive.

e Step 1. Find the smallest s such that in the block-decomposed form (16.12) of
/O(S) , there exists a block, say Blkg (/O(S)), which has as its (i, j)-element

[Bik. (_7")];; > 0. (16.20)

Set u(0) = 685, and x(s) = 8, Ifs=1, stop; otherwise, go to next step.
e Step 2. Find k, B such that

Bkl >0, [Blka(7], > 0.

Setu(s — 1) =85, and x(s — 1) = 8%,.
e Step 3. If s — 1 =1, stop; otherwise, set s =s — 1, i = k (that is, replace s by
s — 1 and replace i by k) and go back to Step 2.

Proposition 16.3 As long as xg € R(xp), the control sequence {u(0),u(1),...,
u(s — 1)} generated by Algorithm 16.1 can drive the trajectory from xg to xq. More-
over, the corresponding trajectory is {x(0) = xo, x(1), ..., x(s) = x4}, which is also
produced by the algorithm.

16.4 Observability 379

Proof Since x4 € R(xp), by the construction of controllability matrix .#<, there
exists a smallest s such that [Blk, (/O(S))],', j > 0. This means that if u(0) = 85,,

x(0) = 85,,, then there exists at least one path from x(0) to x(s) = 5%,,. We then
know that xo can reach x; at the sth step if u(0) = 8%,,,. Hence, it is obvious that

there must exist £ such that xy can reach 5’2‘,, at the (s — 1)th step with u(0) = 65,.,

and B such that u(s — 1) = 8’25,,,, which make L(ng 6’2‘,, = (Sé,,. Equivalently, we can
find k, 8 such that

[Blks(£0)]; > O, [Blke (()(S_l))]kj > 0.

In the same way, we can find B8’ and k’ such that 8’2‘; can be reached at (s — 2)th

step and L8’23,,, 5’2‘,/, = 5’2‘,,. Continuing this process, the sequence of controls and states
from xq to x; can be obtained. O

Example 16.4 Recall Example 16.3. For xo = 83 and x4 = Si, we want to find a
trajectory from xg to x4. We follow Algorithm 16.1 step by step, as follows:

e Step 1. The smallest s is 2. We can calculate that

[Blk3(f02)]12 >0,

so u(0) =83, x(2) =8.
e Step 2. From a straightforward computation, we have

[BIk; (_%0)],, > 0. [Biks (75)], > 0.

sou(l) =8}, x(1) = 4.
e Step 3. Now s — 1 =1, so we stop the process.

Hence, the control sequence for xo = 83 ~(1,0) and x4 = 841 ~(1,1)is {u(0) =
83~ (0, 1),u(l) =8} ~ (1, 1)}, and the trajectory is {x(0) = 87 ~ (1,0),x(1) =
83 ~ (0,0),x12) = 84{ ~ (1,1)}. In general, the smallest-step trajectory is not
unique. In this example there are four ways drive x¢ to x4 at the second step. In
the same way, we can find the other three paths, which are

{u(0) =83, u(1) =83}, {x(0) =67, x(1) = 84, x(2) =8, };
{u(0) =84, u(1) =8}, {x(0) =63, x(1) = 84, x(2) =8, };
{u(0) =84, u(1) =83}, {x(0) = 67, x(1) = 84, x(2) = 8, }.

16.4 Observability

This section considers the observability of the system (16.1). We denote the outputs
as Y(¢) = (y1(1), ..., yp(?)) and, alternatively, y(¢) = M,leyk(t). We adapt Defini-
tion 9.7 for observability as follows.

380 16 Input-State Incidence Matrices

Definition 16.3 Consider the system (16.1).

1. X(]) and Xg are said to be distinguishable if there exists a control sequence
{U0),U(1),...,U(s)}, where s > 0, such that

Y+ =y (UE),...,00), X0 £Y(s+1)

=y Us), ..., U(0), X9). (16.21)

2. The system is said to be observable if any two initial points X(l), Xg € Apn are
distinguishable.

Recall that in Chap. 11 we defined the logical operators for Boolean matrices as
follows:

1. Let A = (a;j) € Buxs and o be a unary operator. o : Bxs — Buxs is then
defined as

oA :=(0a;j). (16.22)

2. Let A = (a;j), B = (b;j) € Byxs, and o be a binary operator. o : Xy X
Bxs —> Bpxs is then defined as

Ao B := (ai’jabij). (1623)

Definition 16.4 Let A = (a;;) € %y xn- The weight of A is defined as

wt(A) =" "ajj. (16.24)

i=1 j=1
The Boolean weight of A is defined as
I, wt(A) >0,
Wh(A) = wi(A) > (16.25)
0, wt(A)=0.

We give a simple example.

Example 16.5 Assume that

101 110
A:[o 0 1]’ 32[1 0 1}'

Then,

01 0 o 11
ﬂA:|:1 1 0]’ AVB:[l 0 o}’

wt(A) =3, wt(B) =4, wb(A) =wb(B) =1.

16.4 Observability 381

Recall (16.12). From the construction of _# and the properties of the semi-tensor
product, it is easy to see that Blk; corresponds to the input u(0) = &5,,. Moreover,

each block Col; (Blk;) corresponds to xo = 8;,1. To exchange the running order of
the indices i and j, we use the swap matrix to define

NO(S) = /O(S) W[zn’zm] (1626)

and then split it into 2" blocks as
7 = [Blki (7)) Blka(7") -~ Blku(7], (16.27)

where BIk; (_7,") € Bonyom, i =1,...,2".
Each block BIKk;(jo(s)) now corresponds to xo = 8%,,, and in each block,

Col ; (Blk; (jo(s))) corresponds to u(0) = §3,,.
Using the Boolean algebraic expression, we have the following sufficient condi-
tion for observability.

Theorem 16.3 Consider the system (16.1) with algebraic form (16.2). If

2m+n

\/ [(H % Blki (_75")) v (H = Blk; (_737))] #0. 1<i<j<2". (16.28)

s=1
then the system is observable.

Proof According to the construction and the above argument, it is easy to see that
(16.28) implies that, at least at first step, the outputs corresponding to x* = 85, and

x0 = ng are distinct. O
Theorem 16.3 can be alternatively expressed as follows.

Corollary 16.4 Consider the system (16.1) with algebraic form (16.2). Define

om +n

0= \/ [(H x B (A7) ¥ (H x Bik; (7).

s=1
If

N\ wb(0) =1, (16.29)
l<i<j<2n
then the system is observable.
Remark 16.1 Comparing this with the corresponding result in Chap. 9, one of the

advantages of this result is that when the step s increases, the corresponding ma-
trices involved in the condition do not increase their dimensions. Thus, it is easily

382 16 Input-State Incidence Matrices

computable. Another advantage is that this condition does not require controllability
of the system. The major disadvantage is that this result is not necessary.

We give an example to illustrate this.

Example 16.6 Consider the network (16.18) in Example 16.3.
Let

0;j = \24/[(H x Blki (/5")) ¥ (H x Blk; (7))

s=1

A straightforward computation yields

00 11 000 1 0000
012:[0 0 1 1]’ 013:[1 00 1] “4=[1 01 o]
0010 0011 000 1
023:[1 0 1 0]’ 024:[1 0 1 1) 034_[0 0 1 1]
We then have
/\ wh(0;) = 1.
1<i<j<4

The system is therefore observable.

16.5 Fixed Points and Cycles

The fixed points and cycles of an input-state transfer graph are very important topo-
logical features of a Boolean control network. For instance, the optimal control can
always be realized over a fixed point or a cycle. We refer to Chap. 15 or [2]. The
input-state incidence matrix can also provide the information about this.

We now adapt Definition 15.3 for fixed points and cycles.

Definition 16.5 Consider the system (16.1). Denote the input-state (product) space
by

S ={U.OU=1,....,un) € D", X=(x1,...,x,) € 7"}.

Note that |.7| = 2",

1. Let §; = (U, XY e S and S; = (U/, X)) e . Let U = (u},...,ul,), X; =
(xi,...,ul), etc. (S, S;) is said to be a directed edge if X', U, and X/ satisfy
(16.1), that is, if

x,{=fk(xi,...,x,i,,u"l,...,u%), k=1,...,n.

The set of edges is denoted by & C . x .&.

16.6 Mix-valued Logical Systems 383

2. The pair (., &) forms a directed graph, which is called the input-state transfer
graph.
. (81,82, ..., 8p) is called a path if (S;, Si+1) €&,i=1,2,...,¢—1.
4. Apath (81, S2,...)iscalled acycleif S;+¢ = S; for all i. The smallest £ is called
the length of the cycle. In particular, the cycle of length 1 is called a fixed point.

(98]

Taking the properties of _#* into consideration and recalling the argument for
the fixed points and cycles of a free Boolean network (without control) in Chap. 5,
the following result is obvious.

Theorem 16.4 Consider the system (16.1) with input-state incidence matrix 7 .

1. The number of the fixed points in the input-state dynamic graph is

om

Ny =) t(BIk; () = tr(M). (16.30)

i=1
2. The number of length-s cycles can be calculated inductively as

N — w(M*) = 3 ke (5 KN

N

2 < <2 (16.31)
S

We use an example to illustrate this.

Example 16.7 Recall Example 16.1. We can calculate that

trM =3, trM3:6,
trM* =15, tr M> =33,
tr M° = 66, trM’ =129,
tr M3 = 255.

Using Theorem 16.4, we conclude that Ny =3, N3 =1, Ny =3, Ns =6, Ng = 10,
N7 =18, and Ng = 30. It is not easy to convert them from the graph directly.

16.6 Mix-valued Logical Systems

In the multivalued logic case, say in a k-valued logical network, we have x;, u; €
% [1]. When the infinitely repeated game is considered, the dynamics of the strate-
gies, depending on one history, may be expressed as in (16.1), but x; € &, and
Uy € 2;,. Such a dynamic system is called a mix-valued logical dynamical system.
We refer to Sect. 14.7 for a detailed discussion of mix-valued logic.

384 16 Input-State Incidence Matrices

Set

n m
xzx;'zlxiel_[.@ki, M=l><21:1ua€l_[9'a-
i=1 a=1

In vector form, we then have x; € Ay, and uy € Aj,. Setting k =]—[?=1 ki and j =
[1o=1 ja» We have

X € Ag, ueA;.

In this section, we claim that all the major results obtained in previous sections
remain true for mix-valued logical dynamical systems (including multivalued logi-
cal control networks as a particular case). We state this as a theorem and omit the
proofs since they are identical.

Theorem 16.5 Consider the system (16.1) and assume that it is a mix-valued log-
ical dynamical system, where x; € Dy, i =1,...,n,uqy € 9, a=1,...,m, and
yg € @eﬁ, B=1,..., p. That is, each state x;, control uy, and output yg can have
different dimensions. We then have the following generalizations:

1. Considering the controllability of this mix-valued logical dynamical system, The-
orem 16.2 and Corollary 16.3 remain true.

2. Considering the observability of this mix-valued logical dynamical system, The-
orem 16.3 (equivalently, Corollary 16.4) remains true.

3. Considering the number of fixed points and the number of cycles of this mix-
valued logical dynamical system, Theorem 16.4 remains true.

4. Considering the trajectories and corresponding controls, Algorithm 16.1 re-
mains available.

To apply the extended results technically, we need to solve the problem of how to
calculate {x;} from x and vice versa. Similarly, we also have to calculate {;} from
u and vice versa. We give the following formula.

Proposition 16.4 Let x; = (SZ‘I,", i=1,....,n,and x = 8. Then:

1.

k k
d=(@ =) X — +(@—1) X —— + -4 (@1 — 1) X ky +atp. (16.32)
ki kiks

x1 = (k/ ® I)x, (16.33)

T
Xj= (Ik/kj ® lkj)W[n,j;ll k,-,kj]x'

Proof Equation (16.32) can be proven via a straightforward computation. The first
equality in (16.33) comes from the definition of the semi-tensor product. To prove

16.6 Mix-valued Logical Systems 385
the second one, we have

W[HZ;I‘ kit = AL XX L X
Applying the first equality to it yields the second equality. U

We use the following example to demonstrate all the extended results in Theo-
rem 16.5.

Example 16.8 Consider the mix-valued dynamical system

x1(t+ 1) = fr(@), x1(#), x2(¢)),
x2(t+ 1) = fa(u(), x1 (1), x2(¢)), (16.34)
y(t) =h(x1(0), x2(1)).

where x1 (1) € D, x2(t) € D3, u(t) € Do, f1: D3 x D3 — Do, fr: D3 x D3 — D,
and i : 9» x I3 — 9, are mix-valued logical functions.
Using vector form, the system (16.34) can be expressed as

x1(t +1) = Miu(t)x1(1)x2(2),
xo(t+1) = Mou(t)x1(t)x2(¢), x1,u € Ay, x2 € A3, (16.35)
y() = Hxi()x2(1), y€ As.

In fact, in the mix-valued case, describing a logical function is not easy. In general
it should be described by a truth table. We refer to Sect. 14.7 for a detailed discussion
of the logical expression of mix-valued logical systems. In general, we use structure
matrices to represent the functions directly. We assume the structure matrices of f1,
f2, and h are M, M, and H, respectively, where

My =6[111212222222],
M>;=463[313221321333],

H=43[133222].

Setting x (t) = x1(t)x2(¢), the algebraic form of (16.34) can be calculated as

(16.36)

x(t+1)=Lu(t)x(t),
y(#) = Hx(1),

where

L=65[313524654666].

1. Consider the controllability of the system. The basic block of the input-state
incidence matrix _#y equals L. From a straightforward computation, the con-

386 16 Input-State Incidence Matrices

trollability matrix is

12
//ﬂgzngM(s)z > 0.

s=1

—_ = e =
—_—
—_ = = e = =
—_ = = =
—_— e e =
e e

We conclude that the system (16.34) is controllable.
2. Given any two points, say xo = (Sé ~ (51, d31) and x; = 82 ~ (62, 5%), we want to
find a trajectory from xq to x; with proper controls.

e Step 1: The smallest s is 3 for

[Blk, /03]51 >0,

so u(0) =8}, x(3) = 4.
e Step 2: We have

[Blk; #0]s, >0, [Blk, /03_1]41 >0,

so u(2) =8}, x(2) = 8¢. Then,

2—1
[BH(Z /0]43 > 0, [Blkl fO]31 > 0,
sou(l) =83, x(1) =4;.
e Step 3: s — 1 =1, and we stop the process.

Hence, the control sequence which drives xp = 8% to xg = 82 is {u(0) =
83,u(l) =82, u(2) = 81}, and the trajectory is {x(0) =8}, x(1) = §,x(2) =
8¢, x(3) =82}

3. Next, we calculate the number of fixed points and the numbers of cycles of dif-
ferent lengths. It is easy to calculate that

trM =2, trM2:6,
uM>=8, uM'=14,
wM> =37, trM°®=060,
wM’ =135, wM®=254,
wM® =512, wM'"=1031,
wM'' =2037, oM?=4112.
We conclude that there are N = 2 fixed points and N; cycles of length i, i =

2,3,4,5,6,7,8,9,10, 11, where Np =2, N3 =2, Ny =2, N5 =7, Ng =38,
N7=l9, Ng=30, N9=56, N10=99, N112185,and N12=337.

16.6 Mix-valued Logical Systems 387

4. Finally, we consider the observability of the system. Let

01 =\ (0 B (A 7 (1 B, (7).

s=1

A straightforward computation yields

1 1 0 0 1 0
Op=|1 0f, Oi3=|0 1], Ou=|1 0],
| 1 0_ _O l_ | 1 0_
1 0 [0 07 1 7
Ois=1|1 0], O=|1 0], Oxn=|1 1],
1 0 _1 0_ _1 A
1 1 117 117
Ou=|1 0], O»s=|0 0], Ox=1|0 0],
0 0] 1 0] 1 0]
1 07 1 07 [0 07
Ou=|1 1], O5s=|1 1], Ox=1|1 1],
i 1_ _1 1_ _1 1_
1 0] 1 0] 1 0]
Oys=1|1 0], Ow=1|1 0], Os56=10 0
| 1 0_ | 1 0_ _O 0_
Hence,
AN wb(0ij)=1.
1<i<j<6

According to Theorem 16.3 or Corollary 16.4, the system is observable.

Finally, we compare the new controllability result with the corresponding result
in Chap. 9. The main results in Chap. 9 for free sequences of controls are Theorem
9.3 and Corollary 9.2. Roughly speaking, they claim that the reachable set from x is

2'1
R(x) = COI{U Z"xo}. (16.37)

i=1

Note that by the properties of semi-tensor product, L* € Znyontsn. So, when the
step s is not small enough, the size of L® will be too large to be calculated in a
memory-restricted computer. However, the main result in this chapter requires that

O(S) is checked. Since /O(S) € Lonyom, Vs, it is always easily computable (as long
as the first step is computable).

388 16 Input-State Incidence Matrices

References

1. Li, Z., Cheng, D.: Algebraic approach to dynamics of multi-valued networks. Int. J. Bifurc.
Chaos 20(3), 561-582 (2010)

2. Mu, Y., Guo, L.: Optimization and identification in a non-equilibrium dynamic game. In: Proc.
CDC-CCC’09, pp. 5750-5755 (2009)

3. Zhao, Y., Qi, H., Cheng, D.: Input-state incidence matrix of Boolean control networks and its
applications. Syst. Control Lett. (2010). doi:10.1016/j.sysconle.2010.09.002

http://dx.doi.org/10.1016/j.sysconle.2010.09.002

Chapter 17
Identification of Boolean Control Networks

17.1 What Is Identification?

Consider the Boolean control network

x1(t+ D= fila (@), ..., x, @), ur1 (@), ..., un (1)),
x2(f + 1) = f2(x1(f)7 A 7xn(t)7u1(t)’] um(t))’

: (17.1)
xn(t+1)zfl’l(-xl(t)v"'7xn(t)’u1(t)’""um(t))v
yi@)=hj(x1(@),....x.(0), j=1,....p,

where x; (t), ux(t), yjt) € Z,i=1,...,n,k=1,...,m, j=1,..., p, are states,

inputs (controls), and outputs respectively, and f; : 2" — ", hj : 9" — PP
are logical functions.
The identification problem is stated as follows.

Definition 17.1 Assume we have a Boolean control network with dynamic struc-
ture (17.1). The identification problem involves finding the functions f;, i =
I,...,n, and hj, j =1,..., p, via certain input-output data {U(0), U(1),...},
{Y(0), Y(1),...}. The identification problem is said to be solvable if f; and /; can
be uniquely determined by using proper inputs {U (0), U (1), ...}.

Note that here we use the following notation: X (t) := (x1(¢), x2(¢), ..., x, (1)),
Y(#) = (1(0), y2(8), ..., yp(®), and U (#) := (u1(t), u2(t), ..., um()).

Remark 17.1 From Chap. 10 we know that different models may realize the same
input—output mapping, so we may not be able to obtain unique f;’s and %;’s. Most
likely, we are only interested in the equivalence classes which realize the same
input—output mapping. Therefore the “uniqueness” should be clearly stated.

D. Cheng et al., Analysis and Control of Boolean Networks, 389
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_17, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_17

390 17 Identification of Boolean Control Networks

By identifying 1 ~ 6% and 0 ~ 8%, the algebraic form of (17.1) is obtained as

t 1)=Lu(t 1),
x@+1) u(t)x(t) (172)
y(t) = Hx(1).
Note that X = (x1,...,x,) and x = X}_,x; are in one-to-one correspondence

and can be easily converted from one form to the other. Similarly, Y and y (U and u)
are in one-to-one correspondence. Therefore, (17.1) and (17.2) are equivalent, and
hence identifying f;,i =1,...,n,and h;, j =1, ..., p, is equivalent to identifying
L and H.

Model construction for a Boolean network was discussed in Chap. 7, where a
pure Boolean network without inputs and outputs was investigated. This chapter
considers a Boolean network with inputs and outputs.

17.2 Identification via Input-State Data

In this section, we assume that the state is measurable. Alternatively, we may make
the following assumption.

Assumption1 p=nand y;(t) =x;(#),i=1,...,n.

Recall the following definition from Chap. 9.
Definition 17.2 The system (17.1) is controllable if, for any initial state X¢ =
(x1(0),...,x,(0)) € 2" and destination state Xy, there is a sequence of controls
Uo, Ui, ..., where U; = (u1(t), ..., un(t)), such that the trajectory X (¢, Xo,U)
satisfies X (0, Xo, U) = Xg, and X (s, X, U) = X4 for some s > 0.

For identifiability from input-state data, we have the following result.
Theorem 17.1 The system (17.1) is input-state identifiable if it is controllable.
Proof (Sufficiency) Since the system is controllable, for any xg = 83, we can find
a set of controls such that at time s, x(s) = 8;,1. Now, to identify Coli (L), we can

find a unique pair (i, j) such that

Josi k
82111 812’1 = 62)1+)71 .

In fact, i = k%2™ and j = kzj,i + 1. Hence, we can first choose control ug, ug, ... to

drive the system to x(s) = 83,, at a certain time s > 0, and then choose u(s) = 8%,,[.
It follows that

Coli (L) =x(s + 1).

17.2 Identification via Input-State Data 391

(Necessity) Split L= LWy pmy into 2" equal-sized blocks as L= [Zl, Zz,
y) Sp [27,2m] q
e, Zgn]. If we now assume that 82, is not reachable, then the columns of Blk; (Z) =

i,- can never be shown in the state x(¢), t = 1, 2, Thus, Blk; (f,) is not identifi-
able. O

It is now apparent that controllability is the key for identifiability. We refer to
Chap. 9 for the necessary and sufficient condition for controllability, and to Chap. 16
for an alternative condition.

Remark 17.2
1. Assume we have enough proper input data {Uyp, Uy, ..., Ur} and the correspond-
ing state data {Xg, X1, ..., X7} such that (in the set-theoretical sense)

{(Uop x X0, Uy X X1,...,Upr_1 x Xgp_1}=9"™", (17.3)
L can then be identified in the following way: if, in vector form, u;x; = 8'2jm+,,,
then Col; (L) = x41.
2. Similarly, if we know {X¢, X1, ..., X7} and the corresponding {Yy, Y1, ..., Y1},
such that
{Xo, X1,..., X7} =9", (17.4)

then in vector form x; = 85,1 implies Col; (H) = y;.

Example 17.1 Consider the following Boolean control network:

x1(t+1) =—x1() Vx2(2), (17.5)
Xt + 1) =u@) A=xi(t) Vv (—u) Axi(t) A=xa(t)). '
Setting x (1) = l><l.2:1x,- (1), we have
x(t+1) = Lu@®)x(1), (17.6)

where
L=64[24112322].

For the system (17.5), the basic block of its input-state incidence matrix _#
equals L.
Checking the controllability matrix, we have

s=1

» 111 1

o Noye_ |

v=) =111 1|”"
111 1

We conclude that the system is identifiable.

392 17 Identification of Boolean Control Networks

Table 17.1 Input-state data
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

u@®) 111 11211112 1 2 1 1 2 1 2 2 1
x@ 1 2 4 1 2 4 2 41 2 4 2 4 2 4 1 2 4 2 3

We can choose a sequence of controls and the initial state randomly, and the
sequence of states can be determined. First, we choose 20 controls: the control-state
data are given in Table 17.1.

Here, the number i in u(¢) [resp., x(¢)] refers to 85 (resp., 83). We can obtain L
as

L=08424%123%2].

Some columns of L are not identified because not all input-states 8%,,[4 are reached
by the randomly chosen sequence of control. One way to deal with this problem is
to choose a long sequence of input-state data. For example, if we randomly choose
a sequence of 100 controls (or even more), then L could be identified.

From the example, we know that any length of input sequence chosen randomly
cannot ensure that L can be identified, although the probability is very close to 1 if
the sequence is long enough. In fact, we can design an input sequence

o (Sém, Js such that x(s) = x (1), u(s) = 83;1 Vs <t/ <t,x(t') #x(t),
u =

(Sém, otherwise,
(17.7)

where, when x () enters a cycle, we stop the process. We then have the following
result.

Theorem 17.2 [f the system (17.1) is identifiable, then the logical functions f; can
be determined uniquely by the inputs designed in (17.7).

Proof The state under the input sequence must enter a cycle. Thus, for (Sén in the
cycle, there must exist #| <ty < --- < fom such that x(¢;) = 85,,, u(tj) = 8. . Hence,
none of the states in this cycle can reach the state outside the cycle by changing the

control. If the cycle does not contain all the states, then the system is not control-
lable. O

Example 17.2 Recall Example 17.1. Using (17.7) we can obtain the input-state data
given in Table 17.2.
L can then be identified as

L=08424112322].

17.3 Identification via Input—Output Data 393

Table 17.2 Input-state data

wy 11 1 2 2 1 1 1 2 2 2
x) 1 2 4 1 2 3 1 2 4 2 3 2

17.3 Identification via Input—Output Data

Definition 17.3 The system (17.1) is observable if there is a sequence of controls
{Uo, Uy, ...}, where U; = (u1(t), ..., un,(t)), such that the initial state Xo can be
determined by the outputs {Yy, Y1, ...}.

We introduce the following assumption.
Assumption 2 The system is controllable.

For identification via input—output data we need the observability condition. We
refer to Chap. 9 for the necessary and sufficient conditions. In the following we give
an alternative condition. This is basically the same as the one in Chap. 9, but it is
convenient for identifying xo.

Split L into 2™ equal-sized blocks as

L =[BIk(L), Blky(L), ..., Blkyn(L)] :=[By, Bz, ..., Bon],

where B; € Loinyon,i=1,...,2™.

Define a sequence of sets of matrices I € fzp x2",i1=0,1,2,..., as follows:
I'y={H},
I'n={HB;|i=1,2,...,2™},
D={HB;Bj|i,j=1,2,...,2"},
. (17.8)
I's ={HB;,Bj,--- B li1,i2,...,iy=1,2,...,2"},
Note that Iy C %pxon, Vs. It is then easy to prove the following result.
Lemma 17.1
1. There exists an s* > 0 such that
S*
Ly c | I (17.9)

k=1

394 17 Identification of Boolean Control Networks

2. Let s* > 0 be the smallest positive integer such that (17.9) holds. Then,

Y*

riclJn. vjss* (17.10)
k=1

For notational ease, we also use Iy to denote the matrix consisting of its elements
arranged in a column. For instance,

H B, H B B
HB, HB B

I = . , = .
HB2m HBzm B2m

Using these, we construct a matrix, called the observability matrix:
Iy
I
Me=| . |. (17.11)
T«
We then have the following theorem.

Theorem 17.3 Assume that the system (17.1) is controllable. It is then observable
if and only if

rank (A) =2". (17.12)

Proof Let the initial state be x¢. Since the system is controllable we can find a time
sequence {til li=1,2,...,n} satisfying

1

thy>tt+1, i=0,1,...,2" =1, 15 :=0,
such that x(tl.l) = xp. Using u(til) = 8&,,1, i=1,...,2™, itis easy to see that
y(tl+1)
y(t21.+ D 2 e
y(t21m.+)
In general, assume we have a time sequence tl:‘1 iy iy ir=1,2,...,2", k =
1,...,s,and we convert the multi-index (i ip - -- i5) to asingle index u(iy iz --- is)

in “alphabetical order”. That is,

p(1 D=1, pdl--2)=2,..., p@"2"...2")=2"

17.3 Identification via Input—Output Data 395

We assume that this time sequence satisfies
tiSH >tl+s, 1=0,1,...,2"" -1, 15:=0.

Now, assume (using proper controls) that

x (1 .1,) = %0

and define a sequence of controls as

(i 1) =8 Wy iy iy T 1) =0
u(l,i(il iyiy) T8 — 1) — 5;“;”.
We then have
y(t] +5)
Y +s) | -
y(t‘gm; +5)

Note that we assume the sets of time sequences to be sufficiently far separated from
each other. Precisely,

K -1
01t > (tngn om) +5.
—— N’
s s—1

Finally, we have

y(0)
y(ti +1)
y(t}+1)

the +1
Mexo = y(z, L (17.13)

Y +5%)
y(3 + %)

| V(o +5%) |
Note that when Y is a set of observed data, xo can be uniquely solved as
_ T -1 T
xo=(MyMe) MyY. (17.14)

(Necessity) By the definition of s* it is easy to see that Y contains all possible
outputs. Now, if rank(.#) < 2", then one sees easily that in addition to x, there

396 17 Identification of Boolean Control Networks

exists at least one other solution x(/) of (17.13). Then, x¢ and x(/) are not distinguish-
able. O

We are now ready to present our main result.

Theorem 17.4 The system (17.1) is identifiable from input—output data with proper
controls if and only if the system is controllable and observable.

Proof (Necessity) In fact, from Theorems 17.1 and 17.3, the necessity in obvious
because if the system is not observable, then it is impossible to identify all the states
from outputs. If the system is not controllable, then it is impossible to identify L
from input-state data.

(Sufficiency) Because the system is controllable, we can assume that we first
construct enough input data {Up, Uy, ..., U}, this generates the corresponding
{Xo, X1,..., X7}, and these collectively satisfy (17.3). Then, by controllability,
there exist controls {U; | T1 <t < T»} such that X7, = Xj. Since the system is ob-
servable, there exist controls {U;|T>» <t < T3} and X7, = X¢ can be identified
by using this control sequence. We can then choose {U; | T3 <t < Ty — 2} and
Ur,—1 = Up such that X7,_1 = Xo. We know that X7, = X and this can be then be
identified by choosing proper controls. Continuing this process, {Xo, X1, ..., X7}
can eventually be identified. Now, using the identified {X;|i =0, 1,...,T1} and
the input data {U; |i =0, 1, ..., T1}, we can identify L according to Theorem 17.1.
It is easy to see that (17.3) implies (17.4). Then, using {X;|i =0,1,..., 71} and
{Y;i|i=0,1,...,T1}, we can identify H. O

17.4 Numerical Solutions

17.4.1 General Algorithm

Consider the system (17.1) again. Assume that we have a coordinate transformation
z=Tx,where T € Znyon. Its algebraic form (17.2) then becomes

2t + 1) = Lu()z(1),

- (17.15)
y(t) = Hz(t),

where

L=TL(lL»®T"), H=HTT. (17.16)

It is obvious that {L, H} and {L, H} are not distinguishable by any input—output
data. Is this a counterexample to Theorem 17.4? In fact, when we state that a system
is observable, we implicitly assume that the coordinate x is fixed. Otherwise, it
would be impossible to identify x¢ from input—output data. So, precisely speaking,

17.4 Numerical Solutions 397

we should say either (i) assume the coordinate frame x is fixed, then Theorem 17.4
holds, or (ii) {L, H} are identifiable up to a coordinate transformation.

Keeping this in mind, what we are going to identify is the equivalence class, but
not a particular {L, H}. We then have the following lemma.

Lemma 17.2 Without loss of generality, we can assume the initial value is fixed,
say, xo = 8%,,.

Proof Assume that we have a realization {L, H} with initial value xo = 85,,. Under
a coordinate transformation z = T x, with

Coli(T) = 8},
we then have zg = S%n. Il
To evaluate the error, we need a distance.

Definition 17.4 Let A, B € %), x,. The distance between A and B, denoted by
d(A, B), is then defined as

B}
d(A, B)= > >0 laij Vbijl. (17.17)

i=1 j=I

Remark 17.3 Let A, B € £pyq. It is then easy to see that d(A, B) is the number of
different columns of A and B. This is why we introduce the coefficient % into the
definition.

Assume that we have the input data {U, |t =0, 1, ..., T} and the correspond-
ing output data {Y; |t =0, 1, ..., T}. For each pair {L, H} we define the error as
follows.

Definition 17.5 Assume the input data {U; |t =0, 1, ..., T} and the corresponding
outputdata {Y; |t =0, 1, ..., T} are given. For a given (L, H), using initial xo = 8%,1
and the input data {U; |t =0, 1, ..., T}, the estimated output data can be calculated
as {I?t |t =1,...,T}. The error is then defined as

T
e(L, H)=Y d(¥,.Y,). (17.18)

t=1
Next, we define a neighborhood of (L, H).

Definition 17.6 Letr € Z, . The neighborhood of (L¢, Hp), denoted by B, (Lg, Hp),
is defined as

B.(Lo, Ho) :={(L, H) | d(L, Lo) <r,d(H, Hy) <r}. (17.19)

398 17 Identification of Boolean Control Networks
We are now ready to present our main algorithm.

Algorithm 17.1 Assume a set of input data {U, |t =0, 1,...,T} and the corre-
sponding output data {Y; |t =0, 1, ..., T} are given.
Step 0. Set S = {(L, H)|L € Lonyonim; H € Lopxom}, r = rg (default: ro = 1),
and epjn = 0.
Step 1. Choose an (Lo, Hp) € S.
(i) If e(Lg, Hp) =0, set (L*, H*) = (Lo, Hp) and terminate the algorithm (the
solution is obtained).
(i) Otherwise, set g9 := (Lo, Hp) and proceed to the next step.

Step 2. Over the neighborhood B, (Lg, Hp) find a point (L*, H*) such that
" =¢(L* H") = min e(L, H).
(L,H)€B, (Lo, Hy)NS

(1) If e* =0, set (L*, H*) = (Lg, Hp) and terminate the algorithm (the solution
is obtained).
(i) Otherwise, if &* < &g, replace (Lo, Hyp) by (L*, H*) and S by S :=
S\{B; (Lo, Hp)}, then return to Step 2.
(iii) Otherwise, if €9 < &min, replace emin by €o and return to Step 1.

Theorem 17.5 Algorithm 17.1 will terminate at a certain step, where a solution
(L*, H*) with e(L*, H*) =0 is provided.

Proof Since at each iteration the error ¢ is strictly decreasing, and there are finitely
many {L, H}, the conclusion is obvious. O

Remark 17.4 1f the data contain errors, then we can only obtain an optimal solution
(L*, H*), satisfying e (L*, H*) = &pjn.

Example 17.3 Recalling Example 17.1, add the output as
y(t) = x1 V x3.

The algebraic form of the Boolean control system is then

ix(, +1) = Lu(t)x(1), (17.20)
y(t) = Hx (1),
where
L=06424112322]
and

H=45[2112].

17.4 Numerical Solutions 399

A straightforward computation shows that the observability matrix is

0 1 1 07
1 0 0 1
H 1 000
H B, 01 1 1
Mo=| HB» |—|1 1 11
H B\ B 00 0O
: 0 0 1 1
1 100

From this part of .#, it is apparent that all of its columns are different, so
rank(.#) = 4. Thus, the system is observable and hence identifiable.

Using (17.20) and setting xo = Si, we randomly choose 50 inputs and calculate
50 corresponding outputs as follows:

u(): 12121212221222221
11221221221222222
1211221121121112,

y@: 21121212111211111
22111211211211111
1212211211211212.

Using Algorithm 17.1, this terminates at

:£=54[41124443], 1721)

H=5[2211].

It seems that it is quite different from the original system (17.20), but note that if we
set

x()=Tz() = z(1),

S O O =
- O O O
S = O O
S O© = O

which is a coordinate transform, then the system (17.20) can be converted to

2t + 1) = Lu()z(1),
y(t) = Hz (1),

400 17 Identification of Boolean Control Networks

where
L=T 'L(L®T)=54[41124443]=1L,
H=HT =5[2211]1=4.

Thus, the system which we identified is equivalent to the original system.

17.4.2 Numerical Solution Based on Network Graph

In practice, for an n-node network, the in-degree of each node is usually much less
than n. In this case, the number of candidate structure matrices L can be reduced
tremendously. In this subsection we assume that the network graph is known and
consider how to identify the system. Note that since the graph is fixed, a coordinate
transformation which changes the graph is not allowed. Therefore we have to take
the initial state x¢ into consideration.

Example 17.4 Consider the following system:

x1(t+1) = filx1(®), x2(0), u1 (1), ua(?)),
x2(t + 1) = falxr (1), x2(2), u1 (1), uz(1)),
yi(1) =hi(x1(1), x2(1)),
yi(t) = ha(x1(1), x2(0)).

Assume the observed data are as follows:

u(t): 41324421423443124424
12411113211324224313
41324332211323132443
24434322233243233233
44341422431141232214,

(17.22)

y(@): 23441333433433421333
34134222414241333342
43441344134241424133
41334341334413414414
43343433334223414134.

If the network graph of the system is known, as in Fig. 17.1, then we can infer
that the algebraic form of the system is

x1(t +1) = Liui(H)x2(t),
X2t + 1) = Loua(t),
y1(¢+ 1) = Hx (),
y2(t + 1) = Haxz (1),

17.4 Numerical Solutions 401

@

Fig. 17.1 Network graph

EH—C

@
@) ()
where L € % x4, L, Hi, Hy € % «>. Replacing the neighborhood (17.19) by
B, (L}, H{, xo0)
(L1 x0) [(L L) <. d(H),) <7, dCso o) < 1,
i=12 j=1.2},

Algorithm 17.1 remains applicable. The system is then identified as

Li=8[2111],

Ly=5[12],

Hy =8[21], (17.23)
=5[21],

R0 =263

In fact, the data are generated from the system

x1(t+1) =ui() Ax2(2),

x2(t + 1) = ua(t), (17.24)
y1(t) = x1(),

y2(t) = —x2(2),

with the initial state xo = § i.
Let x () = x1(t)x2(t), u(t) =u1(®)us(t), y(t) = y1(t)y2(¢). Its algebraic form is

x(t+1)=Lx(@),

(17.25)
y() = Hx(1),

where

L=54{1313242433334444),
H=05[2143]

Note that if we set x1(r) = —x(¢) and X2(¢) = x2(¢), then it is easy to see
that (17.23) is equivalent to the original system (17.24) via this coordinate trans-
formation. Moveover, this coordinate transformation does not change the network
graph.

402 17 Identification of Boolean Control Networks

Remark 17.5

1. When the system is not observable and/or controllable, there is no unique (L, H)
(up to a coordinate transformation), but this does not mean that the data have
no realization. In particular, if the data are from a real Boolean network, then
one realization (the real one) exists. In fact, it only means there is more than
one realization. In this case Algorithm 17.1 remains applicable. Therefore, when
applying this algorithm we do not need to worry about whether the system is
controllable and/or observable.

2. If the data contain some errors, the algorithm is still useful. In this case we may
preassign an acceptable error level such that the algorithm terminates when the
true error reaches this.

Example 17.5 Consider the following system:

X1+ 1) =ui(t) Axa(t),

xo(t + 1) = —x (1),

x3(t+ 1) =x1(t) < x2(t), (17.26)
x4(t + 1) =—-ur(2),

yi(t) =x2(t) V x3(2),

y2(8) = x4(2).

Let x(2) = x1(£)x2()x3(0)x4(2), u(t) = ur(Ouz(t), y(t) = y1(£)y2(¢). Its alge-
braic form is then

x(t+1)=Lx(),

(17.27)
y(t) = Hx (1),

where

L=656[66 6 6 161616164 4 4 4 10101010
55 55 151515153 3 3 3 9 9 9 9
141414141616161611 111111101010 10
1313131315151515111111119 9 9 9],

H=6&[3412123434121234].

It is obvious that the system is not controllable, thus it is not uniquely identifiable.
However, Algorithm 17.1 remains applicable.
Let a set of input—output data be generated from (17.26) as

u(t): 13323422222233212213
32234424244123332212
22444313441334312142
14422414341214322421
11313142413424111412,

17.4 Numerical Solutions 403

y(): 32441231133114412332
24114311131121441114
31133112231224112143
12331134111214311133
22442241114111142234.

Let the initial Lo, Ho be (to avoid computational complexity, we choose the
initial structure close enough to the real network to see whether the algorithm works)

Lo=816[76 6 6 161616164 4 4 4 10101010
5555 151515153 3 8 39 9 9 9
1414 141416161616 11 11 11 111010 10 10
131313131515151511 1111119 9 9 9],
Ho=64044 1 212343112123 4]

The algorithm then terminates at the second step at

L=056[66 6 6 161616164 4 4 4 10101010
55 55 151515153 3 3 3 9 9 9 9
141414141616161611 1111 11 1010 10 10
13131313 15151515111111119 9 9 9],

H=08044 1212243412123 4]

Note that L = L, but H is different from H. Since the system is not uniquely
identifiable, we here have another realization.

17.4.3 Identification of Higher-Order Systems

A pth order Boolean control network is defined as follows:

x1t+ D)= fix (@), ..., xy@®),u1 (@), ..., upum@), ..., x1¢—pu+1),...,
X —p+Du1(t—pn+1),...,u,@—pu+1)),

xo(t+ D= fox1(®),....,xn@®),u1(t),...,upn(@®),....,x1¢—pn+1),...,
Xp(t—p+D,u(t—p+1), ..., unt—pn+1),

Xp(t+1)= frux1(t), ..., x0 @), u1 (@), ..oyt (@), ..., x1(t—p+1),...,
Xp(t—p+D,u1(t—p+1),...,uy,—pn+1)),
yj(t):hj(xl(t),...,xn(t)), j=1,...,p.

(17.28)

Consider the identification of the system (17.28). Basically, Algorithm 17.1 is
still applicable, provided some observations are introduced. These are:

404 17 Identification of Boolean Control Networks

1. Note that
L e fznxz(wrm)u s H e $21’><2” .

2. Considering the initial values {x(0), x(1),...,x(x — 1)}, we cannot simply as-
sume that all of them are 8;,, because this cannot represent all possible initial
values, even under a coordinate transformation. Let

[0, 0 —1=[po=0, 1) Ulpr, u)U---Ulpon_y, uon = — 1] (17.29)

be a partition with nonincreasing length, where u;, i =0, 1, ..., 2", are nonneg-
ative integers, that is,

Wi — i1 > Mip1 — @i, i=1,...,2" — L. (17.30)

For each partition (17.29) satisfying (17.30), we assign the initial values as fol-
lows:

X)) =08, pja<i<pj,i=0.1....pu—1

It is easy to check that this covers all possible assignments of initial values under
a coordinate transformation. For instance, if we assume p = 2, then we have two
different partitions:

[0, HU[L,2)UdU---, [0,2)UdU--..
The corresponding initial-value assignments are

x(0) =81, ond x(0) =81,
x(l)ZS%nv x(1)=81n«

17.5 Approximate Identification

Assume that we have a large Boolean network and are particularly interested in a
certain function. We may then consider approximating the network with a simpler
model. For instance, consider a large Boolean network as in Fig. 17.2. We may

Fig. 17.2 A partitioned network

17.5 Approximate Identification 405

split it into several parts. Suppose we have three parts, A, B, and C. Inside each
part, the nodes are strongly connected and in between parts, the connections are
assumed to be weak. We may now ignore the interior nodes and focus solely on
the frontier nodes which are related to other parts. Suppose we have frontier nodes
{x1,x2,...,x12}. We can then approximate the original network by (17.31) and try
to identify these nodes.

x1(t+ 1) = fi(xi(8), x2(t), x3(2), x4(1)),

x2(t + 1) = fa(x1 (1), x2(1), x3(1), x4(1), x6(2)),

x3(t + 1) = f3(x1 (1), x2(2), x3(1), x4(1)),

x4(t + 1) = fa(x1(2), x2(), x3(2), x4(1), x12(1)),

xs(t + 1) = f5(x1 (1), x5(1), x6 (1), x7(1), x3(1), u(t)),

x6(t + 1) = fo(xs(1), x6(1), x7(1), x3(1), u(t)),

x7(t + 1) = f7(xs5(1), x6(1), x7(1), x3(1), u(t)), (17.31)
xg(t + 1) = fe(x1 (1), xs(1), x6(1), x7(1), x3(1), x9(1), u(t)),
xo(t + 1) = fo(xo(t), x10(2), x11(1), x12(1)),

x10(t + 1) = fio(x7(2), x9(8), x10(2), x11 (1), x12(1)),
X114+ 1) = fii(x3(@), xo(t), x10(2), x11 (1), x12()),

x12(t + 1) = fia(xo(2), x10(1), x11 (1), x12(2)),

y(1) = h(xo(t), x10(1), x11 (1), x12(1)).

We give a numerical example to illustrate this.
Example 17.6 Consider the following system:

x1(t+1)=—x2(t) Ax3(t) Vul(t),
Xo(t + 1) = —x3(t) Axq(8) vV u(t),

x99(t + 1) = —x100(t) Ax1(2) V u(?),
x100(f + 1) = —x1 (1) Ax2(t) vV u(t),
(17.32)
21t + 1) =22() A —z3(1),
2(t + 1) = z3(t) A —z4(2),

299(t + 1) = z100(t) A —z1(2),
z100(+ 1) = x100() A =21 (2),
y() =z1(t) A —z5()—z100(7).

406

17 Identification of Boolean Control Networks

For example, we choose &1(¢) = x100(¢) and &>(¢t) = z100(¢). We can then con-
struct an approximate system as follows:

{sl(r +1) = fiE1(t), u(0)),

@+ 1) = f2(61(2),5()),
y(1) =h(&@)).

Its algebraic form is

{slm 1) = L1&(Du(t),

& (t+ 1) = L2&1(1)&2(1),
y(t) = H&(1).

(17.33)

Randomly choose a sequence of 100 input data and let x; (0) = z; (0) = 8%. Using
the dynamics (17.32) yields 100 data as follows:

u(t): 22211111211221121212
21222122211211211121
12112221221111222211
21112121212111211211
21121121121222121111,

y(@): 22221111121122112121
22122212221121121112
11211222122111122221
12111212121211121121
12112112112122212111.

Ly, Ly, H can then be identified as

Ly=48[1211],
Lry=48[2111],
H =65[12],

with &, (0) = 81, £(0) = 83, and the smallest error being 29.
We change the input sequence 100 times to see its effect. The errors are as fol-

lows:

3231363629 272729 29 28 30 34 2524 25 26 27 30 29 25
263633243228 3232312821 333324252435292821
2926302323203030272926252527262820283523
272327242625283027 312827272728 2827362329

28 272732232829 28 28 2626 27 27 30 29 25 27 26 27 24.

References 407

It is easily seen that the minimum of the 100 times is 20, while the maximum is 36,
and the average is 27.76.

References

1. Cheng, D., Zhao, Y.: Identification of Boolean control networks. Automatica (2010, provision-
ally accepted)

Chapter 18
Applications to Game Theory

18.1 Strategies with Finite Memory

To make the objectives of this chapter clear, we give a rigorous definition for the
games which we will consider

Definition 18.1

(1) A static game G consists of three components: (i) n players, named Ay, ..., A,
(ii) k; possible actions for each player A;, denoted by x; € Z,, i =1,...n,
(iii) n payoff functions for the n players, given respectively by

i@ =it m=i=cl L j=1n (18.1)
(2) A set of actions of all players, denoted by s = (x1, ..., x,), is called a pure
strategy of G, and the set of pure strategies is denoted by S.

Throughout this chapter only pure strategies are considered and so the word
“pure” is omitted. Using the above definition, we can define the infinitely repeated
version of game G, denoted by G .

Definition 18.2 Consider the game G described in Definition 18.1.

(1) A strategy of the infinitely repeated game G is
Soo =1{51, ..., 51} € Seo,

where the sequence s; = (5;(0),s;(1),...) is called the strategy of player A},
in which s;(¢) = x; (¢), called the action of A at time ¢, is a function of the first
t historical actionsof A;,i=1,...,n.

(2) A set of logical dynamic functions which determine the strategies of the in-
finitely repeated game is called a generator of the strategies. More precisely, we

D. Cheng et al., Analysis and Control of Boolean Networks, 409
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_18, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_18

410 18 Applications to Game Theory

have

@+ D= @, @0, 0), =1,
(18.2)

where

f;+1:(9kl X"'X@k,l) (@kl X"'X@k,,)ﬁ@kjﬂ]:1,,?1

t+1

For convenience, (18.2) is sometimes also called a strategy.
(3) The payoft functions for G are assumed to be

I =citxi,..ox), j=1,....n. (18.3)

The corresponding payoff functions for G, are the average payoffs defined
as [0, 7]

T
— 1 .
Jj:TleooftE_l cj(xl(t),...,xn(t)), j=1,...,n. (18.4)

(4) A strategy for G is called a zero-memory strategy if
xj(z+1)=fj(t+1)=f;+1, j=1,...,n. (18.5)
(5) A strategy for G is called a u-memory strategy, with p > 0, if its generators
are
xjt+1)=fi(x1(), ... x0 @), ..., x1C —p+ 1), .. x4t =+ 1)),
J=1....n, (18.6)

combined with the initial conditions
xj(t)=xi,, j=1,....n1=01,...,u—1

Remark 18.1

1. For the zero-memory strategy defined by (18.5), the action of each player could
be an arbitrary infinity-time sequence {x;(0), x;(1),...}, j=1,...,n.

2. For a pu-memory strategy, the generating functions f; are assumed to be time-
invariant. If f; is time-varying, then the value x;(¢) is entirely arbitrary and the
strategy degenerates to the zero-memory case.

Throughout this chapter we consider only the ©-memory case where 0 < u < oo.
Using vector form, it is easily seen that, as in Proposition 14.1, we can find a
unique L; € % jxke such that

Xje+D)=L; xS xt—i), j=1,....n. (18.7)

18.1 Strategies with Finite Memory 411

Equivalently, we can find a unique L € % «r such that
x(t+1) =L xS x(t —i). (18.8)

In Chap. 5 (Sect. 5.6) and in [5] it was shown that the topological structure of
(18.6) can be obtained by investigating the topological structure of (18.8). We de-
scribe a brief constructive process.

Note that x = l><;l=1xi can uniquely determine the x;,i =1, ..., n. We denote the
natural projections by

xi=mix), i=1,...,n.
The projections can be determined precisely by Proposition 16.4. That is, if we let

kK =TTz juiki = k%-’ then we have

xp =m1(x) = (I, @ Lp)x,

_ (18.9)
X =1 (x) = (g, @ i) Wik xkoxoki_y ki1 X, 1> 1.

We need to show that (18.7) and (18.8) are equivalent, that is, that there is a one-

to-one correspondence between L and {L, ..., L,}. We prove this by constructing
the conversion formulas, which are themselves very useful.
Using the notation «; =]_[;le-Jrl kj, i=1,2,...,n— 1, we define a set of re-

trievers as

Si=0® lzl ,
Si=[l,®1},..... I, ®1]],
ki
: (18.10)
Sl’l—l = [[knfl ® 1}‘”711 ey Ik,,,] ® lznfl]’
ki xkyx--xky_o
Sy =1 Ly s Iy, 1.
_\f—/
ki xkyx--xky_1
It is then easy to check the following proposition.
Proposition 18.1
1.
n
L=L[[[k®Lj®]. (18.11)

j=2

412 18 Applications to Game Theory

where
"
& = [11 ® Uk ® Wy -1 Mii].
j=1
2.
Li=SL, i=1.2,...n. (18.12)

The proof of this proposition is similar to the proof of Theorem 7.1. We leave it
to the reader. Next, we define the sub-Nash equilibrium for the game.

Definition 18.3 Let S = {s* |1 € A} be a set of strategies of G and €5 = 0 the
smallest nonnegative real number such that

cj(xlko,...,x,)[")—{-s;\ozcj(xi"o,...,xj-‘,...,xﬁ“), YA, j=1,...,n. (18.13)

Then, ¢, is called the tolerance of s*.

o If g, =0, then s*0 is called a Nash equilibrium.

o If
e’ =min{e; |1 € A} >0,

then there is no Nash equilibrium, and if ¢ = &Y, then s* is called a sub-Nash
equilibrium of S.

e For any strategy s*, if its tolerance is 0, then it is also called a Nash solution of
the game; if its tolerance is € > 0, then it is called an e-tolerance solution of the
game.

We can similarly define the Nash or sub-Nash equilibria and e-tolerance solutions
for G« in this way, except that (18.13) is replaced by

Ti(s10,s0) Feo = Ji(s)0 st s20), =10 (18.14)

Jj’ g7

18.2 Cycle Strategy

Definition 18.4 A strategy for G is called a cycle strategy if it satisfies
xjt+Ty)=x;@), j=1,...,n, Vt=0. (18.15)

Equivalently, (18.15) can be expressed in product form, with x = x?_, x;, as

x(t+Ty) =x@), t=>0. (18.16)

18.2 Cycle Strategy 413

As a convention, in the sequel we always assume that the 7p > 0 in (18.15) or
(18.16) is the smallest one, i.e., the period of the strategy. Denote by C the set of
cycle strategies. C is then a subset of strategies, i.e., C C S. Also, denote by C, the
set of cycle strategies with cycle length «, which equals Tj.

If a strategy satisfies (18.15) [or, equivalently, (18.16)], for ¢ > 1y, with a fixed
to > 0, the payoff functions J;, j =1, ..., n, have the same values as tp = 0. We
still consider it as a cycle strategy. In general, the possible strategies are infinite in
number. We consider the p-memory (0 < u < 0o) Nash equilibrium only within C.
In the following we will show that if there is a Nash solution, then there is a corre-
sponding cycle strategy as the solution.

Consider a logical control network

x1t+1D)= fiter(@®),...,xp@), ..., x1¢ —pu+1),...,xp(t —pu+1),
up(t), ..,ug(t),...,u1@—p+1),...,us(t —pu+1)),

: (18.17)
xpt+ D)= frxi(@®),....xp@), ..., x1(t —p+1), ..., xp(t =+ 1),
wy (), .. ug (@), .. our(t —p+1), .. ug(t — p+1)).
The performance criterion is
L T
- H;OTZ c(x1(0), ..o, xp(0), ur (D), ..., ug(1)). (18.18)

The design purpose is to find an optimal control u™*(t) = x?: (u} () such that
((t)) maig J (u (t))

It was proven in the last chapter that for any given initial value {x1(0), ..., x,(0),
Sx1(uw—1),...,xp(u — 1)}, there exists an optimal control as described in the
following proposition.

Proposition 18.2 There exists an optimal control satisfying

ui(t+1)=g1(x1@), ..., xp@), ..., x1¢ —p+1),...,x,¢ —pu+1),

ur (), ..o ug(®), ., ut@—p+1), ... uy(—pu+1)),
(18.19)

ug(t+1)=gsx1(0), ..., xp0), ..., x1¢—p+1D,...,xpt —pn+1),
ur(®), ..o ug(@®), .., u1@t—p+1),...,ug —pu+1)).

Moreover, the optimal value can be obtained on a cycle trajectory starting from the
given initial value.

414 18 Applications to Game Theory

Considering the p-memory strategy (18.6), we propose an algorithm for solving
the game.

Algorithm 18.1

Step 1. Assume that (o, ..., LS} are chosen. We consider x; (¢) as a control for the
logical control system

xj(t—l—1)=fj(xl(t),...,x,,(t),...,xl(t—,u+1),...,xn(t—,u+1)),
j=2,3,...,n, (18.20)

where f;, j =2,...,n, are uniquely determined by L?. Solving the optimal con-

trol problem with the given initial values {x? | j # 1} and the performance criterion

J=J; = lim —ch x(t)

T—oo T

the optimal solution {L!, x?} can be obtained. (Note that for the same {f;, x?
J # 1} there may be more than one solution. We can choose any one of these in the
first instance. However, at the next time when the same { f;, x? | j # 1} appear, we

must choose the same one which was first chosen.) Using this L!, we can uniquely

determine a new f1. We then replace the old f; by this new f; and take x? as the
initial value.

Step 2. Assume {L{, .. Lj 1 Lj+]1, ey Lﬁl_l} with {x? |i # j} are obtained. We

consider the correspondmg system

xit+ 1) = filx1(@®),...,x, @), ..., x10—p+1),....x,t—p+1), i#].
(18.21)

Solving the optimal control problem with
J=J;= hm —ZCJ x(t)

the L; and x? are obtained, and then f; and x? are updated.
By definition, the following result is then obvious.
Theorem 18.1
1. In Algorithm 18.1, assume that there exists a k* such that
L =LK+ =, (18.22)

Then,
Li=LF, i=1,....n,

18.3 Compounded Games 415

form a set of Nash equilibria. Moreover, the corresponding optimal solution can
be chosen as a cycle strategy.

2. If{LO, e, L2} with {x? |j=1,...,n}is a u-memory Nash equilibrium, then it
is a fixed point of the algorithm.

18.3 Compounded Games

Definition 18.5 Let G*, s = 1,2, be two games with A}, ..., A} being the two
groups of players. Each A} has k; possible actions. Their payoff functions are, re-
spectively,

01(80” 8“”) =cl

i k{ s s krll oty (18 23)
2(sB Bn\ _ i . :
Ci(aklzl""’(sk,%)_d/gr-ﬁn’ i=1,2,...,n.

G is called a compounded game of G! and G? with weight (A, 1 —1),0 <X <1,
denoted by G = G! 0 G2, if:

(i) G hasn players, A;,i=1,...,n.
(ii) Each A; has k! x k? possible actions, denoted by 8:1 x 8:2, p=1,....k! and

qg=1,..., kl2
(iii) Using (18.23), the payoff functions are

(18.24)

n

B Y ' ‘
Ci (8,‘:11‘ X (Sk%] yeees 8]‘;1, X (Sk%) =ACyy.q, T (1=)‘)d/l%mﬂ

In practical terms, a compounded game corresponds to a game between teams of
players. We give an example to illustrate this.

Example 18.1 Assume that there are two games G and G with players {A, B} and
{C, D}, respectively. Their strategies and payoff functions are described via payoff
bi-matrices in Tables 18.1 and 18.2, respectively.

Assume that A and C form a team to play against the team of B and D. The
strategies and payoff functions of the compounded game G = G'! o G? with weight
(0.5, 0.5) are then described in Table 18.3.

By definition the following result is obvious.

Table 18.1 Payoff bi-matrix

1,1 1, -1 2,1

416 18 Applications to Game Theory

Table 18.2 Payoff bi-matrix

of G2 C\D 1 2
~1.1 1,2
2 2,1 1, -2

Table 18.3 Payoff bi-matrix of G! o G?

AoC\BoD Ix1 1x2 2x1 2x2 3x1 3x2
Ix1 0,1 1,15 0,0 1,05 05,1 1.5,1.5
1x2 15,1 1,-0.5 15,0 1,-15 2,1 1.5,-0.5
2x1 —05,1 —0.5,1 0,0.5 1,1 -0.5,0.5 05,1
2x2 1,1 0.5, -0.5 1.5,0.5 I, -1 1,05 0.5, -1

Proposition 18.3 Ler G = G' o G2. {&F,.... &Y and {n], ..., n;} are Nash equi-
libria of G' and G?, respectively, if and only if {&F xni,.... & x ni} is a Nash
equilibrium of G.

Proof (Necessity) Assume that {£]', ..., &} and {7, ..., n;} are Nash equilibria of
G' and G2, respectively. For G = G! o G?, we then have the payoffs

¢ (65 X n} e X 02)
:Ac}(éf‘,...,&,’{)—f—(l—A)c?(n’l",...,r/:)
ch}(éf‘,...,Sj,...,%',f)-l-(l—k)c?(n’f,...,nj,...,n;l")
=cj($1* Xy, ..., & xnj,...,éjl‘xn;l"), 1<j<n.

(Sufficiency) Assume that {£" x n},..., & x n;} is a Nash equilibrium of G.
Then,

ci(EF xmf, o & X EE) Z e (5 xnt L Xt B X),
where 1 < j <n. That s,
1 2
ch(éf",...,é;‘,...,srf)+(l—)»)cj(n’l",...,n’;,...,nj;)
zkc}(fik,...,éj,...,é,;")+(1—k)c?(ni‘,...,nj,...,nﬁ).
Hence,
c}(éik""’gjs""s;r)zc}(éika""gja""s;f)’ 15]5’1'
Similarly, we have

c?(n]",...,nj,...,n;’;)zc}(nT,...,nj,...,nZ), 1<j<n. O

18.4 Sub-Nash Solution for Zero-Memory Strategies 417
An immediate consequence of this proposition is the following.

Corollary 18.1 G has no Nash equilibrium if and only if any finitely repeated game
G oG o---0G has no Nash equilibrium.
—_——

N

18.4 Sub-Nash Solution for Zero-Memory Strategies

Consider an infinitely repeated game G, of G. If G has a Nash equilibrium, then
according to Corollary 18.1, it, after being compounded finitely many times, is a
Nash equilibrium for the corresponding finite-time repeated game, and there is no
new zero-memory Nash equilibrium. So, for zero-memory strategies, this case is
less interesting. For example, consider the prisoner’s dilemma and assume its payoff
bi-matrix is as in Table 18.4.

It is clear that (2, 2) is a Nash equilibrium. Now, consider the infinitely repeated
prisoner’s dilemma: If it is formulated as a game between a machine and a human [6]
and if only zero-memory strategies are considered, then the machine can simply
choose the strategy of the Nash equilibrium, that is, choose action 2 forever. The
human then has no option but simply to choose action 2. Note that this case is not
true for the u > 0 memory case, where new a Nash equilibrium may appear, because
in this case, the actions of different steps are no longer independent.

Therefore, for the zero-memory case, when considering the Nash solution, the in-
teresting case is when the original payoff bi-matrix has no Nash equilibrium. How-
ever, we know that in this case we have no Nash equilibrium for a finitely repeated
game, so we consider the sub-Nash solution.

We give a simple example to illustrate the sub-Nash solution.

Example 18.2 Consider a game G with two players, A and B. The payoff bi-matrix
is given in Table 18.5.

It is obvious that there is no Nash equilibrium. It is easy to calculate that the
tolerance of (1,1) and (1,2) is 2, and that the tolerance of (2,1) and (2,2) is 1.
Hence, (2, 1) and (2, 2) are sub-Nash equilibria with tolerance 1 and corresponding

Table 18.4 Payoff bi-matrix

PI\P» 1 2
3,3 0,5
2 5,0 1,1
Table 18.5 Payoff bi-matrix
of G A\B 1 2
2,0 0,2

2 1,2 2,1

418 18 Applications to Game Theory

Table 18.6 Payoff bi-matrix

of GoG A\B Ix1 1x2 2x1 2x2
1x1 2,0 1,1 L1 0,2
1x2 15,1 2,0.5 05,2 1, 1.5
2x1 151 05,2 2,0.5 1, 1.5
2x2 1,2 1.5,1.5 1.5, 1.5 2,1

payoffs {pa, pp} = {1, 2} and {2, 1}, respectively. It is very likely that A may not
be satisfied with (2, 1) and B may not be satisfied with (2, 2).

Next, we may consider length-2 cycle zero-memory strategies. That is, we con-
sider G o G, with A = 0.5. The payoff bi-matrix is then as shown in Table 18.6. Now,
(2x2,1x2)and (2 x 2,2 x 1) are the two sub-Nash equilibria with tolerance 0.5
and the same corresponding payoffs, {1.5, 1.5}. This payoff may be acceptable by
both A and B. We argue this as follows: A may choose 1 x 2 to get a better payoff,
but as A chooses 1 x 2, B can choose 2 x 1 to get a better payoff. Similarly, B
may choose 1 x 1 to get a better payoff, but then A can choose 1 x 1 to get a better
payoff. Hence, to avoid uncertainty, this sub-Nash strategy may be accepted by both
A and B.

Continuing this process, we consider cycle strategies of length 3. The tolerance
for the sub-Nash equilibria is 0.6667. The sub-Nash equilibria

(122, 111), (122,222), (212, 111),
(212,222), (221, 111), (221,222)

have payoffs {1.3333, 1.3333}, the sub-Nash equilibria
(222,112), (222, 121), (222,211)

have payoffs {1.3333, 1.6667}, and the sub-Nash equilibria
(222,122), (222,211), (222,221)

have payoffs {1.6667, 1.3333}.
For cycle strategies of length 4, the tolerance is 0.5. Sub-Nash equilibria are

(2222, 1122), (2222, 1212), (2222, 1221),
(2222,2112), (2222,2121), (2222, 2211),

which have the same payoffs, {1.5, 1.5}.

Note that the longest length of a cycle is 4. No more calculation is necessary.
Summarizing the above argument, one sees that the best sub-Nash equilibrium
for cycle strategies is of tolerance 0.5. The corresponding sub-Nash solutions are
2x2,1x2)and (2 x2,2 x 1).

In principle, for a game with n players, each player A; with k; strategies, the
longest cycle strategy has length k =]_[;le k;. For each length, we can then find
the sub-Nash equilibrium (equilibria). Finally, we can find the best sub-Nash equi-

18.5 Nash Equilibrium for ;-Memory Strategies 419

librium (equilibria), which has (have) the minimum tolerance. This (these) can be
taken as the sub-Nash solution(s) of the zero-memory cycle strategies for the game.

Denote by g, the minimum tolerance of cycle strategies. Assume that
£ (mod @) = B, i.e.,

L=ya+ B.

By choosing an optimal cycle of length « for ¢ times and an optimal cycle of length
B, it is easily seen that

- Véa + €8 .
- 4

If (18.25) becomes an equality, then the “optimal” cycle of length £ is meaningless.
Otherwise, we have an improved sub-Nash solution.

& (18.25)

18.5 Nash Equilibrium for u-Memory Strategies
Consider a p-memory strategy. By Definition 18.2 each such strategy can be deter-
mined by

xjt+ D= fi(x@,....x¢—pn+D), j=1,...n, (18.26)

with a set of initial values {x;(#)|j=1,...,n; t =0,..., u—1}. Now, (18.26) can
be expressed equivalently in its algebraic form as

xjt+1)=Ljxi_ x@t—pn+i), j=1,....n, (18.27)
where L € Z; xxn. Hence, a strategy can be determined by a set of logical matrices
{Lj€Lhxinlj=1,...,n}

with a set of initial values.
We give an example to illustrate this.

Example 18.3 Consider the infinitely repeated prisoner’s dilemma with = 1. Both
players then have 16 strategies, denoted by

s1 =82[1111], s =682[1112], s3 = 682[1121], 54 = 82[1122],
s5 = 02[1211], s6 = 62[1212], s7 = 62[1221], sg = 82[1222],
59 = 62[2111], s10 = 82[2112], s11 = 62[2121], s12 = 62[2122],
s13 = 62[3211], s14 = 82[2212], s15 = 62[2221], s16 = 62[2222].

The payoff bi-matrices for different initial values are as follows:

e x1(0) =3}, x2(0) = 81, as in Table 18.7.
e x1(0) =8}, x2(0) = 83, as in Table 18.8.

420

Table 18.7 Payoff bi-matrix

18 Applications to Game Theory

A/B 1 2 3 4 5 6 7 8

1 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
2 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
4 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
5 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
6 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
7 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
8 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3
9 4,15 4,15 2.67,2.67 2.67,2.67 4,15 4,15 0,5 0,5
10 4,15 4,15 267,267 2.67,2.67 4,15 4,15 0,5 0,5
11 5,0 5,0 3,133 225,225 5,0 5,0 3,1.33 0,5
12 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
13 4,15 4,15 25,25 25,25 4,15 4,15 225,225 05,3
14 4,15 4,15 25,25 25,25 4,15 4,15 2,2 1,1
15 5,0 5,0 3,1.33 2,2 5,0 5,0 3,1.33 05,3
16 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
A/B 9 10 11 12 13 14 15 16

1 15,4 15,4 1.5,4 15,4 0,5 0,5 0,5 0,5
2 15,4 15,4 1.5,4 15,4 0,5 0,5 0,5 0,5
3 15,4 15,4 15,4 15,4 0,5 0,5 0,5 0,5
4 15,4 15,4 15,4 15,4 0,5 0,5 0,5 0,5
5 2.67,2.67 2.67,2.67 25,25 25,25 1.33,3 05,3 133,3 05,3
6 2.67,2.67 267,267 25,25 25,25 225,225 1,1 2,2 1,1

7 5,0 5,0 225,225 2,2 1.33,3 05,3 133,3 05,3
8 5,0 5,0 3,05 1,1 5,0 1,1 3,05 1,1
9 2,2 1.33,3 2,2 1.33,3 2,2 0,5 2,2 0,5
10 3,1.33 1,1 225,225 1,1 3,1.33 1,1 0,5 1,1
11 2,2 1.33,3 2,2 1.33,3 2,2 0,5 2,2 0,5
12 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
13 2,2 225,225 2,2 25,25 2,2 05,3 2,2 05,3
14 3,1.33 1,1 25,25 1,1 3,1.33 1,1 2,2 1,1
15 2,2 5,0 2,2 2,2 2,2 05,3 2,2 05,3
16 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1

e x1(0) =83, x2(0) = 8}, as in Table 18.9.
e x1(0) =83, x2(0) = 83, as in Table 18.10.

We can check that there are 53 1-memory Nash equilibria, as in Table 18.11.

In Table 18.11 the double pairs (n a), (m b) indicate that player A takes a strat-
egy with initial value n and uses the logical matrix s,, while player B takes a strategy
with initial value m and uses the logical matrix sp.

18.6 Common Nash (Sub-Nash) Solutions for u-Memory Strategies 421
Table 18.8 Payoff bi-matrix

A/B 1 2 3 4 5 6 7 8

1 3,3 3,3 3,3 3,3 0,5 0,5 0,5 0,5
2 3,3 3,3 3,3 3,3 0,5 0,5 0,5 0,5
3 3,3 3,3 3,3 3,3 0,5 0,5 0,5 0,5
4 3,3 3,3 3,3 3,3 0,5 0,5 0,5 0,5
5 3,3 3,3 25,25 25,25 3,3 05,3 3,3 05,3
6 3,3 3,3 25,25 25,25 3,3 1,1 2,2 1,1
7 5,0 5,0 3,3 2,2 3,3 05,3 3,3 05,3
8 5,0 5,0 3,05 1,1 5,0 1,1 3,05 1,1
9 4,15 4,15 267,267 267,267 0,5 0,5 0,5 0,5
10 4,15 4,15 267,267 267,267 0,5 0,5 0,5 0,5
11 5,0 50 3,133 225,225 0,5 0,5 0,5 0,5
12 5,0 5,0 3,05 1,1 0,5 0,5 0,5 0,5
13 4,15 4,15 2525 25,25 4,15 053 225225 05,3
14 4,15 4,15 25,25 25,25 4,15 1,1 2,2 1,1
15 5,0 5,0 3,133 2,2 5,0 05,3 3,133 05,3
16 5,0 5,0 3,05 1,1 5,0 1,1 3,05 1,1
A/B 9 10 11 12 13 14 15 16

1 1.5,4 1.5,4 1.5,4 1.5,4 0,5 0,5 0,5 0,5
2 15,4 1.5,4 1.5,4 15,4 0,5 0,5 0,5 0,5
3 15,4 15,4 15,4 15,4 0,5 0,5 0,5 0,5
4 1.5,4 15,4 15,4 15,4 0,5 0,5 0,5 0,5
5 2.67,2.67 2.67,2.67 25,25 25,25 1.33,3 05,3 1.33,3 05,3
6 2.67,2.67 267,267 25,25 25,25 225225 1,1 2,2 1,1
7 5,0 5,0 225,225 2,2 1.33,3 05,3 133,3 05,3
8 5,0 5,0 3,05 1,1 5,0 1,1 3,05 1,1
9 2,2 1.33,3 2,2 1.33,3 0,5 0,5 0,5 0,5
10 3,133 1,1 225,225 1,1 0,5 0,5 0,5 0,5
11 2,2 1.33,3 2,2 1.33,3 0,5 0,5 0,5 0,5
12 5,0 I, 1 3,05 1,1 0,5 0,5 0,5 0,5
13 2,2 225,225 25,25 25,25 2,2 05,3 2,2 05,3
14 3,133 1,1 25,25 25,25 3,133 1,1 2,2 1,1
15 5,0 5,0 2,2 2,2 2,2 05,3 2,2 05,3
16 5,0 5,0 3,05 1,1 5,0 1,1 3,05 1,1

18.6 Common Nash (Sub-Nash) Solutions for u-Memory
Strategies

In the previous section we investigated how to find a Nash solution for p-memory
strategies. Since there may be many Nash solutions, we are particularly interested in

422

Table 18.9 Payoff bi-matrix

18 Applications to Game Theory

A/B 1 2 3 4 5 6 7 8

1 3,3 3,3 3,3 3,3 3,3 3,3 0,5 0,5
2 3,3 3,3 3,3 3,3 3,3 3,3 0,5 0,5
3 5,0 5,0 3,3 3,3 5,0 5,0 3,3 0,5
4 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
5 3,3 3,3 25,25 25,25 3,3 3,3 3,3 05,3
6 3,3 3,3 25,25 25,25 3,3 3,3 2,2 1,1

7 5,0 5,0 3,3 2,2 5,0 5,0 3,3 05,3
8 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
9 4,15 4,15 2.67,2.67 267,267 4,15 4,15 0,5 0,5
10 4,15 4,15 2.67,2.67 267,267 4,15 4,15 0,5 0,5
11 5,0 5,0 3,1.33 2.25,2.25 5,0 5,0 3,1.33 0,5
12 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
13 4,15 4,15 25,25 25,25 4,15 4,15 225,225 05,3
14 4,15 4,15 25,25 25,25 4,15 4,15 2,2 1,1
15 5,0 5,0 3,1.33 2,2 5,0 5,0 3,1.33 05,3
16 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
A/B 9 10 11 12 13 14 15 16

1 15,4 15,4 15,4 15,4 0,5 0,5 0,5 0,5
2 15,4 15,4 15,4 15,4 0,5 0,5 0,5 0,5
3 5,0 5,0 15,4 15,4 5,0 5,0 0,5 0,5
4 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1

5 2.67,2.67 2.67,2.67 25,25 25,25 1.33,3 05,3 133,3 05,3
6 2.67,2.67 2.67,2.67 25,25 25,25 225225 1,1 2,2 1,1

7 5,0 5,0 225,225 2,2 5,0 5,0 1.33,3 05,3
8 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
9 2,2 1.33,3 2,2 1.33,3 2,2 0,5 0,5 0,5
10 3,1.33 1,1 225,225 1,1 3,1.33 1,1 0,5 0,5
11 5,0 5,0 2,2 1.33,3 5,0 5,0 2,2 0,5
12 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1
13 2,2 225,225 25,25 25,25 2,2 05,3 2,2 05,3
14 3,1.33 1,1 25,25 25,25 3,133 1,1 2,2 1,1
15 5,0 5,0 2,2 2,2 5,0 5,0 2,2 05,3
16 5,0 5,0 3,05 1,1 5,0 5,0 3,05 1,1

the common Nash equilibrium, which is independent of the initial values. If such a
common Nash equilibrium exists, it could be considered as the best solution to G .

If such a common Nash equilibrium does not exist, finding a reasonable solution
to the game G, becomes a challenging problem. In this section we consider the
common Nash or sub-Nash solution for y-memory strategies, which is independent
of the initial value.

18.6 Common Nash (Sub-Nash) Solutions for x-Memory Strategies 423

Table 18.10 Payoff bi-matrix

A/B 1 2 3 4 5 6 7 8

1 3,3 3,3 3,3 3,3 3,3 0,5 3,3 0,5
2 3,3 1,1 3,3 1,1 3,3 1,1 0,5 1,1
3 3,3 3,3 3,3 3,3 3,3 0,5 3,3 0,5
4 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
5 3,3 3,3 3,3 25,25 3,3 05,3 3,3 05,3
6 3,3 1,1 25,25 1,1 3,3 1,1 2,2 1,1
7 3,3 5,0 3,3 2,2 3,3 05,3 3,3 05,3
8 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
9 4,15 4,15 2.67,2.67 267,267 4,15 0,5 0,5 0,5
10 4,15 1,1 2.67,2.67 1,1 4,15 1,1 0,5 1,1
11 5,0 5,0 3,1.33 225,225 5,0 0,5 3,133 0,5
12 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
13 4,15 4,15 25,25 25,25 4,15 05,3 225,225 05,3
14 4,15 1,1 25,25 1,1 4,15 1,1 2,2 1,1
15 5,0 5,0 3,1.33 2,2 5,0 05,3 3,133 0.5,3
16 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
A/B 9 10 11 12 13 14 15 16

1 15,4 15,4 1.5,4 15,4 0,5 0,5 0,5 0,5
2 15,4 1,1 1.5,4 1,1 0,5 1,1 0,5 1,1

3 15,4 15,4 15,4 15,4 0,5 0,5 0,5 0,5
4 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
5 2.67,2.67 2.67,2.67 25,25 25,25 1.33,3 05,3 133,3 05,3
6 267,267 1,1 25,25 1,1 225,225 1,1 2,2 1,1

7 5,0 5,0 225,225 2,2 1.33,3 05,3 133,3 05,3
8 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
9 2,2 1.33,3 2,2 1.33,3 2,2 0,5 2,2 0,5
10 3,1.33 1,1 225,225 1,1 3,1.33 1,1 0,5 1,1
11 2,2 1.33,3 2,2 1.33,3 2,2 0,5 2,2 0,5
12 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1
13 2,2 225,225 2,2 25,25 2,2 053 2,2 05,3
14 3,1.33 1,1 25,25 1,1 3,1.33 1,1 2,2 1,1
15 2,2 5,0 2,2 2,2 2,2 05,3 2,2 05,3
16 5,0 1,1 3,05 1,1 5,0 1,1 3,05 1,1

Describing a u-memory strategy by its generating dynamics as
L:={Li € % xkn,-..,Ln € Lh,xkn} (18.28)
with initial values
x0=(x20), ..., x20), ..., 2V = 1), xd(= 1)) € A,

we give the following definition.

424 18 Applications to Game Theory

Table 18.11 1-memory Nash equilibria

(15),(13) (15,14 15,07 (15),(18) 15,27 (16),(13)
(16),(14) (16),(17) (16),(18) a17),13) a7n,a4 a7n,amn
17,18 17,23 amn,27 (18),(13) (18),(14) (18,17
(18),(18) (114),(212) (116),(116) (116),(26) (116),(28) (116),(214)
(116),(216) (24),(116) (24),(26) (24),238) 24),214) (24),216)
25,07 (25),23) 25),27) 27),13) 2n,amn 27,23
2n,27 (28),(116) (28),(26) (28),(28) (28),(214) (28),(216)
(212),(116) (212),(26) (212),(28) (212),(214) (212),(216) (214),(112)
(216),(116) (216),(26) (216),(28) (216),(214) (216),(216)

Definition 18.6 Consider Go. A common p-memory strategy is defined as
(18.28).

(1) L*= (L%, ..., L}) is called a common Nash equilibrium if

(L, LX) > T Ly, Ly LEsx0), V¥ e A, j=1,... 0.

(18.29)

(2) Let 8{0 be the tolerance of the strategy {L} when x* is fixed. The common
tolerance of L is defined as

£ = max S’L“O. (18.30)
XOEAkp.

(3) A strategy L0 is called a common &g sub-Nash equilibrium if
so=¢6ry<¢eL, YLe{Lxin, .., Lk,xir}
(4) A strategy L is also called a common & sub-Nash solution to G .

If a common Nash equilibrium does not exist, then we will naturally look for
a common sub-Nash equilibrium as an acceptable solution to G . If it is difficult
to find a common sub-Nash equilibrium, then we may have to accept a reasonable
sub-Nash solution. It is easy to see that a common (sub-)Nash equilibrium must be
a (sub-)Nash equilibrium with respect to any initial states. Thus, it can be thought
of as a refinement of a Nash equilibrium.

We discuss this by means of the following examples. The first example concerns
the common Nash equilibrium.

Example 18.4 Recall Example 18.3. Because there are too many Nash equilibria,
for further refinement we are particularly interested in common Nash equilibria,
which are independent of the initial value. It is easy to check that there are three
common Nash equilibria:

18.6 Common Nash (Sub-Nash) Solutions for x-Memory Strategies 425

Table 18.12 Payoff

bi-matrix A\B 1 2 3
2.7,1.5 0.3,2.4 1.1,0.8
2 0.9, 2.1 1.8,1.3 1.6,1.4

(i) s4 =s16 and sp = s16. Since s16 = §2[2, 2, 2, 2], regardless of the initial value,
both players just take action 2, which constitutes the original Nash equilibrium
of G. This is not particularly interesting.

(i1) s4 = sg and sp = s3. Since sg = §2[1, 2, 2, 2], if the previous values are (1, 1),
then action 1 is taken, otherwise, action 2 is taken. This is the famous trigger
strategy [4].

(iii) s4 = s7 and sg = s7. Since 57 = §3[1, 2, 2, 1], we have

X+ 1) = L xi (@) =x2(),
2, x1(t) #x2(0).
In fact, under the payoff bi-matrix in Table 18.4, this strategy is the best one
because it will converge to (1, 1), regardless of the initial state. However, this
strategy has poor robustness: if the payoft 5 is changed to 5 + § for arbitrary
8 > 0, then it is easy to check that this strategy is no longer the Nash equilib-
rium.

The second example concerns sub-Nash equilibria.

Example 18.5 The payoff bi-matrix of a game G is given in Table 18.12.

From Table 18.12 it is easily seen that there is no Nash equilibrium and the
only sub-Nash equilibrium is (2, 3), with payoffs [1.6, 1.4] and tolerance ¢ = 0.7.
Consider 1-memory strategies for G. A standard routine shows that there are 57
sub-Nash equilibria with payoff [1.3, 2] and tolerance ¢ = 0.3, which are listed in
Table 18.13.

In Table 18.13 the double pairs (n @), (m b) indicate that player A takes a strat-
egy M, ,f‘ with initial value n, while player B takes a strategy M ,f . The sets of strate-
gies are ordered as follows:

Finally, (17,279) and (19,279) are common sub-Nash equilibria with ¢ = 0.3,
which are independent of the initial value.

426

Table 18.13 1-memory sub-Nash equilibria

18 Applications to Game Theory

(117), (1279)
(118), (1279)
(119), (1279)
(120), (1279)
(125), (1279)
(126), (1 306)
(127), (2279)
(128), (2 306)
(2 18), (1279)
(2 19), (2279)
(225), (1 306)
(228), (1279)

(1 17), (1 306)
(1 18), (1 306)
(1 19), (1 306)
(120), (1 306)
(125), (1 306)
(126), (2279)
(127), (2 306)
2 17), (1279)
(2 18), (1 306)
(2 19), (3 279)
(226), (1279)
(2 28), (1 306)

(117), (2279)
(118), (2279)
(119), (2279)
(120), (2279)
(125), (2279)
(126), (2 306)
(128), (1279)
2 17), (1 306)
(2 18), (2279)
(220), (1279)
(2 26), (1 306)

(1 17), (2 306)
(1 18), (2 306)
(1 19), (2 306)
(120), (2 306)
(125), (2 306)
(127), (1279)
(128), (1 306)
2 17), (2279)
(2 19), (1279)
(2 20), (1 306)
(227), (1279)

(117), 3 279)
(118), (3 279)
(119), (3 279)
(120), (3 279)
(126), (1279)
(127), (1 306)
(128), (2279)
2 17), 3 279)
(2 19), (1 306)
(225), (1279)
(227), (1 306)

Next, we consider 2-memory strategies. Ignoring initial values, we have 23¢ x 336

strategies. It is almost impossible to consider all of them in the previous way. We
propose the following algorithm for obtaining common sub-Nash solutions with
u > 1 memory strategies.

Algorithm 18.2

Step 1. Let the set of 1-memory strategies (without initial values) be
St={s{.5),.... 8},
where S]l. =% i xks Jj=1,...,n,are the strategies of player A ;. Find the common

sub-Nash equilibria with tolerance &1.

e If 1 =0, or &1 > 0 and the common sub-Nash equilibrium is unique, then take
the common sub-Nash equilibrium as a common ¢ sub-Nash solution and stop.
(For ease of statement, a common Nash solution is considered as a particular
common sub-Nash solution with zero tolerance. In this case, the solution may
not be unique.)

e Otherwise, denote the set of common sub-Nash equilibria by N'! and consider it
as the set of 1-memory common sub-Nash solutions.

Step 1 (i > 1). Assume that
-1 _ n—1 n—1 —1
NP = NSNS T N

are obtained. Set

st=st, st sk,

18.6 Common Nash (Sub-Nash) Solutions for -Memory Strategies 427

where
S;.L:{[sfk] sékl s,’(k]]|s571 eN]‘.hl, a:l,...,k}, j=1,...,n.

Find the p-memory common sub-Nash equilibria over S#* (just compare with
strategies in S#) with tolerance ¢,.

o If g, =0,0reg, =¢,_1, or g, > 0 and the common sub-Nash equilibrium is
unique, then take the common sub-Nash equilibrium as a common &, sub-Nash
solution and stop. (For the case of ¢, =0, or ¢, = ,,_1, the solution may not
be unique.)

e Otherwise, denote the set of common sub-Nash equilibria in S* by N* and
consider it as the set of u-memory common sub-Nash solutions. Go to Step
w+1.

The following proposition shows that the sub-Nash equilibria obtained by the
algorithm have monotonically nonincreasing tolerances.

Proposition 18.4 Let N* be the set of w-memory common sub-Nash equilibria with
tolerance g,,.. Construct

sHHE L L) (18.31)
with
pn+l Iz I .
LY =[LY, ... LE], i=1,....n, (18.32)
and
(LY. ... Lh,)eN", a=1,.. k (18.33)
IFLHH = (L?H*, o LYY is astrategy of (14 1)-memory common sub-Nash

equilibrium of S*11, then the tolerance of L*Y | denoted by &,41, satisfies
Eut1 < &y (18.34)
Proof Let
L =L, . LI e N#

with tolerance ¢;,. We can then construct L**1 by

LA =L L =1 (18.35)
— e’

k

By the construction we know that

L’j“ e sht!, (18.36)

428 18 Applications to Game Theory
Using (18.27), we then know that

xj (1) = L5 e = pxt =+ 1) x(0)
= [L?*,...,L’;*]x(t—u)x(t—,u+ 1)---x(t)
[——
k

=L7*x(z—u+1)..-x(t), j=1,....n,

which means that the strategy L**! constructed in (18.35) is exactly the same as the
strategy L"*. Hence, the tolerance of L**! is &, Now, since it is in SHtL €+, as
the smallest tolerance over S#*1, surely satisfies (18.34). O

We now continue the discussion of Example 18.5.

Example 18.6 Consider Example 18.5. Since
N'=1{(17,279), (19,279)}
consists of only two strategies, it is easy to see that

ME=8[121111], M=8[121121],
MEy =530212133].

A straightforward computation shows that the payoffs of the two common 1-memory
sub-Nash equilibria with any initial value are the same, so all the strategies in S?
have the same payoff. Thus, they are all common Nash equilibria in S?, which
implies that ¢, = 0. The algorithm then terminates.

We now have to answer the following questions:

e What is the real tolerance of the common Nash equilibrium in $2?
e Are they the best 2-memory strategies?

We use the following nonparametric test to answer these questions: Choose 300
additional 2-memory strategies randomly and add them to § 2 to form an extended
set §2, then find the sub-Nash equilibria over §2. We then have the following results:

e The common Nash equilibria in $2 have tolerance 0.3 over S2. We conclude
that the algorithm does not provide better solutions (with 2-memory) than the
1-memory sub-Nash solutions.

e There is no better sub-Nash solution in S2. Using the nonparametric test, it is
easily seen that with the confidence limit 99.5%, we can say that the tolerance of
the strategies in S is less than or equal to the tolerance of 99.8% of the overall
2-memory strategies. (We refer to any standard statistics textbook, e.g., [3].)

We conclude that the algorithm provides only two “best sub-Nash solutions", which
are with 1-memory. They are:

References 429

(1) The strategies of A and B are as in the following (18.37) and (18.38), respec-
tively.

2, x1(t)=1landxy(t) =2,

x1(t+1) =
1) 1, otherwise.

(18.37)
1, xi(®)=1landxp(t) =2, orx;(t) =2and x,(¢t) = 1,
x(t+1)=12, x1(t)=1andxy(t) =2or3, (18.38)
3, otherwise.

(2) The strategy of A is as in the following (18.39) and the strategy of B is as in
(18.38).

2 t)y=2
Hetrn=]> 2O=2 (18.39)
1, otherwise.

References

1. Cheng, D., Zhao, Y., Li, Z.: Nash and sub-Nash solutions to infinitely repeated games. Preprint
(2010)

2. Cheng, D., Zhao, Y., Mu, Y.: Strategy optimization with its application to dynamic games. In:
Proc. IEEE CDC’2010 (2010, to appear)

3. Daniel, W.: Applied Nonparametric Statistics. PWS-Kent Pub., Boston (1990)

4. Gibbons, R.: A Primer in Game Theory. Prentice Hall, New York (1992)

5. Li, Z., Cheng, D.: Algebraic approach to dynamics of multi-valued networks. Int. J. Bifurc.
Chaos 20(3), 561-582 (2010)

6. Mu, Y., Guo, L.: Optimization and identification in a non-equilibrium dynamic game. In: Proc.
CDC-CCC’09, pp. 5750-5755 (2009)

7. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
New York (1994)

Chapter 19
Random Boolean Networks

19.1 Markov Chains

This section provides some simple background on Markov processes. We review
some basic concepts, notation, and properties (without proofs), and refer to some
standard textbooks, e.g., [1], for details. Readers familiar with stochastic processes
can skip this section.

Definition 19.1

(i) Let £2 be a set, % an algebra generated by a set of subsets of £2, and P a
probabilistic measure on (£2,.%). Then, (£2,.%, P) is called a probabilistic
space.

(i1) Let 4 be the Borel set on R. We denote by (R, %) the Borel-measurable space
on R.

(i) Let T =Z4 =1{0,1,2,...}. A sequence &(t,w), t € T, is called a discrete-
time real stochastic process if foreacht € T, £(¢,) : (2, F) — R, &) is a
measurable function.

We now give an example of a discrete-time real stochastic process.
Example 19.1 (Bernoulli sequence) A bag contains m red balls (denoted by 0) and

n white balls (denoted by 1). A person repetitively draws balls from the bag and
each time, after drawing, returns the ball back to the bag. It is easy to see that the

probability of drawing a1, as, ..., a5 (@i =0or 1) is
pal+a2+~--+asq5—(al+az+~--+as)’ (19.1)
where
p=——o, g=1-p.
m+n

To make this a stochastic process, we need a probabilistic space. Let
2 ={w;,w,...,05,...|0; €D, i>1}.
D. Cheng et al., Analysis and Control of Boolean Networks, 431

Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7_19, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7_19

432 19 Random Boolean Networks

It is then easy to see that there exists a unique probabilistic measure P such that

P({w:(w1,w2,...,a)s,...)|a),-=ai, i=1,2,...,s})

al+a2+'-'+asq5*(fll+a2+"‘+as)‘ (192)

=p
Z is a o -algebra generated by the cylinder set of £2, i.e.,
F = {.Q=(w1,a)2,...,a)s,...)|a)j =aj, j>s; 5> l}a.
Now, on (£2,.%, P) we define
Et,w)=w;, t>0.
& ={&(t,)|t € Z4+} is then a stochastic process.

Definition 19.2 A discrete-time stochastic process {£(¢) |t € Z.} on a probabilistic
space (£2,.%, P) with state space I = {1,2,...} is called a Markov process (or
Markov chain) if, for any positive integers j; < jo <--- < jp <m,

P(E(m +k) = amsk |EG1) = aj,,. (D) =aj,. E(o) = aj,, E(m) = ap)
=P(E(m +k) = amir | E(m) = ap). (19.3)

The probability of the process taking the value j at time m 4+ k and taking the
value i at time m is called the k-step transition probability at m, denoted by

P(Em+k)=j|&m)=i):= pi(;.()(m). (19.4)
It is obvious that pi(jl.‘) (m) >0 and
Y i my=1. (19.5)
jel
The matrix
POm) = (pi), ey

is called the k-step transition probability matrix, which is, in general, an infinite-
dimensional matrix. When k = 1, we denote it simply by P(m) and call it the
transition probability matrix. It is particularly useful when P(m) = P, which is
independent of m.

We have the following property.

Proposition 19.1 (Kolmogorov—Chapman equation) For any two positive integers
k, £, we have

POy =" pl m)pl (m + k). (19.6)

rel

19.1 Markov Chains 433

Equivalently, in matrix form, (19.6) can be written as
P O my = PO m) PO (m + k). (19.7)
The one-step transition matrix is denoted by PY(m) := P(m).

Definition 19.3 A Markov chain is said to be homogeneous if P(m) = P is inde-
pendent of m.

Example 19.2 (Random walk) A particle is moving on a straight line according
to the following rule: At time ¢ it is at position i, and at the next moment it
moves to i + 1 with probability p or to i — 1 with probability g =1 — p. It is
then easily seen that {£(¢)} forms a homogeneous Markov chain. The state space is
I ={0, %1, 2, ...} and the transition probabilities are

Pii+1 =D,
Pii—-1=¢, (19.8)
pij=0, |i—j|>1,i,j€].

It is easy to calculate that

) _ ((n+j"_l,)/2)p(n+j—i)/2q(n—j+i)/2’ n+ j—iiseven, 10,0
Pij = 0 (19.9)

otherwise.

For states i, j € I, we define the first arrival time from i to j as

Iy = {min{n|$(0) =i, &) =), (19.10)

oo, if{n|§0)=1i, &(n)=j}=0.
The probability of arriving at j from i via n steps is
(n) _ . . _ _ .
fi"=PlEm) =j,6m)# j,m=1,2,....,n—1]£0) =i}
=Y Y piPii Pty M= 1 (19.11)
i1#j i—1#]

The conditional probability of starting from £(0) =i and arriving at j after a finite
time is then

oo oo

ﬁj=2ﬁ~§")=ZP{Tu=n}=P{Tu<oo}. (19.12)

n=1 n=1

Proposition 19.2 If f;; = 1, then &(t) returns to j infinitely many times with proba-
bility 1. If f;; < 1, then &(t) returns to j only finitely many times with probability 1.

Observing this, we give the following definition.

434 19 Random Boolean Networks

Definition 19.4 For a state i € I, if f;; = 1, then the state i is called a recurrent
state and if fj; < 1, then the state i is called a nonrecurrent (or transient) state.

Proposition 19.3 i is recurrent if and only if
(.¢]
> ph=occ. (19.13)
n=1

Assume a state i € [is recurrent. The average return time is then defined as

o0

wi=y nfl. (19.14)

n=1

Definition 19.5 A recurrent state i € [is said to be positive recurrent if u; < oo,
and it is said to be null recurrent if ©; = oco.

Definition 19.6

1. A state j € [is said to have period ¢ if {n | py]’.) > 0} have a common factor ¢.
If + > 1, then the state j is called periodic. If # = 1, then the state j is called
aperiodic.

2. If a state j is positive recurrent and aperiodic, it is called ergodic.

Proposition 19.4 Assume that i is a recurrent state. It is then null recurrent if and
only if

lim p& =0. (19.15)
n—oo
Proposition 19.5
1. Ifi is an ergodic state, then
li (n) _ 1
im p;;’=—. (19.16)
n—od l"Ll

2. Ifi is positive recurrent with period t, then
t
lim p = —. (19.17)

Definition 19.7 The state j is said to be reachable from i, written as i — j, if there

exists some 7 > 1 such that pi(j'.’)
be connected, written as i <> j.

>0.Ifi — jand j — i, theni and j are said to

Proposition 19.6
1. i — jifand only if fij > 0.

19.1 Markov Chains 435

2. Ifi < j, then they are either both nonrecurrent, or both recurrent. Moreover, if
they are both recurrent, then they are either both null recurrent or both positive
recurrent.

3. If i < j, then they are either both aperiodic or both periodic. Moreover, if they
are both periodic, then they have the same period.

Definition 19.8 Let C C I be a subset of the state space. C is called a closed set if,
forany i € C and j € C¢, we have p;; = 0. A closed set C is said to be irreducible
if the states in C are connected. A Markov chain is irreducible if it does not have a
proper closed set.

Proposition 19.7 C C I is closed if and only if one of the following two equivalent
conditions is satisfied:

(i) Foranyi e C and j € C¢,

p =0, ¥n=12,.... (19.18)
@ii) Foranyi € C,

Y op=1. vn=12... (19.19)

jeC ‘

We now a couple of examples.

Example 19.3

1. Consider a Markov chain {{(n) |n = 1,2, ...} with state space I = {1, 2, 3}. Its
state transition graph is depicted in Fig. 19.1(a), and its transition matrix is

P= (19.20)

—_— O W=
S Owi—
O = W=

e From the graph it is easily seen that each state can be reached from another
one, so the graph is connected. Hence, the chain is irreducible.

Fig. 19.1 Markov chain

436

19 Random Boolean Networks

e Since pj; = %, we have

{n|p(")>0}—1

It follows that state 1 is aperiodic. According to Proposition 19.6, all the states
are aperiodic.

fl(]l):%
D= Plx@=1x1)#1]x0) =1}
=P{x@)=1Lx()=2|x0)=1}+P{x2)=1,x(1)=3|x(0) =1}
21.04_1.1:1,
3 3 3
f1(3 =P{x@)=1LxQ2) #1,x(1)#1|x0) =1}
=P{x3)=1,x2)=2,x(1)=2|x(0) =1}
+ P{x3)=1,x(2)=2,x(1)=3|x(0) =1}
+P{x(3)=1,x(2)=3,x(1) =2|x(0) = 1}
+P{x(3)=1,x(2)=3,x(1) =3|x(0) = 1}
=0+0+%+0=§,
1(?)=0 n> 3.
Since

o
fu =Zf1"1 =1,
n=1

state 1 is recurrent. Since

e¢]

" =an1"1=2<oo,

n=1

state 1 is positive recurrent. According to Proposition 19.6, the whole chain is
positive recurrent.

Since the chain is aperiodic and positive recurrent, it is ergodic.

19.1 Markov Chains 437

2. Consider a Markov chain {§(n) |n =1, 2, ...} with state space I = {1, 2, 3, 4, 5}.
Its state transition graph is depicted in Fig. 19.1(b), and its transition matrix is

001 0 0
0+ o0 lo0
P=0 0 0 0 1 (19.21)
1 1 1
5 30350
1 00 0 0

e Since
(n) 1, n= 3/{,
P =
0, n#3k, keZy,
we know that state 1 is of period 3, and thus so are states 3 and 5.

e Since
o0

Ju= Zfl(?) =1
n=1
and
o0
M1 :Zn](?) =3,
n=1

state 1 is positive recurrent (and thus so are the states 3 and 5).
e It is obvious that C{ = {1, 3, 5} is a closed set. Hence, the chain is not irre-

ducible.
e Since
1
m_ 1
Py = >
state 2 is aperiodic.
[)
m_1
22 2’
% = Plx(k) =2,x(s) #2, k>s>1|x(0) =2}
2 = =%) = =
=0+ P{x(kh)=2,x(s) =4, k>s>1|x(0) =2}
=—(= , k=1,2,....
2\3
Since

o0
12 3
(n)
f22=Zf2£l SToi5T 1
i=1

state 2 is nonrecurrent.

438 19 Random Boolean Networks

m_ 1
=3
[= P{x(2) =4,x(1) #4|x(0) = 4}
:0+P{x(2)=4,x(1)=2|x(0)=4}=é.
Similarly,

B = Plx(k)=4,x(s) #£4, k>5>1]x(0) =4)
=0+ P{x(k) =4,x(s) =2, k > 5> 1]x(0) =4}
=_(_) k=12,

3\2
Since

o0
13 2
(n)
f44=2:f4:;1 = 1_1/2=§,
im1

state 4 is nonrecurrent.

Proposition 19.8 Assume that {£(n)} is a finite Markov chain (the state space con-
sists of finitely many elements, that is, |I| < 00). If the chain is irreducible, then all
the states are positive recurrent.

Note that the chain in part 1 of Example 19.3 is irreducible, and hence its states
are all positive recurrent.

In practice the most important problem is to investigate the limiting case of the
distribution of a Markov chain. We now consider this.

Definition 19.9 Let (p;;) be the transition probabilities of a Markov chain. If there
is a nonnegative series {r;} such that

Z?ilnj:l’

_ (19.22)
ﬂjzzioilﬂ,‘-p,’j,]21,2,...,

then {7} is called the stationary distribution of the Markov chain.

Proposition 19.9 Suppose we have an irreducible Markov chain and a state j that
is aperiodic. Then,

1
lim p = —>0. (19.23)

n—oo U wi

19.2 Vector Form of Random Boolean Variables 439

The {ﬁ} defined in Proposition 19.9 is called the limiting distribution.
J

Theorem 19.1 Assume a Markov chain is irreducible and aperiodic. There then ex-
ists a steady-state distribution if and only if the chain is positive recurrent. Moreover,
in this case the steady-state distribution is exactly the limiting distribution.

Note that according to Proposition 19.6, if the state space is finite, i.e., | /| < oo,
then the positive recurrence is ensured by irreducibility.

From the above discussion we see that the properties of a Markov chain, partic-
ularly those of a homogeneous one, depend completely on its transition matrix. The
transition matrix of a homogeneous Markov chain is also called a stochastic matrix.
It can also be defined independently (for a finite state space) as follows.

Definition 19.10 A € .#,, ., is called a stochastic matrix if
(1)
a,'jZO, Vi,j:l,...,n,

(ii)

n
Y aij=1, Vi=1,...n (19.24)
=1

19.2 Vector Form of Random Boolean Variables

We first give a rigorous definition of a random Boolean variable as a variable which
can take values from 7 = {r e R|0 <r < 1}. Assume a € Z. To express « in

vector form, we define
o
w7 Jeea).

We now have a one-to-one correspondence between &7 and A as

o
oc<:>|:1_ai|, Va e Py.

In general, we define

A,,:{v:(vl,...,vn)TeR"

n
v; >0, Zvi:1}~

i=1

It is clear that A = A».

440 19 Random Boolean Networks

Definition 19.11 A matrix A € .4}, x,, is called a random logical matrix if
Col(A) € A,.

The set of m x n random logical matrices is denoted by .2, ..

The following results are fundamental.

Proposition 19.10
1. Ifxe Apandy € Ay, then

Xy :=xKXy€Ap,.

2. Let A€ £, and B€ 2}, .. If n=pt, then AB:=Ax Be.Z, . andif
nt=p,then ABe .2}, ..
Proof We prove item 2. Item 1 can be considered as a particular case of item 2.
First, note that if A >; B (resp., A <; B), then A x B =A(B ® I;) [resp., A X
B = (A ® I,)B]. It is easy to see that if L is a random logical matrix, then L ® I
is also a random logical matrix. Using these two facts, we can assume that n = p.
The product AB then becomes the conventional matrix product. Let A = (4;, ;) and
B = (b;). It is obvious that since all the entries of A and B are nonnegative, so are
all the entries of AB. Hence, we have only to prove that the sum of the entries of
each column of AB is 1. Consider the ith column of A B, which is

ai,; ayz - appn by,
a1 azy -+ apom by i
Col;(AB) = .
azm’l 612'",2 EY azm’zn b2",i
- o
Y k1 a1.kbri

2n
Y k1 a2.kbr.i

»
| D k=1 a2m kb

Since
om on oy om "
DD kb= Z(Zaf:k)bw =2 bei=1,
j=1k=1 k=1 \j=1 k=1
the result follows. O
Letx; e A,i=1,...,n,and define x = x?zlxi. ‘We then want to know whether

the x;’s can be retrieved from x. Using the retrievers S/ defined in Chap. 7, we can
prove a similar reconstruction result.

19.2 Vector Form of Random Boolean Variables

Proposition 19.11 If x = |><?:1x,~, where x; € A,i=1,...,n, then
xi=8"x, i=12,...,n.

Proof Let

Then we have

X =X|X2- Xy, = px2:Xn
T A= pxgxg
Write
_ T
X2X3 -+ Xp = (01,02, ..., 0n—1) € Agn-1.

It is then easy to see that

anl
Six = PLizi i/ = [p :| =x].
A-p)Yi, a I=p

Note that
W[zk—l’z]X]xz ceeXp = XEX] Xk—1Xk41 " Xp-

Using (19.26), we have

Si’l W[zk—l yz]x = Xf,
so it is enough to prove that

S? W[zk—l ’2] - S;g .
Recall the factorization formula of a swap matrix,

Wipg.r1 = Wip.r1 ® 1)U p ® Wig.r),

we have

Wiak-1 21 = (W21 ® Ipk-2) (12 @ Wipi-2 57).

Using (19.29), (19.27) can easily be proven by mathematical induction.

441

(19.25)

(19.26)

(19.27)

(19.28)

(19.29)

O

442 19 Random Boolean Networks

19.3 Matrix Expression of a Random Boolean Network

Recall that a Boolean network with n nodes can be described as

x1(t+ 1) = fi(xi (@), x2(1), ..., xa (1)),
x2(t + 1) = f2(x1(t)s-x2(t)7 e 9xn(t))v

(19.30)
xn(t + 1) = fn(xl(t),XZ(t): M) xn(t))v
where f;,i =1,2,...,n, are logical functions. If M; is the structure matrix of f;,
i=1,2,...,n, then (19.30) can be converted into componentwise algebraic form
as
x1(t + 1) = Mixi (0)x2(t) - - x, (1),
X2t + 1) = Mox () x2(8) - - x, (1),
(19.31)

Xn(t + 1) = Muxi(0)x2(2) - - - x5 (2).
If we define x (1) = l><?: 1Xi (1), then (19.31) can be converted into algebraic form as
x(t+1)=Lx(t). (19.32)

The Boolean network (19.30) becomes a random Boolean network if f; could be
chosen from a previously given set of £; different models [3]. That is,

fielft A 1), (19.33)
and the probability of f; being fl’ is

Pelfi=fY=pl, j=12,....¢4. (19.34)

It is clear that

6o
Zpijzl, i=1,...,n.
j=1

Summarizing the above description, we can give a rigorous definition of a random
Boolean network.

Definition 19.12 A random Boolean network consists of a finite set of logical func-
tions and probabilities,

[Pe(fi=F)i=1on j=1,.... 6}, (19.35)

such that in the Boolean network (19.30), the ith submodel f; is f,.j with probability
Pr(fi = f).

19.3 Matrix Expression of a Random Boolean Network 443

A matrix K is used to denote the index set of possible models [3]:

1 1 - 1 1
1 1 .- 1 2
1 1 ¢,
1 1 - 2 1
K=|1 1 ... 2 2 (19.36)
1 1 2 o
31 62 Zn—l En

K e #yNx, and N = H?:l L.
Each row of K represents a possible network with probability

n
P; = Pr{network i is selected} = 1_[pf“ . (19.37)
j=1

If we now define
x(1) ==X xi (1)
then, for each network, we have

xt+1)=Lix®), i=12,...,N. (19.38)

Hence, the overall expected value of x (# + 1) satisfies

N
Ex(t + 1):2P,»L,-Ex(r) := LEx(1). (19.39)
i=1

It is easy to see that the matrix

N
L:=Y PLi €L,
i=1

is a random Boolean matrix. It is called the random network transition matrix.
Since LT is a probability matrix, we simply say that L is irreducible (resp., ape-

riodic) if the Markov chain determined by LT is irreducible (resp., aperiodic).
Using Proposition 19.8 and Theorem 19.1, we have the following.

444 19 Random Boolean Networks

Proposition 19.12 If L is irreducible and aperiodic, then there exists a steady-state
distribution

2n
w; >0, Zﬂi =1,
i=1

such that
P{x:lxl”:lxiz(Slzn}:m, i=1,..., n.
In fact, we have

7'[’1 e 7T1
7'[2 e nz

lim L' =

11— 00
TTon PN TTon

We now give an example.

Example 19.4 Consider the system

B(t+1)= f2(A(?), B(¢),C(1)), (19.40)

’A(z + 1) = fi(A@), B(1), C(1)),
C(t+1) = f3(A@r), B(1),C(1)),

where

[l =TA1(0) A (=(A2(0) A A3(ON]TV [(=AL(0)) A Ar(1)],
FE=TA10) A (5(A3(0) = A2(O)]V (A1) A (=(A2(1) < A3(1)))]

with
Pr(fi=f!)=04, Pr(fi=f})=06,
[y =[A1(1) A (A2 (1) < A3()] V [(=A1(D) A (=(A2(1))],
7 =1A100) A AV [(AL(D) A (Ax (1) < A3(1))]
with
Pr(fo=f3)=06, Pr(fa=f5) =04,
and
[=A100) A (A3(0) > Ax (1)),
2 =1A10) A Aa() A A3(D]V [(=A1 (1) A A3(1)]
with

Pr(fs=f{)=04, Pr(fs=f)=0.6.

19.3 Matrix Expression of a Random Boolean Network

The model-index matrix K and the model probabilities are now

[\ N I O S R
NN = = NN ==

Denote the structure matrix of fij by Ml.j . It is then easy to calculate that

DO = N =N =N =

Ml =8[21111122],
M} =8[22122112],
My =8[12212211],
M3=68[11221221],
Mi=8[11212222],
M3 =58[12221212].

P;=0.4 x0.6 x0.4=0.096,
P, =0.4x%x0.6 x0.6=0.144,
P;=0.4 x 0.4 x 0.4 =0.064,
Py =0.4x0.4 x0.6=0.096,
Ps =0.6 x0.6 x 0.4 =0.144,
Ps=10.6 x0.6 x 0.6=0.216,
P;=0.6 x 0.4 x 0.4 =0.096,
P3=0.6 x 0.4 x0.6=0.144.

445

Now, set x(t) = A(t) B(t)C(t). The network matrix of each network can then be
calculated using a standard procedure. For example, for the first model we have

x(t4+1) =M x()Myx()Mix(t) := Lix(t),

where L can be calculated as

L1=06g[81111188].

Similarly, we can calculate L;, i =2, 3, ..., 8. Finally, the random network matrix
of the random Boolean network is found to be

8
L=Y PL;
i=1

S OO~ OO OO

SO oo~ OO O

SO OO~ O OO

S OO~ O OO O

(19.41)

446 19 Random Boolean Networks

Next, we consider another example.

Example 19.5 [3] The system of equations is as (19.40), where f1 has two models,
fland f2.Pr(fi = f) =0.6, Pr(fi = f}) = 0.4, and

Ml =8&[11121112],
M?=58[11122112].

/> has only one model, and
My=68[12112112].
/3 has two models, f; and f7.Pr(f3 = f}) =0.5,Pr(f3 = f{) = 0.5, and

Mi=8[11121222],
M3 =68[12222222].

It is then easy to calculate that

L1 =6[13163228], P =02,
L,=05[14264228], P =02,
Ly=06[13167228], P;=023,
Ly=063[14268228], Py=03.

Finally, we have

10 050 0 0 0 0]
0 0 050 0 1 1 0
005 0 0020 0 0
005 0 0020 0 0
L=1o0 0 0 1 0 00 o0 (19.42)
00 0 0 0 00 0
0 0 0 00300 0
0 0 0 0030 0 1]

An interesting feature of this system is that there is a “pseudo-steady-state distri-
bution”. Define

L := lim LK. (19.43)

k—o00

19.4 Some Topological Properties 447

Such a limit then exists, which is

—
(98]

1 2 B 7 1 5 35 g
8 16 16 16 8 8
00 0 0 0000
00 0 0 0 000
00 0 0 0 000
Li=100 0 0 0 0 0 0 (19.44)
00 0 0 0 000
00 0 0 0 000
0 2 2 5 9 3 3
LY 8 16 16 16 8 8§

There are two fixed points, P = Sé ~ (1,1, 1)T and Q = 8% ~ (0,0, O)T. Starting
from any initial value, the trajectory will converge to either P or Q with probabil-
ity 1. However, this is not a genuine steady-state distribution because, starting from
different points, the probabilities of convergence to P and Q will vary according to
the initial value.

19.4 Some Topological Properties

This section is based on [2]. First, we consider the cycles of a random Boolean
network. We consider a fixed point to be a cycle of length 1.
The following result is obvious.

Proposition 19.13 Consider a random Boolean network X . Assume that it has N
possible models, X;, with P, = P(¥ = X;)>0,i=1,...,N.If C is a common
cycle of all X;, then C is a cycle of X.

Proposition 19.14 Consider a random Boolean network X . Assume that it has N
possible models, X;, with P, = P(X = X;) > 0,i =1, ..., N. Assume that:

(1) C is a common cycle of all X,
(i) there is an i* such that C is the unique attractor of Xjx.

The network then converges to C with probability 1.
Proof Since C is the unique attractor of X+, there is a transient time 7; such that as

Y = X for a period [t1, 1] with t, — 11 + 1 > T;, all the trajectories will enter C.
Consider the time period (kT;, (k + 1)T¢]:

PlZt)=2p() |kT; <t < (k+ DT} = pli>o.

1

Now, consider the time period [0, mT;]:

P{E0)=Zp() [kT, <t < (k+DT;; 0<k <m}=1—(1—PI)".

1

448 19 Random Boolean Networks

As m — 0o one sees that the probability of X+ appearing sequentially over 7; times
is 1. Hence, all the trajectories of the network converge to C with probability 1. [J

Finally, we consider the random Boolean control network. The system is de-
scribed as

xl(t + 1) = fl(-xl(t)sxz(t)$ 7xl‘l(t)1 ul(t)v ey Mm(t))v
x2(t + 1) = f2(x1 (t)axz(t)7 7xl’l(t)a ul(t)7 ceey um(t))v

(19.45)
;cn(t +1) = fulx1(@), x2(), ..., x0 (@), u1(t), ..., um(1)).
Now assume f; can equal one of fl.j , j=1,2,...,¢;, with probabilities
Pef{fi=fY=p/>0, j=12,... .. (19.46)

We consider the stabilization problem of (19.45). Using Proposition 19.14, we
have the following result.

Corollary 19.1 Consider the random Boolean control network (19.45). Assume that
there exists a fixed point x, and a set of controls

(... ub), i=1,...,N, (19.47)

? m
such that for the closed-loop models ¥X;,i =1,...,N:

(i) x. is a common fixed point of all X;,
(ii) there is an i* such that x, is the unique attractor of X;x.

The closed-loop network then converges to x, with probability 1. In other words, the
controls (19.47) stabilize the network (19.45).

Example 19.6 Consider the system

At +1) = fi(AQ@), B(1), C(1), u(t)),
B(t+1) = f2(A(t), B(1), C(t), u(1)), (19.48)
Ct+1) = f3(A@), B(1), C(t), u(1)),

where

fl=AmrCw,
fE=A@) AB@)

with

Pr(fi=f1)=02, Pr(fi=f})=08,

19.4 Some Topological Properties 449

fi ==AWM Vv CW),
2 =(A@t) AC@) v u(t)

with
Pr(fo=f1)=07, Pr(fa=f3)=03,
and
!f; = (B(t) < C(1) Au' (1),
fi=A@) A-BQ),
with

Pr(f3=f1) =04, Pr(f3=f{) =06

The model-index matrix K and the model probabilities are

P1=0.2x0.7 x 0.4 =0.056,

i i ; P, =0.2x0.7 x 0.6=0.084,
Lo Py=0.2x 0.3 x 0.4 =0.024,
|12 2 P4=0.2x 0.3 x 0.6 =0.036,
T2 1 1|7 Ps=08x0.7x0.4=0.224,
; é % Ps=0.8 x 0.7 x 0.6 =0.336,
- - Ps=0.8 x 0.3 x 0.6=0.144.
Using the control
1
1) =A(@),
v 0 =A0 (19.49)
u-(t) =—-A@) A—=C(1),

we can calculate the network matrices for all the models as follows:

L =53[18276666],
Ly =083[28176666],
L3 =053[18276666],
Ly=053028176666],
Ls=233[14676666],
Le=053[24576666],
L;=083[14676666],
Lg=83[24576666].

450 19 Random Boolean Networks

It is easy to show that models 1, 3, 5, and 7 have two fixed points, (1, 1, 1)T and
©,1, O)T, and models 2, 4, 6, and 8 have only one fixed point, (0, 1, O)T. Hence,
©,1, O)T is the only common fixed point for these models.

We now calculate the network transition matrix of the random Boolean network:

2 3 -
204 00000
3 2
20 200000
00 0 00OO0O
02 000000
L =
12
00 42 00000
8
00 £ 01 111
00 0 10000
01 0 0000 O]
We can also calculate that the limit of L is
[0 0000 0 0 0]
00 00O0O0O00
00000000
.« 00000000
Li=ImL"=19 00000 0 0
1 11 1 1 111
00 00O0O0O0O0
(0000 0O0O0 0]

There is only one fixed point C = 5§ ~ (0,1, O)T. That is, the network converges to
C with probability 1.

References

1. Cinlar, E.: Introduction to Stochastic Processes. Prentice Hall, New York (1997)

2. Qi, H., Cheng, D., Hu, X.: Stabilization of random Boolean networks. In: Proc. WCICA’2010,
pp- 1968-1973 (2010)

3. Shmulevich, 1., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-
based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261-274 (2002)

Appendix A
Numerical Algorithms

A.1 Computation of Logical Matrices

In computing a logical matrix L and other related matrices involved in this book, it
is easily seen that the dimension grows exponentially with n . To reduce the compu-
tational complexity, we present in this section some formulas for the computation
of logical matrices, which will be used in the computation of examples in the next
section.

A matrix L € My, is called a logical matrix if its columns are of the form (an.

Example A.1

1. The structure matrix of any logical operator is a logical matrix. For instance, M,,,
My, M., M;, M,, etc. are all logical matrices.

2. The swap matrix W[, , is a logical matrix.

3. The power-reducing matrix M; (or M, x) is a logical matrix.

Note that from previous examples one may find that for computing system ma-
trix L, only delta matrices are involved.
Now, if ¢ € % «n is a logical matrix, then ¥ can be expressed as

v=[801,82,....82].
In the text of this book it is denoted as
Y =0mlit, ..., inl
In the toolbox it is denoted as

v = (li1, iz, ... in],m).

D. Cheng et al., Analysis and Control of Boolean Networks, 451
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7

452 A Numerical Algorithms

We call such an expression the condensed form of a logical matrix. Using this nota-
tion we now deduce some formulas which are useful in computations.

Proposition A.1

1. Assume that = ([i1,i2,...,i2], p). Then

Y@L =([(1—1D2"+1 (1 —12"+2 - (i1)2"
(—D2"+1 (2—D2"+2 -+ (2)2"

(20 — D2+ 1 (s — D2 42 (2002], p+7). (A

2. Assume that = ([i1,i2,...,102], p). Then

Iy @y = ([i1 i R Y
2P + iy 2P +ij < 2P 4ing
2x2P +i 2x2P +iy e 2x 2P 4y

Q=D x2P+i; 2" —=1) x2P +ip --- (2’—1)x2p+i2q],p+r).
(A2)
3. Assume that ¥ = ([i1, i2, ..., 2], p), & = (j1, j2,---» jor], q). Then

Vo= (lij.ij---rij], D). (A.3)
Formulas (A.1)—(A.3) are enough to calculate the transition matrix L of a
Boolean (control) network.
Next, let 2" = F{x1,...,x}, ¥1,...,yp € X, and z1,...,2, € 2. Set x =
l><?=1x,-, y= [Xf:])’i, and z = K?Z]Zi- Assume that
y = Px, z=Q0x,
where P € %pxon and Q € Zhqxon. We then have the following.
Proposition A.2
vz = Wx, (A4)

where W € Lyp+axon can be calculated as follows. Denote by Col;(W) [resp.,
Col; (P), Col; (Q)] the ith column of W (resp., P, Q). Then

Col; (W) =Col;(P) x Col;(Q), i=1,2,...,2".

A.2 Basic Functions 453
A.2 Basic Functions

1. Calculate the semi-tensor product of A and B:

function ¢ = sp(a,b)

% SP Semi—Tensor Product of Matrices using Kronecker
product

%

% SP(A,B) is to calculate the semi—tensor product of A and
B.

% The number of columns of the fisrt matrix must be the
divisor

% or multiple of the number of rows of the last matrix.

if —=(isa(a,’sym’) | isa(a,’ double’))
a = double(a);

end

if —(isa(b,’sym’) | isa(b,’ double’))
b = double(b);

end

if ndims(a) > 2 | ndims(b) > 2
error (' Input arguments must be 2—D.’);

end
[m,n] = size(a);
[p,q] = size(b);
if n ==p
c = axb;
elseif mod(n,p) ==
z = n/p;
¢ = zeros(m,zxq);

¢ = axkron(b,eye(z));
elseif mod(p,n) ==

z = p/n;

¢ = zeros(mxz,q);

¢ = kron(a,eye(z))x*b;
else

error (’dimension error: sp’);
end ;

2. Calculate the semi-tensor product of n (> 2) matrices:

function r = spn(varargin)

% SPN Semi—tensor product of matrices with arbitrary number
of matrices

%

% SPN(A,B,C, ...) calculates the semi—tensor product of

arbitrary
% number of matrices which have the proper dimensions.

ni = nargin;

454 A Numerical Algorithms

switch ni

case 0
error (’No input arguments.’)
case 1
r = varargin{l};
return
case 2
r = sp(varargin{1l},varargin{2});
return
otherwise
r = sp(varargin{1l},varargin{2});
for i = 3:ni
r = sp(r,varargin{i});
end

end

3. Calculate the swap matrix W, ,:

function w = wij(m,n)

% WIJ Produces swap matrix
%
% A = WII(N) produces an N*2—by-N"2 swap matrix.

% A = WII(M,N) produces an MN-by-MN swap matrix.

if nargin ==
n=m;

end

d = mxn;

w = zeros(d);

for k = 1:d
j = mod(k,n);
if j ==0

j=n

end

i = (k—=j)/n+1;
w((j—D=m+i, k) = 1;
end;

4. Create a semi-tensor product object:

function m = stp(a)

% STP/STP semi—tensor product (STP) class constructor
% m = stp(a) creates an STP object from the matrix A

5. Create an LM object:

function m = Im(varargin)

% IM/IM logical matrix (ILM) class constructor

A.2 Basic Functions 455

%

% M =1M(A) creates an LM object from the matrix A

% Example: m = Im(eye(3))

%

% M =1IM(V,N) creates an LM object from a vector V and a
positive integer N

% Example: m = Im([1,2,2,3].,4)

6. Create the logical matrix for an n x n identity matrix:

function m = leye(n)

% LEYE Create an n—by—n identity matrix, return an LM
object

%

% M = LEYE(N)

%

% Example: m = leye(3), class(m)

if n <0
error (’Input argument must be a positive integer’)

end

m= Im(l:n,n);

7. Create the logical matrix for power-reducing matrix:

function Mr = Imr(k,n)

% LMR Produces power—reducing matrix, returns an LM object

%
% The power—reducing matrix M satisfies P"2=MP, where P is a
logical variable.

%

% M = LMR for classical logic

% M = LMR(K) for k—valued logic

%

% Example: m = Imr, m = Imr(2)

if nargin == | isempty(k), k = 2; end;
a = 1:k;

Mr = Im(a+(a—1)xk,k"2);
8. Create the logical matrix for negation:
function m = Imn(k) ;
% LMN Produces logical matrix for negation, returns an LM
object

%
% M = IMN for classical logic

456 A Numerical Algorithms

% M = IMN(K) for k—valued logic
%
% Example: m = Imn, m = lmn(2)
if nargin == 0 | isempty (k)

k = 2;
end

m= Im(k:—1:1,k);
9. Create the logical matrix for conjunction:

function m = Imc (k)

% 1LMC Produces logical matrix for conjunction, returns an
IM object

%

% M = LMC for classical logic

% M = LMC(K) for k—valued logic

%

% Example: m = Imc, m = Imc(2)

if nargin == | isempty (k)
k = 2;

end

m = Im;

m.n = k;

a = 1:k;

p = a(ones(l,k) ,:);

p=(p())’;

q = repmat(a,l k);

b = p=>q;

m.v = p.xb+(q.*b;

10. Create the logical matrix for disjunction:

function m = Imd (k)

% LMD Produces logical matrix for disjunction, returns an
IM object

%

% M = LMD for classical logic

% M =IMD(K) for k—valued logic

%

% Example: m = Imd, m = lmd(2)
if nargin == | isempty (k)
k = 2;

end

m = Im;

A.2 Basic Functions 457

= 1:k;
a(ones(1,k) ,:);
(p(:)) 7

= repmat(a,l,k);
P=q;

= p.*b+q.*b;

5 oL T T e
[

<

11. Create the logical matrix for implication:

function m = Imi(k)

% LMI Produces logical matrix for implication, returns an
IM object

%

% M = LMI for classical logic

% M = LMI(K) for k—valued logic

%

% Example: m = Imi, m = Imi(2)

if nargin == 0 | isempty (k)

k = 2;
end
Md = Imd(k);
Mn = Imn(k);
m = Md*Mn;

12. Create the logical matrix for equivalence:

function m = Ime(k)

% LME Produces logical matrix for equivalence, returns an
IM object

%

% M = LME for classical logic

% M = LME(K) for k—valued logic

%

% Example: m = Ime, m = Ime(2)

if nargin == 0 | isempty (k)

k = 2;
end
Mc = Imc(k);
Mi = Imi(k);
Mr = Imr(k);

m = McxMix(leye (k22)+Mi) x(leye (k)+Mr) x(leye (k)+1wij (k))*Mr;

458 A Numerical Algorithms

13. Create the dummy logical matrix:

function m = Imu(k)

% 1MU Produces dummy logical matrix, returns an LM object
%

% The dummy logical matrix M satisfies MXY = Y, where X, Y
% are two logical variables

%
% M =1IMU for classical logic
% M =IMU(K) for k—valued logic
%

% Example: m = Imu, m = lmu(2)
if nargin == | isempty (k)

k = 2;
end

m = Im(repmat(1l:k,1,k),k);

A.3 Some Examples
1. Calculate the semi-tensor product:

% This example is to show how to perform semi—tensor product

x = [1 23 —1];

y = [2 1173

rl = sp(x,y)

% r1 = [5,3]

x = [2 117;

y=1[123 11

r2 = sp(x,y)

% 12 = [5;3]

x = [1 21 1;
231 2;
321 0];

y = [1 =2
2 —1]

r3 = sp(x,y)
% r3 = [3,4,-3,-5;4,7,-5,-8;5,2,-7,—4]

r4 = spn(x,y,y)
% r4 = [~3,—6,-3,-3;—6,-9,-3,-6:~9,-6,-3,0]

2. Examples for semi-tensor product class:

% This example is to show the usage of stp class.

A.3 Some Examples 459

% Many useful methods are overloaded for stp class, thus you
can use stp object as double.

x = [1 21 1;
231 2;
321 0];

y = [1 =2
2 —1];

% Covert x and y to stp class
a = stp(x)
b = stp(y)

% mtimes method is overloaded by semi—tensor product for stp
class

c0 = spn(x,y,y)

¢ = axbxb, class(c)

% Convert an stp object to double
cl = double(c), class(cl)

% size method for stp class
size (c)

% length method for stp class
length (c)

% subsref method for stp class

c(l,:)

% subsasgn method for stp class
c(l,1) =3

3. Examples for the LM class:

% This example is to show the usage of Im class.
% Many methods are overloaded for Im class.

% Consider classical (2—valued) logic here
k = 2;

T = Im(1,k); % True
F = Im(k,k); % False

% Given a logical matrix, and convert it to lm class
A=1[100 0;
011 1]
M = Im(A)
% or we can use
%M = 1m([1 2 2 2], 2)

% Use m—function to perform semi—tensor product for logical
matrices

460 A Numerical Algorithms

rl = Ispn(M,T,F)

% Use overloaded mtimes method for Im class to perform semi—
tensor product
r2 = MxTxF

% Create a 4—by—4 logical matrix randomly
Ml = Imrand (4)
% M1 = randlm (4)

% Convert an Im object to double
double (M1)

% size method for Im class
size (Ml)

% diag method for Im class
diag (Ml1)

% ldentity matrix is a special type of logical matrix
I3 = leye (3)

% plus method is overloaded by Kronecher product for Im class

r3 = Ml + 13

% Alternative way to perform Kronecher product of two logical
matrices

r4 = lkro (Ml,13)

% Create an Im object by assignment

M2 = Im;

M2.n = 2;

M2v = [2 11 2];
M2

4. Consider Example 5.9:

% Initialize

k = 2;

MN = Imn(k); % negation

MI = Imi(k); % implicaiton

MC = Imc(k); % conjunction

MD = Imd(k); % disjunction

ME = Ime(k); % equivalence

MR = Imr(k); % power—reducing matrix
MU = Imu(k); % dummy matrix

options = [];

% Dynamics of Boolean network
% A(t+1) = MN«MDxC(t)*F(t)
% B(t+1) = A(t)
% C(t+1) = B(t)
% D(t+1) = MCKMCxMNk I (t) «MN«xCxMN«F (t)
% E(t+1) = D(t)

A.3 Some Examples 461

% F(t+1) = E(t)
% G(t+1) = MN«MD*F(t)*I(t)
% H(t+1) = G(t)
% 1(t+1) = H(t)
% Set X(t)=A(t)B(t)C(t)D(t)E(t)F(t)G(t)H(t)I(t), then

eqn = { ' MNMD C F’,
A
‘B’
'MCMCMN I MN C MN F’,
‘D’
B’
'MNMD F 17,
G,
'H’ };

% Set the variables’ order, otherwise they will be sorted in

the dictionary order
options = Imset(’vars’,{’A’,’B’,’C’,’D’,’E’ ,’F’ ,’G’,’H’,’1’});

% Convert the logical equations to their canonical form
[expr,vars] = stdform(strjoin(eqn) ,options ,k);

% Calculate the network transition matrix
L = eval(expr)

% Analyze the dynamics of the Boolean network
[n,1,c,r0,T] = bn(L,k);

fprintf (’Number of attractors: %d\n\n’,n);
fprintf (’Lengths of attractors:\n’);
disp(1);
fprintf (’\nAll attractors are displayed as follows:\n\n’);
for i=1:length(c)
fprintf (’No. %d (length %d)\n\n’,i,1(i));
disp(c{i});
end
fprintf (’ Transient time: [T_t, T] = [%d %d]\n\n’,r0,T);

5. Consider Example 14.1:

% Initialize

k = 3;

MN = Imn(k); % negation

MI = Imi(k); % implicaiton

MC Imc(k); % conjunction

MD = Imd(k); % disjunction

ME = Ime(k); % equivalence

MR = Imr(k); % power—reducing matrix
MU = Imu(k); % dummy matrix

options = [];

% Dynamics of Boolean network

462 A Numerical Algorithms

% A(t+1) = A(t)
% B(t+1) = MI*A(t)*C(t)
% C(t+1) = MD«B(t)*D(t)
% D(t+1) = MN«B(t)
% E(t+1) = MN«C(t)
% Set X(t)=A(t)B(t)C(t)D(t)E(t), then

eqn = { MUE A’ ,
MI A C’,
'MD B D’ ,
'MN B’ ,
'MN C’ };
% Set the variables’ order, otherwise they will be sorted in
the dictionary order
options = Ilmset(’vars’,{’A’,’B’,’C’,’D’,’E’ });

% Convert the logical equations to their canonical form
[expr,vars] = stdform(strjoin(eqn),options ,k);

% Calculate the network transition matrix
L = eval(expr)

% Analyze the dynamics of the Boolean network
[n,1,c,r0,T] = bn(L,k);

fprintf (’Number of attractors: %d\n\n’,n);
fprintf (’Lengths of attractors:\n’);
disp(1);
fprintf (’\nAll attractors are displayed as follows:\n\n’);
for i=1:length(c)
fprintf (’No. %d (length %d)\n\n’,i,1(i));
disp (c{i});
end
fprintf (’Transient time: [T_t, T] = [%d %d]\n\n’,r0,T);

Appendix B
Proofs of Some Theorems Concerning
the Semi-tensor Product

The proves in this appendix are cited from [1] with the permission from Science
Press.

(1) Proof of Theorem 2.1

Proof The first part (distributive law) can be proven by a straightforward computa-
tion, so we prove only the second part (associative law).

First, we show that if F', G, and H have feasible dimensions for (F x G) x H,
then the dimensions are also feasible for F' x (G x H).

Case 1. F = G and G > H. The dimensions of F', G, and H can be assumed to
bem x np, p x gr, and r X s, respectively.

Now, the dimension of F' x G is m x ngr, which works for (F x G) x H. On
the other hand the dimension of G X H is p x gs, which works for F x (G x H).

Case 2. F < G and G < H. The dimensions of F, G, and H can be assumed to
bem x n,np X g, and rq X s, respectively.

Now, the dimension of F' x G is mp x q, which works for (F x G) x H. On the
other hand the dimension of G x H is npr x s, which works for F' x (G x H).

Case 3. F < G and G > H. The dimensions of F', G, and H can be assumed to
bem x n,np x qr, and r X s, respectively.

Now, the dimension of F' x G is mp x qr, which works for (F x G) x H. On
the other hand the dimension of G x H is np x gs, which works for F x (G x H).

Case 4. F = G and G < H. The dimensions of F', G, and H can be assumed to
bem x np, p X q, and rq x s, respectively.

Now, the dimension of F' x G is m x nq. To make this feasible for (F x G) x H,
we need:

Case4.1. (F x G) > H, thatis, n =n'r. This works for F x (G x H).

Case 4.2. (F x G) < H, thatis, r = nr’. This works for F x (G x H).

The dimension of G x H is pr x s. To make this feasible for (F x G) x H, we
need:

Case4.3. F = (G x H), thatis, n = n'r. This is good for (F x G) x H.

Case4.4. F < (G x H), thatis, r = nr’. This is good for (F x G) x H.

D. Cheng et al., Analysis and Control of Boolean Networks, 463
Communications and Control Engineering,
DOI 10.1007/978-0-85729-097-7, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7

464 B Proofs of Some Theorems Concerning the Semi-tensor Product

Next, we prove associativity. We will do this case by case. Since Cases 1-3 are
similar, we prove only Case 1, thatis, F > G and G > H.

Let Fiuxnp, Gpxqr. and H, s be given. Based on the definition we can, without
loss of generality, assume that m = 1 and s = 1. Then,

1 1 1 1

i v 8y v &1 8rg
F[><G——(F1,...,Fp)[><

p p p p

i 0 8 0 &1 7 8rg

p 14 4 14
_ (ZF,.ggl,...,Zﬂggq,...,Zpig;l,...,zmg;q).
i=1 i=1 i=1 i=1

We then have

hy
(FxGxH=(FxG)x| :
hy
r p r p
S D3 SLTHINES 35 L) HECH!
j=1i=1 j=li=l1
On the other hand,
1 1 1 I
gll g]q grl grq hl
: “1 :
P P P P
gll ... glq e grl ... grq hr
1 1
Yimigjhi o Xiigjghy
.)
Yici&iihi e X1 &gl
Then,

Fx(GxH)=(F,...,Fy)x (G x H)
r P) r P)
= (3 Y)
j=1i=1 j=1i=1

which is the same as (B.1).
Since Cases 4.1-4.4 are similar, we prove Case 4.1 only. Let Fiy xnpr, G pxq, and
H,4xs be given. We also assume that m =1 and s = 1. Then,

F:(Flla---7Flr»~~-,Fpl,~~-,Fpr)’

B Proofs of Some Theorems Concerning the Semi-tensor Product 465

where each F;; is a 1 x n block.
g1 - 8lg
G=| : . H=(h.. b g k)T
g[)] e g[]q
A careful computation shows that

r

p q
(FxG)x H=Fx (GxH)=Y > > Fyjgithy.
i=1 j=1k=1

(2) Proof of Proposition 2.5

Proof Note that the elements a;; of V;(A) are arranged by the ordered multi-
index 1d(i, j; m,n), and in V (A) they are arranged by Id(j,i; n, m). Now, since
the columns of Wy, , are indexed by Id(i, j;m,n) and its rows indexed by
1d(j,i;n,m), by the construction of W,], it moves the (i, j)-element in the or-
der of Id(i, j; m, n) to (i, j)-position in the order of Id(j,i; n, m), which is (j, i)-
position in Id(i, j; m, n). That is,

W[m,n] Vi(A) = Vr(AT) .

The first equality then follows from (2.11). Multiplying both sides of the first equal-
ity by Wj,,m yields the second equality. O

(3) Proof of Proposition 2.9

Proof A simple computation shows that for a row vector X and a column vector Y
with proper dimensions, we have

(X, V) =((r", xT),)". (B.2)

Consider A x B. Denote the rows of A by A’ and columns of B by B ;. Itis then
clear that the (7, j)-block of A X B is
<Aiv BJ)L’

while the (j, i)-block of BT x AT is

Using the definition, we see that the transpose of the (i, j)-block of A x B is
exactly the (j, i)-block of B x A. The conclusion then follows. O

466 B Proofs of Some Theorems Concerning the Semi-tensor Product
(4) Proof of Proposition 2.10

Proof We prove the first case. The proof of the second case is similar.
Denote by b; the ith column of B, that is,

BZ[bl,bg,...,bq].

Note that
B®1n :[bl ®In7b2®1n7"'7bq ®In]

Using the block product law, we can then assume that m = 1 and ¢ = 1. We then
have

by
by
[a, a --- anp] . ® 1,
by
A straightforward computation shows that this equals A x B. d

References

1. Cheng, D., Qi, H.: Semi-tensor Product of Matrices—Theory and Applications. Science Press,
Beijing (2007) (in Chinese)

Index

p-memory strategy, 410
g-tolerance solution, 412

A

Adequate set, 9

Algebra, 21

Algebraic form, 107, 163
Aperiodic state, 434
Approximate identification, 405
Associative algebra, 21
Average payoff, 347, 410
Average return time, 434

B

Base-k power-reducing matrix, 315, 361
Basic block, 373

Basic conjunctive form, 11
Basic disjunctive form, 11
Basin of attractor, 115
Biconditional, 2

Boolean logic, 14
Boolean matrix, 249
Boolean network, 104
Boolean plus, 250
Boolean power, 250
Boolean product, 250
Boolean vector, 249
Boolean weight, 380

C

Canalizing Boolean function, 290
Canalizing Boolean mapping, 290
Cascading inference, 97
Cascading SSDP, 297
Characteristic matrix, 200, 322

Clean form, 167

Column stacking form, 28

Common &g sub-Nash equilibrium, 424

Common &; sub-Nash solution, 424

Common Nash equilibrium, 424

Commutativity, 7

Comparable regular subspaces, 304

Complement space, 151

Component-wise algebraic form, 107, 163,
174,317

Composed cycle, 147

Compounded game, 415

Condensed form, 452

Conditional, 2

Conjunction, 2

Conjunctive basis, 284

Conjunctive normal form, 12

Connectivity graph, 104

Constant mapping, 258

Contra-variant degree, 23

Contradiction, 5

Control-dependent network transition matrix,
142

Control-independent invariant subspace, 235

Controllability, 213, 375

Controllability matrix, 376, 391

Controllable, 214, 390

Controllable at sth step, 214

Controllable by networked control, 214

Controllable normal form, 238

Controllable with designable G, 214

Controllable with fixed G, 214

Controlled sub-network, 221

Controller sub-network, 221

Coordinate change, 191

Coordinate transformation, 191

Covariant degree, 21

D. Cheng et al., Analysis and Control of Boolean Networks, 467

Communications and Control Engineering,

DOI 10.1007/978-0-85729-097-7, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-097-7

468

Cross product, 19
Cycle, 108, 127, 350, 383
Cycle multiplier, 111

D

De Morgan’s law, 7
Descendant set, 116
Diagonal nonzero column, 109
Disjunction, 2

Disjunctive normal form, 11
Distributive law, 7
Disturbance decoupling, 276
Dual space, 22

Dummy operator, 71
Dynamic graph, 114

E
Edge, 127
Entry, 1

subentry, 1
Ergodic, 434
Ergodic payoff, 347
Exclusive or Vv, 9

F

Fabricated variable, 71

Failure locating, 89

First algebraic form, 128

Fixed point, 108, 127, 350, 383
Following-up variable, 114
Free Boolean sequence, 222
Fuzzy logic, 2, 15

G

Global stability, 111, 256
Globally controllable, 226
Globally convergent, 111

Group power-reducing matrix, 70

H
Higher-order Boolean control network, 403
Homogeneous Markov chain, 433

I

i-confirmor, 60

i-confirmor, V; x, 16

Identification, 389

In-degree, 105, 152, 167, 220

Incidence matrix, 105, 235

Indistinct rolling gear structure, 208
Input network, 141

Input-output decomposition problem, 298

Index

Input-state identifiable, 390

Input-state incidence matrix, 372
Input-state space, 146

Input-state transfer graph (ISTG), 348, 383
Invariant subspace, 150, 152, 204, 235, 322
Irreducible, 435

Iteration graph, 114

K

k-dimensional data, 19
k-dimensional subspace, 151

k-step transition probability matrix, 432
k-valued logic, 15

k-valued logical matrix, 65
k-valued network, 316

k-valued power-reducing matrix, 61
Kalman decomposition, 242

k dimensional data, 19

Kernel cycle, 150

L

Largest uncontrollable subspace, 238
Least in-degree model, 178

Left semi-tensor inner product, 31
Left semi-tensor product, 29, 31, 51
Limit set, 110

Limiting distribution, 439
Logical argument, 67

Logical constant, 67

Logical equation, 67

Logical equivalence, 6

Logical function, 3

Logical identity, 3

Logical implication, 6

Logical inference, 78

Logical matrix, 33, 55

Logical operator, 2

Logical relation, 3

Logical unknown, 67

Logical variable, 3

Low-round projection, 341

M

Markov chain, 432

Markov process, 432

Minimum realization, 247

Mix-valued logic, 340

Mix-valued logical control system, 340
Mix-valued logical dynamic system, 384
Mix-valued logical system, 340

Model construction, 171

Index

Morgan’s problem, 298
Multi-valued logic, 2, 15

N

Nash equilibrium, 412
Natural subspace, 320
Negation, 2, 60

Nested regular subspace, 204
Network graph, 104
Nominal network, 229
Non-recurrent state, 434
Nontrivial power, 109
Normal form, 233

Not and 1, 9

Notor |, 9

(o)

Observability, 227, 228, 380
Observability matrix, 228, 394
Observable normal form, 241
Open-loop control, 222

Optimal control, 348

Optimal control matrix, 356

Optimal trajectory, 357

Optimized conjunctive normal form, 14
Optimized disjunctive normal form, 14
Out-degree, 105, 220

Output-friendly form, 284

P

Parallel Boolean network, 124
Parallel SSDP, 297

Path, 127

Payoff function, 347, 410
Payoff matrix, 28, 29

Periodic state, 434
Permutation group, 25
Possibly true form, 5
Power-reducing matrix, 56
Prisoners’ Dilemma, 28, 37, 367
Probabilistic space, 431
Proper factor, 109
Proposition, 1
Pseudo-commutative, 38

R

Random Boolean control network, 448
Random Boolean network, 442
Random logical matrix, 440

Random network transition matrix, 443
Reachable, 214, 374

Reachable state, 219

Realization, 233

Recurrent state, 434

469

Regular basis, 196

Regular subspace, 321

Regular subspace of dimension &, 196
Retriever, 165

Right semi-tensor product, 49, 51
“rolling gear” structure, 153

Rotator, 60

Rotator @y, 16

Row stacking form, 28

Row-periodic matrix, 373

S

Semi-tensor product of arbitrary dimensions,
51

Semi-tensor products of arbitrary matrices, 51

Serial Boolean network, 124

Simple cycle, 350

Stability, 258

Stabilization, 261

State feedback, 261

State space, 151, 190, 320

State-space decomposition problem (SSDP),
297

Statement, 1

Statement variable, 3

Static game, 409

Stationary distribution, 438

STP space, 144

STP topological space, 145

STP vector space, 143

Structure constant, 20

Structure matrix, 29, 34, 35, 55, 57, 59, 62

Sub-Nash equilibrium, 412

Sub-network, 220

Subspace, 190, 320

Swap matrix, 38

T

Tautology, 5

Tensor, 21, 22

Tolerance, 412

Transient period, 110, 325
Transition matrix, 106

Transition probability, 432
Transition probability matrix, 432
Truth table, 4

U

Uncontrollable subspace, 237
Uniform Boolean network, 181
Uniquely identifiable, 171
Unobservable subspace, 239
Up-round projection, 341

470 Index

\% Y
Vector distance, 251 Y -friendly subspace, 276
w 4

Weight, 380 Zero-memory strategy, 410

	Preface
	References

	Contents
	Notation
	Propositional Logic
	Statements
	Implication and Equivalence
	Adequate Sets of Connectives
	Normal Form
	Multivalued Logic
	References

	Semi-tensor Product of Matrices
	Multiple-Dimensional Data
	Semi-tensor Product of Matrices
	Swap Matrix
	Properties of the Semi-tensor Product
	General Semi-tensor Product
	References

	Matrix Expression of Logic
	Structure Matrix of a Logical Operator
	Structure Matrix for k-valued Logic
	Logical Matrices
	References

	Logical Equations
	Solution of a Logical Equation
	Equivalent Algebraic Equations
	Logical Inference
	Substitution
	k-valued Logical Equations
	Failure Location: An Application
	Matrix Expression of Route Logic
	Failure Location
	Cascading Inference

	References

	Topological Structure of a Boolean Network
	Introduction to Boolean Networks
	Dynamics of Boolean Networks
	Fixed Points and Cycles
	Some Classical Examples
	Serial Boolean Networks
	Higher Order Boolean Networks
	First Algebraic Form of Higher Order Boolean Networks
	Second Algebraic Form of Higher Order Boolean Networks

	References

	Input-State Approach to Boolean Control Networks
	Boolean Control Networks
	Semi-tensor Product Vector Space vs. Semi-tensor Product Space
	Cycles in Input-State Space
	Cascaded Boolean Networks
	Two Illustrative Examples
	References

	Model Construction via Observed Data
	Reconstructing Networks
	Model Construction for General Networks
	Construction with Known Network Graph
	Least In-degree Model
	Construction of Uniform Boolean Network
	Modeling via Data with Errors
	References

	State Space and Subspaces
	State Spaces of Boolean Networks
	Coordinate Transformation
	Regular Subspaces
	Invariant Subspaces
	Indistinct Rolling Gear Structure
	References

	Controllability and Observability of Boolean Control Networks
	Control via Input Boolean Network
	Subnetworks
	Controllability via Free Boolean Sequence
	Observability
	References

	Realization of Boolean Control Networks
	What Is a Realization?
	Controllable Normal Form
	Observable Normal Form
	Kalman Decomposition
	Realization
	References

	Stability and Stabilization
	Boolean Matrices
	Global Stability
	Stabilization of Boolean Control Networks
	References

	Disturbance Decoupling
	Problem Formulation
	Y-friendly Subspace
	Control Design
	Canalizing Boolean Mapping
	Solving DDPs via Constant Controls
	References

	Feedback Decomposition of Boolean Control Networks
	Decomposition of Control Systems
	The Cascading State-space Decomposition Problem
	Comparable Regular Subspaces
	The Parallel State-space Decomposition Problem
	Input-Output Decomposition
	References

	k-valued Networks
	A Review of k-valued Logic
	Dynamics of k-valued Networks
	State Space and Coordinate Transformations
	Cycles and Transient Period
	Network Reconstruction
	k-valued Control Networks
	Mix-valued Logic
	References

	Optimal Control
	Input-State Transfer Graphs
	Topological Structure of Logical Control Networks
	Optimal Control of Logical Control Networks
	Optimal Control of Higher-Order Logical Control Networks
	References

	Input-State Incidence Matrices
	The Input-State Incidence Matrix
	Controllability
	Trajectory Tracking and Control Design
	Observability
	Fixed Points and Cycles
	Mix-valued Logical Systems
	References

	Identification of Boolean Control Networks
	What Is Identification?
	Identification via Input-State Data
	Identification via Input-Output Data
	Numerical Solutions
	General Algorithm
	Numerical Solution Based on Network Graph
	Identification of Higher-Order Systems

	Approximate Identification
	References

	Applications to Game Theory
	Strategies with Finite Memory
	Cycle Strategy
	Compounded Games
	Sub-Nash Solution for Zero-Memory Strategies
	Nash Equilibrium for µ-Memory Strategies
	Common Nash (Sub-Nash) Solutions for µ-Memory Strategies
	References

	Random Boolean Networks
	Markov Chains
	Vector Form of Random Boolean Variables
	Matrix Expression of a Random Boolean Network
	Some Topological Properties
	References

	Appendix A Numerical Algorithms
	Computation of Logical Matrices
	Basic Functions
	Some Examples

	Appendix B Proofs of Some Theorems Concerning the Semi-tensor Product
	References

	Index
	Cover
	Preface
	References

	Contents
	Notation
	Propositional Logic
	Statements
	Implication and Equivalence
	Adequate Sets of Connectives
	Normal Form
	Multivalued Logic
	References

	Semi-tensor Product of Matrices
	Multiple-Dimensional Data
	Semi-tensor Product of Matrices
	Swap Matrix
	Properties of the Semi-tensor Product
	General Semi-tensor Product
	References

	Matrix Expression of Logic
	Structure Matrix of a Logical Operator
	Structure Matrix for k-valued Logic
	Logical Matrices
	References

	Logical Equations
	Solution of a Logical Equation
	Equivalent Algebraic Equations
	Logical Inference
	Substitution
	k-valued Logical Equations
	Failure Location: An Application
	Matrix Expression of Route Logic
	Failure Location
	Cascading Inference

	References

	Topological Structure of a Boolean Network
	Introduction to Boolean Networks
	Dynamics of Boolean Networks
	Fixed Points and Cycles
	Some Classical Examples
	Serial Boolean Networks
	Higher Order Boolean Networks
	First Algebraic Form of Higher Order Boolean Networks
	Second Algebraic Form of Higher Order Boolean Networks

	References

	Input-State Approach to Boolean Control Networks
	Boolean Control Networks
	Semi-tensor Product Vector Space vs. Semi-tensor Product Space
	Cycles in Input-State Space
	Cascaded Boolean Networks
	Two Illustrative Examples
	References

	Model Construction via Observed Data
	Reconstructing Networks
	Model Construction for General Networks
	Construction with Known Network Graph
	Least In-degree Model
	Construction of Uniform Boolean Network
	Modeling via Data with Errors
	References

	State Space and Subspaces
	State Spaces of Boolean Networks
	Coordinate Transformation
	Regular Subspaces
	Invariant Subspaces
	Indistinct Rolling Gear Structure
	References

	Controllability and Observability of Boolean Control Networks
	Control via Input Boolean Network
	Subnetworks
	Controllability via Free Boolean Sequence
	Observability
	References

	Realization of Boolean Control Networks
	What Is a Realization?
	Controllable Normal Form
	Observable Normal Form
	Kalman Decomposition
	Realization
	References

	Stability and Stabilization
	Boolean Matrices
	Global Stability
	Stabilization of Boolean Control Networks
	References

	Disturbance Decoupling
	Problem Formulation
	Y-friendly Subspace
	Control Design
	Canalizing Boolean Mapping
	Solving DDPs via Constant Controls
	References

	Feedback Decomposition of Boolean Control Networks
	Decomposition of Control Systems
	The Cascading State-space Decomposition Problem
	Comparable Regular Subspaces
	The Parallel State-space Decomposition Problem
	Input-Output Decomposition
	References

	k-valued Networks
	A Review of k-valued Logic
	Dynamics of k-valued Networks
	State Space and Coordinate Transformations
	Cycles and Transient Period
	Network Reconstruction
	k-valued Control Networks
	Mix-valued Logic
	References

	Optimal Control
	Input-State Transfer Graphs
	Topological Structure of Logical Control Networks
	Optimal Control of Logical Control Networks
	Optimal Control of Higher-Order Logical Control Networks
	References

	Input-State Incidence Matrices
	The Input-State Incidence Matrix
	Controllability
	Trajectory Tracking and Control Design
	Observability
	Fixed Points and Cycles
	Mix-valued Logical Systems
	References

	Identification of Boolean Control Networks
	What Is Identification?
	Identification via Input-State Data
	Identification via Input-Output Data
	Numerical Solutions
	General Algorithm
	Numerical Solution Based on Network Graph
	Identification of Higher-Order Systems

	Approximate Identification
	References

	Applications to Game Theory
	Strategies with Finite Memory
	Cycle Strategy
	Compounded Games
	Sub-Nash Solution for Zero-Memory Strategies
	Nash Equilibrium for µ-Memory Strategies
	Common Nash (Sub-Nash) Solutions for µ-Memory Strategies
	References

	Random Boolean Networks
	Markov Chains
	Vector Form of Random Boolean Variables
	Matrix Expression of a Random Boolean Network
	Some Topological Properties
	References

	Appendix A Numerical Algorithms
	Computation of Logical Matrices
	Basic Functions
	Some Examples

	Appendix B Proofs of Some Theorems Concerning the Semi-tensor Product
	References

	Index

