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Foreword

By the dawn of the new millennium, robotics has undergone a major transforma-
tion in scope and dimensions. This expansion has been brought about by the ma-
turity of the field and the advances in its related technologies. From a largely
dominant industrial focus, robotics has been rapidly expanding into the challenges
of the human world (human-centered and life-like robotics). The new generation
of robots is expected to safely and dependably interact and work with humans in
homes, workplaces, and communities providing support in services, entertainment,
education, exploration, healthcare, manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge that robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neurosci-
ences, and virtual simulation, animation, surgery, and sensor networks among oth-
ers. In return, the challenges of the new emerging areas are proving an abundant
source of stimulation and insights for the field of robotics. It is indeed at the inter-
section of disciplines where the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to
the research community the latest advances in the robotics field on the basis of
their significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote
more exchanges and collaborations among the researchers in the community and
contribute to further advancements in this rapidly growing field.

Since its inception in 1994, the biennial Workshop Algorithmic Foundations of
Robotics (WAFR) has established some of the field's most fundamental and lasting
contributions. Since the launching of STAR, WAFR and several other thematic
symposia in robotics find an important platform for closer links and extended
reach within the robotics community.

This volume is the outcome of the WAFR ninth edition and is edited by D. Hsu,
V. Isler, J.-C. Latombe and M.C. Lin. The book offers a collection of a wide range
of topics in advanced robotics, including motion planning, multiagents, modular and
reconfigurable robots, localization and mapping, grasping, and sensing.

The contents of the twenty-four contributions represent a cross-section of the
current state of research from one particular aspect: algorithms, and how they are
inspired by classical disciplines, such as discrete and computational geometry,
differential geometry, mechanics, optimization, operations research, computer
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science, probability and statistics, and information theory. Validation of algo-
rithms, design concepts, or techniques is the common thread running through this
focused collection.

Rich by topics and authoritative contributors, WAFR culminates with this
unique reference on the current developments and new directions in the field of
algorithmic foundations. A very fine addition to the series!

Naples, Italy Bruno Siciliano
October 2010 STAR Editor



Preface

Robot algorithms are a fundamental build block of robotic systems. They enable
robots to perceive, plan, control, and learn, in order to achieve greater autonomy.
Today, the design and analysis of robot algorithms are more crucial than ever for
at least two reasons:

e Robotics is undergoing major transformation. Originally focused on indus-
trial manufacturing, it is now rapidly expanding into new domains, such as
homes and offices, elderly care, medical surgery, entertainment, ocean and
space exploration, and search-and-rescue missions. In these new domains,
tasks are less repetitive, environments are less structured, events are more
unpredictable, and greater autonomy is required over long periods of time.
It is often impossible to anticipate all events explicitly and to program the
robots specifically to handle them. New algorithms that are adaptive to
environment uncertainties and changes are needed to conquer these
challenges.

e Robot algorithms are finding new applications beyond robotics, for exam-
ple, in designing mechanical assemblies, modeling molecular motion, creat-
ing digital characters for video games and computer-generated movies, ar-
chitectural simulation, and ergonomic studies. These non-traditional
applications of robot algorithms pose new challenges: hundreds or thou-
sands of degrees of freedom, large crowds of characters, complex physical
constraints, and natural-looking motions. The resulting new algorithms may
in turn benefit future robots.

Robot algorithms are also rapidly evolving as a result of new technologies, e.g.,
low-cost parallel computers, cheaper and more diverse sensors, and new interac-
tion technologies ranging from haptic to neuroprosthetic devices.

Unlike traditional computer algorithms, robot algorithms interact with the
physical world. They must operate safely, reliably, and efficiently under tight time
constraints in imperfectly known environments. So, it is not surprising that the de-
sign and analysis of robot algorithms raise unique combinations of fundamental
questions in computer science, electrical engineering, mechanical engineering, and
mathematics. For example, minimalist robotics studies the minimal sensing and
actuation capabilities required for robots to complete a given task. It addresses not
only computational complexity issues, but also “physical” complexity issues.
Probabilistic methods are widely used as a modeling tool to handle uncertainties
due to sensing and actuation noise, but they are also used as a computational tool
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that avoids costly computations by extracting partial information and handling the
resulting uncertainties. Many other such examples abound.

The Workshop on Algorithmic Foundations of Robotics (WAFR) is a highly
selective single-track meeting of leading researchers in the field of robot algo-
rithms. Since its creation in 1994, WAFR has been held every two year and has
published some of the field’s most important and lasting contributions.

The ninth WAFR was held on December 13-15, 2010 at the National Univer-
sity of Singapore. It had a strong program of 24 contributed papers selected from
62 submissions. Each paper was rigorously reviewed by at least three reviewers
with additional input from two program committee members. The workshop also
featured 6 invited speakers: Leonidas Guibas (Stanford University), Leslie
Kaelbling (Massachusetts Institute of Technology), Jean-Pierre Merlet (INRIA
Sophia-Antipolis), Jose del Millan (Ecole Polytechnique Fédérale de Lausanne),
Yoshihiko Nakamura (University of Tokyo), Moshe Shoham (Technion — Israel
Institute of Technology). A vibrant poster and video session was a new addition
to this WAFR program to encourage open exchange of ideas in an informal at-
mosphere.

In addition to the editors of volume, the program committee consists of Srini-
vas Akella (University of North Carolina at Charlotte), Dan Halperin (Tel Aviv
University), Seth Hutchinson (University of Illinois at Urbana-Champaign), Vijay
Kumar (University of Pennsylvania), Jean-Paul Laumond (LAAS-CNRS),
Stephane Redon (INRIA Grenoble - Rhone-Alpes), Daniela Rus (Massachusetts
Institute of Technology ), Katsu Yamane (Disney Research and Carnegie Mellon
University).

It was a real pleasure to organize the workshop and to work with such a tal-
ented group of people. We owe many thanks to all the authors for submitting their
exciting work, to the program committee members and reviewers for their dedica-
tion to ensure the finest quality of WAFR, to the speakers for inspiring thoughts
and ideas, and to all the participants for making the workshop a great success. We
also wish to thank the following organizations for their generous financial support
of this WAFR:

e National University of Singapore, School of Computing
o United States Air Force Office of Scientific Research, Asian Office of
Scientific Research & Development.

Finally we wish to thank the School of Computing at National University of
Singapore for providing the logistic and technical support necessary to make this
WAEFR successful.

David Hsu

Volkan Isler
Jean-Claude Latombe
Ming C. Lin



Contents

Session I

Homotopic Path Planning on Manifolds for Cabled Mobile

Robots ... e

Takeo Igarashi, Mike Stilman

An Equivalence Relation for Local Path Sets ................

Ross A. Knepper, Siddhartha S. Srinivasa, Matthew T. Mason

Using Lie Group Symmetries for Fast Corrective Motion

Planning. . ... ...

Konstantin Seiler, Surya P.N. Singh, Hugh Durrant- Whyte

Asynchronous Distributed Motion Planning with Safety

Guarantees under Second-Order Dynamics ..................

Devin K. Grady, Kostas E. Bekris, Lydia E. Kavraki

Session II

Incremental Sampling-Based Algorithms for a Class of

Pursuit-Evasion Games . .............. ...

Sertac Karaman, Emilio Frazzoli

Multiagent Pursuit Evasion, or Playing Kabaddi.............

Kyle Klein, Subhash Suri

Reconfiguring Chain-Type Modular Robots Based on the

Carpenter’s Rule Theorem ..................................

Jungwon Seo, Steven Gray, Vijay Kumar, Mark Yim

Robomotion: Scalable, Physically Stable Locomotion for

Self-reconfigurable Robots . ............. ... ... .. ... .. ... ....

Sam Slee, John Reif



XII Contents

Session III

Adaptive Time Stepping in Real-Time Motion Planning ..... 139
Kris Hauser

The Bayes Tree: An Algorithmic Foundation for
Probabilistic Robot Mapping ................................ 157
Michael Kaess, Viorela Ila, Richard Roberts, Frank Dellaert

Monte Carlo Value Iteration for Continuous-State
POMDPS . ..o 175
Haoyu Bai, David Hsu, Wee Sun Lee, Vien A. Ngo

Randomized Belief-Space Replanning in
Partially-Observable Continuous Spaces ..................... 193
Kris Hauser

Session IV

GPU-Based Parallel Collision Detection for Real-Time
Motion Planning ........... ... . . . . . . . 211
Jia Pan, Dinesh Manocha

CCQ: Efficient Local Planning Using Connection Collision
QUETY . .o 229
Min Tang, Young J. Kim, Dinesh Manocha

Modeling Contact Friction and Joint Friction in Dynamic
Robotic Simulation Using the Principle of Maximum
Dissipation .......... . 249
Evan Drumwright, Dylan A. Shell

Energy-Based Modeling of Tangential Compliance in
3-Dimensional Impact ............. ... .. ... ... ... ... 267
Yan-Bin Jia

Session V

Sampling-Diagram Automata: A Tool for Analyzing Path
Quality in Tree Planners.......... ... .. .. ... .. .. . .. 285
Oren Nechushtan, Barak Raveh, Dan Halperin

Sufficient Conditions for the Existence of Resolution
Complete Planning Algorithms ............. .. .. .. ... .... 303
Dmitry S. Yershov, Steven M. LaValle



Contents XIII

Grasp Invariance .......... ... . .. 321
Alberto Rodriguez, Matthew T. Mason

Path Planning on Manifolds Using Randomized
Higher-Dimensional Continuation............................ 337
Josep M. Porta, Léonard Jaillet

Session VI

Algorithms and Analytic Solutions Using Sparse Residual
Dipolar Couplings for High-Resolution Automated Protein
Backbone Structure Determination by NMR ................ 355
Anna Yershova, Chittaranjan Tripathy, Pei Zhou,

Bruce Randall Donald

LQG-Based Planning, Sensing, and Control of Steerable

Needles . ... ..o e 373
Jur van den Berg, Sachin Patil, Ron Alterovitz, Pieter Abbeel,

Ken Goldberg

Cyber Detectives: Determining When Robots or People
Misbehave . ... ... .. .. 391
Jingjin Yu, Steven M. LaValle

Gravity-Based Robotic Cloth Folding ........................ 409
Jur van den Berg, Stephen Miller, Ken Goldberg, Pieter Abbeel

Author Index . ... .. . e 425



Homotopic Path Planning on Manifolds
for Cabled Mobile Robots

Takeo Igarashi and Mike Stilman

Abstract. We present two path planning algorithms for mobile robots that are con-
nected by cable to a fixed base. Our algorithms efficiently compute the shortest path
and control strategy that lead the robot to the target location considering cable length
and obstacle interactions. First, we focus on cable-obstacle collisions. We introduce
and formally analyze algorithms that build and search an overlapped configuration
space manifold. Next, we present an extension that considers cable-robot collisions.
All algorithms are experimentally validated using a real robot.

1 Introduction

Mobile robots are typically untethered. This is not always desirable in household
and high-power robotics. Wireless communication can be unreliable and batteries
need to be charged regularly. These challenges can be solved by using cables for
communication and power. Currently, cables are a viable option for robots that work
in fixed environments such as homes and offices. The challenge addressed in this
paper is that cables impose additional constraints on robot motion. First, robots
cannot go further than the cable length. Second, they are blocked by the cable itself
when the robots are not capable of crossing it. We present two practical planning
algorithms that handle these constraints and validate them on a real robot system.
The first challenge is that a cabled robot’s movement is constrained by the length
of the cable. If there is no obstacle, the robot’s motion is limited to stay within a cir-
cle around the fixed end-point of the cable. If there is an obstacle in the environment,
the robot’s movement is further constrained by the interaction between the cable and

Takeo Igarashi

Department of Computer Science, The University of Tokyo
JST ERATO Igarashi Design Interface Project

e-mail: takeo@acm.org

Mike Stilman
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1
robot N goal *«-—-
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(a) Direct Path (b) Detour Path (c) Blocked Detour (d) Solution to (c)

Fig. 1 The problem domain and a challenging example where the robot must untangle its
cable.

the obstacle as shown in Fig.[T(a) and (b). The locations of the robots are the same,
but the shortest paths to the goal are different because the cable configuration in
Fig. [[(b) cannot stretch to the goal. The second problem is that the robot’s move-
ment may be blocked by the cable when the robot is not capable of crossing it as
shown in Fig.[Ilc). The robot must make an auxiliary motion to move the blocking
cable out of the way (Fig. [I(d)). This is difficult because the robot cannot directly
control the cable. It must indirectly control it by pulling.

In order to address these challenges, Section [l introduces the overlapped man-
ifold representation for the configuration space of cabled robots. We develop an
efficient, resolution complete and optimal algorithm that constructs the manifold
and solves practical planning problems. To handle collisions between the cable and
the robot, Section ] presents a second search method that applies physics-based
simulation combined with heuristics to choose intermediate subgoals that maximize
robot mobility. Section[Slexperimentally demonstrates that both algorithms generate
appropriate paths for a real robot that reaches targets in the presence of a cable.

2 Related Work

The topic presented in this paper is far more complex than general path planning
[L, 2]. While the robot itself only operates in two dimensions, the cable is also part
of the complete system or plant. By including the cable, the challenge is lifted to
planning for an infinite-dimensional underactuated system. Previous work on teth-
ered robots [13] treated the problem as multi-robot scheduling. Our approach focuses
on a single agent and handles environment geometry.

Considerable research on high degree-of-freedom (DOF) robot systems such as
[4, 5] has direct applications to domains with dozens of DOF and non-holonomic
constraints. Our problem, however, requires handling even higher DOF and under-
actuation. Hence, the challenge is also distinct from deformable motion planning as
presented in [6, [7]. Likewise, cable-routing [8] assumes that shape of the cable is
directly controllable. However, a cabled robot cannot control all of its degrees of
freedom and must rely on predictions of cable motion due to stretch.

Existing planning methods for underactuated deformable objects typically fo-
cus on local deformations [9, [10]. Studies on deformable needle steering also
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consider the path to a robot configuration [11,/12] with a focus on local environment
deformation and curvature constraints. Our work complements these studies since
our task is to determine globally optimal robot paths. Global constraints are im-
posed by the cable length, wrapping around obstacles and potentially colliding with
the robot.

Typically, globally constrained underactuated planning and control is restricted to
four DOF systems as shown in [13,/14,15]. To handle the global problem complex-
ity our domain requires a different approach based on topological path homotopy.
Existing work in knot-tying [I16] plans with distinct topological states. However it
explicitly encodes and plans rope overlaps. Other planners that distinguish homo-
topic paths, [17, [18, [19], typically operate in a standard high-DOF configuration
space. Instead, we build a configuration space manifold that implicitly encodes the
homotopy of cable configuration and then search for shortest paths on the manifold.

In direct homotopic planning, [20] studies shortest paths but restricts the domain
to a boundary-triangulated space. [21] requires semi-algebraic models of obstacles.
[22] gives a configuration space representation that closely related to our work.
Their complex-plane mapping of paths may increase the efficiency of our methods
for single-query search. In contrast to our proposed manifold, existing techniques
do not address global cable-length constraints or cable-robot interactions.

Existing methods for manifold construction tend to focus on relationships in
recorded data [23, 24]. We present a novel, simple algorithm for global path plan-
ning with distance constraints on paths. The algorithm not only generates paths, but
a complete vector field [25,26] for robot motion on a manifold of homotopic paths.
Our extensions to this algorithm also consider cable dynamics [27, 28] and evaluate
strategies for robot motion when the cable itself is an obstacle in the space [29].

3 Distance Manifolds: Cable-Obstacle Interaction

We present a path planner for cabled mobile robots. The initial configuration, g;,
includes initial cable displacement. The goal is any configuration g, that places the
robot at p, in a 2D environment. The robot is connected to a fixed base location,
Po, by a cable resting on the floor. The cable is a flexible, passive entity whose
shape is determined solely by the previous motions of the robot. The environment
contains fixed obstacles that restrict both cable and robot motion. For simplicity, we
assume a disk-shaped robot with a given diameter and a cable attached by a freely
rotating joint. Furthermore, we represent space by a grid where configuration space
obstacles must occupy at least one grid vertex. This section introduces an algorithm
that handles the constraint given by cable length.

First, we build the configuration space that represents the structure of the prob-
lem and then compute a vector field that guides the robot in the configuration space.
Given a static environment the configuration space is generated off-line, reducing
the cost of online planning. Sections[3.112 describe the space, its graph representa-
tion and formalize the problem statement. Sections 3,34 introduce the algorithms
for graph construction and planning. Section[3.3] proves algorithm correctness.
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Fig. 2 Simple and overlapped manifold configuration space for tethered robots.

Fig. 3 Example traversal of configuration space.

3.1 Configuration Space

In order to build a complete planner for tethered robots, we consider the configura-
tion space. Notice that the space must distinguish distinct homotopic paths. Some
configurations that have identical robot locations have different cable configura-
tions. If we ignore collisions between the cable and obstacles, the configuration
space is a 2D circular region defined by the 2D environment (Fig. Bh). However,
this representation cannot distinguish configurations with different cable positions
(Fig.3l A E). The cable location determines the region of space that is immediately
reachable by the robot. In order to differentiate between A and E, we define con-
figuration space by an overlapped manifold. The manifold is planar, but it can be
visualized with stitched or overlapped free space components (Fig.Pb,c).

Distinct configurations on the manifold with the same locations represent distinct
cable configurations. A continuous region in the manifold corresponds to a set of
configurations that can be reached by continuous robot motion. In Fig. 3 straight
trajectories change the configuration from A to E via B, C, D. However, there is no
straight path that can displace the robot from A to D or B to E.

Notice that the number of overlaps in the manifold increases exponentially with
each additional obstacle. The robot has two options for circumnavigating each ob-
stacle. It can go around to the left or to the right. Hence, for n reachable obstacles,
there exist at least 2" paths or cable routes that reach the same goal. This corre-
sponds to at least 2" possible overlaps in the configuration space manifold. We say
“at least” because winding the cable around an obstacle also doubles the overlaps.
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3.2 Graph Representation of Configuration Space

This section gives a formal representation of the problem domain and the problem
statement. Our algorithm constructs a graph G = (V,E) that represents the config-
uration space manifold (Section and then searches the graph (Section [3.4) for
vector fields or paths. The key challenge is to construct a graph that completely en-
codes the configuration space. This section defines the graph properties that must be
assured in graph construction. Section verifies these properties.

First, consider the domain definitions: Manifold vertices are located at physical
grid nodes. vg is the vertex that represents the cable base. D;; is the manhattan
distance on the grid between v; and v;. When D;; = 1, the two vertices are referred
to as neighbors. Notice that neighboring vertices are not necessarily connected by an
edge since they may be on distinct overlapping folds of the manifold. P;; represents
paths between vertices on the manifold and |P;;| is path length.

The problem is to build a graph G such that any shortest path from v; to ve corre-
sponds to a shortest path from q; to any q, where p, is the target and the cable does
not cross an obstacle.

Definition 1. Two paths from vy to any point are path homotopic if and only if there
exists no obstacle in the area enclosed by the two paths. Otherwise they are not
homotopic or ahomotopic.

While grid nodes are simply positions, p;, manifold vertices, v; are defined by the
set of homotopic paths from vg to p;. Each vertex is associated with a path of adja-
cent vertices of length less than D,,,,. In every set of homotopic paths, there exist
minimal paths. Let us call them m-paths (mP(vy,v;) or mP;).

Definition 2. v, is an m-child of vi (v, = v{) and vy is an m-parent of v, (v < ;)
if and only if there exists a minimal path, mP>, where v; is the last vertex before v,.

Definition 3. v{, v, are m-adjacent (vi ~ v,) if and only if v; is an m-parent of v,
or v is an m-parent of vy.

Definition 4. Collocated vertices v; and v, are manifold-equivalent, m-equivalent
(vi =vp) if and only if every path to v; is homotopic to every path to v,.

All m-equivalent vertices are collocated, vi = v, = v; ~ v2. However, not all col-
located vertices are m-equivalent. This occurs when the paths to v; go around some
obstacle while those to v, do not. In this case, the distance between vertices on the
manifold can be greater than physical distance between their positions.

Definition 5. The m-distance between v| and vo, mD1; is the length of any shortest
path between v; and v, such that all consecutive nodes on the path are m-adjacent.

Lemma 1. Let vi and v, be neighboring vertices such that D1, = 1. For any vertex,
v3, if D13 > Dy3 then strictly D13 > Dy3. Likewise, mD 3 > mDy3 = mD13 > mD»y3.

Proof. Any paths P;3 and P»3 must have distinct parity since they are separated by
one edge [30]. One path has even length while the other is odd. Hence
|Pi3| # |Pa]. O
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Proposition 1 (Adjacency). For neighboring vertices: vi ~ v, (a) if and (b) only if
there is no obstacle in the area enclosed by any mP, and mPs.

Proof. Since v; and v, are neighbors, mDy, 7 mDgy, by Lemma [l Without loss
of generality, consider mDgy; < mDyg;. (a) For any path mP;, construct path P, =
{mPy,v,}. This is a minimal path to v, with v, as the last vertex since mDg| < mDg;
and |P,| = |mP;|+ 1. Hence, v; < v, and v; ~ v;. (b) By contradiction: assume there
exists an obstacle enclosed by some mP;, mP,. By the premise, v| ~ v, and therefore
vi < v2. Hence by Def. 2] there exists mP2’ with v; as the last vertex and mP; as a
sub-path. mP} and mP, enclose an obstacle so they are not homotopic. Thus v, # vs.
Contradiction. Likewise if mDg; > mDy;. O

Consider again the problem statement: Build a graph G such that any shortest path
from v; to vy corresponds to a shortest path from q; to any q, s.t. the cable does
not cross an obstacle. Following Proposition[]] this graph must have the following
property: two neighboring vertices are connected by an edge if and only if they are
m-adjacent. Section[3.3lintroduces our algorithm for constructing G.

3.3 Manifold Construction: Forward Search

Our algorithm in Fig. dincrementally adds vertices and builds graph edges by con-
necting adjacent vertices to the north, south, east and west of each vertex. SUC-
CESSORS(v4, V, E) returns the set of neighboring, collision-free vertices that are not
yet in the graph. Since we assume that obstacles occupy at least one grid node,
COLLISIONFREE(p) returns frue when a node does not intersect an obstacle.

Multiple manifold vertices can share a single grid position as in Fig.[31(A,E). Our
algorithm, distinguishes grid positions, p;, from manifold vertices, v;. The position
of vertex v; is obtained by POS[v;]. The function NEIGHBORS (v;) returns the set of
four neighboring positions of the vertex. The function ADJACENT(v;) returns the set
of all vertices in V that are adjacent/connected to v; in G as follows: {v;|Je(vi,v;) €
E}. There are at most four such vertices. Likewise, ADJACENT(ADJACENT(v;))
returns at most eight vertices # v; that are adjacent to the first four.

BUILDMANIFOLD is a variant of breadth-first search or wavefront expansion.
Standard expansion adds all edges to existing neighbors when adding a new vertex.
In contrast, we add an edge to a neighbor only when there is a common vertex that
has edges to both the neighbor and the parent of the new vertex (Lines 10-13). This
is illustrated by Fig.[5l An edge is added between v, and v}, since both v, and v,
have edges to a common vertex v.. However, an edge is not added between v, and
v4. Likewise, in Fig.[6l no edge is added between v, and v, generating the manifold
with overlaps as presented in Section 3,11

3.4 Plan Generation: Backward Search

Given the graph representing the configuration space, we construct a vector field to
guide the robot from any given starting location to any desired goal. This is required
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BUILDMANIFOLD(vg, V,E)
1 Q< ENQUEUE(v)
2 while Q £0
3 dov, — DEQUEUE(Q)

4 S < SUCCESSORS(vq, V,E)
5 forallv, €S
6 do V «— INSERT(v;)
7 E < INSERT(v;,vq4)
8 if DIST[v;] < DISTMAX
9 then Q — ENQUEUE(v)
10 B — ADJACENT(ADJACENT(v,))
11 forallv, € B Fig. 5 BUILDMANIFOLD Line 11
12 do if Pos[v,] € NEIGHBORS(v;)
13 then E < INSERT(v;,vp,)

SUCCESSORS(v,4, V,E)
1 N« NEIGHBORS(v,)
2 S0
3 forall p,eN
4  do if COLLISIONFREE(p;) and
5 pi ¢ POS[ADJACENT(v,)]
6 then v; < NEWVERTEX
7
8
9
0

POS[V,‘] — Di
DIST[v;] < DIST[v,] + 1
S « INSERT(v;)

1 return S

Fig. 4 Manifold Construction Pseudo-code. Fig. 6 Illustration of overlap

since the manifold is a roadmap that is created for all possible start and goal states.
Basic dynamic programming or wavefront expansion is used compute a distance
field over the configuration space starting from the target location. The gradient of
the distance field is used to control the robot. Note that the target location can be
associated with multiple vertices in the graph. Starting from all these vertices, we
assign minimal distance values to the remaining vertices by breadth-first traversal.
Consequently, the robot always follows the minimal path on the manifold.

3.5 Algorithm Analysis

This section analyzes the complexity, optimality and correctness of our algorithms.
First of all, the computational complexity of manifold construction is O(n) where
n is the number of vertices in the configuration space. Likewise, the computational
complexity of search is O(n). Hence the entire algorithm is executed in O(n). Fur-
thermore, manifold generation must only be computed once for static environments,
regardless of start state and goal. This yields efficient multi-query planning.

Given that G is correctly constructed and completely represents the manifold that
the robot can traverse then dynamic programming is a complete and optimal method
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for finding a solution. Therefore plan generation is complete and optimal. The re-
maining task is to prove the correctness and completeness of manifold construction.
We will use PropositionRlin the validation of BUILDMANIFOLD in Proposition[3l

Proposition 2 (Equivalence). If vi ~ v, are both m-adjacent to v, then vi = v,.

Proof. Let Py and P, be any paths to v; and v,. There exist shortest paths mP;,mP,
homotopic to P;, P respectively. Let mP, be a shortest path to v,. Since v; ~ v, and
v ~ vg, by Prop.[I] there is no obstacle enclosed by {mP,mP,} and {mP;,mP,}.
Hence, there is no obstacle enclosed by mP; and mP», so they are homotopic. Since
v1 =~ v, and all paths to v are homotopic to all paths to v, we have v| = v;. O

Proposition 3. Priorto adding vz with mDg3 > D < Dyyay, BUILDMANIFOLD main-
tains the following invariant. Let vertices vi and vy have mDy; < D, mDy, < D.
(a) vi € V if and only if v| is not m-equivalent to any other vertex, vy € V.

(b) e(vi,v2) € E if and only if v| is m-adjacent to v, (v| ~ vy).

Proof. We proceed by induction. Base case, D = 1, there are no edges and the only
vertex is vg, added in Line 1. The inductive step is split into the following Lemmas.

For Lemmas assume Prop.[3l Prior to adding any v3 such that mDgz > D+ 1:
(BMY and Sy refer to Line Y in BUILDMANIFOLD and SUCCESSORS respectively)

Lemma 2. Ifv| € V then v| is not m-equivalent to any other vertex, vy € V.

Proof. BUILDMANIFOLD adds v; to V by expanding v, only if v, has no edge to
any vertex at its position, p; (S5). By assumption, v, is not m-adjacent to any vertex
at p;. Hence, v; is the only vertex at p; such that v, < v;. Therefore it is the only
vertex with a minimal path mP; such that v, is the last vertex. O

Lemma 3. If Jv; (mDy; < D) not m-equivalent to any other vertexin'V then vy € V.

Proof. By contradiction: Suppose v; ¢ V. vy is an m-child of some v, where mD, =
mDy| — 1. By the assumption, mDy, < D so v, € V and by BM9, v, € Q. Since there
are finite vertices with mDy, < D, v, is dequeued and expanded in BM4. Since v,
is a neighbor of v, one of the following must hold: (1) By S4, v;’s position is not
collision free. Contradiction. (2) By S5 and the inductive assumption, v, has an
m-adjacent vertex, v, ~ v{. By Prop.[2l v = v;. Contradiction. U

Lemma 4. IfE contains edge (vi,v2) then vi,v, are m-adjacent.

Proof. Without loss of generality, suppose v; is added after v,. An edge is added at
(a@)BM7 or (b)BM13. (a) v, = v, and v; is newly defined and implicitly associated
with minimal paths homotopic to mP; = {mP,,v; }. Since v; is the last vertex on
mPy, vy <vy. (b) vo = vp. By BM7 there exists v, < vi. By BM10 and the inductive
assumption there exists v, such that v, ~ v, ~ v;. Given that v, ~ v, and v, ~ v, and
va ~ v1, Prop. [l states that there is no obstacle between any mP, and mP; as shown
by regions (bc), (ca),(al) and R in Fig.[/(a). Hence, by Prop. 1 vp = v, ~v;. O
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Fig. 7 Ilustrations for the proof of Lemmas Straight lines indicate precise grid displace-
ments. Curves represent paths that preserve relative position but not necessarily distance.

Lemma 5. If vi,v,(mDgy,mDgy < D) are m-adjacent, E contains edge (vi,vy).

Proof. By the inductive assumption: v, v, € V. Without loss of generality, v, < v;.
(a) mDy1,mDy, < D then (v,v;) € E by the inductive assumption.

For the remaining cases mDgy; = D and mDgy = D — 1 by Lemmal[Il

(b) v = v, is the first m-parent of v; added to V. Then (v;,v,) € E by BM7.

For the remaining cases there exists v, < v; (v, # v2) that was added prior to v;.
Since v; = vy, there are two minimal paths mP;(a) = {mP,,v;} and mP;(2) =
{mP,,v;} that enclose a region R with no obstacles. By Prop. [2] there are three
relative positions for v, # v,. Due to symmetry of Fig.[Z(b), that yields two cases.

(¢) In the case of Fig.[Z(b) there exists v., neighbor of v, and v, contained in R.
Extend two straight paths P, and Py, opposite v, and v, respectively. Since
R is closed, these paths must intersect mP, and mP, at some vertices v3, vy
respectively. Since Ps, is straight, | P5.| < |Ps2|. Hence, the path S, = {Py3, v, v2 }
has length |S; | < |mP,|. Therefore v, < v;. Likewise, since Py is straight, | Py.| <
|Pag|. Hence, Sy, = {Poa, Ve, vq + has length |S,| < [mP,|. Therefore v, < v,. Thus
there exists v, such that vy ~ v, ~ v,. This satisfies BM10-13, thus (v;,v;) € E.

(d) In the case of Fig. [/(c) there exists v, neighbor of v; that is contained in R.
Extend a straight path P;. from v3 opposite v;. Since R is closed, P3, must
intersect either mP; or mP, at some vertex v3 respectively. Without loss of gen-
erality, assume it intersects mP,. Since Pj is straight, |P5.| < |Ps,|. Hence, the
path S = {Py3,vc,vi } has length |S;| < |mP,|. Since S is a path from vy to v;
homotopic to mP;(2), we have mD; < |mP;|+ 1. Thus mP;(2) is not a mini-
mal path. Contradiction. Likewise, if Ps. intersects mP,, we find mP; (a) is not
a minimal path. Contradiction.

In all valid cases where v; ~ v,, E contains the edge (v, v2). O

Lemma 6. The algorithm terminates when all v; : mD; < D,qx are added to Q.
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Proof. Every new vertex, v; increments DIST[v;] by 1 from its parent (S8). For any
D there are a finite number of vertices that are not m-equivalent with mD; < D.
Since no vertices are added to Q with DIST[v;] > DISTMAX (BM7) and each step
dequeues, BUILDMANIFOLD terminates. (I

By Lemmas 2l BUILDMANIFOLD is proven to add all the vertices on the man-
ifold to V and all the edges between m-adjacent vertices to E prior to guaranteed
termination. Therefore, the manifold generation algorithm is correct and complete.

3.6 Implementation Details

The presented algorithm computes Manhattan distance between the base and each
vertex in the graph. This is a low-order approximation of physical distance. We
therefore also allow diagonal moves when computing the distance value, creating
an 8-connected lattice and obtaining a better approximation. The experiments in
Section 5] demonstrate that it performs well in robot experiments.

In order to include diagonal moves, Line 7 of SUCCESSORS uses d instead of 1,
where d = /2 for diagonally connected vertices. Furthermore, Q in BUILDMANI-
FOLD is a priority queue rather than a FIFO in order to always select vertices with the
minimal distance from vy. This approach increases computation time to O(nlogn)
due to priority queue operations.

4 Cable-Robot Interaction

Section [3| introduced a novel formulation of the configuration space for tethered
robots and presented a complete solution to path planning for robots that are re-
stricted by cable length. The proposed configuration space allows us to go further
and consider additional constraints on robot motion. In this section, we examine the
case where the robot cannot cross the cable. Cable-robot collisions present further
algorithmic challenges that are not solved by existing methods. We evaluate two
solutions and propose a novel algorithm in Section 4.3

4.1 Preliminary Algorithm

Simple domains such as Fig. [8(a) can be solved by adding the current cable shape
as an obstacle to future motion[29]. We implemented an algorithm that incremen-
tally removed vertices from the graph that were within the robot radius of the cable
through wavefront expansion. The online controller continuously updated the vector
field as the cable shape changed during motion.

In our experiments, the initial path typically remained valid during robot motion
because the deformation of the cable occurred behind the robot. When the plan be-
came inaccessible, the system replanned the path. This approach required continu-
ous tracking of cable shape. Since this is difficult in practical environments we used



Homotopic Path Planning on Manifolds for Cabled Mobile Robots 11

LT TTTTT robot
7 base
1
1
\
\

QO goal O

(a) Simple (b) Challenging
Fig. 8 Illustration of a cable blocking the path to the target.

physical simulation to predict the current shape of the cable based on the motion
history of the robot. Section |3 shows that this approach works well in practice.

Notice, however, that this simple method is not sufficient when the cable com-
pletely blocks a path to the target as shown Fig.[8[(b). Removing cable vertices from
the configuration space blocks all path to the goal. We present two approaches that
handle such cases. First, we consider a hardware solution in which the system re-
tracts the cable. Second, we introduce a novel algorithm for feasible path planning
that clear blocks through auxiliary robot motion.

4.2 Hardware Solution: Cable Retraction

First of all, the problem in Fig. [B(b) can be solved by continuously retracting the
cable to make the cable as short as possible while allowing free robot motion. This
approach requires additional hardware, but simplifies planning. Given cable retrac-
tion, the robot would simply need to follow the cable to the cable base until the path
to the target is cleared. This can be accomplished by searching for a shortest path
on the manifold to the base and directing the robot to move along that path.

The hardware implementation is not trivial because one must develop a special
device than retracts the cable with appropriate force for the particular robot and
cable type. The force must be simultaneously strong enough to pull a long cable
and sufficiently weak to allow robot motion. Furthermore, it may be necessary to
constantly adjust the force depending on the robot and cable status. We have not yet
implemented this solution, however it remains an exciting topic for our future work.

4.3 Algorithmic Solution: Untangling

Given that the robot cannot retract the cable mechanically, it must perform auxiliary
motions to clear the path blocked by the cable. We refer to this procedure as untan-
gling. Consider Fig.[[lc). The robot must first move to the left to clear the path to
the target on the right. More complex domains, such as Fig. [0] have goals that are
blocked by the cable multiple times along a single path. The algorithm is required
to find a sequence of untangling motions. In contrast to Section 3] evaluating all
possible motions was computationally infeasible. Instead, we developed a heuristic
method that efficiently computes untangling motions and performs well in practice.
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Fig. 9 Auxiliary motions open the path to the target. Each step is computed by our algorithm.
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Fig. 10 A search for the most promising candidate. Candidates (left) and their accessible
regions (right). Candidate 4 is selected in this case.

When our system identifies that there is no open path to the target from the cur-
rent robot location, it selects an intermediate target and moves the robot towards it.
Motion to the intermediate target is chosen to displace the blocking cable from the
path of the robot to the goal (Fig.0h). If the goal becomes accessible during travel to
the target, the online algorithm discards the intermediate target and moves directly
to the goal. If the intermediate target becomes inaccessible or if the robot reaches
the target, the system computes the next target. This process repeats until the goal
becomes accessible. Fig. [9shows a complete untangling procedure.

For each step in the untangling process, we choose the intermediate target from
several candidates. The most promising one is selected by internal physics-based
simulation as in Section[4.1] First, we identify the region in the configuration space
accessible from the current robot position (Fig. [[0). We then relate each vertex in
the configuration space graph to the minimum of the distance from the vertex to
the region’s graph center and that to the current robot position. Local maxima of
the computed distances are chosen as candidates (Fig. [L0lleft). For each candidate,
we compute a simulated robot motion where the robot moves towards the candidate
pulling the cable, and test whether or not the motion clears the path. We use a simple
spring-mass model to simulate the behavior of a cable. If a candidate clears the path
in simulation, we select the candidate as the intermediate target. If no candidate
clears the path to the goal, we choose the candidate that is expected to maximize the
accessible region after the robot arrives at the target (Fig.[10fright).
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The proposed algorithm is heuristic and is not guaranteed to find a solution if
there is a solution. An alternative, systematic approach is to construct a search tree
by recursively sampling candidates for the intermediate targets and search for a
successful sequence of intermediate targets as in many path planning algorithms
[L]. We did not implement such systematic approaches because our simple heuristic
successfully found a path to the target via multiple intermediate targets in our ex-
periments (Section [3) when there was a solution. When there is no solution, neither
our heuristic method nor systematic approach can find one.

4.4 Deadlock Prevention

The algorithm described in the previous subsection cannot find a path when the
robot is already trapped in a deadlock configuration as shown in Fig. [[1] (Ieft). The
robot is trapped in the closed region and none of the auxiliary motions described
above are able to open the way to the goal. To prevent this problem from occurring,
we augmented the algorithm with a preprocessing step that removes configurations
that can cause deadlocks from G. We then use the previously described runtime
algorithms to find a deadlock free path to the target. This algorithm preforms well
(Section [3) but does not guarantee deadlock avoidance. It is our future work to
develop a complete run-time algorithm for deadlock prevention.

Starting from each graph node, the algorithm follows the path to the cable base
by picking each adjacent vertex with minimum distance to the base. It identifies
graph vertices that are in contact with an obstacle, yet their parents are not adjacent
to an obstacle. These contact vertices are potential locations where a deadlock can
occur (stars in Fig. [[Tright).

Having identified contact vertices, the system examines whether or not the con-
tacts are resolvable as follows. First, we compute a region in the configuration space
separated by the path to the cable base and accessible from the contact vertex (gray
area in Fig.[TT)). We then compare the maximum distance to any vertex in the region
from the contact vertex and the remaining cable length. This is computed by sub-
tracting the distance from the cable base to the contact node from the overall cable
length. If the maximum distance is longer than the remaining cable length, then the

ik Contact points

- ~

Robot e

Obstacle

Cable base

Fig. 11 Deadlock configuration (left) and the detection of potential deadlocks (right). Left
contact (star) is resolvable, but the right contact (star) is not resolvable. When a potential
deadlock is detected, we remove the affected area from the configuration space (shaded area).
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contact is resolvable by moving the robot to the most distant position. Otherwise, the
contact causes a deadlock. In this case, our system prevents the robot from causing
the deadlock by removing all the configuration space vertices in the accessible area
for which the distance longer than the one to the contact points (shaded in Fig. [[T)).

S Experiments

In order to validate the practical effectiveness of the proposed algorithms, we con-
ducted a series of experiments on a physical robot. We examined the basic case
involving overhead tracking for robot position and a robot with no hardware for ca-
ble retraction. The cable configuration was not tracked but predicted by means of
internal physics-based simulations for the algorithms in Sectionl Hence, our robot
was not guaranteed to avoid cable-robot collision 100%. However, the experiments
demonstrate that our algorithm significantly reduced the occurrence of collisions.

We evaluated the proposed algorithm using a cabled robot on a flat floor. An
iRobot CREATE robot was connected to a cable that provided power and control
signal for a total of 5 bundled wires. The location of the robot was tracked by a
vision-based motion capture system (Motion Analysis). The system consisted of 8
infra-read high speed cameras that observe the motion of retro-reflective markers
attached to the robot. The control PC (Dell Latitude) received the robot location
from motion capture and sent control commands to the robot via the cable.

Fig. gives an overview of the physical environment. It is a standard office
floor covered by carpet. The layout mimics an open office or home environment
with obstacles such as columns and furniture. The size is 5m x 3m. Our algorithm
represented this space with 50 x 30 grid. Fig. [[3] shows the layouts used in the ex-
periment. In each trial, the robot was placed near the cable base with a compactly
assembled cable. It visited six given targets in a given order. The system judged that
a target visit was complete when the distance between the robot center and the target
center was less than the robot diameter. We ran 10 trials for every combination of
a given algorithm and layout. We prepared a set of 10 random permutations of 6
targets and used the same set for all combinations.

Fig. 12 The physical environment and the cabled robot used in our experiments.
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Fig. 14 Configuration space boundaries for two experimental layouts.
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Fig. 15 Sample robot experiment with untangling: a) Initial configuration and goal (red circle)
b) Approaching the first intermediate target (red dot) ¢) Approaching the second intermediate
target. d) Arriving at the second intermediate target. e-f) Approaching and arriving at the goal.

5.1 Experimental Results

Table 1 shows the statistics of our results. The basic algorithm completed the tasks
with 100% success. The extended algorithm without deadlock prevention failed in
some cases (50 — 80% success). However, adding deadlock prevention achieved
100% success. Collisions between the robot and the cable did occur even when we
used the extended algorithm. However the number of collisions was significantly
reduced compared with the basic one. Fig. [[4] shows the configuration space for
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Table 1 Results from the experiments. We ran 10 trials for each combination of algorithm x

task.
Basic Algorithm |Extended Algorithm|Deadlock Prevention
Task1|Task2|Task3|Task1 [Task2| Task3|Taskl|Task2| Task3
Success Ratio 100%|100%|100%| 80%| 50%| 80%|100%|100%| 100%
Average Time (s) 83.91100.4| 88.5(100.9{103.2| 93.0| 89.4/110.4| 92.5
Avg. Cable-Robot| 1.8 1.7 21 025 04| 0.125| 04| 03 0.2
Collisions

the first two layouts. Fig. [15| shows an example of untangling observed during the
experiments. It demonstrates that our algorithm successfully identified an appropri-
ate sequence of intermediate targets. Video of the experiments and demonstration
software are available at: http://www.designinterface.jp/en/projects/cable.

6 Conclusion

Our work shows that path planning for cabled robots yields significant insight into
homotopic path planning. We developed a configuration space formulation that dis-
tinguishes between robot positions with distinct cable configurations. We proposed
complete algorithms that compute the configuration space manifold and plan opti-
mal paths given cable length constraints. Furthermore, we studied a practical exten-
sion of our algorithm given that the robot is not permitted to cross its cable. These
algorithms were validated on a real robot platform in a series of experiments.

This paper opens the door to numerous variations of planning homotopic paths
and cabled robotics. Immediate future work is the development of runtime looka-
head detection of deadlocks. An interesting variant is path planning for robots that
grasp or push the cable [31]. Another interesting problem is optimal placement of
the cable base for a given environment to minimize deadlocks. Similar analysis
would identify problematic obstacles that can cause deadlocks and warn the user.
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An Equivalence Relation for Local Path Sets

Ross A. Knepper, Siddhartha S. Srinivasa, and Matthew T. Mason

Abstract. We propose a novel enhancement to the task of collision-testing a set of
local paths. Our approach circumvents expensive collision-tests, yet it declares a
continuum of paths collision-free by exploiting both the structure of paths and the
outcome of previous tests. We define a homotopy-like equivalence relation among
local paths and provide algorithms to (1) classify paths based on equivalence, and
(2) implicitly collision-test up to 90% of them. We then prove both correctness and
completeness of these algorithms before providing experimental results showing a
performance increase up to 300%.

1 Introduction

Planning bounded-curvature paths for mobile robots is an NP-hard problem [22].
Many nonholonomic mobile robots thus rely on hierarchical planning architec-
tures [[I} (13} [19]], which split responsibility between at least two layers (Fig.[I): a
slow global planner and fast local planner. We focus here on the local planner (Alg.[T]
and Alg.2), which iterates in a tight loop: searching through a set of paths and se-
lecting the best path for execution. During each loop, the planner tests many paths
before making an informed decision. The bottleneck in path testing is collision-
testing [24]]. In this paper, we introduce a novel approach that delivers a significant
increase in path set collision-testing performance by exploiting the fundamental ge-
ometric structure of paths.

We introduce an equivalence relation intuitively resembling the topological no-
tion of homotopy. Two paths are path homotopic if a continuous, collision-free de-
formation with fixed start and end points exists between them [20]]. Like any path
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Fig. 1 An example hierar-
chical planning scenario.
The local planner’s path set
expands from the robot, at
center, and feeds commands
to the robot based on the
best path that avoids obsta-
cles (black squares). The
chosen local path (green)
and global path (red) com-
bine to form a proposed path
to the goal.

equivalence relation, homotopy partitions paths into equivalence classes. Different
homotopy classes make fundamentally different choices about their route amongst
obstacles. However, two mobile robot concepts translate poorly into homotopy the-
ory: limited sensing and constrained action.

The robot may lack a complete workspace map, which must instead be con-
structed from sensor data. Since robot perception is limited by range and occlusion,
a robot’s understanding of obstacles blocking its movement evolves with its vantage
point. A variety of sensor-based planning algorithms have been developed to handle
such partial information. Obstacle avoidance methods, such as potential fields [12]],
are purely reactive. The bug algorithm [18], which generates a path to the goal us-
ing only a contact sensor, is complete in 2D. Choset and Burdick present the
hierarchical generalized Voronoi graph, a roadmap with global line-of-sight acces-
sibility that achieves completeness in higher dimensions using range readings of the
environment.

If a robot is tasked to perform long-range navigation, then it must plan a path
through unsensed regions. A low-fidelity global planner generates this path because
we prefer to avoid significant investment in this plan, which will likely be invalidated
later. Path homotopy, in the strictest sense, requires global knowledge of obstacles
because homotopy equivalent paths must connect fixed start and goal points.

Relaxing the endpoint requirement avoids reasoning about the existence of far-
away, unsensed obstacles. Naively relaxing a fixed endpoint, our paths might be
permitted to freely deform around obstacles, making all paths equivalent. To re-
store meaningful equivalence classes, we propose an alternate constraint based on
path shape. This is in keeping with the nonholonomic constraints that limit mo-
bile robots’ action. Laumond [13]] first highlighted the importance of nonholonomic
constraints and showed that feasible paths exist for a mobile robot with such con-
straints. Barraquand and Latombe [2] created a grid-based planner that innately
captures these constraints. LaValle and Kuffner proposed the first planner to
incorporate both kinodynamic constraints and random sampling. In contrast to non-
holonomic constraints, true homotopy forbids restrictions on path shape; two paths
are equivalent if any path deformation—however baroque—exists between them.
By restricting our paths to bounded curvature, we represent only feasible motions
while limiting paths’ ability to deform around obstacles. The resulting set of path
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Fig. 2 left: Paths from a few distinct homotopy classes between the robot and the goal. The
distinctions between some classes require information that the robot has not yet sensed (the
dark area is out of range or occluded). middle: With paths restricted to the sensed area, they
may freely deform around visible obstacles. right: After restricting path shape to conform to
motion constraints, we get a handful of equivalence classes that are immediately applicable
to the robot.

equivalence classes is of immediate importance to the planner (Fig.[2). The number
of choices represented by these local equivalence classes relates to Farber’s topo-
logical complexity of motion planning [6]].

Equivalence classes have been employed in various planners. In task planning, re-
cent work has shown that equivalence classes of actions can be used to eliminate re-
dundant search [7]. In motion planning, path equivalence often employs homotopy.
A recent paper by Bhattacharya, Kumar, and Likhachev [3] provides a technique
based on complex analysis for detecting homotopic equivalence among paths in 2D.
Two papers employing equivalence classes to build probabilistic roadmaps [11]] are
by Schmitzberger, et al. and Jaillet and Simeon [10]]. The latter paper departs
from true homotopy by proposing the visibility deformation, a simplified alternative
to homotopic equivalence based on line-of-sight visibility between paths.

Our key insight is that local path equivalence is an expressive and powerful tool
that reveals shared outcomes in collision-testing. Specifically, two equivalent neigh-
boring paths cover some common ground in the workspace, and between them lies
a continuum of covered paths. We develop the mathematical foundations to detect
equivalence relations among all local paths based on a finite precomputed path set.
We then utilize these tools to devise efficient algorithms for detecting equivalence
and implicitly collision-testing local paths.

The remainder of the paper is organized as follows. We provide an implementa-
tion of the basic algorithm in Section [2] and present the fast collision-testing tech-
nique. Section 3] then explores the theoretical foundations of our path equivalence
relation. Sectiond provides some experimental results.

2 Algorithms

In this section, we present three algorithms: path set generation, path classification,
and implicit path collision-testing. All of the algorithms presented here run in poly-
nomial time. Throughout this paper, we use lowercase p to refer to a path in the
workspace, while P is a set of paths (each one a point in path space).
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Algorithm 1. Test_All_Paths(w, P)

Input: w — a costmap object; P — a fixed set of paths
Output: P .., the set of paths that passed collision test

1. P free < 0

2: while time not expired and untested paths remain do // test paths for 0.1 seconds
3: p < Get_Next _Path(P)

4: collision — w.Test _Path(p) /I collision is boolean
5 if not collision then

6 P rree — Prree U{P} // non-colliding path set
7: return P rpe,

Algorithm 2. Local _Planner_Algorithm(w, x, h, P)

Input: w — a costmap object; x — initial state; & — a heuristic function for selecting a path to
execute;
P — afixed set of paths
Output: Moves the robot to the goal if possible
1: while not at goal and time not expired do
2: P tree < Test All_Paths(w,x, P)
3: Jj < h.Best_Path(x, P tre.)
4:
5

Execute_Path_-On_Robot ()
X < Predict Next_State(x, j)

Definition 1. Path space is a metric space (P, ) in which the distance between a
pair of paths in P is defined by metric . Paths can vary in shape and length. O

2.1 Path Set Generation

We use the greedy path set construction technique of Green and Kelly [8]], outlined
in Alg. Bl The algorithm iteratively builds a path set Py by drawing paths from a
densely-sampled source path set, X. During step i, it selects the path p € X that
minimizes the dispersion of P; = P;_; U{p}. Borrowing from Niederreiter [21]]:

Definition 2. Given a bounded metric space (X, it) and point set P = {x,...,xy} €
X, the dispersion of P in X is defined by

§(P,X) = supminpi(x, p) (1)
xeX PEP

O

The dispersion of P in X equals the radius of the biggest open ball in X containing
no points in P. By minimizing dispersion, we ensure that there are no large voids
in path space. Thus, dispersion reveals the quality of P as an “approximation” of
X because it guarantees that for any x € X, there is some point p € P such that
u(x,p) < 8(P.%).

The Green-Kelly algorithm generates a sequence of path sets P;, fori € {1,...,N},
that has monotonically decreasing dispersion. Alg. [Tl searches paths in this order at
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Algorithm 3. Green Kelly(X, N)
Input: X - a densely-sampled, low-dispersion path set; N < |X| — the target path set size
Output: path sequence Py of size N

1: fP() —0

2:n—0

3: whilen < N do

4: n<«—n+1

5 p < argmin 6(P,_; U{x},X)

xeX
6: Py — P11 U{p}
7: return Py

runtime, thus permitting early termination while retaining near-optimal results. Note
that while the source set X is of finite size—providing a lower bound on dispersion
at runtime—it can be chosen with arbitrarily low dispersion a priori.

2.2 Path Classification

We next present Alg. Hl which classifies collision-free members of a path set. The
Hausdorff metric is central to the algorithm. Intuitively, this metric returns the great-
est amount of separation between two paths in the workspace. From Munkres [20]:

U (pi,pj) =inf{e: pi C (pj)e and pj C (pi)e}, (2)

where (p), denotes dilation of p by r: {r € R?: ||t,, —t[|;2 < r for some t, € p}.
Note that py satisfies all properties of a metric [9]]. For our fixed path set generated
by Green-Kelly, we precomputed each pairwise path metric value of () and stored
them in a lookup table for rapid online access.

Alg. [ performs path classification on a set of paths that have already tested
collision-free at runtime. We form a graph G = (V,E) in which node v; € V cor-
responds to path p;. Edge e;; € E joins nodes v; and v; when this relation holds:

un(pispj) <d, (3)

where d is the diameter of the robot. Taking the transitive closure of this relation,
two paths p, and p, are equivalent if nodes v, and v, are in the same connected
component of G (Fig. 3).

In effect, this algorithm constructs a probabilistic roadmap (PRM) in the path
space instead of the conventional configuration space. A query into this PRM tells
whether two paths are equivalent. As with any PRM, a query is performed by adding
two new graph nodes v, and v, corresponding to the two paths. We attempt to join
these nodes to other nodes in the graph based on (3). The existence of a path con-
necting vy to v, indicates path equivalence.
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Fig. 3 A simple path set,
in which obstacles (black)
eliminate colliding paths.
The collision-free path
set has three equivalence
classes (red, green, and
blue). In the correspond-
ing graph representation,
at right, adjacent nodes
represent proximal paths.
Connected components in-
dicate equivalence classes
of paths.

Algorithm 4. Equivalence_Classes(P e, d)

Input: P, — a set of safe, appropriate paths; d — the diameter of the robot
Output: D — a partition of P s, into equivalence classes (a set of path sets)
I: Let G= (V,E) < (0,0)

2: D—0

3: for all p; € P sy do // This loop discovers adjacency
4 V.add(p;) /I Add a graph node corresponding to path p;
5 forall p; € V\ p; do

6: if up (pi,pj) < d then

7: E.add(i, ) // Connect nodes i and j with an unweighted edge
8: 8« fPfrgg

9: while S # 0 do // This loop finds the connected components
10: C—0
11: p < amember of §
12: L —{p} /I List of nodes to be expanded in this class
13: while £ # 0 do
14: p < amember of L
15: C—cu{p} // Commit p to class
16: 8§ —8—{p}
17: L — (L UV.neighbors(p)) N8
18: D—DU{C}
19: return D

2.3 Implicit Path Safety Test

There is an incessant need in motion planning to accelerate collision-testing, which
may take 99% of total CPU time [24]]. During collision-testing, the planner must
verify that a given swath is free of obstacles.

Definition 3. A swath is the workspace area of ground or volume of space swept
out as the robot traverses a path. a

Definition 4. We say a path is safe if its swath contains no obstacles. a
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Algorithm 5. Test_Path_Implicit(p, w, 8, d)

Input: p is a path to be tested
Input: w is a costmap object // used as a backup when path cannot be implicitly tested
Input: S is the set of safe paths found so far
Input: d is the diameter of the robot
1: for all p;, p; € 8 such that uy (p;, p;) <d do

2: if p.Is_Between(p;, p;) then /I p’s swath has been tested previously
3 sy < p.Get _End_Point()

4: collision < w.Test _Point(s) /l endpoint may not be covered by swaths
5: return collision

6: return w.Test_Path(p) // Fall back to explicit path test

In testing many swaths of a robot passing through space, most planners effectively
test the free workspace many times by testing overlapping swaths. We may test a
path implicitly at significant computational savings by recalling recent collision-
testing outcomes. We formalize the idea in Alg.[3l which is designed to be invoked
from Alg.[Il line @ in lieu of the standard path test routine.

The implicit collision-test condition resembles the neighbor condition (@) used
by Alg. E but it has an additional “Is_Between” check, which indicates that the
swath of the path under test is covered by two collision-free neighboring swaths.
The betweenness trait can be precomputed and stored in a lookup table. Given a set
of safe paths, we can quickly discover whether any pair covers the path under test.
Experimental results show that this algorithm allows us to test up to 90% of paths
implicitly, thus increasing the path evaluation rate by up to 300% in experiments.

3 Foundations

In this section, we establish the foundations of an equivalence relation on path
space based on continuous deformations between paths. We then provide correct-
ness proofs for our algorithms for classification and implicit collision-testing.

We assume a kinematic description of paths. All paths are parametrized by
a shared initial pose, shared fixed length, and individual curvature function. Let
K;(s) describe the curvature control of path i as a function of arc length, with
maxg<s<s, | Ki(s)| < Kinax. Typical expressions for k; include polynomials, piecewise
constant functions, and piecewise linear functions. The robot motion produced by
control i is a feasible path given by

6; Ki
Xi | = | cos6;|. (@)
_)')i sin 9[

Definition 5. A feasible path has bounded curvature (implying C' continuity) and
fixed length. The set (s, Kqx) contains all feasible paths of length s and curva-
ture |K(5)| < Knax- 0
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Fig. 4 At top: several
example paths combin-
ing different values of v
and w. Each path pair
obeys @). The value of
v affects the “curviness”

allowed in paths, while v=0 w=1 v=1 v‘v=0.17 v=0.5 w=0.5 v=1 w=1
w affects their length. ' ’ ) '
At bottom: this plot, gen-
erated numerically, approxi- 0.8
mates the set of appropriate
choices for v and w. The
gray region at top right must
be avoided, as we show in
Lemma 2l Such choices 0.4r
would permit an obstacle
to occur between two safe

*
Path set
in Fig. 1

0.6r

0.2F
paths that obey (@)). A path
whose values fall in the
white region is called an 0 0 02 02 0% 0% i

appropriate path.

3.1 Properties of Paths

In this section, we establish a small set of conditions under which we can quickly de-
termine that two paths are equivalent. We constrain path shape through two dimen-
sionless ratios relating three physical parameters. We may then detect equivalence
through a simple test on pairs of paths using the Hausdorff metric.

These constraints ensure a continuous deformation between neighboring paths
while permitting a range of useful actions. Many important classes of action sets
obey these general constraints, including the line segments common in RRT [17] and
PRM planners, as well as constant curvature arcs. Fig.[Tlillustrates a more expressive
action set [13]] that adheres to our constraints.

The three physical parameters are: d, the diameter of the robot; sz, the length of
each path; and r;,, the minimum radius of curvature allowed for any path. Note
that 1/7,in = Kmax, the upper bound on curvature. For non-circular robots, d reflects
the minimal cross-section of the robot’s swath sweeping along a path. We express
relationships among the three physical quantities by two dimensionless parameters:

d Sf

V= w= .
Ymin 2T min

We only compare paths with like values of v and w. Fig. d(top) provides some intu-
ition on the effect of these parameters on path shape. Due to the geometry of paths,
only certain choices of v and w are appropriate.

Definition 6. An appropriate path is a feasible path conforming to appropriate val-
ues of v and w from the proof of Lemma[2] Fig.d previews the permissible values.
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When the condition in (3) is met, the two paths’ swaths overlap, resulting in a con-
tinuum of coverage between the paths. This coverage, in turn, ensures the existence
of a continuous deformation, as we show in Theorem/[I] but first we formally define
a continuous deformation between paths.

Definition 7. A continuous deformation between two safe, feasible paths p; and p;
in F(sf, Kinax) is a continuous function f: [0,1] — F(s, Kb ), with s slightly less
than s; and K}, slightly more than K. £(0) is the initial interval of p;, and f(1)
is the initial interval of p;, both of length Sy We write p; ~ p; to indicate that
a continuous deformation exists between paths p; and p;, and they are therefore

equivalent. O

The length s, depends on v and w, but for typical values, sy is fully 95-98% of
s¢. For many applications, this is sufficient, but an application can quickly test the
remaining path length if necessary. Nearly all paths f(c) are bounded by curvature
Kmax, but it will turn out that in certain geometric circumstances, the maximum
curvature through a continuous deformation is up to K}, = %Kmm.

Definition 8. Two safe, feasible paths that define a continuous deformation are
called guard paths because they protect the intermediate paths. a

In the presence of obstacles, it is not trivial to determine whether a continuous de-
formation is safe, thus maintaining equivalency. Rather than trying to find a defor-
mation between arbitrary paths, we propose a particular condition under which we
show that a bounded-curvature, fixed-length, continuous path deformation exists,

Ua(p1,p2) <d = p1~ pa. )

This statement, which we prove in the next section, is the basis for Alg.[Mand Alg.[3
The overlapping swaths of appropriate paths p; and p, cover a continuum of inter-
mediate swaths between the two paths. Eqn. (3) is a proper equivalence relation
because it possesses each of three properties:

reflexivity. 1y (p, p) = 0; p is trivially deformable to itself.

symmetry. The Hausdorff metric is symmetric.

transitivity. Given Uy (p,p2) < d and pg(pa, p3) <d, a continuous deforma-
tion from p; to p3 passes through p,.

3.2 Equivalence Relation

Having presented the set of conditions under which (3) holds, we now prove that
they are sufficient to ensure the existence of a continuous deformation between two
neighboring paths. Our approach to the proof will be to first describe a feasible
continuous deformation, then show that paths along this deformation are safe.
Given appropriate guard paths p; and p; with common origin, let p, be the short-
est curve in the workspace connecting their endpoints without crossing either path
(pe may pass through obstacles). The closed path B = p; U p; U p, creates one or
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Fig. 5 Paths p;,p;, and p.
form boundary B. Its inte-

rior, I, contains all paths in 4 D
the continuous deformation ]3 ¢
from p; to p;.

more closed loops (the paths may cross each other). By the Jordan curve theorem,
each loop partitions R? into two sets, only one of which is compact. Let /, the inte-
rior, be the union of these compact regions with B, as in Fig.

Definition 9. A path p. is between paths p; and p; if p. C I. O

Lemma 1. Given appropriate paths p;,p; C F(s¢, Kmax) with iy (pi, p;) < d, a path
sequence exists in the form of a feasible continuous deformation between p; and p .

Proof. We provide the form of a continuous deformation from p; to p; such that
each intermediate path is between them. With # a workspace point and p a path, let

y(t,p) =inf{e: t € (p)e} "
[0,1] if y(t,pi) = 7(t,pj) =0
8(t) = - ! o)
{ {WI%M} otherwise,

where g(#) is a set-valued function to accommodate intersecting paths. Each level
set g(t) = ¢ for ¢ € [0,1] defines a weighted generalized Voronoi diagram (GVD)
forming a path as in Fig. |6l We give the form of a continuous deformation using
level sets g~'(c); each path is parametrized starting at the origin and extending for
alength s in the direction of p,. Let us now pin down the value of s, . Bvery point
t; on p; forms a line segment projecting it to its nearest neighbor ¢; on p; (and vice
versa). Their collective area is shown in Fig.[7l Eqn. (@) bounds each segment’s
length at d. Sy is the greatest value such that no intermediate path of length sy
departs from the region covered by these projections.

For general shapes in R?, the GVD forms a set of curves meeting at branching
points [23]]. In this case, no GVD cusps or branching points occur in any interme-
diate path. Since d < i, no center of curvature along either guard path can fall in
I [4]). Therefore, each level set defines a path through the origin.

Each path’s curvature function is piecewise continuous and everywhere bounded.
A small neighborhood of either guard path approximates constant curvature. A GVD
curve generated by two constant-curvature sets forms a conic section [27]]. Table[I]
reflects that the curvature of p. is everywhere bounded with the maximum possible
curvature being bounded by %Kmax. For the full proofs, see [14]]. g

Lemma 2. Given safe, appropriate guard paths p;,p; € F(s¢, Knax) separated by
un (pispj) < d, any path p. C Sr(s;, %me) between them is safe.

Proof. We prove this lemma by contradiction. Assume an obstacle lies between p;
and p;. We show that this assumption imposes lower bounds on v and w. We then
conclude that for lesser values of v and w, no such obstacle can exist.
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Fig. 6 In a continuous de-
formation between paths p;
and pj, as defined by the
level sets of (), each path
takes the form of a weighted
GVD. Upper bounds on cur-
vature vary along the defor-
mation, with the maximum
bound of %Kmax occurring point of maximum curvature
at the medial axis of the two
paths.

Fig. 7 Hausdorff coverage (overlapping red and blue shapes in center) is a conservative ap-
proximation of swath coverage (gray). The Hausdorff distance between paths p; and p; is
equal to the maximum-length projection from any point on either path to the closest point on
the opposite path. Each projection implies a line segment. The set of projections from the top
line (blue) and bottom line (red) each cover a solid region between the paths. These areas,
in turn, cover a slightly shorter intermediate path p., in white, with its swath in cyan. This
path’s length, sy is as great as possible while remaining safe, with its swath inside the gray
area.

Table 1 Conic sections form the weighted Voronoi diagram. x; and k;, represent the cur-
vatures of the two guard paths, with kj the lesser magnitude. Let k;,, = max(|x|, |xz]|). For
details, see [14].

Type Occurrence Curvature bounds of intermediate paths
line K| = —K» |x| < K
parabola K1 =0,k #0 |x| < K
hyperbola|x;xy < 0,x] # — K |x| < Ky
ellipse K1k >0 || < %‘Km

Let sl(p,d) = {t € R%,t, = nn(t,p): 7pf L pand ||t — 1,12 < 4} define a con-
servative approximation of a swath, obtained by sweeping a line segment of length
d with its center along the path. 7,7 is the line segment joining 7, to ¢ and nn(t, p)
is the nearest neighbor of point ¢t on path p. The two swaths form a safe region,
U = si(pi,d) Usl(p;.d).

Suppose that U contains a hole, denoted by the set 4, which might contain an
obstacle. Now, consider the shape of the paths that could produce such a hole.
Beginning with equal position and heading, they must diverge widely enough to
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(a) (b)

Fig. 8 (a) With bounded curvature, there is a lower bound on path lengths that permit a
hole, &, while satisfying (B). Shorter path lengths ensure the existence of a safe continuous
deformation between paths. (b) We compute the maximal path length that prevents a hole
using Vendittelli’s solution to the shortest path for a Dubins car. Starting from the dot marked
s, we find the shortest path intersecting the circle D. The interval p¢ illustrates path lengths
permitting a hole to exist.

separate by more than d. To close the loop in U, the paths must then bend back
towards each other. Since the paths separate by more than d, there exist two open
intervals pf-' C pi and p? C p; surrounding the hole on each path such that (at this
point) p! ¢ (p;)a and p? ¢ (pi)a. To satisfy (@), there must exist later intervals
PS¢ C pi such that pﬁf C (pf)a and likewise p$ C p; such that phc (P§)a, as in
Fig.Bh.

How long must a path be to satisfy this condition? Consider the minimum length
solution to this problem under bounded curvature. For each point ¢ € p?, the interval

p¢ must intersect the open disc D = int((7),), as in Fig.[8b. Since p’]? grows with the
width of £, and p{ must intersect all of these open neighborhoods, the path becomes
longer with larger holes. We will therefore consider the minimal small-hole case.
Vendittelli [26] solves the shortest path problem for a Dubins car to reach a line
segment. We may approximate the circular boundary of D by a set of arbitrarily
small line segments. One may show from this work that given the position and slope
of points along any such circle, the shortest path to reach its boundary (and thus its
interior) is a constant-curvature arc of radius r,,;,. In the limit, as v approaches one
and the size of /1 approaches zero, the length of arc needed to satisfy (3) approaches
7 /2 from above, resulting in the condition that w > 0.48. Thus, for w < 0.48 and
v € [0,1), p. is safe. For smaller values of v, D shrinks relative to ry;,, requiring
longer paths to reach, thus allowing larger values of w as shown in the plot in Fig.[4l
We have shown that there exist appropriate choices for v and w such that (3)
implies that U contains no holes. Since U contains the origin, any path p. € [ ema-
nating from the origin passes through U and is safe. ad

Theorem 1. Given safe, appropriate guard paths p;,p; € F(s¢, Knax), and given
Un (pi,pj) < d, a safe continuous deformation exists between p; and p.
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Proof. Lemma [T] shows that (Z) gives a continuous deformation between paths p;
and p; such that each intermediate path p. C I is feasible. Lemma[2]shows that any
such path is safe. Therefore, a continuous deformation exists between p; and p;.
This proves the validity of the Hausdorff metric as a test for path equivalence. O

3.3 Resolution Completeness of Path Classifier

In this section, we show that Alg. @ is resolution complete. Resolution complete-
ness commonly shows that for a sufficiently high discretization of each dimension
of the search space, the planner finds a path exactly when one exists in the contin-
uum space. We instead show that for a sufficiently low dispersion in the infinite-
dimensional path space, the approximation given by Alg. @l has the same connectiv-
ity as the continuum safe, feasible path space.

Let J be the continuum feasible path space and Fy,., C F be the set of safe,
feasible paths. Using the Green-Kelly algorithm, we sample offline from J a path
sequence P of size N. At runtime, using Alg. [Il we test members of P in order to
discover a set P, C P of safe paths.

The following lemma is based on the work of LaValle, Branicky, and Linde-
mann [16], who prove resolution completeness of deterministic roadmap (DRM)
planners, which are PRM planners that draw samples from a low-dispersion, deter-
ministic source. Since we use a deterministic sequence provided by Green-Kelly,
the combination of Alg.[Tland @] generates a DRM in path space.

Lemma 3. For any given configuration of obstacles and any path set Py generated
by the Green-Kelly algorithm, there exists a sufficiently large N such that any two
paths pi,p; € Prree are in the same connected component of J yye. if and only if
Alg.Hlreports that p; ~ p;j.

Proof. LaValle, et al. [16], show that by increasing N, a sufficiently low dispersion
can be achieved to make a DRM complete in any given C-Space. By an identical
argument, given a continuum connected component C C JF sy, all sampled paths
in CN Py are in a single partition of D. If ¢ is the radius of the narrowest corridor
in C, then for dispersion dy < ¢, our discrete approximation exactly replicates the
connectivity of the continuum freespace. g

Lemma 4. Under the same conditions as in Lemma [3| there exists a sufficiently
large N such that for any continuum connected component C C F free, Alg. M returns
a P pree such that P ree N C # 0. That is, every component in F . has a correspond-
ing partition returned by Alg.

Proof. Let B, be the largest open ball of radius 7 in €. When Sy < r, B, must contain
some sample p € P. Since C is entirely collision-free, p € P ¢.... Thus, for dispersion
less than r, Py, contains a path in C. a

There exists a sufficiently large N such that after N samples, P has achieved dis-
persion &y < min(g,r), where ¢ and r are the dispersion required by Lemmas [3]
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and[] respectively. Under such conditions, a bijection exists between the connected
components of P sy, and F sy,

Theorem 2. Let D = {Dy|...|D,,} be a partition of P fre as defined by Alg.Hl Let
C={Cy|...|Cn} be afinite partition of the continuum safe, feasible path space into
connected components. A bijection f : D — C exists such that D; C f(D;).

Proof. Lemmal[3]establishes that f is one-to-one, while Lemma[] establishes that f
is onto. Therefore, f is bijective. This shows that by sampling at sufficiently high
density, we can achieve an arbitrarily good approximation of the connectedness of
the continuum set of collision-free paths in any environment. O

Theorem 3. A path interval p may be implicitly tested safe if it is between paths
pi and pj such that iy (pi,p;) < d and a small region at the end of p. has been
explicitly tested.

Proof: By Lemma[2] the initial interval of p, is safe because its swath is covered
by the swaths of the guard paths. Since the small interval at the end of p, has been
explicitly tested, the whole of p. is collision-free. g

4 Results

We briefly summarize some experimental results involving equivalence class detec-
tion and implicit path collision-testing. All tests were performed in simulation on
planning problems of the type described in [13]].

Path classification imposes a computational overhead due to the cost of searching
collision-free paths. Collision rate in turn relates to the density of obstacles in the
environment. The computational overhead of our classification implementation is
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Fig. 9 Paths tested per time-limited replan
step in an obstacle-free environment. Path
testing performance improves by up to 3x
with the algorithms we present here. Note
that an artificial ceiling curtails performance
at the high end due to a maximum path set of
size 2,401.

Fig. 10 Paths tested per 0.1 second time
step at varying obstacle densities. Implicit
collision-testing allows significantly more
paths to be tested per unit time. Even in ex-
tremely dense clutter, implicit path testing
considers an extra six paths on average.
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nearly 20% in an empty environment but drops to 0.3% in dense clutter. However,
implicit collision-testing more than compensates for this overhead.

Fig.[9shows the effect of implicit path testing on total paths tested in the absence
of obstacles. As the time limit increases, the number of paths collision-tested un-
der the traditional algorithm increases linearly at a rate of 8,300 paths per second.
With implicit testing, the initial test rate over small time limits (thus small path set
sizes) is over 22,500 paths per second. The marginal rate declines over time due
to the aforementioned overhead, but implicit path testing still maintains its speed
advantage until the entire 2,401-member path set is collision-tested.

Fig. 10l presents implicit collision-testing performance in the presence of clutter.
We compare the implicit collision-tester in Alg. [3]to traditional explicit collision-
testing. When fixing the replan rate at 10 Hz, implicit path evaluation maintains an
advantage, despite the overhead, across all navigable obstacle densities.

5 Discussion and Future Work

In this paper, we propose an equivalence relation on local paths based on the fol-
lowing constraints: fixed start position and heading, fixed length, and bounded cur-
vature. We describe an algorithm for easily classifying paths using the Hausdorff
distance between them. Path classification is a tool that permits collective reasoning
about paths, leading to more efficient collision-testing.

There are many other applications for path equivalence. One example uses path
class knowledge in obstacle avoidance to improve visibility and safety around ob-
stacles. Another avenue of future work involves generalizing path equivalence to
higher dimensions. For instance, an implicit path test for a robot floating in 3D re-
quires three neighboring paths, while a manipulator arm needs only two.
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Using Lie Group Symmetries for Fast Corrective
Motion Planning

Konstantin Seiler, Surya P.N. Singh, and Hugh Durrant-Whyte

Abstract. For a mechanical system it often arises that its planned motion will need
to be corrected either to refine an approximate plan or to deal with disturbances. This
paper develops an algorithmic framework allowing for fast and elegant path correc-
tion for nonholonomic underactuated systems with Lie group symmetries, which
operates without the explicit need for control strategies. These systems occur fre-
quently in robotics, particularly in locomotion, be it ground, underwater, airborne,
or surgical domains. Instead of reintegrating an entire trajectory, the method alters
small segments of an initial trajectory in a consistent way so as to transform it via
symmetry operations. This approach is demonstrated for the cases of a kinematic
car and for flexible bevel tip needle steering, showing a prudent and simple, yet
computationally tractable, trajectory correction.

1 Introduction

In practice, mechanical systems drift. Be it due to unexpected disturbances or in
order to refine a coarse plan, corrective motion planning seeks to efficiently adapt a
given trajectory in an elegant way. This is of particular interest in the agile control
of underactuated nonholonomic systems. The nature of these systems is that certain
degrees of freedom can only be controlled in a coupled manner (if at all). This
makes it computationally hard to determine simple and valid trajectories [3}[11]],
thus it is preferable to efficiently adapt a given trajectory in an elegant way without
having to start anew. Even in cases where explicit control laws are available, pure
pursuit tracking is likely to produce unwanted artefacts due to its myopic nature
[5l13]]. Taking a larger horizon into account increases algorithmic and computational
complexity, but enables alterations to the path in an elegant way. An example of such
corrections is illustrated in Fig.[Il
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Fig. 1 A car (small rectangle) is following a previously planned path (solid line) to the goal
(dot), but got off track due to disturbances. The left image shows a pure pursuit controller
trying to get back on track as quickly as possible, resulting in unnecessary turns (dashed
line). A more natural solution is shown in the second picture where the available space is
used to elegantly correct the path during the upcoming turn.

Mechanical systems frequently exhibit symmetries that can be represented as Lie
groups of translation or rotation [8}/14}|17]. Exploiting this can allow for elegant
trajectory corrections in a computationally tractable way. This is valuable as the de-
grees of freedom represented within this symmetry group are often the ones that are
only indirectly modifiable, and thus hard to control. For example, for most vehicles
(be it submersible, ground, or airborne) properties such as thrust, speed and turning
rate can be easily influenced; whereas, the position and heading are hard to control.
As the latter often exhibits aforementioned symmetries, these methods allow for
efficient planning and control of this subset.

Towards this, an algorithmic framework is introduced that allows for elegant
planning and control systems that exhibit symmetries but are hard to control due
to nonholonomic constraints. The method works without prior knowledge of con-
trol strategies specific to the system at hand. Further, it can be used either as an aid
within an existing planning technique such as rapidly exploring random tree (RRT)
or probabilistic roadmap (PRM) algorithms [[L1]; or, as presented here, on its own
in order to adapt an existing trajectory and partly replace a classical controller.

This approach generalises on the use of Lie group actions for gap reduction dur-
ing RRT planning. Cheng [4], for example, introduced a method to insert coasting
trajectories into an existing trajectory in order to reduce gaps that arise during sam-
pling based planning. That approach is likely to perform well for twisted paths but
it comes short for less twisted ones as there is no possibility to shorten any part
of an initial trajectory to recover from overshooting. The algorithm presented over-
comes this problem by actually altering existing segments of the initial trajectory in
a consistent manner.

The following discussion is framed on the assumption that an initial path has
been obtained, but needs to be corrected as it does not reach the desired goal.
Such corrections might be necessary due to gaps arising from sampling based
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planners, dynamic changes in the environment, or due to disturbances. Furthermore
the algorithm is designed under the assumption that the initial path is up to some
degree surrounded by free space, but may still contain narrow doorway situations.
For ease of presentation, this work concentrates on altering degrees of freedom rep-
resented by aforementioned symmetry groups. It is understood that the remaining
degrees are dealt with via a classical planning or control methods [11]].

The remainder of this paper is structured as follows. Section2ldevelops the math-
ematical model and introduces the basic concepts for trajectory alteration. Section[3]
presents the algorithmic framework for situations without obstacles and shows re-
sults of its application to the (kinematic) car tracking and flexible needle steer-
ing problems. This is extended to the cases with obstacles in Section @ Finally,
Section [§] summarises the ideas presented and discusses future applications.

2 Mathematical Model

2.1 Basic Definitions

Kinodynamics can be defined on a state space X, which itself is a differentiable man-
ifold with a metric [11]]. The subset Xons C X denotes the states that have obstacles,
and its complement Xgee := X \ Xobs is the viable free space. For clarity of presen-
tation, an obstacle free setting (X,ps = @) is assumed (cases with obstacles will be
tackled in Section[d)). The space U C R” represents the the system’s control inputs.
System progress is modelled via a set of ordinary differential equations (ODE)

X =F(x,u) (1)

forxeXanduecU.

It is assumed that the reader is familiar with the notion of Lie groups. An intro-
duction to the topic can be found, for example, in [12/[1]]. Let G be a Lie group acting
on X such that F(.,u) are left-invariant vector fields under the action of G. That is,
there exists a multiplication law for elements g € G and x € X, such that gx € X,
and for every trajectory x(¢) : I C R — X and control input u(¢) : I — U fulfilling
Eq. (@, the product gx(¢) also fulfils (1) for the same u(¢). This setting often allows
for a decomposition of the state space X in the form

X=7ZxG

where the manifold Z is the base space and the Lie group G is denoted the fibre
componentEl The projections from X onto its components Z and G are denoted 7z
and 7t respectively. Common examples of such invariantly acting Lie groups arising
from the system’s symmetry group, are translations (R"), rotations (SO(2), SO(3))
or combinations thereof (SE(2), SE(3), R? x SO(2), ...).

! For the decomposition to exist, the Lie group’s action has to be free. That is, for all x € X
and g,k € G it has to be true that gx = hx implies g = h. If G is a symmetry group of the
system, this is usually the case.
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Applying this framework to the example of a kinematic car yields a state space
X containing five dimensions, denoted speed v, turning rate , position x and y, and
heading 6. The control inputs U contain two dimensions, acceleration a and change
in turning rate p. The equations of motion are

V=a
»=p

X = cos(0)v
y = sin(0)v
0 =ov.

Since the car’s behaviour is independent of position and heading in the sense that, if
a valid path is translated or rotated, the resulting path is equally valid, as illustrated
in Fig.[2| these dimensions form a symmetry Lie group to the system. Thus G should
be set to be the group of Euler transformations, SE(2), representing x, y and 6. The
remaining base space Z is spanned by v and ®. Thus

X =R?x SE(2).

Introducing some notation simplifies matters. Let / C R be a closed finite interval.
Then I~ and I denote the lower and upper boundary values respectively, such that

I=[1",1"].

A time dependent control input is considered to be a function u : [, — U that maps
from a closed finite interval I, C R into the control space U. Integrating such a
control input over time via the ODE () gives rise to a path in state space X that is
dependent on an initial state xy and time 7. Such integrated paths can be written as
functions @, (xo,?) : X x I, — X with the properties

Fig. 2 The car (rectangle) has a valid initial state and path depicted in bold. It follows that
the translated and rotated initial states and paths are equally valid.
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(bu(X(),l‘) = F(q)u(XOat)au([))

and
q)(X(),[u_) = X0 .

Given two time dependent control inputs u : I, — U and v : I, — U with I,; =1,
uxv: [l ,I;}] — X is defined as the concatenation of the two functions u and v such
that N

u(t), ifrell, ]

(u*v)(t): ()a G[.uvu)

v(t), otherwise.
This notation may also be used in cases where I;} # I In these cases a suitable re-
parameterisation of [, is performed implicitly. Note that when using this notation for
two integrated paths in state space X, the concatenation results in a single continuous
path if and only if the final state of the first path coincides with the initial state of
the second path. When this is the case, the resulting path is equivalent to integrating
the concatenated control inputs directly, thus

(Du*v(xoa[) = (DM(X(),I‘) * (Dv(q)Lt(XOaI+)at) .

u

2.2 Trajectory Transformations

It is hard to find a solution for the planning problem of connecting two predefined
POints Xgtart and Xgogr in X [BLI0]. In the general case, this leads to running a search
over all time varying control inputs. As the space of all possible control inputs can
be too big to search exhaustively, many algorithms focus on relatively small subsets
and either run a search over a discrete path set [6]] or run a non-linear optimisation
algorithm or search over a continuous path set [[7,/9]]. The former, by its very nature,
can only reach a discrete subset of X, where as the latter typically involves reinte-
grating the whole trajectory @, (xsar,?) in each step of the optimisation process.

Using operations given by a Lie group to transform a valid trajectory allows for
the reuse of large parts of a previously calculated @, (xgart,?) as long as changes to
the trajectory happen in a compatible way. Thus searching a continuum can be done
without complete reintegration.

Let u and v be two time dependent control inputs that differ in some region, but
coincide otherwise. They can be split up as

U=uy*xuy*xus

and
V=1Uj*xVy*Uuj3

where u1 and u3 represent the parts that are common to both. Note that the lengths
of the middle segments /,, and /,,, do not necessarily have to be equal. Starting both
trajectories at a common initial state xo € X yields

D,(xg,1) = Dy(x9,1) fortel,.
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Fig. 3 Three trajectories for a car (rectangle), all resulting from the same control input.
The behaviour is sensitive to initial conditions (speed and turning rate), causing different
trajectories.

In general, equality of the third part of the control inputs, u3, can not be used, as the
final states of the middle segments, @ (xo,1,,) and @, (xo, 1), need not coincide.
Using different states as initial states for the third part of the path can result in a
variety of different trajectories as illustrated in Fig. Bl If however it is assumed that
the final states of the middle segments u, and v, only differ on the fibre component
G but coincide on the base space Z, the similarity of the third parts of the trajectory
can be exploited. Having equality on the base space as in

7z (Qu(x0,1,,)) = 2(Dy(x0, 1)) 2)
implies there exists a transformation g € G such that
(DV(XO,I;;) = g(Du(xo,I,j;) ) (3)

In the case of the kinematic car, Eq. (@) can be interpreted as having identical speed
v and turning rate ®. Then Eq. (3) yields the translation and rotation necessary to
transform one state into the other. Because the equations of motion are invariant
under translation and rotation, the resulting third parts of the paths will be translated
and rotated versions of each other as illustrated in Fig. [l In the general case, the
same line of reasoning on invariance yields

(Du3(q)v(x0a1;;)a[) = ‘1)u3(g@u(xo,1;2),l) = g(pu3(q)u(x0a1u_;)at) . 4)

Looking at this result from a viewpoint of computational complexity, Eq. @) can
save calculation time. Given @,, the computational cost of @, is mainly the cost
of integrating the second segment given by v,. The third segment defined by u3
can be calculated directly by the use of group operations. In particular, during non-
linear optimisation, the final state @,(xq,I;") is typically the only one of interest.
Thus, there is no need to actually transform the whole third segment of the path.
Instead one can determine the trajectory’s final state directly. As a result, the cost
for @, (xo,1;") is linear in the size of ,,.
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Fig. 4 A car (rectangle) follows two different paths resulting from control inputs that only
differ on a region in the middle but are identical otherwise. The paths coincide up to the first
marker (dot). After that, the paths differ. However at the respective second markers, speed
and turning rate are identical for both paths and thus the remaining parts of the path are the
same, just transformed.

2.3 Optimising a Trajectory

Given a time dependent control input « and a corresponding trajectory @, (x,?), one
might be able to find an alteration u¢ that stretches (or compresses) the trajectory’s
behaviour on the base space Z over time. That is

ﬂz((puc(xo,l‘)) Zﬂz(@u(xO,Ct)) 5

for a stretch factor 0 < ¢ € R. In particular, this yields identical final states on Z,
”Z(q)u‘(xﬂalut)) = mz(Du(x0, 1)) -

In the case of the car, for instance, this could map to reduced accelerator commands
resulting in a longer distance travelled by the time the target speed is reached. While
the stretching operation does not change the end result on the base space Z, it does
alter the fibre G, thus emphasising or weakening features of the trajectory. For the
car, the stretching operation can be calculated by dividing the control inputs a and
p by ¢ while multiplying the time they are applied by c.

Combining the results obtained so far, an efficient tool for altering a trajectory
during a non-linear optimisation process can be built. Let @,(xo,?) be a trajectory
given by a split control input

U=1up*...%Uy,

and starting point xo € X. Changing a single u; to uf’ =: y; results in a Lie group
operation g; € G as of Eq. (B). Repeating this, one is able to alter several or even all
segments of the path at once in order to get a new control input

VISV k.LLk Yy,

where all v; result from some ufi . In cases where ¢; = 1, and thus the segment is
unaltered, the corresponding g; is set to the identity element 1 € G without further
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calculation. Assuming @, (xp,7) is given and the changed segments
D, (D, (xO,I,Z _,),t) and transformations g; have been calculated, the new trajectory
D, (xo,t) is computed efficiently using group operations only. Iteratively applying
@ yields

(Dv,‘(q)v(xﬂalx,] )at) =8i—1---81 q)vi(@u(x0>1$7] )a[)

and thus

(DV(XO,t):q)Vl (XOat)*g](DVZ((Dul (XOaI;;)at)*' <k 8n—1 "'gl(pvn(q)un,I ()C(),I+ )a[) .

Up—1

In particular, one can write the final state of the trajectory as
D, (x0,1,) = gn- - 81Pu(x0, 1) . (6)

Clearly not much is saved in cases where all segments of the trajectory have been
changed (i.e., all ¢; # 1). However, if only a small fraction of the control input has
been altered, then it is only necessary to reintegrate the fibre component of those
altered segments. Thus the computational cost for calculating the new trajectory, or
directly its end point, is linear in the length of the changed segments plus the cost of
a few additional group operations.

Note that it is possible to perform the calculations of g; and @,,(®@y(xo, 1, |)1)
separately for each segment, independent of what is done to other segments. Thus,
for another transformation using some ¢}, all results where ¢ = ¢; can be reused.
This speeds up things significantly for gradient calculations as will be detailed later
and also allows for parallel computation.

Fig. 5 A scaling operation has been applied to the bold segments of the left hand path to
derive the right hand trajectory. Only the bold segments had to be reintegrated, the remainder
is identical.

3 Path Correction Algorithm without Obstacles

For path correction, it will be assumed that an initial path @,(xo,?) as well as its
control input u and initial state xyp have been given. Furthermore, the path’s final
state @, (xo,I;) does not coincide with the goal Xgoal, but is somewhat in the vicinity
of it. The objective is to alter the trajectory @, in such a way that its final state
matches xgoq. It Will be assumed that the correction needs to be done in the fibre
component only and that there are no obstacles present. This will be achieved in two
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Fig. 6 The segments (bold) chosen for the trajectory on the left are unable to span the space
well as they enable moving the final state horizontally and vertically, but prohibit alteration
to the car’s heading. The selection shown on the right is superior because changes in all
directions including heading are possible.

steps: (1) a small and suitable set of path segments will be selected for stretching
operations; (2) matching stretching factors ¢; will be determined for said segments.

When selecting path segments, it is advantageous to select exactly as many seg-
ments as there are dimensions in the Lie group G. Using less segments results in too
few degrees of freedom when altering the trajectory and thus failure to span a whole
neighbourhood of the final state @, (xp,I"). Using more segments than dim G leads
to undesired behaviour as the solution is no longer unique. Furthermore, segments
are chosen in such a way that the directions they move the trajectory’s final state
into have the potential to span the space well as illustrated in Fig. [6l This can be
formalised by considering the derivatives

8(1)1,()(0,[3—) _ 9gi‘1)u(xo,1;)
dc; dc;

evaluated at ¢c; = 1. As above, v represents the control input u with some segments
u; replaced by their scaled versions ;" and, again, g; € G denotes the resulting Lie
group transformation. The quality of a selection of dimG segments can then be
measured by analysing the condition of the resulting Jacobian

oD, (xo,1,") (981@14@6071;) agdimc%(m,[;))

J: = ..
d(c1,-.,CdimG) dcy T dCdimG

(N

evaluated at ¢; = 1 for all i. The derivatives in the matrix on the right hand side are
written as column vectors. If the matrix’s condition is small, it has the potential to
span the space well.

Since each column of J in Eq. (@) is independent of the remaining segments, the
derivative has to be calculated only once. Thus, in practise, a solution is to select a
larger set of non-overlapping segments and out of that then randomly draw selec-
tions of dimG elements for further testing. The selection with the smallest condi-
tion of the resulting Jacobian is then chosen. An exhaustive search for the optimal
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selection is not necessary since it is sufficient to remove poor candidates. Taking a
few random samples is often enough.

As optimisation algorithms typically work by minimising a target function [2],
here the distance of the path’s final state to the goal, it might seem tempting not to
use the condition of the final state’s Jacobian as presented here, but instead estimate
the convergence rate of that target function directly via its second order approxi-
mation and the eigenvalues of the Hessian [16,4]. In tests however this proved to
perform poorly.

Once a set of segments is chosen, the values for the ¢; need to be determined in
order to actually improve the trajectory. Therefore a target function f(cy,...,CdimG)
is defined as the distance between @, (x, ;") and Xgoal- It is then minimised using a
Conjugate Gradient method [16,2]]. Estimating the gradient of f at (cy,...,CdimG)
is done by taking into account the function value f(cy,...,cqimc), as well as those
resulting from going a small step into each direction, f(cy,...,¢i +&,...,CdimG)s
naively resulting in dimG + 1 integrations for each segment. However, since only
two distinct values, ¢; and c; + €, are used for each dimension of G, the calculated
gi can be recombined to obtain all function evaluations necessary. Thus, the cost to
estimate a gradient is two integrations per segment plus some group operations.

Pseudocode for this algorithm is presented in Algorithm [Il It was used for the
path depicted on the right hand side of Fig.[[l as well as the example presented in
Fig. [l Implementing this algorithm for more complex 3D cases, such as bevel tip
needle steering, the state space X consists of eight dimensions: Insertion speed v,
turning rate @ as well as six degrees of freedom representing position and orien-
tation in three space. Thus the base space Z represents v and @ whereas G equals
the group of Euler transformations SE(3). Following previous notation in this do-
main [[15L[17], SE(3) is represented using homogeneous 4 x 4 matrices g = (15 ?)
where R € SO(3) is a rotation matrix and t € R? represents translation. The control

Algorithm 1. Path correction algorithm without obstacles

u «— current plan

M «— select set of at least dim G non overlapping segments of I,

Cinin <

for i = 1 to min(maxSelections, number of selections possible) do
S « draw new selection of dim G random elements of M

¥ ) ¥
J e (28 %ulody) agd‘mac(p_”<x°’[" ) {calculated for the segments stored in S}
C| CdimG

if cond(J) < Cpip then
Cinin < cond(J)
Smin < S
end if
end for
optimise ¢y, ...,c4imG
v «— scale the segments of u stored in S,;, according to values of cy,...,cdimG
until dist (xgoa1, Py (x0,1,")) minimal
return v
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Fig. 7 A car (rectangle) is trying to reach the goal (dot). The dashed line shows the initial
path that fails to reach the goal. By altering the segments depicted in bold, the solid path is
created.

Fig. 8 Path correction for a needle steering case. The needle needs to reach the goal (dot), but
the initial plan, depicted by the dashed line, misses it. The solid line is the correction made
by the path correction algorithm.

space U has two dimensions, acceleration a = v and change in turning rate p = @.
The remaining equations of motion are given by

0 — 0 0

1. () 0 —Kv 0
8§ &= 0 KV 0 v €5¢(3)

0 0 0 0

where the constant x is the curvature of the needle’s trajectory and se(3) is the Lie
algebra of SE(3). An example for path correction using this system is presented in
Fig. Bl
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Since the algorithm works by enlarging or shrinking certain sections of the tra-
jectory, it can not perform well in cases where the trajectory has too few features.
Especially in cases where the path consists only of a straight line or a section of a
circle, it is impossible to find segments that span the space well in a way discussed
previously and illustrated in Fig.

4 Path Correction Algorithm with Obstacles

When dealing with obstacles, an inversion of perspective is helpful. Up to now the
initial path was considered to start at the robot’s current state and the final state was
then optimised. However, it is equally valid to anchor the initial path at the goal
state xgoa1 and consider the robot to be at a state xcyr that does not coincide with the
path’s initial state Xgar = Dy (Xstart, 1, )-

It will be assumed that the initial path is a collision free trajectory @, (Xstart, ) With
D, (Xgtart, I,T) = Xgoal- Xobs does not have to be empty, but it is assumed that there is

Algorithm 2. Path correction algorithm with obstacles
u < original plan
v «— current plan
Xeurr <— System’s current state
S «— empty stack
repeat
if @, (xcurr,?) in collision then
V1,V < v split at point of first collision
else
Vi,V <0
end if
Xnew < find intermediate goal using u
vy < run algorithm without obstacles (Alg.[I) for @y, (xcurr,?) in order to reach xpew
if @y, (xcurr, 1) collision free then
S.push «— vi,Xcurr
vy Xeurr <= V2, Dy, (xcuml\j]—)

else if @, (Xcum I;T ) collision free then

V<=V *xVp
else if S not empty then
Vo, Xeurr < S.pop
V<=V *kV] *xV)
else
return FAIL
end if
untilv =10
while S not empty do
V0, Xcurr <— S.pop
Ve Vo kv
end while
return v
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Fig. 9 A car tracking a path (thin solid line) through terrain with obstacles to reach the
goal (dot). While driving, base space and control inputs (v, @, a and p) are disturbed by
random errors in form of a Wiener process. Errors on the base space are corrected by use
of a feedforward controller with a saturation function, while resulting errors in position and
heading are corrected repeatedly using the path correcting algorithm. The actual path taken is
depicted by the bold solid line and the currently planned path that is to be followed is shown
by the dashed line.

a certain amount of free space surrounding the trajectory most of the time that can
be used for corrective actions. The robot is currently at x¢u and is following a path
defined by v that is derived from, but that might not coincide with u. So @, (xcurr,?)
does not necessarily reach the goal x0,. Allowing a discrepancy between u and v is
advantageous when making multiple corrections; for example, when repeated online
calculations are performed while executing a path under disturbances. In this setting,
the initial path u will be kept constant during the whole process, while alterations
are made to v only.

If no collisions occur in @, (xcyr,?), alterations to v can be made directly using
the path correction algorithm without obstacles (Algorithm [T). Otherwise, in case
of collisions, the first point of collision is found as

feol i= min{t el ‘ q)v(xcurrat) € Xobs}

and the path can be split such that v = v| x v, and #,, = IV“; . To get around the
obstacle, it is necessary to correct the path in two steps, first @y, (Xcurr,?) using a
new intermediate goal xpew € Xfree and then v;.

To define xpew, the colliding point @, (Xcurrs I‘ﬁ ) is pulled towards the correspond-
ing point Xorig of @y (xstart,#) Where, due to scaling operations performed on v, the
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Fig. 10 A needle has to reach a goal (dor) and has an initial path depicted by the dashed
line. Due to an offset in the initial position, the planned trajectory would result in the dotted
line, colliding with an obstacle and missing the goal. The path is corrected and a valid path
depicted by the solid line is created.

time 7 is not necessarily identical for # and v any more. This is done by parameter-
ising a straight line connecting Xz With @, (xcurr,lx ) by s:]0,1] — X such that
5(0) = Xorig and s(1) = @, (xcuml‘j; ) Using s, the intermediate goal is defined as

Xnew 1= s(a") ,

where 7 is the smallest n € N such that s(0"") € Xgree and @ € [0, 1). The convergence
rate o determines how fast the trajectory should be pulled back towards the original
path and away from the obstacle. A large o results in staying closer to the obstacle

% Note that, as states already coincide on the base, the line s only has to be defined in G
and is constant in Z. In most cases, it is intuitive what a suitable choice for a straight
line within G should be and how it can be implemented easily. In less obvious cases,
the exponential map exp : g — G can be used, where g is the Lie algebra of G. Let d =
7r(;(x(m-g)*175(;(<l>vI (xcumlvf )) be the difference between the two states to connect. The
points have to be close enough such that d lies within the identity component of G (i.e.
the image of exp), as otherwise an easy connection is not possible. Then the line can be
defined as s(7) := 7z (Xorig ) Xp( exp~!(d)) for a suitable pre-image exp~ ! (d).
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and thus in a higher change that future corrections are necessary; a smaller & on
the other hand pulls the trajectory more aggressively towards the original trajectory,
preventing effective use of the available free space. The presented implementation
uses o = 1/,

Using xpew, the path correction algorithm without obstacles is run over v; to get
a new plan w; and thus w = w; % v,. Note that it is acceptable if the new trajectory
does not actually reach xyey itself as the main purpose of the operation is to pull
the path away from the obstacle. What has to be considered tough are collisions of
D, (Xcurr, ). If Dy, (Xcurr,t) is collision free, the process continues by recursively
applying the path correction algorithm with obstacles on vy. If @y, (Xcurr,t) 18 in
collision, two cases have to be considered. If the final state @, (xcurr,ljv‘]) is in
collision, the optimisation run did not get close enough to x,ew because the path
given by v; was too short or too featureless for the algorithm to perform well. In
cases where vy is not the first part of the path due to a recursive call, w (and thus v;)
can be extended and a new attempt can be made. Otherwise the system is too close
to an obstacle for suitable correction, and the algorithm is considered failed. If the
final state @, (xcun,lj‘,'l) is in Xfee, the optimisation run was successful but the
alteration introduced a new collision. Then a recursive call on the altered plan w
and the starting point x.,r iS necessary to get rid of the newly introduced collision.
Pseudocode for the complete framework is given in Algorithm 21

The algorithm can be used either offline within another planning framework (e.g.
PRM, RRT) [4U11]] or online while tracking a previously planned path. When applied
in the latter approach, it is important that the initial trajectory u is kept unaltered
during the whole process. Examples of how the algorithm performs are presented in
Figs.[0land

5 Conclusion

An algorithmic framework was presented that allows for elegant and fast path cor-
rection while preserving the character of the initial trajectory, thus eliminating the
need for expensive re-planning from scratch. The algorithm has been implemented
for a kinematic car as well as for needle steering and simulations for the system’s
behaviour under disturbances have been performed. Future work will include im-
plementing the system on experimental field systems currently under development.
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Asynchronous Distributed Motion Planning with
Safety Guarantees under Second-Order Dynamics

Devin K. Grady, Kostas E. Bekris, and Lydia E. Kavraki

Abstract. As robots become more versatile, they are increasingly found to oper-
ate together in the same environment where they must coordinate their motion in
a distributed manner. Such operation does not present problems if the motion is
quasi-static and collisions can be easily avoided. However, when the robots follow
second-order dynamics, the problem becomes challenging even for a known envi-
ronment. The setup in this work considers that each robot replans its own trajec-
tory for the next replanning cycle. The planning process must guarantee the robot’s
safety by ensuring collision-free paths for the considered period and by not bringing
the robot to states where collisions cannot be avoided in the future. This problem
can be addressed through communication among the robots, but it becomes compli-
cated when the replanning cycles of the different robots are not synchronized and
the robots make planning decisions at different time instants. This paper shows how
to guarantee the safe operation of multiple communicating second-order vehicles,
whose replanning cycles do not coincide, through an asynchronous, distributed mo-
tion planning framework. The method is evaluated through simulations, where each
robot is simulated on a different processor and communicates with its neighbors
through message passing. The simulations confirm that the approach provides safety
in scenarios with up to 48 robots with second-order dynamics in environments with
obstacles, where collisions occur often without a safety framework.

1 Introduction

This paper considers multiple autonomous robots with non-trivial dynamics oper-
ating in a static environment. The robots try to reach their individual goals without
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collisions. Such scenarios are becoming increasingly interesting. For instance,
consider the case of vehicles moving in a parking lot or going through a busy inter-
section, or unmanned aerial vehicles that carry out complex maneuvers. These ex-
amples involve second-order systems, which cannot stop instantaneously and must
respect limits in the second-order derivatives of their state parameters. For such
systems, collisions with other robots or obstacles cannot be easily avoided.

Real applications also require the solution of such problems in a decentralized
manner. This work imposes a requirement for a decentralized solution and considers
robots that replan their trajectories on the fly. Replanning allows robots to consider
multiple alternative trajectories during each cycle and provides flexibility in chang-
ing environments. To coordinate the robots, this work utilizes communication. A
planning algorithm makes use of information collected through communication to
avoid collisions for the next cycle and ensure that robots reach states from where
collisions can be avoided in the future. The duration of the cycle is the same for
all robots, but the robots are not synchronized. Hence communication of plans can
happen at any point and the robots need to operate safely in the presence of par-
tial information about the plans of their neighbors. An asynchronous, distributed
framework is developed that guarantees the safety of all robots in this setup.

Background. Safety issues for dynamical systems were first studied many years
ago. Collision-free states that inevitably lead to collisions have been referred as
Obstacle Shadows [24]], Regions of Inevitable Collision [20] or Inevitable Collision
States (ICS) [13]. A study on ICS resulted in conservative approximations [[13]] and
generic ICS checkers [21]]. It also provided 3 criteria for motion safety: a robot must
(i) consider its dynamics, (ii) the environment’s future behavior, and (iii) reason
over infinite-time horizon [12]]. This line of research, however, did not deal with
coordinating robots as the current paper does.

Reactive methods, such as the Dynamic Window Approach [[11] and Velocity
Obstacles [10], can enable a robot to avoid collisions for unknown on dynamic en-
vironments. Many existing reactive planners, however, do not satisfy the criteria
for motion safety [[12} 21]]. Path deformation techniques compute a flexible path,
adapted on the fly to avoid moving obstacles [[18 [27], but do not deal with ICS.
Reciprocal Velocity Obstacles (RVOs) [4] involve multiple agents which simulta-
neously avoid one another without communication but do not deal yet with ICS.

Fig. 1 A sample run in the office environment (left to right). Links show communicating
robots.
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A related control-based approach deals with second-order models of a planar
unicycle but does not provide guarantees in the presence of obstacles.

In contrast to reactive approaches, this paper focuses on planning safe paths.
Planning has a longer horizon so it does not get stuck in minima as easily and
extends to high degrees-of-freedom systems. Reasoning about safety during plan-
ning focuses the search on the safe part of the state space. In this work planning
is achieved using a sampling-based tree planner 2]]. Alternatives include,
among others, navigation functions [§]] and lattice-based approaches [23].

Braking maneuvers have been shown sufficient in providing safety in static envi-
ronments [26]] and have been combined with sampling-based replanning [5} 2]. For
dynamic environments, relaxations of ICS are typically considered, such as 7-safety
[14]). This notion guarantees no collision for 7 seconds in the future for each node of
a sampling-based tree. A sampling-based planner was tested on air-cushioned robots
moving in dynamic environments, where an escape maneuver was computed when
the planner failed to find a solution [13]. Learning-based approximations of ICS
can also be found [[16]], as well as approximations of statextime space obstacles [6]].
Other works focus on the interaction between planning and sensing, and point out
that planning must be limited within the robot’s visibility region [1}, 25]]. The current
paper extends the authors’ earlier work [3]], which integrated a sampling-based plan-
ner with ICS avoidance [2] to safely plan for multiple robots that formed a network
and explored an unknown workspace. The previous work required a synchronous
planning operation, which simplified coordination.

Planning for dynamic networks of robots has been approached by a combination
of centralized and decoupled planning [7], without considering, however, the ICS
challenge. Centralized planning does not scale and decoupled approaches, which
may involve prioritization [9] or velocity tuning [22]], are incomplete. The existing
work follows a decoupled approach for performance purposes. In contrast to veloc-
ity tuning, it weakly constraints the robots’ motion before considering interactions
since it allows multiple alternative paths for each robot at each cycle. At the same
time, it does not impose priorities but instead robots respect their neighbors in a way
that emerges naturally from their asynchronous operation.

Contributions. This work extends the range of problems that can be solved effi-
ciently with guarantees for ICS avoidance. The paper presents a general framework
for independent but communicating second-order robots to reach their destinations
in an otherwise known environment. The framework is fully distributed and relies on
asynchronous interaction among the robots, where the robots’ replanning cycles are
not synchronized, the robots have no knowledge about their clock differences and no
access to a global clock. It is based on the exchange of contingency plans between
neighboring robots that are guaranteed to be collision-free. While contingency plans
have been used in the past, this work emphasizes the importance of communicating
contingencies in multi-robot scenarios and studies the asynchronous case. A proof
that the proposed scheme guarantees ICS avoidance is provided. The framework
has been implemented on a distributed simulator, where each robot is assigned to a
different processor and message passing is used to convey plans. The experiments
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consider various scenarios involving 2 to 48 robots and demonstrate that safety is
indeed achieved in scenarios where collisions are frequent if the ICS issue is
ignored. The experiments also evaluate the efficiency and the scalability of the
approach.

2 Problem Statement

Consider robots operating in the same known workspace with static obstacles. Each
robot R exhibits drift and must satisfy non-holonomic constraints expressed by dif-
ferential equations of the form: ' = £(x,u’), g'(x', ') <0, where x’ € X' represents
a state, u' is a control and f', g’ are smooth. The subset of the state space X' that
does not cause a collision with static obstacles is denoted as X' lf The robot model
used in this paper can be found in Section 3] and involves acceleration controlled
car-like systems, including versions with minimum positive velocity.

Each R’ is located at an initial state x'(0) and must compute plans that will bring
it to its individual goal xi,(tmax) without collisions and within finite time #,,,x. Then:
e A plan is a sequence of controls p(dt) = {(u1,dt1),...,(u,,dt,)} (dt = 3 ;dt;).

e A plan p(dt) executed at state x(¢) defines a trajectory: n(x(¢), p(dt)), which is a
sequence of states.

e A trajectory is feasible as long as it satisfies functions ' and g’ for robot R'.

e A plan p(dt) is valid at state x(¢), if it defines a feasible trajectory m(x(?), p(d?)).

e A state along m(x(?), p(dt)) attime ¢t € [¢: t+dt] is denoted as x[n(x(¢), p(dt))](t ).

o A feasible trajectory m(x(f), p(dt)) is collision-free with respect to the static ob-
staclesif: Vit e[t:t+dt]: x[n(x@),pd)](t) € Xy.

e For a trajectory concatenation (figure below) 7 ((x(¢), p(dt)), p (dt)), plan
p(dt) is executed at x(¢) and then p (dt ) is executed at state: x[m(x(1), p(dr))](t +dr).

e Two trajectories for R’ and R/ are compatible: 7'(x'(¢), p(dt))) = m/(x/ (t/), p/(dt)))
as long as: , , o R .

x[7'1(0) < x[7x/1(®) VYV t €[max(¢,t)) : min(f +di', ¢/ +dr)]

where x' < x/ means that R’ in state x' does not collide with R/ at state x/. The

corresponding plans p(dt'), p(dt’) are also called compatible at states x'(t'), x/(¢/).

The robots are equipped with an omnidirectional,
range-limited communication tool, which is reliable trajectory concatenation:
and used for coordination and collision avoidance. (O, pED), P
The robpts within range of R' define the neighbor- 9 pid) A0, pEO)I(t+ dby
hood N*. A robot has information about other robots
only if they communicate.

Given the above notation, the problem of distributed motion planning with
dynamics (DMPD) can be defined as follows: Consider m robots with range-limited
communication capabilities operating in the same workspace with obstacles. Each
robot’s motion is governed by second-order dynamics specified by f' and g'. Ini-
tially, robot R’ is located at state x'(0), where x(0) € X } and Vi, j: x'(0) = x/(0).

Each R must compute a valid plan pi (tax) so that:
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o X[ (X(0), P'(tmar))(tmax) = x;(tma v) (i.e., the plans bring the robots to
their individual goals within time #,,4,),

o Vi, Vt €[0: tiax] s x[7'(X(0), ptmax))](?) € X (i.€., the resulting trajectories
are collision-free with static obstacles)

eand ¥V i,j:  #(X(0), pl(tmar) = 7/ (x/(0), p/(tnax)) (.., the trajectories are
pairwise compatible from the beginning and until all the robots reach their goals).

3 A Simple Framework without Safety Guarantees

This paper adopts a decentralized framework for scalability purposes. Each robot’s
operation is broken into intervals ([} : #1,[#,21, ..., [#, : £ 1,...), called cycles.
During [, | : 7,,], robot R’ considers different plans /7' for cycle [#, : #; ], given the
future initial state x'(z,). Through coordination, R’ selects plan p* ([7, : 7, 1.

It is assumed that the duration of each cycle is constant and the same for all
robots: Vi, Yn : tﬁl = tﬁl = dt. Nevertheless, the robots do not have a synchronous
operation: the cycles among different robots do not coincide and £ is typically dif-

ferent than t{). Synchronicity is a restrictive assumption, as it requires all the robots
to initiate their operation at exactly the same time although they may be located in
different parts of the world and may not communicate their initial states.

Given this setup, Algorithm[3.T]outlines a straightforward approach for the single
cycle operation of each robot that tries to find compatible plans. During [[2 x £1,R
computes alternative partial plans /7° for the consecutive planning cycle. In parallel,
R' listens for messages from robots in neighborhood N'. The messages contain the
selected trajectories for each robot. When time approaches ¢, — €, R’ selects among
all trajectories that are collision-free and compatible with the neighbors’ messages,
the one that brings the robot closer to its goal. If such a trajectory is indeed found at
each iteration, then the DMPD problem is eventually solved by this algorithm.

Algorithm 3.1. Simple but Unsafe Operation of R’ During Cycle [/ | : #}]

T —0and TV « 0
while 7 < £, — e do
i (t,’;), pi (t,ﬁ : tI’; +1)) < collision-free trajectory from a single-robot planner
I 1T U R (), pi(d, - ) -
if R/ € N' is transmitting a trajectory 7/ then I7V' « [TV U n/
for all 7' € /7 do
for all 7/ € ITV' do
if 7' % 7/ (incompatible trajectories) then /7' — [T — 7'
7l trajectory in /7' which brings R’ closer to the goal given a metric
Transmit 7/, to all neighbors in N? and execute 7%, during next cycle
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4 A Safe Solution to Distributed Motion Planning with
Dynamics

A robot following the above approach might fail to find a trajectory 7' . This section
describes a distributed algorithm that guarantees the existence of a collision-free,
compatible trajectory for all robots at every cycle.

A. Safety Considerations - Inevitable Collision States: One reason for failure
is when the single-robot planner fails to find collision-free paths. This is guaranteed
to happen when xi(t,’;) is an ICS. State x(#) is ICS with regards to static obstacles if:
¥ p(c0) : A drt € [t,00) so that x[m(x(7), p(0))] & X .

Computing whether a state is ICS is intractable, since it requires reasoning over
an infinite horizon for all possible plans. It is sufficient, however, to consider conser-
vative methods that identify states that are nor ICS [13}[2]. The approximation rea-
sons over a subset of predefined maneuvers I'(c0), called here contingency plans.
If R’ can avoid collisions in the future with static obstacles at x'(z,) by guarantee-
ing that a contingency plan y(c0) € I"/(c0) avoids collisions over an infinite horizon,
then x/(t,) is not ICS with regards to static obstacles. For cars, braking maneuvers
are sufficient since it is possible to reason over an infinite time horizon whether these
plans will collide with static obstacles. Circling maneuvers can be used for systems
with minimum velocity limits, such as airplanes.

Multiple moving robots pose new challenges for ICS. Trajectories n' and 7/
may be compatible for the next cycle, but the corresponding robots may reach
states that will inevitably lead them in a future collision. Thus, safety notions
have to be extended into the multi-robot case. It is still necessary for computa-
tional reasons to be conservative and focus only on a set of contingency plans.
For m robots {R!,R?,...,R™} executing plans {p'(dt'), p*(d??), ..., p"(df™)} at states
{x1(0), ¥2(), ..., x"™(¢)}, state x'(¢) is considered a safe state if:

Jy/(c0) e I"(c0) so that V 1 € [t,00) 1 x[7'(x'(2),¥ (c0))](t ) € X and
Vjell,ml, j#i, Ay/(c0) €T (c0): n'(x(1),y (00)) = /(7 (x/ (1), p/(dt))), y/(o0)).

In the above definition, d#/ is the remaining of robot R/’s cycle past time z. Note that
a trajectory concatenation is used for R/’s trajectory. In this trajectory concatenation,
pl(dt’) is executed for time dt/ and then the contingency y/(co) is applied. The
reason is that as robots decide asynchronously, it may happen that at ¢, robot R/
has already committed to plan p/(dt/). Extending the assumption in the problem
statement about compatible starting states, the following discussion will assume
that the initial states of all the robots are safe states. Then an algorithm for the DMPD
problem must maintain the following invariant for each robot and planning cycle:

n l)):

Safety Invariant: The selected trajectory x* (x!(£)), pi(. : £

b) Must be compatible with all other robots, during the cycle (£, : £
at (X (), p(ey 1 D)= ), pI(th 1)), Vj# L

a) Must be collision-free with obstacles.
s
n 1
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c) The resulting state x[n’ ](t:'l |) is safe for all possible future plans pj(t:'l | 1)
selected by other robots (j # 7). In other words, the concatenation of i with yi (00)
must be compatible with the concatenations of other vehicles, i.e., Vj#i:

i (), piey 1)),y (o)) = i (), pi(dy 2 1)),y (00)).

Point ¢) above means that R’ has a contingency plan at x[n’ ]([2 1)» which can be
safely followed for the other robots’ choices given the algorithm. If the invariant
holds for all the robots, then they will always be safe. If for any reason a robot can-
not find a plan that satisfies these requirements, then it can revert to its contingency
that guarantees its safety.

Algorithm 4.1. Safe and Asynchronous Operation of R’ During Cycle [tl K 1]

1 Hl <_0 Hprevhm Hi']l\éw
2: for all R/ € N do
3 MLy I, U R (R ). pI(E) 2 1)), (52 00)
(i.e., include all past trajectories and attached contingencies of neighbors)
: whilez <1, —edo

A, pi(t, - tﬁl +1)) < collision-free trajectory from a single-robot planner

«—0

4
5
6: ﬂf/ «— ni( ﬂi(xi(tfl) pi( i i+l)) y(tim : 00)) (i.e., contingency concatenation)
7
8
9

ifVte [tim oo) x[ﬂ 1(t) € Xr then
1T v m,
for all m/ € 17 I’,Vrev do
10: if ﬂfy * IT then
11: IT" 17’ m,
12:  ifR/eNiis transmlttmg a trajectory and an attached contingency then
13: oy v u m( (), pliel - ’j+1)) y(tn+l ) )

14: for all 7r7€17’ do
15:  forall ), HN do

new
16: if 7}, # ), then
17: ' — 11 -,
18: if /7' empty or if a message was received during compatibility check then
19: 7l nl(xd (tﬁ,),y(tfl : 00)) (i.e., follow the available contingency for next cycle)
20: else
21:  xl « trajectory in /7' which brings R’ closer to the goal given a metric
22: Transmit 7., to all neighbors in N? and execute 7%, during next cycle

B. Safe and Asynchronous Distributed Solution:  Algorithm ] in contrast to
Algorithm 31l maintains the safety invariant. The protocol follows the same high-
level framework and still allows a variety of planning techniques to be used for pro-
ducing trajectories. The differences with the original algorithm can be summarized
as follows:
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e The algorithm stores the messages received from neighbors during the previous
cycle in the set /7 ]’,V,lev (lines 1-3). Note that the robots transmit the selected trajec-
tory together with the corresponding contingency (lines 12-13 and 22).

e A contingency plan y(tﬁl | - o) is attached to every collision-free trajectory
m'(x'(t,), p'(t, : 1, 1)) and the trajectory concatenation 7' is generated (line 5-6).
Note that potentially multiple different contingencies can be attached to the tra-
jectory m'(x'(#), p'(#, = 1 )). Bach resulting trajectory concatenation is treated
individually by the algorithm.

e The trajectory ' is added to 77’ only if it is collision-free with static obstacles for
an infinite time horizon (lines 7-8), thus guaranteeing that )c[7r"](tl"1 ,) is not ICS.

e 7' is rejected, however, if it is not compatible with all the trajectories and contin-
gencies of neighbors from the compatibility check (lines 14-17). R’ checks not just
trajectories for the next cycle but its trajectory concatenations with contingencies

n' against its neighbors’ trajectory concatenations 7’ .

e The final change (lines 18-21) addresses the possibility that /7% is empty or when
a message arrives while R’ executes its compatibility check. If any of the two is
true, then R’ selects to follow the contingency y(f : c0), which was used in the
previous cycle to prove that x(f,) was safe. Otherwise, R’ selects among the set
IT' the trajectory that brings it closer to the goal according to a desired metric.
previous cycle, stored in /7 ]’,V,lev (lines 9-11).

e The while loop (lines 4-13) is executed as long as time ¢ is less than the end of the
planning cycle (#,) minus an € time period. Time € should be sufficient for the robot
to complete the compatibility check (lines 14-17) and the selection process (lines
18-22). If the robot is running out of time, the robot should immediately select a
contingency in order to guarantee safety. In a real robot implementation, this can
be achieved through an interrupt or a signal that stops execution and enforces the
contingency. In a serial implementation € has to be sufficiently large.

Overall, each robot selects a plan p'(z, : #/ ) and a contingency ¥'(#, | : c) that
respect the plans and contingencies of other robots that have been selected before
time # . If no such plan is found or there is no time to check against newly incoming
messages, then the contingency y(. : 00) is selected.

Computational Complexity: The algorithm’s complexity depends on the num-
ber of neighbors N’, which in the worst case is the total number of robots N. In
order to evaluate the cost of operations involving trajectories, it is important to con-
sider a trajectory representation. A discrete sequence of states can be sampled along
a trajectory, given a predefined resolution in time Q (i.e., the technique becomes
resolution-safe in this case). Then, let S be the upper limit in the number of states
used to represent each trajectory conceternation. P denotes the upper limit in the
number of plans considered during each planning cycle for the current agent.

Given the above notation, the complexity of the algorithm’s various operations is
as follows: (a) Lines 2-3 : S XN, (b) Lines 7 - 8: Px S, (c) Lines 9 -11: PxN xS?
(if the states in a trajectory are not accompanied by a global timestamp) or PXN X §
(if the states are tagged with a global timestamp), (d) Lines 14-17: Same as above,
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(e) Lines 20-21: P, assuming constant time for computing a cost-to-go metric for
each state, (f) Line 22: N X S.

Overall, the worst-case complexity is: Px N x S 2. Note that for robots with lim-
ited communication, the parameter N is reduced. Furthermore, coarser resolution
in the representation of trajectories improves efficiency but introduces the probabil-
ity of collision due to resolution issues. Similarly, considering fewer plans reduces
computational complexity but reduces the diversity of solutions considered at each
time step. Finally, lower maximum velocity or higher maximum deacceleration also
assist computationally in the case of braking maneuvers.

C. Guaranteeing Maintenance of the Safety Invariant: This section provides
a proof that Algorithm [£.I] maintains the safety invariant given some simplyfying
assymptions that will be waived later.

Theorem 1: Algorithm E.J] guarantees the maintenance of the safety invariant in
every planning cycle given it holds during the cycle (tf) : t’i) and that:

i) all robots can communicate one with another,

ii) plans are transmitted instantaneously between robots.

Proof: The proof is obtained by
induction. The base case holds for

R th they ths2 thes R’ because of the Theorem’s as-

* N * . * . * sumption that the Invariant holds

during cycle (# : #4). The induc-

) Tty vt 7 the 7 tive step will show that if the In-
R' . . . -

variant holds during the cycle (7, :

Fig. 2 The replanning cycles of two neighboring t; 1) then it Wﬂl also hold dur-

robots R’ and R/. The times denote transitions be- ingthecycle (s, | :7, ) for Algo-

tween planning cycles for each robot. The vertical rithm 1l Without loss of gener-
arrows denote the transmission of information, e.g., ality consider Figure 2 and focus
at fj,, R' transmits 7'( 7' (x'(#}), 'ty - £, 1)), (', = on robot R'. To prove the induc-

0)). tive step, it is necessary to show

that each one of the three points
of the Invariant will be satisfied during ([2 E [,i ,)- For cycle ([2 1° t:'l ,) there are
two cases: (1) A compatible trajectory ' = ' € IT' is selected, or (2) the current
contingency is returned.

Case 1: A trajectory n' € IT' is selected.

a) Trajectory &' has to be collision-free as part of /7.

b) Assuming instantaneous plan transmission and by time tﬁl 1> R’ has been sent and
has available the choices of other robots for cycles that start before [,i - Since ne
IT' is selected, none of these messages arrived during the compatibility check. This
means that R/’s trajectory /( ﬂj(xj(tfl ]),pj(rlll K tfl s y(r)’i , 1 ©0) ) is available

to R’ during the compatibility check. Then the cycle (t:'l x t:'l ,) can be broken into
two parts:
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i) During part (t:'l E ré ,)> the selected plan pi(t:'l E [,i ,) is compatible with
pi(r) | -1 ) because the second plan was known to R’ when selecting 7' .
ii) For part (/

n

e R/ will either select a plan pj(tf; . t”; ;) that is compatible with p'(¢ | =4 ),

, ) there are two cases for R/ at time ¢/
n n

e or it will resort to a contingency yj (t)’ll 5" 00), which, however, is already com-
patible with trajectory 7' .

In both cases, R/ will follow a plan that is compatible with p'(¢Z | :# ).

Thus, the second point b) of the Invariant is also satisfied for robots Riand R/.

¢) For the third point of the Invariant, the contingency y' (t:'l , : ©0) has to be com-
patible with the future choices of the other robots. Focus again on the interaction
between R’ and R/. There are again two cases for R/ at time ti 5

i) R/ will select a plan p/ (rli 5" ti 4) and a corresponding contingency vl (rli 40 00).
This plan and contingency respect by construction R"’s contingency yi(t:'l 5 1),
since it was known to R/ at time tfl 5

ii) Or R/ will resort to its contingency yj (r)’; 5 00), which, however, the contin-
gency 7i(lf1 , : ©0) respected upon its selection.

In any case, whatever R/ chooses at time tf; ,» it is going to follow plans in the
future that are compatible with (!, : c0). Thus, point ¢) is also satisfied.

Case 2: A contingency y' (t:'l | - ) was selected.

The inductive hypothesis implies that x'(#' ) is a safe state. Thus:

a) y'( | : 1 ,)is collision-free with static obstacles

b) The current plans of all robots will be compatible with y(# | : ¢ ,), which
was known to them at time #,. Furthermore, y'(#, | : 1, ,) already respects the
contingencies of other robots that might be executed before 7, .

¢) The state x'[y’ ([2 x 00)](tl"1 ,) is trivially safe, because R' can keep executing the
same contingency for ever and this contingency will have to be respected by its
neighbors, as it will always be known ahead of time.

In both cases, all three points of the Invariant are satisfied for R! and the inductive

step is proved. Thus, if the Invariant holds, the algorithm maintains its validity. O

D. Addressing the Assumptions: Theorem 1 assumed that messages are trans-
mitted instantaneously and that all the robots communicate one with another. The
assumption that plans are transmitted instantaneously will not hold in real-world
experiments with wireless communication. Similarly, it is more realistic to assume
that robots can communicate only if their distance is below a certain threshold. In the
latter case, the proposed approach can be invoked using only point to neighborhood
communication and thus achieve higher scalability. The following theorem shows
that the safety guarantees can be provided without these restrictive assumptions.

Theorem 2: Algorithm EJ] guarantees the maintenance of the safety invariant in
every planning cycle given it holds during cycle (7, : #|) and that:
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i) two robots with limited communication ranges can communicate before they en-
ter into ICS given a predefined set of contingencies (o),
ii) robots utilize acknowledgments upon the receipt of a trajectory by a neighbor.

Sketch of Proof: Theorem 1 showed that the invariant holds as long as it was valid
during the first cycle (t6 : t’i) and that two vehicles can communicate continuously
since tf). For two robots with limited communication range, denote as time .o, the
beginning of the first planning cycle of either robot after they are able to communi-
cate. If at #.,;um, both robots have available a contingency y(o0) € I'(c0), that can be
used to prove the safety of their corresponding states, then all the requirements of
Theorem 1 are satisfied for tf) = teomm- Thus the invariant will be maintained.
Regarding the issue of delayed
messages, consider the case that
RJ’s cycle ends at time #,, which _
is before the end of the neighbor- R '
ing R"’s cycle at time #,. Figure ] R’ | Y ,
provides an example. If the trans- ' 't '
mission of the trajectory 7/ to R’ is
delayed, it might arrive after time
£, and R’ cannot detect that it did
not take into account the choice of
R/ during its compatibility check
given Algorithm Bl Thus, R”’s choice might end up being incompatible with
n’/. This problem becomes more frequent for robots that have synchronized cy-
cles. Nevertheless, if an acknowledgment that signals the reception of a tra-
jectory by a neighbor is used R’ can acknowledge the message’s reception,
whether it arrives before or after #,. If the acknowledgment arrives at R’ be-

Fig. 3 If messages arrive after the start of a neigh-
bor’s future cycle, as with the message from R’ to
R' above, this is problematic.

fore r,ﬁ it knows that it is safe to execute 7. If the acknowledgment is not re-
ceived on time, R/ can revert to its contingency which is by construction re-
spected by the future plan of R, whatever this is. Thus, the introduction of
an acknowledgment resolves the issue of possible delays in the transmission of
trajectories. O

S [Experimental Results

To validate the theoretical discussion, simulated experiments were conducted. Our
first experiments revealed performance deficits, however, practical modifications in
the implementation of the algorithm were made. These resulted in significant speed
ups and quick convergence to a solution.

Implementation Specifics: This section describes some steps to make the

implementation of Algorithm [Tl more efficient computationally. In particular:

e Instead of checking all the candidate plans /7° with the trajectories of the neigh-
bors H,%ZW only the best plan in /7% according to a metric is checked. If this plan

fails the check, then the previous contingency is selected.
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e At each step of the “while” loop in Algorithm [A.]] (lines 4-13), the implementa-
tion propagates an edge along a tree of trajectories using a sampling-based planner,
instead of generating an entire trajectory. If the edge intersects tfl |» @ contingency
y(t:'l | : ©) is extended from )c(tl"1 |)- If the contingency is collision-free and com-

patible with the available trajectories of neighbors in /7, 11,\’,6‘,, x(#! " 1) is assumed safe.
Otherwise, it is unsafe and no future expansion of an edge is allowed past x(7, ).
e The sampling-based expansion of the tree structure of trajectories is biased given
a potential field in the workspace that promotes the expansion of the tree towards
the goal [2]]. The tree expansion is also biased away from other vehicles. Different

algorithms can be considered for the actual planning process (20,13, 8, 23]
e Each robot maintains a common buffer for the sets P and PV from each

prev new
neighbor. As new trajectories are transmitted, they replace the part of old trajecto-
ries that has already been executed by a neighbor along the buffer.

e The latency in the experimental setup was relatively low. Thus, the situation in
Figure 3] did not arise. Thus, the acknowledgement step was not included for the
experiments presented below, which reduced the number of peer-to-peer messages.

Modeled System: The experiments presented in this paper are

using the model of a second-order car like vehicle [[19] shown % = wecos(-cost

on the right side, where (x,y) are the car’s reference point in Y = w-cos(-sin0

Cartesian coordinates, 6 is the car’s orientation, w its velocity = wesin(
and { the steering angle. The controls are «, the acceleration, W=«
and ¢ the rate of change of the steering angle. There are limits (=@

both for state and control parameters (||w|| < Wiax, 1l < Gnaxs
llall < @maxs 1@l < Pmax)- All robots have range-limited communication out to 30%
of the total environment width, and brake to zero speed for contingency.

Environments. Four simulated environments
were used for the experiments:

1. An “empty” environment (Fig. @ (left)), s - " ® I

2. an “office” environment (Fig. [, Y ‘)' 1
3. a“random” environment (Fig. [ (right)), and o 4

4. an “intersection” environment with two ! ‘® - . .

crossing corridors (Fig.[3)).
These environments are presented in approximate Fig. 4 Starting positions for the
order of difficulty. The various experiments tested ~“empty” and “random” environ-
different numbers of vehicles: 2, 4, 8, 16, 32, 48. ments.
Because the 16 robots alone took up 6% of the en-
tire workspace (ignoring obstacles), the size of the
robots was reduced to half for the 32 robot case, and to a quarter of their size for
the 48 robot case. If this was not done, then the robots would take up 12% and 18%
of the workspace, respectively. Since much of the workspace is already occupied by
obstacles, this reduction in size assists in reducing clutter effects that effect solution
time. The empty environment was the easiest to solve. The office environment was
chosen as a gauge for how hard a structured environment can be. The robots, in their
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original size, are about 1/5 of the size of the hallway. In the random environment,
there were polygons of varying shapes and sizes. The intersection case seemed to be
the hardest to solve, since the robots not only have to navigate through a relatively
narrow passage together with their neighbors, but they are all forced to traverse the
center, almost simultaneously.

54
1
S 4

Fig. 5 Snapshots from a typical run with 32 robots; Final image is the full trajectory of
robot 0.

When possible, starting/goal locations were identical across runs as more robots
were added. Experiments for the same number of robots have the same start/goal
locations. All experiments were repeated at least 10 times. The algorithm was run
in real time such that computation time is equal to execution time.

Evaluation of Safety. To verify that the system implemented truly provides the
guarantees presented in this paper, three different cases were considered for the
algorithm: (i) an implementation without contingencies, (ii) with contingencies but
for robots with synchronized cycles and (iii) with contingencies and robots that
are not synchronized. For each type of experiment the following figure reports the
percentage of successful experiments. 20 experiments were executed for each case,
averaging across synchronous and asynchronous cases. The results presented clearly
indicate that enabling contingencies results in a safe system in all cases.

Successful
Experiments
3
0\0

2 4 8 16
mWith . Number of Robots ~ @Without
Contingencies Contingencies

Scalability and Efficiency. Once the safety of the approach was confirmed, the
focus turned on evaluating the effects of contingencies. A high-selection rate of
contingencies is expected to decrease the performance of the robots, as these plans
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are not selected to make progress towards the goal. The following table presents the
average duration of experiments in seconds and the average velocity achieved by
the robots both for the case without contingencies and the case with contingencies
(both for synchronized and asynchronous robots). The performance data without
contingencies is from the cases where none of the robots entered ICS, which means
they often correspond to fewer than 20 experiments, and in some cases there is no
successful experiment without contingencies to compare against.

Effects of Contingencies Number of Robots
2 4 8 16
Scenes Approach Time Vel. Time Vel. Time Vel. Time Vel
Empty Without Cont. 85.1 6.7 845 48 829 39 875 34
With 82.6 69 909 47 888 37 3358 14
Office Without Cont. 97.0 8.3 98.1 6.6 X X X X
With 99.1 82 111.5 59 2069 2.7 5533 1.0
Random Without Cont. 872 6.5 844 48 883 36 X X
With 88.0 6.5 103.1 44 924 36 6048 1.3
Intersection Without Cont. 101.0 8.0 1000 8.0 X X X X
With 1089 7.5 2725 42 469.1 23 14154 1.0

The behavior of the robots is indeed more conservative when contingencies are
employed and it takes longer to complete an experiment. Although the algorithm
has no progress guarantees, the randomized nature of the probabilistically com-
plete planning algorithms helped to offset this. The simulations always eventually
resulted in a solution for the tested problems even if the robots temporarily entered
oscillatory motions. The local penalty for trajectories that brought an agent in close
proximity to neighboring robots helped to reduce the occurrence of oscillations and
resulted in significant improvements in performance.

Synchronous vs. Asynchronous. Another objective of the experimentation proce-
dure was to evaluate the differences in the performance of the algorithm between the
synchronous and the asynchronous case. In the synchronous case, all robots have a
zero time offset but they are not aware of their synchronicity and they are not taking
advantage of it as in previous work [3]]. In the asynchronous case, the offsets are the
same across 10 averaged runs. These offsets are randomly precomputed and range
from 0 to a maximum of 3/4 of the planning cycle.

When the robots’ cycles are synchronized, then it will be often the case that
robots are transmitting simultaneously, and potentially during the compatibility
check of their neighbors. This in certain cases results in slightly longer durations
for the completion of an experiment, as well as lower average velocities, but overall
there is no consistent effect as in the random and empty scenes, there is a perfor-
mance boost under synchronous operation, especially as the number of robots in-
creases. In comparison to previous work [3]] where synchronicity was specifically



Safe and Asynchronous Distributed Planning with Dynamics 67

Syne. Vs. Async. Number of Robots
2 4 8 16
Scenes Approach Time Vel. Time Vel. Time Vel. Time Vel
Empty Asynch. 81,5 7.0 855 48 873 38 4000 14
Synch. 838 68 963 45 903 36 2715 14
Office Asynch. 960 84 1125 6.0 1975 28 541.0 1.0

Synch. 1023 79 1105 59 2163 27 5655 1.0
Random Asynch. 855 6.7 908 45 858 38 7296 14
Synch. 90.5 63 1155 42 990 35 4800 13
Intersection Asynch. 1050 7.8 2683 4.1 3358 29 §899.8 13
Synch. 1128 7.2 2768 43 6025 1.6 1931.0 0.8

taken advantage of, it is clear that the quality of the paths selected are worse in the
current asynchronous implementation. However, it is expected that further research
in asynchronous coordination algorithms can reduce this performance gap.

Scaling. Larger scale simulations for 32 and 48 robots were run to study the al-
gorithm’s scalability. For these cases, the approach without contingencies always
fails. Note that as mentioned earlier, these robots are of reduced size to decrease the
effects on completion time due to a cluttered environment.

Achieving safe, asynchronous operation
for 48 second-order systems with the pro-

2000.0
posed setup is a challenge. The agent
model is complex as are the safety guar-
antees address the ICS issue. The simula- Emo'o
tion environment mimics the constraints of = %°°
real-world communication by running each 400.0
agent on a separate processor and allow- 00 L 3 s 3 3
ing only message-passing communication et gley PN e &2Mion

(TCP sockets). An experiment with 48 robots
requires 49 separate processors (1 processor
is used as a simulation server).

Parameter Evaluation. An important parameter for the proposed approach is the
duration of the planning cycle. For shorter durations of cycles, there was a higher
deviation between runs and it was not possible to execute the larger experiments
with 32 and 48 robots for a cycle duration less than 2 seconds. This limitation is
due to the single thread running the world simulation. It is expected that the limit
in hardware implementation would be dependent on the communication latency.
The average completion time shows a noticeable increase as the duration of a cycle
increases. The experiments presented in the previous tables were executed for a
cycle duration of 2.5 seconds.
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Number of Robots

2 4 8 16
Scene  Cycle  Time Vel. Time Vel. Time Vel. Time Vel

1.0s 533 108 525 7.8 592 58 969 35
1.5s 593 97 638 64 600 53 197.1 20
Empty 2.0s 714 80 740 58 756 42 1168 2.7
2.5s 795 7.2 828 52 865 37 1340 22
3.0s 984 58 984 44 999 32 1350 20
3.5s 167.7 3.8 193.6 25 1255 1.7 4827 0.7

Planning Cycle

6 Discussion

This paper presented a fully distributed algorithm that guarantees ICS safety for
a number of second-order robots that move in the same environment. Simulations
confirm that the framework indeed provides safety and is scalable and adaptable.
Additional experiments not presented above were conducted for a system with pos-
itive minimum velocity, i.e., a system that cannot brake to zero velocity. Safety was
achieved for this system using a different set of contingencies than braking maneu-
vers. In this case, the system was required to turn into the tightest circle possible
without exceeding the specified limits on velocity and turning rate. Future work
includes: (a) considering robots with different durations for planning cycles, (b)
dealing with unreliable communication, (c) studying the effects of motion uncer-
tainty to the protocol’s performance, (d) distributed optimization for improving the
quality of paths selected despite the asynchronous operation, (e) dealing with non-
cooperating vehicles and (f) addressing tasks that go beyond moving from initial to
final states. Experiments using physical systems with interesting dynamics would
provide a real-world verification of the approach.
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Incremental Sampling-Based Algorithms for a
Class of Pursuit-Evasion Games

Sertac Karaman and Emilio Frazzoli

Abstract. Pursuit-evasion games have been used for modeling various forms of
conflict arising between two agents modeled as dynamical systems. Although ana-
Iytical solutions of some simple pursuit-evasion games are known, most interesting
instances can only be solved using numerical methods requiring significant offline
computation. In this paper, a novel incremental sampling-based algorithm is pre-
sented to compute optimal open-loop solutions for the evader, assuming worst-case
behavior for the pursuer. It is shown that the algorithm has probabilistic complete-
ness and soundness guarantees. As opposed to many other numerical methods tai-
lored to solve pursuit-evasion games, incremental sampling-based algorithms offer
anytime properties, which allow their real-time implementations in online settings.

1 Introduction

Pursuit-evasion games have been used for modeling various problems of conflict
arising between two dynamic agents with opposing interests [Elpla] Some examples
include multiagent collision avoidance [@], air combat [EI], and path planning in an
adversarial environment [J]. The class of pursuit-evasion games that will be consid-
ered in this paper is summarized as follows. Consider two agents, an evader and a
pursuer; the former is trying to “escape” into a goal set in minimum time, and the
latter is trying to prevent the evader from doing so by “capturing” her, while both
agents are required to avoid collision with obstacles. The evader is only aware of
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the initial state of the pursuer, while the pursuer has access to full information about
the evader’s trajectory. This class of pursuit-evasion games is of interest when the
evader can be easily detected by stealthy pursuers, who operate from known loca-
tions. Problems in this class include the generation of trajectories for an airplane to
avoid threats from known Surface-to-Air Missile (SAM) sites, or for a ship to avoid
attacks by pirates based at known locations. The information structure of this class
of pursuit-evasion games is such that the evader discloses her (open-loop) strategy
first, and the pursuer decides his strategy accordingly. In this setting, the evader’s
strategy should be chosen carefully, considering the worst-case (from the evader’s
point of view) response of the pursuer. Rational players in this game will choose a
Stackelberg strategy with the evader as a leader [é].

Analytical solutions to certain classes of pursuit-evasion games, e.g., the “homi-
cidal chauffeur” and the “lady in the lake” games, exist , ]. However, for
problems involving agents with more complex dynamics, or for problems involving
complex environments (e.g., including obstacles), existing analytical techniques are
difficult to apply. For example, the pursuit-evasion game addressed in this article can
be solved in principle by determining the set of all states that can be reached by the
evader before the pursuer, and then choosing the optimal trajectory for the evader,
if one exists, within this set ]. In the simple case of kinematic agents moving with
bounded speed within an empty environment, such a set coincides with the evader’s
region in a Voronoi tesselation generated by the evader’s and pursuer’s initial con-
ditions. However, analytical methods for computation of this set are not available in
the general case in which non-trivial dynamics and obstacles are considered.

Standard numerical approaches for solving pursuit-evasion games are based on
either direct or indirect methods [ﬁ]. The former reduce the problem to a sequence
of finite dimensional optimization problems through discretization (8], whereas the
latter solves the Isaacs partial differential equation with boundary conditions using,
e.g., multiple shooting [@ @], collocation ,E], or level-set methods [B ].

A number of algorithms for motion planning in the presence of dynamic, possi-
bly adversarial obstacles, have been proposed in the context of mobile robotics. A
common approach relies on planning in a ‘space-time’ state space, avoiding spatio-
temporal regions representing possible motions of the dynamic obstacles ﬁ].
However, such regions, representing reachable sets by the dynamic obstacles, are
typically hard to compute exactly in the general case, and conservative approxima-
tions are used, e.g., to estimate regions of inevitable collision [IE]. Other recent
contributions in this area include ].

Several types of pursuit-evasion games have been studied from an algorithmic
perspective. In particular, pursuit games on graphs M] as well as on polygo-
nal environments ] have received significant attention during the last decade.
More recently, pursuit-evasion games on timed roadmaps have also been consid-
ered [Iﬂ]. All these approaches typically impose severe limitations on the allowable
agents’ dynamics, e.g., by considering only finite state spaces and discrete time.

Based on recent advances in incremental sampling-based motion planning al-
gorithms, we propose a new method for solving the class of pursuit-evasion games
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under consideration. In fact, the game we consider is a generalization of the kin-
odynamic motion planning problem [IE]. During the last decade, a successful al-
gorithmic approach to this problem has been the class of sampling-based methods
including, e.g., Probabilistic RoadMaps (PRMs) [@], which construct a roadmap by
connecting randomly-sampled states with feasible trajectories so as to form a strong
hypothesis of the connectivity of the state space, and, in particular, the initial state
and the goal region.

Incremental versions of sampling-based motion planning methods were proposed
to address on-line planning problems [@, @]. In particular, the Rapidly-exploring
Random Tree (RRT) algorithm proposed in [33] has been shown to be very effec-
tive in practice, and was demonstrated on various platforms in major robotics events
(see, e.g., [@]). Very recently, optimality properties of incremental sampling-based
planning algorithms were analyzed and it was shown that, under mild technical as-
sumptions, the RRT algorithm converges to a non-optimal solution with probability
one [@]. In [@], the authors have proposed a new algorithm, called RRT*, which
converges to an optimal solution almost surely, while incurring essentially the same
computational cost when compared to the RRT. The RRT* algorithm can be viewed
as an anytime algorithm for the optimal motion planning problem. Loosely speak-
ing, an anytime algorithm produces an approximate solution and gradually improves
the quality of the approximation given more computation time [@, @]. The quality
measure is defined, e.g., with respect to a cost function.

In this paper, inspired by incremental sampling-based motion planning methods,
in particular the RRT* algorithm, we propose an incremental sampling-based algo-
rithm that solves the pursuit-evasion game with probabilistic guarantees. More pre-
cisely, if evader trajectories that escape to the goal set while avoiding capture exist,
then the output of the algorithm will converge to the minimum-cost one with prob-
ability approaching one as the number of samples increases.To the best of authors’
knowledge, this algorithm constitutes the first algorithmic approach to numerically
solve, with both asymptotic and anytime guarantees, the class of pursuit-evasion
games under consideration.

The paper is organized as follows. Section [2f formulates the problem. The pro-
posed solution algorithms are introduced in Section 3l The algorithm is shown to
be probabilistically sound and probabilistically complete in Section @l Simulation
examples are provided in Section [3l Conclusions and remarks on future work can
be found in Section [

2 Problem Definition

We consider a two-player zero-sum differential game in which one of the players,
called the evader, tries to escape in minimum time to a goal set, while the second
player, called the pursuer, tries the capture the evader before it reaches the goal set.

More formally, consider a time-invariant dynamical system described by the dif-
ferential equation () = f(x(t),uc(t),up(t)), where x : t +— x(t) € X C R? is the
state trajectory, ue : t — ue(t) € Uo C R™ is the evader’s control input, u, : t —
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up(t) € Up C R™ is the pursuer’s control input. The sets X, U, and U}, are assumed
to be compact, the control signals u. and u, are essentially bounded measurable,
and f(z,we,wp) is locally Lipschitz in z and piecewise continuous in both w, and
wp. Consider also an obstacle set Xops, a goal set Xgoa1, and a capture set Xcapt; these
sets are assumed to be open subsets of X, and X,oa and Xcap are disjoint.

Given an initial condition x(0) € X \ X, and the control inputs of the evader and
the pursuer, a unique state trajectory can be computed. The final time of the game is
given by T = inf{r € Rxq : x(t) € ¢l (Xgoa1 UXcapt) }- Since this is a zero-sum game,
only one objective function will be considered, defined as follows: L(ue,up) =T,
if x(T) € cl(Xgoa1); and L(ue,up) = oo, otherwise. The evader tries to minimize
this objective function by escaping to the goal region in minimum time, while the
pursuer tries to maximize it by capturing the evader before she reaches the goal.

Let BR : U, — U, denote a transformation that maps each evader trajectory to
the best response of the pursuer, i.e., BR(ue) := argmax,, L(ue,up). In the game
described above, the evader picks her strategy so that L* = L(u;‘7 BR(u})) < L(ue,ep)
for all ue and all up. Let uy 1= = BR(u). Then, (u} and Uy ) are called the (open-loop)
Stackelberg strategies of thlS dlfferentlal game [E]

Note that open-loop Stackelberg strategies computed for the evader in this way
would be conservative when compared to the saddle-point equilibrium of a pursuit-
evasion game with feedback information pattern (see [@]). Open-loop Stackelberg
strategies correspond to trajectories that would allow escape without any additional
information on the pursuer other than the initial condition. Should other information
become available, or should the pursuer not play optimally, the time needed to reach
the goal set may be further reduced. In addition, even in the case in which escape is
unfeasible (i.e., L* = 4o0) under the open-loop information structure for the evader,
there may exist feedback strategies that would allow the evader to escape while
avoiding capture.

As common in pursuit-evasion games, the problem considered in this paper fur-
ther possesses a separable structure, in the following sense. It is assumed that the
state can be partitioned as x = (xe,xp) € Xe X X, = X, the obstacle set can be
similarly partitioned as Xops = (Xobs,e X Xp) U (Xe X Xobs p), Where Xopse C Xe and
Xobs,p C Xp, the goal set is such that Xeoa1 = (Xe,goal X Xp) \ Xeapt> Where X, g0a1 C Xe,
and the dynamics are decoupled as follows:

ix 71 xe(t) — ) u _ fe(xe(t)7ue(t)) or a
(1) = LP([)] J(x(r),u(r)) [fp(xp(t),up(r))]’ forallz € Rxo,

It is also assumed that the initial condition is an equilibrium state for the pursuer,
i.e., there exists u;) € U, such that f;, (xinit_’p,u;) =0.

Assume that there exist a Stackelberg strategy enabling the evader to escape (i.e.,

* < +o0). An algorithm for the solution of the pursuit-evasion game defined in this

section is said to be sound if it returns a control input u such that max,, L(ug,up),

is finite. An algorithm is said to be complete if it terminates in finite time returning

a solution u, as above if one exists, and returns failure otherwise.
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The pursuer dynamics can be used to naturally model one or more pursuing
agents, as well as moving obstacles whose trajectories are a priori unknown. It is
known that even when the number of degrees of freedom of the robot is fixed, the
motion planning problem with moving obstacles is NP-hard, whenever the robot
has bounds on its velocities. In fact, a simple version of this problem, called the 2-d
asteroid avoidance problem, is NP-hard ].

The discussion above also suggests that complete algorithms aimed to solve the
proposed pursuit-evasion game will be computationally intensive. To overcome this
difficulty, we propose a sampling-based algorithm, which is both probabilistically
sound, i.e., such that the probability that the returned trajectory avoids capture con-
verges to one, and probabilistically complete, i.e., such that the probability that it
returns a solution, if one exists, converges to one, as the number of samples ap-
proaches infinity. Finally, the proposed algorithm is asymptotically optimal in the
sense that the cost of the returned trajectory converges to the value of the game L*,
almost surely, if L* < 4o,

3 Algorithm

In this section, an algorithm that solves the proposed pursuit-evasion game with
probabilistic soundness and completeness guarantees is introduced. This algorithm
is closely related to the RRT* algorithm recently introduced in [@], which will be
discussed first. RRT" is an incremental sampling-based motion planning algorithm
with the asymptotic optimality property, i.e., almost-sure convergence to optimal
trajectories, which the RRT algorithm lacks 135]. In fact, it is precisely this property
of the RRT* that allows us to cope with the game introduced in the previous section.

Before formalizing the algorithm, some primitive procedures are presented be-
low. Let @ € {e,p} denote either the evader or the pursuer.

Sampling: The sampling procedure Sample, : N — X, returns independent and
identically distributed samples from X,,. The sampling distribution is assumed to be
absolutely continuous with density bounded away from zero on X,.

Distance Function: Given two states z; and zp, let disty(z1,22) be a function
that returns the minimum time to reach z; starting from z;, assuming no obstacles.
Clearly, the distance function evaluates to the Euclidean distance between z; and z,
when fo(xo,ta) = g and [ug|| < 1.

Nearest Neighbor: Given a tree G = (V,E), where V C Xg, and a state z € Xq,
Nearesty(G,z) returns the vertex v € V that is closest to z. This procedure is de-
fined according to the distance function as Nearestq(G,z) = argminyey dist(v,z).

Near-by Vertices: Given a tree G = (V,E), where V C X, a state z € Xy, and a
number n € N, Neary(G,z,n) procedure returns all the vertices in V that are suf-
ficiently close to z, where closeness is parameterized by n. More precisely, for any
7 € Xg, let Reachy (z,1) := {7 € X |dist(z,7') <1V dist(Z,z) < [}. Given, z and n,
the distance threshold is chosen such that the set Reachy (z,/(n)) contains a ball of
volume }/alo%, where 7, is an appropriate constant. (This particular scaling rate
is chosen since it ensures both computational efficiency and asymptotic optimality
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of the RRT* algorithm 134, ].) Finally, we define Neary(G,z,n) :=
V NReachy(z,1(n)).

Collision Check: Given a state trajectory x : [0,7] — X, the ObstacleFreeq(x)
procedure returns true if and only if x lies entirely in the obstacle-free space, i.e., if
and only if x(t') & Xobs,o forall ' € [0,17].

Local Steering: Given two states z1,2, € Xq, the Steery(z;,22) function returns
a trajectory that starts from z; and ends at z, ignoring obstacles. We assume that the
Steer procedure returns a time optimal trajectory that connects z; and z, exactly if
71 and z; are sufficiently close to each other. More precisely, there exists an € > 0
such that for all ||z; — z2|| < &, the Steer(z;,z2) procedure returns (x,u,?) such that
x(0) =z, x(T) = z2, and %(¢') = fo (x(¢'),u(t')) forall ' € [0,7], and 7 is minimized.

Given a vertex v, let x,, be the unique trajectory in the tree that starts from the root
vertex and reaches v. Let us denote the time that x, reaches v by T'(v); given a state
trajectory x : [0,7] — X, let us denote the ending time 7 with EndTime(x).

If the pursuer is inactive (e.g., it is not moving), the pursuit-evasion problem in
Section [2 reduces to a standard time-optimal kinodynamic motion planning prob-
lem. The RRT* algorithm that solves this problem is presented in Algorithm[]l

The RRT* algorithm proceeds similarly to other incremental sampling-based mo-
tion planning methods (e.g., the RRT [33]) by first sampling a state a from the
obstacle-free space (Line @) and then extending the tree towards this sample (Line
B). The extension procedure of the RRT*, presented in Algorithm[2] first extends the
vertex closest to the sample (Lines 213)); if the extension is collision-free (Line ),
then the end point of the extension, say zuew, 1S added to the tree as a new vertex
(Line[3), as in RRT. However, the RRT* Extend,, procedure differs from others in
that it connects the new vertex znew to the vertex that lies within a ball of volume
O(log(n)/n) centered at zpew, where n = |V| is the number of vertices in the tree,
and incurs the smallest cost to reach zpew With a collision-free trajectory (Lines [8F
[[2). Moreover, the RRT* Extend,, procedure extends zpew back to the vertices in
the tree that are within the ball of same size centered at z,eyw; if the extension to such
a vertex, say Znear, results in a collision-free trajectory that reaches zpear With smaller
cost, then tree is “rewired” by connecting Znear tO Znew, instead of its current parent
(Lines[13]- [I3).

The algorithm that is proposed for the solution of the problem in Section[2]builds
on RRT*, and relies on the following additional primitive procedures.

Near-Capture Vertices: The NearCapure,, procedure works in a way that is very
similar to the Near,, procedure. Given a tree G = (V, E), a state z € Xy, and a num-
ber n, the NearCapture, (G,z,n) procedure returns all vertices z’ that are “close”
to being captured from z. In other words, and assuming o = p for simplicity, let
CaptureSet,(z) := {7’ € Xe : (',2) € Xcapt}- Then, NearCapture,(G,z,n) = {v €
V| there exist y € CaptureSet,(z) such that v € Reache(y,/(n))}.

Remove: Given a graph G = (V,E) on X, and a vertex z € V, the procedure
Remove(G,z) removes z, all its descendants, and their incoming edges from G.

The algorithm proposed to solve the pursuit-evasion game under consideration is
given in Algorithm Bl The algorithm maintains two tree structures encoding can-
didate paths: the evader tree G, and the pursuer tree G,. At each iteration, the
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Algorithm 1. The RRT* Algorithm

1 Ve — {zinit}s Ee < 0;i < 0;

2 whilei < N do

3 Ge — (Ve7Ee);

4 Zerand +— Sample,(i);

5 (Ve7Ee7Ze,new) «— Extende(Ge, Ze,rand):
6 i—i+1;

Algorithm 2. Extendy (G, z)

V' —V,E —E;

Znearest < Nearest (G, 2);

(xneWa”neWatnew) — Steera(znearesu Z); Znew < Xnew ([new);
if ObstacleFreey(xpew) then

Vi—Vv'u {Znew};

Zmin < Znearest> Cmin < T(Znew);

Znearby Neary (G, znew;|V1);

for all znear € Znearvy do

(xnean Unear, [near) — Steera(znearaznew);

if ObstacleFreey (Xnear) and xnear(tnear) = Znew and
T (znear) + EndTime (xnear) < T (znew) then

11 ¢min < T (Znear) + EndTime (Xnear);

12 Zmin < Znears

D-TE-CREE B U B

=
>

13 E" — E'"U{(zmin, Znew) }:

14 for all zyear € Znearby \ {zZmin } do
s (xnean Unear, tnear) «— Steerq (ZneW7 Znear)§
16 if ObstacleFree (Xnear) and Xnear(fnear) = Znear and
T (znear) > T (2new) +EndTime (xpeqr) then
7 Zparent < Parent (Znear);
8 E' —FE' \ {(Zparent7Znear)}; E'—E'U {(ZneW7Znear)};
19 else

20 L Znew — NULL,

p1 return G’ = (V' E znew)

algorithm first samples a state, Zerand, in the evader’s state-space (Line @) and
extends the evader tree towards ze rang (Line Q). If the extension produces a new
vertex Ze new (Line [6), then the algorithm checks whether the time that the evader
reaches Ze new 18 less than that at which the pursuer reaches any pursuer vertex within
certain distance to ze new (Lines[ZHIO). This distance scales as @ (log(n)/n), where
n is the number of vertices in the pursuer tree, Gp. If this condition does not hold,

then Zze pew is removed from evader’s tree (Line[10).

Second, the algorithm samples a new state, zprand, in the pursuer state space
(Line [} and extends the pursuer’s tree towards zp rana (Line [[2)). If this exten-
sion successfully produces a new vertex, zp new (Line[I3)), then the algorithm checks
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Algorithm 3. Pursuit-Evasion Algorithm
1 Ve {xe,init}; Ee — 0 W — {xp,init}; Ep — 0;i+0;
2 while i < N do
3 Ge — (Ve,Ee); Gp — (Vp,Ep);
4 Ze,rand < Samplee(i);
5 (Ve7EeaZe,new) — EXtende(Gevze,rand);
6 if Ze new 7 NULL then
7 Zp near < NearCapture, (Gp, Ze new, |Vp|)s
8 for all zp near € Zp near do
9 if Time (Zp near) < Time(Ze,new) then
10 Remove(Ge,Ze new);
1 zp < Sample(i);
12 (Vo, Ep, Zp new) < Extendp(Gp, Zp rand) 5
I3 if Zp new 7 NULL then
14 Ze near “— NearCapturep(Ge, Zp,new | Vel);
s for all ze near € Ze pear do
16 if Time (zp new) < Time(Ze pear) then
17 Remove(Ge,Ze near);
18 | i—i+1;
19 return Ge, Gp

whether the evader can reach any of the evader vertices that lie within a certain
distance to zp new in less time than the pursuer can reach zp pew (LinesT4HI7). Any
evader vertex that is within a certain distance to z, new and that does not satisfy this
requirement is removed from the tree with its descendants (Line [[7). The distance
scales as O (log(n)/n), where n is the number of vertices in the evader’s tree, Ge.

The algorithm returns two trees, namely G, and Gyp. From the evader’s tree Ge,
the control strategy that makes the evader reach Xy, in minimum time (if one exists)
is the solution candidate after N iterations.

4 Analysis

In this section, theoretical guarantees of the algorithm are briefly outlined. Due to
lack of space, detailed proofs of the results are left to a full version of this paper.
Let us note the following technical assumptions, which we will assume through-
out this section without reference. Firstly, it is assumed that the dynamical sys-
tems modeling the evader and the pursuer independently satisfy local controllability
properties. Secondly, we will assume that there exists a Stackelberg strategy for the
pursuit-evasion game with finite value of the game L*, and such that sufficiently
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small perturbations to the strategy also yield a finite value. A formal statement of
these assumptions can be found (for the optimal motion planning case) in [@].

First, note the following lemma stating the optimality property of the RRT* al-
gorithm (Algorithm 1) when the algorithm is used to solve a time-optimal kinody-
namic motion planning problem. Let G[i] = (V[i],E]i]) denote the tree maintained
by the RRT* algorithm at the end of iteration i. Given a state z € X, let T*(z) denote
the time an optimal collision-free trajectory reaches z, i.e., T*(z) := inf, {T |x(T) =
zand x(r) = f(x(r),u(t)),x(t) ¢ Xops for all z € [0,T]}. Let z € V[j] be a vertex that
is in the tree at iteration j. The time that the unique trajectory that is in G[i] for some
i € N and that starts from the root vertex and reaches z is denoted by T'(z)][].

The following theorem follows directly from the asymptotic optimality of the
RRT* algorithm shown in [@]. Let u(-) denote the Lebesgue measure.

Theorem 1 (Asymptotic Optimality of RRT* [39]). If y > 29 (1 + 1/d) u(X \
Xobs), the event that for any vertex z that is in the tree in some finite iteration j
the RRT* algorithm converges to a trajectory that reaches z optimally, i.e., in time
T*(z), occurs with probability one. Formally,

P({limi—e T(2)[i+j]=T*(z), VzeV[j]})=1, VjeN.

Let Ty (z«)[i] denote the time at which the vertex zo in Vi [i] is reached, for o €
{e,p}, and let T} (z) be the time the time-optimal collision-free trajectory reaches
Z¢ (disregarding the other agent). Theorem[Itranslates to the evader tree in a weaker
form:

Lemma 1. Under the assumptions of Theoreml[l] applied to the evader tree,
P({lim Te(ze)[i+ ] > T"(ze), Vze €V[j]})=1, VjeN
[—o0

Lemma [l follows directly from Theorem [I] noting that the evader’s tree can only
include fewer edges (due to removal of evader’s vertices near capture), when com-
pared to the standard RRT* algorithm.

A similar property can be shown in terms of capture time estimates. Given z¢ €
X., define CaptureSet, (z¢) as the set of all states in X, reaching which the pursuer
can capture the evader, and let C*(z.) denote the minimum time at which this capture

can oceur, i.e., C*(ze) := inf,, {7 | x,(T) € CaptureSetp(ze)}.

Lemma 2. Let Cy(ze)[i] := min {7,(zp)[i] | zp € NearCapture,(Gyli],ze,i) }. Then,
under the assumptions of Theoreml[l) applied to the pursuer tree,

P({}L{Elocp(ze)[i] =C"(z)}) =1, Vz €Xe.

Proof (Sketch). Let the set DomainNearCapture,(z,n) be defined as{z, € X, |3y €
CaptureSet,(z),z, € Reachy(y,/(n))}, where /(n) was introduced in the definition
of the NearCapture procedure. Note that (i) DomainNearCapture,(Gpli],ze,i) 2
CaptureSet,(z.) for all i € N, and (ii) ;cyDomainNearCapture,(Gpli],ze,i) =
CaptureSet,(z). Thus, the set DomainNearCapture,(Gp[i],z,i) converges
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to CaptureSet,(z) from above as i — oo. Let Xg,(ze) be the subset of
CaptureSet,(z¢) that the pursuer can reach within time C*(z.). The key to proving
this lemma is to show that the set DomainNearCapture,(Gpli],z,i) is sampled in-
finitely often so as to allow the existence of a sequence of vertices that converges to
a state in Xc*apt. Then, for each vertex in the sequence, by Theorem[Il the RRT* algo-
rithm will construct trajectories that converge to their respective optimal trajectory
almost surely, which implies the claim.

To show that the sets DomainNearCapture,(Gpli,z,i) are sampled infinitely

often as i — oo, note that the probability that there is no sample inside the

set DomainNearCapture(Gypli],ze,i) is (1 — J%g)l—ola)’ In addition, Y, (1 -
ieN

Yeapt

N
JE;& 10%) < ¥ (1/i)#®) is finite for Yapt > U (Xp). Thus, by the Borel-Cantelli
ieN

lemma [40], the event that there are no samples inside NearCapture(Gpli],ze,i)
occurs only finitely often with probability one; hence, the same sequence of sets is
sampled infinitely often with probability one. g

The next lemma states that all vertices satisfy the soundness property.

Lemma 3. Let B denote the following event: for any vertex z. that is in evader’s
tree by the end of iteration j, if the pursuer can reach z. before the evader; then
Cp(ze)]i] converges to a value that is smaller than the value that T.(z.)[i] converges
to as i approaches infinity, i.e., Bj := {((C*(ze) < T*(2z¢)) = (limjce Cp(xe) <
lim; e Tt (2e)), Vze € Ve[j]}. Then, P(Bj) =1 forall j € N.

Proof. Fix some j € N. Consider the events {lim; ... To(z¢)[i + j] > T*(z¢), Vz¢ €
Velj]} and {lim; ... Cp(ze)[i+ j] = C*(z¢) }, both of which occur with probability one
by Lemmas [l and D] respectively. Hence, their intersection occurs with probability
one, i.e.,

P ({}L@On(ze)[i+j] > T"(2) A lim Cp(ze )i+ /] = €7 (20), Vze € VM}) = 1.

Finally, im;.e. T, (z)[i 4 j] > T*(z¢) A limj—e Cp(2e)[i + j] = C*(z.) logically im-
plies ((C*(ze) < T*(ze)) = (lim;j o Cp(xe) < lim; oo Te(2e) ). Substituting the latter
in place of the former in the equation above yields the result. O

Let x.[i] denote the trajectory that is in evader’s tree, G.[i], by the end of iteration
i and that reaches the goal region in minimum time. Recall that 7 is the ending
time of the minimum-time collision-free trajectory that reaches the goal region and
avoids capture.

The next theorem states the probabilistic soundness of Algorithm 3l That is, the
probability that any evader strategy returned by the algorithm is sound (i.e., avoids
capture by the pursuer) approaches one as the number of samples increases. More
precisely, for all € > 0 and all # € [0, 7"], the probability that the state x.[i](z) avoids
capture, if the pursuer is delayed for € units of time in the beginning of the game,
approaches one as i — oo.
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Theorem 2 (Probabilistic Soundness). Let Ag;[i] denote the event {t <
C*(x[i](1)) + €}. Then, lim; .. P(Ag,[i]) = 1, forall e > 0 and all t € [0,T).

Proof (Sketch). Let Z[j] = {z1,x2,...,2x} C V¢[j] denote the set of all vertices
in the evaders tree that are along the path x¢[j]. Let .7 [j] = {#1,t2,...,tx} denote
the corresponding time instances, i.e., zx = Xe[t;](f) for all k € {1,2,...,K}. By
Lemma 3] the theorem holds for the time instances corresponding to the states in
Z[j]. However, it must also be shown that the same holds for all trajectories that
connect consecutive states in Z°[j]. Such trajectories are referred to as intermediate
trajectories from here on.

Let fmax [{] := max; ;. ¢ 7(j (c+1 — ). The algorithm provided in this paper does
not check the soundness of intermediate trajectories, but checks only that of the
vertices. However, it can be shown that for any € > 0, lim;_.. P({fmax[i] < €}) = 1.
Roughly speaking, with probability one, the time-optimal path is never achieved, but
the algorithm converges towards that optimal as the number of samples approaches
infinity. Since each intermediate path that is along x.[j] is sub-optimal with proba-
bility one, in the process of convergence it is replaced with a lower cost path that
includes two or more vertices of the tree in some later iteration i > j.

Since fmax[i] < € logically implies that r < C*(x[i](¢)) + € for all r € [0,T],
{tmax[i] < €} C{r < C*(x[i](t)) + €, V¢t € [0,T]}, which implies P({fnax[i] < €}) <
P({r < C*(x[i](z)) + €}). Taking the limit of both sides yields the result. |
Let us also note the following theorems regarding the probabilistic completeness
and asymptotic optimality of the algorithm. The proofs of these theorems are rather
straightforward and are omitted due to lack of space.

Theorem 3 (Probabilistic Completeness). Under the assumptions of Theorem [1}
Algorithm |3l finds a trajectory that reaches the goal region while avoiding collision
with obstacles and capture by pursuers, if such a trajectory exists, with probability
approaching one as the number of samples approaches infinity.

Theorem 4 (Asymptotic Optimality). Lez L[i] be the cost of the minimum-time tra-
Jectory in the evader’s tree at the end of iteration i that reaches the goal region, if
any is available, and +oo otherwise. Then, under the assumptions of Theorem[l] L[i]
converges to the value of the pursuit-evasion game, L*, almost surely.

S Simulation Examples

In this section, two simulation examples are presented. In the first example, an
evader modeled as a single integrator with velocity bounds is trying to reach a goal
set, while avoiding capture by three pursuers, each of which is modeled as a single
integrator with different velocity bounds. More precisely, the differential equation
describing the dynamics of the evader can be written as follows:

d Cd [ xea(n)| | e (2)
E)a:([) = E |f%,2(”1 = ue([) = lue,Z([)] ,
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Fig. 1 The evader trajectory is shown in an environment with no obstacles at the end of 500,
3000, 5000, and 10000 iterations in Figures (a), (b), (c), and (d), respectively. The goal region
is shown in magenta. Evader’s initial condition is shown in yellow and the pursuers’ initial
conditions are shown in black. The first pursuer, P;, which can achieve the same speed that
the evader can achieve, is located in top left of the figure. Other two pursuers can achieve
only half the evader’s speed.

where ||ue(#)]|2 < 1. The dynamics of the pursuer is written as follows:

xPlvl(t) ”Phl(t)
xpy 2(1) up, 2(1)
p (t) xp1,2 Up, (t) uph
()= |50 | =5 | < = )| = [0,
Xps (1) a1 (1) s (1) gy (1)
_xp3,2(t)_ L p3,2(t)_

where ||up, (t)[|> < 1 and ||up, (1)]|2 < 0.5 for k € {2,3}.
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First, a scenario that involves an environment with no obstacles is considered.
The evader’s trajectory is shown in Figures in several stages of the al-
gorithm. The algorithm quickly identifies an approximate solution that reaches the
goal and stays away from the pursuers. The final trajectory shown in Figure
goes towards the goal region but makes a small deviation to avoid capture. The same
scenario is considered in an environment involving obstacles and the evader’s tree is
shown in different stages in Figure 2(@)}2(d)] Notice that the evader may choose to
“hide behind the obstacles” to avoid the pursuers, as certain parts of the state space
that are not reachable by the evader are reachable in presence of obstacles.

In the second example, the motion of the pursuer and of the evader is described
by a simplified model of aircraft kinematics. Namely, the projection of the vehi-
cle’s position on the horizontal plane is assumed to follow the dynamics of a Du-
bins vehicle (constant speed and bounded curvature), while the altitude dynamics
is modeled as a double integrator. The differential equation describing dynamics of
the evader is given as follows. Let xe(t) = [xe.1(t), Xe2(t), Xe3(t), Xe a(t), xe 5 ()]
and f(xe(t),uc(t)) = [ve cos(xe3(t)), ve sin(xe3(t)), te1 (1), Xe 5(t), e 2(t)]", and

Fig. 2 The scenario in Figure[Ilis run in an environment with obstacles.
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(b)

Fig. 3 Figures (a) and (b) show the trees maintained by the evader at end of the 3000th itera-
tion in an environment without and with obstacles, respectively. The initial state of the evader
and the pursuer are marked with a yellow pole (at bottom right of the figure) and a black pole
(at the center of the figure), respectively. Each trajectory (shown in purple) represents the set
of states that the evader can reach safely (with certain probability approaching to one).

Xe(t) = f(xe(r),ue(t)), where ve = 1, |ue 1 (1) < 1, ue2(t)] < 1, |xe 5| < 1. In this
case, Ve denotes the longitudinal velocity of the airplane, u. | denotes the steering
input, and u > denotes the vertical acceleration input. The pursuer dynamics is the
same, except the pursuer moves with twice the speed but has three times the mini-
mum turning radius when compared to the evader, i.e., vy = 2, [up 1| < 1/3.

A scenario in which the evader starts behind pursuer and tries to get to a goal
set right next to the pursuer is shown in Figure B First, an environment with no
obstacles is considered and the tree maintained by the evader is shown in Figure[3(a)}
at end of 3000 iterations. Notice that the evader tree does not include a trajectory
that can escape to the goal set (shown as a green box). Second, the same scenario
is run in an environment involving obstacles. The trees maintained by the evader
is shown in Figure Note that the presence of the big plate-shaped obstacle
prevents the pursuer from turning left directly, which allows the evader to reach a
larger set of states to the left without being captured. In particular, the evader tree
includes trajectories reaching the goal.

Simulation examples were solved on a laptop computer equipped with a
2.33 GHz processor running the Linux operating system. The algorithm was
implemented in the C programming language. The first example took around 3 sec-
onds to compute, whereas the second scenario took around 20 seconds.

6 Conclusions

In this paper, a class of pursuit-evasion games, which generalizes a broad class
of motion planning problems with dynamic obstacles, is considered. A computa-
tionally efficient incremental sampling-based algorithm that solves this problem
with probabilistic guarantees is provided. The algorithm is also evaluated with
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simulation examples. To the best of authors’ knowledge this algorithm constitutes
the first incremental sampling-based algorithm as well as the first anytime algorithm
for solving pursuit-evasion games. Anytime flavor of the algorithm provides advan-
tage in real-time implementations when compared to other numerical methods.

Although incremental sampling-based motion planning methods have been
widely used for almost a decade for solving motion planning problems efficiently,
almost no progress was made in using similar methods to solve differential games.
Arguably, this gap has been mainly due to the inability of these algorithms to gen-
erate optimal solutions. The RRT* algorithm, being able to almost-surely converge
to optimal solutions, comes as a new tool to efficiently solve complex optimization
problems such as differential games. In this paper, we have investigated a most ba-
sic version of such a problem. Future work will include developing algorithms that
converge to, e.g., feedback saddle-point equilibria of pursuit-evasion games, as well
as relaxing the separability assumption on the dynamics to address a larger class of
problems.
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Multiagent Pursuit Evasion, or Playing Kabaddi

Kyle Klein and Subhash Suri

Abstract. We study a version of pursuit evasion where two or more pursuers are
required to capture the evader because the evader is able to overpower a single de-
fender. The pursuers must coordinate their moves to fortify their approach against
the evader while the evader maneuvers to disable pursuers from their unprotected
sides. We model this situation as a game of Kabaddi, a popular South Asian sport
where two teams occupy opposite halves of a field and take turns sending an at-
tacker into the other half, in order to win points by tagging or wrestling members of
the opposing team, while holding his breath during the attack. The game involves
team coordination and movement strategies, making it non-trivial to formally model
and analyze, yet provides an elegant framework for the study of multiagent pursuit-
evasion, for instance, a team of robots attempting to capture a rogue agent. Our pa-
per introduces a simple discrete (time and space) model for the game, offers analysis
of winning strategies, and explores tradeoffs between maximum movement speed,
number of pursuers, and locational constraintsm

1 Introduction
Pursuit-evasion games provide an elegant and tractable framework for the study of

various algorithmic and strategic questions with relevance to exploration or moni-
toring by autonomous agents. Indeed, there is a rich literature on these games under
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various names [[13]], such as man-and-the-lion [12, (16l 9ll, cops-and-robber (6, 1. |8,
3L 14]], robot-and-rabbit [6l], and pursuit-evasion [14} 15, 7], just to name a few.

In this paper we study a (discrete time, discrete space) version of pursuit evasion
where two or more pursuers are required to capture the evader because the evader is
able to overpower a single (and isolated) defender. These situations arise in pursuit
of a rogue non-cooperative agent, which could be a malfunctioning robot, a deliri-
ous evacuee, or a noncooperative patient. Thus, the pursuers are forced to coordinate
their moves to fortify their approach against the evader while the evader maneu-
vers to disable pursuers from their unprotected sides. In the basic formulation of
the game, all agents have the same capabilities including the maximum movement
speed, but we also derive some interesting results when one side can move faster
than the other.

In modeling our pursuit-evasion scenario, we draw inspiration from the game of
Kabaddi, which is a popular South Asian sport. The game involves two teams occu-
pying opposite halves of a field, each team taking turns to send an “attacker” into the
other half, in order to win points by tagging or wrestling members of the opposing
team [[17]. The attacker must hold his breath during the entire attack and success-
fully return to his own half—the attacker continuously chants “kabaddi, kabaddi,
---” to demonstrate holding of the breath. There are several elements of this game
that distinguish it from the many other pursuit games mentioned above, but perhaps
the most significant difference is that it typically requires two or more defenders to
capture the opponent, while the attacker is able to capture a single isolated defender
by itself. This asymmetry in the game adds interesting facets to the game and leads
to interesting strategies and tradeoffs.

While the use of multiple pursuers is common in many existing pursuit evasion
games, the main concern in those settings is to simply distribute pursuers in the
environment to keep the evader from visiting or reentering a region. This is indeed
the case in all graph searching [2, [11} [14] or visibility based pursuit evasion [5|
7, [15]]. In the lion-and-the-man game also there are known results that show that
multiple lions can capture the man when the man lies inside the convex hull of the
lions [[10]. By contrast, the main question in Kabaddi is whether the defenders can
ever force the attacker inside their convex hull, perhaps even by sacrificing some
of their agents. The other games such as the cops-and-robber differ from kabaddi
in the way capture occurs as well as the information about the evader’s position.
For instance, the current position of all the players is public information in kabaddi
while the position of the robber or evader is often assumed to be unknown to cops
or pursuers. Furthermore, it is also typically assumed that each cop (robot) follows
a fixed trajectory that is known to the robber (rabbit). This makes sense in situations
where the defenders (cops) have fixed patrol routes, but not in interactive games
like kabaddi. The problems and results in the graph searching literature are also of
a different nature than ours [2| [11]], although variations using differential speed [4]
and capture from a distance [3]] have been considered in graphs as well.

Finally, in the visibility-based pursuit-evasion games, the evader is often assumed
to have infinite speed, and the capture is defined as being “seen” by some defender—
both infinite visibility or limited-range visibility models have been considered [5, 8]].
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By contrast, kabaddi involves equal speed agents and requires a physical capture that
leads to a very different set of strategies and game outcomes. With this background,
let us now formalize our model of kabaddi.

1.1 The Standard Model

We consider a discrete version of the game, in which both time and space are dis-
crete: the players take alternating turns, and move in discrete steps. In particular,
the game is played on a n x n grid S, whose cells are identified as tuples (i, j), with
i,j €{1,2,...,n}. We will mainly use the Kabaddi terminology, namely, attacker
and defenders, with the former playing the role of the evader and the latter the pur-
suers. Our main analysis will focus on the case of one attacker and two defenders,
although in the latter part of the paper, we do derive some results for the case of d
defenders, for any d > 1.

We use the letters A and D to denote the attacker and a defender, respectively.
When there are multiple defenders, we use subscripts such as Dy, D, etc. We need
the concepts of neighborhood, moves, and capture to complete the description of the
game. Throughout, we assume that precisely two defenders are required to capture
the attacker.

Neighborhood. The neighborhood N(p) of a cell p = (i, j) is the set of (at most)
9 cells, including p itself, adjacent to p, or equivalently the set of all cells with L.
distance at most 1 from p. In Figure [T} the neighborhood of A is shown with a box
around it. Slightly abusing the notation, we will sometimes write N(A) or N(D) to
denote the neighborhood of the current position of A or D.

Fig. 1 The standard model of kabaddi. A can capture the defender closer to it, which is inside
N(A). The defenders can capture A at any position in the shaded region, which is the common
intersection of their neighborhoods.

Moves. The attacker and the defenders take turns making their moves, with the
attacker moving first. In one step, the attacker and the defenders can move to any
cell in their neighborhood. All the defenders can move simultaneously in one step.

Capture. A captures a defender D if it is the unique defender lying inside the neigh-
borhood of A. That is, with two defenders, D is captured when D € N(A) and
D, ¢ N(A). (Notice that A only needs to enclose a defender within its neighborhood
to capture it.)
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Conversely, the defenders capture the attacker, when A lies in the common inter-
section of the two defenders’ neighborhoods. That is, A € (N(D;) NN(D»)).

Game Outcome. The attacker wins the game if he can capture one or more defend-
ers, and the defenders win the game if they can capture the attacker. If neither side
wins, then the game is a tie.

This particular form of capture has a tendency to make defenders always stick
together, and fails to model the real world phenomenon where defenders try to “sur-
round” the attacker—see figure above. We therefore introduce a minimum separa-
tion condition on the defenders in the following way:

no defender can be inside the neighborhood of another defender.

These rules together define our standard model of kabaddi. Other models can be
obtained by varying the definition of the neighborhood and relaxing the separation
condition for defenders, and we obtain some results to highlight the impact of these
modeling variables.

Safe Return and Holding of the Breadth. In Kabaddi, the attacker must hold his
breath during the attack, and after the attack successfully return to his side. These are
non-trivial issues to model tractably, and we exclude them from our current model,
instead relying on the following interpretation: the worst-case number of moves
before the game’s outcome serves as a proxy for the breath, and the attacker can
conservatively decide at some point to return to his side. However, if this duration is
known to the defenders, then they can attempt to interfere with his return. We leave
these interesting, but complicated, issues for future work. One could argue that these
issues are not important in the multiagent pursuit-evasion problem.

1.2 Our Results

In the case of a single attacker A against a single defender D, the game resembles the
discrete version of the man-and-the-lion. We include a simple analysis of this case
for two reasons: first, it serves as a building block for the multi-defender game; and
second it allows us to highlight the impact of player’s speed on the game outcome,
which we believe is a new direction in pursuit evasion problems. Unsurprisingly,
in the single defender case, the attacker can always capture the defender D in O(n)
number of steps, which is clearly optimal, upto a constant factor, in the worst-case.

We show that a speed of 1+ O (1/n) is both necessary and sufficient for the de-
fender to indefinitely evade the attacker. In particular, a defender with the maximum
speed 1 +5/(% —3) can evade the attacker indefinitely, but a defender with the max-
imum speed of 1+ 1/n can be captured.

The game becomes more challenging to analyze with two defenders, where the
attacker continuously runs the risk of being captured himself, or have the defenders
evade him forever. Our main result is to show that the attacker has a winning strategy
in worst-case O(n) moves. One important aspect of the standard model is the sepa-
ration requirement for the defenders—each must remain outside the neighborhood
of the other. Without this restriction, we show that the two defenders, whom we call
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strong defenders to distinguish from the standard ones, can force a draw: neither the
attacker nor a defender can be captured. A further modification of the model, which
disallows the diagonal moves, tips the scale further in the favor of strong defenders,
allowing them to capture the attacker in O(n?) steps.

Extending the analysis to more than two players is a topic for ongoing and future
work, and seems non-trivial. Surprisingly, for the standard model, it is not obvious
that even © (n) defenders can capture the attacker, nor it is obvious that the attacker
can win against k defenders, for k > 2. (The definition of capture remains the same:
two defenders are enough to capture the attacker.)

However, if we endow the agents with different speeds, then we can obtain some
interesting results, as in the case of the single defender mentioned earlier. In partic-
ular, if the attacker can make min{10,d — 1} single steps in one move, then it can
avoid capture indefinitely against d defenders, and if it can make min{11,d} steps
per move, then it can capture all d defenders in time O(dn). Thus, the attacker has
a winning or non-losing strategy with O(1) speed against an unbounded number of
players, assuming a safe initial position.

2 One on One Kabaddi

We begin with the simple case of the attacker playing against a single defender.
Besides being of interest in its own right, it also serves as building block for the
more complex game against two defenders. We show that in this case the attacker
always has a winning strategy in O(n) moves.

Throughout the paper, we assume that the grid is aligned with the axes, and use
Ax = |Dy—A;| and Ay = |[D, — A, |, resp., for the x (horizontal) and the y (vertical)
distance between A and D.

Theorem 1. The attacker can always capture a single defender in a n X n game of
kabaddi in O(n) moves.

Proof. The attacker’s basic strategy is to chase the defender towards a wall, keeping
him trapped inside a continuously shrinking rectangular region. Specifically, as long
as min{Ax,Ay} > 0 on its move, the attacker makes the (unique) diagonal move
towards the defender, reducing both Ax and Ay by one. Because the grid is n X n,
the attacker can make at most n such moves before either Ax or Ay becomes zero.
Without loss of generality, suppose Ax = 0. From now on, the attacker always moves
to maintain Ax = 0 while reducing Ay by one in each move. Because Ay can be
initially at most n, the attacker can reduce to it one in at most n — 1 moves, at which
point it has successfully captured the defender because both Ax and Ay are at most
1. This completes the proof.

3 Attacker against Two Defenders

The game is more complex to analyze against two defenders. We begin by isolating
some necessary conditions for the game to terminate, or for the next move to be
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safe. We then discuss the high level strategy for the attacker, and show that it can
pursue the defenders using that strategy without being captured itself. Together with
a bound for the duration of the pursuit, this yields our main result of O(n) steps win
for A in the standard model. We denote the two defenders by D; and D;, and use D
to refer to a non-specific defender when needed. Throughout the game, we ensure
that whenever A makes a move, it is safe in the sense that it cannot be captured by
the defenders in their next move.

Lemma 1. On A’s turn, if max{Ax,Ay} <2 for at least one of the defenders,
then A can capture a defender in one step. Conversely, on the defenders’ turn, if
max{Ax,Ay} > 2 for one of the defenders, then they cannot capture A on their
move.

Proof. We first observe that neither defender can be inside the neighborhood of A,
namely, N(A). This holds because a single defender inside N(A) must have been
captured in A’s last move and if both the defenders are inside N(A), then they would
have captured A in their last move. Thus, we must have max{Ax, Ay} > 2 for both
the defenders.

Let D; be the defender that satisfies the conditions of the lemma, meaning that
max{Ax,Ay} = 2. If both the defenders satisfy the condition, then let us choose
the one for which Ax + Ay is smaller; in case of a tie, choose arbitrarily. Without
loss of generality, assume that D lies in the upper-left quadrant from A’s position
(i.e. north-west of A). We now argue that A can always capture D; as follows. See
Figure

(a) (b) (©

Fig. 2 Nlustrating the three cases in Lemmal[lt Ax+ Ay = 2[(@)] 3 [(b)] and 4 [()] The shaded
area is the region that cannot contain the second defender.

If Ax+ Ay =2, then we must have either Ax=2,Ay=00r Ax=0,Ay=2.Inthe
former case, A can capture D; by moving to its x-neighbor (shown in Figure 2[(a)),
and in the latter by moving to its y-neighbor. Since the second defender must lie
outside N(A) UN(Dy), this move cannot cause A to be captured. Similarly, if Ax+
Ay = 3 (shown Figure2J[(D)), then we have either Ax=2,Ay=1,orAx=1,Ay=2.
In both cases, A captures D; by moving to its north-west neighbor (A, — 1,4, +1).
Observe that, by the minimum separation rule, if there is a defender at (A, — 2,A,+
1), then there can’t be one at (Ax — 1,A, +2), and vice versa ensuring the safety
of this move—there also cannot be a defender at (A,,A, + 2) because that would
contradict the choice of the closest defender by distance.
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Finally, if Ax+ Ay = 4 (shown Figure 2I[(c)), then A captures D, by moving to
(Ay—1,A,+1). This is a safe move because the only position for D, that can capture
A is at (Ax,Ay, +2), but in that case D, is the defender with the minimum value of
Ax + Ay, contradicting our choice of the defender to capture. This completes the
first claim of the lemma. For the converse, suppose that Ax > 2 for defender D;.
Then, after the defenders’ move, A is still outside the neighborhood of Dy, and so A
is safe. This completes the proof.

The attacker initiates its attack by first aligning itself with one of the defenders in
either x or y coordinate, without being captured in the process. The following two
technical lemmas establish this.

Lemma 2. A can move to the boundary in O(n) moves without being captured.

Proof. By assumption, A is currently safe. We first check whether A can capture a
defender in the next move: if so, he wins. Otherwise, by Lemma[Il we must have
that max{Ax, Ay} > 2 for both D; and D,. The attacker A now (arbitrarily) chooses
a defender, say, D; and moves so as to increase both its x and y distances to that
defender by one—this is always possible unless A is already on the boundary. Be-
cause this always maintains max{Ax, Ay} > 2 with respect to Dy, by Lemmal[] the
defenders cannot capture A, and is A guaranteed to reach the boundary in O(n) steps.

Lemma 3. By moving along the boundary, A can always force either Ax = 0 or
Ay = 0 for one of the defenders in O(n) moves, without being captured.

Proof. Without loss of generality, assume that A is on the bottom boundary, and
that at least one of the defenders, say, D; lies in its upper-right quadrant (i.e. has
larger x coordinate). Then, A’s strategy is to always moves right on its turn, and is
guaranteed to achieve Ax = 0 with D; at some point. We only need to show that A
cannot be captured during this phase. But if A were captured at position (i,0), then
the defenders must be at positions (i — 1, ;) and (i+ 1, j»), for ji, j» € {0,1}—
these are the only positions whose neighborhoods contain the cell (i,0) in common.
However, the position of A one move earlier was (i — 1,0), so the first defender
would necessarily satisfy the conditions of Lemma[I]and would have been captured
by A already.

3.1 The Second Phase of the Attack

Having reached the starting position for this second phase of the game, we assume
without loss of generality that A is at the bottom boundary, and that after A’s last
move, Ax = 0 for one of the defenders. From now on, A will always ensure that
Ax < 1 for one of the defenders after each of A’s moves. The x-distance can become
Ax =2 after the defenders’ move but A will always reduce it to 1 in its next move.
By Lemma [l if both Ax and Ay are at most 2, then A can win the game. On
the other hand, if the players are too far apart, then both sides are safe for the next
move. Thus, all the complexity of the game arises when the distance between A and
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Fig. 3 Proofs of Lemmas H[(a) and

the defenders is 3, requiring careful and strategic moves by both sides. We show
that A can always follow an attack strategy that ensures a win in O(n) steps, while
avoiding capture along the way.

In order to measure the progress towards A’s win, we use the distance from A’s
current position to the top boundary of the grid while ensuring that Ax < 1 continues
fo hold. In particular, define @ (A) as the gap between the current y position of A and
the top boundary. That is, @(A) = (n—A,), where this gap is exactly n — 1 when the
second phase begins with A on the bottom boundary. We say that A makes progress
if @(A) shrinks by at least 1, while Ax remains at most 1 for some defender. Clearly,
when the @(A) reaches one, A has a guaranteed win (by Lemmal[I). If the attacker
succeeds in capturing a defender, then we consider that also progress for the attacker.

The overall plan for our analysis is the following:

1. If max{Ax, Ay} <2 for at least one defender, then the attacker wins in one move
(Lemma [I). If Ay > 3 for some defender, then A can move to reduce Ay by
one, while keeping Ax < 1, and this move is safe by Lemma [Il Thus, the only
interesting cases arise when Ay = 3; these are handled as follows.

2. If Ay =3 and Ax = 0 for some defender, then Lemma [4] below shows that A
makes progress in O(1) number of moves.

3. If Ay =3 and Ax = 1 or 2 for some defender, then Lemmas[3 and [6] show that A
can make progress in O(n) number of moves.

In the following, we use the notation N2(p) to denote the 2-neighborhood of a cell
p, meaning all the positions that can be reached from p in two moves.

Lemma 4. On A’s move, if Ay =3 and Ax = 0 holds for some defender, then A
makes progress in one move.

Proof. Figure [3[(a)] illustrates the game configuration for this case, where the de-
fender satisfying the distance condition Ax = 0,Ay = 3 is shown as D. There are
three positions for A to advance and make progress, and they are marked as x in the
figure—in each case, the y distance reduces by 1, while Ax remains at most 1. We
only need to show that A can move to one of these positions without being captured
itself.
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In order to prove this, we observe that (1) neither defender is currently inside
N?(A) because that is a winning configuration for A by Lemma [T} (2) the second
defender is not in N(D), as required by the separation rule for defenders. Thus, the
second defender must be outside N?(A) UN(D). But in order to foil A’s move to all
three x positions, the second defender must also be within the 2-neighborhood of all
the x positions. That, however, is impossible, as is readily confirmed by inspection
of Figure Thus, A can safely move to one of the positions marked as x, and
guarantee progress. We note that when A and D are on the boundary, there are two x
positions instead of three, and in that case A can always move to the x directly north
and make progress.

Lemma 5. On A’s move, if Ay =3 and Ax = 1 holds for some defender, then A
makes progress in O(n) number of moves.

Proof. Figure Bl[(b)] illustrates the game configuration for this case, where the de-
fender satisfying the distance condition Ax = 1,Ay = 3 is shown as D. (We assume
without loss of generality that D, = A, + 1 because the case D, = Ay — 1 is entirely
symmetric.) In this case, there are two positions marked x that allow A to make
progress by reducing Ay. In order to foil A’s move, the second defender must be
positioned so as to cause A’s capture at both these positions. Reasoning as in the
previous lemma, however, D has to lie outside both N(D) as well as N?(A). It is
easy to see that there is precisely one position for D;, shown as the shaded cell, that
threatens A’s capture at both the x positions.

This is a case where A cannot ensure progress in a single step, and instead a
multi-step argument is needed. In particular, A moves to its right neighboring cell,
at location (A.+1,A,), which does not improve @(A), but we show that @(A)
will improve in O(n) steps. Consider the next move of the defenders. The defender
labeled D must move to a cell within N(D), and we analyze the progress by A as
follows: (i) if D moves up, making its distance from A equal to Ay =4, then the next
move of A makes a guaranteed progress by moving to make Ay = 3 and Ax < 1. This
move is safe for A by Lemmal[ll (ii) if D moves down, making its distance from A
equal to Ay = 2, then, A has a guaranteed win according to Lemmal[ll (iii) if D stays
in its current cell, then we have Ay =3 and Ax =0 on A’s move, for which Lemma[]
guarantees progress in one move.

Thus, the only interesting cases are if D moves to its left or right neighbor. If D
moves left, causing Ay = 3 and Ax = 1, then A can immediately make progress be-
cause both the defenders are on the left side of A’s position (recall that A was forced
to make a move without progress because the second defender was in the shaded
cell), and so A can safely move diagonally to reduce both Ax and Ay distances to D.
In this case we have progress in a total of 2 moves.

On the other hand, if D moves to its right neighbor, then the situation of impasse
can persist, because both positions marked x where A can make progress can cause A
to be captured. This forces A to continue to mimic D’s rightward move by moving to
its right neighbor. However, this impasse can continue only for O(n) moves because
as soon as D reached the right boundary of the field, he is forced to move up, down,
or left, giving A a chance to make progress. This completes the proof of the lemma.
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Lemma 6. If Ay = 3 and Ax = 2 for some defender say D| then A may make
progress in O(n) moves.

Proof. The proof is similar to the proof of Lemma [3] and omitted due to lack of
space.

3.2 Completing the Analysis
We can now state our main theorem.

Theorem 2. In the standard model of kabaddi on a n X n grid, the attacker can
capture both the defenders in O(n) worst-case moves.

Proof. We show that, starting from an initial safe position, the attacker always has
a move that keep him safe for the next move of the defenders, and that after O(n)
moves the attacker can place itself on a boundary with either Ax =0 or Ay = 0 for
some defender. Without loss of generality, suppose the attacker reaches the bottom
boundary, with Ax = 0 (Lemmas 2] 3)). In the rest of the game, the attacker always
maintains Ax < 1 after each of its moves. The attacker’s next move is described as
follows:

1. If max{Ax,Ay} <2 for some defender, then the attacker can capture a defender
in 1 move (Lemmal[l] and the remaining defender in O(n) moves.

2. If Ay > 4, then the attacker always moves to reduce Ay and Ax by one, unless
Ax is already zero.

3. If Ay = 3, then depending on whether Ax = 0,1 or 2, the attacker’s strategy is
given by Lemmad] [ or[6] respectively.

These cases exhaust all the possibilities, and as argued earlier, the attacker can re-
duce @(A) by one in O(n) moves. Since the maximum possible value of @(A) is
initially n — 1, and it monotonically decreases, we must reach @(A) = 1 in worst-
case O(n?) moves, terminating in a win by A.

We now argue that the O(n?) bound is pessimistic and that O(n) moves suffice.
The key idea is that once the attacker forces Ax = 0, it only moves to the three cells
above it and the one to its right. The three upward moves clearly cause progress, so
we only need to argue that the rightward moves happen O(n) times. This follows
because the grid has width n, and therefore after at most n — 1 rightward moves,
every additional rightward move must be preceded by some leftward move. Since
the attacker always moves upward in its left-directed moves, it makes progress in
each of those moves. Then due to the fact A only needs n — 2 upward moves, there
can be at most 2n — 3 right moves (the initial n — 1 moves plus the n — 2 moves
corresponding to upward moves), and thus at worst 3n — 5 total moves. Thus the
attacker captures both defenders in O(n) worst case moves. This completes the proof
of the theorem.
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4 Strong Defenders

In the standard model, each defender must remain outside the neighborhood of other
defenders; that is, D; ¢ N(D j), for all i, j. The defenders become more powerful
when this requirement is taken away. Let us call these stronger defenders. In this
case we explore what happens when we remove the stipulation that the defenders
cannot be within each other’s neighborhoods. This creates two stronger defenders
and as a result creates a game where ideal play means not only can the attacker
not win, but the defenders cannot either. We assume that play starts with defenders
already in a side-by-side position, that is, Ax + Ay = 1 with respect to D and D;’s
coordinates.

Theorem 3. Under the strong model of defenders, there is a strategy for the defend-
ers to avoid capture forever. At the same time, the attacker also has a strategy to
avoid capture.

Proof. We first argue that the attacker can evade capture. Suppose that the defenders
were to capture A in their next move. If neither defender is inside N?(A), then A is
clearly safe in its current position for the defenders’ next move, so at least one of
the defenders, say D is inside N?(A). Unless D, € N(D;), by Lemmal[l then A can
capture D in its next move. Thus, Dy, D, must be adjacent, namely, in each other’s
1-neighborhoods.

We now argue that all defender positions from which they can capture A in the
next move are unsafe, meaning the attacker can capture one of the defenders in its
current move. There are only two canonical positions for the defenders with one or
both of them in the outer cells of N?(A): either side-by-side, or diagonal from one
another. In the first case, the defenders only threaten the cells in front of them but
not those that are diagonal, so A can move to one of those diagonal spaces. In the
second case, A can capture by moving to any space diagonal from a defender.

Similarly, we can show that defenders can also avoid capture. Figure [4] shows a
representative situation just before the defenders’ move. Suppose that the attacker
were to capture one of the defenders in its next move. We claim that the cells marked
as A in the figure are the only places (upto symmetry) for the attacker’s current
position—i.e. these are the positions where A is not captured currently but can cap-
ture a defender by moving to the cells shown shaded. This is found by taking the
union of the 1-neighborhoods of the three shaded spots (the only places A captures
a defender) to find all possible places A may move to capture from, then removing
all those that the defenders could capture. This result in a list of spots D cannot
capture but must avoid capture from. However, the defenders can avoid this capture
by simply “flipping” their orientation, as shown by arrows in the figure. Notice that
after the flip the attacker now cannot capture with its move. Also the flip does not
rely on the position of the boundary, as the defenders move up only if the attacker
is above them, and move down only if the attacker is below them. Thus this can be
performed regardless of location.
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Fig. 4 Nllustrates Theorem [3]

5 Strong Defenders with Manhattan Moves

Thus, in the standard model but with strong defenders, we have a tie, and neither
side can guarantee a win. In the following, we show that if we disallow the diagonal
moves, permitting a player to move only to its left, right, up, and down neighbors,
then the defenders have a winning strategy. That is, the movement metric is Man-
hattan metric—a player can only move to a cell within the L; distance of 1 from
its current cell. The definition of the capture, however, remains the same as in the
standard model. Due to lack of space, the proof of the following theorem is omitted
from this extended abstract.

Theorem 4. Tivo strong defenders playing under the Manhattan moves model can
always capture the attacker in O(n*) moves.

6 Differential Speed Pursuit Evasion

So far, we have assumed that all players have the same (unit) speed. While we are
unable to resolve the outcome of these games when the attacker plays against more
than two defenders, we show below that differential speed leads to some interesting
results. We model the speed as the number of unit-step moves a player can make
on its turn—each step is the same elementary move used in the standard model. In
particular, on its turn, a player with speed s can repeat the following s times, starting
ata cell p= py:
move to any cell p' € N(p), and setp=p'.

We allow the speed to be any rational number. Thus, a player with movement speed
s+ g can make s unit step moves on each turn plus it can make s+ 1 steps on
every |g/p|th turn. Please note that this definition is not the same as being able to
move to a cell at distance at most s—specifically, our attacker has a chance to visit,
and possibly capture, s defenders in a single move. However, during his turn, if the
attacker is ever in the common intersection of two defenders’ neighborhoods, then
it is captured (as in the standard model).

We first consider the minimum speed advantage needed by a single defender to
escape the attacker forever.



Multiagent Pursuit Evasion, or Playing Kabaddi 101

6.1 One on One Game with Speedier Defender

The following theorem shows that a speed of 1 + 1/n is not enough for the single
defender to evade capture by the attacker.

Theorem 5. A defender with maximum speed 1 + % can be captured in O(n) moves
by an unit-speed attacker on the n x n grid.

Proof. The attacker’s strategy is the same as in Theorem [[l We simply observe
that despite the speed disadvantage the attacker still reduces either Ax or Ay to zero
within n» moves. Without loss of generality, assume that Ax becomes zero. After that,
the attacker can also enforce Ay = 0 within n moves. In these n moves, the defender
gains only one extra move, which only increases Ax to 1, but is still sufficient for
the capture. Thus the defender is captured in O(n) moves by the attacker.

Surprisingly, it turns out that a speed of 1+ ©(1/n) suffices for the defender to
escape, as shown in the following theorem.

Theorem 6. A defender with maximum speed 1+ 5 /(5 — 3) can indefinitely evade
the attacker on an n X n grid.

Proof. Assume an initial placement of the two agents in which (1) the defender D
is at least distance n/4 from its closest boundary, which we assume to be the bottom
boundary, (2) A is distance 7 +3 from the same boundary, and (3) Ax+Ay = 3. (The
defender can easily enforce the condition Ax = 0, and the remaining conditions are
to achieve a safe initial separation between the attacker and the defender.) We argue
that the defender can successfully maintain these conditions, and when needed use
its extra moves to reestablish them with respect to a different boundary.

The defender’s strategy now is to simply mimic the moves of the attacker as long
as it can do this without running into a boundary. During these moves, the defender
is safe because of the condition Ay = 3 or Ax = 3 (cf. Lemmal[I).

Since the defender D is at least n/4 away from the boundary that is opposite the
attacker, its speed advantage guarantees it 5 extra steps before it can no longer mimic
a move of the attacker—which can only happen due to running into a boundary. We
now assert that the 5 extra moves are sufficient for D to reestablish the starting
conditions without being captured. This is illustrated in Figure [3][(a)] where only
a small portion of the grid surrounding the players is shown for clarity. With its 5
moves (shown labeled 1,2,...,5), the defender is able to restore the initial condition
with respect to the right boundary. During this maneuver, the defender maintains a
safe distance from A, and therefore is not captured.

Of course, the defender earns its five extra moves gradually, and not at once, but
it is easy to see that the defender can plan and execute these extra moves (amortize,
so to speak) during the at least n/4 moves it makes mimicking A, as it earns them.
In particular, D always “rotates” around the attacker in the direction of the farther
of the two boundaries, which must be at distance at least /2. D cannot run into a
boundary because the closest one is at least n/4 away and it completes its rotation

in § — 3 turns, during which the 5 extra moves will never decrease the defender’s
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Fig. 5 Figure illustrates the proof of Theorem |6 the defender uses 5 extra moves to
reestablish the initial conditions. Figure illustrates Theorem [/l the attacker can capture
seven of the maximum possible eight defenders using 9 steps, and return to its original posi-
tion in the 10th step.

distance to that boundary. The new target boundary is at least n/2 away and once
the attacker finishes its rotation must still be n/4 away. This is because there are
at most 7 — 3 moves in this direction resulting from moves mimicking A and the
three additional moves from the rotation. Thus, after the rotation, the defender is
n/4 away from a boundary and the attacker is § 4 3 from the same boundary, with A
and D both in the same row or column. Thus the defender can continue this strategy
forever and avoid capture.

6.2 Speedier Attacker against Multiple Defenders

We now consider the speed advantage of attacker against multiple defenders. We
showed earlier that in the standard model, the unit-speed attacker wins against two
unit-speed defenders. However, the game against more than two defenders remains
unsolved. In the following we show that with a constant factor speed advantage, a
single attacker can win against any number of defenders.

Theorem 7. An attacker with speed s can indefinitely avoid capture against s + 1
defenders, for s < 10. An attacker with speed s = 10 can avoid capture against any
number d of defenders.

Proof. Let us first consider s < 10. The attacker follows a lazy strategy, which is to
sit idly unless it is in danger of being captured in the defenders’ next turn. Specif-
ically, if no defenders are in N2 (A), the attacker is safe (by Lemma [I). If some
defenders enter N?(A), then the attacker can capture the defender closest to it using
Lemmal[ll in a single elementary step, with s — 1 steps (and at most s defenders)
remaining before his turn is up. We repeat the argument from the new location of
A, until either A is safe for the next turn of the defenders, or it has captured all but
one defenders. Thus, either A can remain safe indefinitely, or if only one defender
remains it can win.

When s > 10, we note that due to the minimum separation constraint among the
defenders, at most 8 defenders can simultaneously exist inside N?(A)—clearly, no
defender lies in N(A) because that is already a captured position, and there are 16
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cells in N>(A) — N(A), and no two consecutive ones can have defenders in them.
Figure shows A’s strategy to capture seven of the maximum possible eights
defenders in nine steps, and then return to its original position in the 10th step. It is
easy to check that the attacker can achieve a similar result for any configuration of
fewer than eight defenders.

The following theorem, whose proof is omitted due to lack of space, shows that an
additional increase of speed allows the attacker to capture, and not just evade, any
number of defenders.

Theorem 8. An attacker with speed s < 10 can capture s or fewer defenders in
O(sn) turns. An attacker with speed s = 11 can capture any number d of defenders
in O(dn) turns.

7 Discussion

We considered a pursuit-evasion game in which two pursuers are required to cap-
ture an evader. We modeled this game after Kabaddi, which introduces a new and
challenging game of physical capture for mathematical analysis. We believe that
Kabaddi offers an elegant and useful framework for studying attack and defensive
moves against a team of opponents who can strategically coordinate their counter-
attacks. Our analysis shows that even with two defenders the game reveals signifi-
cant complexity and richness.

Our work poses as many open questions as it answers. Clearly, in order to ob-
tain our initial results, we have made several simplification in the game of Kabaddi.
While these simplifications do not affect the relevance of our results to multiagent
pursuit-capture, they are crucial for a proper study of kabaddi. The most signifi-
cant among them is the proper modeling of “holding the breadth” and “safe return.”
Among the more technical questions, analyzing the game for more then two defend-
ers remains open in the standard model. The minimum separation rule leads to some
pesky modeling problems because the attacker could sit in a corner cell and not be
captured. So some modification is needed in the rules to avoid such deadlocks. Fi-
nally, we have not addressed the game when more than two defenders are required
for the capture.
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Reconfiguring Chain-Type Modular Robots
Based on the Carpenter’s Rule Theorem

Jungwon Seo, Steven Gray, Vijay Kumar, and Mark Yim

Abstract. Reconfiguring chain-type modular robots has been considered a difficult
problem scaling poorly with increasing numbers of modules. We address the re-
configuration problem for robots in 2D by presenting centralized and decentralized
algorithms based on the Carpenter’s Rule Theorem [4]. The theorem guarantees
the existence of instantaneous collision-free unfolding motions which monotoni-
cally increase the distance between all joint pairs until an open chain is straightened
or a closed chain is convexified. The motions can be found by solving a convex
program. Compared to the centralized version, the decentralized algorithm utilizes
local proximity sensing and limited communications between subsets of nearby
modules. Because the decentralized version reduces the number of joint pairs con-
sidered in each convex optimization, it is a practical solution for large number of
modules.

1 Introduction

Forming shapes from groups of robotic modules is a goal for many Modular
Self-reconfigurable Robots (MSRs) and Self-assembling Structures. Such approaches
often utilize modules with nice space-filling properties [9, 23} [19]. The modules re-
arrange themselves to form shapes that suit the task at hand [8L 7). In addition
to the mechanical issues inherent in building a system that has a desired shape and
bonding mechanisms, research has focused on motion planning for these modules.
The problem in this context is to determine collision-free motions for the modules
to rearrange from an initial configuration to a goal configuration.

There are three classes of MSRs based on the style of reconfiguration: chain,
lattice, and mobile [22]. Chain reconfiguration involves forming chains of arbitrary
numbers of modules [21], which may break apart, combine into larger chains,

Jungwon Seo - Steven Gray - Vijay Kumar - Mark Yim
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania
e-mail: { juse, stgray, kumar, yim}@seas.upenn.edu

D. Hsu et al. (Eds.): Algorithmic Foundations of Robotics IX, STAR 68, pp. 105
springerlink.com (© Springer-Verlag Berlin Heidelberg 2010


{juse,stgray,kumar,yim}@seas.upenn.edu

106 J. Seo et al.

or join face-to-face. This class of reconfiguration involves long chains with up to n
degrees-of-freedom (n is the number of modules); planning for chains requires self-
collision detection as well as forward and inverse kinematic computations which
scale poorly as n increases. Randomized path planning techniques have been applied
to this type of reconfiguration [2} [16]. Lattice reconfiguration involves modules that
sit on a lattice while other modules move around each other to neighboring lattice
positions. Moving modules from one location to another has been well-addressed
in the literature [12, 17, [13]]. Lastly, mobile reconfiguration uses the environment to
maneuver and has primarily been explored in stochastic fluidic systems [[18].

Modules that are permanently connected by joints can be folded to form rela-
tively strong structures, as permanent joints can be made stronger than bonds that
must be able connect and disconnect. Such modules are useful for applications in-
volving large internal forces (e.g., a reconfigurable wrench). Achieving desired me-
chanical properties for shapes like the wrench is a goal of programmable matter
[24]. While one might suspect that requiring modules to maintain a permanently
connected chain would limit the possible configurations, it has been shown that any
2D shape can be formed by folding a sufficiently long chain of diagonally connected
squares [8,[9]]. In three dimensions, origami demonstrates the versatility of perma-
nently connected folded shapes. Robotic folded sheets have been shown in [10 [8]].
Whereas origami uses uncut sheets of flat material, this work focuses on module
chain that can be folded into larger structures.

2 Preliminaries

2.1 Carpenter’s Rule Theorem and the CDR Algorithm

Consider a linkage of rigid line segments connected at revolute joints to form an
open chain or a closed chain on the plane. The Carpenter’s Rule Theorem states that
every simple open chain can be straightened and every simple closed chain can be
convexified in such a way that the links do not cross or touch [4].

Letp=(p/ p! .- pI)T denoteaconfiguration of a simple chain of n joints
by specifying joint coordinates in the plane, p; = (pix piy)T. An example is shown
in Fig. For open chains, p; and p, refer to the two unary joints at the ends. For
closed chains, n-joints correspond to n-vertices of the simple n-gon. The configura-
tion space P is defined as a collection of all such configurations. Thus, when joints
P € P are connected in order, the chain is neither self-fouching nor self-crossing.
Note that we will factor out rigid transformations by pinning down a link.

We now summarize the result by Connelly, Demaine, and Rote (The CDR Algo-
rithm) [4]]. Assume that none of the joint angles (the smaller of two angles at p;) is 7.
Consider the following convex program with respect to v = (VIT vg v,
where v; = (vic  viy)7 is the instantaneous velocity of p;.
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(b)

Fig. 1 (a) An open chain of line segments (bars) with 14 joints. Dashed lines represent some
of the struts connected to joint 1. (b) An open chain of rigid bodies. Each base link (black line
segment) has slender adornments except for the last link. For example, when A traverses the
adornment boundary from p4 to ps, the distance between p4 (ps) and A increases (decreases)
monotonically. The distance between p7 (pg) and B, however, does not increase (decrease)
monotonically.

1

minimize ¥ ||vil|> + ()
z,-“ ' {,-,,-}%,igm, (vi—v;)-(pi—pj)— Ip; —pill

SubjeCt to (Vj - Vi) ' (pj - Pi) > ||p] - le s for {lv.]} S Soriginal (2)

(Vj - Vi) . (pj - Pi) =0, for {l7]} € Boriginal 3)

vi=v2=0 4

The set Siginas Of struts is a collection of all joint pairs {i, j} not connected to the
same rigid bar and the set By igines Of bars contains only joint pairs attached to the
same rigid bar. Since (v; —v;)- (pj —Pp;) can be related to the time rate of change of
||pj — pil|, the above formulation asks if one can find an instantaneous motion where
every joint p; moves away from all other joints except for px—; and py 1, the joints
connected to p; by rigid bars. The Carpenter’s Rule Theorem proves that this convex
program always has a feasible solution until any joint angle reaches 7. In other
words, the theorem verifies the existence of instantaneous collision-free unfolding
(straightening or convexifying) motions. (2) shows that stronger constraints where
we expand struts at a rate of at least unity are also feasible. (Consider (v; —v;) -
(p;—pi)
llpj—pill* ]
expansive motion.

Moreover, the solution to Eqns. (1 - 4), f(p), is differentiable in a neighborhood
O of p, where Q is a collection of configurations around p in which any joint angle
is not 7. Thus an unfolding path p(¢) can be obtained by solving the dynamical
system, p = v = f(p). Whenever any joint angle reaches 7, the two adjacent links
must be merged and a new unfolding path for the modified linkage must be obtained

.) The motion predicted by above formulation is called a global-scale strictly
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at that time. Finally, given a configuration p., we get p(¢) : [0,7] C R — P such that
p(0) = p. and p(T') = po, where py is the straightened or convexified configuration.

2.2 Slender Adornment

Extending the Carpenter’s Rule Theorem to linkages of rigid bodies requires a guar-
antee of universal foldability. A family of planar shapes referred to in the literature
as having the property of slender adornment [3]] provides this guarantee. Slender
adornment is defined such that the distance between each joint and a point moving
along the exterior of the rigid body link changes monotonically (Fig. [I(B)).

According to [5]], we can regard each slender link as a line segment (base) con-
necting two revolute joints such that the whole chain system can be treated simply
as a mathematical linkage (base linkage) for finding an unfolding path using global-
scale strictly expansive motions.

3 Problem Description and Main Contribution

We shall investigate how to reconfigure a chain-type, modular self-reconfigurable
robot moving on a plane to move between any two shapes while maintaining con-
nections between modules and avoiding collisions. The system can be thought of as
a serial chain (open or closed) of bodies connected by revolute joints. Joint connec-
tivities are fixed to facilitate development of physical prototypes.

Specifically, we shall focus on chains of either line segments or cubes (squares
in 2D). The former can abstract many useful systems such as robot manipulators,
and the latter is particularly interesting for its space-filling property which enables
us to represent interesting 2D shapes. As used in the previous section, unfolding
straightens or convexifies complicated shapes while folding “complicates” shapes.
We reconfigure by repeating folding and unfolding.

The main contribution of this paper is the decentralized reconfiguration planning
based on the Carpenter’s Rule Theorem [4} 5]]. Our result allows decoupled planning
for a class of articulated robot, something long considered infeasible due to interde-
pendencies of the motions (page 390 in [I1]]). Compared to the current state-of-the-
art in planning methods, for example, probabilistic algorithms, our algorithms do
not need to build a roadmap a priori nor do they need specialized parametrization
to handle closed loops [[16,20]. The formalism from Sec. 2naturally handles closed
loops. For example, in Fig. a closed chain can be easily modeled by adding a
bar between links 1 and 14. The bar is added by adding joint pair {1, 14} to By iginai
and deleting the pair from S, gina- The need to check a randomly generated con-
figuration for collisions, often the most costly step for a probabilistic algorithm,
is eliminated. Furthermore, a collision-free path is guaranteed without needing to
consider the specific module shape. Although we focus on two body types (line seg-
ments and cubes), our methods can be readily applied to any slender body shape.
There are some disadvantages as well: the need for slender adornment can be viewed
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as a constraint and the current formulation cannot handle external obstacles, unless
used in conjunction with other planning methods.

We will mainly discuss unfolding motions. Folding motions are obtained by re-
versing unfolding motions. Thus, unfolding motions can be implemented online,
whereas folding motions have to be computed prior to actuation.

4 Modeling Modular Robot Chains

4.1 Modules

A module is defined as a pair of links connected by a joint. The i module will have
a joint i, “left” link iz, and “right” link ig (see Fig.2)). Observe that half modules
(including a unary joint) are attached to the ends of an open chain and two modules
are connected rigidly. Sometimes it may be necessary to fix some modules when
their joint angle reaches m during unfolding. By abuse of terminology, the meta
structure will be simply called a linkage where a link can have more than one module
due to fixing. An example is shown in Fig.

Fig. 2 A chain-type modu-
lar robot with cube bodies.
Each module is delimited by
dashed lines. The i module
has two half bodies (i;, and
ig). If we assume that the
robot is now unfolding it-
self, joints 6 and 8 are fixed
so there are two long links

psp7 and p7po.

Definition 1. The predecessor of a module i, PR(i), is the closest unfixed module on
the lefthand side of i. Similarly, its successor, SU(i), is defined as the closest unfixed
module on its righthand side. The argument can contain a subscript, L or R. For
example, PR(5) = 4 and PR(5g) =5 in Fig.

4.2 Representing Self-touching Shapes

We need to consider how to represent various shapes in a module configuration p.
If there is neither self-crossing between modules (which can be rigid bodies) nor
self-touching between bases (Sec.[2.2), then the shape can be represented using p.
A more interesting application, however, may contain self-touchings between bases
such as filling a region with a cube chain. Assume that the region to be filled is
depicted as a polyomino since we have square pixels. We first construct a spanning
tree of the polyomino (Fig.[3]left) by finding a spanning tree of the graph G = (V,E)
in which we treat each square as a vertex in V and each line segment shared by two
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Fig. 3 A hexomino resembling a wrench head which is to be filled by an open chain of 24
cubes. An additional parameter € was introduced to remove self-touchings.

adjacent squares as an edge in E. By dividing the constituent pixels (or squares)
into 4 sub-pixels [9] and connecting diagonals of each smaller pixel we can always
construct a piecewise-linear and simply-connected path which zigzags around the
spanning tree (Fig. B center). This path can be thought of as a desired configuration
for the base linkage of a cube chain. This, however, introduces a problem since the
Carpenter’s Rule Theorem does not allow self-touching between bases. We intro-
duce a positive nonzero parameter € to remove any self-touchings (Fig. Bl right).

Other approximation methods may be used to remove self-touching configura-
tions. Such methods, however, imply that the faces of a module in a real prototype
must incorporate a measure of compliance; they cannot be perfectly rigid.

5 Algorithms for Unfolding

5.1 The Centralized Algorithm

We shall directly apply the Carpenter’s Rule theorem and centralized computation to
obtain an unfolding motion. There exists one leader module which gathers position
information from all modules, computes unfolding paths for them, and orders them
to move. Theoretically, the leader module will solve p = f(p), where the righthand
side is the solution to Eqns. (1 - 4) for the set A of active modules after fixing any
modules of joint angle 7 to make them inactive. Note that two half-modules at the
ends of an open chain (and their unary joint) are assumed to be active at any time.
Recall that f(p) can be integrated to generate a smooth integral curve until any
additional joint angle reaches 7 (type I cusp). The linkage is then simplified with
one less link by fixing the module at 7 and a new integral curve will be attached to
the previous one recursively. The centralized algorithm approximating the analytic
integral curve follows in Table[Il An example can be found in [8].
SOLVEGLOBALPROGRAMY() solves (1 - 4) to find an instantaneous motion. LIN-
EAR2ANGULAR() converts linear velocity vectors v into angular velocities . For
example, s can be calculated from vy, vs, and v in Fig. The current con-
figuration is then updated by applying @ for Az in RECONFIGUREROBOT(). For
practical purposes, we assume small, finite step size At, although the theoretical re-
sults hold when the step sizes are infinitesimal. Whenever the i joint angle reaches
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Table 1 Centralized unfolding algorithm

function CENTRALIZED-UNFOLDING returns unfolding motion
input : p, an initial configuration to be unfolded

while neither straight nor convex do
v < SOLVEGLOBALPROGRAM(p)
@ < LINEAR2ANGULAR(V)
p < RECONFIGUREROBOT(w, At)
if one joint = 7 then

p — FIXMODULE(p)

end if

end while

7, the module i will be fixed by simply being eliminated from database and setting
anew bar between PR(i) and SU(i) using FIXMODULE().

5.2 The Decentralized Algorithm

In many cases, it is beneficial to lessen the burden on the leader module. Indeed, a set
of modules in a local neighborhood can be defined through local proximity sensing
and used to formulate a decentralized version of the reconfiguration planning. We
shall show that local proximity sensing can relax the convex program in (1 - 4)
leading to a new problem with fewer constraints. The decentralized algorithm can
then be used to compute desirable infinitesimal motions to be combined to construct
a piecewise smooth unfolding path p(z). Cusps in p(z), however, occur not only
whenever any joint angle reaches 7 (type I cusp) but also whenever the proximity
relationship changes (type II cusp) as the linkage explores its configuration space.

5.2.1 Sensor Model

At each joint p; we will attach a proximity sensor with two radii describing con-
centric circles centered at each sensor p; with radius rgg and rsg + 8, respectively.
These two positive parameters will be compared to d(p;, j.)), the minimal distance
between a sensor at p; and points on module j<_), where the subscript can be L or R,
in order for module i to identify its local neighborhood (Fig.[@(a)). For example, any
Jey with d(p;, ji.y) < rsg will be declared as within i’s neighborhood. Later we will
show the distributed algorithm prevents collisions between module i and its local
neighborhood (Sec. 3.2.2~N5.2.4).

Finally, let module i gather the following information based on hysteretic behav-
ior due to the double sensing boundary.

Definition 2. N; is a set of half-modules comprising the neighborhood of i. Half-
module j.y becomes a member of the neighborhood when d(p;, j(.)) < rsg and
will remain a member of the neighborhood until d(pi,j(.)) > rsg + 0. As soon as
d(pi,j()) = rse + 0 for any j.y € Ni, jiy is no longer a member of the
neighborhood.
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(b)

Fig. 4 (a) Sensor model for a line segment chain. Inner circles and outer circles have radius
rsg and rsg + 8, respectively. Red dashed lines starting from pg represent {6,1},{6,2} €
S(r )temp Blue dashed lines starting from pg are {6,4},{6,8} € S( )ﬁxed Since module 5 has
an empty local neighborhood, only {5,3},{5,7} € S(¢)3 Jixea e defined. (b) Sensor model for
a cube chain.

Intuitively, if i “sees” that half-module j) is inside its inner sensing range, i will
track j) until it is totally out of sight beyond the outer sensing range.

5.2.2 Relaxing Constraints and Local Motion

Before formulating a decentralized algorithm, we shall consider here and in Sec.
[5.23lhow to guarantee the existence of an unfolding path under the local proximity
sensing. It is convenient to assume yet again that a central processor is solving the
existence problem until the decentralized version is discussed in Sec.[5.2.4l We shall
begin with line segment chains where rsg can be very small because two mid-link
points can never collide unless preceded by a joint-joint or joint-link collision.
Proximity sensors will only be used on active modules because all collisions
are involved with joints. Based on the sensing result at time ¢, we can define a set
S (t)temp of struts as a collection of struts from i to predecessors or successors of its
neighborhood where i € A. The basic idea is to define a set of temporary struts to
address potential collisions when separation distances are below rsg (Fig. @(@)).

S(O)temp = ({17} € {PR(K()), SU(K()|Vk() € Ni}} (5

As p; gets farther from PR(k(.)) and sU(k(.)), the distance between p; and any point
on the link connecting PR(k(.)) and SU(k(.)) also increases [4]. This guarantees that
there is no collision involved with joint i. In addition, a fixed set of struts S(¢)’ Yixed

is defined (Fig. @(@):

S(1) fivea = {{i, PR(PR(D))}, {i, SU(SU(1) }} (6)
S(t)i =S( )temp uS(s )ftxed (7
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The struts in § (t)}ixe , unfold two active modules on either side of i. For example,
{6,4} in Fig. [i(a)is in charge of unfolding module 5. A set B(t)' of bars is:

B(1)' = {{i,Pr(0)}, {i,su(i)}} ()

Note that if B(¢)' and S(¢)" have common elements, they will be removed from S(z)".

Now we can relax (1 - 4) using the fact that S(r) = (J; S(t)' C S,riginas and B(t) =
U; B(t)" = Borigina- Recall that S,inq is the set of all struts between any two active
modules where one is not a direct predecessor or successor of the other and By,iginas
is the set of all bars between any two successive active modules:

1
minimize Y ||vi|*+
2 2 S e el
subject to (v; —v;) - (p;j —pi) > [[p; — Pill » for {i, j} € S(t) C Sorigina  (10)

(Vj *Vi) : (pj - pi) =0, for {i,j} € B(t) = Boriginal (11
Va, = Va4, =0, ay,a; are any two successive active modules.  (12)

€))

Since the convex program for S,4inq is always feasible, this relaxed convex pro-
gram also has a well-defined solution v at any time. v unfolds every joint in a greedy
manner (due to S(f) sixeq) and avoids collisions (due to S(7)semp) While maintaining
the rigid constraints in B(¢).

Local Motion for a Cube Chain

For a cube chain, rgg cannot be arbitrarily small because two mid-link points can
collide in contrast to the line segment case. In other words, the size of a cube body
determines minimum allowable sensing range. The value can be obtained using sim-
ple geometry in terms of ¢, the side length (Fig. B(®)). If d(p;, Jy) refers to the
minimal distance between sensor p; and module j.), rsg should satisfy:

rSR>£ (13)

Recalling that a cube can be also treated as a line segment (base), we may want
to make a sensor to detect points on the bases. Then d(p;, j(.)) now refers to the
minimum distance between a joint and a base; a greater sensing range is needed.

rse > (1+V2/2) x 0 (14)

As in the case of the line segment chain, only active modules will use their proximity
sensors. Since rsg is larger than a module, any collision will happen only after a
sensor detects danger. It is, however, not sufficient to construct S(¢)! ., » from module
i which has found some neighborhood since the neighborhood can collide with other
points on links adjacent to i. So, additional struts are needed to prevent these mid-
link collisions. To avoid collision between two links of slender symmetric adornment

like the cube chain, we should try to expand all distances between the end points of
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the links provided they are not connected by a bar [3]. This idea can be readily
implemented by defining S(z)!,,.s:

S(O)trans = {{i- j}J € {PR(k()),8U(k(.))|Vk() € Nor(iy UNsy(y 1} (15)

For example, sensor 5 in Fig. will also construct struts {4,99},{4,100} €
S(1)vans and {7,99},{7,100} € S()/,,s in addition to {5,99},{5,100} € S(1)7,,,,-
These additional struts guarantee no collision between link psps (or psp7) and

P9ooP100- The definitions for other sets are the same except for:

S(t)' = SO temp US®)fixed IS )irans (16)
We can also obtain the relaxed problem (9 - 12) to get v at any time.
Hybrid System Model

We have shown that there exists an instantaneously safe unfolding motion v in spite
of the relaxation. We shall call it local-scale strictly expansive motion in contrast to
the global-scale strictly expansive motion. Since S(¢) changes over time, the vector
field on the right hand side of p = f(p) changes over time. Thus, we have a set of
all possible vector field § = { f1(p), /2(p), - - - }, forming a hybrid system, in contrast
to the single vector field f(p) of the original formulation. § corresponds to a set of
all possible combinations of S(¢) and B(¢) and the domain of fi(p), U;, can be repre-
sented as an open subset in the configuration space P which satisfies d(pa,b(.)) > rsr
for some a,b( (they are not in a local neighborhood) and d (ps,t(,)) < rsg+ 6 for
some s,7(.) (they are in a local neighborhood). The following theorem will be useful
to construct the global solution.

Theorem 1. Each vector field fi(p) in § = {f1(p), /2(p), -} is differentiable with
respect to p in U;(\ Q where Ui is f;(p)’s domain and Q is a collection of configura-
tions around p in which any additional joint angle is not 1.

Proof. We only have to check that fj(p) satisfies five conditions from Lemma 7
in which established the smooth dependence of the solution on the problem-
definition data A(p) and b(p) in parametric optimization problems of the type:

min{g(p,v): v € Q(p) SR, A(p)v="5b(p)} (17)

Our relaxed problem can be regarded as this type where g(p, v) refers to the objec-
tive function (9) and Q(p) the feasible set from (10). A(p) and b(p) can be con-
structed from (11) and (12).

1. Is the objective function twice continuously differentiable and strictly convex as
a function of v € Q(p), with a positive definite Hessian, ¥p € U;(Q ?
The objective function is the sum of quadratic functions and additional smooth
convex terms. Thus it is twice continuously differentiable and strictly convex.
2. Is Q(p) an open set, Vp € U;NQ ?
Q(p) is open since the inequalities (10) are strict.
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3. Are the rows of the constraint matrix A(p) linearly independent, Vp € U;(Q ?
Because the equality constraints are the same as the original formulation, this
condition still holds [4]].
4. Are A(p), b(p), and Vg (with respect to v) continuously differentiable in p €
uine?
A(p), b(p) are linear. Vg is also continuously differentiable from the factin 1.
5. Does the optimum point v*(p) exist for everyp € U;(\Q ?
The relaxed problem is also convex. We can always find a unique solution.

In conclusion, f;(p) satisfies the five conditions establishing the smooth dependence
of fi(p)onpinU;NQ . O

5.2.3 Global Motion with Hysteretic Behavior

We now show how to construct an integral curve (unfolding path) on the configura-
tion space governed by the hybrid system and hysteretic behavior in sensing.

Theorem 2. Consider the hybrid dynamic system p = v = f(,(p) where f(,(p) € ¥
and assume the hysteretic behavior from Definition 2. There exists a unique integral
curve which represents the unfolding path from given initial configuration p..

Proof. Given a configuration p., we can designate a unique vector field until one
of the neighborhood memberships expires or a new membership is issued. In fact,
P. is located strictly inside the domain of the designated vector field since we have
a nonzero margin before a new membership is issued or an existing membership
expires due to the hysteresis.

Recalling from Theorem [I] that each f(.)(p) is differentiable, we can define a
unique maximal integral curve in the domain which cannot be extended beyond a
certain positive limit on time 7 < oo starting from p.. But the integral curve should
reach the boundary of the current vector field (type II cusp) in finite time because of
the finite growth rate (at least unit rate) of the strut constraints in S(¢)emp-

As soon as it reaches the boundary, a switching of vector fields occurs and a
unique integral curve will be constructed again exploiting the fact that the switching
point is also located strictly inside new vector field’s domain due to the hysteresis.
This new integral curve will be connected to the existing integral curve, but these
processes will last only finitely until we get to a type I cusp since the struts in
S(t) fixea are also growing at least with unit rate at any instant. Type I cusps can also
appear only finitely. Therefore we can finish the unfolding in finite time. g

Hysteresis plays an important role in the above theorem. It guarantees that the points
where vector fields switch are actually located strictly inside new vector field’s do-
main. Thus it allows local motion to be always computed by a well-defined vector
field exclusively from §. What would have happened without the hysteresis?

Each vector field in § has repulsive nature in that any integral curve starting from
strict inside of its domain tends to escape the domain by expanding struts which will
change current neighborhood relationship. If there is no hysteretic behavior, in other
words, if 6 — 0, this repulsive nature of vector field is very likely to result in sliding
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mode [[6, [14]] on domain boundaries. To describe sliding mode, we need a third vec-
tor field which is different from the two vector fields on either side of the boundary.
This new vector field, however, may not be desired since it is not an element of § in
which every element was proved to generate safe local motions. To be more specific,
the new vector field may not guarantee local expansiveness for collision avoidance
or more than unit rate of strut expansion for convergence and completeness. Thus
the hysteresis is required for the solution to avoid any undesirable sliding mode.

5.2.4 Decentralized Algorithm

Recall that A = {aj,ay,--- a,} is a set of active modules. Without loss of generality,
we can rewrite it as A = {1,2,--- ,m} since we have been working only with active
modules. We then have m subsystems where each module k is coupled only with
modules in /i, a set of all modules which appear in S(¢)* U B(¢)* U D(t)*, where
D(t)* is a set of struts which ends at k, for example, {6,1} € D()! in Fig. In
other words, considering D(¢)* means that we will take the modules which detect k
into account. Also note that k € I;,. No matter how many active modules there are, we
only have to maintain a limited number of local contacts which can be found using
PR(-) and SU(-) pointers. The pointers do not require global information so each
module doesn’t need to have a specific ID. The number of required local contacts
for each module has an constant upper bound particularly for a cube chain since
the body shape and the sensing area are compact on the plane. Compared to the
centralized algorithm in which every active module is coupled with all others, this
fact allows us to formulate a decentralized algorithm by decomposing Eqns. (9 -
12). Assume that each module is equipped with a perfect localizer as before. First
we shall designate a reference module to which every localizer should refer or pin
down a module to address (12).

Now we need some concepts and notations from [1]]. A hypergraph can be used
to represent the decomposition structure where the nodes are active modules and
the nets (or hyperedges) are constraints among them. For example, the fact that vg
should be shared by six others (modules 1,2, 4, 5, 7, and 8) in Fig. corresponds
to a net (hyperedge) in the decomposition structure. Let u;, € R* be a collection of
velocity of modules which belong to I;.. If I, = {m,n,k, p,q}, then an example would
be, e = (vi, vi vi vh vD)T eR¥ Letu=(u{ u] - ul)’ eRY,
X = Xj + -+ X,,. We will use the notation (u); to denote the i scalar component
of u. The basic strategy is to independently solve for each module k which has a cost
function Ay (uy), and constraints u; € €, which is a subset of constraints in (10)
and (11) featuring v, and impose the nets to establish consistency among shared
variables. In terms of u, various components of u should be the same as defined in
a net. This idea can be efficiently represented by introducing a vector z € RY, Y is
the number of nets, which gives the common values to each net by calculating £z

where E € RX*Y:
_J 1 (u);isinnet j
Eij= {O otherwise (18)
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Table 2 Decentralized unfolding algorithm for an active module k

function DECENTRALIZED-UNFOLDING returns instantaneous unfolding motion uy
input : p;,, position of modules in J;

U <0

while Ay, > € (small positive constant) do
u; < SOLVELOCALPROGRAM(py,, L)
Uy <— UPDATEPRICES(L)

end while

Lastly, let E;, € R%>*Y denote the partitioning of the rows of E into blocks associated
with module & such that u; = E;z.
Our problem is then to solve a master problem:

m
minimize Y hy(uy) (19)
k=1
subjecttouy € &, k=1,---,m (20)
w=Fz k=1,--'m 21
We will let
1
he(w) = 3 [vill* + (22)
g; l {,-ﬁj}es%wm)k (vi—v;)-(pi—pj)—Ilp; —pill

Note that we have the same set of constraints as the previous formulation since the
union of €;’s is equal to (10) and (11) and we already have addressed (12). The
above formulation is, however, different from the previous formulation since the
cost function Y} | iy (uy) is different from (9). Still, there is no problem to apply
the results in Sec. and[3.23since 3" | iy (uy) is just another weighted sum of
terms in (9) which do not affect convexity and differentiability.

We will apply dual decomposition featuring a projected subgradient method
to solve this master problem. Then each active module only solves the following
local problem:

minimize Ay (u;) + ul u,  subject to uy, € € (23)

To be more specific, this can be elaborated as:

1
minimize ||VH2 +
g} l {i,j}es(%w(,)k (vi—v;)-(pi—pj) — Ip; —Pill

+ e (24)
subject to (v; —v;)- (pj —pi) > ||p; —pil| , for {i, j} € S(t)k UD(t)k (25)
(vi—vi)-(p; —pi) =0, for {i,j} € B(r)* (26)

where L, is the Lagrange multiplier for uy.
Each active module runs the following decentralized algorithm independently.
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Table 3 Computation time ratio. Implementation was done in MATLAB and used cvx; the
results have been normalized by the time needed to compute the Humanoid reconfiguration
using the centralized algorithm. Note that snapshots are rescaled for visibility.

Shapes Reconfiguration Relaxed solution computation time /
Centralized solution computation time

Gripper (16 modules) %E @ i’fﬁfp \ 0.03/0.05
Hammer (32 modules) % QE :E \\ 0.18/0.55

e g N

SOLVELOCALPROGRAM() solves (24 - 26). To update the Lagrange multiplier
W in UPDATEPRICES(), a module & has to communicate only locally with others
in I;.. Refer to [[I]] for details about updating prices. Recall again that each module
finds linear velocity as a result of this computation. Thus each module may need
to be equipped with a synchronized clock to stop above decentralized work, trans-
form linear velocity into angular velocity, and actuate its joint simultaneously. As
mentioned earlier, we need to reverse unfolding motions to get folding motions.

We have compared the centralized algorithm (1 - 4) to the relaxed problem
(9 - 12); the results are shown in Table 3. The results have been scaled to show
the improvement in computation time between the formulations and allude to the
promising results expected from the end-to-end decentralization algorithm of Ta-
ble 2. Note that the relaxed problem takes much less time even though there is
an additional step to find neighborhood, holding other conditions constant. Thus
the fully decentralized implementation, deferred for future work, is expected to be
much faster with less communication. The results have been scaled by the time
needed to compute the Humanoid reconfiguration using the centralized algorithm.
Note that this example was not optimized for runtime efficiency, but rather serves to
show how the algorithm scales with the number of modules as well as the difference
between centralized and relaxed versions.

Humanoid (48 modules) =

6 Conclusion

This work presented practical algorithms for collision-free reconfiguration planning
for chain-type modular robots. Both the centralized and decentralized versions were
developed using the Carpenter’s Rule Theorem and maintained connections between
modules. The decentralized algorithm will be particularly beneficial as the number
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of modules increases since each module (without a unique ID) only has to maintain
a limited number of contacts.

We are interested in testing our algorithms by implementing the sensor model
in a current modular robot system. The pointers, PR(-) and sU(-), will be easily
implemented using a neighbor-to-neighbor communication scheme. As mentioned
before, the capability of our algorithms to deal with close-packed configuration can
be integrated with other popular motion planning methods to handle obstacles and
improve overall performance.

Acknowledgements. This work is funded in part by DARPA Grant W911NF-08-1-0228
(Programmable Matter).
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Robomotion: Scalable, Physically Stable
Locomotion for Self-reconfigurable Robots

Sam Slee and John Reif

Abstract. Self-reconfigurable robots have an intriguingly flexible design, com-
posing a single robot with many small modules that can autonomously move to
transform the robot’s shape and structure. Scaling to a large number of modules is
necessary to achieve great flexibility, so each module may only have limited pro-
cessing and memory resources. This paper introduces a novel distributed locomo-
tion algorithm for lattice-style self-reconfigurable robots which uses constant mem-
ory per module with constant computation and communication for each attempted
module movement. Our algorithm also guarantees physical stability in the presence
of gravity. By utilizing some robot modules to create a static support structure, other
modules are able to move freely through the interior of this structure with minimal
path planning and without fear of causing instabilities or losing connectivity. This
approach also permits the robot’s locomotion speed to remain nearly constant even
as the number of modules in the robot grows very large. Additionally, we have devel-
oped methods to overcome dropped messages between modules or delays in module
computation or movement. Empirical results from our simulation are also presented
to demonstrate the scalability and locomotion speed advantages of this approach.

1 Introduction
Throughout nature, a recurring concept is that of a collection of simple structures

combining to form something much more complex and versatile. Self-reconfigurable
(SR) robots seek to implement this concept using a collection of robotic “modules”
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Fig. 1 Left: Three modules at the back of a Robomotion tunnel coordinate to move into that
tunnel. Right: A Robomotion tunnel snakes around two brown obstacles. Yellow modules
are moving.

which can autonomously move to reconfigure the overall shape and structure of the
robot. A key problem faced by these robots is how to generate locomotion. Many
prior algorithms have done this, but very few have been able to scale to robots with
very large numbers of modules while only using robotic structures — configura-
tions of modules — which are stable in the presence of gravity. We introduce such
a method here with our Robomotion algorithm, which focuses on 3 main goals:
scalability, speed, and stability.

For Goal 1, scalability, we mean that the algorithm could reasonably be expected
to execute on a SR robot, implemented in hardware, composed of thousands or
millions of modules. This means that the memory per module must be sub-linear in
the number of modules and decisions made by each module can only be based on
local information (i.e. from nearby neighbor modules). As we describe in Section[3]
our algorithm achieves per module constant bounds on memory, processing, and
communication. This has allowed us to simulate robots with over 2 million modules.

For Goal 2, speed, we are actually interested in
the locomotion speed of the robot. There are two (&
parts to creating fast locomotion: the physical move- ?
ment approach and the means of controlling it. For g .
large collections of modules, a small group of them ﬁ ‘
will not be strong enough to move the rest of the
robot. Prior work avoided this limitation by hav- ottt ’ ’
ing some modules remain stationary while other Fig.2 A: A subtle change mak-
modules flowed from the robot’s back to its front. ing a big stability difference.
We have also adapted this approach for our Robo- B: A convex-corner transition
motion algorithm. For equally scalable control, a from side to top by Module S.
very distributed algorithm is required. Our algorithm
achieves this by using straight tunnels through the robot’s interior through which
modules can travel. These tunnels act much like highways: fewer movement op-
tions allow for increased speed and efficiency.

For Goal 3, stability, we want to guarantee that our robot will not collapse under
its own weight. This is a difficult global property to maintain because SR robots
are able to form so many different shapes, many of which are unstable in the pres-
ence of gravity. Figure [2| shows how a slight change to 1 module’s position can
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dramatically affect stability. In Config 1, the inter-module connections A-B; and
Ay-B, experience very small tension and shear forces due to the weights of mod-
ules By and B,, respectively. However, by moving 1 module, in Config 2 those same
inter-module connections must support all modules stacked above A1, a far greater
amount of shear and tension force bounded only by the height of the stack. Com-
pression forces in other parts of the robot are about the same for either situation
but are less important. Similar to large manmade structures, most SR robot hard-
ware implementations handle compression forces much better than shear or tension
forces on inter-module connections.

Although difficult to maintain, stability is a critical property. A real robot which
loses efficiency will just move slowly. A real robot which loses stability will break
hardware units. This cannot be a property that is probabilistically met. It must be
guaranteed. For our Robomotion algorithm presented here, we guarantee stability
while assuming only a very limited set of physical abilities for modules.

In addition to our 3 main goals, we make our algorithm more realistic by han-
dling potential hardware errors: message drops and module delays in computation or
movement. We also disallow convex-corner transitions by individual modules (move
around a convex corner formed by 2 orthogonal surfaces as in Figure[2] Part B) as
many hardware implementations have had difficulty executing these movements.

To accomplish our goals, our algorithm has a distributed approach through co-
ordination within small groups of modules. These groups are dynamically formed
whenever they are needed, and disassembled when no longer needed. In a sense,
modules act like biological stem cells, able to join any group and take on whatever
role is required. Dynamically forming a group requires consensus that each module
has agreed to join the group and precisely which role each will take. Proving that
a consensus will always be reached becomes difficult when the needs of the robot
could change at any time (i.e. the robot could be instructed to reverse its locomotion
direction or to turn), when different modules hear about those changes at different
times (since we rely on module-to-module communication), and when messages
sent between modules are not guaranteed to always be received.

The remainder of our paper is organized as follows. In Section 2| we survey the
relevant literature. In Section 3] we give a general overview for how Robomotion
addresses our goals described above. Section[]describes our simulation of Robomo-
tion and gives results from several experimental trials we used to compare our algo-
rithm to the leading prior work on this topic. In Section[3] we present our conclusions
and describe future work. Detailed pseudo-code and proofs are omitted here but are
included at http://www.cs.duke.edu/~reif/paper/slee/robomotion/robomotion.pdf.
The primary contributions of this paper are Robomotion’s algorithmic design and
the experimental results from its simulation.

2 Related Work

In order to achieve highly scalable locomotion — for robots with thousands or mil-
lions of modules — we must have distributed control algorithms that use sub-linear
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Fig. 3 Left: A Waterflow style algorithm by Butler et. al. [4] Middle: The Million Module
March algorithm. 3] Right: Robomotion in simulation.

memory and processing per module. The best previous example is the Million Mod-
ule March (MMM) algorithm by Fitch and Butler [5]]. The robot’s goal is to reach a
specified goal region and each module executes the same, limited plan: repeatedly
calculate its best route to a desired goal region based on the routes chosen by neigh-
boring modules. In this way modules closer to the goal region pass information back
to modules further away. This approach is flexible and was shown to work on a robot
with just over 2 million modules. However, it did not consider physical stability and
so would create configurations which would be unstable in the presence of gravity.
Also, the constant replanning of routes in MMM can lead to inefficient locomotion.

Aside from MMM, the other main approach to highly scalable locomotion for
lattice-style SR robots is not a specific algorithm but a general technique known as
waterflow or cluster flow. In this algorithm, modules in the middle of the robot stay
in place while modules at the back move up, slide across the top, and then come
to the front of the robot to reattach there. Continual repetitions of this generate lo-
comotion that looks like water flowing along the ground. Algorithms implementing
this technique have been made by several research groups [7]].

As other researchers have note(ﬂ, the key to generating fast locomotion with these
techniques is to have a high ratio of moving modules to total modules in the robot.
In this paper we refer to this ratio as the Simultaneous Active Movement (SAM) rate
which we describe further in Section[3l Both the waterflow technique and MMM re-
strict module movement to the exterior surface of the robot. For dense robot shapes,
which are more likely to be stable, we would expect the SAM rate to drop as the
number of modules grows and more modules become trapped in the robot’s inte-
rior. We empirically verify this with our simulation results given in Section 4] and
also show that Robomotion instead maintains a high SAM rate by allowing interior
module movement. Of course, the SAM rate of an algorithm will drop even faster if
we use a slow control algorithm. One highly scalable implementation of waterflow
by Butler et. al. used stateless local rules to reduce computation [4]. However, later
analysis found this approach to be unwieldy as standard program-based control had
tens of rules while stateless local controllers had hundreds of rules. [2]]

General reconfiguration algorithms could also be used for locomotion by contin-
ually requesting new configurations in the desired direction of movement. However,
most are not highly scalable as they require linear memory for at least one module.

! From page 5 of [[]]: “the speed is proportional to the ratio of moving meta-modules relative
to the total number of meta-modules.”
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Some are also too slow due to requiring linear time for planning or, worst of all,
using a centralized planner. One reconfiguration algorithm that did use sub-linear
memory is the scale-independent algorithm of Nagpal and Stoy [14]]. This specified
the goal region as overlapping rectangular boxes and then placed modules into the
goal region relative to the scale of the boxes. This algorithm forms static scaffolding
in the goal region first so other “wandering” modules can flow freely through the
gaps that are formed. However, Nagpal and Stoy found that their scheme had worse
performance compared to traditional reconfiguration algorithms in terms of number
of moves, time steps, and messages.

A similar reconfiguration algorithm by Stoy was not scale independent but still
used that scaffolding technique [[13]]. Here static modules in the scaffolding would
send out signals to attract wandering modules to new locations. This algorithm could
be adapted to locomotion but would have some movement inefficiencies since mul-
tiple wandering modules can be attracted to a single open location. Also, no guaran-
tees about physical stability are made and the algorithm’s guarantee for connectivity
(a property described in Section[3.2)) only holds if modules in the scaffolding never
move once they join that scaffolding. For locomotion, portions of the scaffolding
would continually need to be removed and moved elsewhere. Doing this safely be-
comes difficult when the robot could change its movement direction at any time
and module actions are asynchronous. Another approach given by Ravichandran,
Gordon, and Goldstein used only O(logn) memory per module while finding
a bijection between initial positions of modules and the desired target positions.
However, that work did not focus on the motion plan to reconfigure those modules.

Some reconfiguration algorithms allow “tunneling” module movement through
the interior of the robot’s structure [3]], a key property of our own Robomo-
tion algorithm. However, since there is no central coordination between the planned
paths for modules, the SAM rate for these prior tunneling algorithms is likely to
be similar to that of MMM, which also uses a decentralized, greedy approach. The
SAM rate for the MMM algorithm is considered in Section [ of this paper. Also,
these tunneling algorithms do not guarantee physical stability.

The Robomotion algorithm described in this paper is for lattice-style SR robots,
but fast locomotion has been demonstrated in hardware for small chain-style SR
robots. In this style the robots form kinematic chains or loops. Work by Yim et. al.
may have the fastest locomotion demonstration [I1]], but other work by Yim [17],
Shen et. al. [12]], and Murata et. al. [9, [16] show various locomotion gaits with
walkers, snake-like sidewinders, or rolling loops. However, if gravity is considered,
these techniques would not scale to moving very large robots (with thousands or
millions of modules) and are not directly applicable to lattice-style robots.

Physical stability occurs in hardware demonstrations for SR robots, but the topic
of stability has not been heavily studied for highly scalable theoretical algorithms.
Prior work by Shen et. al. has shown how to balance a chain-type SR robot by
calculating the center of mass of the robot in a distributed manner [8]. However, this
did not consider physical stability in the sense of guaranteeing limits on shear and
tension forces experienced between adjacent modules. These stability guarantees
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are a key contribution of the Robomotion algorithm presented in this paper, along
with its high scalability and movement efficiency benefits.

3 Overview of Intuition for Robomotion

To make our theoretical algorithm applicable to as many lattice-style robot hardware
types as possible, Robomotion assumes the commonly-used Sliding Cube abstract
model [6]]. In this model each module is represented as a cube and modules are able
to slide along flat surfaces formed by other cubes and make convex and concave
transitions between those surfaces. Communication occurs with messages passed
between adjacent modules. It has been shown that algorithms made for this model
can be executed by a range of hardware implementations [6]. To further extend the
applicability of our Robomotion algorithm, we disallow convex transitions as this
action is hard for many hardware implementations. We now describe our Robomo-
tion algorithm and the intuition behind it. Again, our main goals for this work were:
fast locomotion speed, physical stability, and high scalability.

3.1 Fast Locomotion

To help evaluate the speed of our locomotion algorithm, we define the Simultane-
ous Active Movement (SAM) rate as the ratio of the number of moving modules
compared to the total number of modules in the robot. Prior work has noted how
locomotion speed for lattice-style SR robots correlates closely with this metric [1]]
and that this rate tends to correlate with the exterior surface area of the robo@ [, 50
Asymptotically, an ideal SAM rate would be 1:1. This occurs when, on average, a
constant fraction of modules in the robot are able to simultaneously move. To get a
high SAM rate we’ll need to have the surface area of the robot — which is the area
along which modules can travel — to be asymptotically equal to the volume of the
robot. A robot only two modules high could have the top surface of modules move
fora 1:1 SAM rate, but in general as the number of modules grows large keeping one
dimension asymptotically shorter than another is difficult to achieve or maintain.

Instead, our Robomotion algorithm uses interior movement to reach a 1:1 SAM
rate. Modules begin at the back of the robot and move to new positions at the front,
just like in the Waterflow approach described in our Related Work Section. However,
now modules move through interior tunnels instead of across the exterior surface of
the robot. By using a constant fraction of the robot’s volume to move modules, we
can achieve a 1:1 SAM rate. The tradeoff is that interior movement makes physical
stability a harder property to maintain.

2 From page 9 of [5]: ”We note that for simple cubic shapes, the surface area of the robot
increases with n2/3, so in fact we should expect parallelism relative to n to decrease as the
robot gets bigger.”
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3.2 Stable Locomotion

Most SR robot algorithms do not consider stability, but most do maintain another
global property: connectivity. For this property, each module in the robot has a path
(series of physical connections) to any other module in the robot. For stability, it
helps to consider the common prior approach to connectivity: safety searches.

Prior Solution: Safety Searches. With this method, before any module m moves
it first finds alternate paths to connect its neighbors. Module m then locks into place
any modules on these paths before m itself can move. This technique was used by
the highly scalable MMM algorithm [5]]. However, there are three main drawbacks
to this approach. (1) If we allow unbounded searches, a single search could be very
slow. In the worst case we would have a single loop of all » modules in a robot and
would have to go through all of them to make an alternate path, finally allowing 1
module to move. (2) If we bound searches, then we might miss the opportunity to
move modules that could have safely moved, thereby lowering the robot’s SAM rate.
Finally, (3) without any global coordination, the movement of modules can become
very random and the structure formed for the robot becomes hard to predict.

For modules moving through the robots interior, these paths are really tunnels.
Without global coordination, random module movements can quickly create com-
plex internal mazes of tunnels and verifying stability becomes much more complex
than the simple “find any path” searches needed for connectivity. Just as we would
not trust the stability of gold mining tunnels that were randomly dug above and be-
low each other, for an SR robot we need to be more coordinated in how we form
these interior movement tunnels.

Our New Solution: Support Columns. Our Robomotion algorithm avoids these
tricky situations by using static support columns placed at repeated intervals through
the robotic structure. Modules in these support columns do not move and so can
provide support. Modules between these columns attach to them for support and are
free to move without fear of causing instabilities. To form these support columns,
we use repeated groupings of 3 modules which we refer to as L-groups. An exam-
ple L-group is pictured at the far left of Figure d while the other portions of that
figure show how L-groups can be stacked into a column or into a set of adjacent
columns to form a full robot structure. The gaps in pictures (b) and (c) of Figure ]
— which account for 1/4 of the available volume in those structures — show where
other modules could travel freely through the structure. If we can keep new modules
constantly moving through these gaps then we’ll have our desired 1:1 SAM rate.
Define a slice of modules as a set of modules all having the same coordinate posi-
tion for a given axis direction (assuming those directional axes are aligned with the
rows and columns of our robot’s lattice structure). Robomotion generates locomo-
tion by repeatedly disassembling the columns of modules in the backmost slice of
the robot, sending those modules through the interior tunnels, and finally assembling
a new slice of modules (forming new support columns) at the front of the robot. We
can actually disassemble or assemble an entire slice in parallel and still maintain
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Fig. 4 From left: (a) a single L-group; (b) 1 line of columns; (c) multiple adjacent column
lines to show what a full robot looks like; (d) our simulation implementation with L-groups
in purple and moving modules in green.

stability. Keeping columns close together bounds the number of modules hanging
from the side of any given column module. Assembling at most 1 slice at the front,
and 1 slice at the back, of the robot at a given time limits the number of modules
hanging from the front and back of any column module. If each module has roughly
the same weight, this also means that we’ve bounded the amount of shear or tension
force experienced on the connection between any pair of modules.

3.3 Scalable Locomotion

This support column structure also permits a highly scalable locomotion algorithm.
The only safety checks we need come while assembling or disassembling a column
(as part of a slice). These checks are: (1) consensus between modules in an L-group
to decide to disassemble or to decide if assembly of that L-group is complete, and
(2) messages between L-groups (in the back slice) from the top down to state when a
column is ready to be disassembled, and messages from the bottom up (front slice)
to state when a new column has finished being assembled, and (3) 1-directional
horizontal messages (perpendicular to movement direction) between L-groups to
state when a slice is ready to be disassembled or has finished being assembled.

Only constant-bounded memory and communication is needed. Disassembly or
assembly communication really only involves 5 modules: the 3 modules in an L-
group, a module from an adjacent L-group above (for disassembly) or below (for
assembly) stating that the column is ready, and a module from a side-adjacent L-
group stating that a slice is ready. Thus, a module only needs to know state about
its own L-group (if it’s in one) and to receive messages from neighbors. Thus, each
module needs only a constant-bounded amount of memory if we put a limit on the
number of messages “yet to be read” for any module. Overflow messages could
be dropped as that challenge is also handled by Robomotion (as described later in
Subsection [3.6). Modules moving through the robots interior can just follow direc-
tions given by adjacent L-group modules. Therefore moving modules only need to
remember their state (i.e. that they are moving) and the most recent move direction
order received.

Only constant-bounded processing is needed as well. Inside of the robot, only 1
module per L-group does anything: it sends direction messages to moving modules
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Send MOVE-DIRECT messages to any adjacent FREE modules.
if IS-BACKEND == TRUE and DISASSEMBLE-NOW == TRUE then
Send a BECOME-BACKEND message to module in FORWARD direction.
‘ (switch to being a FREE module after getting the reply message.)
end
if given a BECOME-BACKEND message then
| SetIS-BACKEND = TRUE.
end
if IS-FRONTEND == TRUE and ASSEMBLE-NOW == TRUE then
Send a BECOME-L-GROUP message to any module in FORWARD direction.
‘ (set IS-FRONTEND = FALSE after getting the reply message.)
end
if given a REVERSE-DIRECTION message then
Swap the values of IS-FRONTEND and IS-BACKEND.
Swap the values of FORWARD and BACKWARD directions.

end

Algorithm 1. The L-GROUP module algorithm. (high level)

if given a MOVE-DIRECT message then
| Execute the requested move, if legal.
end
if given a BECOME-L-GROUP message then
Switch to being a L-GROUP module in the current location.

Set IS-FRONTEND = TRUE.
end

Algorithm 2. The FREE module algorithm. (high level)

which pass by. Moving modules just follow orders and thus require almost no pro-
cessing. The only remaining work is the safety checks performed when assem-
bling/disassembling columns of L-groups. This entails (1) directing any adjacent
moving modules to the right locations, and (2) agreeing with other members of
the same L-group when its time to disassemble or when assembly is complete. So
Robomotion needs only a constant-bounded amount of processing per L-group per
module action (or action request in case a moving module freezes and ignores re-
peated move direction messages). Thus, we have now outlined how Robomotion
meets all of our stated main goals: fast locomotion, guaranteed physical stability
and connectivity, and high scalability (limited memory / processing / communica-
tion per module).

3.4 Algorithm Outline: One Tunnel

Control for Robomotion is mostly done by controlling a single tunnel and then re-
peating that control structure for each tunnel in the robot. We assume an initial con-
figuration of n modules, shaped as a contiguous set of solid vertical columns with
an even number > 2 of modules in each dimension. We assume the robot begins



130 S. Slee and J. Reif

execution with each module knowing its initial role: either being a stationary L-
GROUP module or being a moving FREE module. Each L-GROUP module begins
with knowledge of the forward direction (initial direction of desired locomotion)
and the locations of the 2 other members of its L-group. L-GROUP modules at the
front of the robot begin with an IS-FRONTEND = TRUE status and L-GROUP mod-
ules at the back begin with an IS-BACKEND = TRUE status while all other modules
begin with FALSE for those values. If desired, we could instead broadcast a sin-
gle message with the desired direction of movement to all modules and then each
module could quickly calculate its own role and L-group neighbors.

Modules may send and receive messages with neighbors to which they are di-
rectly attached. We assume these messages may be lost when communicated but,
if sent successfully, they arrive instantly. Modules may delay in their movement or
computation but will never fail. To handle message drops, we use a question-reply
format. One module A will repeat its “question” message to module B until B sends
back a “reply” message confirming that it successfully received A’s message (or un-
til A no longer desires to send its initial message). Module B just assumes that, if its
reply message is lost, there will be another chance to reply when A repeats its initial
question message. All messages used by Robomotion are designed so no error oc-
curs if duplicate messages are received. For control of a tunnel as a single unit, we
assume an external controller (i.e. a human at a laptop) which can broadcast signals
to the robot to tell it to reverse its movement direction or make an orthogonal turn.
These commands are then executed by individual modules in a distributed fashion.

Given the initial movement direction chosen, our goal is to generate locomotion
in that direction indefinitely, or until a REVERSE-DIRECTION request is received.
For each request, the robot will eventually succeed in reversing the direction of
locomotion throughout every tunnel. At all times the robot will be in a configuration
which is physically stable in the presence of gravity.

The psuedo-code shown in Algorithms[I]and 2l we give a high-level view of how
modules interact within a tunnel. In that code, a “legal” move for a FREE mod-
ule is one where it moves into an unoccupied space and has a solid path to travel
into that space (i.e. a flat surface made by 2 adjacent L-GROUP modules). The
DISASSEMBLE-NOW and ASSEMBLE-NOW variables are explained in the next sub-
section. Later, subsection [3.6] gives further descriptions of how we execute orthog-
onal turns or handle situations where only some modules receive a given broadcast
signal from the external controller. Full details and proofs are omitted here due to
length requirements.

3.5 Algorithm Outline: Connecting Adjacent Tunnels

With a working algorithm to generate locomotion with one tunnel, we now only
need to keep adjacent tunnels moving at about the same rate. We do this by pass-
ing messages through a slice whenever an L-group determines that it has finished
assembling or is safe to be disassembled. Algorithm [3l which would also be run
by L-GROUP modules, shows how this works for disassembly. Whenever a module
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if a DIS-READY message is received from above then
| Set DIS-READY-UP = TRUE.

end
if a DIS-READY message from a side direction then
| Set DIS-READY-SIDE = TRUE.
end
if DIS-READY-UP == TRUE and DIS-READY-SIDE == TRUE and no adjacent modules

in BACKWARD direction then
Set DISASSEMBLE-NOW = TRUE.

Send a DIS-READY message to the L-group modules below.
Send a DIS-READY message to the L-group modules in side directions.
end

Algorithm 3. The L-GROUP module collaboration algorithm. (high level)

switches to an L-GROUP algorithm, it initializes DIS-READY-UP = TRUE if there
are no other L-groups above it and DIS-READY-SIDE = TRUE if there is no other L-
group to one side of its L-group. Otherwise these values are initialized to FALSE. A
process similar to this would be done for assembly and the ASSEMBLE-NOW safety
check variable.

3.6 Other Challenges Solved

Convex-corner Transitions. Many existing hardware im-
plementations cannot perform convex-corner turns and
using several individual modules to form groups of fully
functional “meta-modules” is expensive and unwieldly.
However, there are two viable options for getting individ-
ual modules around a convex-corner. Option 1 is to have
that module travel along a 3rd surface which is orthogonal
to the surfaces making that corner. Figure[3lshows an exam- Fig- 5 Options 1 (top)
ple of this. Option 2 would be for a second moving module 2nd Option 2 for aid-
to come and push the first module past that convex-corner, & COnVex-comer tran-
or pull the first module back from that corner. sitions.

For Robomotion, the only convex-corner transitions needed are when an L-group
is being disassembled or assembled. We have 2 methods that can allow these corner
movements, one method for each of our 2 options given previously. Method 1 is to
have at least 3 modules “beyond” the last L-group in the tunnel. That is, behind the
back of the tunnel (and back of the robot) or in front of the front of the tunnel/robot.
In this case two of those modules, along with the next L-group in the tunnel, act as
a 3rd orthogonal surface for other modules to travel in or out of the tunnel. For our
second method, we simply have a FREE module wait at the end of the tunnel, mak-
ing a flat surface at the back of the robot with the last L-group in that tunnel. Now
any module “beyond” that L-group can slide next to that waiting FREE module, and
the waiting module could pull it into the tunnel. Conversely, a waiting module at the
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front of the tunnel could be pushed out beyond the frontmost L-group by another
FREE module coming behind it in the tunnel.

Making orthogonal turns Conceptually, making
a tunnel turn is simple: change one L-GROUP
module to FREE and when it moves a gap is
formed to start a new tunnel. In practice we
need modules in the frontmost 2 L-groups to re-
set their roles, forming 2 new L-groups facing in
the desired orthogonal direction. Figure [6] shows
an example of this. One of those new L-groups
will also communicate with the last L-group in
the old tunnel to eventually take over the IS-
BACKEND status and disassemble that last L-group
in the old tunnel. Finally, to coordinate multi-tunnel
turns, only every other L-group is marked as a
“valid” turn starter. Since tunnels have a 2-module
width, this prevents the formation of incompati-
ble parallel tunnels due to an “off by one” er-
ror.

Fig. 6 A tunnel beginning
a turn. Yellow modules are
FREE and purple modules
are part of the new orthog-
onal tunnel.

Module Delays. Movement through the interior of the
robot is acyclic (forward or backward in a tunnel), so no
deadlock can occur. Similarly, dependancies between
adjacent L-groups (for safety checks) are 1-directional
and so deadlock is avoided. Finally, within an L-group,
1 module (designated by being in the middle) makes all the group decisions. It acts
on these decisions after getting confirmation from the other 2 L-group members, so
no race conditions or deadlocks occur within an L-group. Thus, Robomotion can
withstand delays in module movement or computation without error.

Delays of external messages. For our model, we anticipate that an external control
may be used to send “change locomotion direction” messages to the robot as a
whole. The robot is composed of many individual modules and so there could be
delays in passing such an external message to all modules in the robot. To handle
these delays, we place a time stamp on all external messages. This time stamp is
the only use of memory that would not be constant-bounded. However, even this is
bounded if modules are trusted to respond to such external messages within some
large time span, after which we can reset the time stamp counter to zero.

3.7 Shape and Terrain Limitations

Robomotion can achieve stable locomotion for any shape that can be composed from
vertical towers of modules with small overhangs. This is because setting a constant
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bound on the shear or tension force experienced by any module also sets a constant
bound on the length of any overhang coming off any tower (given the weights of
modules in that overhang). Any physically stable configuration of modules faces
this limitation. Stronger materials or careful arrangement of modules could increase
the constant factor length. However, the overhang would be bounded by a constant
regardless.

Considering terrain with obstacles, Robomotion can travel
around obstacles but not as naturally as algorithms like Water-
flow or MMM. If Robomotion is confronted with a few obsta-
cles, it can turn to move around them or could “turn” one tunnel
into an adjacent one, merging them, to flow through small gaps.
However, for a complex maze or “briar patch” of obstacles, then Fig. 7 Very long
it may not be worth constructing Robomotion’s high-speed tun- ~ Overhangs will
nels. In these cases we may have to accept that there is no fast 11kely break.
way to travel through and resort to using the Waterflow method
(so we can still have physical stability) until we’ve moved past those obstacles. The
situation is like building highways in a mountainous region: the faster we want to
go, the straighter and smother the road needs to be.

4 Simulation Results

In addition to our theoretical results, we have also simulated our Robomotion algo-
rithm to experimentally verify its performance. Our simulation is written in Java and
can optionally use Java3D to display the robot modules. The basis of this simulation
was meant to aid us in making comparisons to the leading locomotion algorithm in
prior work: the Million Module March. While our simulation runs on a serial com-
puter, it is a distributed rather than centralized implementation in that each module
executes its own independent algorithm. We enforce that the only communication
between modules is message passing between adjacent, connected modules. For
sensing, a module A (which is cube shaped) can detect if it has an adjacent neigh-
bor on any of its 6 sides or if it can safely move forward into an adjacent lattice
location. Since our modules can not make convex-corner transitions, this means that
the space is open and that there is a flat surface for travel (i.e. adjacent neighbor
modules) between A’s current location and the desired new lattice location.

Modules do not know their global positions. The total robot configuration and
shape is not known by any module and is not known by any external controller.
Thus, each module is forced to act based only on local information or on messages
received from adjacent modules. Also, since there is no global knowledge of module
positions, any external controller cannot specify exact placements for modules in a
desired configuration. Instead, we allow less exact specifications like direction and
distance for locomotion or the desired number of parallel tunnels at the front of the
robot. This method for controlling the robot is more limiting, but we believe it is
more realistic for a scalable system in real hardware since it allows us to use only a
constant amount of memory within each module.
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Since our simulation runs on a single processor, the modules of course must
execute in a serialized fashion. However, to make this more realistic, at the start of
the simulation a randomized order is chosen for the modules. Our simulation then
executes in iterations. Within each iteration the modules execute in the randomized
order that was chosen and, when its turn comes, each module executes its current
algorithm.

To simulate message passing, a message sent from module A to module B will
be placed on a queue for B when A executes its algorithm. Module B will then
read all messages on its queue whenever it has its next turn to execute its own al-
gorithm. Note that this implementation actually makes Robomotion appear slower
than it would be when executed on actual hardware. This is because messages sent
between modules typically take 1 iteration for travel, the same travel time as a phys-
ical module moving between adjacent lattice locations. This communication delay
occurs more in Robomotion than in other locomotion algorithms because of our
question-reply format for handling messages (used to avoid errors due to dropped
messages).

4.1 Speed Comparisons

To make our comparison as direct as possible, we executed simulations for the same
test that was performed for the Million Module March algorithm. We ran cube-
shaped collections of 7 modules a distance of n'/> — 1 module lengths over flat
ground. This distance was chosen by the MMM authors because 7' /3 is the length of
1 side of the robot’s cubic shape and they wanted a 1-module length overlap between
the start and goal locations for the robot. Tests were run for different values of n to
see how the algorithm performed for different robot sizes. The most important speed
statistic for a locomotion algorithm is probably how long it takes the robot to travel
a single module-length or “unit” distance. Thus, we took the total number of time
steps taken by a robot during a locomotion test and divided by the n'/3 — 1 distance
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traveled for robots of size n. Statistics for Robomotion come from our simulation
while numbers for MMM are taken from its own publication. [3]

For this test we have also simulated a simple implementation of the “Waterflow”
style of locomotion to use as a baseline comparison along with MMM and Robo-
motion. As mentioned earlier in our Related Work Section (Section 2), Waterflow
is a style of algorithm where modules at the back of the robot slide up, slide across
the top of the robot, and then slide down the front to become the new front of the
robot. In this way, the modules tend to “flow” like water toward the desired goal
location. Many different research groups have devised different ways to control this
style of locomotion, yet any implementation should have roughly the same module
movements and so should give roughly the same locomotion speed (differing only
by small constant factors).

In Figure [§] we illustrate the statistical speed comparison between these 3 key
locomotion algorithms. Here a “time step” is the time for a single module to move a
single module length (unit distance). Experimentally, we found that the running time
for the Waterflow algorithm had near-perfect linear growth compared to n'/3, where
n is the number of modules in the robot. Up through robots of size 40> MMM had
similar running time growth, but was less efficient than Waterflow. However, from
n =403 to n =75°> MMM actually had a slight speed-up. We’re not sure of the cause,
but one educated guess is that traveling a longer distance (49 and 74 unit distances
for the last 2 data points shown) gave modules in the robot enough time to spread out
into a flatter robot shape. The dense cube shape of the initial configuration probably
limited movement.

Meanwhile, the running time for our Robomotion algorithm is a stark contrast to
the other two. We maintain near-constant speed for all values of n that we tested.
Specifically, the running time hovered between 12.33 time steps per unit distance
traveled for n = 10° and 13.43 for n = 80° = 512,000 modules. This consistent
performance is not surprising since each “tunnel” through the robot is predomi-
nantly independent of all others. The only slight delays are the message checks
sent between tunnels to keep any one from getting ahead of (or falling behind) in its
movement speed compared to adjacent tunnels. Experimentally, there was very little
effect (less than 1 time step per unit distance traveled) when we added these checks
to our algorithm. If implemented on actual hardware, we expect the effect would
be even smaller since messages should travel much faster than moving modules but
our simulation used 1 time step for either action. On hardware, we also expect that
Robomotion and Waterflow would both gain in speed since these algorithms have
modules travel long straight distances, from the robot’s back to its front. These mod-
ules could increase movement speed or conserve momentum by not stopping during
this trip since there’s no need to re-plan their travel path.

In addition to the speed of the robot, we also looked at the Simultaneous Active
Movement (SAM) rate for these 3 locomotion algorithms. Recall that we defined
this measure in Section[3]as the ratio of the number of moving modules compared to
the total number of modules in the robot. Figure [8]shows the average percentage of
modules that were moving at any given time, which is basically just taking the total
number of actuations made and dividing by the total time steps taken and by the total



136 S. Slee and J. Reif

number of modules. The results in this graph are very similar to the previous graph.
Waterfow and MMM both start with good SAM percentages, but lose efficiency as
the number of modules in the robot grows large. This time it is Waterflow which
is slightly less efficient, and beyond n = 403 there is again a slight improvement
for MMM. In contrast to these effects, Robomotion once again remains steady, and
fast, ranging from about 9.8% to 7.5% as the number of modules increase. We note
that while Robomotion is substantially better on both metrics, its advantage on raw
locomotion speed seems slightly better than its SAM rate advantage. A likely cause
is that Robomotion becomes more efficient with longer tunnels, and so for large
values of n (when the cube shape is longer in each dimension) it was able to be
nearly as fast even while having a very slight drop in SAM percentage.

5 Conclusion

In this paper we have presented a novel locomotion algorithm for lattice-style self-
reconfigurable robots. This algorithm is highly scalable, produces movement which
is more efficient than prior locomotion approaches, and always keeps the robot phys-
ically stable in the presence of gravity. We do this without using convex-corner
transitions and withstand possible failures in message passing and delays in mod-
ule execution. Thus, we believe this to be a good step toward developing scalable
control algorithms which would actually work on real hardware implementations.
For future work, the way in which we make orthogonal turns is one potential area.
Our current algorithm focuses on individual tunnels, so turning multiple tunnels can
be inefficient. Extending our algorithm to very rough terrain is another important
step, but is difficult for any physically stable algorithm. As we’ve described, straight
support columns must be maintained for any configuration to minimize shear and
tension forces. A likely compromise may be a heuristic-based algorithm that uses
Robomotion for flat or semi-rough terrain but reverts to Waterflow when faced with
highly irregular terrain (where high-speed locomotion may be impossible anyway).
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Adaptive Time Stepping in Real-Time
Motion Planning

Kris Hauser

Abstract. Replanning is a powerful mechanism for controlling robot motion
under hard constraints and unpredictable disturbances, but it involves an
inherent tradeoff between the planner’s power (e.g., a planning horizon or
time cutoff) and its responsiveness to disturbances. We present a real-time
replanning technique that uses adaptive time stepping to learn the amount of
time needed for a sample-based motion planner to make monotonic progress
toward the goal. The technique is robust to the typically high variance ex-
hibited by planning queries, and we prove that it is asymptotically complete
for a deterministic environment and a static objective. For unpredictable en-
vironments, we present an adaptive time stepping contingency planning al-
gorithm that achieves simultaneous safety-seeking and goal-seeking motion.
These techniques generate responsive and safe motion in simulated scenarios
across a range of difficulties, including applications to pursuit-evasion and ag-
gressive collision-free teleoperation of an industrial robot arm in a cluttered
environment.

1 Introduction

Robots must frequently adjust their motion in real-time to respond to un-
modeled disturbances. A common approach to deal with nonlinear dynamics
and hard state and control constraints is to reactively replan at each time
step (Figure[I]). This basic approach has been studied under various nomen-
clature (model predictive control, receding horizon control, or real-time plan-
ning) and using various underlying planners (numerical optimization, forward
search, or sample-based motion planners), and is less susceptible to local min-
ima than myopic potential field approaches. But replanning, in all its forms,
faces a fundamental tradeoff based on the choice of time limit: too large, and
the system loses responsiveness; too short, and the planner may fail to solve
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Fig. 1 A point robot (green) interleaves execution and replanning to reach an
unpredictably moving target (red).

difficult problems in the allotted time, which sacrifices global convergence
and safety. Empirical tuning by hand is the usual approach. But the time
needed to solve a planning query can vary by orders of magnitude not only
between problems, but also between different queries in the same problem,
and even on the same query (in the case of randomized planners). Unless
variability is addressed, the safety and completeness of real-time replanning
is in doubt.

This paper presents two replanning algorithms that address safety and
completeness not by reducing variability in planning time, but by tolerating
and adapting to it. They use a sample-based planner to build partial plans
whose endpoints monotonically improve an objective function, and adaptively
learn a suitable time step on-the-fly by observing whether the planner is able
to make progress within the time limit. The first algorithm, described in Sec-
tion Bl guarantees safe motion in deterministic, predictable environments by
construction, and furthermore we prove that the state of the robot is guaran-
teed to globally optimize the objective function in expected finite time for a
large class of systems. We apply it to real-time obstacle avoidance for a simu-
lated 6DOF industrial robot moving dynamically in a cluttered environment.
The second algorithm, described in Section [ uses a conservative contingency
planning approach to achieve a higher probability of safety in unpredictable
or adversarial environments, and we apply it to a pursuit-evasion problem.
Experiments suggest that adaptive time stepping is more consistent than
constant time stepping across problem variations for both algorithms.

2 Related Work

Bounded Rationality in Real-Time Agents. Real-time planning architectures
have a long history of study in artificial intelligence, control theory, and



Adaptive Time Stepping in Real-Time Motion Planning 141

robotics, but few have explicitly addressed the problem of “bounded ratio-
nality”, where limited computational resources hamper an agent’s ability
to produce timely, optimal plans. A notable exception is the CIRCA real-
time agent architecture [12] that separates the agent’s control into high-level
planning and low-level reactive control tasks. The high-level task conveys
controller specifications to the low-level task whenever planning is complete.
The disadvantage of this approach is that uncertainty in computation time
causes uncertainty in state, leading to harder planning problems. By con-
trast our approach is constructed to avoid state uncertainty, at least when
the system is deterministic, which makes planning more tractable.

Replanning Applications and Implementations. Model predictive control
(MPC), aka receding horizon control, is a form of replanning that at each
time step formulates a optimal control problem truncated at some horizon.
Such techniques have been successful in robot navigation |2, [16]; for example
the classic dynamic windowing technique introduced for indoor mobile robot
navigation is essentially MPC by another name [16]. In nonlinear systems,
truncated optimal control problems are often solved using numerical opti-
mization or dynamic programming [1, [11]. In discrete state spaces, efficient
implementations of replanning algorithms include the D* and Anytime A*
algorithms which are based on classic heuristic search [10, [17, [18].
Sample-based motion planners such as randomly-exploring random trees
(RRTs) and expansive space trees (ESTs) have been applied to real-time re-
planning for dynamic continuous systems [4, |5, 7, 120]. RRT and EST variants
have been applied to 2D helicopter navigation [3], free-floating 2D robots |1],
and and car-like vehicles [13] among moving obstacles, as well as exploring an
unknown environment [3]. Our algorithms also use sample-based planners.

Time Stepping in Replanning. Although many authors have proposed frame-
works that can handle nonuniform time steps [3,15,[13,120], few actually exploit
this capability to adapt to the power of the underlying planner. We are aware
of one paper in the model predictive control literature |14] that advances time
exactly by the amount of time taken for replanning. The weakness of this ap-
proach is that if replanning is slow, the actions taken after planning are based
on outdated state estimates, leading to major instability and constraint viola-
tions. Our work avoids this problem by setting planner cutoffs and projecting
state estimates forward in time at the start of planning.

Safety Mechanisms. Several mechanisms have been proposed to improve the
safety of replanning in dynamic environments. Feron et al introduced the
notion of 7-safety, which indicates that a trajectory is safe for at least time
7 15]. Such a certificate establishes a hard deadline for replanning. Hsu et al
introduced the notion of an “escape trajectory” as a contingency plan that
is taken in case the planner fails to find a path that makes progress toward
the goal [7]. We use a contingency planning technique for unpredictable envi-
ronments that is much like a conservative escape trajectory approach, except
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that it always ensures the conservative path is followed in case of a planning
failure.

The notion of inevitable collision states (ICS) was introduced by Petti and
Fraichard to the problem of real-time planning for a car-like vehicle among
moving obstacles [13]. An ICS is a state such that no possible control can
recover from a collision, and considering ICS as virtual obstacles prevents
unnecessary exploration of the state space. In practice, testing for ICS can
only be done approximately, and the conservative test proposed in [13] may
prevent the robot from passing through states that are actually safe. Our
work provides similar safety guarantees without explicit testing for ICS.

Speeding up Replanning. Many approaches have sought to improve responsive-
ness by simply reducing average replanning time. Some common techniques
are to reuse information from previous plans [4], to use precomputed coarse
global plans to essentially reduce the depth of local minima |2, |8 116, [19], or
a combination |3, [20]. These approaches are mostly orthogonal to the choice
of time step and can be easily combined with adaptive time stepping.

3 Replanning in Deterministic Environments

In real-time replanning the robot interleaves threads of replanning and exe-
cution, in which the robot (at high rate) executes a partial trajectory that
is intermittently updated by the replanning thread (at a lower rate) without
interrupting execution. The planner is given a time cutoff A, during which
it generates a new safe trajectory originating from a state propagated in
the future by time A. This section presents and analyzes the adaptive time-
stepping technique and an application to real-time assisted teleoperation of
a robot manipulator in deterministic environments.

3.1 Assumptions and Notation

The state of the robot x lies in a state space S, and its motion must obey
differential constraints @ € U(z,t) (note that this is simply a more compact
way of writing control constraints). We assume that the robot has a possibly
imperfect model of the environment and how it evolves over time, and let
F(t) C S denote the subset of feasible states at time t. We say that a trajec-
tory y(t) is 7-safe if §(t) € U(t) and y(t) € F(t) for all 0 < ¢ < 7. If so, we
say y(t) is an F; trajectory.

In this section we will be concerned primarily with F,, trajectories. We
will assume that F,, feasibility is achieved by ensuring that each trajectory
terminates at a feasible stationary state. For certain systems with dynam-
ics, such as cars and helicopters, a “braking” control can be applied. This
paper will not consider systems like aircraft that cannot reach zero velocity,
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although terminal cycles may be considered as a relatively straightforward
extension.

We address the problem of reaching a global minimum of a smooth time-
invariant potential function V(x) via an F trajectory y(t) starting from
the initial state xy. Assume the global minimum is known and attained at
V(z) = 0 without loss of generality. We say any trajectory that reaches
V(z) = 0 is a solution trajectory. We do not consider path cost, and define
the cost functional C(y) that simply returns the value of V'(x) at the terminal
state of the trajectory y. It is important to note that when we refer to an
optimal solution, we are referring to the optimality of the terminal point, not
the trajectory taken to reach it. We also impose the real-time constraint that
no portion of the current trajectory that is being executed can be modified.
So, if a replan is instantiated at time ¢ and is allowed to run for time A, then
no portion of the current trajectory before time ¢t + A may be modified.

We assume that we have access to an underlying planner with the following
“any-time” characteristics:

1. The planner iteratively generates F, trajectories starting from an initial
state and time y(¢o) given as input.

2. Planning can be terminated at any time, at which point it returns the
trajectory that attains the least value of the cost functional C(y) found
so far.

3. If the planner is given no time limit on any query that admits a solution
trajectory, then the planner finds a solution in expected finite time.

A variety of underlying planning techniques (e.g., trajectory optimization,
forward search, and sample-based motion planning) can be implemented in
this fashion. All experiments in this paper are conducted with minor variants
of the sampling-based planners RRT [9] and SBL [15], which grow trees using
forward integration of randomly-sampled control inputs. The running time of
such planners is variable across runs on a single query, and can vary by orders
of magnitude with the presence of narrow passages in the feasible space.

3.2 Adaptive Time-Stepping with Exponential Backoff

Here we describe our variable-time step replanning algorithm and a simple
but effective exponential backoff strategy for learning an appropriate time
step. Pseudocode is listed in Algorithm 1 in Figure[2l The replanning thread
takes time steps Aq, Ao, . ... In each time step, the planner is initialized from
the state on the current trajectory at time t; + Ay, and plans until Ag time
has elapsed (Line 2). If the planner finds a trajectory with lower cost than
the current trajectory (Line 3) then the new trajectory is spliced into current
trajectory at the junction tx + Ay (Line 4). Otherwise, the current trajectory
is left unaltered and replanning repeats.
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Algorithm 1. Replanning with an Adaptive Time-Step
Initialization:

Oa. y(t) is set to an Fs initial trajectory starting from ¢t = 0.
0Ob. A; is set to a positive constant.

Repeat fork=1,...:

1. Measure the current time t
2. Initialize a plan starting from y(tx + Ag), and plan for Ay time
3. If C(9) < C(y) — € for the best trajectory §(t) generated so far, then
4.  Replace the section of the path after tx + Ax with ¢
5. Set Axq1 = 2/3Ak
6. Otherwise,
7. Set Apy1 =24
Fig. 2 Pseudocode for the replanning algorithm.
... succeeds W A2
Current time . /' o
. ¥ A <L Replanning... o, ,
Time step o T >
- - non
() Q/ % \
o——l o > fails WA
o n t o n —F-
M b

Fig. 3 Each replanning iteration chooses a time step (left), initiates a plan starting
from the predicted future state (center), and either succeeds or fails. Upon success,
the robot progresses on the new plan and the time step is contracted. Upon failure,
the robot retains the original plan and the time step is increased.

Note that the condition in Line 3 requires a decrease by some small con-
stant € > 0. (To allow the planner to reach the global minimum exactly, an
exception can be made on the final step when C(j) = 0 is attained.) This
simplifies later analysis by preventing the theoretical occurrence of an infinite
number of infinitesimal cost improvements.

Lines 5 and 7 implement a simple exponential backoff strategy for choosing
the time cutoff. This permits recovery from a local minimum of V() in case
several planning failures are encountered in sequence. Such strategies are
widely used in protocols for handling network congestion, and there is a rough
analogy between uncertainty in planning time and uncertainty in message
delivery over an unreliable network. The idea is simple: if the planner fails,
double the time step (Line 7). If it succeeds, contract the time step (Line 5).
The constant 2/3 that we use in the contraction strategy does not need to
be chosen particularly carefully; resetting Agy1 to a small value works well
too. Figure [} illustrates one iteration of the protocol.
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3.3 Completeness and Competitiveness

We can now state a basic theorem that guarantees that Algorithm 1 is proba-
bilistically complete for static goals as long as the robot never reaches a state
where the goal becomes unreachable.

Theorem 1. If the environment is deterministic and perfectly modeled, and
the goal is reachable from any state that is reachable from the start, then
Algorithm 1 will find a solution trajectory in expected finite time.

Proof. Let R be the set of states reachable from the start, and let T'(x)
be the expected planning time for finding a solution trajectory starting at
x € R. Because of the assumption in Section Bl T'(z) is finite, and so is the
maximum of T'(x) over all R, which we denote to be T},q,. First we will show
that the time until a plan update has a finite expected value.

Suppose Algorithm 1 has its first plan update on the k’th iteration after
k — 1 failed iterations (the possibility that no such k exists is vanishingly
small). Because k — 1 iterations have passed without an update, the planning
cutoff on the k’th iteration is 2¥Ay. So the total time spent T over all the
k iterations is a geometric series with sum 7" = (2¥*1 — 1)A,. Let T}, be
the random variable denoting the planning time necessary to find a global
solution starting at (y(tx),tx). If & were known, then 7, would be lie in
the range (2¥1Ag,2%Ag], so that the inequality T < 47}, holds. But the
inequality E[T)] < Tynqy holds for all k, g, and tx, so E[T] < E[4T,] < 4T ax
unconditionally.

The number N of plan updates needed to reach a global minimum is finite
since the initial trajectory has finite cost, and each plan update reduces cost
by a significant amount. So, the total expected running time of Algorithm 1
is bounded by 4 NT}, 4., which is finite. O

We remark that the bound 4NT,,,, is extremely loose, and seemingly poor
compared to the performance bound 75,4, of simply planning from the initial
state until a solution is found. In practice, most problems contain few plan-
ning queries of extremely high difficulty corresponding to escaping deep local
minima of C', and the running time of Algorithm 1 will tend to be dominated
by those queries. Smaller, greedy advances in C(y) are often much quicker
to plan.

By construction Algorithm 1 will never drive the robot to an inevitable col-
lision state (ICS) as defined in [13], so it is equivalently “safe”. But in which
systems is it asymptotically complete? The key assumption of Theorem 1 is
that the goal can be reached by all states in R (this can be slightly weakened
to take R as those states actually reached by the robot during execution).
For example, it holds in reversible systems. In general, however, Algorithm
1 might inadvertently drive the robot into a dead end from which it can-
not escape — a condition we might call an inevitable failure state. In fact,
non-reversible systems seem to prove quite troublesome to all replanning tech-
niques because detecting dead ends requires sufficient global foresight that
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Fig. 4 (a) Our 2D benchmark problem. Passage width, and hence, difficulty, is pa-
rameterized by w. (b) The performance of constant cutoff strategies varies greatly
across passage widths, and short cutoffs (0.05, 0.1, and 0.2) fail completely on
difficult problems. The adaptive exponential backoff strategy (E.B.) achieves con-
sistent performance across problem variations. Performs is measured by solution
time, normalized by the time of the best constant cutoff for that problem.

might not be practical to achieve with limited computation time. These are
fruitful directions for future work.

As a final note, we remark that Algorithm 1 is not necessarily complete in
problems with time-varying potential V. For example, if the global minima
of V might alternate quickly between two locally easy but globally difficult
problems, then the algorithm will forever be able to make local progress and
will thereby keep the time step short.

3.4 Completeness and Sensitivity Experiments

We evaluated the performance of the adaptive strategy against constant time
stepping strategies on a static 2D benchmark across varying problem diffi-
culties. Consider a unit square state space S where the state is subject to
velocity constraints ||#|| < 1. Obstacles partition the feasible space F(t) into
two “rooms” with opposite-facing doorways, which are connected by hallways
(see Figure ). The state must travel from (0.3,0.5) to (0.6, 0.5), and the po-
tential function V' (x) simply measures the distance to the goal. For replanning
we use a unidirectional RRT planner E], which, like other sample-based plan-
ners, is sensitive to the presence of narrow passages in the feasible space. We
control the difficulty of escaping local minima by varying a parameter w, and
set the hallway widths to w and the doorway widths to 2w.

We measure performance as the overall time taken by the robot to reach
the goal, averaged over 10 runs with different random seeds. If it cannot reach
the goal after 120 s, we terminate the run and record 120 s as the running time.
Experiments compared performance over varying w for constant cutoffs 0.05,
0.1,0.2, 0.5, 1, 2, and 5s and the exponential backoff algorithm starting with
Ay = 0.1 (performance was relatively insensitive to choice of Ay).

Figure M plots the performance ratios of several strategies. Performance
ratio is measured relative to the best constant time step for that problem.
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Fig. 5 A Staiibli TX90L manipulator is commanded in real time to move its end
effector in a clockwise circle in a cluttered environment. The robot responds re-
actively to the target’s motion. Along the upper semicircle, rapid replanning with
a short time step allows the target to be followed closely. When obstacles are en-
countered on the lower semicircle, planning becomes more difficult. Adaptive time
stepping gives the planner sufficient time to enter and escape deep narrow pas-
sages. The current plan is drawn in orange, and its destination configuration is
drawn transparently.

Shorter cutoffs are unreliable on hard problems because the planner is unable
to construct paths that escape the local minimum of the initial room. On
the other hand, longer cutoffs waste time on easier problems. The adaptive
strategy delivers consistent performance, performing no worse than 1.4 times
that of the best constant cutoff across all problems.

3.5 Assisted Teleoperation Experiments on a 6DOF
Manzipulator

Replanning interleaves planning and execution, so motion appears more fluid
than a pre-planning approach. This is advantageous in human-robot inter-
action and assisted teleoperation applications where delays in the onset of
motion may be viewed as unnatural. We implemented a teleoperation system
for a dynamically simulated 6DOF Staiibli TX90L manipulator that uses re-
planning for real-time obstacle avoidance in assisted control. The robot is able
to reject infeasible commands, follow commands closely while near obstacles,
and does not get stuck in local minima like potential field approaches.

In this system, an operator controls a 3D target point (for example, using
a joystick or a laser pointer), and the robot is instructed to reach the point
using its end effector. The robot’s state space consists of configuration x
velocity, and its acceleration and velocity are bounded. Its configuration are
subject to joint limit and collision constraints. The objective function for the
planner is an unpredictably time-varying function V (x,t) which measures the
distance from the end effector to the target point.
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Fig. 6 Traces of the end effector’s desired position (Desired), the position at the
current plan’s destination configuration (Destination), and actual position as exe-
cuted by the robot (Actual) for the experiment in Figure

Our underlying planner is a unidirectional variant of the SBL: motion plan-
ner [15] that is adapted to produce dynamically feasible paths. We made the
following adjustments to the basic algorithm:

e We extend the search tree by sampling extensions to stationary config-
urations sampled at random. The local planner constructs dynamically
feasible trajectories that are optimal in obstacle free environments (a sim-
ilar strategy was used in [5]). To do so, we use analytically computed
trajectories that are time-optimal under the assumption of box-bounds on
velocity and acceleration [6].

e For every randomly generated sample, we generate a second configuration
using an inverse kinematics solver in order to get closer to the target.

e SBL uses a lazy collision checking mechanism that improves planning time
by delaying edge feasibility checks, usually until a path to the goal is found.
We delay edge checks until the planner finds a path that improves C(y).

e To improve the fluidity of motion, we devote 20% of each time step to
trajectory smoothing. We used the shortcutting heuristic described in [6]
that repeatedly picks two random states on the trajectory, constructs a
time-optimal segment between them, and replaces the intermediate portion
of the trajectory if the segment is collision free.

The simulation environment is based on the Open Dynamics Engine rigid-
body simulation package, where the robot is modeled as a series of rigid links
controlled by a PID controller with feedforward gravity compensation and
torque limits. The simulation does perform collision detection, but in our
experiments the simulated robot did not collide with the environment.

We simulated a user commanding a target to follow a circular trajectory
that passes through the robot and obstacles (Figure ). The circle has radius
0.8m and a period of 20s. The upper semicircle is relatively unconstrained
and can be followed exactly. Targets along the lower semicircle are signifi-
cantly harder to reach; at several points they pass through obstacles, and at
other points they require the robot to execute contorted maneuvers through
narrow passages in the feasible space. Experiments show that replanning can
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reach a large portion of the lower semicircle while tracking the upper semi-
circle nearly perfectly (Figure []).

4 Replanning in Unpredictable Environments

A conservative approach to uncertainty may be preferred in safety-critical
applications like transportation and medical robotics. This section presents
a real-time contingency planning algorithm that generates both optimistic
(goal seeking) and pessimistic (safety seeking) trajectories to balance safety-
seeking and goal-seeking behavior. Adaptive time stepping allows for a high
probability of replanning before a certain time limit — the time to potential
failure, or TTPF — in which safety is guaranteed. Experiments evaluate the
system in a pursuit-evasion scenario.

4.1 Conservative Replanning Framework

We assume that we have access to conservative bounds on the uncertainty of
the environment, and let Fj denote the environment model estimated by the
robot’s sensors at k’th time step. Let F'(¢; Ei) denote the feasible set with the
current model, and let F (t; E)) denote the set of states that is guaranteed to
be feasible at time ¢ under the conservative uncertainty bounds. For example,
if obstacle velocities are bounded, then one can consider a conservative space-
time “cone” of possible obstacle positions that grows as time increases.
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Fig. 7 Snapshots taken at half-second intervals from a pursuit-evasion experiment
in the unit square. Two pursuers (grey circles) seek the evader (green) greedily at
half the speed of the evader. The evader knows the pursuers’ velocity bound but not
their behavior. The evader replans a pessimistic path (red) to avoid the pursuers in
the worst case, and replans an optimistic path (cyan) in order to reach the goal in
the center of the room. Both paths share a common prefix. The trace of the robot
between frames is drawn as a purple trail.
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Consider a purely safety-seeking robot that uses the following scheme:

1. The current trajectory y(t) has a time to potential failure (TTPF) T if
it is safe for some duration T under conservative bounds on uncertainty.
That is, y(t) € F(t; Ey) for all t € [ty t, + T).

2. Replanning searches for a path ¢ that increases the TTPF to T + Ay or
some constant T;,;,, whichever is lower.

It is straightforward to use Algorithm 1 to implement such behavior simply
by using the TTPF as an optimization criterion. The robot will remain safe
unless replanning cannot improve the TTPF within the duration T' (and even
then, a constraint violation only happens in the worst Case. A violation may
occur if 1) no trajectory that improves the TTPF exists, in which case the
planner can do nothing except hope that the potential hazard goes away, or
2) not enough planning time was devoted to finding a safe path.

The risk of condition (2) is somewhat mitigated by the selection of the
parameter T),;,, which governs an “acceptable” threshold for the TTPF.
Below this threshold, the planner enforces that subsequent pessimistic plans
must increase the TTPF. Naturally, if safety were the robot’s only objective,
the best approach is to set T}, to be infinite. In the below section, a finite
Tmin will allow it to make optimistic progress toward a target while being
acceptably confident that safety will be ensured.

If the robot must also seek to optimize an objective V' (z), it must sacrifice
some safety in order to do so. Below we describe a contingency planning
framework where the robot’s path has a similarly high probability of safety
as the above scheme, but the planner seeks to simultaneously increase the
TTPF and makes progress towards reducing V' (z).

4.2 A Contingency Replanning Algorithm

In our contingency planning algorithm, the robot maintains both an opti-
mistic and a pessimistic trajectory that share a common prefix (Figure [1).
The role of the pessimistic trajectory is to optimize the TTPF, while the
role of the optimistic trajectory is to encourage consistent progress toward
the goal.

Pseudocode is listed in Figure B The pessimistic trajectory y(t) is main-
tained and followed by default. The optimistic trajectory y°(t), if it exists, is
identical to y(t) until the “junction” time t;. Each iteration of the replanning
loop begins by establishing time limits for the optimistic and the pessimistic
planners, with sum Ay (Line 2). Then a top-level decision is made whether
to initiate the new plan from the optimistic or the pessimistic trajectory:

L' A major benefit of sample-based replanning is that holding TTPF constant, a
factor n increase in computational speed results in a sharp reduction in failure
rate from p to p".
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Algorithm 2. Contingency Replanning with Adaptive Time Steps
Initialization:

Oa. y(t) < an initial trajectory starting from ¢ = 0.

Ob. y°(t) < nil.

Oc. Junction time t; < 0

Repeat fork=1,...:

1. Measure the current time tg.

2. Pick a pessimistic and optimistic time limit A} and A7. Let Ap = A} + A7

3. If t; > tx + Ay (branch the new plan from the optimistic path)

Plan an improved optimistic path starting from yo,(¢;).

Plan a pessimistic path ¢ starting from y,(¢; + Ax).

If Line 5 is successful, then
Set y(t) «— yo(t) for t < t; + Ay, and y(t) « §(t) for t > t; + Ax.
Set t; «— t; + Ay.

9. End

10. Otherwise, (branch the new plan from the pessimistic path)

11.  Plan an optimistic path starting from y(tx + Ak).

12.  If successful, then

®© N o

13. Plan a pessimistic path § starting from yo(tx + 24%).

14. If successful, then

15. Set y(t) «— yo(t) for ¢t + A <t < tp + 24k, and y(t) «— §(t) for
t >t + 2Ak.

16. Set t; «— ty + 2A.

17. End

18.  Otherwise,

19. Plan a pessimistic path § starting from y(¢x + Ag).

20. If successful, set y(t) < §(t) for ¢t > ti + Ak.

Fig. 8 Pseudocode for the contingency replanning algorithm.

e From the optimistic trajectory (Lines 4-9). To continue progress along
y° after time t;, the robot must generate a pessimistic trajectory that
branches out of y° at some time after ¢;. An improvement to the optimistic
plan is attempted as well.

e [From the pessimistic trajectory (Lines 11-20). To progress toward the tar-
get, the planner will attempt to branch a new pessimistic and optimistic
pair out of the current pessimistic trajectory at time ¢ + Agx. The new
junction time will be ¢ + 2A. If this fails, the planner attempts an ex-
tension to the pessimistic path.

To improve the optimistic path, the planner constructs a path in the op-
timistic feasible space F(t;t.) based on the current environment model. A
query is deemed successful if, after time limit A9, C'(y°) is improved over the
current optimistic path if it exists, or otherwise over the current pessimistic
path. If the query fails, y° is left untouched. Pessimistic queries are handled
exactly as in the prior section.
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Fig. 9 Pursuit-evasion environments 1 and 2. Narrow passages, and hence, diffi-
culty, are parameterized by w. The evader (green) must try to reach the target
(red) within 10s while avoiding the pursuer (blue), with capture radius 0.05.
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Fig. 10 (a) Survival time and (b) success rates for evader time-stepping strategies
on problem 1. Results were averaged over ten trials on each passage width. The
adaptive strategy (E.B.) performs as well as the best constant cutoff, and is more
consistent across problem variations.

To choose planning times, we again use an adaptive time stepping scheme
using the exponential backoff strategy of Section Pessimistic and opti-
mistic planning times are learned independently. We also make adjustments
in case the candidate time step exceeds the finite TTPF of our paths. First,
if we find that A exceeds the TTPF T of the pessimistic path, that is, fail-
ure may occur before planning is complete, we set A} = T/2 and AY = 0.
Second, if we are attempting a modification to the optimistic trajectory, and
the TTPF of the optimistic trajectory 7 is less than t; + Ay, then we scale
AP and A9 to attempt a replan before T° (otherwise, the pessimistic replan
is guaranteed to fail).

4.3 FExperitments on a Pursuit-FEvasion Example

Our experiments evaluate how contingency planning strategies affect an
evader’s performance in a planar pursuit-evasion scenario. The evader’s
goal is to reach a target within 10s before being captured by a pursuer.
The evader and pursuer move at maximum speeds 1 and 0.5, respectively.
The evader treats the pursuer as an unpredictable obstacle with bounded
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Fig. 11 Success rates for evader time-stepping strategies on problem 2 for a (a)
nonadversarial and (b) adversarial pursuer behaviors. In the nonadversarial case the
pursuer is allowed to pass through obstacles. A shorter time step (Cutoff 0.2) per-
forms well in the nonadversarial case, but a longer time step (Cutoff 0.5) performs
better in the adversarial case. The adaptive strategy works well in both cases.

velocity, and uses Algorithm 2 with T}, = 1.0. The evader’s conservative
model of ﬁ'(t,Ek) does not consider walls to be impediments to the pur-
suer’s possible movement. The pursuer treats the evader as an unpredictably
moving target, and uses Algorithm 1 to reach it.

Holding the pursuer’s behavior constant, we varied the environment diffi-
culty and evader’s time stepping strategy on Problem 1 (Figure [@(a)). Here
the pursuer begins in a room with the evader, which must escape through a
narrow passage to reach the target in a second room. Figure [I0] shows that
narrow passage width does not affect the evader’s survival much, but rather,
responsiveness is more important to enable it to dance around an approaching
pursuer. The adaptive time strategy appropriately finds short time steps.

Next, we considered a more difficult environment, Problem 2 (Figure@I(b)).
Mere survival is not challenging (in all experiments it was over 90%), but
reaching the target is; success requires the evader to choose a different hall-
way than the pursuer. We tested a nonadversarial pursuer behavior in which
it “wanders” with velocity varying according to a random walk, and is allowed
to pass through walls. Figure [[Tl(a) shows that in this case, the success rate
is highly dependent on problem difficulty, and no constant cutoff performs
uniformly well across all width variations. Similar variations were found us-
ing an adversarial pursuer (Figure [[T((b)). The adaptive strategy performed
nearly as well as the best constant cutoff across all problem variations.

5 Conclusion

The runtime variance of planning queries has been a major impediment
to the adoption of replanning techniques in real-time robot control. This
paper addresses this problem by introducing two adaptive time-stepping
algorithms — a simple one for deterministic environments, and a more
complex one for nondeterministic environments — that tolerate run-time
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variance by learning a time step on-the-fly. Experiments on shared control
for an industrial robot arm and on pursuit-evasion examples suggest that
replanning may be a viable mechanism for real-time navigation and obstacle
avoidance. Additional videos of our experiments can be found on the web at
http://www.iu.edu/motion/realtime.html.
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The Bayes Tree: An Algorithmic Foundation for
Probabilistic Robot Mapping

Michael Kaess, Viorela Ila, Richard Roberts, and Frank Dellaert

Abstract. We present a novel data structure, the Bayes tree, that provides an al-
gorithmic foundation enabling a better understanding of existing graphical model
inference algorithms and their connection to sparse matrix factorization methods.
Similar to a clique tree, a Bayes tree encodes a factored probability density, but
unlike the clique tree it is directed and maps more naturally to the square root in-
formation matrix of the simultaneous localization and mapping (SLAM) problem.
In this paper, we highlight three insights provided by our new data structure. First,
the Bayes tree provides a better understanding of batch matrix factorization in terms
of probability densities. Second, we show how the fairly abstract updates to a ma-
trix factorization translate to a simple editing of the Bayes tree and its conditional
densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for
sparse nonlinear incremental optimization, that combines incremental updates with
fluid relinearization of a reduced set of variables for efficiency, combined with fast
convergence to the exact solution. We also present a novel strategy for incremental
variable reordering to retain sparsity. We evaluate our algorithm on standard datasets
in both landmark and pose SLAM settings.

Keywords: graphical models, clique tree, probabilistic inference, sparse linear al-

gebra, nonlinear optimization, smoothing and mapping, SLAM, iSAM.

1 Introduction

Probabilistic inference algorithms are important in robotics for a number of appli-
cations, ranging from simultaneous localization and mapping (SLAM) for building
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geometric models of the world, to tracking people for human robot interaction. Our
research is mainly in large-scale SLAM and hence we will use this as an example
throughout the paper. SLAM is a core competency in mobile robotics, as it provides
the necessary data for many other important tasks such as planning and manipu-
lation, in addition to direct applications such as 3D modeling, exploration, and re-
connaissance. The uncertainty inherent in sensor measurements makes probabilistic
inference algorithms the favorite choice for SLAM. And because online operation
is essential for most real applications, efficient incremental online algorithms are
important and are at the focus of this paper.

Taking a graphical model perspective to probabilistic inference in SLAM has a
rich history [2] and has especially led to several novel and exciting developments
in the last years [12] (111 [31]]. Paskin proposed the thin junction tree fil-
ter (TITF) [27]], which provides an incremental solution directly based on graphical
models. However, filtering is applied, which is known to be inconsistent when ap-
plied to the inherently nonlinear SLAM problem [20], i.e., the average taken over a
large number of experiments diverges from the true solution. In contrast, full SLAM
retains all robot poses and can provide an exact solution, which does not suffer
from inconsistency. Folkesson and Christensen presented Graphical SLAM [10], a
graph-based full SLAM solution that includes mechanisms for reducing the com-
plexity by locally reducing the number of variables. More closely related, Frese’s
Treemap [12] performs QR factorization within nodes of a tree that is balanced over
time. Sparsification is applied to prevent nodes from becoming too large, introduc-
ing approximations by duplication of variables.

The sparse linear algebra perspective has been explored by Dellaert et al. [6} [7,
23] in Smoothing and Mapping (SAM), an approach that exploits the sparsity of
the smoothing information matrix. The matrices associated with smoothing are typ-
ically very sparse, and one can do much better than the cubic complexity associated
with factorizing a dense matrix [24]]. Kaess et al. [22] proposed incremental
smoothing and mapping (iISAM), which performs fast incremental updates of the
square root information matrix, yet is able to compute the full map and trajectory at
any time. New measurements are added using matrix update equations [[16, 13 [17],
so that previously calculated components of the square root information matrix are
reused. However, to remain efficient and consistent, iSAM requires periodic batch
steps to allow for variable reordering and relinearization, which is expensive and
detracts from the intended online nature of the algorithm.

To combine the advantages of the graphical model and sparse linear algebra per-
spective, we propose a novel data structure, the Bayes tree. Our approach is based
on viewing matrix factorization as eliminating a factor graph into a Bayes net, which
is the graphical model equivalent of the square root information matrix. Performing
marginalization and optimization in Bayes nets is not easy in general. However, a
Bayes net resulting from elimination/factorization is chordal, and it is well known
that a chordal Bayes net can be converted into a tree-structured graphical model in
which these operations are easy. The most well-known such data structure is the
clique tree [30,[1]], also known as the junction tree in the Al literature [4]], which has
already been exploited for distributed inference in SLAM [8, 27]. However, the new
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data structure we propose here, the Bayes tree, is directed and corresponds more
naturally to the result of the QR factorization in linear algebra, allowing us to an-
alyze it in terms of conditional probability densities in the tree. We further show
that incremental inference corresponds to a simple editing of this tree, and present a
novel incremental variable ordering strategy.

Exploiting this new data structure and the insights gained, we propose a novel in-
cremental exact inference method that allows for incremental reordering and
just-in-time relinearization. To the best of our knowledge this is a completely
novel approach to providing an efficient and exact solution to a sparse nonlin-
ear optimization problem in an incremental setting, with general applications be-
yond SLAM. While standard nonlinear optimization methods repeatedly solve a
linear batch problem to update the linearization point, our Bayes tree-based algo-
rithm allows fluid relinearization of a reduced set of variables which translates into
higher efficiency, while retaining sparseness and full accuracy. We compare our new
method to iISAM using multiple publicly available datasets in both landmark and
pose SLAM settings.

2 Problem Statement

We use a factor graph [23] to represent the SLAM problem in terms of graphical
models. Formally, a factor graph is a bipartite graph G = (.#,0,&’) with two node
types: factor nodes f; € & and variable nodes 6; € ©. Edges ¢;; € & are always
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Fig. 1 (top) The factor graph and the associated Jacobian matrix A for a small SLAM exam-
ple, where a robot located at successive poses x1, X2, and x3 makes observations on landmarks
l1 and . In addition there is an absolute measurement on the pose x;. (bottom) The chordal
Bayes net and the associated square root information matrix R resulting from eliminating
the factor graph using the elimination ordering /1, l», x1, x2, x3. Note that the root, the last
variable to be eliminated, is shaded darker.



160 M. Kaess et al.

Algorithm 1. Eliminating a variable 6; from the factor graph.

1. Remove from the factor graph all factors f;(6;) that are adjacent to 6;. Define the sepa-
rator S; as all variables involved in those factors, excluding ;.

2. Form the (unnormalized) joint density fjoin/(6;,S;) = I1; fi(©;) as the product of those
factors.

3. Using the chain rule, factorize the joint density fjoin(0;,5;) = P(6;]S;) fuew(S;)- Add the
conditional P(6;]S;) to the Bayes net and the factor fy,(S;) back into the factor graph.

between factor nodes and variables nodes. A factor graph G defines the factorization
of a function f(©) as

fe)=11(@) )

where 0 is the set of variables 6; adjacent to the factor f;, and independence rela-
tionships are encoded by the edges ¢;;: each factor f; is a function of the variables
in ©;. An example of a SLAM factor graph is shown in Fig. [I(top).

When assuming Gaussian measurement models

1
@) =exp (-3 Ih0) 51, ) &)

as is standard in the SLAM literature [32, 3, [9], the factored objective function we
want to maximize () corresponds to the nonlinear least-squares criterion

argmin (~log /(0)) = argmin 2 3 (@) — i} G)
]
where /;(©;) is a measurement function and z; a measurement, and | ||3 ATxle
is defined as the squared Mahalanobis distance with covariance matrix X.

A crucial insight is that inference can be understood as converting the factor
graph to a Bayes net using the elimination algorithm. Variable elimination [1] 4]
originated in order to solve systems of linear equations, and was first applied in
modern times by Gauss in the early 1800s [[14]].

In factor graphs, elimination is done via a bipartite elimination game, as de-
scribed by Heggernes and Matstoms [[19]. This can be understood as taking apart
the factor graph and transforming it into a Bayes net [29]. One proceeds by elimi-
nating one variable at a time, and converting it into a node of the Bayes net, which is
gradually built up. After eliminating each variable, the reduced factor graph defines
a density on the remaining variables. The pseudo-code for eliminating a variable
0, is given in Algorithm[Il After eliminating all variables, the Bayes net density is
defined by the product of the conditionals produced at each step:

P(©)=T]P(6)ls;) @)

The result of this process for the example in Fig. [[(top) is shown in Fig.[T(bottom).
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3 The Bayes Tree

The Bayes net resulting from elimination/factorization is chordal, and it can be con-
verted into a tree-structured graphical model in which optimization and marginal-
ization are easy. In this paper we introduce a new data structure, the Bayes tree, to
better capture the equivalence with linear algebra and enable new algorithms in re-
cursive estimation. A Bayes tree is a directed tree where the nodes represent cligues
C;. of the underlying chordal Bayes net. In this respect Bayes trees are similar to
clique trees, but a Bayes tree is directed and is closer to a Bayes net in the way it en-
codes a factored probability density. In particular, we define one conditional density
P(F|Sy) per node, with the separator Sy as the intersection C N I, of the clique Cy.
and its parent clique I, and the frontal variables Fy as the remaining variables, i.e.

Fi. £} Cy \ Si. We write Cy, = F : Sg. This leads to the following expression for the
joint density P(©) on the variables © defined by a Bayes tree,

P(©) =[TP(FS) (5)
k

where for the root F, the separator is empty, i.e., it is a simple prior P(F;) on the
root variables. The way Bayes trees are defined, the separator Sy for a clique Cy is
always a subset of the parent clique I, and hence the directed edges in the graph
have the same semantic meaning as in a Bayes net: conditioning.

Every chordal Bayes net can be transformed into a tree by discovering its cliques.
Discovering cliques in chordal graphs is done using the maximum cardinality search
algorithm by Tarjan and Yannakakis [33]], which proceeds in reverse elimination
order to discover cliques in the Bayes net. The algorithm for converting a Bayes net
into a Bayes tree is summarized in Algorithm 2] and the corresponding Bayes tree
for the small SLAM example in Fig.[Ilis shown in Fig.

Gaussian Case. In practice one always considers a linearized version of problem
(@). If the measurement models 4; in equation (2)) are nonlinear and a good lineariza-
tion point is not available, nonlinear optimization methods such as Gauss-Newton
iterations or the Levenberg-Marquardt algorithm solve a succession of linear ap-
proximations to (3) in order to approach the minimum.
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Fig. 2 The Bayes tree and the associated square root information matrix R describing the
clique structure in the Bayes net from Fig.[[l A Bayes tree is similar to a clique tree, but
is better at capturing the formal equivalence between sparse linear algebra and inference in
graphical models. The association of cliques with rows in the R factor is indicated by color.
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Algorithm 2. Creating a Bayes tree from the chordal Bayes net resulting from elim-
ination (Algorithm ).
For each conditional density P(6;]S;) of the Bayes net, in reverse elimination order:
If no parent (S; = {})
start a new root clique F containing 6;
else
identify parent clique C, that contains the first eliminated variable of S; as a frontal
variable
if nodes F, US), of parent clique C,, are equal to separator nodes S; of conditional
insert conditional into clique C),
else
start new clique C’ as child of C,, containing 6;

At each iteration of the nonlinear solver, we linearize around a linearization point
O to get a new, linear least-squares problem in x with the objective function

1
~log f(x) = 5 [ Ax— b ©)

where A € R™*" is the measurement Jacobian consisting of m measurement rows
and x is an n-dimensional tangent vector of a minimal representation [18]. Note
that the covariances X; have been absorbed into the corresponding block rows of A,

2
. T 1 1 .

making use of ||X||§ =x'Zx=x"X 73X 1x= HZ_fo . The matrix A above

is a sparse block-matrix, and its graphical model counterpart is a Gaussian factor

graph with exactly the same structure as the nonlinear factor graph, see Fig.[Il The
probability density on x defined by this factor graph is the normal distribution

P(x) = e e —exp{ - ax - bIP | )

In Gaussian factor graphs, elimination is equivalent to sparse QR factoriza-
tion of the measurement Jacobian. In Gaussian factor graphs, the chain rule
Fioint(0,8;) = P(6;]S}) fnew(S;) in step 3 of Algorithm[Ilcan be implemented using
Householder reflections or a Gram-Schmidt orthogonalization, in which case the
entire elimination algorithm is equivalent to QR factorization of the entire measure-
ment matrix A. To see this, note that, forx; € R ands; € R/ (the set of variables S;
combined in a vector of length /), the factor fjyin (x isS j) defines a Gaussian density

1
fjoint(xjasj)XeXp{EHaxj+ASSjb||2} ®)

where the dense, but small matrix A ; = [a|Ag] is obtained by concatenating the vec-
tors of partial derivatives of all factors connected to variable x;. Note that a € R,
Ag € R**! and b € R¥, with k the number of measurement rows of all factors
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connected to x;. The desired conditional P(x/|s;) is obtained by evaluating the joint
(@) for a given value of s;, yielding

1
P(stj)*eXp{Q(ijrrdef} )

with r 4 aAgandd 4 a’b, where a' 4 (aT )71 a” is the pseudo-inverse of a. The
new factor f;.,(s;) is obtained by substituting x; = d — rs; back into (8):

1
f”ew(sj):exP{_§’|A/sf_b/’|2} (10)

where A’ 4 Ag—ar and b’ 4 b —ad. The above is one step of Gram-Schmidt, inter-
preted in terms of densities, and the sparse vector r and scalar d can be recognized
as specifying a single joint conditional density in the Bayes net, or alternatively a
single row in the sparse square root information matrix as indicated in Fig.

Solving. The optimal assignment x* of the linear least-squares solution is the
one that maximizes the joint density P(x) from (@). The optimal assignment x* can
be computed in dynamic programming style in one pass from the leaves up to the
root of the tree to define all functions, and then one pass down to retrieve the optimal
assignment for all frontal variables, which together make up the variables x. The first
pass is already performed during construction of the Bayes tree, and is represented
by the conditional densities associated with each clique. The second pass recovers
the optimal assignment starting from the root based on (3) by solving

xj=d—rs; (11)

for every variable x;, which is equivalent to backsubstitution in sparse linear algebra.

4 Incremental Inference

We show that incremental inference corresponds to a simple editing of the Bayes
tree, which also provides a better explanation and understanding of the otherwise
abstract incremental matrix factorization process. In particular, we will now store
and compute the square root information matrix R in the form of a Bayes tree .7.
Incremental factorization/inference is performed by reinterpreting the top part of
the Bayes tree again as a factor graph, adding to this the new factors, creating with
a new elimination order a new Bayes tree from this “top”, then reattaching to it
the unaffected subtrees. When a new measurement is added, for example a factor
f'(xj,x;r), only the paths between the cliques containing x; and x; (respectively)
and the root are affected. The sub-trees below these cliques are unaffected, as are
any other sub-trees not containing x; or x . Fig. Bshows how these steps are applied
to our small SLAM example (originally in Fig.[2). The upper-left shows that adding
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Fig. 3 Updating a Bayes tree with a new factor, based on the example in Fig. [2l (top left)
The affected part of the Bayes tree is highlighted for the case of adding a new factor between
x1 and x3. Note that the right branch is not affected by the change. (top right) The factor
graph generated from the affected part of the Bayes tree. (bottom left) The chordal Bayes net
resulting from eliminating the factor graph. (bottom right) The Bayes tree created from the
chordal Bayes net, with the unmodified right “orphan” subtree from the original Bayes tree
added back in.

Algorithm 3. Updating the Bayes tree with new factors %’.

In: Bayes tree .7, new linear factors .7’
Out: modified Bayes tree .7’

1. Remove top of Bayes tree and re-interpret it as a factor graph:

a. For each affected variable, remove the corresponding clique and all parents up to the
root.
b. Store orphaned sub-trees .7, of removed cliques.

2. Add the new factors .% into the resulting factor graph.

3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [I)), and re-assemble
into a new Bayes tree (Algorithm [2).

4. Insert the orphans .7, back into the new Bayes tree.

the new factor between x; and x3 only affects the left branch of the tree. The entire
process of updating the Bayes tree with a new factor is described in Algorithm[3
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To understand why only the top part of the tree is affected, we look at two impor-
tant properties of the Bayes tree. These directly arise from it encoding information
flow during elimination. First, during elimination, variables in each clique collect
information from their child cliques via the elimination of these children. Thus,
information in any clique propagates only upwards to the root. Second, the infor-
mation from a factor enters elimination only when the first variable of that factor is
eliminated.

Combining these two properties, we see that a new factor cannot influence any
other variables that are not successors of the factor’s variables. However, a factor on
variables having different (i.e. independent) paths to the root means that these paths
must now be re-eliminated to express the new dependency between them.

5 Incremental Reordering

Choosing the right variable ordering is essential for the efficiency of a sparse ma-
trix solution, and this also holds for the Bayes tree approach. An optimal ordering
minimizes the fill-in, which refers to additional entries in the square root informa-
tion matrix that are created during the elimination process. In the Bayes tree, fill-in
translates to larger clique sizes, and consequently slower computations. Fill-in can
usually not be completely avoided, unless the original Bayes net already is chordal.
Finding the variable ordering that leads to the minimal fill-in is NP-hard. One typi-
cally uses heuristics such as the column approximate minimum degree (COLAMD)
algorithm by Davis et al. [5]], which provide close to optimal orderings for many
problems.

Fig. 4 For a trajectory with loop closing, two different optimal variable orderings based on
nested dissection are shown in the top row, with the corresponding Bayes tree structure in
the bottom row. For the incremental setting the left choice is preferable, as the most recent
variables end up in the root, minimizing work in future updates.
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While performing incremental inference in the Bayes tree, variables can be re-
ordered at every incremental update, eliminating the need for periodic batch re-
ordering. This was not understood in [23]], because this is only obvious within the
graphical model framework, but not for matrices. Reordering is only performed for
the variables affected by the new factors. Finding an optimal ordering for this subset
of variables does not necessarily provide an optimal overall ordering. However, we
have observed that some incremental orderings provide good solutions, comparable
to batch application of COLAMD.

One particularly good ordering forces the affected variables to be eliminated last.
This strategy provides a good ordering because new measurements almost always
connect to recently observed variables. In particular, odometry measurements al-
ways connect to the previous pose. In the exploration mode it is clear that if the
most recent variables end up in the root, only a small part of the tree (optimally
only the root) has to be reorganized in the next step. The more difficult case of a
loop closure is visualized in Fig.d In the case of a simple loop, nested dissection
provides the optimal ordering. The first cut can either (a) include the root, or (b)
not include the root, and both solutions are equivalent in terms of fill-in. However,
there is a significant difference in the incremental case: For the horizontal cut that
does not include the most recent variable 7, that variable will end up further down
in the tree, requiring larger parts of the tree to change in the next update step. The
vertical cut, on the other hand, includes the last variable in the first cut, pushing it
into the root, and therefore leading to smaller, more efficient changes in the next
step. In order to deal with more general topologies than this simple example, we
use a constrained version of the COLAMD algorithm, that allows keeping the last
variables in the root while still obtaining a good overall ordering.

6 Exact Incremental Inference with Fluid Relinearization

In this section we use the Bayes tree in a novel algorithm for optimizing a set of non-
linear factors that grows over time, which is directly applicable to online mapping.
We have already shown how the Bayes tree is updated with new linear factors. We
now discuss how to perform relinearization where needed, a process that we call
fluid relinearization. Then we present a combined algorithm for adding nonlinear
factors over time, while keeping the Bayes tree and the estimate up-to-date.

The goal of our algorithm is to obtain an estimate © for the variables (map and
trajectory), given a set of nonlinear constraints that expands over time, represented
by nonlinear factors .%. New factors .%’ can arrive at any time and may add new
variables ©’ to the estimation problem. We take the most recent estimate © as lin-
earization point to solve a linearized system as a subroutine in an iterative nonlinear
optimization scheme. The linearized system is represented by the Bayes tree .7

Solving. When solving in a nonlinear setting, we obtain a delta vector A that is
used to update the linearization point ©, as shown in Algorithm[l Updates are often
local operations that do not affect the solution of other parts of the map. Therefore
we will consider variables unchanged for which the recovered delta changes by less
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Algorithm 4. Solving the Bayes tree in the nonlinear case returns an update A that
can be added to the current linearization point © to obtain the current estimate for
all variables © 4+ A.

In: Bayes tree .7

Out: update A

Starting from the root clique C, = F;:

1. For current clique C; = Fy, : Sy,
compute update Ay of frontal variables Fj using already computed values of parents Sy
and the local conditional density P(Fy|Sk).

2. For all variables Ay ; in A that change by more than a threshold o:
recursively process each descendant containing such a variable.

Algorithm 5. Fluid relinearization: The linearization points of select variables are
updated based on the current delta A.

In: nonlinear factors .%, linearization point ©, Bayes tree .7, delta A
Out: updated Bayes tree .7, updated linearization point @

Mark variables in A above threshold B: J = {A; € A|A; > B}.

Update linearization point for marked variables: @y := @y + A;.

Mark all cliques that involve marked variables ©; and all their ancestors.
From the leaves to the top, if a clique is marked:

s

a. Relinearize the original factors in .% associated with the clique.
b. Add cached marginal factors from any unmarked children.
c. Re-eliminate.

than a small threshold «. For a clique that does not contain any variables that are
considered changed, the subtrees will not be traversed. To be exact, the different
units of variables have to be taken into account, but one simple solution is to take
the minimum over all thresholds.

Fluid Relinearization. The idea behind just-in-time or fluid relinearization is
to keep track of the validity of the linearization point for each variable, and only
relinearize when needed. This represents a departure from the conventional lin-
earize/solve approach that currently represents the state of the art, and can be viewed
as a completely new algorithm for nonlinear optimization. For a variable that is cho-
sen to be relinearized, all relevant information has to be removed from the Bayes tree
and replaced by relinearizing the corresponding original nonlinear factors. Cliques
that are re-eliminated have to take into account also the marginal factors that get
passed up from subtrees. We cache those marginals during elimination to avoid hav-
ing to re-eliminate unmarked cliques to obtain them. Algorithm[5]shows the overall
fluid relinearization process.

Now we have all components for a fully incremental nonlinear optimization al-
gorithm that allows exact incremental inference for sparse nonlinear problems such
as SLAM. The algorithm is summarized in Algorithm [6] and we provide a brief
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Algorithm 6. Nonlinear iteration with incremental variable reordering and fluid re-
linearization.

In / out: Bayes tree .7, linearization point @, nonlinear factors .#

In: new nonlinear factors .#’, new variables ©’

Initialization: .7 =0,0 =0, .% =0

Add any new factors .Z :=.Z U.Z.

Initialize any new variables ©' and add © := QO U@’.
Linearize new factors .’ to obtain .%;,.
Linear update step, applying AlgorithmBlto %/, .
Solve for delta A with Algorithm @l

Iterate Algorithm Bluntil no more relinearizations occur.

A

discussion of its complexity here. We assume here that initialization is available and
it is close enough to the global minimum to allow convergence - that is a general
requirement of any direct solver method. The number of iterations needed to con-
verge is typically fairly small, in particular because of the quadratic convergence
properties of our algorithm near the minimum. For exploration tasks with a con-
stant number of constraints per pose, the complexity is O(1). In the case of loop
closures the situation becomes more difficult, and the most general bound is that for
full factorization, 0(n3), where 7 is the number of variables (poses and landmarks if
present). Under certain assumptions that hold for many SLAM problems, the com-
plexity is bounded by O(n') [24]. It is important to note that this bound does not
depend on the number of loop closings. It should also be noted that our incremental
algorithm is often much faster than a full factorization, as we show below.

7 Experimental Results

This section describes the experiments that validate the presented approach, using
both synthetic and real datasets that are publicly available. We compare our estima-
tion and timing results with a state of the art incremental algorithm in order
to highlight the advantages of fluid relinearization and incremental reordering. We
have implemented the batch and iISAM algorithms using the same Bayes tree li-
brary to provide a comparison of the algorithms, rather than a comparison of differ-
ent implementations. All results are obtained with a research C++ implementation,
running single-threaded on a laptop with Intel Core 2 Duo 2.2 GHz processor, and
using the COLAMD algorithm by Davis et al. [5]. We use the thresholds oz = 0.005
and B = 0.05 for solving and relinearization, respectively.

We evaluate the timing of our Bayes tree algorithm on the Victoria Park dataset,
an often-used benchmark SLAM dataset 28] courtesy of H. Durrant-Whyte and
E. Nebot. This dataset includes 6969 laser scans with the corresponding odometry
readings. The laser scans are processed to detect the trunks of the trees in the park,
which are used as landmarks. Fig. [5] shows the final trajectory estimate together
with the detected landmarks. In this figure the trajectory is colored according to
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Fig. 5 The Victoria Park dataset (top) and the simulated Manhattan world dataset (bottom)
after optimization, color coded with the number of variables that are updated for every step
along the trajectory. Green corresponds to a low number of variables, red to a high number.

the number of variables our algorithm had to recalculate at each step, where green
represents a small number of variables (order of 10), yellow a moderate number,
and red finally a large number (order of hundreds of variables). A relatively small
portion of the trajectory is colored red, mainly the part at the bottom where the
vehicle closed loops multiple times, re-visiting the same location up to eight times.
In Fig. [@l we compare per-step timing on the Victoria Park dataset between our
algorithm and the original iSAM algorithm [23]] (both implemented using the same
library as noted above). The results show that our fully incremental algorithm does
not suffer from the periodic spikes in iSAM. Our algorithm also performs better in
cumulative time, while providing the additional advantage of continuously updating
the linearization point of all variables having significant changes.

To evaluate the accuracy of our algorithm, we use the simulated Manhattan world
from [26], courtesy of E. Olson. Fig. [/lshows that the normalized chi-square values
follow the least-squares batch solution, providing a nearly exact solution in every
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Fig. 6 Timing comparison for the Victoria Park dataset. The top row shows per step timing
and the bottom row shows the cumulative time. Our new algorithm (red) provides an im-
provement in speed over the original iSAM algorithm (blue), in addition to its advantages
of eliminating periodic batch factorization and performing fluid relinearization. The original
iSAM algorithm included a batch step every 100 iterations, which is clearly visible from the
spikes.
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Fig. 7 Comparison of normalized y? for the simulated Manhattan world. iSAM shows some
spikes where it deviates from the least squares solution because relinearization is only per-
formed every 100 steps. The Bayes tree solution is always very close to the least squares
solution because of the fluid relinearization (8 = 0.05).

step. While iISAM also converges to the exact solution, it shows some spikes related
to relinearization only being performed in the periodic batch steps. Final cumulative
times for providing a full solution in every step are 19.4s and 47.6s for our algorithm
and iSAM, respectively. Fig.[Blshows the estimated trajectory for the simulated Man-
hattan world, again using the same color coding for the number of variables that had
to be recalculated in each step.

Finally, we evaluated timing results on the Intel dataset, courtesy of D. Haehnel
and D. Fox. This dataset was preprocessed by laser scan-matching, resulting in a
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pose graph formulation without landmarks, containing about 4000 poses. The final
cumulative times are 44.4s and 172.6s for our algorithm and iSAM, respectively.

8 Conclusion

We have presented a novel data structure, the Bayes tree, that provides an algorith-
mic foundation which enables new insights into existing graphical model inference
algorithms and sparse matrix factorization methods. These insights have led us to
a fully incremental algorithm for nonlinear least-squares problems as they occur in
mobile robotics. We have used SLAM as an example application, even though the
algorithm is also suitable for other incremental inference problems, such as object
tracking and sensor fusion. Our novel graph-based algorithm should also allow for
better insights into the recovery of marginal covariances, as we believe that sim-
ple recursive algorithms in terms of the Bayes tree are formally equivalent to the
dynamic programming methods described in [21]]. The graph based structure also
provides a starting point for exploiting parallelization that is becoming available in
Newer processors.
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Monte Carlo Value Iteration for
Continuous-State POMDPs

Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo

Abstract. Partially observable Markov decision processes (POMDPs) have been
successfully applied to various robot motion planning tasks under uncertainty.
However, most existing POMDP algorithms assume a discrete state space, while
the natural state space of a robot is often continuous. This paper presents Monte
Carlo Value Iteration (MCVI) for continuous-state POMDPs. MCVI samples both
a robot’s state space and the corresponding belief space, and avoids inefficient a
priori discretization of the state space as a grid. Both theoretical results and prelimi-
nary experimental results indicate that MCVI is a promising new approach for robot
motion planning under uncertainty.

1 Introduction

A challenge in robot motion planning and control is the uncertainty inherent in
robots’ actuators and sensors. Incorporating uncertainty into planning leads to much
more reliable robot operation.

Partially observable Markov decision processes (POMDPs) provide a principled
general framework for modeling uncertainty and planning under uncertainty. Al-
though POMDPs are computationally intractable in the worst case [13]], point-based
approximation algorithms have drastically improved the speed of POMDP plan-
ning in recent years [12} 14} 19} 20]. Today, the fastest POMDP algorithms, such as
HSVI [19] and SARSOP [[12]], can solve moderately complex POMDPs with hun-
dreds of thousands states in reasonable time. POMDPs have been used successfully
to model a variety of robotic tasks, including navigation [3, [18]], grasping [8], target
tracking [10, [14]], and exploration [19]. Most of the existing point-based POMDP
algorithms, however, assume a discrete state space, while the natural state space for
arobot is often continuous. Our primary goal is to develop a principled and practical
POMDP algorithm for robot motion planning in continuous state spaces.

Haoyu Bai - David Hsu - Wee Sun Lee - Vien A. Ngo
Department of Computer Science, National University of Singapore, Singapore
e-mail: {haoyu, dvhsu, leews, ngoav}@comp.nus.edu.sg

D. Hsu et al. (Eds.): Algorithmic Foundations of Robotics IX, STAR 68, pp. 175
springerlink.com (© Springer-Verlag Berlin Heidelberg 2010


{haoyu,dyhsu,leews,ngoav}@comp.nus.edu.sg

176 H. Bai et al.

If the state space S is continuous, one common way of using existing POMDP
algorithms would be to place a regular grid over S and construct a discrete POMDP
model first. The difficulty with this approach is that the number of states grow ex-
ponentially with the robot’s degrees of freedom (DoFs), resulting in the “curse of
dimensionality” well known in geometric motion planning (without uncertainty).
The effect of a large number of states is in fact aggravated in POMDP planning.
Due to uncertainty, the robot’s state is not known exactly and is modeled as a belief,
which can be represented as a probability distribution over .S. We plan in the belief
space B, which consists of all possible beliefs. The result of POMDP planning is
a policy, which tells the robot how to act at any belief b € B. A standard belief
representation is a vector b, in which an entry b(s) specifies the probability of the
robot being in the discretized state s € S. The dimensionality of B is then equal to
the number of states in the discrete POMDP model.

Probabilistic sampling is a powerful idea for attacking the curse of dimension-
ality [23]]. In geometric motion planning, the idea of probabilistically sampling a
robot’s configuration space led to tremendous progress in the last two decades [J5]].
Similarly, in POMDP planning, a key idea of point-based algorithms is to sample a
small set of points from the belief space B as an approximate representation of B
rather than represent B exactly. However, this is not enough, if the robot’s state space
S is continuous. To compute a policy, we need to evaluate the effect of executing
a sequence of actions with an initial belief b. Conceptually, we apply the sequence
of actions to each state s € S and average the execution results with probabilistic
weights b(s). It is clearly impossible to perform this computation exactly in finite
time, as there are infinitely many states in a continuous state space S.

In this paper, we propose Monte Carlo Value Iteration (MCVI) for continuous
state POMDPs. MCVI samples both a robot’s state space S and the corresponding
belief space 3, and avoids inefficient a priori discretization of the state space as a
grid. The main technical innovation of MCVI is to use Monte Carlo sampling in
conjunction with dynamic programming to compute a policy represented as a fi-
nite state controller. We show that, under suitable conditions, the computed policy
approximates the optimal policy with a guaranteed error bound. We also show pre-
liminary results of the algorithm applied to several distinct robotic tasks, including
navigation, grasping, and exploration.

In the following, we start with some preliminaries on POMDPs and related work
(Section 2). Next, we describe the main idea of MCVI and the algorithmic details
(Section[3). We then present experimental results (Sectiond). Finally, we conclude
with some remarks on future research directions.

2 Background
2.1 Preliminaries on POMDPs

A POMDP models an agent taking a sequence of actions under uncertainty to max-
imize its total reward. In each time step, the agent takes an action a € A and moves
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from a state s € S'to s’ € S, where S and A are the agent’s state space and action
space, respectively. Due to the uncertainty in actions, the end state s’ is represented
as a conditional probability function T'(s, a, ') = p(s’|s, a), which gives the prob-
ability that the agent lies in &', after taking action a in state s. The agent then takes
an observation o € O, where O is the observation space. Due to the uncertainty in
observations, the observation result is also represented as a conditional probability
function Z(s’, a,0) = p(o|s’, a) for s € S and a € A. To elicit desirable agent be-
havior, we define a reward function R(s, a). In each time step, the agent receives a
real-valued reward R(s, a), if itis in state s € S and takes action a € A. The agent’s
goal is to maximize its expected total reward by choosing a suitable sequence of
actions. When the sequence of actions has infinite length, we typically specify a
discount factor v € (0, 1) so that the total reward is finite and the problem is well
defined. In this case, the expected total reward is given by E(}";° v R(s¢, ar)),
where s; and a; denote the agent’s state and action at time ¢, respectively.

The goal of POMDP planning is to compute an optimal policy 7* that maximizes
the agent’s expected total reward. In the more familiar case where the agent’s state
is fully observable, a policy prescribes an action, given the agent’s current state.
However, a POMDP agent’s state is partially observable and modeled as a belief,
i.e., a probability distribution over S. A POMDP policy 7: B — A maps a belief
b € B to the prescribed action a € A.

A policy 7 induces a value function V; : B — R. The value of b with respect to ™
is the agent’s expected total reward of executing 7 with initial belief b:

oo
Va(b) = E(Z’th(st,at) ‘ 7r,b). (1
t=0
If the action space and the observation spaces of a POMDP are discrete, then the
optimal value function V'* can be approximated arbitrarily closely by a piecewise-
linear, convex function [[15]:

V(b) = max/ a(s)b(s) ds, )
a€el’ Jocg
where each o € I is a function over S and commonly called an a-function. If
the state space is also discrete, we can represent beliefs and a-functions as vectors
and replace the integral in (2) by a sum. For each fixed a, h(b) = >, g a(s)b(s)
then defines a hyperplane over 53, and V' (b) is the maximum over a finite set of
hyperplanes at b. In this case, it is clear why V' (b) is piecewise-linear and convex.
POMDP policy computation is usually performed offline, because of its high
computational cost. Given a policy 7, the control of the agent’s actions is performed
online in real time. It repeatedly executes two steps. The first step is action selection.
If the agent’s current belief is b, it takes the action @ = 7(b), according to the given
policy 7. The second step is belief update. After taking an action a and receiving an
observation o, the agent updates its belief:
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b (s') =7(b,a,0) =nZ(s, a, 0)/ T(s,a,s)b(s) ds, 3)
ses
where 7 is a normalizing constant.

More information on POMDPs is available in 11, 122]].

2.2 Related Work

POMDPs provide a principled general framework for planning under uncertainty,
but they are often avoided in robotics, because of their high computational com-
plexity. In recent years, point-based POMDP algorithms made significant progress
in computing approximate solutions to discrete POMDPs [12, [14} [19} 20]]. Their
success hinges on two main ideas. First, they sample a small set of points from
the belief space B and use it as an approximate representation of B. Second, they
approximate the optimal value function as a set of a-vectors. The a-vectors allow
partial policies computed at one belief point to be used for other parts of B when
appropriate, thus bringing substantial gain in computational efficiency.

In comparison, progress on continuous POMDPs has been much more limited,
partly due to the difficulty of representing beliefs and value functions for POMDPs
when high-dimensional, continuous state spaces are involved. As mentioned ear-
lier, discretizing the state space with a regular grid often results in an unaccept-
ably large number of states. One idea is to restrict beliefs and value functions to
a particular parametric form, e.g., a Gaussian [3| [16] or a linear combination of
Gaussians [4} [15]. For robots in complex geometric environments with many ob-
stacles, uni-modal distributions, such as the Gaussian, are often inadequate. In the-
ory, a linear combination of Gaussians can partially address this inadequacy. How-
ever, when the environment geometry contains many “discontinuities” due to ob-
stacles, the number of Gaussian components required often grows too fast for the
approach to be effective in practice. Other algorithms, such as MC-POMDP [21]
and Perseus [[15], use particle filters to represent beliefs. Perseus still uses a linear
combination of Gaussians for value function representation and thus suffers some
of the same shortcomings mentioned above. MC-POMDP represents a value func-
tion by storing its values at the sampled belief points and interpolating over them
using Gaussians as kernel functions and KL divergence as the distance function.
Interpolation in a belief space is not easy. KL divergence does not satisfy the met-
ric properties, making it difficult to understand the interpolation error. Furthermore,
choosing suitable parameter values for the Gaussian kernels involves some of the
same difficulties as those in choosing an a priori discretization of the state space.

MCVI also uses the particle-based belief representation, but it exploits one key
successful idea of point-based discrete POMDP algorithms: the a-vectors. It cap-
tures the a-functions implicitly as a policy graph [6,/11] and retains their main bene-
fits by paying a computational cost. To construct the policy graph, MCVI makes use
of approximate dynamic programming by sampling the state space and performing
Monte Carlo (MC) simulations. Approximate dynamic programming has also been
used in policy search for Markov decision processes (MDPs) and POMDPs without
exploiting the benefits of a-functions [[1]].
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MCVI takes the approach of offline policy computation. An alternative is to per-
form online search [17, [7]. These two approaches are complementary and can be
combined to deal with challenging planning tasks with long time horizons.

3 Monte Carlo Value Iteration

In this paper, we focus on the main issue of continuous state spaces and make the
simplifying assumption of discrete action and observation spaces.

3.1 Policy Graphs

One way of representing a policy is a policy graph G, which is a directed graph
with labeled nodes and edges. Each node of G is labeled with an action a € A,
and each edge of G is labeled with an observation o € O. To execute a policy
T represented this way, we use a finite state controller whose states are the nodes
of GG. The controller starts in a suitable node v of (G, and a robot, with initial belief b,
performs the associated action a,. If the robot then receives an observation o, the
controller transitions from v to a new node v’ by following the edge (v, v") with
label o. The process then repeats. The finite state controller does not maintain the
robot’s belief explicitly, as in (@). It encodes the belief implicitly in the controller
state based on the robot’s initial belief b and the sequence of observations received.

For each node v of GG, we may define an a-function «,,. Let 74, denote a partial
policy represented by G, when the controller always starts in node v of G. The value
i,y (8) is the expected total reward of executing 7 ,, with initial robot state s:

ay(s) = E(Z Y R(st,a¢)) = R(s,ay) + E(Z Y R(s¢,ar)) 4)
=0

t=1

Putting () together with () and @), we define the value of b with respect to 7 as

veG

Ve (b) = max /es ay(8)b(s)ds. Q)

So V is completely determined by the a-functions associated with the nodes of G.

3.2 MC-Backup

The optimal POMDP value function V* can be computed with value iteration (VI),
which is based on the idea of dynamic programming [2]. An iteration of VI is com-
monly called a backup. The backup operator H constructs a new value function
Vi41 from the current value function V;:

Vs (b) = HVi(0) = max { R(b,a) +7 Y _ plolb, Vi) },  (6)
0€0
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where R(b,a) = [, ¢ R(s,a)b(s)ds is the robot’s expected immediate reward and
b = 7(b, a, 0) is the robot’s next belief after it takes action a and receives observa-
tion o. Atevery b € B3, the backup operator H looks ahead one step and chooses the
action that maximizes the sum of the expected immediate reward and the expected
total reward at the next belief. Under fairly general conditions, V; converges to the
unique optimal value function V'*.

Representing a value function as a set of a-functions has many benefits, but stor-
ing and computing a-functions over high-dimensional, continuous state spaces is
difficult (Section 2.2)). We do not represent a value function explicitly as a set of
a-functions, but instead represent it implicitly as a policy graph. Let V;, denote the
value function for the current policy graph G. Substituting (3) into (@), we get

HV,(b) = max{/ses R(s,a)b(s)ds +~ Z p(o|b, a) max /ses av(s)b’(s)ds}.

€A vE
a veG

G Let us first evaluate () at a particular point b €

2N 0 B and construct the resulting new policy graph
N > 0 1,02 G', which contains a new node v and a new edge
from w for each o € O (Fig.[d). Since we do
not maintain a-functions explicitly, it seems dif-
N ficult to compute the integral [ _¢ o, (s)b'(s)ds.
@ 02 However, the definition of «,, in @) suggests
computing the integral by MC simulation: re-
peatedly sample a state s with probability b'(s)
and then simulate the policy 7 ,. Pushing fur-
ther on this idea, we can in fact evaluate the en-
tire right-hand side of (Z) via sampling and MC
simulation, and construct the new policy graph G’. We call this MC-backup of G
at b (Algorithm[I)).

Conceptually, Algorithm[Tconsiders all possible ways of generating G’. The new
node u in G’ has | A| possible labels, and each outgoing edge from u has |G| possible
end nodes in GG, where |G| denotes the number of nodes in G (Fig.[I). Thus, there are
|A||G|'°! candidates for G’. Each candidate graph G’ defines a new policy 7¢ 4.
We draw N samples to estimate the value of b with respect each candidate 7 ,,. For
each sample, we pick s from the state space .S with probability b(s) . We run an MC
simulation under 7, starting from s, for L steps and calculate the total reward

Fig. 1 Backup a policy graph GG. The
dashed lines indicate the new node
and edges.

Zf:o v'R(st, at). The simulation length L is selected to be is sufficiently large so
that the error due to the finite simulation steps is small after discounting. We then
choose the candidate graph with the highest average total reward. Unfortunately,
this naive procedure requires an exponential number of samples.
Algorithm[Ilcomputes the same result, but is more efficient, using only N|A||G]|
samples. The loop in line 3 matches the maximization over actions a € A in ({@).
The loop in line 4 matches the first integral over states s € S and the sum over
observations o € O. The loop in line 8 matches the maximization over nodes v € G.
The three nested loops generate the simulation results and store them in V/, , , for
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Algorithm 1. Backup a policy graph G at a belief b with N samples.
MC-BACKUP(G, b, N)
1. For each actiona € A, R, «+ 0.
2. For each action a € A, each observation o € O, and each node v € G, V4,0, < 0.
3. for each action a € A do
4. fori=1to N do
5 Sample a state s; with probability distribution b(s;).
6. Simulate taking action a in state s;. Generate the new state s; by sampling from
the distribution T'(s;, a, s;) = p(s}|si, a). Generate the resulting observation o; by
sampling from the distribution Z(s}, a,0;) = p(0:|s}, a).

7. Ry, < Ra + R(si,a).
3. for each node v € G do
9. Set V’ to be the expected total reward of simulating the policy represented by G,
with initial controller state v and initial robot state ;.
10. Varos0 — Vayo;0 + V7.
11.  for each observation o € O do
12. Va,o +— maxyec Va,ows  Va,o + argmax,cq Va,o,v-

13, Vo (Ra+72,co Vao)/N.

14. V* < maxaea Vo, a" «— argmax,cy Va.

15. Create a new policy graph G’ by adding a new node u to G. Label u with a*. For each
o € O, add the edge (u, va* o) and label it with o.

16. return G’.

a € Ao € O,andv € G. Using V, ,,, one can compare the values at b with
respect to any candidate policy graphs and choose the best one (lines 11-14).

Interestingly, a relatively small number of samples are sufficient for MC-backup
to be effective. Let H,V,; denote the value function for the improved policy graph
resulting from MC-backup of G at b. With high probability, H,V, approximates
HV, well at b, with error decreasing at the rate O(1/ VN ). For simplicity, we as-
sume in our analysis below that the simulation length L is infinite. Taking the finite
simulation length into account adds another error term that decreases exponentially
with L.

Theorem 1. Let R,y be an upper bound on the magnitude of R(s,a) over s € S
and a € A. Given a policy graph G and a point b € B, MC-BACKUP(G, b, N)
produces an improved policy graph such that for any T € (0,1),

|HV(b) — HyVe(b)|

< 2R max 2(\O|1n|G| + In(2|A]) Jrln(l/T))
1—7 N ’

with probability at least 1 — T.

Proof. There are |A||G|°! candidates for the improved policy graph. Effectively
MC-BACKUP uses [V samples to estimate the value at b with respect to each candi-
date and chooses the best one.

First, we calculate the probability that all the estimates have small errors. Let
o; be a random variable representing the total reward of the ¢th simulation under a
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candidate policy. Define 0 = Zle 0;/N. Using Hoeffding’s inequality, we have
p(lo — E(0)] > €) < 2e7N/20% where C = Rumax/(1 — ) and € is a small
positive constant. Let F; denote the event that the estimate for the ¢th candidate
policy has error greater than e. Applying the union bound p({J,; E;) < >, p(E;),
we conclude that the estimate for any of the candidate policy graphs has error
greater than e with probability at most 7 = Q\AHGUO'e*Nez/QCQ. So we set
C 2(|O|1n|G|+lr;\s2|A|)+ln(1/T).

€ =

Next, let G* denote the best candidate policy graph and G;. denote the candidate
graph chosen by MC-BACKUP. Let o™ and o7,. be the corresponding estimates of
the value at b in MC-BACKUP. Then,

HVs(b) — HyVa(b)

E(c") — E(o}.)

MC
(07) =" + 0" = E(oy)
(0%) = " + o3c = E(oyc)

MC

E
E

IN

The inequality in the last line follows, as MC-BACKUP always chooses the candidate
policy graph with the highest estimate. Thus ¢* < ;.. Finally, the result in the
previous paragraph implies that |oc* — E(c*)| < € and |o}. — E(0}.)| < €, with
probability at least 1 — 7. Hence, |HV(b) — HyV(b)| < 2e, and the conclusion
follows. O

Now we combine MC-backup, which samples the state space S, and point-based
POMDP planning, which samples the belief space 5. Point-based POMDP algo-
rithms use a set B of points sampled from B as an approximate representation of
B. Let 65 = supycpminyep ||b — b'[|; be the maximum L, distance from any
point in B to the closest point in B. We say that B covers B well if d is small.
Suppose that we are given such a set B. In contrast to the standard VI backup
operator H, which performs backup at every point in 3, the operator H, applies
MC-BACKUP(G, b, N) on a policy graph G at every point in B. Each invocation
of MC-BACKUP(G, b, N) returns a policy graph with one additional node added to
G. We take a union of the policy graphs from all the invocations over b € B and
construct a new policy graph G’. Let V; be value function for some initial policy
graphand V1 = ﬁBVt.

The theorem below bounds the approximation error between V; and the optimal
value function V'*.

Theorem 2. For every b € B and every T € (0,1),

. 2R max 2((\O| + 1) In(|B|t) + In(2]4]) + 111(1/7'))
V() — Vi(b)]| < (17)M ~
2Rmax 2'YtRmax
TR T

+

with probability at least 1 — T.
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To keep the proof simple, the bound is not tight. The objective here is to identify the
main sources of approximation error and quantify their effects. The bound consists
of three terms. The first term depends on how well MC-backup samples S (Algo-
rithm[I] line 5). It decays at the rate O(1/v/N). We can reduce this error by taking
a suitably large number of samples from S. The second term, which contains 3,
depends on how well B covers B. We can reduce d; by sampling a sufficiently large
set B to cover B well. The last term arises from a finite number ¢ of MC-backup iter-
ations and decays exponentially with ¢. Note that although MC-backup is performed
over points in B, the error bound holds for every b € B.
To prove the theorem, we need a Lipschitz condition on value functions:

Lemma 1. Suppose that a POMDP value function V can be represented as or
approximated arbitrarily closely by a set of a-functions. For any b,b' € B, if

1b— ||y < 8, then |V (b) — V(¥)| < Rmax5

We omit the proof of Lemmal[ll as it is similar to an earlier proof [9]] for the special
case V = V*. We are now ready to prove Theorem[2]

Proof (Theorem[2). Let ¢, = maxpep |[V*(b) — V4(b)| be the maximum error of
Vi(b) over b € B. First, we bound the maximum error of V;(b) over any b € B in
terms of ¢;. For any point b € B, let b’ be the closest point in B to b. Then

[V*(0) = Va(0)| < [V*(b) = V¥ () + [V*(¥) = Ve (V)] + [Va (b) — Va(B))|

Applying Lemma[Iltwice to V* and V4, respectively, and using |[V*(b') — Vi (V)] <
€, We get
2RIIlaX

[V (b) = Vi(b)| <

Next, we bound the error ¢;. For any b’ € B,

6 + €t. (8)

VE(V) = Vi) < [HV*(¥) = Hy Viea (V)]
< BV () — HV, o (6)] + [HVe A (V) — By Vi a(6)], )
The inequality in the first line holds, because by definition, V*(b') = HV*(¥'),
V(') > Vi (V), and Vi (V') > Hy Vioy (V). It is well known that the operator H is

a contraction: ||[HV — HV'||o < 7||V = V’|| for any value functions V and V”,
where || - ||oo denotes the L, norm. The contraction property and (8] imply

2 max
\HV*(b’)—Hv;_1<b’>|sfy(1 6 +ei1)- (10)

Theorem [1] guarantees small approximation error w1th high probability for a sin-
gle MC-backup operation. To obtain V;, we apply H,, for t times and thus have
| B|t MC-backup operations in total. Suppose that each MC-backup fails to achieve
small error with probability at most 7/| B|¢. Applying the union bound together with
Theorem[I] every backup operation H, achieves
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, . , 2R max 2(\O| In(|BJt) + In(2|A]) + 111(|B|t/7’))
|HV; 1 (') — Hy Vi1 (V)| < 1=~ \/ N

with probability at least 1 — 7. We then substitute the inequalities (OHIT) into( %}}g
definition of €; and derive a recurrence relation for ¢,. For any initial policy graph,
the error ¢y can be bounded by 2Rax/(1 — 7). Solving the recurrence relation for
¢; and substituting it into (8] gives us the final result. g

3.3 Algorithm

Theorem 2] suggests that by performing MC-backup over a set B of suitably sam-
pled beliefs, we can approximate the optimal value function with a bounded error.
To complete the algorithm, we need to resolve a few remaining issues. First, we
need a method for sampling from the belief space and obtaining B. Next, H, per-
forms backup at every point in B, but for computational efficiency, we want to
perform backup only at beliefs that lead to significant improvement in the value
function approximation. Both issues occur in discrete POMDP algorithms as well
and have been addressed in earlier work. Finally, we use particle filters [22] to repre-
sent beliefs over continuous state spaces. Particle filtering can be implemented very
efficiently and has been used with great success in important robotic tasks, such as
localization and SLAM [22]].

We now give a short description of the algorithm. It shares the same basic struc-
ture with our SARSOP algorithm [[12] for discrete POMDPs; however, it uses MC-
backup and particle filtering to handle continuous state spaces.

Overview. The algorithm computes an approximation to an optimal policy by up-
dating a policy graph G. To improve G, it samples beliefs incrementally and per-
forms backup at selected sampled beliefs.

Let R C B be a subset of points reachable from a given initial belief by € B
under arbitrary sequences of actions and observations. Following the recent point-
based POMDP planning approach, our algorithm samples a set of beliefs from this
reachable space R rather than B for computational efficiency, as R is often much
smaller than 5. The sampled beliefs form a tree Tz . Each node of T}, represents a
sampled belief b € R, and the root of T’; is the initial belief by. If b is a node of
T and b’ is a child of b in T, then b’ = 7(b, a, 0) for some a € A and 0 € O. By
definition, the belief associated with every node in T’ lies in k.

To sample new beliefs, our algorithm updates T’r by performing a search in R.
At each node b of T, it maintains both upper and lower bounds on V*(b). We start
from the root of Tz and traverse a single path down until reaching a leaf of T%;. At
a node b along the path, we choose action a that leads to the child node with the
highest upper bound and choose observation o that leads to the child node making
the largest contribution to the gap between the upper and lower bounds at the root of
T=. These heuristics are designed to bias sampling towards regions that likely lead
to improvement in value function approximation. If b is a leaf node, then we use the
same criteria to choose a belief b’ among all beliefs reachable from b with an action
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a € A and an observation o € O. We compute b’ = 7(b, a, 0) using particle filtering
and create a new node for &’ in T} as a child of b. The sampling path terminates
when it reaches a sufficient depth to improve the bounds at the root of T’;. We then
go back up this path to the root and perform backup at each node along the way to
update the policy graph as well as to improve the upper and lower bound estimates.
We repeat the sampling and backup procedures until the gap between the upper and
lower bounds at the root of T’ is smaller than a pre-specified value.

Policy and lower bound backup. The lower bound at a tree node b is computed
from the policy graph G. As G always represents a valid policy, V(b) is a lower
bound of V*(b). We initialize G with a simple default policy, e.g., always perform-
ing a single fixed action. To update the lower bound at b, we perform MC-backup
on (G at b. As a result, we obtain an updated policy graph G’ and an MC estimate of
the value at b with respect to G’ as an improved lower bound.

Upper bound backup. To obtain the initial upper bound at a node b, one general
approach is to apply standard relaxation techniques. Assuming that a robot’s state
variables are all fully observable, we can solve a corresponding MDP, whose value
function provides an upper bound on the POMDP value function. By assuming that
a robot’s actions are deterministic, we can further relax to a deterministic planning
problem. To update the upper bound at b, we use the standard backup operator.

The upper and lower bounds in our algorithm are obtained via sampling and MC
simulations, and are thus approximate. The approximation errors decrease with the
number of samples and simulations. Since the bounds are only used to guide belief
space sampling, the approximation errors do not pose serious difficulties.

For lack of space, our algorithm description is quite brief. Some additional details
that improve computational efficiency are available in [12], but they are independent
of the use of MC-backup and particle filtering to deal with continuous state spaces.

4 Experiments

We implemented MCVI in C++ and evaluated it on three distinct robot motion plan-
ning tasks: navigation, grasping, and exploration. In each test, we used MCVI to
compute a policy. We estimated the expected total reward of a policy by running a
sufficiently large number of simulations and averaging the total rewards, and used
the estimate as a measure of the quality of the computed policy. As MCVI is a ran-
domized algorithm, we repeated each test 10 times and recorded the average results.
All the computation was performed on a computer with a 2.66 GHz Intel processor
under the Linux operating system.

4.1 Navigation
This 1-D navigation problem first appeared in the work on Perseus [15]], an earlier

algorithm for continuous POMDPs. A robot travels along a corridor with four doors
(Fig. Blr). The robot’s goal is to enter the third door from the left. The robot has



186 H. Bai et al.

’—r‘_ﬁ—f '\—,_|_\—‘ E
2
@
(@) -
s
]
2
1.0 g
: K
s
N I3 - - - Perseus Particle Filter
Pos N s - - Perseus Gaussian Mixture
e —wmcwvi
0.0 -1
o] 200 400 600 800 1000 1200
N time (seconds)
(b) (©)

Fig. 2 Navigation in a corridor. (@) The environment. (b) The observation function for the
observation CORRIDOR. (c) Estimated expected total rewards of computed policies.

three actions: MOVE-LEFT, MOVE-RIGHT, and ENTER. The robot does not know
its exact location, but can gather information from four observations: LEFT-END,
RIGHT-END, DOOR, and CORRIDOR, which indicate different locations along the
corridor. Both the actions and observations are noisy. The robot receives a positive
reward if it enters the correct door, and a negative reward otherwise.

For comparison with Perseus, we use the same model as that in [[15]]. Perseus re-
quires that all the transition functions, observation functions, and reward functions
are modeled as a combination of Gaussians. See Fig. Pb for an illustration of the
observation function for the observation CORRIDOR. Details of the model are avail-
able in [[15]]. It is important to note that representing the entire model with Gaussians
imposes a severe restriction. Doing so for more complex tasks, such as grasping and
obstructed rock sample in the following subsections, is impractical.

We ran MCVI with 600 particles for belief representation and N = 400 for
MC-BACKUP. We also ran Perseus using the original authors’ Matlab program,
with parameter settings suggested in [15]. There are two versions of Perseus using
different belief representations. One version uses Gaussian mixture, and the other
one uses particle filtering. The results are plotted in Fig. Pk. The horizontal axis
indicates the time required for policy computation. The vertical axis indicates the
average total reward of a computed policy. Each data point is the average over 10
runs of each algorithm. The error bars indicate the 95% confidence intervals.

Since MCVI is implemented in C++ and Perseus is implemented in Matlab, the
running times are not directly comparable. However, the plot indicates that MCVI
reaches the same performance level as Perseus, even though MCVI does not require
a Gaussian model and does not take advantage of it. Also, the smaller error bars for
MCVT indicate that it is more robust, especially when the planning time is short.

The main purpose of this test is to compare with Perseus, a well-known earlier al-
gorithm for continuous POMDPs. As one would expect, the task is relatively simple.
We can construct a discrete POMDP model for it and compute a policy efficiently
using discrete POMDP algorithms.
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4.2 Grasping

In this simplified grasping problem [8]], a robot hand with two fingers tries to grasp a
rectangular block on a table and lift it up (Fig.[3)). The fingers have contact sensors at
the tip and on each side. Thus, each observation consists of outputs from all the con-
tact sensors. The observations are noisy. Each contact sensor has a 20% probability
of failing to detect contact, when there is contact, but 0% probability of mistakenly
detecting contact, when there is none. Initially, the robot is positioned randomly
above the block. Its movement is restricted to a 2-D vertical plane containing both
the hand and the block. The robot’s actions include four compliant guarded moves:
MOVE-LEFT, MOVE-RIGHT, MOVE-UP, and MOVE-DOWN. Each action moves the
robot hand until a contact change is detected. The robot also has OPEN and CLOSE
actions to open and close the fingers as well as a LIFT action to lift up the block. If
the robot performs LIFT with the block correctly grasped, it is considered a success,
and the robot receives a positive reward. Otherwise, the robot receives a negative
reward. In this problem, uncertainty comes from the unknown initial position of the
robot hand and noisy observations.

We ran MCVI with 150 particles for belief representation and N = 500 for
MC-BACKUP. On the average, the planning time is 160 seconds, and the computed
policy has a success rate of 99.7%. For comparison, we manually constructed a
open-loop policy: MOVE-LEFT — MOVE-DOWN — MOVE-RIGHT — MOVE-UP —
MOVE-RIGHT — MOVE-DOWN — CLOSE — LIFT. The success rate of this policy
is only 77.2%. Many of the failures occur because the manually constructed policy
does not adequately reason about noisy observations.

Fig.Blshows a simulation run of the computed policy. In one MOVE-LEFT action
(Fig. 3f), the tip contact sensor of the left finger fails to detect the top surface of
the block. At a result, the robot does not end the MOVE-LEFT action in the proper
position, but it recovers from the failure when the tip contact sensor of the right
finger correctly detects contact (Fig. B).

The grasping problem can also be modeled as a discrete POMDP [8]. However,
this requires considerable efforts in analyzing the transition, observation, and reward
functions. Although the resulting discrete POMDP model is typically more compact
than the corresponding continuous POMDP model, the discretization process may
be difficult to carry out, especially in complex geometric environments. In contrast,
MCVI operates on continuous state spaces directly and is much easier to use.

4.3 Obstructed Rock Sample

The original Rock Sample problem [19] is a benchmark for new discrete POMDP
algorithms. In this problem, a planetary rover explores an area and searches for rocks
with scientific value. The rover always knows its own position exactly, as well as
those of the rocks. However, it does not know which rocks are valuable. It uses the
SENSE action to take noisy long-range sensor readings on the rocks. The accuracy
of the readings depends on the distance between the rover and the rocks. The rover
can also apply the SAMPLE action on a rock in the immediate vicinity and receive
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Fig. 3 A simulation run of the simplified grasping task. The spheres at the tip and the sides of
the fingers indicate contact sensors. They turn white when contact is detected.

a positive or negative reward, depending on whether the sampled rock is actually
valuable. The robot’s goal is to find as many valuable rocks as possible quickly and
then move to the right boundary of the environment to report the results.

We extended Rock Sample in several ways to make it more realistic. We intro-
duced obstructed regions, which the rover cannot travel through. Furthermore, the
rover’s movement is now noisy. In each time step, the rover can choose to move
in any of eight equally spaced directions with two speed settings. Finally, the rover
does not always know its own location exactly. It can only localize in the imme-
diate vicinity of a rock, which serves as a landmark. We call this extended version
Obstructed Rock Sample (ORS).

We created three models of ORS by varying the noise levels for the rover’s move-
ments and long-range rock sensor. We ran MCVI on each model. The average plan-
ning time ranges from 5 minutes for the low-noise model to a maximum of 2 hours.

Fig.d shows a simulation run for each computed policy. For the low-noise model
(Fig. @k, the rover first moves towards the top-left rock. It senses the rock and
decides to sample it. It also senses the lower-left rock, but cannot determine whether
the rock is valuable, because the rock is far away and the sensor reading is too noisy.
The rover then approaches the lower-left rock and senses it again. Together the two
sensor readings indicate that the rock is likely bad. So the rover does not sample
it. Along the way, the rover also senses the top-right rock twice and decides that
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Fig. 4 Simulations runs for three ORS models: (a) low noise in sensing and movements,
(b) higher sensor noise, and (c) higher movement noise. Shaded polygons indicate obstructed
regions. Shaded and white discs indicate the regions in which the rover may perform the
SAMPLE action. The rocks are located at the center of the discs. Shaded discs represent valu-
able rocks, and white discs represent bad rocks. Solid black curves indicates the rover’s tra-
jectories. Each “¢” marks a location where the rover performs a SAMPLE action. Each “A”
marks a location where the rover performs a SENSE action, and the corresponding dashed line
indicates the rock being sensed.

the rock is likely valuable. As the movement noise is low, the rover chooses to go
through the narrow space between two obstacles to reach the rock and sample it.
It then takes a shortest path to the right boundary. We do not have a good way of
determining how well the computed policy approximates an optimal one. In this
simulation run, the jaggedness in the rover’s path indicates some amount of sub-
optimality. However, the rover’s overall behavior is reasonable. When the sensor
noise in the model is increased (Fig. @b), the rover maintains roughly the same
behavior, but it must perform many more sensing actions to determine whether a
rock is valuable. When the movement noise is increased (Fig. dk), the rover decides
that it is too risky to pass through the narrow space between obstacles and takes an
alternative safer path.

A standard discrete POMDP model of Rock Sample uses a grid map of the en-
vironment. Typically discrete POMDP algorithms can handle a 10 x 10 grid in rea-
sonable time. This is inadequate for complex geometric environments. The envi-
ronment shown in Fig. @ which consists of relatively simple geometry, requires a
grid of roughly 50 x 50, due to closely spaced obstacles. A discrete POMDP model
of this size requires about 4 GB of memory before any computation is performed.
MCVTI avoids this difficulty completely.

4.4 Discussion

While the experimental results are preliminary, the three different examples indi-
cate that MCVI is flexible and relatively easy to use. It does not require artificial
discretization of a continuous state space as a grid. It also does not impose restric-
tion on the parametric form of the model.
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Our current implementation of MCVI uses fixed values for the number of par-
ticles, M, for belief representation and the parameter N in MC-BACKUP. Our ex-
perimental results show that MC-BACKUP typically takes around 99% of the total
running time and is the dominating factor. To improve efficiency, we may use the
sample variance of the simulations to set /N adaptively and stop the simulations as
soon as the variance becomes sufficiently small. We may over-estimate M, as this
does not affect the total running time significantly.

5 Conclusion

POMDPs have been successfully applied to various robot motion planning tasks
under uncertainty. However, most existing POMDP algorithms assume a discrete
state space, while the natural state space of a robot is often continuous. This paper
presents Monte Carlo Value Iteration for continuous-state POMDPs. MCVI sam-
ples both a robot’s state space and the corresponding belief space, and computes a
POMDP policy represented as a finite state controller. The use of Monte Carlo sam-
pling enables MCVI to avoid the difficulty of artificially discretizing a continuous
state space and make it much easier to model robot motion planning tasks under
uncertainty using POMDPs. Both theoretical and experimental results indicate that
MCVlI is a promising new approach for robot motion planning under uncertainty.

We are currently exploring several issues to improve MCVI. First, the running
time of MCVI is dominated by MC simulations in MC-backup. We may group sim-
ilar states together and avoid repeated MC simulations from similar states. We may
also parallelize the simulations. Parallelization is easy here, because all the simu-
lations are independent. Second, the size of a policy graph in MCVI grows over
time. We plan to prune the policy graph to make it more compact [6]. Finally, an
important issue is to deal with not only continuous state spaces, but also continuous
observation and action spaces.
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Randomized Belief-Space Replanning
in Partially-Observable Continuous
Spaces

Kris Hauser

Abstract. We present a sample-based replanning strategy for driving
partially-observable, high-dimensional robotic systems to a desired goal. At
each time step, it uses forward simulation of randomly-sampled open-loop
controls to construct a belief-space search tree rooted at its current belief
state. Then, it executes the action at the root that leads to the best node in
the tree. As a node quality metric we use Monte Carlo simulation to estimate
the likelihood of success under the QMDP belief-space feedback policy, which
encourages the robot to take information-gathering actions as needed to reach
the goal. The technique is demonstrated on target-finding and localization
examples in up to 5D state spacess.

1 Introduction

Many robotics problems involve planning in uncertain, partially-observable
domains, which requires reasoning about how hypothetical state distribu-
tions, belief states, change over time as the robot acts upon the world and
gathers information with its sensors. Although this has been studied heavily
in discrete domains, most realistic robotics problems have continuous, high-
dimensional state spaces with nonlinear dynamics, which places them far
out of the reach of tractability for state-of-the-art planners built for discrete
systems. Although recent techniques have made progress in addressing con-
tinuous systems assuming Gaussian process and observation noise |3, 19, 21],
the more general case of nonlinear and multi-modal belief states have proven
to be much more challenging, in large part because of the difficulty of repre-
senting policies over an infinite-dimensional belief space [20, 22].
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Fig. 1 An execution trace of a robot (large circle) searching for a wandering target
(pink circle) in the unit square. The robot’s sensor has a 0.25 unit range. The current
belief state is represented by 100 particles (dots) and the current plan (orange) is
updated by replanning.

We present a Randomized Belief-Space Replanning (RBSR) technique that
addresses an undiscounted and cost-free version of the continuous partially-
observable Markov decision process (POMDP) formulation, where the belief
state must be driven to a goal region. Rather than solving the POMDP
once and using the solution as a lookup table, RBSR repeatedly generates
coarse plans, executes the first step, and uses sensor feedback to refine future
plans (Figure[D]). Much like a receding-horizon controller or model predictive
controller, its success rate and computation time depend on the exploration
strategy used to generate the search trees, and the evaluation function used
to pick the “best” plan.

The RBSR exploration strategy performs a forward search in belief space
by randomly sampling open-loop actions, and for an evaluation function we
estimate the success rate of a QMDP-like policy. QMDP is a heuristic strategy
that descends the cost-to-go function of the underlying MDP, averaged over
the belief state |16], and it works well when state uncertainty is low, but with
high uncertainty it may fall into local minima because it fails to perform
active information-gathering. Hence, RBSR’s random exploration strategy
discourages information loss and encourages information-gathering actions
because they improve the likelihood that QMDP succeeds.

RBSR employs random sampling approaches at multiple points in the
procedure — random belief-space exploration strategies, particle filtering for
state estimation, probabilistic roadmap-like approaches in the QMDP policy
evaluation, and Monte-Carlo simulation in the evaluation function — making
it highly parallelizable and applicable to high-dimensional spaces. In prelim-
inary experiments, we applied RBSR to a simulated target pursuit problem
with a 4-D state space and localization problems in up to 5-D (Figure []). In
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our tests, RBSR computes each replanning step in seconds, and drives the
belief state to a solution with high probability. Though our current imple-
mentation is promising, it is not as reliable in 6D or higher because it becomes
much more difficult to maintain accurate belief estimates over time. Never-
theless, we anticipate that future implementations of RBSR will be capable
of solving many real-world robotics problems.

2 Related Work

Optimal planning in partially-observable problems is extremely computation-
ally complex and is generally considered intractable even for small discrete
state spaces [17]. Approximate planning in discrete spaces is a field of active
research, yielding several techniques based on the point-based algorithms de-
vised by Kearns et al |[12] and Pineau et al (2003) [18]. For example, the
SARSOP algorithm developed by Kurniawati et al (2008) has solved prob-
lems with thousands of discrete states in seconds [14].

Hypothetically, these algorithms can be applied to continuous problems by
discretizing the space. But because of the “curse of dimensionality”, any regu-
lar discretization of a high-dimensional space will requires an intractably large
number of states. Porta et al (2006) has made progress in extending point-
based value iteration to the continuous setting by representing belief states as
particles or mixtures of Gaussians [20]. Thrun (2000) presented a technique
that also works with continuous spaces by combining particle filtering with re-
inforcement learning on belief states [22]. For both of these methods, the need
to approximate the value function over the infinite-dimensional belief space
(either using alpha-vector or Q-value representations, respectively) comes at
a high computational and memory expense. We use similar representations,
but because we use replanning to avoid explicit policy representation, our
approach sacrifices near-optimality for reduction in computational expense.

Several recently developed algorithms attempt to address continuous spaces
by leveraging the success of probabilistic roadmaps (PRMs) in motion plan-
ning |11], which build a network of states sampled at random from the config-
uration space. Alterovitz et al (2007) present a Stochastic Motion Roadmap
planner for continuous spaces with motion uncertainty, which solves an MDP
using the discretization of state space induced by a PRM [1]. The techniques
of Burns and Brock (2007) and Guibas et al (2008) augment roadmaps with
edge costs for motions that have high probability of being in collision, and
respectively address the problems of localization errors and environment sens-
ing errors |4, 7). Huang and Gupta (2009) address planning for manipulators
under base uncertainty by associating probabilistic roadmaps with particles
representing state hypotheses and searching for a short path that is likely to
be collision free [10].

Another set of related approaches use assumptions of Gaussian observation
and process noise, which makes planning much faster because probabilistic
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a) Current belief state b) Random exploration ¢) QMDP simulation d) Best plan taken
and scoring

@

State space

Fig. 2 Illustrating the replanning steps. (a) A belief-space search tree is initialized
with the current belief state. (b) The tree is grown using random exploration of
open-loop motions. (¢) Nodes in the tree are scored with estimates of the likelihood
of success under the QMDP policy. Traces of 5 belief-state particles under QMDP
simulation are depicted. (d) The best plan is executed. (If the best node is the root,
QMDP is executed by default).

inference can be performed in closed form. The Belief Roadmap technique
of Prentice and Roy (2009) computes a roadmap of belief states under both
motion and sensing uncertainty, under the assumptions of Gaussian uncer-
tainty and linear transition and observation functions |21]. van den Berg et al
(2010) consider path planning while optimizing the likelihood that a path is
collision-free, under the assumption that a Linear-Quadratic-Gaussian feed-
back controller is used to follow the path. Platt et al (2010) and du Toit and
Burdick (2010) construct plans using a maximum-likelihood observation as-
sumption, and correcting for observation errors by replanning [, [19]. RBSR
also uses a replanning strategy, but uses a particle-based uncertainty repre-
sentation that is better at handling nonlinear and multi-modal distributions,
and makes no assumptions on the type of observations received.

The Randomized Path Planner (RPP) was an early approach in path plan-
ning in high-dimensional spaces that uses the principle that reactive policies
often work well when the system is near the goal or when a space is rela-
tively free of obstacles [2]. RPP plans by alternating steps of potential field
descent and random walks to escape local minima, and was surprisingly ef-
fective at solving path planning problems that were previously considered
intractable. RBSR shares a similar philosophy, but addresses problems with
partial observablility.

3 Problem Definition

RBSR is given a POMDP-like model of the problem as input, and it inter-
leaves planning and execution steps much like a receding-horizon controller.
Each iteration performs the following steps:



Randomized Belief-Space Replanning 197

1. The current sensor input is observed, and the robot’s belief state is up-
dated using a particle filter.

2. The planner generates a truncated search tree rooted at the current belief
state. (Figure Rla—b)

3. The robot executes the action associated with the “best” branch out of
the root node. (Figure 2lc-d)

This section describes the POMDP formulation, particle filtering belief state
update, and the QMDP policy that is used to evaluate the quality of nodes
in the tree.

3.1 POMDP Modeling

The problem is formalized as an undiscounted partially-observable Markov
decision process (POMDP) over a set of states S, actions A, and observations
0. S, A, and O are treated as subsets of Cartesian space, although this is not
strictly necessary. A belief stateis defined to be a probability distribution over
S. We address the setting where the robot starts at an initial belief state b;p;t
and wishes to reach a goal set G C S with high probability. We treat obstacles
by moving all colliding states to a special absorbing state. At discrete time
steps the robot performs an action, which changes its (unobserved) state, and
it receives an observation.

Although most POMDP formulations are concerned with optimizing
rewards and action costs, we treat a somewhat simpler problem of simply
maximizing the probability of reaching the goal. We also do not consider
discounting. Discounting is numerically convenient and has a natural inter-
pretation in economics, but in many respects is inappropriate for robotics
problems because it gives preference to short term rewards.

The dynamics of the system are specified in the transition model T : s,a —
s’ that generates a new state, given an existing state and an action. The
sensor model is specified in the sensor model O : s — o that generates an
observation given a state. These models are stochastic, and we let the notation
s’ « T(s,a) and o < O(s) denote sampling at random from the posterior
distributions of 7 and O, respectively.

3.2 Simulation and Filtering with Belief Particles

To approximate the distribution over state hypotheses, we represent a belief
state b as a weighted set of n particles {(w®,s(M) ... (w™ (")} where n
is a parameter, and the weights sum to 1. Using such a representation, we can
easily simulate an observation o «+ O(s*)) by sampling particle (w®),s(*))
proportional to its weight. We also define functions that compute the succes-
sor belief state after executing action a:
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Fig. 3 The QMDP policy will succeed for well-localized belief states (a,b), but it
may fall into local minima for a poorly localized belief state (c). On the other hand,
QMDP allows the robot to incorporate new information during execution. So, if it

could sense the corner of the obstacle as a landmark, then QMDP will also reach
the goal (d).

T(b,a) = {(w?,T(s",a))}iy (1)

And the posterior belief state after observing o:
Filter(b,0) = {(Ew@pr(O(s(l)) =o0),sD)n (2)

where Z is a normalization factor that ensures weights sum to 1.

We assume the robot performs state estimation using a particle filter,
which have many variants that are beyond the scope of this work. We re-
fer the reader to the survey in [5] for details. Most of these techniques ad-
dress the problem of sample impoverishment that arises when few particles in
b are consistent with a given sequence of observations. For the remainder of
this paper, we will assume that the chosen filter is robust enough to maintain
sufficiently representative belief states.

3.3 QMDP Policy

As an endgame strategy, RBSR uses the incomplete QMDP policy that is
quite successful in practice for highly-localized belief states or when informa-
tion can be gathered quickly to localize the state (see Figure B). QMDP is
also used in RBSR to define a function f(b) that measure the quality of hy-
pothetical belief states by simulating how well QMDP makes progress toward
the goal.

The QMDP policy essentially takes the optimal action assuming full ob-
servability is attained on the next step [16]. Suppose we are given a complete
cost-to-go function Cfy, the fully-observable version of the problem. We will
put aside the question of how to compute such a function until Section 3.4
and currently we describe how to use C, to derive a QMDP controller for
the partially-observable belief space.
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The belief-space policy mqmpp (b) is defined to descend the expected value
of Ct, over the distribution of states in b. More precisely, we define

C(b) = Eob[Crols) Zw“)c*f sy, (3)

and define mqmpp to pick the action that descends C(b) as quickly as possible:
moupp(b) = argmin C(T (b, ). (4)

If the expected value of the resulting belief state does not reduce C(b), we
define mqmpp () to return “terminate”. Collision states are assigned infinite
potential. In practice, we compute the arg min in (@) by sampling many ac-
tions and picking the one that minimizes the RHS.

The QMDP policy alternates state estimation and potential field descent
using the following feedback controller:

QMDP

Input: belief state bg.

1. Fort=1,2,..., do:

2. Sense observation oy

b, « Filter(bi_1,0)

a; = mqumop (bo)

If a; =“terminate,” stop. Otherwise, execute a;.
bt — T(bo, (lt)

o Ot W

QMDP is also used in RBSR to measure quality of future belief states. We
define a belief-state evaluation function f(b) that uses Monte-Carlo simula-
tion of QMDP on a holdout set of m particles {sV),...s(™} from b which
are used to simulate “ground truth”. The complement of the holdout set b’
is used as the initial belief state. For each test sample s(¥), QMDP is invoked
from the initial belief state by = b’, and sy = s() is used for simulating the
“true” observation O(s()) (Line 2). Tt is also propagated forward along with
the belief state using the transition model s; « 7 (s;—1,a;) (Line 6). This
continues until termination.

To enforce an ordering on f(b) (with higher values better), we incorpo-
rate two results of the QMDP simulation: s, the fraction of terminal states
s¢ that lie in the goal G, and ¢, the average QMDP value function evalu-
ated at the terminal belief states C(b;). We prioritize success rate s over the
value function ¢ by letting f(b) return a tuple (s, —c). To compare the tuples
f(b1) = (s1,—c1) and f(b2) = (s2,—c2) we use lexicographical order; that
is, the value function is used only break ties on success rate. (This usually
occurs when all locally reachable belief states have zero success rate.)
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3.4 Computing Value Functions for the
Fully-Observable Problem

Let us now return to the question of how one might provide a potential field
Ct, for the fully-observable version of the input POMDP. The policy that
descends C', is assumed to be complete, that is, if state is fully observable,
then a descent of Cy, is guaranteed to reach the goal. Although in discrete
POMDPs such a function can be computed using value iteration on the un-
derlying MDP, the problem is more difficult in continuous POMDPs.

In problems with no motion uncertainty, Cy, is simply a cost function
of the underlying motion planning problem. This can sometimes be com-
puted analytically; e.g., for a robot with unit bounds on velocity in a con-
vex workspace, C, is the straight-line distance to the goal. For more com-
plex problems with high-dimensional or complex state spaces, approximate
methods may be needed. In our examples we use a Probabilistic Roadmap
(PRM) [11] embedded in S, where each point in space is identified with its
closest vertex in the roadmap, and the shortest distance from each vertex to
the goal is computed using Dijkstra’s algorithm. We build the PRM with a
sufficiently large number of samples such that shortest paths in the roadmap
approximate shortest paths in §. By caching the shortest distance for each
PRM vertex, computing Cf,(s) runs in logarithmic time using a K-D tree to
lookup the vertex closest to s.

This PRM-based potential field assumes that velocities can be chosen in
any direction and with unit cost, but can be adapted to handle differentially-
constrained systems using other sample-based motion planners. If actions are
stochastic, a potential based on the Stochastic Motion Roadmap [1] might
yield better results. We leave such extensions to future work.

4 Randomized Belief Space Replanning

The replanning algorithm used by RBSR. grows a belief tree T whose nodes
are belief states b € B, and the edges store open-loop actions.

Randomized Belief Space Replanning

Input: Current belief state by, current plan aq,...,a;.
1. Initialize T" with the belief states in the plan starting from bg.
2. Fori=1,...,N, do:

3 Pick a node b in T and an action a.

4 If b/ = T (b,a) is feasible, add b’ to T as a child of b.

5. End

6. Sort the nodes in T in order of decreasing EIG(b).

7. For the M best nodes in T, evaluate f(b).

8. Return the plan leading to the node with the highest f(b).
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In Line 3 we use a Voronoi exploration strategy to quickly distribute nodes
across belief space. Lines 67 are used to avoid evaluating f on all nodes on
the tree, because it is an relatively expensive operation. We use an expected
information gain score ETG(b) to restrict the evaluations of f to a small sub-
set of nodes M << N. Because EIG(b) is less expensive than f to compute,
this strategy leads to major speed gains. These strategies are described in
greater detail below.

4.1 Voronoi-Biased Exploration Strategy

The exploration strategy is designed to cover the space of reachable open-loop
motions quickly, and we use a Voronoi-biasing strategy much like the Rapidly-
Exploring Random Tree (RRT) motion planner [15]. To expand the tree, we
sample a random target point s;¢: from the state space S, and sample a set of
representative particles from all belief states in the tree R = {s|b € T, s ~ b}.
Then, we find the closest point s from R to sig:. We then find a control a
action that brings s closer to sig¢.

4.2 Expected Information Gain Scoring Strategy

We use an expected information gain strategy to avoid running expensive
evaluations of f on belief states that are unlikely to yield improvements in
f. The intuition is that information gain is a sort of proxy score for QMDP
favorability because it measures the spread of a belief state distribution, and
QMDP tends to succeed more when states are localized. We compute the
expected information gain for a belief state b as follows. The information gain
of the observation o is the Kullback-Leibler divergence between the posterior
distribution b, = Pr(s|o,b) and the prior b = Pr(s|b):

Pr(slo,b)

Pr(s) | 5)

1(b,||b) :/ Pr(s|o,b)log
ses
Given a particle representation of belief states b, and b, we replace the dis-
tribution Pr(s|b) using a kernel density estimator with Gaussian kernels cen-
tered on the particles in b, and approximate the integral by the weighted sum
over the particles s in b,.
The expected information gain is simply the expectation of (&) over o:

EIG(b) = / _ PriemIeolo (6)

To compute this, we compute the observation o(") = O(s(i)) for each par-
ticle in b, perform particle filtering b, = Filter(b,0"), and then compute
the weighted average of (Bl) over all particles. Although EIG is an O(n?)
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computation, in our experiments it is typically orders of magnitude faster
than computing f, and this scoring stage leads to major speedups.

4.3 Complexity and Convergence

The time complexity of RBSR depends on several parameters: the number of
belief space particles n, the number of holdout particles for QMDP simulation
m, the number of exploration steps IV, and the number of nodes retained for
QMDP evaluation M. Assume that an evaluation of Tqmpp(b) @) takes time
O(n). Then, the exploration stage takes time O(nN?), the EIG scoring takes
time O(n3N), and the evaluation stage takes time O(TnmM) where T is
the average number of steps taken by QMDP before it terminates. But the
running time of the evaluation stage hides a higher constant factor because it
uses more expensive operations such as state and path collision checking, and
in our experiments it dominates running time. Space complexity is O((n +
m)N).

The parameter n affects how accurately RBSP tracks and predicts belief
states using the particle filter, and should be set high enough to attain a
desired accuracy. In our experiments we do a small amount of tuning to find
a reasonable parameter. m affects how accurately RBSP predicts the success
rate of the QMDP policy, and f(b) may be quite noisy for low m. Specifically,
the variance of the success rate estimate p is bounded by p(1 — p)/m, and m
should be chosen to achieve a desired accuracy. Parameters N and M affect
the chance that RBSR makes progress toward the goal in a single time step.
We used parameters N = 100 and M = 10 in our experiments.

5 Experimental Results

We performed experiments on two scenarios: a 2D pursuit scenario with a
4D state space, as well as a localization scenario that has tunable dimen-
sion. Although these problems are not difficult to solve using special-purpose
strategies, they pose a challenge for general-purpose planners to solve in a

Fig. 4 Execution traces of the pursuit example for four different initial target
locations (purple circles). The robot uses a distance sensor with maximum range
0.25.
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reasonable amount of time and memory. For example, the SARSOP plan-
ner [14] can approximately solve a coarsely discretized version of the pursuit
scenario in a few minutes, but it exhausts our test machine’s 2Gb of memory
once the resolution of the workspace grid exceeds 15x15.

5.1 Pursuit Scenario

Our first set of experiments consider a pursuit scenario in the unit square
where the robot must reach a slower target that moves at random (Figurel[I]).
The position of the robot is observable and controlled precisely, but it cannot
sense the target outside a circle of radius 0.25. The target’s position is a
uniform distribution in the initial belief state, and the goal condition is to

e

T

Fig. 5 An execution trace of a robot localizing itself to reach the red circle with
high probability. Its sensor measures the distance to the walls, and has maximum
range 0.05 (dashed lines). The current belief state is represented by 100 particles
(dots) with a covariance ellipsoid, and the current plan (orange) is updated by
replanning.
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Fig. 6 A robot localizing itself using a proximity sensor in a space with obstacles.

achieve a distance of 0.05 to the target. We tested three sensor models: 1) a
position sensor that reports the target’s x,y position relative to the robot,
2) a direction sensor that reports only direction and not distance, and 3) a
distance sensor that does not report direction.

Using preliminary experiments we tuned the number of particles in the be-
lief state needed for accurate particle filtering, and found that 100 particles
were sufficient for the position and direction sensor, and 200 particles were
needed for the proximity sensor. So, we used m = 50 particles as a holdout
set, and n = 150 and n = 250, respectively, for the position/direction sen-
sors and the proximity sensor. In 25 trials on each of these problems, with
random target start states, RBSP never failed to reach the target. Several
execution traces for different initial target positions are drawn in Figure [l
Average path length is approximately 1.7, which is close to the expected path
length computed by SARSOP on a 15 x 15 grid, but is still suboptimal. Each
replanning iteration took about 15s on average, with standard deviation 10s.
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Fig. 7 Left: a partial localization execution using only 5 holdout particles. Because
the evaluation function is noisy, the plan is often drastically revised and the walls
have not yet been sensed after 30 steps. Right: by initiating replanning only when
information gain exceeds a threshold, the path is smoother and two walls have been
sensed within 30 steps.
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Fig. 8 In localization problems up to 5 dimensions the number of replanning steps
scales roughly linearly. Columns report average, minimum, and maximum steps
over 10 trials.

5.2 Localization Scenario

In our second scenario a robot is in an unknown configuration in a known
d-dimensional environment and must localize itself and reach a small goal by
measuring the distance to obstacles. The sensor has a limited range, which
requires that the robot perform several steps of active sensing before reaching
the goal. The optimal strategy is to proceed toward a wall until the sensor
returns a reading, and then proceed to an adjacent wall until a closer reading
is obtained, and so on until it achieves d readings from d linearly independent
walls. Note that RBSR does not have a “proceed until” action in its action
set, so instead it must approximate such a policy by a sequence of conditional
movement actions and sensing actions.

In the first experiment (Figure (), we set d = 2, S is the unit square, the
initial belief state is a circular Gaussian distribution with standard deviation
0.1, and the goal radius and the sensing radius are both set to 0.05. To
represent belief states we used 150 particles with a holdout set of 50. We
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also tested a space containing obstacles (Figure[d]). In both examples, RBSR
performs localization by moving close to obstacle boundaries, in somewhat
random fashion, until it senses nearby walls. This continues until sufficient
data is gathered to reach the goal.

We tested the effects of reducing the size of the holdout set m, and what we
found was that the resulting executions tend to be much more noisy due to
spurious noise in f(b). In such cases, we found better results when replanning
is initiated only when the current belief state experiences a large information
gain due to an incoming observation (Figure [7). We hope to explore this
strategy further in future work.

Our final set of experiments tested scalability with respect to dimension.
Figure [8 plots the number of replanning steps taken by RBSR in problems
from d = 3 to d = 5 in the unit hypercube. We increased the number of
particles to 500, but kept all other parameters unchanged from the experiment
in Figure Bl These experiments suggest that the number of replanning steps
is roughly linear in dimension. Running time per timestep is roughly linear
in dimension as well, ranging from approximately 6s in the 3D case up to
approximately 14s in the 5D case. In higher dimensions, the accuracy of the
particle filter dropped off sharply. In future work we hope to explore more
sophisticated belief state representations, like Gaussian mixture models, that
can maintain accuracy with a manageable number of particles.

6 Discussion: Exploration Strategies

The experiments above are preliminary but promising, and in future work we
would like to study RBSR’s theoretical performance in the face of approx-
imate belief states and randomization in the exploration strategy. In this
section we argue why we expect that RBSR will work well in a broader class
of problems; particularly those in which 1) random walks in belief space have
a significant probability of finding useful information, and 2) in the process
of information-gathering, uncertainty is not significantly increased.

Under these assumptions, RBSR is roughly a belief-space analogue to the
Randomized Path Planner (RPP) |2], which addresses path planning in a
deterministic, fully-observable environment by alternating potential field de-
scent with random walks to escape local minima. RBSR is, however, better
than RPP for two reasons: 1) it perform many walks in simulation only and
then picks the best one for execution, and 2) it performs many walks in par-
allel using the Voronoi bias heuristic, which is more efficient at exploring
belief space than a random walk. So, we should be able to show that RBSR
performs at least as well as RPP, which is probabilistically complete.

Another interpretation is that RBSR uses macro-actions to make planning
more efficient. The idea of macro-actions have existed for some time in the
discrete POMDP literature as a way to reduce the exploration breadth and
depth in large robotics problems [16]. For example, Hsiao et. al. addressed
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a robot grasping problem using specially constructed macro-actions that ei-
ther provide information or seek the goal |9]. They demonstrate that if un-
certainty grows slowly during information-gathering, then forward planning
can be limited to depth one. RBSR can also be interpreted as depth-one
forward planning, using the QMDP policy as a goal-seeking macro-action
and belief-space sampling to produce information-gathering macro-actions
on the fly. Two other recent works have also tackled the problem of con-
structing macro-actions automatically and with increasing granularity during
forward planning [8,113]. These approaches are limited to macro-actions that
reach various states as subgoals, and we suspect that RBSR constructs better
information-gathering macro-actions using belief space criteria; on the other
hand we also suspect that the approaches in [&, [13] construct more optimal
plans by searching to a greater depth. (Note that our current presentation
of RBSR does not incorporate action costs; future implementations may in-
corporate path cost during the selection of information-gathering paths.) It
remains an open question whether these varied approaches will yield problem-
independent principles for generating and exploiting macro-actions in both
discrete and continuous POMDPs.

7 Conclusion

This paper presented preliminary work in a Randomized Belief-Space Re-
planning (RBSR) technique for partially-observable problems in continuous
state spaces. It constructs partial plans by sampling open-loop actions at
random, and by evaluating the quality of future belief states by simulating a
QMDP-like policy that performs well when the state is well-localized. By it-
eratively incorporating sensor feedback from plan execution and replanning,
RBSR avoids having to compute a policy over large belief spaces. Experi-
ments show that it solves a target pursuit problem with a 4D state space and
a localization problem in 2D-5D state spaces relatively efficiently.

Future work should attempt to formally characterize convergence rates of
RBSR and perform experimental comparisons against established techniques
for discrete POMDPs. Future benchmark development for partially observ-
able continuous problems would aid the empirical study of planner sensitivity
to dimensionality and other belief space properties. We also intend to address
improving path optimality and using sensing more efficiently in the RBSR
framework, because randomization yields somewhat jerky plans. With ad-
ditional refinements, RBSR-like approaches may lead to breakthroughs in
planning under partial observability in realistic robotic systems.

References

1. Alterovitz, R., Simeon, T., Goldberg, K.: The stochastic motion roadmap: A
sampling framework for planning with markov motion uncertainty. In: Robotics:
Science and Systems (June 2007)



208 K. Hauser

2. Barraquand, J., Latombe, J.-C.: Robot motion planning: A distributed repre-
sentation approach. Int. J. Rob. Res. 10(6), 628-649 (1991)

3. Berg, J.V.D., Abbeel, P., Goldberg, K.: Lqg-mp: Optimized path planning
for robots with motion uncertainty and imperfect state information. In: Proc.
Robotics: Science and Systems (2010)

4. Burns, B., Brock, O.: Sampling-based motion planning with sensing uncer-
tainty. In: Proc. IEEE Int. Conf. on Robotics and Automation (2007)

5. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling meth-
ods for bayesian filtering. Statistics and Computing 10(3), 197-208 (2000)

6. du Toit, N., Burdick, J.: Robotic motion planning in dynamic, cluttered, un-
certain environments. In: IEEE Int. Conf. on Robotics and Automation (2010)

7. Guibas, L.J., Hsu, D., Kurniawati, H., Rehman, E.: Bounded uncertainty
roadmaps for path planning. In: Workshop on the Algorithmic Foundations
of Robotics, Guanajuato, Mexico (2008)

8. He, R., Brunskill, E., Roy, N.: Puma: Planning under uncertainty with macro-
actions. In: Proc. Twenty-Fourth Conf. on Artificial Intelligence (AAAT) (2010)

9. Hsiao, K., Lozano-Perez, T., Kaelbling, L.P.: Robust belief-based execution of
manipulation programs. In: Eighth International Workshop on the Algorithmic
Foundations of Robotics (WAFR) (2008)

10. Huang, Y., Gupta, K.: Collision-probability constrained prm for a manipulator
with base pose uncertainty. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Piscataway, NJ, USA, 2009, pp. 1426-1432. IEEE Press, Los
Alamitos (2009)

11. Kavraki, L.E., Svetska, P., Latombe, J.-C., Overmars, M.: Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. and Autom. 12(4), 566-580 (1996)

12. Kearns, M., Mansour, Y., Ng, A.Y.: Approximate planning in large pomdps via
reusable trajectories. In: Advances in Neural Information Processing Systems,
vol. 12. MIT Press, Cambridge (2000)

13. Kurniawati, H., Du, Y., Hsu, D., Lee, W.: Motion planning under uncertainty
for robotic tasks with long time horizons. In: Proc. Int. Symp. on Robotics
Research (2009)

14. Kurniawati, H., Hsu, D., Lee, W.: Sarsop: Efficient point-based pomdp planning
by approximating optimally reachable belief spaces. In: Proc. Robotics: Science
and Systems (2008)

15. LaValle, S.M., Kuffner Jr., J.J.: Rapidly-exploring random trees: progress and
prospects. In: WAFR (2000)

16. Littman, M., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially
observable environments: Scaling up. In: Proc. 12th Int. Conf. on Machine
Learning, pp. 362-370. Morgan Kaufmann, San Francisco (1995)

17. Littman, M.L., Goldsmith, J., Mundhenk, M.: The computational complexity
of probabilistic planning. Journal of Artificial Intelligence Research 9, 1-36
(1998)

18. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime
algorithm for pomdps. In: International Joint Conference on Artificial Intelli-
gence (IJCAI), Acapulco, Mexico, pp. 1025-1032 (August 2003)

19. Platt, R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief space planning
assuming maximum likelihood observations. In: Proc. Robotics: Science and
Systems (2010)



Randomized Belief-Space Replanning 209

20. Porta, J.M., Vlassis, N., Spaan, M.T.J., Poupart, P.: Point-based value iteration
for continuous pomdps. Journal of Machine Learning Research 7, 2329-2367
(2006)

21. Prentice, S., Roy, N.: The Belief Roadmap: Efficient Planning in Belief Space
by Factoring the Covariance. The International Journal of Robotics Re-
search 28(11-12), 1448-1465 (2009)

22. Thrun, S.: Monte carlo pomdps. In: Advances in Neural Information Processing
Systems 12 (NIPS-1999), MIT Press, Cambridge (2000)



GPU-Based Parallel Collision Detection for
Real-Time Motion Planning

Jia Pan and Dinesh Manocha

Abstract. We present parallel algorithms to accelerate collision queries for sample-
based motion planning. Our approach is designed for current many-core GPUs and
exploits the data-parallelism and multi-threaded capabilities. In order to take advan-
tage of high number of cores, we present a clustering scheme and collision-packet
traversal to perform efficient collision queries on multiple configurations simul-
taneously. Furthermore, we present a hierarchical traversal scheme that performs
workload balancing for high parallel efficiency. We have implemented our algo-
rithms on commodity NVIDIA GPUs using CUDA and can perform 500,000 colli-
sion queries/second on our benchmarks, which is 10X faster than prior GPU-based
techniques. Moreover, we can compute collision-free paths for rigid and articulated
models in less than 100 milliseconds for many benchmarks, almost 50-100X faster
than current CPU-based planners.

1 Introduction

Motion planning is one of the fundamental problems in algorithmic robotics. The
goal is to compute collision-free paths for robots in complex environments. Some of
the widely used algorithms for high-DOF (degree-of-freedom) robots are based on
randomized sampling. These include algorithms based on PRMs and RRTs [[14].
These methods tend to capture the topology of the free configuration space of the
robot by generating a high number of random configurations and connecting nearby
collision-free configurations (i.e. milestones) using local planning methods. The re-
sulting algorithms are probabilistically complete and have been successfully used to
solve many challenging motion planning problems.

In this paper, we address the problem of designing fast and almost real-time plan-
ning algorithms for rigid and articulated models. The need for such algorithms arises
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not only from virtual prototyping and character animation, but also task planning for
physical robots. Current robots (such as Willow Garage’s PR2) tend to use live sen-
sor data to generate a reasonably accurate model of the objects in the physical world.
Some tasks, such as robot navigation or grasping, need to compute a collision-free
path for the manipulator in real-time to handle dynamic environments. Moreover,
many high-level task planning algorithms perform motion planning and subtask ex-
ecution in an interleaved manner, i.e. the planning result of one subtask is used to
construct the formulation of the following subtask [27]]. A fast and almost real-time
planning algorithm is important for these applications.

It is well known that a significant fraction (e.g. 90% or more) of randomized
sampling algorithms is spent in collision checking. This includes checking whether
a given configuration is in free-space or not as well as connecting two free-space
configurations using a local planning algorithm. While there is extensive literature
on fast intersection detection algorithms, some of the recent planning algorithms are
exploiting the computational power and massive parallelism of commodity GPUs
(graphics processing units) for almost real-time computation 22]). Current GPUs
are high-throughput many-core processors, which offer high data-parallelism and
can simultaneously execute a high number of threads. However, they have a different
programming model and memory hierarchy as compared to CPUs. As a result, we
need to design appropriate parallel collision and planning algorithms that can map
well to GPUs.

Main Results. We present a novel, parallel algorithm to perform collision queries
for sample-based motion planning. Our approach exploits parallelism at two levels:
it checks multiple configurations simultaneously whether they are in free space or
not and performs parallel hierarchy traversal for each collision query. Similar tech-
niques are also used for local planning queries. We present clustering techniques
to appropriately allocate the collision queries to different cores, Furthermore, we
introduce the notion of collision-packet traversal, which ensures that all the config-
urations allocated to a specific core result in similar hierarchical traversal patterns.
The resulting approach also exploits fine-grained parallelism corresponding to each
bounding volume overlap test to balance the workload.

The resulting algorithms have been implemented on commodity NVIDIA GPUs.
In practice, we are able to process about 500,000 collision queries per second on
a $400 NVIDIA GeForce 480 desktop GPU, which is almost 10X faster than prior
GPU-based collision checking algorithms. We also apply our collision checking
algorithm for GPU-based motion planners to high DOF rigid and articulated robots.
The resulting planner can compute collision-free paths in less than 100 milliseconds
for various benchmarks and appears to be 50-100X faster than CPU-based planners.

The rest of the paper is organized as follows. We survey related work on real-time
motion planning and parallel collision-checking algorithms in Section2l Section[3]
gives an overview of our approach and we present our new parallel algorithm for
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parallel collision queries in Section @l We highlight the performance of our algo-
rithm on different benchmarks in Section

2 Previous Work

In this section, we give a brief overview of prior work in real-time motion planning
and parallel algorithms for collision detection.

2.1 Real-Time Motion Planning

An excellent survey of various motion planning algorithms is given in [17]. Many
parallel algorithms have also been proposed for motion planning by utilizing the
properties of configuration spaces [20]]. The distributed representation can be
easily parallelized. In order to deal with very high dimensional or difficult planning
problems, distributed sampling-based techniques have been proposed [23]].

The computational power of many-core GPUs has been used for many geomet-
ric and scientific computations [21]]. The rasterization capabilities of a GPU can
be used for real-time motion planning of low DOF robots or improve the
sample generation in narrow passages [24, [7]. Recently, GPU-based parallel motion
planning algorithms have been proposed for rigid models 23} 22]].

2.2 Parallel Collision Queries

Some of the widely used algorithms for collision query are based on bound-
ing volume hierarchies (BVH), such as k-DOP trees, OBB trees, AABB trees,
etc [18]]. Recent developments include parallel hierarchical computations on multi-
core CPUs and GPUs [16]. CPU-based approaches tend to rely on
fine-grained communication between processors, which is not suited for current
GPU-like architectures. On the other hand, GPU-based algorithms [16] use work
queues to parallelize the computation on the multiple cores. All these approaches
are primarily designed to parallelize a single collision query for sample-based mo-
tion planning.

The capability to perform a high number of collision queries efficiently is es-
sential in motion planning algorithms, e.g. for parallel collision queries in mile-
stone computation and local planning. Some of the prior algorithms perform paral-
lel queries in a simple manner: each thread handles a single collision query in an
independent manner 221 31 2]]. As current multi-core CPUs have the capability
to perform multiple-instruction multiple-data (MIMD) computations, these simple
strategies can work well on CPUs. On the other hand, current GPUs offer high
data parallelism and the ability to execute a high number of threads in parallel to
overcome the high memory latency. As a result, we need different parallel collision
detection algorithms to fully exploit their capabilities.
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3 Overview

In this section, we first provide some background on current GPU architectures.
Next, we address some issues in designing efficient parallel algorithms to perform
collision queries.

3.1 GPU Architectures

In recent years, the focus in processor architectures has shifted from increasin

clock rate to increasing parallelism. Commodity GPUs such as NVIDIA Ferm

have theoretical peak performance of Tera-FLOP/s for single precision computa-
tion and hundreds of Giga-FLOP/s for double precision computations. This peak
performance is significantly higher as compared to current multi-core CPUs, thus
outpacing CPU architectures [19] at relatively modest cost of $300 to $400. How-
ever, GPUs have different architectural characteristics and memory hierarchy, that
impose some constraints in terms of designing appropriate algorithms. First, GPUs
usually have a high number of independent cores (e.g. the newest generation GTX
480 has 15 cores and each core has 32 streaming processors resulting in total of
480 processors while GTX 280 has only 240 processors). Each of the individual
cores is a vector processor capable of performing the same operation on several
elements simultaneously (e.g. 32 elements for current GPUs). Secondly, the mem-
ory hierarchy on GPUs is quite different from that of CPUs and cache sizes on the
GPUs are considerably smaller. Moreover, each GPU core can handle several sep-
arate tasks in parallel and switch between them in the hardware when one of them
is waiting for a memory operation to complete. This hardware multithreading ap-
proach is thus designed to hide the memory access latency. Thirdly, all GPU threads
are logically grouped in blocks with a per-block shared memory, which provides
a weak synchronization capability between the GPU cores. Overall, shared mem-
ory is a limited resource on GPUs: increasing the shared memory distributed for
each thread can limit the extent of parallelism. Finally, the threads are physically
processed in chunks in SIMT (single-instruction, multiple-thread). This is different
from SIMD (single-instruction multiple-data) and each thread can execute indepen-
dent instructions. The GPU’s performance can reduce significantly when threads in
the same chunk diverge considerably, because these diverging portions are executed
in a serial manner for all the branches. As a result, threads with coherent branch-
ing decisions (e.g. threads traversing the same paths in the BVH) are preferred on
GPUs in order to obtain higher performance [8]]. All of these characteristics imply
that — unlike CPUs — achieving high performance in current GPUs depends on sev-
eral factors: (1) generating a sufficient number of parallel tasks so that all the cores
are highly utilized; (2) developing parallel algorithms such that the total number of
threads is even higher than the number of tasks, so that each core has enough work to
perform while waiting for data from relatively slow memory accesses; (3) assigning
appropriate size for shared memory to accelerate memory accesses and not reduce

1 http://www.nvidia.com/object/fermi_architecture.html


http://www.nvidia.com/object/fermi_architecture.html

GPU-Based Parallel Collision Detection for Real-Time Motion Planning 215

the level of parallelism; (4) performing coherent or similar branching decisions for
each parallel thread within a given chunk. These requirements impose constraints in
terms of designing appropriate collision query algorithms.

3.2 Notation and Terminology

We define some terms and highlight the symbols used in the rest of the paper.

chunk. The minimum number of threads that GPUs manage, schedule and execute
in parallel, which is also called warp in the GPU computing literatures. The size
of chunk (chunk-size or warp-size) is 32 on current NVIDIA GPUs (e.g. GTX
280 and 480).

block. The collection of GPU threads that will be executed on the same GPU
core. These threads synchronize by using barriers and communicate via a small
high-speed low-latency shared memory.

BVH,. The bounding volume hierarchy (BVH) tree for model a. It is a binary tree
with L levels, whose nodes are ordered in the breadth-first order starting from the
root node. Each node is denoted as BVH,[i] and its children nodes are BVH,[2i]
and BVH,[2i+ 1] with 1 < <25~! — 1. The nodes at the /-th level of a BVH tree
are represented as BVH, [k],2/ < k < 2/*! — 1 with 0 <[ < L. The inner nodes
are also called bounding volumes (BV) and the leaf nodes also have a link to the
primitive triangles that are used to represent the model.

BVTT, . The bounding volume test tree (BVTT) represents recursive collision
query traversal between two objects a,b. It is a 4-ary tree, whose nodes are or-
dered in the breadth-first order starting from the root node. Each node is de-
noted as BVTT,;[i] = (BVH,[m], BVH,[n]) or simply (m,n), which checks
the BV or primitive overlap between nodes BVH,,[m| and BVH, [n], while m =
li— 2y oMy — i 2 4 oM and M = [logy(3i —2)]. BVTT node
(m,n)’s children are (2m,2n), (2m,2n+1), 2m+1,2n), 2m+1,2n+1).

q. A configuration of the robot, which is randomly sampled within the configura-
tion space ¢-Space. q is associated with the transformation Tq. The BVH of a
model a after applying such a transformation is given as BVH,(q).

3.3 Collision Queries: Hierarchical Traversal

Collision queries between the geometric models are usually accelerated with hierar-
chical techniques based on BVHs, which correspond to traversing the BVTT related
with the BVHs of the models [13]]. The simplest parallel algorithms to perform mul-
tiple collision queries are based on each thread traversing the BVTT and checking
whether a given configuration is in free space or not. Such a simple parallel algo-
rithm is highlighted in Algorithm[Il This strategy is easy to implement and has been
used in previous parallel planning algorithms based on multi-core or multiple CPUs.
But it may not result in high parallel efficiency on current GPUs due to the follow-
ing reasons. First, each thread needs a local traverse stack on the shared memory
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which may not be effective for complex models with thousands of polygons. Sec-
ond, different threads may traverse the BVTT tree with incoherent patterns: there
are many branching decisions performed during the traversal (e.g. loop, if, return
in the pseudo-code) and the traversal flow of the hierarchy in different threads di-
verges quickly. Finally, different threads can have varying workloads; some may be
busy with the traversal while the others may have finished the traversal early due
to no overlap and are idle. These factors can affect the performance of the parallel
algorithm.

The problems of low parallel efficiency in Algorithm [ become more severe in
complex or articulated models. For such models, there are longer traversal paths
in the hierarchy and the difference between these paths can be large for different
configurations. As a result, differences in the workloads between different threads
can be high. For articulated models, each thread checks the collision status of all the
links and stops when a collision is detected for any link. Therefore, more branching
decisions are performed within each thread and this can lead to more incoherence.
Similar issues also arise during local planning when each thread determines whether
two milestones can be joined by a collision-free path by checking the collisions
along the trajectory connecting them.

Algorithm 1. Simple parallel collision checking; Such approaches are frequently used on
multi-core CPUs

: Input: N random configurations {qi}f\’: 1» BVH,, for the robot and BVH,, for the obstacles
: Output: return whether one configuration is in free space or not
t;q < thread id of current thread

q <4y,

< traverse stack S[] is initialized with root nodes

. shared S[] = local traversal stack

: S[]1 «<BVTT[1] = (BVH,(q)[1],BVH,[1])

: < traverse BVTT for BVH,(q) and BVH,,

9: loop

10:  (x,y) < pop(S).

11:  if overlap(BVH,(q)[x],BVH,[y]) then

PN DR LN =

12: S[1 < (2x,2y),(2x,2y + 1), (2x+ 1,2y), (2x+ 1,2y + 1) if lisLeaf (x) &&!isLeaf(y)
13: S[1 « (2x,2y), (2x,2y + 1) if isLeaf (x) && lisLeaf(y)

14: S0 + (2x,2y), (2x+1,2y) if lisLeaf (x ) && isLeaf (y)

15: return collision if isLeaf (x) && isLeaf(y) && exactIntersect(BVH,(q)[x],BVH,[y])
16:  endif

17: end loop

18: return collision-free

4 Parallel Collision Detection on GPUs

In this section, we present two novel algorithms for efficient parallel collision check-
ing on GPUs between rigid or articulated models. Our methods can be used to check
whether a configuration lies in the free space or to perform local planning com-
putations. The first algorithm uses clustering and fine-grained packet-traversal to
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improve the coherence of BVTT traversal for different threads. The second algo-
rithm uses queue-based techniques and lightweight workload balancing to achieve
higher parallel performance on the GPUs. In practice, the first method can provide
30%-50% speed up. Moreover, it preserves the per-thread per-query structure of the
naive parallel strategy. Therefore, it is easy to implement and is suitable for cases
where we need to perform some additional computations (e.g. retraction for han-
dling narrow passages [29]). The second method can provide 5-10X speed up, but
is relatively more complex to implement.

4.1 Parallel Collision-Packet Traversal

Our goal is to ensure that all the threads in a block performing BVTT-based collision
checking have similar workloads and coherent branching patterns. This approach is
motivated by recent developments related to interactive ray-tracing on GPUs for vi-
sual rendering. Each collision query traverses the BVTT and performs node-node or
primitive-primitive intersection tests. In contrast, ray-tracing algorithms traverse the
BVH tree and perform ray-node or ray-primitive intersections. Therefore, parallel
ray-tracing algorithms on GPUs also need to avoid incoherent branches and varying
workloads to achieve higher performance.

In real-time ray tracing, one approach to handle the varying workloads and inco-
herent branches is the use of ray-packets [8, [1]. In ray-tracing terminology, packet
traversal implies that a group of rays follows exactly the same traversal path in
the hierarchy. This is achieved by sharing the traversal stack (similar to the BVTT
traversal stack in Algorithm [I)) among the rays in the same warp-sized packet (i.e.
threads that fit in one chunk on the GPU), instead of each thread using an inde-
pendent stack for a single ray. This implies that the same additional nodes in the
hierarchy may be visited during ray intersection tests, even though there are no in-
tersections between the rays and those nodes. But the resulting traversal is coherent
for different rays, because each node is fetched only once per packet. In order to
reduce the number of computations (i.e. unnecessary node intersection tests), all the
rays in one packet should be similar to one another, i.e. have similar traversal paths
with few differing branches. We extend this idea to parallel collision checking and
refer to our algorithm as multiple configuration-packet method.

The first challenge is to cluster similar collision queries or the configurations into
groups. In some cases, the sampling scheme (e.g. the adaptive sampling for lazy
PRM) can provide natural group partitions. However, in most cases we need suitable
algorithms to compute these clusters. Clustering algorithms are natural choices for
such a task, which aims at partitioning a set 2~ of N data items {x,-}évz | into K groups
{Ck},’f:l such that the data items belonging to the same group are more ‘“similar”
than the data items in different groups. The clustering algorithm used to group the
configurations needs to satisfy some additional constraints: |Cy| = chunk-size,1 <
k <K, i.e. each cluster should fit in one chunk on GPUs, except for the last cluster
and K = [ChWNTW} Using the formulation of k-means, the clustering problem can

be formally described as: compute K = [ChWNTW} items {c, }X_, that minimizes
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with constraints |Cy| = chunk-size,1 < k < K. To our knowledge, there are no clus-
tering algorithms designed for this specific problem. One possible solution is clus-
tering with balancing constraints [4], which has additional constraints |Cy| > m, 1 <
k <K, where m < %

Instead of solving Equation (1)) exactly, we use a simpler clustering scheme to
compute an approximate solution. First, we use k-means algorithm to cluster the N
queries into C clusters, which can be implemented efficiently on GPUs [6]. Next,
for k-th cluster of size Sy, we divide it into [Chmf%] sub-clusters, each of which
corresponds to a configuration-packet. This simple method has some disadvantages.
For example, the number of clusters is ¥, fm] >K= [#WW and there-
fore Equation (1) may not result in an optimal solution. However, as shown later,
even this simple method can improve the performance of parallel collision queries.

Next we map each configuration-packet to a single chunk. Threads within one
packet will traverse the BVTT synchronously, i.e. the algorithm works on one BVTT
node (x,y) at a time and processes the whole packet against the node. If (x,y) is a
leaf node, an exact intersection test is performed for each thread. Otherwise, the
algorithm loads its children nodes and tests the BV for overlap to determine the re-
maining traversal order, i.e. to select one child (x,,,yn) as the next BVTT node to be
traversed for the entire packet. We select (x,,, ;) in a greedy manner: it corresponds
to the child node that is classified as overlapping by the most threads in the packet.
We also push other children into the packet’s traversal stack. In case no BV overlap
is detected in all the threads or (x,y) is a leaf node, (x,;,yn) would be the top ele-
ment in the packet’s traversal stack. The traversal step is repeated recursively, until
the stack is empty. Compared to Algorithm[]] all the threads in one chunk share one
traversal stack in shared memory, instead of using one stack for each thread. There-
fore, the size of shared memory used is reduced by chunk-size times and results in
higher parallel efficiency.

The traversal order described above is a greedy heuristic that tries to minimize
the traversal path of the entire packet. For one BVTT node (x, y), if the overlap is not
detected in any of the threads, it implies that these threads will not traverse the sub-
tree rooted at (x,y). Since all the threads in the packet are similar and traverse the
BVTT in nearly identical order, this implies that other threads in the same packet
might not traverse the sub-tree either. We define the probability that the sub-tree
rooted at (x,y) will be traversed by one thread as p,, = % For any
traverse pattern P for BVTT, the probability that it is carried on by BVTT traversal
will be pp = [1(xy)ep Px,y- As aresult, our new traversal strategy guarantees that the
traversal pattern with higher traverse probability will have a shorter traversal length,
and therefore minimizes the overall path for the packet.

The decision about which child node is the candidate for next traversal step is
computed using sum reduction [9], which can compute the sum of n items in par-
allel with O(log(n)) complexity. Each thread writes a 1 in its own location in the
shared memory if it detects overlap in one child and 0 otherwise. The sum of the
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memory locations is computed in 5 steps for a size 32 chunk. The packet chooses
the child node with the maximum sum. The complete algorithm for configuration-
packet computation is described in Algorithm

Algorithm 2. Multiple Configuration-Packet Traversal

1: Input: N random configurations {q,-}?]: 1» BVH,, for the robot and BVH,, for the obstacles
2: t;jq < thread id of current thread
3 g qgy
4: shared CN[]= shared memory for children node
5: shared 7'S[]= local traversal stack
6: shared SM[]= memory for sum reduction
7: return if overlap(BVH,(q)[1], BVH,[1]) is false for all threads in chunk
8: (xvy):(lzl)
9: loop
10:  ifisLeaf(x) && isLeaf(y) then
11: update collision status of q if exactIntersect(BVH,(q)[x],BVH[y])
12: break, if 7S is empty
13: (x,y) < pop(TS)
14:  else
15: < decide the next node to be traversed
16: CNI[] < (x,y)’s children nodes
17: for all (xc,y.) € CN do
18: <1 compute the number of threads that detect overlap at node (xc,y.)
19: write overlap(BVH,(q)[xc],BVHp[y.]) (0 or 1) into SM([t;4] accordingly
20: compute local summation s, in parallel by all threads in chunk
21: end for
22: if max.s. > 0 then
23: < select the node that is overlapped in the most threads
24: (x,y) < CN[argmax_.s.| and push others into T'S
25: else
26: < select the node from the top of stack
27: break, if 7'S is empty
28: (x,) < pop(TS)
29: end if
30:  endif
31: end loop

4.2  Parallel Collision Query with Workload Balancing

Both Algorithm 1] and Algorithm 2] use the per-thread per-query strategy, which is
easy to implement. However, when the idle threads wait for busy threads or when
the execution path of threads diverges, the parallel efficiency on the GPUs is low.
Algorithm D] can reduce this problem in some cases, but it still distributes the tasks
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among the separate GPU cores and cannot make full use of the GPU’s computational
power.

In this section, we present the parallel collision query algorithm based on work-
load balancing which further improves the performance. In this algorithm, the task
of each thread is no longer one complete collision query or continuous collision
query (for local planning). Instead, each thread only performs BV overlap tests. In
other words, the unit task for each thread is distributed in a more fine-grained man-
ner. Basically, we formulate the problem of performing multiple collision queries
as a pool of BV overlap tests which can be performed in parallel. It is easier to
distribute these fine-grained tasks in a uniform manner onto all the GPU cores, and
thereby balancing the load among them, than to distribute the collision query tasks.

All the tasks are stored in Q large work queues in the GPU’s main memory, which
has a higher latency compared to the shared memory. When computing a single col-
lision query [[16]], the tasks are in the form of BVTT nodes (x,y). Each thread will
fetch some tasks from one work queue into its local work queue on the shared mem-
ory and traverse the corresponding BVTT nodes. The children generated for each
node are also pushed into the local queue as new tasks. This process is repeated
for all the tasks remaining in the queue, until the number of threads with full or
empty local work queues exceeds a given threshold (we use 50% in our implemen-
tation) and non-empty local queues are copied back to the work queues on main
memory. Since each thread performs simple tasks with few branches, our algorithm
can make full use of GPU cores if there are sufficient tasks in all the work queues.
However, during BVTT traversal, the tasks are generated dynamically and thus dif-
ferent queues may have varying numbers of tasks and this can lead to an uneven
workload among the GPU cores. We use a balancing algorithm that redistributes the
tasks among work queues (Figure ). Suppose the number of tasks in each work
queue is n;, 1 <i < Q. Whenever 3i, n; < T; or n; > T,,, we execute our balancing
algorithm among all the queues and the number of tasks in each queue becomes

n; = M, 1 <i<Q, where T; and T, are two thresholds (we use chunk-size for
T; and the W — chunk-size for T,,, where W is the maximum size of work queue).

In order to handle N collision queries simultaneously, we use several strategies,
which are similar to the ones highlighted in Figure[Il First, we can repeat the sin-
gle query above algorithm [16] for each query. However, this has two main disad-
vantages. First, the GPU kernel has to be called N times from the CPU, which is
expensive for large N (which can be > 10000 for motion planning applications).
Secondly, for each query, work queues are initialized with only one item (i.e. the
root node of the BVTT), therefore the GPU’s computational power cannot be fully
exploited at the beginning of each query, as shown in the slow ascending part in
Figure [[(a). Similarly, at the end of each query, most tasks are finished and some
of the GPU cores become idle, which corresponds to the slow descending part in
Figure[Ila).

As a result, we use the strategy shown in Figure [[{b): we divide the N queries
into [%] different sets each of size M with M < N and initialize the work queues
with M different BVTT roots for each iteration. Usually M cannot be N because
we need to use t - M GPU global memory to store the transform information for the
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Fig. 1 Different strategies for parallel collision query using work queues. (a) Naive way:
repeat the single collision query algorithm in [16] one by one; (b) Work queues are initialized
by some BVTT root nodes and we repeat the process until all queries are performed. (c) is
similar to (b) except that new BVTT root nodes are added to the work queues by the pump
kernel, when there are not a sufficient number of tasks in the queue.

queries, where constant r < and we usually use M = 50. In this case,

we only need to invoke the solution kernel [%] times. The number of tasks available
in the work queues changes more smoothly over time, with fewer ascending and
descending parts, which implies higher throughput of the GPUs. Moreover, the work
queues are initialized with many more tasks, which results in high performance at
the beginning of each iteration. In practice, as nodes from more than one BVTT
of different queries co-exist in the same queue, we need to distinguish them by
representing each BVTT node by (x,y,i) instead of (x,y), where i is the index of
collision query.

We can further improve the efficiency by using the pump operation (Algo-
rithm Bl and Fig 2)). That is, instead of initializing the work queues after it is com-
pletely empty, we add M BVTT root nodes of unresolved collision queries into
the work queues when the number of tasks in it decreases to a threshold (we use
10 - chunk-size). As a result, the few ascending and descending parts in Figure [T(b)
can be further flattened as shown in Figure [[{c). Pump operation can reduce the
timing overload of interrupting traversal kernels or copying data between global
memory and shared memory, and therefore improve the overall efficiency of colli-
sion computation.

#global memory
M

4.3 Analysis

In this section, we analyze the algorithms described above using the parallel random
access machine (PRAM) model, which is a popular tool to analyze the complexity
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Algorithm 3. Traversal with Workload Balancing

1: task _kernel()
: input abort signal signal, N random configurations {q,-}i.\’: 1» BVH, for the robot and
BVH,, for the obstacles

3: shared W Q[] = local work queue

4: initialize WQ by tasks in global work queues
5: < traverse on work queues instead of BVTTs
6: loop
’7.
8

\®}

(x,3,i) = pop(WQ)
if overlap(BVH,(q;)[x],BVH,[y]) then

9: if isLeaf(x) && isLeaf(y) then

10: update collision status of i-th query if exactIntersect(BVH,(q;)[x],BVH,[y])
11: else

12: WOQI] < (x,y,i)’s children

13: end if

14:  endif

15:  if WQ is full or empty then

16: atomiclnc(signal), break

17:  endif

18: end loop

19: return if signal > 50%Q

1: balance _process()

2: copy local queue back to global work queue <l m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>